

Hands-On	Machine	Learning	with	Scikit-Learn
and	TensorFlow

Concepts,	Tools,	and	Techniques	to	Build	Intelligent	Systems

Aurélien	Géron

Hands-On	Machine	Learning	with	Scikit-Learn	and	TensorFlow
by	Aurélien	Géron

Copyright	©	2017	Aurélien	Géron.	All	rights	reserved.

Printed	in	the	United	States	of	America.

Published	by	O’Reilly	Media,	Inc.,	1005	Gravenstein	Highway	North,	Sebastopol,	CA	95472.

O’Reilly	books	may	be	purchased	for	educational,	business,	or	sales	promotional	use.	Online	editions	are
also	available	for	most	titles	(http://oreilly.com/safari).	For	more	information,	contact	our
corporate/institutional	sales	department:	800-998-9938	or	corporate@oreilly.com.

Editor:	Nicole	Tache

Production	Editor:	Nicholas	Adams

Copyeditor:	Rachel	Monaghan

Proofreader:	Charles	Roumeliotis

Indexer:	Wendy	Catalano

Interior	Designer:	David	Futato

Cover	Designer:	Randy	Comer

Illustrator:	Rebecca	Demarest

March	2017:	First	Edition

http://oreilly.com/safari

Revision	History	for	the	First	Edition
2017-03-10:	First	Release

See	http://oreilly.com/catalog/errata.csp?isbn=9781491962299	for	release	details.

The	O’Reilly	logo	is	a	registered	trademark	of	O’Reilly	Media,	Inc.	Hands-On	Machine	Learning	with
Scikit-Learn	and	TensorFlow,	the	cover	image,	and	related	trade	dress	are	trademarks	of	O’Reilly
Media,	Inc.

While	the	publisher	and	the	author	have	used	good	faith	efforts	to	ensure	that	the	information	and
instructions	contained	in	this	work	are	accurate,	the	publisher	and	the	author	disclaim	all	responsibility
for	errors	or	omissions,	including	without	limitation	responsibility	for	damages	resulting	from	the	use	of
or	reliance	on	this	work.	Use	of	the	information	and	instructions	contained	in	this	work	is	at	your	own
risk.	If	any	code	samples	or	other	technology	this	work	contains	or	describes	is	subject	to	open	source
licenses	or	the	intellectual	property	rights	of	others,	it	is	your	responsibility	to	ensure	that	your	use	thereof
complies	with	such	licenses	and/or	rights.

978-1-491-96229-9

[LSI]

http://oreilly.com/catalog/errata.csp?isbn=9781491962299

Preface

The	Machine	Learning	Tsunami
In	2006,	Geoffrey	Hinton	et	al.	published	a	paper1	showing	how	to	train	a	deep	neural	network	capable	of
recognizing	handwritten	digits	with	state-of-the-art	precision	(>98%).	They	branded	this	technique	“Deep
Learning.”	Training	a	deep	neural	net	was	widely	considered	impossible	at	the	time,2	and	most
researchers	had	abandoned	the	idea	since	the	1990s.	This	paper	revived	the	interest	of	the	scientific
community	and	before	long	many	new	papers	demonstrated	that	Deep	Learning	was	not	only	possible,	but
capable	of	mind-blowing	achievements	that	no	other	Machine	Learning	(ML)	technique	could	hope	to
match	(with	the	help	of	tremendous	computing	power	and	great	amounts	of	data).	This	enthusiasm	soon
extended	to	many	other	areas	of	Machine	Learning.

Fast-forward	10	years	and	Machine	Learning	has	conquered	the	industry:	it	is	now	at	the	heart	of	much	of
the	magic	in	today’s	high-tech	products,	ranking	your	web	search	results,	powering	your	smartphone’s
speech	recognition,	and	recommending	videos,	beating	the	world	champion	at	the	game	of	Go.	Before	you
know	it,	it	will	be	driving	your	car.

Machine	Learning	in	Your	Projects
So	naturally	you	are	excited	about	Machine	Learning	and	you	would	love	to	join	the	party!

Perhaps	you	would	like	to	give	your	homemade	robot	a	brain	of	its	own?	Make	it	recognize	faces?	Or
learn	to	walk	around?

Or	maybe	your	company	has	tons	of	data	(user	logs,	financial	data,	production	data,	machine	sensor	data,
hotline	stats,	HR	reports,	etc.),	and	more	than	likely	you	could	unearth	some	hidden	gems	if	you	just	knew
where	to	look;	for	example:

Segment	customers	and	find	the	best	marketing	strategy	for	each	group

Recommend	products	for	each	client	based	on	what	similar	clients	bought

Detect	which	transactions	are	likely	to	be	fraudulent

Predict	next	year’s	revenue

And	more

Whatever	the	reason,	you	have	decided	to	learn	Machine	Learning	and	implement	it	in	your	projects.
Great	idea!

https://www.kaggle.com/wiki/DataScienceUseCases

Objective	and	Approach
This	book	assumes	that	you	know	close	to	nothing	about	Machine	Learning.	Its	goal	is	to	give	you	the
concepts,	the	intuitions,	and	the	tools	you	need	to	actually	implement	programs	capable	of	learning	from
data.

We	will	cover	a	large	number	of	techniques,	from	the	simplest	and	most	commonly	used	(such	as	linear
regression)	to	some	of	the	Deep	Learning	techniques	that	regularly	win	competitions.

Rather	than	implementing	our	own	toy	versions	of	each	algorithm,	we	will	be	using	actual	production-
ready	Python	frameworks:

Scikit-Learn	is	very	easy	to	use,	yet	it	implements	many	Machine	Learning	algorithms	efficiently,	so
it	makes	for	a	great	entry	point	to	learn	Machine	Learning.

TensorFlow	is	a	more	complex	library	for	distributed	numerical	computation	using	data	flow	graphs.
It	makes	it	possible	to	train	and	run	very	large	neural	networks	efficiently	by	distributing	the
computations	across	potentially	thousands	of	multi-GPU	servers.	TensorFlow	was	created	at	Google
and	supports	many	of	their	large-scale	Machine	Learning	applications.	It	was	open-sourced	in
November	2015.

The	book	favors	a	hands-on	approach,	growing	an	intuitive	understanding	of	Machine	Learning	through
concrete	working	examples	and	just	a	little	bit	of	theory.	While	you	can	read	this	book	without	picking	up
your	laptop,	we	highly	recommend	you	experiment	with	the	code	examples	available	online	as	Jupyter
notebooks	at	https://github.com/ageron/handson-ml.

http://scikit-learn.org/
http://tensorflow.org/
https://github.com/ageron/handson-ml

Prerequisites
This	book	assumes	that	you	have	some	Python	programming	experience	and	that	you	are	familiar	with
Python’s	main	scientific	libraries,	in	particular	NumPy,	Pandas,	and	Matplotlib.

Also,	if	you	care	about	what’s	under	the	hood	you	should	have	a	reasonable	understanding	of	college-
level	math	as	well	(calculus,	linear	algebra,	probabilities,	and	statistics).

If	you	don’t	know	Python	yet,	http://learnpython.org/	is	a	great	place	to	start.	The	official	tutorial	on
python.org	is	also	quite	good.

If	you	have	never	used	Jupyter,	Chapter	2	will	guide	you	through	installation	and	the	basics:	it	is	a	great
tool	to	have	in	your	toolbox.

If	you	are	not	familiar	with	Python’s	scientific	libraries,	the	provided	Jupyter	notebooks	include	a	few
tutorials.	There	is	also	a	quick	math	tutorial	for	linear	algebra.

http://numpy.org/
http://pandas.pydata.org/
http://matplotlib.org/
http://learnpython.org/
https://docs.python.org/3/tutorial/

Roadmap
This	book	is	organized	in	two	parts.	Part	I,	The	Fundamentals	of	Machine	Learning,	covers	the
following	topics:

What	is	Machine	Learning?	What	problems	does	it	try	to	solve?	What	are	the	main	categories	and
fundamental	concepts	of	Machine	Learning	systems?

The	main	steps	in	a	typical	Machine	Learning	project.

Learning	by	fitting	a	model	to	data.

Optimizing	a	cost	function.

Handling,	cleaning,	and	preparing	data.

Selecting	and	engineering	features.

Selecting	a	model	and	tuning	hyperparameters	using	cross-validation.

The	main	challenges	of	Machine	Learning,	in	particular	underfitting	and	overfitting	(the
bias/variance	tradeoff).

Reducing	the	dimensionality	of	the	training	data	to	fight	the	curse	of	dimensionality.

The	most	common	learning	algorithms:	Linear	and	Polynomial	Regression,	Logistic	Regression,	k-
Nearest	Neighbors,	Support	Vector	Machines,	Decision	Trees,	Random	Forests,	and	Ensemble
methods.

Part	II,	Neural	Networks	and	Deep	Learning,	covers	the	following	topics:
What	are	neural	nets?	What	are	they	good	for?

Building	and	training	neural	nets	using	TensorFlow.

The	most	important	neural	net	architectures:	feedforward	neural	nets,	convolutional	nets,	recurrent
nets,	long	short-term	memory	(LSTM)	nets,	and	autoencoders.

Techniques	for	training	deep	neural	nets.

Scaling	neural	networks	for	huge	datasets.

Reinforcement	learning.

The	first	part	is	based	mostly	on	Scikit-Learn	while	the	second	part	uses	TensorFlow.

CAUTION

Don’t	jump	into	deep	waters	too	hastily:	while	Deep	Learning	is	no	doubt	one	of	the	most	exciting	areas	in	Machine	Learning,
you	should	master	the	fundamentals	first.	Moreover,	most	problems	can	be	solved	quite	well	using	simpler	techniques	such	as
Random	Forests	and	Ensemble	methods	(discussed	in	Part	I).	Deep	Learning	is	best	suited	for	complex	problems	such	as	image
recognition,	speech	recognition,	or	natural	language	processing,	provided	you	have	enough	data,	computing	power,	and	patience.

Other	Resources
Many	resources	are	available	to	learn	about	Machine	Learning.	Andrew	Ng’s	ML	course	on	Coursera	and
Geoffrey	Hinton’s	course	on	neural	networks	and	Deep	Learning	are	amazing,	although	they	both	require	a
significant	time	investment	(think	months).

There	are	also	many	interesting	websites	about	Machine	Learning,	including	of	course	Scikit-Learn’s
exceptional	User	Guide.	You	may	also	enjoy	Dataquest,	which	provides	very	nice	interactive	tutorials,
and	ML	blogs	such	as	those	listed	on	Quora.	Finally,	the	Deep	Learning	website	has	a	good	list	of
resources	to	learn	more.

Of	course	there	are	also	many	other	introductory	books	about	Machine	Learning,	in	particular:
Joel	Grus,	Data	Science	from	Scratch	(O’Reilly).	This	book	presents	the	fundamentals	of	Machine
Learning,	and	implements	some	of	the	main	algorithms	in	pure	Python	(from	scratch,	as	the	name
suggests).

Stephen	Marsland,	Machine	Learning:	An	Algorithmic	Perspective	(Chapman	and	Hall).	This	book
is	a	great	introduction	to	Machine	Learning,	covering	a	wide	range	of	topics	in	depth,	with	code
examples	in	Python	(also	from	scratch,	but	using	NumPy).

Sebastian	Raschka,	Python	Machine	Learning	(Packt	Publishing).	Also	a	great	introduction	to
Machine	Learning,	this	book	leverages	Python	open	source	libraries	(Pylearn	2	and	Theano).

Yaser	S.	Abu-Mostafa,	Malik	Magdon-Ismail,	and	Hsuan-Tien	Lin,	Learning	from	Data
(AMLBook).	A	rather	theoretical	approach	to	ML,	this	book	provides	deep	insights,	in	particular	on
the	bias/variance	tradeoff	(see	Chapter	4).

Stuart	Russell	and	Peter	Norvig,	Artificial	Intelligence:	A	Modern	Approach,	3rd	Edition
(Pearson).	This	is	a	great	(and	huge)	book	covering	an	incredible	amount	of	topics,	including
Machine	Learning.	It	helps	put	ML	into	perspective.

Finally,	a	great	way	to	learn	is	to	join	ML	competition	websites	such	as	Kaggle.com	this	will	allow	you
to	practice	your	skills	on	real-world	problems,	with	help	and	insights	from	some	of	the	best	ML
professionals	out	there.

https://www.coursera.org/learn/machine-learning/
https://www.coursera.org/course/neuralnets
http://scikit-learn.org/stable/user_guide.html
https://www.dataquest.io/
http://goo.gl/GwtU3A
http://deeplearning.net/
http://shop.oreilly.com/product/0636920033400.do
https://www.kaggle.com/

Conventions	Used	in	This	Book
The	following	typographical	conventions	are	used	in	this	book:

Italic
Indicates	new	terms,	URLs,	email	addresses,	filenames,	and	file	extensions.

Constant	width

Used	for	program	listings,	as	well	as	within	paragraphs	to	refer	to	program	elements	such	as
variable	or	function	names,	databases,	data	types,	environment	variables,	statements	and	keywords.

Constant	width	bold

Shows	commands	or	other	text	that	should	be	typed	literally	by	the	user.

Constant	width	italic

Shows	text	that	should	be	replaced	with	user-supplied	values	or	by	values	determined	by	context.

TIP
This	element	signifies	a	tip	or	suggestion.

NOTE
This	element	signifies	a	general	note.

WARNING
This	element	indicates	a	warning	or	caution.

Using	Code	Examples
Supplemental	material	(code	examples,	exercises,	etc.)	is	available	for	download	at
https://github.com/ageron/handson-ml.

This	book	is	here	to	help	you	get	your	job	done.	In	general,	if	example	code	is	offered	with	this	book,	you
may	use	it	in	your	programs	and	documentation.	You	do	not	need	to	contact	us	for	permission	unless
you’re	reproducing	a	significant	portion	of	the	code.	For	example,	writing	a	program	that	uses	several
chunks	of	code	from	this	book	does	not	require	permission.	Selling	or	distributing	a	CD-ROM	of
examples	from	O’Reilly	books	does	require	permission.	Answering	a	question	by	citing	this	book	and
quoting	example	code	does	not	require	permission.	Incorporating	a	significant	amount	of	example	code
from	this	book	into	your	product’s	documentation	does	require	permission.

We	appreciate,	but	do	not	require,	attribution.	An	attribution	usually	includes	the	title,	author,	publisher,
and	ISBN.	For	example:	“Hands-On	Machine	Learning	with	Scikit-Learn	and	TensorFlow	by	Aurélien
Géron	(O’Reilly).	Copyright	2017	Aurélien	Géron,	978-1-491-96229-9.”

If	you	feel	your	use	of	code	examples	falls	outside	fair	use	or	the	permission	given	above,	feel	free	to
contact	us	at	permissions@oreilly.com.

https://github.com/ageron/handson-ml
mailto:permissions@oreilly.com

O’Reilly	Safari
NOTE

Safari	(formerly	Safari	Books	Online)	is	a	membership-based	training	and	reference	platform	for
enterprise,	government,	educators,	and	individuals.

Members	have	access	to	thousands	of	books,	training	videos,	Learning	Paths,	interactive	tutorials,	and
curated	playlists	from	over	250	publishers,	including	O’Reilly	Media,	Harvard	Business	Review,
Prentice	Hall	Professional,	Addison-Wesley	Professional,	Microsoft	Press,	Sams,	Que,	Peachpit	Press,
Adobe,	Focal	Press,	Cisco	Press,	John	Wiley	&	Sons,	Syngress,	Morgan	Kaufmann,	IBM	Redbooks,
Packt,	Adobe	Press,	FT	Press,	Apress,	Manning,	New	Riders,	McGraw-Hill,	Jones	&	Bartlett,	and
Course	Technology,	among	others.

For	more	information,	please	visit	http://oreilly.com/safari.

http://oreilly.com/safari
http://oreilly.com/safari

How	to	Contact	Us
Please	address	comments	and	questions	concerning	this	book	to	the	publisher:

O’Reilly	Media,	Inc.

1005	Gravenstein	Highway	North

Sebastopol,	CA	95472

800-998-9938	(in	the	United	States	or	Canada)

707-829-0515	(international	or	local)

707-829-0104	(fax)

We	have	a	web	page	for	this	book,	where	we	list	errata,	examples,	and	any	additional	information.	You
can	access	this	page	at	http://bit.ly/hands-on-machine-learning-with-scikit-learn-and-tensorflow.

To	comment	or	ask	technical	questions	about	this	book,	send	email	to	bookquestions@oreilly.com.

For	more	information	about	our	books,	courses,	conferences,	and	news,	see	our	website	at
http://www.oreilly.com.

Find	us	on	Facebook:	http://facebook.com/oreilly

Follow	us	on	Twitter:	http://twitter.com/oreillymedia

Watch	us	on	YouTube:	http://www.youtube.com/oreillymedia

http://bit.ly/hands-on-machine-learning-with-scikit-learn-and-tensorflow
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

Acknowledgments
I	would	like	to	thank	my	Google	colleagues,	in	particular	the	YouTube	video	classification	team,	for
teaching	me	so	much	about	Machine	Learning.	I	could	never	have	started	this	project	without	them.
Special	thanks	to	my	personal	ML	gurus:	Clément	Courbet,	Julien	Dubois,	Mathias	Kende,	Daniel
Kitachewsky,	James	Pack,	Alexander	Pak,	Anosh	Raj,	Vitor	Sessak,	Wiktor	Tomczak,	Ingrid	von	Glehn,
Rich	Washington,	and	everyone	at	YouTube	Paris.

I	am	incredibly	grateful	to	all	the	amazing	people	who	took	time	out	of	their	busy	lives	to	review	my	book
in	so	much	detail.	Thanks	to	Pete	Warden	for	answering	all	my	TensorFlow	questions,	reviewing	Part	II,
providing	many	interesting	insights,	and	of	course	for	being	part	of	the	core	TensorFlow	team.	You	should
definitely	check	out	his	blog!	Many	thanks	to	Lukas	Biewald	for	his	very	thorough	review	of	Part	II:	he
left	no	stone	unturned,	tested	all	the	code	(and	caught	a	few	errors),	made	many	great	suggestions,	and	his
enthusiasm	was	contagious.	You	should	check	out	his	blog	and	his	cool	robots!	Thanks	to	Justin	Francis,
who	also	reviewed	Part	II	very	thoroughly,	catching	errors	and	providing	great	insights,	in	particular	in
Chapter	16.	Check	out	his	posts	on	TensorFlow!

Huge	thanks	as	well	to	David	Andrzejewski,	who	reviewed	Part	I	and	provided	incredibly	useful
feedback,	identifying	unclear	sections	and	suggesting	how	to	improve	them.	Check	out	his	website!
Thanks	to	Grégoire	Mesnil,	who	reviewed	Part	II	and	contributed	very	interesting	practical	advice	on
training	neural	networks.	Thanks	as	well	to	Eddy	Hung,	Salim	Sémaoune,	Karim	Matrah,	Ingrid	von
Glehn,	Iain	Smears,	and	Vincent	Guilbeau	for	reviewing	Part	I	and	making	many	useful	suggestions.	And	I
also	wish	to	thank	my	father-in-law,	Michel	Tessier,	former	mathematics	teacher	and	now	a	great
translator	of	Anton	Chekhov,	for	helping	me	iron	out	some	of	the	mathematics	and	notations	in	this	book
and	reviewing	the	linear	algebra	Jupyter	notebook.

And	of	course,	a	gigantic	“thank	you”	to	my	dear	brother	Sylvain,	who	reviewed	every	single	chapter,
tested	every	line	of	code,	provided	feedback	on	virtually	every	section,	and	encouraged	me	from	the	first
line	to	the	last.	Love	you,	bro!

Many	thanks	as	well	to	O’Reilly’s	fantastic	staff,	in	particular	Nicole	Tache,	who	gave	me	insightful
feedback,	always	cheerful,	encouraging,	and	helpful.	Thanks	as	well	to	Marie	Beaugureau,	Ben	Lorica,
Mike	Loukides,	and	Laurel	Ruma	for	believing	in	this	project	and	helping	me	define	its	scope.	Thanks	to
Matt	Hacker	and	all	of	the	Atlas	team	for	answering	all	my	technical	questions	regarding	formatting,
asciidoc,	and	LaTeX,	and	thanks	to	Rachel	Monaghan,	Nick	Adams,	and	all	of	the	production	team	for
their	final	review	and	their	hundreds	of	corrections.

Last	but	not	least,	I	am	infinitely	grateful	to	my	beloved	wife,	Emmanuelle,	and	to	our	three	wonderful
kids,	Alexandre,	Rémi,	and	Gabrielle,	for	encouraging	me	to	work	hard	on	this	book,	asking	many
questions	(who	said	you	can’t	teach	neural	networks	to	a	seven-year-old?),	and	even	bringing	me	cookies
and	coffee.	What	more	can	one	dream	of?

Available	on	Hinton’s	home	page	at	http://www.cs.toronto.edu/~hinton/.

Despite	the	fact	that	Yann	Lecun’s	deep	convolutional	neural	networks	had	worked	well	for	image	recognition	since	the	1990s,	although
they	were	not	as	general	purpose.

1

2

https://petewarden.com/
https://lukasbiewald.com/
https://goo.gl/Eu5u28
https://goo.gl/28ve8z
http://www.david-andrzejewski.com/
http://www.cs.toronto.edu/~hinton/

Part	I.	The	Fundamentals	of	Machine	Learning

Chapter	1.	The	Machine	Learning	Landscape

When	most	people	hear	“Machine	Learning,”	they	picture	a	robot:	a	dependable	butler	or	a	deadly
Terminator	depending	on	who	you	ask.	But	Machine	Learning	is	not	just	a	futuristic	fantasy,	it’s	already
here.	In	fact,	it	has	been	around	for	decades	in	some	specialized	applications,	such	as	Optical	Character
Recognition	(OCR).	But	the	first	ML	application	that	really	became	mainstream,	improving	the	lives	of
hundreds	of	millions	of	people,	took	over	the	world	back	in	the	1990s:	it	was	the	spam	filter.	Not	exactly
a	self-aware	Skynet,	but	it	does	technically	qualify	as	Machine	Learning	(it	has	actually	learned	so	well
that	you	seldom	need	to	flag	an	email	as	spam	anymore).	It	was	followed	by	hundreds	of	ML	applications
that	now	quietly	power	hundreds	of	products	and	features	that	you	use	regularly,	from	better
recommendations	to	voice	search.

Where	does	Machine	Learning	start	and	where	does	it	end?	What	exactly	does	it	mean	for	a	machine	to
learn	something?	If	I	download	a	copy	of	Wikipedia,	has	my	computer	really	“learned”	something?	Is	it
suddenly	smarter?	In	this	chapter	we	will	start	by	clarifying	what	Machine	Learning	is	and	why	you	may
want	to	use	it.

Then,	before	we	set	out	to	explore	the	Machine	Learning	continent,	we	will	take	a	look	at	the	map	and
learn	about	the	main	regions	and	the	most	notable	landmarks:	supervised	versus	unsupervised	learning,
online	versus	batch	learning,	instance-based	versus	model-based	learning.	Then	we	will	look	at	the
workflow	of	a	typical	ML	project,	discuss	the	main	challenges	you	may	face,	and	cover	how	to	evaluate
and	fine-tune	a	Machine	Learning	system.

This	chapter	introduces	a	lot	of	fundamental	concepts	(and	jargon)	that	every	data	scientist	should	know
by	heart.	It	will	be	a	high-level	overview	(the	only	chapter	without	much	code),	all	rather	simple,	but	you
should	make	sure	everything	is	crystal-clear	to	you	before	continuing	to	the	rest	of	the	book.	So	grab	a
coffee	and	let’s	get	started!

TIP
If	you	already	know	all	the	Machine	Learning	basics,	you	may	want	to	skip	directly	to	Chapter	2.	If	you	are	not	sure,	try	to
answer	all	the	questions	listed	at	the	end	of	the	chapter	before	moving	on.

What	Is	Machine	Learning?
Machine	Learning	is	the	science	(and	art)	of	programming	computers	so	they	can	learn	from	data.

Here	is	a	slightly	more	general	definition:

[Machine	Learning	is	the]	field	of	study	that	gives	computers	the	ability	to	learn	without	being
explicitly	programmed.
Arthur	Samuel,	1959

And	a	more	engineering-oriented	one:

A	computer	program	is	said	to	learn	from	experience	E	with	respect	to	some	task	T	and	some
performance	measure	P,	if	its	performance	on	T,	as	measured	by	P,	improves	with	experience	E.
Tom	Mitchell,	1997

For	example,	your	spam	filter	is	a	Machine	Learning	program	that	can	learn	to	flag	spam	given	examples
of	spam	emails	(e.g.,	flagged	by	users)	and	examples	of	regular	(nonspam,	also	called	“ham”)	emails.	The
examples	that	the	system	uses	to	learn	are	called	the	training	set.	Each	training	example	is	called	a
training	instance	(or	sample).	In	this	case,	the	task	T	is	to	flag	spam	for	new	emails,	the	experience	E	is
the	training	data,	and	the	performance	measure	P	needs	to	be	defined;	for	example,	you	can	use	the	ratio
of	correctly	classified	emails.	This	particular	performance	measure	is	called	accuracy	and	it	is	often
used	in	classification	tasks.

If	you	just	download	a	copy	of	Wikipedia,	your	computer	has	a	lot	more	data,	but	it	is	not	suddenly	better
at	any	task.	Thus,	it	is	not	Machine	Learning.

Why	Use	Machine	Learning?
Consider	how	you	would	write	a	spam	filter	using	traditional	programming	techniques	(Figure	1-1):

1.	 First	you	would	look	at	what	spam	typically	looks	like.	You	might	notice	that	some	words	or
phrases	(such	as	“4U,”	“credit	card,”	“free,”	and	“amazing”)	tend	to	come	up	a	lot	in	the	subject.
Perhaps	you	would	also	notice	a	few	other	patterns	in	the	sender’s	name,	the	email’s	body,	and
so	on.

2.	 You	would	write	a	detection	algorithm	for	each	of	the	patterns	that	you	noticed,	and	your
program	would	flag	emails	as	spam	if	a	number	of	these	patterns	are	detected.

3.	 You	would	test	your	program,	and	repeat	steps	1	and	2	until	it	is	good	enough.

Figure	1-1.	The	traditional	approach

Since	the	problem	is	not	trivial,	your	program	will	likely	become	a	long	list	of	complex	rules	—	pretty
hard	to	maintain.

In	contrast,	a	spam	filter	based	on	Machine	Learning	techniques	automatically	learns	which	words	and
phrases	are	good	predictors	of	spam	by	detecting	unusually	frequent	patterns	of	words	in	the	spam
examples	compared	to	the	ham	examples	(Figure	1-2).	The	program	is	much	shorter,	easier	to	maintain,
and	most	likely	more	accurate.

Figure	1-2.	Machine	Learning	approach

Moreover,	if	spammers	notice	that	all	their	emails	containing	“4U”	are	blocked,	they	might	start	writing
“For	U”	instead.	A	spam	filter	using	traditional	programming	techniques	would	need	to	be	updated	to	flag
“For	U”	emails.	If	spammers	keep	working	around	your	spam	filter,	you	will	need	to	keep	writing	new
rules	forever.

In	contrast,	a	spam	filter	based	on	Machine	Learning	techniques	automatically	notices	that	“For	U”	has
become	unusually	frequent	in	spam	flagged	by	users,	and	it	starts	flagging	them	without	your	intervention
(Figure	1-3).

Figure	1-3.	Automatically	adapting	to	change

Another	area	where	Machine	Learning	shines	is	for	problems	that	either	are	too	complex	for	traditional
approaches	or	have	no	known	algorithm.	For	example,	consider	speech	recognition:	say	you	want	to	start
simple	and	write	a	program	capable	of	distinguishing	the	words	“one”	and	“two.”	You	might	notice	that
the	word	“two”	starts	with	a	high-pitch	sound	(“T”),	so	you	could	hardcode	an	algorithm	that	measures
high-pitch	sound	intensity	and	use	that	to	distinguish	ones	and	twos.	Obviously	this	technique	will	not
scale	to	thousands	of	words	spoken	by	millions	of	very	different	people	in	noisy	environments	and	in
dozens	of	languages.	The	best	solution	(at	least	today)	is	to	write	an	algorithm	that	learns	by	itself,	given
many	example	recordings	for	each	word.

Finally,	Machine	Learning	can	help	humans	learn	(Figure	1-4):	ML	algorithms	can	be	inspected	to	see
what	they	have	learned	(although	for	some	algorithms	this	can	be	tricky).	For	instance,	once	the	spam
filter	has	been	trained	on	enough	spam,	it	can	easily	be	inspected	to	reveal	the	list	of	words	and
combinations	of	words	that	it	believes	are	the	best	predictors	of	spam.	Sometimes	this	will	reveal
unsuspected	correlations	or	new	trends,	and	thereby	lead	to	a	better	understanding	of	the	problem.

Applying	ML	techniques	to	dig	into	large	amounts	of	data	can	help	discover	patterns	that	were	not
immediately	apparent.	This	is	called	data	mining.

Figure	1-4.	Machine	Learning	can	help	humans	learn

To	summarize,	Machine	Learning	is	great	for:
Problems	for	which	existing	solutions	require	a	lot	of	hand-tuning	or	long	lists	of	rules:	one	Machine
Learning	algorithm	can	often	simplify	code	and	perform	better.

Complex	problems	for	which	there	is	no	good	solution	at	all	using	a	traditional	approach:	the	best
Machine	Learning	techniques	can	find	a	solution.

Fluctuating	environments:	a	Machine	Learning	system	can	adapt	to	new	data.

Getting	insights	about	complex	problems	and	large	amounts	of	data.

Types	of	Machine	Learning	Systems
There	are	so	many	different	types	of	Machine	Learning	systems	that	it	is	useful	to	classify	them	in	broad
categories	based	on:

Whether	or	not	they	are	trained	with	human	supervision	(supervised,	unsupervised,	semisupervised,
and	Reinforcement	Learning)

Whether	or	not	they	can	learn	incrementally	on	the	fly	(online	versus	batch	learning)

Whether	they	work	by	simply	comparing	new	data	points	to	known	data	points,	or	instead	detect
patterns	in	the	training	data	and	build	a	predictive	model,	much	like	scientists	do	(instance-based
versus	model-based	learning)

These	criteria	are	not	exclusive;	you	can	combine	them	in	any	way	you	like.	For	example,	a	state-of-the-
art	spam	filter	may	learn	on	the	fly	using	a	deep	neural	network	model	trained	using	examples	of	spam	and
ham;	this	makes	it	an	online,	model-based,	supervised	learning	system.

Let’s	look	at	each	of	these	criteria	a	bit	more	closely.

Supervised/Unsupervised	Learning
Machine	Learning	systems	can	be	classified	according	to	the	amount	and	type	of	supervision	they	get
during	training.	There	are	four	major	categories:	supervised	learning,	unsupervised	learning,
semisupervised	learning,	and	Reinforcement	Learning.

Supervised	learning
In	supervised	learning,	the	training	data	you	feed	to	the	algorithm	includes	the	desired	solutions,	called
labels	(Figure	1-5).

Figure	1-5.	A	labeled	training	set	for	supervised	learning	(e.g.,	spam	classification)

A	typical	supervised	learning	task	is	classification.	The	spam	filter	is	a	good	example	of	this:	it	is	trained
with	many	example	emails	along	with	their	class	(spam	or	ham),	and	it	must	learn	how	to	classify	new
emails.

Another	typical	task	is	to	predict	a	target	numeric	value,	such	as	the	price	of	a	car,	given	a	set	of	features
(mileage,	age,	brand,	etc.)	called	predictors.	This	sort	of	task	is	called	regression	(Figure	1-6).1	To	train
the	system,	you	need	to	give	it	many	examples	of	cars,	including	both	their	predictors	and	their	labels
(i.e.,	their	prices).

NOTE
In	Machine	Learning	an	attribute	is	a	data	type	(e.g.,	“Mileage”),	while	a	feature	has	several	meanings	depending	on	the
context,	but	generally	means	an	attribute	plus	its	value	(e.g.,	“Mileage	=	15,000”).	Many	people	use	the	words	attribute	and
feature	interchangeably,	though.

Figure	1-6.	Regression

Note	that	some	regression	algorithms	can	be	used	for	classification	as	well,	and	vice	versa.	For	example,
Logistic	Regression	is	commonly	used	for	classification,	as	it	can	output	a	value	that	corresponds	to	the
probability	of	belonging	to	a	given	class	(e.g.,	20%	chance	of	being	spam).

Here	are	some	of	the	most	important	supervised	learning	algorithms	(covered	in	this	book):
k-Nearest	Neighbors

Linear	Regression

Logistic	Regression

Support	Vector	Machines	(SVMs)

Decision	Trees	and	Random	Forests

Neural	networks2

Unsupervised	learning
In	unsupervised	learning,	as	you	might	guess,	the	training	data	is	unlabeled	(Figure	1-7).	The	system	tries
to	learn	without	a	teacher.

Figure	1-7.	An	unlabeled	training	set	for	unsupervised	learning

Here	are	some	of	the	most	important	unsupervised	learning	algorithms	(we	will	cover	dimensionality
reduction	in	Chapter	8):

Clustering
k-Means

Hierarchical	Cluster	Analysis	(HCA)

Expectation	Maximization

Visualization	and	dimensionality	reduction
Principal	Component	Analysis	(PCA)

Kernel	PCA

Locally-Linear	Embedding	(LLE)

t-distributed	Stochastic	Neighbor	Embedding	(t-SNE)

Association	rule	learning
Apriori

Eclat

For	example,	say	you	have	a	lot	of	data	about	your	blog’s	visitors.	You	may	want	to	run	a	clustering
algorithm	to	try	to	detect	groups	of	similar	visitors	(Figure	1-8).	At	no	point	do	you	tell	the	algorithm
which	group	a	visitor	belongs	to:	it	finds	those	connections	without	your	help.	For	example,	it	might

notice	that	40%	of	your	visitors	are	males	who	love	comic	books	and	generally	read	your	blog	in	the
evening,	while	20%	are	young	sci-fi	lovers	who	visit	during	the	weekends,	and	so	on.	If	you	use	a
hierarchical	clustering	algorithm,	it	may	also	subdivide	each	group	into	smaller	groups.	This	may	help
you	target	your	posts	for	each	group.

Figure	1-8.	Clustering

Visualization	algorithms	are	also	good	examples	of	unsupervised	learning	algorithms:	you	feed	them	a	lot
of	complex	and	unlabeled	data,	and	they	output	a	2D	or	3D	representation	of	your	data	that	can	easily	be
plotted	(Figure	1-9).	These	algorithms	try	to	preserve	as	much	structure	as	they	can	(e.g.,	trying	to	keep
separate	clusters	in	the	input	space	from	overlapping	in	the	visualization),	so	you	can	understand	how	the
data	is	organized	and	perhaps	identify	unsuspected	patterns.

Figure	1-9.	Example	of	a	t-SNE	visualization	highlighting	semantic	clusters3

A	related	task	is	dimensionality	reduction,	in	which	the	goal	is	to	simplify	the	data	without	losing	too
much	information.	One	way	to	do	this	is	to	merge	several	correlated	features	into	one.	For	example,	a
car’s	mileage	may	be	very	correlated	with	its	age,	so	the	dimensionality	reduction	algorithm	will	merge
them	into	one	feature	that	represents	the	car’s	wear	and	tear.	This	is	called	feature	extraction.

TIP
It	is	often	a	good	idea	to	try	to	reduce	the	dimension	of	your	training	data	using	a	dimensionality	reduction	algorithm	before	you
feed	it	to	another	Machine	Learning	algorithm	(such	as	a	supervised	learning	algorithm).	It	will	run	much	faster,	the	data	will	take
up	less	disk	and	memory	space,	and	in	some	cases	it	may	also	perform	better.

Yet	another	important	unsupervised	task	is	anomaly	detection	—	for	example,	detecting	unusual	credit
card	transactions	to	prevent	fraud,	catching	manufacturing	defects,	or	automatically	removing	outliers
from	a	dataset	before	feeding	it	to	another	learning	algorithm.	The	system	is	trained	with	normal
instances,	and	when	it	sees	a	new	instance	it	can	tell	whether	it	looks	like	a	normal	one	or	whether	it	is
likely	an	anomaly	(see	Figure	1-10).

Figure	1-10.	Anomaly	detection

Finally,	another	common	unsupervised	task	is	association	rule	learning,	in	which	the	goal	is	to	dig	into
large	amounts	of	data	and	discover	interesting	relations	between	attributes.	For	example,	suppose	you
own	a	supermarket.	Running	an	association	rule	on	your	sales	logs	may	reveal	that	people	who	purchase
barbecue	sauce	and	potato	chips	also	tend	to	buy	steak.	Thus,	you	may	want	to	place	these	items	close	to
each	other.

Semisupervised	learning
Some	algorithms	can	deal	with	partially	labeled	training	data,	usually	a	lot	of	unlabeled	data	and	a	little
bit	of	labeled	data.	This	is	called	semisupervised	learning	(Figure	1-11).

Some	photo-hosting	services,	such	as	Google	Photos,	are	good	examples	of	this.	Once	you	upload	all	your
family	photos	to	the	service,	it	automatically	recognizes	that	the	same	person	A	shows	up	in	photos	1,	5,
and	11,	while	another	person	B	shows	up	in	photos	2,	5,	and	7.	This	is	the	unsupervised	part	of	the
algorithm	(clustering).	Now	all	the	system	needs	is	for	you	to	tell	it	who	these	people	are.	Just	one	label
per	person,4	and	it	is	able	to	name	everyone	in	every	photo,	which	is	useful	for	searching	photos.

Figure	1-11.	Semisupervised	learning

Most	semisupervised	learning	algorithms	are	combinations	of	unsupervised	and	supervised	algorithms.
For	example,	deep	belief	networks	(DBNs)	are	based	on	unsupervised	components	called	restricted
Boltzmann	machines	(RBMs)	stacked	on	top	of	one	another.	RBMs	are	trained	sequentially	in	an
unsupervised	manner,	and	then	the	whole	system	is	fine-tuned	using	supervised	learning	techniques.

Reinforcement	Learning
Reinforcement	Learning	is	a	very	different	beast.	The	learning	system,	called	an	agent	in	this	context,
can	observe	the	environment,	select	and	perform	actions,	and	get	rewards	in	return	(or	penalties	in	the
form	of	negative	rewards,	as	in	Figure	1-12).	It	must	then	learn	by	itself	what	is	the	best	strategy,	called	a
policy,	to	get	the	most	reward	over	time.	A	policy	defines	what	action	the	agent	should	choose	when	it	is
in	a	given	situation.

Figure	1-12.	Reinforcement	Learning

For	example,	many	robots	implement	Reinforcement	Learning	algorithms	to	learn	how	to	walk.
DeepMind’s	AlphaGo	program	is	also	a	good	example	of	Reinforcement	Learning:	it	made	the	headlines
in	March	2016	when	it	beat	the	world	champion	Lee	Sedol	at	the	game	of	Go.	It	learned	its	winning
policy	by	analyzing	millions	of	games,	and	then	playing	many	games	against	itself.	Note	that	learning	was
turned	off	during	the	games	against	the	champion;	AlphaGo	was	just	applying	the	policy	it	had	learned.

Batch	and	Online	Learning
Another	criterion	used	to	classify	Machine	Learning	systems	is	whether	or	not	the	system	can	learn
incrementally	from	a	stream	of	incoming	data.

Batch	learning
In	batch	learning,	the	system	is	incapable	of	learning	incrementally:	it	must	be	trained	using	all	the
available	data.	This	will	generally	take	a	lot	of	time	and	computing	resources,	so	it	is	typically	done
offline.	First	the	system	is	trained,	and	then	it	is	launched	into	production	and	runs	without	learning
anymore;	it	just	applies	what	it	has	learned.	This	is	called	offline	learning.

If	you	want	a	batch	learning	system	to	know	about	new	data	(such	as	a	new	type	of	spam),	you	need	to
train	a	new	version	of	the	system	from	scratch	on	the	full	dataset	(not	just	the	new	data,	but	also	the	old
data),	then	stop	the	old	system	and	replace	it	with	the	new	one.

Fortunately,	the	whole	process	of	training,	evaluating,	and	launching	a	Machine	Learning	system	can	be
automated	fairly	easily	(as	shown	in	Figure	1-3),	so	even	a	batch	learning	system	can	adapt	to	change.
Simply	update	the	data	and	train	a	new	version	of	the	system	from	scratch	as	often	as	needed.

This	solution	is	simple	and	often	works	fine,	but	training	using	the	full	set	of	data	can	take	many	hours,	so
you	would	typically	train	a	new	system	only	every	24	hours	or	even	just	weekly.	If	your	system	needs	to
adapt	to	rapidly	changing	data	(e.g.,	to	predict	stock	prices),	then	you	need	a	more	reactive	solution.

Also,	training	on	the	full	set	of	data	requires	a	lot	of	computing	resources	(CPU,	memory	space,	disk
space,	disk	I/O,	network	I/O,	etc.).	If	you	have	a	lot	of	data	and	you	automate	your	system	to	train	from
scratch	every	day,	it	will	end	up	costing	you	a	lot	of	money.	If	the	amount	of	data	is	huge,	it	may	even	be
impossible	to	use	a	batch	learning	algorithm.

Finally,	if	your	system	needs	to	be	able	to	learn	autonomously	and	it	has	limited	resources	(e.g.,	a
smartphone	application	or	a	rover	on	Mars),	then	carrying	around	large	amounts	of	training	data	and
taking	up	a	lot	of	resources	to	train	for	hours	every	day	is	a	showstopper.

Fortunately,	a	better	option	in	all	these	cases	is	to	use	algorithms	that	are	capable	of	learning
incrementally.

Online	learning
In	online	learning,	you	train	the	system	incrementally	by	feeding	it	data	instances	sequentially,	either
individually	or	by	small	groups	called	mini-batches.	Each	learning	step	is	fast	and	cheap,	so	the	system
can	learn	about	new	data	on	the	fly,	as	it	arrives	(see	Figure	1-13).

Figure	1-13.	Online	learning

Online	learning	is	great	for	systems	that	receive	data	as	a	continuous	flow	(e.g.,	stock	prices)	and	need	to
adapt	to	change	rapidly	or	autonomously.	It	is	also	a	good	option	if	you	have	limited	computing	resources:
once	an	online	learning	system	has	learned	about	new	data	instances,	it	does	not	need	them	anymore,	so
you	can	discard	them	(unless	you	want	to	be	able	to	roll	back	to	a	previous	state	and	“replay”	the	data).
This	can	save	a	huge	amount	of	space.

Online	learning	algorithms	can	also	be	used	to	train	systems	on	huge	datasets	that	cannot	fit	in	one
machine’s	main	memory	(this	is	called	out-of-core	learning).	The	algorithm	loads	part	of	the	data,	runs	a
training	step	on	that	data,	and	repeats	the	process	until	it	has	run	on	all	of	the	data	(see	Figure	1-14).

WARNING
This	whole	process	is	usually	done	offline	(i.e.,	not	on	the	live	system),	so	online	learning	can	be	a	confusing	name.	Think	of	it
as	incremental	learning.

Figure	1-14.	Using	online	learning	to	handle	huge	datasets

One	important	parameter	of	online	learning	systems	is	how	fast	they	should	adapt	to	changing	data:	this	is
called	the	learning	rate.	If	you	set	a	high	learning	rate,	then	your	system	will	rapidly	adapt	to	new	data,
but	it	will	also	tend	to	quickly	forget	the	old	data	(you	don’t	want	a	spam	filter	to	flag	only	the	latest	kinds
of	spam	it	was	shown).	Conversely,	if	you	set	a	low	learning	rate,	the	system	will	have	more	inertia;	that
is,	it	will	learn	more	slowly,	but	it	will	also	be	less	sensitive	to	noise	in	the	new	data	or	to	sequences	of
nonrepresentative	data	points.

A	big	challenge	with	online	learning	is	that	if	bad	data	is	fed	to	the	system,	the	system’s	performance	will
gradually	decline.	If	we	are	talking	about	a	live	system,	your	clients	will	notice.	For	example,	bad	data
could	come	from	a	malfunctioning	sensor	on	a	robot,	or	from	someone	spamming	a	search	engine	to	try	to
rank	high	in	search	results.	To	reduce	this	risk,	you	need	to	monitor	your	system	closely	and	promptly
switch	learning	off	(and	possibly	revert	to	a	previously	working	state)	if	you	detect	a	drop	in
performance.	You	may	also	want	to	monitor	the	input	data	and	react	to	abnormal	data	(e.g.,	using	an
anomaly	detection	algorithm).

Instance-Based	Versus	Model-Based	Learning
One	more	way	to	categorize	Machine	Learning	systems	is	by	how	they	generalize.	Most	Machine
Learning	tasks	are	about	making	predictions.	This	means	that	given	a	number	of	training	examples,	the
system	needs	to	be	able	to	generalize	to	examples	it	has	never	seen	before.	Having	a	good	performance
measure	on	the	training	data	is	good,	but	insufficient;	the	true	goal	is	to	perform	well	on	new	instances.

There	are	two	main	approaches	to	generalization:	instance-based	learning	and	model-based	learning.

Instance-based	learning
Possibly	the	most	trivial	form	of	learning	is	simply	to	learn	by	heart.	If	you	were	to	create	a	spam	filter
this	way,	it	would	just	flag	all	emails	that	are	identical	to	emails	that	have	already	been	flagged	by	users
—	not	the	worst	solution,	but	certainly	not	the	best.

Instead	of	just	flagging	emails	that	are	identical	to	known	spam	emails,	your	spam	filter	could	be
programmed	to	also	flag	emails	that	are	very	similar	to	known	spam	emails.	This	requires	a	measure	of
similarity	between	two	emails.	A	(very	basic)	similarity	measure	between	two	emails	could	be	to	count
the	number	of	words	they	have	in	common.	The	system	would	flag	an	email	as	spam	if	it	has	many	words
in	common	with	a	known	spam	email.

This	is	called	instance-based	learning:	the	system	learns	the	examples	by	heart,	then	generalizes	to	new
cases	using	a	similarity	measure	(Figure	1-15).

Figure	1-15.	Instance-based	learning

Model-based	learning
Another	way	to	generalize	from	a	set	of	examples	is	to	build	a	model	of	these	examples,	then	use	that

model	to	make	predictions.	This	is	called	model-based	learning	(Figure	1-16).

Figure	1-16.	Model-based	learning

For	example,	suppose	you	want	to	know	if	money	makes	people	happy,	so	you	download	the	Better	Life
Index	data	from	the	OECD’s	website	as	well	as	stats	about	GDP	per	capita	from	the	IMF’s	website.	Then
you	join	the	tables	and	sort	by	GDP	per	capita.	Table	1-1	shows	an	excerpt	of	what	you	get.

Table	1-1.	Does	money	make	people
happier?

Country GDP	per	capita	(USD) Life	satisfaction

Hungary 12,240 4.9

Korea 27,195 5.8

France 37,675 6.5

Australia 50,962 7.3

United	States 55,805 7.2

Let’s	plot	the	data	for	a	few	random	countries	(Figure	1-17).

https://goo.gl/0Eht9W
http://goo.gl/j1MSKe

Figure	1-17.	Do	you	see	a	trend	here?

There	does	seem	to	be	a	trend	here!	Although	the	data	is	noisy	(i.e.,	partly	random),	it	looks	like	life
satisfaction	goes	up	more	or	less	linearly	as	the	country’s	GDP	per	capita	increases.	So	you	decide	to
model	life	satisfaction	as	a	linear	function	of	GDP	per	capita.	This	step	is	called	model	selection:	you
selected	a	linear	model	of	life	satisfaction	with	just	one	attribute,	GDP	per	capita	(Equation	1-1).

Equation	1-1.	A	simple	linear	model

This	model	has	two	model	parameters,	θ0	and	θ1.5	By	tweaking	these	parameters,	you	can	make	your
model	represent	any	linear	function,	as	shown	in	Figure	1-18.

Figure	1-18.	A	few	possible	linear	models

Before	you	can	use	your	model,	you	need	to	define	the	parameter	values	θ0	and	θ1.	How	can	you	know
which	values	will	make	your	model	perform	best?	To	answer	this	question,	you	need	to	specify	a
performance	measure.	You	can	either	define	a	utility	function	(or	fitness	function)	that	measures	how
good	your	model	is,	or	you	can	define	a	cost	function	that	measures	how	bad	it	is.	For	linear	regression
problems,	people	typically	use	a	cost	function	that	measures	the	distance	between	the	linear	model’s
predictions	and	the	training	examples;	the	objective	is	to	minimize	this	distance.

This	is	where	the	Linear	Regression	algorithm	comes	in:	you	feed	it	your	training	examples	and	it	finds
the	parameters	that	make	the	linear	model	fit	best	to	your	data.	This	is	called	training	the	model.	In	our
case	the	algorithm	finds	that	the	optimal	parameter	values	are	θ0	=	4.85	and	θ1	=	4.91	×	10–5.

Now	the	model	fits	the	training	data	as	closely	as	possible	(for	a	linear	model),	as	you	can	see	in
Figure	1-19.

Figure	1-19.	The	linear	model	that	fits	the	training	data	best

You	are	finally	ready	to	run	the	model	to	make	predictions.	For	example,	say	you	want	to	know	how
happy	Cypriots	are,	and	the	OECD	data	does	not	have	the	answer.	Fortunately,	you	can	use	your	model	to
make	a	good	prediction:	you	look	up	Cyprus’s	GDP	per	capita,	find	$22,587,	and	then	apply	your	model
and	find	that	life	satisfaction	is	likely	to	be	somewhere	around	4.85	+	22,587	×	4.91	×	10-5	=	5.96.

To	whet	your	appetite,	Example	1-1	shows	the	Python	code	that	loads	the	data,	prepares	it,6	creates	a
scatterplot	for	visualization,	and	then	trains	a	linear	model	and	makes	a	prediction.7

Example	1-1.	Training	and	running	a	linear	model	using	Scikit-Learn
import	matplotlib

import	matplotlib.pyplot	as	plt

import	numpy	as	np

import	pandas	as	pd

import	sklearn

#	Load	the	data

oecd_bli	=	pd.read_csv("oecd_bli_2015.csv",	thousands=',')

gdp_per_capita	=	pd.read_csv("gdp_per_capita.csv",thousands=',',delimiter='\t',

																													encoding='latin1',	na_values="n/a")

#	Prepare	the	data

country_stats	=	prepare_country_stats(oecd_bli,	gdp_per_capita)

X	=	np.c_[country_stats["GDP	per	capita"]]

y	=	np.c_[country_stats["Life	satisfaction"]]

#	Visualize	the	data

country_stats.plot(kind='scatter',	x="GDP	per	capita",	y='Life	satisfaction')

plt.show()

#	Select	a	linear	model

lin_reg_model	=	sklearn.linear_model.LinearRegression()

#	Train	the	model

lin_reg_model.fit(X,	y)

#	Make	a	prediction	for	Cyprus

X_new	=	[[22587]]		#	Cyprus'	GDP	per	capita

print(lin_reg_model.predict(X_new))	#	outputs	[[5.96242338]]

NOTE
If	you	had	used	an	instance-based	learning	algorithm	instead,	you	would	have	found	that	Slovenia	has	the	closest	GDP	per	capita
to	that	of	Cyprus	($20,732),	and	since	the	OECD	data	tells	us	that	Slovenians’	life	satisfaction	is	5.7,	you	would	have	predicted	a
life	satisfaction	of	5.7	for	Cyprus.	If	you	zoom	out	a	bit	and	look	at	the	two	next	closest	countries,	you	will	find	Portugal	and
Spain	with	life	satisfactions	of	5.1	and	6.5,	respectively.	Averaging	these	three	values,	you	get	5.77,	which	is	pretty	close	to	your
model-based	prediction.	This	simple	algorithm	is	called	k-Nearest	Neighbors	regression	(in	this	example,	k 	=	3).

Replacing	the	Linear	Regression	model	with	k-Nearest	Neighbors	regression	in	the	previous	code	is	as	simple	as	replacing	this
line:

clf	=	sklearn.linear_model.LinearRegression()

with	this	one:

clf	=	sklearn.neighbors.KNeighborsRegressor(n_neighbors=3)

If	all	went	well,	your	model	will	make	good	predictions.	If	not,	you	may	need	to	use	more	attributes
(employment	rate,	health,	air	pollution,	etc.),	get	more	or	better	quality	training	data,	or	perhaps	select	a
more	powerful	model	(e.g.,	a	Polynomial	Regression	model).

In	summary:
You	studied	the	data.

You	selected	a	model.

You	trained	it	on	the	training	data	(i.e.,	the	learning	algorithm	searched	for	the	model	parameter
values	that	minimize	a	cost	function).

Finally,	you	applied	the	model	to	make	predictions	on	new	cases	(this	is	called	inference),	hoping
that	this	model	will	generalize	well.

This	is	what	a	typical	Machine	Learning	project	looks	like.	In	Chapter	2	you	will	experience	this	first-
hand	by	going	through	an	end-to-end	project.

We	have	covered	a	lot	of	ground	so	far:	you	now	know	what	Machine	Learning	is	really	about,	why	it	is
useful,	what	some	of	the	most	common	categories	of	ML	systems	are,	and	what	a	typical	project	workflow
looks	like.	Now	let’s	look	at	what	can	go	wrong	in	learning	and	prevent	you	from	making	accurate
predictions.

Main	Challenges	of	Machine	Learning
In	short,	since	your	main	task	is	to	select	a	learning	algorithm	and	train	it	on	some	data,	the	two	things	that
can	go	wrong	are	“bad	algorithm”	and	“bad	data.”	Let’s	start	with	examples	of	bad	data.

Insufficient	Quantity	of	Training	Data
For	a	toddler	to	learn	what	an	apple	is,	all	it	takes	is	for	you	to	point	to	an	apple	and	say	“apple”
(possibly	repeating	this	procedure	a	few	times).	Now	the	child	is	able	to	recognize	apples	in	all	sorts	of
colors	and	shapes.	Genius.

Machine	Learning	is	not	quite	there	yet;	it	takes	a	lot	of	data	for	most	Machine	Learning	algorithms	to
work	properly.	Even	for	very	simple	problems	you	typically	need	thousands	of	examples,	and	for
complex	problems	such	as	image	or	speech	recognition	you	may	need	millions	of	examples	(unless	you
can	reuse	parts	of	an	existing	model).

THE	UNREASONABLE	EFFECTIVENESS	OF	DATA

In	a	famous	paper	published	in	2001,	Microsoft	researchers	Michele	Banko	and	Eric	Brill	showed	that	very	different	Machine	Learning
algorithms,	including	fairly	simple	ones,	performed	almost	identically	well	on	a	complex	problem	of	natural	language	disambiguation8	once
they	were	given	enough	data	(as	you	can	see	in	Figure	1-20).

http://goo.gl/R5enIE

Figure	1-20.	The	importance	of	data	versus	algorithms9

As	the	authors	put	it:	“these	results	suggest	that	we	may	want	to	reconsider	the	trade-off	between	spending	time	and	money	on	algorithm
development	versus	spending	it	on	corpus	development.”

The	idea	that	data	matters	more	than	algorithms	for	complex	problems	was	further	popularized	by	Peter	Norvig	et	al.	in	a	paper	titled
“The	Unreasonable	Effectiveness	of	Data”	published	in	2009.10	It	should	be	noted,	however,	that	small-	and	medium-sized	datasets	are
still	very	common,	and	it	is	not	always	easy	or	cheap	to	get	extra	training	data,	so	don’t	abandon	algorithms	just	yet.

http://goo.gl/q6LaZ8

Nonrepresentative	Training	Data
In	order	to	generalize	well,	it	is	crucial	that	your	training	data	be	representative	of	the	new	cases	you
want	to	generalize	to.	This	is	true	whether	you	use	instance-based	learning	or	model-based	learning.

For	example,	the	set	of	countries	we	used	earlier	for	training	the	linear	model	was	not	perfectly
representative;	a	few	countries	were	missing.	Figure	1-21	shows	what	the	data	looks	like	when	you	add
the	missing	countries.

Figure	1-21.	A	more	representative	training	sample

If	you	train	a	linear	model	on	this	data,	you	get	the	solid	line,	while	the	old	model	is	represented	by	the
dotted	line.	As	you	can	see,	not	only	does	adding	a	few	missing	countries	significantly	alter	the	model,	but
it	makes	it	clear	that	such	a	simple	linear	model	is	probably	never	going	to	work	well.	It	seems	that	very
rich	countries	are	not	happier	than	moderately	rich	countries	(in	fact	they	seem	unhappier),	and
conversely	some	poor	countries	seem	happier	than	many	rich	countries.

By	using	a	nonrepresentative	training	set,	we	trained	a	model	that	is	unlikely	to	make	accurate
predictions,	especially	for	very	poor	and	very	rich	countries.

It	is	crucial	to	use	a	training	set	that	is	representative	of	the	cases	you	want	to	generalize	to.	This	is	often
harder	than	it	sounds:	if	the	sample	is	too	small,	you	will	have	sampling	noise	(i.e.,	nonrepresentative
data	as	a	result	of	chance),	but	even	very	large	samples	can	be	nonrepresentative	if	the	sampling	method
is	flawed.	This	is	called	sampling	bias.

A	FAMOUS	EXAMPLE	OF	SAMPLING	BIAS

Perhaps	the	most	famous	example	of	sampling	bias	happened	during	the	US	presidential	election	in	1936,	which	pitted	Landon	against
Roosevelt:	the	Literary	Digest	conducted	a	very	large	poll,	sending	mail	to	about	10	million	people.	It	got	2.4	million	answers,	and
predicted	with	high	confidence	that	Landon	would	get	57%	of	the	votes.	Instead,	Roosevelt	won	with	62%	of	the	votes.	The	flaw	was	in
the	Literary	Digest’s	sampling	method:

First,	to	obtain	the	addresses	to	send	the	polls	to,	the	Literary	Digest	used	telephone	directories,	lists	of	magazine	subscribers,	club
membership	lists,	and	the	like.	All	of	these	lists	tend	to	favor	wealthier	people,	who	are	more	likely	to	vote	Republican	(hence
Landon).

Second,	less	than	25%	of	the	people	who	received	the	poll	answered.	Again,	this	introduces	a	sampling	bias,	by	ruling	out	people
who	don’t	care	much	about	politics,	people	who	don’t	like	the	Literary	Digest,	and	other	key	groups.	This	is	a	special	type	of
sampling	bias	called	nonresponse	bias.

Here	is	another	example:	say	you	want	to	build	a	system	to	recognize	funk	music	videos.	One	way	to	build	your	training	set	is	to	search
“funk	music”	on	YouTube	and	use	the	resulting	videos.	But	this	assumes	that	YouTube’s	search	engine	returns	a	set	of	videos	that	are
representative	of	all	the	funk	music	videos	on	YouTube.	In	reality,	the	search	results	are	likely	to	be	biased	toward	popular	artists	(and	if
you	live	in	Brazil	you	will	get	a	lot	of	“funk	carioca”	videos,	which	sound	nothing	like	James	Brown).	On	the	other	hand,	how	else	can
you	get	a	large	training	set?

Poor-Quality	Data
Obviously,	if	your	training	data	is	full	of	errors,	outliers,	and	noise	(e.g.,	due	to	poor-quality
measurements),	it	will	make	it	harder	for	the	system	to	detect	the	underlying	patterns,	so	your	system	is
less	likely	to	perform	well.	It	is	often	well	worth	the	effort	to	spend	time	cleaning	up	your	training	data.
The	truth	is,	most	data	scientists	spend	a	significant	part	of	their	time	doing	just	that.	For	example:

If	some	instances	are	clearly	outliers,	it	may	help	to	simply	discard	them	or	try	to	fix	the	errors
manually.

If	some	instances	are	missing	a	few	features	(e.g.,	5%	of	your	customers	did	not	specify	their	age),
you	must	decide	whether	you	want	to	ignore	this	attribute	altogether,	ignore	these	instances,	fill	in	the
missing	values	(e.g.,	with	the	median	age),	or	train	one	model	with	the	feature	and	one	model	without
it,	and	so	on.

Irrelevant	Features
As	the	saying	goes:	garbage	in,	garbage	out.	Your	system	will	only	be	capable	of	learning	if	the	training
data	contains	enough	relevant	features	and	not	too	many	irrelevant	ones.	A	critical	part	of	the	success	of	a
Machine	Learning	project	is	coming	up	with	a	good	set	of	features	to	train	on.	This	process,	called
feature	engineering,	involves:

Feature	selection:	selecting	the	most	useful	features	to	train	on	among	existing	features.

Feature	extraction:	combining	existing	features	to	produce	a	more	useful	one	(as	we	saw	earlier,
dimensionality	reduction	algorithms	can	help).

Creating	new	features	by	gathering	new	data.

Now	that	we	have	looked	at	many	examples	of	bad	data,	let’s	look	at	a	couple	of	examples	of	bad
algorithms.

Overfitting	the	Training	Data
Say	you	are	visiting	a	foreign	country	and	the	taxi	driver	rips	you	off.	You	might	be	tempted	to	say	that	all
taxi	drivers	in	that	country	are	thieves.	Overgeneralizing	is	something	that	we	humans	do	all	too	often,	and
unfortunately	machines	can	fall	into	the	same	trap	if	we	are	not	careful.	In	Machine	Learning	this	is	called
overfitting:	it	means	that	the	model	performs	well	on	the	training	data,	but	it	does	not	generalize	well.

Figure	1-22	shows	an	example	of	a	high-degree	polynomial	life	satisfaction	model	that	strongly	overfits
the	training	data.	Even	though	it	performs	much	better	on	the	training	data	than	the	simple	linear	model,
would	you	really	trust	its	predictions?

Figure	1-22.	Overfitting	the	training	data

Complex	models	such	as	deep	neural	networks	can	detect	subtle	patterns	in	the	data,	but	if	the	training	set
is	noisy,	or	if	it	is	too	small	(which	introduces	sampling	noise),	then	the	model	is	likely	to	detect	patterns
in	the	noise	itself.	Obviously	these	patterns	will	not	generalize	to	new	instances.	For	example,	say	you
feed	your	life	satisfaction	model	many	more	attributes,	including	uninformative	ones	such	as	the	country’s
name.	In	that	case,	a	complex	model	may	detect	patterns	like	the	fact	that	all	countries	in	the	training	data
with	a	w	in	their	name	have	a	life	satisfaction	greater	than	7:	New	Zealand	(7.3),	Norway	(7.4),	Sweden
(7.2),	and	Switzerland	(7.5).	How	confident	are	you	that	the	W-satisfaction	rule	generalizes	to	Rwanda	or
Zimbabwe?	Obviously	this	pattern	occurred	in	the	training	data	by	pure	chance,	but	the	model	has	no	way
to	tell	whether	a	pattern	is	real	or	simply	the	result	of	noise	in	the	data.

WARNING
Overfitting	happens	when	the	model	is	too	complex	relative	to	the	amount	and	noisiness	of	the	training	data.	The	possible
solutions	are:

To	simplify	the	model	by	selecting	one	with	fewer	parameters	(e.g.,	a	linear	model	rather	than	a	high-degree	polynomial
model),	by	reducing	the	number	of	attributes	in	the	training	data	or	by	constraining	the	model

To	gather	more	training	data

To	reduce	the	noise	in	the	training	data	(e.g.,	fix	data	errors	and	remove	outliers)

Constraining	a	model	to	make	it	simpler	and	reduce	the	risk	of	overfitting	is	called	regularization.	For
example,	the	linear	model	we	defined	earlier	has	two	parameters,	θ0	and	θ1.	This	gives	the	learning
algorithm	two	degrees	of	freedom	to	adapt	the	model	to	the	training	data:	it	can	tweak	both	the	height	(θ0)
and	the	slope	(θ1)	of	the	line.	If	we	forced	θ1	=	0,	the	algorithm	would	have	only	one	degree	of	freedom
and	would	have	a	much	harder	time	fitting	the	data	properly:	all	it	could	do	is	move	the	line	up	or	down
to	get	as	close	as	possible	to	the	training	instances,	so	it	would	end	up	around	the	mean.	A	very	simple
model	indeed!	If	we	allow	the	algorithm	to	modify	θ1	but	we	force	it	to	keep	it	small,	then	the	learning
algorithm	will	effectively	have	somewhere	in	between	one	and	two	degrees	of	freedom.	It	will	produce	a
simpler	model	than	with	two	degrees	of	freedom,	but	more	complex	than	with	just	one.	You	want	to	find
the	right	balance	between	fitting	the	data	perfectly	and	keeping	the	model	simple	enough	to	ensure	that	it
will	generalize	well.

Figure	1-23	shows	three	models:	the	dotted	line	represents	the	original	model	that	was	trained	with	a	few
countries	missing,	the	dashed	line	is	our	second	model	trained	with	all	countries,	and	the	solid	line	is	a
linear	model	trained	with	the	same	data	as	the	first	model	but	with	a	regularization	constraint.	You	can	see
that	regularization	forced	the	model	to	have	a	smaller	slope,	which	fits	a	bit	less	the	training	data	that	the
model	was	trained	on,	but	actually	allows	it	to	generalize	better	to	new	examples.

Figure	1-23.	Regularization	reduces	the	risk	of	overfitting

The	amount	of	regularization	to	apply	during	learning	can	be	controlled	by	a	hyperparameter.	A
hyperparameter	is	a	parameter	of	a	learning	algorithm	(not	of	the	model).	As	such,	it	is	not	affected	by	the
learning	algorithm	itself;	it	must	be	set	prior	to	training	and	remains	constant	during	training.	If	you	set	the
regularization	hyperparameter	to	a	very	large	value,	you	will	get	an	almost	flat	model	(a	slope	close	to
zero);	the	learning	algorithm	will	almost	certainly	not	overfit	the	training	data,	but	it	will	be	less	likely	to
find	a	good	solution.	Tuning	hyperparameters	is	an	important	part	of	building	a	Machine	Learning	system
(you	will	see	a	detailed	example	in	the	next	chapter).

Underfitting	the	Training	Data
As	you	might	guess,	underfitting	is	the	opposite	of	overfitting:	it	occurs	when	your	model	is	too	simple	to
learn	the	underlying	structure	of	the	data.	For	example,	a	linear	model	of	life	satisfaction	is	prone	to
underfit;	reality	is	just	more	complex	than	the	model,	so	its	predictions	are	bound	to	be	inaccurate,	even
on	the	training	examples.

The	main	options	to	fix	this	problem	are:
Selecting	a	more	powerful	model,	with	more	parameters

Feeding	better	features	to	the	learning	algorithm	(feature	engineering)

Reducing	the	constraints	on	the	model	(e.g.,	reducing	the	regularization	hyperparameter)

Stepping	Back
By	now	you	already	know	a	lot	about	Machine	Learning.	However,	we	went	through	so	many	concepts
that	you	may	be	feeling	a	little	lost,	so	let’s	step	back	and	look	at	the	big	picture:

Machine	Learning	is	about	making	machines	get	better	at	some	task	by	learning	from	data,	instead	of
having	to	explicitly	code	rules.

There	are	many	different	types	of	ML	systems:	supervised	or	not,	batch	or	online,	instance-based	or
model-based,	and	so	on.

In	a	ML	project	you	gather	data	in	a	training	set,	and	you	feed	the	training	set	to	a	learning	algorithm.
If	the	algorithm	is	model-based	it	tunes	some	parameters	to	fit	the	model	to	the	training	set	(i.e.,	to
make	good	predictions	on	the	training	set	itself),	and	then	hopefully	it	will	be	able	to	make	good
predictions	on	new	cases	as	well.	If	the	algorithm	is	instance-based,	it	just	learns	the	examples	by
heart	and	uses	a	similarity	measure	to	generalize	to	new	instances.

The	system	will	not	perform	well	if	your	training	set	is	too	small,	or	if	the	data	is	not	representative,
noisy,	or	polluted	with	irrelevant	features	(garbage	in,	garbage	out).	Lastly,	your	model	needs	to	be
neither	too	simple	(in	which	case	it	will	underfit)	nor	too	complex	(in	which	case	it	will	overfit).

There’s	just	one	last	important	topic	to	cover:	once	you	have	trained	a	model,	you	don’t	want	to	just
“hope”	it	generalizes	to	new	cases.	You	want	to	evaluate	it,	and	fine-tune	it	if	necessary.	Let’s	see	how.

Testing	and	Validating
The	only	way	to	know	how	well	a	model	will	generalize	to	new	cases	is	to	actually	try	it	out	on	new
cases.	One	way	to	do	that	is	to	put	your	model	in	production	and	monitor	how	well	it	performs.	This
works	well,	but	if	your	model	is	horribly	bad,	your	users	will	complain	—	not	the	best	idea.

A	better	option	is	to	split	your	data	into	two	sets:	the	training	set	and	the	test	set.	As	these	names	imply,
you	train	your	model	using	the	training	set,	and	you	test	it	using	the	test	set.	The	error	rate	on	new	cases	is
called	the	generalization	error	(or	out-of-sample	error),	and	by	evaluating	your	model	on	the	test	set,
you	get	an	estimation	of	this	error.	This	value	tells	you	how	well	your	model	will	perform	on	instances	it
has	never	seen	before.

If	the	training	error	is	low	(i.e.,	your	model	makes	few	mistakes	on	the	training	set)	but	the	generalization
error	is	high,	it	means	that	your	model	is	overfitting	the	training	data.

TIP
It	is	common	to	use	80%	of	the	data	for	training	and	hold	out	20%	for	testing.

So	evaluating	a	model	is	simple	enough:	just	use	a	test	set.	Now	suppose	you	are	hesitating	between	two
models	(say	a	linear	model	and	a	polynomial	model):	how	can	you	decide?	One	option	is	to	train	both
and	compare	how	well	they	generalize	using	the	test	set.

Now	suppose	that	the	linear	model	generalizes	better,	but	you	want	to	apply	some	regularization	to	avoid
overfitting.	The	question	is:	how	do	you	choose	the	value	of	the	regularization	hyperparameter?	One
option	is	to	train	100	different	models	using	100	different	values	for	this	hyperparameter.	Suppose	you
find	the	best	hyperparameter	value	that	produces	a	model	with	the	lowest	generalization	error,	say	just
5%	error.

So	you	launch	this	model	into	production,	but	unfortunately	it	does	not	perform	as	well	as	expected	and
produces	15%	errors.	What	just	happened?

The	problem	is	that	you	measured	the	generalization	error	multiple	times	on	the	test	set,	and	you	adapted
the	model	and	hyperparameters	to	produce	the	best	model	for	that	set.	This	means	that	the	model	is
unlikely	to	perform	as	well	on	new	data.

A	common	solution	to	this	problem	is	to	have	a	second	holdout	set	called	the	validation	set.	You	train
multiple	models	with	various	hyperparameters	using	the	training	set,	you	select	the	model	and
hyperparameters	that	perform	best	on	the	validation	set,	and	when	you’re	happy	with	your	model	you	run
a	single	final	test	against	the	test	set	to	get	an	estimate	of	the	generalization	error.

To	avoid	“wasting”	too	much	training	data	in	validation	sets,	a	common	technique	is	to	use	cross-
validation:	the	training	set	is	split	into	complementary	subsets,	and	each	model	is	trained	against	a
different	combination	of	these	subsets	and	validated	against	the	remaining	parts.	Once	the	model	type	and
hyperparameters	have	been	selected,	a	final	model	is	trained	using	these	hyperparameters	on	the	full
training	set,	and	the	generalized	error	is	measured	on	the	test	set.

NO	FREE	LUNCH	THEOREM

A	model	is	a	simplified	version	of	the	observations.	The	simplifications	are	meant	to	discard	the	superfluous	details	that	are	unlikely	to
generalize	to	new	instances.	However,	to	decide	what	data	to	discard	and	what	data	to	keep,	you	must	make	assumptions.	For	example,
a	linear	model	makes	the	assumption	that	the	data	is	fundamentally	linear	and	that	the	distance	between	the	instances	and	the	straight	line
is	just	noise,	which	can	safely	be	ignored.

In	a	famous	1996	paper,11	David	Wolpert	demonstrated	that	if	you	make	absolutely	no	assumption	about	the	data,	then	there	is	no	reason
to	prefer	one	model	over	any	other.	This	is	called	the	No	Free	Lunch	(NFL)	theorem.	For	some	datasets	the	best	model	is	a	linear
model,	while	for	other	datasets	it	is	a	neural	network.	There	is	no	model	that	is	a	priori	guaranteed	to	work	better	(hence	the	name	of
the	theorem).	The	only	way	to	know	for	sure	which	model	is	best	is	to	evaluate	them	all.	Since	this	is	not	possible,	in	practice	you	make
some	reasonable	assumptions	about	the	data	and	you	evaluate	only	a	few	reasonable	models.	For	example,	for	simple	tasks	you	may
evaluate	linear	models	with	various	levels	of	regularization,	and	for	a	complex	problem	you	may	evaluate	various	neural	networks.

http://goo.gl/3zaHIZ

Exercises
In	this	chapter	we	have	covered	some	of	the	most	important	concepts	in	Machine	Learning.	In	the	next
chapters	we	will	dive	deeper	and	write	more	code,	but	before	we	do,	make	sure	you	know	how	to	answer
the	following	questions:

1.	 How	would	you	define	Machine	Learning?

2.	 Can	you	name	four	types	of	problems	where	it	shines?

3.	 What	is	a	labeled	training	set?

4.	 What	are	the	two	most	common	supervised	tasks?

5.	 Can	you	name	four	common	unsupervised	tasks?

6.	 What	type	of	Machine	Learning	algorithm	would	you	use	to	allow	a	robot	to	walk	in	various
unknown	terrains?

7.	 What	type	of	algorithm	would	you	use	to	segment	your	customers	into	multiple	groups?

8.	 Would	you	frame	the	problem	of	spam	detection	as	a	supervised	learning	problem	or	an
unsupervised	learning	problem?

9.	 What	is	an	online	learning	system?

10.	 What	is	out-of-core	learning?

11.	 What	type	of	learning	algorithm	relies	on	a	similarity	measure	to	make	predictions?

12.	 What	is	the	difference	between	a	model	parameter	and	a	learning	algorithm’s	hyperparameter?

13.	 What	do	model-based	learning	algorithms	search	for?	What	is	the	most	common	strategy	they	use
to	succeed?	How	do	they	make	predictions?

14.	 Can	you	name	four	of	the	main	challenges	in	Machine	Learning?

15.	 If	your	model	performs	great	on	the	training	data	but	generalizes	poorly	to	new	instances,	what	is
happening?	Can	you	name	three	possible	solutions?

16.	 What	is	a	test	set	and	why	would	you	want	to	use	it?

17.	 What	is	the	purpose	of	a	validation	set?

18.	 What	can	go	wrong	if	you	tune	hyperparameters	using	the	test	set?

19.	 What	is	cross-validation	and	why	would	you	prefer	it	to	a	validation	set?

Solutions	to	these	exercises	are	available	in	Appendix	A.

Fun	fact:	this	odd-sounding	name	is	a	statistics	term	introduced	by	Francis	Galton	while	he	was	studying	the	fact	that	the	children	of	tall
people	tend	to	be	shorter	than	their	parents.	Since	children	were	shorter,	he	called	this	regression	to	the	mean.	This	name	was	then
applied	to	the	methods	he	used	to	analyze	correlations	between	variables.

Some	neural	network	architectures	can	be	unsupervised,	such	as	autoencoders	and	restricted	Boltzmann	machines.	They	can	also	be
semisupervised,	such	as	in	deep	belief	networks	and	unsupervised	pretraining.

Notice	how	animals	are	rather	well	separated	from	vehicles,	how	horses	are	close	to	deer	but	far	from	birds,	and	so	on.	Figure	reproduced
with	permission	from	Socher,	Ganjoo,	Manning,	and	Ng	(2013),	“T-SNE	visualization	of	the	semantic	word	space.”

That’s	when	the	system	works	perfectly.	In	practice	it	often	creates	a	few	clusters	per	person,	and	sometimes	mixes	up	two	people	who
look	alike,	so	you	need	to	provide	a	few	labels	per	person	and	manually	clean	up	some	clusters.

By	convention,	the	Greek	letter	θ	(theta)	is	frequently	used	to	represent	model	parameters.

The	code	assumes	that	prepare_country_stats()	is	already	defined:	it	merges	the	GDP	and	life	satisfaction	data	into	a	single	Pandas
dataframe.

It’s	okay	if	you	don’t	understand	all	the	code	yet;	we	will	present	Scikit-Learn	in	the	following	chapters.

For	example,	knowing	whether	to	write	“to,”	“two,”	or	“too”	depending	on	the	context.

Figure	reproduced	with	permission	from	Banko	and	Brill	(2001),	“Learning	Curves	for	Confusion	Set	Disambiguation.”

“The	Unreasonable	Effectiveness	of	Data,”	Peter	Norvig	et	al.	(2009).

“The	Lack	of	A	Priori	Distinctions	Between	Learning	Algorithms,”	D.	Wolperts	(1996).

1

2

3

4

5

6

7

8

9

10

11

Chapter	2.	End-to-End	Machine	Learning
Project

In	this	chapter,	you	will	go	through	an	example	project	end	to	end,	pretending	to	be	a	recently	hired	data
scientist	in	a	real	estate	company.1	Here	are	the	main	steps	you	will	go	through:

1.	 Look	at	the	big	picture.

2.	 Get	the	data.

3.	 Discover	and	visualize	the	data	to	gain	insights.

4.	 Prepare	the	data	for	Machine	Learning	algorithms.

5.	 Select	a	model	and	train	it.

6.	 Fine-tune	your	model.

7.	 Present	your	solution.

8.	 Launch,	monitor,	and	maintain	your	system.

Working	with	Real	Data
When	you	are	learning	about	Machine	Learning	it	is	best	to	actually	experiment	with	real-world	data,	not
just	artificial	datasets.	Fortunately,	there	are	thousands	of	open	datasets	to	choose	from,	ranging	across	all
sorts	of	domains.	Here	are	a	few	places	you	can	look	to	get	data:

Popular	open	data	repositories:
UC	Irvine	Machine	Learning	Repository

Kaggle	datasets

Amazon’s	AWS	datasets

Meta	portals	(they	list	open	data	repositories):
http://dataportals.org/

http://opendatamonitor.eu/

http://quandl.com/

Other	pages	listing	many	popular	open	data	repositories:
Wikipedia’s	list	of	Machine	Learning	datasets

Quora.com	question

Datasets	subreddit

In	this	chapter	we	chose	the	California	Housing	Prices	dataset	from	the	StatLib	repository2	(see	Figure	2-
1).	This	dataset	was	based	on	data	from	the	1990	California	census.	It	is	not	exactly	recent	(you	could
still	afford	a	nice	house	in	the	Bay	Area	at	the	time),	but	it	has	many	qualities	for	learning,	so	we	will
pretend	it	is	recent	data.	We	also	added	a	categorical	attribute	and	removed	a	few	features	for	teaching
purposes.

http://archive.ics.uci.edu/ml/
https://www.kaggle.com/datasets
http://aws.amazon.com/fr/datasets/
http://dataportals.org/
http://opendatamonitor.eu/
http://quandl.com/
https://goo.gl/SJHN2k
http://goo.gl/zDR78y
https://www.reddit.com/r/datasets

Figure	2-1.	California	housing	prices

Look	at	the	Big	Picture
Welcome	to	Machine	Learning	Housing	Corporation!	The	first	task	you	are	asked	to	perform	is	to	build	a
model	of	housing	prices	in	California	using	the	California	census	data.	This	data	has	metrics	such	as	the
population,	median	income,	median	housing	price,	and	so	on	for	each	block	group	in	California.	Block
groups	are	the	smallest	geographical	unit	for	which	the	US	Census	Bureau	publishes	sample	data	(a	block
group	typically	has	a	population	of	600	to	3,000	people).	We	will	just	call	them	“districts”	for	short.

Your	model	should	learn	from	this	data	and	be	able	to	predict	the	median	housing	price	in	any	district,
given	all	the	other	metrics.

TIP
Since	you	are	a	well-organized	data	scientist,	the	first	thing	you	do	is	to	pull	out	your	Machine	Learning	project	checklist.	You	can
start	with	the	one	in	Appendix	B;	it	should	work	reasonably	well	for	most	Machine	Learning	projects	but	make	sure	to	adapt	it	to
your	needs.	In	this	chapter	we	will	go	through	many	checklist	items,	but	we	will	also	skip	a	few,	either	because	they	are	self-
explanatory	or	because	they	will	be	discussed	in	later	chapters.

Frame	the	Problem
The	first	question	to	ask	your	boss	is	what	exactly	is	the	business	objective;	building	a	model	is	probably
not	the	end	goal.	How	does	the	company	expect	to	use	and	benefit	from	this	model?	This	is	important
because	it	will	determine	how	you	frame	the	problem,	what	algorithms	you	will	select,	what	performance
measure	you	will	use	to	evaluate	your	model,	and	how	much	effort	you	should	spend	tweaking	it.

Your	boss	answers	that	your	model’s	output	(a	prediction	of	a	district’s	median	housing	price)	will	be	fed
to	another	Machine	Learning	system	(see	Figure	2-2),	along	with	many	other	signals.3	This	downstream
system	will	determine	whether	it	is	worth	investing	in	a	given	area	or	not.	Getting	this	right	is	critical,	as
it	directly	affects	revenue.

Figure	2-2.	A	Machine	Learning	pipeline	for	real	estate	investments

PIPELINES

A	sequence	of	data	processing	components	is	called	a	data	pipeline.	Pipelines	are	very	common	in	Machine	Learning	systems,	since
there	is	a	lot	of	data	to	manipulate	and	many	data	transformations	to	apply.

Components	typically	run	asynchronously.	Each	component	pulls	in	a	large	amount	of	data,	processes	it,	and	spits	out	the	result	in	another
data	store,	and	then	some	time	later	the	next	component	in	the	pipeline	pulls	this	data	and	spits	out	its	own	output,	and	so	on.	Each
component	is	fairly	self-contained:	the	interface	between	components	is	simply	the	data	store.	This	makes	the	system	quite	simple	to
grasp	(with	the	help	of	a	data	flow	graph),	and	different	teams	can	focus	on	different	components.	Moreover,	if	a	component	breaks
down,	the	downstream	components	can	often	continue	to	run	normally	(at	least	for	a	while)	by	just	using	the	last	output	from	the	broken
component.	This	makes	the	architecture	quite	robust.

On	the	other	hand,	a	broken	component	can	go	unnoticed	for	some	time	if	proper	monitoring	is	not	implemented.	The	data	gets	stale	and
the	overall	system’s	performance	drops.

The	next	question	to	ask	is	what	the	current	solution	looks	like	(if	any).	It	will	often	give	you	a	reference
performance,	as	well	as	insights	on	how	to	solve	the	problem.	Your	boss	answers	that	the	district	housing
prices	are	currently	estimated	manually	by	experts:	a	team	gathers	up-to-date	information	about	a	district
(excluding	median	housing	prices),	and	they	use	complex	rules	to	come	up	with	an	estimate.	This	is	costly
and	time-consuming,	and	their	estimates	are	not	great;	their	typical	error	rate	is	about	15%.

Okay,	with	all	this	information	you	are	now	ready	to	start	designing	your	system.	First,	you	need	to	frame
the	problem:	is	it	supervised,	unsupervised,	or	Reinforcement	Learning?	Is	it	a	classification	task,	a

regression	task,	or	something	else?	Should	you	use	batch	learning	or	online	learning	techniques?	Before
you	read	on,	pause	and	try	to	answer	these	questions	for	yourself.

Have	you	found	the	answers?	Let’s	see:	it	is	clearly	a	typical	supervised	learning	task	since	you	are	given
labeled	training	examples	(each	instance	comes	with	the	expected	output,	i.e.,	the	district’s	median
housing	price).	Moreover,	it	is	also	a	typical	regression	task,	since	you	are	asked	to	predict	a	value.	More
specifically,	this	is	a	multivariate	regression	problem	since	the	system	will	use	multiple	features	to	make
a	prediction	(it	will	use	the	district’s	population,	the	median	income,	etc.).	In	the	first	chapter,	you
predicted	life	satisfaction	based	on	just	one	feature,	the	GDP	per	capita,	so	it	was	a	univariate	regression
problem.	Finally,	there	is	no	continuous	flow	of	data	coming	in	the	system,	there	is	no	particular	need	to
adjust	to	changing	data	rapidly,	and	the	data	is	small	enough	to	fit	in	memory,	so	plain	batch	learning
should	do	just	fine.

TIP
If	the	data	was	huge,	you	could	either	split	your	batch	learning	work	across	multiple	servers	(using	the	MapReduce	technique,	as
we	will	see	later),	or	you	could	use	an	online	learning	technique	instead.

Select	a	Performance	Measure
Your	next	step	is	to	select	a	performance	measure.	A	typical	performance	measure	for	regression
problems	is	the	Root	Mean	Square	Error	(RMSE).	It	measures	the	standard	deviation4	of	the	errors	the
system	makes	in	its	predictions.	For	example,	an	RMSE	equal	to	50,000	means	that	about	68%	of	the
system’s	predictions	fall	within	$50,000	of	the	actual	value,	and	about	95%	of	the	predictions	fall	within
$100,000	of	the	actual	value.5	Equation	2-1	shows	the	mathematical	formula	to	compute	the	RMSE.

Equation	2-1.	Root	Mean	Square	Error	(RMSE)

NOTATIONS

This	equation	introduces	several	very	common	Machine	Learning	notations	that	we	will	use	throughout	this	book:

m	is	the	number	of	instances	in	the	dataset	you	are	measuring	the	RMSE	on.

For	example,	if	you	are	evaluating	the	RMSE	on	a	validation	set	of	2,000	districts,	then	m	=	2,000.

x(i)	is	a	vector	of	all	the	feature	values	(excluding	the	label)	of	the	ith	instance	in	the	dataset,	and	y(i)	is	its	label	(the	desired	output
value	for	that	instance).

For	example,	if	the	first	district	in	the	dataset	is	located	at	longitude	–118.29°,	latitude	33.91°,	and	it	has	1,416	inhabitants	with	a
median	income	of	$38,372,	and	the	median	house	value	is	$156,400	(ignoring	the	other	features	for	now),	then:

and:

X	is	a	matrix	containing	all	the	feature	values	(excluding	labels)	of	all	instances	in	the	dataset.	There	is	one	row	per	instance	and
the	ith	row	is	equal	to	the	transpose	of	x(i),	noted	(x(i))T.6

For	example,	if	the	first	district	is	as	just	described,	then	the	matrix	X	looks	like	this:

h	is	your	system’s	prediction	function,	also	called	a	hypothesis.	When	your	system	is	given	an	instance’s	feature	vector	x(i),	it
outputs	a	predicted	value	ŷ(i)	=	h(x(i))	for	that	instance	(ŷ	is	pronounced	“y-hat”).

For	example,	if	your	system	predicts	that	the	median	housing	price	in	the	first	district	is	$158,400,	then	ŷ(1)	=	h(x(1))	=	158,400.
The	prediction	error	for	this	district	is	ŷ(1)	–	y(1)	=	2,000.

RMSE(X,h)	is	the	cost	function	measured	on	the	set	of	examples	using	your	hypothesis	h.

We	use	lowercase	italic	font	for	scalar	values	(such	as	m	or	y(i))	and	function	names	(such	as	h),	lowercase	bold	font	for	vectors	(such
as	x(i)),	and	uppercase	bold	font	for	matrices	(such	as	X).

Even	though	the	RMSE	is	generally	the	preferred	performance	measure	for	regression	tasks,	in	some
contexts	you	may	prefer	to	use	another	function.	For	example,	suppose	that	there	are	many	outlier	districts.
In	that	case,	you	may	consider	using	the	Mean	Absolute	Error	(also	called	the	Average	Absolute
Deviation;	see	Equation	2-2):

Equation	2-2.	Mean	Absolute	Error

Both	the	RMSE	and	the	MAE	are	ways	to	measure	the	distance	between	two	vectors:	the	vector	of
predictions	and	the	vector	of	target	values.	Various	distance	measures,	or	norms,	are	possible:

Computing	the	root	of	a	sum	of	squares	(RMSE)	corresponds	to	the	Euclidian	norm:	it	is	the	notion
of	distance	you	are	familiar	with.	It	is	also	called	the	ℓ2	norm,	noted	∥	·	∥2	(or	just	∥	·	∥).

Computing	the	sum	of	absolutes	(MAE)	corresponds	to	the	ℓ1	norm,	noted	∥	·	∥1.	It	is	sometimes
called	the	Manhattan	norm	because	it	measures	the	distance	between	two	points	in	a	city	if	you	can
only	travel	along	orthogonal	city	blocks.

More	generally,	the	ℓk	norm	of	a	vector	v	containing	n	elements	is	defined	as	

.	ℓ0	just	gives	the	cardinality	of	the	vector	(i.e.,	the	number	of
elements),	and	ℓ∞	gives	the	maximum	absolute	value	in	the	vector.

The	higher	the	norm	index,	the	more	it	focuses	on	large	values	and	neglects	small	ones.	This	is	why
the	RMSE	is	more	sensitive	to	outliers	than	the	MAE.	But	when	outliers	are	exponentially	rare	(like
in	a	bell-shaped	curve),	the	RMSE	performs	very	well	and	is	generally	preferred.

Check	the	Assumptions
Lastly,	it	is	good	practice	to	list	and	verify	the	assumptions	that	were	made	so	far	(by	you	or	others);	this
can	catch	serious	issues	early	on.	For	example,	the	district	prices	that	your	system	outputs	are	going	to	be
fed	into	a	downstream	Machine	Learning	system,	and	we	assume	that	these	prices	are	going	to	be	used	as
such.	But	what	if	the	downstream	system	actually	converts	the	prices	into	categories	(e.g.,	“cheap,”
“medium,”	or	“expensive”)	and	then	uses	those	categories	instead	of	the	prices	themselves?	In	this	case,
getting	the	price	perfectly	right	is	not	important	at	all;	your	system	just	needs	to	get	the	category	right.	If
that’s	so,	then	the	problem	should	have	been	framed	as	a	classification	task,	not	a	regression	task.	You
don’t	want	to	find	this	out	after	working	on	a	regression	system	for	months.

Fortunately,	after	talking	with	the	team	in	charge	of	the	downstream	system,	you	are	confident	that	they	do
indeed	need	the	actual	prices,	not	just	categories.	Great!	You’re	all	set,	the	lights	are	green,	and	you	can
start	coding	now!

Get	the	Data
It’s	time	to	get	your	hands	dirty.	Don’t	hesitate	to	pick	up	your	laptop	and	walk	through	the	following	code
examples	in	a	Jupyter	notebook.	The	full	Jupyter	notebook	is	available	at
https://github.com/ageron/handson-ml.

https://github.com/ageron/handson-ml

Create	the	Workspace
First	you	will	need	to	have	Python	installed.	It	is	probably	already	installed	on	your	system.	If	not,	you
can	get	it	at	https://www.python.org/.7

Next	you	need	to	create	a	workspace	directory	for	your	Machine	Learning	code	and	datasets.	Open	a
terminal	and	type	the	following	commands	(after	the	$	prompts):

$	export	ML_PATH="$HOME/ml"						#	You	can	change	the	path	if	you	prefer

$	mkdir	-p	$ML_PATH

You	will	need	a	number	of	Python	modules:	Jupyter,	NumPy,	Pandas,	Matplotlib,	and	Scikit-Learn.	If	you
already	have	Jupyter	running	with	all	these	modules	installed,	you	can	safely	skip	to	“Download	the
Data”.	If	you	don’t	have	them	yet,	there	are	many	ways	to	install	them	(and	their	dependencies).	You	can
use	your	system’s	packaging	system	(e.g.,	apt-get	on	Ubuntu,	or	MacPorts	or	HomeBrew	on	macOS),
install	a	Scientific	Python	distribution	such	as	Anaconda	and	use	its	packaging	system,	or	just	use
Python’s	own	packaging	system,	pip,	which	is	included	by	default	with	the	Python	binary	installers	(since
Python	2.7.9).8	You	can	check	to	see	if	pip	is	installed	by	typing	the	following	command:

$	pip3	--version

pip	9.0.1	from	[...]/lib/python3.5/site-packages	(python	3.5)

You	should	make	sure	you	have	a	recent	version	of	pip	installed,	at	the	very	least	>1.4	to	support	binary
module	installation	(a.k.a.	wheels).	To	upgrade	the	pip	module,	type:9

$	pip3	install	--upgrade	pip

Collecting	pip

[...]

Successfully	installed	pip-9.0.1

CREATING	AN	ISOLATED	ENVIRONMENT

If	you	would	like	to	work	in	an	isolated	environment	(which	is	strongly	recommended	so	you	can	work	on	different	projects	without
having	conflicting	library	versions),	install	virtualenv	by	running	the	following	pip	command:

$	pip3	install	--user	--upgrade	virtualenv

Collecting	virtualenv

[...]

Successfully	installed	virtualenv

Now	you	can	create	an	isolated	Python	environment	by	typing:

$	cd	$ML_PATH

$	virtualenv	env

Using	base	prefix	'[...]'

New	python	executable	in	[...]/ml/env/bin/python3.5

Also	creating	executable	in	[...]/ml/env/bin/python

Installing	setuptools,	pip,	wheel...done.

Now	every	time	you	want	to	activate	this	environment,	just	open	a	terminal	and	type:

$	cd	$ML_PATH

$	source	env/bin/activate

https://www.python.org/

While	the	environment	is	active,	any	package	you	install	using	pip	will	be	installed	in	this	isolated	environment,	and	Python	will	only	have
access	to	these	packages	(if	you	also	want	access	to	the	system’s	site	packages,	you	should	create	the	environment	using	virtualenv’s	--
system-site-packages	option).	Check	out	virtualenv’s	documentation	for	more	information.

Now	you	can	install	all	the	required	modules	and	their	dependencies	using	this	simple	pip	command:

$	pip3	install	--upgrade	jupyter	matplotlib	numpy	pandas	scipy	scikit-learn

Collecting	jupyter

		Downloading	jupyter-1.0.0-py2.py3-none-any.whl

Collecting	matplotlib

		[...]

To	check	your	installation,	try	to	import	every	module	like	this:

$	python3	-c	"import	jupyter,	matplotlib,	numpy,	pandas,	scipy,	sklearn"

There	should	be	no	output	and	no	error.	Now	you	can	fire	up	Jupyter	by	typing:

$	jupyter	notebook

[I	15:24	NotebookApp]	Serving	notebooks	from	local	directory:	[...]/ml

[I	15:24	NotebookApp]	0	active	kernels

[I	15:24	NotebookApp]	The	Jupyter	Notebook	is	running	at:	http://localhost:8888/

[I	15:24	NotebookApp]	Use	Control-C	to	stop	this	server	and	shut	down	all

kernels	(twice	to	skip	confirmation).

A	Jupyter	server	is	now	running	in	your	terminal,	listening	to	port	8888.	You	can	visit	this	server	by
opening	your	web	browser	to	http://localhost:8888/	(this	usually	happens	automatically	when	the	server
starts).	You	should	see	your	empty	workspace	directory	(containing	only	the	env	directory	if	you	followed
the	preceding	virtualenv	instructions).

Now	create	a	new	Python	notebook	by	clicking	on	the	New	button	and	selecting	the	appropriate	Python
version10	(see	Figure	2-3).

This	does	three	things:	first,	it	creates	a	new	notebook	file	called	Untitled.ipynb	in	your	workspace;
second,	it	starts	a	Jupyter	Python	kernel	to	run	this	notebook;	and	third,	it	opens	this	notebook	in	a	new
tab.	You	should	start	by	renaming	this	notebook	to	“Housing”	(this	will	automatically	rename	the	file	to
Housing.ipynb)	by	clicking	Untitled	and	typing	the	new	name.

Figure	2-3.	Your	workspace	in	Jupyter

A	notebook	contains	a	list	of	cells.	Each	cell	can	contain	executable	code	or	formatted	text.	Right	now	the
notebook	contains	only	one	empty	code	cell,	labeled	“In	[1]:”.	Try	typing	print("Hello	world!")	in
the	cell,	and	click	on	the	play	button	(see	Figure	2-4)	or	press	Shift-Enter.	This	sends	the	current	cell	to
this	notebook’s	Python	kernel,	which	runs	it	and	returns	the	output.	The	result	is	displayed	below	the	cell,
and	since	we	reached	the	end	of	the	notebook,	a	new	cell	is	automatically	created.	Go	through	the	User
Interface	Tour	from	Jupyter’s	Help	menu	to	learn	the	basics.

Figure	2-4.	Hello	world	Python	notebook

Download	the	Data
In	typical	environments	your	data	would	be	available	in	a	relational	database	(or	some	other	common
datastore)	and	spread	across	multiple	tables/documents/files.	To	access	it,	you	would	first	need	to	get
your	credentials	and	access	authorizations,11	and	familiarize	yourself	with	the	data	schema.	In	this	project,
however,	things	are	much	simpler:	you	will	just	download	a	single	compressed	file,	housing.tgz,	which
contains	a	comma-separated	value	(CSV)	file	called	housing.csv	with	all	the	data.

You	could	use	your	web	browser	to	download	it,	and	run	tar	xzf	housing.tgz	to	decompress	the	file
and	extract	the	CSV	file,	but	it	is	preferable	to	create	a	small	function	to	do	that.	It	is	useful	in	particular	if
data	changes	regularly,	as	it	allows	you	to	write	a	small	script	that	you	can	run	whenever	you	need	to
fetch	the	latest	data	(or	you	can	set	up	a	scheduled	job	to	do	that	automatically	at	regular	intervals).
Automating	the	process	of	fetching	the	data	is	also	useful	if	you	need	to	install	the	dataset	on	multiple
machines.

Here	is	the	function	to	fetch	the	data:12

import	os

import	tarfile

from	six.moves	import	urllib

DOWNLOAD_ROOT	=	"https://raw.githubusercontent.com/ageron/handson-ml/master/"

HOUSING_PATH	=	"datasets/housing"

HOUSING_URL	=	DOWNLOAD_ROOT	+	HOUSING_PATH	+	"/housing.tgz"

def	fetch_housing_data(housing_url=HOUSING_URL,	housing_path=HOUSING_PATH):

				if	not	os.path.isdir(housing_path):

								os.makedirs(housing_path)

				tgz_path	=	os.path.join(housing_path,	"housing.tgz")

				urllib.request.urlretrieve(housing_url,	tgz_path)

				housing_tgz	=	tarfile.open(tgz_path)

				housing_tgz.extractall(path=housing_path)

				housing_tgz.close()

Now	when	you	call	fetch_housing_data(),	it	creates	a	datasets/housing	directory	in	your	workspace,
downloads	the	housing.tgz	file,	and	extracts	the	housing.csv	from	it	in	this	directory.

Now	let’s	load	the	data	using	Pandas.	Once	again	you	should	write	a	small	function	to	load	the	data:

import	pandas	as	pd

def	load_housing_data(housing_path=HOUSING_PATH):

				csv_path	=	os.path.join(housing_path,	"housing.csv")

				return	pd.read_csv(csv_path)

This	function	returns	a	Pandas	DataFrame	object	containing	all	the	data.

Take	a	Quick	Look	at	the	Data	Structure
Let’s	take	a	look	at	the	top	five	rows	using	the	DataFrame’s	head()	method	(see	Figure	2-5).

Figure	2-5.	Top	five	rows	in	the	dataset

Each	row	represents	one	district.	There	are	10	attributes	(you	can	see	the	first	6	in	the	screenshot):
longitude,	latitude,	housing_median_age,	total_rooms,	total_bedrooms,	population,
households,	median_income,	median_house_value,	and	ocean_proximity.

The	info()	method	is	useful	to	get	a	quick	description	of	the	data,	in	particular	the	total	number	of	rows,
and	each	attribute’s	type	and	number	of	non-null	values	(see	Figure	2-6).

Figure	2-6.	Housing	info

There	are	20,640	instances	in	the	dataset,	which	means	that	it	is	fairly	small	by	Machine	Learning
standards,	but	it’s	perfect	to	get	started.	Notice	that	the	total_bedrooms	attribute	has	only	20,433	non-
null	values,	meaning	that	207	districts	are	missing	this	feature.	We	will	need	to	take	care	of	this	later.

All	attributes	are	numerical,	except	the	ocean_proximity	field.	Its	type	is	object,	so	it	could	hold	any
kind	of	Python	object,	but	since	you	loaded	this	data	from	a	CSV	file	you	know	that	it	must	be	a	text
attribute.	When	you	looked	at	the	top	five	rows,	you	probably	noticed	that	the	values	in	that	column	were
repetitive,	which	means	that	it	is	probably	a	categorical	attribute.	You	can	find	out	what	categories	exist
and	how	many	districts	belong	to	each	category	by	using	the	value_counts()	method:

>>>	housing["ocean_proximity"].value_counts()

<1H	OCEAN					9136

INLAND								6551

NEAR	OCEAN				2658

NEAR	BAY						2290

ISLAND											5

Name:	ocean_proximity,	dtype:	int64

Let’s	look	at	the	other	fields.	The	describe()	method	shows	a	summary	of	the	numerical	attributes
(Figure	2-7).

Figure	2-7.	Summary	of	each	numerical	attribute

The	count,	mean,	min,	and	max	rows	are	self-explanatory.	Note	that	the	null	values	are	ignored	(so,	for
example,	count	of	total_bedrooms	is	20,433,	not	20,640).	The	std	row	shows	the	standard	deviation
(which	measures	how	dispersed	the	values	are).	The	25%,	50%,	and	75%	rows	show	the	corresponding
percentiles:	a	percentile	indicates	the	value	below	which	a	given	percentage	of	observations	in	a	group
of	observations	falls.	For	example,	25%	of	the	districts	have	a	housing_median_age	lower	than	18,
while	50%	are	lower	than	29	and	75%	are	lower	than	37.	These	are	often	called	the	25th	percentile	(or
1st	quartile),	the	median,	and	the	75th	percentile	(or	3rd	quartile).

Another	quick	way	to	get	a	feel	of	the	type	of	data	you	are	dealing	with	is	to	plot	a	histogram	for	each
numerical	attribute.	A	histogram	shows	the	number	of	instances	(on	the	vertical	axis)	that	have	a	given
value	range	(on	the	horizontal	axis).	You	can	either	plot	this	one	attribute	at	a	time,	or	you	can	call	the
hist()	method	on	the	whole	dataset,	and	it	will	plot	a	histogram	for	each	numerical	attribute	(see
Figure	2-8).	For	example,	you	can	see	that	slightly	over	800	districts	have	a	median_house_value	equal
to	about	$500,000.

%matplotlib	inline			#	only	in	a	Jupyter	notebook

import	matplotlib.pyplot	as	plt

housing.hist(bins=50,	figsize=(20,15))

plt.show()

Figure	2-8.	A	histogram	for	each	numerical	attribute

NOTE
The	hist()	method	relies	on	Matplotlib,	which	in	turn	relies	on	a	user-specified	graphical	backend	to	draw	on	your	screen.	So
before	you	can	plot	anything,	you	need	to	specify	which	backend	Matplotlib	should	use.	The	simplest	option	is	to	use	Jupyter’s
magic	command	%matplotlib	inline.	This	tells	Jupyter	to	set	up	Matplotlib	so	it	uses	Jupyter’s	own	backend.	Plots	are	then
rendered	within	the	notebook	itself.	Note	that	calling	show()	is	optional	in	a	Jupyter	notebook,	as	Jupyter	will	automatically

display	plots	when	a	cell	is	executed.

Notice	a	few	things	in	these	histograms:
1.	 First,	the	median	income	attribute	does	not	look	like	it	is	expressed	in	US	dollars	(USD).	After

checking	with	the	team	that	collected	the	data,	you	are	told	that	the	data	has	been	scaled	and
capped	at	15	(actually	15.0001)	for	higher	median	incomes,	and	at	0.5	(actually	0.4999)	for
lower	median	incomes.	Working	with	preprocessed	attributes	is	common	in	Machine	Learning,
and	it	is	not	necessarily	a	problem,	but	you	should	try	to	understand	how	the	data	was	computed.

2.	 The	housing	median	age	and	the	median	house	value	were	also	capped.	The	latter	may	be	a
serious	problem	since	it	is	your	target	attribute	(your	labels).	Your	Machine	Learning	algorithms
may	learn	that	prices	never	go	beyond	that	limit.	You	need	to	check	with	your	client	team	(the
team	that	will	use	your	system’s	output)	to	see	if	this	is	a	problem	or	not.	If	they	tell	you	that	they
need	precise	predictions	even	beyond	$500,000,	then	you	have	mainly	two	options:
a.	 Collect	proper	labels	for	the	districts	whose	labels	were	capped.

b.	 Remove	those	districts	from	the	training	set	(and	also	from	the	test	set,	since	your	system
should	not	be	evaluated	poorly	if	it	predicts	values	beyond	$500,000).

3.	 These	attributes	have	very	different	scales.	We	will	discuss	this	later	in	this	chapter	when	we
explore	feature	scaling.

4.	 Finally,	many	histograms	are	tail	heavy:	they	extend	much	farther	to	the	right	of	the	median	than
to	the	left.	This	may	make	it	a	bit	harder	for	some	Machine	Learning	algorithms	to	detect
patterns.	We	will	try	transforming	these	attributes	later	on	to	have	more	bell-shaped
distributions.

Hopefully	you	now	have	a	better	understanding	of	the	kind	of	data	you	are	dealing	with.

WARNING
Wait!	Before	you	look	at	the	data	any	further,	you	need	to	create	a	test	set,	put	it	aside,	and	never	look	at	it.

Create	a	Test	Set
It	may	sound	strange	to	voluntarily	set	aside	part	of	the	data	at	this	stage.	After	all,	you	have	only	taken	a
quick	glance	at	the	data,	and	surely	you	should	learn	a	whole	lot	more	about	it	before	you	decide	what
algorithms	to	use,	right?	This	is	true,	but	your	brain	is	an	amazing	pattern	detection	system,	which	means
that	it	is	highly	prone	to	overfitting:	if	you	look	at	the	test	set,	you	may	stumble	upon	some	seemingly
interesting	pattern	in	the	test	data	that	leads	you	to	select	a	particular	kind	of	Machine	Learning	model.
When	you	estimate	the	generalization	error	using	the	test	set,	your	estimate	will	be	too	optimistic	and	you
will	launch	a	system	that	will	not	perform	as	well	as	expected.	This	is	called	data	snooping	bias.

Creating	a	test	set	is	theoretically	quite	simple:	just	pick	some	instances	randomly,	typically	20%	of	the
dataset,	and	set	them	aside:

import	numpy	as	np

def	split_train_test(data,	test_ratio):

				shuffled_indices	=	np.random.permutation(len(data))

				test_set_size	=	int(len(data)	*	test_ratio)

				test_indices	=	shuffled_indices[:test_set_size]

				train_indices	=	shuffled_indices[test_set_size:]

				return	data.iloc[train_indices],	data.iloc[test_indices]

You	can	then	use	this	function	like	this:

>>>	train_set,	test_set	=	split_train_test(housing,	0.2)

>>>	print(len(train_set),	"train	+",	len(test_set),	"test")

16512	train	+	4128	test

Well,	this	works,	but	it	is	not	perfect:	if	you	run	the	program	again,	it	will	generate	a	different	test	set!
Over	time,	you	(or	your	Machine	Learning	algorithms)	will	get	to	see	the	whole	dataset,	which	is	what
you	want	to	avoid.

One	solution	is	to	save	the	test	set	on	the	first	run	and	then	load	it	in	subsequent	runs.	Another	option	is	to
set	the	random	number	generator’s	seed	(e.g.,	np.random.seed(42))13	before	calling
np.random.permutation(),	so	that	it	always	generates	the	same	shuffled	indices.

But	both	these	solutions	will	break	next	time	you	fetch	an	updated	dataset.	A	common	solution	is	to	use
each	instance’s	identifier	to	decide	whether	or	not	it	should	go	in	the	test	set	(assuming	instances	have	a
unique	and	immutable	identifier).	For	example,	you	could	compute	a	hash	of	each	instance’s	identifier,
keep	only	the	last	byte	of	the	hash,	and	put	the	instance	in	the	test	set	if	this	value	is	lower	or	equal	to	51
(~20%	of	256).	This	ensures	that	the	test	set	will	remain	consistent	across	multiple	runs,	even	if	you
refresh	the	dataset.	The	new	test	set	will	contain	20%	of	the	new	instances,	but	it	will	not	contain	any
instance	that	was	previously	in	the	training	set.	Here	is	a	possible	implementation:

import	hashlib

def	test_set_check(identifier,	test_ratio,	hash):

				return	hash(np.int64(identifier)).digest()[-1]	<	256	*	test_ratio

def	split_train_test_by_id(data,	test_ratio,	id_column,	hash=hashlib.md5):

				ids	=	data[id_column]

				in_test_set	=	ids.apply(lambda	id_:	test_set_check(id_,	test_ratio,	hash))

				return	data.loc[~in_test_set],	data.loc[in_test_set]

Unfortunately,	the	housing	dataset	does	not	have	an	identifier	column.	The	simplest	solution	is	to	use	the
row	index	as	the	ID:

housing_with_id	=	housing.reset_index()			#	adds	an	`index`	column

train_set,	test_set	=	split_train_test_by_id(housing_with_id,	0.2,	"index")

If	you	use	the	row	index	as	a	unique	identifier,	you	need	to	make	sure	that	new	data	gets	appended	to	the
end	of	the	dataset,	and	no	row	ever	gets	deleted.	If	this	is	not	possible,	then	you	can	try	to	use	the	most
stable	features	to	build	a	unique	identifier.	For	example,	a	district’s	latitude	and	longitude	are	guaranteed
to	be	stable	for	a	few	million	years,	so	you	could	combine	them	into	an	ID	like	so:14

housing_with_id["id"]	=	housing["longitude"]	*	1000	+	housing["latitude"]

train_set,	test_set	=	split_train_test_by_id(housing_with_id,	0.2,	"id")

Scikit-Learn	provides	a	few	functions	to	split	datasets	into	multiple	subsets	in	various	ways.	The	simplest
function	is	train_test_split,	which	does	pretty	much	the	same	thing	as	the	function
split_train_test	defined	earlier,	with	a	couple	of	additional	features.	First	there	is	a	random_state
parameter	that	allows	you	to	set	the	random	generator	seed	as	explained	previously,	and	second	you	can
pass	it	multiple	datasets	with	an	identical	number	of	rows,	and	it	will	split	them	on	the	same	indices	(this
is	very	useful,	for	example,	if	you	have	a	separate	DataFrame	for	labels):

from	sklearn.model_selection	import	train_test_split

train_set,	test_set	=	train_test_split(housing,	test_size=0.2,	random_state=42)

So	far	we	have	considered	purely	random	sampling	methods.	This	is	generally	fine	if	your	dataset	is	large
enough	(especially	relative	to	the	number	of	attributes),	but	if	it	is	not,	you	run	the	risk	of	introducing	a
significant	sampling	bias.	When	a	survey	company	decides	to	call	1,000	people	to	ask	them	a	few
questions,	they	don’t	just	pick	1,000	people	randomly	in	a	phone	booth.	They	try	to	ensure	that	these	1,000
people	are	representative	of	the	whole	population.	For	example,	the	US	population	is	composed	of	51.3%
female	and	48.7%	male,	so	a	well-conducted	survey	in	the	US	would	try	to	maintain	this	ratio	in	the
sample:	513	female	and	487	male.	This	is	called	stratified	sampling:	the	population	is	divided	into
homogeneous	subgroups	called	strata,	and	the	right	number	of	instances	is	sampled	from	each	stratum	to
guarantee	that	the	test	set	is	representative	of	the	overall	population.	If	they	used	purely	random	sampling,
there	would	be	about	12%	chance	of	sampling	a	skewed	test	set	with	either	less	than	49%	female	or	more
than	54%	female.	Either	way,	the	survey	results	would	be	significantly	biased.

Suppose	you	chatted	with	experts	who	told	you	that	the	median	income	is	a	very	important	attribute	to
predict	median	housing	prices.	You	may	want	to	ensure	that	the	test	set	is	representative	of	the	various
categories	of	incomes	in	the	whole	dataset.	Since	the	median	income	is	a	continuous	numerical	attribute,
you	first	need	to	create	an	income	category	attribute.	Let’s	look	at	the	median	income	histogram	more
closely	(see	Figure	2-9):

Figure	2-9.	Histogram	of	income	categories

Most	median	income	values	are	clustered	around	2–5	(tens	of	thousands	of	dollars),	but	some	median
incomes	go	far	beyond	6.	It	is	important	to	have	a	sufficient	number	of	instances	in	your	dataset	for	each
stratum,	or	else	the	estimate	of	the	stratum’s	importance	may	be	biased.	This	means	that	you	should	not
have	too	many	strata,	and	each	stratum	should	be	large	enough.	The	following	code	creates	an	income
category	attribute	by	dividing	the	median	income	by	1.5	(to	limit	the	number	of	income	categories),	and
rounding	up	using	ceil	(to	have	discrete	categories),	and	then	merging	all	the	categories	greater	than	5
into	category	5:

housing["income_cat"]	=	np.ceil(housing["median_income"]	/	1.5)

housing["income_cat"].where(housing["income_cat"]	<	5,	5.0,	inplace=True)

Now	you	are	ready	to	do	stratified	sampling	based	on	the	income	category.	For	this	you	can	use	Scikit-
Learn’s	StratifiedShuffleSplit	class:

from	sklearn.model_selection	import	StratifiedShuffleSplit

split	=	StratifiedShuffleSplit(n_splits=1,	test_size=0.2,	random_state=42)

for	train_index,	test_index	in	split.split(housing,	housing["income_cat"]):

				strat_train_set	=	housing.loc[train_index]

				strat_test_set	=	housing.loc[test_index]

Let’s	see	if	this	worked	as	expected.	You	can	start	by	looking	at	the	income	category	proportions	in	the
full	housing	dataset:

>>>	housing["income_cat"].value_counts()	/	len(housing)

3.0				0.350581

2.0				0.318847

4.0				0.176308

5.0				0.114438

1.0				0.039826

Name:	income_cat,	dtype:	float64

With	similar	code	you	can	measure	the	income	category	proportions	in	the	test	set.	Figure	2-10	compares
the	income	category	proportions	in	the	overall	dataset,	in	the	test	set	generated	with	stratified	sampling,
and	in	a	test	set	generated	using	purely	random	sampling.	As	you	can	see,	the	test	set	generated	using
stratified	sampling	has	income	category	proportions	almost	identical	to	those	in	the	full	dataset,	whereas
the	test	set	generated	using	purely	random	sampling	is	quite	skewed.

Figure	2-10.	Sampling	bias	comparison	of	stratified	versus	purely	random	sampling

Now	you	should	remove	the	income_cat	attribute	so	the	data	is	back	to	its	original	state:

for	set	in	(strat_train_set,	strat_test_set):

				set.drop(["income_cat"],	axis=1,	inplace=True)

We	spent	quite	a	bit	of	time	on	test	set	generation	for	a	good	reason:	this	is	an	often	neglected	but	critical
part	of	a	Machine	Learning	project.	Moreover,	many	of	these	ideas	will	be	useful	later	when	we	discuss
cross-validation.	Now	it’s	time	to	move	on	to	the	next	stage:	exploring	the	data.

Discover	and	Visualize	the	Data	to	Gain	Insights
So	far	you	have	only	taken	a	quick	glance	at	the	data	to	get	a	general	understanding	of	the	kind	of	data	you
are	manipulating.	Now	the	goal	is	to	go	a	little	bit	more	in	depth.

First,	make	sure	you	have	put	the	test	set	aside	and	you	are	only	exploring	the	training	set.	Also,	if	the
training	set	is	very	large,	you	may	want	to	sample	an	exploration	set,	to	make	manipulations	easy	and	fast.
In	our	case,	the	set	is	quite	small	so	you	can	just	work	directly	on	the	full	set.	Let’s	create	a	copy	so	you
can	play	with	it	without	harming	the	training	set:

housing	=	strat_train_set.copy()

Visualizing	Geographical	Data
Since	there	is	geographical	information	(latitude	and	longitude),	it	is	a	good	idea	to	create	a	scatterplot	of
all	districts	to	visualize	the	data	(Figure	2-11):

housing.plot(kind="scatter",	x="longitude",	y="latitude")

Figure	2-11.	A	geographical	scatterplot	of	the	data

This	looks	like	California	all	right,	but	other	than	that	it	is	hard	to	see	any	particular	pattern.	Setting	the
alpha	option	to	0.1	makes	it	much	easier	to	visualize	the	places	where	there	is	a	high	density	of	data
points	(Figure	2-12):

housing.plot(kind="scatter",	x="longitude",	y="latitude",	alpha=0.1)

Figure	2-12.	A	better	visualization	highlighting	high-density	areas

Now	that’s	much	better:	you	can	clearly	see	the	high-density	areas,	namely	the	Bay	Area	and	around	Los
Angeles	and	San	Diego,	plus	a	long	line	of	fairly	high	density	in	the	Central	Valley,	in	particular	around
Sacramento	and	Fresno.

More	generally,	our	brains	are	very	good	at	spotting	patterns	on	pictures,	but	you	may	need	to	play	around
with	visualization	parameters	to	make	the	patterns	stand	out.

Now	let’s	look	at	the	housing	prices	(Figure	2-13).	The	radius	of	each	circle	represents	the	district’s
population	(option	s),	and	the	color	represents	the	price	(option	c).	We	will	use	a	predefined	color	map
(option	cmap)	called	jet,	which	ranges	from	blue	(low	values)	to	red	(high	prices):15

housing.plot(kind="scatter",	x="longitude",	y="latitude",	alpha=0.4,

				s=housing["population"]/100,	label="population",

				c="median_house_value",	cmap=plt.get_cmap("jet"),	colorbar=True,

)

plt.legend()

Figure	2-13.	California	housing	prices

This	image	tells	you	that	the	housing	prices	are	very	much	related	to	the	location	(e.g.,	close	to	the	ocean)
and	to	the	population	density,	as	you	probably	knew	already.	It	will	probably	be	useful	to	use	a	clustering
algorithm	to	detect	the	main	clusters,	and	add	new	features	that	measure	the	proximity	to	the	cluster
centers.	The	ocean	proximity	attribute	may	be	useful	as	well,	although	in	Northern	California	the	housing
prices	in	coastal	districts	are	not	too	high,	so	it	is	not	a	simple	rule.

Looking	for	Correlations
Since	the	dataset	is	not	too	large,	you	can	easily	compute	the	standard	correlation	coefficient	(also
called	Pearson’s	r)	between	every	pair	of	attributes	using	the	corr()	method:

corr_matrix	=	housing.corr()

Now	let’s	look	at	how	much	each	attribute	correlates	with	the	median	house	value:

>>>	corr_matrix["median_house_value"].sort_values(ascending=False)

median_house_value				1.000000

median_income									0.687170

total_rooms											0.135231

housing_median_age				0.114220

households												0.064702

total_bedrooms								0.047865

population											-0.026699

longitude												-0.047279

latitude													-0.142826

Name:	median_house_value,	dtype:	float64

The	correlation	coefficient	ranges	from	–1	to	1.	When	it	is	close	to	1,	it	means	that	there	is	a	strong
positive	correlation;	for	example,	the	median	house	value	tends	to	go	up	when	the	median	income	goes	up.
When	the	coefficient	is	close	to	–1,	it	means	that	there	is	a	strong	negative	correlation;	you	can	see	a
small	negative	correlation	between	the	latitude	and	the	median	house	value	(i.e.,	prices	have	a	slight
tendency	to	go	down	when	you	go	north).	Finally,	coefficients	close	to	zero	mean	that	there	is	no	linear
correlation.	Figure	2-14	shows	various	plots	along	with	the	correlation	coefficient	between	their
horizontal	and	vertical	axes.

Figure	2-14.	Standard	correlation	coefficient	of	various	datasets	(source:	Wikipedia;	public	domain	image)

WARNING
The	correlation	coefficient	only	measures	linear	correlations	(“if	x	goes	up,	then	y	generally	goes	up/down”).	It	may	completely
miss	out	on	nonlinear	relationships	(e.g.,	“if	x	is	close	to	zero	then	y	generally	goes	up”).	Note	how	all	the	plots	of	the	bottom	row
have	a	correlation	coefficient	equal	to	zero	despite	the	fact	that	their	axes	are	clearly	not	independent:	these	are	examples	of
nonlinear	relationships.	Also,	the	second	row	shows	examples	where	the	correlation	coefficient	is	equal	to	1	or	–1;	notice	that	this
has	nothing	to	do	with	the	slope.	For	example,	your	height	in	inches	has	a	correlation	coefficient	of	1	with	your	height	in	feet	or	in
nanometers.

Another	way	to	check	for	correlation	between	attributes	is	to	use	Pandas’	scatter_matrix	function,
which	plots	every	numerical	attribute	against	every	other	numerical	attribute.	Since	there	are	now	11
numerical	attributes,	you	would	get	112	=	121	plots,	which	would	not	fit	on	a	page,	so	let’s	just	focus	on	a
few	promising	attributes	that	seem	most	correlated	with	the	median	housing	value	(Figure	2-15):

from	pandas.tools.plotting	import	scatter_matrix

attributes	=	["median_house_value",	"median_income",	"total_rooms",

														"housing_median_age"]

scatter_matrix(housing[attributes],	figsize=(12,	8))

Figure	2-15.	Scatter	matrix

The	main	diagonal	(top	left	to	bottom	right)	would	be	full	of	straight	lines	if	Pandas	plotted	each	variable
against	itself,	which	would	not	be	very	useful.	So	instead	Pandas	displays	a	histogram	of	each	attribute
(other	options	are	available;	see	Pandas’	documentation	for	more	details).

The	most	promising	attribute	to	predict	the	median	house	value	is	the	median	income,	so	let’s	zoom	in	on
their	correlation	scatterplot	(Figure	2-16):

housing.plot(kind="scatter",	x="median_income",	y="median_house_value",

													alpha=0.1)

Figure	2-16.	Median	income	versus	median	house	value

This	plot	reveals	a	few	things.	First,	the	correlation	is	indeed	very	strong;	you	can	clearly	see	the	upward
trend	and	the	points	are	not	too	dispersed.	Second,	the	price	cap	that	we	noticed	earlier	is	clearly	visible
as	a	horizontal	line	at	$500,000.	But	this	plot	reveals	other	less	obvious	straight	lines:	a	horizontal	line
around	$450,000,	another	around	$350,000,	perhaps	one	around	$280,000,	and	a	few	more	below	that.
You	may	want	to	try	removing	the	corresponding	districts	to	prevent	your	algorithms	from	learning	to
reproduce	these	data	quirks.

Experimenting	with	Attribute	Combinations
Hopefully	the	previous	sections	gave	you	an	idea	of	a	few	ways	you	can	explore	the	data	and	gain
insights.	You	identified	a	few	data	quirks	that	you	may	want	to	clean	up	before	feeding	the	data	to	a
Machine	Learning	algorithm,	and	you	found	interesting	correlations	between	attributes,	in	particular	with
the	target	attribute.	You	also	noticed	that	some	attributes	have	a	tail-heavy	distribution,	so	you	may	want
to	transform	them	(e.g.,	by	computing	their	logarithm).	Of	course,	your	mileage	will	vary	considerably
with	each	project,	but	the	general	ideas	are	similar.

One	last	thing	you	may	want	to	do	before	actually	preparing	the	data	for	Machine	Learning	algorithms	is
to	try	out	various	attribute	combinations.	For	example,	the	total	number	of	rooms	in	a	district	is	not	very
useful	if	you	don’t	know	how	many	households	there	are.	What	you	really	want	is	the	number	of	rooms
per	household.	Similarly,	the	total	number	of	bedrooms	by	itself	is	not	very	useful:	you	probably	want	to
compare	it	to	the	number	of	rooms.	And	the	population	per	household	also	seems	like	an	interesting
attribute	combination	to	look	at.	Let’s	create	these	new	attributes:

housing["rooms_per_household"]	=	housing["total_rooms"]/housing["households"]

housing["bedrooms_per_room"]	=	housing["total_bedrooms"]/housing["total_rooms"]

housing["population_per_household"]=housing["population"]/housing["households"]

And	now	let’s	look	at	the	correlation	matrix	again:

>>>	corr_matrix	=	housing.corr()

>>>	corr_matrix["median_house_value"].sort_values(ascending=False)

median_house_value										1.000000

median_income															0.687170

rooms_per_household									0.199343

total_rooms																	0.135231

housing_median_age										0.114220

households																		0.064702

total_bedrooms														0.047865

population_per_household			-0.021984

population																	-0.026699

longitude																		-0.047279

latitude																			-0.142826

bedrooms_per_room										-0.260070

Name:	median_house_value,	dtype:	float64

Hey,	not	bad!	The	new	bedrooms_per_room	attribute	is	much	more	correlated	with	the	median	house
value	than	the	total	number	of	rooms	or	bedrooms.	Apparently	houses	with	a	lower	bedroom/room	ratio
tend	to	be	more	expensive.	The	number	of	rooms	per	household	is	also	more	informative	than	the	total
number	of	rooms	in	a	district	—	obviously	the	larger	the	houses,	the	more	expensive	they	are.

This	round	of	exploration	does	not	have	to	be	absolutely	thorough;	the	point	is	to	start	off	on	the	right	foot
and	quickly	gain	insights	that	will	help	you	get	a	first	reasonably	good	prototype.	But	this	is	an	iterative
process:	once	you	get	a	prototype	up	and	running,	you	can	analyze	its	output	to	gain	more	insights	and
come	back	to	this	exploration	step.

Prepare	the	Data	for	Machine	Learning	Algorithms
It’s	time	to	prepare	the	data	for	your	Machine	Learning	algorithms.	Instead	of	just	doing	this	manually,	you
should	write	functions	to	do	that,	for	several	good	reasons:

This	will	allow	you	to	reproduce	these	transformations	easily	on	any	dataset	(e.g.,	the	next	time	you
get	a	fresh	dataset).

You	will	gradually	build	a	library	of	transformation	functions	that	you	can	reuse	in	future	projects.

You	can	use	these	functions	in	your	live	system	to	transform	the	new	data	before	feeding	it	to	your
algorithms.

This	will	make	it	possible	for	you	to	easily	try	various	transformations	and	see	which	combination
of	transformations	works	best.

But	first	let’s	revert	to	a	clean	training	set	(by	copying	strat_train_set	once	again),	and	let’s	separate
the	predictors	and	the	labels	since	we	don’t	necessarily	want	to	apply	the	same	transformations	to	the
predictors	and	the	target	values	(note	that	drop()	creates	a	copy	of	the	data	and	does	not	affect
strat_train_set):

housing	=	strat_train_set.drop("median_house_value",	axis=1)

housing_labels	=	strat_train_set["median_house_value"].copy()

Data	Cleaning
Most	Machine	Learning	algorithms	cannot	work	with	missing	features,	so	let’s	create	a	few	functions	to
take	care	of	them.	You	noticed	earlier	that	the	total_bedrooms	attribute	has	some	missing	values,	so
let’s	fix	this.	You	have	three	options:

Get	rid	of	the	corresponding	districts.

Get	rid	of	the	whole	attribute.

Set	the	values	to	some	value	(zero,	the	mean,	the	median,	etc.).

You	can	accomplish	these	easily	using	DataFrame’s	dropna(),	drop(),	and	fillna()	methods:

housing.dropna(subset=["total_bedrooms"])				#	option	1

housing.drop("total_bedrooms",	axis=1)							#	option	2

median	=	housing["total_bedrooms"].median()

housing["total_bedrooms"].fillna(median)					#	option	3

If	you	choose	option	3,	you	should	compute	the	median	value	on	the	training	set,	and	use	it	to	fill	the
missing	values	in	the	training	set,	but	also	don’t	forget	to	save	the	median	value	that	you	have	computed.
You	will	need	it	later	to	replace	missing	values	in	the	test	set	when	you	want	to	evaluate	your	system,	and
also	once	the	system	goes	live	to	replace	missing	values	in	new	data.

Scikit-Learn	provides	a	handy	class	to	take	care	of	missing	values:	Imputer.	Here	is	how	to	use	it.	First,
you	need	to	create	an	Imputer	instance,	specifying	that	you	want	to	replace	each	attribute’s	missing
values	with	the	median	of	that	attribute:

from	sklearn.preprocessing	import	Imputer

imputer	=	Imputer(strategy="median")

Since	the	median	can	only	be	computed	on	numerical	attributes,	we	need	to	create	a	copy	of	the	data
without	the	text	attribute	ocean_proximity:

housing_num	=	housing.drop("ocean_proximity",	axis=1)

Now	you	can	fit	the	imputer	instance	to	the	training	data	using	the	fit()	method:

imputer.fit(housing_num)

The	imputer	has	simply	computed	the	median	of	each	attribute	and	stored	the	result	in	its	statistics_
instance	variable.	Only	the	total_bedrooms	attribute	had	missing	values,	but	we	cannot	be	sure	that
there	won’t	be	any	missing	values	in	new	data	after	the	system	goes	live,	so	it	is	safer	to	apply	the
imputer	to	all	the	numerical	attributes:

>>>	imputer.statistics_

array([-118.51	,	34.26	,	29.	,	2119.	,	433.	,	1164.	,	408.	,	3.5414])

>>>	housing_num.median().values

array([-118.51	,	34.26	,	29.	,	2119.	,	433.	,	1164.	,	408.	,	3.5414])

Now	you	can	use	this	“trained”	imputer	to	transform	the	training	set	by	replacing	missing	values	by	the
learned	medians:

X	=	imputer.transform(housing_num)

The	result	is	a	plain	Numpy	array	containing	the	transformed	features.	If	you	want	to	put	it	back	into	a
Pandas	DataFrame,	it’s	simple:

housing_tr	=	pd.DataFrame(X,	columns=housing_num.columns)

SCIKIT-LEARN	DESIGN

Scikit-Learn’s	API	is	remarkably	well	designed.	The	main	design	principles	are:16

Consistency.	All	objects	share	a	consistent	and	simple	interface:

Estimators.	Any	object	that	can	estimate	some	parameters	based	on	a	dataset	is	called	an	estimator	(e.g.,	an	imputer	is	an
estimator).	The	estimation	itself	is	performed	by	the	fit()	method,	and	it	takes	only	a	dataset	as	a	parameter	(or	two	for
supervised	learning	algorithms;	the	second	dataset	contains	the	labels).	Any	other	parameter	needed	to	guide	the	estimation
process	is	considered	a	hyperparameter	(such	as	an	imputer’s	strategy),	and	it	must	be	set	as	an	instance	variable	(generally
via	a	constructor	parameter).

Transformers.	Some	estimators	(such	as	an	imputer)	can	also	transform	a	dataset;	these	are	called	transformers.	Once	again,
the	API	is	quite	simple:	the	transformation	is	performed	by	the	transform()	method	with	the	dataset	to	transform	as	a
parameter.	It	returns	the	transformed	dataset.	This	transformation	generally	relies	on	the	learned	parameters,	as	is	the	case	for
an	imputer.	All	transformers	also	have	a	convenience	method	called	fit_transform()	that	is	equivalent	to	calling	fit()	and
then	transform()	(but	sometimes	fit_transform()	is	optimized	and	runs	much	faster).

Predictors.	Finally,	some	estimators	are	capable	of	making	predictions	given	a	dataset;	they	are	called	predictors.	For	example,
the	LinearRegression	model	in	the	previous	chapter	was	a	predictor:	it	predicted	life	satisfaction	given	a	country’s	GDP	per
capita.	A	predictor	has	a	predict()	method	that	takes	a	dataset	of	new	instances	and	returns	a	dataset	of	corresponding
predictions.	It	also	has	a	score()	method	that	measures	the	quality	of	the	predictions	given	a	test	set	(and	the	corresponding
labels	in	the	case	of	supervised	learning	algorithms).17

Inspection.	All	the	estimator’s	hyperparameters	are	accessible	directly	via	public	instance	variables	(e.g.,	imputer.strategy),
and	all	the	estimator’s	learned	parameters	are	also	accessible	via	public	instance	variables	with	an	underscore	suffix	(e.g.,
imputer.statistics_).

Nonproliferation	of	classes .	Datasets	are	represented	as	NumPy	arrays	or	SciPy	sparse	matrices,	instead	of	homemade	classes.
Hyperparameters	are	just	regular	Python	strings	or	numbers.

Composition.	Existing	building	blocks	are	reused	as	much	as	possible.	For	example,	it	is	easy	to	create	a	Pipeline	estimator	from
an	arbitrary	sequence	of	transformers	followed	by	a	final	estimator,	as	we	will	see.

Sensible	defaults .	Scikit-Learn	provides	reasonable	default	values	for	most	parameters,	making	it	easy	to	create	a	baseline
working	system	quickly.

http://goo.gl/wL10sI

Handling	Text	and	Categorical	Attributes
Earlier	we	left	out	the	categorical	attribute	ocean_proximity	because	it	is	a	text	attribute	so	we	cannot
compute	its	median.	Most	Machine	Learning	algorithms	prefer	to	work	with	numbers	anyway,	so	let’s
convert	these	text	labels	to	numbers.

Scikit-Learn	provides	a	transformer	for	this	task	called	LabelEncoder:

>>>	from	sklearn.preprocessing	import	LabelEncoder

>>>	encoder	=	LabelEncoder()

>>>	housing_cat	=	housing["ocean_proximity"]

>>>	housing_cat_encoded	=	encoder.fit_transform(housing_cat)

>>>	housing_cat_encoded

array([1,	1,	4,	...,	1,	0,	3])

This	is	better:	now	we	can	use	this	numerical	data	in	any	ML	algorithm.	You	can	look	at	the	mapping	that
this	encoder	has	learned	using	the	classes_	attribute	(“<1H	OCEAN”	is	mapped	to	0,	“INLAND”	is
mapped	to	1,	etc.):

>>>	print(encoder.classes_)

['<1H	OCEAN'	'INLAND'	'ISLAND'	'NEAR	BAY'	'NEAR	OCEAN']

One	issue	with	this	representation	is	that	ML	algorithms	will	assume	that	two	nearby	values	are	more
similar	than	two	distant	values.	Obviously	this	is	not	the	case	(for	example,	categories	0	and	4	are	more
similar	than	categories	0	and	1).	To	fix	this	issue,	a	common	solution	is	to	create	one	binary	attribute	per
category:	one	attribute	equal	to	1	when	the	category	is	“<1H	OCEAN”	(and	0	otherwise),	another
attribute	equal	to	1	when	the	category	is	“INLAND”	(and	0	otherwise),	and	so	on.	This	is	called	one-hot
encoding,	because	only	one	attribute	will	be	equal	to	1	(hot),	while	the	others	will	be	0	(cold).

Scikit-Learn	provides	a	OneHotEncoder	encoder	to	convert	integer	categorical	values	into	one-hot
vectors.	Let’s	encode	the	categories	as	one-hot	vectors.	Note	that	fit_transform()	expects	a	2D	array,
but	housing_cat_encoded	is	a	1D	array,	so	we	need	to	reshape	it:18

>>>	from	sklearn.preprocessing	import	OneHotEncoder

>>>	encoder	=	OneHotEncoder()

>>>	housing_cat_1hot	=	encoder.fit_transform(housing_cat_encoded.reshape(-1,1))

>>>	housing_cat_1hot

<16513x5	sparse	matrix	of	type	'<class	'numpy.float64'>'

	 with	16513	stored	elements	in	Compressed	Sparse	Row	format>

Notice	that	the	output	is	a	SciPy	sparse	matrix,	instead	of	a	NumPy	array.	This	is	very	useful	when	you
have	categorical	attributes	with	thousands	of	categories.	After	one-hot	encoding	we	get	a	matrix	with
thousands	of	columns,	and	the	matrix	is	full	of	zeros	except	for	one	1	per	row.	Using	up	tons	of	memory
mostly	to	store	zeros	would	be	very	wasteful,	so	instead	a	sparse	matrix	only	stores	the	location	of	the
nonzero	elements.	You	can	use	it	mostly	like	a	normal	2D	array,19	but	if	you	really	want	to	convert	it	to	a
(dense)	NumPy	array,	just	call	the	toarray()	method:

>>>	housing_cat_1hot.toarray()

array([[0.,		1.,		0.,		0.,		0.],

							[0.,		1.,		0.,		0.,		0.],

							[0.,		0.,		0.,		0.,		1.],

							...,

							[0.,		1.,		0.,		0.,		0.],

							[1.,		0.,		0.,		0.,		0.],

							[0.,		0.,		0.,		1.,		0.]])

We	can	apply	both	transformations	(from	text	categories	to	integer	categories,	then	from	integer	categories
to	one-hot	vectors)	in	one	shot	using	the	LabelBinarizer	class:

>>>	from	sklearn.preprocessing	import	LabelBinarizer

>>>	encoder	=	LabelBinarizer()

>>>	housing_cat_1hot	=	encoder.fit_transform(housing_cat)

>>>	housing_cat_1hot

array([[0,	1,	0,	0,	0],

							[0,	1,	0,	0,	0],

							[0,	0,	0,	0,	1],

							...,

							[0,	1,	0,	0,	0],

							[1,	0,	0,	0,	0],

							[0,	0,	0,	1,	0]])

Note	that	this	returns	a	dense	NumPy	array	by	default.	You	can	get	a	sparse	matrix	instead	by	passing
sparse_output=True	to	the	LabelBinarizer	constructor.

Custom	Transformers
Although	Scikit-Learn	provides	many	useful	transformers,	you	will	need	to	write	your	own	for	tasks	such
as	custom	cleanup	operations	or	combining	specific	attributes.	You	will	want	your	transformer	to	work
seamlessly	with	Scikit-Learn	functionalities	(such	as	pipelines),	and	since	Scikit-Learn	relies	on	duck
typing	(not	inheritance),	all	you	need	is	to	create	a	class	and	implement	three	methods:	fit()	(returning
self),	transform(),	and	fit_transform().	You	can	get	the	last	one	for	free	by	simply	adding
TransformerMixin	as	a	base	class.	Also,	if	you	add	BaseEstimator	as	a	base	class	(and	avoid	*args
and	**kargs	in	your	constructor)	you	will	get	two	extra	methods	(get_params()	and	set_params())
that	will	be	useful	for	automatic	hyperparameter	tuning.	For	example,	here	is	a	small	transformer	class
that	adds	the	combined	attributes	we	discussed	earlier:

from	sklearn.base	import	BaseEstimator,	TransformerMixin

rooms_ix,	bedrooms_ix,	population_ix,	household_ix	=	3,	4,	5,	6

class	CombinedAttributesAdder(BaseEstimator,	TransformerMixin):

				def	__init__(self,	add_bedrooms_per_room	=	True):	#	no	*args	or	**kargs

								self.add_bedrooms_per_room	=	add_bedrooms_per_room

				def	fit(self,	X,	y=None):

								return	self		#	nothing	else	to	do

				def	transform(self,	X,	y=None):

								rooms_per_household	=	X[:,	rooms_ix]	/	X[:,	household_ix]

								population_per_household	=	X[:,	population_ix]	/	X[:,	household_ix]

								if	self.add_bedrooms_per_room:

												bedrooms_per_room	=	X[:,	bedrooms_ix]	/	X[:,	rooms_ix]

												return	np.c_[X,	rooms_per_household,	population_per_household,

																									bedrooms_per_room]

								else:

												return	np.c_[X,	rooms_per_household,	population_per_household]

attr_adder	=	CombinedAttributesAdder(add_bedrooms_per_room=False)

housing_extra_attribs	=	attr_adder.transform(housing.values)

In	this	example	the	transformer	has	one	hyperparameter,	add_bedrooms_per_room,	set	to	True	by	default
(it	is	often	helpful	to	provide	sensible	defaults).	This	hyperparameter	will	allow	you	to	easily	find	out
whether	adding	this	attribute	helps	the	Machine	Learning	algorithms	or	not.	More	generally,	you	can	add	a
hyperparameter	to	gate	any	data	preparation	step	that	you	are	not	100%	sure	about.	The	more	you
automate	these	data	preparation	steps,	the	more	combinations	you	can	automatically	try	out,	making	it
much	more	likely	that	you	will	find	a	great	combination	(and	saving	you	a	lot	of	time).

Feature	Scaling
One	of	the	most	important	transformations	you	need	to	apply	to	your	data	is	feature	scaling.	With	few
exceptions,	Machine	Learning	algorithms	don’t	perform	well	when	the	input	numerical	attributes	have
very	different	scales.	This	is	the	case	for	the	housing	data:	the	total	number	of	rooms	ranges	from	about	6
to	39,320,	while	the	median	incomes	only	range	from	0	to	15.	Note	that	scaling	the	target	values	is
generally	not	required.

There	are	two	common	ways	to	get	all	attributes	to	have	the	same	scale:	min-max	scaling	and
standardization.

Min-max	scaling	(many	people	call	this	normalization)	is	quite	simple:	values	are	shifted	and	rescaled
so	that	they	end	up	ranging	from	0	to	1.	We	do	this	by	subtracting	the	min	value	and	dividing	by	the	max
minus	the	min.	Scikit-Learn	provides	a	transformer	called	MinMaxScaler	for	this.	It	has	a
feature_range	hyperparameter	that	lets	you	change	the	range	if	you	don’t	want	0–1	for	some	reason.

Standardization	is	quite	different:	first	it	subtracts	the	mean	value	(so	standardized	values	always	have	a
zero	mean),	and	then	it	divides	by	the	variance	so	that	the	resulting	distribution	has	unit	variance.	Unlike
min-max	scaling,	standardization	does	not	bound	values	to	a	specific	range,	which	may	be	a	problem	for
some	algorithms	(e.g.,	neural	networks	often	expect	an	input	value	ranging	from	0	to	1).	However,
standardization	is	much	less	affected	by	outliers.	For	example,	suppose	a	district	had	a	median	income
equal	to	100	(by	mistake).	Min-max	scaling	would	then	crush	all	the	other	values	from	0–15	down	to	0–
0.15,	whereas	standardization	would	not	be	much	affected.	Scikit-Learn	provides	a	transformer	called
StandardScaler	for	standardization.

WARNING
As	with	all	the	transformations,	it	is	important	to	fit	the	scalers	to	the	training	data	only,	not	to	the	full	dataset	(including	the	test
set).	Only	then	can	you	use	them	to	transform	the	training	set	and	the	test	set	(and	new	data).

Transformation	Pipelines
As	you	can	see,	there	are	many	data	transformation	steps	that	need	to	be	executed	in	the	right	order.
Fortunately,	Scikit-Learn	provides	the	Pipeline	class	to	help	with	such	sequences	of	transformations.
Here	is	a	small	pipeline	for	the	numerical	attributes:

from	sklearn.pipeline	import	Pipeline

from	sklearn.preprocessing	import	StandardScaler

num_pipeline	=	Pipeline([

								('imputer',	Imputer(strategy="median")),

								('attribs_adder',	CombinedAttributesAdder()),

								('std_scaler',	StandardScaler()),

])

housing_num_tr	=	num_pipeline.fit_transform(housing_num)

The	Pipeline	constructor	takes	a	list	of	name/estimator	pairs	defining	a	sequence	of	steps.	All	but	the
last	estimator	must	be	transformers	(i.e.,	they	must	have	a	fit_transform()	method).	The	names	can	be
anything	you	like.

When	you	call	the	pipeline’s	fit()	method,	it	calls	fit_transform()	sequentially	on	all	transformers,
passing	the	output	of	each	call	as	the	parameter	to	the	next	call,	until	it	reaches	the	final	estimator,	for
which	it	just	calls	the	fit()	method.

The	pipeline	exposes	the	same	methods	as	the	final	estimator.	In	this	example,	the	last	estimator	is	a
StandardScaler,	which	is	a	transformer,	so	the	pipeline	has	a	transform()	method	that	applies	all	the
transforms	to	the	data	in	sequence	(it	also	has	a	fit_transform	method	that	we	could	have	used	instead
of	calling	fit()	and	then	transform()).

You	now	have	a	pipeline	for	numerical	values,	and	you	also	need	to	apply	the	LabelBinarizer	on	the
categorical	values:	how	can	you	join	these	transformations	into	a	single	pipeline?	Scikit-Learn	provides	a
FeatureUnion	class	for	this.	You	give	it	a	list	of	transformers	(which	can	be	entire	transformer
pipelines),	and	when	its	transform()	method	is	called	it	runs	each	transformer’s	transform()	method
in	parallel,	waits	for	their	output,	and	then	concatenates	them	and	returns	the	result	(and	of	course	calling
its	fit()	method	calls	all	each	transformer’s	fit()	method).	A	full	pipeline	handling	both	numerical	and
categorical	attributes	may	look	like	this:

from	sklearn.pipeline	import	FeatureUnion

num_attribs	=	list(housing_num)

cat_attribs	=	["ocean_proximity"]

num_pipeline	=	Pipeline([

								('selector',	DataFrameSelector(num_attribs)),

								('imputer',	Imputer(strategy="median")),

								('attribs_adder',	CombinedAttributesAdder()),

								('std_scaler',	StandardScaler()),

])

cat_pipeline	=	Pipeline([

								('selector',	DataFrameSelector(cat_attribs)),

								('label_binarizer',	LabelBinarizer()),

])

full_pipeline	=	FeatureUnion(transformer_list=[

								("num_pipeline",	num_pipeline),

								("cat_pipeline",	cat_pipeline),

])

And	you	can	run	the	whole	pipeline	simply:

>>>	housing_prepared	=	full_pipeline.fit_transform(housing)

>>>	housing_prepared

array([[0.73225807,	-0.67331551,		0.58426443,	...,		0.								,

									0.								,		0.],

							[-0.99102923,		1.63234656,	-0.92655887,	...,		0.								,

									0.								,		0.],

							[...]

>>>	housing_prepared.shape

(16513,	17)

Each	subpipeline	starts	with	a	selector	transformer:	it	simply	transforms	the	data	by	selecting	the	desired
attributes	(numerical	or	categorical),	dropping	the	rest,	and	converting	the	resulting	DataFrame	to	a
NumPy	array.	There	is	nothing	in	Scikit-Learn	to	handle	Pandas	DataFrames,20	so	we	need	to	write	a
simple	custom	transformer	for	this	task:

from	sklearn.base	import	BaseEstimator,	TransformerMixin

class	DataFrameSelector(BaseEstimator,	TransformerMixin):

				def	__init__(self,	attribute_names):

								self.attribute_names	=	attribute_names

				def	fit(self,	X,	y=None):

								return	self

				def	transform(self,	X):

								return	X[self.attribute_names].values

Select	and	Train	a	Model
At	last!	You	framed	the	problem,	you	got	the	data	and	explored	it,	you	sampled	a	training	set	and	a	test	set,
and	you	wrote	transformation	pipelines	to	clean	up	and	prepare	your	data	for	Machine	Learning
algorithms	automatically.	You	are	now	ready	to	select	and	train	a	Machine	Learning	model.

Training	and	Evaluating	on	the	Training	Set
The	good	news	is	that	thanks	to	all	these	previous	steps,	things	are	now	going	to	be	much	simpler	than	you
might	think.	Let’s	first	train	a	Linear	Regression	model,	like	we	did	in	the	previous	chapter:

from	sklearn.linear_model	import	LinearRegression

lin_reg	=	LinearRegression()

lin_reg.fit(housing_prepared,	housing_labels)

Done!	You	now	have	a	working	Linear	Regression	model.	Let’s	try	it	out	on	a	few	instances	from	the
training	set:

>>>	some_data	=	housing.iloc[:5]

>>>	some_labels	=	housing_labels.iloc[:5]

>>>	some_data_prepared	=	full_pipeline.transform(some_data)

>>>	print("Predictions:\t",	lin_reg.predict(some_data_prepared))

Predictions:	 	[303104.			44800.		308928.		294208.		368704.]

>>>	print("Labels:\t\t",	list(some_labels))

Labels:		 	[359400.0,	69700.0,	302100.0,	301300.0,	351900.0]

It	works,	although	the	predictions	are	not	exactly	accurate	(e.g.,	the	second	prediction	is	off	by	more	than
50%!).	Let’s	measure	this	regression	model’s	RMSE	on	the	whole	training	set	using	Scikit-Learn’s
mean_squared_error	function:

>>>	from	sklearn.metrics	import	mean_squared_error

>>>	housing_predictions	=	lin_reg.predict(housing_prepared)

>>>	lin_mse	=	mean_squared_error(housing_labels,	housing_predictions)

>>>	lin_rmse	=	np.sqrt(lin_mse)

>>>	lin_rmse

68628.413493824875

Okay,	this	is	better	than	nothing	but	clearly	not	a	great	score:	most	districts’	median_housing_values
range	between	$120,000	and	$265,000,	so	a	typical	prediction	error	of	$68,628	is	not	very	satisfying.
This	is	an	example	of	a	model	underfitting	the	training	data.	When	this	happens	it	can	mean	that	the
features	do	not	provide	enough	information	to	make	good	predictions,	or	that	the	model	is	not	powerful
enough.	As	we	saw	in	the	previous	chapter,	the	main	ways	to	fix	underfitting	are	to	select	a	more
powerful	model,	to	feed	the	training	algorithm	with	better	features,	or	to	reduce	the	constraints	on	the
model.	This	model	is	not	regularized,	so	this	rules	out	the	last	option.	You	could	try	to	add	more	features
(e.g.,	the	log	of	the	population),	but	first	let’s	try	a	more	complex	model	to	see	how	it	does.

Let’s	train	a	DecisionTreeRegressor.	This	is	a	powerful	model,	capable	of	finding	complex	nonlinear
relationships	in	the	data	(Decision	Trees	are	presented	in	more	detail	in	Chapter	6).	The	code	should	look
familiar	by	now:

from	sklearn.tree	import	DecisionTreeRegressor

tree_reg	=	DecisionTreeRegressor()

tree_reg.fit(housing_prepared,	housing_labels)

Now	that	the	model	is	trained,	let’s	evaluate	it	on	the	training	set:

>>>	housing_predictions	=	tree_reg.predict(housing_prepared)

>>>	tree_mse	=	mean_squared_error(housing_labels,	housing_predictions)

>>>	tree_rmse	=	np.sqrt(tree_mse)

>>>	tree_rmse

0.0

Wait,	what!?	No	error	at	all?	Could	this	model	really	be	absolutely	perfect?	Of	course,	it	is	much	more
likely	that	the	model	has	badly	overfit	the	data.	How	can	you	be	sure?	As	we	saw	earlier,	you	don’t	want
to	touch	the	test	set	until	you	are	ready	to	launch	a	model	you	are	confident	about,	so	you	need	to	use	part
of	the	training	set	for	training,	and	part	for	model	validation.

Better	Evaluation	Using	Cross-Validation
One	way	to	evaluate	the	Decision	Tree	model	would	be	to	use	the	train_test_split	function	to	split
the	training	set	into	a	smaller	training	set	and	a	validation	set,	then	train	your	models	against	the	smaller
training	set	and	evaluate	them	against	the	validation	set.	It’s	a	bit	of	work,	but	nothing	too	difficult	and	it
would	work	fairly	well.

A	great	alternative	is	to	use	Scikit-Learn’s	cross-validation	feature.	The	following	code	performs	K-fold
cross-validation:	it	randomly	splits	the	training	set	into	10	distinct	subsets	called	folds,	then	it	trains	and
evaluates	the	Decision	Tree	model	10	times,	picking	a	different	fold	for	evaluation	every	time	and
training	on	the	other	9	folds.	The	result	is	an	array	containing	the	10	evaluation	scores:

from	sklearn.model_selection	import	cross_val_score

scores	=	cross_val_score(tree_reg,	housing_prepared,	housing_labels,

																									scoring="neg_mean_squared_error",	cv=10)

rmse_scores	=	np.sqrt(-scores)

WARNING
Scikit-Learn	cross-validation	features	expect	a	utility	function	(greater	is	better)	rather	than	a	cost	function	(lower	is	better),	so
the	scoring	function	is	actually	the	opposite	of	the	MSE	(i.e.,	a	negative	value),	which	is	why	the	preceding	code	computes	-
scores	before	calculating	the	square	root.

Let’s	look	at	the	results:

>>>	def	display_scores(scores):

...					print("Scores:",	scores)

...					print("Mean:",	scores.mean())

...					print("Standard	deviation:",	scores.std())

...

>>>	display_scores(tree_rmse_scores)

Scores:	[74678.4916885			64766.2398337			69632.86942005		69166.67693232

										71486.76507766		73321.65695983		71860.04741226		71086.32691692

										76934.2726093			69060.93319262]

Mean:	71199.4280043

Standard	deviation:	3202.70522793

Now	the	Decision	Tree	doesn’t	look	as	good	as	it	did	earlier.	In	fact,	it	seems	to	perform	worse	than	the
Linear	Regression	model!	Notice	that	cross-validation	allows	you	to	get	not	only	an	estimate	of	the
performance	of	your	model,	but	also	a	measure	of	how	precise	this	estimate	is	(i.e.,	its	standard
deviation).	The	Decision	Tree	has	a	score	of	approximately	71,200,	generally	±3,200.	You	would	not
have	this	information	if	you	just	used	one	validation	set.	But	cross-validation	comes	at	the	cost	of	training
the	model	several	times,	so	it	is	not	always	possible.

Let’s	compute	the	same	scores	for	the	Linear	Regression	model	just	to	be	sure:

>>>	lin_scores	=	cross_val_score(lin_reg,	housing_prepared,	housing_labels,

...																														scoring="neg_mean_squared_error",	cv=10)

...

>>>	lin_rmse_scores	=	np.sqrt(-lin_scores)

>>>	display_scores(lin_rmse_scores)

Scores:	[70423.5893262			65804.84913139		66620.84314068		72510.11362141

										66414.74423281		71958.89083606		67624.90198297		67825.36117664

										72512.36533141		68028.11688067]

Mean:	68972.377566

Standard	deviation:	2493.98819069

That’s	right:	the	Decision	Tree	model	is	overfitting	so	badly	that	it	performs	worse	than	the	Linear
Regression	model.

Let’s	try	one	last	model	now:	the	RandomForestRegressor.	As	we	will	see	in	Chapter	7,	Random
Forests	work	by	training	many	Decision	Trees	on	random	subsets	of	the	features,	then	averaging	out	their
predictions.	Building	a	model	on	top	of	many	other	models	is	called	Ensemble	Learning,	and	it	is	often	a
great	way	to	push	ML	algorithms	even	further.	We	will	skip	most	of	the	code	since	it	is	essentially	the
same	as	for	the	other	models:

>>>	from	sklearn.ensemble	import	RandomForestRegressor

>>>	forest_reg	=	RandomForestRegressor()

>>>	forest_reg.fit(housing_prepared,	housing_labels)

>>>	[...]

>>>	forest_rmse

22542.396440343684

>>>	display_scores(forest_rmse_scores)

Scores:	[53789.2879722			50256.19806622		52521.55342602		53237.44937943

										52428.82176158		55854.61222549		52158.02291609		50093.66125649

										53240.80406125		52761.50852822]

Mean:	52634.1919593

Standard	deviation:	1576.20472269

Wow,	this	is	much	better:	Random	Forests	look	very	promising.	However,	note	that	the	score	on	the
training	set	is	still	much	lower	than	on	the	validation	sets,	meaning	that	the	model	is	still	overfitting	the
training	set.	Possible	solutions	for	overfitting	are	to	simplify	the	model,	constrain	it	(i.e.,	regularize	it),	or
get	a	lot	more	training	data.	However,	before	you	dive	much	deeper	in	Random	Forests,	you	should	try	out
many	other	models	from	various	categories	of	Machine	Learning	algorithms	(several	Support	Vector
Machines	with	different	kernels,	possibly	a	neural	network,	etc.),	without	spending	too	much	time
tweaking	the	hyperparameters.	The	goal	is	to	shortlist	a	few	(two	to	five)	promising	models.

TIP
You	should	save	every	model	you	experiment	with,	so	you	can	come	back	easily	to	any	model	you	want.	Make	sure	you	save
both	the	hyperparameters	and	the	trained	parameters,	as	well	as	the	cross-validation	scores	and	perhaps	the	actual	predictions	as
well.	This	will	allow	you	to	easily	compare	scores	across	model	types,	and	compare	the	types	of	errors	they	make.	You	can
easily	save	Scikit-Learn	models	by	using	Python’s	pickle	module,	or	using	sklearn.externals.joblib,	which	is	more	efficient
at	serializing	large	NumPy	arrays:

from	sklearn.externals	import	joblib

joblib.dump(my_model,	"my_model.pkl")

#	and	later...

my_model_loaded	=	joblib.load("my_model.pkl")

Fine-Tune	Your	Model
Let’s	assume	that	you	now	have	a	shortlist	of	promising	models.	You	now	need	to	fine-tune	them.	Let’s
look	at	a	few	ways	you	can	do	that.

Grid	Search
One	way	to	do	that	would	be	to	fiddle	with	the	hyperparameters	manually,	until	you	find	a	great
combination	of	hyperparameter	values.	This	would	be	very	tedious	work,	and	you	may	not	have	time	to
explore	many	combinations.

Instead	you	should	get	Scikit-Learn’s	GridSearchCV	to	search	for	you.	All	you	need	to	do	is	tell	it	which
hyperparameters	you	want	it	to	experiment	with,	and	what	values	to	try	out,	and	it	will	evaluate	all	the
possible	combinations	of	hyperparameter	values,	using	cross-validation.	For	example,	the	following	code
searches	for	the	best	combination	of	hyperparameter	values	for	the	RandomForestRegressor:

from	sklearn.model_selection	import	GridSearchCV

param_grid	=	[

				{'n_estimators':	[3,	10,	30],	'max_features':	[2,	4,	6,	8]},

				{'bootstrap':	[False],	'n_estimators':	[3,	10],	'max_features':	[2,	3,	4]},

]

forest_reg	=	RandomForestRegressor()

grid_search	=	GridSearchCV(forest_reg,	param_grid,	cv=5,

																											scoring='neg_mean_squared_error')

grid_search.fit(housing_prepared,	housing_labels)

TIP
When	you	have	no	idea	what	value	a	hyperparameter	should	have,	a	simple	approach	is	to	try	out	consecutive	powers	of	10	(or	a
smaller	number	if	you	want	a	more	fine-grained	search,	as	shown	in	this	example	with	the	n_estimators	hyperparameter).

This	param_grid	tells	Scikit-Learn	to	first	evaluate	all	3	×	4	=	12	combinations	of	n_estimators	and
max_features	hyperparameter	values	specified	in	the	first	dict	(don’t	worry	about	what	these
hyperparameters	mean	for	now;	they	will	be	explained	in	Chapter	7),	then	try	all	2	×	3	=	6	combinations
of	hyperparameter	values	in	the	second	dict,	but	this	time	with	the	bootstrap	hyperparameter	set	to
False	instead	of	True	(which	is	the	default	value	for	this	hyperparameter).

All	in	all,	the	grid	search	will	explore	12	+	6	=	18	combinations	of	RandomForestRegressor
hyperparameter	values,	and	it	will	train	each	model	five	times	(since	we	are	using	five-fold	cross
validation).	In	other	words,	all	in	all,	there	will	be	18	×	5	=	90	rounds	of	training!	It	may	take	quite	a	long
time,	but	when	it	is	done	you	can	get	the	best	combination	of	parameters	like	this:

>>>	grid_search.best_params_

{'max_features':	6,	'n_estimators':	30}

TIP
Since	30	is	the	maximum	value	of	n_estimators	that	was	evaluated,	you	should	probably	evaluate	higher	values	as	well,	since
the	score	may	continue	to	improve.

You	can	also	get	the	best	estimator	directly:

>>>	grid_search.best_estimator_

RandomForestRegressor(bootstrap=True,	criterion='mse',	max_depth=None,

											max_features=6,	max_leaf_nodes=None,	min_samples_leaf=1,

											min_samples_split=2,	min_weight_fraction_leaf=0.0,

											n_estimators=30,	n_jobs=1,	oob_score=False,	random_state=None,

											verbose=0,	warm_start=False)

NOTE
If	GridSearchCV	is	initialized	with	refit=True	(which	is	the	default),	then	once	it	finds	the	best	estimator	using	cross-validation,	it
retrains	it	on	the	whole	training	set.	This	is	usually	a	good	idea	since	feeding	it	more	data	will	likely	improve	its	performance.

And	of	course	the	evaluation	scores	are	also	available:

>>>	cvres	=	grid_search.cv_results_

...	for	mean_score,	params	in	zip(cvres["mean_test_score"],	cvres["params"]):

...					print(np.sqrt(-mean_score),	params)

...

64912.0351358	{'max_features':	2,	'n_estimators':	3}

55535.2786524	{'max_features':	2,	'n_estimators':	10}

52940.2696165	{'max_features':	2,	'n_estimators':	30}

60384.0908354	{'max_features':	4,	'n_estimators':	3}

52709.9199934	{'max_features':	4,	'n_estimators':	10}

50503.5985321	{'max_features':	4,	'n_estimators':	30}

59058.1153485	{'max_features':	6,	'n_estimators':	3}

52172.0292957	{'max_features':	6,	'n_estimators':	10}

49958.9555932	{'max_features':	6,	'n_estimators':	30}

59122.260006	{'max_features':	8,	'n_estimators':	3}

52441.5896087	{'max_features':	8,	'n_estimators':	10}

50041.4899416	{'max_features':	8,	'n_estimators':	30}

62371.1221202	{'bootstrap':	False,	'max_features':	2,	'n_estimators':	3}

54572.2557534	{'bootstrap':	False,	'max_features':	2,	'n_estimators':	10}

59634.0533132	{'bootstrap':	False,	'max_features':	3,	'n_estimators':	3}

52456.0883904	{'bootstrap':	False,	'max_features':	3,	'n_estimators':	10}

58825.665239	{'bootstrap':	False,	'max_features':	4,	'n_estimators':	3}

52012.9945396	{'bootstrap':	False,	'max_features':	4,	'n_estimators':	10}

In	this	example,	we	obtain	the	best	solution	by	setting	the	max_features	hyperparameter	to	6,	and	the
n_estimators	hyperparameter	to	30.	The	RMSE	score	for	this	combination	is	49,959,	which	is	slightly
better	than	the	score	you	got	earlier	using	the	default	hyperparameter	values	(which	was	52,634).
Congratulations,	you	have	successfully	fine-tuned	your	best	model!

TIP
Don’t	forget	that	you	can	treat	some	of	the	data	preparation	steps	as	hyperparameters.	For	example,	the	grid	search	will
automatically	find	out	whether	or	not	to	add	a	feature	you	were	not	sure	about	(e.g.,	using	the	add_bedrooms_per_room
hyperparameter	of	your	CombinedAttributesAdder	transformer).	It	may	similarly	be	used	to	automatically	find	the	best	way	to
handle	outliers,	missing	features,	feature	selection,	and	more.

Randomized	Search
The	grid	search	approach	is	fine	when	you	are	exploring	relatively	few	combinations,	like	in	the	previous
example,	but	when	the	hyperparameter	search	space	is	large,	it	is	often	preferable	to	use
RandomizedSearchCV	instead.	This	class	can	be	used	in	much	the	same	way	as	the	GridSearchCV	class,
but	instead	of	trying	out	all	possible	combinations,	it	evaluates	a	given	number	of	random	combinations
by	selecting	a	random	value	for	each	hyperparameter	at	every	iteration.	This	approach	has	two	main
benefits:

If	you	let	the	randomized	search	run	for,	say,	1,000	iterations,	this	approach	will	explore	1,000
different	values	for	each	hyperparameter	(instead	of	just	a	few	values	per	hyperparameter	with	the
grid	search	approach).

You	have	more	control	over	the	computing	budget	you	want	to	allocate	to	hyperparameter	search,
simply	by	setting	the	number	of	iterations.

Ensemble	Methods
Another	way	to	fine-tune	your	system	is	to	try	to	combine	the	models	that	perform	best.	The	group	(or
“ensemble”)	will	often	perform	better	than	the	best	individual	model	(just	like	Random	Forests	perform
better	than	the	individual	Decision	Trees	they	rely	on),	especially	if	the	individual	models	make	very
different	types	of	errors.	We	will	cover	this	topic	in	more	detail	in	Chapter	7.

Analyze	the	Best	Models	and	Their	Errors
You	will	often	gain	good	insights	on	the	problem	by	inspecting	the	best	models.	For	example,	the
RandomForestRegressor	can	indicate	the	relative	importance	of	each	attribute	for	making	accurate
predictions:

>>>	feature_importances	=	grid_search.best_estimator_.feature_importances_

>>>	feature_importances

array([7.14156423e-02,			6.76139189e-02,			4.44260894e-02,

									1.66308583e-02,			1.66076861e-02,			1.82402545e-02,

									1.63458761e-02,			3.26497987e-01,			6.04365775e-02,

									1.13055290e-01,			7.79324766e-02,			1.12166442e-02,

									1.53344918e-01,			8.41308969e-05,			2.68483884e-03,

									3.46681181e-03])

Let’s	display	these	importance	scores	next	to	their	corresponding	attribute	names:

>>>	extra_attribs	=	["rooms_per_hhold",	"pop_per_hhold",	"bedrooms_per_room"]

>>>	cat_one_hot_attribs	=	list(encoder.classes_)

>>>	attributes	=	num_attribs	+	extra_attribs	+	cat_one_hot_attribs

>>>	sorted(zip(feature_importances,	attributes),	reverse=True)

[(0.32649798665134971,	'median_income'),

	(0.15334491760305854,	'INLAND'),

	(0.11305529021187399,	'pop_per_hhold'),

	(0.07793247662544775,	'bedrooms_per_room'),

	(0.071415642259275158,	'longitude'),

	(0.067613918945568688,	'latitude'),

	(0.060436577499703222,	'rooms_per_hhold'),

	(0.04442608939578685,	'housing_median_age'),

	(0.018240254462909437,	'population'),

	(0.01663085833886218,	'total_rooms'),

	(0.016607686091288865,	'total_bedrooms'),

	(0.016345876147580776,	'households'),

	(0.011216644219017424,	'<1H	OCEAN'),

	(0.0034668118081117387,	'NEAR	OCEAN'),

	(0.0026848388432755429,	'NEAR	BAY'),

	(8.4130896890070617e-05,	'ISLAND')]

With	this	information,	you	may	want	to	try	dropping	some	of	the	less	useful	features	(e.g.,	apparently	only
one	ocean_proximity	category	is	really	useful,	so	you	could	try	dropping	the	others).

You	should	also	look	at	the	specific	errors	that	your	system	makes,	then	try	to	understand	why	it	makes
them	and	what	could	fix	the	problem	(adding	extra	features	or,	on	the	contrary,	getting	rid	of	uninformative
ones,	cleaning	up	outliers,	etc.).

Evaluate	Your	System	on	the	Test	Set
After	tweaking	your	models	for	a	while,	you	eventually	have	a	system	that	performs	sufficiently	well.
Now	is	the	time	to	evaluate	the	final	model	on	the	test	set.	There	is	nothing	special	about	this	process;	just
get	the	predictors	and	the	labels	from	your	test	set,	run	your	full_pipeline	to	transform	the	data	(call
transform(),	not	fit_transform()!),	and	evaluate	the	final	model	on	the	test	set:

final_model	=	grid_search.best_estimator_

X_test	=	strat_test_set.drop("median_house_value",	axis=1)

y_test	=	strat_test_set["median_house_value"].copy()

X_test_prepared	=	full_pipeline.transform(X_test)

final_predictions	=	final_model.predict(X_test_prepared)

final_mse	=	mean_squared_error(y_test,	final_predictions)

final_rmse	=	np.sqrt(final_mse)			#	=>	evaluates	to	48,209.6

The	performance	will	usually	be	slightly	worse	than	what	you	measured	using	cross-validation	if	you	did
a	lot	of	hyperparameter	tuning	(because	your	system	ends	up	fine-tuned	to	perform	well	on	the	validation
data,	and	will	likely	not	perform	as	well	on	unknown	datasets).	It	is	not	the	case	in	this	example,	but	when
this	happens	you	must	resist	the	temptation	to	tweak	the	hyperparameters	to	make	the	numbers	look	good
on	the	test	set;	the	improvements	would	be	unlikely	to	generalize	to	new	data.

Now	comes	the	project	prelaunch	phase:	you	need	to	present	your	solution	(highlighting	what	you	have
learned,	what	worked	and	what	did	not,	what	assumptions	were	made,	and	what	your	system’s	limitations
are),	document	everything,	and	create	nice	presentations	with	clear	visualizations	and	easy-to-remember
statements	(e.g.,	“the	median	income	is	the	number	one	predictor	of	housing	prices”).

Launch,	Monitor,	and	Maintain	Your	System
Perfect,	you	got	approval	to	launch!	You	need	to	get	your	solution	ready	for	production,	in	particular	by
plugging	the	production	input	data	sources	into	your	system	and	writing	tests.

You	also	need	to	write	monitoring	code	to	check	your	system’s	live	performance	at	regular	intervals	and
trigger	alerts	when	it	drops.	This	is	important	to	catch	not	only	sudden	breakage,	but	also	performance
degradation.	This	is	quite	common	because	models	tend	to	“rot”	as	data	evolves	over	time,	unless	the
models	are	regularly	trained	on	fresh	data.

Evaluating	your	system’s	performance	will	require	sampling	the	system’s	predictions	and	evaluating	them.
This	will	generally	require	a	human	analysis.	These	analysts	may	be	field	experts,	or	workers	on	a
crowdsourcing	platform	(such	as	Amazon	Mechanical	Turk	or	CrowdFlower).	Either	way,	you	need	to
plug	the	human	evaluation	pipeline	into	your	system.

You	should	also	make	sure	you	evaluate	the	system’s	input	data	quality.	Sometimes	performance	will
degrade	slightly	because	of	a	poor	quality	signal	(e.g.,	a	malfunctioning	sensor	sending	random	values,	or
another	team’s	output	becoming	stale),	but	it	may	take	a	while	before	your	system’s	performance	degrades
enough	to	trigger	an	alert.	If	you	monitor	your	system’s	inputs,	you	may	catch	this	earlier.	Monitoring	the
inputs	is	particularly	important	for	online	learning	systems.

Finally,	you	will	generally	want	to	train	your	models	on	a	regular	basis	using	fresh	data.	You	should
automate	this	process	as	much	as	possible.	If	you	don’t,	you	are	very	likely	to	refresh	your	model	only
every	six	months	(at	best),	and	your	system’s	performance	may	fluctuate	severely	over	time.	If	your
system	is	an	online	learning	system,	you	should	make	sure	you	save	snapshots	of	its	state	at	regular
intervals	so	you	can	easily	roll	back	to	a	previously	working	state.

Try	It	Out!
Hopefully	this	chapter	gave	you	a	good	idea	of	what	a	Machine	Learning	project	looks	like,	and	showed
you	some	of	the	tools	you	can	use	to	train	a	great	system.	As	you	can	see,	much	of	the	work	is	in	the	data
preparation	step,	building	monitoring	tools,	setting	up	human	evaluation	pipelines,	and	automating	regular
model	training.	The	Machine	Learning	algorithms	are	also	important,	of	course,	but	it	is	probably
preferable	to	be	comfortable	with	the	overall	process	and	know	three	or	four	algorithms	well	rather	than
to	spend	all	your	time	exploring	advanced	algorithms	and	not	enough	time	on	the	overall	process.

So,	if	you	have	not	already	done	so,	now	is	a	good	time	to	pick	up	a	laptop,	select	a	dataset	that	you	are
interested	in,	and	try	to	go	through	the	whole	process	from	A	to	Z.	A	good	place	to	start	is	on	a
competition	website	such	as	http://kaggle.com/:	you	will	have	a	dataset	to	play	with,	a	clear	goal,	and
people	to	share	the	experience	with.

http://kaggle.com/

Exercises
Using	this	chapter’s	housing	dataset:

1.	 Try	a	Support	Vector	Machine	regressor	(sklearn.svm.SVR),	with	various	hyperparameters
such	as	kernel="linear"	(with	various	values	for	the	C	hyperparameter)	or	kernel="rbf"
(with	various	values	for	the	C	and	gamma	hyperparameters).	Don’t	worry	about	what	these
hyperparameters	mean	for	now.	How	does	the	best	SVR	predictor	perform?

2.	 Try	replacing	GridSearchCV	with	RandomizedSearchCV.

3.	 Try	adding	a	transformer	in	the	preparation	pipeline	to	select	only	the	most	important	attributes.

4.	 Try	creating	a	single	pipeline	that	does	the	full	data	preparation	plus	the	final	prediction.

5.	 Automatically	explore	some	preparation	options	using	GridSearchCV.

Solutions	to	these	exercises	are	available	in	the	online	Jupyter	notebooks	at
https://github.com/ageron/handson-ml.

The	example	project	is	completely	fictitious;	the	goal	is	just	to	illustrate	the	main	steps	of	a	Machine	Learning	project,	not	to	learn	anything
about	the	real	estate	business.

The	original	dataset	appeared	in	R.	Kelley	Pace	and	Ronald	Barry,	“Sparse	Spatial	Autoregressions,”	Statistics	&	Probability	Letters	33,
no.	3	(1997):	291–297.

A	piece	of	information	fed	to	a	Machine	Learning	system	is	often	called	a	signal	in	reference	to	Shannon’s	information	theory:	you	want	a
high	signal/noise	ratio.

The	standard	deviation,	generally	denoted	σ	(the	Greek	letter	sigma),	is	the	square	root	of	the	variance,	which	is	the	average	of	the
squared	deviation	from	the	mean.

When	a	feature	has	a	bell-shaped	normal	distribution	(also	called	a	Gaussian	distribution),	which	is	very	common,	the	“68-95-99.7”
rule	applies:	about	68%	of	the	values	fall	within	1σ	of	the	mean,	95%	within	2σ,	and	99.7%	within	3σ.

Recall	that	the	transpose	operator	flips	a	column	vector	into	a	row	vector	(and	vice	versa).

The	latest	version	of	Python	3	is	recommended.	Python	2.7+	should	work	fine	too,	but	it	is	deprecated.

We	will	show	the	installation	steps	using	pip	in	a	bash	shell	on	a	Linux	or	macOS	system.	You	may	need	to	adapt	these	commands	to	your
own	system.	On	Windows,	we	recommend	installing	Anaconda	instead.

You	may	need	to	have	administrator	rights	to	run	this	command;	if	so,	try	prefixing	it	with	sudo.

Note	that	Jupyter	can	handle	multiple	versions	of	Python,	and	even	many	other	languages	such	as	R	or	Octave.

You	might	also	need	to	check	legal	constraints,	such	as	private	fields	that	should	never	be	copied	to	unsafe	datastores.

In	a	real	project	you	would	save	this	code	in	a	Python	file,	but	for	now	you	can	just	write	it	in	your	Jupyter	notebook.

You	will	often	see	people	set	the	random	seed	to	42.	This	number	has	no	special	property,	other	than	to	be	The	Answer	to	the	Ultimate
Question	of	Life,	the	Universe,	and	Everything.

The	location	information	is	actually	quite	coarse,	and	as	a	result	many	districts	will	have	the	exact	same	ID,	so	they	will	end	up	in	the	same
set	(test	or	train).	This	introduces	some	unfortunate	sampling	bias.

If	you	are	reading	this	in	grayscale,	grab	a	red	pen	and	scribble	over	most	of	the	coastline	from	the	Bay	Area	down	to	San	Diego	(as	you
might	expect).	You	can	add	a	patch	of	yellow	around	Sacramento	as	well.

For	more	details	on	the	design	principles,	see	“API	design	for	machine	learning	software:	experiences	from	the	scikit-learn	project,”	L.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

https://github.com/ageron/handson-ml

Buitinck,	G.	Louppe,	M.	Blondel,	F.	Pedregosa,	A.	Müller,	et	al.	(2013).

Some	predictors	also	provide	methods	to	measure	the	confidence	of	their	predictions.

NumPy’s	reshape()	function	allows	one	dimension	to	be	–1,	which	means	“unspecified”:	the	value	is	inferred	from	the	length	of	the	array
and	the	remaining	dimensions.

See	SciPy’s	documentation	for	more	details.

But	check	out	Pull	Request	#3886,	which	may	introduce	a	ColumnTransformer	class	making	attribute-specific	transformations	easy.	You
could	also	run	pip3	install	sklearn-pandas	to	get	a	DataFrameMapper	class	with	a	similar	objective.

17

18

19

20

Chapter	3.	Classification

In	Chapter	1	we	mentioned	that	the	most	common	supervised	learning	tasks	are	regression	(predicting
values)	and	classification	(predicting	classes).	In	Chapter	2	we	explored	a	regression	task,	predicting
housing	values,	using	various	algorithms	such	as	Linear	Regression,	Decision	Trees,	and	Random	Forests
(which	will	be	explained	in	further	detail	in	later	chapters).	Now	we	will	turn	our	attention	to
classification	systems.

MNIST
In	this	chapter,	we	will	be	using	the	MNIST	dataset,	which	is	a	set	of	70,000	small	images	of	digits
handwritten	by	high	school	students	and	employees	of	the	US	Census	Bureau.	Each	image	is	labeled	with
the	digit	it	represents.	This	set	has	been	studied	so	much	that	it	is	often	called	the	“Hello	World”	of
Machine	Learning:	whenever	people	come	up	with	a	new	classification	algorithm,	they	are	curious	to	see
how	it	will	perform	on	MNIST.	Whenever	someone	learns	Machine	Learning,	sooner	or	later	they	tackle
MNIST.

Scikit-Learn	provides	many	helper	functions	to	download	popular	datasets.	MNIST	is	one	of	them.	The
following	code	fetches	the	MNIST	dataset:1

>>>	from	sklearn.datasets	import	fetch_mldata

>>>	mnist	=	fetch_mldata('MNIST	original')

>>>	mnist

{'COL_NAMES':	['label',	'data'],

	'DESCR':	'mldata.org	dataset:	mnist-original',

	'data':	array([[0,	0,	0,	...,	0,	0,	0],

								[0,	0,	0,	...,	0,	0,	0],

								[0,	0,	0,	...,	0,	0,	0],

								...,

								[0,	0,	0,	...,	0,	0,	0],

								[0,	0,	0,	...,	0,	0,	0],

								[0,	0,	0,	...,	0,	0,	0]],	dtype=uint8),

	'target':	array([0.,		0.,		0.,	...,		9.,		9.,		9.])}

Datasets	loaded	by	Scikit-Learn	generally	have	a	similar	dictionary	structure	including:
A	DESCR	key	describing	the	dataset

A	data	key	containing	an	array	with	one	row	per	instance	and	one	column	per	feature

A	target	key	containing	an	array	with	the	labels

Let’s	look	at	these	arrays:

>>>	X,	y	=	mnist["data"],	mnist["target"]

>>>	X.shape

(70000,	784)

>>>	y.shape

(70000,)

There	are	70,000	images,	and	each	image	has	784	features.	This	is	because	each	image	is	28×28	pixels,
and	each	feature	simply	represents	one	pixel’s	intensity,	from	0	(white)	to	255	(black).	Let’s	take	a	peek
at	one	digit	from	the	dataset.	All	you	need	to	do	is	grab	an	instance’s	feature	vector,	reshape	it	to	a	28×28
array,	and	display	it	using	Matplotlib’s	imshow()	function:

%matplotlib	inline

import	matplotlib

import	matplotlib.pyplot	as	plt

some_digit	=	X[36000]

some_digit_image	=	some_digit.reshape(28,	28)

plt.imshow(some_digit_image,	cmap	=	matplotlib.cm.binary,

											interpolation="nearest")

plt.axis("off")

plt.show()

This	looks	like	a	5,	and	indeed	that’s	what	the	label	tells	us:

>>>	y[36000]

5.0

Figure	3-1	shows	a	few	more	images	from	the	MNIST	dataset	to	give	you	a	feel	for	the	complexity	of	the
classification	task.

Figure	3-1.	A	few	digits	from	the	MNIST	dataset

But	wait!	You	should	always	create	a	test	set	and	set	it	aside	before	inspecting	the	data	closely.	The
MNIST	dataset	is	actually	already	split	into	a	training	set	(the	first	60,000	images)	and	a	test	set	(the	last
10,000	images):

X_train,	X_test,	y_train,	y_test	=	X[:60000],	X[60000:],	y[:60000],	y[60000:]

Let’s	also	shuffle	the	training	set;	this	will	guarantee	that	all	cross-validation	folds	will	be	similar	(you

don’t	want	one	fold	to	be	missing	some	digits).	Moreover,	some	learning	algorithms	are	sensitive	to	the
order	of	the	training	instances,	and	they	perform	poorly	if	they	get	many	similar	instances	in	a	row.
Shuffling	the	dataset	ensures	that	this	won’t	happen:2

import	numpy	as	np

shuffle_index	=	np.random.permutation(60000)

X_train,	y_train	=	X_train[shuffle_index],	y_train[shuffle_index]

Training	a	Binary	Classifier
Let’s	simplify	the	problem	for	now	and	only	try	to	identify	one	digit	—	for	example,	the	number	5.	This
“5-detector”	will	be	an	example	of	a	binary	classifier,	capable	of	distinguishing	between	just	two
classes,	5	and	not-5.	Let’s	create	the	target	vectors	for	this	classification	task:

y_train_5	=	(y_train	==	5)		#	True	for	all	5s,	False	for	all	other	digits.

y_test_5	=	(y_test	==	5)

Okay,	now	let’s	pick	a	classifier	and	train	it.	A	good	place	to	start	is	with	a	Stochastic	Gradient	Descent
(SGD)	classifier,	using	Scikit-Learn’s	SGDClassifier	class.	This	classifier	has	the	advantage	of	being
capable	of	handling	very	large	datasets	efficiently.	This	is	in	part	because	SGD	deals	with	training
instances	independently,	one	at	a	time	(which	also	makes	SGD	well	suited	for	online	learning),	as	we
will	see	later.	Let’s	create	an	SGDClassifier	and	train	it	on	the	whole	training	set:

from	sklearn.linear_model	import	SGDClassifier

sgd_clf	=	SGDClassifier(random_state=42)

sgd_clf.fit(X_train,	y_train_5)

TIP
The	SGDClassifier	relies	on	randomness	during	training	(hence	the	name	“stochastic”).	If	you	want	reproducible	results,	you
should	set	the	random_state	parameter.

Now	you	can	use	it	to	detect	images	of	the	number	5:

>>>	sgd_clf.predict([some_digit])

array([True],	dtype=bool)

The	classifier	guesses	that	this	image	represents	a	5	(True).	Looks	like	it	guessed	right	in	this	particular
case!	Now,	let’s	evaluate	this	model’s	performance.

Performance	Measures
Evaluating	a	classifier	is	often	significantly	trickier	than	evaluating	a	regressor,	so	we	will	spend	a	large
part	of	this	chapter	on	this	topic.	There	are	many	performance	measures	available,	so	grab	another	coffee
and	get	ready	to	learn	many	new	concepts	and	acronyms!

Measuring	Accuracy	Using	Cross-Validation
A	good	way	to	evaluate	a	model	is	to	use	cross-validation,	just	as	you	did	in	Chapter	2.

IMPLEMENTING	CROSS-VALIDATION

Occasionally	you	will	need	more	control	over	the	cross-validation	process	than	what	cross_val_score()	and	similar	functions	provide.
In	these	cases,	you	can	implement	cross-validation	yourself;	it	is	actually	fairly	straightforward.	The	following	code	does	roughly	the
same	thing	as	the	preceding	cross_val_score()	code,	and	prints	the	same	result:

from	sklearn.model_selection	import	StratifiedKFold

from	sklearn.base	import	clone

skfolds	=	StratifiedKFold(n_splits=3,	random_state=42)

for	train_index,	test_index	in	skfolds.split(X_train,	y_train_5):

				clone_clf	=	clone(sgd_clf)

				X_train_folds	=	X_train[train_index]

				y_train_folds	=	(y_train_5[train_index])

				X_test_fold	=	X_train[test_index]

				y_test_fold	=	(y_train_5[test_index])

				clone_clf.fit(X_train_folds,	y_train_folds)

				y_pred	=	clone_clf.predict(X_test_fold)

				n_correct	=	sum(y_pred	==	y_test_fold)

				print(n_correct	/	len(y_pred))		#	prints	0.9502,	0.96565	and	0.96495

The	StratifiedKFold	class	performs	stratified	sampling	(as	explained	in	Chapter	2)	to	produce	folds	that	contain	a	representative	ratio
of	each	class.	At	each	iteration	the	code	creates	a	clone	of	the	classifier,	trains	that	clone	on	the	training	folds,	and	makes	predictions	on
the	test	fold.	Then	it	counts	the	number	of	correct	predictions	and	outputs	the	ratio	of	correct	predictions.

Let’s	use	the	cross_val_score()	function	to	evaluate	your	SGDClassifier	model	using	K-fold	cross-
validation,	with	three	folds.	Remember	that	K-fold	cross-validation	means	splitting	the	training	set	into
K-folds	(in	this	case,	three),	then	making	predictions	and	evaluating	them	on	each	fold	using	a	model
trained	on	the	remaining	folds	(see	Chapter	2):

>>>	from	sklearn.model_selection	import	cross_val_score

>>>	cross_val_score(sgd_clf,	X_train,	y_train_5,	cv=3,	scoring="accuracy")

array([0.9502	,		0.96565,		0.96495])

Wow!	Above	95%	accuracy	(ratio	of	correct	predictions)	on	all	cross-validation	folds?	This	looks
amazing,	doesn’t	it?	Well,	before	you	get	too	excited,	let’s	look	at	a	very	dumb	classifier	that	just
classifies	every	single	image	in	the	“not-5”	class:

from	sklearn.base	import	BaseEstimator

class	Never5Classifier(BaseEstimator):

				def	fit(self,	X,	y=None):

								pass

				def	predict(self,	X):

								return	np.zeros((len(X),	1),	dtype=bool)

Can	you	guess	this	model’s	accuracy?	Let’s	find	out:

>>>	never_5_clf	=	Never5Classifier()

>>>	cross_val_score(never_5_clf,	X_train,	y_train_5,	cv=3,	scoring="accuracy")

array([0.909		,		0.90715,		0.9128])

That’s	right,	it	has	over	90%	accuracy!	This	is	simply	because	only	about	10%	of	the	images	are	5s,	so	if
you	always	guess	that	an	image	is	not	a	5,	you	will	be	right	about	90%	of	the	time.	Beats	Nostradamus.

This	demonstrates	why	accuracy	is	generally	not	the	preferred	performance	measure	for	classifiers,
especially	when	you	are	dealing	with	skewed	datasets	(i.e.,	when	some	classes	are	much	more	frequent
than	others).

Confusion	Matrix
A	much	better	way	to	evaluate	the	performance	of	a	classifier	is	to	look	at	the	confusion	matrix.	The
general	idea	is	to	count	the	number	of	times	instances	of	class	A	are	classified	as	class	B.	For	example,	to
know	the	number	of	times	the	classifier	confused	images	of	5s	with	3s,	you	would	look	in	the	5th	row	and
3rd	column	of	the	confusion	matrix.

To	compute	the	confusion	matrix,	you	first	need	to	have	a	set	of	predictions,	so	they	can	be	compared	to
the	actual	targets.	You	could	make	predictions	on	the	test	set,	but	let’s	keep	it	untouched	for	now
(remember	that	you	want	to	use	the	test	set	only	at	the	very	end	of	your	project,	once	you	have	a	classifier
that	you	are	ready	to	launch).	Instead,	you	can	use	the	cross_val_predict()	function:

from	sklearn.model_selection	import	cross_val_predict

y_train_pred	=	cross_val_predict(sgd_clf,	X_train,	y_train_5,	cv=3)

Just	like	the	cross_val_score()	function,	cross_val_predict()	performs	K-fold	cross-validation,
but	instead	of	returning	the	evaluation	scores,	it	returns	the	predictions	made	on	each	test	fold.	This	means
that	you	get	a	clean	prediction	for	each	instance	in	the	training	set	(“clean”	meaning	that	the	prediction	is
made	by	a	model	that	never	saw	the	data	during	training).

Now	you	are	ready	to	get	the	confusion	matrix	using	the	confusion_matrix()	function.	Just	pass	it	the
target	classes	(y_train_5)	and	the	predicted	classes	(y_train_pred):

>>>	from	sklearn.metrics	import	confusion_matrix

>>>	confusion_matrix(y_train_5,	y_train_pred)

array([[53272,		1307],

							[1077,		4344]])

Each	row	in	a	confusion	matrix	represents	an	actual	class,	while	each	column	represents	a	predicted
class.	The	first	row	of	this	matrix	considers	non-5	images	(the	negative	class):	53,272	of	them	were
correctly	classified	as	non-5s	(they	are	called	true	negatives),	while	the	remaining	1,307	were	wrongly
classified	as	5s	(false	positives).	The	second	row	considers	the	images	of	5s	(the	positive	class):	1,077
were	wrongly	classified	as	non-5s	(false	negatives),	while	the	remaining	4,344	were	correctly	classified
as	5s	(true	positives).	A	perfect	classifier	would	have	only	true	positives	and	true	negatives,	so	its
confusion	matrix	would	have	nonzero	values	only	on	its	main	diagonal	(top	left	to	bottom	right):

>>>	confusion_matrix(y_train_5,	y_train_perfect_predictions)

array([[54579,				0],

							[0,	5421]])

The	confusion	matrix	gives	you	a	lot	of	information,	but	sometimes	you	may	prefer	a	more	concise	metric.
An	interesting	one	to	look	at	is	the	accuracy	of	the	positive	predictions;	this	is	called	the	precision	of	the
classifier	(Equation	3-1).

Equation	3-1.	Precision

TP	is	the	number	of	true	positives,	and	FP	is	the	number	of	false	positives.

A	trivial	way	to	have	perfect	precision	is	to	make	one	single	positive	prediction	and	ensure	it	is	correct
(precision	=	1/1	=	100%).	This	would	not	be	very	useful	since	the	classifier	would	ignore	all	but	one
positive	instance.	So	precision	is	typically	used	along	with	another	metric	named	recall,	also	called
sensitivity	or	true	positive	rate	(TPR):	this	is	the	ratio	of	positive	instances	that	are	correctly	detected	by
the	classifier	(Equation	3-2).

Equation	3-2.	Recall

FN	is	of	course	the	number	of	false	negatives.

If	you	are	confused	about	the	confusion	matrix,	Figure	3-2	may	help.

Figure	3-2.	An	illustrated	confusion	matrix

Precision	and	Recall
Scikit-Learn	provides	several	functions	to	compute	classifier	metrics,	including	precision	and	recall:

>>>	from	sklearn.metrics	import	precision_score,	recall_score

>>>	precision_score(y_train_5,	y_pred)					#	==	4344	/	(4344	+	1307)

0.76871350203503808

>>>	recall_score(y_train_5,	y_train_pred)		#	==	4344	/	(4344	+	1077)

0.79136690647482011

Now	your	5-detector	does	not	look	as	shiny	as	it	did	when	you	looked	at	its	accuracy.	When	it	claims	an
image	represents	a	5,	it	is	correct	only	77%	of	the	time.	Moreover,	it	only	detects	79%	of	the	5s.

It	is	often	convenient	to	combine	precision	and	recall	into	a	single	metric	called	the	F1	score,	in
particular	if	you	need	a	simple	way	to	compare	two	classifiers.	The	F1	score	is	the	harmonic	mean	of
precision	and	recall	(Equation	3-3).	Whereas	the	regular	mean	treats	all	values	equally,	the	harmonic
mean	gives	much	more	weight	to	low	values.	As	a	result,	the	classifier	will	only	get	a	high	F1	score	if
both	recall	and	precision	are	high.

Equation	3-3.	F1	score

To	compute	the	F1	score,	simply	call	the	f1_score()	function:

>>>	from	sklearn.metrics	import	f1_score

>>>	f1_score(y_train_5,	y_pred)

0.78468208092485547

The	F1	score	favors	classifiers	that	have	similar	precision	and	recall.	This	is	not	always	what	you	want:
in	some	contexts	you	mostly	care	about	precision,	and	in	other	contexts	you	really	care	about	recall.	For
example,	if	you	trained	a	classifier	to	detect	videos	that	are	safe	for	kids,	you	would	probably	prefer	a
classifier	that	rejects	many	good	videos	(low	recall)	but	keeps	only	safe	ones	(high	precision),	rather	than
a	classifier	that	has	a	much	higher	recall	but	lets	a	few	really	bad	videos	show	up	in	your	product	(in	such
cases,	you	may	even	want	to	add	a	human	pipeline	to	check	the	classifier’s	video	selection).	On	the	other
hand,	suppose	you	train	a	classifier	to	detect	shoplifters	on	surveillance	images:	it	is	probably	fine	if	your
classifier	has	only	30%	precision	as	long	as	it	has	99%	recall	(sure,	the	security	guards	will	get	a	few
false	alerts,	but	almost	all	shoplifters	will	get	caught).

Unfortunately,	you	can’t	have	it	both	ways:	increasing	precision	reduces	recall,	and	vice	versa.	This	is
called	the	precision/recall	tradeoff.

Precision/Recall	Tradeoff
To	understand	this	tradeoff,	let’s	look	at	how	the	SGDClassifier	makes	its	classification	decisions.	For
each	instance,	it	computes	a	score	based	on	a	decision	function,	and	if	that	score	is	greater	than	a
threshold,	it	assigns	the	instance	to	the	positive	class,	or	else	it	assigns	it	to	the	negative	class.	Figure	3-3
shows	a	few	digits	positioned	from	the	lowest	score	on	the	left	to	the	highest	score	on	the	right.	Suppose
the	decision	threshold	is	positioned	at	the	central	arrow	(between	the	two	5s):	you	will	find	4	true
positives	(actual	5s)	on	the	right	of	that	threshold,	and	one	false	positive	(actually	a	6).	Therefore,	with
that	threshold,	the	precision	is	80%	(4	out	of	5).	But	out	of	6	actual	5s,	the	classifier	only	detects	4,	so	the
recall	is	67%	(4	out	of	6).	Now	if	you	raise	the	threshold	(move	it	to	the	arrow	on	the	right),	the	false
positive	(the	6)	becomes	a	true	negative,	thereby	increasing	precision	(up	to	100%	in	this	case),	but	one
true	positive	becomes	a	false	negative,	decreasing	recall	down	to	50%.	Conversely,	lowering	the
threshold	increases	recall	and	reduces	precision.

Figure	3-3.	Decision	threshold	and	precision/recall	tradeoff

Scikit-Learn	does	not	let	you	set	the	threshold	directly,	but	it	does	give	you	access	to	the	decision	scores
that	it	uses	to	make	predictions.	Instead	of	calling	the	classifier’s	predict()	method,	you	can	call	its
decision_function()	method,	which	returns	a	score	for	each	instance,	and	then	make	predictions	based
on	those	scores	using	any	threshold	you	want:

>>>	y_scores	=	sgd_clf.decision_function([some_digit])

>>>	y_scores

array([161855.74572176])

>>>	threshold	=	0

>>>	y_some_digit_pred	=	(y_scores	>	threshold)

array([True],	dtype=bool)

The	SGDClassifier	uses	a	threshold	equal	to	0,	so	the	previous	code	returns	the	same	result	as	the
predict()	method	(i.e.,	True).	Let’s	raise	the	threshold:

>>>	threshold	=	200000

>>>	y_some_digit_pred	=	(y_scores	>	threshold)

>>>	y_some_digit_pred

array([False],	dtype=bool)

This	confirms	that	raising	the	threshold	decreases	recall.	The	image	actually	represents	a	5,	and	the
classifier	detects	it	when	the	threshold	is	0,	but	it	misses	it	when	the	threshold	is	increased	to	200,000.

So	how	can	you	decide	which	threshold	to	use?	For	this	you	will	first	need	to	get	the	scores	of	all
instances	in	the	training	set	using	the	cross_val_predict()	function	again,	but	this	time	specifying	that
you	want	it	to	return	decision	scores	instead	of	predictions:

y_scores	=	cross_val_predict(sgd_clf,	X_train,	y_train_5,	cv=3,

																													method="decision_function")

Now	with	these	scores	you	can	compute	precision	and	recall	for	all	possible	thresholds	using	the
precision_recall_curve()	function:

from	sklearn.metrics	import	precision_recall_curve

precisions,	recalls,	thresholds	=	precision_recall_curve(y_train_5,	y_scores)

Finally,	you	can	plot	precision	and	recall	as	functions	of	the	threshold	value	using	Matplotlib	(Figure	3-
4):

def	plot_precision_recall_vs_threshold(precisions,	recalls,	thresholds):

				plt.plot(thresholds,	precisions[:-1],	"b--",	label="Precision")

				plt.plot(thresholds,	recalls[:-1],	"g-",	label="Recall")

				plt.xlabel("Threshold")

				plt.legend(loc="upper	left")

				plt.ylim([0,	1])

plot_precision_recall_vs_threshold(precisions,	recalls,	thresholds)

plt.show()

Figure	3-4.	Precision	and	recall	versus	the	decision	threshold

NOTE
You	may	wonder	why	the	precision	curve	is	bumpier	than	the	recall	curve	in	Figure	3-4.	The	reason	is	that	precision	may
sometimes	go	down	when	you	raise	the	threshold	(although	in	general	it	will	go	up).	To	understand	why,	look	back	at	Figure	3-3
and	notice	what	happens	when	you	start	from	the	central	threshold	and	move	it	just	one	digit	to	the	right:	precision	goes	from	4/5
(80%)	down	to	3/4	(75%).	On	the	other	hand,	recall	can	only	go	down	when	the	threshold	is	increased,	which	explains	why	its
curve	looks	smooth.

Now	you	can	simply	select	the	threshold	value	that	gives	you	the	best	precision/recall	tradeoff	for	your
task.	Another	way	to	select	a	good	precision/recall	tradeoff	is	to	plot	precision	directly	against	recall,	as
shown	in	Figure	3-5.

Figure	3-5.	Precision	versus	recall

You	can	see	that	precision	really	starts	to	fall	sharply	around	80%	recall.	You	will	probably	want	to
select	a	precision/recall	tradeoff	just	before	that	drop	—	for	example,	at	around	60%	recall.	But	of
course	the	choice	depends	on	your	project.

So	let’s	suppose	you	decide	to	aim	for	90%	precision.	You	look	up	the	first	plot	(zooming	in	a	bit)	and

find	that	you	need	to	use	a	threshold	of	about	70,000.	To	make	predictions	(on	the	training	set	for	now),
instead	of	calling	the	classifier’s	predict()	method,	you	can	just	run	this	code:

y_train_pred_90	=	(y_scores	>	70000)

Let’s	check	these	predictions’	precision	and	recall:

>>>	precision_score(y_train_5,	y_train_pred_90)

0.8998702983138781

>>>	recall_score(y_train_5,	y_train_pred_90)

0.63991883416343853

Great,	you	have	a	90%	precision	classifier	(or	close	enough)!	As	you	can	see,	it	is	fairly	easy	to	create	a
classifier	with	virtually	any	precision	you	want:	just	set	a	high	enough	threshold,	and	you’re	done.	Hmm,
not	so	fast.	A	high-precision	classifier	is	not	very	useful	if	its	recall	is	too	low!

TIP
If	someone	says	“let’s	reach	99%	precision,”	you	should	ask,	“at	what	recall?”

The	ROC	Curve
The	receiver	operating	characteristic	(ROC)	curve	is	another	common	tool	used	with	binary	classifiers.
It	is	very	similar	to	the	precision/recall	curve,	but	instead	of	plotting	precision	versus	recall,	the	ROC
curve	plots	the	true	positive	rate	(another	name	for	recall)	against	the	false	positive	rate.	The	FPR	is	the
ratio	of	negative	instances	that	are	incorrectly	classified	as	positive.	It	is	equal	to	one	minus	the	true
negative	rate,	which	is	the	ratio	of	negative	instances	that	are	correctly	classified	as	negative.	The	TNR
is	also	called	specificity.	Hence	the	ROC	curve	plots	sensitivity	(recall)	versus	1	–	specificity.

To	plot	the	ROC	curve,	you	first	need	to	compute	the	TPR	and	FPR	for	various	threshold	values,	using	the
roc_curve()	function:

from	sklearn.metrics	import	roc_curve

fpr,	tpr,	thresholds	=	roc_curve(y_train_5,	y_scores)

Then	you	can	plot	the	FPR	against	the	TPR	using	Matplotlib.	This	code	produces	the	plot	in	Figure	3-6:

def	plot_roc_curve(fpr,	tpr,	label=None):

				plt.plot(fpr,	tpr,	linewidth=2,	label=label)

				plt.plot([0,	1],	[0,	1],	'k--')

				plt.axis([0,	1,	0,	1])

				plt.xlabel('False	Positive	Rate')

				plt.ylabel('True	Positive	Rate')

plot_roc_curve(fpr,	tpr)

plt.show()

Figure	3-6.	ROC	curve

Once	again	there	is	a	tradeoff:	the	higher	the	recall	(TPR),	the	more	false	positives	(FPR)	the	classifier
produces.	The	dotted	line	represents	the	ROC	curve	of	a	purely	random	classifier;	a	good	classifier	stays
as	far	away	from	that	line	as	possible	(toward	the	top-left	corner).

One	way	to	compare	classifiers	is	to	measure	the	area	under	the	curve	(AUC).	A	perfect	classifier	will
have	a	ROC	AUC	equal	to	1,	whereas	a	purely	random	classifier	will	have	a	ROC	AUC	equal	to	0.5.
Scikit-Learn	provides	a	function	to	compute	the	ROC	AUC:

>>>	from	sklearn.metrics	import	roc_auc_score

>>>	roc_auc_score(y_train_5,	y_scores)

0.97061072797174941

TIP
Since	the	ROC	curve	is	so	similar	to	the	precision/recall	(or	PR)	curve,	you	may	wonder	how	to	decide	which	one	to	use.	As	a
rule	of	thumb,	you	should	prefer	the	PR	curve	whenever	the	positive	class	is	rare	or	when	you	care	more	about	the	false
positives	than	the	false	negatives,	and	the	ROC	curve	otherwise.	For	example,	looking	at	the	previous	ROC	curve	(and	the	ROC
AUC	score),	you	may	think	that	the	classifier	is	really	good.	But	this	is	mostly	because	there	are	few	positives	(5s)	compared	to
the	negatives	(non-5s).	In	contrast,	the	PR	curve	makes	it	clear	that	the	classifier	has	room	for	improvement	(the	curve	could	be

closer	to	the	top-right	corner).

Let’s	train	a	RandomForestClassifier	and	compare	its	ROC	curve	and	ROC	AUC	score	to	the
SGDClassifier.	First,	you	need	to	get	scores	for	each	instance	in	the	training	set.	But	due	to	the	way	it
works	(see	Chapter	7),	the	RandomForestClassifier	class	does	not	have	a	decision_function()
method.	Instead	it	has	a	predict_proba()	method.	Scikit-Learn	classifiers	generally	have	one	or	the
other.	The	predict_proba()	method	returns	an	array	containing	a	row	per	instance	and	a	column	per
class,	each	containing	the	probability	that	the	given	instance	belongs	to	the	given	class	(e.g.,	70%	chance
that	the	image	represents	a	5):

from	sklearn.ensemble	import	RandomForestClassifier

forest_clf	=	RandomForestClassifier(random_state=42)

y_probas_forest	=	cross_val_predict(forest_clf,	X_train,	y_train_5,	cv=3,

																																				method="predict_proba")

But	to	plot	a	ROC	curve,	you	need	scores,	not	probabilities.	A	simple	solution	is	to	use	the	positive
class’s	probability	as	the	score:

y_scores_forest	=	y_probas_forest[:,	1]			#	score	=	proba	of	positive	class

fpr_forest,	tpr_forest,	thresholds_forest	=	roc_curve(y_train_5,y_scores_forest)

Now	you	are	ready	to	plot	the	ROC	curve.	It	is	useful	to	plot	the	first	ROC	curve	as	well	to	see	how	they
compare	(Figure	3-7):

plt.plot(fpr,	tpr,	"b:",	label="SGD")

plot_roc_curve(fpr_forest,	tpr_forest,	"Random	Forest")

plt.legend(loc="bottom	right")

plt.show()

Figure	3-7.	Comparing	ROC	curves

As	you	can	see	in	Figure	3-7,	the	RandomForestClassifier’s	ROC	curve	looks	much	better	than	the
SGDClassifier’s:	it	comes	much	closer	to	the	top-left	corner.	As	a	result,	its	ROC	AUC	score	is	also
significantly	better:

>>>	roc_auc_score(y_train_5,	y_scores_forest)

0.99312433660038291

Try	measuring	the	precision	and	recall	scores:	you	should	find	98.5%	precision	and	82.8%	recall.	Not
too	bad!

Hopefully	you	now	know	how	to	train	binary	classifiers,	choose	the	appropriate	metric	for	your	task,
evaluate	your	classifiers	using	cross-validation,	select	the	precision/recall	tradeoff	that	fits	your	needs,
and	compare	various	models	using	ROC	curves	and	ROC	AUC	scores.	Now	let’s	try	to	detect	more	than
just	the	5s.

Multiclass	Classification
Whereas	binary	classifiers	distinguish	between	two	classes,	multiclass	classifiers	(also	called
multinomial	classifiers)	can	distinguish	between	more	than	two	classes.

Some	algorithms	(such	as	Random	Forest	classifiers	or	naive	Bayes	classifiers)	are	capable	of	handling
multiple	classes	directly.	Others	(such	as	Support	Vector	Machine	classifiers	or	Linear	classifiers)	are
strictly	binary	classifiers.	However,	there	are	various	strategies	that	you	can	use	to	perform	multiclass
classification	using	multiple	binary	classifiers.

For	example,	one	way	to	create	a	system	that	can	classify	the	digit	images	into	10	classes	(from	0	to	9)	is
to	train	10	binary	classifiers,	one	for	each	digit	(a	0-detector,	a	1-detector,	a	2-detector,	and	so	on).	Then
when	you	want	to	classify	an	image,	you	get	the	decision	score	from	each	classifier	for	that	image	and	you
select	the	class	whose	classifier	outputs	the	highest	score.	This	is	called	the	one-versus-all	(OvA)
strategy	(also	called	one-versus-the-rest).

Another	strategy	is	to	train	a	binary	classifier	for	every	pair	of	digits:	one	to	distinguish	0s	and	1s,
another	to	distinguish	0s	and	2s,	another	for	1s	and	2s,	and	so	on.	This	is	called	the	one-versus-one
(OvO)	strategy.	If	there	are	N	classes,	you	need	to	train	N	×	(N	–	1)	/	2	classifiers.	For	the	MNIST
problem,	this	means	training	45	binary	classifiers!	When	you	want	to	classify	an	image,	you	have	to	run
the	image	through	all	45	classifiers	and	see	which	class	wins	the	most	duels.	The	main	advantage	of	OvO
is	that	each	classifier	only	needs	to	be	trained	on	the	part	of	the	training	set	for	the	two	classes	that	it	must
distinguish.

Some	algorithms	(such	as	Support	Vector	Machine	classifiers)	scale	poorly	with	the	size	of	the	training
set,	so	for	these	algorithms	OvO	is	preferred	since	it	is	faster	to	train	many	classifiers	on	small	training
sets	than	training	few	classifiers	on	large	training	sets.	For	most	binary	classification	algorithms,
however,	OvA	is	preferred.

Scikit-Learn	detects	when	you	try	to	use	a	binary	classification	algorithm	for	a	multiclass	classification
task,	and	it	automatically	runs	OvA	(except	for	SVM	classifiers	for	which	it	uses	OvO).	Let’s	try	this	with
the	SGDClassifier:

>>>	sgd_clf.fit(X_train,	y_train)		#	y_train,	not	y_train_5

>>>	sgd_clf.predict([some_digit])

array([5.])

That	was	easy!	This	code	trains	the	SGDClassifier	on	the	training	set	using	the	original	target	classes
from	0	to	9	(y_train),	instead	of	the	5-versus-all	target	classes	(y_train_5).	Then	it	makes	a	prediction
(a	correct	one	in	this	case).	Under	the	hood,	Scikit-Learn	actually	trained	10	binary	classifiers,	got	their
decision	scores	for	the	image,	and	selected	the	class	with	the	highest	score.

To	see	that	this	is	indeed	the	case,	you	can	call	the	decision_function()	method.	Instead	of	returning
just	one	score	per	instance,	it	now	returns	10	scores,	one	per	class:

>>>	some_digit_scores	=	sgd_clf.decision_function([some_digit])

>>>	some_digit_scores

array([[-311402.62954431,	-363517.28355739,	-446449.5306454	,

								-183226.61023518,	-414337.15339485,		161855.74572176,

								-452576.39616343,	-471957.14962573,	-518542.33997148,

								-536774.63961222]])

The	highest	score	is	indeed	the	one	corresponding	to	class	5:

>>>	np.argmax(some_digit_scores)

5

>>>	sgd_clf.classes_

array([0.,		1.,		2.,		3.,		4.,		5.,		6.,		7.,		8.,		9.])

>>>	sgd_clf.classes[5]

5.0

WARNING
When	a	classifier	is	trained,	it	stores	the	list	of	target	classes	in	its	classes_	attribute,	ordered	by	value.	In	this	case,	the	index	of
each	class	in	the	classes_	array	conveniently	matches	the	class	itself	(e.g.,	the	class	at	index	5	happens	to	be	class	5),	but	in
general	you	won’t	be	so	lucky.

If	you	want	to	force	ScikitLearn	to	use	one-versus-one	or	one-versus-all,	you	can	use	the
OneVsOneClassifier	or	OneVsRestClassifier	classes.	Simply	create	an	instance	and	pass	a	binary
classifier	to	its	constructor.	For	example,	this	code	creates	a	multiclass	classifier	using	the	OvO	strategy,
based	on	a	SGDClassifier:

>>>	from	sklearn.multiclass	import	OneVsOneClassifier

>>>	ovo_clf	=	OneVsOneClassifier(SGDClassifier(random_state=42))

>>>	ovo_clf.fit(X_train,	y_train)

>>>	ovo_clf.predict([some_digit])

array([5.])

>>>	len(ovo_clf.estimators_)

45

Training	a	RandomForestClassifier	is	just	as	easy:

>>>	forest_clf.fit(X_train,	y_train)

>>>	forest_clf.predict([some_digit])

array([5.])

This	time	Scikit-Learn	did	not	have	to	run	OvA	or	OvO	because	Random	Forest	classifiers	can	directly
classify	instances	into	multiple	classes.	You	can	call	predict_proba()	to	get	the	list	of	probabilities	that
the	classifier	assigned	to	each	instance	for	each	class:

>>>	forest_clf.predict_proba([some_digit])

array([[0.1,		0.	,		0.	,		0.1,		0.	,		0.8,		0.	,		0.	,		0.	,		0.]])

You	can	see	that	the	classifier	is	fairly	confident	about	its	prediction:	the	0.8	at	the	5th	index	in	the	array
means	that	the	model	estimates	an	80%	probability	that	the	image	represents	a	5.	It	also	thinks	that	the
image	could	instead	be	a	0	or	a	3	(10%	chance	each).

Now	of	course	you	want	to	evaluate	these	classifiers.	As	usual,	you	want	to	use	cross-validation.	Let’s
evaluate	the	SGDClassifier’s	accuracy	using	the	cross_val_score()	function:

>>>	cross_val_score(sgd_clf,	X_train,	y_train,	cv=3,	scoring="accuracy")

array([0.84063187,		0.84899245,		0.86652998])

It	gets	over	84%	on	all	test	folds.	If	you	used	a	random	classifier,	you	would	get	10%	accuracy,	so	this	is
not	such	a	bad	score,	but	you	can	still	do	much	better.	For	example,	simply	scaling	the	inputs	(as
discussed	in	Chapter	2)	increases	accuracy	above	90%:

>>>	from	sklearn.preprocessing	import	StandardScaler

>>>	scaler	=	StandardScaler()

>>>	X_train_scaled	=	scaler.fit_transform(X_train.astype(np.float64))

>>>	cross_val_score(sgd_clf,	X_train_scaled,	y_train,	cv=3,	scoring="accuracy")

array([0.91011798,		0.90874544,		0.906636])

Error	Analysis
Of	course,	if	this	were	a	real	project,	you	would	follow	the	steps	in	your	Machine	Learning	project
checklist	(see	Appendix	B):	exploring	data	preparation	options,	trying	out	multiple	models,	shortlisting
the	best	ones	and	fine-tuning	their	hyperparameters	using	GridSearchCV,	and	automating	as	much	as
possible,	as	you	did	in	the	previous	chapter.	Here,	we	will	assume	that	you	have	found	a	promising	model
and	you	want	to	find	ways	to	improve	it.	One	way	to	do	this	is	to	analyze	the	types	of	errors	it	makes.

First,	you	can	look	at	the	confusion	matrix.	You	need	to	make	predictions	using	the
cross_val_predict()	function,	then	call	the	confusion_matrix()	function,	just	like	you	did	earlier:

>>>	y_train_pred	=	cross_val_predict(sgd_clf,	X_train_scaled,	y_train,	cv=3)

>>>	conf_mx	=	confusion_matrix(y_train,	y_train_pred)

>>>	conf_mx

array([[5725,				3,			24,				9,			10,			49,			50,			10,			39,				4],

							[2,	6493,			43,			25,				7,			40,				5,			10,		109,				8],

							[51,			41,	5321,		104,			89,			26,			87,			60,		166,			13],

							[47,			46,		141,	5342,				1,		231,			40,			50,		141,			92],

							[19,			29,			41,			10,	5366,				9,			56,			37,			86,		189],

							[73,			45,			36,		193,			64,	4582,		111,			30,		193,			94],

							[29,			34,			44,				2,			42,			85,	5627,			10,			45,				0],

							[25,			24,			74,			32,			54,			12,				6,	5787,			15,		236],

							[52,		161,			73,		156,			10,		163,			61,			25,	5027,		123],

							[43,			35,			26,			92,		178,			28,				2,		223,			82,	5240]])

That’s	a	lot	of	numbers.	It’s	often	more	convenient	to	look	at	an	image	representation	of	the	confusion
matrix,	using	Matplotlib’s	matshow()	function:

plt.matshow(conf_mx,	cmap=plt.cm.gray)

plt.show()

This	confusion	matrix	looks	fairly	good,	since	most	images	are	on	the	main	diagonal,	which	means	that
they	were	classified	correctly.	The	5s	look	slightly	darker	than	the	other	digits,	which	could	mean	that
there	are	fewer	images	of	5s	in	the	dataset	or	that	the	classifier	does	not	perform	as	well	on	5s	as	on	other
digits.	In	fact,	you	can	verify	that	both	are	the	case.

Let’s	focus	the	plot	on	the	errors.	First,	you	need	to	divide	each	value	in	the	confusion	matrix	by	the
number	of	images	in	the	corresponding	class,	so	you	can	compare	error	rates	instead	of	absolute	number

of	errors	(which	would	make	abundant	classes	look	unfairly	bad):

row_sums	=	conf_mx.sum(axis=1,	keepdims=True)

norm_conf_mx	=	conf_mx	/	row_sums

Now	let’s	fill	the	diagonal	with	zeros	to	keep	only	the	errors,	and	let’s	plot	the	result:

np.fill_diagonal(norm_conf_mx,	0)

plt.matshow(norm_conf_mx,	cmap=plt.cm.gray)

plt.show()

Now	you	can	clearly	see	the	kinds	of	errors	the	classifier	makes.	Remember	that	rows	represent	actual
classes,	while	columns	represent	predicted	classes.	The	columns	for	classes	8	and	9	are	quite	bright,
which	tells	you	that	many	images	get	misclassified	as	8s	or	9s.	Similarly,	the	rows	for	classes	8	and	9	are
also	quite	bright,	telling	you	that	8s	and	9s	are	often	confused	with	other	digits.	Conversely,	some	rows
are	pretty	dark,	such	as	row	1:	this	means	that	most	1s	are	classified	correctly	(a	few	are	confused	with
8s,	but	that’s	about	it).	Notice	that	the	errors	are	not	perfectly	symmetrical;	for	example,	there	are	more	5s
misclassified	as	8s	than	the	reverse.

Analyzing	the	confusion	matrix	can	often	give	you	insights	on	ways	to	improve	your	classifier.	Looking	at
this	plot,	it	seems	that	your	efforts	should	be	spent	on	improving	classification	of	8s	and	9s,	as	well	as
fixing	the	specific	3/5	confusion.	For	example,	you	could	try	to	gather	more	training	data	for	these	digits.
Or	you	could	engineer	new	features	that	would	help	the	classifier	—	for	example,	writing	an	algorithm	to
count	the	number	of	closed	loops	(e.g.,	8	has	two,	6	has	one,	5	has	none).	Or	you	could	preprocess	the
images	(e.g.,	using	Scikit-Image,	Pillow,	or	OpenCV)	to	make	some	patterns	stand	out	more,	such	as
closed	loops.

Analyzing	individual	errors	can	also	be	a	good	way	to	gain	insights	on	what	your	classifier	is	doing	and
why	it	is	failing,	but	it	is	more	difficult	and	time-consuming.	For	example,	let’s	plot	examples	of	3s	and
5s:

cl_a,	cl_b	=	3,	5

X_aa	=	X_train[(y_train	==	cl_a)	&	(y_train_pred	==	cl_a)]

X_ab	=	X_train[(y_train	==	cl_a)	&	(y_train_pred	==	cl_b)]

X_ba	=	X_train[(y_train	==	cl_b)	&	(y_train_pred	==	cl_a)]

X_bb	=	X_train[(y_train	==	cl_b)	&	(y_train_pred	==	cl_b)]

plt.figure(figsize=(8,8))

plt.subplot(221);	plot_digits(X_aa[:25],	images_per_row=5)

plt.subplot(222);	plot_digits(X_ab[:25],	images_per_row=5)

plt.subplot(223);	plot_digits(X_ba[:25],	images_per_row=5)

plt.subplot(224);	plot_digits(X_bb[:25],	images_per_row=5)

plt.show()

The	two	5×5	blocks	on	the	left	show	digits	classified	as	3s,	and	the	two	5×5	blocks	on	the	right	show
images	classified	as	5s.	Some	of	the	digits	that	the	classifier	gets	wrong	(i.e.,	in	the	bottom-left	and	top-
right	blocks)	are	so	badly	written	that	even	a	human	would	have	trouble	classifying	them	(e.g.,	the	5	on
the	8th	row	and	1st	column	truly	looks	like	a	3).	However,	most	misclassified	images	seem	like	obvious
errors	to	us,	and	it’s	hard	to	understand	why	the	classifier	made	the	mistakes	it	did.3	The	reason	is	that	we
used	a	simple	SGDClassifier,	which	is	a	linear	model.	All	it	does	is	assign	a	weight	per	class	to	each
pixel,	and	when	it	sees	a	new	image	it	just	sums	up	the	weighted	pixel	intensities	to	get	a	score	for	each

class.	So	since	3s	and	5s	differ	only	by	a	few	pixels,	this	model	will	easily	confuse	them.

The	main	difference	between	3s	and	5s	is	the	position	of	the	small	line	that	joins	the	top	line	to	the	bottom
arc.	If	you	draw	a	3	with	the	junction	slightly	shifted	to	the	left,	the	classifier	might	classify	it	as	a	5,	and
vice	versa.	In	other	words,	this	classifier	is	quite	sensitive	to	image	shifting	and	rotation.	So	one	way	to
reduce	the	3/5	confusion	would	be	to	preprocess	the	images	to	ensure	that	they	are	well	centered	and	not
too	rotated.	This	will	probably	help	reduce	other	errors	as	well.

Multilabel	Classification
Until	now	each	instance	has	always	been	assigned	to	just	one	class.	In	some	cases	you	may	want	your
classifier	to	output	multiple	classes	for	each	instance.	For	example,	consider	a	face-recognition
classifier:	what	should	it	do	if	it	recognizes	several	people	on	the	same	picture?	Of	course	it	should
attach	one	label	per	person	it	recognizes.	Say	the	classifier	has	been	trained	to	recognize	three	faces,
Alice,	Bob,	and	Charlie;	then	when	it	is	shown	a	picture	of	Alice	and	Charlie,	it	should	output	[1,	0,	1]
(meaning	“Alice	yes,	Bob	no,	Charlie	yes”).	Such	a	classification	system	that	outputs	multiple	binary
labels	is	called	a	multilabel	classification	system.

We	won’t	go	into	face	recognition	just	yet,	but	let’s	look	at	a	simpler	example,	just	for	illustration
purposes:

from	sklearn.neighbors	import	KNeighborsClassifier

y_train_large	=	(y_train	>=	7)

y_train_odd	=	(y_train	%	2	==	1)

y_multilabel	=	np.c_[y_train_large,	y_train_odd]

knn_clf	=	KNeighborsClassifier()

knn_clf.fit(X_train,	y_multilabel)

This	code	creates	a	y_multilabel	array	containing	two	target	labels	for	each	digit	image:	the	first
indicates	whether	or	not	the	digit	is	large	(7,	8,	or	9)	and	the	second	indicates	whether	or	not	it	is	odd.
The	next	lines	create	a	KNeighborsClassifier	instance	(which	supports	multilabel	classification,	but
not	all	classifiers	do)	and	we	train	it	using	the	multiple	targets	array.	Now	you	can	make	a	prediction,	and
notice	that	it	outputs	two	labels:

>>>	knn_clf.predict([some_digit])

array([[False,		True]],	dtype=bool)

And	it	gets	it	right!	The	digit	5	is	indeed	not	large	(False)	and	odd	(True).

There	are	many	ways	to	evaluate	a	multilabel	classifier,	and	selecting	the	right	metric	really	depends	on
your	project.	For	example,	one	approach	is	to	measure	the	F1	score	for	each	individual	label	(or	any	other
binary	classifier	metric	discussed	earlier),	then	simply	compute	the	average	score.	This	code	computes
the	average	F1	score	across	all	labels:

>>>	y_train_knn_pred	=	cross_val_predict(knn_clf,	X_train,	y_train,	cv=3)

>>>	f1_score(y_train,	y_train_knn_pred,	average="macro")

0.96845540180280221

This	assumes	that	all	labels	are	equally	important,	which	may	not	be	the	case.	In	particular,	if	you	have
many	more	pictures	of	Alice	than	of	Bob	or	Charlie,	you	may	want	to	give	more	weight	to	the	classifier’s
score	on	pictures	of	Alice.	One	simple	option	is	to	give	each	label	a	weight	equal	to	its	support	(i.e.,	the
number	of	instances	with	that	target	label).	To	do	this,	simply	set	average="weighted"	in	the	preceding
code.4

Multioutput	Classification
The	last	type	of	classification	task	we	are	going	to	discuss	here	is	called	multioutput-multiclass
classification	(or	simply	multioutput	classification).	It	is	simply	a	generalization	of	multilabel
classification	where	each	label	can	be	multiclass	(i.e.,	it	can	have	more	than	two	possible	values).

To	illustrate	this,	let’s	build	a	system	that	removes	noise	from	images.	It	will	take	as	input	a	noisy	digit
image,	and	it	will	(hopefully)	output	a	clean	digit	image,	represented	as	an	array	of	pixel	intensities,	just
like	the	MNIST	images.	Notice	that	the	classifier’s	output	is	multilabel	(one	label	per	pixel)	and	each
label	can	have	multiple	values	(pixel	intensity	ranges	from	0	to	255).	It	is	thus	an	example	of	a	multioutput
classification	system.

NOTE
The	line	between	classification	and	regression	is	sometimes	blurry,	such	as	in	this	example.	Arguably,	predicting	pixel	intensity	is
more	akin	to	regression	than	to	classification.	Moreover,	multioutput	systems	are	not	limited	to	classification	tasks;	you	could	even
have	a	system	that	outputs	multiple	labels	per	instance,	including	both	class	labels	and	value	labels.

Let’s	start	by	creating	the	training	and	test	sets	by	taking	the	MNIST	images	and	adding	noise	to	their	pixel
intensities	using	NumPy’s	randint()	function.	The	target	images	will	be	the	original	images:

noise	=	rnd.randint(0,	100,	(len(X_train),	784))

noise	=	rnd.randint(0,	100,	(len(X_test),	784))

X_train_mod	=	X_train	+	noise

X_test_mod	=	X_test	+	noise

y_train_mod	=	X_train

y_test_mod	=	X_test

Let’s	take	a	peek	at	an	image	from	the	test	set	(yes,	we’re	snooping	on	the	test	data,	so	you	should	be
frowning	right	now):

On	the	left	is	the	noisy	input	image,	and	on	the	right	is	the	clean	target	image.	Now	let’s	train	the	classifier
and	make	it	clean	this	image:

knn_clf.fit(X_train_mod,	y_train_mod)

clean_digit	=	knn_clf.predict([X_test_mod[some_index]])

plot_digit(clean_digit)

Looks	close	enough	to	the	target!	This	concludes	our	tour	of	classification.	Hopefully	you	should	now
know	how	to	select	good	metrics	for	classification	tasks,	pick	the	appropriate	precision/recall	tradeoff,
compare	classifiers,	and	more	generally	build	good	classification	systems	for	a	variety	of	tasks.

Exercises
1.	 Try	to	build	a	classifier	for	the	MNIST	dataset	that	achieves	over	97%	accuracy	on	the	test	set.

Hint:	the	KNeighborsClassifier	works	quite	well	for	this	task;	you	just	need	to	find	good
hyperparameter	values	(try	a	grid	search	on	the	weights	and	n_neighbors	hyperparameters).

2.	 Write	a	function	that	can	shift	an	MNIST	image	in	any	direction	(left,	right,	up,	or	down)	by	one
pixel.5	Then,	for	each	image	in	the	training	set,	create	four	shifted	copies	(one	per	direction)	and
add	them	to	the	training	set.	Finally,	train	your	best	model	on	this	expanded	training	set	and
measure	its	accuracy	on	the	test	set.	You	should	observe	that	your	model	performs	even	better
now!	This	technique	of	artificially	growing	the	training	set	is	called	data	augmentation	or
training	set	expansion.

3.	 Tackle	the	Titanic	dataset.	A	great	place	to	start	is	on	Kaggle.

4.	 Build	a	spam	classifier	(a	more	challenging	exercise):
Download	examples	of	spam	and	ham	from	Apache	SpamAssassin’s	public	datasets.

Unzip	the	datasets	and	familiarize	yourself	with	the	data	format.

Split	the	datasets	into	a	training	set	and	a	test	set.

Write	a	data	preparation	pipeline	to	convert	each	email	into	a	feature	vector.	Your
preparation	pipeline	should	transform	an	email	into	a	(sparse)	vector	indicating	the
presence	or	absence	of	each	possible	word.	For	example,	if	all	emails	only	ever	contain
four	words,	“Hello,”	“how,”	“are,”	“you,”	then	the	email	“Hello	you	Hello	Hello	you”
would	be	converted	into	a	vector	[1,	0,	0,	1]	(meaning	[“Hello”	is	present,	“how”	is	absent,
“are”	is	absent,	“you”	is	present]),	or	[3,	0,	0,	2]	if	you	prefer	to	count	the	number	of
occurrences	of	each	word.

You	may	want	to	add	hyperparameters	to	your	preparation	pipeline	to	control	whether	or
not	to	strip	off	email	headers,	convert	each	email	to	lowercase,	remove	punctuation,	replace
all	URLs	with	“URL,”	replace	all	numbers	with	“NUMBER,”	or	even	perform	stemming
(i.e.,	trim	off	word	endings;	there	are	Python	libraries	available	to	do	this).

Then	try	out	several	classifiers	and	see	if	you	can	build	a	great	spam	classifier,	with	both
high	recall	and	high	precision.

Solutions	to	these	exercises	are	available	in	the	online	Jupyter	notebooks	at
https://github.com/ageron/handson-ml.

By	default	Scikit-Learn	caches	downloaded	datasets	in	a	directory	called	$HOME/scikit_learn_data.

Shuffling	may	be	a	bad	idea	in	some	contexts	—	for	example,	if	you	are	working	on	time	series	data	(such	as	stock	market	prices	or
weather	conditions).	We	will	explore	this	in	the	next	chapters.

But	remember	that	our	brain	is	a	fantastic	pattern	recognition	system,	and	our	visual	system	does	a	lot	of	complex	preprocessing	before
any	information	reaches	our	consciousness,	so	the	fact	that	it	feels	simple	does	not	mean	that	it	is.

1

2

3

https://www.kaggle.com/c/titanic
https://spamassassin.apache.org/publiccorpus/
https://github.com/ageron/handson-ml

Scikit-Learn	offers	a	few	other	averaging	options	and	multilabel	classifier	metrics;	see	the	documentation	for	more	details.

You	can	use	the	shift()	function	from	the	scipy.ndimage.interpolation	module.	For	example,	shift(image,	[2,	1],	cval=0)	shifts
the	image	2	pixels	down	and	1	pixel	to	the	right.

4

5

Chapter	4.	Training	Models

So	far	we	have	treated	Machine	Learning	models	and	their	training	algorithms	mostly	like	black	boxes.	If
you	went	through	some	of	the	exercises	in	the	previous	chapters,	you	may	have	been	surprised	by	how
much	you	can	get	done	without	knowing	anything	about	what’s	under	the	hood:	you	optimized	a	regression
system,	you	improved	a	digit	image	classifier,	and	you	even	built	a	spam	classifier	from	scratch	—	all
this	without	knowing	how	they	actually	work.	Indeed,	in	many	situations	you	don’t	really	need	to	know	the
implementation	details.

However,	having	a	good	understanding	of	how	things	work	can	help	you	quickly	home	in	on	the
appropriate	model,	the	right	training	algorithm	to	use,	and	a	good	set	of	hyperparameters	for	your	task.
Understanding	what’s	under	the	hood	will	also	help	you	debug	issues	and	perform	error	analysis	more
efficiently.	Lastly,	most	of	the	topics	discussed	in	this	chapter	will	be	essential	in	understanding,	building,
and	training	neural	networks	(discussed	in	Part	II	of	this	book).

In	this	chapter,	we	will	start	by	looking	at	the	Linear	Regression	model,	one	of	the	simplest	models	there
is.	We	will	discuss	two	very	different	ways	to	train	it:

Using	a	direct	“closed-form”	equation	that	directly	computes	the	model	parameters	that	best	fit	the
model	to	the	training	set	(i.e.,	the	model	parameters	that	minimize	the	cost	function	over	the	training
set).

Using	an	iterative	optimization	approach,	called	Gradient	Descent	(GD),	that	gradually	tweaks	the
model	parameters	to	minimize	the	cost	function	over	the	training	set,	eventually	converging	to	the
same	set	of	parameters	as	the	first	method.	We	will	look	at	a	few	variants	of	Gradient	Descent	that
we	will	use	again	and	again	when	we	study	neural	networks	in	Part	II:	Batch	GD,	Mini-batch	GD,
and	Stochastic	GD.

Next	we	will	look	at	Polynomial	Regression,	a	more	complex	model	that	can	fit	nonlinear	datasets.	Since
this	model	has	more	parameters	than	Linear	Regression,	it	is	more	prone	to	overfitting	the	training	data,
so	we	will	look	at	how	to	detect	whether	or	not	this	is	the	case,	using	learning	curves,	and	then	we	will
look	at	several	regularization	techniques	that	can	reduce	the	risk	of	overfitting	the	training	set.

Finally,	we	will	look	at	two	more	models	that	are	commonly	used	for	classification	tasks:	Logistic
Regression	and	Softmax	Regression.

WARNING
There	will	be	quite	a	few	math	equations	in	this	chapter,	using	basic	notions	of	linear	algebra	and	calculus.	To	understand	these
equations,	you	will	need	to	know	what	vectors	and	matrices	are,	how	to	transpose	them,	what	the	dot	product	is,	what	matrix
inverse	is,	and	what	partial	derivatives	are.	If	you	are	unfamiliar	with	these	concepts,	please	go	through	the	linear	algebra	and
calculus	introductory	tutorials	available	as	Jupyter	notebooks	in	the	online	supplemental	material.	For	those	who	are	truly	allergic
to	mathematics,	you	should	still	go	through	this	chapter	and	simply	skip	the	equations;	hopefully,	the	text	will	be	sufficient	to	help
you	understand	most	of	the	concepts.

Linear	Regression
In	Chapter	1,	we	looked	at	a	simple	regression	model	of	life	satisfaction:	life_satisfaction	=	θ0	+	θ1	×
GDP_per_capita.

This	model	is	just	a	linear	function	of	the	input	feature	GDP_per_capita.	θ0	and	θ1	are	the	model’s
parameters.

More	generally,	a	linear	model	makes	a	prediction	by	simply	computing	a	weighted	sum	of	the	input
features,	plus	a	constant	called	the	bias	term	(also	called	the	intercept	term),	as	shown	in	Equation	4-1.

Equation	4-1.	Linear	Regression	model	prediction

ŷ	is	the	predicted	value.

n	is	the	number	of	features.

xi	is	the	ith	feature	value.

θj	is	the	jth	model	parameter	(including	the	bias	term	θ0	and	the	feature	weights	θ1,	θ2,	⋯,	θn).

This	can	be	written	much	more	concisely	using	a	vectorized	form,	as	shown	in	Equation	4-2.

Equation	4-2.	Linear	Regression	model	prediction	(vectorized	form)

θ	is	the	model’s	parameter	vector,	containing	the	bias	term	θ0	and	the	feature	weights	θ1	to	θn.

θT	is	the	transpose	of	θ	(a	row	vector	instead	of	a	column	vector).

x	is	the	instance’s	feature	vector,	containing	x0	to	xn,	with	x0	always	equal	to	1.

θT	·	x	is	the	dot	product	of	θT	and	x.

hθ	is	the	hypothesis	function,	using	the	model	parameters	θ.

Okay,	that’s	the	Linear	Regression	model,	so	now	how	do	we	train	it?	Well,	recall	that	training	a	model
means	setting	its	parameters	so	that	the	model	best	fits	the	training	set.	For	this	purpose,	we	first	need	a
measure	of	how	well	(or	poorly)	the	model	fits	the	training	data.	In	Chapter	2	we	saw	that	the	most
common	performance	measure	of	a	regression	model	is	the	Root	Mean	Square	Error	(RMSE)	(Equation

2-1).	Therefore,	to	train	a	Linear	Regression	model,	you	need	to	find	the	value	of	θ	that	minimizes	the
RMSE.	In	practice,	it	is	simpler	to	minimize	the	Mean	Square	Error	(MSE)	than	the	RMSE,	and	it	leads
to	the	same	result	(because	the	value	that	minimizes	a	function	also	minimizes	its	square	root).1

The	MSE	of	a	Linear	Regression	hypothesis	hθ	on	a	training	set	X	is	calculated	using	Equation	4-3.

Equation	4-3.	MSE	cost	function	for	a	Linear	Regression	model

Most	of	these	notations	were	presented	in	Chapter	2	(see	“Notations”).	The	only	difference	is	that	we
write	hθ	instead	of	just	h	in	order	to	make	it	clear	that	the	model	is	parametrized	by	the	vector	θ.	To
simplify	notations,	we	will	just	write	MSE(θ)	instead	of	MSE(X,	hθ).

The	Normal	Equation
To	find	the	value	of	θ	that	minimizes	the	cost	function,	there	is	a	closed-form	solution	—	in	other	words,
a	mathematical	equation	that	gives	the	result	directly.	This	is	called	the	Normal	Equation	(Equation	4-4).2

Equation	4-4.	Normal	Equation

	is	the	value	of	 	that	minimizes	the	cost	function.

y	is	the	vector	of	target	values	containing	y(1)	to	y(m).

Let’s	generate	some	linear-looking	data	to	test	this	equation	on	(Figure	4-1):

import	numpy	as	np

X	=	2	*	np.random.rand(100,	1)

y	=	4	+	3	*	X	+	np.random.randn(100,	1)

Figure	4-1.	Randomly	generated	linear	dataset

Now	let’s	compute	 	using	the	Normal	Equation.	We	will	use	the	inv()	function	from	NumPy’s	Linear
Algebra	module	(np.linalg)	to	compute	the	inverse	of	a	matrix,	and	the	dot()	method	for	matrix
multiplication:

X_b	=	np.c_[np.ones((100,	1)),	X]		#	add	x0	=	1	to	each	instance

theta_best	=	np.linalg.inv(X_b.T.dot(X_b)).dot(X_b.T).dot(y)

The	actual	function	that	we	used	to	generate	the	data	is	y	=	4	+	3x0	+	Gaussian	noise.	Let’s	see	what	the
equation	found:

>>>	theta_best

array([[4.21509616],

							[2.77011339]])

We	would	have	hoped	for	θ0	=	4	and	θ1	=	3	instead	of	θ0	=	3.865	and	θ1	=	3.139.	Close	enough,	but	the
noise	made	it	impossible	to	recover	the	exact	parameters	of	the	original	function.

Now	you	can	make	predictions	using	 :

>>>	X_new	=	np.array([[0],	[2]])

>>>	X_new_b	=	np.c_[np.ones((2,	1)),	X_new]	#	add	x0	=	1	to	each	instance

>>>	y_predict	=	X_new_b.dot(theta_best)

>>>	y_predict

array([[4.21509616],

							[9.75532293]])

Let’s	plot	this	model’s	predictions	(Figure	4-2):

plt.plot(X_new,	y_predict,	"r-")

plt.plot(X,	y,	"b.")

plt.axis([0,	2,	0,	15])

plt.show()

Figure	4-2.	Linear	Regression	model	predictions

The	equivalent	code	using	Scikit-Learn	looks	like	this:3

>>>	from	sklearn.linear_model	import	LinearRegression

>>>	lin_reg	=	LinearRegression()

>>>	lin_reg.fit(X,	y)

>>>	lin_reg.intercept_,	lin_reg.coef_

(array([4.21509616]),	array([[2.77011339]]))

>>>	lin_reg.predict(X_new)

array([[4.21509616],

							[9.75532293]])

Computational	Complexity
The	Normal	Equation	computes	the	inverse	of	XT	·	X,	which	is	an	n	×	n	matrix	(where	n	is	the	number	of
features).	The	computational	complexity	of	inverting	such	a	matrix	is	typically	about	O(n2.4)	to	O(n3)
(depending	on	the	implementation).	In	other	words,	if	you	double	the	number	of	features,	you	multiply	the
computation	time	by	roughly	22.4	=	5.3	to	23	=	8.

WARNING
The	Normal	Equation	gets	very	slow	when	the	number	of	features	grows	large	(e.g.,	100,000).

On	the	positive	side,	this	equation	is	linear	with	regards	to	the	number	of	instances	in	the	training	set	(it	is
O(m)),	so	it	handles	large	training	sets	efficiently,	provided	they	can	fit	in	memory.

Also,	once	you	have	trained	your	Linear	Regression	model	(using	the	Normal	Equation	or	any	other
algorithm),	predictions	are	very	fast:	the	computational	complexity	is	linear	with	regards	to	both	the
number	of	instances	you	want	to	make	predictions	on	and	the	number	of	features.	In	other	words,	making
predictions	on	twice	as	many	instances	(or	twice	as	many	features)	will	just	take	roughly	twice	as	much
time.

Now	we	will	look	at	very	different	ways	to	train	a	Linear	Regression	model,	better	suited	for	cases
where	there	are	a	large	number	of	features,	or	too	many	training	instances	to	fit	in	memory.

Gradient	Descent
Gradient	Descent	is	a	very	generic	optimization	algorithm	capable	of	finding	optimal	solutions	to	a	wide
range	of	problems.	The	general	idea	of	Gradient	Descent	is	to	tweak	parameters	iteratively	in	order	to
minimize	a	cost	function.

Suppose	you	are	lost	in	the	mountains	in	a	dense	fog;	you	can	only	feel	the	slope	of	the	ground	below	your
feet.	A	good	strategy	to	get	to	the	bottom	of	the	valley	quickly	is	to	go	downhill	in	the	direction	of	the
steepest	slope.	This	is	exactly	what	Gradient	Descent	does:	it	measures	the	local	gradient	of	the	error
function	with	regards	to	the	parameter	vector	θ,	and	it	goes	in	the	direction	of	descending	gradient.	Once
the	gradient	is	zero,	you	have	reached	a	minimum!

Concretely,	you	start	by	filling	θ	with	random	values	(this	is	called	random	initialization),	and	then	you
improve	it	gradually,	taking	one	baby	step	at	a	time,	each	step	attempting	to	decrease	the	cost	function
(e.g.,	the	MSE),	until	the	algorithm	converges	to	a	minimum	(see	Figure	4-3).

Figure	4-3.	Gradient	Descent

An	important	parameter	in	Gradient	Descent	is	the	size	of	the	steps,	determined	by	the	learning	rate
hyperparameter.	If	the	learning	rate	is	too	small,	then	the	algorithm	will	have	to	go	through	many	iterations
to	converge,	which	will	take	a	long	time	(see	Figure	4-4).

Figure	4-4.	Learning	rate	too	small

On	the	other	hand,	if	the	learning	rate	is	too	high,	you	might	jump	across	the	valley	and	end	up	on	the	other
side,	possibly	even	higher	up	than	you	were	before.	This	might	make	the	algorithm	diverge,	with	larger
and	larger	values,	failing	to	find	a	good	solution	(see	Figure	4-5).

Figure	4-5.	Learning	rate	too	large

Finally,	not	all	cost	functions	look	like	nice	regular	bowls.	There	may	be	holes,	ridges,	plateaus,	and	all
sorts	of	irregular	terrains,	making	convergence	to	the	minimum	very	difficult.	Figure	4-6	shows	the	two
main	challenges	with	Gradient	Descent:	if	the	random	initialization	starts	the	algorithm	on	the	left,	then	it
will	converge	to	a	local	minimum,	which	is	not	as	good	as	the	global	minimum.	If	it	starts	on	the	right,
then	it	will	take	a	very	long	time	to	cross	the	plateau,	and	if	you	stop	too	early	you	will	never	reach	the
global	minimum.

Figure	4-6.	Gradient	Descent	pitfalls

Fortunately,	the	MSE	cost	function	for	a	Linear	Regression	model	happens	to	be	a	convex	function,	which
means	that	if	you	pick	any	two	points	on	the	curve,	the	line	segment	joining	them	never	crosses	the	curve.
This	implies	that	there	are	no	local	minima,	just	one	global	minimum.	It	is	also	a	continuous	function	with
a	slope	that	never	changes	abruptly.4	These	two	facts	have	a	great	consequence:	Gradient	Descent	is
guaranteed	to	approach	arbitrarily	close	the	global	minimum	(if	you	wait	long	enough	and	if	the	learning
rate	is	not	too	high).

In	fact,	the	cost	function	has	the	shape	of	a	bowl,	but	it	can	be	an	elongated	bowl	if	the	features	have	very
different	scales.	Figure	4-7	shows	Gradient	Descent	on	a	training	set	where	features	1	and	2	have	the
same	scale	(on	the	left),	and	on	a	training	set	where	feature	1	has	much	smaller	values	than	feature	2	(on
the	right).5

Figure	4-7.	Gradient	Descent	with	and	without	feature	scaling

As	you	can	see,	on	the	left	the	Gradient	Descent	algorithm	goes	straight	toward	the	minimum,	thereby
reaching	it	quickly,	whereas	on	the	right	it	first	goes	in	a	direction	almost	orthogonal	to	the	direction	of
the	global	minimum,	and	it	ends	with	a	long	march	down	an	almost	flat	valley.	It	will	eventually	reach	the
minimum,	but	it	will	take	a	long	time.

WARNING
When	using	Gradient	Descent,	you	should	ensure	that	all	features	have	a	similar	scale	(e.g.,	using	Scikit-Learn’s	StandardScaler
class),	or	else	it	will	take	much	longer	to	converge.

This	diagram	also	illustrates	the	fact	that	training	a	model	means	searching	for	a	combination	of	model
parameters	that	minimizes	a	cost	function	(over	the	training	set).	It	is	a	search	in	the	model’s	parameter
space:	the	more	parameters	a	model	has,	the	more	dimensions	this	space	has,	and	the	harder	the	search	is:
searching	for	a	needle	in	a	300-dimensional	haystack	is	much	trickier	than	in	three	dimensions.
Fortunately,	since	the	cost	function	is	convex	in	the	case	of	Linear	Regression,	the	needle	is	simply	at	the
bottom	of	the	bowl.

Batch	Gradient	Descent
To	implement	Gradient	Descent,	you	need	to	compute	the	gradient	of	the	cost	function	with	regards	to
each	model	parameter	θj.	In	other	words,	you	need	to	calculate	how	much	the	cost	function	will	change	if
you	change	θj	just	a	little	bit.	This	is	called	a	partial	derivative.	It	is	like	asking	“what	is	the	slope	of	the
mountain	under	my	feet	if	I	face	east?”	and	then	asking	the	same	question	facing	north	(and	so	on	for	all
other	dimensions,	if	you	can	imagine	a	universe	with	more	than	three	dimensions).	Equation	4-5	computes

the	partial	derivative	of	the	cost	function	with	regards	to	parameter	θj,	noted	 .

Equation	4-5.	Partial	derivatives	of	the	cost	function

Instead	of	computing	these	gradients	individually,	you	can	use	Equation	4-6	to	compute	them	all	in	one	go.
The	gradient	vector,	noted	∇θMSE(θ),	contains	all	the	partial	derivatives	of	the	cost	function	(one	for
each	model	parameter).

Equation	4-6.	Gradient	vector	of	the	cost	function

WARNING
Notice	that	this	formula	involves	calculations	over	the	full	training	set	X,	at	each	Gradient	Descent	step!	This	is	why	the	algorithm
is	called	Batch	Gradient	Descent:	it	uses	the	whole	batch	of	training	data	at	every	step.	As	a	result	it	is	terribly	slow	on	very
large	training	sets	(but	we	will	see	much	faster	Gradient	Descent	algorithms	shortly).	However,	Gradient	Descent	scales	well
with	the	number	of	features;	training	a	Linear	Regression	model	when	there	are	hundreds	of	thousands	of	features	is	much	faster
using	Gradient	Descent	than	using	the	Normal	Equation.

Once	you	have	the	gradient	vector,	which	points	uphill,	just	go	in	the	opposite	direction	to	go	downhill.
This	means	subtracting	∇θMSE(θ)	from	θ.	This	is	where	the	learning	rate	η	comes	into	play:6	multiply	the
gradient	vector	by	η	to	determine	the	size	of	the	downhill	step	(Equation	4-7).

Equation	4-7.	Gradient	Descent	step

Let’s	look	at	a	quick	implementation	of	this	algorithm:

eta	=	0.1		#	learning	rate

n_iterations	=	1000

m	=	100

theta	=	np.random.randn(2,1)		#	random	initialization

for	iteration	in	range(n_iterations):

				gradients	=	2/m	*	X_b.T.dot(X_b.dot(theta)	-	y)

				theta	=	theta	-	eta	*	gradients

That	wasn’t	too	hard!	Let’s	look	at	the	resulting	theta:

>>>	theta

array([[4.21509616],

							[2.77011339]])

Hey,	that’s	exactly	what	the	Normal	Equation	found!	Gradient	Descent	worked	perfectly.	But	what	if	you
had	used	a	different	learning	rate	eta?	Figure	4-8	shows	the	first	10	steps	of	Gradient	Descent	using	three
different	learning	rates	(the	dashed	line	represents	the	starting	point).

Figure	4-8.	Gradient	Descent	with	various	learning	rates

On	the	left,	the	learning	rate	is	too	low:	the	algorithm	will	eventually	reach	the	solution,	but	it	will	take	a
long	time.	In	the	middle,	the	learning	rate	looks	pretty	good:	in	just	a	few	iterations,	it	has	already

converged	to	the	solution.	On	the	right,	the	learning	rate	is	too	high:	the	algorithm	diverges,	jumping	all
over	the	place	and	actually	getting	further	and	further	away	from	the	solution	at	every	step.

To	find	a	good	learning	rate,	you	can	use	grid	search	(see	Chapter	2).	However,	you	may	want	to	limit	the
number	of	iterations	so	that	grid	search	can	eliminate	models	that	take	too	long	to	converge.

You	may	wonder	how	to	set	the	number	of	iterations.	If	it	is	too	low,	you	will	still	be	far	away	from	the
optimal	solution	when	the	algorithm	stops,	but	if	it	is	too	high,	you	will	waste	time	while	the	model
parameters	do	not	change	anymore.	A	simple	solution	is	to	set	a	very	large	number	of	iterations	but	to
interrupt	the	algorithm	when	the	gradient	vector	becomes	tiny	—	that	is,	when	its	norm	becomes	smaller
than	a	tiny	number	ϵ	(called	the	tolerance)	—	because	this	happens	when	Gradient	Descent	has	(almost)
reached	the	minimum.

CONVERGENCE	RATE

When	the	cost	function	is	convex	and	its	slope	does	not	change	abruptly	(as	is	the	case	for	the	MSE	cost	function),	it	can	be	shown	that

Batch	Gradient	Descent	with	a	fixed	learning	rate	has	a	convergence	rate	of	 .	In	other	words,	if	you	divide	the
tolerance	ϵ	by	10	(to	have	a	more	precise	solution),	then	the	algorithm	will	have	to	run	about	10	times	more	iterations.

Stochastic	Gradient	Descent
The	main	problem	with	Batch	Gradient	Descent	is	the	fact	that	it	uses	the	whole	training	set	to	compute
the	gradients	at	every	step,	which	makes	it	very	slow	when	the	training	set	is	large.	At	the	opposite
extreme,	Stochastic	Gradient	Descent	just	picks	a	random	instance	in	the	training	set	at	every	step	and
computes	the	gradients	based	only	on	that	single	instance.	Obviously	this	makes	the	algorithm	much	faster
since	it	has	very	little	data	to	manipulate	at	every	iteration.	It	also	makes	it	possible	to	train	on	huge
training	sets,	since	only	one	instance	needs	to	be	in	memory	at	each	iteration	(SGD	can	be	implemented	as
an	out-of-core	algorithm.7)

On	the	other	hand,	due	to	its	stochastic	(i.e.,	random)	nature,	this	algorithm	is	much	less	regular	than	Batch
Gradient	Descent:	instead	of	gently	decreasing	until	it	reaches	the	minimum,	the	cost	function	will	bounce
up	and	down,	decreasing	only	on	average.	Over	time	it	will	end	up	very	close	to	the	minimum,	but	once	it
gets	there	it	will	continue	to	bounce	around,	never	settling	down	(see	Figure	4-9).	So	once	the	algorithm
stops,	the	final	parameter	values	are	good,	but	not	optimal.

Figure	4-9.	Stochastic	Gradient	Descent

When	the	cost	function	is	very	irregular	(as	in	Figure	4-6),	this	can	actually	help	the	algorithm	jump	out	of
local	minima,	so	Stochastic	Gradient	Descent	has	a	better	chance	of	finding	the	global	minimum	than
Batch	Gradient	Descent	does.

Therefore	randomness	is	good	to	escape	from	local	optima,	but	bad	because	it	means	that	the	algorithm
can	never	settle	at	the	minimum.	One	solution	to	this	dilemma	is	to	gradually	reduce	the	learning	rate.	The
steps	start	out	large	(which	helps	make	quick	progress	and	escape	local	minima),	then	get	smaller	and
smaller,	allowing	the	algorithm	to	settle	at	the	global	minimum.	This	process	is	called	simulated
annealing,	because	it	resembles	the	process	of	annealing	in	metallurgy	where	molten	metal	is	slowly
cooled	down.	The	function	that	determines	the	learning	rate	at	each	iteration	is	called	the	learning
schedule.	If	the	learning	rate	is	reduced	too	quickly,	you	may	get	stuck	in	a	local	minimum,	or	even	end	up
frozen	halfway	to	the	minimum.	If	the	learning	rate	is	reduced	too	slowly,	you	may	jump	around	the
minimum	for	a	long	time	and	end	up	with	a	suboptimal	solution	if	you	halt	training	too	early.

This	code	implements	Stochastic	Gradient	Descent	using	a	simple	learning	schedule:

n_epochs	=	50

t0,	t1	=	5,	50		#	learning	schedule	hyperparameters

def	learning_schedule(t):

				return	t0	/	(t	+	t1)

theta	=	np.random.randn(2,1)		#	random	initialization

for	epoch	in	range(n_epochs):

				for	i	in	range(m):

								random_index	=	np.random.randint(m)

								xi	=	X_b[random_index:random_index+1]

								yi	=	y[random_index:random_index+1]

								gradients	=	2	*	xi.T.dot(xi.dot(theta)	-	yi)

								eta	=	learning_schedule(epoch	*	m	+	i)

								theta	=	theta	-	eta	*	gradients

By	convention	we	iterate	by	rounds	of	m	iterations;	each	round	is	called	an	epoch.	While	the	Batch
Gradient	Descent	code	iterated	1,000	times	through	the	whole	training	set,	this	code	goes	through	the
training	set	only	50	times	and	reaches	a	fairly	good	solution:

>>>	theta

array([[4.21076011],

						[2.74856079]])

Figure	4-10	shows	the	first	10	steps	of	training	(notice	how	irregular	the	steps	are).

Figure	4-10.	Stochastic	Gradient	Descent	first	10	steps

Note	that	since	instances	are	picked	randomly,	some	instances	may	be	picked	several	times	per	epoch
while	others	may	not	be	picked	at	all.	If	you	want	to	be	sure	that	the	algorithm	goes	through	every	instance
at	each	epoch,	another	approach	is	to	shuffle	the	training	set,	then	go	through	it	instance	by	instance,	then
shuffle	it	again,	and	so	on.	However,	this	generally	converges	more	slowly.

To	perform	Linear	Regression	using	SGD	with	Scikit-Learn,	you	can	use	the	SGDRegressor	class,	which
defaults	to	optimizing	the	squared	error	cost	function.	The	following	code	runs	50	epochs,	starting	with	a
learning	rate	of	0.1	(eta0=0.1),	using	the	default	learning	schedule	(different	from	the	preceding	one),
and	it	does	not	use	any	regularization	(penalty=None;	more	details	on	this	shortly):

from	sklearn.linear_model	import	SGDRegressor

sgd_reg	=	SGDRegressor(n_iter=50,	penalty=None,	eta0=0.1)

sgd_reg.fit(X,	y.ravel())

Once	again,	you	find	a	solution	very	close	to	the	one	returned	by	the	Normal	Equation:

>>>	sgd_reg.intercept_,	sgd_reg.coef_

(array([4.18380366]),	array([2.74205299]))

Mini-batch	Gradient	Descent
The	last	Gradient	Descent	algorithm	we	will	look	at	is	called	Mini-batch	Gradient	Descent.	It	is	quite
simple	to	understand	once	you	know	Batch	and	Stochastic	Gradient	Descent:	at	each	step,	instead	of
computing	the	gradients	based	on	the	full	training	set	(as	in	Batch	GD)	or	based	on	just	one	instance	(as	in
Stochastic	GD),	Mini-batch	GD	computes	the	gradients	on	small	random	sets	of	instances	called	mini-
batches.	The	main	advantage	of	Mini-batch	GD	over	Stochastic	GD	is	that	you	can	get	a	performance
boost	from	hardware	optimization	of	matrix	operations,	especially	when	using	GPUs.

The	algorithm’s	progress	in	parameter	space	is	less	erratic	than	with	SGD,	especially	with	fairly	large
mini-batches.	As	a	result,	Mini-batch	GD	will	end	up	walking	around	a	bit	closer	to	the	minimum	than
SGD.	But,	on	the	other	hand,	it	may	be	harder	for	it	to	escape	from	local	minima	(in	the	case	of	problems
that	suffer	from	local	minima,	unlike	Linear	Regression	as	we	saw	earlier).	Figure	4-11	shows	the	paths
taken	by	the	three	Gradient	Descent	algorithms	in	parameter	space	during	training.	They	all	end	up	near
the	minimum,	but	Batch	GD’s	path	actually	stops	at	the	minimum,	while	both	Stochastic	GD	and	Mini-
batch	GD	continue	to	walk	around.	However,	don’t	forget	that	Batch	GD	takes	a	lot	of	time	to	take	each
step,	and	Stochastic	GD	and	Mini-batch	GD	would	also	reach	the	minimum	if	you	used	a	good	learning
schedule.

Figure	4-11.	Gradient	Descent	paths	in	parameter	space

Let’s	compare	the	algorithms	we’ve	discussed	so	far	for	Linear	Regression8	(recall	that	m	is	the	number
of	training	instances	and	n	is	the	number	of	features);	see	Table	4-1.

Table	4-1.	Comparison	of	algorithms	for	Linear	Regression

Table	4-1.	Comparison	of	algorithms	for	Linear	Regression

Algorithm Large	m Out-of-core	support Large	n Hyperparams Scaling	required Scikit-Learn

Normal	Equation Fast No Slow 0 No LinearRegression

Batch	GD Slow No Fast 2 Yes n/a

Stochastic	GD Fast Yes Fast ≥2 Yes SGDRegressor

Mini-batch	GD Fast Yes Fast ≥2 Yes n/a

NOTE
There	is	almost	no	difference	after	training:	all	these	algorithms	end	up	with	very	similar	models	and	make	predictions	in	exactly
the	same	way.

Polynomial	Regression
What	if	your	data	is	actually	more	complex	than	a	simple	straight	line?	Surprisingly,	you	can	actually	use
a	linear	model	to	fit	nonlinear	data.	A	simple	way	to	do	this	is	to	add	powers	of	each	feature	as	new
features,	then	train	a	linear	model	on	this	extended	set	of	features.	This	technique	is	called	Polynomial
Regression.

Let’s	look	at	an	example.	First,	let’s	generate	some	nonlinear	data,	based	on	a	simple	quadratic	equation9
(plus	some	noise;	see	Figure	4-12):

m	=	100

X	=	6	*	np.random.rand(m,	1)	-	3

y	=	0.5	*	X**2	+	X	+	2	+	np.random.randn(m,	1)

Figure	4-12.	Generated	nonlinear	and	noisy	dataset

Clearly,	a	straight	line	will	never	fit	this	data	properly.	So	let’s	use	Scikit-Learn’s	PolynomialFeatures
class	to	transform	our	training	data,	adding	the	square	(2nd-degree	polynomial)	of	each	feature	in	the
training	set	as	new	features	(in	this	case	there	is	just	one	feature):

>>>	from	sklearn.preprocessing	import	PolynomialFeatures

>>>	poly_features	=	PolynomialFeatures(degree=2,	include_bias=False)

>>>	X_poly	=	poly_features.fit_transform(X)

>>>	X[0]

array([-0.75275929])

>>>	X_poly[0]

array([-0.75275929,		0.56664654])

X_poly	now	contains	the	original	feature	of	X	plus	the	square	of	this	feature.	Now	you	can	fit	a
LinearRegression	model	to	this	extended	training	data	(Figure	4-13):

>>>	lin_reg	=	LinearRegression()

>>>	lin_reg.fit(X_poly,	y)

>>>	lin_reg.intercept_,	lin_reg.coef_

(array([1.78134581]),	array([[0.93366893,		0.56456263]]))

Figure	4-13.	Polynomial	Regression	model	predictions

Not	bad:	the	model	estimates	 	when	in	fact	the	original	function	was	
.

Note	that	when	there	are	multiple	features,	Polynomial	Regression	is	capable	of	finding	relationships
between	features	(which	is	something	a	plain	Linear	Regression	model	cannot	do).	This	is	made	possible
by	the	fact	that	PolynomialFeatures	also	adds	all	combinations	of	features	up	to	the	given	degree.	For
example,	if	there	were	two	features	a	and	b,	PolynomialFeatures	with	degree=3	would	not	only	add
the	features	a2,	a3,	b2,	and	b3,	but	also	the	combinations	ab,	a2b,	and	ab2.

WARNING

PolynomialFeatures(degree=d)	transforms	an	array	containing	n	features	into	an	array	containing	 	features,	where	n!
is	the	factorial	of	n,	equal	to	1	×	2	×	3	×	⋯	×	n.	Beware	of	the	combinatorial	explosion	of	the	number	of	features!

Learning	Curves
If	you	perform	high-degree	Polynomial	Regression,	you	will	likely	fit	the	training	data	much	better	than
with	plain	Linear	Regression.	For	example,	Figure	4-14	applies	a	300-degree	polynomial	model	to	the
preceding	training	data,	and	compares	the	result	with	a	pure	linear	model	and	a	quadratic	model	(2nd-
degree	polynomial).	Notice	how	the	300-degree	polynomial	model	wiggles	around	to	get	as	close	as
possible	to	the	training	instances.

Figure	4-14.	High-degree	Polynomial	Regression

Of	course,	this	high-degree	Polynomial	Regression	model	is	severely	overfitting	the	training	data,	while
the	linear	model	is	underfitting	it.	The	model	that	will	generalize	best	in	this	case	is	the	quadratic	model.
It	makes	sense	since	the	data	was	generated	using	a	quadratic	model,	but	in	general	you	won’t	know	what
function	generated	the	data,	so	how	can	you	decide	how	complex	your	model	should	be?	How	can	you	tell
that	your	model	is	overfitting	or	underfitting	the	data?

In	Chapter	2	you	used	cross-validation	to	get	an	estimate	of	a	model’s	generalization	performance.	If	a
model	performs	well	on	the	training	data	but	generalizes	poorly	according	to	the	cross-validation	metrics,
then	your	model	is	overfitting.	If	it	performs	poorly	on	both,	then	it	is	underfitting.	This	is	one	way	to	tell
when	a	model	is	too	simple	or	too	complex.

Another	way	is	to	look	at	the	learning	curves:	these	are	plots	of	the	model’s	performance	on	the	training
set	and	the	validation	set	as	a	function	of	the	training	set	size.	To	generate	the	plots,	simply	train	the	model
several	times	on	different	sized	subsets	of	the	training	set.	The	following	code	defines	a	function	that	plots
the	learning	curves	of	a	model	given	some	training	data:

from	sklearn.metrics	import	mean_squared_error

from	sklearn.model_selection	import	train_test_split

def	plot_learning_curves(model,	X,	y):

				X_train,	X_val,	y_train,	y_val	=	train_test_split(X,	y,	test_size=0.2)

				train_errors,	val_errors	=	[],	[]

				for	m	in	range(1,	len(X_train)):

								model.fit(X_train[:m],	y_train[:m])

								y_train_predict	=	model.predict(X_train[:m])

								y_val_predict	=	model.predict(X_val)

								train_errors.append(mean_squared_error(y_train_predict,	y_train[:m]))

								val_errors.append(mean_squared_error(y_val_predict,	y_val))

				plt.plot(np.sqrt(train_errors),	"r-+",	linewidth=2,	label="train")

				plt.plot(np.sqrt(val_errors),	"b-",	linewidth=3,	label="val")

Let’s	look	at	the	learning	curves	of	the	plain	Linear	Regression	model	(a	straight	line;	Figure	4-15):

lin_reg	=	LinearRegression()

plot_learning_curves(lin_reg,	X,	y)

Figure	4-15.	Learning	curves

This	deserves	a	bit	of	explanation.	First,	let’s	look	at	the	performance	on	the	training	data:	when	there	are
just	one	or	two	instances	in	the	training	set,	the	model	can	fit	them	perfectly,	which	is	why	the	curve	starts
at	zero.	But	as	new	instances	are	added	to	the	training	set,	it	becomes	impossible	for	the	model	to	fit	the
training	data	perfectly,	both	because	the	data	is	noisy	and	because	it	is	not	linear	at	all.	So	the	error	on	the
training	data	goes	up	until	it	reaches	a	plateau,	at	which	point	adding	new	instances	to	the	training	set
doesn’t	make	the	average	error	much	better	or	worse.	Now	let’s	look	at	the	performance	of	the	model	on
the	validation	data.	When	the	model	is	trained	on	very	few	training	instances,	it	is	incapable	of
generalizing	properly,	which	is	why	the	validation	error	is	initially	quite	big.	Then	as	the	model	is	shown
more	training	examples,	it	learns	and	thus	the	validation	error	slowly	goes	down.	However,	once	again	a
straight	line	cannot	do	a	good	job	modeling	the	data,	so	the	error	ends	up	at	a	plateau,	very	close	to	the
other	curve.

These	learning	curves	are	typical	of	an	underfitting	model.	Both	curves	have	reached	a	plateau;	they	are
close	and	fairly	high.

TIP
If	your	model	is	underfitting	the	training	data,	adding	more	training	examples	will	not	help.	You	need	to	use	a	more	complex
model	or	come	up	with	better	features.

Now	let’s	look	at	the	learning	curves	of	a	10th-degree	polynomial	model	on	the	same	data	(Figure	4-16):

from	sklearn.pipeline	import	Pipeline

polynomial_regression	=	Pipeline((

								("poly_features",	PolynomialFeatures(degree=10,	include_bias=False)),

								("sgd_reg",	LinearRegression()),

))

plot_learning_curves(polynomial_regression,	X,	y)

These	learning	curves	look	a	bit	like	the	previous	ones,	but	there	are	two	very	important	differences:
The	error	on	the	training	data	is	much	lower	than	with	the	Linear	Regression	model.

There	is	a	gap	between	the	curves.	This	means	that	the	model	performs	significantly	better	on	the
training	data	than	on	the	validation	data,	which	is	the	hallmark	of	an	overfitting	model.	However,	if
you	used	a	much	larger	training	set,	the	two	curves	would	continue	to	get	closer.

Figure	4-16.	Learning	curves	for	the	polynomial	model

TIP
One	way	to	improve	an	overfitting	model	is	to	feed	it	more	training	data	until	the	validation	error	reaches	the	training	error.

THE	BIAS/VARIANCE	TRADEOFF

An	important	theoretical	result	of	statistics	and	Machine	Learning	is	the	fact	that	a	model’s	generalization	error	can	be	expressed	as	the
sum	of	three	very	different	errors:

Bias
This	part	of	the	generalization	error	is	due	to	wrong	assumptions,	such	as	assuming	that	the	data	is	linear	when	it	is	actually
quadratic.	A	high-bias	model	is	most	likely	to	underfit	the	training	data.10

Variance
This	part	is	due	to	the	model’s	excessive	sensitivity	to	small	variations	in	the	training	data.	A	model	with	many	degrees	of	freedom
(such	as	a	high-degree	polynomial	model)	is	likely	to	have	high	variance,	and	thus	to	overfit	the	training	data.

Irreducible	error
This	part	is	due	to	the	noisiness	of	the	data	itself.	The	only	way	to	reduce	this	part	of	the	error	is	to	clean	up	the	data	(e.g.,	fix	the
data	sources,	such	as	broken	sensors,	or	detect	and	remove	outliers).

Increasing	a	model’s	complexity	will	typically	increase	its	variance	and	reduce	its	bias.	Conversely,	reducing	a	model’s	complexity
increases	its	bias	and	reduces	its	variance.	This	is	why	it	is	called	a	tradeoff.

Regularized	Linear	Models
As	we	saw	in	Chapters	1	and	2,	a	good	way	to	reduce	overfitting	is	to	regularize	the	model	(i.e.,	to
constrain	it):	the	fewer	degrees	of	freedom	it	has,	the	harder	it	will	be	for	it	to	overfit	the	data.	For
example,	a	simple	way	to	regularize	a	polynomial	model	is	to	reduce	the	number	of	polynomial	degrees.

For	a	linear	model,	regularization	is	typically	achieved	by	constraining	the	weights	of	the	model.	We	will
now	look	at	Ridge	Regression,	Lasso	Regression,	and	Elastic	Net,	which	implement	three	different	ways
to	constrain	the	weights.

Ridge	Regression
Ridge	Regression	(also	called	Tikhonov	regularization)	is	a	regularized	version	of	Linear	Regression:	a

regularization	term	equal	to	 	is	added	to	the	cost	function.	This	forces	the	learning	algorithm	to
not	only	fit	the	data	but	also	keep	the	model	weights	as	small	as	possible.	Note	that	the	regularization	term
should	only	be	added	to	the	cost	function	during	training.	Once	the	model	is	trained,	you	want	to	evaluate
the	model’s	performance	using	the	unregularized	performance	measure.

NOTE
It	is	quite	common	for	the	cost	function	used	during	training	to	be	different	from	the	performance	measure	used	for	testing.	Apart
from	regularization,	another	reason	why	they	might	be	different	is	that	a	good	training	cost	function	should	have	optimization-
friendly	derivatives,	while	the	performance	measure	used	for	testing	should	be	as	close	as	possible	to	the	final	objective.	A	good
example	of	this	is	a	classifier	trained	using	a	cost	function	such	as	the	log	loss	(discussed	in	a	moment)	but	evaluated	using
precision/recall.

The	hyperparameter	α	controls	how	much	you	want	to	regularize	the	model.	If	α	=	0	then	Ridge
Regression	is	just	Linear	Regression.	If	α	is	very	large,	then	all	weights	end	up	very	close	to	zero	and	the
result	is	a	flat	line	going	through	the	data’s	mean.	Equation	4-8	presents	the	Ridge	Regression	cost
function.11

Equation	4-8.	Ridge	Regression	cost	function

Note	that	the	bias	term	θ0	is	not	regularized	(the	sum	starts	at	i	=	1,	not	0).	If	we	define	w	as	the	vector	of
feature	weights	(θ1	to	θn),	then	the	regularization	term	is	simply	equal	to	½(∥	w	∥2)2,	where	∥	·	∥2
represents	the	ℓ2	norm	of	the	weight	vector.12	For	Gradient	Descent,	just	add	αw	to	the	MSE	gradient
vector	(Equation	4-6).

WARNING
It	is	important	to	scale	the	data	(e.g.,	using	a	StandardScaler)	before	performing	Ridge	Regression,	as	it	is	sensitive	to	the	scale
of	the	input	features.	This	is	true	of	most	regularized	models.

Figure	4-17	shows	several	Ridge	models	trained	on	some	linear	data	using	different	α	value.	On	the	left,
plain	Ridge	models	are	used,	leading	to	linear	predictions.	On	the	right,	the	data	is	first	expanded	using

PolynomialFeatures(degree=10),	then	it	is	scaled	using	a	StandardScaler,	and	finally	the	Ridge
models	are	applied	to	the	resulting	features:	this	is	Polynomial	Regression	with	Ridge	regularization.
Note	how	increasing	α	leads	to	flatter	(i.e.,	less	extreme,	more	reasonable)	predictions;	this	reduces	the
model’s	variance	but	increases	its	bias.

As	with	Linear	Regression,	we	can	perform	Ridge	Regression	either	by	computing	a	closed-form
equation	or	by	performing	Gradient	Descent.	The	pros	and	cons	are	the	same.	Equation	4-9	shows	the
closed-form	solution	(where	A	is	the	n	×	n	identity	matrix13	except	with	a	0	in	the	top-left	cell,
corresponding	to	the	bias	term).

Figure	4-17.	Ridge	Regression

Equation	4-9.	Ridge	Regression	closed-form	solution

Here	is	how	to	perform	Ridge	Regression	with	Scikit-Learn	using	a	closed-form	solution	(a	variant	of
Equation	4-9	using	a	matrix	factorization	technique	by	André-Louis	Cholesky):

>>>	from	sklearn.linear_model	import	Ridge

>>>	ridge_reg	=	Ridge(alpha=1,	solver="cholesky")

>>>	ridge_reg.fit(X,	y)

>>>	ridge_reg.predict([[1.5]])

array([[1.55071465]])

And	using	Stochastic	Gradient	Descent:14

>>>	sgd_reg	=	SGDRegressor(penalty="l2")

>>>	sgd_reg.fit(X,	y.ravel())

>>>	sgd_reg.predict([[1.5]])

array([[1.13500145]])

The	penalty	hyperparameter	sets	the	type	of	regularization	term	to	use.	Specifying	"l2"	indicates	that
you	want	SGD	to	add	a	regularization	term	to	the	cost	function	equal	to	half	the	square	of	the	ℓ2	norm	of
the	weight	vector:	this	is	simply	Ridge	Regression.

Lasso	Regression
Least	Absolute	Shrinkage	and	Selection	Operator	Regression	(simply	called	Lasso	Regression)	is
another	regularized	version	of	Linear	Regression:	just	like	Ridge	Regression,	it	adds	a	regularization	term
to	the	cost	function,	but	it	uses	the	ℓ1	norm	of	the	weight	vector	instead	of	half	the	square	of	the	ℓ2	norm
(see	Equation	4-10).

Equation	4-10.	Lasso	Regression	cost	function

Figure	4-18	shows	the	same	thing	as	Figure	4-17	but	replaces	Ridge	models	with	Lasso	models	and	uses
smaller	α	values.

Figure	4-18.	Lasso	Regression

An	important	characteristic	of	Lasso	Regression	is	that	it	tends	to	completely	eliminate	the	weights	of	the
least	important	features	(i.e.,	set	them	to	zero).	For	example,	the	dashed	line	in	the	right	plot	on	Figure	4-
18	(with	α	=	10-7)	looks	quadratic,	almost	linear:	all	the	weights	for	the	high-degree	polynomial	features
are	equal	to	zero.	In	other	words,	Lasso	Regression	automatically	performs	feature	selection	and	outputs	a
sparse	model	(i.e.,	with	few	nonzero	feature	weights).

You	can	get	a	sense	of	why	this	is	the	case	by	looking	at	Figure	4-19:	on	the	top-left	plot,	the	background

contours	(ellipses)	represent	an	unregularized	MSE	cost	function	(α	=	0),	and	the	white	circles	show	the
Batch	Gradient	Descent	path	with	that	cost	function.	The	foreground	contours	(diamonds)	represent	the	ℓ1
penalty,	and	the	triangles	show	the	BGD	path	for	this	penalty	only	(α	→	∞).	Notice	how	the	path	first
reaches	θ1	=	0,	then	rolls	down	a	gutter	until	it	reaches	θ2	=	0.	On	the	top-right	plot,	the	contours	represent
the	same	cost	function	plus	an	ℓ1	penalty	with	α	=	0.5.	The	global	minimum	is	on	the	θ2	=	0	axis.	BGD
first	reaches	θ2	=	0,	then	rolls	down	the	gutter	until	it	reaches	the	global	minimum.	The	two	bottom	plots
show	the	same	thing	but	uses	an	ℓ2	penalty	instead.	The	regularized	minimum	is	closer	to	θ	=	0	than	the
unregularized	minimum,	but	the	weights	do	not	get	fully	eliminated.

Figure	4-19.	Lasso	versus	Ridge	regularization

TIP
On	the	Lasso	cost	function,	the	BGD	path	tends	to	bounce	across	the	gutter	toward	the	end.	This	is	because	the	slope	changes
abruptly	at	θ2	=	0.	You	need	to	gradually	reduce	the	learning	rate	in	order	to	actually	converge	to	the	global	minimum.

The	Lasso	cost	function	is	not	differentiable	at	θi	=	0	(for	i	=	1,	2,	⋯,	n),	but	Gradient	Descent	still	works
fine	if	you	use	a	subgradient	vector	g15	instead	when	any	θi	=	0.	Equation	4-11	shows	a	subgradient
vector	equation	you	can	use	for	Gradient	Descent	with	the	Lasso	cost	function.

Equation	4-11.	Lasso	Regression	subgradient	vector

Here	is	a	small	Scikit-Learn	example	using	the	Lasso	class.	Note	that	you	could	instead	use	an
SGDRegressor(penalty="l1").

>>>	from	sklearn.linear_model	import	Lasso

>>>	lasso_reg	=	Lasso(alpha=0.1)

>>>	lasso_reg.fit(X,	y)

>>>	lasso_reg.predict([[1.5]])

array([1.53788174])

Elastic	Net
Elastic	Net	is	a	middle	ground	between	Ridge	Regression	and	Lasso	Regression.	The	regularization	term
is	a	simple	mix	of	both	Ridge	and	Lasso’s	regularization	terms,	and	you	can	control	the	mix	ratio	r.	When
r	=	0,	Elastic	Net	is	equivalent	to	Ridge	Regression,	and	when	r	=	1,	it	is	equivalent	to	Lasso	Regression
(see	Equation	4-12).

Equation	4-12.	Elastic	Net	cost	function

So	when	should	you	use	Linear	Regression,	Ridge,	Lasso,	or	Elastic	Net?	It	is	almost	always	preferable
to	have	at	least	a	little	bit	of	regularization,	so	generally	you	should	avoid	plain	Linear	Regression.	Ridge
is	a	good	default,	but	if	you	suspect	that	only	a	few	features	are	actually	useful,	you	should	prefer	Lasso	or
Elastic	Net	since	they	tend	to	reduce	the	useless	features’	weights	down	to	zero	as	we	have	discussed.	In
general,	Elastic	Net	is	preferred	over	Lasso	since	Lasso	may	behave	erratically	when	the	number	of
features	is	greater	than	the	number	of	training	instances	or	when	several	features	are	strongly	correlated.

Here	is	a	short	example	using	Scikit-Learn’s	ElasticNet	(l1_ratio	corresponds	to	the	mix	ratio	r):

>>>	from	sklearn.linear_model	import	ElasticNet

>>>	elastic_net	=	ElasticNet(alpha=0.1,	l1_ratio=0.5)

>>>	elastic_net.fit(X,	y)

>>>	elastic_net.predict([[1.5]])

array([1.54333232])

Early	Stopping
A	very	different	way	to	regularize	iterative	learning	algorithms	such	as	Gradient	Descent	is	to	stop
training	as	soon	as	the	validation	error	reaches	a	minimum.	This	is	called	early	stopping.	Figure	4-20
shows	a	complex	model	(in	this	case	a	high-degree	Polynomial	Regression	model)	being	trained	using
Batch	Gradient	Descent.	As	the	epochs	go	by,	the	algorithm	learns	and	its	prediction	error	(RMSE)	on	the
training	set	naturally	goes	down,	and	so	does	its	prediction	error	on	the	validation	set.	However,	after	a
while	the	validation	error	stops	decreasing	and	actually	starts	to	go	back	up.	This	indicates	that	the	model
has	started	to	overfit	the	training	data.	With	early	stopping	you	just	stop	training	as	soon	as	the	validation
error	reaches	the	minimum.	It	is	such	a	simple	and	efficient	regularization	technique	that	Geoffrey	Hinton
called	it	a	“beautiful	free	lunch.”

Figure	4-20.	Early	stopping	regularization

TIP
With	Stochastic	and	Mini-batch	Gradient	Descent,	the	curves	are	not	so	smooth,	and	it	may	be	hard	to	know	whether	you	have
reached	the	minimum	or	not.	One	solution	is	to	stop	only	after	the	validation	error	has	been	above	the	minimum	for	some	time
(when	you	are	confident	that	the	model	will	not	do	any	better),	then	roll	back	the	model	parameters	to	the	point	where	the
validation	error	was	at	a	minimum.

Here	is	a	basic	implementation	of	early	stopping:

from	sklearn.base	import	clone

sgd_reg	=	SGDRegressor(n_iter=1,	warm_start=True,	penalty=None,

																							learning_rate="constant",	eta0=0.0005)

minimum_val_error	=	float("inf")

best_epoch	=	None

best_model	=	None

for	epoch	in	range(1000):

				sgd_reg.fit(X_train_poly_scaled,	y_train)		#	continues	where	it	left	off

				y_val_predict	=	sgd_reg.predict(X_val_poly_scaled)

				val_error	=	mean_squared_error(y_val_predict,	y_val)

				if	val_error	<	minimum_val_error:

								minimum_val_error	=	val_error

								best_epoch	=	epoch

								best_model	=	clone(sgd_reg)

Note	that	with	warm_start=True,	when	the	fit()	method	is	called,	it	just	continues	training	where	it	left
off	instead	of	restarting	from	scratch.

Logistic	Regression
As	we	discussed	in	Chapter	1,	some	regression	algorithms	can	be	used	for	classification	as	well	(and
vice	versa).	Logistic	Regression	(also	called	Logit	Regression)	is	commonly	used	to	estimate	the
probability	that	an	instance	belongs	to	a	particular	class	(e.g.,	what	is	the	probability	that	this	email	is
spam?).	If	the	estimated	probability	is	greater	than	50%,	then	the	model	predicts	that	the	instance	belongs
to	that	class	(called	the	positive	class,	labeled	“1”),	or	else	it	predicts	that	it	does	not	(i.e.,	it	belongs	to
the	negative	class,	labeled	“0”).	This	makes	it	a	binary	classifier.

Estimating	Probabilities
So	how	does	it	work?	Just	like	a	Linear	Regression	model,	a	Logistic	Regression	model	computes	a
weighted	sum	of	the	input	features	(plus	a	bias	term),	but	instead	of	outputting	the	result	directly	like	the
Linear	Regression	model	does,	it	outputs	the	logistic	of	this	result	(see	Equation	4-13).

Equation	4-13.	Logistic	Regression	model	estimated	probability	(vectorized	form)

The	logistic	—	also	called	the	logit,	noted	σ(·)	—	is	a	sigmoid	function	(i.e.,	S-shaped)	that	outputs	a
number	between	0	and	1.	It	is	defined	as	shown	in	Equation	4-14	and	Figure	4-21.

Equation	4-14.	Logistic	function

Figure	4-21.	Logistic	function

Once	the	Logistic	Regression	model	has	estimated	the	probability	 	=	hθ(x)	that	an	instance	x	belongs	to
the	positive	class,	it	can	make	its	prediction	ŷ	easily	(see	Equation	4-15).

Equation	4-15.	Logistic	Regression	model	prediction

Notice	that	σ(t)	<	0.5	when	t	<	0,	and	σ(t)	≥	0.5	when	t	≥	0,	so	a	Logistic	Regression	model	predicts	1	if
θT	·	x	is	positive,	and	0	if	it	is	negative.

Training	and	Cost	Function
Good,	now	you	know	how	a	Logistic	Regression	model	estimates	probabilities	and	makes	predictions.
But	how	is	it	trained?	The	objective	of	training	is	to	set	the	parameter	vector	θ	so	that	the	model	estimates
high	probabilities	for	positive	instances	(y	=	1)	and	low	probabilities	for	negative	instances	(y	=	0).	This
idea	is	captured	by	the	cost	function	shown	in	Equation	4-16	for	a	single	training	instance	x.

Equation	4-16.	Cost	function	of	a	single	training	instance

This	cost	function	makes	sense	because	–	log(t)	grows	very	large	when	t	approaches	0,	so	the	cost	will
be	large	if	the	model	estimates	a	probability	close	to	0	for	a	positive	instance,	and	it	will	also	be	very
large	if	the	model	estimates	a	probability	close	to	1	for	a	negative	instance.	On	the	other	hand,	–	log(t)	is
close	to	0	when	t	is	close	to	1,	so	the	cost	will	be	close	to	0	if	the	estimated	probability	is	close	to	0	for	a
negative	instance	or	close	to	1	for	a	positive	instance,	which	is	precisely	what	we	want.

The	cost	function	over	the	whole	training	set	is	simply	the	average	cost	over	all	training	instances.	It	can
be	written	in	a	single	expression	(as	you	can	verify	easily),	called	the	log	loss,	shown	in	Equation	4-17.

Equation	4-17.	Logistic	Regression	cost	function	(log	loss)

The	bad	news	is	that	there	is	no	known	closed-form	equation	to	compute	the	value	of	θ	that	minimizes	this
cost	function	(there	is	no	equivalent	of	the	Normal	Equation).	But	the	good	news	is	that	this	cost	function
is	convex,	so	Gradient	Descent	(or	any	other	optimization	algorithm)	is	guaranteed	to	find	the	global
minimum	(if	the	learning	rate	is	not	too	large	and	you	wait	long	enough).	The	partial	derivatives	of	the
cost	function	with	regards	to	the	jth	model	parameter	θj	is	given	by	Equation	4-18.

Equation	4-18.	Logistic	cost	function	partial	derivatives

This	equation	looks	very	much	like	Equation	4-5:	for	each	instance	it	computes	the	prediction	error	and
multiplies	it	by	the	jth	feature	value,	and	then	it	computes	the	average	over	all	training	instances.	Once	you
have	the	gradient	vector	containing	all	the	partial	derivatives	you	can	use	it	in	the	Batch	Gradient	Descent
algorithm.	That’s	it:	you	now	know	how	to	train	a	Logistic	Regression	model.	For	Stochastic	GD	you
would	of	course	just	take	one	instance	at	a	time,	and	for	Mini-batch	GD	you	would	use	a	mini-batch	at	a
time.

Decision	Boundaries
Let’s	use	the	iris	dataset	to	illustrate	Logistic	Regression.	This	is	a	famous	dataset	that	contains	the	sepal
and	petal	length	and	width	of	150	iris	flowers	of	three	different	species:	Iris-Setosa,	Iris-Versicolor,	and
Iris-Virginica	(see	Figure	4-22).

Figure	4-22.	Flowers	of	three	iris	plant	species16

Let’s	try	to	build	a	classifier	to	detect	the	Iris-Virginica	type	based	only	on	the	petal	width	feature.	First
let’s	load	the	data:

>>>	from	sklearn	import	datasets

>>>	iris	=	datasets.load_iris()

>>>	list(iris.keys())

['data',	'target_names',	'feature_names',	'target',	'DESCR']

>>>	X	=	iris["data"][:,	3:]		#	petal	width

>>>	y	=	(iris["target"]	==	2).astype(np.int)		#	1	if	Iris-Virginica,	else	0

Now	let’s	train	a	Logistic	Regression	model:

from	sklearn.linear_model	import	LogisticRegression

log_reg	=	LogisticRegression()

log_reg.fit(X,	y)

Let’s	look	at	the	model’s	estimated	probabilities	for	flowers	with	petal	widths	varying	from	0	to	3	cm
(Figure	4-23):

X_new	=	np.linspace(0,	3,	1000).reshape(-1,	1)

y_proba	=	log_reg.predict_proba(X_new)

plt.plot(X_new,	y_proba[:,	1],	"g-",	label="Iris-Virginica")

plt.plot(X_new,	y_proba[:,	0],	"b--",	label="Not	Iris-Virginica")

#	+	more	Matplotlib	code	to	make	the	image	look	pretty

Figure	4-23.	Estimated	probabilities	and	decision	boundary

The	petal	width	of	Iris-Virginica	flowers	(represented	by	triangles)	ranges	from	1.4	cm	to	2.5	cm,	while
the	other	iris	flowers	(represented	by	squares)	generally	have	a	smaller	petal	width,	ranging	from	0.1	cm
to	1.8	cm.	Notice	that	there	is	a	bit	of	overlap.	Above	about	2	cm	the	classifier	is	highly	confident	that	the
flower	is	an	Iris-Virginica	(it	outputs	a	high	probability	to	that	class),	while	below	1	cm	it	is	highly
confident	that	it	is	not	an	Iris-Virginica	(high	probability	for	the	“Not	Iris-Virginica”	class).	In	between
these	extremes,	the	classifier	is	unsure.	However,	if	you	ask	it	to	predict	the	class	(using	the	predict()
method	rather	than	the	predict_proba()	method),	it	will	return	whichever	class	is	the	most	likely.
Therefore,	there	is	a	decision	boundary	at	around	1.6	cm	where	both	probabilities	are	equal	to	50%:	if
the	petal	width	is	higher	than	1.6	cm,	the	classifier	will	predict	that	the	flower	is	an	Iris-Virginica,	or	else
it	will	predict	that	it	is	not	(even	if	it	is	not	very	confident):

>>>	log_reg.predict([[1.7],	[1.5]])

array([1,	0])

Figure	4-24	shows	the	same	dataset	but	this	time	displaying	two	features:	petal	width	and	length.	Once
trained,	the	Logistic	Regression	classifier	can	estimate	the	probability	that	a	new	flower	is	an	Iris-
Virginica	based	on	these	two	features.	The	dashed	line	represents	the	points	where	the	model	estimates	a
50%	probability:	this	is	the	model’s	decision	boundary.	Note	that	it	is	a	linear	boundary.17	Each	parallel
line	represents	the	points	where	the	model	outputs	a	specific	probability,	from	15%	(bottom	left)	to	90%
(top	right).	All	the	flowers	beyond	the	top-right	line	have	an	over	90%	chance	of	being	Iris-Virginica
according	to	the	model.

Figure	4-24.	Linear	decision	boundary

Just	like	the	other	linear	models,	Logistic	Regression	models	can	be	regularized	using	ℓ1	or	ℓ2	penalties.
Scitkit-Learn	actually	adds	an	ℓ2	penalty	by	default.

NOTE
The	hyperparameter	controlling	the	regularization	strength	of	a	Scikit-Learn	LogisticRegression	model	is	not	alpha	(as	in	other
linear	models),	but	its	inverse:	C.	The	higher	the	value	of	C,	the	less	the	model	is	regularized.

Softmax	Regression
The	Logistic	Regression	model	can	be	generalized	to	support	multiple	classes	directly,	without	having	to
train	and	combine	multiple	binary	classifiers	(as	discussed	in	Chapter	3).	This	is	called	Softmax
Regression,	or	Multinomial	Logistic	Regression.

The	idea	is	quite	simple:	when	given	an	instance	x,	the	Softmax	Regression	model	first	computes	a	score
sk(x)	for	each	class	k,	then	estimates	the	probability	of	each	class	by	applying	the	softmax	function	(also
called	the	normalized	exponential)	to	the	scores.	The	equation	to	compute	sk(x)	should	look	familiar,	as
it	is	just	like	the	equation	for	Linear	Regression	prediction	(see	Equation	4-19).

Equation	4-19.	Softmax	score	for	class	k

Note	that	each	class	has	its	own	dedicated	parameter	vector	θk.	All	these	vectors	are	typically	stored	as
rows	in	a	parameter	matrix	Θ.

Once	you	have	computed	the	score	of	every	class	for	the	instance	x,	you	can	estimate	the	probability	 k
that	the	instance	belongs	to	class	k	by	running	the	scores	through	the	softmax	function	(Equation	4-20):	it
computes	the	exponential	of	every	score,	then	normalizes	them	(dividing	by	the	sum	of	all	the
exponentials).

Equation	4-20.	Softmax	function

K	is	the	number	of	classes.

s(x)	is	a	vector	containing	the	scores	of	each	class	for	the	instance	x.

σ(s(x))k	is	the	estimated	probability	that	the	instance	x	belongs	to	class	k	given	the	scores	of	each
class	for	that	instance.

Just	like	the	Logistic	Regression	classifier,	the	Softmax	Regression	classifier	predicts	the	class	with	the
highest	estimated	probability	(which	is	simply	the	class	with	the	highest	score),	as	shown	in	Equation	4-
21.

Equation	4-21.	Softmax	Regression	classifier	prediction

The	argmax	operator	returns	the	value	of	a	variable	that	maximizes	a	function.	In	this	equation,	it
returns	the	value	of	k	that	maximizes	the	estimated	probability	σ(s(x))k.

TIP
The	Softmax	Regression	classifier	predicts	only	one	class	at	a	time	(i.e.,	it	is	multiclass,	not	multioutput)	so	it	should	be	used	only
with	mutually	exclusive	classes	such	as	different	types	of	plants.	You	cannot	use	it	to	recognize	multiple	people	in	one	picture.

Now	that	you	know	how	the	model	estimates	probabilities	and	makes	predictions,	let’s	take	a	look	at
training.	The	objective	is	to	have	a	model	that	estimates	a	high	probability	for	the	target	class	(and
consequently	a	low	probability	for	the	other	classes).	Minimizing	the	cost	function	shown	in	Equation	4-
22,	called	the	cross	entropy,	should	lead	to	this	objective	because	it	penalizes	the	model	when	it
estimates	a	low	probability	for	a	target	class.	Cross	entropy	is	frequently	used	to	measure	how	well	a	set
of	estimated	class	probabilities	match	the	target	classes	(we	will	use	it	again	several	times	in	the
following	chapters).

Equation	4-22.	Cross	entropy	cost	function

	is	equal	to	1	if	the	target	class	for	the	ith	instance	is	k;	otherwise,	it	is	equal	to	0.

Notice	that	when	there	are	just	two	classes	(K	=	2),	this	cost	function	is	equivalent	to	the	Logistic
Regression’s	cost	function	(log	loss;	see	Equation	4-17).

CROSS	ENTROPY

Cross	entropy	originated	from	information	theory.	Suppose	you	want	to	efficiently	transmit	information	about	the	weather	every	day.	If
there	are	eight	options	(sunny,	rainy,	etc.),	you	could	encode	each	option	using	3	bits	since	23	=	8.	However,	if	you	think	it	will	be	sunny
almost	every	day,	it	would	be	much	more	efficient	to	code	“sunny”	on	just	one	bit	(0)	and	the	other	seven	options	on	4	bits	(starting	with
a	1).	Cross	entropy	measures	the	average	number	of	bits	you	actually	send	per	option.	If	your	assumption	about	the	weather	is	perfect,
cross	entropy	will	just	be	equal	to	the	entropy	of	the	weather	itself	(i.e.,	its	intrinsic	unpredictability).	But	if	your	assumptions	are	wrong
(e.g.,	if	it	rains	often),	cross	entropy	will	be	greater	by	an	amount	called	the	Kullback–Leibler	divergence.

The	cross	entropy	between	two	probability	distributions	p	and	q	is	defined	as	 	(at	least
when	the	distributions	are	discrete).

The	gradient	vector	of	this	cost	function	with	regards	to	θk	is	given	by	Equation	4-23:

Equation	4-23.	Cross	entropy	gradient	vector	for	class	k

Now	you	can	compute	the	gradient	vector	for	every	class,	then	use	Gradient	Descent	(or	any	other
optimization	algorithm)	to	find	the	parameter	matrix	Θ	that	minimizes	the	cost	function.

Let’s	use	Softmax	Regression	to	classify	the	iris	flowers	into	all	three	classes.	Scikit-Learn’s
LogisticRegression	uses	one-versus-all	by	default	when	you	train	it	on	more	than	two	classes,	but	you
can	set	the	multi_class	hyperparameter	to	"multinomial"	to	switch	it	to	Softmax	Regression	instead.
You	must	also	specify	a	solver	that	supports	Softmax	Regression,	such	as	the	"lbfgs"	solver	(see	Scikit-
Learn’s	documentation	for	more	details).	It	also	applies	ℓ2	regularization	by	default,	which	you	can
control	using	the	hyperparameter	C.

X	=	iris["data"][:,	(2,	3)]		#	petal	length,	petal	width

y	=	iris["target"]

softmax_reg	=	LogisticRegression(multi_class="multinomial",solver="lbfgs",	C=10)

softmax_reg.fit(X,	y)

So	the	next	time	you	find	an	iris	with	5	cm	long	and	2	cm	wide	petals,	you	can	ask	your	model	to	tell	you
what	type	of	iris	it	is,	and	it	will	answer	Iris-Virginica	(class	2)	with	94.2%	probability	(or	Iris-
Versicolor	with	5.8%	probability):

>>>	softmax_reg.predict([[5,	2]])

array([2])

>>>	softmax_reg.predict_proba([[5,	2]])

array([[6.33134078e-07,			5.75276067e-02,			9.42471760e-01]])

Figure	4-25	shows	the	resulting	decision	boundaries,	represented	by	the	background	colors.	Notice	that
the	decision	boundaries	between	any	two	classes	are	linear.	The	figure	also	shows	the	probabilities	for
the	Iris-Versicolor	class,	represented	by	the	curved	lines	(e.g.,	the	line	labeled	with	0.450	represents	the
45%	probability	boundary).	Notice	that	the	model	can	predict	a	class	that	has	an	estimated	probability
below	50%.	For	example,	at	the	point	where	all	decision	boundaries	meet,	all	classes	have	an	equal
estimated	probability	of	33%.

Figure	4-25.	Softmax	Regression	decision	boundaries

Exercises
1.	 What	Linear	Regression	training	algorithm	can	you	use	if	you	have	a	training	set	with	millions	of

features?

2.	 Suppose	the	features	in	your	training	set	have	very	different	scales.	What	algorithms	might	suffer
from	this,	and	how?	What	can	you	do	about	it?

3.	 Can	Gradient	Descent	get	stuck	in	a	local	minimum	when	training	a	Logistic	Regression	model?

4.	 Do	all	Gradient	Descent	algorithms	lead	to	the	same	model	provided	you	let	them	run	long
enough?

5.	 Suppose	you	use	Batch	Gradient	Descent	and	you	plot	the	validation	error	at	every	epoch.	If	you
notice	that	the	validation	error	consistently	goes	up,	what	is	likely	going	on?	How	can	you	fix
this?

6.	 Is	it	a	good	idea	to	stop	Mini-batch	Gradient	Descent	immediately	when	the	validation	error
goes	up?

7.	 Which	Gradient	Descent	algorithm	(among	those	we	discussed)	will	reach	the	vicinity	of	the
optimal	solution	the	fastest?	Which	will	actually	converge?	How	can	you	make	the	others
converge	as	well?

8.	 Suppose	you	are	using	Polynomial	Regression.	You	plot	the	learning	curves	and	you	notice	that
there	is	a	large	gap	between	the	training	error	and	the	validation	error.	What	is	happening?	What
are	three	ways	to	solve	this?

9.	 Suppose	you	are	using	Ridge	Regression	and	you	notice	that	the	training	error	and	the	validation
error	are	almost	equal	and	fairly	high.	Would	you	say	that	the	model	suffers	from	high	bias	or
high	variance?	Should	you	increase	the	regularization	hyperparameter	α	or	reduce	it?

10.	 Why	would	you	want	to	use:
Ridge	Regression	instead	of	Linear	Regression?

Lasso	instead	of	Ridge	Regression?

Elastic	Net	instead	of	Lasso?

11.	 Suppose	you	want	to	classify	pictures	as	outdoor/indoor	and	daytime/nighttime.	Should	you
implement	two	Logistic	Regression	classifiers	or	one	Softmax	Regression	classifier?

12.	 Implement	Batch	Gradient	Descent	with	early	stopping	for	Softmax	Regression	(without	using
Scikit-Learn).

Solutions	to	these	exercises	are	available	in	Appendix	A.

It	is	often	the	case	that	a	learning	algorithm	will	try	to	optimize	a	different	function	than	the	performance	measure	used	to	evaluate	the
final	model.	This	is	generally	because	that	function	is	easier	to	compute,	because	it	has	useful	differentiation	properties	that	the
performance	measure	lacks,	or	because	we	want	to	constrain	the	model	during	training,	as	we	will	see	when	we	discuss	regularization.

The	demonstration	that	this	returns	the	value	of	θ	that	minimizes	the	cost	function	is	outside	the	scope	of	this	book.

Note	that	Scikit-Learn	separates	the	bias	term	(intercept_)	from	the	feature	weights	(coef_).

Technically	speaking,	its	derivative	is	Lipschitz	continuous.

Since	feature	1	is	smaller,	it	takes	a	larger	change	in	θ1	to	affect	the	cost	function,	which	is	why	the	bowl	is	elongated	along	the	θ1	axis.

Eta	(η)	is	the	7

letter	of	the	Greek	alphabet.

Out-of-core	algorithms	are	discussed	in	Chapter	1.

While	the	Normal	Equation	can	only	perform	Linear	Regression,	the	Gradient	Descent	algorithms	can	be	used	to	train	many	other	models,
as	we	will	see.

A	quadratic	equation	is	of	the	form	y	=	ax

+	bx	+	c.

This	notion	of	bias	is	not	to	be	confused	with	the	bias	term	of	linear	models.

It	is	common	to	use	the	notation	J(θ)	for	cost	functions	that	don’t	have	a	short	name;	we	will	often	use	this	notation	throughout	the	rest	of
this	book.	The	context	will	make	it	clear	which	cost	function	is	being	discussed.

Norms	are	discussed	in	Chapter	2.

A	square	matrix	full	of	0s	except	for	1s	on	the	main	diagonal	(top-left	to	bottom-right).

Alternatively	you	can	use	the	Ridge	class	with	the	"sag"	solver.	Stochastic	Average	GD	is	a	variant	of	SGD.	For	more	details,	see	the
presentation	“Minimizing	Finite	Sums	with	the	Stochastic	Average	Gradient	Algorithm”	by	Mark	Schmidt	et	al.	from	the	University	of
British	Columbia.

You	can	think	of	a	subgradient	vector	at	a	nondifferentiable	point	as	an	intermediate	vector	between	the	gradient	vectors	around	that	point.

Photos	reproduced	from	the	corresponding	Wikipedia	pages.	Iris-Virginica	photo	by	Frank	Mayfield	(Creative	Commons	BY-SA	2.0),	Iris-
Versicolor	photo	by	D.	Gordon	E.	Robertson	(Creative	Commons	BY-SA	3.0),	and	Iris-Setosa	photo	is	public	domain.

It	is	the	the	set	of	points	x	such	that	θ0	+	θ1x1	+	θ2x2	=	0,	which	defines	a	straight	line.

1

2

3

4

5

6

th

7

8

9

2

10

11

12

13

14

15

16

17

http://goo.gl/vxVyA2
https://creativecommons.org/licenses/by-sa/2.0/
https://creativecommons.org/licenses/by-sa/3.0/

Chapter	5.	Support	Vector	Machines

A	Support	Vector	Machine	(SVM)	is	a	very	powerful	and	versatile	Machine	Learning	model,	capable	of
performing	linear	or	nonlinear	classification,	regression,	and	even	outlier	detection.	It	is	one	of	the	most
popular	models	in	Machine	Learning,	and	anyone	interested	in	Machine	Learning	should	have	it	in	their
toolbox.	SVMs	are	particularly	well	suited	for	classification	of	complex	but	small-	or	medium-sized
datasets.

This	chapter	will	explain	the	core	concepts	of	SVMs,	how	to	use	them,	and	how	they	work.

Linear	SVM	Classification
The	fundamental	idea	behind	SVMs	is	best	explained	with	some	pictures.	Figure	5-1	shows	part	of	the
iris	dataset	that	was	introduced	at	the	end	of	Chapter	4.	The	two	classes	can	clearly	be	separated	easily
with	a	straight	line	(they	are	linearly	separable).	The	left	plot	shows	the	decision	boundaries	of	three
possible	linear	classifiers.	The	model	whose	decision	boundary	is	represented	by	the	dashed	line	is	so
bad	that	it	does	not	even	separate	the	classes	properly.	The	other	two	models	work	perfectly	on	this
training	set,	but	their	decision	boundaries	come	so	close	to	the	instances	that	these	models	will	probably
not	perform	as	well	on	new	instances.	In	contrast,	the	solid	line	in	the	plot	on	the	right	represents	the
decision	boundary	of	an	SVM	classifier;	this	line	not	only	separates	the	two	classes	but	also	stays	as	far
away	from	the	closest	training	instances	as	possible.	You	can	think	of	an	SVM	classifier	as	fitting	the
widest	possible	street	(represented	by	the	parallel	dashed	lines)	between	the	classes.	This	is	called	large
margin	classification.

Figure	5-1.	Large	margin	classification

Notice	that	adding	more	training	instances	“off	the	street”	will	not	affect	the	decision	boundary	at	all:	it	is
fully	determined	(or	“supported”)	by	the	instances	located	on	the	edge	of	the	street.	These	instances	are
called	the	support	vectors	(they	are	circled	in	Figure	5-1).

WARNING
SVMs	are	sensitive	to	the	feature	scales,	as	you	can	see	in	Figure	5-2:	on	the	left	plot,	the	vertical	scale	is	much	larger	than	the
horizontal	scale,	so	the	widest	possible	street	is	close	to	horizontal.	After	feature	scaling	(e.g.,	using	Scikit-Learn’s
StandardScaler),	the	decision	boundary	looks	much	better	(on	the	right	plot).

Figure	5-2.	Sensitivity	to	feature	scales

Soft	Margin	Classification
If	we	strictly	impose	that	all	instances	be	off	the	street	and	on	the	right	side,	this	is	called	hard	margin
classification.	There	are	two	main	issues	with	hard	margin	classification.	First,	it	only	works	if	the	data
is	linearly	separable,	and	second	it	is	quite	sensitive	to	outliers.	Figure	5-3	shows	the	iris	dataset	with
just	one	additional	outlier:	on	the	left,	it	is	impossible	to	find	a	hard	margin,	and	on	the	right	the	decision
boundary	ends	up	very	different	from	the	one	we	saw	in	Figure	5-1	without	the	outlier,	and	it	will
probably	not	generalize	as	well.

Figure	5-3.	Hard	margin	sensitivity	to	outliers

To	avoid	these	issues	it	is	preferable	to	use	a	more	flexible	model.	The	objective	is	to	find	a	good
balance	between	keeping	the	street	as	large	as	possible	and	limiting	the	margin	violations	(i.e.,	instances
that	end	up	in	the	middle	of	the	street	or	even	on	the	wrong	side).	This	is	called	soft	margin
classification.

In	Scikit-Learn’s	SVM	classes,	you	can	control	this	balance	using	the	C	hyperparameter:	a	smaller	C	value
leads	to	a	wider	street	but	more	margin	violations.	Figure	5-4	shows	the	decision	boundaries	and	margins
of	two	soft	margin	SVM	classifiers	on	a	nonlinearly	separable	dataset.	On	the	left,	using	a	high	C	value
the	classifier	makes	fewer	margin	violations	but	ends	up	with	a	smaller	margin.	On	the	right,	using	a	low
C	value	the	margin	is	much	larger,	but	many	instances	end	up	on	the	street.	However,	it	seems	likely	that
the	second	classifier	will	generalize	better:	in	fact	even	on	this	training	set	it	makes	fewer	prediction
errors,	since	most	of	the	margin	violations	are	actually	on	the	correct	side	of	the	decision	boundary.

Figure	5-4.	Fewer	margin	violations	versus	large	margin

TIP
If	your	SVM	model	is	overfitting,	you	can	try	regularizing	it	by	reducing	C.

The	following	Scikit-Learn	code	loads	the	iris	dataset,	scales	the	features,	and	then	trains	a	linear	SVM
model	(using	the	LinearSVC	class	with	C	=	0.1	and	the	hinge	loss	function,	described	shortly)	to	detect
Iris-Virginica	flowers.	The	resulting	model	is	represented	on	the	right	of	Figure	5-4.

import	numpy	as	np

from	sklearn	import	datasets

from	sklearn.pipeline	import	Pipeline

from	sklearn.preprocessing	import	StandardScaler

from	sklearn.svm	import	LinearSVC

iris	=	datasets.load_iris()

X	=	iris["data"][:,	(2,	3)]		#	petal	length,	petal	width

y	=	(iris["target"]	==	2).astype(np.float64)		#	Iris-Virginica

svm_clf	=	Pipeline((

								("scaler",	StandardScaler()),

								("linear_svc",	LinearSVC(C=1,	loss="hinge")),

))

svm_clf.fit(X_scaled,	y)

Then,	as	usual,	you	can	use	the	model	to	make	predictions:

>>>	svm_clf.predict([[5.5,	1.7]])

array([1.])

NOTE
Unlike	Logistic	Regression	classifiers,	SVM	classifiers	do	not	output	probabilities	for	each	class.

Alternatively,	you	could	use	the	SVC	class,	using	SVC(kernel="linear",	C=1),	but	it	is	much	slower,
especially	with	large	training	sets,	so	it	is	not	recommended.	Another	option	is	to	use	the	SGDClassifier
class,	with	SGDClassifier(loss="hinge",	alpha=1/(m*C)).	This	applies	regular	Stochastic
Gradient	Descent	(see	Chapter	4)	to	train	a	linear	SVM	classifier.	It	does	not	converge	as	fast	as	the
LinearSVC	class,	but	it	can	be	useful	to	handle	huge	datasets	that	do	not	fit	in	memory	(out-of-core
training),	or	to	handle	online	classification	tasks.

TIP
The	LinearSVC	class	regularizes	the	bias	term,	so	you	should	center	the	training	set	first	by	subtracting	its	mean.	This	is
automatic	if	you	scale	the	data	using	the	StandardScaler.	Moreover,	make	sure	you	set	the	loss	hyperparameter	to	"hinge",	as
it	is	not	the	default	value.	Finally,	for	better	performance	you	should	set	the	dual	hyperparameter	to	False,	unless	there	are	more
features	than	training	instances	(we	will	discuss	duality	later	in	the	chapter).

Nonlinear	SVM	Classification
Although	linear	SVM	classifiers	are	efficient	and	work	surprisingly	well	in	many	cases,	many	datasets
are	not	even	close	to	being	linearly	separable.	One	approach	to	handling	nonlinear	datasets	is	to	add	more
features,	such	as	polynomial	features	(as	you	did	in	Chapter	4);	in	some	cases	this	can	result	in	a	linearly
separable	dataset.	Consider	the	left	plot	in	Figure	5-5:	it	represents	a	simple	dataset	with	just	one	feature
x1.	This	dataset	is	not	linearly	separable,	as	you	can	see.	But	if	you	add	a	second	feature	x2	=	(x1)2,	the
resulting	2D	dataset	is	perfectly	linearly	separable.

Figure	5-5.	Adding	features	to	make	a	dataset	linearly	separable

To	implement	this	idea	using	Scikit-Learn,	you	can	create	a	Pipeline	containing	a	PolynomialFeatures
transformer	(discussed	in	“Polynomial	Regression”),	followed	by	a	StandardScaler	and	a	LinearSVC.
Let’s	test	this	on	the	moons	dataset	(see	Figure	5-6):

from	sklearn.datasets	import	make_moons

from	sklearn.pipeline	import	Pipeline

from	sklearn.preprocessing	import	PolynomialFeatures

polynomial_svm_clf	=	Pipeline((

								("poly_features",	PolynomialFeatures(degree=3)),

								("scaler",	StandardScaler()),

								("svm_clf",	LinearSVC(C=10,	loss="hinge"))

))

polynomial_svm_clf.fit(X,	y)

Figure	5-6.	Linear	SVM	classifier	using	polynomial	features

Polynomial	Kernel
Adding	polynomial	features	is	simple	to	implement	and	can	work	great	with	all	sorts	of	Machine	Learning
algorithms	(not	just	SVMs),	but	at	a	low	polynomial	degree	it	cannot	deal	with	very	complex	datasets,
and	with	a	high	polynomial	degree	it	creates	a	huge	number	of	features,	making	the	model	too	slow.

Fortunately,	when	using	SVMs	you	can	apply	an	almost	miraculous	mathematical	technique	called	the
kernel	trick	(it	is	explained	in	a	moment).	It	makes	it	possible	to	get	the	same	result	as	if	you	added	many
polynomial	features,	even	with	very	high-degree	polynomials,	without	actually	having	to	add	them.	So
there	is	no	combinatorial	explosion	of	the	number	of	features	since	you	don’t	actually	add	any	features.
This	trick	is	implemented	by	the	SVC	class.	Let’s	test	it	on	the	moons	dataset:

from	sklearn.svm	import	SVC

poly_kernel_svm_clf	=	Pipeline((

								("scaler",	StandardScaler()),

								("svm_clf",	SVC(kernel="poly",	degree=3,	coef0=1,	C=5))

))

poly_kernel_svm_clf.fit(X,	y)

This	code	trains	an	SVM	classifier	using	a	3rd-degree	polynomial	kernel.	It	is	represented	on	the	left	of
Figure	5-7.	On	the	right	is	another	SVM	classifier	using	a	10th-degree	polynomial	kernel.	Obviously,	if
your	model	is	overfitting,	you	might	want	to	reduce	the	polynomial	degree.	Conversely,	if	it	is
underfitting,	you	can	try	increasing	it.	The	hyperparameter	coef0	controls	how	much	the	model	is
influenced	by	high-degree	polynomials	versus	low-degree	polynomials.

Figure	5-7.	SVM	classifiers	with	a	polynomial	kernel

TIP
A	common	approach	to	find	the	right	hyperparameter	values	is	to	use	grid	search	(see	Chapter	2).	It	is	often	faster	to	first	do	a
very	coarse	grid	search,	then	a	finer	grid	search	around	the	best	values	found.	Having	a	good	sense	of	what	each
hyperparameter	actually	does	can	also	help	you	search	in	the	right	part	of	the	hyperparameter	space.

Adding	Similarity	Features
Another	technique	to	tackle	nonlinear	problems	is	to	add	features	computed	using	a	similarity	function
that	measures	how	much	each	instance	resembles	a	particular	landmark.	For	example,	let’s	take	the	one-
dimensional	dataset	discussed	earlier	and	add	two	landmarks	to	it	at	x1	=	–2	and	x1	=	1	(see	the	left	plot
in	Figure	5-8).	Next,	let’s	define	the	similarity	function	to	be	the	Gaussian	Radial	Basis	Function	(RBF)
with	γ	=	0.3	(see	Equation	5-1).

Equation	5-1.	Gaussian	RBF

It	is	a	bell-shaped	function	varying	from	0	(very	far	away	from	the	landmark)	to	1	(at	the	landmark).	Now
we	are	ready	to	compute	the	new	features.	For	example,	let’s	look	at	the	instance	x1	=	–1:	it	is	located	at	a
distance	of	1	from	the	first	landmark,	and	2	from	the	second	landmark.	Therefore	its	new	features	are	x2	=
exp	(–0.3	×	12)	≈	0.74	and	x3	=	exp	(–0.3	×	22)	≈	0.30.	The	plot	on	the	right	of	Figure	5-8	shows	the
transformed	dataset	(dropping	the	original	features).	As	you	can	see,	it	is	now	linearly	separable.

Figure	5-8.	Similarity	features	using	the	Gaussian	RBF

You	may	wonder	how	to	select	the	landmarks.	The	simplest	approach	is	to	create	a	landmark	at	the
location	of	each	and	every	instance	in	the	dataset.	This	creates	many	dimensions	and	thus	increases	the
chances	that	the	transformed	training	set	will	be	linearly	separable.	The	downside	is	that	a	training	set
with	m	instances	and	n	features	gets	transformed	into	a	training	set	with	m	instances	and	m	features
(assuming	you	drop	the	original	features).	If	your	training	set	is	very	large,	you	end	up	with	an	equally
large	number	of	features.

Gaussian	RBF	Kernel
Just	like	the	polynomial	features	method,	the	similarity	features	method	can	be	useful	with	any	Machine
Learning	algorithm,	but	it	may	be	computationally	expensive	to	compute	all	the	additional	features,
especially	on	large	training	sets.	However,	once	again	the	kernel	trick	does	its	SVM	magic:	it	makes	it
possible	to	obtain	a	similar	result	as	if	you	had	added	many	similarity	features,	without	actually	having	to
add	them.	Let’s	try	the	Gaussian	RBF	kernel	using	the	SVC	class:

rbf_kernel_svm_clf	=	Pipeline((

								("scaler",	StandardScaler()),

								("svm_clf",	SVC(kernel="rbf",	gamma=5,	C=0.001))

))

rbf_kernel_svm_clf.fit(X,	y)

This	model	is	represented	on	the	bottom	left	of	Figure	5-9.	The	other	plots	show	models	trained	with
different	values	of	hyperparameters	gamma	(γ)	and	C.	Increasing	gamma	makes	the	bell-shape	curve
narrower	(see	the	left	plot	of	Figure	5-8),	and	as	a	result	each	instance’s	range	of	influence	is	smaller:	the
decision	boundary	ends	up	being	more	irregular,	wiggling	around	individual	instances.	Conversely,	a
small	gamma	value	makes	the	bell-shaped	curve	wider,	so	instances	have	a	larger	range	of	influence,	and
the	decision	boundary	ends	up	smoother.	So	γ	acts	like	a	regularization	hyperparameter:	if	your	model	is
overfitting,	you	should	reduce	it,	and	if	it	is	underfitting,	you	should	increase	it	(similar	to	the	C
hyperparameter).

Figure	5-9.	SVM	classifiers	using	an	RBF	kernel

Other	kernels	exist	but	are	used	much	more	rarely.	For	example,	some	kernels	are	specialized	for	specific
data	structures.	String	kernels	are	sometimes	used	when	classifying	text	documents	or	DNA	sequences
(e.g.,	using	the	string	subsequence	kernel	or	kernels	based	on	the	Levenshtein	distance).

TIP
With	so	many	kernels	to	choose	from,	how	can	you	decide	which	one	to	use?	As	a	rule	of	thumb,	you	should	always	try	the	linear
kernel	first	(remember	that	LinearSVC	is	much	faster	than	SVC(kernel="linear")),	especially	if	the	training	set	is	very	large	or
if	it	has	plenty	of	features.	If	the	training	set	is	not	too	large,	you	should	try	the	Gaussian	RBF	kernel	as	well;	it	works	well	in
most	cases.	Then	if	you	have	spare	time	and	computing	power,	you	can	also	experiment	with	a	few	other	kernels	using	cross-
validation	and	grid	search,	especially	if	there	are	kernels	specialized	for	your	training	set’s	data	structure.

Computational	Complexity
The	LinearSVC	class	is	based	on	the	liblinear	library,	which	implements	an	optimized	algorithm	for
linear	SVMs.1	It	does	not	support	the	kernel	trick,	but	it	scales	almost	linearly	with	the	number	of	training
instances	and	the	number	of	features:	its	training	time	complexity	is	roughly	O(m	×	n).

The	algorithm	takes	longer	if	you	require	a	very	high	precision.	This	is	controlled	by	the	tolerance
hyperparameter	ϵ	(called	tol	in	Scikit-Learn).	In	most	classification	tasks,	the	default	tolerance	is	fine.

The	SVC	class	is	based	on	the	libsvm	library,	which	implements	an	algorithm	that	supports	the	kernel
trick.2	The	training	time	complexity	is	usually	between	O(m2	×	n)	and	O(m3	×	n).	Unfortunately,	this
means	that	it	gets	dreadfully	slow	when	the	number	of	training	instances	gets	large	(e.g.,	hundreds	of
thousands	of	instances).	This	algorithm	is	perfect	for	complex	but	small	or	medium	training	sets.
However,	it	scales	well	with	the	number	of	features,	especially	with	sparse	features	(i.e.,	when	each
instance	has	few	nonzero	features).	In	this	case,	the	algorithm	scales	roughly	with	the	average	number	of
nonzero	features	per	instance.	Table	5-1	compares	Scikit-Learn’s	SVM	classification	classes.

Table	5-1.	Comparison	of	Scikit-Learn	classes	for	SVM	classification

Class Time	complexity Out-of-core	support Scaling	required Kernel	trick

LinearSVC O(m	×	n) No Yes No

SGDClassifier O(m	×	n) Yes Yes No

SVC O(m²	×	n)	to	O(m³	×	n) No Yes Yes

http://goo.gl/R635CH
http://goo.gl/a8HkE3

SVM	Regression
As	we	mentioned	earlier,	the	SVM	algorithm	is	quite	versatile:	not	only	does	it	support	linear	and
nonlinear	classification,	but	it	also	supports	linear	and	nonlinear	regression.	The	trick	is	to	reverse	the
objective:	instead	of	trying	to	fit	the	largest	possible	street	between	two	classes	while	limiting	margin
violations,	SVM	Regression	tries	to	fit	as	many	instances	as	possible	on	the	street	while	limiting	margin
violations	(i.e.,	instances	off	the	street).	The	width	of	the	street	is	controlled	by	a	hyperparameter	ϵ.
Figure	5-10	shows	two	linear	SVM	Regression	models	trained	on	some	random	linear	data,	one	with	a
large	margin	(ϵ	=	1.5)	and	the	other	with	a	small	margin	(ϵ	=	0.5).

Figure	5-10.	SVM	Regression

Adding	more	training	instances	within	the	margin	does	not	affect	the	model’s	predictions;	thus,	the	model
is	said	to	be	ϵ-insensitive.

You	can	use	Scikit-Learn’s	LinearSVR	class	to	perform	linear	SVM	Regression.	The	following	code
produces	the	model	represented	on	the	left	of	Figure	5-10	(the	training	data	should	be	scaled	and	centered
first):

from	sklearn.svm	import	LinearSVR

svm_reg	=	LinearSVR(epsilon=1.5)

svm_reg.fit(X,	y)

To	tackle	nonlinear	regression	tasks,	you	can	use	a	kernelized	SVM	model.	For	example,	Figure	5-11
shows	SVM	Regression	on	a	random	quadratic	training	set,	using	a	2nd-degree	polynomial	kernel.	There
is	little	regularization	on	the	left	plot	(i.e.,	a	large	C	value),	and	much	more	regularization	on	the	right	plot
(i.e.,	a	small	C	value).

Figure	5-11.	SVM	regression	using	a	2nd-degree	polynomial	kernel

The	following	code	produces	the	model	represented	on	the	left	of	Figure	5-11	using	Scikit-Learn’s	SVR
class	(which	supports	the	kernel	trick).	The	SVR	class	is	the	regression	equivalent	of	the	SVC	class,	and
the	LinearSVR	class	is	the	regression	equivalent	of	the	LinearSVC	class.	The	LinearSVR	class	scales
linearly	with	the	size	of	the	training	set	(just	like	the	LinearSVC	class),	while	the	SVR	class	gets	much	too
slow	when	the	training	set	grows	large	(just	like	the	SVC	class).

from	sklearn.svm	import	SVR

svm_poly_reg	=	SVR(kernel="poly",	degree=2,	C=100,	epsilon=0.1)

svm_poly_reg.fit(X,	y)

NOTE
SVMs	can	also	be	used	for	outlier	detection;	see	Scikit-Learn’s	documentation	for	more	details.

Under	the	Hood
This	section	explains	how	SVMs	make	predictions	and	how	their	training	algorithms	work,	starting	with
linear	SVM	classifiers.	You	can	safely	skip	it	and	go	straight	to	the	exercises	at	the	end	of	this	chapter	if
you	are	just	getting	started	with	Machine	Learning,	and	come	back	later	when	you	want	to	get	a	deeper
understanding	of	SVMs.

First,	a	word	about	notations:	in	Chapter	4	we	used	the	convention	of	putting	all	the	model	parameters	in
one	vector	θ,	including	the	bias	term	θ0	and	the	input	feature	weights	θ1	to	θn,	and	adding	a	bias	input	x0	=
1	to	all	instances.	In	this	chapter,	we	will	use	a	different	convention,	which	is	more	convenient	(and	more
common)	when	you	are	dealing	with	SVMs:	the	bias	term	will	be	called	b	and	the	feature	weights	vector
will	be	called	w.	No	bias	feature	will	be	added	to	the	input	feature	vectors.

Decision	Function	and	Predictions
The	linear	SVM	classifier	model	predicts	the	class	of	a	new	instance	x	by	simply	computing	the	decision
function	wT	·	x	+	b	=	w1	x1	+	⋯	+	wn	xn	+	b:	if	the	result	is	positive,	the	predicted	class	ŷ	is	the	positive
class	(1),	or	else	it	is	the	negative	class	(0);	see	Equation	5-2.

Equation	5-2.	Linear	SVM	classifier	prediction

Figure	5-12	shows	the	decision	function	that	corresponds	to	the	model	on	the	right	of	Figure	5-4:	it	is	a
two-dimensional	plane	since	this	dataset	has	two	features	(petal	width	and	petal	length).	The	decision
boundary	is	the	set	of	points	where	the	decision	function	is	equal	to	0:	it	is	the	intersection	of	two	planes,
which	is	a	straight	line	(represented	by	the	thick	solid	line).3

Figure	5-12.	Decision	function	for	the	iris	dataset

The	dashed	lines	represent	the	points	where	the	decision	function	is	equal	to	1	or	–1:	they	are	parallel	and
at	equal	distance	to	the	decision	boundary,	forming	a	margin	around	it.	Training	a	linear	SVM	classifier
means	finding	the	value	of	w	and	b	that	make	this	margin	as	wide	as	possible	while	avoiding	margin

violations	(hard	margin)	or	limiting	them	(soft	margin).

Training	Objective
Consider	the	slope	of	the	decision	function:	it	is	equal	to	the	norm	of	the	weight	vector,	∥	w	∥.	If	we
divide	this	slope	by	2,	the	points	where	the	decision	function	is	equal	to	±1	are	going	to	be	twice	as	far
away	from	the	decision	boundary.	In	other	words,	dividing	the	slope	by	2	will	multiply	the	margin	by	2.
Perhaps	this	is	easier	to	visualize	in	2D	in	Figure	5-13.	The	smaller	the	weight	vector	w,	the	larger	the
margin.

Figure	5-13.	A	smaller	weight	vector	results	in	a	larger	margin

So	we	want	to	minimize	∥	w	∥	to	get	a	large	margin.	However,	if	we	also	want	to	avoid	any	margin
violation	(hard	margin),	then	we	need	the	decision	function	to	be	greater	than	1	for	all	positive	training
instances,	and	lower	than	–1	for	negative	training	instances.	If	we	define	t(i)	=	–1	for	negative	instances	(if
y(i)	=	0)	and	t(i)	=	1	for	positive	instances	(if	y(i)	=	1),	then	we	can	express	this	constraint	as	t(i)(wT	·	x(i)	+
b)	≥	1	for	all	instances.

We	can	therefore	express	the	hard	margin	linear	SVM	classifier	objective	as	the	constrained
optimization	problem	in	Equation	5-3.

Equation	5-3.	Hard	margin	linear	SVM	classifier	objective

NOTE

We	are	minimizing	 wT	·	w,	which	is	equal	to	 ∥	w	∥2,	rather	than	minimizing	∥	w	∥.	This	is	because	it	will	give	the	same	result

(since	the	values	of	w	and	b	that	minimize	a	value	also	minimize	half	of	its	square),	but	 ∥	w	∥2	has	a	nice	and	simple	derivative
(it	is	just	w)	while	∥	w	∥	is	not	differentiable	at	w	=	0.	Optimization	algorithms	work	much	better	on	differentiable	functions.

To	get	the	soft	margin	objective,	we	need	to	introduce	a	slack	variable	ζ(i)	≥	0	for	each	instance:4	ζ(i)

measures	how	much	the	ith	instance	is	allowed	to	violate	the	margin.	We	now	have	two	conflicting

objectives:	making	the	slack	variables	as	small	as	possible	to	reduce	the	margin	violations,	and	making	
wT	·	w	as	small	as	possible	to	increase	the	margin.	This	is	where	the	C	hyperparameter	comes	in:	it
allows	us	to	define	the	tradeoff	between	these	two	objectives.	This	gives	us	the	constrained	optimization
problem	in	Equation	5-4.

Equation	5-4.	Soft	margin	linear	SVM	classifier	objective

Quadratic	Programming
The	hard	margin	and	soft	margin	problems	are	both	convex	quadratic	optimization	problems	with	linear
constraints.	Such	problems	are	known	as	Quadratic	Programming	(QP)	problems.	Many	off-the-shelf
solvers	are	available	to	solve	QP	problems	using	a	variety	of	techniques	that	are	outside	the	scope	of	this
book.5	The	general	problem	formulation	is	given	by	Equation	5-5.

Equation	5-5.	Quadratic	Programming	problem

Note	that	the	expression	A	·	p	≤	b	actually	defines	nc	constraints:	pT	·	a(i)	≤	b(i)	for	i	=	1,	2,	⋯,	nc,	where
a(i)	is	the	vector	containing	the	elements	of	the	ith	row	of	A	and	b(i)	is	the	ith	element	of	b.

You	can	easily	verify	that	if	you	set	the	QP	parameters	in	the	following	way,	you	get	the	hard	margin
linear	SVM	classifier	objective:

np	=	n	+	1,	where	n	is	the	number	of	features	(the	+1	is	for	the	bias	term).

nc	=	m,	where	m	is	the	number	of	training	instances.

H	is	the	np	×	np	identity	matrix,	except	with	a	zero	in	the	top-left	cell	(to	ignore	the	bias	term).

f	=	0,	an	np-dimensional	vector	full	of	0s.

b	=	1,	an	nc-dimensional	vector	full	of	1s.

a(i)	=	–t(i)	 (i),	where	 (i)	is	equal	to	x(i)	with	an	extra	bias	feature	 0	=	1.

So	one	way	to	train	a	hard	margin	linear	SVM	classifier	is	just	to	use	an	off-the-shelf	QP	solver	by
passing	it	the	preceding	parameters.	The	resulting	vector	p	will	contain	the	bias	term	b	=	p0	and	the
feature	weights	wi	=	pi	for	i	=	1,	2,	⋯,	m.	Similarly,	you	can	use	a	QP	solver	to	solve	the	soft	margin
problem	(see	the	exercises	at	the	end	of	the	chapter).

However,	to	use	the	kernel	trick	we	are	going	to	look	at	a	different	constrained	optimization	problem.

The	Dual	Problem
Given	a	constrained	optimization	problem,	known	as	the	primal	problem,	it	is	possible	to	express	a
different	but	closely	related	problem,	called	its	dual	problem.	The	solution	to	the	dual	problem	typically
gives	a	lower	bound	to	the	solution	of	the	primal	problem,	but	under	some	conditions	it	can	even	have	the
same	solutions	as	the	primal	problem.	Luckily,	the	SVM	problem	happens	to	meet	these	conditions,6	so
you	can	choose	to	solve	the	primal	problem	or	the	dual	problem;	both	will	have	the	same	solution.
Equation	5-6	shows	the	dual	form	of	the	linear	SVM	objective	(if	you	are	interested	in	knowing	how	to
derive	the	dual	problem	from	the	primal	problem,	see	Appendix	C).

Equation	5-6.	Dual	form	of	the	linear	SVM	objective

Once	you	find	the	vector	 	that	minimizes	this	equation	(using	a	QP	solver),	you	can	compute	 	and	
that	minimize	the	primal	problem	by	using	Equation	5-7.

Equation	5-7.	From	the	dual	solution	to	the	primal	solution

The	dual	problem	is	faster	to	solve	than	the	primal	when	the	number	of	training	instances	is	smaller	than
the	number	of	features.	More	importantly,	it	makes	the	kernel	trick	possible,	while	the	primal	does	not.	So

what	is	this	kernel	trick	anyway?

Kernelized	SVM
Suppose	you	want	to	apply	a	2nd-degree	polynomial	transformation	to	a	two-dimensional	training	set
(such	as	the	moons	training	set),	then	train	a	linear	SVM	classifier	on	the	transformed	training	set.
Equation	5-8	shows	the	2nd-degree	polynomial	mapping	function	ϕ	that	you	want	to	apply.

Equation	5-8.	Second-degree	polynomial	mapping

Notice	that	the	transformed	vector	is	three-dimensional	instead	of	two-dimensional.	Now	let’s	look	at
what	happens	to	a	couple	of	two-dimensional	vectors,	a	and	b,	if	we	apply	this	2nd-degree	polynomial
mapping	and	then	compute	the	dot	product	of	the	transformed	vectors	(See	Equation	5-9).

Equation	5-9.	Kernel	trick	for	a	2nd-degree	polynomial	mapping

How	about	that?	The	dot	product	of	the	transformed	vectors	is	equal	to	the	square	of	the	dot	product	of	the
original	vectors:	ϕ(a)T	·	ϕ(b)	=	(aT	·	b)2.

Now	here	is	the	key	insight:	if	you	apply	the	transformation	ϕ	to	all	training	instances,	then	the	dual
problem	(see	Equation	5-6)	will	contain	the	dot	product	ϕ(x(i))T	·	ϕ(x(j)).	But	if	ϕ	is	the	2nd-degree
polynomial	transformation	defined	in	Equation	5-8,	then	you	can	replace	this	dot	product	of	transformed

vectors	simply	by	 .	So	you	don’t	actually	need	to	transform	the	training	instances	at	all:	just
replace	the	dot	product	by	its	square	in	Equation	5-6.	The	result	will	be	strictly	the	same	as	if	you	went
through	the	trouble	of	actually	transforming	the	training	set	then	fitting	a	linear	SVM	algorithm,	but	this

trick	makes	the	whole	process	much	more	computationally	efficient.	This	is	the	essence	of	the	kernel
trick.

The	function	K(a,	b)	=	(aT	·	b)2	is	called	a	2nd-degree	polynomial	kernel.	In	Machine	Learning,	a	kernel
is	a	function	capable	of	computing	the	dot	product	ϕ(a)T	·	ϕ(b)	based	only	on	the	original	vectors	a	and	b,
without	having	to	compute	(or	even	to	know	about)	the	transformation	ϕ.	Equation	5-10	lists	some	of	the
most	commonly	used	kernels.

Equation	5-10.	Common	kernels

MERCER’S	THEOREM

According	to	Mercer’s	theorem,	if	a	function	K(a,	b)	respects	a	few	mathematical	conditions	called	Mercer’s	conditions	(K	must	be
continuous,	symmetric	in	its	arguments	so	K(a,	b)	=	K(b,	a),	etc.),	then	there	exists	a	function	ϕ	that	maps	a	and	b	into	another	space
(possibly	with	much	higher	dimensions)	such	that	K(a,	b)	=	ϕ(a)T	·	ϕ(b).	So	you	can	use	K	as	a	kernel	since	you	know	ϕ	exists,	even	if
you	don’t	know	what	ϕ	is.	In	the	case	of	the	Gaussian	RBF	kernel,	it	can	be	shown	that	ϕ	actually	maps	each	training	instance	to	an
infinite-dimensional	space,	so	it’s	a	good	thing	you	don’t	need	to	actually	perform	the	mapping!

Note	that	some	frequently	used	kernels	(such	as	the	Sigmoid	kernel)	don’t	respect	all	of	Mercer’s	conditions,	yet	they	generally	work
well	in	practice.

There	is	still	one	loose	end	we	must	tie.	Equation	5-7	shows	how	to	go	from	the	dual	solution	to	the
primal	solution	in	the	case	of	a	linear	SVM	classifier,	but	if	you	apply	the	kernel	trick	you	end	up	with
equations	that	include	ϕ(x(i)).	In	fact,	 	must	have	the	same	number	of	dimensions	as	ϕ(x(i)),	which	may
be	huge	or	even	infinite,	so	you	can’t	compute	it.	But	how	can	you	make	predictions	without	knowing	 ?
Well,	the	good	news	is	that	you	can	plug	in	the	formula	for	 	from	Equation	5-7	into	the	decision	function
for	a	new	instance	x(n),	and	you	get	an	equation	with	only	dot	products	between	input	vectors.	This	makes
it	possible	to	use	the	kernel	trick,	once	again	(Equation	5-11).

Equation	5-11.	Making	predictions	with	a	kernelized	SVM

Note	that	since	α(i)	≠	0	only	for	support	vectors,	making	predictions	involves	computing	the	dot	product	of
the	new	input	vector	x(n)	with	only	the	support	vectors,	not	all	the	training	instances.	Of	course,	you	also
need	to	compute	the	bias	term	 ,	using	the	same	trick	(Equation	5-12).

Equation	5-12.	Computing	the	bias	term	using	the	kernel	trick

If	you	are	starting	to	get	a	headache,	it’s	perfectly	normal:	it’s	an	unfortunate	side	effects	of	the	kernel
trick.

Online	SVMs
Before	concluding	this	chapter,	let’s	take	a	quick	look	at	online	SVM	classifiers	(recall	that	online
learning	means	learning	incrementally,	typically	as	new	instances	arrive).

For	linear	SVM	classifiers,	one	method	is	to	use	Gradient	Descent	(e.g.,	using	SGDClassifier)	to
minimize	the	cost	function	in	Equation	5-13,	which	is	derived	from	the	primal	problem.	Unfortunately	it
converges	much	more	slowly	than	the	methods	based	on	QP.

Equation	5-13.	Linear	SVM	classifier	cost	function

The	first	sum	in	the	cost	function	will	push	the	model	to	have	a	small	weight	vector	w,	leading	to	a	larger
margin.	The	second	sum	computes	the	total	of	all	margin	violations.	An	instance’s	margin	violation	is
equal	to	0	if	it	is	located	off	the	street	and	on	the	correct	side,	or	else	it	is	proportional	to	the	distance	to
the	correct	side	of	the	street.	Minimizing	this	term	ensures	that	the	model	makes	the	margin	violations	as
small	and	as	few	as	possible

HINGE	LOSS

The	function	max(0,	1	–	t)	is	called	the	hinge	loss	function	(represented	below).	It	is	equal	to	0	when	t	≥	1.	Its	derivative	(slope)	is	equal
to	–1	if	t	<	1	and	0	if	t	>	1.	It	is	not	differentiable	at	t	=	1,	but	just	like	for	Lasso	Regression	(see	“Lasso	Regression”)	you	can	still	use
Gradient	Descent	using	any	subderivative	at	t	=	0	(i.e.,	any	value	between	–1	and	0).

It	is	also	possible	to	implement	online	kernelized	SVMs	—	for	example,	using	“Incremental	and
Decremental	SVM	Learning”7	or	“Fast	Kernel	Classifiers	with	Online	and	Active	Learning.”8	However,
these	are	implemented	in	Matlab	and	C++.	For	large-scale	nonlinear	problems,	you	may	want	to	consider
using	neural	networks	instead	(see	Part	II).

http://goo.gl/JEqVui
https://goo.gl/hsoUHA

Exercises
1.	 What	is	the	fundamental	idea	behind	Support	Vector	Machines?

2.	 What	is	a	support	vector?

3.	 Why	is	it	important	to	scale	the	inputs	when	using	SVMs?

4.	 Can	an	SVM	classifier	output	a	confidence	score	when	it	classifies	an	instance?	What	about	a
probability?

5.	 Should	you	use	the	primal	or	the	dual	form	of	the	SVM	problem	to	train	a	model	on	a	training	set
with	millions	of	instances	and	hundreds	of	features?

6.	 Say	you	trained	an	SVM	classifier	with	an	RBF	kernel.	It	seems	to	underfit	the	training	set:
should	you	increase	or	decrease	γ	(gamma)?	What	about	C?

7.	 How	should	you	set	the	QP	parameters	(H,	f,	A,	and	b)	to	solve	the	soft	margin	linear	SVM
classifier	problem	using	an	off-the-shelf	QP	solver?

8.	 Train	a	LinearSVC	on	a	linearly	separable	dataset.	Then	train	an	SVC	and	a	SGDClassifier	on
the	same	dataset.	See	if	you	can	get	them	to	produce	roughly	the	same	model.

9.	 Train	an	SVM	classifier	on	the	MNIST	dataset.	Since	SVM	classifiers	are	binary	classifiers,	you
will	need	to	use	one-versus-all	to	classify	all	10	digits.	You	may	want	to	tune	the
hyperparameters	using	small	validation	sets	to	speed	up	the	process.	What	accuracy	can	you
reach?

10.	 Train	an	SVM	regressor	on	the	California	housing	dataset.

Solutions	to	these	exercises	are	available	in	Appendix	A.

“A	Dual	Coordinate	Descent	Method	for	Large-scale	Linear	SVM,”	Lin	et	al.	(2008).

“Sequential	Minimal	Optimization	(SMO),”	J.	Platt	(1998).

More	generally,	when	there	are	n	features,	the	decision	function	is	an	n-dimensional	hyperplane,	and	the	decision	boundary	is	an	(n	–	1)-
dimensional	hyperplane.

Zeta	(ζ)	is	the	8

letter	of	the	Greek	alphabet.

To	learn	more	about	Quadratic	Programming,	you	can	start	by	reading	Stephen	Boyd	and	Lieven	Vandenberghe,	Convex	Optimization
(Cambridge,	UK:	Cambridge	University	Press,	2004)	or	watch	Richard	Brown’s	series	of	video	lectures.

The	objective	function	is	convex,	and	the	inequality	constraints	are	continuously	differentiable	and	convex	functions.

“Incremental	and	Decremental	Support	Vector	Machine	Learning,”	G.	Cauwenberghs,	T.	Poggio	(2001).

“Fast	Kernel	Classifiers	with	Online	and	Active	Learning,“	A.	Bordes,	S.	Ertekin,	J.	Weston,	L.	Bottou	(2005).

1

2

3

4

th

5

6

7

8

http://goo.gl/FGXuLw
http://goo.gl/rTo3Af

Chapter	6.	Decision	Trees

Like	SVMs,	Decision	Trees	are	versatile	Machine	Learning	algorithms	that	can	perform	both
classification	and	regression	tasks,	and	even	multioutput	tasks.	They	are	very	powerful	algorithms,
capable	of	fitting	complex	datasets.	For	example,	in	Chapter	2	you	trained	a	DecisionTreeRegressor
model	on	the	California	housing	dataset,	fitting	it	perfectly	(actually	overfitting	it).

Decision	Trees	are	also	the	fundamental	components	of	Random	Forests	(see	Chapter	7),	which	are
among	the	most	powerful	Machine	Learning	algorithms	available	today.

In	this	chapter	we	will	start	by	discussing	how	to	train,	visualize,	and	make	predictions	with	Decision
Trees.	Then	we	will	go	through	the	CART	training	algorithm	used	by	Scikit-Learn,	and	we	will	discuss
how	to	regularize	trees	and	use	them	for	regression	tasks.	Finally,	we	will	discuss	some	of	the	limitations
of	Decision	Trees.

Training	and	Visualizing	a	Decision	Tree
To	understand	Decision	Trees,	let’s	just	build	one	and	take	a	look	at	how	it	makes	predictions.	The
following	code	trains	a	DecisionTreeClassifier	on	the	iris	dataset	(see	Chapter	4):

from	sklearn.datasets	import	load_iris

from	sklearn.tree	import	DecisionTreeClassifier

iris	=	load_iris()

X	=	iris.data[:,	2:]	#	petal	length	and	width

y	=	iris.target

tree_clf	=	DecisionTreeClassifier(max_depth=2)

tree_clf.fit(X,	y)

You	can	visualize	the	trained	Decision	Tree	by	first	using	the	export_graphviz()	method	to	output	a
graph	definition	file	called	iris_tree.dot:

from	sklearn.tree	import	export_graphviz

export_graphviz(

								tree_clf,

								out_file=image_path("iris_tree.dot"),

								feature_names=iris.feature_names[2:],

								class_names=iris.target_names,

								rounded=True,

								filled=True

)

Then	you	can	convert	this	.dot	file	to	a	variety	of	formats	such	as	PDF	or	PNG	using	the	dot	command-
line	tool	from	the	graphviz	package.1	This	command	line	converts	the	.dot	file	to	a	.png	image	file:

$	dot	-Tpng	iris_tree.dot	-o	iris_tree.png

Your	first	decision	tree	looks	like	Figure	6-1.

Figure	6-1.	Iris	Decision	Tree

Making	Predictions
Let’s	see	how	the	tree	represented	in	Figure	6-1	makes	predictions.	Suppose	you	find	an	iris	flower	and
you	want	to	classify	it.	You	start	at	the	root	node	(depth	0,	at	the	top):	this	node	asks	whether	the	flower’s
petal	length	is	smaller	than	2.45	cm.	If	it	is,	then	you	move	down	to	the	root’s	left	child	node	(depth	1,
left).	In	this	case,	it	is	a	leaf	node	(i.e.,	it	does	not	have	any	children	nodes),	so	it	does	not	ask	any
questions:	you	can	simply	look	at	the	predicted	class	for	that	node	and	the	Decision	Tree	predicts	that
your	flower	is	an	Iris-Setosa	(class=setosa).

Now	suppose	you	find	another	flower,	but	this	time	the	petal	length	is	greater	than	2.45	cm.	You	must
move	down	to	the	root’s	right	child	node	(depth	1,	right),	which	is	not	a	leaf	node,	so	it	asks	another
question:	is	the	petal	width	smaller	than	1.75	cm?	If	it	is,	then	your	flower	is	most	likely	an	Iris-
Versicolor	(depth	2,	left).	If	not,	it	is	likely	an	Iris-Virginica	(depth	2,	right).	It’s	really	that	simple.

NOTE
One	of	the	many	qualities	of	Decision	Trees	is	that	they	require	very	little	data	preparation.	In	particular,	they	don’t	require
feature	scaling	or	centering	at	all.

A	node’s	samples	attribute	counts	how	many	training	instances	it	applies	to.	For	example,	100	training
instances	have	a	petal	length	greater	than	2.45	cm	(depth	1,	right),	among	which	54	have	a	petal	width
smaller	than	1.75	cm	(depth	2,	left).	A	node’s	value	attribute	tells	you	how	many	training	instances	of
each	class	this	node	applies	to:	for	example,	the	bottom-right	node	applies	to	0	Iris-Setosa,	1	Iris-
Versicolor,	and	45	Iris-Virginica.	Finally,	a	node’s	gini	attribute	measures	its	impurity:	a	node	is	“pure”
(gini=0)	if	all	training	instances	it	applies	to	belong	to	the	same	class.	For	example,	since	the	depth-1
left	node	applies	only	to	Iris-Setosa	training	instances,	it	is	pure	and	its	gini	score	is	0.	Equation	6-1
shows	how	the	training	algorithm	computes	the	gini	score	Gi	of	the	ith	node.	For	example,	the	depth-2	left
node	has	a	gini	score	equal	to	1	–	(0/54)2	–	(49/54)2	–	(5/54)2	≈	0.168.	Another	impurity	measure	is
discussed	shortly.

Equation	6-1.	Gini	impurity

pi,k	is	the	ratio	of	class	k	instances	among	the	training	instances	in	the	ith	node.

NOTE
Scikit-Learn	uses	the	CART	algorithm,	which	produces	only	binary	trees:	nonleaf	nodes	always	have	two	children	(i.e.,
questions	only	have	yes/no	answers).	However,	other	algorithms	such	as	ID3	can	produce	Decision	Trees	with	nodes	that	have
more	than	two	children.

Figure	6-2	shows	this	Decision	Tree’s	decision	boundaries.	The	thick	vertical	line	represents	the	decision
boundary	of	the	root	node	(depth	0):	petal	length	=	2.45	cm.	Since	the	left	area	is	pure	(only	Iris-Setosa),
it	cannot	be	split	any	further.	However,	the	right	area	is	impure,	so	the	depth-1	right	node	splits	it	at	petal
width	=	1.75	cm	(represented	by	the	dashed	line).	Since	max_depth	was	set	to	2,	the	Decision	Tree	stops
right	there.	However,	if	you	set	max_depth	to	3,	then	the	two	depth-2	nodes	would	each	add	another
decision	boundary	(represented	by	the	dotted	lines).

Figure	6-2.	Decision	Tree	decision	boundaries

MODEL	INTERPRETATION:	WHITE	BOX	VERSUS	BLACK	BOX

As	you	can	see	Decision	Trees	are	fairly	intuitive	and	their	decisions	are	easy	to	interpret.	Such	models	are	often	called	white	box
models.	In	contrast,	as	we	will	see,	Random	Forests	or	neural	networks	are	generally	considered	black	box	models.	They	make	great
predictions,	and	you	can	easily	check	the	calculations	that	they	performed	to	make	these	predictions;	nevertheless,	it	is	usually	hard	to
explain	in	simple	terms	why	the	predictions	were	made.	For	example,	if	a	neural	network	says	that	a	particular	person	appears	on	a
picture,	it	is	hard	to	know	what	actually	contributed	to	this	prediction:	did	the	model	recognize	that	person’s	eyes?	Her	mouth?	Her	nose?
Her	shoes?	Or	even	the	couch	that	she	was	sitting	on?	Conversely,	Decision	Trees	provide	nice	and	simple	classification	rules	that	can
even	be	applied	manually	if	need	be	(e.g.,	for	flower	classification).

Estimating	Class	Probabilities
A	Decision	Tree	can	also	estimate	the	probability	that	an	instance	belongs	to	a	particular	class	k:	first	it
traverses	the	tree	to	find	the	leaf	node	for	this	instance,	and	then	it	returns	the	ratio	of	training	instances	of
class	k	in	this	node.	For	example,	suppose	you	have	found	a	flower	whose	petals	are	5	cm	long	and	1.5
cm	wide.	The	corresponding	leaf	node	is	the	depth-2	left	node,	so	the	Decision	Tree	should	output	the
following	probabilities:	0%	for	Iris-Setosa	(0/54),	90.7%	for	Iris-Versicolor	(49/54),	and	9.3%	for	Iris-
Virginica	(5/54).	And	of	course	if	you	ask	it	to	predict	the	class,	it	should	output	Iris-Versicolor	(class	1)
since	it	has	the	highest	probability.	Let’s	check	this:

>>>	tree_clf.predict_proba([[5,	1.5]])

array([[0.	,		0.90740741,		0.09259259]])

>>>	tree_clf.predict([[5,	1.5]])

array([1])

Perfect!	Notice	that	the	estimated	probabilities	would	be	identical	anywhere	else	in	the	bottom-right
rectangle	of	Figure	6-2	—	for	example,	if	the	petals	were	6	cm	long	and	1.5	cm	wide	(even	though	it
seems	obvious	that	it	would	most	likely	be	an	Iris-Virginica	in	this	case).

The	CART	Training	Algorithm
Scikit-Learn	uses	the	Classification	And	Regression	Tree	(CART)	algorithm	to	train	Decision	Trees	(also
called	“growing”	trees).	The	idea	is	really	quite	simple:	the	algorithm	first	splits	the	training	set	in	two
subsets	using	a	single	feature	k	and	a	threshold	tk	(e.g.,	“petal	length	≤	2.45	cm”).	How	does	it	choose	k
and	tk?	It	searches	for	the	pair	(k,	tk)	that	produces	the	purest	subsets	(weighted	by	their	size).	The	cost
function	that	the	algorithm	tries	to	minimize	is	given	by	Equation	6-2.

Equation	6-2.	CART	cost	function	for	classification

Once	it	has	successfully	split	the	training	set	in	two,	it	splits	the	subsets	using	the	same	logic,	then	the	sub-
subsets	and	so	on,	recursively.	It	stops	recursing	once	it	reaches	the	maximum	depth	(defined	by	the
max_depth	hyperparameter),	or	if	it	cannot	find	a	split	that	will	reduce	impurity.	A	few	other
hyperparameters	(described	in	a	moment)	control	additional	stopping	conditions	(min_samples_split,
min_samples_leaf,	min_weight_fraction_leaf,	and	max_leaf_nodes).

WARNING
As	you	can	see,	the	CART	algorithm	is	a	greedy	algorithm:	it	greedily	searches	for	an	optimum	split	at	the	top	level,	then
repeats	the	process	at	each	level.	It	does	not	check	whether	or	not	the	split	will	lead	to	the	lowest	possible	impurity	several	levels
down.	A	greedy	algorithm	often	produces	a	reasonably	good	solution,	but	it	is	not	guaranteed	to	be	the	optimal	solution.

Unfortunately,	finding	the	optimal	tree	is	known	to	be	an	NP-Complete	problem:2	it	requires	O(exp(m))
time,	making	the	problem	intractable	even	for	fairly	small	training	sets.	This	is	why	we	must	settle	for	a
“reasonably	good”	solution.

Computational	Complexity
Making	predictions	requires	traversing	the	Decision	Tree	from	the	root	to	a	leaf.	Decision	Trees	are
generally	approximately	balanced,	so	traversing	the	Decision	Tree	requires	going	through	roughly
O(log2(m))	nodes.3	Since	each	node	only	requires	checking	the	value	of	one	feature,	the	overall
prediction	complexity	is	just	O(log2(m)),	independent	of	the	number	of	features.	So	predictions	are	very
fast,	even	when	dealing	with	large	training	sets.

However,	the	training	algorithm	compares	all	features	(or	less	if	max_features	is	set)	on	all	samples	at
each	node.	This	results	in	a	training	complexity	of	O(n	×	m	log(m)).	For	small	training	sets	(less	than	a
few	thousand	instances),	Scikit-Learn	can	speed	up	training	by	presorting	the	data	(set	presort=True),
but	this	slows	down	training	considerably	for	larger	training	sets.

Gini	Impurity	or	Entropy?
By	default,	the	Gini	impurity	measure	is	used,	but	you	can	select	the	entropy	impurity	measure	instead	by
setting	the	criterion	hyperparameter	to	"entropy".	The	concept	of	entropy	originated	in
thermodynamics	as	a	measure	of	molecular	disorder:	entropy	approaches	zero	when	molecules	are	still
and	well	ordered.	It	later	spread	to	a	wide	variety	of	domains,	including	Shannon’s	information	theory,
where	it	measures	the	average	information	content	of	a	message:4	entropy	is	zero	when	all	messages	are
identical.	In	Machine	Learning,	it	is	frequently	used	as	an	impurity	measure:	a	set’s	entropy	is	zero	when
it	contains	instances	of	only	one	class.	Equation	6-3	shows	the	definition	of	the	entropy	of	the	ith	node.

For	example,	the	depth-2	left	node	in	Figure	6-1	has	an	entropy	equal	to	
≈	0.31.

Equation	6-3.	Entropy

So	should	you	use	Gini	impurity	or	entropy?	The	truth	is,	most	of	the	time	it	does	not	make	a	big
difference:	they	lead	to	similar	trees.	Gini	impurity	is	slightly	faster	to	compute,	so	it	is	a	good	default.
However,	when	they	differ,	Gini	impurity	tends	to	isolate	the	most	frequent	class	in	its	own	branch	of	the
tree,	while	entropy	tends	to	produce	slightly	more	balanced	trees.5

Regularization	Hyperparameters
Decision	Trees	make	very	few	assumptions	about	the	training	data	(as	opposed	to	linear	models,	which
obviously	assume	that	the	data	is	linear,	for	example).	If	left	unconstrained,	the	tree	structure	will	adapt
itself	to	the	training	data,	fitting	it	very	closely,	and	most	likely	overfitting	it.	Such	a	model	is	often	called
a	nonparametric	model,	not	because	it	does	not	have	any	parameters	(it	often	has	a	lot)	but	because	the
number	of	parameters	is	not	determined	prior	to	training,	so	the	model	structure	is	free	to	stick	closely	to
the	data.	In	contrast,	a	parametric	model	such	as	a	linear	model	has	a	predetermined	number	of
parameters,	so	its	degree	of	freedom	is	limited,	reducing	the	risk	of	overfitting	(but	increasing	the	risk	of
underfitting).

To	avoid	overfitting	the	training	data,	you	need	to	restrict	the	Decision	Tree’s	freedom	during	training.	As
you	know	by	now,	this	is	called	regularization.	The	regularization	hyperparameters	depend	on	the
algorithm	used,	but	generally	you	can	at	least	restrict	the	maximum	depth	of	the	Decision	Tree.	In	Scikit-
Learn,	this	is	controlled	by	the	max_depth	hyperparameter	(the	default	value	is	None,	which	means
unlimited).	Reducing	max_depth	will	regularize	the	model	and	thus	reduce	the	risk	of	overfitting.

The	DecisionTreeClassifier	class	has	a	few	other	parameters	that	similarly	restrict	the	shape	of	the
Decision	Tree:	min_samples_split	(the	minimum	number	of	samples	a	node	must	have	before	it	can	be
split),	min_samples_leaf	(the	minimum	number	of	samples	a	leaf	node	must	have),
min_weight_fraction_leaf	(same	as	min_samples_leaf	but	expressed	as	a	fraction	of	the	total
number	of	weighted	instances),	max_leaf_nodes	(maximum	number	of	leaf	nodes),	and	max_features
(maximum	number	of	features	that	are	evaluated	for	splitting	at	each	node).	Increasing	min_*
hyperparameters	or	reducing	max_*	hyperparameters	will	regularize	the	model.

NOTE
Other	algorithms	work	by	first	training	the	Decision	Tree	without	restrictions,	then	pruning	(deleting)	unnecessary	nodes.	A	node
whose	children	are	all	leaf	nodes	is	considered	unnecessary	if	the	purity	improvement	it	provides	is	not	statistically	significant.
Standard	statistical	tests,	such	as	the	χ2	test,	are	used	to	estimate	the	probability	that	the	improvement	is	purely	the	result	of
chance	(which	is	called	the	null	hypothesis).	If	this	probability,	called	the	p-value,	is	higher	than	a	given	threshold	(typically	5%,
controlled	by	a	hyperparameter),	then	the	node	is	considered	unnecessary	and	its	children	are	deleted.	The	pruning	continues	until
all	unnecessary	nodes	have	been	pruned.

Figure	6-3	shows	two	Decision	Trees	trained	on	the	moons	dataset	(introduced	in	Chapter	5).	On	the	left,
the	Decision	Tree	is	trained	with	the	default	hyperparameters	(i.e.,	no	restrictions),	and	on	the	right	the
Decision	Tree	is	trained	with	min_samples_leaf=4.	It	is	quite	obvious	that	the	model	on	the	left	is
overfitting,	and	the	model	on	the	right	will	probably	generalize	better.

Figure	6-3.	Regularization	using	min_samples_leaf

Regression
Decision	Trees	are	also	capable	of	performing	regression	tasks.	Let’s	build	a	regression	tree	using	Scikit-
Learn’s	DecisionTreeRegressor	class,	training	it	on	a	noisy	quadratic	dataset	with	max_depth=2:

from	sklearn.tree	import	DecisionTreeRegressor

tree_reg	=	DecisionTreeRegressor(max_depth=2)

tree_reg.fit(X,	y)

The	resulting	tree	is	represented	on	Figure	6-4.

Figure	6-4.	A	Decision	Tree	for	regression

This	tree	looks	very	similar	to	the	classification	tree	you	built	earlier.	The	main	difference	is	that	instead
of	predicting	a	class	in	each	node,	it	predicts	a	value.	For	example,	suppose	you	want	to	make	a
prediction	for	a	new	instance	with	x1	=	0.6.	You	traverse	the	tree	starting	at	the	root,	and	you	eventually
reach	the	leaf	node	that	predicts	value=0.1106.	This	prediction	is	simply	the	average	target	value	of	the
110	training	instances	associated	to	this	leaf	node.	This	prediction	results	in	a	Mean	Squared	Error
(MSE)	equal	to	0.0151	over	these	110	instances.

This	model’s	predictions	are	represented	on	the	left	of	Figure	6-5.	If	you	set	max_depth=3,	you	get	the
predictions	represented	on	the	right.	Notice	how	the	predicted	value	for	each	region	is	always	the	average
target	value	of	the	instances	in	that	region.	The	algorithm	splits	each	region	in	a	way	that	makes	most
training	instances	as	close	as	possible	to	that	predicted	value.

Figure	6-5.	Predictions	of	two	Decision	Tree	regression	models

The	CART	algorithm	works	mostly	the	same	way	as	earlier,	except	that	instead	of	trying	to	split	the
training	set	in	a	way	that	minimizes	impurity,	it	now	tries	to	split	the	training	set	in	a	way	that	minimizes
the	MSE.	Equation	6-4	shows	the	cost	function	that	the	algorithm	tries	to	minimize.

Equation	6-4.	CART	cost	function	for	regression

Just	like	for	classification	tasks,	Decision	Trees	are	prone	to	overfitting	when	dealing	with	regression
tasks.	Without	any	regularization	(i.e.,	using	the	default	hyperparameters),	you	get	the	predictions	on	the
left	of	Figure	6-6.	It	is	obviously	overfitting	the	training	set	very	badly.	Just	setting
min_samples_leaf=10	results	in	a	much	more	reasonable	model,	represented	on	the	right	of	Figure	6-6.

Figure	6-6.	Regularizing	a	Decision	Tree	regressor

Instability
Hopefully	by	now	you	are	convinced	that	Decision	Trees	have	a	lot	going	for	them:	they	are	simple	to
understand	and	interpret,	easy	to	use,	versatile,	and	powerful.	However	they	do	have	a	few	limitations.
First,	as	you	may	have	noticed,	Decision	Trees	love	orthogonal	decision	boundaries	(all	splits	are
perpendicular	to	an	axis),	which	makes	them	sensitive	to	training	set	rotation.	For	example,	Figure	6-7
shows	a	simple	linearly	separable	dataset:	on	the	left,	a	Decision	Tree	can	split	it	easily,	while	on	the
right,	after	the	dataset	is	rotated	by	45°,	the	decision	boundary	looks	unnecessarily	convoluted.	Although
both	Decision	Trees	fit	the	training	set	perfectly,	it	is	very	likely	that	the	model	on	the	right	will	not
generalize	well.	One	way	to	limit	this	problem	is	to	use	PCA	(see	Chapter	8),	which	often	results	in	a
better	orientation	of	the	training	data.

Figure	6-7.	Sensitivity	to	training	set	rotation

More	generally,	the	main	issue	with	Decision	Trees	is	that	they	are	very	sensitive	to	small	variations	in
the	training	data.	For	example,	if	you	just	remove	the	widest	Iris-Versicolor	from	the	iris	training	set	(the
one	with	petals	4.8	cm	long	and	1.8	cm	wide)	and	train	a	new	Decision	Tree,	you	may	get	the	model
represented	in	Figure	6-8.	As	you	can	see,	it	looks	very	different	from	the	previous	Decision	Tree
(Figure	6-2).	Actually,	since	the	training	algorithm	used	by	Scikit-Learn	is	stochastic6	you	may	get	very
different	models	even	on	the	same	training	data	(unless	you	set	the	random_state	hyperparameter).

Figure	6-8.	Sensitivity	to	training	set	details

Random	Forests	can	limit	this	instability	by	averaging	predictions	over	many	trees,	as	we	will	see	in	the
next	chapter.

Exercises
1.	 What	is	the	approximate	depth	of	a	Decision	Tree	trained	(without	restrictions)	on	a	training	set

with	1	million	instances?

2.	 Is	a	node’s	Gini	impurity	generally	lower	or	greater	than	its	parent’s?	Is	it	generally
lower/greater,	or	always	lower/greater?

3.	 If	a	Decision	Tree	is	overfitting	the	training	set,	is	it	a	good	idea	to	try	decreasing	max_depth?

4.	 If	a	Decision	Tree	is	underfitting	the	training	set,	is	it	a	good	idea	to	try	scaling	the	input
features?

5.	 If	it	takes	one	hour	to	train	a	Decision	Tree	on	a	training	set	containing	1	million	instances,
roughly	how	much	time	will	it	take	to	train	another	Decision	Tree	on	a	training	set	containing	10
million	instances?

6.	 If	your	training	set	contains	100,000	instances,	will	setting	presort=True	speed	up	training?

7.	 Train	and	fine-tune	a	Decision	Tree	for	the	moons	dataset.
a.	 Generate	a	moons	dataset	using	make_moons(n_samples=10000,	noise=0.4).

b.	 Split	it	into	a	training	set	and	a	test	set	using	train_test_split().

c.	 Use	grid	search	with	cross-validation	(with	the	help	of	the	GridSearchCV	class)	to	find
good	hyperparameter	values	for	a	DecisionTreeClassifier.	Hint:	try	various	values	for
max_leaf_nodes.

d.	 Train	it	on	the	full	training	set	using	these	hyperparameters,	and	measure	your	model’s
performance	on	the	test	set.	You	should	get	roughly	85%	to	87%	accuracy.

8.	 Grow	a	forest.
a.	 Continuing	the	previous	exercise,	generate	1,000	subsets	of	the	training	set,	each	containing

100	instances	selected	randomly.	Hint:	you	can	use	Scikit-Learn’s	ShuffleSplit	class	for
this.

b.	 Train	one	Decision	Tree	on	each	subset,	using	the	best	hyperparameter	values	found	above.
Evaluate	these	1,000	Decision	Trees	on	the	test	set.	Since	they	were	trained	on	smaller	sets,
these	Decision	Trees	will	likely	perform	worse	than	the	first	Decision	Tree,	achieving	only
about	80%	accuracy.

c.	 Now	comes	the	magic.	For	each	test	set	instance,	generate	the	predictions	of	the	1,000
Decision	Trees,	and	keep	only	the	most	frequent	prediction	(you	can	use	SciPy’s	mode()
function	for	this).	This	gives	you	majority-vote	predictions	over	the	test	set.

d.	 Evaluate	these	predictions	on	the	test	set:	you	should	obtain	a	slightly	higher	accuracy	than

your	first	model	(about	0.5	to	1.5%	higher).	Congratulations,	you	have	trained	a	Random
Forest	classifier!

Solutions	to	these	exercises	are	available	in	Appendix	A.

Graphviz	is	an	open	source	graph	visualization	software	package,	available	at	http://www.graphviz.org/.

P	is	the	set	of	problems	that	can	be	solved	in	polynomial	time.	NP	is	the	set	of	problems	whose	solutions	can	be	verified	in	polynomial	time.
An	NP-Hard	problem	is	a	problem	to	which	any	NP	problem	can	be	reduced	in	polynomial	time.	An	NP-Complete	problem	is	both	NP	and
NP-Hard.	A	major	open	mathematical	question	is	whether	or	not	P	=	NP.	If	P	≠	NP	(which	seems	likely),	then	no	polynomial	algorithm	will
ever	be	found	for	any	NP-Complete	problem	(except	perhaps	on	a	quantum	computer).

log2	is	the	binary	logarithm.	It	is	equal	to	log2(m)	=	log(m)	/	log(2).

A	reduction	of	entropy	is	often	called	an	information	gain.

See	Sebastian	Raschka’s	interesting	analysis	for	more	details.

It	randomly	selects	the	set	of	features	to	evaluate	at	each	node.

1

2

3

4

5

6

http://www.graphviz.org/
http://goo.gl/UndTrO

Chapter	7.	Ensemble	Learning	and	Random
Forests

Suppose	you	ask	a	complex	question	to	thousands	of	random	people,	then	aggregate	their	answers.	In
many	cases	you	will	find	that	this	aggregated	answer	is	better	than	an	expert’s	answer.	This	is	called	the
wisdom	of	the	crowd.	Similarly,	if	you	aggregate	the	predictions	of	a	group	of	predictors	(such	as
classifiers	or	regressors),	you	will	often	get	better	predictions	than	with	the	best	individual	predictor.	A
group	of	predictors	is	called	an	ensemble;	thus,	this	technique	is	called	Ensemble	Learning,	and	an
Ensemble	Learning	algorithm	is	called	an	Ensemble	method.

For	example,	you	can	train	a	group	of	Decision	Tree	classifiers,	each	on	a	different	random	subset	of	the
training	set.	To	make	predictions,	you	just	obtain	the	predictions	of	all	individual	trees,	then	predict	the
class	that	gets	the	most	votes	(see	the	last	exercise	in	Chapter	6).	Such	an	ensemble	of	Decision	Trees	is
called	a	Random	Forest,	and	despite	its	simplicity,	this	is	one	of	the	most	powerful	Machine	Learning
algorithms	available	today.

Moreover,	as	we	discussed	in	Chapter	2,	you	will	often	use	Ensemble	methods	near	the	end	of	a	project,
once	you	have	already	built	a	few	good	predictors,	to	combine	them	into	an	even	better	predictor.	In	fact,
the	winning	solutions	in	Machine	Learning	competitions	often	involve	several	Ensemble	methods	(most
famously	in	the	Netflix	Prize	competition).

In	this	chapter	we	will	discuss	the	most	popular	Ensemble	methods,	including	bagging,	boosting,
stacking,	and	a	few	others.	We	will	also	explore	Random	Forests.

http://netflixprize.com/

Voting	Classifiers
Suppose	you	have	trained	a	few	classifiers,	each	one	achieving	about	80%	accuracy.	You	may	have	a
Logistic	Regression	classifier,	an	SVM	classifier,	a	Random	Forest	classifier,	a	K-Nearest	Neighbors
classifier,	and	perhaps	a	few	more	(see	Figure	7-1).

Figure	7-1.	Training	diverse	classifiers

A	very	simple	way	to	create	an	even	better	classifier	is	to	aggregate	the	predictions	of	each	classifier	and
predict	the	class	that	gets	the	most	votes.	This	majority-vote	classifier	is	called	a	hard	voting	classifier
(see	Figure	7-2).

Figure	7-2.	Hard	voting	classifier	predictions

Somewhat	surprisingly,	this	voting	classifier	often	achieves	a	higher	accuracy	than	the	best	classifier	in
the	ensemble.	In	fact,	even	if	each	classifier	is	a	weak	learner	(meaning	it	does	only	slightly	better	than
random	guessing),	the	ensemble	can	still	be	a	strong	learner	(achieving	high	accuracy),	provided	there
are	a	sufficient	number	of	weak	learners	and	they	are	sufficiently	diverse.

How	is	this	possible?	The	following	analogy	can	help	shed	some	light	on	this	mystery.	Suppose	you	have
a	slightly	biased	coin	that	has	a	51%	chance	of	coming	up	heads,	and	49%	chance	of	coming	up	tails.	If
you	toss	it	1,000	times,	you	will	generally	get	more	or	less	510	heads	and	490	tails,	and	hence	a	majority
of	heads.	If	you	do	the	math,	you	will	find	that	the	probability	of	obtaining	a	majority	of	heads	after	1,000
tosses	is	close	to	75%.	The	more	you	toss	the	coin,	the	higher	the	probability	(e.g.,	with	10,000	tosses,	the
probability	climbs	over	97%).	This	is	due	to	the	law	of	large	numbers:	as	you	keep	tossing	the	coin,	the
ratio	of	heads	gets	closer	and	closer	to	the	probability	of	heads	(51%).	Figure	7-3	shows	10	series	of
biased	coin	tosses.	You	can	see	that	as	the	number	of	tosses	increases,	the	ratio	of	heads	approaches	51%.
Eventually	all	10	series	end	up	so	close	to	51%	that	they	are	consistently	above	50%.

Figure	7-3.	The	law	of	large	numbers

Similarly,	suppose	you	build	an	ensemble	containing	1,000	classifiers	that	are	individually	correct	only
51%	of	the	time	(barely	better	than	random	guessing).	If	you	predict	the	majority	voted	class,	you	can
hope	for	up	to	75%	accuracy!	However,	this	is	only	true	if	all	classifiers	are	perfectly	independent,
making	uncorrelated	errors,	which	is	clearly	not	the	case	since	they	are	trained	on	the	same	data.	They	are
likely	to	make	the	same	types	of	errors,	so	there	will	be	many	majority	votes	for	the	wrong	class,	reducing
the	ensemble’s	accuracy.

TIP
Ensemble	methods	work	best	when	the	predictors	are	as	independent	from	one	another	as	possible.	One	way	to	get	diverse
classifiers	is	to	train	them	using	very	different	algorithms.	This	increases	the	chance	that	they	will	make	very	different	types	of
errors,	improving	the	ensemble’s	accuracy.

The	following	code	creates	and	trains	a	voting	classifier	in	Scikit-Learn,	composed	of	three	diverse
classifiers	(the	training	set	is	the	moons	dataset,	introduced	in	Chapter	5):

from	sklearn.ensemble	import	RandomForestClassifier

from	sklearn.ensemble	import	VotingClassifier

from	sklearn.linear_model	import	LogisticRegression

from	sklearn.svm	import	SVC

log_clf	=	LogisticRegression()

rnd_clf	=	RandomForestClassifier()

svm_clf	=	SVC()

voting_clf	=	VotingClassifier(

								estimators=[('lr',	log_clf),	('rf',	rnd_clf),	('svc',	svm_clf)],

								voting='hard'

)

voting_clf.fit(X_train,	y_train)

Let’s	look	at	each	classifier’s	accuracy	on	the	test	set:

>>>	from	sklearn.metrics	import	accuracy_score

>>>	for	clf	in	(log_clf,	rnd_clf,	svm_clf,	voting_clf):

>>>					clf.fit(X_train,	y_train)

>>>					y_pred	=	clf.predict(X_test)

>>>					print(clf.__class__.__name__,	accuracy_score(y_test,	y_pred))

LogisticRegression	0.864

RandomForestClassifier	0.872

SVC	0.888

VotingClassifier	0.896

There	you	have	it!	The	voting	classifier	slightly	outperforms	all	the	individual	classifiers.

If	all	classifiers	are	able	to	estimate	class	probabilities	(i.e.,	they	have	a	predict_proba()	method),
then	you	can	tell	Scikit-Learn	to	predict	the	class	with	the	highest	class	probability,	averaged	over	all	the
individual	classifiers.	This	is	called	soft	voting.	It	often	achieves	higher	performance	than	hard	voting
because	it	gives	more	weight	to	highly	confident	votes.	All	you	need	to	do	is	replace	voting="hard"
with	voting="soft"	and	ensure	that	all	classifiers	can	estimate	class	probabilities.	This	is	not	the	case
of	the	SVC	class	by	default,	so	you	need	to	set	its	probability	hyperparameter	to	True	(this	will	make
the	SVC	class	use	cross-validation	to	estimate	class	probabilities,	slowing	down	training,	and	it	will	add
a	predict_proba()	method).	If	you	modify	the	preceding	code	to	use	soft	voting,	you	will	find	that	the
voting	classifier	achieves	over	91%	accuracy!

Bagging	and	Pasting
One	way	to	get	a	diverse	set	of	classifiers	is	to	use	very	different	training	algorithms,	as	just	discussed.
Another	approach	is	to	use	the	same	training	algorithm	for	every	predictor,	but	to	train	them	on	different
random	subsets	of	the	training	set.	When	sampling	is	performed	with	replacement,	this	method	is	called
bagging1	(short	for	bootstrap	aggregating2).	When	sampling	is	performed	without	replacement,	it	is
called	pasting.3

In	other	words,	both	bagging	and	pasting	allow	training	instances	to	be	sampled	several	times	across
multiple	predictors,	but	only	bagging	allows	training	instances	to	be	sampled	several	times	for	the	same
predictor.	This	sampling	and	training	process	is	represented	in	Figure	7-4.

Figure	7-4.	Pasting/bagging	training	set	sampling	and	training

Once	all	predictors	are	trained,	the	ensemble	can	make	a	prediction	for	a	new	instance	by	simply
aggregating	the	predictions	of	all	predictors.	The	aggregation	function	is	typically	the	statistical	mode
(i.e.,	the	most	frequent	prediction,	just	like	a	hard	voting	classifier)	for	classification,	or	the	average	for
regression.	Each	individual	predictor	has	a	higher	bias	than	if	it	were	trained	on	the	original	training	set,
but	aggregation	reduces	both	bias	and	variance.4	Generally,	the	net	result	is	that	the	ensemble	has	a
similar	bias	but	a	lower	variance	than	a	single	predictor	trained	on	the	original	training	set.

As	you	can	see	in	Figure	7-4,	predictors	can	all	be	trained	in	parallel,	via	different	CPU	cores	or	even
different	servers.	Similarly,	predictions	can	be	made	in	parallel.	This	is	one	of	the	reasons	why	bagging
and	pasting	are	such	popular	methods:	they	scale	very	well.

http://goo.gl/o42tml
http://goo.gl/BXm0pm

Bagging	and	Pasting	in	Scikit-Learn
Scikit-Learn	offers	a	simple	API	for	both	bagging	and	pasting	with	the	BaggingClassifier	class	(or
BaggingRegressor	for	regression).	The	following	code	trains	an	ensemble	of	500	Decision	Tree
classifiers,5	each	trained	on	100	training	instances	randomly	sampled	from	the	training	set	with
replacement	(this	is	an	example	of	bagging,	but	if	you	want	to	use	pasting	instead,	just	set
bootstrap=False).	The	n_jobs	parameter	tells	Scikit-Learn	the	number	of	CPU	cores	to	use	for	training
and	predictions	(–1	tells	Scikit-Learn	to	use	all	available	cores):

from	sklearn.ensemble	import	BaggingClassifier

from	sklearn.tree	import	DecisionTreeClassifier

bag_clf	=	BaggingClassifier(

								DecisionTreeClassifier(),	n_estimators=500,

								max_samples=100,	bootstrap=True,	n_jobs=-1

)

bag_clf.fit(X_train,	y_train)

y_pred	=	bag_clf.predict(X_test)

NOTE
The	BaggingClassifier	automatically	performs	soft	voting	instead	of	hard	voting	if	the	base	classifier	can	estimate	class
probabilities	(i.e.,	if	it	has	a	predict_proba()	method),	which	is	the	case	with	Decision	Trees	classifiers.

Figure	7-5	compares	the	decision	boundary	of	a	single	Decision	Tree	with	the	decision	boundary	of	a
bagging	ensemble	of	500	trees	(from	the	preceding	code),	both	trained	on	the	moons	dataset.	As	you	can
see,	the	ensemble’s	predictions	will	likely	generalize	much	better	than	the	single	Decision	Tree’s
predictions:	the	ensemble	has	a	comparable	bias	but	a	smaller	variance	(it	makes	roughly	the	same
number	of	errors	on	the	training	set,	but	the	decision	boundary	is	less	irregular).

Figure	7-5.	A	single	Decision	Tree	versus	a	bagging	ensemble	of	500	trees

Bootstrapping	introduces	a	bit	more	diversity	in	the	subsets	that	each	predictor	is	trained	on,	so	bagging

ends	up	with	a	slightly	higher	bias	than	pasting,	but	this	also	means	that	predictors	end	up	being	less
correlated	so	the	ensemble’s	variance	is	reduced.	Overall,	bagging	often	results	in	better	models,	which
explains	why	it	is	generally	preferred.	However,	if	you	have	spare	time	and	CPU	power	you	can	use
cross-validation	to	evaluate	both	bagging	and	pasting	and	select	the	one	that	works	best.

Out-of-Bag	Evaluation
With	bagging,	some	instances	may	be	sampled	several	times	for	any	given	predictor,	while	others	may	not
be	sampled	at	all.	By	default	a	BaggingClassifier	samples	m	training	instances	with	replacement
(bootstrap=True),	where	m	is	the	size	of	the	training	set.	This	means	that	only	about	63%	of	the	training
instances	are	sampled	on	average	for	each	predictor.6	The	remaining	37%	of	the	training	instances	that	are
not	sampled	are	called	out-of-bag	(oob)	instances.	Note	that	they	are	not	the	same	37%	for	all	predictors.

Since	a	predictor	never	sees	the	oob	instances	during	training,	it	can	be	evaluated	on	these	instances,
without	the	need	for	a	separate	validation	set	or	cross-validation.	You	can	evaluate	the	ensemble	itself	by
averaging	out	the	oob	evaluations	of	each	predictor.

In	Scikit-Learn,	you	can	set	oob_score=True	when	creating	a	BaggingClassifier	to	request	an
automatic	oob	evaluation	after	training.	The	following	code	demonstrates	this.	The	resulting	evaluation
score	is	available	through	the	oob_score_	variable:

>>>	bag_clf	=	BaggingClassifier(

>>>									DecisionTreeClassifier(),	n_estimators=500,

>>>									bootstrap=True,	n_jobs=-1,	oob_score=True)

>>>	bag_clf.fit(X_train,	y_train)

>>>	bag_clf.oob_score_

0.93066666666666664

According	to	this	oob	evaluation,	this	BaggingClassifier	is	likely	to	achieve	about	93.1%	accuracy	on
the	test	set.	Let’s	verify	this:

>>>	from	sklearn.metrics	import	accuracy_score

>>>	y_pred	=	bag_clf.predict(X_test)

>>>	accuracy_score(y_test,	y_pred)

0.93600000000000005

We	get	93.6%	accuracy	on	the	test	set	—	close	enough!

The	oob	decision	function	for	each	training	instance	is	also	available	through	the
oob_decision_function_	variable.	In	this	case	(since	the	base	estimator	has	a	predict_proba()
method)	the	decision	function	returns	the	class	probabilities	for	each	training	instance.	For	example,	the
oob	evaluation	estimates	that	the	second	training	instance	has	a	60.6%	probability	of	belonging	to	the
positive	class	(and	39.4%	of	belonging	to	the	positive	class):

>>>	bag_clf.oob_decision_function_

array([[0.								,		1.],

							[0.60588235,		0.39411765],

							[1.								,		0.],

							...

							[1.								,		0.],

							[0.								,		1.],

							[0.48958333,		0.51041667]])

Random	Patches	and	Random	Subspaces
The	BaggingClassifier	class	supports	sampling	the	features	as	well.	This	is	controlled	by	two
hyperparameters:	max_features	and	bootstrap_features.	They	work	the	same	way	as	max_samples
and	bootstrap,	but	for	feature	sampling	instead	of	instance	sampling.	Thus,	each	predictor	will	be
trained	on	a	random	subset	of	the	input	features.

This	is	particularly	useful	when	you	are	dealing	with	high-dimensional	inputs	(such	as	images).	Sampling
both	training	instances	and	features	is	called	the	Random	Patches	method.7	Keeping	all	training	instances
(i.e.,	bootstrap=False	and	max_samples=1.0)	but	sampling	features	(i.e.,	bootstrap_features=True
and/or	max_features	smaller	than	1.0)	is	called	the	Random	Subspaces	method.8

Sampling	features	results	in	even	more	predictor	diversity,	trading	a	bit	more	bias	for	a	lower	variance.

http://goo.gl/B2EcM2
http://goo.gl/NPi5vH

Random	Forests
As	we	have	discussed,	a	Random	Forest9	is	an	ensemble	of	Decision	Trees,	generally	trained	via	the
bagging	method	(or	sometimes	pasting),	typically	with	max_samples	set	to	the	size	of	the	training	set.
Instead	of	building	a	BaggingClassifier	and	passing	it	a	DecisionTreeClassifier,	you	can	instead
use	the	RandomForestClassifier	class,	which	is	more	convenient	and	optimized	for	Decision	Trees10

(similarly,	there	is	a	RandomForestRegressor	class	for	regression	tasks).	The	following	code	trains	a
Random	Forest	classifier	with	500	trees	(each	limited	to	maximum	16	nodes),	using	all	available	CPU
cores:

from	sklearn.ensemble	import	RandomForestClassifier

rnd_clf	=	RandomForestClassifier(n_estimators=500,	max_leaf_nodes=16,	n_jobs=-1)

rnd_clf.fit(X_train,	y_train)

y_pred_rf	=	rnd_clf.predict(X_test)

With	a	few	exceptions,	a	RandomForestClassifier	has	all	the	hyperparameters	of	a
DecisionTreeClassifier	(to	control	how	trees	are	grown),	plus	all	the	hyperparameters	of	a
BaggingClassifier	to	control	the	ensemble	itself.11

The	Random	Forest	algorithm	introduces	extra	randomness	when	growing	trees;	instead	of	searching	for
the	very	best	feature	when	splitting	a	node	(see	Chapter	6),	it	searches	for	the	best	feature	among	a
random	subset	of	features.	This	results	in	a	greater	tree	diversity,	which	(once	again)	trades	a	higher	bias
for	a	lower	variance,	generally	yielding	an	overall	better	model.	The	following	BaggingClassifier	is
roughly	equivalent	to	the	previous	RandomForestClassifier:

bag_clf	=	BaggingClassifier(

								DecisionTreeClassifier(splitter="random",	max_leaf_nodes=16),

								n_estimators=500,	max_samples=1.0,	bootstrap=True,	n_jobs=-1

)

http://goo.gl/zVOGQ1

Extra-Trees
When	you	are	growing	a	tree	in	a	Random	Forest,	at	each	node	only	a	random	subset	of	the	features	is
considered	for	splitting	(as	discussed	earlier).	It	is	possible	to	make	trees	even	more	random	by	also
using	random	thresholds	for	each	feature	rather	than	searching	for	the	best	possible	thresholds	(like
regular	Decision	Trees	do).

A	forest	of	such	extremely	random	trees	is	simply	called	an	Extremely	Randomized	Trees	ensemble12	(or
Extra-Trees	for	short).	Once	again,	this	trades	more	bias	for	a	lower	variance.	It	also	makes	Extra-Trees
much	faster	to	train	than	regular	Random	Forests	since	finding	the	best	possible	threshold	for	each	feature
at	every	node	is	one	of	the	most	time-consuming	tasks	of	growing	a	tree.

You	can	create	an	Extra-Trees	classifier	using	Scikit-Learn’s	ExtraTreesClassifier	class.	Its	API	is
identical	to	the	RandomForestClassifier	class.	Similarly,	the	ExtraTreesRegressor	class	has	the
same	API	as	the	RandomForestRegressor	class.

TIP
It	is	hard	to	tell	in	advance	whether	a	RandomForestClassifier	will	perform	better	or	worse	than	an	ExtraTreesClassifier.
Generally,	the	only	way	to	know	is	to	try	both	and	compare	them	using	cross-validation	(and	tuning	the	hyperparameters	using
grid	search).

http://goo.gl/RHGEA4

Feature	Importance
Lastly,	if	you	look	at	a	single	Decision	Tree,	important	features	are	likely	to	appear	closer	to	the	root	of
the	tree,	while	unimportant	features	will	often	appear	closer	to	the	leaves	(or	not	at	all).	It	is	therefore
possible	to	get	an	estimate	of	a	feature’s	importance	by	computing	the	average	depth	at	which	it	appears
across	all	trees	in	the	forest.	Scikit-Learn	computes	this	automatically	for	every	feature	after	training.	You
can	access	the	result	using	the	feature_importances_	variable.	For	example,	the	following	code	trains
a	RandomForestClassifier	on	the	iris	dataset	(introduced	in	Chapter	4)	and	outputs	each	feature’s
importance.	It	seems	that	the	most	important	features	are	the	petal	length	(44%)	and	width	(42%),	while
sepal	length	and	width	are	rather	unimportant	in	comparison	(11%	and	2%,	respectively):

>>>	from	sklearn.datasets	import	load_iris

>>>	iris	=	load_iris()

>>>	rnd_clf	=	RandomForestClassifier(n_estimators=500,	n_jobs=-1)

>>>	rnd_clf.fit(iris["data"],	iris["target"])

>>>	for	name,	score	in	zip(iris["feature_names"],	rnd_clf.feature_importances_):

>>>					print(name,	score)

sepal	length	(cm)	0.112492250999

sepal	width	(cm)	0.0231192882825

petal	length	(cm)	0.441030464364

petal	width	(cm)	0.423357996355

Similarly,	if	you	train	a	Random	Forest	classifier	on	the	MNIST	dataset	(introduced	in	Chapter	3)	and
plot	each	pixel’s	importance,	you	get	the	image	represented	in	Figure	7-6.

Figure	7-6.	MNIST	pixel	importance	(according	to	a	Random	Forest	classifier)

Random	Forests	are	very	handy	to	get	a	quick	understanding	of	what	features	actually	matter,	in	particular
if	you	need	to	perform	feature	selection.

Boosting
Boosting	(originally	called	hypothesis	boosting)	refers	to	any	Ensemble	method	that	can	combine	several
weak	learners	into	a	strong	learner.	The	general	idea	of	most	boosting	methods	is	to	train	predictors
sequentially,	each	trying	to	correct	its	predecessor.	There	are	many	boosting	methods	available,	but	by	far
the	most	popular	are	AdaBoost13	(short	for	Adaptive	Boosting)	and	Gradient	Boosting.	Let’s	start	with
AdaBoost.

http://goo.gl/OIduRW

AdaBoost
One	way	for	a	new	predictor	to	correct	its	predecessor	is	to	pay	a	bit	more	attention	to	the	training
instances	that	the	predecessor	underfitted.	This	results	in	new	predictors	focusing	more	and	more	on	the
hard	cases.	This	is	the	technique	used	by	AdaBoost.

For	example,	to	build	an	AdaBoost	classifier,	a	first	base	classifier	(such	as	a	Decision	Tree)	is	trained
and	used	to	make	predictions	on	the	training	set.	The	relative	weight	of	misclassified	training	instances	is
then	increased.	A	second	classifier	is	trained	using	the	updated	weights	and	again	it	makes	predictions	on
the	training	set,	weights	are	updated,	and	so	on	(see	Figure	7-7).

Figure	7-7.	AdaBoost	sequential	training	with	instance	weight	updates

Figure	7-8	shows	the	decision	boundaries	of	five	consecutive	predictors	on	the	moons	dataset	(in	this
example,	each	predictor	is	a	highly	regularized	SVM	classifier	with	an	RBF	kernel14).	The	first	classifier
gets	many	instances	wrong,	so	their	weights	get	boosted.	The	second	classifier	therefore	does	a	better	job
on	these	instances,	and	so	on.	The	plot	on	the	right	represents	the	same	sequence	of	predictors	except	that
the	learning	rate	is	halved	(i.e.,	the	misclassified	instance	weights	are	boosted	half	as	much	at	every
iteration).	As	you	can	see,	this	sequential	learning	technique	has	some	similarities	with	Gradient	Descent,
except	that	instead	of	tweaking	a	single	predictor’s	parameters	to	minimize	a	cost	function,	AdaBoost
adds	predictors	to	the	ensemble,	gradually	making	it	better.

Figure	7-8.	Decision	boundaries	of	consecutive	predictors

Once	all	predictors	are	trained,	the	ensemble	makes	predictions	very	much	like	bagging	or	pasting,	except
that	predictors	have	different	weights	depending	on	their	overall	accuracy	on	the	weighted	training	set.

WARNING
There	is	one	important	drawback	to	this	sequential	learning	technique:	it	cannot	be	parallelized	(or	only	partially),	since	each
predictor	can	only	be	trained	after	the	previous	predictor	has	been	trained	and	evaluated.	As	a	result,	it	does	not	scale	as	well	as
bagging	or	pasting.

Let’s	take	a	closer	look	at	the	AdaBoost	algorithm.	Each	instance	weight	w(i)	is	initially	set	to	 .	A	first
predictor	is	trained	and	its	weighted	error	rate	r1	is	computed	on	the	training	set;	see	Equation	7-1.

Equation	7-1.	Weighted	error	rate	of	the	jth	predictor

The	predictor’s	weight	αj	is	then	computed	using	Equation	7-2,	where	η	is	the	learning	rate
hyperparameter	(defaults	to	1).15	The	more	accurate	the	predictor	is,	the	higher	its	weight	will	be.	If	it	is
just	guessing	randomly,	then	its	weight	will	be	close	to	zero.	However,	if	it	is	most	often	wrong	(i.e.,	less
accurate	than	random	guessing),	then	its	weight	will	be	negative.

Equation	7-2.	Predictor	weight

Next	the	instance	weights	are	updated	using	Equation	7-3:	the	misclassified	instances	are	boosted.

Equation	7-3.	Weight	update	rule

Then	all	the	instance	weights	are	normalized	(i.e.,	divided	by).

Finally,	a	new	predictor	is	trained	using	the	updated	weights,	and	the	whole	process	is	repeated	(the	new
predictor’s	weight	is	computed,	the	instance	weights	are	updated,	then	another	predictor	is	trained,	and	so
on).	The	algorithm	stops	when	the	desired	number	of	predictors	is	reached,	or	when	a	perfect	predictor	is
found.

To	make	predictions,	AdaBoost	simply	computes	the	predictions	of	all	the	predictors	and	weighs	them
using	the	predictor	weights	αj.	The	predicted	class	is	the	one	that	receives	the	majority	of	weighted	votes
(see	Equation	7-4).

Equation	7-4.	AdaBoost	predictions

Scikit-Learn	actually	uses	a	multiclass	version	of	AdaBoost	called	SAMME16	(which	stands	for
Stagewise	Additive	Modeling	using	a	Multiclass	Exponential	loss	function).	When	there	are	just	two
classes,	SAMME	is	equivalent	to	AdaBoost.	Moreover,	if	the	predictors	can	estimate	class	probabilities
(i.e.,	if	they	have	a	predict_proba()	method),	Scikit-Learn	can	use	a	variant	of	SAMME	called
SAMME.R	(the	R	stands	for	“Real”),	which	relies	on	class	probabilities	rather	than	predictions	and
generally	performs	better.

http://goo.gl/Eji2vR

The	following	code	trains	an	AdaBoost	classifier	based	on	200	Decision	Stumps	using	Scikit-Learn’s
AdaBoostClassifier	class	(as	you	might	expect,	there	is	also	an	AdaBoostRegressor	class).	A
Decision	Stump	is	a	Decision	Tree	with	max_depth=1	—	in	other	words,	a	tree	composed	of	a	single
decision	node	plus	two	leaf	nodes.	This	is	the	default	base	estimator	for	the	AdaBoostClassifier	class:

from	sklearn.ensemble	import	AdaBoostClassifier

ada_clf	=	AdaBoostClassifier(

								DecisionTreeClassifier(max_depth=1),	n_estimators=200,

								algorithm="SAMME.R",	learning_rate=0.5

)

ada_clf.fit(X_train,	y_train)

TIP
If	your	AdaBoost	ensemble	is	overfitting	the	training	set,	you	can	try	reducing	the	number	of	estimators	or	more	strongly
regularizing	the	base	estimator.

Gradient	Boosting
Another	very	popular	Boosting	algorithm	is	Gradient	Boosting.17	Just	like	AdaBoost,	Gradient	Boosting
works	by	sequentially	adding	predictors	to	an	ensemble,	each	one	correcting	its	predecessor.	However,
instead	of	tweaking	the	instance	weights	at	every	iteration	like	AdaBoost	does,	this	method	tries	to	fit	the
new	predictor	to	the	residual	errors	made	by	the	previous	predictor.

Let’s	go	through	a	simple	regression	example	using	Decision	Trees	as	the	base	predictors	(of	course
Gradient	Boosting	also	works	great	with	regression	tasks).	This	is	called	Gradient	Tree	Boosting,	or
Gradient	Boosted	Regression	Trees	(GBRT).	First,	let’s	fit	a	DecisionTreeRegressor	to	the	training	set
(for	example,	a	noisy	quadratic	training	set):

from	sklearn.tree	import	DecisionTreeRegressor

tree_reg1	=	DecisionTreeRegressor(max_depth=2)

tree_reg1.fit(X,	y)

Now	train	a	second	DecisionTreeRegressor	on	the	residual	errors	made	by	the	first	predictor:

y2	=	y	-	tree_reg1.predict(X)

tree_reg2	=	DecisionTreeRegressor(max_depth=2)

tree_reg2.fit(X,	y2)

Then	we	train	a	third	regressor	on	the	residual	errors	made	by	the	second	predictor:

y3	=	y2	-	tree_reg2.predict(X)

tree_reg3	=	DecisionTreeRegressor(max_depth=2)

tree_reg3.fit(X,	y3)

Now	we	have	an	ensemble	containing	three	trees.	It	can	make	predictions	on	a	new	instance	simply	by
adding	up	the	predictions	of	all	the	trees:

y_pred	=	sum(tree.predict(X_new)	for	tree	in	(tree_reg1,	tree_reg2,	tree_reg3))

Figure	7-9	represents	the	predictions	of	these	three	trees	in	the	left	column,	and	the	ensemble’s
predictions	in	the	right	column.	In	the	first	row,	the	ensemble	has	just	one	tree,	so	its	predictions	are
exactly	the	same	as	the	first	tree’s	predictions.	In	the	second	row,	a	new	tree	is	trained	on	the	residual
errors	of	the	first	tree.	On	the	right	you	can	see	that	the	ensemble’s	predictions	are	equal	to	the	sum	of	the
predictions	of	the	first	two	trees.	Similarly,	in	the	third	row	another	tree	is	trained	on	the	residual	errors
of	the	second	tree.	You	can	see	that	the	ensemble’s	predictions	gradually	get	better	as	trees	are	added	to
the	ensemble.

A	simpler	way	to	train	GBRT	ensembles	is	to	use	Scikit-Learn’s	GradientBoostingRegressor	class.
Much	like	the	RandomForestRegressor	class,	it	has	hyperparameters	to	control	the	growth	of	Decision
Trees	(e.g.,	max_depth,	min_samples_leaf,	and	so	on),	as	well	as	hyperparameters	to	control	the
ensemble	training,	such	as	the	number	of	trees	(n_estimators).	The	following	code	creates	the	same
ensemble	as	the	previous	one:

http://goo.gl/Ezw4jL

from	sklearn.ensemble	import	GradientBoostingRegressor

gbrt	=	GradientBoostingRegressor(max_depth=2,	n_estimators=3,	learning_rate=1.0)

gbrt.fit(X,	y)

Figure	7-9.	Gradient	Boosting

The	learning_rate	hyperparameter	scales	the	contribution	of	each	tree.	If	you	set	it	to	a	low	value,	such
as	0.1,	you	will	need	more	trees	in	the	ensemble	to	fit	the	training	set,	but	the	predictions	will	usually
generalize	better.	This	is	a	regularization	technique	called	shrinkage.	Figure	7-10	shows	two	GBRT
ensembles	trained	with	a	low	learning	rate:	the	one	on	the	left	does	not	have	enough	trees	to	fit	the
training	set,	while	the	one	on	the	right	has	too	many	trees	and	overfits	the	training	set.

Figure	7-10.	GBRT	ensembles	with	not	enough	predictors	(left)	and	too	many	(right)

In	order	to	find	the	optimal	number	of	trees,	you	can	use	early	stopping	(see	Chapter	4).	A	simple	way	to
implement	this	is	to	use	the	staged_predict()	method:	it	returns	an	iterator	over	the	predictions	made
by	the	ensemble	at	each	stage	of	training	(with	one	tree,	two	trees,	etc.).	The	following	code	trains	a
GBRT	ensemble	with	120	trees,	then	measures	the	validation	error	at	each	stage	of	training	to	find	the
optimal	number	of	trees,	and	finally	trains	another	GBRT	ensemble	using	the	optimal	number	of	trees:

import	numpy	as	np

from	sklearn.model_selection	import	train_test_split

from	sklearn.metrics	import	mean_squared_error

X_train,	X_val,	y_train,	y_val	=	train_test_split(X,	y)

gbrt	=	GradientBoostingRegressor(max_depth=2,	n_estimators=120)

gbrt.fit(X_train,	y_train)

errors	=	[mean_squared_error(y_val,	y_pred)

										for	y_pred	in	gbrt.staged_predict(X_val)]

bst_n_estimators	=	np.argmin(errors)

gbrt_best	=	GradientBoostingRegressor(max_depth=2,n_estimators=bst_n_estimators)

gbrt_best.fit(X_train,	y_train)

The	validation	errors	are	represented	on	the	left	of	Figure	7-11,	and	the	best	model’s	predictions	are
represented	on	the	right.

Figure	7-11.	Tuning	the	number	of	trees	using	early	stopping

It	is	also	possible	to	implement	early	stopping	by	actually	stopping	training	early	(instead	of	training	a
large	number	of	trees	first	and	then	looking	back	to	find	the	optimal	number).	You	can	do	so	by	setting
warm_start=True,	which	makes	Scikit-Learn	keep	existing	trees	when	the	fit()	method	is	called,
allowing	incremental	training.	The	following	code	stops	training	when	the	validation	error	does	not
improve	for	five	iterations	in	a	row:

gbrt	=	GradientBoostingRegressor(max_depth=2,	warm_start=True)

min_val_error	=	float("inf")

error_going_up	=	0

for	n_estimators	in	range(1,	120):

				gbrt.n_estimators	=	n_estimators

				gbrt.fit(X_train,	y_train)

				y_pred	=	gbrt.predict(X_val)

				val_error	=	mean_squared_error(y_val,	y_pred)

				if	val_error	<	min_val_error:

								min_val_error	=	val_error

								error_going_up	=	0

				else:

								error_going_up	+=	1

								if	error_going_up	==	5:

												break		#	early	stopping

The	GradientBoostingRegressor	class	also	supports	a	subsample	hyperparameter,	which	specifies
the	fraction	of	training	instances	to	be	used	for	training	each	tree.	For	example,	if	subsample=0.25,	then
each	tree	is	trained	on	25%	of	the	training	instances,	selected	randomly.	As	you	can	probably	guess	by
now,	this	trades	a	higher	bias	for	a	lower	variance.	It	also	speeds	up	training	considerably.	This	technique
is	called	Stochastic	Gradient	Boosting.

NOTE
It	is	possible	to	use	Gradient	Boosting	with	other	cost	functions.	This	is	controlled	by	the	loss	hyperparameter	(see	Scikit-
Learn’s	documentation	for	more	details).

Stacking
The	last	Ensemble	method	we	will	discuss	in	this	chapter	is	called	stacking	(short	for	stacked
generalization).18	It	is	based	on	a	simple	idea:	instead	of	using	trivial	functions	(such	as	hard	voting)	to
aggregate	the	predictions	of	all	predictors	in	an	ensemble,	why	don’t	we	train	a	model	to	perform	this
aggregation?	Figure	7-12	shows	such	an	ensemble	performing	a	regression	task	on	a	new	instance.	Each
of	the	bottom	three	predictors	predicts	a	different	value	(3.1,	2.7,	and	2.9),	and	then	the	final	predictor
(called	a	blender,	or	a	meta	learner)	takes	these	predictions	as	inputs	and	makes	the	final	prediction
(3.0).

http://goo.gl/9I2NBw

Figure	7-12.	Aggregating	predictions	using	a	blending	predictor

To	train	the	blender,	a	common	approach	is	to	use	a	hold-out	set.19	Let’s	see	how	it	works.	First,	the
training	set	is	split	in	two	subsets.	The	first	subset	is	used	to	train	the	predictors	in	the	first	layer	(see
Figure	7-13).

Figure	7-13.	Training	the	first	layer

Next,	the	first	layer	predictors	are	used	to	make	predictions	on	the	second	(held-out)	set	(see	Figure	7-
14).	This	ensures	that	the	predictions	are	“clean,”	since	the	predictors	never	saw	these	instances	during
training.	Now	for	each	instance	in	the	hold-out	set	there	are	three	predicted	values.	We	can	create	a	new
training	set	using	these	predicted	values	as	input	features	(which	makes	this	new	training	set	three-
dimensional),	and	keeping	the	target	values.	The	blender	is	trained	on	this	new	training	set,	so	it	learns	to
predict	the	target	value	given	the	first	layer’s	predictions.

Figure	7-14.	Training	the	blender

It	is	actually	possible	to	train	several	different	blenders	this	way	(e.g.,	one	using	Linear	Regression,
another	using	Random	Forest	Regression,	and	so	on):	we	get	a	whole	layer	of	blenders.	The	trick	is	to
split	the	training	set	into	three	subsets:	the	first	one	is	used	to	train	the	first	layer,	the	second	one	is	used	to
create	the	training	set	used	to	train	the	second	layer	(using	predictions	made	by	the	predictors	of	the	first
layer),	and	the	third	one	is	used	to	create	the	training	set	to	train	the	third	layer	(using	predictions	made	by
the	predictors	of	the	second	layer).	Once	this	is	done,	we	can	make	a	prediction	for	a	new	instance	by
going	through	each	layer	sequentially,	as	shown	in	Figure	7-15.

Figure	7-15.	Predictions	in	a	multilayer	stacking	ensemble

Unfortunately,	Scikit-Learn	does	not	support	stacking	directly,	but	it	is	not	too	hard	to	roll	out	your	own
implementation	(see	the	following	exercises).	Alternatively,	you	can	use	an	open	source	implementation
such	as	brew	(available	at	https://github.com/viisar/brew).

https://github.com/viisar/brew

Exercises
1.	 If	you	have	trained	five	different	models	on	the	exact	same	training	data,	and	they	all	achieve

95%	precision,	is	there	any	chance	that	you	can	combine	these	models	to	get	better	results?	If	so,
how?	If	not,	why?

2.	 What	is	the	difference	between	hard	and	soft	voting	classifiers?

3.	 Is	it	possible	to	speed	up	training	of	a	bagging	ensemble	by	distributing	it	across	multiple
servers?	What	about	pasting	ensembles,	boosting	ensembles,	random	forests,	or	stacking
ensembles?

4.	 What	is	the	benefit	of	out-of-bag	evaluation?

5.	 What	makes	Extra-Trees	more	random	than	regular	Random	Forests?	How	can	this	extra
randomness	help?	Are	Extra-Trees	slower	or	faster	than	regular	Random	Forests?

6.	 If	your	AdaBoost	ensemble	underfits	the	training	data,	what	hyperparameters	should	you	tweak
and	how?

7.	 If	your	Gradient	Boosting	ensemble	overfits	the	training	set,	should	you	increase	or	decrease	the
learning	rate?

8.	 Load	the	MNIST	data	(introduced	in	Chapter	3),	and	split	it	into	a	training	set,	a	validation	set,
and	a	test	set	(e.g.,	use	the	first	40,000	instances	for	training,	the	next	10,000	for	validation,	and
the	last	10,000	for	testing).	Then	train	various	classifiers,	such	as	a	Random	Forest	classifier,	an
Extra-Trees	classifier,	and	an	SVM.	Next,	try	to	combine	them	into	an	ensemble	that	outperforms
them	all	on	the	validation	set,	using	a	soft	or	hard	voting	classifier.	Once	you	have	found	one,	try
it	on	the	test	set.	How	much	better	does	it	perform	compared	to	the	individual	classifiers?

9.	 Run	the	individual	classifiers	from	the	previous	exercise	to	make	predictions	on	the	validation
set,	and	create	a	new	training	set	with	the	resulting	predictions:	each	training	instance	is	a	vector
containing	the	set	of	predictions	from	all	your	classifiers	for	an	image,	and	the	target	is	the
image’s	class.	Congratulations,	you	have	just	trained	a	blender,	and	together	with	the	classifiers
they	form	a	stacking	ensemble!	Now	let’s	evaluate	the	ensemble	on	the	test	set.	For	each	image	in
the	test	set,	make	predictions	with	all	your	classifiers,	then	feed	the	predictions	to	the	blender	to
get	the	ensemble’s	predictions.	How	does	it	compare	to	the	voting	classifier	you	trained	earlier?

Solutions	to	these	exercises	are	available	in	Appendix	A.

“Bagging	Predictors,”	L.	Breiman	(1996).

In	statistics,	resampling	with	replacement	is	called	bootstrapping.

“Pasting	small	votes	for	classification	in	large	databases	and	on-line,”	L.	Breiman	(1999).

Bias	and	variance	were	introduced	in	Chapter	4.

max_samples	can	alternatively	be	set	to	a	float	between	0.0	and	1.0,	in	which	case	the	max	number	of	instances	to	sample	is	equal	to	the

1

2

3

4

5

size	of	the	training	set	times	max_samples.

As	m	grows,	this	ratio	approaches	1	–	exp(–1)	≈	63.212%.

“Ensembles	on	Random	Patches,”	G.	Louppe	and	P.	Geurts	(2012).

“The	random	subspace	method	for	constructing	decision	forests,”	Tin	Kam	Ho	(1998).

“Random	Decision	Forests,”	T.	Ho	(1995).

The	BaggingClassifier	class	remains	useful	if	you	want	a	bag	of	something	other	than	Decision	Trees.

There	are	a	few	notable	exceptions:	splitter	is	absent	(forced	to	"random"),	presort	is	absent	(forced	to	False),	max_samples	is	absent
(forced	to	1.0),	and	base_estimator	is	absent	(forced	to	DecisionTreeClassifier	with	the	provided	hyperparameters).

“Extremely	randomized	trees,”	P.	Geurts,	D.	Ernst,	L.	Wehenkel	(2005).

“A	Decision-Theoretic	Generalization	of	On-Line	Learning	and	an	Application	to	Boosting,”	Yoav	Freund,	Robert	E.	Schapire	(1997).

This	is	just	for	illustrative	purposes.	SVMs	are	generally	not	good	base	predictors	for	AdaBoost,	because	they	are	slow	and	tend	to	be
unstable	with	AdaBoost.

The	original	AdaBoost	algorithm	does	not	use	a	learning	rate	hyperparameter.

For	more	details,	see	“Multi-Class	AdaBoost,”	J.	Zhu	et	al.	(2006).

First	introduced	in	“Arcing	the	Edge,”	L.	Breiman	(1997).

“Stacked	Generalization,”	D.	Wolpert	(1992).

Alternatively,	it	is	possible	to	use	out-of-fold	predictions.	In	some	contexts	this	is	called	stacking,	while	using	a	hold-out	set	is	called
blending.	However,	for	many	people	these	terms	are	synonymous.

6

7

8

9

10

11

12

13

14

15

16

17

18

19

Chapter	8.	Dimensionality	Reduction

Many	Machine	Learning	problems	involve	thousands	or	even	millions	of	features	for	each	training
instance.	Not	only	does	this	make	training	extremely	slow,	it	can	also	make	it	much	harder	to	find	a	good
solution,	as	we	will	see.	This	problem	is	often	referred	to	as	the	curse	of	dimensionality.

Fortunately,	in	real-world	problems,	it	is	often	possible	to	reduce	the	number	of	features	considerably,
turning	an	intractable	problem	into	a	tractable	one.	For	example,	consider	the	MNIST	images	(introduced
in	Chapter	3):	the	pixels	on	the	image	borders	are	almost	always	white,	so	you	could	completely	drop
these	pixels	from	the	training	set	without	losing	much	information.	Figure	7-6	confirms	that	these	pixels
are	utterly	unimportant	for	the	classification	task.	Moreover,	two	neighboring	pixels	are	often	highly
correlated:	if	you	merge	them	into	a	single	pixel	(e.g.,	by	taking	the	mean	of	the	two	pixel	intensities),	you
will	not	lose	much	information.

WARNING
Reducing	dimensionality	does	lose	some	information	(just	like	compressing	an	image	to	JPEG	can	degrade	its	quality),	so	even
though	it	will	speed	up	training,	it	may	also	make	your	system	perform	slightly	worse.	It	also	makes	your	pipelines	a	bit	more
complex	and	thus	harder	to	maintain.	So	you	should	first	try	to	train	your	system	with	the	original	data	before	considering	using
dimensionality	reduction	if	training	is	too	slow.	In	some	cases,	however,	reducing	the	dimensionality	of	the	training	data	may	filter
out	some	noise	and	unnecessary	details	and	thus	result	in	higher	performance	(but	in	general	it	won’t;	it	will	just	speed	up
training).

Apart	from	speeding	up	training,	dimensionality	reduction	is	also	extremely	useful	for	data	visualization
(or	DataViz).	Reducing	the	number	of	dimensions	down	to	two	(or	three)	makes	it	possible	to	plot	a	high-
dimensional	training	set	on	a	graph	and	often	gain	some	important	insights	by	visually	detecting	patterns,
such	as	clusters.

In	this	chapter	we	will	discuss	the	curse	of	dimensionality	and	get	a	sense	of	what	goes	on	in	high-
dimensional	space.	Then,	we	will	present	the	two	main	approaches	to	dimensionality	reduction
(projection	and	Manifold	Learning),	and	we	will	go	through	three	of	the	most	popular	dimensionality
reduction	techniques:	PCA,	Kernel	PCA,	and	LLE.

The	Curse	of	Dimensionality
We	are	so	used	to	living	in	three	dimensions1	that	our	intuition	fails	us	when	we	try	to	imagine	a	high-
dimensional	space.	Even	a	basic	4D	hypercube	is	incredibly	hard	to	picture	in	our	mind	(see	Figure	8-1),
let	alone	a	200-dimensional	ellipsoid	bent	in	a	1,000-dimensional	space.

Figure	8-1.	Point,	segment,	square,	cube,	and	tesseract	(0D	to	4D	hypercubes)2

It	turns	out	that	many	things	behave	very	differently	in	high-dimensional	space.	For	example,	if	you	pick	a
random	point	in	a	unit	square	(a	1	×	1	square),	it	will	have	only	about	a	0.4%	chance	of	being	located	less
than	0.001	from	a	border	(in	other	words,	it	is	very	unlikely	that	a	random	point	will	be	“extreme”	along
any	dimension).	But	in	a	10,000-dimensional	unit	hypercube	(a	1	×	1	×	⋯	×	1	cube,	with	ten	thousand
1s),	this	probability	is	greater	than	99.999999%.	Most	points	in	a	high-dimensional	hypercube	are	very
close	to	the	border.3

Here	is	a	more	troublesome	difference:	if	you	pick	two	points	randomly	in	a	unit	square,	the	distance
between	these	two	points	will	be,	on	average,	roughly	0.52.	If	you	pick	two	random	points	in	a	unit	3D
cube,	the	average	distance	will	be	roughly	0.66.	But	what	about	two	points	picked	randomly	in	a
1,000,000-dimensional	hypercube?	Well,	the	average	distance,	believe	it	or	not,	will	be	about	408.25

(roughly)!	This	is	quite	counterintuitive:	how	can	two	points	be	so	far	apart	when
they	both	lie	within	the	same	unit	hypercube?	This	fact	implies	that	high-dimensional	datasets	are	at	risk
of	being	very	sparse:	most	training	instances	are	likely	to	be	far	away	from	each	other.	Of	course,	this
also	means	that	a	new	instance	will	likely	be	far	away	from	any	training	instance,	making	predictions
much	less	reliable	than	in	lower	dimensions,	since	they	will	be	based	on	much	larger	extrapolations.	In
short,	the	more	dimensions	the	training	set	has,	the	greater	the	risk	of	overfitting	it.

In	theory,	one	solution	to	the	curse	of	dimensionality	could	be	to	increase	the	size	of	the	training	set	to
reach	a	sufficient	density	of	training	instances.	Unfortunately,	in	practice,	the	number	of	training	instances
required	to	reach	a	given	density	grows	exponentially	with	the	number	of	dimensions.	With	just	100
features	(much	less	than	in	the	MNIST	problem),	you	would	need	more	training	instances	than	atoms	in
the	observable	universe	in	order	for	training	instances	to	be	within	0.1	of	each	other	on	average,	assuming

they	were	spread	out	uniformly	across	all	dimensions.

Main	Approaches	for	Dimensionality	Reduction
Before	we	dive	into	specific	dimensionality	reduction	algorithms,	let’s	take	a	look	at	the	two	main
approaches	to	reducing	dimensionality:	projection	and	Manifold	Learning.

Projection
In	most	real-world	problems,	training	instances	are	not	spread	out	uniformly	across	all	dimensions.	Many
features	are	almost	constant,	while	others	are	highly	correlated	(as	discussed	earlier	for	MNIST).	As	a
result,	all	training	instances	actually	lie	within	(or	close	to)	a	much	lower-dimensional	subspace	of	the
high-dimensional	space.	This	sounds	very	abstract,	so	let’s	look	at	an	example.	In	Figure	8-2	you	can	see
a	3D	dataset	represented	by	the	circles.

Figure	8-2.	A	3D	dataset	lying	close	to	a	2D	subspace

Notice	that	all	training	instances	lie	close	to	a	plane:	this	is	a	lower-dimensional	(2D)	subspace	of	the
high-dimensional	(3D)	space.	Now	if	we	project	every	training	instance	perpendicularly	onto	this
subspace	(as	represented	by	the	short	lines	connecting	the	instances	to	the	plane),	we	get	the	new	2D
dataset	shown	in	Figure	8-3.	Ta-da!	We	have	just	reduced	the	dataset’s	dimensionality	from	3D	to	2D.
Note	that	the	axes	correspond	to	new	features	z1	and	z2	(the	coordinates	of	the	projections	on	the	plane).

Figure	8-3.	The	new	2D	dataset	after	projection

However,	projection	is	not	always	the	best	approach	to	dimensionality	reduction.	In	many	cases	the
subspace	may	twist	and	turn,	such	as	in	the	famous	Swiss	roll	toy	dataset	represented	in	Figure	8-4.

Figure	8-4.	Swiss	roll	dataset

Simply	projecting	onto	a	plane	(e.g.,	by	dropping	x3)	would	squash	different	layers	of	the	Swiss	roll
together,	as	shown	on	the	left	of	Figure	8-5.	However,	what	you	really	want	is	to	unroll	the	Swiss	roll	to
obtain	the	2D	dataset	on	the	right	of	Figure	8-5.

Figure	8-5.	Squashing	by	projecting	onto	a	plane	(left)	versus	unrolling	the	Swiss	roll	(right)

Manifold	Learning
The	Swiss	roll	is	an	example	of	a	2D	manifold.	Put	simply,	a	2D	manifold	is	a	2D	shape	that	can	be	bent
and	twisted	in	a	higher-dimensional	space.	More	generally,	a	d-dimensional	manifold	is	a	part	of	an	n-
dimensional	space	(where	d	<	n)	that	locally	resembles	a	d-dimensional	hyperplane.	In	the	case	of	the
Swiss	roll,	d	=	2	and	n	=	3:	it	locally	resembles	a	2D	plane,	but	it	is	rolled	in	the	third	dimension.

Many	dimensionality	reduction	algorithms	work	by	modeling	the	manifold	on	which	the	training	instances
lie;	this	is	called	Manifold	Learning.	It	relies	on	the	manifold	assumption,	also	called	the	manifold
hypothesis,	which	holds	that	most	real-world	high-dimensional	datasets	lie	close	to	a	much	lower-
dimensional	manifold.	This	assumption	is	very	often	empirically	observed.

Once	again,	think	about	the	MNIST	dataset:	all	handwritten	digit	images	have	some	similarities.	They	are
made	of	connected	lines,	the	borders	are	white,	they	are	more	or	less	centered,	and	so	on.	If	you	randomly
generated	images,	only	a	ridiculously	tiny	fraction	of	them	would	look	like	handwritten	digits.	In	other
words,	the	degrees	of	freedom	available	to	you	if	you	try	to	create	a	digit	image	are	dramatically	lower
than	the	degrees	of	freedom	you	would	have	if	you	were	allowed	to	generate	any	image	you	wanted.
These	constraints	tend	to	squeeze	the	dataset	into	a	lower-dimensional	manifold.

The	manifold	assumption	is	often	accompanied	by	another	implicit	assumption:	that	the	task	at	hand	(e.g.,
classification	or	regression)	will	be	simpler	if	expressed	in	the	lower-dimensional	space	of	the	manifold.
For	example,	in	the	top	row	of	Figure	8-6	the	Swiss	roll	is	split	into	two	classes:	in	the	3D	space	(on	the
left),	the	decision	boundary	would	be	fairly	complex,	but	in	the	2D	unrolled	manifold	space	(on	the	right),
the	decision	boundary	is	a	simple	straight	line.

However,	this	assumption	does	not	always	hold.	For	example,	in	the	bottom	row	of	Figure	8-6,	the
decision	boundary	is	located	at	x1	=	5.	This	decision	boundary	looks	very	simple	in	the	original	3D	space
(a	vertical	plane),	but	it	looks	more	complex	in	the	unrolled	manifold	(a	collection	of	four	independent
line	segments).

In	short,	if	you	reduce	the	dimensionality	of	your	training	set	before	training	a	model,	it	will	definitely
speed	up	training,	but	it	may	not	always	lead	to	a	better	or	simpler	solution;	it	all	depends	on	the	dataset.

Hopefully	you	now	have	a	good	sense	of	what	the	curse	of	dimensionality	is	and	how	dimensionality
reduction	algorithms	can	fight	it,	especially	when	the	manifold	assumption	holds.	The	rest	of	this	chapter
will	go	through	some	of	the	most	popular	algorithms.

Figure	8-6.	The	decision	boundary	may	not	always	be	simpler	with	lower	dimensions

PCA
Principal	Component	Analysis	(PCA)	is	by	far	the	most	popular	dimensionality	reduction	algorithm.
First	it	identifies	the	hyperplane	that	lies	closest	to	the	data,	and	then	it	projects	the	data	onto	it.

Preserving	the	Variance
Before	you	can	project	the	training	set	onto	a	lower-dimensional	hyperplane,	you	first	need	to	choose	the
right	hyperplane.	For	example,	a	simple	2D	dataset	is	represented	on	the	left	of	Figure	8-7,	along	with
three	different	axes	(i.e.,	one-dimensional	hyperplanes).	On	the	right	is	the	result	of	the	projection	of	the
dataset	onto	each	of	these	axes.	As	you	can	see,	the	projection	onto	the	solid	line	preserves	the	maximum
variance,	while	the	projection	onto	the	dotted	line	preserves	very	little	variance,	and	the	projection	onto
the	dashed	line	preserves	an	intermediate	amount	of	variance.

Figure	8-7.	Selecting	the	subspace	onto	which	to	project

It	seems	reasonable	to	select	the	axis	that	preserves	the	maximum	amount	of	variance,	as	it	will	most
likely	lose	less	information	than	the	other	projections.	Another	way	to	justify	this	choice	is	that	it	is	the
axis	that	minimizes	the	mean	squared	distance	between	the	original	dataset	and	its	projection	onto	that
axis.	This	is	the	rather	simple	idea	behind	PCA.4

http://goo.gl/gbNo1D

Principal	Components
PCA	identifies	the	axis	that	accounts	for	the	largest	amount	of	variance	in	the	training	set.	In	Figure	8-7,	it
is	the	solid	line.	It	also	finds	a	second	axis,	orthogonal	to	the	first	one,	that	accounts	for	the	largest	amount
of	remaining	variance.	In	this	2D	example	there	is	no	choice:	it	is	the	dotted	line.	If	it	were	a	higher-
dimensional	dataset,	PCA	would	also	find	a	third	axis,	orthogonal	to	both	previous	axes,	and	a	fourth,	a
fifth,	and	so	on	—	as	many	axes	as	the	number	of	dimensions	in	the	dataset.

The	unit	vector	that	defines	the	ith	axis	is	called	the	ith	principal	component	(PC).	In	Figure	8-7,	the	1st

PC	is	c1	and	the	2nd	PC	is	c2.	In	Figure	8-2	the	first	two	PCs	are	represented	by	the	orthogonal	arrows	in
the	plane,	and	the	third	PC	would	be	orthogonal	to	the	plane	(pointing	up	or	down).

NOTE
The	direction	of	the	principal	components	is	not	stable:	if	you	perturb	the	training	set	slightly	and	run	PCA	again,	some	of	the	new
PCs	may	point	in	the	opposite	direction	of	the	original	PCs.	However,	they	will	generally	still	lie	on	the	same	axes.	In	some	cases,
a	pair	of	PCs	may	even	rotate	or	swap,	but	the	plane	they	define	will	generally	remain	the	same.

So	how	can	you	find	the	principal	components	of	a	training	set?	Luckily,	there	is	a	standard	matrix
factorization	technique	called	Singular	Value	Decomposition	(SVD)	that	can	decompose	the	training	set
matrix	X	into	the	dot	product	of	three	matrices	U	·	Σ	·	VT,	where	VT	contains	all	the	principal	components
that	we	are	looking	for,	as	shown	in	Equation	8-1.

Equation	8-1.	Principal	components	matrix

The	following	Python	code	uses	NumPy’s	svd()	function	to	obtain	all	the	principal	components	of	the
training	set,	then	extracts	the	first	two	PCs:

X_centered	=	X	-	X.mean(axis=0)

U,	s,	V	=	np.linalg.svd(X_centered)

c1	=	V.T[:,	0]

c2	=	V.T[:,	1]

WARNING
PCA	assumes	that	the	dataset	is	centered	around	the	origin.	As	we	will	see,	Scikit-Learn’s	PCA	classes	take	care	of	centering
the	data	for	you.	However,	if	you	implement	PCA	yourself	(as	in	the	preceding	example),	or	if	you	use	other	libraries,	don’t

forget	to	center	the	data	first.

Projecting	Down	to	d	Dimensions
Once	you	have	identified	all	the	principal	components,	you	can	reduce	the	dimensionality	of	the	dataset
down	to	d	dimensions	by	projecting	it	onto	the	hyperplane	defined	by	the	first	d	principal	components.
Selecting	this	hyperplane	ensures	that	the	projection	will	preserve	as	much	variance	as	possible.	For
example,	in	Figure	8-2	the	3D	dataset	is	projected	down	to	the	2D	plane	defined	by	the	first	two	principal
components,	preserving	a	large	part	of	the	dataset’s	variance.	As	a	result,	the	2D	projection	looks	very
much	like	the	original	3D	dataset.

To	project	the	training	set	onto	the	hyperplane,	you	can	simply	compute	the	dot	product	of	the	training	set
matrix	X	by	the	matrix	Wd,	defined	as	the	matrix	containing	the	first	d	principal	components	(i.e.,	the
matrix	composed	of	the	first	d	columns	of	VT),	as	shown	in	Equation	8-2.

Equation	8-2.	Projecting	the	training	set	down	to	d	dimensions

The	following	Python	code	projects	the	training	set	onto	the	plane	defined	by	the	first	two	principal
components:

W2	=	V.T[:,	:2]

X2D	=	X_centered.dot(W2)

There	you	have	it!	You	now	know	how	to	reduce	the	dimensionality	of	any	dataset	down	to	any	number	of
dimensions,	while	preserving	as	much	variance	as	possible.

Using	Scikit-Learn
Scikit-Learn’s	PCA	class	implements	PCA	using	SVD	decomposition	just	like	we	did	before.	The
following	code	applies	PCA	to	reduce	the	dimensionality	of	the	dataset	down	to	two	dimensions	(note
that	it	automatically	takes	care	of	centering	the	data):

from	sklearn.decomposition	import	PCA

pca	=	PCA(n_components	=	2)

X2D	=	pca.fit_transform(X)

After	fitting	the	PCA	transformer	to	the	dataset,	you	can	access	the	principal	components	using	the
components_	variable	(note	that	it	contains	the	PCs	as	horizontal	vectors,	so,	for	example,	the	first
principal	component	is	equal	to	pca.components_.T[:,	0]).

Explained	Variance	Ratio
Another	very	useful	piece	of	information	is	the	explained	variance	ratio	of	each	principal	component,
available	via	the	explained_variance_ratio_	variable.	It	indicates	the	proportion	of	the	dataset’s
variance	that	lies	along	the	axis	of	each	principal	component.	For	example,	let’s	look	at	the	explained
variance	ratios	of	the	first	two	components	of	the	3D	dataset	represented	in	Figure	8-2:

>>>	print(pca.explained_variance_ratio_)

array([0.84248607,		0.14631839])

This	tells	you	that	84.2%	of	the	dataset’s	variance	lies	along	the	first	axis,	and	14.6%	lies	along	the
second	axis.	This	leaves	less	than	1.2%	for	the	third	axis,	so	it	is	reasonable	to	assume	that	it	probably
carries	little	information.

Choosing	the	Right	Number	of	Dimensions
Instead	of	arbitrarily	choosing	the	number	of	dimensions	to	reduce	down	to,	it	is	generally	preferable	to
choose	the	number	of	dimensions	that	add	up	to	a	sufficiently	large	portion	of	the	variance	(e.g.,	95%).
Unless,	of	course,	you	are	reducing	dimensionality	for	data	visualization	—	in	that	case	you	will
generally	want	to	reduce	the	dimensionality	down	to	2	or	3.

The	following	code	computes	PCA	without	reducing	dimensionality,	then	computes	the	minimum	number
of	dimensions	required	to	preserve	95%	of	the	training	set’s	variance:

pca	=	PCA()

pca.fit(X)

cumsum	=	np.cumsum(pca.explained_variance_ratio_)

d	=	np.argmax(cumsum	>=	0.95)	+	1

You	could	then	set	n_components=d	and	run	PCA	again.	However,	there	is	a	much	better	option:	instead
of	specifying	the	number	of	principal	components	you	want	to	preserve,	you	can	set	n_components	to	be
a	float	between	0.0	and	1.0,	indicating	the	ratio	of	variance	you	wish	to	preserve:

pca	=	PCA(n_components=0.95)

X_reduced	=	pca.fit_transform(X)

Yet	another	option	is	to	plot	the	explained	variance	as	a	function	of	the	number	of	dimensions	(simply	plot
cumsum;	see	Figure	8-8).	There	will	usually	be	an	elbow	in	the	curve,	where	the	explained	variance	stops
growing	fast.	You	can	think	of	this	as	the	intrinsic	dimensionality	of	the	dataset.	In	this	case,	you	can	see
that	reducing	the	dimensionality	down	to	about	100	dimensions	wouldn’t	lose	too	much	explained
variance.

Figure	8-8.	Explained	variance	as	a	function	of	the	number	of	dimensions

PCA	for	Compression
Obviously	after	dimensionality	reduction,	the	training	set	takes	up	much	less	space.	For	example,	try
applying	PCA	to	the	MNIST	dataset	while	preserving	95%	of	its	variance.	You	should	find	that	each
instance	will	have	just	over	150	features,	instead	of	the	original	784	features.	So	while	most	of	the
variance	is	preserved,	the	dataset	is	now	less	than	20%	of	its	original	size!	This	is	a	reasonable
compression	ratio,	and	you	can	see	how	this	can	speed	up	a	classification	algorithm	(such	as	an	SVM
classifier)	tremendously.

It	is	also	possible	to	decompress	the	reduced	dataset	back	to	784	dimensions	by	applying	the	inverse
transformation	of	the	PCA	projection.	Of	course	this	won’t	give	you	back	the	original	data,	since	the
projection	lost	a	bit	of	information	(within	the	5%	variance	that	was	dropped),	but	it	will	likely	be	quite
close	to	the	original	data.	The	mean	squared	distance	between	the	original	data	and	the	reconstructed	data
(compressed	and	then	decompressed)	is	called	the	reconstruction	error.	For	example,	the	following	code
compresses	the	MNIST	dataset	down	to	154	dimensions,	then	uses	the	inverse_transform()	method	to
decompress	it	back	to	784	dimensions.	Figure	8-9	shows	a	few	digits	from	the	original	training	set	(on	the
left),	and	the	corresponding	digits	after	compression	and	decompression.	You	can	see	that	there	is	a	slight
image	quality	loss,	but	the	digits	are	still	mostly	intact.

pca	=	PCA(n_components	=	154)

X_mnist_reduced	=	pca.fit_transform(X_mnist)

X_mnist_recovered	=	pca.inverse_transform(X_mnist_reduced)

Figure	8-9.	MNIST	compression	preserving	95%	of	the	variance

The	equation	of	the	inverse	transformation	is	shown	in	Equation	8-3.

Equation	8-3.	PCA	inverse	transformation,	back	to	the	original	number	of	dimensions

Incremental	PCA
One	problem	with	the	preceding	implementation	of	PCA	is	that	it	requires	the	whole	training	set	to	fit	in
memory	in	order	for	the	SVD	algorithm	to	run.	Fortunately,	Incremental	PCA	(IPCA)	algorithms	have
been	developed:	you	can	split	the	training	set	into	mini-batches	and	feed	an	IPCA	algorithm	one	mini-
batch	at	a	time.	This	is	useful	for	large	training	sets,	and	also	to	apply	PCA	online	(i.e.,	on	the	fly,	as	new
instances	arrive).

The	following	code	splits	the	MNIST	dataset	into	100	mini-batches	(using	NumPy’s	array_split()
function)	and	feeds	them	to	Scikit-Learn’s	IncrementalPCA	class5	to	reduce	the	dimensionality	of	the
MNIST	dataset	down	to	154	dimensions	(just	like	before).	Note	that	you	must	call	the	partial_fit()
method	with	each	mini-batch	rather	than	the	fit()	method	with	the	whole	training	set:

from	sklearn.decomposition	import	IncrementalPCA

n_batches	=	100

inc_pca	=	IncrementalPCA(n_components=154)

for	X_batch	in	np.array_split(X_mnist,	n_batches):

				inc_pca.partial_fit(X_batch)

X_mnist_reduced	=	inc_pca.transform(X_mnist)

Alternatively,	you	can	use	NumPy’s	memmap	class,	which	allows	you	to	manipulate	a	large	array	stored	in
a	binary	file	on	disk	as	if	it	were	entirely	in	memory;	the	class	loads	only	the	data	it	needs	in	memory,
when	it	needs	it.	Since	the	IncrementalPCA	class	uses	only	a	small	part	of	the	array	at	any	given	time,
the	memory	usage	remains	under	control.	This	makes	it	possible	to	call	the	usual	fit()	method,	as	you
can	see	in	the	following	code:

X_mm	=	np.memmap(filename,	dtype="float32",	mode="readonly",	shape=(m,	n))

batch_size	=	m	//	n_batches

inc_pca	=	IncrementalPCA(n_components=154,	batch_size=batch_size)

inc_pca.fit(X_mm)

http://goo.gl/FmdhUP

Randomized	PCA
Scikit-Learn	offers	yet	another	option	to	perform	PCA,	called	Randomized	PCA.	This	is	a	stochastic
algorithm	that	quickly	finds	an	approximation	of	the	first	d	principal	components.	Its	computational
complexity	is	O(m	×	d2)	+	O(d3),	instead	of	O(m	×	n2)	+	O(n3),	so	it	is	dramatically	faster	than	the
previous	algorithms	when	d	is	much	smaller	than	n.

rnd_pca	=	PCA(n_components=154,	svd_solver="randomized")

X_reduced	=	rnd_pca.fit_transform(X_mnist)

Kernel	PCA
In	Chapter	5	we	discussed	the	kernel	trick,	a	mathematical	technique	that	implicitly	maps	instances	into	a
very	high-dimensional	space	(called	the	feature	space),	enabling	nonlinear	classification	and	regression
with	Support	Vector	Machines.	Recall	that	a	linear	decision	boundary	in	the	high-dimensional	feature
space	corresponds	to	a	complex	nonlinear	decision	boundary	in	the	original	space.

It	turns	out	that	the	same	trick	can	be	applied	to	PCA,	making	it	possible	to	perform	complex	nonlinear
projections	for	dimensionality	reduction.	This	is	called	Kernel	PCA	(kPCA).6	It	is	often	good	at
preserving	clusters	of	instances	after	projection,	or	sometimes	even	unrolling	datasets	that	lie	close	to	a
twisted	manifold.

For	example,	the	following	code	uses	Scikit-Learn’s	KernelPCA	class	to	perform	kPCA	with	an	RBF
kernel	(see	Chapter	5	for	more	details	about	the	RBF	kernel	and	the	other	kernels):

from	sklearn.decomposition	import	KernelPCA

rbf_pca	=	KernelPCA(n_components	=	2,	kernel="rbf",	gamma=0.04)

X_reduced	=	rbf_pca.fit_transform(X)

Figure	8-10	shows	the	Swiss	roll,	reduced	to	two	dimensions	using	a	linear	kernel	(equivalent	to	simply
using	the	PCA	class),	an	RBF	kernel,	and	a	sigmoid	kernel	(Logistic).

Figure	8-10.	Swiss	roll	reduced	to	2D	using	kPCA	with	various	kernels

http://goo.gl/5lQT5Q

Selecting	a	Kernel	and	Tuning	Hyperparameters
As	kPCA	is	an	unsupervised	learning	algorithm,	there	is	no	obvious	performance	measure	to	help	you
select	the	best	kernel	and	hyperparameter	values.	However,	dimensionality	reduction	is	often	a
preparation	step	for	a	supervised	learning	task	(e.g.,	classification),	so	you	can	simply	use	grid	search	to
select	the	kernel	and	hyperparameters	that	lead	to	the	best	performance	on	that	task.	For	example,	the
following	code	creates	a	two-step	pipeline,	first	reducing	dimensionality	to	two	dimensions	using	kPCA,
then	applying	Logistic	Regression	for	classification.	Then	it	uses	GridSearchCV	to	find	the	best	kernel
and	gamma	value	for	kPCA	in	order	to	get	the	best	classification	accuracy	at	the	end	of	the	pipeline:

from	sklearn.model_selection	import	GridSearchCV

from	sklearn.linear_model	import	LogisticRegression

from	sklearn.pipeline	import	Pipeline

clf	=	Pipeline([

								("kpca",	KernelPCA(n_components=2)),

								("log_reg",	LogisticRegression())

])

param_grid	=	[{

								"kpca__gamma":	np.linspace(0.03,	0.05,	10),

								"kpca__kernel":	["rbf",	"sigmoid"]

				}]

grid_search	=	GridSearchCV(clf,	param_grid,	cv=3)

grid_search.fit(X,	y)

The	best	kernel	and	hyperparameters	are	then	available	through	the	best_params_	variable:

>>>	print(grid_search.best_params_)

{'kpca__gamma':	0.043333333333333335,	'kpca__kernel':	'rbf'}

Another	approach,	this	time	entirely	unsupervised,	is	to	select	the	kernel	and	hyperparameters	that	yield
the	lowest	reconstruction	error.	However,	reconstruction	is	not	as	easy	as	with	linear	PCA.	Here’s	why.
Figure	8-11	shows	the	original	Swiss	roll	3D	dataset	(top	left),	and	the	resulting	2D	dataset	after	kPCA	is
applied	using	an	RBF	kernel	(top	right).	Thanks	to	the	kernel	trick,	this	is	mathematically	equivalent	to
mapping	the	training	set	to	an	infinite-dimensional	feature	space	(bottom	right)	using	the	feature	map	φ,
then	projecting	the	transformed	training	set	down	to	2D	using	linear	PCA.	Notice	that	if	we	could	invert
the	linear	PCA	step	for	a	given	instance	in	the	reduced	space,	the	reconstructed	point	would	lie	in	feature
space,	not	in	the	original	space	(e.g.,	like	the	one	represented	by	an	x	in	the	diagram).	Since	the	feature
space	is	infinite-dimensional,	we	cannot	compute	the	reconstructed	point,	and	therefore	we	cannot
compute	the	true	reconstruction	error.	Fortunately,	it	is	possible	to	find	a	point	in	the	original	space	that
would	map	close	to	the	reconstructed	point.	This	is	called	the	reconstruction	pre-image.	Once	you	have
this	pre-image,	you	can	measure	its	squared	distance	to	the	original	instance.	You	can	then	select	the
kernel	and	hyperparameters	that	minimize	this	reconstruction	pre-image	error.

Figure	8-11.	Kernel	PCA	and	the	reconstruction	pre-image	error

You	may	be	wondering	how	to	perform	this	reconstruction.	One	solution	is	to	train	a	supervised
regression	model,	with	the	projected	instances	as	the	training	set	and	the	original	instances	as	the	targets.
Scikit-Learn	will	do	this	automatically	if	you	set	fit_inverse_transform=True,	as	shown	in	the
following	code:7

rbf_pca	=	KernelPCA(n_components	=	2,	kernel="rbf",	gamma=0.0433,

																				fit_inverse_transform=True)

X_reduced	=	rbf_pca.fit_transform(X)

X_preimage	=	rbf_pca.inverse_transform(X_reduced)

NOTE
By	default,	fit_inverse_transform=False	and	KernelPCA	has	no	inverse_transform()	method.	This	method	only	gets
created	when	you	set	fit_inverse_transform=True.

You	can	then	compute	the	reconstruction	pre-image	error:

>>>	from	sklearn.metrics	import	mean_squared_error

>>>	mean_squared_error(X,	X_preimage)

32.786308795766132

Now	you	can	use	grid	search	with	cross-validation	to	find	the	kernel	and	hyperparameters	that	minimize
this	pre-image	reconstruction	error.

LLE
Locally	Linear	Embedding	(LLE)8	is	another	very	powerful	nonlinear	dimensionality	reduction
(NLDR)	technique.	It	is	a	Manifold	Learning	technique	that	does	not	rely	on	projections	like	the	previous
algorithms.	In	a	nutshell,	LLE	works	by	first	measuring	how	each	training	instance	linearly	relates	to	its
closest	neighbors	(c.n.),	and	then	looking	for	a	low-dimensional	representation	of	the	training	set	where
these	local	relationships	are	best	preserved	(more	details	shortly).	This	makes	it	particularly	good	at
unrolling	twisted	manifolds,	especially	when	there	is	not	too	much	noise.

For	example,	the	following	code	uses	Scikit-Learn’s	LocallyLinearEmbedding	class	to	unroll	the	Swiss
roll.	The	resulting	2D	dataset	is	shown	in	Figure	8-12.	As	you	can	see,	the	Swiss	roll	is	completely
unrolled	and	the	distances	between	instances	are	locally	well	preserved.	However,	distances	are	not
preserved	on	a	larger	scale:	the	left	part	of	the	unrolled	Swiss	roll	is	squeezed,	while	the	right	part	is
stretched.	Nevertheless,	LLE	did	a	pretty	good	job	at	modeling	the	manifold.

from	sklearn.manifold	import	LocallyLinearEmbedding

lle	=	LocallyLinearEmbedding(n_components=2,	n_neighbors=10)

X_reduced	=	lle.fit_transform(X)

Figure	8-12.	Unrolled	Swiss	roll	using	LLE

https://goo.gl/iA9bns

Here’s	how	LLE	works:	first,	for	each	training	instance	x(i),	the	algorithm	identifies	its	k	closest
neighbors	(in	the	preceding	code	k	=	10),	then	tries	to	reconstruct	x(i)	as	a	linear	function	of	these
neighbors.	More	specifically,	it	finds	the	weights	wi,j	such	that	the	squared	distance	between	x(i)	and	

	is	as	small	as	possible,	assuming	wi,j	=	0	if	x(j)	is	not	one	of	the	k	closest	neighbors	of	x(i).
Thus	the	first	step	of	LLE	is	the	constrained	optimization	problem	described	in	Equation	8-4,	where	W	is
the	weight	matrix	containing	all	the	weights	wi,j.	The	second	constraint	simply	normalizes	the	weights	for
each	training	instance	x(i).

Equation	8-4.	LLE	step	1:	linearly	modeling	local	relationships

After	this	step,	the	weight	matrix	 	(containing	the	weights)	encodes	the	local	linear	relationships
between	the	training	instances.	Now	the	second	step	is	to	map	the	training	instances	into	a	d-dimensional
space	(where	d	<	n)	while	preserving	these	local	relationships	as	much	as	possible.	If	z(i)	is	the	image	of

x(i)	in	this	d-dimensional	space,	then	we	want	the	squared	distance	between	z(i)	and	 	to	be	as
small	as	possible.	This	idea	leads	to	the	unconstrained	optimization	problem	described	in	Equation	8-5.	It
looks	very	similar	to	the	first	step,	but	instead	of	keeping	the	instances	fixed	and	finding	the	optimal
weights,	we	are	doing	the	reverse:	keeping	the	weights	fixed	and	finding	the	optimal	position	of	the
instances’	images	in	the	low-dimensional	space.	Note	that	Z	is	the	matrix	containing	all	z(i).

Equation	8-5.	LLE	step	2:	reducing	dimensionality	while	preserving	relationships

Scikit-Learn’s	LLE	implementation	has	the	following	computational	complexity:	O(m	log(m)n	log(k))	for
finding	the	k	nearest	neighbors,	O(mnk3)	for	optimizing	the	weights,	and	O(dm2)	for	constructing	the	low-
dimensional	representations.	Unfortunately,	the	m2	in	the	last	term	makes	this	algorithm	scale	poorly	to
very	large	datasets.

Other	Dimensionality	Reduction	Techniques
There	are	many	other	dimensionality	reduction	techniques,	several	of	which	are	available	in	Scikit-Learn.
Here	are	some	of	the	most	popular:

Multidimensional	Scaling	(MDS)	reduces	dimensionality	while	trying	to	preserve	the	distances
between	the	instances	(see	Figure	8-13).

Isomap	creates	a	graph	by	connecting	each	instance	to	its	nearest	neighbors,	then	reduces
dimensionality	while	trying	to	preserve	the	geodesic	distances9	between	the	instances.

t-Distributed	Stochastic	Neighbor	Embedding	(t-SNE)	reduces	dimensionality	while	trying	to	keep
similar	instances	close	and	dissimilar	instances	apart.	It	is	mostly	used	for	visualization,	in
particular	to	visualize	clusters	of	instances	in	high-dimensional	space	(e.g.,	to	visualize	the	MNIST
images	in	2D).

Linear	Discriminant	Analysis	(LDA)	is	actually	a	classification	algorithm,	but	during	training	it
learns	the	most	discriminative	axes	between	the	classes,	and	these	axes	can	then	be	used	to	define	a
hyperplane	onto	which	to	project	the	data.	The	benefit	is	that	the	projection	will	keep	classes	as	far
apart	as	possible,	so	LDA	is	a	good	technique	to	reduce	dimensionality	before	running	another
classification	algorithm	such	as	an	SVM	classifier.

Figure	8-13.	Reducing	the	Swiss	roll	to	2D	using	various	techniques

Exercises
1.	 What	are	the	main	motivations	for	reducing	a	dataset’s	dimensionality?	What	are	the	main

drawbacks?

2.	 What	is	the	curse	of	dimensionality?

3.	 Once	a	dataset’s	dimensionality	has	been	reduced,	is	it	possible	to	reverse	the	operation?	If	so,
how?	If	not,	why?

4.	 Can	PCA	be	used	to	reduce	the	dimensionality	of	a	highly	nonlinear	dataset?

5.	 Suppose	you	perform	PCA	on	a	1,000-dimensional	dataset,	setting	the	explained	variance	ratio
to	95%.	How	many	dimensions	will	the	resulting	dataset	have?

6.	 In	what	cases	would	you	use	vanilla	PCA,	Incremental	PCA,	Randomized	PCA,	or	Kernel	PCA?

7.	 How	can	you	evaluate	the	performance	of	a	dimensionality	reduction	algorithm	on	your	dataset?

8.	 Does	it	make	any	sense	to	chain	two	different	dimensionality	reduction	algorithms?

9.	 Load	the	MNIST	dataset	(introduced	in	Chapter	3)	and	split	it	into	a	training	set	and	a	test	set
(take	the	first	60,000	instances	for	training,	and	the	remaining	10,000	for	testing).	Train	a
Random	Forest	classifier	on	the	dataset	and	time	how	long	it	takes,	then	evaluate	the	resulting
model	on	the	test	set.	Next,	use	PCA	to	reduce	the	dataset’s	dimensionality,	with	an	explained
variance	ratio	of	95%.	Train	a	new	Random	Forest	classifier	on	the	reduced	dataset	and	see	how
long	it	takes.	Was	training	much	faster?	Next	evaluate	the	classifier	on	the	test	set:	how	does	it
compare	to	the	previous	classifier?

10.	 Use	t-SNE	to	reduce	the	MNIST	dataset	down	to	two	dimensions	and	plot	the	result	using
Matplotlib.	You	can	use	a	scatterplot	using	10	different	colors	to	represent	each	image’s	target
class.	Alternatively,	you	can	write	colored	digits	at	the	location	of	each	instance,	or	even	plot
scaled-down	versions	of	the	digit	images	themselves	(if	you	plot	all	digits,	the	visualization	will
be	too	cluttered,	so	you	should	either	draw	a	random	sample	or	plot	an	instance	only	if	no	other
instance	has	already	been	plotted	at	a	close	distance).	You	should	get	a	nice	visualization	with
well-separated	clusters	of	digits.	Try	using	other	dimensionality	reduction	algorithms	such	as
PCA,	LLE,	or	MDS	and	compare	the	resulting	visualizations.

Solutions	to	these	exercises	are	available	in	Appendix	A.

Well,	four	dimensions	if	you	count	time,	and	a	few	more	if	you	are	a	string	theorist.

Watch	a	rotating	tesseract	projected	into	3D	space	at	http://goo.gl/OM7ktJ.	Image	by	Wikipedia	user	NerdBoy1392	(Creative	Commons
BY-SA	3.0).	Reproduced	from	https://en.wikipedia.org/wiki/Tesseract.

Fun	fact:	anyone	you	know	is	probably	an	extremist	in	at	least	one	dimension	(e.g.,	how	much	sugar	they	put	in	their	coffee),	if	you
consider	enough	dimensions.

“On	Lines	and	Planes	of	Closest	Fit	to	Systems	of	Points	in	Space,”	K.	Pearson	(1901).

1

2

3

4

5

http://goo.gl/OM7ktJ
https://creativecommons.org/licenses/by-sa/3.0/
https://en.wikipedia.org/wiki/Tesseract

Scikit-Learn	uses	the	algorithm	described	in	“Incremental	Learning	for	Robust	Visual	Tracking,”	D.	Ross	et	al.	(2007).

“Kernel	Principal	Component	Analysis,”	B.	Schölkopf,	A.	Smola,	K.	Müller	(1999).

Scikit-Learn	uses	the	algorithm	based	on	Kernel	Ridge	Regression	described	in	Gokhan	H.	Bakır,	Jason	Weston,	and	Bernhard	Scholkopf,
“Learning	to	Find	Pre-images”	(Tubingen,	Germany:	Max	Planck	Institute	for	Biological	Cybernetics,	2004).

“Nonlinear	Dimensionality	Reduction	by	Locally	Linear	Embedding,”	S.	Roweis,	L.	Saul	(2000).

The	geodesic	distance	between	two	nodes	in	a	graph	is	the	number	of	nodes	on	the	shortest	path	between	these	nodes.

5

6

7

8

9

http://goo.gl/d0ydY6

Part	II.	Neural	Networks	and	Deep	Learning

Chapter	9.	Up	and	Running	with	TensorFlow

TensorFlow	is	a	powerful	open	source	software	library	for	numerical	computation,	particularly	well
suited	and	fine-tuned	for	large-scale	Machine	Learning.	Its	basic	principle	is	simple:	you	first	define	in
Python	a	graph	of	computations	to	perform	(for	example,	the	one	in	Figure	9-1),	and	then	TensorFlow
takes	that	graph	and	runs	it	efficiently	using	optimized	C++	code.

Figure	9-1.	A	simple	computation	graph

Most	importantly,	it	is	possible	to	break	up	the	graph	into	several	chunks	and	run	them	in	parallel	across
multiple	CPUs	or	GPUs	(as	shown	in	Figure	9-2).	TensorFlow	also	supports	distributed	computing,	so
you	can	train	colossal	neural	networks	on	humongous	training	sets	in	a	reasonable	amount	of	time	by
splitting	the	computations	across	hundreds	of	servers	(see	Chapter	12).	TensorFlow	can	train	a	network
with	millions	of	parameters	on	a	training	set	composed	of	billions	of	instances	with	millions	of	features
each.	This	should	come	as	no	surprise,	since	TensorFlow	was	developed	by	the	Google	Brain	team	and	it
powers	many	of	Google’s	large-scale	services,	such	as	Google	Cloud	Speech,	Google	Photos,	and
Google	Search.

Figure	9-2.	Parallel	computation	on	multiple	CPUs/GPUs/servers

When	TensorFlow	was	open-sourced	in	November	2015,	there	were	already	many	popular	open	source
libraries	for	Deep	Learning	(Table	9-1	lists	a	few),	and	to	be	fair	most	of	TensorFlow’s	features	already
existed	in	one	library	or	another.	Nevertheless,	TensorFlow’s	clean	design,	scalability,	flexibility,1	and
great	documentation	(not	to	mention	Google’s	name)	quickly	boosted	it	to	the	top	of	the	list.	In	short,
TensorFlow	was	designed	to	be	flexible,	scalable,	and	production-ready,	and	existing	frameworks
arguably	hit	only	two	out	of	the	three	of	these.	Here	are	some	of	TensorFlow’s	highlights:

It	runs	not	only	on	Windows,	Linux,	and	macOS,	but	also	on	mobile	devices,	including	both	iOS	and
Android.

It	provides	a	very	simple	Python	API	called	TF.Learn2	(tensorflow.contrib.learn),	compatible
with	Scikit-Learn.	As	you	will	see,	you	can	use	it	to	train	various	types	of	neural	networks	in	just	a
few	lines	of	code.	It	was	previously	an	independent	project	called	Scikit	Flow	(or	skflow).

It	also	provides	another	simple	API	called	TF-slim	(tensorflow.contrib.slim)	to	simplify
building,	training,	and	evaluating	neural	networks.

Several	other	high-level	APIs	have	been	built	independently	on	top	of	TensorFlow,	such	as	Keras	or
Pretty	Tensor.

Its	main	Python	API	offers	much	more	flexibility	(at	the	cost	of	higher	complexity)	to	create	all	sorts
of	computations,	including	any	neural	network	architecture	you	can	think	of.

It	includes	highly	efficient	C++	implementations	of	many	ML	operations,	particularly	those	needed	to
build	neural	networks.	There	is	also	a	C++	API	to	define	your	own	high-performance	operations.

It	provides	several	advanced	optimization	nodes	to	search	for	the	parameters	that	minimize	a	cost
function.	These	are	very	easy	to	use	since	TensorFlow	automatically	takes	care	of	computing	the
gradients	of	the	functions	you	define.	This	is	called	automatic	differentiating	(or	autodiff).

It	also	comes	with	a	great	visualization	tool	called	TensorBoard	that	allows	you	to	browse	through
the	computation	graph,	view	learning	curves,	and	more.

Google	also	launched	a	cloud	service	to	run	TensorFlow	graphs.

Last	but	not	least,	it	has	a	dedicated	team	of	passionate	and	helpful	developers,	and	a	growing
community	contributing	to	improving	it.	It	is	one	of	the	most	popular	open	source	projects	on
GitHub,	and	more	and	more	great	projects	are	being	built	on	top	of	it	(for	examples,	check	out	the
resources	page	on	https://www.tensorflow.org/,	or	https://github.com/jtoy/awesome-tensorflow).
To	ask	technical	questions,	you	should	use	http://stackoverflow.com/	and	tag	your	question	with
"tensorflow".	You	can	file	bugs	and	feature	requests	through	GitHub.	For	general	discussions,	join
the	Google	group.

In	this	chapter,	we	will	go	through	the	basics	of	TensorFlow,	from	installation	to	creating,	running,	saving,
and	visualizing	simple	computational	graphs.	Mastering	these	basics	is	important	before	you	build	your
first	neural	network	(which	we	will	do	in	the	next	chapter).

Table	9-1.	Open	source	Deep	Learning	libraries	(not	an	exhaustive	list)

Library API Platforms Started	by Year

Caffe Python,	C++,	Matlab Linux,	macOS,	Windows Y.	Jia,	UC	Berkeley	(BVLC) 2013

Deeplearning4j Java,	Scala,	Clojure Linux,	macOS,	Windows,	Android A.	Gibson,	J.Patterson 2014

H2O Python,	R Linux,	macOS,	Windows H2O.ai 2014

MXNet Python,	C++,	others Linux,	macOS,	Windows,	iOS,	Android DMLC 2015

TensorFlow Python,	C++ Linux,	macOS,	Windows,	iOS,	Android Google 2015

http://keras.io
https://github.com/google/prettytensor/
https://cloud.google.com/ml
https://www.tensorflow.org/
https://github.com/jtoy/awesome-tensorflow
http://stackoverflow.com/
http://goo.gl/N7kRF9

Theano Python Linux,	macOS,	iOS University	of	Montreal 2010

Torch C++,	Lua Linux,	macOS,	iOS,	Android R.	Collobert,	K.	Kavukcuoglu,	C.	Farabet 2002

Installation
Let’s	get	started!	Assuming	you	installed	Jupyter	and	Scikit-Learn	by	following	the	installation
instructions	in	Chapter	2,	you	can	simply	use	pip	to	install	TensorFlow.	If	you	created	an	isolated
environment	using	virtualenv,	you	first	need	to	activate	it:

$	cd	$ML_PATH															#	Your	ML	working	directory	(e.g.,	$HOME/ml)

$	source	env/bin/activate

Next,	install	TensorFlow:

$	pip3	install	--upgrade	tensorflow

NOTE
For	GPU	support,	you	need	to	install	tensorflow-gpu	instead	of	tensorflow.	See	Chapter	12	for	more	details.

To	test	your	installation,	type	the	following	command.	It	should	output	the	version	of	TensorFlow	you
installed.

$	python3	-c	'import	tensorflow;	print(tensorflow.__version__)'

1.0.0

Creating	Your	First	Graph	and	Running	It	in	a	Session
The	following	code	creates	the	graph	represented	in	Figure	9-1:

import	tensorflow	as	tf

x	=	tf.Variable(3,	name="x")

y	=	tf.Variable(4,	name="y")

f	=	x*x*y	+	y	+	2

That’s	all	there	is	to	it!	The	most	important	thing	to	understand	is	that	this	code	does	not	actually	perform
any	computation,	even	though	it	looks	like	it	does	(especially	the	last	line).	It	just	creates	a	computation
graph.	In	fact,	even	the	variables	are	not	initialized	yet.	To	evaluate	this	graph,	you	need	to	open	a
TensorFlow	session	and	use	it	to	initialize	the	variables	and	evaluate	f.	A	TensorFlow	session	takes	care
of	placing	the	operations	onto	devices	such	as	CPUs	and	GPUs	and	running	them,	and	it	holds	all	the
variable	values.3	The	following	code	creates	a	session,	initializes	the	variables,	and	evaluates,	and	f	then
closes	the	session	(which	frees	up	resources):

>>>	sess	=	tf.Session()

>>>	sess.run(x.initializer)

>>>	sess.run(y.initializer)

>>>	result	=	sess.run(f)

>>>	print(result)

42

>>>	sess.close()

Having	to	repeat	sess.run()	all	the	time	is	a	bit	cumbersome,	but	fortunately	there	is	a	better	way:

with	tf.Session()	as	sess:

				x.initializer.run()

				y.initializer.run()

				result	=	f.eval()

Inside	the	with	block,	the	session	is	set	as	the	default	session.	Calling	x.initializer.run()	is
equivalent	to	calling	tf.get_default_session().run(x.initializer),	and	similarly	f.eval()	is
equivalent	to	calling	tf.get_default_session().run(f).	This	makes	the	code	easier	to	read.
Moreover,	the	session	is	automatically	closed	at	the	end	of	the	block.

Instead	of	manually	running	the	initializer	for	every	single	variable,	you	can	use	the
global_variables_initializer()	function.	Note	that	it	does	not	actually	perform	the	initialization
immediately,	but	rather	creates	a	node	in	the	graph	that	will	initialize	all	variables	when	it	is	run:

init	=	tf.global_variables_initializer()		#	prepare	an	init	node

with	tf.Session()	as	sess:

				init.run()		#	actually	initialize	all	the	variables

				result	=	f.eval()

Inside	Jupyter	or	within	a	Python	shell	you	may	prefer	to	create	an	InteractiveSession.	The	only
difference	from	a	regular	Session	is	that	when	an	InteractiveSession	is	created	it	automatically	sets

itself	as	the	default	session,	so	you	don’t	need	a	with	block	(but	you	do	need	to	close	the	session
manually	when	you	are	done	with	it):

>>>	sess	=	tf.InteractiveSession()

>>>	init.run()

>>>	result	=	f.eval()

>>>	print(result)

42

>>>	sess.close()

A	TensorFlow	program	is	typically	split	into	two	parts:	the	first	part	builds	a	computation	graph	(this	is
called	the	construction	phase),	and	the	second	part	runs	it	(this	is	the	execution	phase).	The	construction
phase	typically	builds	a	computation	graph	representing	the	ML	model	and	the	computations	required	to
train	it.	The	execution	phase	generally	runs	a	loop	that	evaluates	a	training	step	repeatedly	(for	example,
one	step	per	mini-batch),	gradually	improving	the	model	parameters.	We	will	go	through	an	example
shortly.

Managing	Graphs
Any	node	you	create	is	automatically	added	to	the	default	graph:

>>>	x1	=	tf.Variable(1)

>>>	x1.graph	is	tf.get_default_graph()

True

In	most	cases	this	is	fine,	but	sometimes	you	may	want	to	manage	multiple	independent	graphs.	You	can	do
this	by	creating	a	new	Graph	and	temporarily	making	it	the	default	graph	inside	a	with	block,	like	so:

>>>	graph	=	tf.Graph()

>>>	with	graph.as_default():

...					x2	=	tf.Variable(2)

...

>>>	x2.graph	is	graph

True

>>>	x2.graph	is	tf.get_default_graph()

False

TIP
In	Jupyter	(or	in	a	Python	shell),	it	is	common	to	run	the	same	commands	more	than	once	while	you	are	experimenting.	As	a
result,	you	may	end	up	with	a	default	graph	containing	many	duplicate	nodes.	One	solution	is	to	restart	the	Jupyter	kernel	(or	the
Python	shell),	but	a	more	convenient	solution	is	to	just	reset	the	default	graph	by	running	tf.reset_default_graph().

Lifecycle	of	a	Node	Value
When	you	evaluate	a	node,	TensorFlow	automatically	determines	the	set	of	nodes	that	it	depends	on	and	it
evaluates	these	nodes	first.	For	example,	consider	the	following	code:

w	=	tf.constant(3)

x	=	w	+	2

y	=	x	+	5

z	=	x	*	3

with	tf.Session()	as	sess:

				print(y.eval())		#	10

				print(z.eval())		#	15

First,	this	code	defines	a	very	simple	graph.	Then	it	starts	a	session	and	runs	the	graph	to	evaluate	y:
TensorFlow	automatically	detects	that	y	depends	on	w,	which	depends	on	x,	so	it	first	evaluates	w,	then	x,
then	y,	and	returns	the	value	of	y.	Finally,	the	code	runs	the	graph	to	evaluate	z.	Once	again,	TensorFlow
detects	that	it	must	first	evaluate	w	and	x.	It	is	important	to	note	that	it	will	not	reuse	the	result	of	the
previous	evaluation	of	w	and	x.	In	short,	the	preceding	code	evaluates	w	and	x	twice.

All	node	values	are	dropped	between	graph	runs,	except	variable	values,	which	are	maintained	by	the
session	across	graph	runs	(queues	and	readers	also	maintain	some	state,	as	we	will	see	in	Chapter	12).	A
variable	starts	its	life	when	its	initializer	is	run,	and	it	ends	when	the	session	is	closed.

If	you	want	to	evaluate	y	and	z	efficiently,	without	evaluating	w	and	x	twice	as	in	the	previous	code,	you
must	ask	TensorFlow	to	evaluate	both	y	and	z	in	just	one	graph	run,	as	shown	in	the	following	code:

with	tf.Session()	as	sess:

				y_val,	z_val	=	sess.run([y,	z])

				print(y_val)		#	10

				print(z_val)		#	15

WARNING
In	single-process	TensorFlow,	multiple	sessions	do	not	share	any	state,	even	if	they	reuse	the	same	graph	(each	session	would
have	its	own	copy	of	every	variable).	In	distributed	TensorFlow	(see	Chapter	12),	variable	state	is	stored	on	the	servers,	not	in
the	sessions,	so	multiple	sessions	can	share	the	same	variables.

Linear	Regression	with	TensorFlow
TensorFlow	operations	(also	called	ops	for	short)	can	take	any	number	of	inputs	and	produce	any	number
of	outputs.	For	example,	the	addition	and	multiplication	ops	each	take	two	inputs	and	produce	one	output.
Constants	and	variables	take	no	input	(they	are	called	source	ops).	The	inputs	and	outputs	are
multidimensional	arrays,	called	tensors	(hence	the	name	“tensor	flow”).	Just	like	NumPy	arrays,	tensors
have	a	type	and	a	shape.	In	fact,	in	the	Python	API	tensors	are	simply	represented	by	NumPy	ndarrays.
They	typically	contain	floats,	but	you	can	also	use	them	to	carry	strings	(arbitrary	byte	arrays).

In	the	examples	so	far,	the	tensors	just	contained	a	single	scalar	value,	but	you	can	of	course	perform
computations	on	arrays	of	any	shape.	For	example,	the	following	code	manipulates	2D	arrays	to	perform
Linear	Regression	on	the	California	housing	dataset	(introduced	in	Chapter	2).	It	starts	by	fetching	the
dataset;	then	it	adds	an	extra	bias	input	feature	(x0	=	1)	to	all	training	instances	(it	does	so	using	NumPy	so
it	runs	immediately);	then	it	creates	two	TensorFlow	constant	nodes,	X	and	y,	to	hold	this	data	and	the
targets,4	and	it	uses	some	of	the	matrix	operations	provided	by	TensorFlow	to	define	theta.	These	matrix
functions	—	transpose(),	matmul(),	and	matrix_inverse()	—	are	self-explanatory,	but	as	usual	they
do	not	perform	any	computations	immediately;	instead,	they	create	nodes	in	the	graph	that	will	perform
them	when	the	graph	is	run.	You	may	recognize	that	the	definition	of	theta	corresponds	to	the	Normal

Equation	(=	XT	·	X)–1	·	XT	·	y;	see	Chapter	4).	Finally,	the	code	creates	a	session	and	uses	it	to	evaluate
theta.

import	numpy	as	np

from	sklearn.datasets	import	fetch_california_housing

housing	=	fetch_california_housing()

m,	n	=	housing.data.shape

housing_data_plus_bias	=	np.c_[np.ones((m,	1)),	housing.data]

X	=	tf.constant(housing_data_plus_bias,	dtype=tf.float32,	name="X")

y	=	tf.constant(housing.target.reshape(-1,	1),	dtype=tf.float32,	name="y")

XT	=	tf.transpose(X)

theta	=	tf.matmul(tf.matmul(tf.matrix_inverse(tf.matmul(XT,	X)),	XT),	y)

with	tf.Session()	as	sess:

				theta_value	=	theta.eval()

The	main	benefit	of	this	code	versus	computing	the	Normal	Equation	directly	using	NumPy	is	that
TensorFlow	will	automatically	run	this	on	your	GPU	card	if	you	have	one	(provided	you	installed
TensorFlow	with	GPU	support,	of	course;	see	Chapter	12	for	more	details).

Implementing	Gradient	Descent
Let’s	try	using	Batch	Gradient	Descent	(introduced	in	Chapter	4)	instead	of	the	Normal	Equation.	First	we
will	do	this	by	manually	computing	the	gradients,	then	we	will	use	TensorFlow’s	autodiff	feature	to	let
TensorFlow	compute	the	gradients	automatically,	and	finally	we	will	use	a	couple	of	TensorFlow’s	out-
of-the-box	optimizers.

WARNING
When	using	Gradient	Descent,	remember	that	it	is	important	to	first	normalize	the	input	feature	vectors,	or	else	training	may	be
much	slower.	You	can	do	this	using	TensorFlow,	NumPy,	Scikit-Learn’s	StandardScaler,	or	any	other	solution	you	prefer.	The
following	code	assumes	that	this	normalization	has	already	been	done.

Manually	Computing	the	Gradients
The	following	code	should	be	fairly	self-explanatory,	except	for	a	few	new	elements:

The	random_uniform()	function	creates	a	node	in	the	graph	that	will	generate	a	tensor	containing
random	values,	given	its	shape	and	value	range,	much	like	NumPy’s	rand()	function.

The	assign()	function	creates	a	node	that	will	assign	a	new	value	to	a	variable.	In	this	case,	it
implements	the	Batch	Gradient	Descent	step	θ(next	step)	=	θ	–	η∇θMSE(θ).

The	main	loop	executes	the	training	step	over	and	over	again	(n_epochs	times),	and	every	100
iterations	it	prints	out	the	current	Mean	Squared	Error	(mse).	You	should	see	the	MSE	go	down	at
every	iteration.

n_epochs	=	1000

learning_rate	=	0.01

X	=	tf.constant(scaled_housing_data_plus_bias,	dtype=tf.float32,	name="X")

y	=	tf.constant(housing.target.reshape(-1,	1),	dtype=tf.float32,	name="y")

theta	=	tf.Variable(tf.random_uniform([n	+	1,	1],	-1.0,	1.0),	name="theta")

y_pred	=	tf.matmul(X,	theta,	name="predictions")

error	=	y_pred	-	y

mse	=	tf.reduce_mean(tf.square(error),	name="mse")

gradients	=	2/m	*	tf.matmul(tf.transpose(X),	error)

training_op	=	tf.assign(theta,	theta	-	learning_rate	*	gradients)

init	=	tf.global_variables_initializer()

with	tf.Session()	as	sess:

				sess.run(init)

				for	epoch	in	range(n_epochs):

								if	epoch	%	100	==	0:

												print("Epoch",	epoch,	"MSE	=",	mse.eval())

								sess.run(training_op)

				best_theta	=	theta.eval()

Using	autodiff
The	preceding	code	works	fine,	but	it	requires	mathematically	deriving	the	gradients	from	the	cost
function	(MSE).	In	the	case	of	Linear	Regression,	it	is	reasonably	easy,	but	if	you	had	to	do	this	with	deep
neural	networks	you	would	get	quite	a	headache:	it	would	be	tedious	and	error-prone.	You	could	use
symbolic	differentiation	to	automatically	find	the	equations	for	the	partial	derivatives	for	you,	but	the
resulting	code	would	not	necessarily	be	very	efficient.

To	understand	why,	consider	the	function	f(x)=	exp(exp(exp(x))).	If	you	know	calculus,	you	can	figure	out
its	derivative	f′(x)	=	exp(x)	×	exp(exp(x))	×	exp(exp(exp(x))).	If	you	code	f(x)	and	f′(x)	separately	and
exactly	as	they	appear,	your	code	will	not	be	as	efficient	as	it	could	be.	A	more	efficient	solution	would
be	to	write	a	function	that	first	computes	exp(x),	then	exp(exp(x)),	then	exp(exp(exp(x))),	and	returns	all
three.	This	gives	you	f(x)	directly	(the	third	term),	and	if	you	need	the	derivative	you	can	just	multiply	all
three	terms	and	you	are	done.	With	the	naïve	approach	you	would	have	had	to	call	the	exp	function	nine
times	to	compute	both	f(x)	and	f′(x).	With	this	approach	you	just	need	to	call	it	three	times.

It	gets	worse	when	your	function	is	defined	by	some	arbitrary	code.	Can	you	find	the	equation	(or	the
code)	to	compute	the	partial	derivatives	of	the	following	function?	Hint:	don’t	even	try.

def	my_func(a,	b):

				z	=	0

				for	i	in	range(100):

								z	=	a	*	np.cos(z	+	i)	+	z	*	np.sin(b	-	i)

				return	z

Fortunately,	TensorFlow’s	autodiff	feature	comes	to	the	rescue:	it	can	automatically	and	efficiently
compute	the	gradients	for	you.	Simply	replace	the	gradients	=	...	line	in	the	Gradient	Descent	code	in
the	previous	section	with	the	following	line,	and	the	code	will	continue	to	work	just	fine:

gradients	=	tf.gradients(mse,	[theta])[0]

The	gradients()	function	takes	an	op	(in	this	case	mse)	and	a	list	of	variables	(in	this	case	just	theta),
and	it	creates	a	list	of	ops	(one	per	variable)	to	compute	the	gradients	of	the	op	with	regards	to	each
variable.	So	the	gradients	node	will	compute	the	gradient	vector	of	the	MSE	with	regards	to	theta.

There	are	four	main	approaches	to	computing	gradients	automatically.	They	are	summarized	in	Table	9-2.
TensorFlow	uses	reverse-mode	autodiff,	which	is	perfect	(efficient	and	accurate)	when	there	are	many
inputs	and	few	outputs,	as	is	often	the	case	in	neural	networks.	It	computes	all	the	partial	derivatives	of
the	outputs	with	regards	to	all	the	inputs	in	just	noutputs	+	1	graph	traversals.

Table	9-2.	Main	solutions	to	compute	gradients	automatically

Technique Nb	of	graph	traversals	to	compute	all
gradients

Accuracy Supports	arbitrary
code

Comment

Numerical
differentiation

ninputs	+	1 Low Yes Trivial	to	implement

Symbolic	differentiation N/A High No Builds	a	very	different

graph

Forward-mode	autodiff ninputs High Yes Uses	dual	numbers

Reverse-mode	autodiff noutputs	+	1 High Yes Implemented	by
TensorFlow

If	you	are	interested	in	how	this	magic	works,	check	out	Appendix	D.

Using	an	Optimizer
So	TensorFlow	computes	the	gradients	for	you.	But	it	gets	even	easier:	it	also	provides	a	number	of
optimizers	out	of	the	box,	including	a	Gradient	Descent	optimizer.	You	can	simply	replace	the	preceding
gradients	=	...	and	training_op	=	...	lines	with	the	following	code,	and	once	again	everything
will	just	work	fine:

optimizer	=	tf.train.GradientDescentOptimizer(learning_rate=learning_rate)

training_op	=	optimizer.minimize(mse)

If	you	want	to	use	a	different	type	of	optimizer,	you	just	need	to	change	one	line.	For	example,	you	can	use
a	momentum	optimizer	(which	often	converges	much	faster	than	Gradient	Descent;	see	Chapter	11)	by
defining	the	optimizer	like	this:

optimizer	=	tf.train.MomentumOptimizer(learning_rate=learning_rate,

																																							momentum=0.9)

Feeding	Data	to	the	Training	Algorithm
Let’s	try	to	modify	the	previous	code	to	implement	Mini-batch	Gradient	Descent.	For	this,	we	need	a	way
to	replace	X	and	y	at	every	iteration	with	the	next	mini-batch.	The	simplest	way	to	do	this	is	to	use
placeholder	nodes.	These	nodes	are	special	because	they	don’t	actually	perform	any	computation,	they
just	output	the	data	you	tell	them	to	output	at	runtime.	They	are	typically	used	to	pass	the	training	data	to
TensorFlow	during	training.	If	you	don’t	specify	a	value	at	runtime	for	a	placeholder,	you	get	an
exception.

To	create	a	placeholder	node,	you	must	call	the	placeholder()	function	and	specify	the	output	tensor’s
data	type.	Optionally,	you	can	also	specify	its	shape,	if	you	want	to	enforce	it.	If	you	specify	None	for	a
dimension,	it	means	“any	size.”	For	example,	the	following	code	creates	a	placeholder	node	A,	and	also	a
node	B	=	A	+	5.	When	we	evaluate	B,	we	pass	a	feed_dict	to	the	eval()	method	that	specifies	the
value	of	A.	Note	that	A	must	have	rank	2	(i.e.,	it	must	be	two-dimensional)	and	there	must	be	three	columns
(or	else	an	exception	is	raised),	but	it	can	have	any	number	of	rows.

>>>	A	=	tf.placeholder(tf.float32,	shape=(None,	3))

>>>	B	=	A	+	5

>>>	with	tf.Session()	as	sess:

...					B_val_1	=	B.eval(feed_dict={A:	[[1,	2,	3]]})

...					B_val_2	=	B.eval(feed_dict={A:	[[4,	5,	6],	[7,	8,	9]]})

...

>>>	print(B_val_1)

[[6.		7.		8.]]

>>>	print(B_val_2)

[[9.		10.		11.]

	[12.		13.		14.]]

NOTE
You	can	actually	feed	the	output	of	any	operations,	not	just	placeholders.	In	this	case	TensorFlow	does	not	try	to	evaluate	these
operations;	it	uses	the	values	you	feed	it.

To	implement	Mini-batch	Gradient	Descent,	we	only	need	to	tweak	the	existing	code	slightly.	First	change
the	definition	of	X	and	y	in	the	construction	phase	to	make	them	placeholder	nodes:

X	=	tf.placeholder(tf.float32,	shape=(None,	n	+	1),	name="X")

y	=	tf.placeholder(tf.float32,	shape=(None,	1),	name="y")

Then	define	the	batch	size	and	compute	the	total	number	of	batches:

batch_size	=	100

n_batches	=	int(np.ceil(m	/	batch_size))

Finally,	in	the	execution	phase,	fetch	the	mini-batches	one	by	one,	then	provide	the	value	of	X	and	y	via
the	feed_dict	parameter	when	evaluating	a	node	that	depends	on	either	of	them.

def	fetch_batch(epoch,	batch_index,	batch_size):

				[...]	#	load	the	data	from	disk

				return	X_batch,	y_batch

with	tf.Session()	as	sess:

				sess.run(init)

				for	epoch	in	range(n_epochs):

								for	batch_index	in	range(n_batches):

												X_batch,	y_batch	=	fetch_batch(epoch,	batch_index,	batch_size)

												sess.run(training_op,	feed_dict={X:	X_batch,	y:	y_batch})

				best_theta	=	theta.eval()

NOTE
We	don’t	need	to	pass	the	value	of	X	and	y	when	evaluating	theta	since	it	does	not	depend	on	either	of	them.

Saving	and	Restoring	Models
Once	you	have	trained	your	model,	you	should	save	its	parameters	to	disk	so	you	can	come	back	to	it
whenever	you	want,	use	it	in	another	program,	compare	it	to	other	models,	and	so	on.	Moreover,	you
probably	want	to	save	checkpoints	at	regular	intervals	during	training	so	that	if	your	computer	crashes
during	training	you	can	continue	from	the	last	checkpoint	rather	than	start	over	from	scratch.

TensorFlow	makes	saving	and	restoring	a	model	very	easy.	Just	create	a	Saver	node	at	the	end	of	the
construction	phase	(after	all	variable	nodes	are	created);	then,	in	the	execution	phase,	just	call	its	save()
method	whenever	you	want	to	save	the	model,	passing	it	the	session	and	path	of	the	checkpoint	file:

[...]

theta	=	tf.Variable(tf.random_uniform([n	+	1,	1],	-1.0,	1.0),	name="theta")

[...]

init	=	tf.global_variables_initializer()

saver	=	tf.train.Saver()

with	tf.Session()	as	sess:

				sess.run(init)

				for	epoch	in	range(n_epochs):

								if	epoch	%	100	==	0:		#	checkpoint	every	100	epochs

												save_path	=	saver.save(sess,	"/tmp/my_model.ckpt")

								sess.run(training_op)

				best_theta	=	theta.eval()

				save_path	=	saver.save(sess,	"/tmp/my_model_final.ckpt")

Restoring	a	model	is	just	as	easy:	you	create	a	Saver	at	the	end	of	the	construction	phase	just	like	before,
but	then	at	the	beginning	of	the	execution	phase,	instead	of	initializing	the	variables	using	the	init	node,
you	call	the	restore()	method	of	the	Saver	object:

with	tf.Session()	as	sess:

				saver.restore(sess,	"/tmp/my_model_final.ckpt")

				[...]

By	default	a	Saver	saves	and	restores	all	variables	under	their	own	name,	but	if	you	need	more	control,
you	can	specify	which	variables	to	save	or	restore,	and	what	names	to	use.	For	example,	the	following
Saver	will	save	or	restore	only	the	theta	variable	under	the	name	weights:

saver	=	tf.train.Saver({"weights":	theta})

Visualizing	the	Graph	and	Training	Curves	Using	TensorBoard
So	now	we	have	a	computation	graph	that	trains	a	Linear	Regression	model	using	Mini-batch	Gradient
Descent,	and	we	are	saving	checkpoints	at	regular	intervals.	Sounds	sophisticated,	doesn’t	it?	However,
we	are	still	relying	on	the	print()	function	to	visualize	progress	during	training.	There	is	a	better	way:
enter	TensorBoard.	If	you	feed	it	some	training	stats,	it	will	display	nice	interactive	visualizations	of
these	stats	in	your	web	browser	(e.g.,	learning	curves).	You	can	also	provide	it	the	graph’s	definition	and
it	will	give	you	a	great	interface	to	browse	through	it.	This	is	very	useful	to	identify	errors	in	the	graph,	to
find	bottlenecks,	and	so	on.

The	first	step	is	to	tweak	your	program	a	bit	so	it	writes	the	graph	definition	and	some	training	stats	—	for
example,	the	training	error	(MSE)	—	to	a	log	directory	that	TensorBoard	will	read	from.	You	need	to	use
a	different	log	directory	every	time	you	run	your	program,	or	else	TensorBoard	will	merge	stats	from
different	runs,	which	will	mess	up	the	visualizations.	The	simplest	solution	for	this	is	to	include	a
timestamp	in	the	log	directory	name.	Add	the	following	code	at	the	beginning	of	the	program:

from	datetime	import	datetime

now	=	datetime.utcnow().strftime("%Y%m%d%H%M%S")

root_logdir	=	"tf_logs"

logdir	=	"{}/run-{}/".format(root_logdir,	now)

Next,	add	the	following	code	at	the	very	end	of	the	construction	phase:

mse_summary	=	tf.summary.scalar('MSE',	mse)

file_writer	=	tf.summary.FileWriter(logdir,	tf.get_default_graph())

The	first	line	creates	a	node	in	the	graph	that	will	evaluate	the	MSE	value	and	write	it	to	a	TensorBoard-
compatible	binary	log	string	called	a	summary.	The	second	line	creates	a	FileWriter	that	you	will	use
to	write	summaries	to	logfiles	in	the	log	directory.	The	first	parameter	indicates	the	path	of	the	log
directory	(in	this	case	something	like	tf_logs/run-20160906091959/,	relative	to	the	current	directory).
The	second	(optional)	parameter	is	the	graph	you	want	to	visualize.	Upon	creation,	the	FileWriter
creates	the	log	directory	if	it	does	not	already	exist	(and	its	parent	directories	if	needed),	and	writes	the
graph	definition	in	a	binary	logfile	called	an	events	file.

Next	you	need	to	update	the	execution	phase	to	evaluate	the	mse_summary	node	regularly	during	training
(e.g.,	every	10	mini-batches).	This	will	output	a	summary	that	you	can	then	write	to	the	events	file	using
the	file_writer.	Here	is	the	updated	code:

				[...]

				for	batch_index	in	range(n_batches):

								X_batch,	y_batch	=	fetch_batch(epoch,	batch_index,	batch_size)

								if	batch_index	%	10	==	0:

												summary_str	=	mse_summary.eval(feed_dict={X:	X_batch,	y:	y_batch})

												step	=	epoch	*	n_batches	+	batch_index

												file_writer.add_summary(summary_str,	step)

								sess.run(training_op,	feed_dict={X:	X_batch,	y:	y_batch})

				[...]

WARNING
Avoid	logging	training	stats	at	every	single	training	step,	as	this	would	significantly	slow	down	training.

Finally,	you	want	to	close	the	FileWriter	at	the	end	of	the	program:

file_writer.close()

Now	run	this	program:	it	will	create	the	log	directory	and	write	an	events	file	in	this	directory,	containing
both	the	graph	definition	and	the	MSE	values.	Open	up	a	shell	and	go	to	your	working	directory,	then	type
ls	-l	tf_logs/run*	to	list	the	contents	of	the	log	directory:

$	cd	$ML_PATH															#	Your	ML	working	directory	(e.g.,	$HOME/ml)

$	ls	-l	tf_logs/run*

total	40

-rw-r--r--	1	ageron	staff	18620	Sep	6	11:10	events.out.tfevents.1472553182.mymac

If	you	run	the	program	a	second	time,	you	should	see	a	second	directory	in	the	tf_logs/	directory:

$	ls	-l	tf_logs/

total	0

drwxr-xr-x		3	ageron		staff		102	Sep		6	10:07	run-20160906091959

drwxr-xr-x		3	ageron		staff		102	Sep		6	10:22	run-20160906092202

Great!	Now	it’s	time	to	fire	up	the	TensorBoard	server.	You	need	to	activate	your	virtualenv	environment
if	you	created	one,	then	start	the	server	by	running	the	tensorboard	command,	pointing	it	to	the	root	log
directory.	This	starts	the	TensorBoard	web	server,	listening	on	port	6006	(which	is	“goog”	written	upside
down):

$	source	env/bin/activate

$	tensorboard	--logdir	tf_logs/

Starting	TensorBoard		on	port	6006

(You	can	navigate	to	http://0.0.0.0:6006)

Next	open	a	browser	and	go	to	http://0.0.0.0:6006/	(or	http://localhost:6006/).	Welcome	to
TensorBoard!	In	the	Events	tab	you	should	see	MSE	on	the	right.	If	you	click	on	it,	you	will	see	a	plot	of
the	MSE	during	training,	for	both	runs	(Figure	9-3).	You	can	check	or	uncheck	the	runs	you	want	to	see,
zoom	in	or	out,	hover	over	the	curve	to	get	details,	and	so	on.

http://0.0.0.0:6006/
http://localhost:6006/

Figure	9-3.	Visualizing	training	stats	using	TensorBoard

Now	click	on	the	Graphs	tab.	You	should	see	the	graph	shown	in	Figure	9-4.

To	reduce	clutter,	the	nodes	that	have	many	edges	(i.e.,	connections	to	other	nodes)	are	separated	out	to	an
auxiliary	area	on	the	right	(you	can	move	a	node	back	and	forth	between	the	main	graph	and	the	auxiliary
area	by	right-clicking	on	it).	Some	parts	of	the	graph	are	also	collapsed	by	default.	For	example,	try
hovering	over	the	gradients	node,	then	click	on	the	⊕	icon	to	expand	this	subgraph.	Next,	in	this
subgraph,	try	expanding	the	mse_grad	subgraph.

Figure	9-4.	Visualizing	the	graph	using	TensorBoard

TIP
If	you	want	to	take	a	peek	at	the	graph	directly	within	Jupyter,	you	can	use	the	show_graph()	function	available	in	the	notebook
for	this	chapter.	It	was	originally	written	by	A.	Mordvintsev	in	his	great	deepdream	tutorial	notebook.	Another	option	is	to	install
E.	Jang’s	TensorFlow	debugger	tool	which	includes	a	Jupyter	extension	for	graph	visualization	(and	more).

http://goo.gl/EtCWUc
https://github.com/ericjang/tdb

Name	Scopes
When	dealing	with	more	complex	models	such	as	neural	networks,	the	graph	can	easily	become	cluttered
with	thousands	of	nodes.	To	avoid	this,	you	can	create	name	scopes	to	group	related	nodes.	For	example,
let’s	modify	the	previous	code	to	define	the	error	and	mse	ops	within	a	name	scope	called	"loss":

with	tf.name_scope("loss")	as	scope:

				error	=	y_pred	-	y

				mse	=	tf.reduce_mean(tf.square(error),	name="mse")

The	name	of	each	op	defined	within	the	scope	is	now	prefixed	with	"loss/":

>>>	print(error.op.name)

loss/sub

>>>	print(mse.op.name)

loss/mse

In	TensorBoard,	the	mse	and	error	nodes	now	appear	inside	the	loss	namespace,	which	appears
collapsed	by	default	(Figure	9-5).

Figure	9-5.	A	collapsed	namescope	in	TensorBoard

Modularity
Suppose	you	want	to	create	a	graph	that	adds	the	output	of	two	rectified	linear	units	(ReLU).	A	ReLU
computes	a	linear	function	of	the	inputs,	and	outputs	the	result	if	it	is	positive,	and	0	otherwise,	as	shown
in	Equation	9-1.

Equation	9-1.	Rectified	linear	unit

The	following	code	does	the	job,	but	it’s	quite	repetitive:

n_features	=	3

X	=	tf.placeholder(tf.float32,	shape=(None,	n_features),	name="X")

w1	=	tf.Variable(tf.random_normal((n_features,	1)),	name="weights1")

w2	=	tf.Variable(tf.random_normal((n_features,	1)),	name="weights2")

b1	=	tf.Variable(0.0,	name="bias1")

b2	=	tf.Variable(0.0,	name="bias2")

z1	=	tf.add(tf.matmul(X,	w1),	b1,	name="z1")

z2	=	tf.add(tf.matmul(X,	w2),	b2,	name="z2")

relu1	=	tf.maximum(z1,	0.,	name="relu1")

relu2	=	tf.maximum(z1,	0.,	name="relu2")

output	=	tf.add(relu1,	relu2,	name="output")

Such	repetitive	code	is	hard	to	maintain	and	error-prone	(in	fact,	this	code	contains	a	cut-and-paste	error;
did	you	spot	it?).	It	would	become	even	worse	if	you	wanted	to	add	a	few	more	ReLUs.	Fortunately,
TensorFlow	lets	you	stay	DRY	(Don’t	Repeat	Yourself):	simply	create	a	function	to	build	a	ReLU.	The
following	code	creates	five	ReLUs	and	outputs	their	sum	(note	that	add_n()	creates	an	operation	that	will
compute	the	sum	of	a	list	of	tensors):

def	relu(X):

				w_shape	=	(int(X.get_shape()[1]),	1)

				w	=	tf.Variable(tf.random_normal(w_shape),	name="weights")

				b	=	tf.Variable(0.0,	name="bias")

				z	=	tf.add(tf.matmul(X,	w),	b,	name="z")

				return	tf.maximum(z,	0.,	name="relu")

n_features	=	3

X	=	tf.placeholder(tf.float32,	shape=(None,	n_features),	name="X")

relus	=	[relu(X)	for	i	in	range(5)]

output	=	tf.add_n(relus,	name="output")

Note	that	when	you	create	a	node,	TensorFlow	checks	whether	its	name	already	exists,	and	if	it	does	it
appends	an	underscore	followed	by	an	index	to	make	the	name	unique.	So	the	first	ReLU	contains	nodes
named	"weights",	"bias",	"z",	and	"relu"	(plus	many	more	nodes	with	their	default	name,	such	as
"MatMul");	the	second	ReLU	contains	nodes	named	"weights_1",	"bias_1",	and	so	on;	the	third	ReLU
contains	nodes	named	"weights_2",	"bias_2",	and	so	on.	TensorBoard	identifies	such	series	and
collapses	them	together	to	reduce	clutter	(as	you	can	see	in	Figure	9-6).

Figure	9-6.	Collapsed	node	series

Using	name	scopes,	you	can	make	the	graph	much	clearer.	Simply	move	all	the	content	of	the	relu()
function	inside	a	name	scope.	Figure	9-7	shows	the	resulting	graph.	Notice	that	TensorFlow	also	gives	the
name	scopes	unique	names	by	appending	_1,	_2,	and	so	on.

def	relu(X):

				with	tf.name_scope("relu"):

								[...]

Figure	9-7.	A	clearer	graph	using	name-scoped	units

Sharing	Variables
If	you	want	to	share	a	variable	between	various	components	of	your	graph,	one	simple	option	is	to	create
it	first,	then	pass	it	as	a	parameter	to	the	functions	that	need	it.	For	example,	suppose	you	want	to	control
the	ReLU	threshold	(currently	hardcoded	to	0)	using	a	shared	threshold	variable	for	all	ReLUs.	You
could	just	create	that	variable	first,	and	then	pass	it	to	the	relu()	function:

def	relu(X,	threshold):

				with	tf.name_scope("relu"):

								[...]

								return	tf.maximum(z,	threshold,	name="max")

threshold	=	tf.Variable(0.0,	name="threshold")

X	=	tf.placeholder(tf.float32,	shape=(None,	n_features),	name="X")

relus	=	[relu(X,	threshold)	for	i	in	range(5)]

output	=	tf.add_n(relus,	name="output")

This	works	fine:	now	you	can	control	the	threshold	for	all	ReLUs	using	the	threshold	variable.
However,	if	there	are	many	shared	parameters	such	as	this	one,	it	will	be	painful	to	have	to	pass	them
around	as	parameters	all	the	time.	Many	people	create	a	Python	dictionary	containing	all	the	variables	in
their	model,	and	pass	it	around	to	every	function.	Others	create	a	class	for	each	module	(e.g.,	a	ReLU	class
using	class	variables	to	handle	the	shared	parameter).	Yet	another	option	is	to	set	the	shared	variable	as
an	attribute	of	the	relu()	function	upon	the	first	call,	like	so:

def	relu(X):

				with	tf.name_scope("relu"):

								if	not	hasattr(relu,	"threshold"):

												relu.threshold	=	tf.Variable(0.0,	name="threshold")

								[...]

								return	tf.maximum(z,	relu.threshold,	name="max")

TensorFlow	offers	another	option,	which	may	lead	to	slightly	cleaner	and	more	modular	code	than	the
previous	solutions.5	This	solution	is	a	bit	tricky	to	understand	at	first,	but	since	it	is	used	a	lot	in
TensorFlow	it	is	worth	going	into	a	bit	of	detail.	The	idea	is	to	use	the	get_variable()	function	to
create	the	shared	variable	if	it	does	not	exist	yet,	or	reuse	it	if	it	already	exists.	The	desired	behavior
(creating	or	reusing)	is	controlled	by	an	attribute	of	the	current	variable_scope().	For	example,	the
following	code	will	create	a	variable	named	"relu/threshold"	(as	a	scalar,	since	shape=(),	and	using
0.0	as	the	initial	value):

with	tf.variable_scope("relu"):

				threshold	=	tf.get_variable("threshold",	shape=(),

																																initializer=tf.constant_initializer(0.0))

Note	that	if	the	variable	has	already	been	created	by	an	earlier	call	to	get_variable(),	this	code	will
raise	an	exception.	This	behavior	prevents	reusing	variables	by	mistake.	If	you	want	to	reuse	a	variable,
you	need	to	explicitly	say	so	by	setting	the	variable	scope’s	reuse	attribute	to	True	(in	which	case	you
don’t	have	to	specify	the	shape	or	the	initializer):

with	tf.variable_scope("relu",	reuse=True):

				threshold	=	tf.get_variable("threshold")

This	code	will	fetch	the	existing	"relu/threshold"	variable,	or	raise	an	exception	if	it	does	not	exist	or
if	it	was	not	created	using	get_variable().	Alternatively,	you	can	set	the	reuse	attribute	to	True	inside
the	block	by	calling	the	scope’s	reuse_variables()	method:

with	tf.variable_scope("relu")	as	scope:

				scope.reuse_variables()

				threshold	=	tf.get_variable("threshold")

WARNING
Once	reuse	is	set	to	True,	it	cannot	be	set	back	to	False	within	the	block.	Moreover,	if	you	define	other	variable	scopes	inside
this	one,	they	will	automatically	inherit	reuse=True.	Lastly,	only	variables	created	by	get_variable()	can	be	reused	this	way.

Now	you	have	all	the	pieces	you	need	to	make	the	relu()	function	access	the	threshold	variable
without	having	to	pass	it	as	a	parameter:

def	relu(X):

				with	tf.variable_scope("relu",	reuse=True):

								threshold	=	tf.get_variable("threshold")		#	reuse	existing	variable

								[...]

								return	tf.maximum(z,	threshold,	name="max")

X	=	tf.placeholder(tf.float32,	shape=(None,	n_features),	name="X")

with	tf.variable_scope("relu"):		#	create	the	variable

				threshold	=	tf.get_variable("threshold",	shape=(),

																																initializer=tf.constant_initializer(0.0))

relus	=	[relu(X)	for	relu_index	in	range(5)]

output	=	tf.add_n(relus,	name="output")

This	code	first	defines	the	relu()	function,	then	creates	the	relu/threshold	variable	(as	a	scalar	that
will	later	be	initialized	to	0.0)	and	builds	five	ReLUs	by	calling	the	relu()	function.	The	relu()
function	reuses	the	relu/threshold	variable,	and	creates	the	other	ReLU	nodes.

NOTE
Variables	created	using	get_variable()	are	always	named	using	the	name	of	their	variable_scope	as	a	prefix	(e.g.,
"relu/threshold"),	but	for	all	other	nodes	(including	variables	created	with	tf.Variable())	the	variable	scope	acts	like	a	new
name	scope.	In	particular,	if	a	name	scope	with	an	identical	name	was	already	created,	then	a	suffix	is	added	to	make	the	name
unique.	For	example,	all	nodes	created	in	the	preceding	code	(except	the	threshold	variable)	have	a	name	prefixed	with
"relu_1/"	to	"relu_5/",	as	shown	in	Figure	9-8.

Figure	9-8.	Five	ReLUs	sharing	the	threshold	variable

It	is	somewhat	unfortunate	that	the	threshold	variable	must	be	defined	outside	the	relu()	function,
where	all	the	rest	of	the	ReLU	code	resides.	To	fix	this,	the	following	code	creates	the	threshold
variable	within	the	relu()	function	upon	the	first	call,	then	reuses	it	in	subsequent	calls.	Now	the	relu()
function	does	not	have	to	worry	about	name	scopes	or	variable	sharing:	it	just	calls	get_variable(),
which	will	create	or	reuse	the	threshold	variable	(it	does	not	need	to	know	which	is	the	case).	The	rest
of	the	code	calls	relu()	five	times,	making	sure	to	set	reuse=False	on	the	first	call,	and	reuse=True
for	the	other	calls.

def	relu(X):

				threshold	=	tf.get_variable("threshold",	shape=(),

																																initializer=tf.constant_initializer(0.0))

				[...]

				return	tf.maximum(z,	threshold,	name="max")

X	=	tf.placeholder(tf.float32,	shape=(None,	n_features),	name="X")

relus	=	[]

for	relu_index	in	range(5):

				with	tf.variable_scope("relu",	reuse=(relu_index	>=	1))	as	scope:

								relus.append(relu(X))

output	=	tf.add_n(relus,	name="output")

The	resulting	graph	is	slightly	different	than	before,	since	the	shared	variable	lives	within	the	first	ReLU
(see	Figure	9-9).

Figure	9-9.	Five	ReLUs	sharing	the	threshold	variable

This	concludes	this	introduction	to	TensorFlow.	We	will	discuss	more	advanced	topics	as	we	go	through
the	following	chapters,	in	particular	many	operations	related	to	deep	neural	networks,	convolutional
neural	networks,	and	recurrent	neural	networks	as	well	as	how	to	scale	up	with	TensorFlow	using
multithreading,	queues,	multiple	GPUs,	and	multiple	servers.

Exercises
1.	 What	are	the	main	benefits	of	creating	a	computation	graph	rather	than	directly	executing	the

computations?	What	are	the	main	drawbacks?

2.	 Is	the	statement	a_val	=	a.eval(session=sess)	equivalent	to	a_val	=	sess.run(a)?

3.	 Is	the	statement	a_val,	b_val	=	a.eval(session=sess),	b.eval(session=sess)
equivalent	to	a_val,	b_val	=	sess.run([a,	b])?

4.	 Can	you	run	two	graphs	in	the	same	session?

5.	 If	you	create	a	graph	g	containing	a	variable	w,	then	start	two	threads	and	open	a	session	in	each
thread,	both	using	the	same	graph	g,	will	each	session	have	its	own	copy	of	the	variable	w	or	will
it	be	shared?

6.	 When	is	a	variable	initialized?	When	is	it	destroyed?

7.	 What	is	the	difference	between	a	placeholder	and	a	variable?

8.	 What	happens	when	you	run	the	graph	to	evaluate	an	operation	that	depends	on	a	placeholder	but
you	don’t	feed	its	value?	What	happens	if	the	operation	does	not	depend	on	the	placeholder?

9.	 When	you	run	a	graph,	can	you	feed	the	output	value	of	any	operation,	or	just	the	value	of
placeholders?

10.	 How	can	you	set	a	variable	to	any	value	you	want	(during	the	execution	phase)?

11.	 How	many	times	does	reverse-mode	autodiff	need	to	traverse	the	graph	in	order	to	compute	the
gradients	of	the	cost	function	with	regards	to	10	variables?	What	about	forward-mode	autodiff?
And	symbolic	differentiation?

12.	 Implement	Logistic	Regression	with	Mini-batch	Gradient	Descent	using	TensorFlow.	Train	it	and
evaluate	it	on	the	moons	dataset	(introduced	in	Chapter	5).	Try	adding	all	the	bells	and	whistles:

Define	the	graph	within	a	logistic_regression()	function	that	can	be	reused	easily.

Save	checkpoints	using	a	Saver	at	regular	intervals	during	training,	and	save	the	final
model	at	the	end	of	training.

Restore	the	last	checkpoint	upon	startup	if	training	was	interrupted.

Define	the	graph	using	nice	scopes	so	the	graph	looks	good	in	TensorBoard.

Add	summaries	to	visualize	the	learning	curves	in	TensorBoard.

Try	tweaking	some	hyperparameters	such	as	the	learning	rate	or	the	mini-batch	size	and
look	at	the	shape	of	the	learning	curve.

Solutions	to	these	exercises	are	available	in	Appendix	A.

TensorFlow	is	not	limited	to	neural	networks	or	even	Machine	Learning;	you	could	run	quantum	physics	simulations	if	you	wanted.

Not	to	be	confused	with	the	TFLearn	library,	which	is	an	independent	project.

In	distributed	TensorFlow,	variable	values	are	stored	on	the	servers	instead	of	the	session,	as	we	will	see	in	Chapter	12.

Note	that	housing.target	is	a	1D	array,	but	we	need	to	reshape	it	to	a	column	vector	to	compute	theta.	Recall	that	NumPy’s	reshape()
function	accepts	–1	(meaning	“unspecified”)	for	one	of	the	dimensions:	that	dimension	will	be	computed	based	on	the	array’s	length	and
the	remaining	dimensions.

Creating	a	ReLU	class	is	arguably	the	cleanest	option,	but	it	is	rather	heavyweight.

1

2

3

4

5

Chapter	10.	Introduction	to	Artificial	Neural
Networks

Birds	inspired	us	to	fly,	burdock	plants	inspired	velcro,	and	nature	has	inspired	many	other	inventions.	It
seems	only	logical,	then,	to	look	at	the	brain’s	architecture	for	inspiration	on	how	to	build	an	intelligent
machine.	This	is	the	key	idea	that	inspired	artificial	neural	networks	(ANNs).	However,	although	planes
were	inspired	by	birds,	they	don’t	have	to	flap	their	wings.	Similarly,	ANNs	have	gradually	become	quite
different	from	their	biological	cousins.	Some	researchers	even	argue	that	we	should	drop	the	biological
analogy	altogether	(e.g.,	by	saying	“units”	rather	than	“neurons”),	lest	we	restrict	our	creativity	to
biologically	plausible	systems.1

ANNs	are	at	the	very	core	of	Deep	Learning.	They	are	versatile,	powerful,	and	scalable,	making	them
ideal	to	tackle	large	and	highly	complex	Machine	Learning	tasks,	such	as	classifying	billions	of	images
(e.g.,	Google	Images),	powering	speech	recognition	services	(e.g.,	Apple’s	Siri),	recommending	the	best
videos	to	watch	to	hundreds	of	millions	of	users	every	day	(e.g.,	YouTube),	or	learning	to	beat	the	world
champion	at	the	game	of	Go	by	examining	millions	of	past	games	and	then	playing	against	itself
(DeepMind’s	AlphaGo).

In	this	chapter,	we	will	introduce	artificial	neural	networks,	starting	with	a	quick	tour	of	the	very	first
ANN	architectures.	Then	we	will	present	Multi-Layer	Perceptrons	(MLPs)	and	implement	one	using
TensorFlow	to	tackle	the	MNIST	digit	classification	problem	(introduced	in	Chapter	3).

From	Biological	to	Artificial	Neurons
Surprisingly,	ANNs	have	been	around	for	quite	a	while:	they	were	first	introduced	back	in	1943	by	the
neurophysiologist	Warren	McCulloch	and	the	mathematician	Walter	Pitts.	In	their	landmark	paper,2	“A
Logical	Calculus	of	Ideas	Immanent	in	Nervous	Activity,”	McCulloch	and	Pitts	presented	a	simplified
computational	model	of	how	biological	neurons	might	work	together	in	animal	brains	to	perform	complex
computations	using	propositional	logic.	This	was	the	first	artificial	neural	network	architecture.	Since
then	many	other	architectures	have	been	invented,	as	we	will	see.

The	early	successes	of	ANNs	until	the	1960s	led	to	the	widespread	belief	that	we	would	soon	be
conversing	with	truly	intelligent	machines.	When	it	became	clear	that	this	promise	would	go	unfulfilled
(at	least	for	quite	a	while),	funding	flew	elsewhere	and	ANNs	entered	a	long	dark	era.	In	the	early	1980s
there	was	a	revival	of	interest	in	ANNs	as	new	network	architectures	were	invented	and	better	training
techniques	were	developed.	But	by	the	1990s,	powerful	alternative	Machine	Learning	techniques	such	as
Support	Vector	Machines	(see	Chapter	5)	were	favored	by	most	researchers,	as	they	seemed	to	offer
better	results	and	stronger	theoretical	foundations.	Finally,	we	are	now	witnessing	yet	another	wave	of
interest	in	ANNs.	Will	this	wave	die	out	like	the	previous	ones	did?	There	are	a	few	good	reasons	to
believe	that	this	one	is	different	and	will	have	a	much	more	profound	impact	on	our	lives:

There	is	now	a	huge	quantity	of	data	available	to	train	neural	networks,	and	ANNs	frequently
outperform	other	ML	techniques	on	very	large	and	complex	problems.

The	tremendous	increase	in	computing	power	since	the	1990s	now	makes	it	possible	to	train	large
neural	networks	in	a	reasonable	amount	of	time.	This	is	in	part	due	to	Moore’s	Law,	but	also	thanks
to	the	gaming	industry,	which	has	produced	powerful	GPU	cards	by	the	millions.

The	training	algorithms	have	been	improved.	To	be	fair	they	are	only	slightly	different	from	the	ones
used	in	the	1990s,	but	these	relatively	small	tweaks	have	a	huge	positive	impact.

Some	theoretical	limitations	of	ANNs	have	turned	out	to	be	benign	in	practice.	For	example,	many
people	thought	that	ANN	training	algorithms	were	doomed	because	they	were	likely	to	get	stuck	in
local	optima,	but	it	turns	out	that	this	is	rather	rare	in	practice	(or	when	it	is	the	case,	they	are	usually
fairly	close	to	the	global	optimum).

ANNs	seem	to	have	entered	a	virtuous	circle	of	funding	and	progress.	Amazing	products	based	on
ANNs	regularly	make	the	headline	news,	which	pulls	more	and	more	attention	and	funding	toward
them,	resulting	in	more	and	more	progress,	and	even	more	amazing	products.

https://goo.gl/Ul4mxW

Biological	Neurons
Before	we	discuss	artificial	neurons,	let’s	take	a	quick	look	at	a	biological	neuron	(represented	in
Figure	10-1).	It	is	an	unusual-looking	cell	mostly	found	in	animal	cerebral	cortexes	(e.g.,	your	brain),
composed	of	a	cell	body	containing	the	nucleus	and	most	of	the	cell’s	complex	components,	and	many
branching	extensions	called	dendrites,	plus	one	very	long	extension	called	the	axon.	The	axon’s	length
may	be	just	a	few	times	longer	than	the	cell	body,	or	up	to	tens	of	thousands	of	times	longer.	Near	its
extremity	the	axon	splits	off	into	many	branches	called	telodendria,	and	at	the	tip	of	these	branches	are
minuscule	structures	called	synaptic	terminals	(or	simply	synapses),	which	are	connected	to	the
dendrites	(or	directly	to	the	cell	body)	of	other	neurons.	Biological	neurons	receive	short	electrical
impulses	called	signals	from	other	neurons	via	these	synapses.	When	a	neuron	receives	a	sufficient
number	of	signals	from	other	neurons	within	a	few	milliseconds,	it	fires	its	own	signals.

Figure	10-1.	Biological	neuron3

Thus,	individual	biological	neurons	seem	to	behave	in	a	rather	simple	way,	but	they	are	organized	in	a
vast	network	of	billions	of	neurons,	each	neuron	typically	connected	to	thousands	of	other	neurons.	Highly
complex	computations	can	be	performed	by	a	vast	network	of	fairly	simple	neurons,	much	like	a	complex
anthill	can	emerge	from	the	combined	efforts	of	simple	ants.	The	architecture	of	biological	neural
networks	(BNN)4	is	still	the	subject	of	active	research,	but	some	parts	of	the	brain	have	been	mapped,

and	it	seems	that	neurons	are	often	organized	in	consecutive	layers,	as	shown	in	Figure	10-2.

Figure	10-2.	Multiple	layers	in	a	biological	neural	network	(human	cortex)5

Logical	Computations	with	Neurons
Warren	McCulloch	and	Walter	Pitts	proposed	a	very	simple	model	of	the	biological	neuron,	which	later
became	known	as	an	artificial	neuron:	it	has	one	or	more	binary	(on/off)	inputs	and	one	binary	output.
The	artificial	neuron	simply	activates	its	output	when	more	than	a	certain	number	of	its	inputs	are	active.
McCulloch	and	Pitts	showed	that	even	with	such	a	simplified	model	it	is	possible	to	build	a	network	of
artificial	neurons	that	computes	any	logical	proposition	you	want.	For	example,	let’s	build	a	few	ANNs
that	perform	various	logical	computations	(see	Figure	10-3),	assuming	that	a	neuron	is	activated	when	at
least	two	of	its	inputs	are	active.

Figure	10-3.	ANNs	performing	simple	logical	computations

The	first	network	on	the	left	is	simply	the	identity	function:	if	neuron	A	is	activated,	then	neuron	C
gets	activated	as	well	(since	it	receives	two	input	signals	from	neuron	A),	but	if	neuron	A	is	off,	then
neuron	C	is	off	as	well.

The	second	network	performs	a	logical	AND:	neuron	C	is	activated	only	when	both	neurons	A	and	B
are	activated	(a	single	input	signal	is	not	enough	to	activate	neuron	C).

The	third	network	performs	a	logical	OR:	neuron	C	gets	activated	if	either	neuron	A	or	neuron	B	is
activated	(or	both).

Finally,	if	we	suppose	that	an	input	connection	can	inhibit	the	neuron’s	activity	(which	is	the	case
with	biological	neurons),	then	the	fourth	network	computes	a	slightly	more	complex	logical
proposition:	neuron	C	is	activated	only	if	neuron	A	is	active	and	if	neuron	B	is	off.	If	neuron	A	is
active	all	the	time,	then	you	get	a	logical	NOT:	neuron	C	is	active	when	neuron	B	is	off,	and	vice
versa.

You	can	easily	imagine	how	these	networks	can	be	combined	to	compute	complex	logical	expressions
(see	the	exercises	at	the	end	of	the	chapter).

The	Perceptron
The	Perceptron	is	one	of	the	simplest	ANN	architectures,	invented	in	1957	by	Frank	Rosenblatt.	It	is
based	on	a	slightly	different	artificial	neuron	(see	Figure	10-4)	called	a	linear	threshold	unit	(LTU):	the
inputs	and	output	are	now	numbers	(instead	of	binary	on/off	values)	and	each	input	connection	is
associated	with	a	weight.	The	LTU	computes	a	weighted	sum	of	its	inputs	(z	=	w1	x1	+	w2	x2	+	⋯	+	wn	xn
=	wT	·	x),	then	applies	a	step	function	to	that	sum	and	outputs	the	result:	hw(x)	=	step	(z)	=	step	(wT	·	x).

Figure	10-4.	Linear	threshold	unit

The	most	common	step	function	used	in	Perceptrons	is	the	Heaviside	step	function	(see	Equation	10-1).
Sometimes	the	sign	function	is	used	instead.

Equation	10-1.	Common	step	functions	used	in	Perceptrons

A	single	LTU	can	be	used	for	simple	linear	binary	classification.	It	computes	a	linear	combination	of	the
inputs	and	if	the	result	exceeds	a	threshold,	it	outputs	the	positive	class	or	else	outputs	the	negative	class
(just	like	a	Logistic	Regression	classifier	or	a	linear	SVM).	For	example,	you	could	use	a	single	LTU	to
classify	iris	flowers	based	on	the	petal	length	and	width	(also	adding	an	extra	bias	feature	x0	=	1,	just	like
we	did	in	previous	chapters).	Training	an	LTU	means	finding	the	right	values	for	w0,	w1,	and	w2	(the

training	algorithm	is	discussed	shortly).

A	Perceptron	is	simply	composed	of	a	single	layer	of	LTUs,6	with	each	neuron	connected	to	all	the	inputs.
These	connections	are	often	represented	using	special	passthrough	neurons	called	input	neurons:	they	just
output	whatever	input	they	are	fed.	Moreover,	an	extra	bias	feature	is	generally	added	(x0	=	1).	This	bias
feature	is	typically	represented	using	a	special	type	of	neuron	called	a	bias	neuron,	which	just	outputs	1
all	the	time.

A	Perceptron	with	two	inputs	and	three	outputs	is	represented	in	Figure	10-5.	This	Perceptron	can
classify	instances	simultaneously	into	three	different	binary	classes,	which	makes	it	a	multioutput
classifier.

Figure	10-5.	Perceptron	diagram

So	how	is	a	Perceptron	trained?	The	Perceptron	training	algorithm	proposed	by	Frank	Rosenblatt	was
largely	inspired	by	Hebb’s	rule.	In	his	book	The	Organization	of	Behavior,	published	in	1949,	Donald
Hebb	suggested	that	when	a	biological	neuron	often	triggers	another	neuron,	the	connection	between	these
two	neurons	grows	stronger.	This	idea	was	later	summarized	by	Siegrid	Löwel	in	this	catchy	phrase:
“Cells	that	fire	together,	wire	together.”	This	rule	later	became	known	as	Hebb’s	rule	(or	Hebbian
learning);	that	is,	the	connection	weight	between	two	neurons	is	increased	whenever	they	have	the	same
output.	Perceptrons	are	trained	using	a	variant	of	this	rule	that	takes	into	account	the	error	made	by	the
network;	it	does	not	reinforce	connections	that	lead	to	the	wrong	output.	More	specifically,	the	Perceptron
is	fed	one	training	instance	at	a	time,	and	for	each	instance	it	makes	its	predictions.	For	every	output
neuron	that	produced	a	wrong	prediction,	it	reinforces	the	connection	weights	from	the	inputs	that	would
have	contributed	to	the	correct	prediction.	The	rule	is	shown	in	Equation	10-2.

Equation	10-2.	Perceptron	learning	rule	(weight	update)

wi,	j	is	the	connection	weight	between	the	ith	input	neuron	and	the	jth	output	neuron.

xi	is	the	ith	input	value	of	the	current	training	instance.

j	is	the	output	of	the	jth	output	neuron	for	the	current	training	instance.

yj	is	the	target	output	of	the	jth	output	neuron	for	the	current	training	instance.

η	is	the	learning	rate.

The	decision	boundary	of	each	output	neuron	is	linear,	so	Perceptrons	are	incapable	of	learning	complex
patterns	(just	like	Logistic	Regression	classifiers).	However,	if	the	training	instances	are	linearly
separable,	Rosenblatt	demonstrated	that	this	algorithm	would	converge	to	a	solution.7	This	is	called	the
Perceptron	convergence	theorem.

Scikit-Learn	provides	a	Perceptron	class	that	implements	a	single	LTU	network.	It	can	be	used	pretty
much	as	you	would	expect	—	for	example,	on	the	iris	dataset	(introduced	in	Chapter	4):

import	numpy	as	np

from	sklearn.datasets	import	load_iris

from	sklearn.linear_model	import	Perceptron

iris	=	load_iris()

X	=	iris.data[:,	(2,	3)]		#	petal	length,	petal	width

y	=	(iris.target	==	0).astype(np.int)		#	Iris	Setosa?

per_clf	=	Perceptron(random_state=42)

per_clf.fit(X,	y)

y_pred	=	per_clf.predict([[2,	0.5]])

You	may	have	recognized	that	the	Perceptron	learning	algorithm	strongly	resembles	Stochastic	Gradient
Descent.	In	fact,	Scikit-Learn’s	Perceptron	class	is	equivalent	to	using	an	SGDClassifier	with	the
following	hyperparameters:	loss="perceptron",	learning_rate="constant",	eta0=1	(the	learning
rate),	and	penalty=None	(no	regularization).

Note	that	contrary	to	Logistic	Regression	classifiers,	Perceptrons	do	not	output	a	class	probability;	rather,
they	just	make	predictions	based	on	a	hard	threshold.	This	is	one	of	the	good	reasons	to	prefer	Logistic
Regression	over	Perceptrons.

In	their	1969	monograph	titled	Perceptrons,	Marvin	Minsky	and	Seymour	Papert	highlighted	a	number	of
serious	weaknesses	of	Perceptrons,	in	particular	the	fact	that	they	are	incapable	of	solving	some	trivial
problems	(e.g.,	the	Exclusive	OR	(XOR)	classification	problem;	see	the	left	side	of	Figure	10-6).	Of
course	this	is	true	of	any	other	linear	classification	model	as	well	(such	as	Logistic	Regression
classifiers),	but	researchers	had	expected	much	more	from	Perceptrons,	and	their	disappointment	was

great:	as	a	result,	many	researchers	dropped	connectionism	altogether	(i.e.,	the	study	of	neural	networks)
in	favor	of	higher-level	problems	such	as	logic,	problem	solving,	and	search.

However,	it	turns	out	that	some	of	the	limitations	of	Perceptrons	can	be	eliminated	by	stacking	multiple
Perceptrons.	The	resulting	ANN	is	called	a	Multi-Layer	Perceptron	(MLP).	In	particular,	an	MLP	can
solve	the	XOR	problem,	as	you	can	verify	by	computing	the	output	of	the	MLP	represented	on	the	right	of
Figure	10-6,	for	each	combination	of	inputs:	with	inputs	(0,	0)	or	(1,	1)	the	network	outputs	0,	and	with
inputs	(0,	1)	or	(1,	0)	it	outputs	1.

Figure	10-6.	XOR	classification	problem	and	an	MLP	that	solves	it

Multi-Layer	Perceptron	and	Backpropagation
An	MLP	is	composed	of	one	(passthrough)	input	layer,	one	or	more	layers	of	LTUs,	called	hidden	layers,
and	one	final	layer	of	LTUs	called	the	output	layer	(see	Figure	10-7).	Every	layer	except	the	output	layer
includes	a	bias	neuron	and	is	fully	connected	to	the	next	layer.	When	an	ANN	has	two	or	more	hidden
layers,	it	is	called	a	deep	neural	network	(DNN).

Figure	10-7.	Multi-Layer	Perceptron

For	many	years	researchers	struggled	to	find	a	way	to	train	MLPs,	without	success.	But	in	1986,	D.	E.
Rumelhart	et	al.	published	a	groundbreaking	article8	introducing	the	backpropagation	training	algorithm.9
Today	we	would	describe	it	as	Gradient	Descent	using	reverse-mode	autodiff	(Gradient	Descent	was
introduced	in	Chapter	4,	and	autodiff	was	discussed	in	Chapter	9).

For	each	training	instance,	the	algorithm	feeds	it	to	the	network	and	computes	the	output	of	every	neuron
in	each	consecutive	layer	(this	is	the	forward	pass,	just	like	when	making	predictions).	Then	it	measures
the	network’s	output	error	(i.e.,	the	difference	between	the	desired	output	and	the	actual	output	of	the
network),	and	it	computes	how	much	each	neuron	in	the	last	hidden	layer	contributed	to	each	output
neuron’s	error.	It	then	proceeds	to	measure	how	much	of	these	error	contributions	came	from	each	neuron

https://goo.gl/Wl7Xyc

in	the	previous	hidden	layer	—	and	so	on	until	the	algorithm	reaches	the	input	layer.	This	reverse	pass
efficiently	measures	the	error	gradient	across	all	the	connection	weights	in	the	network	by	propagating	the
error	gradient	backward	in	the	network	(hence	the	name	of	the	algorithm).	If	you	check	out	the	reverse-
mode	autodiff	algorithm	in	Appendix	D,	you	will	find	that	the	forward	and	reverse	passes	of
backpropagation	simply	perform	reverse-mode	autodiff.	The	last	step	of	the	backpropagation	algorithm	is
a	Gradient	Descent	step	on	all	the	connection	weights	in	the	network,	using	the	error	gradients	measured
earlier.

Let’s	make	this	even	shorter:	for	each	training	instance	the	backpropagation	algorithm	first	makes	a
prediction	(forward	pass),	measures	the	error,	then	goes	through	each	layer	in	reverse	to	measure	the
error	contribution	from	each	connection	(reverse	pass),	and	finally	slightly	tweaks	the	connection	weights
to	reduce	the	error	(Gradient	Descent	step).

In	order	for	this	algorithm	to	work	properly,	the	authors	made	a	key	change	to	the	MLP’s	architecture:	they
replaced	the	step	function	with	the	logistic	function,	σ(z)	=	1	/	(1	+	exp(–z)).	This	was	essential	because
the	step	function	contains	only	flat	segments,	so	there	is	no	gradient	to	work	with	(Gradient	Descent
cannot	move	on	a	flat	surface),	while	the	logistic	function	has	a	well-defined	nonzero	derivative
everywhere,	allowing	Gradient	Descent	to	make	some	progress	at	every	step.	The	backpropagation
algorithm	may	be	used	with	other	activation	functions,	instead	of	the	logistic	function.	Two	other	popular
activation	functions	are:

The	hyperbolic	tangent	function	tanh	(z)	=	2σ(2z)	–	1
Just	like	the	logistic	function	it	is	S-shaped,	continuous,	and	differentiable,	but	its	output	value
ranges	from	–1	to	1	(instead	of	0	to	1	in	the	case	of	the	logistic	function),	which	tends	to	make	each
layer’s	output	more	or	less	normalized	(i.e.,	centered	around	0)	at	the	beginning	of	training.	This
often	helps	speed	up	convergence.

The	ReLU	function	(introduced	in	Chapter	9)
ReLU	(z)	=	max	(0,	z).	It	is	continuous	but	unfortunately	not	differentiable	at	z	=	0	(the	slope	changes
abruptly,	which	can	make	Gradient	Descent	bounce	around).	However,	in	practice	it	works	very
well	and	has	the	advantage	of	being	fast	to	compute.	Most	importantly,	the	fact	that	it	does	not	have	a
maximum	output	value	also	helps	reduce	some	issues	during	Gradient	Descent	(we	will	come	back
to	this	in	Chapter	11).

These	popular	activation	functions	and	their	derivatives	are	represented	in	Figure	10-8.

Figure	10-8.	Activation	functions	and	their	derivatives

An	MLP	is	often	used	for	classification,	with	each	output	corresponding	to	a	different	binary	class	(e.g.,
spam/ham,	urgent/not-urgent,	and	so	on).	When	the	classes	are	exclusive	(e.g.,	classes	0	through	9	for
digit	image	classification),	the	output	layer	is	typically	modified	by	replacing	the	individual	activation
functions	by	a	shared	softmax	function	(see	Figure	10-9).	The	softmax	function	was	introduced	in
Chapter	3.	The	output	of	each	neuron	corresponds	to	the	estimated	probability	of	the	corresponding	class.
Note	that	the	signal	flows	only	in	one	direction	(from	the	inputs	to	the	outputs),	so	this	architecture	is	an
example	of	a	feedforward	neural	network	(FNN).

Figure	10-9.	A	modern	MLP	(including	ReLU	and	softmax)	for	classification

NOTE
Biological	neurons	seem	to	implement	a	roughly	sigmoid	(S-shaped)	activation	function,	so	researchers	stuck	to	sigmoid	functions
for	a	very	long	time.	But	it	turns	out	that	the	ReLU	activation	function	generally	works	better	in	ANNs.	This	is	one	of	the	cases
where	the	biological	analogy	was	misleading.

Training	an	MLP	with	TensorFlow’s	High-Level	API
The	simplest	way	to	train	an	MLP	with	TensorFlow	is	to	use	the	high-level	API	TF.Learn,	which	is	quite
similar	to	Scikit-Learn’s	API.	The	DNNClassifier	class	makes	it	trivial	to	train	a	deep	neural	network
with	any	number	of	hidden	layers,	and	a	softmax	output	layer	to	output	estimated	class	probabilities.	For
example,	the	following	code	trains	a	DNN	for	classification	with	two	hidden	layers	(one	with	300
neurons,	and	the	other	with	100	neurons)	and	a	softmax	output	layer	with	10	neurons:

import	tensorflow	as	tf

feature_columns	=	tf.contrib.learn.infer_real_valued_columns_from_input(X_train)

dnn_clf	=	tf.contrib.learn.DNNClassifier(hidden_units=[300,	100],	n_classes=10,

																																									feature_columns=feature_columns)

dnn_clf.fit(x=X_train,	y=y_train,	batch_size=50,	steps=40000)

If	you	run	this	code	on	the	MNIST	dataset	(after	scaling	it,	e.g.,	by	using	Scikit-Learn’s
StandardScaler),	you	may	actually	get	a	model	that	achieves	over	98.1%	accuracy	on	the	test	set!	That’s
better	than	the	best	model	we	trained	in	Chapter	3:

>>>	from	sklearn.metrics	import	accuracy_score

>>>	y_pred	=	list(dnn_clf.predict(X_test))

>>>	accuracy_score(y_test,	y_pred)

0.98180000000000001

The	TF.Learn	library	also	provides	some	convenience	functions	to	evaluate	models:

>>>	dnn_clf.evaluate(X_test,	y_test)

{'accuracy':	0.98180002,	'global_step':	40000,	'loss':	0.073678359}

Under	the	hood,	the	DNNClassifier	class	creates	all	the	neuron	layers,	based	on	the	ReLU	activation
function	(we	can	change	this	by	setting	the	activation_fn	hyperparameter).	The	output	layer	relies	on
the	softmax	function,	and	the	cost	function	is	cross	entropy	(introduced	in	Chapter	4).

WARNING
The	TF.Learn	API	is	still	quite	new,	so	some	of	the	names	and	functions	used	in	these	examples	may	evolve	a	bit	by	the	time	you
read	this	book.	However,	the	general	ideas	should	not	change.

Training	a	DNN	Using	Plain	TensorFlow
If	you	want	more	control	over	the	architecture	of	the	network,	you	may	prefer	to	use	TensorFlow’s	lower-
level	Python	API	(introduced	in	Chapter	9).	In	this	section	we	will	build	the	same	model	as	before	using
this	API,	and	we	will	implement	Mini-batch	Gradient	Descent	to	train	it	on	the	MNIST	dataset.	The	first
step	is	the	construction	phase,	building	the	TensorFlow	graph.	The	second	step	is	the	execution	phase,
where	you	actually	run	the	graph	to	train	the	model.

Construction	Phase
Let’s	start.	First	we	need	to	import	the	tensorflow	library.	Then	we	must	specify	the	number	of	inputs
and	outputs,	and	set	the	number	of	hidden	neurons	in	each	layer:

import	tensorflow	as	tf

n_inputs	=	28*28		#	MNIST

n_hidden1	=	300

n_hidden2	=	100

n_outputs	=	10

Next,	just	like	you	did	in	Chapter	9,	you	can	use	placeholder	nodes	to	represent	the	training	data	and
targets.	The	shape	of	X	is	only	partially	defined.	We	know	that	it	will	be	a	2D	tensor	(i.e.,	a	matrix),	with
instances	along	the	first	dimension	and	features	along	the	second	dimension,	and	we	know	that	the	number
of	features	is	going	to	be	28	x	28	(one	feature	per	pixel),	but	we	don’t	know	yet	how	many	instances	each
training	batch	will	contain.	So	the	shape	of	X	is	(None,	n_inputs).	Similarly,	we	know	that	y	will	be	a
1D	tensor	with	one	entry	per	instance,	but	again	we	don’t	know	the	size	of	the	training	batch	at	this	point,
so	the	shape	is	(None).

X	=	tf.placeholder(tf.float32,	shape=(None,	n_inputs),	name="X")

y	=	tf.placeholder(tf.int64,	shape=(None),	name="y")

Now	let’s	create	the	actual	neural	network.	The	placeholder	X	will	act	as	the	input	layer;	during	the
execution	phase,	it	will	be	replaced	with	one	training	batch	at	a	time	(note	that	all	the	instances	in	a
training	batch	will	be	processed	simultaneously	by	the	neural	network).	Now	you	need	to	create	the	two
hidden	layers	and	the	output	layer.	The	two	hidden	layers	are	almost	identical:	they	differ	only	by	the
inputs	they	are	connected	to	and	by	the	number	of	neurons	they	contain.	The	output	layer	is	also	very
similar,	but	it	uses	a	softmax	activation	function	instead	of	a	ReLU	activation	function.	So	let’s	create	a
neuron_layer()	function	that	we	will	use	to	create	one	layer	at	a	time.	It	will	need	parameters	to
specify	the	inputs,	the	number	of	neurons,	the	activation	function,	and	the	name	of	the	layer:

def	neuron_layer(X,	n_neurons,	name,	activation=None):

				with	tf.name_scope(name):

								n_inputs	=	int(X.get_shape()[1])

								stddev	=	2	/	np.sqrt(n_inputs)

								init	=	tf.truncated_normal((n_inputs,	n_neurons),	stddev=stddev)

								W	=	tf.Variable(init,	name="weights")

								b	=	tf.Variable(tf.zeros([n_neurons]),	name="biases")

								z	=	tf.matmul(X,	W)	+	b

								if	activation=="relu":

												return	tf.nn.relu(z)

								else:

												return	z

Let’s	go	through	this	code	line	by	line:
1.	 First	we	create	a	name	scope	using	the	name	of	the	layer:	it	will	contain	all	the	computation

nodes	for	this	neuron	layer.	This	is	optional,	but	the	graph	will	look	much	nicer	in	TensorBoard
if	its	nodes	are	well	organized.

2.	 Next,	we	get	the	number	of	inputs	by	looking	up	the	input	matrix’s	shape	and	getting	the	size	of

the	second	dimension	(the	first	dimension	is	for	instances).

3.	 The	next	three	lines	create	a	W	variable	that	will	hold	the	weights	matrix.	It	will	be	a	2D	tensor
containing	all	the	connection	weights	between	each	input	and	each	neuron;	hence,	its	shape	will
be	(n_inputs,	n_neurons).	It	will	be	initialized	randomly,	using	a	truncated10	normal

(Gaussian)	distribution	with	a	standard	deviation	of	 .	Using	this	specific	standard
deviation	helps	the	algorithm	converge	much	faster	(we	will	discuss	this	further	in	Chapter	11;	it
is	one	of	those	small	tweaks	to	neural	networks	that	have	had	a	tremendous	impact	on	their
efficiency).	It	is	important	to	initialize	connection	weights	randomly	for	all	hidden	layers	to
avoid	any	symmetries	that	the	Gradient	Descent	algorithm	would	be	unable	to	break.11

4.	 The	next	line	creates	a	b	variable	for	biases,	initialized	to	0	(no	symmetry	issue	in	this	case),
with	one	bias	parameter	per	neuron.

5.	 Then	we	create	a	subgraph	to	compute	z	=	X	·	W	+	b.	This	vectorized	implementation	will
efficiently	compute	the	weighted	sums	of	the	inputs	plus	the	bias	term	for	each	and	every	neuron
in	the	layer,	for	all	the	instances	in	the	batch	in	just	one	shot.

6.	 Finally,	if	the	activation	parameter	is	set	to	"relu",	the	code	returns	relu(z)	(i.e.,	max	(0,
z)),	or	else	it	just	returns	z.

Okay,	so	now	you	have	a	nice	function	to	create	a	neuron	layer.	Let’s	use	it	to	create	the	deep	neural
network!	The	first	hidden	layer	takes	X	as	its	input.	The	second	takes	the	output	of	the	first	hidden	layer	as
its	input.	And	finally,	the	output	layer	takes	the	output	of	the	second	hidden	layer	as	its	input.

with	tf.name_scope("dnn"):

				hidden1	=	neuron_layer(X,	n_hidden1,	"hidden1",	activation="relu")

				hidden2	=	neuron_layer(hidden1,	n_hidden2,	"hidden2",	activation="relu")

				logits	=	neuron_layer(hidden2,	n_outputs,	"outputs")

Notice	that	once	again	we	used	a	name	scope	for	clarity.	Also	note	that	logits	is	the	output	of	the	neural
network	before	going	through	the	softmax	activation	function:	for	optimization	reasons,	we	will	handle	the
softmax	computation	later.

As	you	might	expect,	TensorFlow	comes	with	many	handy	functions	to	create	standard	neural	network
layers,	so	there’s	often	no	need	to	define	your	own	neuron_layer()	function	like	we	just	did.	For
example,	TensorFlow’s	fully_connected()	function	creates	a	fully	connected	layer,	where	all	the
inputs	are	connected	to	all	the	neurons	in	the	layer.	It	takes	care	of	creating	the	weights	and	biases
variables,	with	the	proper	initialization	strategy,	and	it	uses	the	ReLU	activation	function	by	default	(we
can	change	this	using	the	activation_fn	argument).	As	we	will	see	in	Chapter	11,	it	also	supports
regularization	and	normalization	parameters.	Let’s	tweak	the	preceding	code	to	use	the
fully_connected()	function	instead	of	our	neuron_layer()	function.	Simply	import	the	function	and
replace	the	dnn	construction	section	with	the	following	code:

from	tensorflow.contrib.layers	import	fully_connected

with	tf.name_scope("dnn"):

				hidden1	=	fully_connected(X,	n_hidden1,	scope="hidden1")

				hidden2	=	fully_connected(hidden1,	n_hidden2,	scope="hidden2")

				logits	=	fully_connected(hidden2,	n_outputs,	scope="outputs",

																													activation_fn=None)

WARNING
The	tensorflow.contrib	package	contains	many	useful	functions,	but	it	is	a	place	for	experimental	code	that	has	not	yet
graduated	to	be	part	of	the	main	TensorFlow	API.	So	the	fully_connected()	function	(and	any	other	contrib	code)	may
change	or	move	in	the	future.

Now	that	we	have	the	neural	network	model	ready	to	go,	we	need	to	define	the	cost	function	that	we	will
use	to	train	it.	Just	as	we	did	for	Softmax	Regression	in	Chapter	4,	we	will	use	cross	entropy.	As	we
discussed	earlier,	cross	entropy	will	penalize	models	that	estimate	a	low	probability	for	the	target	class.
TensorFlow	provides	several	functions	to	compute	cross	entropy.	We	will	use
sparse_softmax_cross_entropy_with_logits():	it	computes	the	cross	entropy	based	on	the	“logits”
(i.e.,	the	output	of	the	network	before	going	through	the	softmax	activation	function),	and	it	expects	labels
in	the	form	of	integers	ranging	from	0	to	the	number	of	classes	minus	1	(in	our	case,	from	0	to	9).	This
will	give	us	a	1D	tensor	containing	the	cross	entropy	for	each	instance.	We	can	then	use	TensorFlow’s
reduce_mean()	function	to	compute	the	mean	cross	entropy	over	all	instances.

with	tf.name_scope("loss"):

				xentropy	=	tf.nn.sparse_softmax_cross_entropy_with_logits(

																			labels=y,	logits=logits)

				loss	=	tf.reduce_mean(xentropy,	name="loss")

NOTE
The	sparse_softmax_cross_entropy_with_logits()	function	is	equivalent	to	applying	the	softmax	activation	function	and	then
computing	the	cross	entropy,	but	it	is	more	efficient,	and	it	properly	takes	care	of	corner	cases	like	logits	equal	to	0.	This	is	why
we	did	not	apply	the	softmax	activation	function	earlier.	There	is	also	another	function	called
softmax_cross_entropy_with_logits(),	which	takes	labels	in	the	form	of	one-hot	vectors	(instead	of	ints	from	0	to	the	number
of	classes	minus	1).

We	have	the	neural	network	model,	we	have	the	cost	function,	and	now	we	need	to	define	a
GradientDescentOptimizer	that	will	tweak	the	model	parameters	to	minimize	the	cost	function.
Nothing	new;	it’s	just	like	we	did	in	Chapter	9:

learning_rate	=	0.01

with	tf.name_scope("train"):

				optimizer	=	tf.train.GradientDescentOptimizer(learning_rate)

				training_op	=	optimizer.minimize(loss)

The	last	important	step	in	the	construction	phase	is	to	specify	how	to	evaluate	the	model.	We	will	simply
use	accuracy	as	our	performance	measure.	First,	for	each	instance,	determine	if	the	neural	network’s
prediction	is	correct	by	checking	whether	or	not	the	highest	logit	corresponds	to	the	target	class.	For	this
you	can	use	the	in_top_k()	function.	This	returns	a	1D	tensor	full	of	boolean	values,	so	we	need	to	cast
these	booleans	to	floats	and	then	compute	the	average.	This	will	give	us	the	network’s	overall	accuracy.

with	tf.name_scope("eval"):

				correct	=	tf.nn.in_top_k(logits,	y,	1)

				accuracy	=	tf.reduce_mean(tf.cast(correct,	tf.float32))

And,	as	usual,	we	need	to	create	a	node	to	initialize	all	variables,	and	we	will	also	create	a	Saver	to
save	our	trained	model	parameters	to	disk:

init	=	tf.global_variables_initializer()

saver	=	tf.train.Saver()

Phew!	This	concludes	the	construction	phase.	This	was	fewer	than	40	lines	of	code,	but	it	was	pretty
intense:	we	created	placeholders	for	the	inputs	and	the	targets,	we	created	a	function	to	build	a	neuron
layer,	we	used	it	to	create	the	DNN,	we	defined	the	cost	function,	we	created	an	optimizer,	and	finally	we
defined	the	performance	measure.	Now	on	to	the	execution	phase.

Execution	Phase
This	part	is	much	shorter	and	simpler.	First,	let’s	load	MNIST.	We	could	use	Scikit-Learn	for	that	as	we
did	in	previous	chapters,	but	TensorFlow	offers	its	own	helper	that	fetches	the	data,	scales	it	(between	0
and	1),	shuffles	it,	and	provides	a	simple	function	to	load	one	mini-batches	a	time.	So	let’s	use	it	instead:

from	tensorflow.examples.tutorials.mnist	import	input_data

mnist	=	input_data.read_data_sets("/tmp/data/")

Now	we	define	the	number	of	epochs	that	we	want	to	run,	as	well	as	the	size	of	the	mini-batches:

n_epochs	=	400

batch_size	=	50

And	now	we	can	train	the	model:

with	tf.Session()	as	sess:

				init.run()

				for	epoch	in	range(n_epochs):

								for	iteration	in	range(mnist.train.num_examples	//	batch_size):

												X_batch,	y_batch	=	mnist.train.next_batch(batch_size)

												sess.run(training_op,	feed_dict={X:	X_batch,	y:	y_batch})

								acc_train	=	accuracy.eval(feed_dict={X:	X_batch,	y:	y_batch})

								acc_test	=	accuracy.eval(feed_dict={X:	mnist.test.images,

																																												y:	mnist.test.labels})

								print(epoch,	"Train	accuracy:",	acc_train,	"Test	accuracy:",	acc_test)

				save_path	=	saver.save(sess,	"./my_model_final.ckpt")

This	code	opens	a	TensorFlow	session,	and	it	runs	the	init	node	that	initializes	all	the	variables.	Then	it
runs	the	main	training	loop:	at	each	epoch,	the	code	iterates	through	a	number	of	mini-batches	that
corresponds	to	the	training	set	size.	Each	mini-batch	is	fetched	via	the	next_batch()	method,	and	then
the	code	simply	runs	the	training	operation,	feeding	it	the	current	mini-batch	input	data	and	targets.	Next,
at	the	end	of	each	epoch,	the	code	evaluates	the	model	on	the	last	mini-batch	and	on	the	full	training	set,
and	it	prints	out	the	result.	Finally,	the	model	parameters	are	saved	to	disk.

Using	the	Neural	Network
Now	that	the	neural	network	is	trained,	you	can	use	it	to	make	predictions.	To	do	that,	you	can	reuse	the
same	construction	phase,	but	change	the	execution	phase	like	this:

with	tf.Session()	as	sess:

				saver.restore(sess,	"./my_model_final.ckpt")

				X_new_scaled	=	[...]		#	some	new	images	(scaled	from	0	to	1)

				Z	=	logits.eval(feed_dict={X:	X_new_scaled})

				y_pred	=	np.argmax(Z,	axis=1)

First	the	code	loads	the	model	parameters	from	disk.	Then	it	loads	some	new	images	that	you	want	to
classify.	Remember	to	apply	the	same	feature	scaling	as	for	the	training	data	(in	this	case,	scale	it	from	0
to	1).	Then	the	code	evaluates	the	logits	node.	If	you	wanted	to	know	all	the	estimated	class
probabilities,	you	would	need	to	apply	the	softmax()	function	to	the	logits,	but	if	you	just	want	to	predict
a	class,	you	can	simply	pick	the	class	that	has	the	highest	logit	value	(using	the	argmax()	function	does
the	trick).

Fine-Tuning	Neural	Network	Hyperparameters
The	flexibility	of	neural	networks	is	also	one	of	their	main	drawbacks:	there	are	many	hyperparameters	to
tweak.	Not	only	can	you	use	any	imaginable	network	topology	(how	neurons	are	interconnected),	but	even
in	a	simple	MLP	you	can	change	the	number	of	layers,	the	number	of	neurons	per	layer,	the	type	of
activation	function	to	use	in	each	layer,	the	weight	initialization	logic,	and	much	more.	How	do	you	know
what	combination	of	hyperparameters	is	the	best	for	your	task?

Of	course,	you	can	use	grid	search	with	cross-validation	to	find	the	right	hyperparameters,	like	you	did	in
previous	chapters,	but	since	there	are	many	hyperparameters	to	tune,	and	since	training	a	neural	network
on	a	large	dataset	takes	a	lot	of	time,	you	will	only	be	able	to	explore	a	tiny	part	of	the	hyperparameter
space	in	a	reasonable	amount	of	time.	It	is	much	better	to	use	randomized	search,	as	we	discussed	in
Chapter	2.	Another	option	is	to	use	a	tool	such	as	Oscar,	which	implements	more	complex	algorithms	to
help	you	find	a	good	set	of	hyperparameters	quickly.

It	helps	to	have	an	idea	of	what	values	are	reasonable	for	each	hyperparameter,	so	you	can	restrict	the
search	space.	Let’s	start	with	the	number	of	hidden	layers.

https://goo.gl/QFjMKu
http://oscar.calldesk.ai/

Number	of	Hidden	Layers
For	many	problems,	you	can	just	begin	with	a	single	hidden	layer	and	you	will	get	reasonable	results.	It
has	actually	been	shown	that	an	MLP	with	just	one	hidden	layer	can	model	even	the	most	complex
functions	provided	it	has	enough	neurons.	For	a	long	time,	these	facts	convinced	researchers	that	there
was	no	need	to	investigate	any	deeper	neural	networks.	But	they	overlooked	the	fact	that	deep	networks
have	a	much	higher	parameter	efficiency	than	shallow	ones:	they	can	model	complex	functions	using
exponentially	fewer	neurons	than	shallow	nets,	making	them	much	faster	to	train.

To	understand	why,	suppose	you	are	asked	to	draw	a	forest	using	some	drawing	software,	but	you	are
forbidden	to	use	copy/paste.	You	would	have	to	draw	each	tree	individually,	branch	per	branch,	leaf	per
leaf.	If	you	could	instead	draw	one	leaf,	copy/paste	it	to	draw	a	branch,	then	copy/paste	that	branch	to
create	a	tree,	and	finally	copy/paste	this	tree	to	make	a	forest,	you	would	be	finished	in	no	time.	Real-
world	data	is	often	structured	in	such	a	hierarchical	way	and	DNNs	automatically	take	advantage	of	this
fact:	lower	hidden	layers	model	low-level	structures	(e.g.,	line	segments	of	various	shapes	and
orientations),	intermediate	hidden	layers	combine	these	low-level	structures	to	model	intermediate-level
structures	(e.g.,	squares,	circles),	and	the	highest	hidden	layers	and	the	output	layer	combine	these
intermediate	structures	to	model	high-level	structures	(e.g.,	faces).

Not	only	does	this	hierarchical	architecture	help	DNNs	converge	faster	to	a	good	solution,	it	also
improves	their	ability	to	generalize	to	new	datasets.	For	example,	if	you	have	already	trained	a	model	to
recognize	faces	in	pictures,	and	you	now	want	to	train	a	new	neural	network	to	recognize	hairstyles,	then
you	can	kickstart	training	by	reusing	the	lower	layers	of	the	first	network.	Instead	of	randomly	initializing
the	weights	and	biases	of	the	first	few	layers	of	the	new	neural	network,	you	can	initialize	them	to	the
value	of	the	weights	and	biases	of	the	lower	layers	of	the	first	network.	This	way	the	network	will	not
have	to	learn	from	scratch	all	the	low-level	structures	that	occur	in	most	pictures;	it	will	only	have	to
learn	the	higher-level	structures	(e.g.,	hairstyles).

In	summary,	for	many	problems	you	can	start	with	just	one	or	two	hidden	layers	and	it	will	work	just	fine
(e.g.,	you	can	easily	reach	above	97%	accuracy	on	the	MNIST	dataset	using	just	one	hidden	layer	with	a
few	hundred	neurons,	and	above	98%	accuracy	using	two	hidden	layers	with	the	same	total	amount	of
neurons,	in	roughly	the	same	amount	of	training	time).	For	more	complex	problems,	you	can	gradually
ramp	up	the	number	of	hidden	layers,	until	you	start	overfitting	the	training	set.	Very	complex	tasks,	such
as	large	image	classification	or	speech	recognition,	typically	require	networks	with	dozens	of	layers	(or
even	hundreds,	but	not	fully	connected	ones,	as	we	will	see	in	Chapter	13),	and	they	need	a	huge	amount
of	training	data.	However,	you	will	rarely	have	to	train	such	networks	from	scratch:	it	is	much	more
common	to	reuse	parts	of	a	pretrained	state-of-the-art	network	that	performs	a	similar	task.	Training	will
be	a	lot	faster	and	require	much	less	data	(we	will	discuss	this	in	Chapter	11).

Number	of	Neurons	per	Hidden	Layer
Obviously	the	number	of	neurons	in	the	input	and	output	layers	is	determined	by	the	type	of	input	and
output	your	task	requires.	For	example,	the	MNIST	task	requires	28	x	28	=	784	input	neurons	and	10
output	neurons.	As	for	the	hidden	layers,	a	common	practice	is	to	size	them	to	form	a	funnel,	with	fewer
and	fewer	neurons	at	each	layer	—	the	rationale	being	that	many	low-level	features	can	coalesce	into	far
fewer	high-level	features.	For	example,	a	typical	neural	network	for	MNIST	may	have	two	hidden	layers,
the	first	with	300	neurons	and	the	second	with	100.	However,	this	practice	is	not	as	common	now,	and
you	may	simply	use	the	same	size	for	all	hidden	layers	—	for	example,	all	hidden	layers	with	150
neurons:	that’s	just	one	hyperparameter	to	tune	instead	of	one	per	layer.	Just	like	for	the	number	of	layers,
you	can	try	increasing	the	number	of	neurons	gradually	until	the	network	starts	overfitting.	In	general	you
will	get	more	bang	for	the	buck	by	increasing	the	number	of	layers	than	the	number	of	neurons	per	layer.
Unfortunately,	as	you	can	see,	finding	the	perfect	amount	of	neurons	is	still	somewhat	of	a	black	art.

A	simpler	approach	is	to	pick	a	model	with	more	layers	and	neurons	than	you	actually	need,	then	use	early
stopping	to	prevent	it	from	overfitting	(and	other	regularization	techniques,	especially	dropout,	as	we	will
see	in	Chapter	11).	This	has	been	dubbed	the	“stretch	pants”	approach:12	instead	of	wasting	time	looking
for	pants	that	perfectly	match	your	size,	just	use	large	stretch	pants	that	will	shrink	down	to	the	right	size.

Activation	Functions
In	most	cases	you	can	use	the	ReLU	activation	function	in	the	hidden	layers	(or	one	of	its	variants,	as	we
will	see	in	Chapter	11).	It	is	a	bit	faster	to	compute	than	other	activation	functions,	and	Gradient	Descent
does	not	get	stuck	as	much	on	plateaus,	thanks	to	the	fact	that	it	does	not	saturate	for	large	input	values	(as
opposed	to	the	logistic	function	or	the	hyperbolic	tangent	function,	which	saturate	at	1).

For	the	output	layer,	the	softmax	activation	function	is	generally	a	good	choice	for	classification	tasks
(when	the	classes	are	mutually	exclusive).	For	regression	tasks,	you	can	simply	use	no	activation	function
at	all.

This	concludes	this	introduction	to	artificial	neural	networks.	In	the	following	chapters,	we	will	discuss
techniques	to	train	very	deep	nets,	and	distribute	training	across	multiple	servers	and	GPUs.	Then	we	will
explore	a	few	other	popular	neural	network	architectures:	convolutional	neural	networks,	recurrent	neural
networks,	and	autoencoders.13

Exercises
1.	 Draw	an	ANN	using	the	original	artificial	neurons	(like	the	ones	in	Figure	10-3)	that	computes	A
⊕	B	(where	⊕	represents	the	XOR	operation).	Hint:	A	⊕	B	=	(A	∧	¬	B)	∨	(¬	A	∧	B).

2.	 Why	is	it	generally	preferable	to	use	a	Logistic	Regression	classifier	rather	than	a	classical
Perceptron	(i.e.,	a	single	layer	of	linear	threshold	units	trained	using	the	Perceptron	training
algorithm)?	How	can	you	tweak	a	Perceptron	to	make	it	equivalent	to	a	Logistic	Regression
classifier?

3.	 Why	was	the	logistic	activation	function	a	key	ingredient	in	training	the	first	MLPs?

4.	 Name	three	popular	activation	functions.	Can	you	draw	them?

5.	 Suppose	you	have	an	MLP	composed	of	one	input	layer	with	10	passthrough	neurons,	followed
by	one	hidden	layer	with	50	artificial	neurons,	and	finally	one	output	layer	with	3	artificial
neurons.	All	artificial	neurons	use	the	ReLU	activation	function.

What	is	the	shape	of	the	input	matrix	X?

What	about	the	shape	of	the	hidden	layer’s	weight	vector	Wh,	and	the	shape	of	its	bias
vector	bh?

What	is	the	shape	of	the	output	layer’s	weight	vector	Wo,	and	its	bias	vector	bo?

What	is	the	shape	of	the	network’s	output	matrix	Y?

Write	the	equation	that	computes	the	network’s	output	matrix	Y	as	a	function	of	X,	Wh,	bh,
Wo	and	bo.

6.	 How	many	neurons	do	you	need	in	the	output	layer	if	you	want	to	classify	email	into	spam	or
ham?	What	activation	function	should	you	use	in	the	output	layer?	If	instead	you	want	to	tackle
MNIST,	how	many	neurons	do	you	need	in	the	output	layer,	using	what	activation	function?
Answer	the	same	questions	for	getting	your	network	to	predict	housing	prices	as	in	Chapter	2.

7.	 What	is	backpropagation	and	how	does	it	work?	What	is	the	difference	between	backpropagation
and	reverse-mode	autodiff?

8.	 Can	you	list	all	the	hyperparameters	you	can	tweak	in	an	MLP?	If	the	MLP	overfits	the	training
data,	how	could	you	tweak	these	hyperparameters	to	try	to	solve	the	problem?

9.	 Train	a	deep	MLP	on	the	MNIST	dataset	and	see	if	you	can	get	over	98%	precision.	Just	like	in
the	last	exercise	of	Chapter	9,	try	adding	all	the	bells	and	whistles	(i.e.,	save	checkpoints,
restore	the	last	checkpoint	in	case	of	an	interruption,	add	summaries,	plot	learning	curves	using
TensorBoard,	and	so	on).

Solutions	to	these	exercises	are	available	in	Appendix	A.

You	can	get	the	best	of	both	worlds	by	being	open	to	biological	inspirations	without	being	afraid	to	create	biologically	unrealistic	models,	as
long	as	they	work	well.

“A	Logical	Calculus	of	Ideas	Immanent	in	Nervous	Activity,”	W.	McCulloch	and	W.	Pitts	(1943).

Image	by	Bruce	Blaus	(Creative	Commons	3.0).	Reproduced	from	https://en.wikipedia.org/wiki/Neuron.

In	the	context	of	Machine	Learning,	the	phrase	“neural	networks”	generally	refers	to	ANNs,	not	BNNs.

Drawing	of	a	cortical	lamination	by	S.	Ramon	y	Cajal	(public	domain).	Reproduced	from	https://en.wikipedia.org/wiki/Cerebral_cortex.

The	name	Perceptron	is	sometimes	used	to	mean	a	tiny	network	with	a	single	LTU.

Note	that	this	solution	is	generally	not	unique:	in	general	when	the	data	are	linearly	separable,	there	is	an	infinity	of	hyperplanes	that	can
separate	them.

“Learning	Internal	Representations	by	Error	Propagation,”	D.	Rumelhart,	G.	Hinton,	R.	Williams	(1986).

This	algorithm	was	actually	invented	several	times	by	various	researchers	in	different	fields,	starting	with	P.	Werbos	in	1974.

Using	a	truncated	normal	distribution	rather	than	a	regular	normal	distribution	ensures	that	there	won’t	be	any	large	weights,	which	could
slow	down	training.

For	example,	if	you	set	all	the	weights	to	0,	then	all	neurons	will	output	0,	and	the	error	gradient	will	be	the	same	for	all	neurons	in	a	given
hidden	layer.	The	Gradient	Descent	step	will	then	update	all	the	weights	in	exactly	the	same	way	in	each	layer,	so	they	will	all	remain
equal.	In	other	words,	despite	having	hundreds	of	neurons	per	layer,	your	model	will	act	as	if	there	were	only	one	neuron	per	layer.	It	is	not
going	to	fly.

By	Vincent	Vanhoucke	in	his	Deep	Learning	class	on	Udacity.com.

A	few	extra	ANN	architectures	are	presented	in	Appendix	E.

1

2

3

4

5

6

7

8

9

10

11

12

13

https://creativecommons.org/licenses/by/3.0/
https://en.wikipedia.org/wiki/Neuron
https://en.wikipedia.org/wiki/Cerebral_cortex
https://goo.gl/Y5TFqz

Chapter	11.	Training	Deep	Neural	Nets

In	Chapter	10	we	introduced	artificial	neural	networks	and	trained	our	first	deep	neural	network.	But	it
was	a	very	shallow	DNN,	with	only	two	hidden	layers.	What	if	you	need	to	tackle	a	very	complex
problem,	such	as	detecting	hundreds	of	types	of	objects	in	high-resolution	images?	You	may	need	to	train
a	much	deeper	DNN,	perhaps	with	(say)	10	layers,	each	containing	hundreds	of	neurons,	connected	by
hundreds	of	thousands	of	connections.	This	would	not	be	a	walk	in	the	park:

First,	you	would	be	faced	with	the	tricky	vanishing	gradients	problem	(or	the	related	exploding
gradients	problem)	that	affects	deep	neural	networks	and	makes	lower	layers	very	hard	to	train.

Second,	with	such	a	large	network,	training	would	be	extremely	slow.

Third,	a	model	with	millions	of	parameters	would	severely	risk	overfitting	the	training	set.

In	this	chapter,	we	will	go	through	each	of	these	problems	in	turn	and	present	techniques	to	solve	them.
We	will	start	by	explaining	the	vanishing	gradients	problem	and	exploring	some	of	the	most	popular
solutions	to	this	problem.	Next	we	will	look	at	various	optimizers	that	can	speed	up	training	large	models
tremendously	compared	to	plain	Gradient	Descent.	Finally,	we	will	go	through	a	few	popular
regularization	techniques	for	large	neural	networks.

With	these	tools,	you	will	be	able	to	train	very	deep	nets:	welcome	to	Deep	Learning!

Vanishing/Exploding	Gradients	Problems
As	we	discussed	in	Chapter	10,	the	backpropagation	algorithm	works	by	going	from	the	output	layer	to	the
input	layer,	propagating	the	error	gradient	on	the	way.	Once	the	algorithm	has	computed	the	gradient	of	the
cost	function	with	regards	to	each	parameter	in	the	network,	it	uses	these	gradients	to	update	each
parameter	with	a	Gradient	Descent	step.

Unfortunately,	gradients	often	get	smaller	and	smaller	as	the	algorithm	progresses	down	to	the	lower
layers.	As	a	result,	the	Gradient	Descent	update	leaves	the	lower	layer	connection	weights	virtually
unchanged,	and	training	never	converges	to	a	good	solution.	This	is	called	the	vanishing	gradients
problem.	In	some	cases,	the	opposite	can	happen:	the	gradients	can	grow	bigger	and	bigger,	so	many
layers	get	insanely	large	weight	updates	and	the	algorithm	diverges.	This	is	the	exploding	gradients
problem,	which	is	mostly	encountered	in	recurrent	neural	networks	(see	Chapter	14).	More	generally,
deep	neural	networks	suffer	from	unstable	gradients;	different	layers	may	learn	at	widely	different	speeds.

Although	this	unfortunate	behavior	has	been	empirically	observed	for	quite	a	while	(it	was	one	of	the
reasons	why	deep	neural	networks	were	mostly	abandoned	for	a	long	time),	it	is	only	around	2010	that
significant	progress	was	made	in	understanding	it.	A	paper	titled	“Understanding	the	Difficulty	of	Training
Deep	Feedforward	Neural	Networks”	by	Xavier	Glorot	and	Yoshua	Bengio1	found	a	few	suspects,
including	the	combination	of	the	popular	logistic	sigmoid	activation	function	and	the	weight	initialization
technique	that	was	most	popular	at	the	time,	namely	random	initialization	using	a	normal	distribution	with
a	mean	of	0	and	a	standard	deviation	of	1.	In	short,	they	showed	that	with	this	activation	function	and	this
initialization	scheme,	the	variance	of	the	outputs	of	each	layer	is	much	greater	than	the	variance	of	its
inputs.	Going	forward	in	the	network,	the	variance	keeps	increasing	after	each	layer	until	the	activation
function	saturates	at	the	top	layers.	This	is	actually	made	worse	by	the	fact	that	the	logistic	function	has	a
mean	of	0.5,	not	0	(the	hyperbolic	tangent	function	has	a	mean	of	0	and	behaves	slightly	better	than	the
logistic	function	in	deep	networks).

Looking	at	the	logistic	activation	function	(see	Figure	11-1),	you	can	see	that	when	inputs	become	large
(negative	or	positive),	the	function	saturates	at	0	or	1,	with	a	derivative	extremely	close	to	0.	Thus	when
backpropagation	kicks	in,	it	has	virtually	no	gradient	to	propagate	back	through	the	network,	and	what
little	gradient	exists	keeps	getting	diluted	as	backpropagation	progresses	down	through	the	top	layers,	so
there	is	really	nothing	left	for	the	lower	layers.

http://goo.gl/1rhAef

Figure	11-1.	Logistic	activation	function	saturation

Xavier	and	He	Initialization
In	their	paper,	Glorot	and	Bengio	propose	a	way	to	significantly	alleviate	this	problem.	We	need	the
signal	to	flow	properly	in	both	directions:	in	the	forward	direction	when	making	predictions,	and	in	the
reverse	direction	when	backpropagating	gradients.	We	don’t	want	the	signal	to	die	out,	nor	do	we	want	it
to	explode	and	saturate.	For	the	signal	to	flow	properly,	the	authors	argue	that	we	need	the	variance	of	the
outputs	of	each	layer	to	be	equal	to	the	variance	of	its	inputs,2	and	we	also	need	the	gradients	to	have
equal	variance	before	and	after	flowing	through	a	layer	in	the	reverse	direction	(please	check	out	the
paper	if	you	are	interested	in	the	mathematical	details).	It	is	actually	not	possible	to	guarantee	both	unless
the	layer	has	an	equal	number	of	input	and	output	connections,	but	they	proposed	a	good	compromise	that
has	proven	to	work	very	well	in	practice:	the	connection	weights	must	be	initialized	randomly	as
described	in	Equation	11-1,	where	ninputs	and	noutputs	are	the	number	of	input	and	output	connections	for
the	layer	whose	weights	are	being	initialized	(also	called	fan-in	and	fan-out).	This	initialization	strategy
is	often	called	Xavier	initialization	(after	the	author’s	first	name),	or	sometimes	Glorot	initialization.

Equation	11-1.	Xavier	initialization	(when	using	the	logistic	activation	function)

When	the	number	of	input	connections	is	roughly	equal	to	the	number	of	output	connections,	you	get

simpler	equations	(e.g.,	 	or).	We	used	this	simplified	strategy	in
Chapter	10.3

Using	the	Xavier	initialization	strategy	can	speed	up	training	considerably,	and	it	is	one	of	the	tricks	that
led	to	the	current	success	of	Deep	Learning.	Some	recent	papers4	have	provided	similar	strategies	for
different	activation	functions,	as	shown	in	Table	11-1.	The	initialization	strategy	for	the	ReLU	activation
function	(and	its	variants,	including	the	ELU	activation	described	shortly)	is	sometimes	called	He
initialization	(after	the	last	name	of	its	author).

Table	11-1.	Initialization	parameters	for	each	type	of
activation	function

Activation	function Uniform	distribution	[–r,	r] Normal	distribution

Logistic

Hyperbolic	tangent

ReLU	(and	its	variants)

By	default,	the	fully_connected()	function	(introduced	in	Chapter	10)	uses	Xavier	initialization	(with

http://goo.gl/VHP3pB

a	uniform	distribution).	You	can	change	this	to	He	initialization	by	using	the
variance_scaling_initializer()	function	like	this:

he_init	=	tf.contrib.layers.variance_scaling_initializer()

hidden1	=	fully_connected(X,	n_hidden1,	weights_initializer=he_init,	scope="h1")

NOTE
He	initialization	considers	only	the	fan-in,	not	the	average	between	fan-in	and	fan-out	like	in	Xavier	initialization.	This	is	also	the
default	for	the	variance_scaling_initializer()	function,	but	you	can	change	this	by	setting	the	argument	mode="FAN_AVG".

Nonsaturating	Activation	Functions
One	of	the	insights	in	the	2010	paper	by	Glorot	and	Bengio	was	that	the	vanishing/exploding	gradients
problems	were	in	part	due	to	a	poor	choice	of	activation	function.	Until	then	most	people	had	assumed
that	if	Mother	Nature	had	chosen	to	use	roughly	sigmoid	activation	functions	in	biological	neurons,	they
must	be	an	excellent	choice.	But	it	turns	out	that	other	activation	functions	behave	much	better	in	deep
neural	networks,	in	particular	the	ReLU	activation	function,	mostly	because	it	does	not	saturate	for
positive	values	(and	also	because	it	is	quite	fast	to	compute).

Unfortunately,	the	ReLU	activation	function	is	not	perfect.	It	suffers	from	a	problem	known	as	the	dying
ReLUs:	during	training,	some	neurons	effectively	die,	meaning	they	stop	outputting	anything	other	than	0.
In	some	cases,	you	may	find	that	half	of	your	network’s	neurons	are	dead,	especially	if	you	used	a	large
learning	rate.	During	training,	if	a	neuron’s	weights	get	updated	such	that	the	weighted	sum	of	the	neuron’s
inputs	is	negative,	it	will	start	outputting	0.	When	this	happen,	the	neuron	is	unlikely	to	come	back	to	life
since	the	gradient	of	the	ReLU	function	is	0	when	its	input	is	negative.

To	solve	this	problem,	you	may	want	to	use	a	variant	of	the	ReLU	function,	such	as	the	leaky	ReLU.	This
function	is	defined	as	LeakyReLUα(z)	=	max(αz,	z)	(see	Figure	11-2).	The	hyperparameter	α	defines	how
much	the	function	“leaks”:	it	is	the	slope	of	the	function	for	z	<	0,	and	is	typically	set	to	0.01.	This	small
slope	ensures	that	leaky	ReLUs	never	die;	they	can	go	into	a	long	coma,	but	they	have	a	chance	to
eventually	wake	up.	A	recent	paper5	compared	several	variants	of	the	ReLU	activation	function	and	one
of	its	conclusions	was	that	the	leaky	variants	always	outperformed	the	strict	ReLU	activation	function.	In
fact,	setting	α	=	0.2	(huge	leak)	seemed	to	result	in	better	performance	than	α	=	0.01	(small	leak).	They
also	evaluated	the	randomized	leaky	ReLU	(RReLU),	where	α	is	picked	randomly	in	a	given	range	during
training,	and	it	is	fixed	to	an	average	value	during	testing.	It	also	performed	fairly	well	and	seemed	to	act
as	a	regularizer	(reducing	the	risk	of	overfitting	the	training	set).	Finally,	they	also	evaluated	the
parametric	leaky	ReLU	(PReLU),	where	α	is	authorized	to	be	learned	during	training	(instead	of	being	a
hyperparameter,	it	becomes	a	parameter	that	can	be	modified	by	backpropagation	like	any	other
parameter).	This	was	reported	to	strongly	outperform	ReLU	on	large	image	datasets,	but	on	smaller
datasets	it	runs	the	risk	of	overfitting	the	training	set.

https://goo.gl/B1xhKn

Figure	11-2.	Leaky	ReLU

Last	but	not	least,	a	2015	paper	by	Djork-Arné	Clevert	et	al.6	proposed	a	new	activation	function	called
the	exponential	linear	unit	(ELU)	that	outperformed	all	the	ReLU	variants	in	their	experiments:	training
time	was	reduced	and	the	neural	network	performed	better	on	the	test	set.	It	is	represented	in	Figure	11-3,
and	Equation	11-2	shows	its	definition.

Equation	11-2.	ELU	activation	function

http://goo.gl/Sdl2P7

Figure	11-3.	ELU	activation	function

It	looks	a	lot	like	the	ReLU	function,	with	a	few	major	differences:
First	it	takes	on	negative	values	when	z	<	0,	which	allows	the	unit	to	have	an	average	output	closer
to	0.	This	helps	alleviate	the	vanishing	gradients	problem,	as	discussed	earlier.	The	hyperparameter
α	defines	the	value	that	the	ELU	function	approaches	when	z	is	a	large	negative	number.	It	is	usually
set	to	1,	but	you	can	tweak	it	like	any	other	hyperparameter	if	you	want.

Second,	it	has	a	nonzero	gradient	for	z	<	0,	which	avoids	the	dying	units	issue.

Third,	the	function	is	smooth	everywhere,	including	around	z	=	0,	which	helps	speed	up	Gradient
Descent,	since	it	does	not	bounce	as	much	left	and	right	of	z	=	0.

The	main	drawback	of	the	ELU	activation	function	is	that	it	is	slower	to	compute	than	the	ReLU	and	its
variants	(due	to	the	use	of	the	exponential	function),	but	during	training	this	is	compensated	by	the	faster
convergence	rate.	However,	at	test	time	an	ELU	network	will	be	slower	than	a	ReLU	network.

TIP
So	which	activation	function	should	you	use	for	the	hidden	layers	of	your	deep	neural	networks?	Although	your	mileage	will	vary,
in	general	ELU	>	leaky	ReLU	(and	its	variants)	>	ReLU	>	tanh	>	logistic.	If	you	care	a	lot	about	runtime	performance,	then	you
may	prefer	leaky	ReLUs	over	ELUs.	If	you	don’t	want	to	tweak	yet	another	hyperparameter,	you	may	just	use	the	default	α
values	suggested	earlier	(0.01	for	the	leaky	ReLU,	and	1	for	ELU).	If	you	have	spare	time	and	computing	power,	you	can	use

cross-validation	to	evaluate	other	activation	functions,	in	particular	RReLU	if	your	network	is	overfitting,	or	PReLU	if	you	have	a
huge	training	set.

TensorFlow	offers	an	elu()	function	that	you	can	use	to	build	your	neural	network.	Simply	set	the
activation_fn	argument	when	calling	the	fully_connected()	function,	like	this:

hidden1	=	fully_connected(X,	n_hidden1,	activation_fn=tf.nn.elu)

TensorFlow	does	not	have	a	predefined	function	for	leaky	ReLUs,	but	it	is	easy	enough	to	define:

def	leaky_relu(z,	name=None):

				return	tf.maximum(0.01	*	z,	z,	name=name)

hidden1	=	fully_connected(X,	n_hidden1,	activation_fn=leaky_relu)

Batch	Normalization
Although	using	He	initialization	along	with	ELU	(or	any	variant	of	ReLU)	can	significantly	reduce	the
vanishing/exploding	gradients	problems	at	the	beginning	of	training,	it	doesn’t	guarantee	that	they	won’t
come	back	during	training.

In	a	2015	paper,7	Sergey	Ioffe	and	Christian	Szegedy	proposed	a	technique	called	Batch	Normalization
(BN)	to	address	the	vanishing/exploding	gradients	problems,	and	more	generally	the	problem	that	the
distribution	of	each	layer’s	inputs	changes	during	training,	as	the	parameters	of	the	previous	layers	change
(which	they	call	the	Internal	Covariate	Shift	problem).

The	technique	consists	of	adding	an	operation	in	the	model	just	before	the	activation	function	of	each
layer,	simply	zero-centering	and	normalizing	the	inputs,	then	scaling	and	shifting	the	result	using	two	new
parameters	per	layer	(one	for	scaling,	the	other	for	shifting).	In	other	words,	this	operation	lets	the	model
learn	the	optimal	scale	and	mean	of	the	inputs	for	each	layer.

In	order	to	zero-center	and	normalize	the	inputs,	the	algorithm	needs	to	estimate	the	inputs’	mean	and
standard	deviation.	It	does	so	by	evaluating	the	mean	and	standard	deviation	of	the	inputs	over	the	current
mini-batch	(hence	the	name	“Batch	Normalization”).	The	whole	operation	is	summarized	in	Equation	11-
3.

Equation	11-3.	Batch	Normalization	algorithm

https://goo.gl/gA4GSP

μB	is	the	empirical	mean,	evaluated	over	the	whole	mini-batch	B.

σB	is	the	empirical	standard	deviation,	also	evaluated	over	the	whole	mini-batch.

mB	is	the	number	of	instances	in	the	mini-batch.

(i)	is	the	zero-centered	and	normalized	input.

γ	is	the	scaling	parameter	for	the	layer.

β	is	the	shifting	parameter	(offset)	for	the	layer.

ϵ	is	a	tiny	number	to	avoid	division	by	zero	(typically	10–3).	This	is	called	a	smoothing	term.

z(i)	is	the	output	of	the	BN	operation:	it	is	a	scaled	and	shifted	version	of	the	inputs.

At	test	time,	there	is	no	mini-batch	to	compute	the	empirical	mean	and	standard	deviation,	so	instead	you

simply	use	the	whole	training	set’s	mean	and	standard	deviation.	These	are	typically	efficiently	computed
during	training	using	a	moving	average.	So,	in	total,	four	parameters	are	learned	for	each	batch-
normalized	layer:	γ	(scale),	β	(offset),	μ	(mean),	and	σ	(standard	deviation).

The	authors	demonstrated	that	this	technique	considerably	improved	all	the	deep	neural	networks	they
experimented	with.	The	vanishing	gradients	problem	was	strongly	reduced,	to	the	point	that	they	could	use
saturating	activation	functions	such	as	the	tanh	and	even	the	logistic	activation	function.	The	networks
were	also	much	less	sensitive	to	the	weight	initialization.	They	were	able	to	use	much	larger	learning
rates,	significantly	speeding	up	the	learning	process.	Specifically,	they	note	that	“Applied	to	a	state-of-
the-art	image	classification	model,	Batch	Normalization	achieves	the	same	accuracy	with	14	times	fewer
training	steps,	and	beats	the	original	model	by	a	significant	margin.	[…]	Using	an	ensemble	of	batch-
normalized	networks,	we	improve	upon	the	best	published	result	on	ImageNet	classification:	reaching
4.9%	top-5	validation	error	(and	4.8%	test	error),	exceeding	the	accuracy	of	human	raters.”	Finally,	like	a
gift	that	keeps	on	giving,	Batch	Normalization	also	acts	like	a	regularizer,	reducing	the	need	for	other
regularization	techniques	(such	as	dropout,	described	later	in	the	chapter).

Batch	Normalization	does,	however,	add	some	complexity	to	the	model	(although	it	removes	the	need	for
normalizing	the	input	data	since	the	first	hidden	layer	will	take	care	of	that,	provided	it	is	batch-
normalized).	Moreover,	there	is	a	runtime	penalty:	the	neural	network	makes	slower	predictions	due	to
the	extra	computations	required	at	each	layer.	So	if	you	need	predictions	to	be	lightning-fast,	you	may
want	to	check	how	well	plain	ELU	+	He	initialization	perform	before	playing	with	Batch	Normalization.

NOTE
You	may	find	that	training	is	rather	slow	at	first	while	Gradient	Descent	is	searching	for	the	optimal	scales	and	offsets	for	each
layer,	but	it	accelerates	once	it	has	found	reasonably	good	values.

Implementing	Batch	Normalization	with	TensorFlow
TensorFlow	provides	a	batch_normalization()	function	that	simply	centers	and	normalizes	the	inputs,
but	you	must	compute	the	mean	and	standard	deviation	yourself	(based	on	the	mini-batch	data	during
training	or	on	the	full	dataset	during	testing,	as	just	discussed)	and	pass	them	as	parameters	to	this
function,	and	you	must	also	handle	the	creation	of	the	scaling	and	offset	parameters	(and	pass	them	to	this
function).	It	is	doable,	but	not	the	most	convenient	approach.	Instead,	you	should	use	the	batch_norm()
function,	which	handles	all	this	for	you.	You	can	either	call	it	directly	or	tell	the	fully_connected()
function	to	use	it,	such	as	in	the	following	code:

import	tensorflow	as	tf

from	tensorflow.contrib.layers	import	batch_norm

n_inputs	=	28	*	28

n_hidden1	=	300

n_hidden2	=	100

n_outputs	=	10

X	=	tf.placeholder(tf.float32,	shape=(None,	n_inputs),	name="X")

is_training	=	tf.placeholder(tf.bool,	shape=(),	name='is_training')

bn_params	=	{

				'is_training':	is_training,

				'decay':	0.99,

				'updates_collections':	None

}

hidden1	=	fully_connected(X,	n_hidden1,	scope="hidden1",

																										normalizer_fn=batch_norm,	normalizer_params=bn_params)

hidden2	=	fully_connected(hidden1,	n_hidden2,	scope="hidden2",

																										normalizer_fn=batch_norm,	normalizer_params=bn_params)

logits	=	fully_connected(hidden2,	n_outputs,	activation_fn=None,scope="outputs",

																									normalizer_fn=batch_norm,	normalizer_params=bn_params)

Let’s	walk	through	this	code.	The	first	lines	are	fairly	self-explanatory,	until	we	define	the	is_training
placeholder,	which	will	either	be	True	or	False.	This	will	be	used	to	tell	the	batch_norm()	function
whether	it	should	use	the	current	mini-batch’s	mean	and	standard	deviation	(during	training)	or	the	running
averages	that	it	keeps	track	of	(during	testing).

Next	we	define	bn_params,	which	is	a	dictionary	that	defines	the	parameters	that	will	be	passed	to	the
batch_norm()	function,	including	is_training	of	course.	The	algorithm	uses	exponential	decay	to
compute	the	running	averages,	which	is	why	it	requires	the	decay	parameters.	Given	a	new	value	v,	the

running	average	 	is	updated	through	the	equation	 .	A	good
decay	value	is	typically	close	to	1	—	for	example,	0.9,	0.99,	or	0.999	(you	want	more	9s	for	larger
datasets	and	smaller	mini-batches).	Finally,	updates_collections	should	be	set	to	None	if	you	want	the
batch_norm()	function	to	update	the	running	averages	right	before	it	performs	batch	normalization	during
training	(i.e.,	when	is_training=True).	If	you	don’t	set	this	parameter,	by	default	TensorFlow	will	just
add	the	operations	that	update	the	running	averages	to	a	collection	of	operations	that	you	must	run
yourself.

Lastly,	we	create	the	layers	by	calling	the	fully_connected()	function,	just	like	we	did	in	Chapter	10,
but	this	time	we	tell	it	to	use	the	batch_norm()	function	(with	the	parameters	nb_params)	to	normalize
the	inputs	right	before	calling	the	activation	function.

Note	that	by	default	batch_norm()	only	centers,	normalizes,	and	shifts	the	inputs;	it	does	not	scale	them
(i.e.,	γ	is	fixed	to	1).	This	makes	sense	for	layers	with	no	activation	function	or	with	the	ReLU	activation
function,	since	the	next	layer’s	weights	can	take	care	of	scaling,	but	for	any	other	activation	function,	you
should	add	"scale":	True	to	bn_params.

You	may	have	noticed	that	defining	the	preceding	three	layers	was	fairly	repetitive	since	several
parameters	were	identical.	To	avoid	repeating	the	same	parameters	over	and	over	again,	you	can	create
an	argument	scope	using	the	arg_scope()	function:	the	first	parameter	is	a	list	of	functions,	and	the	other
parameters	will	be	passed	to	these	functions	automatically.	The	last	three	lines	of	the	preceding	code	can
be	modified	like	so:

[...]

with	tf.contrib.framework.arg_scope(

								[fully_connected],

								normalizer_fn=batch_norm,

								normalizer_params=bn_params):

				hidden1	=	fully_connected(X,	n_hidden1,	scope="hidden1")

				hidden2	=	fully_connected(hidden1,	n_hidden2,	scope="hidden2")

				logits	=	fully_connected(hidden2,	n_outputs,	scope="outputs",

																													activation_fn=None)

It	may	not	look	much	better	than	before	in	this	small	example,	but	if	you	have	10	layers	and	want	to	set	the
activation	function,	the	initializers,	the	normalizers,	the	regularizers,	and	so	on,	it	will	make	your	code
much	more	readable.

The	rest	of	the	construction	phase	is	the	same	as	in	Chapter	10:	define	the	cost	function,	create	an
optimizer,	tell	it	to	minimize	the	cost	function,	define	the	evaluation	operations,	create	a	Saver,	and	so	on.

The	execution	phase	is	also	pretty	much	the	same,	with	one	exception.	Whenever	you	run	an	operation	that
depends	on	the	batch_norm	layer,	you	need	to	set	the	is_training	placeholder	to	True	or	False:

with	tf.Session()	as	sess:

				sess.run(init)

				for	epoch	in	range(n_epochs):

								[...]

								for	X_batch,	y_batch	in	zip(X_batches,	y_batches):

												sess.run(training_op,

																					feed_dict={is_training:	True,	X:	X_batch,	y:	y_batch})

								accuracy_score	=	accuracy.eval(

												feed_dict={is_training:	False,	X:	X_test_scaled,	y:	y_test}))

								print(accuracy_score)

That’s	all!	In	this	tiny	example	with	just	two	layers,	it’s	unlikely	that	Batch	Normalization	will	have	a
very	positive	impact,	but	for	deeper	networks	it	can	make	a	tremendous	difference.

Gradient	Clipping
A	popular	technique	to	lessen	the	exploding	gradients	problem	is	to	simply	clip	the	gradients	during
backpropagation	so	that	they	never	exceed	some	threshold	(this	is	mostly	useful	for	recurrent	neural
networks;	see	Chapter	14).	This	is	called	Gradient	Clipping.8	In	general	people	now	prefer	Batch
Normalization,	but	it’s	still	useful	to	know	about	Gradient	Clipping	and	how	to	implement	it.

In	TensorFlow,	the	optimizer’s	minimize()	function	takes	care	of	both	computing	the	gradients	and
applying	them,	so	you	must	instead	call	the	optimizer’s	compute_gradients()	method	first,	then	create
an	operation	to	clip	the	gradients	using	the	clip_by_value()	function,	and	finally	create	an	operation	to
apply	the	clipped	gradients	using	the	optimizer’s	apply_gradients()	method:

threshold	=	1.0

optimizer	=	tf.train.GradientDescentOptimizer(learning_rate)

grads_and_vars	=	optimizer.compute_gradients(loss)

capped_gvs	=	[(tf.clip_by_value(grad,	-threshold,	threshold),	var)

														for	grad,	var	in	grads_and_vars]

training_op	=	optimizer.apply_gradients(capped_gvs)

You	would	then	run	this	training_op	at	every	training	step,	as	usual.	It	will	compute	the	gradients,	clip
them	between	–1.0	and	1.0,	and	apply	them.	The	threshold	is	a	hyperparameter	you	can	tune.

http://goo.gl/dRDAaf

Reusing	Pretrained	Layers
It	is	generally	not	a	good	idea	to	train	a	very	large	DNN	from	scratch:	instead,	you	should	always	try	to
find	an	existing	neural	network	that	accomplishes	a	similar	task	to	the	one	you	are	trying	to	tackle,	then
just	reuse	the	lower	layers	of	this	network:	this	is	called	transfer	learning.	It	will	not	only	speed	up
training	considerably,	but	will	also	require	much	less	training	data.

For	example,	suppose	that	you	have	access	to	a	DNN	that	was	trained	to	classify	pictures	into	100
different	categories,	including	animals,	plants,	vehicles,	and	everyday	objects.	You	now	want	to	train	a
DNN	to	classify	specific	types	of	vehicles.	These	tasks	are	very	similar,	so	you	should	try	to	reuse	parts
of	the	first	network	(see	Figure	11-4).

Figure	11-4.	Reusing	pretrained	layers

NOTE
If	the	input	pictures	of	your	new	task	don’t	have	the	same	size	as	the	ones	used	in	the	original	task,	you	will	have	to	add	a
preprocessing	step	to	resize	them	to	the	size	expected	by	the	original	model.	More	generally,	transfer	learning	will	work	only	well
if	the	inputs	have	similar	low-level	features.

Reusing	a	TensorFlow	Model
If	the	original	model	was	trained	using	TensorFlow,	you	can	simply	restore	it	and	train	it	on	the	new	task:

[...]	#	construct	the	original	model

with	tf.Session()	as	sess:

				saver.restore(sess,	"./my_original_model.ckpt")

				[...]	#	Train	it	on	your	new	task

However,	in	general	you	will	want	to	reuse	only	part	of	the	original	model	(as	we	will	discuss	in	a
moment).	A	simple	solution	is	to	configure	the	Saver	to	restore	only	a	subset	of	the	variables	from	the
original	model.	For	example,	the	following	code	restores	only	hidden	layers	1,	2,	and	3:

[...]	#	build	new	model	with	the	same	definition	as	before	for	hidden	layers	1-3

init	=	tf.global_variables_initializer()

reuse_vars	=	tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES,

																															scope="hidden[123]")

reuse_vars_dict	=	dict([(var.name,	var.name)	for	var	in	reuse_vars])

original_saver	=	tf.Saver(reuse_vars_dict)	#	saver	to	restore	the	original	model

new_saver	=	tf.Saver()	#	saver	to	save	the	new	model

with	tf.Session()	as	sess:

				sess.run(init)

				original_saver.restore("./my_original_model.ckpt")	#	restore	layers	1	to	3

				[...]	#	train	the	new	model

				new_saver.save("./my_new_model.ckpt")	#	save	the	whole	model

First	we	build	the	new	model,	making	sure	to	copy	the	original	model’s	hidden	layers	1	to	3.	We	also
create	a	node	to	initialize	all	variables.	Then	we	get	the	list	of	all	variables	that	were	just	created	with
"trainable=True"	(which	is	the	default),	and	we	keep	only	the	ones	whose	scope	matches	the	regular
expression	"hidden[123]"	(i.e.,	we	get	all	trainable	variables	in	hidden	layers	1	to	3).	Next	we	create	a
dictionary	mapping	the	name	of	each	variable	in	the	original	model	to	its	name	in	the	new	model
(generally	you	want	to	keep	the	exact	same	names).	Then	we	create	a	Saver	that	will	restore	only	these
variables,	and	we	create	another	Saver	to	save	the	entire	new	model,	not	just	layers	1	to	3.	We	then	start
a	session	and	initialize	all	variables	in	the	model,	then	restore	the	variable	values	from	the	original
model’s	layers	1	to	3.	Finally,	we	train	the	model	on	the	new	task	and	save	it.

TIP
The	more	similar	the	tasks	are,	the	more	layers	you	want	to	reuse	(starting	with	the	lower	layers).	For	very	similar	tasks,	you	can
try	keeping	all	the	hidden	layers	and	just	replace	the	output	layer.

Reusing	Models	from	Other	Frameworks
If	the	model	was	trained	using	another	framework,	you	will	need	to	load	the	weights	manually	(e.g.,	using
Theano	code	if	it	was	trained	with	Theano),	then	assign	them	to	the	appropriate	variables.	This	can	be
quite	tedious.	For	example,	the	following	code	shows	how	you	would	copy	the	weight	and	biases	from
the	first	hidden	layer	of	a	model	trained	using	another	framework:

original_w	=	[...]	#	Load	the	weights	from	the	other	framework

original_b	=	[...]	#	Load	the	biases	from	the	other	framework

X	=	tf.placeholder(tf.float32,	shape=(None,	n_inputs),	name="X")

hidden1	=	fully_connected(X,	n_hidden1,	scope="hidden1")

[...]	#	#	Build	the	rest	of	the	model

#	Get	a	handle	on	the	variables	created	by	fully_connected()

with	tf.variable_scope("",	default_name="",	reuse=True):		#	root	scope

				hidden1_weights	=	tf.get_variable("hidden1/weights")

				hidden1_biases	=	tf.get_variable("hidden1/biases")

#	Create	nodes	to	assign	arbitrary	values	to	the	weights	and	biases

original_weights	=	tf.placeholder(tf.float32,	shape=(n_inputs,	n_hidden1))

original_biases	=	tf.placeholder(tf.float32,	shape=(n_hidden1))

assign_hidden1_weights	=	tf.assign(hidden1_weights,	original_weights)

assign_hidden1_biases	=	tf.assign(hidden1_biases,	original_biases)

init	=	tf.global_variables_initializer()

with	tf.Session()	as	sess:

				sess.run(init)

				sess.run(assign_hidden1_weights,	feed_dict={original_weights:	original_w})

				sess.run(assign_hidden1_biases,	feed_dict={original_biases:	original_b})

				[...]	#	Train	the	model	on	your	new	task

Freezing	the	Lower	Layers
It	is	likely	that	the	lower	layers	of	the	first	DNN	have	learned	to	detect	low-level	features	in	pictures	that
will	be	useful	across	both	image	classification	tasks,	so	you	can	just	reuse	these	layers	as	they	are.	It	is
generally	a	good	idea	to	“freeze”	their	weights	when	training	the	new	DNN:	if	the	lower-layer	weights
are	fixed,	then	the	higher-layer	weights	will	be	easier	to	train	(because	they	won’t	have	to	learn	a	moving
target).	To	freeze	the	lower	layers	during	training,	the	simplest	solution	is	to	give	the	optimizer	the	list	of
variables	to	train,	excluding	the	variables	from	the	lower	layers:

train_vars	=	tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES,

																															scope="hidden[34]|outputs")

training_op	=	optimizer.minimize(loss,	var_list=train_vars)

The	first	line	gets	the	list	of	all	trainable	variables	in	hidden	layers	3	and	4	and	in	the	output	layer.	This
leaves	out	the	variables	in	the	hidden	layers	1	and	2.	Next	we	provide	this	restricted	list	of	trainable
variables	to	the	optimizer’s	minimize()	function.	Ta-da!	Layers	1	and	2	are	now	frozen:	they	will	not
budge	during	training	(these	are	often	called	frozen	layers).

Caching	the	Frozen	Layers
Since	the	frozen	layers	won’t	change,	it	is	possible	to	cache	the	output	of	the	topmost	frozen	layer	for	each
training	instance.	Since	training	goes	through	the	whole	dataset	many	times,	this	will	give	you	a	huge
speed	boost	as	you	will	only	need	to	go	through	the	frozen	layers	once	per	training	instance	(instead	of
once	per	epoch).	For	example,	you	could	first	run	the	whole	training	set	through	the	lower	layers
(assuming	you	have	enough	RAM):

hidden2_outputs	=	sess.run(hidden2,	feed_dict={X:	X_train})

Then	during	training,	instead	of	building	batches	of	training	instances,	you	would	build	batches	of	outputs
from	hidden	layer	2	and	feed	them	to	the	training	operation:

import	numpy	as	np

n_epochs	=	100

n_batches	=	500

for	epoch	in	range(n_epochs):

				shuffled_idx	=	rnd.permutation(len(hidden2_outputs))

				hidden2_batches	=	np.array_split(hidden2_outputs[shuffled_idx],	n_batches)

				y_batches	=	np.array_split(y_train[shuffled_idx],	n_batches)

				for	hidden2_batch,	y_batch	in	zip(hidden2_batches,	y_batches):

								sess.run(training_op,	feed_dict={hidden2:	hidden2_batch,	y:	y_batch})

The	last	line	runs	the	training	operation	defined	earlier	(which	freezes	layers	1	and	2),	and	feeds	it	a
batch	of	outputs	from	the	second	hidden	layer	(as	well	as	the	targets	for	that	batch).	Since	we	give
TensorFlow	the	output	of	hidden	layer	2,	it	does	not	try	to	evaluate	it	(or	any	node	it	depends	on).

Tweaking,	Dropping,	or	Replacing	the	Upper	Layers
The	output	layer	of	the	original	model	should	usually	be	replaced	since	it	is	most	likely	not	useful	at	all
for	the	new	task,	and	it	may	not	even	have	the	right	number	of	outputs	for	the	new	task.

Similarly,	the	upper	hidden	layers	of	the	original	model	are	less	likely	to	be	as	useful	as	the	lower	layers,
since	the	high-level	features	that	are	most	useful	for	the	new	task	may	differ	significantly	from	the	ones
that	were	most	useful	for	the	original	task.	You	want	to	find	the	right	number	of	layers	to	reuse.

Try	freezing	all	the	copied	layers	first,	then	train	your	model	and	see	how	it	performs.	Then	try	unfreezing
one	or	two	of	the	top	hidden	layers	to	let	backpropagation	tweak	them	and	see	if	performance	improves.
The	more	training	data	you	have,	the	more	layers	you	can	unfreeze.

If	you	still	cannot	get	good	performance,	and	you	have	little	training	data,	try	dropping	the	top	hidden
layer(s)	and	freeze	all	remaining	hidden	layers	again.	You	can	iterate	until	you	find	the	right	number	of
layers	to	reuse.	If	you	have	plenty	of	training	data,	you	may	try	replacing	the	top	hidden	layers	instead	of
dropping	them,	and	even	add	more	hidden	layers.

Model	Zoos
Where	can	you	find	a	neural	network	trained	for	a	task	similar	to	the	one	you	want	to	tackle?	The	first
place	to	look	is	obviously	in	your	own	catalog	of	models.	This	is	one	good	reason	to	save	all	your	models
and	organize	them	so	you	can	retrieve	them	later	easily.	Another	option	is	to	search	in	a	model	zoo.	Many
people	train	Machine	Learning	models	for	various	tasks	and	kindly	release	their	pretrained	models	to	the
public.

TensorFlow	has	its	own	model	zoo	available	at	https://github.com/tensorflow/models.	In	particular,	it
contains	most	of	the	state-of-the-art	image	classification	nets	such	as	VGG,	Inception,	and	ResNet	(see
Chapter	13,	and	check	out	the	models/slim	directory),	including	the	code,	the	pretrained	models,	and	tools
to	download	popular	image	datasets.

Another	popular	model	zoo	is	Caffe’s	Model	Zoo.	It	also	contains	many	computer	vision	models	(e.g.,
LeNet,	AlexNet,	ZFNet,	GoogLeNet,	VGGNet,	inception)	trained	on	various	datasets	(e.g.,	ImageNet,
Places	Database,	CIFAR10,	etc.).	Saumitro	Dasgupta	wrote	a	converter,	which	is	available	at
https://github.com/ethereon/caffe-tensorflow.

https://github.com/tensorflow/models
https://goo.gl/XI02X3
https://github.com/ethereon/caffe-tensorflow

Unsupervised	Pretraining
Suppose	you	want	to	tackle	a	complex	task	for	which	you	don’t	have	much	labeled	training	data,	but
unfortunately	you	cannot	find	a	model	trained	on	a	similar	task.	Don’t	lose	all	hope!	First,	you	should	of
course	try	to	gather	more	labeled	training	data,	but	if	this	is	too	hard	or	too	expensive,	you	may	still	be
able	to	perform	unsupervised	pretraining	(see	Figure	11-5).	That	is,	if	you	have	plenty	of	unlabeled
training	data,	you	can	try	to	train	the	layers	one	by	one,	starting	with	the	lowest	layer	and	then	going	up,
using	an	unsupervised	feature	detector	algorithm	such	as	Restricted	Boltzmann	Machines	(RBMs;	see
Appendix	E)	or	autoencoders	(see	Chapter	15).	Each	layer	is	trained	on	the	output	of	the	previously
trained	layers	(all	layers	except	the	one	being	trained	are	frozen).	Once	all	layers	have	been	trained	this
way,	you	can	fine-tune	the	network	using	supervised	learning	(i.e.,	with	backpropagation).

This	is	a	rather	long	and	tedious	process,	but	it	often	works	well;	in	fact,	it	is	this	technique	that	Geoffrey
Hinton	and	his	team	used	in	2006	and	which	led	to	the	revival	of	neural	networks	and	the	success	of	Deep
Learning.	Until	2010,	unsupervised	pretraining	(typically	using	RBMs)	was	the	norm	for	deep	nets,	and	it
was	only	after	the	vanishing	gradients	problem	was	alleviated	that	it	became	much	more	common	to	train
DNNs	purely	using	backpropagation.	However,	unsupervised	pretraining	(today	typically	using
autoencoders	rather	than	RBMs)	is	still	a	good	option	when	you	have	a	complex	task	to	solve,	no	similar
model	you	can	reuse,	and	little	labeled	training	data	but	plenty	of	unlabeled	training	data.9

Figure	11-5.	Unsupervised	pretraining

Pretraining	on	an	Auxiliary	Task
One	last	option	is	to	train	a	first	neural	network	on	an	auxiliary	task	for	which	you	can	easily	obtain	or
generate	labeled	training	data,	then	reuse	the	lower	layers	of	that	network	for	your	actual	task.	The	first
neural	network’s	lower	layers	will	learn	feature	detectors	that	will	likely	be	reusable	by	the	second
neural	network.

For	example,	if	you	want	to	build	a	system	to	recognize	faces,	you	may	only	have	a	few	pictures	of	each
individual	—	clearly	not	enough	to	train	a	good	classifier.	Gathering	hundreds	of	pictures	of	each	person
would	not	be	practical.	However,	you	could	gather	a	lot	of	pictures	of	random	people	on	the	internet	and
train	a	first	neural	network	to	detect	whether	or	not	two	different	pictures	feature	the	same	person.	Such	a
network	would	learn	good	feature	detectors	for	faces,	so	reusing	its	lower	layers	would	allow	you	to
train	a	good	face	classifier	using	little	training	data.

It	is	often	rather	cheap	to	gather	unlabeled	training	examples,	but	quite	expensive	to	label	them.	In	this
situation,	a	common	technique	is	to	label	all	your	training	examples	as	“good,”	then	generate	many	new
training	instances	by	corrupting	the	good	ones,	and	label	these	corrupted	instances	as	“bad.”	Then	you	can
train	a	first	neural	network	to	classify	instances	as	good	or	bad.	For	example,	you	could	download
millions	of	sentences,	label	them	as	“good,”	then	randomly	change	a	word	in	each	sentence	and	label	the
resulting	sentences	as	“bad.”	If	a	neural	network	can	tell	that	“The	dog	sleeps”	is	a	good	sentence	but
“The	dog	they”	is	bad,	it	probably	knows	quite	a	lot	about	language.	Reusing	its	lower	layers	will	likely
help	in	many	language	processing	tasks.

Another	approach	is	to	train	a	first	network	to	output	a	score	for	each	training	instance,	and	use	a	cost
function	that	ensures	that	a	good	instance’s	score	is	greater	than	a	bad	instance’s	score	by	at	least	some
margin.	This	is	called	max	margin	learning.

Faster	Optimizers
Training	a	very	large	deep	neural	network	can	be	painfully	slow.	So	far	we	have	seen	four	ways	to	speed
up	training	(and	reach	a	better	solution):	applying	a	good	initialization	strategy	for	the	connection	weights,
using	a	good	activation	function,	using	Batch	Normalization,	and	reusing	parts	of	a	pretrained	network.
Another	huge	speed	boost	comes	from	using	a	faster	optimizer	than	the	regular	Gradient	Descent
optimizer.	In	this	section	we	will	present	the	most	popular	ones:	Momentum	optimization,	Nesterov
Accelerated	Gradient,	AdaGrad,	RMSProp,	and	finally	Adam	optimization.

Spoiler	alert:	the	conclusion	of	this	section	is	that	you	should	almost	always	use	Adam	optimization,10	so
if	you	don’t	care	about	how	it	works,	simply	replace	your	GradientDescentOptimizer	with	an
AdamOptimizer	and	skip	to	the	next	section!	With	just	this	small	change,	training	will	typically	be
several	times	faster.	However,	Adam	optimization	does	have	three	hyperparameters	that	you	can	tune
(plus	the	learning	rate);	the	default	values	usually	work	fine,	but	if	you	ever	need	to	tweak	them	it	may	be
helpful	to	know	what	they	do.	Adam	optimization	combines	several	ideas	from	other	optimization
algorithms,	so	it	is	useful	to	look	at	these	algorithms	first.

Momentum	optimization
Imagine	a	bowling	ball	rolling	down	a	gentle	slope	on	a	smooth	surface:	it	will	start	out	slowly,	but	it
will	quickly	pick	up	momentum	until	it	eventually	reaches	terminal	velocity	(if	there	is	some	friction	or
air	resistance).	This	is	the	very	simple	idea	behind	Momentum	optimization,	proposed	by	Boris	Polyak
in	1964.11	In	contrast,	regular	Gradient	Descent	will	simply	take	small	regular	steps	down	the	slope,	so	it
will	take	much	more	time	to	reach	the	bottom.

Recall	that	Gradient	Descent	simply	updates	the	weights	θ	by	directly	subtracting	the	gradient	of	the	cost
function	J(θ)	with	regards	to	the	weights	(∇θJ(θ))	multiplied	by	the	learning	rate	η.	The	equation	is:	θ	←
θ	–	η∇θJ(θ).	It	does	not	care	about	what	the	earlier	gradients	were.	If	the	local	gradient	is	tiny,	it	goes
very	slowly.

Momentum	optimization	cares	a	great	deal	about	what	previous	gradients	were:	at	each	iteration,	it	adds
the	local	gradient	to	the	momentum	vector	m	(multiplied	by	the	learning	rate	η),	and	it	updates	the
weights	by	simply	subtracting	this	momentum	vector	(see	Equation	11-4).	In	other	words,	the	gradient	is
used	as	an	acceleration,	not	as	a	speed.	To	simulate	some	sort	of	friction	mechanism	and	prevent	the
momentum	from	growing	too	large,	the	algorithm	introduces	a	new	hyperparameter	β,	simply	called	the
momentum,	which	must	be	set	between	0	(high	friction)	and	1	(no	friction).	A	typical	momentum	value	is
0.9.

Equation	11-4.	Momentum	algorithm

You	can	easily	verify	that	if	the	gradient	remains	constant,	the	terminal	velocity	(i.e.,	the	maximum	size	of

the	weight	updates)	is	equal	to	that	gradient	multiplied	by	the	learning	rate	η	multiplied	by	 .	For
example,	if	β	=	0.9,	then	the	terminal	velocity	is	equal	to	10	times	the	gradient	times	the	learning	rate,	so
Momentum	optimization	ends	up	going	10	times	faster	than	Gradient	Descent!	This	allows	Momentum
optimization	to	escape	from	plateaus	much	faster	than	Gradient	Descent.	In	particular,	we	saw	in
Chapter	4	that	when	the	inputs	have	very	different	scales	the	cost	function	will	look	like	an	elongated
bowl	(see	Figure	4-7).	Gradient	Descent	goes	down	the	steep	slope	quite	fast,	but	then	it	takes	a	very	long
time	to	go	down	the	valley.	In	contrast,	Momentum	optimization	will	roll	down	the	bottom	of	the	valley
faster	and	faster	until	it	reaches	the	bottom	(the	optimum).	In	deep	neural	networks	that	don’t	use	Batch
Normalization,	the	upper	layers	will	often	end	up	having	inputs	with	very	different	scales,	so	using
Momentum	optimization	helps	a	lot.	It	can	also	help	roll	past	local	optima.

NOTE
Due	to	the	momentum,	the	optimizer	may	overshoot	a	bit,	then	come	back,	overshoot	again,	and	oscillate	like	this	many	times
before	stabilizing	at	the	minimum.	This	is	one	of	the	reasons	why	it	is	good	to	have	a	bit	of	friction	in	the	system:	it	gets	rid	of

https://goo.gl/FlSE8c

these	oscillations	and	thus	speeds	up	convergence.

Implementing	Momentum	optimization	in	TensorFlow	is	a	no-brainer:	just	replace	the
GradientDescentOptimizer	with	the	MomentumOptimizer,	then	lie	back	and	profit!

optimizer	=	tf.train.MomentumOptimizer(learning_rate=learning_rate,

																																							momentum=0.9)

The	one	drawback	of	Momentum	optimization	is	that	it	adds	yet	another	hyperparameter	to	tune.	However,
the	momentum	value	of	0.9	usually	works	well	in	practice	and	almost	always	goes	faster	than	Gradient
Descent.

Nesterov	Accelerated	Gradient
One	small	variant	to	Momentum	optimization,	proposed	by	Yurii	Nesterov	in	1983,12	is	almost	always
faster	than	vanilla	Momentum	optimization.	The	idea	of	Nesterov	Momentum	optimization,	or	Nesterov
Accelerated	Gradient	(NAG),	is	to	measure	the	gradient	of	the	cost	function	not	at	the	local	position	but
slightly	ahead	in	the	direction	of	the	momentum	(see	Equation	11-5).	The	only	difference	from	vanilla
Momentum	optimization	is	that	the	gradient	is	measured	at	θ	+	βm	rather	than	at	θ.

Equation	11-5.	Nesterov	Accelerated	Gradient	algorithm

This	small	tweak	works	because	in	general	the	momentum	vector	will	be	pointing	in	the	right	direction
(i.e.,	toward	the	optimum),	so	it	will	be	slightly	more	accurate	to	use	the	gradient	measured	a	bit	farther	in
that	direction	rather	than	using	the	gradient	at	the	original	position,	as	you	can	see	in	Figure	11-6	(where
∇1	represents	the	gradient	of	the	cost	function	measured	at	the	starting	point	θ,	and	∇2	represents	the
gradient	at	the	point	located	at	θ	+	βm).	As	you	can	see,	the	Nesterov	update	ends	up	slightly	closer	to	the
optimum.	After	a	while,	these	small	improvements	add	up	and	NAG	ends	up	being	significantly	faster	than
regular	Momentum	optimization.	Moreover,	note	that	when	the	momentum	pushes	the	weights	across	a
valley,	∇1	continues	to	push	further	across	the	valley,	while	∇2	pushes	back	toward	the	bottom	of	the
valley.	This	helps	reduce	oscillations	and	thus	converges	faster.

https://goo.gl/V011vD

Figure	11-6.	Regular	versus	Nesterov	Momentum	optimization

NAG	will	almost	always	speed	up	training	compared	to	regular	Momentum	optimization.	To	use	it,
simply	set	use_nesterov=True	when	creating	the	MomentumOptimizer:

optimizer	=	tf.train.MomentumOptimizer(learning_rate=learning_rate,

																																							momentum=0.9,	use_nesterov=True)

AdaGrad
Consider	the	elongated	bowl	problem	again:	Gradient	Descent	starts	by	quickly	going	down	the	steepest
slope,	then	slowly	goes	down	the	bottom	of	the	valley.	It	would	be	nice	if	the	algorithm	could	detect	this
early	on	and	correct	its	direction	to	point	a	bit	more	toward	the	global	optimum.

The	AdaGrad	algorithm13	achieves	this	by	scaling	down	the	gradient	vector	along	the	steepest	dimensions
(see	Equation	11-6):

Equation	11-6.	AdaGrad	algorithm

The	first	step	accumulates	the	square	of	the	gradients	into	the	vector	s	(the	⊗	symbol	represents	the
element-wise	multiplication).	This	vectorized	form	is	equivalent	to	computing	si	←	si	+	(∂	/	∂	θi	J(θ))2

for	each	element	si	of	the	vector	s;	in	other	words,	each	si	accumulates	the	squares	of	the	partial
derivative	of	the	cost	function	with	regards	to	parameter	θi.	If	the	cost	function	is	steep	along	the	ith

dimension,	then	si	will	get	larger	and	larger	at	each	iteration.

The	second	step	is	almost	identical	to	Gradient	Descent,	but	with	one	big	difference:	the	gradient	vector
is	scaled	down	by	a	factor	of	 	(the	⊘	symbol	represents	the	element-wise	division,	and	ϵ	is	a
smoothing	term	to	avoid	division	by	zero,	typically	set	to	10–10).	This	vectorized	form	is	equivalent	to
computing	 	for	all	parameters	θi	(simultaneously).

In	short,	this	algorithm	decays	the	learning	rate,	but	it	does	so	faster	for	steep	dimensions	than	for
dimensions	with	gentler	slopes.	This	is	called	an	adaptive	learning	rate.	It	helps	point	the	resulting
updates	more	directly	toward	the	global	optimum	(see	Figure	11-7).	One	additional	benefit	is	that	it
requires	much	less	tuning	of	the	learning	rate	hyperparameter	η.

http://goo.gl/4Tyd4j

Figure	11-7.	AdaGrad	versus	Gradient	Descent

AdaGrad	often	performs	well	for	simple	quadratic	problems,	but	unfortunately	it	often	stops	too	early
when	training	neural	networks.	The	learning	rate	gets	scaled	down	so	much	that	the	algorithm	ends	up
stopping	entirely	before	reaching	the	global	optimum.	So	even	though	TensorFlow	has	an
AdagradOptimizer,	you	should	not	use	it	to	train	deep	neural	networks	(it	may	be	efficient	for	simpler
tasks	such	as	Linear	Regression,	though).

RMSProp
Although	AdaGrad	slows	down	a	bit	too	fast	and	ends	up	never	converging	to	the	global	optimum,	the
RMSProp	algorithm14	fixes	this	by	accumulating	only	the	gradients	from	the	most	recent	iterations	(as
opposed	to	all	the	gradients	since	the	beginning	of	training).	It	does	so	by	using	exponential	decay	in	the
first	step	(see	Equation	11-7).

Equation	11-7.	RMSProp	algorithm

The	decay	rate	β	is	typically	set	to	0.9.	Yes,	it	is	once	again	a	new	hyperparameter,	but	this	default	value
often	works	well,	so	you	may	not	need	to	tune	it	at	all.

As	you	might	expect,	TensorFlow	has	an	RMSPropOptimizer	class:

optimizer	=	tf.train.RMSPropOptimizer(learning_rate=learning_rate,

																																						momentum=0.9,	decay=0.9,	epsilon=1e-10)

Except	on	very	simple	problems,	this	optimizer	almost	always	performs	much	better	than	AdaGrad.	It
also	generally	performs	better	than	Momentum	optimization	and	Nesterov	Accelerated	Gradients.	In	fact,
it	was	the	preferred	optimization	algorithm	of	many	researchers	until	Adam	optimization	came	around.

Adam	Optimization
Adam,15	which	stands	for	adaptive	moment	estimation,	combines	the	ideas	of	Momentum	optimization
and	RMSProp:	just	like	Momentum	optimization	it	keeps	track	of	an	exponentially	decaying	average	of
past	gradients,	and	just	like	RMSProp	it	keeps	track	of	an	exponentially	decaying	average	of	past	squared
gradients	(see	Equation	11-8).16

Equation	11-8.	Adam	algorithm

T	represents	the	iteration	number	(starting	at	1).

If	you	just	look	at	steps	1,	2,	and	5,	you	will	notice	Adam’s	close	similarity	to	both	Momentum
optimization	and	RMSProp.	The	only	difference	is	that	step	1	computes	an	exponentially	decaying
average	rather	than	an	exponentially	decaying	sum,	but	these	are	actually	equivalent	except	for	a	constant
factor	(the	decaying	average	is	just	1	–	β1	times	the	decaying	sum).	Steps	3	and	4	are	somewhat	of	a
technical	detail:	since	m	and	s	are	initialized	at	0,	they	will	be	biased	toward	0	at	the	beginning	of
training,	so	these	two	steps	will	help	boost	m	and	s	at	the	beginning	of	training.

The	momentum	decay	hyperparameter	β1	is	typically	initialized	to	0.9,	while	the	scaling	decay
hyperparameter	β2	is	often	initialized	to	0.999.	As	earlier,	the	smoothing	term	ϵ	is	usually	initialized	to	a
tiny	number	such	as	10–8.	These	are	the	default	values	for	TensorFlow’s	AdamOptimizer	class,	so	you
can	simply	use:

optimizer	=	tf.train.AdamOptimizer(learning_rate=learning_rate)

In	fact,	since	Adam	is	an	adaptive	learning	rate	algorithm	(like	AdaGrad	and	RMSProp),	it	requires	less

https://goo.gl/Un8Axa

tuning	of	the	learning	rate	hyperparameter	η.	You	can	often	use	the	default	value	η	=	0.001,	making	Adam
even	easier	to	use	than	Gradient	Descent.

NOTE
All	the	optimization	techniques	discussed	so	far	only	rely	on	the	first-order	partial	derivatives	(Jacobians).	The	optimization
literature	contains	amazing	algorithms	based	on	the	second-order	partial	derivatives	(the	Hessians).	Unfortunately,	these
algorithms	are	very	hard	to	apply	to	deep	neural	networks	because	there	are	n2	Hessians	per	output	(where	n	is	the	number	of
parameters),	as	opposed	to	just	n	Jacobians	per	output.	Since	DNNs	typically	have	tens	of	thousands	of	parameters,	the	second-
order	optimization	algorithms	often	don’t	even	fit	in	memory,	and	even	when	they	do,	computing	the	Hessians	is	just	too	slow.

TRAINING	SPARSE	MODELS

All	the	optimization	algorithms	just	presented	produce	dense	models,	meaning	that	most	parameters	will	be	nonzero.	If	you	need	a
blazingly	fast	model	at	runtime,	or	if	you	need	it	to	take	up	less	memory,	you	may	prefer	to	end	up	with	a	sparse	model	instead.

One	trivial	way	to	achieve	this	is	to	train	the	model	as	usual,	then	get	rid	of	the	tiny	weights	(set	them	to	0).

Another	option	is	to	apply	strong	ℓ1	regularization	during	training,	as	it	pushes	the	optimizer	to	zero	out	as	many	weights	as	it	can	(as
discussed	in	Chapter	4	about	Lasso	Regression).

However,	in	some	cases	these	techniques	may	remain	insufficient.	One	last	option	is	to	apply	Dual	Averaging,	often	called	Follow	The
Regularized	Leader	(FTRL),	a	technique	proposed	by	Yurii	Nesterov.17	When	used	with	ℓ1	regularization,	this	technique	often	leads	to

very	sparse	models.	TensorFlow	implements	a	variant	of	FTRL	called	FTRL-Proximal18	in	the	FTRLOptimizer	class.

https://goo.gl/xSQD4C
https://goo.gl/bxme2B

Learning	Rate	Scheduling
Finding	a	good	learning	rate	can	be	tricky.	If	you	set	it	way	too	high,	training	may	actually	diverge	(as	we
discussed	in	Chapter	4).	If	you	set	it	too	low,	training	will	eventually	converge	to	the	optimum,	but	it	will
take	a	very	long	time.	If	you	set	it	slightly	too	high,	it	will	make	progress	very	quickly	at	first,	but	it	will
end	up	dancing	around	the	optimum,	never	settling	down	(unless	you	use	an	adaptive	learning	rate
optimization	algorithm	such	as	AdaGrad,	RMSProp,	or	Adam,	but	even	then	it	may	take	time	to	settle).	If
you	have	a	limited	computing	budget,	you	may	have	to	interrupt	training	before	it	has	converged	properly,
yielding	a	suboptimal	solution	(see	Figure	11-8).

Figure	11-8.	Learning	curves	for	various	learning	rates	η

You	may	be	able	to	find	a	fairly	good	learning	rate	by	training	your	network	several	times	during	just	a
few	epochs	using	various	learning	rates	and	comparing	the	learning	curves.	The	ideal	learning	rate	will
learn	quickly	and	converge	to	good	solution.

However,	you	can	do	better	than	a	constant	learning	rate:	if	you	start	with	a	high	learning	rate	and	then
reduce	it	once	it	stops	making	fast	progress,	you	can	reach	a	good	solution	faster	than	with	the	optimal
constant	learning	rate.	There	are	many	different	strategies	to	reduce	the	learning	rate	during	training.
These	strategies	are	called	learning	schedules	(we	briefly	introduced	this	concept	in	Chapter	4),	the	most
common	of	which	are:

Predetermined	piecewise	constant	learning	rate
For	example,	set	the	learning	rate	to	η0	=	0.1	at	first,	then	to	η1	=	0.001	after	50	epochs.	Although
this	solution	can	work	very	well,	it	often	requires	fiddling	around	to	figure	out	the	right	learning
rates	and	when	to	use	them.

Performance	scheduling
Measure	the	validation	error	every	N	steps	(just	like	for	early	stopping)	and	reduce	the	learning	rate
by	a	factor	of	λ	when	the	error	stops	dropping.

Exponential	scheduling
Set	the	learning	rate	to	a	function	of	the	iteration	number	t:	η(t)	=	η0	10–t/r.	This	works	great,	but	it
requires	tuning	η0	and	r.	The	learning	rate	will	drop	by	a	factor	of	10	every	r	steps.

Power	scheduling
Set	the	learning	rate	to	η(t)	=	η0	(1	+	t/r)–c.	The	hyperparameter	c	is	typically	set	to	1.	This	is
similar	to	exponential	scheduling,	but	the	learning	rate	drops	much	more	slowly.

A	2013	paper19	by	Andrew	Senior	et	al.	compared	the	performance	of	some	of	the	most	popular	learning
schedules	when	training	deep	neural	networks	for	speech	recognition	using	Momentum	optimization.	The
authors	concluded	that,	in	this	setting,	both	performance	scheduling	and	exponential	scheduling	performed
well,	but	they	favored	exponential	scheduling	because	it	is	simpler	to	implement,	is	easy	to	tune,	and
converged	slightly	faster	to	the	optimal	solution.

Implementing	a	learning	schedule	with	TensorFlow	is	fairly	straightforward:

initial_learning_rate	=	0.1

decay_steps	=	10000

decay_rate	=	1/10

global_step	=	tf.Variable(0,	trainable=False)

learning_rate	=	tf.train.exponential_decay(initial_learning_rate,	global_step,

																																											decay_steps,	decay_rate)

optimizer	=	tf.train.MomentumOptimizer(learning_rate,	momentum=0.9)

training_op	=	optimizer.minimize(loss,	global_step=global_step)

After	setting	the	hyperparameter	values,	we	create	a	nontrainable	variable	global_step	(initialized	to	0)
to	keep	track	of	the	current	training	iteration	number.	Then	we	define	an	exponentially	decaying	learning
rate	(with	η0	=	0.1	and	r	=	10,000)	using	TensorFlow’s	exponential_decay()	function.	Next,	we	create
an	optimizer	(in	this	example,	a	MomentumOptimizer)	using	this	decaying	learning	rate.	Finally,	we
create	the	training	operation	by	calling	the	optimizer’s	minimize()	method;	since	we	pass	it	the
global_step	variable,	it	will	kindly	take	care	of	incrementing	it.	That’s	it!

Since	AdaGrad,	RMSProp,	and	Adam	optimization	automatically	reduce	the	learning	rate	during	training,
it	is	not	necessary	to	add	an	extra	learning	schedule.	For	other	optimization	algorithms,	using	exponential
decay	or	performance	scheduling	can	considerably	speed	up	convergence.

http://goo.gl/Hu6Zyq

Avoiding	Overfitting	Through	Regularization
With	four	parameters	I	can	fit	an	elephant	and	with	five	I	can	make	him	wiggle	his	trunk.
John	von	Neumann,	cited	by	Enrico	Fermi	in	Nature	427

Deep	neural	networks	typically	have	tens	of	thousands	of	parameters,	sometimes	even	millions.	With	so
many	parameters,	the	network	has	an	incredible	amount	of	freedom	and	can	fit	a	huge	variety	of	complex
datasets.	But	this	great	flexibility	also	means	that	it	is	prone	to	overfitting	the	training	set.

With	millions	of	parameters	you	can	fit	the	whole	zoo.	In	this	section	we	will	present	some	of	the	most
popular	regularization	techniques	for	neural	networks,	and	how	to	implement	them	with	TensorFlow:
early	stopping,	ℓ1	and	ℓ2	regularization,	dropout,	max-norm	regularization,	and	data	augmentation.

Early	Stopping
To	avoid	overfitting	the	training	set,	a	great	solution	is	early	stopping	(introduced	in	Chapter	4):	just
interrupt	training	when	its	performance	on	the	validation	set	starts	dropping.

One	way	to	implement	this	with	TensorFlow	is	to	evaluate	the	model	on	a	validation	set	at	regular
intervals	(e.g.,	every	50	steps),	and	save	a	“winner”	snapshot	if	it	outperforms	previous	“winner”
snapshots.	Count	the	number	of	steps	since	the	last	“winner”	snapshot	was	saved,	and	interrupt	training
when	this	number	reaches	some	limit	(e.g.,	2,000	steps).	Then	restore	the	last	“winner”	snapshot.

Although	early	stopping	works	very	well	in	practice,	you	can	usually	get	much	higher	performance	out	of
your	network	by	combining	it	with	other	regularization	techniques.

ℓ1	and	ℓ2	Regularization
Just	like	you	did	in	Chapter	4	for	simple	linear	models,	you	can	use	ℓ1	and	ℓ2	regularization	to	constrain	a
neural	network’s	connection	weights	(but	typically	not	its	biases).

One	way	to	do	this	using	TensorFlow	is	to	simply	add	the	appropriate	regularization	terms	to	your	cost
function.	For	example,	assuming	you	have	just	one	hidden	layer	with	weights	weights1	and	one	output
layer	with	weights	weights2,	then	you	can	apply	ℓ1	regularization	like	this:

[...]	#	construct	the	neural	network

base_loss	=	tf.reduce_mean(xentropy,	name="avg_xentropy")

reg_losses	=	tf.reduce_sum(tf.abs(weights1))	+	tf.reduce_sum(tf.abs(weights2))

loss	=	tf.add(base_loss,	scale	*	reg_losses,	name="loss")

However,	if	there	are	many	layers,	this	approach	is	not	very	convenient.	Fortunately,	TensorFlow
provides	a	better	option.	Many	functions	that	create	variables	(such	as	get_variable()	or
fully_connected())	accept	a	*_regularizer	argument	for	each	created	variable	(e.g.,
weights_regularizer).	You	can	pass	any	function	that	takes	weights	as	an	argument	and	returns	the
corresponding	regularization	loss.	The	l1_regularizer(),	l2_regularizer(),	and
l1_l2_regularizer()	functions	return	such	functions.	The	following	code	puts	all	this	together:

with	arg_scope(

								[fully_connected],

								weights_regularizer=tf.contrib.layers.l1_regularizer(scale=0.01)):

				hidden1	=	fully_connected(X,	n_hidden1,	scope="hidden1")

				hidden2	=	fully_connected(hidden1,	n_hidden2,	scope="hidden2")

				logits	=	fully_connected(hidden2,	n_outputs,	activation_fn=None,scope="out")

This	code	creates	a	neural	network	with	two	hidden	layers	and	one	output	layer,	and	it	also	creates	nodes
in	the	graph	to	compute	the	ℓ1	regularization	loss	corresponding	to	each	layer’s	weights.	TensorFlow
automatically	adds	these	nodes	to	a	special	collection	containing	all	the	regularization	losses.	You	just
need	to	add	these	regularization	losses	to	your	overall	loss,	like	this:

reg_losses	=	tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)

loss	=	tf.add_n([base_loss]	+	reg_losses,	name="loss")

WARNING
Don’t	forget	to	add	the	regularization	losses	to	your	overall	loss,	or	else	they	will	simply	be	ignored.

Dropout
The	most	popular	regularization	technique	for	deep	neural	networks	is	arguably	dropout.	It	was
proposed20	by	G.	E.	Hinton	in	2012	and	further	detailed	in	a	paper21	by	Nitish	Srivastava	et	al.,	and	it	has
proven	to	be	highly	successful:	even	the	state-of-the-art	neural	networks	got	a	1–2%	accuracy	boost
simply	by	adding	dropout.	This	may	not	sound	like	a	lot,	but	when	a	model	already	has	95%	accuracy,
getting	a	2%	accuracy	boost	means	dropping	the	error	rate	by	almost	40%	(going	from	5%	error	to
roughly	3%).

It	is	a	fairly	simple	algorithm:	at	every	training	step,	every	neuron	(including	the	input	neurons	but
excluding	the	output	neurons)	has	a	probability	p	of	being	temporarily	“dropped	out,”	meaning	it	will	be
entirely	ignored	during	this	training	step,	but	it	may	be	active	during	the	next	step	(see	Figure	11-9).	The
hyperparameter	p	is	called	the	dropout	rate,	and	it	is	typically	set	to	50%.	After	training,	neurons	don’t
get	dropped	anymore.	And	that’s	all	(except	for	a	technical	detail	we	will	discuss	momentarily).

Figure	11-9.	Dropout	regularization

It	is	quite	surprising	at	first	that	this	rather	brutal	technique	works	at	all.	Would	a	company	perform	better
if	its	employees	were	told	to	toss	a	coin	every	morning	to	decide	whether	or	not	to	go	to	work?	Well,	who

https://goo.gl/PMjVnG
http://goo.gl/DNKZo1

knows;	perhaps	it	would!	The	company	would	obviously	be	forced	to	adapt	its	organization;	it	could	not
rely	on	any	single	person	to	fill	in	the	coffee	machine	or	perform	any	other	critical	tasks,	so	this	expertise
would	have	to	be	spread	across	several	people.	Employees	would	have	to	learn	to	cooperate	with	many
of	their	coworkers,	not	just	a	handful	of	them.	The	company	would	become	much	more	resilient.	If	one
person	quit,	it	wouldn’t	make	much	of	a	difference.	It’s	unclear	whether	this	idea	would	actually	work	for
companies,	but	it	certainly	does	for	neural	networks.	Neurons	trained	with	dropout	cannot	co-adapt	with
their	neighboring	neurons;	they	have	to	be	as	useful	as	possible	on	their	own.	They	also	cannot	rely
excessively	on	just	a	few	input	neurons;	they	must	pay	attention	to	each	of	their	input	neurons.	They	end	up
being	less	sensitive	to	slight	changes	in	the	inputs.	In	the	end	you	get	a	more	robust	network	that
generalizes	better.

Another	way	to	understand	the	power	of	dropout	is	to	realize	that	a	unique	neural	network	is	generated	at
each	training	step.	Since	each	neuron	can	be	either	present	or	absent,	there	is	a	total	of	2N	possible
networks	(where	N	is	the	total	number	of	droppable	neurons).	This	is	such	a	huge	number	that	it	is
virtually	impossible	for	the	same	neural	network	to	be	sampled	twice.	Once	you	have	run	a	10,000
training	steps,	you	have	essentially	trained	10,000	different	neural	networks	(each	with	just	one	training
instance).	These	neural	networks	are	obviously	not	independent	since	they	share	many	of	their	weights,
but	they	are	nevertheless	all	different.	The	resulting	neural	network	can	be	seen	as	an	averaging	ensemble
of	all	these	smaller	neural	networks.

There	is	one	small	but	important	technical	detail.	Suppose	p	=	50,	in	which	case	during	testing	a	neuron
will	be	connected	to	twice	as	many	input	neurons	as	it	was	(on	average)	during	training.	To	compensate
for	this	fact,	we	need	to	multiply	each	neuron’s	input	connection	weights	by	0.5	after	training.	If	we	don’t,
each	neuron	will	get	a	total	input	signal	roughly	twice	as	large	as	what	the	network	was	trained	on,	and	it
is	unlikely	to	perform	well.	More	generally,	we	need	to	multiply	each	input	connection	weight	by	the	keep
probability	(1	–	p)	after	training.	Alternatively,	we	can	divide	each	neuron’s	output	by	the	keep
probability	during	training	(these	alternatives	are	not	perfectly	equivalent,	but	they	work	equally	well).

To	implement	dropout	using	TensorFlow,	you	can	simply	apply	the	dropout()	function	to	the	input	layer
and	to	the	output	of	every	hidden	layer.	During	training,	this	function	randomly	drops	some	items	(setting
them	to	0)	and	divides	the	remaining	items	by	the	keep	probability.	After	training,	this	function	does
nothing	at	all.	The	following	code	applies	dropout	regularization	to	our	three-layer	neural	network:

from	tensorflow.contrib.layers	import	dropout

[...]

is_training	=	tf.placeholder(tf.bool,	shape=(),	name='is_training')

keep_prob	=	0.5

X_drop	=	dropout(X,	keep_prob,	is_training=is_training)

hidden1	=	fully_connected(X_drop,	n_hidden1,	scope="hidden1")

hidden1_drop	=	dropout(hidden1,	keep_prob,	is_training=is_training)

hidden2	=	fully_connected(hidden1_drop,	n_hidden2,	scope="hidden2")

hidden2_drop	=	dropout(hidden2,	keep_prob,	is_training=is_training)

logits	=	fully_connected(hidden2_drop,	n_outputs,	activation_fn=None,

																									scope="outputs")

WARNING

You	want	to	use	the	dropout()	function	in	tensorflow.contrib.layers,	not	the	one	in	tensorflow.nn.	The	first	one	turns	off
(no-op)	when	not	training,	which	is	what	you	want,	while	the	second	one	does	not.

Of	course,	just	like	you	did	earlier	for	Batch	Normalization,	you	need	to	set	is_training	to	True	when
training,	and	to	False	when	testing.

If	you	observe	that	the	model	is	overfitting,	you	can	increase	the	dropout	rate	(i.e.,	reduce	the	keep_prob
hyperparameter).	Conversely,	you	should	try	decreasing	the	dropout	rate	(i.e.,	increasing	keep_prob)	if
the	model	underfits	the	training	set.	It	can	also	help	to	increase	the	dropout	rate	for	large	layers,	and
reduce	it	for	small	ones.

Dropout	does	tend	to	significantly	slow	down	convergence,	but	it	usually	results	in	a	much	better	model
when	tuned	properly.	So,	it	is	generally	well	worth	the	extra	time	and	effort.

NOTE
Dropconnect	is	a	variant	of	dropout	where	individual	connections	are	dropped	randomly	rather	than	whole	neurons.	In	general
dropout	performs	better.

Max-Norm	Regularization
Another	regularization	technique	that	is	quite	popular	for	neural	networks	is	called	max-norm
regularization:	for	each	neuron,	it	constrains	the	weights	w	of	the	incoming	connections	such	that	∥	w	∥2
≤	r,	where	r	is	the	max-norm	hyperparameter	and	∥	·	∥2	is	the	ℓ2	norm.
We	typically	implement	this	constraint	by	computing	∥w∥2	after	each	training	step	and	clipping	w	if
needed	().

Reducing	r	increases	the	amount	of	regularization	and	helps	reduce	overfitting.	Max-norm	regularization
can	also	help	alleviate	the	vanishing/exploding	gradients	problems	(if	you	are	not	using	Batch
Normalization).

TensorFlow	does	not	provide	an	off-the-shelf	max-norm	regularizer,	but	it	is	not	too	hard	to	implement.
The	following	code	creates	a	node	clip_weights	that	will	clip	the	weights	variable	along	the	second
axis	so	that	each	row	vector	has	a	maximum	norm	of	1.0:

threshold	=	1.0

clipped_weights	=	tf.clip_by_norm(weights,	clip_norm=threshold,	axes=1)

clip_weights	=	tf.assign(weights,	clipped_weights)

You	would	then	apply	this	operation	after	each	training	step,	like	so:

with	tf.Session()	as	sess:

				[...]

				for	epoch	in	range(n_epochs):

								[...]

								for	X_batch,	y_batch	in	zip(X_batches,	y_batches):

												sess.run(training_op,	feed_dict={X:	X_batch,	y:	y_batch})

												clip_weights.eval()

You	may	wonder	how	to	get	access	to	the	weights	variable	of	each	layer.	For	this	you	can	simply	use	a
variable	scope	like	this:

hidden1	=	fully_connected(X,	n_hidden1,	scope="hidden1")

with	tf.variable_scope("hidden1",	reuse=True):

				weights1	=	tf.get_variable("weights")

Alternatively,	you	can	use	the	root	variable	scope:

hidden1	=	fully_connected(X,	n_hidden1,	scope="hidden1")

hidden2	=	fully_connected(hidden1,	n_hidden2,	scope="hidden2")

[...]

with	tf.variable_scope("",	default_name="",	reuse=True):		#	root	scope

				weights1	=	tf.get_variable("hidden1/weights")

				weights2	=	tf.get_variable("hidden2/weights")

If	you	don’t	know	what	the	name	of	a	variable	is,	you	can	either	use	TensorBoard	to	find	out	or	simply	use
the	global_variables()	function	and	print	out	all	the	variable	names:

for	variable	in	tf.global_variables():

				print(variable.name)

Although	the	preceding	solution	should	work	fine,	it	is	a	bit	messy.	A	cleaner	solution	is	to	create	a
max_norm_regularizer()	function	and	use	it	just	like	the	earlier	l1_regularizer()	function:

def	max_norm_regularizer(threshold,	axes=1,	name="max_norm",

																									collection="max_norm"):

				def	max_norm(weights):

								clipped	=	tf.clip_by_norm(weights,	clip_norm=threshold,	axes=axes)

								clip_weights	=	tf.assign(weights,	clipped,	name=name)

								tf.add_to_collection(collection,	clip_weights)

								return	None		#	there	is	no	regularization	loss	term

				return	max_norm

This	function	returns	a	parametrized	max_norm()	function	that	you	can	use	like	any	other	regularizer:

max_norm_reg	=	max_norm_regularizer(threshold=1.0)

hidden1	=	fully_connected(X,	n_hidden1,	scope="hidden1",

																										weights_regularizer=max_norm_reg)

Note	that	max-norm	regularization	does	not	require	adding	a	regularization	loss	term	to	your	overall	loss
function,	so	the	max_norm()	function	returns	None.	But	you	still	need	to	be	able	to	run	the	clip_weights
operation	after	each	training	step,	so	you	need	to	be	able	to	get	a	handle	on	it.	This	is	why	the
max_norm()	function	adds	the	clip_weights	node	to	a	collection	of	max-norm	clipping	operations.	You
need	to	fetch	these	clipping	operations	and	run	them	after	each	training	step:

clip_all_weights	=	tf.get_collection("max_norm")

with	tf.Session()	as	sess:

				[...]

				for	epoch	in	range(n_epochs):

								[...]

								for	X_batch,	y_batch	in	zip(X_batches,	y_batches):

												sess.run(training_op,	feed_dict={X:	X_batch,	y:	y_batch})

												sess.run(clip_all_weights)

Much	cleaner	code,	isn’t	it?

Data	Augmentation
One	last	regularization	technique,	data	augmentation,	consists	of	generating	new	training	instances	from
existing	ones,	artificially	boosting	the	size	of	the	training	set.	This	will	reduce	overfitting,	making	this	a
regularization	technique.	The	trick	is	to	generate	realistic	training	instances;	ideally,	a	human	should	not
be	able	to	tell	which	instances	were	generated	and	which	ones	were	not.	Moreover,	simply	adding	white
noise	will	not	help;	the	modifications	you	apply	should	be	learnable	(white	noise	is	not).

For	example,	if	your	model	is	meant	to	classify	pictures	of	mushrooms,	you	can	slightly	shift,	rotate,	and
resize	every	picture	in	the	training	set	by	various	amounts	and	add	the	resulting	pictures	to	the	training	set
(see	Figure	11-10).	This	forces	the	model	to	be	more	tolerant	to	the	position,	orientation,	and	size	of	the
mushrooms	in	the	picture.	If	you	want	the	model	to	be	more	tolerant	to	lighting	conditions,	you	can
similarly	generate	many	images	with	various	contrasts.	Assuming	the	mushrooms	are	symmetrical,	you
can	also	flip	the	pictures	horizontally.	By	combining	these	transformations	you	can	greatly	increase	the
size	of	your	training	set.

Figure	11-10.	Generating	new	training	instances	from	existing	ones

It	is	often	preferable	to	generate	training	instances	on	the	fly	during	training	rather	than	wasting	storage
space	and	network	bandwidth.	TensorFlow	offers	several	image	manipulation	operations	such	as
transposing	(shifting),	rotating,	resizing,	flipping,	and	cropping,	as	well	as	adjusting	the	brightness,
contrast,	saturation,	and	hue	(see	the	API	documentation	for	more	details).	This	makes	it	easy	to

implement	data	augmentation	for	image	datasets.

NOTE
Another	powerful	technique	to	train	very	deep	neural	networks	is	to	add	skip	connections	(a	skip	connection	is	when	you	add
the	input	of	a	layer	to	the	output	of	a	higher	layer).	We	will	explore	this	idea	in	Chapter	13	when	we	talk	about	deep	residual
networks.

Practical	Guidelines
In	this	chapter,	we	have	covered	a	wide	range	of	techniques	and	you	may	be	wondering	which	ones	you
should	use.	The	configuration	in	Table	11-2	will	work	fine	in	most	cases.

Table	11-2.	Default	DNN	configuration

Initialization He	initialization

Activation	function ELU

Normalization Batch	Normalization

Regularization Dropout

Optimizer Adam

Learning	rate	schedule None

Of	course,	you	should	try	to	reuse	parts	of	a	pretrained	neural	network	if	you	can	find	one	that	solves	a
similar	problem.

This	default	configuration	may	need	to	be	tweaked:
If	you	can’t	find	a	good	learning	rate	(convergence	was	too	slow,	so	you	increased	the	training	rate,
and	now	convergence	is	fast	but	the	network’s	accuracy	is	suboptimal),	then	you	can	try	adding	a
learning	schedule	such	as	exponential	decay.

If	your	training	set	is	a	bit	too	small,	you	can	implement	data	augmentation.

If	you	need	a	sparse	model,	you	can	add	some	ℓ1	regularization	to	the	mix	(and	optionally	zero	out
the	tiny	weights	after	training).	If	you	need	an	even	sparser	model,	you	can	try	using	FTRL	instead	of
Adam	optimization,	along	with	ℓ1	regularization.

If	you	need	a	lightning-fast	model	at	runtime,	you	may	want	to	drop	Batch	Normalization,	and
possibly	replace	the	ELU	activation	function	with	the	leaky	ReLU.	Having	a	sparse	model	will	also
help.

With	these	guidelines,	you	are	now	ready	to	train	very	deep	nets	—	well,	if	you	are	very	patient,	that	is!	If
you	use	a	single	machine,	you	may	have	to	wait	for	days	or	even	months	for	training	to	complete.	In	the
next	chapter	we	will	discuss	how	to	use	distributed	TensorFlow	to	train	and	run	models	across	many
servers	and	GPUs.

Exercises
1.	 Is	it	okay	to	initialize	all	the	weights	to	the	same	value	as	long	as	that	value	is	selected	randomly

using	He	initialization?

2.	 Is	it	okay	to	initialize	the	bias	terms	to	0?

3.	 Name	three	advantages	of	the	ELU	activation	function	over	ReLU.

4.	 In	which	cases	would	you	want	to	use	each	of	the	following	activation	functions:	ELU,	leaky
ReLU	(and	its	variants),	ReLU,	tanh,	logistic,	and	softmax?

5.	 What	may	happen	if	you	set	the	momentum	hyperparameter	too	close	to	1	(e.g.,	0.99999)	when
using	a	MomentumOptimizer?

6.	 Name	three	ways	you	can	produce	a	sparse	model.

7.	 Does	dropout	slow	down	training?	Does	it	slow	down	inference	(i.e.,	making	predictions	on	new
instances)?

8.	 Deep	Learning.
a.	 Build	a	DNN	with	five	hidden	layers	of	100	neurons	each,	He	initialization,	and	the	ELU

activation	function.

b.	 Using	Adam	optimization	and	early	stopping,	try	training	it	on	MNIST	but	only	on	digits	0
to	4,	as	we	will	use	transfer	learning	for	digits	5	to	9	in	the	next	exercise.	You	will	need	a
softmax	output	layer	with	five	neurons,	and	as	always	make	sure	to	save	checkpoints	at
regular	intervals	and	save	the	final	model	so	you	can	reuse	it	later.

c.	 Tune	the	hyperparameters	using	cross-validation	and	see	what	precision	you	can	achieve.

d.	 Now	try	adding	Batch	Normalization	and	compare	the	learning	curves:	is	it	converging
faster	than	before?	Does	it	produce	a	better	model?

e.	 Is	the	model	overfitting	the	training	set?	Try	adding	dropout	to	every	layer	and	try	again.
Does	it	help?

9.	 Transfer	learning.
a.	 Create	a	new	DNN	that	reuses	all	the	pretrained	hidden	layers	of	the	previous	model,

freezes	them,	and	replaces	the	softmax	output	layer	with	a	fresh	new	one.

b.	 Train	this	new	DNN	on	digits	5	to	9,	using	only	100	images	per	digit,	and	time	how	long	it
takes.	Despite	this	small	number	of	examples,	can	you	achieve	high	precision?

c.	 Try	caching	the	frozen	layers,	and	train	the	model	again:	how	much	faster	is	it	now?

d.	 Try	again	reusing	just	four	hidden	layers	instead	of	five.	Can	you	achieve	a	higher

precision?

e.	 Now	unfreeze	the	top	two	hidden	layers	and	continue	training:	can	you	get	the	model	to
perform	even	better?

10.	 Pretraining	on	an	auxiliary	task.
a.	 In	this	exercise	you	will	build	a	DNN	that	compares	two	MNIST	digit	images	and	predicts

whether	they	represent	the	same	digit	or	not.	Then	you	will	reuse	the	lower	layers	of	this
network	to	train	an	MNIST	classifier	using	very	little	training	data.	Start	by	building	two
DNNs	(let’s	call	them	DNN	A	and	B),	both	similar	to	the	one	you	built	earlier	but	without
the	output	layer:	each	DNN	should	have	five	hidden	layers	of	100	neurons	each,	He
initialization,	and	ELU	activation.	Next,	add	a	single	output	layer	on	top	of	both	DNNs.	You
should	use	TensorFlow’s	concat()	function	with	axis=1	to	concatenate	the	outputs	of	both
DNNs	along	the	horizontal	axis,	then	feed	the	result	to	the	output	layer.	This	output	layer
should	contain	a	single	neuron	using	the	logistic	activation	function.

b.	 Split	the	MNIST	training	set	in	two	sets:	split	#1	should	containing	55,000	images,	and	split
#2	should	contain	contain	5,000	images.	Create	a	function	that	generates	a	training	batch
where	each	instance	is	a	pair	of	MNIST	images	picked	from	split	#1.	Half	of	the	training
instances	should	be	pairs	of	images	that	belong	to	the	same	class,	while	the	other	half
should	be	images	from	different	classes.	For	each	pair,	the	training	label	should	be	0	if	the
images	are	from	the	same	class,	or	1	if	they	are	from	different	classes.

c.	 Train	the	DNN	on	this	training	set.	For	each	image	pair,	you	can	simultaneously	feed	the
first	image	to	DNN	A	and	the	second	image	to	DNN	B.	The	whole	network	will	gradually
learn	to	tell	whether	two	images	belong	to	the	same	class	or	not.

d.	 Now	create	a	new	DNN	by	reusing	and	freezing	the	hidden	layers	of	DNN	A	and	adding	a
softmax	output	layer	on	with	10	neurons.	Train	this	network	on	split	#2	and	see	if	you	can
achieve	high	performance	despite	having	only	500	images	per	class.

Solutions	to	these	exercises	are	available	in	Appendix	A.

“Understanding	the	Difficulty	of	Training	Deep	Feedforward	Neural	Networks,”	X.	Glorot,	Y	Bengio	(2010).

Here’s	an	analogy:	if	you	set	a	microphone	amplifier’s	knob	too	close	to	zero,	people	won’t	hear	your	voice,	but	if	you	set	it	too	close	to
the	max,	your	voice	will	be	saturated	and	people	won’t	understand	what	you	are	saying.	Now	imagine	a	chain	of	such	amplifiers:	they	all
need	to	be	set	properly	in	order	for	your	voice	to	come	out	loud	and	clear	at	the	end	of	the	chain.	Your	voice	has	to	come	out	of	each
amplifier	at	the	same	amplitude	as	it	came	in.

This	simplified	strategy	was	actually	already	proposed	much	earlier	—	for	example,	in	the	1998	book	Neural	Networks:	Tricks	of	the
Trade	by	Genevieve	Orr	and	Klaus-Robert	Müller	(Springer).

Such	as	“Delving	Deep	into	Rectifiers:	Surpassing	Human-Level	Performance	on	ImageNet	Classification,”	K.	He	et	al.	(2015).

“Empirical	Evaluation	of	Rectified	Activations	in	Convolution	Network,”	B.	Xu	et	al.	(2015).

“Fast	and	Accurate	Deep	Network	Learning	by	Exponential	Linear	Units	(ELUs),”	D.	Clevert,	T.	Unterthiner,	S.	Hochreiter	(2015).

“Batch	Normalization:	Accelerating	Deep	Network	Training	by	Reducing	Internal	Covariate	Shift,”	S.	Ioffe	and	C.	Szegedy	(2015).

“On	the	difficulty	of	training	recurrent	neural	networks,”	R.	Pascanu	et	al.	(2013).

Another	option	is	to	come	up	with	a	supervised	task	for	which	you	can	easily	gather	a	lot	of	labeled	training	data,	then	use	transfer

1

2

3

4

5

6

7

8

9

learning,	as	explained	earlier.	For	example,	if	you	want	to	train	a	model	to	identify	your	friends	in	pictures,	you	could	download	millions	of
faces	on	the	internet	and	train	a	classifier	to	detect	whether	two	faces	are	identical	or	not,	then	use	this	classifier	to	compare	a	new
picture	with	each	picture	of	your	friends.

At	least	for	now:	research	is	moving	fast,	especially	in	the	field	of	optimization.	Be	sure	to	take	a	look	at	the	latest	and	greatest	optimizers
every	time	a	new	version	of	TensorFlow	is	released.

“Some	methods	of	speeding	up	the	convergence	of	iteration	methods,”	B.	Polyak	(1964).

“A	Method	for	Unconstrained	Convex	Minimization	Problem	with	the	Rate	of	Convergence	O(1/k

),”	Yurii	Nesterov	(1983).

“Adaptive	Subgradient	Methods	for	Online	Learning	and	Stochastic	Optimization,”	J.	Duchi	et	al.	(2011).

This	algorithm	was	created	by	Tijmen	Tieleman	and	Geoffrey	Hinton	in	2012,	and	presented	by	Geoffrey	Hinton	in	his	Coursera	class	on
neural	networks	(slides:	http://goo.gl/RsQeis;	video:	https://goo.gl/XUbIyJ).	Amusingly,	since	the	authors	have	not	written	a	paper	to
describe	it,	researchers	often	cite	“slide	29	in	lecture	6”	in	their	papers.

“Adam:	A	Method	for	Stochastic	Optimization,”	D.	Kingma,	J.	Ba	(2015).

These	are	estimations	of	the	mean	and	(uncentered)	variance	of	the	gradients.	The	mean	is	often	called	the	first	moment,	while	the
variance	is	often	called	the	second	moment,	hence	the	name	of	the	algorithm.

“Primal-Dual	Subgradient	Methods	for	Convex	Problems,”	Yurii	Nesterov	(2005).

“Ad	Click	Prediction:	a	View	from	the	Trenches,”	H.	McMahan	et	al.	(2013).

“An	Empirical	Study	of	Learning	Rates	in	Deep	Neural	Networks	for	Speech	Recognition,”	A.	Senior	et	al.	(2013).

“Improving	neural	networks	by	preventing	co-adaptation	of	feature	detectors,”	G.	Hinton	et	al.	(2012).

“Dropout:	A	Simple	Way	to	Prevent	Neural	Networks	from	Overfitting,”	N.	Srivastava	et	al.	(2014).

10

11

12

2

13

14

15

16

17

18

19

20

21

https://goo.gl/AfpNTB
http://goo.gl/RsQeis
https://goo.gl/XUbIyJ

Chapter	12.	Distributing	TensorFlow	Across
Devices	and	Servers

In	Chapter	11	we	discussed	several	techniques	that	can	considerably	speed	up	training:	better	weight
initialization,	Batch	Normalization,	sophisticated	optimizers,	and	so	on.	However,	even	with	all	of	these
techniques,	training	a	large	neural	network	on	a	single	machine	with	a	single	CPU	can	take	days	or	even
weeks.

In	this	chapter	we	will	see	how	to	use	TensorFlow	to	distribute	computations	across	multiple	devices
(CPUs	and	GPUs)	and	run	them	in	parallel	(see	Figure	12-1).	First	we	will	distribute	computations
across	multiple	devices	on	just	one	machine,	then	on	multiple	devices	across	multiple	machines.

Figure	12-1.	Executing	a	TensorFlow	graph	across	multiple	devices	in	parallel

TensorFlow’s	support	of	distributed	computing	is	one	of	its	main	highlights	compared	to	other	neural
network	frameworks.	It	gives	you	full	control	over	how	to	split	(or	replicate)	your	computation	graph
across	devices	and	servers,	and	it	lets	you	parallelize	and	synchronize	operations	in	flexible	ways	so	you
can	choose	between	all	sorts	of	parallelization	approaches.

We	will	look	at	some	of	the	most	popular	approaches	to	parallelizing	the	execution	and	training	of	a
neural	network.	Instead	of	waiting	for	weeks	for	a	training	algorithm	to	complete,	you	may	end	up	waiting
for	just	a	few	hours.	Not	only	does	this	save	an	enormous	amount	of	time,	it	also	means	that	you	can
experiment	with	various	models	much	more	easily,	and	frequently	retrain	your	models	on	fresh	data.

Other	great	use	cases	of	parallelization	include	exploring	a	much	larger	hyperparameter	space	when	fine-
tuning	your	model,	and	running	large	ensembles	of	neural	networks	efficiently.

But	we	must	learn	to	walk	before	we	can	run.	Let’s	start	by	parallelizing	simple	graphs	across	several
GPUs	on	a	single	machine.

Multiple	Devices	on	a	Single	Machine
You	can	often	get	a	major	performance	boost	simply	by	adding	GPU	cards	to	a	single	machine.	In	fact,	in
many	cases	this	will	suffice;	you	won’t	need	to	use	multiple	machines	at	all.	For	example,	you	can
typically	train	a	neural	network	just	as	fast	using	8	GPUs	on	a	single	machine	rather	than	16	GPUs	across
multiple	machines	(due	to	the	extra	delay	imposed	by	network	communications	in	a	multimachine	setup).

In	this	section	we	will	look	at	how	to	set	up	your	environment	so	that	TensorFlow	can	use	multiple	GPU
cards	on	one	machine.	Then	we	will	look	at	how	you	can	distribute	operations	across	available	devices
and	execute	them	in	parallel.

Installation
In	order	to	run	TensorFlow	on	multiple	GPU	cards,	you	first	need	to	make	sure	your	GPU	cards	have
NVidia	Compute	Capability	(greater	or	equal	to	3.0).	This	includes	Nvidia’s	Titan,	Titan	X,	K20,	and
K40	cards	(if	you	own	another	card,	you	can	check	its	compatibility	at
https://developer.nvidia.com/cuda-gpus).

TIP
If	you	don’t	own	any	GPU	cards,	you	can	use	a	hosting	service	with	GPU	capability	such	as	Amazon	AWS.	Detailed	instructions
to	set	up	TensorFlow	0.9	with	Python	3.5	on	an	Amazon	AWS	GPU	instance	are	available	in	Žiga	Avsec’s	helpful	blog	post.	It
should	not	be	too	hard	to	update	it	to	the	latest	version	of	TensorFlow.	Google	also	released	a	cloud	service	called	Cloud
Machine	Learning	to	run	TensorFlow	graphs.	In	May	2016,	they	announced	that	their	platform	now	includes	servers	equipped
with	tensor	processing	units	(TPUs),	processors	specialized	for	Machine	Learning	that	are	much	faster	than	GPUs	for	many
ML	tasks.	Of	course,	another	option	is	simply	to	buy	your	own	GPU	card.	Tim	Dettmers	wrote	a	great	blog	post	to	help	you
choose,	and	he	updates	it	fairly	regularly.

You	must	then	download	and	install	the	appropriate	version	of	the	CUDA	and	cuDNN	libraries	(CUDA
8.0	and	cuDNN	5.1	if	you	are	using	the	binary	installation	of	TensorFlow	1.0.0),	and	set	a	few
environment	variables	so	TensorFlow	knows	where	to	find	CUDA	and	cuDNN.	The	detailed	installation
instructions	are	likely	to	change	fairly	quickly,	so	it	is	best	that	you	follow	the	instructions	on
TensorFlow’s	website.

Nvidia’s	Compute	Unified	Device	Architecture	library	(CUDA)	allows	developers	to	use	CUDA-
enabled	GPUs	for	all	sorts	of	computations	(not	just	graphics	acceleration).	Nvidia’s	CUDA	Deep	Neural
Network	library	(cuDNN)	is	a	GPU-accelerated	library	of	primitives	for	DNNs.	It	provides	optimized
implementations	of	common	DNN	computations	such	as	activation	layers,	normalization,	forward	and
backward	convolutions,	and	pooling	(see	Chapter	13).	It	is	part	of	Nvidia’s	Deep	Learning	SDK	(note
that	it	requires	creating	an	Nvidia	developer	account	in	order	to	download	it).	TensorFlow	uses	CUDA
and	cuDNN	to	control	the	GPU	cards	and	accelerate	computations	(see	Figure	12-2).

https://developer.nvidia.com/cuda-gpus
http://goo.gl/kbge5b
https://cloud.google.com/ml
https://goo.gl/pCtSAn

Figure	12-2.	TensorFlow	uses	CUDA	and	cuDNN	to	control	GPUs	and	boost	DNNs

You	can	use	the	nvidia-smi	command	to	check	that	CUDA	is	properly	installed.	It	lists	the	available
GPU	cards,	as	well	as	processes	running	on	each	card:

$	nvidia-smi

Wed	Sep	16	09:50:03	2016

+--+

|	NVIDIA-SMI	352.63					Driver	Version:	352.63									|

|-------------------------------+----------------------+----------------------+

|	GPU		Name								Persistence-M|	Bus-Id								Disp.A	|	Volatile	Uncorr.	ECC	|

|	Fan		Temp		Perf		Pwr:Usage/Cap|									Memory-Usage	|	GPU-Util		Compute	M.	|

|===============================+======================+======================|

|			0		GRID	K520											Off		|	0000:00:03.0					Off	|																		N/A	|

|	N/A			27C				P8				17W	/	125W	|					11MiB	/		4095MiB	|						0%						Default	|

+-------------------------------+----------------------+----------------------+

+---+

|	Processes:																																																							GPU	Memory	|

|		GPU							PID		Type		Process	name																															Usage						|

|===|

|		No	running	processes	found																																																	|

+---+

Finally,	you	must	install	TensorFlow	with	GPU	support.	If	you	created	an	isolated	environment	using
virtualenv,	you	first	need	to	activate	it:

$	cd	$ML_PATH															#	Your	ML	working	directory	(e.g.,	$HOME/ml)

$	source	env/bin/activate

Then	install	the	appropriate	GPU-enabled	version	of	TensorFlow:

$	pip3	install	--upgrade	tensorflow-gpu

Now	you	can	open	up	a	Python	shell	and	check	that	TensorFlow	detects	and	uses	CUDA	and	cuDNN
properly	by	importing	TensorFlow	and	creating	a	session:

>>>	import	tensorflow	as	tf

I	[...]/dso_loader.cc:108]	successfully	opened	CUDA	library	libcublas.so	locally

I	[...]/dso_loader.cc:108]	successfully	opened	CUDA	library	libcudnn.so	locally

I	[...]/dso_loader.cc:108]	successfully	opened	CUDA	library	libcufft.so	locally

I	[...]/dso_loader.cc:108]	successfully	opened	CUDA	library	libcuda.so.1	locally

I	[...]/dso_loader.cc:108]	successfully	opened	CUDA	library	libcurand.so	locally

>>>	sess	=	tf.Session()

[...]

I	[...]/gpu_init.cc:102]	Found	device	0	with	properties:

name:	GRID	K520

major:	3	minor:	0	memoryClockRate	(GHz)	0.797

pciBusID	0000:00:03.0

Total	memory:	4.00GiB

Free	memory:	3.95GiB

I	[...]/gpu_init.cc:126]	DMA:	0

I	[...]/gpu_init.cc:136]	0:			Y

I	[...]/gpu_device.cc:839]	Creating	TensorFlow	device

(/gpu:0)	->	(device:	0,	name:	GRID	K520,	pci	bus	id:	0000:00:03.0)

Looks	good!	TensorFlow	detected	the	CUDA	and	cuDNN	libraries,	and	it	used	the	CUDA	library	to
detect	the	GPU	card	(in	this	case	an	Nvidia	Grid	K520	card).

Managing	the	GPU	RAM
By	default	TensorFlow	automatically	grabs	all	the	RAM	in	all	available	GPUs	the	first	time	you	run	a
graph,	so	you	will	not	be	able	to	start	a	second	TensorFlow	program	while	the	first	one	is	still	running.	If
you	try,	you	will	get	the	following	error:

E	[...]/cuda_driver.cc:965]	failed	to	allocate	3.66G	(3928915968	bytes)	from

device:	CUDA_ERROR_OUT_OF_MEMORY

One	solution	is	to	run	each	process	on	different	GPU	cards.	To	do	this,	the	simplest	option	is	to	set	the
CUDA_VISIBLE_DEVICES	environment	variable	so	that	each	process	only	sees	the	appropriate	GPU	cards.
For	example,	you	could	start	two	programs	like	this:

$	CUDA_VISIBLE_DEVICES=0,1	python3	program_1.py

#	and	in	another	terminal:

$	CUDA_VISIBLE_DEVICES=3,2	python3	program_2.py

Program	#1	will	only	see	GPU	cards	0	and	1	(numbered	0	and	1,	respectively),	and	program	#2	will	only
see	GPU	cards	2	and	3	(numbered	1	and	0,	respectively).	Everything	will	work	fine	(see	Figure	12-3).

Figure	12-3.	Each	program	gets	two	GPUs	for	itself

Another	option	is	to	tell	TensorFlow	to	grab	only	a	fraction	of	the	memory.	For	example,	to	make
TensorFlow	grab	only	40%	of	each	GPU’s	memory,	you	must	create	a	ConfigProto	object,	set	its
gpu_options.per_process_gpu_memory_fraction	option	to	0.4,	and	create	the	session	using	this
configuration:

config	=	tf.ConfigProto()

config.gpu_options.per_process_gpu_memory_fraction	=	0.4

session	=	tf.Session(config=config)

Now	two	programs	like	this	one	can	run	in	parallel	using	the	same	GPU	cards	(but	not	three,	since	3	×
0.4	>	1).	See	Figure	12-4.

Figure	12-4.	Each	program	gets	all	four	GPUs,	but	with	only	40%	of	the	RAM	each

If	you	run	the	nvidia-smi	command	while	both	programs	are	running,	you	should	see	that	each	process
holds	roughly	40%	of	the	total	RAM	of	each	card:

$	nvidia-smi

[...]

+---+

|	Processes:																																																							GPU	Memory	|

|		GPU							PID		Type		Process	name																															Usage						|

|===|

|				0						5231				C			python																																								1677MiB	|

|				0						5262				C			python																																								1677MiB	|

|				1						5231				C			python																																								1677MiB	|

|				1						5262				C			python																																								1677MiB	|

[...]

Yet	another	option	is	to	tell	TensorFlow	to	grab	memory	only	when	it	needs	it.	To	do	this	you	must	set
config.gpu_options.allow_growth	to	True.	However,	TensorFlow	never	releases	memory	once	it
has	grabbed	it	(to	avoid	memory	fragmentation)	so	you	may	still	run	out	of	memory	after	a	while.	It	may
be	harder	to	guarantee	a	deterministic	behavior	using	this	option,	so	in	general	you	probably	want	to	stick
with	one	of	the	previous	options.

Okay,	now	you	have	a	working	GPU-enabled	TensorFlow	installation.	Let’s	see	how	to	use	it!

Placing	Operations	on	Devices
The	TensorFlow	whitepaper1	presents	a	friendly	dynamic	placer	algorithm	that	automagically	distributes
operations	across	all	available	devices,	taking	into	account	things	like	the	measured	computation	time	in
previous	runs	of	the	graph,	estimations	of	the	size	of	the	input	and	output	tensors	to	each	operation,	the
amount	of	RAM	available	in	each	device,	communication	delay	when	transferring	data	in	and	out	of
devices,	hints	and	constraints	from	the	user,	and	more.	Unfortunately,	this	sophisticated	algorithm	is
internal	to	Google;	it	was	not	released	in	the	open	source	version	of	TensorFlow.	The	reason	it	was	left
out	seems	to	be	that	in	practice	a	small	set	of	placement	rules	specified	by	the	user	actually	results	in
more	efficient	placement	than	what	the	dynamic	placer	is	capable	of.	However,	the	TensorFlow	team	is
working	on	improving	the	dynamic	placer,	and	perhaps	it	will	eventually	be	good	enough	to	be	released.

Until	then	TensorFlow	relies	on	the	simple	placer,	which	(as	its	name	suggests)	is	very	basic.

Simple	placement
Whenever	you	run	a	graph,	if	TensorFlow	needs	to	evaluate	a	node	that	is	not	placed	on	a	device	yet,	it
uses	the	simple	placer	to	place	it,	along	with	all	other	nodes	that	are	not	placed	yet.	The	simple	placer
respects	the	following	rules:

If	a	node	was	already	placed	on	a	device	in	a	previous	run	of	the	graph,	it	is	left	on	that	device.

Else,	if	the	user	pinned	a	node	to	a	device	(described	next),	the	placer	places	it	on	that	device.

Else,	it	defaults	to	GPU	#0,	or	the	CPU	if	there	is	no	GPU.

As	you	can	see,	placing	operations	on	the	appropriate	device	is	mostly	up	to	you.	If	you	don’t	do	anything,
the	whole	graph	will	be	placed	on	the	default	device.	To	pin	nodes	onto	a	device,	you	must	create	a
device	block	using	the	device()	function.	For	example,	the	following	code	pins	the	variable	a	and	the
constant	b	on	the	CPU,	but	the	multiplication	node	c	is	not	pinned	on	any	device,	so	it	will	be	placed	on
the	default	device:

with	tf.device("/cpu:0"):

				a	=	tf.Variable(3.0)

				b	=	tf.constant(4.0)

c	=	a	*	b

NOTE
The	"/cpu:0"	device	aggregates	all	CPUs	on	a	multi-CPU	system.	There	is	currently	no	way	to	pin	nodes	on	specific	CPUs	or
to	use	just	a	subset	of	all	CPUs.

Logging	placements
Let’s	check	that	the	simple	placer	respects	the	placement	constraints	we	have	just	defined.	For	this	you
can	set	the	log_device_placement	option	to	True;	this	tells	the	placer	to	log	a	message	whenever	it
places	a	node.	For	example:

http://goo.gl/vSjA14

>>>	config	=	tf.ConfigProto()

>>>	config.log_device_placement	=	True

>>>	sess	=	tf.Session(config=config)

I	[...]	Creating	TensorFlow	device	(/gpu:0)	->	(device:	0,	name:	GRID	K520,

pci	bus	id:	0000:00:03.0)

[...]

>>>	x.initializer.run(session=sess)

I	[...]	a:	/job:localhost/replica:0/task:0/cpu:0

I	[...]	a/read:	/job:localhost/replica:0/task:0/cpu:0

I	[...]	mul:	/job:localhost/replica:0/task:0/gpu:0

I	[...]	a/Assign:	/job:localhost/replica:0/task:0/cpu:0

I	[...]	b:	/job:localhost/replica:0/task:0/cpu:0

I	[...]	a/initial_value:	/job:localhost/replica:0/task:0/cpu:0

>>>	sess.run(c)

12

The	lines	starting	with	"I"	for	Info	are	the	log	messages.	When	we	create	a	session,	TensorFlow	logs	a
message	to	tell	us	that	it	has	found	a	GPU	card	(in	this	case	the	Grid	K520	card).	Then	the	first	time	we
run	the	graph	(in	this	case	when	initializing	the	variable	a),	the	simple	placer	is	run	and	places	each	node
on	the	device	it	was	assigned	to.	As	expected,	the	log	messages	show	that	all	nodes	are	placed	on
"/cpu:0"	except	the	multiplication	node,	which	ends	up	on	the	default	device	"/gpu:0"	(you	can	safely
ignore	the	prefix	/job:localhost/replica:0/task:0	for	now;	we	will	talk	about	it	in	a	moment).
Notice	that	the	second	time	we	run	the	graph	(to	compute	c),	the	placer	is	not	used	since	all	the	nodes
TensorFlow	needs	to	compute	c	are	already	placed.

Dynamic	placement	function
When	you	create	a	device	block,	you	can	specify	a	function	instead	of	a	device	name.	TensorFlow	will
call	this	function	for	each	operation	it	needs	to	place	in	the	device	block,	and	the	function	must	return	the
name	of	the	device	to	pin	the	operation	on.	For	example,	the	following	code	pins	all	the	variable	nodes	to
"/cpu:0"	(in	this	case	just	the	variable	a)	and	all	other	nodes	to	"/gpu:0":

def	variables_on_cpu(op):

				if	op.type	==	"Variable":

								return	"/cpu:0"

				else:

								return	"/gpu:0"

with	tf.device(variables_on_cpu):

				a	=	tf.Variable(3.0)

				b	=	tf.constant(4.0)

				c	=	a	*	b

You	can	easily	implement	more	complex	algorithms,	such	as	pinning	variables	across	GPUs	in	a	round-
robin	fashion.

Operations	and	kernels
For	a	TensorFlow	operation	to	run	on	a	device,	it	needs	to	have	an	implementation	for	that	device;	this	is
called	a	kernel.	Many	operations	have	kernels	for	both	CPUs	and	GPUs,	but	not	all	of	them.	For	example,
TensorFlow	does	not	have	a	GPU	kernel	for	integer	variables,	so	the	following	code	will	fail	when
TensorFlow	tries	to	place	the	variable	i	on	GPU	#0:

>>>	with	tf.device("/gpu:0"):

...					i	=	tf.Variable(3)

[...]

>>>	sess.run(i.initializer)

Traceback	(most	recent	call	last):

[...]

tensorflow.python.framework.errors.InvalidArgumentError:	Cannot	assign	a	device

to	node	'Variable':	Could	not	satisfy	explicit	device	specification

Note	that	TensorFlow	infers	that	the	variable	must	be	of	type	int32	since	the	initialization	value	is	an
integer.	If	you	change	the	initialization	value	to	3.0	instead	of	3,	or	if	you	explicitly	set
dtype=tf.float32	when	creating	the	variable,	everything	will	work	fine.

Soft	placement
By	default,	if	you	try	to	pin	an	operation	on	a	device	for	which	the	operation	has	no	kernel,	you	get	the
exception	shown	earlier	when	TensorFlow	tries	to	place	the	operation	on	the	device.	If	you	prefer
TensorFlow	to	fall	back	to	the	CPU	instead,	you	can	set	the	allow_soft_placement	configuration	option
to	True:

with	tf.device("/gpu:0"):

				i	=	tf.Variable(3)

config	=	tf.ConfigProto()

config.allow_soft_placement	=	True

sess	=	tf.Session(config=config)

sess.run(i.initializer)		#	the	placer	runs	and	falls	back	to	/cpu:0

So	far	we	have	discussed	how	to	place	nodes	on	different	devices.	Now	let’s	see	how	TensorFlow	will
run	these	nodes	in	parallel.

Parallel	Execution
When	TensorFlow	runs	a	graph,	it	starts	by	finding	out	the	list	of	nodes	that	need	to	be	evaluated,	and	it
counts	how	many	dependencies	each	of	them	has.	TensorFlow	then	starts	evaluating	the	nodes	with	zero
dependencies	(i.e.,	source	nodes).	If	these	nodes	are	placed	on	separate	devices,	they	obviously	get
evaluated	in	parallel.	If	they	are	placed	on	the	same	device,	they	get	evaluated	in	different	threads,	so	they
may	run	in	parallel	too	(in	separate	GPU	threads	or	CPU	cores).

TensorFlow	manages	a	thread	pool	on	each	device	to	parallelize	operations	(see	Figure	12-5).	These	are
called	the	inter-op	thread	pools.	Some	operations	have	multithreaded	kernels:	they	can	use	other	thread
pools	(one	per	device)	called	the	intra-op	thread	pools.

Figure	12-5.	Parallelized	execution	of	a	TensorFlow	graph

For	example,	in	Figure	12-5,	operations	A,	B,	and	C	are	source	ops,	so	they	can	immediately	be
evaluated.	Operations	A	and	B	are	placed	on	GPU	#0,	so	they	are	sent	to	this	device’s	inter-op	thread
pool,	and	immediately	evaluated	in	parallel.	Operation	A	happens	to	have	a	multithreaded	kernel;	its
computations	are	split	in	three	parts,	which	are	executed	in	parallel	by	the	intra-op	thread	pool.	Operation
C	goes	to	GPU	#1’s	inter-op	thread	pool.

As	soon	as	operation	C	finishes,	the	dependency	counters	of	operations	D	and	E	will	be	decremented	and

will	both	reach	0,	so	both	operations	will	be	sent	to	the	inter-op	thread	pool	to	be	executed.

TIP
You	can	control	the	number	of	threads	per	inter-op	pool	by	setting	the	inter_op_parallelism_threads	option.	Note	that	the
first	session	you	start	creates	the	inter-op	thread	pools.	All	other	sessions	will	just	reuse	them	unless	you	set	the
use_per_session_threads	option	to	True.	You	can	control	the	number	of	threads	per	intra-op	pool	by	setting	the
intra_op_parallelism_threads	option.

Control	Dependencies
In	some	cases,	it	may	be	wise	to	postpone	the	evaluation	of	an	operation	even	though	all	the	operations	it
depends	on	have	been	executed.	For	example,	if	it	uses	a	lot	of	memory	but	its	value	is	needed	only	much
further	in	the	graph,	it	would	be	best	to	evaluate	it	at	the	last	moment	to	avoid	needlessly	occupying	RAM
that	other	operations	may	need.	Another	example	is	a	set	of	operations	that	depend	on	data	located	outside
of	the	device.	If	they	all	run	at	the	same	time,	they	may	saturate	the	device’s	communication	bandwidth,
and	they	will	end	up	all	waiting	on	I/O.	Other	operations	that	need	to	communicate	data	will	also	be
blocked.	It	would	be	preferable	to	execute	these	communication-heavy	operations	sequentially,	allowing
the	device	to	perform	other	operations	in	parallel.

To	postpone	evaluation	of	some	nodes,	a	simple	solution	is	to	add	control	dependencies.	For	example,
the	following	code	tells	TensorFlow	to	evaluate	x	and	y	only	after	a	and	b	have	been	evaluated:

a	=	tf.constant(1.0)

b	=	a	+	2.0

with	tf.control_dependencies([a,	b]):

				x	=	tf.constant(3.0)

				y	=	tf.constant(4.0)

z	=	x	+	y

Obviously,	since	z	depends	on	x	and	y,	evaluating	z	also	implies	waiting	for	a	and	b	to	be	evaluated,
even	though	it	is	not	explicitly	in	the	control_dependencies()	block.	Also,	since	b	depends	on	a,	we
could	simplify	the	preceding	code	by	just	creating	a	control	dependency	on	[b]	instead	of	[a,	b],	but	in
some	cases	“explicit	is	better	than	implicit.”

Great!	Now	you	know:
How	to	place	operations	on	multiple	devices	in	any	way	you	please

How	these	operations	get	executed	in	parallel

How	to	create	control	dependencies	to	optimize	parallel	execution

It’s	time	to	distribute	computations	across	multiple	servers!

Multiple	Devices	Across	Multiple	Servers
To	run	a	graph	across	multiple	servers,	you	first	need	to	define	a	cluster.	A	cluster	is	composed	of	one	or
more	TensorFlow	servers,	called	tasks,	typically	spread	across	several	machines	(see	Figure	12-6).	Each
task	belongs	to	a	job.	A	job	is	just	a	named	group	of	tasks	that	typically	have	a	common	role,	such	as
keeping	track	of	the	model	parameters	(such	a	job	is	usually	named	"ps"	for	parameter	server),	or
performing	computations	(such	a	job	is	usually	named	"worker").

Figure	12-6.	TensorFlow	cluster

The	following	cluster	specification	defines	two	jobs,	"ps"	and	"worker",	containing	one	task	and	two
tasks,	respectively.	In	this	example,	machine	A	hosts	two	TensorFlow	servers	(i.e.,	tasks),	listening	on
different	ports:	one	is	part	of	the	"ps"	job,	and	the	other	is	part	of	the	"worker"	job.	Machine	B	just	hosts
one	TensorFlow	server,	part	of	the	"worker"	job.

cluster_spec	=	tf.train.ClusterSpec({

				"ps":	[

								"machine-a.example.com:2221",		#	/job:ps/task:0

],

				"worker":	[

								"machine-a.example.com:2222",		#	/job:worker/task:0

								"machine-b.example.com:2222",		#	/job:worker/task:1

]})

To	start	a	TensorFlow	server,	you	must	create	a	Server	object,	passing	it	the	cluster	specification	(so	it
can	communicate	with	other	servers)	and	its	own	job	name	and	task	number.	For	example,	to	start	the	first
worker	task,	you	would	run	the	following	code	on	machine	A:

server	=	tf.train.Server(cluster_spec,	job_name="worker",	task_index=0)

It	is	usually	simpler	to	just	run	one	task	per	machine,	but	the	previous	example	demonstrates	that
TensorFlow	allows	you	to	run	multiple	tasks	on	the	same	machine	if	you	want.2	If	you	have	several
servers	on	one	machine,	you	will	need	to	ensure	that	they	don’t	all	try	to	grab	all	the	RAM	of	every	GPU,
as	explained	earlier.	For	example,	in	Figure	12-6	the	"ps"	task	does	not	see	the	GPU	devices,	since
presumably	its	process	was	launched	with	CUDA_VISIBLE_DEVICES="".	Note	that	the	CPU	is	shared	by
all	tasks	located	on	the	same	machine.

If	you	want	the	process	to	do	nothing	other	than	run	the	TensorFlow	server,	you	can	block	the	main	thread
by	telling	it	to	wait	for	the	server	to	finish	using	the	join()	method	(otherwise	the	server	will	be	killed
as	soon	as	your	main	thread	exits).	Since	there	is	currently	no	way	to	stop	the	server,	this	will	actually
block	forever:

server.join()		#	blocks	until	the	server	stops	(i.e.,	never)

Opening	a	Session
Once	all	the	tasks	are	up	and	running	(doing	nothing	yet),	you	can	open	a	session	on	any	of	the	servers,
from	a	client	located	in	any	process	on	any	machine	(even	from	a	process	running	one	of	the	tasks),	and
use	that	session	like	a	regular	local	session.	For	example:

a	=	tf.constant(1.0)

b	=	a	+	2

c	=	a	*	3

with	tf.Session("grpc://machine-b.example.com:2222")	as	sess:

				print(c.eval())		#	9.0

This	client	code	first	creates	a	simple	graph,	then	opens	a	session	on	the	TensorFlow	server	located	on
machine	B	(which	we	will	call	the	master),	and	instructs	it	to	evaluate	c.	The	master	starts	by	placing	the
operations	on	the	appropriate	devices.	In	this	example,	since	we	did	not	pin	any	operation	on	any	device,
the	master	simply	places	them	all	on	its	own	default	device	—	in	this	case,	machine	B’s	GPU	device.
Then	it	just	evaluates	c	as	instructed	by	the	client,	and	it	returns	the	result.

The	Master	and	Worker	Services
The	client	uses	the	gRPC	protocol	(Google	Remote	Procedure	Call)	to	communicate	with	the	server.	This
is	an	efficient	open	source	framework	to	call	remote	functions	and	get	their	outputs	across	a	variety	of
platforms	and	languages.3	It	is	based	on	HTTP2,	which	opens	a	connection	and	leaves	it	open	during	the
whole	session,	allowing	efficient	bidirectional	communication	once	the	connection	is	established.	Data	is
transmitted	in	the	form	of	protocol	buffers,	another	open	source	Google	technology.	This	is	a	lightweight
binary	data	interchange	format.

WARNING
All	servers	in	a	TensorFlow	cluster	may	communicate	with	any	other	server	in	the	cluster,	so	make	sure	to	open	the	appropriate
ports	on	your	firewall.

Every	TensorFlow	server	provides	two	services:	the	master	service	and	the	worker	service.	The	master
service	allows	clients	to	open	sessions	and	use	them	to	run	graphs.	It	coordinates	the	computations	across
tasks,	relying	on	the	worker	service	to	actually	execute	computations	on	other	tasks	and	get	their	results.

This	architecture	gives	you	a	lot	of	flexibility.	One	client	can	connect	to	multiple	servers	by	opening
multiple	sessions	in	different	threads.	One	server	can	handle	multiple	sessions	simultaneously	from	one	or
more	clients.	You	can	run	one	client	per	task	(typically	within	the	same	process),	or	just	one	client	to
control	all	tasks.	All	options	are	open.

Pinning	Operations	Across	Tasks
You	can	use	device	blocks	to	pin	operations	on	any	device	managed	by	any	task,	by	specifying	the	job
name,	task	index,	device	type,	and	device	index.	For	example,	the	following	code	pins	a	to	the	CPU	of	the
first	task	in	the	"ps"	job	(that’s	the	CPU	on	machine	A),	and	it	pins	b	to	the	second	GPU	managed	by	the
first	task	of	the	"worker"	job	(that’s	GPU	#1	on	machine	A).	Finally,	c	is	not	pinned	to	any	device,	so	the
master	places	it	on	its	own	default	device	(machine	B’s	GPU	#0	device).

with	tf.device("/job:ps/task:0/cpu:0")

				a	=	tf.constant(1.0)

with	tf.device("/job:worker/task:0/gpu:1")

				b	=	a	+	2

c	=	a	+	b

As	earlier,	if	you	omit	the	device	type	and	index,	TensorFlow	will	default	to	the	task’s	default	device;	for
example,	pinning	an	operation	to	"/job:ps/task:0"	will	place	it	on	the	default	device	of	the	first	task	of
the	"ps"	job	(machine	A’s	CPU).	If	you	also	omit	the	task	index	(e.g.,	"/job:ps"),	TensorFlow	defaults
to	"/task:0".	If	you	omit	the	job	name	and	the	task	index,	TensorFlow	defaults	to	the	session’s	master
task.

Sharding	Variables	Across	Multiple	Parameter	Servers
As	we	will	see	shortly,	a	common	pattern	when	training	a	neural	network	on	a	distributed	setup	is	to	store
the	model	parameters	on	a	set	of	parameter	servers	(i.e.,	the	tasks	in	the	"ps"	job)	while	other	tasks	focus
on	computations	(i.e.,	the	tasks	in	the	"worker"	job).	For	large	models	with	millions	of	parameters,	it	is
useful	to	shard	these	parameters	across	multiple	parameter	servers,	to	reduce	the	risk	of	saturating	a
single	parameter	server’s	network	card.	If	you	were	to	manually	pin	every	variable	to	a	different
parameter	server,	it	would	be	quite	tedious.	Fortunately,	TensorFlow	provides	the
replica_device_setter()	function,	which	distributes	variables	across	all	the	"ps"	tasks	in	a	round-
robin	fashion.	For	example,	the	following	code	pins	five	variables	to	two	parameter	servers:

with	tf.device(tf.train.replica_device_setter(ps_tasks=2):

				v1	=	tf.Variable(1.0)		#	pinned	to	/job:ps/task:0

				v2	=	tf.Variable(2.0)		#	pinned	to	/job:ps/task:1

				v3	=	tf.Variable(3.0)		#	pinned	to	/job:ps/task:0

				v4	=	tf.Variable(4.0)		#	pinned	to	/job:ps/task:1

				v5	=	tf.Variable(5.0)		#	pinned	to	/job:ps/task:0

Instead	of	passing	the	number	of	ps_tasks,	you	can	pass	the	cluster	spec	cluster=cluster_spec	and
TensorFlow	will	simply	count	the	number	of	tasks	in	the	"ps"	job.

If	you	create	other	operations	in	the	block,	beyond	just	variables,	TensorFlow	automatically	pins	them	to
"/job:worker",	which	will	default	to	the	first	device	managed	by	the	first	task	in	the	"worker"	job.	You
can	pin	them	to	another	device	by	setting	the	worker_device	parameter,	but	a	better	approach	is	to	use
embedded	device	blocks.	An	inner	device	block	can	override	the	job,	task,	or	device	defined	in	an	outer
block.	For	example:

with	tf.device(tf.train.replica_device_setter(ps_tasks=2)):

				v1	=	tf.Variable(1.0)		#	pinned	to	/job:ps/task:0	(+	defaults	to	/cpu:0)

				v2	=	tf.Variable(2.0)		#	pinned	to	/job:ps/task:1	(+	defaults	to	/cpu:0)

				v3	=	tf.Variable(3.0)		#	pinned	to	/job:ps/task:0	(+	defaults	to	/cpu:0)

				[...]

				s	=	v1	+	v2												#	pinned	to	/job:worker	(+	defaults	to	task:0/gpu:0)

				with	tf.device("/gpu:1"):

								p1	=	2	*	s									#	pinned	to	/job:worker/gpu:1	(+	defaults	to	/task:0)

								with	tf.device("/task:1"):

												p2	=	3	*	s					#	pinned	to	/job:worker/task:1/gpu:1

NOTE
This	example	assumes	that	the	parameter	servers	are	CPU-only,	which	is	typically	the	case	since	they	only	need	to	store	and
communicate	parameters,	not	perform	intensive	computations.

Sharing	State	Across	Sessions	Using	Resource	Containers
When	you	are	using	a	plain	local	session	(not	the	distributed	kind),	each	variable’s	state	is	managed	by
the	session	itself;	as	soon	as	it	ends,	all	variable	values	are	lost.	Moreover,	multiple	local	sessions	cannot
share	any	state,	even	if	they	both	run	the	same	graph;	each	session	has	its	own	copy	of	every	variable	(as
we	discussed	in	Chapter	9).	In	contrast,	when	you	are	using	distributed	sessions,	variable	state	is
managed	by	resource	containers	located	on	the	cluster	itself,	not	by	the	sessions.	So	if	you	create	a
variable	named	x	using	one	client	session,	it	will	automatically	be	available	to	any	other	session	on	the
same	cluster	(even	if	both	sessions	are	connected	to	a	different	server).	For	example,	consider	the
following	client	code:

#	simple_client.py

import	tensorflow	as	tf

import	sys

x	=	tf.Variable(0.0,	name="x")

increment_x	=	tf.assign(x,	x	+	1)

with	tf.Session(sys.argv[1])	as	sess:

				if	sys.argv[2:]==["init"]:

								sess.run(x.initializer)

				sess.run(increment_x)

				print(x.eval())

Let’s	suppose	you	have	a	TensorFlow	cluster	up	and	running	on	machines	A	and	B,	port	2222.	You	could
launch	the	client,	have	it	open	a	session	with	the	server	on	machine	A,	and	tell	it	to	initialize	the	variable,
increment	it,	and	print	its	value	by	launching	the	following	command:

$	python3	simple_client.py	grpc://machine-a.example.com:2222	init

1.0

Now	if	you	launch	the	client	with	the	following	command,	it	will	connect	to	the	server	on	machine	B	and
magically	reuse	the	same	variable	x	(this	time	we	don’t	ask	the	server	to	initialize	the	variable):

$	python3	simple_client.py	grpc://machine-b.example.com:2222

2.0

This	feature	cuts	both	ways:	it’s	great	if	you	want	to	share	variables	across	multiple	sessions,	but	if	you
want	to	run	completely	independent	computations	on	the	same	cluster	you	will	have	to	be	careful	not	to
use	the	same	variable	names	by	accident.	One	way	to	ensure	that	you	won’t	have	name	clashes	is	to	wrap
all	of	your	construction	phase	inside	a	variable	scope	with	a	unique	name	for	each	computation,	for
example:

with	tf.variable_scope("my_problem_1"):

				[...]	#	Construction	phase	of	problem	1

A	better	option	is	to	use	a	container	block:

with	tf.container("my_problem_1"):

				[...]	#	Construction	phase	of	problem	1

This	will	use	a	container	dedicated	to	problem	#1,	instead	of	the	default	one	(whose	name	is	an	empty
string	"").	One	advantage	is	that	variable	names	remain	nice	and	short.	Another	advantage	is	that	you	can
easily	reset	a	named	container.	For	example,	the	following	command	will	connect	to	the	server	on
machine	A	and	ask	it	to	reset	the	container	named	"my_problem_1",	which	will	free	all	the	resources	this
container	used	(and	also	close	all	sessions	open	on	the	server).	Any	variable	managed	by	this	container
must	be	initialized	before	you	can	use	it	again:

tf.Session.reset("grpc://machine-a.example.com:2222",	["my_problem_1"])

Resource	containers	make	it	easy	to	share	variables	across	sessions	in	flexible	ways.	For	example,
Figure	12-7	shows	four	clients	running	different	graphs	on	the	same	cluster,	but	sharing	some	variables.
Clients	A	and	B	share	the	same	variable	x	managed	by	the	default	container,	while	clients	C	and	D	share
another	variable	named	x	managed	by	the	container	named	"my_problem_1".	Note	that	client	C	even	uses
variables	from	both	containers.

Figure	12-7.	Resource	containers

Resource	containers	also	take	care	of	preserving	the	state	of	other	stateful	operations,	namely	queues	and
readers.	Let’s	take	a	look	at	queues	first.

Asynchronous	Communication	Using	TensorFlow	Queues
Queues	are	another	great	way	to	exchange	data	between	multiple	sessions;	for	example,	one	common	use
case	is	to	have	a	client	create	a	graph	that	loads	the	training	data	and	pushes	it	into	a	queue,	while	another
client	creates	a	graph	that	pulls	the	data	from	the	queue	and	trains	a	model	(see	Figure	12-8).	This	can
speed	up	training	considerably	because	the	training	operations	don’t	have	to	wait	for	the	next	mini-batch
at	every	step.

Figure	12-8.	Using	queues	to	load	the	training	data	asynchronously

TensorFlow	provides	various	kinds	of	queues.	The	simplest	kind	is	the	first-in	first-out	(FIFO)	queue.
For	example,	the	following	code	creates	a	FIFO	queue	that	can	store	up	to	10	tensors	containing	two	float
values	each:

q	=	tf.FIFOQueue(capacity=10,	dtypes=[tf.float32],	shapes=[[2]],

																	name="q",	shared_name="shared_q")

WARNING
To	share	variables	across	sessions,	all	you	had	to	do	was	to	specify	the	same	name	and	container	on	both	ends.	With	queues
TensorFlow	does	not	use	the	name	attribute	but	instead	uses	shared_name,	so	it	is	important	to	specify	it	(even	if	it	is	the	same	as
the	name).	And,	of	course,	use	the	same	container.

Enqueuing	data
To	push	data	to	a	queue,	you	must	create	an	enqueue	operation.	For	example,	the	following	code	pushes
three	training	instances	to	the	queue:

#	training_data_loader.py

import	tensorflow	as	tf

q	=	[...]

training_instance	=	tf.placeholder(tf.float32,	shape=(2))

enqueue	=	q.enqueue([training_instance])

with	tf.Session("grpc://machine-a.example.com:2222")	as	sess:

			sess.run(enqueue,	feed_dict={training_instance:	[1.,	2.]})

			sess.run(enqueue,	feed_dict={training_instance:	[3.,	4.]})

			sess.run(enqueue,	feed_dict={training_instance:	[5.,	6.]})

Instead	of	enqueuing	instances	one	by	one,	you	can	enqueue	several	at	a	time	using	an	enqueue_many
operation:

[...]

training_instances	=	tf.placeholder(tf.float32,	shape=(None,	2))

enqueue_many	=	q.enqueue([training_instances])

with	tf.Session("grpc://machine-a.example.com:2222")	as	sess:

			sess.run(enqueue_many,

												feed_dict={training_instances:	[[1.,	2.],	[3.,	4.],	[5.,	6.]]})

Both	examples	enqueue	the	same	three	tensors	to	the	queue.

Dequeuing	data
To	pull	the	instances	out	of	the	queue,	on	the	other	end,	you	need	to	use	a	dequeue	operation:

#	trainer.py

import	tensorflow	as	tf

q	=	[...]

dequeue	=	q.dequeue()

with	tf.Session("grpc://machine-a.example.com:2222")	as	sess:

			print(sess.run(dequeue))		#	[1.,	2.]

			print(sess.run(dequeue))		#	[3.,	4.]

			print(sess.run(dequeue))		#	[5.,	6.]

In	general	you	will	want	to	pull	a	whole	mini-batch	at	once,	instead	of	pulling	just	one	instance	at	a	time.
To	do	so,	you	must	use	a	dequeue_many	operation,	specifying	the	mini-batch	size:

[...]

batch_size	=	2

dequeue_mini_batch=	q.dequeue_many(batch_size)

with	tf.Session("grpc://machine-a.example.com:2222")	as	sess:

			print(sess.run(dequeue_mini_batch))		#	[[1.,	2.],	[4.,	5.]]

			print(sess.run(dequeue_mini_batch))		#	blocked	waiting	for	another	instance

When	a	queue	is	full,	the	enqueue	operation	will	block	until	items	are	pulled	out	by	a	dequeue	operation.
Similarly,	when	a	queue	is	empty	(or	you	are	using	dequeue_many()	and	there	are	fewer	items	than	the
mini-batch	size),	the	dequeue	operation	will	block	until	enough	items	are	pushed	into	the	queue	using	an
enqueue	operation.

Queues	of	tuples
Each	item	in	a	queue	can	be	a	tuple	of	tensors	(of	various	types	and	shapes)	instead	of	just	a	single	tensor.
For	example,	the	following	queue	stores	pairs	of	tensors,	one	of	type	int32	and	shape	(),	and	the	other	of

type	float32	and	shape	[3,2]:

q	=	tf.FIFOQueue(capacity=10,	dtypes=[tf.int32,	tf.float32],	shapes=[[],[3,2]],

																	name="q",	shared_name="shared_q")

The	enqueue	operation	must	be	given	pairs	of	tensors	(note	that	each	pair	represents	only	one	item	in	the
queue):

a	=	tf.placeholder(tf.int32,	shape=())

b	=	tf.placeholder(tf.float32,	shape=(3,	2))

enqueue	=	q.enqueue((a,	b))

with	tf.Session([...])	as	sess:

				sess.run(enqueue,	feed_dict={a:	10,	b:[[1.,	2.],	[3.,	4.],	[5.,	6.]]})

				sess.run(enqueue,	feed_dict={a:	11,	b:[[2.,	4.],	[6.,	8.],	[0.,	2.]]})

				sess.run(enqueue,	feed_dict={a:	12,	b:[[3.,	6.],	[9.,	2.],	[5.,	8.]]})

On	the	other	end,	the	dequeue()	function	now	creates	a	pair	of	dequeue	operations:

dequeue_a,	dequeue_b	=	q.dequeue()

In	general,	you	should	run	these	operations	together:

with	tf.Session([...])	as	sess:

				a_val,	b_val	=	sess.run([dequeue_a,	dequeue_b])

				print(a_val)	#	10

				print(b_val)	#	[[1.,	2.],	[3.,	4.],	[5.,	6.]]

WARNING
If	you	run	dequeue_a	on	its	own,	it	will	dequeue	a	pair	and	return	only	the	first	element;	the	second	element	will	be	lost	(and
similarly,	if	you	run	dequeue_b	on	its	own,	the	first	element	will	be	lost).

The	dequeue_many()	function	also	returns	a	pair	of	operations:

batch_size	=	2

dequeue_as,	dequeue_bs	=	q.dequeue_many(batch_size)

You	can	use	it	as	you	would	expect:

with	tf.Session([...])	as	sess:

				a,	b	=	sess.run([dequeue_a,	dequeue_b])

				print(a)	#	[10,	11]

				print(b)	#	[[[1.,	2.],	[3.,	4.],	[5.,	6.]],	[[2.,	4.],	[6.,	8.],	[0.,	2.]]]

				a,	b	=	sess.run([dequeue_a,	dequeue_b])		#	blocked	waiting	for	another	pair

Closing	a	queue
It	is	possible	to	close	a	queue	to	signal	to	the	other	sessions	that	no	more	data	will	be	enqueued:

close_q	=	q.close()

with	tf.Session([...])	as	sess:

				[...]

				sess.run(close_q)

Subsequent	executions	of	enqueue	or	enqueue_many	operations	will	raise	an	exception.	By	default,	any
pending	enqueue	request	will	be	honored,	unless	you	call	q.close(cancel_pending_enqueues=True).

Subsequent	executions	of	dequeue	or	dequeue_many	operations	will	continue	to	succeed	as	long	as	there
are	items	in	the	queue,	but	they	will	fail	when	there	are	not	enough	items	left	in	the	queue.	If	you	are	using
a	dequeue_many	operation	and	there	are	a	few	instances	left	in	the	queue,	but	fewer	than	the	mini-batch
size,	they	will	be	lost.	You	may	prefer	to	use	a	dequeue_up_to	operation	instead;	it	behaves	exactly	like
dequeue_many	except	when	a	queue	is	closed	and	there	are	fewer	than	batch_size	instances	left	in	the
queue,	in	which	case	it	just	returns	them.

RandomShuffleQueue
TensorFlow	also	supports	a	couple	more	types	of	queues,	including	RandomShuffleQueue,	which	can	be
used	just	like	a	FIFOQueue	except	that	items	are	dequeued	in	a	random	order.	This	can	be	useful	to	shuffle
training	instances	at	each	epoch	during	training.	First,	let’s	create	the	queue:

q	=	tf.RandomShuffleQueue(capacity=50,	min_after_dequeue=10,

																										dtypes=[tf.float32],	shapes=[()],

																										name="q",	shared_name="shared_q")

The	min_after_dequeue	specifies	the	minimum	number	of	items	that	must	remain	in	the	queue	after	a
dequeue	operation.	This	ensures	that	there	will	be	enough	instances	in	the	queue	to	have	enough
randomness	(once	the	queue	is	closed,	the	min_after_dequeue	limit	is	ignored).	Now	suppose	that	you
enqueued	22	items	in	this	queue	(floats	1.	to	22.).	Here	is	how	you	could	dequeue	them:

dequeue	=	q.dequeue_many(5)

with	tf.Session([...])	as	sess:

			print(sess.run(dequeue))	#	[20.		15.		11.		12.			4.]			(17	items	left)

			print(sess.run(dequeue))	#	[5.		13.			6.			0.		17.]			(12	items	left)

			print(sess.run(dequeue))	#	12	-	5	<	10:	blocked	waiting	for	3	more	instances

PaddingFifoQueue
A	PaddingFIFOQueue	can	also	be	used	just	like	a	FIFOQueue	except	that	it	accepts	tensors	of	variable
sizes	along	any	dimension	(but	with	a	fixed	rank).	When	you	are	dequeuing	them	with	a	dequeue_many	or
dequeue_up_to	operation,	each	tensor	is	padded	with	zeros	along	every	variable	dimension	to	make	it
the	same	size	as	the	largest	tensor	in	the	mini-batch.	For	example,	you	could	enqueue	2D	tensors
(matrices)	of	arbitrary	sizes:

q	=	tf.PaddingFIFOQueue(capacity=50,	dtypes=[tf.float32],	shapes=[(None,	None)]

																								name="q",	shared_name="shared_q")

v	=	tf.placeholder(tf.float32,	shape=(None,	None))

enqueue	=	q.enqueue([v])

with	tf.Session([...])	as	sess:

			sess.run(enqueue,	feed_dict={v:	[[1.,	2.],	[3.,	4.],	[5.,	6.]]})							#	3x2

			sess.run(enqueue,	feed_dict={v:	[[1.]]})																															#	1x1

			sess.run(enqueue,	feed_dict={v:	[[7.,	8.,	9.,	5.],	[6.,	7.,	8.,	9.]]})	#	2x4

If	we	just	dequeue	one	item	at	a	time,	we	get	the	exact	same	tensors	that	were	enqueued.	But	if	we
dequeue	several	items	at	a	time	(using	dequeue_many()	or	dequeue_up_to()),	the	queue	automatically

pads	the	tensors	appropriately.	For	example,	if	we	dequeue	all	three	items	at	once,	all	tensors	will	be
padded	with	zeros	to	become	3	×	4	tensors,	since	the	maximum	size	for	the	first	dimension	is	3	(first	item)
and	the	maximum	size	for	the	second	dimension	is	4	(third	item):

>>>	q	=	[...]

>>>	dequeue	=	q.dequeue_many(3)

>>>	with	tf.Session([...])	as	sess:

...					print(sess.run(dequeue))

[[[1.		2.		0.		0.]

		[3.		4.		0.		0.]

		[5.		6.		0.		0.]]

	[[1.		0.		0.		0.]

		[0.		0.		0.		0.]

		[0.		0.		0.		0.]]

	[[7.		8.		9.		5.]

		[6.		7.		8.		9.]

		[0.		0.		0.		0.]]]

This	type	of	queue	can	be	useful	when	you	are	dealing	with	variable	length	inputs,	such	as	sequences	of
words	(see	Chapter	14).

Okay,	now	let’s	pause	for	a	second:	so	far	you	have	learned	to	distribute	computations	across	multiple
devices	and	servers,	share	variables	across	sessions,	and	communicate	asynchronously	using	queues.
Before	you	start	training	neural	networks,	though,	there’s	one	last	topic	we	need	to	discuss:	how	to
efficiently	load	training	data.

Loading	Data	Directly	from	the	Graph
So	far	we	have	assumed	that	the	clients	would	load	the	training	data	and	feed	it	to	the	cluster	using
placeholders.	This	is	simple	and	works	quite	well	for	simple	setups,	but	it	is	rather	inefficient	since	it
transfers	the	training	data	several	times:

1.	 From	the	filesystem	to	the	client

2.	 From	the	client	to	the	master	task

3.	 Possibly	from	the	master	task	to	other	tasks	where	the	data	is	needed

It	gets	worse	if	you	have	several	clients	training	various	neural	networks	using	the	same	training	data	(for
example,	for	hyperparameter	tuning):	if	every	client	loads	the	data	simultaneously,	you	may	end	up	even
saturating	your	file	server	or	the	network’s	bandwidth.

Preload	the	data	into	a	variable
For	datasets	that	can	fit	in	memory,	a	better	option	is	to	load	the	training	data	once	and	assign	it	to	a
variable,	then	just	use	that	variable	in	your	graph.	This	is	called	preloading	the	training	set.	This	way	the
data	will	be	transferred	only	once	from	the	client	to	the	cluster	(but	it	may	still	need	to	be	moved	around
from	task	to	task	depending	on	which	operations	need	it).	The	following	code	shows	how	to	load	the	full
training	set	into	a	variable:

training_set_init	=	tf.placeholder(tf.float32,	shape=(None,	n_features))

training_set	=	tf.Variable(training_set_init,	trainable=False,	collections=[],

																											name="training_set")

with	tf.Session([...])	as	sess:

				data	=	[...]		#	load	the	training	data	from	the	datastore

				sess.run(training_set.initializer,	feed_dict={training_set_init:	data})

You	must	set	trainable=False	so	the	optimizers	don’t	try	to	tweak	this	variable.	You	should	also	set
collections=[]	to	ensure	that	this	variable	won’t	get	added	to	the	GraphKeys.GLOBAL_VARIABLES
collection,	which	is	used	for	saving	and	restoring	checkpoints.

NOTE
This	example	assumes	that	all	of	your	training	set	(including	the	labels)	consists	only	of	float32	values.	If	that’s	not	the	case,	you
will	need	one	variable	per	type.

Reading	the	training	data	directly	from	the	graph
If	the	training	set	does	not	fit	in	memory,	a	good	solution	is	to	use	reader	operations:	these	are	operations
capable	of	reading	data	directly	from	the	filesystem.	This	way	the	training	data	never	needs	to	flow
through	the	clients	at	all.	TensorFlow	provides	readers	for	various	file	formats:

CSV

Fixed-length	binary	records

TensorFlow’s	own	TFRecords	format,	based	on	protocol	buffers

Let’s	look	at	a	simple	example	reading	from	a	CSV	file	(for	other	formats,	please	check	out	the	API
documentation).	Suppose	you	have	file	named	my_test.csv	that	contains	training	instances,	and	you	want
to	create	operations	to	read	it.	Suppose	it	has	the	following	content,	with	two	float	features	x1	and	x2	and
one	integer	target	representing	a	binary	class:

x1,		x2,		target

1.	,	2.	,	0

4.	,	5		,	1

7.	,				,	0

First,	let’s	create	a	TextLineReader	to	read	this	file.	A	TextLineReader	opens	a	file	(once	we	tell	it
which	one	to	open)	and	reads	lines	one	by	one.	It	is	a	stateful	operation,	like	variables	and	queues:	it
preserves	its	state	across	multiple	runs	of	the	graph,	keeping	track	of	which	file	it	is	currently	reading	and
what	its	current	position	is	in	this	file.

reader	=	tf.TextLineReader(skip_header_lines=1)

Next,	we	create	a	queue	that	the	reader	will	pull	from	to	know	which	file	to	read	next.	We	also	create	an
enqueue	operation	and	a	placeholder	to	push	any	filename	we	want	to	the	queue,	and	we	create	an
operation	to	close	the	queue	once	we	have	no	more	files	to	read:

filename_queue	=	tf.FIFOQueue(capacity=10,	dtypes=[tf.string],	shapes=[()])

filename	=	tf.placeholder(tf.string)

enqueue_filename	=	filename_queue.enqueue([filename])

close_filename_queue	=	filename_queue.close()

Now	we	are	ready	to	create	a	read	operation	that	will	read	one	record	(i.e.,	a	line)	at	a	time	and	return	a
key/value	pair.	The	key	is	the	record’s	unique	identifier	—	a	string	composed	of	the	filename,	a	colon	(:),
and	the	line	number	—	and	the	value	is	simply	a	string	containing	the	content	of	the	line:

key,	value	=	reader.read(filename_queue)

We	have	all	we	need	to	read	the	file	line	by	line!	But	we	are	not	quite	done	yet	—	we	need	to	parse	this
string	to	get	the	features	and	target:

x1,	x2,	target	=	tf.decode_csv(value,	record_defaults=[[-1.],	[-1.],	[-1]])

features	=	tf.stack([x1,	x2])

The	first	line	uses	TensorFlow’s	CSV	parser	to	extract	the	values	from	the	current	line.	The	default	values
are	used	when	a	field	is	missing	(in	this	example	the	third	training	instance’s	x2	feature),	and	they	are	also
used	to	determine	the	type	of	each	field	(in	this	case	two	floats	and	one	integer).

Finally,	we	can	push	this	training	instance	and	its	target	to	a	RandomShuffleQueue	that	we	will	share
with	the	training	graph	(so	it	can	pull	mini-batches	from	it),	and	we	create	an	operation	to	close	that	queue
when	we	are	done	pushing	instances	to	it:

instance_queue	=	tf.RandomShuffleQueue(

				capacity=10,	min_after_dequeue=2,

				dtypes=[tf.float32,	tf.int32],	shapes=[[2],[]],

				name="instance_q",	shared_name="shared_instance_q")

enqueue_instance	=	instance_queue.enqueue([features,	target])

close_instance_queue	=	instance_queue.close()

Wow!	That	was	a	lot	of	work	just	to	read	a	file.	Plus	we	only	created	the	graph,	so	now	we	need	to	run	it:

with	tf.Session([...])	as	sess:

				sess.run(enqueue_filename,	feed_dict={filename:	"my_test.csv"})

				sess.run(close_filename_queue)

				try:

								while	True:

												sess.run(enqueue_instance)

				except	tf.errors.OutOfRangeError	as	ex:

								pass	#	no	more	records	in	the	current	file	and	no	more	files	to	read

				sess.run(close_instance_queue)

First	we	open	the	session,	and	then	we	enqueue	the	filename	"my_test.csv"	and	immediately	close	that
queue	since	we	will	not	enqueue	any	more	filenames.	Then	we	run	an	infinite	loop	to	enqueue	instances
one	by	one.	The	enqueue_instance	depends	on	the	reader	reading	the	next	line,	so	at	every	iteration	a
new	record	is	read	until	it	reaches	the	end	of	the	file.	At	that	point	it	tries	to	read	the	filename	queue	to
know	which	file	to	read	next,	and	since	the	queue	is	closed	it	throws	an	OutOfRangeError	exception	(if
we	did	not	close	the	queue,	it	would	just	remain	blocked	until	we	pushed	another	filename	or	closed	the
queue).	Lastly,	we	close	the	instance	queue	so	that	the	training	operations	pulling	from	it	won’t	get
blocked	forever.	Figure	12-9	summarizes	what	we	have	learned;	it	represents	a	typical	graph	for	reading
training	instances	from	a	set	of	CSV	files.

Figure	12-9.	A	graph	dedicated	to	reading	training	instances	from	CSV	files

In	the	training	graph,	you	need	to	create	the	shared	instance	queue	and	simply	dequeue	mini-batches	from
it:

instance_queue	=	tf.RandomShuffleQueue([...],	shared_name="shared_instance_q")

mini_batch_instances,	mini_batch_targets	=	instance_queue.dequeue_up_to(2)

[...]	#	use	the	mini_batch	instances	and	targets	to	build	the	training	graph

training_op	=	[...]

with	tf.Session([...])	as	sess:

				try:

								for	step	in	range(max_steps):

												sess.run(training_op)

				except	tf.errors.OutOfRangeError	as	ex:

								pass	#	no	more	training	instances

In	this	example,	the	first	mini-batch	will	contain	the	first	two	instances	of	the	CSV	file,	and	the	second
mini-batch	will	contain	the	last	instance.

WARNING
TensorFlow	queues	don’t	handle	sparse	tensors	well,	so	if	your	training	instances	are	sparse	you	should	parse	the	records	after
the	instance	queue.

This	architecture	will	only	use	one	thread	to	read	records	and	push	them	to	the	instance	queue.	You	can
get	a	much	higher	throughput	by	having	multiple	threads	read	simultaneously	from	multiple	files	using
multiple	readers.	Let’s	see	how.

Multithreaded	readers	using	a	Coordinator	and	a	QueueRunner
To	have	multiple	threads	read	instances	simultaneously,	you	could	create	Python	threads	(using	the
threading	module)	and	manage	them	yourself.	However,	TensorFlow	provides	some	tools	to	make	this
simpler:	the	Coordinator	class	and	the	QueueRunner	class.

A	Coordinator	is	a	very	simple	object	whose	sole	purpose	is	to	coordinate	stopping	multiple	threads.
First	you	create	a	Coordinator:

coord	=	tf.train.Coordinator()

Then	you	give	it	to	all	threads	that	need	to	stop	jointly,	and	their	main	loop	looks	like	this:

while	not	coord.should_stop():

				[...]	#	do	something

Any	thread	can	request	that	every	thread	stop	by	calling	the	Coordinator’s	request_stop()	method:

coord.request_stop()

Every	thread	will	stop	as	soon	as	it	finishes	its	current	iteration.	You	can	wait	for	all	of	the	threads	to
finish	by	calling	the	Coordinator’s	join()	method,	passing	it	the	list	of	threads:

coord.join(list_of_threads)

A	QueueRunner	runs	multiple	threads	that	each	run	an	enqueue	operation	repeatedly,	filling	up	a	queue	as
fast	as	possible.	As	soon	as	the	queue	is	closed,	the	next	thread	that	tries	to	push	an	item	to	the	queue	will
get	an	OutOfRangeError;	this	thread	catches	the	error	and	immediately	tells	other	threads	to	stop	using	a
Coordinator.	The	following	code	shows	how	you	can	use	a	QueueRunner	to	have	five	threads	reading

instances	simultaneously	and	pushing	them	to	an	instance	queue:

[...]	#	same	construction	phase	as	earlier

queue_runner	=	tf.train.QueueRunner(instance_queue,	[enqueue_instance]	*	5)

with	tf.Session()	as	sess:

				sess.run(enqueue_filename,	feed_dict={filename:	"my_test.csv"})

				sess.run(close_filename_queue)

				coord	=	tf.train.Coordinator()

				enqueue_threads	=	queue_runner.create_threads(sess,	coord=coord,	start=True)

The	first	line	creates	the	QueueRunner	and	tells	it	to	run	five	threads,	all	running	the	same
enqueue_instance	operation	repeatedly.	Then	we	start	a	session	and	we	enqueue	the	name	of	the	files	to
read	(in	this	case	just	"my_test.csv").	Next	we	create	a	Coordinator	that	the	QueueRunner	will	use	to
stop	gracefully,	as	just	explained.	Finally,	we	tell	the	QueueRunner	to	create	the	threads	and	start	them.
The	threads	will	read	all	training	instances	and	push	them	to	the	instance	queue,	and	then	they	will	all	stop
gracefully.

This	will	be	a	bit	more	efficient	than	earlier,	but	we	can	do	better.	Currently	all	threads	are	reading	from
the	same	file.	We	can	make	them	read	simultaneously	from	separate	files	instead	(assuming	the	training
data	is	sharded	across	multiple	CSV	files)	by	creating	multiple	readers	(see	Figure	12-10).

Figure	12-10.	Reading	simultaneously	from	multiple	files

For	this	we	need	to	write	a	small	function	to	create	a	reader	and	the	nodes	that	will	read	and	push	one
instance	to	the	instance	queue:

def	read_and_push_instance(filename_queue,	instance_queue):

				reader	=	tf.TextLineReader(skip_header_lines=1)

				key,	value	=	reader.read(filename_queue)

				x1,	x2,	target	=	tf.decode_csv(value,	record_defaults=[[-1.],	[-1.],	[-1]])

				features	=	tf.stack([x1,	x2])

				enqueue_instance	=	instance_queue.enqueue([features,	target])

				return	enqueue_instance

Next	we	define	the	queues:

filename_queue	=	tf.FIFOQueue(capacity=10,	dtypes=[tf.string],	shapes=[()])

filename	=	tf.placeholder(tf.string)

enqueue_filename	=	filename_queue.enqueue([filename])

close_filename_queue	=	filename_queue.close()

instance_queue	=	tf.RandomShuffleQueue([...])

And	finally	we	create	the	QueueRunner,	but	this	time	we	give	it	a	list	of	different	enqueue	operations.
Each	operation	will	use	a	different	reader,	so	the	threads	will	simultaneously	read	from	different	files:

read_and_enqueue_ops	=	[

				read_and_push_instance(filename_queue,	instance_queue)

				for	i	in	range(5)]

queue_runner	=	tf.train.QueueRunner(instance_queue,	read_and_enqueue_ops)

The	execution	phase	is	then	the	same	as	before:	first	push	the	names	of	the	files	to	read,	then	create	a
Coordinator	and	create	and	start	the	QueueRunner	threads.	This	time	all	threads	will	read	from
different	files	simultaneously	until	all	files	are	read	entirely,	and	then	the	QueueRunner	will	close	the
instance	queue	so	that	other	ops	pulling	from	it	don’t	get	blocked.

Other	convenience	functions
TensorFlow	also	offers	a	few	convenience	functions	to	simplify	some	common	tasks	when	reading
training	instances.	We	will	go	over	just	a	few	(see	the	API	documentation	for	the	full	list).

The	string_input_producer()	takes	a	1D	tensor	containing	a	list	of	filenames,	creates	a	thread	that
pushes	one	filename	at	a	time	to	the	filename	queue,	and	then	closes	the	queue.	If	you	specify	a	number	of
epochs,	it	will	cycle	through	the	filenames	once	per	epoch	before	closing	the	queue.	By	default,	it	shuffles
the	filenames	at	each	epoch.	It	creates	a	QueueRunner	to	manage	its	thread,	and	adds	it	to	the
GraphKeys.QUEUE_RUNNERS	collection.	To	start	every	QueueRunner	in	that	collection,	you	can	call	the
tf.train.start_queue_runners()	function.	Note	that	if	you	forget	to	start	the	QueueRunner,	the
filename	queue	will	be	open	and	empty,	and	your	readers	will	be	blocked	forever.

There	are	a	few	other	producer	functions	that	similarly	create	a	queue	and	a	corresponding	QueueRunner
for	running	an	enqueue	operation	(e.g.,	input_producer(),	range_input_producer(),	and
slice_input_producer()).

The	shuffle_batch()	function	takes	a	list	of	tensors	(e.g.,	[features,	target])	and	creates:

A	RandomShuffleQueue

A	QueueRunner	to	enqueue	the	tensors	to	the	queue	(added	to	the	GraphKeys.QUEUE_RUNNERS
collection)

A	dequeue_many	operation	to	extract	a	mini-batch	from	the	queue

This	makes	it	easy	to	manage	in	a	single	process	a	multithreaded	input	pipeline	feeding	a	queue	and	a
training	pipeline	reading	mini-batches	from	that	queue.	Also	check	out	the	batch(),	batch_join(),	and
shuffle_batch_join()	functions	that	provide	similar	functionality.

Okay!	You	now	have	all	the	tools	you	need	to	start	training	and	running	neural	networks	efficiently	across

multiple	devices	and	servers	on	a	TensorFlow	cluster.	Let’s	review	what	you	have	learned:
Using	multiple	GPU	devices

Setting	up	and	starting	a	TensorFlow	cluster

Distributing	computations	across	multiple	devices	and	servers

Sharing	variables	(and	other	stateful	ops	such	as	queues	and	readers)	across	sessions	using
containers

Coordinating	multiple	graphs	working	asynchronously	using	queues

Reading	inputs	efficiently	using	readers,	queue	runners,	and	coordinators

Now	let’s	use	all	of	this	to	parallelize	neural	networks!

Parallelizing	Neural	Networks	on	a	TensorFlow	Cluster
In	this	section,	first	we	will	look	at	how	to	parallelize	several	neural	networks	by	simply	placing	each
one	on	a	different	device.	Then	we	will	look	at	the	much	trickier	problem	of	training	a	single	neural
network	across	multiple	devices	and	servers.

One	Neural	Network	per	Device
The	most	trivial	way	to	train	and	run	neural	networks	on	a	TensorFlow	cluster	is	to	take	the	exact	same
code	you	would	use	for	a	single	device	on	a	single	machine,	and	specify	the	master	server’s	address
when	creating	the	session.	That’s	it	—	you’re	done!	Your	code	will	be	running	on	the	server’s	default
device.	You	can	change	the	device	that	will	run	your	graph	simply	by	putting	your	code’s	construction
phase	within	a	device	block.

By	running	several	client	sessions	in	parallel	(in	different	threads	or	different	processes),	connecting	them
to	different	servers,	and	configuring	them	to	use	different	devices,	you	can	quite	easily	train	or	run	many
neural	networks	in	parallel,	across	all	devices	and	all	machines	in	your	cluster	(see	Figure	12-11).	The
speedup	is	almost	linear.4	Training	100	neural	networks	across	50	servers	with	2	GPUs	each	will	not	take
much	longer	than	training	just	1	neural	network	on	1	GPU.

Figure	12-11.	Training	one	neural	network	per	device

This	solution	is	perfect	for	hyperparameter	tuning:	each	device	in	the	cluster	will	train	a	different	model
with	its	own	set	of	hyperparameters.	The	more	computing	power	you	have,	the	larger	the	hyperparameter
space	you	can	explore.

It	also	works	perfectly	if	you	host	a	web	service	that	receives	a	large	number	of	queries	per	second
(QPS)	and	you	need	your	neural	network	to	make	a	prediction	for	each	query.	Simply	replicate	the	neural
network	across	all	devices	on	the	cluster	and	dispatch	queries	across	all	devices.	By	adding	more	servers
you	can	handle	an	unlimited	number	of	QPS	(however,	this	will	not	reduce	the	time	it	takes	to	process	a
single	request	since	it	will	still	have	to	wait	for	a	neural	network	to	make	a	prediction).

NOTE
Another	option	is	to	serve	your	neural	networks	using	TensorFlow	Serving.	It	is	an	open	source	system,	released	by	Google	in
February	2016,	designed	to	serve	a	high	volume	of	queries	to	Machine	Learning	models	(typically	built	with	TensorFlow).	It
handles	model	versioning,	so	you	can	easily	deploy	a	new	version	of	your	network	to	production,	or	experiment	with	various
algorithms	without	interrupting	your	service,	and	it	can	sustain	a	heavy	load	by	adding	more	servers.	For	more	details,	check	out
https://tensorflow.github.io/serving/.

https://tensorflow.github.io/serving/

In-Graph	Versus	Between-Graph	Replication
You	can	also	parallelize	the	training	of	a	large	ensemble	of	neural	networks	by	simply	placing	every
neural	network	on	a	different	device	(ensembles	were	introduced	in	Chapter	7).	However,	once	you	want
to	run	the	ensemble,	you	will	need	to	aggregate	the	individual	predictions	made	by	each	neural	network	to
produce	the	ensemble’s	prediction,	and	this	requires	a	bit	of	coordination.

There	are	two	major	approaches	to	handling	a	neural	network	ensemble	(or	any	other	graph	that	contains
large	chunks	of	independent	computations):

You	can	create	one	big	graph,	containing	every	neural	network,	each	pinned	to	a	different	device,
plus	the	computations	needed	to	aggregate	the	individual	predictions	from	all	the	neural	networks
(see	Figure	12-12).	Then	you	just	create	one	session	to	any	server	in	the	cluster	and	let	it	take	care	of
everything	(including	waiting	for	all	individual	predictions	to	be	available	before	aggregating	them).
This	approach	is	called	in-graph	replication.

Figure	12-12.	In-graph	replication

Alternatively,	you	can	create	one	separate	graph	for	each	neural	network	and	handle	synchronization
between	these	graphs	yourself.	This	approach	is	called	between-graph	replication.	One	typical
implementation	is	to	coordinate	the	execution	of	these	graphs	using	queues	(see	Figure	12-13).	A	set
of	clients	handles	one	neural	network	each,	reading	from	its	dedicated	input	queue,	and	writing	to	its
dedicated	prediction	queue.	Another	client	is	in	charge	of	reading	the	inputs	and	pushing	them	to	all
the	input	queues	(copying	all	inputs	to	every	queue).	Finally,	one	last	client	is	in	charge	of	reading
one	prediction	from	each	prediction	queue	and	aggregating	them	to	produce	the	ensemble’s
prediction.

Figure	12-13.	Between-graph	replication

These	solutions	have	their	pros	and	cons.	In-graph	replication	is	somewhat	simpler	to	implement	since
you	don’t	have	to	manage	multiple	clients	and	multiple	queues.	However,	between-graph	replication	is	a
bit	easier	to	organize	into	well-bounded	and	easy-to-test	modules.	Moreover,	it	gives	you	more
flexibility.	For	example,	you	could	add	a	dequeue	timeout	in	the	aggregator	client	so	that	the	ensemble
would	not	fail	even	if	one	of	the	neural	network	clients	crashes	or	if	one	neural	network	takes	too	long	to
produce	its	prediction.	TensorFlow	lets	you	specify	a	timeout	when	calling	the	run()	function	by	passing
a	RunOptions	with	timeout_in_ms:

with	tf.Session([...])	as	sess:

				[...]

				run_options	=	tf.RunOptions()

				run_options.timeout_in_ms	=	1000		#	1s	timeout

				try:

								pred	=	sess.run(dequeue_prediction,	options=run_options)

				except	tf.errors.DeadlineExceededError	as	ex:

								[...]	#	the	dequeue	operation	timed	out	after	1s

Another	way	you	can	specify	a	timeout	is	to	set	the	session’s	operation_timeout_in_ms	configuration
option,	but	in	this	case	the	run()	function	times	out	if	any	operation	takes	longer	than	the	timeout	delay:

config	=	tf.ConfigProto()

config.operation_timeout_in_ms	=	1000		#	1s	timeout	for	every	operation

with	tf.Session([...],	config=config)	as	sess:

				[...]

				try:

								pred	=	sess.run(dequeue_prediction)

				except	tf.errors.DeadlineExceededError	as	ex:

								[...]		#	the	dequeue	operation	timed	out	after	1s

Model	Parallelism
So	far	we	have	run	each	neural	network	on	a	single	device.	What	if	we	want	to	run	a	single	neural
network	across	multiple	devices?	This	requires	chopping	your	model	into	separate	chunks	and	running
each	chunk	on	a	different	device.	This	is	called	model	parallelism.	Unfortunately,	model	parallelism	turns
out	to	be	pretty	tricky,	and	it	really	depends	on	the	architecture	of	your	neural	network.	For	fully
connected	networks,	there	is	generally	not	much	to	be	gained	from	this	approach	(see	Figure	12-14).
Intuitively,	it	may	seem	that	an	easy	way	to	split	the	model	is	to	place	each	layer	on	a	different	device,	but
this	does	not	work	since	each	layer	needs	to	wait	for	the	output	of	the	previous	layer	before	it	can	do
anything.	So	perhaps	you	can	slice	it	vertically	—	for	example,	with	the	left	half	of	each	layer	on	one
device,	and	the	right	part	on	another	device?	This	is	slightly	better,	since	both	halves	of	each	layer	can
indeed	work	in	parallel,	but	the	problem	is	that	each	half	of	the	next	layer	requires	the	output	of	both
halves,	so	there	will	be	a	lot	of	cross-device	communication	(represented	by	the	dashed	arrows).	This	is
likely	to	completely	cancel	out	the	benefit	of	the	parallel	computation,	since	cross-device	communication
is	slow	(especially	if	it	is	across	separate	machines).

Figure	12-14.	Splitting	a	fully	connected	neural	network

However,	as	we	will	see	in	Chapter	13,	some	neural	network	architectures,	such	as	convolutional	neural
networks,	contain	layers	that	are	only	partially	connected	to	the	lower	layers,	so	it	is	much	easier	to
distribute	chunks	across	devices	in	an	efficient	way.

Figure	12-15.	Splitting	a	partially	connected	neural	network

Moreover,	as	we	will	see	in	Chapter	14,	some	deep	recurrent	neural	networks	are	composed	of	several
layers	of	memory	cells	(see	the	left	side	of	Figure	12-16).	A	cell’s	output	at	time	t	is	fed	back	to	its	input
at	time	t	+	1	(as	you	can	see	more	clearly	on	the	right	side	of	Figure	12-16).	If	you	split	such	a	network
horizontally,	placing	each	layer	on	a	different	device,	then	at	the	first	step	only	one	device	will	be	active,
at	the	second	step	two	will	be	active,	and	by	the	time	the	signal	propagates	to	the	output	layer	all	devices
will	be	active	simultaneously.	There	is	still	a	lot	of	cross-device	communication	going	on,	but	since	each
cell	may	be	fairly	complex,	the	benefit	of	running	multiple	cells	in	parallel	often	outweighs	the
communication	penalty.

Figure	12-16.	Splitting	a	deep	recurrent	neural	network

In	short,	model	parallelism	can	speed	up	running	or	training	some	types	of	neural	networks,	but	not	all,
and	it	requires	special	care	and	tuning,	such	as	making	sure	that	devices	that	need	to	communicate	the
most	run	on	the	same	machine.

Data	Parallelism
Another	way	to	parallelize	the	training	of	a	neural	network	is	to	replicate	it	on	each	device,	run	a	training
step	simultaneously	on	all	replicas	using	a	different	mini-batch	for	each,	and	then	aggregate	the	gradients
to	update	the	model	parameters.	This	is	called	data	parallelism	(see	Figure	12-17).

Figure	12-17.	Data	parallelism

There	are	two	variants	of	this	approach:	synchronous	updates	and	asynchronous	updates.

Synchronous	updates
With	synchronous	updates,	the	aggregator	waits	for	all	gradients	to	be	available	before	computing	the
average	and	applying	the	result	(i.e.,	using	the	aggregated	gradients	to	update	the	model	parameters).
Once	a	replica	has	finished	computing	its	gradients,	it	must	wait	for	the	parameters	to	be	updated	before	it
can	proceed	to	the	next	mini-batch.	The	downside	is	that	some	devices	may	be	slower	than	others,	so	all
other	devices	will	have	to	wait	for	them	at	every	step.	Moreover,	the	parameters	will	be	copied	to	every
device	almost	at	the	same	time	(immediately	after	the	gradients	are	applied),	which	may	saturate	the
parameter	servers’	bandwidth.

TIP
To	reduce	the	waiting	time	at	each	step,	you	could	ignore	the	gradients	from	the	slowest	few	replicas	(typically	~10%).	For
example,	you	could	run	20	replicas,	but	only	aggregate	the	gradients	from	the	fastest	18	replicas	at	each	step,	and	just	ignore	the
gradients	from	the	last	2.	As	soon	as	the	parameters	are	updated,	the	first	18	replicas	can	start	working	again	immediately,
without	having	to	wait	for	the	2	slowest	replicas.	This	setup	is	generally	described	as	having	18	replicas	plus	2	spare	replicas.5

Asynchronous	updates
With	asynchronous	updates,	whenever	a	replica	has	finished	computing	the	gradients,	it	immediately	uses
them	to	update	the	model	parameters.	There	is	no	aggregation	(remove	the	“mean”	step	in	Figure	12-17),
and	no	synchronization.	Replicas	just	work	independently	of	the	other	replicas.	Since	there	is	no	waiting
for	the	other	replicas,	this	approach	runs	more	training	steps	per	minute.	Moreover,	although	the
parameters	still	need	to	be	copied	to	every	device	at	every	step,	this	happens	at	different	times	for	each
replica	so	the	risk	of	bandwidth	saturation	is	reduced.

Data	parallelism	with	asynchronous	updates	is	an	attractive	choice,	because	of	its	simplicity,	the	absence
of	synchronization	delay,	and	a	better	use	of	the	bandwidth.	However,	although	it	works	reasonably	well
in	practice,	it	is	almost	surprising	that	it	works	at	all!	Indeed,	by	the	time	a	replica	has	finished	computing
the	gradients	based	on	some	parameter	values,	these	parameters	will	have	been	updated	several	times	by
other	replicas	(on	average	N	–	1	times	if	there	are	N	replicas)	and	there	is	no	guarantee	that	the	computed
gradients	will	still	be	pointing	in	the	right	direction	(see	Figure	12-18).	When	gradients	are	severely	out-
of-date,	they	are	called	stale	gradients:	they	can	slow	down	convergence,	introducing	noise	and	wobble
effects	(the	learning	curve	may	contain	temporary	oscillations),	or	they	can	even	make	the	training
algorithm	diverge.

Figure	12-18.	Stale	gradients	when	using	asynchronous	updates

There	are	a	few	ways	to	reduce	the	effect	of	stale	gradients:
Reduce	the	learning	rate.

Drop	stale	gradients	or	scale	them	down.

Adjust	the	mini-batch	size.

Start	the	first	few	epochs	using	just	one	replica	(this	is	called	the	warmup	phase).	Stale	gradients
tend	to	be	more	damaging	at	the	beginning	of	training,	when	gradients	are	typically	large	and	the
parameters	have	not	settled	into	a	valley	of	the	cost	function	yet,	so	different	replicas	may	push	the
parameters	in	quite	different	directions.

A	paper	published	by	the	Google	Brain	team	in	April	2016	benchmarked	various	approaches	and	found
that	data	parallelism	with	synchronous	updates	using	a	few	spare	replicas	was	the	most	efficient,	not	only
converging	faster	but	also	producing	a	better	model.	However,	this	is	still	an	active	area	of	research,	so
you	should	not	rule	out	asynchronous	updates	quite	yet.

Bandwidth	saturation
Whether	you	use	synchronous	or	asynchronous	updates,	data	parallelism	still	requires	communicating	the
model	parameters	from	the	parameter	servers	to	every	replica	at	the	beginning	of	every	training	step,	and
the	gradients	in	the	other	direction	at	the	end	of	each	training	step.	Unfortunately,	this	means	that	there
always	comes	a	point	where	adding	an	extra	GPU	will	not	improve	performance	at	all	because	the	time
spent	moving	the	data	in	and	out	of	GPU	RAM	(and	possibly	across	the	network)	will	outweigh	the
speedup	obtained	by	splitting	the	computation	load.	At	that	point,	adding	more	GPUs	will	just	increase
saturation	and	slow	down	training.

TIP
For	some	models,	typically	relatively	small	and	trained	on	a	very	large	training	set,	you	are	often	better	off	training	the	model	on	a
single	machine	with	a	single	GPU.

Saturation	is	more	severe	for	large	dense	models,	since	they	have	a	lot	of	parameters	and	gradients	to
transfer.	It	is	less	severe	for	small	models	(but	the	parallelization	gain	is	small)	and	also	for	large	sparse
models	since	the	gradients	are	typically	mostly	zeros,	so	they	can	be	communicated	efficiently.	Jeff	Dean,
initiator	and	lead	of	the	Google	Brain	project,	reported	typical	speedups	of	25–40x	when	distributing
computations	across	50	GPUs	for	dense	models,	and	300x	speedup	for	sparser	models	trained	across	500
GPUs.	As	you	can	see,	sparse	models	really	do	scale	better.	Here	are	a	few	concrete	examples:

Neural	Machine	Translation:	6x	speedup	on	8	GPUs

Inception/ImageNet:	32x	speedup	on	50	GPUs

RankBrain:	300x	speedup	on	500	GPUs

http://goo.gl/9GCiPb
http://goo.gl/E4ypxo

These	numbers	represent	the	state	of	the	art	in	Q1	2016.	Beyond	a	few	dozen	GPUs	for	a	dense	model	or
few	hundred	GPUs	for	a	sparse	model,	saturation	kicks	in	and	performance	degrades.	There	is	plenty	of
research	going	on	to	solve	this	problem	(exploring	peer-to-peer	architectures	rather	than	centralized
parameter	servers,	using	lossy	model	compression,	optimizing	when	and	what	the	replicas	need	to
communicate,	and	so	on),	so	there	will	likely	be	a	lot	of	progress	in	parallelizing	neural	networks	in	the
next	few	years.

In	the	meantime,	here	are	a	few	simple	steps	you	can	take	to	reduce	the	saturation	problem:
Group	your	GPUs	on	a	few	servers	rather	than	scattering	them	across	many	servers.	This	will	avoid
unnecessary	network	hops.

Shard	the	parameters	across	multiple	parameter	servers	(as	discussed	earlier).

Drop	the	model	parameters’	float	precision	from	32	bits	(tf.float32)	to	16	bits	(tf.bfloat16).
This	will	cut	in	half	the	amount	of	data	to	transfer,	without	much	impact	on	the	convergence	rate	or
the	model’s	performance.

TIP
Although	16-bit	precision	is	the	minimum	for	training	neural	network,	you	can	actually	drop	down	to	8-bit	precision	after	training
to	reduce	the	size	of	the	model	and	speed	up	computations.	This	is	called	quantizing	the	neural	network.	It	is	particularly	useful
for	deploying	and	running	pretrained	models	on	mobile	phones.	See	Pete	Warden’s	great	post	on	the	subject.

TensorFlow	implementation
To	implement	data	parallelism	using	TensorFlow,	you	first	need	to	choose	whether	you	want	in-graph
replication	or	between-graph	replication,	and	whether	you	want	synchronous	updates	or	asynchronous
updates.	Let’s	look	at	how	you	would	implement	each	combination	(see	the	exercises	and	the	Jupyter
notebooks	for	complete	code	examples).

With	in-graph	replication	+	synchronous	updates,	you	build	one	big	graph	containing	all	the	model
replicas	(placed	on	different	devices),	and	a	few	nodes	to	aggregate	all	their	gradients	and	feed	them	to
an	optimizer.	Your	code	opens	a	session	to	the	cluster	and	simply	runs	the	training	operation	repeatedly.

With	in-graph	replication	+	asynchronous	updates,	you	also	create	one	big	graph,	but	with	one	optimizer
per	replica,	and	you	run	one	thread	per	replica,	repeatedly	running	the	replica’s	optimizer.

With	between-graph	replication	+	asynchronous	updates,	you	run	multiple	independent	clients	(typically
in	separate	processes),	each	training	the	model	replica	as	if	it	were	alone	in	the	world,	but	the	parameters
are	actually	shared	with	other	replicas	(using	a	resource	container).

With	between-graph	replication	+	synchronous	updates,	once	again	you	run	multiple	clients,	each	training
a	model	replica	based	on	shared	parameters,	but	this	time	you	wrap	the	optimizer	(e.g.,	a
MomentumOptimizer)	within	a	SyncReplicasOptimizer.	Each	replica	uses	this	optimizer	as	it	would
use	any	other	optimizer,	but	under	the	hood	this	optimizer	sends	the	gradients	to	a	set	of	queues	(one	per
variable),	which	is	read	by	one	of	the	replica’s	SyncReplicasOptimizer,	called	the	chief.	The	chief
aggregates	the	gradients	and	applies	them,	then	writes	a	token	to	a	token	queue	for	each	replica,	signaling

http://goo.gl/09Cb6v

it	that	it	can	go	ahead	and	compute	the	next	gradients.	This	approach	supports	having	spare	replicas.

If	you	go	through	the	exercises,	you	will	implement	each	of	these	four	solutions.	You	will	easily	be	able	to
apply	what	you	have	learned	to	train	large	deep	neural	networks	across	dozens	of	servers	and	GPUs!	In
the	following	chapters	we	will	go	through	a	few	more	important	neural	network	architectures	before	we
tackle	Reinforcement	Learning.

Exercises
1.	 If	you	get	a	CUDA_ERROR_OUT_OF_MEMORY	when	starting	your	TensorFlow	program,	what	is

probably	going	on?	What	can	you	do	about	it?

2.	 What	is	the	difference	between	pinning	an	operation	on	a	device	and	placing	an	operation	on	a
device?

3.	 If	you	are	running	on	a	GPU-enabled	TensorFlow	installation,	and	you	just	use	the	default
placement,	will	all	operations	be	placed	on	the	first	GPU?

4.	 If	you	pin	a	variable	to	"/gpu:0",	can	it	be	used	by	operations	placed	on	/gpu:1?	Or	by
operations	placed	on	"/cpu:0"?	Or	by	operations	pinned	to	devices	located	on	other	servers?

5.	 Can	two	operations	placed	on	the	same	device	run	in	parallel?

6.	 What	is	a	control	dependency	and	when	would	you	want	to	use	one?

7.	 Suppose	you	train	a	DNN	for	days	on	a	TensorFlow	cluster,	and	immediately	after	your	training
program	ends	you	realize	that	you	forgot	to	save	the	model	using	a	Saver.	Is	your	trained	model
lost?

8.	 Train	several	DNNs	in	parallel	on	a	TensorFlow	cluster,	using	different	hyperparameter	values.
This	could	be	DNNs	for	MNIST	classification	or	any	other	task	you	are	interested	in.	The
simplest	option	is	to	write	a	single	client	program	that	trains	only	one	DNN,	then	run	this
program	in	multiple	processes	in	parallel,	with	different	hyperparameter	values	for	each	client.
The	program	should	have	command-line	options	to	control	what	server	and	device	the	DNN
should	be	placed	on,	and	what	resource	container	and	hyperparameter	values	to	use	(make	sure
to	use	a	different	resource	container	for	each	DNN).	Use	a	validation	set	or	cross-validation	to
select	the	top	three	models.

9.	 Create	an	ensemble	using	the	top	three	models	from	the	previous	exercise.	Define	it	in	a	single
graph,	ensuring	that	each	DNN	runs	on	a	different	device.	Evaluate	it	on	the	validation	set:	does
the	ensemble	perform	better	than	the	individual	DNNs?

10.	 Train	a	DNN	using	between-graph	replication	and	data	parallelism	with	asynchronous	updates,
timing	how	long	it	takes	to	reach	a	satisfying	performance.	Next,	try	again	using	synchronous
updates.	Do	synchronous	updates	produce	a	better	model?	Is	training	faster?	Split	the	DNN
vertically	and	place	each	vertical	slice	on	a	different	device,	and	train	the	model	again.	Is
training	any	faster?	Is	the	performance	any	different?

Solutions	to	these	exercises	are	available	in	Appendix	A.

“TensorFlow:	Large-Scale	Machine	Learning	on	Heterogeneous	Distributed	Systems,”	Google	Research	(2015).

You	can	even	start	multiple	tasks	in	the	same	process.	It	may	be	useful	for	tests,	but	it	is	not	recommended	in	production.

It	is	the	next	version	of	Google’s	internal	Stubby	service,	which	Google	has	used	successfully	for	over	a	decade.	See	http://grpc.io/	for

1

2

3

http://grpc.io/

more	details.

Not	100%	linear	if	you	wait	for	all	devices	to	finish,	since	the	total	time	will	be	the	time	taken	by	the	slowest	device.

This	name	is	slightly	confusing	since	it	sounds	like	some	replicas	are	special,	doing	nothing.	In	reality,	all	replicas	are	equivalent:	they	all
work	hard	to	be	among	the	fastest	at	each	training	step,	and	the	losers	vary	at	every	step	(unless	some	devices	are	really	slower	than
others).

4

5

Chapter	13.	Convolutional	Neural	Networks

Although	IBM’s	Deep	Blue	supercomputer	beat	the	chess	world	champion	Garry	Kasparov	back	in	1996,
until	quite	recently	computers	were	unable	to	reliably	perform	seemingly	trivial	tasks	such	as	detecting	a
puppy	in	a	picture	or	recognizing	spoken	words.	Why	are	these	tasks	so	effortless	to	us	humans?	The
answer	lies	in	the	fact	that	perception	largely	takes	place	outside	the	realm	of	our	consciousness,	within
specialized	visual,	auditory,	and	other	sensory	modules	in	our	brains.	By	the	time	sensory	information
reaches	our	consciousness,	it	is	already	adorned	with	high-level	features;	for	example,	when	you	look	at	a
picture	of	a	cute	puppy,	you	cannot	choose	not	to	see	the	puppy,	or	not	to	notice	its	cuteness.	Nor	can	you
explain	how	you	recognize	a	cute	puppy;	it’s	just	obvious	to	you.	Thus,	we	cannot	trust	our	subjective
experience:	perception	is	not	trivial	at	all,	and	to	understand	it	we	must	look	at	how	the	sensory	modules
work.

Convolutional	neural	networks	(CNNs)	emerged	from	the	study	of	the	brain’s	visual	cortex,	and	they	have
been	used	in	image	recognition	since	the	1980s.	In	the	last	few	years,	thanks	to	the	increase	in
computational	power,	the	amount	of	available	training	data,	and	the	tricks	presented	in	Chapter	11	for
training	deep	nets,	CNNs	have	managed	to	achieve	superhuman	performance	on	some	complex	visual
tasks.	They	power	image	search	services,	self-driving	cars,	automatic	video	classification	systems,	and
more.	Moreover,	CNNs	are	not	restricted	to	visual	perception:	they	are	also	successful	at	other	tasks,
such	as	voice	recognition	or	natural	language	processing	(NLP);	however,	we	will	focus	on	visual
applications	for	now.

In	this	chapter	we	will	present	where	CNNs	came	from,	what	their	building	blocks	look	like,	and	how	to
implement	them	using	TensorFlow.	Then	we	will	present	some	of	the	best	CNN	architectures.

The	Architecture	of	the	Visual	Cortex
David	H.	Hubel	and	Torsten	Wiesel	performed	a	series	of	experiments	on	cats	in	19581	and	19592	(and	a
few	years	later	on	monkeys3),	giving	crucial	insights	on	the	structure	of	the	visual	cortex	(the	authors
received	the	Nobel	Prize	in	Physiology	or	Medicine	in	1981	for	their	work).	In	particular,	they	showed
that	many	neurons	in	the	visual	cortex	have	a	small	local	receptive	field,	meaning	they	react	only	to	visual
stimuli	located	in	a	limited	region	of	the	visual	field	(see	Figure	13-1,	in	which	the	local	receptive	fields
of	five	neurons	are	represented	by	dashed	circles).	The	receptive	fields	of	different	neurons	may	overlap,
and	together	they	tile	the	whole	visual	field.	Moreover,	the	authors	showed	that	some	neurons	react	only
to	images	of	horizontal	lines,	while	others	react	only	to	lines	with	different	orientations	(two	neurons	may
have	the	same	receptive	field	but	react	to	different	line	orientations).	They	also	noticed	that	some	neurons
have	larger	receptive	fields,	and	they	react	to	more	complex	patterns	that	are	combinations	of	the	lower-
level	patterns.	These	observations	led	to	the	idea	that	the	higher-level	neurons	are	based	on	the	outputs	of
neighboring	lower-level	neurons	(in	Figure	13-1,	notice	that	each	neuron	is	connected	only	to	a	few
neurons	from	the	previous	layer).	This	powerful	architecture	is	able	to	detect	all	sorts	of	complex	patterns
in	any	area	of	the	visual	field.

Figure	13-1.	Local	receptive	fields	in	the	visual	cortex

These	studies	of	the	visual	cortex	inspired	the	neocognitron,	introduced	in	1980,4	which	gradually
evolved	into	what	we	now	call	convolutional	neural	networks.	An	important	milestone	was	a	1998
paper5	by	Yann	LeCun,	Léon	Bottou,	Yoshua	Bengio,	and	Patrick	Haffner,	which	introduced	the	famous
LeNet-5	architecture,	widely	used	to	recognize	handwritten	check	numbers.	This	architecture	has	some
building	blocks	that	you	already	know,	such	as	fully	connected	layers	and	sigmoid	activation	functions,
but	it	also	introduces	two	new	building	blocks:	convolutional	layers	and	pooling	layers.	Let’s	look	at
them	now.

NOTE
Why	not	simply	use	a	regular	deep	neural	network	with	fully	connected	layers	for	image	recognition	tasks?	Unfortunately,
although	this	works	fine	for	small	images	(e.g.,	MNIST),	it	breaks	down	for	larger	images	because	of	the	huge	number	of

http://goo.gl/VLxXf9
http://goo.gl/OYuFUZ
http://goo.gl/95F7QH
http://goo.gl/XwiXs9
http://goo.gl/A347S4

parameters	it	requires.	For	example,	a	100	×	100	image	has	10,000	pixels,	and	if	the	first	layer	has	just	1,000	neurons	(which
already	severely	restricts	the	amount	of	information	transmitted	to	the	next	layer),	this	means	a	total	of	10	million	connections.
And	that’s	just	the	first	layer.	CNNs	solve	this	problem	using	partially	connected	layers.

Convolutional	Layer
The	most	important	building	block	of	a	CNN	is	the	convolutional	layer:6	neurons	in	the	first
convolutional	layer	are	not	connected	to	every	single	pixel	in	the	input	image	(like	they	were	in	previous
chapters),	but	only	to	pixels	in	their	receptive	fields	(see	Figure	13-2).	In	turn,	each	neuron	in	the	second
convolutional	layer	is	connected	only	to	neurons	located	within	a	small	rectangle	in	the	first	layer.	This
architecture	allows	the	network	to	concentrate	on	low-level	features	in	the	first	hidden	layer,	then
assemble	them	into	higher-level	features	in	the	next	hidden	layer,	and	so	on.	This	hierarchical	structure	is
common	in	real-world	images,	which	is	one	of	the	reasons	why	CNNs	work	so	well	for	image
recognition.

Figure	13-2.	CNN	layers	with	rectangular	local	receptive	fields

NOTE
Until	now,	all	multilayer	neural	networks	we	looked	at	had	layers	composed	of	a	long	line	of	neurons,	and	we	had	to	flatten	input
images	to	1D	before	feeding	them	to	the	neural	network.	Now	each	layer	is	represented	in	2D,	which	makes	it	easier	to	match
neurons	with	their	corresponding	inputs.

A	neuron	located	in	row	i,	column	j	of	a	given	layer	is	connected	to	the	outputs	of	the	neurons	in	the
previous	layer	located	in	rows	i	to	i	+	fh	–	1,	columns	j	to	j	+	fw	–	1,	where	fh	and	fw	are	the	height	and

width	of	the	receptive	field	(see	Figure	13-3).	In	order	for	a	layer	to	have	the	same	height	and	width	as
the	previous	layer,	it	is	common	to	add	zeros	around	the	inputs,	as	shown	in	the	diagram.	This	is	called
zero	padding.

Figure	13-3.	Connections	between	layers	and	zero	padding

It	is	also	possible	to	connect	a	large	input	layer	to	a	much	smaller	layer	by	spacing	out	the	receptive
fields,	as	shown	in	Figure	13-4.	The	distance	between	two	consecutive	receptive	fields	is	called	the
stride.	In	the	diagram,	a	5	×	7	input	layer	(plus	zero	padding)	is	connected	to	a	3	×	4	layer,	using	3	×	3
receptive	fields	and	a	stride	of	2	(in	this	example	the	stride	is	the	same	in	both	directions,	but	it	does	not
have	to	be	so).	A	neuron	located	in	row	i,	column	j	in	the	upper	layer	is	connected	to	the	outputs	of	the
neurons	in	the	previous	layer	located	in	rows	i	×	sh	to	i	×	sh	+	fh	–	1,	columns	j	×	sw	+	fw	–	1,	where	sh
and	sw	are	the	vertical	and	horizontal	strides.

Figure	13-4.	Reducing	dimensionality	using	a	stride

Filters
A	neuron’s	weights	can	be	represented	as	a	small	image	the	size	of	the	receptive	field.	For	example,
Figure	13-5	shows	two	possible	sets	of	weights,	called	filters	(or	convolution	kernels).	The	first	one	is
represented	as	a	black	square	with	a	vertical	white	line	in	the	middle	(it	is	a	7	×	7	matrix	full	of	0s	except
for	the	central	column,	which	is	full	of	1s);	neurons	using	these	weights	will	ignore	everything	in	their
receptive	field	except	for	the	central	vertical	line	(since	all	inputs	will	get	multiplied	by	0,	except	for	the
ones	located	in	the	central	vertical	line).	The	second	filter	is	a	black	square	with	a	horizontal	white	line
in	the	middle.	Once	again,	neurons	using	these	weights	will	ignore	everything	in	their	receptive	field
except	for	the	central	horizontal	line.

Now	if	all	neurons	in	a	layer	use	the	same	vertical	line	filter	(and	the	same	bias	term),	and	you	feed	the
network	the	input	image	shown	in	Figure	13-5	(bottom	image),	the	layer	will	output	the	top-left	image.
Notice	that	the	vertical	white	lines	get	enhanced	while	the	rest	gets	blurred.	Similarly,	the	upper-right
image	is	what	you	get	if	all	neurons	use	the	horizontal	line	filter;	notice	that	the	horizontal	white	lines	get
enhanced	while	the	rest	is	blurred	out.	Thus,	a	layer	full	of	neurons	using	the	same	filter	gives	you	a
feature	map,	which	highlights	the	areas	in	an	image	that	are	most	similar	to	the	filter.	During	training,	a
CNN	finds	the	most	useful	filters	for	its	task,	and	it	learns	to	combine	them	into	more	complex	patterns
(e.g.,	a	cross	is	an	area	in	an	image	where	both	the	vertical	filter	and	the	horizontal	filter	are	active).

Figure	13-5.	Applying	two	different	filters	to	get	two	feature	maps

Stacking	Multiple	Feature	Maps
Up	to	now,	for	simplicity,	we	have	represented	each	convolutional	layer	as	a	thin	2D	layer,	but	in	reality
it	is	composed	of	several	feature	maps	of	equal	sizes,	so	it	is	more	accurately	represented	in	3D	(see
Figure	13-6).	Within	one	feature	map,	all	neurons	share	the	same	parameters	(weights	and	bias	term),	but
different	feature	maps	may	have	different	parameters.	A	neuron’s	receptive	field	is	the	same	as	described
earlier,	but	it	extends	across	all	the	previous	layers’	feature	maps.	In	short,	a	convolutional	layer
simultaneously	applies	multiple	filters	to	its	inputs,	making	it	capable	of	detecting	multiple	features
anywhere	in	its	inputs.

NOTE
The	fact	that	all	neurons	in	a	feature	map	share	the	same	parameters	dramatically	reduces	the	number	of	parameters	in	the
model,	but	most	importantly	it	means	that	once	the	CNN	has	learned	to	recognize	a	pattern	in	one	location,	it	can	recognize	it	in
any	other	location.	In	contrast,	once	a	regular	DNN	has	learned	to	recognize	a	pattern	in	one	location,	it	can	recognize	it	only	in
that	particular	location.

Moreover,	input	images	are	also	composed	of	multiple	sublayers:	one	per	color	channel.	There	are
typically	three:	red,	green,	and	blue	(RGB).	Grayscale	images	have	just	one	channel,	but	some	images
may	have	much	more	—	for	example,	satellite	images	that	capture	extra	light	frequencies	(such	as
infrared).

Figure	13-6.	Convolution	layers	with	multiple	feature	maps,	and	images	with	three	channels

Specifically,	a	neuron	located	in	row	i,	column	j	of	the	feature	map	k	in	a	given	convolutional	layer	l	is
connected	to	the	outputs	of	the	neurons	in	the	previous	layer	l	–	1,	located	in	rows	i	×	sw	to	i	×	sw	+	fw	–	1
and	columns	j	×	sh	to	j	×	sh	+	fh	–	1,	across	all	feature	maps	(in	layer	l	–	1).	Note	that	all	neurons	located
in	the	same	row	i	and	column	j	but	in	different	feature	maps	are	connected	to	the	outputs	of	the	exact	same
neurons	in	the	previous	layer.

Equation	13-1	summarizes	the	preceding	explanations	in	one	big	mathematical	equation:	it	shows	how	to
compute	the	output	of	a	given	neuron	in	a	convolutional	layer.	It	is	a	bit	ugly	due	to	all	the	different
indices,	but	all	it	does	is	calculate	the	weighted	sum	of	all	the	inputs,	plus	the	bias	term.

Equation	13-1.	Computing	the	output	of	a	neuron	in	a	convolutional	layer

zi,	j,	k	is	the	output	of	the	neuron	located	in	row	i,	column	j	in	feature	map	k	of	the	convolutional	layer
(layer	l).

As	explained	earlier,	sh	and	sw	are	the	vertical	and	horizontal	strides,	fh	and	fw	are	the	height	and
width	of	the	receptive	field,	and	fn′	is	the	number	of	feature	maps	in	the	previous	layer	(layer	l	–	1).

xi′,	j′,	k ′	is	the	output	of	the	neuron	located	in	layer	l	–	1,	row	i′,	column	j′,	feature	map	k′	(or	channel	k′
if	the	previous	layer	is	the	input	layer).

bk	is	the	bias	term	for	feature	map	k	(in	layer	l).	You	can	think	of	it	as	a	knob	that	tweaks	the	overall
brightness	of	the	feature	map	k.

wu,	v,	k ′	,k	is	the	connection	weight	between	any	neuron	in	feature	map	k	of	the	layer	l	and	its	input
located	at	row	u,	column	v	(relative	to	the	neuron’s	receptive	field),	and	feature	map	k′.

TensorFlow	Implementation
In	TensorFlow,	each	input	image	is	typically	represented	as	a	3D	tensor	of	shape	[height,	width,
channels].	A	mini-batch	is	represented	as	a	4D	tensor	of	shape	[mini-batch	size,	height,
width,	channels].	The	weights	of	a	convolutional	layer	are	represented	as	a	4D	tensor	of	shape	[fh,	fw,
fn,	fn′].	The	bias	terms	of	a	convolutional	layer	are	simply	represented	as	a	1D	tensor	of	shape	[fn].

Let’s	look	at	a	simple	example.	The	following	code	loads	two	sample	images,	using	Scikit-Learn’s
load_sample_images()	(which	loads	two	color	images,	one	of	a	Chinese	temple,	and	the	other	of	a
flower).	Then	it	creates	two	7	×	7	filters	(one	with	a	vertical	white	line	in	the	middle,	and	the	other	with	a
horizontal	white	line),	and	applies	them	to	both	images	using	a	convolutional	layer	built	using
TensorFlow’s	conv2d()	function	(with	zero	padding	and	a	stride	of	2).	Finally,	it	plots	one	of	the
resulting	feature	maps	(similar	to	the	top-right	image	in	Figure	13-5).

import	numpy	as	np

from	sklearn.datasets	import	load_sample_images

#	Load	sample	images

dataset	=	np.array(load_sample_images().images,	dtype=np.float32)

batch_size,	height,	width,	channels	=	dataset.shape

#	Create	2	filters

filters_test	=	np.zeros(shape=(7,	7,	channels,	2),	dtype=np.float32)

filters_test[:,	3,	:,	0]	=	1		#	vertical	line

filters_test[3,	:,	:,	1]	=	1		#	horizontal	line

#	Create	a	graph	with	input	X	plus	a	convolutional	layer	applying	the	2	filters

X	=	tf.placeholder(tf.float32,	shape=(None,	height,	width,	channels))

convolution	=	tf.nn.conv2d(X,	filters,	strides=[1,2,2,1],	padding="SAME")

with	tf.Session()	as	sess:

				output	=	sess.run(convolution,	feed_dict={X:	dataset})

plt.imshow(output[0,	:,	:,	1])		#	plot	1st	image's	2nd	feature	map

plt.show()

Most	of	this	code	is	self-explanatory,	but	the	conv2d()	line	deserves	a	bit	of	explanation:

X	is	the	input	mini-batch	(a	4D	tensor,	as	explained	earlier).

filters	is	the	set	of	filters	to	apply	(also	a	4D	tensor,	as	explained	earlier).

strides	is	a	four-element	1D	array,	where	the	two	central	elements	are	the	vertical	and	horizontal
strides	(sh	and	sw).	The	first	and	last	elements	must	currently	be	equal	to	1.	They	may	one	day	be
used	to	specify	a	batch	stride	(to	skip	some	instances)	and	a	channel	stride	(to	skip	some	of	the
previous	layer’s	feature	maps	or	channels).

padding	must	be	either	"VALID"	or	"SAME":
If	set	to	"VALID",	the	convolutional	layer	does	not	use	zero	padding,	and	may	ignore	some	rows
and	columns	at	the	bottom	and	right	of	the	input	image,	depending	on	the	stride,	as	shown	in
Figure	13-7	(for	simplicity,	only	the	horizontal	dimension	is	shown	here,	but	of	course	the	same
logic	applies	to	the	vertical	dimension).

If	set	to	"SAME",	the	convolutional	layer	uses	zero	padding	if	necessary.	In	this	case,	the	number	of
output	neurons	is	equal	to	the	number	of	input	neurons	divided	by	the	stride,	rounded	up	(in	this
example,	ceil	(13	/	5)	=	3).	Then	zeros	are	added	as	evenly	as	possible	around	the	inputs.

Figure	13-7.	Padding	options	—	input	width:	13,	filter	width:	6,	stride:	5

Unfortunately,	convolutional	layers	have	quite	a	few	hyperparameters:	you	must	choose	the	number	of
filters,	their	height	and	width,	the	strides,	and	the	padding	type.	As	always,	you	can	use	cross-validation
to	find	the	right	hyperparameter	values,	but	this	is	very	time-consuming.	We	will	discuss	common	CNN
architectures	later,	to	give	you	some	idea	of	what	hyperparameter	values	work	best	in	practice.

Memory	Requirements
Another	problem	with	CNNs	is	that	the	convolutional	layers	require	a	huge	amount	of	RAM,	especially
during	training,	because	the	reverse	pass	of	backpropagation	requires	all	the	intermediate	values
computed	during	the	forward	pass.

For	example,	consider	a	convolutional	layer	with	5	×	5	filters,	outputting	200	feature	maps	of	size	150	×
100,	with	stride	1	and	SAME	padding.	If	the	input	is	a	150	×	100	RGB	image	(three	channels),	then	the
number	of	parameters	is	(5	×	5	×	3	+	1)	×	200	=	15,200	(the	+1	corresponds	to	the	bias	terms),	which	is
fairly	small	compared	to	a	fully	connected	layer.7	However,	each	of	the	200	feature	maps	contains	150	×
100	neurons,	and	each	of	these	neurons	needs	to	compute	a	weighted	sum	of	its	5	×	5	×	3	=	75	inputs:
that’s	a	total	of	225	million	float	multiplications.	Not	as	bad	as	a	fully	connected	layer,	but	still	quite
computationally	intensive.	Moreover,	if	the	feature	maps	are	represented	using	32-bit	floats,	then	the
convolutional	layer’s	output	will	occupy	200	×	150	×	100	×	32	=	96	million	bits	(about	11.4	MB)	of
RAM.8	And	that’s	just	for	one	instance!	If	a	training	batch	contains	100	instances,	then	this	layer	will	use
up	over	1	GB	of	RAM!

During	inference	(i.e.,	when	making	a	prediction	for	a	new	instance)	the	RAM	occupied	by	one	layer	can
be	released	as	soon	as	the	next	layer	has	been	computed,	so	you	only	need	as	much	RAM	as	required	by
two	consecutive	layers.	But	during	training	everything	computed	during	the	forward	pass	needs	to	be
preserved	for	the	reverse	pass,	so	the	amount	of	RAM	needed	is	(at	least)	the	total	amount	of	RAM
required	by	all	layers.

TIP
If	training	crashes	because	of	an	out-of-memory	error,	you	can	try	reducing	the	mini-batch	size.	Alternatively,	you	can	try
reducing	dimensionality	using	a	stride,	or	removing	a	few	layers.	Or	you	can	try	using	16-bit	floats	instead	of	32-bit	floats.	Or	you
could	distribute	the	CNN	across	multiple	devices.

Now	let’s	look	at	the	second	common	building	block	of	CNNs:	the	pooling	layer.

Pooling	Layer
Once	you	understand	how	convolutional	layers	work,	the	pooling	layers	are	quite	easy	to	grasp.	Their
goal	is	to	subsample	(i.e.,	shrink)	the	input	image	in	order	to	reduce	the	computational	load,	the	memory
usage,	and	the	number	of	parameters	(thereby	limiting	the	risk	of	overfitting).	Reducing	the	input	image
size	also	makes	the	neural	network	tolerate	a	little	bit	of	image	shift	(location	invariance).

Just	like	in	convolutional	layers,	each	neuron	in	a	pooling	layer	is	connected	to	the	outputs	of	a	limited
number	of	neurons	in	the	previous	layer,	located	within	a	small	rectangular	receptive	field.	You	must
define	its	size,	the	stride,	and	the	padding	type,	just	like	before.	However,	a	pooling	neuron	has	no
weights;	all	it	does	is	aggregate	the	inputs	using	an	aggregation	function	such	as	the	max	or	mean.
Figure	13-8	shows	a	max	pooling	layer,	which	is	the	most	common	type	of	pooling	layer.	In	this	example,
we	use	a	2	×	2	pooling	kernel,	a	stride	of	2,	and	no	padding.	Note	that	only	the	max	input	value	in	each
kernel	makes	it	to	the	next	layer.	The	other	inputs	are	dropped.

Figure	13-8.	Max	pooling	layer	(2	×	2	pooling	kernel,	stride	2,	no	padding)

This	is	obviously	a	very	destructive	kind	of	layer:	even	with	a	tiny	2	×	2	kernel	and	a	stride	of	2,	the
output	will	be	two	times	smaller	in	both	directions	(so	its	area	will	be	four	times	smaller),	simply
dropping	75%	of	the	input	values.

A	pooling	layer	typically	works	on	every	input	channel	independently,	so	the	output	depth	is	the	same	as
the	input	depth.	You	may	alternatively	pool	over	the	depth	dimension,	as	we	will	see	next,	in	which	case
the	image’s	spatial	dimensions	(height	and	width)	remain	unchanged,	but	the	number	of	channels	is
reduced.

Implementing	a	max	pooling	layer	in	TensorFlow	is	quite	easy.	The	following	code	creates	a	max	pooling
layer	using	a	2	×	2	kernel,	stride	2,	and	no	padding,	then	applies	it	to	all	the	images	in	the	dataset:

[...]	#	load	the	image	dataset,	just	like	above

#	Create	a	graph	with	input	X	plus	a	max	pooling	layer

X	=	tf.placeholder(tf.float32,	shape=(None,	height,	width,	channels))

max_pool	=	tf.nn.max_pool(X,	ksize=[1,2,2,1],	strides=[1,2,2,1],padding="VALID")

with	tf.Session()	as	sess:

				output	=	sess.run(max_pool,	feed_dict={X:	dataset})

plt.imshow(output[0].astype(np.uint8))		#	plot	the	output	for	the	1st	image

plt.show()

The	ksize	argument	contains	the	kernel	shape	along	all	four	dimensions	of	the	input	tensor:	[batch
size,	height,	width,	channels].	TensorFlow	currently	does	not	support	pooling	over	multiple
instances,	so	the	first	element	of	ksize	must	be	equal	to	1.	Moreover,	it	does	not	support	pooling	over
both	the	spatial	dimensions	(height	and	width)	and	the	depth	dimension,	so	either	ksize[1]	and
ksize[2]	must	both	be	equal	to	1,	or	ksize[3]	must	be	equal	to	1.

To	create	an	average	pooling	layer,	just	use	the	avg_pool()	function	instead	of	max_pool().

Now	you	know	all	the	building	blocks	to	create	a	convolutional	neural	network.	Let’s	see	how	to
assemble	them.

CNN	Architectures
Typical	CNN	architectures	stack	a	few	convolutional	layers	(each	one	generally	followed	by	a	ReLU
layer),	then	a	pooling	layer,	then	another	few	convolutional	layers	(+ReLU),	then	another	pooling	layer,
and	so	on.	The	image	gets	smaller	and	smaller	as	it	progresses	through	the	network,	but	it	also	typically
gets	deeper	and	deeper	(i.e.,	with	more	feature	maps)	thanks	to	the	convolutional	layers	(see	Figure	13-
9).	At	the	top	of	the	stack,	a	regular	feedforward	neural	network	is	added,	composed	of	a	few	fully
connected	layers	(+ReLUs),	and	the	final	layer	outputs	the	prediction	(e.g.,	a	softmax	layer	that	outputs
estimated	class	probabilities).

Figure	13-9.	Typical	CNN	architecture

TIP
A	common	mistake	is	to	use	convolution	kernels	that	are	too	large.	You	can	often	get	the	same	effect	as	a	9	×	9	kernel	by
stacking	two	3	×	3	kernels	on	top	of	each	other,	for	a	lot	less	compute.

Over	the	years,	variants	of	this	fundamental	architecture	have	been	developed,	leading	to	amazing
advances	in	the	field.	A	good	measure	of	this	progress	is	the	error	rate	in	competitions	such	as	the
ILSVRC	ImageNet	challenge.	In	this	competition	the	top-5	error	rate	for	image	classification	fell	from
over	26%	to	barely	over	3%	in	just	five	years.	The	top-five	error	rate	is	the	number	of	test	images	for
which	the	system’s	top	5	predictions	did	not	include	the	correct	answer.	The	images	are	large	(256	pixels
high)	and	there	are	1,000	classes,	some	of	which	are	really	subtle	(try	distinguishing	120	dog	breeds).
Looking	at	the	evolution	of	the	winning	entries	is	a	good	way	to	understand	how	CNNs	work.

We	will	first	look	at	the	classical	LeNet-5	architecture	(1998),	then	three	of	the	winners	of	the	ILSVRC
challenge:	AlexNet	(2012),	GoogLeNet	(2014),	and	ResNet	(2015).

OTHER	VISUAL	TASKS

There	was	stunning	progress	as	well	in	other	visual	tasks	such	as	object	detection	and	localization,	and	image	segmentation.	In	object
detection	and	localization,	the	neural	network	typically	outputs	a	sequence	of	bounding	boxes	around	various	objects	in	the	image.	For
example,	see	Maxine	Oquab	et	al.’s	2015	paper	that	outputs	a	heat	map	for	each	object	class,	or	Russell	Stewart	et	al.’s	2015	paper	that
uses	a	combination	of	a	CNN	to	detect	faces	and	a	recurrent	neural	network	to	output	a	sequence	of	bounding	boxes	around	them.	In
image	segmentation,	the	net	outputs	an	image	(usually	of	the	same	size	as	the	input)	where	each	pixel	indicates	the	class	of	the	object	to
which	the	corresponding	input	pixel	belongs.	For	example,	check	out	Evan	Shelhamer	et	al.’s	2016	paper.

http://image-net.org/
https://goo.gl/ZKuDtv
https://goo.gl/upuHl2
https://goo.gl/7ReZql

LeNet-5
The	LeNet-5	architecture	is	perhaps	the	most	widely	known	CNN	architecture.	As	mentioned	earlier,	it
was	created	by	Yann	LeCun	in	1998	and	widely	used	for	handwritten	digit	recognition	(MNIST).	It	is
composed	of	the	layers	shown	in	Table	13-1.

Table	13-1.	LeNet-5	architecture

Layer Type Maps Size Kernel	size Stride Activation

Out Fully	Connected – 10 – – RBF

F6 Fully	Connected – 84 – – tanh

C5 Convolution 120 1	×	1 5	×	5 1 tanh

S4 Avg	Pooling 16 5	×	5 2	×	2 2 tanh

C3 Convolution 16 10	×	10 5	×	5 1 tanh

S2 Avg	Pooling 6 14	×	14 2	×	2 2 tanh

C1 Convolution 6 28	×	28 5	×	5 1 tanh

In Input 1 32	×	32 – – –

There	are	a	few	extra	details	to	be	noted:
MNIST	images	are	28	×	28	pixels,	but	they	are	zero-padded	to	32	×	32	pixels	and	normalized	before
being	fed	to	the	network.	The	rest	of	the	network	does	not	use	any	padding,	which	is	why	the	size
keeps	shrinking	as	the	image	progresses	through	the	network.

The	average	pooling	layers	are	slightly	more	complex	than	usual:	each	neuron	computes	the	mean	of
its	inputs,	then	multiplies	the	result	by	a	learnable	coefficient	(one	per	map)	and	adds	a	learnable
bias	term	(again,	one	per	map),	then	finally	applies	the	activation	function.

Most	neurons	in	C3	maps	are	connected	to	neurons	in	only	three	or	four	S2	maps	(instead	of	all	six
S2	maps).	See	table	1	in	the	original	paper	for	details.

The	output	layer	is	a	bit	special:	instead	of	computing	the	dot	product	of	the	inputs	and	the	weight
vector,	each	neuron	outputs	the	square	of	the	Euclidian	distance	between	its	input	vector	and	its
weight	vector.	Each	output	measures	how	much	the	image	belongs	to	a	particular	digit	class.	The
cross	entropy	cost	function	is	now	preferred,	as	it	penalizes	bad	predictions	much	more,	producing
larger	gradients	and	thus	converging	faster.

Yann	LeCun’s	website	(“LENET”	section)	features	great	demos	of	LeNet-5	classifying	digits.

http://yann.lecun.com/

AlexNet
The	AlexNet	CNN	architecture9	won	the	2012	ImageNet	ILSVRC	challenge	by	a	large	margin:	it	achieved
17%	top-5	error	rate	while	the	second	best	achieved	only	26%!	It	was	developed	by	Alex	Krizhevsky
(hence	the	name),	Ilya	Sutskever,	and	Geoffrey	Hinton.	It	is	quite	similar	to	LeNet-5,	only	much	larger	and
deeper,	and	it	was	the	first	to	stack	convolutional	layers	directly	on	top	of	each	other,	instead	of	stacking	a
pooling	layer	on	top	of	each	convolutional	layer.	Table	13-2	presents	this	architecture.

Table	13-2.	AlexNet	architecture

Layer Type Maps Size Kernel	size Stride Padding Activation

Out Fully	Connected – 1,000 – – – Softmax

F9 Fully	Connected – 4,096 – – – ReLU

F8 Fully	Connected – 4,096 – – – ReLU

C7 Convolution 256 13	×	13 3	×	3 1 SAME ReLU

C6 Convolution 384 13	×	13 3	×	3 1 SAME ReLU

C5 Convolution 384 13	×	13 3	×	3 1 SAME ReLU

S4 Max	Pooling 256 13	×	13 3	×	3 2 VALID –

C3 Convolution 256 27	×	27 5	×	5 1 SAME ReLU

S2 Max	Pooling 96 27	×	27 3	×	3 2 VALID –

C1 Convolution 96 55	×	55 11	×	11 4 SAME ReLU

In Input 3	(RGB) 224	×	224 – – – –

To	reduce	overfitting,	the	authors	used	two	regularization	techniques	we	discussed	in	previous	chapters:
first	they	applied	dropout	(with	a	50%	dropout	rate)	during	training	to	the	outputs	of	layers	F8	and	F9.
Second,	they	performed	data	augmentation	by	randomly	shifting	the	training	images	by	various	offsets,
flipping	them	horizontally,	and	changing	the	lighting	conditions.

AlexNet	also	uses	a	competitive	normalization	step	immediately	after	the	ReLU	step	of	layers	C1	and	C3,
called	local	response	normalization.	This	form	of	normalization	makes	the	neurons	that	most	strongly
activate	inhibit	neurons	at	the	same	location	but	in	neighboring	feature	maps	(such	competitive	activation
has	been	observed	in	biological	neurons).	This	encourages	different	feature	maps	to	specialize,	pushing
them	apart	and	forcing	them	to	explore	a	wider	range	of	features,	ultimately	improving	generalization.
Equation	13-2	shows	how	to	apply	LRN.

Equation	13-2.	Local	response	normalization

http://goo.gl/mWRBRp

bi	is	the	normalized	output	of	the	neuron	located	in	feature	map	i,	at	some	row	u	and	column	v	(note
that	in	this	equation	we	consider	only	neurons	located	at	this	row	and	column,	so	u	and	v	are	not
shown).

ai	is	the	activation	of	that	neuron	after	the	ReLU	step,	but	before	normalization.

k,	α,	β,	and	r	are	hyperparameters.	k	is	called	the	bias,	and	r	is	called	the	depth	radius.

fn	is	the	number	of	feature	maps.

For	example,	if	r	=	2	and	a	neuron	has	a	strong	activation,	it	will	inhibit	the	activation	of	the	neurons
located	in	the	feature	maps	immediately	above	and	below	its	own.

In	AlexNet,	the	hyperparameters	are	set	as	follows:	r	=	2,	α	=	0.00002,	β	=	0.75,	and	k	=	1.	This	step	can
be	implemented	using	TensorFlow’s	local_response_normalization()	operation.

A	variant	of	AlexNet	called	ZF	Net	was	developed	by	Matthew	Zeiler	and	Rob	Fergus	and	won	the	2013
ILSVRC	challenge.	It	is	essentially	AlexNet	with	a	few	tweaked	hyperparameters	(number	of	feature
maps,	kernel	size,	stride,	etc.).

GoogLeNet
The	GoogLeNet	architecture	was	developed	by	Christian	Szegedy	et	al.	from	Google	Research,10	and	it
won	the	ILSVRC	2014	challenge	by	pushing	the	top-5	error	rate	below	7%.	This	great	performance	came
in	large	part	from	the	fact	that	the	network	was	much	deeper	than	previous	CNNs	(see	Figure	13-11).	This
was	made	possible	by	sub-networks	called	inception	modules,11	which	allow	GoogLeNet	to	use
parameters	much	more	efficiently	than	previous	architectures:	GoogLeNet	actually	has	10	times	fewer
parameters	than	AlexNet	(roughly	6	million	instead	of	60	million).

Figure	13-10	shows	the	architecture	of	an	inception	module.	The	notation	“3	×	3	+	2(S)”	means	that	the
layer	uses	a	3	×	3	kernel,	stride	2,	and	SAME	padding.	The	input	signal	is	first	copied	and	fed	to	four
different	layers.	All	convolutional	layers	use	the	ReLU	activation	function.	Note	that	the	second	set	of
convolutional	layers	uses	different	kernel	sizes	(1	×	1,	3	×	3,	and	5	×	5),	allowing	them	to	capture
patterns	at	different	scales.	Also	note	that	every	single	layer	uses	a	stride	of	1	and	SAME	padding	(even
the	max	pooling	layer),	so	their	outputs	all	have	the	same	height	and	width	as	their	inputs.	This	makes	it
possible	to	concatenate	all	the	outputs	along	the	depth	dimension	in	the	final	depth	concat	layer	(i.e.,
stack	the	feature	maps	from	all	four	top	convolutional	layers).	This	concatenation	layer	can	be
implemented	in	TensorFlow	using	the	concat()	operation,	with	axis=3	(axis	3	is	the	depth).

Figure	13-10.	Inception	module

You	may	wonder	why	inception	modules	have	convolutional	layers	with	1	×	1	kernels.	Surely	these	layers

http://goo.gl/tCFzVs

cannot	capture	any	features	since	they	look	at	only	one	pixel	at	a	time?	In	fact,	these	layers	serve	two
purposes:

First,	they	are	configured	to	output	many	fewer	feature	maps	than	their	inputs,	so	they	serve	as
bottleneck	layers,	meaning	they	reduce	dimensionality.	This	is	particularly	useful	before	the	3	×	3
and	5	×	5	convolutions,	since	these	are	very	computationally	expensive	layers.

Second,	each	pair	of	convolutional	layers	([1	×	1,	3	×	3]	and	[1	×	1,	5	×	5])	acts	like	a	single,
powerful	convolutional	layer,	capable	of	capturing	more	complex	patterns.	Indeed,	instead	of
sweeping	a	simple	linear	classifier	across	the	image	(as	a	single	convolutional	layer	does),	this	pair
of	convolutional	layers	sweeps	a	two-layer	neural	network	across	the	image.

In	short,	you	can	think	of	the	whole	inception	module	as	a	convolutional	layer	on	steroids,	able	to	output
feature	maps	that	capture	complex	patterns	at	various	scales.

WARNING
The	number	of	convolutional	kernels	for	each	convolutional	layer	is	a	hyperparameter.	Unfortunately,	this	means	that	you	have
six	more	hyperparameters	to	tweak	for	every	inception	layer	you	add.

Now	let’s	look	at	the	architecture	of	the	GoogLeNet	CNN	(see	Figure	13-11).	It	is	so	deep	that	we	had	to
represent	it	in	three	columns,	but	GoogLeNet	is	actually	one	tall	stack,	including	nine	inception	modules
(the	boxes	with	the	spinning	tops)	that	actually	contain	three	layers	each.	The	number	of	feature	maps
output	by	each	convolutional	layer	and	each	pooling	layer	is	shown	before	the	kernel	size.	The	six
numbers	in	the	inception	modules	represent	the	number	of	feature	maps	output	by	each	convolutional	layer
in	the	module	(in	the	same	order	as	in	Figure	13-10).	Note	that	all	the	convolutional	layers	use	the	ReLU
activation	function.

Figure	13-11.	GoogLeNet	architecture

Let’s	go	through	this	network:
The	first	two	layers	divide	the	image’s	height	and	width	by	4	(so	its	area	is	divided	by	16),	to	reduce
the	computational	load.

Then	the	local	response	normalization	layer	ensures	that	the	previous	layers	learn	a	wide	variety	of
features	(as	discussed	earlier).

Two	convolutional	layers	follow,	where	the	first	acts	like	a	bottleneck	layer.	As	explained	earlier,
you	can	think	of	this	pair	as	a	single	smarter	convolutional	layer.

Again,	a	local	response	normalization	layer	ensures	that	the	previous	layers	capture	a	wide	variety

of	patterns.

Next	a	max	pooling	layer	reduces	the	image	height	and	width	by	2,	again	to	speed	up	computations.

Then	comes	the	tall	stack	of	nine	inception	modules,	interleaved	with	a	couple	max	pooling	layers	to
reduce	dimensionality	and	speed	up	the	net.

Next,	the	average	pooling	layer	uses	a	kernel	the	size	of	the	feature	maps	with	VALID	padding,
outputting	1	×	1	feature	maps:	this	surprising	strategy	is	called	global	average	pooling.	It	effectively
forces	the	previous	layers	to	produce	feature	maps	that	are	actually	confidence	maps	for	each	target
class	(since	other	kinds	of	features	would	be	destroyed	by	the	averaging	step).	This	makes	it
unnecessary	to	have	several	fully	connected	layers	at	the	top	of	the	CNN	(like	in	AlexNet),
considerably	reducing	the	number	of	parameters	in	the	network	and	limiting	the	risk	of	overfitting.

The	last	layers	are	self-explanatory:	dropout	for	regularization,	then	a	fully	connected	layer	with	a
softmax	activation	function	to	output	estimated	class	probabilities.

This	diagram	is	slightly	simplified:	the	original	GoogLeNet	architecture	also	included	two	auxiliary
classifiers	plugged	on	top	of	the	third	and	sixth	inception	modules.	They	were	both	composed	of	one
average	pooling	layer,	one	convolutional	layer,	two	fully	connected	layers,	and	a	softmax	activation	layer.
During	training,	their	loss	(scaled	down	by	70%)	was	added	to	the	overall	loss.	The	goal	was	to	fight	the
vanishing	gradients	problem	and	regularize	the	network.	However,	it	was	shown	that	their	effect	was
relatively	minor.

ResNet
Last	but	not	least,	the	winner	of	the	ILSVRC	2015	challenge	was	the	Residual	Network	(or	ResNet),
developed	by	Kaiming	He	et	al.,12	which	delivered	an	astounding	top-5	error	rate	under	3.6%,	using	an
extremely	deep	CNN	composed	of	152	layers.	The	key	to	being	able	to	train	such	a	deep	network	is	to	use
skip	connections	(also	called	shortcut	connections):	the	signal	feeding	into	a	layer	is	also	added	to	the
output	of	a	layer	located	a	bit	higher	up	the	stack.	Let’s	see	why	this	is	useful.

When	training	a	neural	network,	the	goal	is	to	make	it	model	a	target	function	h(x).	If	you	add	the	input	x
to	the	output	of	the	network	(i.e.,	you	add	a	skip	connection),	then	the	network	will	be	forced	to	model
f(x)	=	h(x)	–	x	rather	than	h(x).	This	is	called	residual	learning	(see	Figure	13-12).

Figure	13-12.	Residual	learning

When	you	initialize	a	regular	neural	network,	its	weights	are	close	to	zero,	so	the	network	just	outputs
values	close	to	zero.	If	you	add	a	skip	connection,	the	resulting	network	just	outputs	a	copy	of	its	inputs;	in
other	words,	it	initially	models	the	identity	function.	If	the	target	function	is	fairly	close	to	the	identity
function	(which	is	often	the	case),	this	will	speed	up	training	considerably.

Moreover,	if	you	add	many	skip	connections,	the	network	can	start	making	progress	even	if	several	layers
have	not	started	learning	yet	(see	Figure	13-13).	Thanks	to	skip	connections,	the	signal	can	easily	make	its
way	across	the	whole	network.	The	deep	residual	network	can	be	seen	as	a	stack	of	residual	units,	where
each	residual	unit	is	a	small	neural	network	with	a	skip	connection.

http://goo.gl/4puHU5

Figure	13-13.	Regular	deep	neural	network	(left)	and	deep	residual	network	(right)

Now	let’s	look	at	ResNet’s	architecture	(see	Figure	13-14).	It	is	actually	surprisingly	simple.	It	starts	and
ends	exactly	like	GoogLeNet	(except	without	a	dropout	layer),	and	in	between	is	just	a	very	deep	stack	of
simple	residual	units.	Each	residual	unit	is	composed	of	two	convolutional	layers,	with	Batch
Normalization	(BN)	and	ReLU	activation,	using	3	×	3	kernels	and	preserving	spatial	dimensions	(stride	1,
SAME	padding).

Figure	13-14.	ResNet	architecture

Note	that	the	number	of	feature	maps	is	doubled	every	few	residual	units,	at	the	same	time	as	their	height
and	width	are	halved	(using	a	convolutional	layer	with	stride	2).	When	this	happens	the	inputs	cannot	be
added	directly	to	the	outputs	of	the	residual	unit	since	they	don’t	have	the	same	shape	(for	example,	this
problem	affects	the	skip	connection	represented	by	the	dashed	arrow	in	Figure	13-14).	To	solve	this
problem,	the	inputs	are	passed	through	a	1	×	1	convolutional	layer	with	stride	2	and	the	right	number	of
output	feature	maps	(see	Figure	13-15).

Figure	13-15.	Skip	connection	when	changing	feature	map	size	and	depth

ResNet-34	is	the	ResNet	with	34	layers	(only	counting	the	convolutional	layers	and	the	fully	connected
layer)	containing	three	residual	units	that	output	64	feature	maps,	4	RUs	with	128	maps,	6	RUs	with	256
maps,	and	3	RUs	with	512	maps.

ResNets	deeper	than	that,	such	as	ResNet-152,	use	slightly	different	residual	units.	Instead	of	two	3	×	3
convolutional	layers	with	(say)	256	feature	maps,	they	use	three	convolutional	layers:	first	a	1	×	1
convolutional	layer	with	just	64	feature	maps	(4	times	less),	which	acts	a	a	bottleneck	layer	(as	discussed
already),	then	a	3	×	3	layer	with	64	feature	maps,	and	finally	another	1	×	1	convolutional	layer	with	256
feature	maps	(4	times	64)	that	restores	the	original	depth.	ResNet-152	contains	three	such	RUs	that	output
256	maps,	then	8	RUs	with	512	maps,	a	whopping	36	RUs	with	1,024	maps,	and	finally	3	RUs	with	2,048
maps.

As	you	can	see,	the	field	is	moving	rapidly,	with	all	sorts	of	architectures	popping	out	every	year.	One
clear	trend	is	that	CNNs	keep	getting	deeper	and	deeper.	They	are	also	getting	lighter,	requiring	fewer	and
fewer	parameters.	At	present,	the	ResNet	architecture	is	both	the	most	powerful	and	arguably	the
simplest,	so	it	is	really	the	one	you	should	probably	use	for	now,	but	keep	looking	at	the	ILSVRC
challenge	every	year.	The	2016	winners	were	the	Trimps-Soushen	team	from	China	with	an	astounding
2.99%	error	rate.	To	achieve	this	they	trained	combinations	of	the	previous	models	and	joined	them	into
an	ensemble.	Depending	on	the	task,	the	reduced	error	rate	may	or	may	not	be	worth	the	extra	complexity.

There	are	a	few	other	architectures	that	you	may	want	to	look	at,	in	particular	VGGNet13	(runner-up	of	the
ILSVRC	2014	challenge)	and	Inception-v414	(which	merges	the	ideas	of	GoogLeNet	and	ResNet	and
achieves	close	to	3%	top-5	error	rate	on	ImageNet	classification).

http://goo.gl/QcMjXQ
http://goo.gl/Ak2vBp

NOTE
There	is	really	nothing	special	about	implementing	the	various	CNN	architectures	we	just	discussed.	We	saw	earlier	how	to	build
all	the	individual	building	blocks,	so	now	all	you	need	is	to	assemble	them	to	create	the	desired	architecture.	We	will	build
ResNet-34	in	the	upcoming	exercises	and	you	will	find	full	working	code	in	the	Jupyter	notebooks.

TENSORFLOW	CONVOLUTION	OPERATIONS

TensorFlow	also	offers	a	few	other	kinds	of	convolutional	layers:

conv1d()	creates	a	convolutional	layer	for	1D	inputs.	This	is	useful,	for	example,	in	natural	language	processing,	where	a	sentence
may	be	represented	as	a	1D	array	of	words,	and	the	receptive	field	covers	a	few	neighboring	words.

conv3d()	creates	a	convolutional	layer	for	3D	inputs,	such	as	3D	PET	scan.

atrous_conv2d()	creates	an	atrous	convolutional	layer	(“à	trous”	is	French	for	“with	holes”).	This	is	equivalent	to	using	a
regular	convolutional	layer	with	a	filter	dilated	by	inserting	rows	and	columns	of	zeros	(i.e.,	holes).	For	example,	a	1	×	3	filter	equal
to	[[1,2,3]]	may	be	dilated	with	a	dilation	rate	of	4,	resulting	in	a	dilated	filter	[[1,	0,	0,	0,	2,	0,	0,	0,	3]].	This	allows
the	convolutional	layer	to	have	a	larger	receptive	field	at	no	computational	price	and	using	no	extra	parameters.

conv2d_transpose()	creates	a	transpose	convolutional	layer,	sometimes	called	a	deconvolutional	layer,15	which	upsamples
an	image.	It	does	so	by	inserting	zeros	between	the	inputs,	so	you	can	think	of	this	as	a	regular	convolutional	layer	using	a
fractional	stride.	Upsampling	is	useful,	for	example,	in	image	segmentation:	in	a	typical	CNN,	feature	maps	get	smaller	and	smaller
as	you	progress	through	the	network,	so	if	you	want	to	output	an	image	of	the	same	size	as	the	input,	you	need	an	upsampling	layer.

depthwise_conv2d()	creates	a	depthwise	convolutional	layer	that	applies	every	filter	to	every	individual	input	channel
independently.	Thus,	if	there	are	fn	filters	and	fn′	input	channels,	then	this	will	output	fn	×	fn′	feature	maps.

separable_conv2d()	creates	a	separable	convolutional	layer	that	first	acts	like	a	depthwise	convolutional	layer,	then	applies	a	1
×	1	convolutional	layer	to	the	resulting	feature	maps.	This	makes	it	possible	to	apply	filters	to	arbitrary	sets	of	inputs	channels.

Exercises
1.	 What	are	the	advantages	of	a	CNN	over	a	fully	connected	DNN	for	image	classification?

2.	 Consider	a	CNN	composed	of	three	convolutional	layers,	each	with	3	×	3	kernels,	a	stride	of	2,
and	SAME	padding.	The	lowest	layer	outputs	100	feature	maps,	the	middle	one	outputs	200,	and
the	top	one	outputs	400.	The	input	images	are	RGB	images	of	200	×	300	pixels.	What	is	the	total
number	of	parameters	in	the	CNN?	If	we	are	using	32-bit	floats,	at	least	how	much	RAM	will
this	network	require	when	making	a	prediction	for	a	single	instance?	What	about	when	training
on	a	mini-batch	of	50	images?

3.	 If	your	GPU	runs	out	of	memory	while	training	a	CNN,	what	are	five	things	you	could	try	to
solve	the	problem?

4.	 Why	would	you	want	to	add	a	max	pooling	layer	rather	than	a	convolutional	layer	with	the	same
stride?

5.	 When	would	you	want	to	add	a	local	response	normalization	layer?

6.	 Can	you	name	the	main	innovations	in	AlexNet,	compared	to	LeNet-5?	What	about	the	main
innovations	in	GoogLeNet	and	ResNet?

7.	 Build	your	own	CNN	and	try	to	achieve	the	highest	possible	accuracy	on	MNIST.

8.	 Classifying	large	images	using	Inception	v3.
a.	 Download	some	images	of	various	animals.	Load	them	in	Python,	for	example	using	the

matplotlib.image.mpimg.imread()	function.	Resize	and/or	crop	them	to	299	×	299
pixels,	and	ensure	that	they	have	just	three	channels	(RGB),	with	no	transparency	channel.

b.	 Download	the	latest	pretrained	Inception	v3	model:	the	checkpoint	is	available	at
https://goo.gl/nxSQvl.

c.	 Create	the	Inception	v3	model	by	calling	the	inception_v3()	function,	as	shown	below.
This	must	be	done	within	an	argument	scope	created	by	the	inception_v3_arg_scope()
function.	Also,	you	must	set	is_training=False	and	num_classes=1001	like	so:

from	tensorflow.contrib.slim.nets	import	inception

import	tensorflow.contrib.slim	as	slim

X	=	tf.placeholder(tf.float32,	shape=[None,	299,	299,	3])

with	slim.arg_scope(inception.inception_v3_arg_scope()):

				logits,	end_points	=	inception.inception_v3(

																													X,	num_classes=1001,	is_training=False)

predictions	=	end_points["Predictions"]

saver	=	tf.train.Saver()

d.	 Open	a	session	and	use	the	Saver	to	restore	the	pretrained	model	checkpoint	you
downloaded	earlier.

e.	 Run	the	model	to	classify	the	images	you	prepared.	Display	the	top	five	predictions	for	each

https://goo.gl/nxSQvl

image,	along	with	the	estimated	probability	(the	list	of	class	names	is	available	at
https://goo.gl/brXRtZ).	How	accurate	is	the	model?

9.	 Transfer	learning	for	large	image	classification.
a.	 Create	a	training	set	containing	at	least	100	images	per	class.	For	example,	you	could

classify	your	own	pictures	based	on	the	location	(beach,	mountain,	city,	etc.),	or
alternatively	you	can	just	use	an	existing	dataset,	such	as	the	flowers	dataset	or	MIT’s
places	dataset	(requires	registration,	and	it	is	huge).

b.	 Write	a	preprocessing	step	that	will	resize	and	crop	the	image	to	299	×	299,	with	some
randomness	for	data	augmentation.

c.	 Using	the	pretrained	Inception	v3	model	from	the	previous	exercise,	freeze	all	layers	up	to
the	bottleneck	layer	(i.e.,	the	last	layer	before	the	output	layer),	and	replace	the	output	layer
with	the	appropriate	number	of	outputs	for	your	new	classification	task	(e.g.,	the	flowers
dataset	has	five	mutually	exclusive	classes	so	the	output	layer	must	have	five	neurons	and
use	the	softmax	activation	function).

d.	 Split	your	dataset	into	a	training	set	and	a	test	set.	Train	the	model	on	the	training	set	and
evaluate	it	on	the	test	set.

10.	 Go	through	TensorFlow’s	DeepDream	tutorial.	It	is	a	fun	way	to	familiarize	yourself	with
various	ways	of	visualizing	the	patterns	learned	by	a	CNN,	and	to	generate	art	using	Deep
Learning.

Solutions	to	these	exercises	are	available	in	Appendix	A.

“Single	Unit	Activity	in	Striate	Cortex	of	Unrestrained	Cats,”	D.	Hubel	and	T.	Wiesel	(1958).

“Receptive	Fields	of	Single	Neurones	in	the	Cat’s	Striate	Cortex,”	D.	Hubel	and	T.	Wiesel	(1959).

“Receptive	Fields	and	Functional	Architecture	of	Monkey	Striate	Cortex,”	D.	Hubel	and	T.	Wiesel	(1968).

“Neocognitron:	A	Self-organizing	Neural	Network	Model	for	a	Mechanism	of	Pattern	Recognition	Unaffected	by	Shift	in	Position,”	K.
Fukushima	(1980).

“Gradient-Based	Learning	Applied	to	Document	Recognition,”	Y.	LeCun	et	al.	(1998).

A	convolution	is	a	mathematical	operation	that	slides	one	function	over	another	and	measures	the	integral	of	their	pointwise	multiplication.
It	has	deep	connections	with	the	Fourier	transform	and	the	Laplace	transform,	and	is	heavily	used	in	signal	processing.	Convolutional
layers	actually	use	cross-correlations,	which	are	very	similar	to	convolutions	(see	http://goo.gl/HAfxXd	for	more	details).

A	fully	connected	layer	with	150	×	100	neurons,	each	connected	to	all	150	×	100	×	3	inputs,	would	have	150

×	100

×	3	=	675	million	parameters!

1	MB	=	1,024	kB	=	1,024	×	1,024	bytes	=	1,024	×	1,024	×	8	bits.

“ImageNet	Classification	with	Deep	Convolutional	Neural	Networks,”	A.	Krizhevsky	et	al.	(2012).

“Going	Deeper	with	Convolutions,”	C.	Szegedy	et	al.	(2015).

In	the	2010	movie	Inception,	the	characters	keep	going	deeper	and	deeper	into	multiple	layers	of	dreams,	hence	the	name	of	these
modules.

“Deep	Residual	Learning	for	Image	Recognition,”	K.	He	(2015).

1

2

3

4

5

6

7

2

2

8

9

10

11

12

https://goo.gl/brXRtZ
https://goo.gl/EgJVXZ
http://places.csail.mit.edu/
https://goo.gl/4b2s6g
http://goo.gl/HAfxXd

“Very	Deep	Convolutional	Networks	for	Large-Scale	Image	Recognition,”	K.	Simonyan	and	A.	Zisserman	(2015).

“Inception-v4,	Inception-ResNet	and	the	Impact	of	Residual	Connections	on	Learning,”	C.	Szegedy	et	al.	(2016).

This	name	is	quite	misleading	since	this	layer	does	not	perform	a	deconvolution,	which	is	a	well-defined	mathematical	operation	(the
inverse	of	a	convolution).

13

14

15

Chapter	14.	Recurrent	Neural	Networks

The	batter	hits	the	ball.	You	immediately	start	running,	anticipating	the	ball’s	trajectory.	You	track	it	and
adapt	your	movements,	and	finally	catch	it	(under	a	thunder	of	applause).	Predicting	the	future	is	what	you
do	all	the	time,	whether	you	are	finishing	a	friend’s	sentence	or	anticipating	the	smell	of	coffee	at
breakfast.	In	this	chapter,	we	are	going	to	discuss	recurrent	neural	networks	(RNN),	a	class	of	nets	that
can	predict	the	future	(well,	up	to	a	point,	of	course).	They	can	analyze	time	series	data	such	as	stock
prices,	and	tell	you	when	to	buy	or	sell.	In	autonomous	driving	systems,	they	can	anticipate	car
trajectories	and	help	avoid	accidents.	More	generally,	they	can	work	on	sequences	of	arbitrary	lengths,
rather	than	on	fixed-sized	inputs	like	all	the	nets	we	have	discussed	so	far.	For	example,	they	can	take
sentences,	documents,	or	audio	samples	as	input,	making	them	extremely	useful	for	natural	language
processing	(NLP)	systems	such	as	automatic	translation,	speech-to-text,	or	sentiment	analysis	(e.g.,
reading	movie	reviews	and	extracting	the	rater’s	feeling	about	the	movie).

Moreover,	RNNs’	ability	to	anticipate	also	makes	them	capable	of	surprising	creativity.	You	can	ask	them
to	predict	which	are	the	most	likely	next	notes	in	a	melody,	then	randomly	pick	one	of	these	notes	and	play
it.	Then	ask	the	net	for	the	next	most	likely	notes,	play	it,	and	repeat	the	process	again	and	again.	Before
you	know	it,	your	net	will	compose	a	melody	such	as	the	one	produced	by	Google’s	Magenta	project.
Similarly,	RNNs	can	generate	sentences,	image	captions,	and	much	more.	The	result	is	not	exactly
Shakespeare	or	Mozart	yet,	but	who	knows	what	they	will	produce	a	few	years	from	now?

In	this	chapter,	we	will	look	at	the	fundamental	concepts	underlying	RNNs,	the	main	problem	they	face
(namely,	vanishing/exploding	gradients,	discussed	in	Chapter	11),	and	the	solutions	widely	used	to	fight
it:	LSTM	and	GRU	cells.	Along	the	way,	as	always,	we	will	show	how	to	implement	RNNs	using
TensorFlow.	Finally,	we	will	take	a	look	at	the	architecture	of	a	machine	translation	system.

http://goo.gl/IxIL1V
https://magenta.tensorflow.org/
http://goo.gl/onkPNd
http://goo.gl/Nwx7Kh

Recurrent	Neurons
Up	to	now	we	have	mostly	looked	at	feedforward	neural	networks,	where	the	activations	flow	only	in	one
direction,	from	the	input	layer	to	the	output	layer	(except	for	a	few	networks	in	Appendix	E).	A	recurrent
neural	network	looks	very	much	like	a	feedforward	neural	network,	except	it	also	has	connections
pointing	backward.	Let’s	look	at	the	simplest	possible	RNN,	composed	of	just	one	neuron	receiving
inputs,	producing	an	output,	and	sending	that	output	back	to	itself,	as	shown	in	Figure	14-1	(left).	At	each
time	step	t	(also	called	a	frame),	this	recurrent	neuron	receives	the	inputs	x(t)	as	well	as	its	own	output
from	the	previous	time	step,	y(t–1).	We	can	represent	this	tiny	network	against	the	time	axis,	as	shown	in
Figure	14-1	(right).	This	is	called	unrolling	the	network	through	time.

Figure	14-1.	A	recurrent	neuron	(left),	unrolled	through	time	(right)

You	can	easily	create	a	layer	of	recurrent	neurons.	At	each	time	step	t,	every	neuron	receives	both	the
input	vector	x(t)	and	the	output	vector	from	the	previous	time	step	y(t–1),	as	shown	in	Figure	14-2.	Note
that	both	the	inputs	and	outputs	are	vectors	now	(when	there	was	just	a	single	neuron,	the	output	was	a
scalar).

Figure	14-2.	A	layer	of	recurrent	neurons	(left),	unrolled	through	time	(right)

Each	recurrent	neuron	has	two	sets	of	weights:	one	for	the	inputs	x(t)	and	the	other	for	the	outputs	of	the
previous	time	step,	y(t–1).	Let’s	call	these	weight	vectors	wx	and	wy.	The	output	of	a	single	recurrent
neuron	can	be	computed	pretty	much	as	you	might	expect,	as	shown	in	Equation	14-1	(b	is	the	bias	term
and	ϕ(·)	is	the	activation	function,	e.g.,	ReLU1).

Equation	14-1.	Output	of	a	single	recurrent	neuron	for	a	single	instance

Just	like	for	feedforward	neural	networks,	we	can	compute	a	whole	layer’s	output	in	one	shot	for	a	whole
mini-batch	using	a	vectorized	form	of	the	previous	equation	(see	Equation	14-2).

Equation	14-2.	Outputs	of	a	layer	of	recurrent	neurons	for	all	instances	in	a	mini-batch

Y(t)	is	an	m	×	nneurons	matrix	containing	the	layer’s	outputs	at	time	step	t	for	each	instance	in	the	mini-
batch	(m	is	the	number	of	instances	in	the	mini-batch	and	nneurons	is	the	number	of	neurons).

X(t)	is	an	m	×	ninputs	matrix	containing	the	inputs	for	all	instances	(ninputs	is	the	number	of	input
features).

Wx	is	an	ninputs	×	nneurons	matrix	containing	the	connection	weights	for	the	inputs	of	the	current	time

step.

Wy	is	an	nneurons	×	nneurons	matrix	containing	the	connection	weights	for	the	outputs	of	the	previous
time	step.

The	weight	matrices	Wx	and	Wy	are	often	concatenated	into	a	single	weight	matrix	W	of	shape
(ninputs	+	nneurons)	×	nneurons	(see	the	second	line	of	Equation	14-2).

b	is	a	vector	of	size	nneurons	containing	each	neuron’s	bias	term.

Notice	that	Y(t)	is	a	function	of	X(t)	and	Y(t–1),	which	is	a	function	of	X(t–1)	and	Y(t–2),	which	is	a	function
of	X(t–2)	and	Y(t–3),	and	so	on.	This	makes	Y(t)	a	function	of	all	the	inputs	since	time	t	=	0	(that	is,	X(0),
X(1),	…,	X(t)).	At	the	first	time	step,	t	=	0,	there	are	no	previous	outputs,	so	they	are	typically	assumed	to
be	all	zeros.

Memory	Cells
Since	the	output	of	a	recurrent	neuron	at	time	step	t	is	a	function	of	all	the	inputs	from	previous	time	steps,
you	could	say	it	has	a	form	of	memory.	A	part	of	a	neural	network	that	preserves	some	state	across	time
steps	is	called	a	memory	cell	(or	simply	a	cell).	A	single	recurrent	neuron,	or	a	layer	of	recurrent
neurons,	is	a	very	basic	cell,	but	later	in	this	chapter	we	will	look	at	some	more	complex	and	powerful
types	of	cells.

In	general	a	cell’s	state	at	time	step	t,	denoted	h(t)	(the	“h”	stands	for	“hidden”),	is	a	function	of	some
inputs	at	that	time	step	and	its	state	at	the	previous	time	step:	h(t)	=	f(h(t–1),	x(t)).	Its	output	at	time	step	t,
denoted	y(t),	is	also	a	function	of	the	previous	state	and	the	current	inputs.	In	the	case	of	the	basic	cells	we
have	discussed	so	far,	the	output	is	simply	equal	to	the	state,	but	in	more	complex	cells	this	is	not	always
the	case,	as	shown	in	Figure	14-3.

Figure	14-3.	A	cell’s	hidden	state	and	its	output	may	be	different

Input	and	Output	Sequences
An	RNN	can	simultaneously	take	a	sequence	of	inputs	and	produce	a	sequence	of	outputs	(see	Figure	14-
4,	top-left	network).	For	example,	this	type	of	network	is	useful	for	predicting	time	series	such	as	stock
prices:	you	feed	it	the	prices	over	the	last	N	days,	and	it	must	output	the	prices	shifted	by	one	day	into	the
future	(i.e.,	from	N	–	1	days	ago	to	tomorrow).

Alternatively,	you	could	feed	the	network	a	sequence	of	inputs,	and	ignore	all	outputs	except	for	the	last
one	(see	the	top-right	network).	In	other	words,	this	is	a	sequence-to-vector	network.	For	example,	you
could	feed	the	network	a	sequence	of	words	corresponding	to	a	movie	review,	and	the	network	would
output	a	sentiment	score	(e.g.,	from	–1	[hate]	to	+1	[love]).

Conversely,	you	could	feed	the	network	a	single	input	at	the	first	time	step	(and	zeros	for	all	other	time
steps),	and	let	it	output	a	sequence	(see	the	bottom-left	network).	This	is	a	vector-to-sequence	network.
For	example,	the	input	could	be	an	image,	and	the	output	could	be	a	caption	for	that	image.

Lastly,	you	could	have	a	sequence-to-vector	network,	called	an	encoder,	followed	by	a	vector-to-
sequence	network,	called	a	decoder	(see	the	bottom-right	network).	For	example,	this	can	be	used	for
translating	a	sentence	from	one	language	to	another.	You	would	feed	the	network	a	sentence	in	one
language,	the	encoder	would	convert	this	sentence	into	a	single	vector	representation,	and	then	the
decoder	would	decode	this	vector	into	a	sentence	in	another	language.	This	two-step	model,	called	an
Encoder–Decoder,	works	much	better	than	trying	to	translate	on	the	fly	with	a	single	sequence-to-
sequence	RNN	(like	the	one	represented	on	the	top	left),	since	the	last	words	of	a	sentence	can	affect	the
first	words	of	the	translation,	so	you	need	to	wait	until	you	have	heard	the	whole	sentence	before
translating	it.

Figure	14-4.	Seq	to	seq	(top	left),	seq	to	vector	(top	right),	vector	to	seq	(bottom	left),	delayed	seq	to	seq	(bottom	right)

Sounds	promising,	so	let’s	start	coding!

Basic	RNNs	in	TensorFlow
First,	let’s	implement	a	very	simple	RNN	model,	without	using	any	of	TensorFlow’s	RNN	operations,	to
better	understand	what	goes	on	under	the	hood.	We	will	create	an	RNN	composed	of	a	layer	of	five
recurrent	neurons	(like	the	RNN	represented	in	Figure	14-2),	using	the	tanh	activation	function.	We	will
assume	that	the	RNN	runs	over	only	two	time	steps,	taking	input	vectors	of	size	3	at	each	time	step.	The
following	code	builds	this	RNN,	unrolled	through	two	time	steps:

n_inputs	=	3

n_neurons	=	5

X0	=	tf.placeholder(tf.float32,	[None,	n_inputs])

X1	=	tf.placeholder(tf.float32,	[None,	n_inputs])

Wx	=	tf.Variable(tf.random_normal(shape=[n_inputs,	n_neurons],dtype=tf.float32))

Wy	=	tf.Variable(tf.random_normal(shape=[n_neurons,n_neurons],dtype=tf.float32))

b	=	tf.Variable(tf.zeros([1,	n_neurons],	dtype=tf.float32))

Y0	=	tf.tanh(tf.matmul(X0,	Wx)	+	b)

Y1	=	tf.tanh(tf.matmul(Y0,	Wy)	+	tf.matmul(X1,	Wx)	+	b)

init	=	tf.global_variables_initializer()

This	network	looks	much	like	a	two-layer	feedforward	neural	network,	with	a	few	twists:	first,	the	same
weights	and	bias	terms	are	shared	by	both	layers,	and	second,	we	feed	inputs	at	each	layer,	and	we	get
outputs	from	each	layer.	To	run	the	model,	we	need	to	feed	it	the	inputs	at	both	time	steps,	like	so:

import	numpy	as	np

#	Mini-batch:								instance	0,instance	1,instance	2,instance	3

X0_batch	=	np.array([[0,	1,	2],	[3,	4,	5],	[6,	7,	8],	[9,	0,	1]])	#	t	=	0

X1_batch	=	np.array([[9,	8,	7],	[0,	0,	0],	[6,	5,	4],	[3,	2,	1]])	#	t	=	1

with	tf.Session()	as	sess:

				init.run()

				Y0_val,	Y1_val	=	sess.run([Y0,	Y1],	feed_dict={X0:	X0_batch,	X1:	X1_batch})

This	mini-batch	contains	four	instances,	each	with	an	input	sequence	composed	of	exactly	two	inputs.	At
the	end,	Y0_val	and	Y1_val	contain	the	outputs	of	the	network	at	both	time	steps	for	all	neurons	and	all
instances	in	the	mini-batch:

>>>	print(Y0_val)		#	output	at	t	=	0

[[-0.2964572			0.82874775	-0.34216955	-0.75720584		0.19011548]		#	instance	0

	[-0.12842922		0.99981797		0.84704727	-0.99570125		0.38665548]		#	instance	1

	[0.04731077		0.99999976		0.99330056	-0.999933				0.55339795]		#	instance	2

	[0.70323634		0.99309105		0.99909431	-0.85363263		0.7472108]]	#	instance	3

>>>	print(Y1_val)		#	output	at	t	=	1

[[0.51955646		1.										0.99999022	-0.99984968	-0.24616946]		#	instance	0

	[-0.70553327	-0.11918639		0.48885304		0.08917919	-0.26579669]		#	instance	1

	[-0.32477224		0.99996376		0.99933046	-0.99711186		0.10981458]		#	instance	2

	[-0.43738723		0.91517633		0.97817528	-0.91763324		0.11047263]]	#	instance	3

That	wasn’t	too	hard,	but	of	course	if	you	want	to	be	able	to	run	an	RNN	over	100	time	steps,	the	graph	is
going	to	be	pretty	big.	Now	let’s	look	at	how	to	create	the	same	model	using	TensorFlow’s	RNN
operations.

Static	Unrolling	Through	Time
The	static_rnn()	function	creates	an	unrolled	RNN	network	by	chaining	cells.	The	following	code
creates	the	exact	same	model	as	the	previous	one:

X0	=	tf.placeholder(tf.float32,	[None,	n_inputs])

X1	=	tf.placeholder(tf.float32,	[None,	n_inputs])

basic_cell	=	tf.contrib.rnn.BasicRNNCell(num_units=n_neurons)

output_seqs,	states	=	tf.contrib.rnn.static_rnn(

																										basic_cell,	[X0,	X1],	dtype=tf.float32)

Y0,	Y1	=	output_seqs

First	we	create	the	input	placeholders,	as	before.	Then	we	create	a	BasicRNNCell,	which	you	can	think
of	as	a	factory	that	creates	copies	of	the	cell	to	build	the	unrolled	RNN	(one	for	each	time	step).	Then	we
call	static_rnn(),	giving	it	the	cell	factory	and	the	input	tensors,	and	telling	it	the	data	type	of	the	inputs
(this	is	used	to	create	the	initial	state	matrix,	which	by	default	is	full	of	zeros).	The	static_rnn()
function	calls	the	cell	factory’s	__call__()	function	once	per	input,	creating	two	copies	of	the	cell	(each
containing	a	layer	of	five	recurrent	neurons),	with	shared	weights	and	bias	terms,	and	it	chains	them	just
like	we	did	earlier.	The	static_rnn()	function	returns	two	objects.	The	first	is	a	Python	list	containing
the	output	tensors	for	each	time	step.	The	second	is	a	tensor	containing	the	final	states	of	the	network.
When	you	are	using	basic	cells,	the	final	state	is	simply	equal	to	the	last	output.

If	there	were	50	time	steps,	it	would	not	be	very	convenient	to	have	to	define	50	input	placeholders	and
50	output	tensors.	Moreover,	at	execution	time	you	would	have	to	feed	each	of	the	50	placeholders	and
manipulate	the	50	outputs.	Let’s	simplify	this.	The	following	code	builds	the	same	RNN	again,	but	this
time	it	takes	a	single	input	placeholder	of	shape	[None,	n_steps,	n_inputs]	where	the	first	dimension
is	the	mini-batch	size.	Then	it	extracts	the	list	of	input	sequences	for	each	time	step.	X_seqs	is	a	Python
list	of	n_steps	tensors	of	shape	[None,	n_inputs],	where	once	again	the	first	dimension	is	the	mini-
batch	size.	To	do	this,	we	first	swap	the	first	two	dimensions	using	the	transpose()	function,	so	that	the
time	steps	are	now	the	first	dimension.	Then	we	extract	a	Python	list	of	tensors	along	the	first	dimension
(i.e.,	one	tensor	per	time	step)	using	the	unstack()	function.	The	next	two	lines	are	the	same	as	before.
Finally,	we	merge	all	the	output	tensors	into	a	single	tensor	using	the	stack()	function,	and	we	swap	the
first	two	dimensions	to	get	a	final	outputs	tensor	of	shape	[None,	n_steps,	n_neurons]	(again	the
first	dimension	is	the	mini-batch	size).

X	=	tf.placeholder(tf.float32,	[None,	n_steps,	n_inputs])

X_seqs	=	tf.unstack(tf.transpose(X,	perm=[1,	0,	2]))

basic_cell	=	tf.contrib.rnn.BasicRNNCell(num_units=n_neurons)

output_seqs,	states	=	tf.contrib.rnn.static_rnn(

																										basic_cell,	X_seqs,	dtype=tf.float32)

outputs	=	tf.transpose(tf.stack(output_seqs),	perm=[1,	0,	2])

Now	we	can	run	the	network	by	feeding	it	a	single	tensor	that	contains	all	the	mini-batch	sequences:

X_batch	=	np.array([

									#	t	=	0					t	=	1

								[[0,	1,	2],	[9,	8,	7]],	#	instance	0

								[[3,	4,	5],	[0,	0,	0]],	#	instance	1

								[[6,	7,	8],	[6,	5,	4]],	#	instance	2

								[[9,	0,	1],	[3,	2,	1]],	#	instance	3

])

with	tf.Session()	as	sess:

				init.run()

				outputs_val	=	outputs.eval(feed_dict={X:	X_batch})

And	we	get	a	single	outputs_val	tensor	for	all	instances,	all	time	steps,	and	all	neurons:

>>>	print(outputs_val)

[[[-0.2964572			0.82874775	-0.34216955	-0.75720584		0.19011548]

		[0.51955646		1.										0.99999022	-0.99984968	-0.24616946]]

	[[-0.12842922		0.99981797		0.84704727	-0.99570125		0.38665548]

		[-0.70553327	-0.11918639		0.48885304		0.08917919	-0.26579669]]

	[[0.04731077		0.99999976		0.99330056	-0.999933				0.55339795]

		[-0.32477224		0.99996376		0.99933046	-0.99711186		0.10981458]]

	[[0.70323634		0.99309105		0.99909431	-0.85363263		0.7472108]

		[-0.43738723		0.91517633		0.97817528	-0.91763324		0.11047263]]]

However,	this	approach	still	builds	a	graph	containing	one	cell	per	time	step.	If	there	were	50	time	steps,
the	graph	would	look	pretty	ugly.	It	is	a	bit	like	writing	a	program	without	ever	using	loops	(e.g.,	Y0=f(0,
X0);	Y1=f(Y0,	X1);	Y2=f(Y1,	X2);	...;	Y50=f(Y49,	X50)).	With	such	as	large	graph,	you	may
even	get	out-of-memory	(OOM)	errors	during	backpropagation	(especially	with	the	limited	memory	of
GPU	cards),	since	it	must	store	all	tensor	values	during	the	forward	pass	so	it	can	use	them	to	compute
gradients	during	the	reverse	pass.

Fortunately,	there	is	a	better	solution:	the	dynamic_rnn()	function.

Dynamic	Unrolling	Through	Time
The	dynamic_rnn()	function	uses	a	while_loop()	operation	to	run	over	the	cell	the	appropriate	number
of	times,	and	you	can	set	swap_memory=True	if	you	want	it	to	swap	the	GPU’s	memory	to	the	CPU’s
memory	during	backpropagation	to	avoid	OOM	errors.	Conveniently,	it	also	accepts	a	single	tensor	for	all
inputs	at	every	time	step	(shape	[None,	n_steps,	n_inputs])	and	it	outputs	a	single	tensor	for	all
outputs	at	every	time	step	(shape	[None,	n_steps,	n_neurons]);	there	is	no	need	to	stack,	unstack,	or
transpose.	The	following	code	creates	the	same	RNN	as	earlier	using	the	dynamic_rnn()	function.	It’s	so
much	nicer!

X	=	tf.placeholder(tf.float32,	[None,	n_steps,	n_inputs])

basic_cell	=	tf.contrib.rnn.BasicRNNCell(num_units=n_neurons)

outputs,	states	=	tf.nn.dynamic_rnn(basic_cell,	X,	dtype=tf.float32)

NOTE
During	backpropagation,	the	while_loop()	operation	does	the	appropriate	magic:	it	stores	the	tensor	values	for	each	iteration
during	the	forward	pass	so	it	can	use	them	to	compute	gradients	during	the	reverse	pass.

Handling	Variable	Length	Input	Sequences
So	far	we	have	used	only	fixed-size	input	sequences	(all	exactly	two	steps	long).	What	if	the	input
sequences	have	variable	lengths	(e.g.,	like	sentences)?	In	this	case	you	should	set	the	sequence_length
parameter	when	calling	the	dynamic_rnn()	(or	static_rnn())	function;	it	must	be	a	1D	tensor
indicating	the	length	of	the	input	sequence	for	each	instance.	For	example:

seq_length	=	tf.placeholder(tf.int32,	[None])

[...]

outputs,	states	=	tf.nn.dynamic_rnn(basic_cell,	X,	dtype=tf.float32,

																																				sequence_length=seq_length)

For	example,	suppose	the	second	input	sequence	contains	only	one	input	instead	of	two.	It	must	be	padded
with	a	zero	vector	in	order	to	fit	in	the	input	tensor	X	(because	the	input	tensor’s	second	dimension	is	the
size	of	the	longest	sequence	—	i.e.,	2).

X_batch	=	np.array([

								#	step	0					step	1

								[[0,	1,	2],	[9,	8,	7]],	#	instance	0

								[[3,	4,	5],	[0,	0,	0]],	#	instance	1	(padded	with	a	zero	vector)

								[[6,	7,	8],	[6,	5,	4]],	#	instance	2

								[[9,	0,	1],	[3,	2,	1]],	#	instance	3

])

seq_length_batch	=	np.array([2,	1,	2,	2])

Of	course,	you	now	need	to	feed	values	for	both	placeholders	X	and	seq_length:

with	tf.Session()	as	sess:

				init.run()

				outputs_val,	states_val	=	sess.run(

								[outputs,	states],	feed_dict={X:	X_batch,	seq_length:	seq_length_batch})

Now	the	RNN	outputs	zero	vectors	for	every	time	step	past	the	input	sequence	length	(look	at	the	second
instance’s	output	for	the	second	time	step):

>>>	print(outputs_val)

[[[-0.2964572			0.82874775	-0.34216955	-0.75720584		0.19011548]

		[0.51955646		1.										0.99999022	-0.99984968	-0.24616946]]		#	final	state

	[[-0.12842922		0.99981797		0.84704727	-0.99570125		0.38665548]			#	final	state

		[0.										0.										0.										0.										0.]]		#	zero	vector

	[[0.04731077		0.99999976		0.99330056	-0.999933				0.55339795]

		[-0.32477224		0.99996376		0.99933046	-0.99711186		0.10981458]]		#	final	state

	[[0.70323634		0.99309105		0.99909431	-0.85363263		0.7472108]

		[-0.43738723		0.91517633		0.97817528	-0.91763324		0.11047263]]]	#	final	state

Moreover,	the	states	tensor	contains	the	final	state	of	each	cell	(excluding	the	zero	vectors):

>>>	print(states_val)

[[0.51955646		1.										0.99999022	-0.99984968	-0.24616946]				#	t	=	1

	[-0.12842922		0.99981797		0.84704727	-0.99570125		0.38665548]				#	t	=	0	!!!

	[-0.32477224		0.99996376		0.99933046	-0.99711186		0.10981458]				#	t	=	1

	[-0.43738723		0.91517633		0.97817528	-0.91763324		0.11047263]]			#	t	=	1

Handling	Variable-Length	Output	Sequences
What	if	the	output	sequences	have	variable	lengths	as	well?	If	you	know	in	advance	what	length	each
sequence	will	have	(for	example	if	you	know	that	it	will	be	the	same	length	as	the	input	sequence),	then
you	can	set	the	sequence_length	parameter	as	described	above.	Unfortunately,	in	general	this	will	not
be	possible:	for	example,	the	length	of	a	translated	sentence	is	generally	different	from	the	length	of	the
input	sentence.	In	this	case,	the	most	common	solution	is	to	define	a	special	output	called	an	end-of-
sequence	token	(EOS	token).	Any	output	past	the	EOS	should	be	ignored	(we	will	discuss	this	later	in
this	chapter).

Okay,	now	you	know	how	to	build	an	RNN	network	(or	more	precisely	an	RNN	network	unrolled	through
time).	But	how	do	you	train	it?

Training	RNNs
To	train	an	RNN,	the	trick	is	to	unroll	it	through	time	(like	we	just	did)	and	then	simply	use	regular
backpropagation	(see	Figure	14-5).	This	strategy	is	called	backpropagation	through	time	(BPTT).

Figure	14-5.	Backpropagation	through	time

Just	like	in	regular	backpropagation,	there	is	a	first	forward	pass	through	the	unrolled	network
(represented	by	the	dashed	arrows);	then	the	output	sequence	is	evaluated	using	a	cost	function	

	(where	tmin	and	tmax	are	the	first	and	last	output	time	steps,	not	counting	the
ignored	outputs),	and	the	gradients	of	that	cost	function	are	propagated	backward	through	the	unrolled
network	(represented	by	the	solid	arrows);	and	finally	the	model	parameters	are	updated	using	the
gradients	computed	during	BPTT.	Note	that	the	gradients	flow	backward	through	all	the	outputs	used	by
the	cost	function,	not	just	through	the	final	output	(for	example,	in	Figure	14-5	the	cost	function	is
computed	using	the	last	three	outputs	of	the	network,	Y(2),	Y(3),	and	Y(4),	so	gradients	flow	through	these
three	outputs,	but	not	through	Y(0)	and	Y(1)).	Moreover,	since	the	same	parameters	W	and	b	are	used	at
each	time	step,	backpropagation	will	do	the	right	thing	and	sum	over	all	time	steps.

Training	a	Sequence	Classifier
Let’s	train	an	RNN	to	classify	MNIST	images.	A	convolutional	neural	network	would	be	better	suited	for
image	classification	(see	Chapter	13),	but	this	makes	for	a	simple	example	that	you	are	already	familiar
with.	We	will	treat	each	image	as	a	sequence	of	28	rows	of	28	pixels	each	(since	each	MNIST	image	is
28	×	28	pixels).	We	will	use	cells	of	150	recurrent	neurons,	plus	a	fully	connected	layer	containing	10
neurons	(one	per	class)	connected	to	the	output	of	the	last	time	step,	followed	by	a	softmax	layer	(see
Figure	14-6).

Figure	14-6.	Sequence	classifier

The	construction	phase	is	quite	straightforward;	it’s	pretty	much	the	same	as	the	MNIST	classifier	we
built	in	Chapter	10	except	that	an	unrolled	RNN	replaces	the	hidden	layers.	Note	that	the	fully	connected
layer	is	connected	to	the	states	tensor,	which	contains	only	the	final	state	of	the	RNN	(i.e.,	the	28th

output).	Also	note	that	y	is	a	placeholder	for	the	target	classes.

from	tensorflow.contrib.layers	import	fully_connected

n_steps	=	28

n_inputs	=	28

n_neurons	=	150

n_outputs	=	10

learning_rate	=	0.001

X	=	tf.placeholder(tf.float32,	[None,	n_steps,	n_inputs])

y	=	tf.placeholder(tf.int32,	[None])

basic_cell	=	tf.contrib.rnn.BasicRNNCell(num_units=n_neurons)

outputs,	states	=	tf.nn.dynamic_rnn(basic_cell,	X,	dtype=tf.float32)

logits	=	fully_connected(states,	n_outputs,	activation_fn=None)

xentropy	=	tf.nn.sparse_softmax_cross_entropy_with_logits(

															labels=y,	logits=logits)

loss	=	tf.reduce_mean(xentropy)

optimizer	=	tf.train.AdamOptimizer(learning_rate=learning_rate)

training_op	=	optimizer.minimize(loss)

correct	=	tf.nn.in_top_k(logits,	y,	1)

accuracy	=	tf.reduce_mean(tf.cast(correct,	tf.float32))

init	=	tf.global_variables_initializer()

Now	let’s	load	the	MNIST	data	and	reshape	the	test	data	to	[batch_size,	n_steps,	n_inputs]	as	is
expected	by	the	network.	We	will	take	care	of	reshaping	the	training	data	in	a	moment.

from	tensorflow.examples.tutorials.mnist	import	input_data

mnist	=	input_data.read_data_sets("/tmp/data/")

X_test	=	mnist.test.images.reshape((-1,	n_steps,	n_inputs))

y_test	=	mnist.test.labels

Now	we	are	ready	to	train	the	RNN.	The	execution	phase	is	exactly	the	same	as	for	the	MNIST	classifier
in	Chapter	10,	except	that	we	reshape	each	training	batch	before	feeding	it	to	the	network.

n_epochs	=	100

batch_size	=	150

with	tf.Session()	as	sess:

				init.run()

				for	epoch	in	range(n_epochs):

								for	iteration	in	range(mnist.train.num_examples	//	batch_size):

												X_batch,	y_batch	=	mnist.train.next_batch(batch_size)

												X_batch	=	X_batch.reshape((-1,	n_steps,	n_inputs))

												sess.run(training_op,	feed_dict={X:	X_batch,	y:	y_batch})

								acc_train	=	accuracy.eval(feed_dict={X:	X_batch,	y:	y_batch})

								acc_test	=	accuracy.eval(feed_dict={X:	X_test,	y:	y_test})

								print(epoch,	"Train	accuracy:",	acc_train,	"Test	accuracy:",	acc_test)

The	output	should	look	like	this:

0	Train	accuracy:	0.713333	Test	accuracy:	0.7299

1	Train	accuracy:	0.766667	Test	accuracy:	0.7977

...

98	Train	accuracy:	0.986667	Test	accuracy:	0.9777

99	Train	accuracy:	0.986667	Test	accuracy:	0.9809

We	get	over	98%	accuracy	—	not	bad!	Plus	you	would	certainly	get	a	better	result	by	tuning	the
hyperparameters,	initializing	the	RNN	weights	using	He	initialization,	training	longer,	or	adding	a	bit	of
regularization	(e.g.,	dropout).

TIP
You	can	specify	an	initializer	for	the	RNN	by	wrapping	its	construction	code	in	a	variable	scope	(e.g.,	use
variable_scope("rnn",	initializer=variance_scaling_initializer())	to	use	He	initialization).

Training	to	Predict	Time	Series
Now	let’s	take	a	look	at	how	to	handle	time	series,	such	as	stock	prices,	air	temperature,	brain	wave
patterns,	and	so	on.	In	this	section	we	will	train	an	RNN	to	predict	the	next	value	in	a	generated	time
series.	Each	training	instance	is	a	randomly	selected	sequence	of	20	consecutive	values	from	the	time
series,	and	the	target	sequence	is	the	same	as	the	input	sequence,	except	it	is	shifted	by	one	time	step	into
the	future	(see	Figure	14-7).

Figure	14-7.	Time	series	(left),	and	a	training	instance	from	that	series	(right)

First,	let’s	create	the	RNN.	It	will	contain	100	recurrent	neurons	and	we	will	unroll	it	over	20	time	steps
since	each	training	instance	will	be	20	inputs	long.	Each	input	will	contain	only	one	feature	(the	value	at
that	time).	The	targets	are	also	sequences	of	20	inputs,	each	containing	a	single	value.	The	code	is	almost
the	same	as	earlier:

n_steps	=	20

n_inputs	=	1

n_neurons	=	100

n_outputs	=	1

X	=	tf.placeholder(tf.float32,	[None,	n_steps,	n_inputs])

y	=	tf.placeholder(tf.float32,	[None,	n_steps,	n_outputs])

cell	=	tf.contrib.rnn.BasicRNNCell(num_units=n_neurons,	activation=tf.nn.relu)

outputs,	states	=	tf.nn.dynamic_rnn(cell,	X,	dtype=tf.float32)

NOTE
In	general	you	would	have	more	than	just	one	input	feature.	For	example,	if	you	were	trying	to	predict	stock	prices,	you	would
likely	have	many	other	input	features	at	each	time	step,	such	as	prices	of	competing	stocks,	ratings	from	analysts,	or	any	other
feature	that	might	help	the	system	make	its	predictions.

At	each	time	step	we	now	have	an	output	vector	of	size	100.	But	what	we	actually	want	is	a	single	output
value	at	each	time	step.	The	simplest	solution	is	to	wrap	the	cell	in	an	OutputProjectionWrapper.	A
cell	wrapper	acts	like	a	normal	cell,	proxying	every	method	call	to	an	underlying	cell,	but	it	also	adds

some	functionality.	The	OutputProjectionWrapper	adds	a	fully	connected	layer	of	linear	neurons	(i.e.,
without	any	activation	function)	on	top	of	each	output	(but	it	does	not	affect	the	cell	state).	All	these	fully
connected	layers	share	the	same	(trainable)	weights	and	bias	terms.	The	resulting	RNN	is	represented	in
Figure	14-8.

Figure	14-8.	RNN	cells	using	output	projections

Wrapping	a	cell	is	quite	easy.	Let’s	tweak	the	preceding	code	by	wrapping	the	BasicRNNCell	into	an
OutputProjectionWrapper:

cell	=	tf.contrib.rnn.OutputProjectionWrapper(

				tf.contrib.rnn.BasicRNNCell(num_units=n_neurons,	activation=tf.nn.relu),

				output_size=n_outputs)

So	far,	so	good.	Now	we	need	to	define	the	cost	function.	We	will	use	the	Mean	Squared	Error	(MSE),	as
we	did	in	previous	regression	tasks.	Next	we	will	create	an	Adam	optimizer,	the	training	op,	and	the
variable	initialization	op,	as	usual:

learning_rate	=	0.001

loss	=	tf.reduce_mean(tf.square(outputs	-	y))

optimizer	=	tf.train.AdamOptimizer(learning_rate=learning_rate)

training_op	=	optimizer.minimize(loss)

init	=	tf.global_variables_initializer()

Now	on	to	the	execution	phase:

n_iterations	=	10000

batch_size	=	50

with	tf.Session()	as	sess:

				init.run()

				for	iteration	in	range(n_iterations):

								X_batch,	y_batch	=	[...]		#	fetch	the	next	training	batch

								sess.run(training_op,	feed_dict={X:	X_batch,	y:	y_batch})

								if	iteration	%	100	==	0:

												mse	=	loss.eval(feed_dict={X:	X_batch,	y:	y_batch})

												print(iteration,	"\tMSE:",	mse)

The	program’s	output	should	look	like	this:

0				MSE:	379.586

100		MSE:	14.58426

200		MSE:	7.14066

300		MSE:	3.98528

400		MSE:	2.00254

[...]

Once	the	model	is	trained,	you	can	make	predictions:

X_new	=	[...]		#	New	sequences

y_pred	=	sess.run(outputs,	feed_dict={X:	X_new})

Figure	14-9	shows	the	predicted	sequence	for	the	instance	we	looked	at	earlier	(in	Figure	14-7),	after	just
1,000	training	iterations.

Figure	14-9.	Time	series	prediction

Although	using	an	OutputProjectionWrapper	is	the	simplest	solution	to	reduce	the	dimensionality	of
the	RNN’s	output	sequences	down	to	just	one	value	per	time	step	(per	instance),	it	is	not	the	most
efficient.	There	is	a	trickier	but	more	efficient	solution:	you	can	reshape	the	RNN	outputs	from
[batch_size,	n_steps,	n_neurons]	to	[batch_size	*	n_steps,	n_neurons],	then	apply	a	single
fully	connected	layer	with	the	appropriate	output	size	(in	our	case	just	1),	which	will	result	in	an	output
tensor	of	shape	[batch_size	*	n_steps,	n_outputs],	and	then	reshape	this	tensor	to	[batch_size,
n_steps,	n_outputs].	These	operations	are	represented	in	Figure	14-10.

Figure	14-10.	Stack	all	the	outputs,	apply	the	projection,	then	unstack	the	result

To	implement	this	solution,	we	first	revert	to	a	basic	cell,	without	the	OutputProjectionWrapper:

cell	=	tf.contrib.rnn.BasicRNNCell(num_units=n_neurons,	activation=tf.nn.relu)

rnn_outputs,	states	=	tf.nn.dynamic_rnn(cell,	X,	dtype=tf.float32)

Then	we	stack	all	the	outputs	using	the	reshape()	operation,	apply	the	fully	connected	linear	layer
(without	using	any	activation	function;	this	is	just	a	projection),	and	finally	unstack	all	the	outputs,	again
using	reshape():

stacked_rnn_outputs	=	tf.reshape(rnn_outputs,	[-1,	n_neurons])

stacked_outputs	=	fully_connected(stacked_rnn_outputs,	n_outputs,

																																		activation_fn=None)

outputs	=	tf.reshape(stacked_outputs,	[-1,	n_steps,	n_outputs])

The	rest	of	the	code	is	the	same	as	earlier.	This	can	provide	a	significant	speed	boost	since	there	is	just
one	fully	connected	layer	instead	of	one	per	time	step.

Creative	RNN
Now	that	we	have	a	model	that	can	predict	the	future,	we	can	use	it	to	generate	some	creative	sequences,
as	explained	at	the	beginning	of	the	chapter.	All	we	need	is	to	provide	it	a	seed	sequence	containing
n_steps	values	(e.g.,	full	of	zeros),	use	the	model	to	predict	the	next	value,	append	this	predicted	value
to	the	sequence,	feed	the	last	n_steps	values	to	the	model	to	predict	the	next	value,	and	so	on.	This
process	generates	a	new	sequence	that	has	some	resemblance	to	the	original	time	series	(see	Figure	14-
11).

sequence	=	[0.]	*	n_steps

for	iteration	in	range(300):

				X_batch	=	np.array(sequence[-n_steps:]).reshape(1,	n_steps,	1)

				y_pred	=	sess.run(outputs,	feed_dict={X:	X_batch})

				sequence.append(y_pred[0,	-1,	0])

Figure	14-11.	Creative	sequences,	seeded	with	zeros	(left)	or	with	an	instance	(right)

Now	you	can	try	to	feed	all	your	John	Lennon	albums	to	an	RNN	and	see	if	it	can	generate	the	next
“Imagine.”	However,	you	will	probably	need	a	much	more	powerful	RNN,	with	more	neurons,	and	also
much	deeper.	Let’s	look	at	deep	RNNs	now.

Deep	RNNs
It	is	quite	common	to	stack	multiple	layers	of	cells,	as	shown	in	Figure	14-12.	This	gives	you	a	deep
RNN.

Figure	14-12.	Deep	RNN	(left),	unrolled	through	time	(right)

To	implement	a	deep	RNN	in	TensorFlow,	you	can	create	several	cells	and	stack	them	into	a
MultiRNNCell.	In	the	following	code	we	stack	three	identical	cells	(but	you	could	very	well	use	various
kinds	of	cells	with	a	different	number	of	neurons):

n_neurons	=	100

n_layers	=	3

basic_cell	=	tf.contrib.rnn.BasicRNNCell(num_units=n_neurons)

multi_layer_cell	=	tf.contrib.rnn.MultiRNNCell([basic_cell]	*	n_layers)

outputs,	states	=	tf.nn.dynamic_rnn(multi_layer_cell,	X,	dtype=tf.float32)

That’s	all	there	is	to	it!	The	states	variable	is	a	tuple	containing	one	tensor	per	layer,	each	representing
the	final	state	of	that	layer’s	cell	(with	shape	[batch_size,	n_neurons]).	If	you	set
state_is_tuple=False	when	creating	the	MultiRNNCell,	then	states	becomes	a	single	tensor
containing	the	states	from	every	layer,	concatenated	along	the	column	axis	(i.e.,	its	shape	is
[batch_size,	n_layers	*	n_neurons]).	Note	that	before	TensorFlow	0.11.0,	this	behavior	was	the
default.

Distributing	a	Deep	RNN	Across	Multiple	GPUs
Chapter	12	pointed	out	that	we	can	efficiently	distribute	deep	RNNs	across	multiple	GPUs	by	pinning
each	layer	to	a	different	GPU	(see	Figure	12-16).	However,	if	you	try	to	create	each	cell	in	a	different
device()	block,	it	will	not	work:

with	tf.device("/gpu:0"):		#	BAD!	This	is	ignored.

				layer1	=	tf.contrib.rnn.BasicRNNCell(num_units=n_neurons)

with	tf.device("/gpu:1"):		#	BAD!	Ignored	again.

				layer2	=	tf.contrib.rnn.BasicRNNCell(num_units=n_neurons)

This	fails	because	a	BasicRNNCell	is	a	cell	factory,	not	a	cell	per	se	(as	mentioned	earlier);	no	cells	get
created	when	you	create	the	factory,	and	thus	no	variables	do	either.	The	device	block	is	simply	ignored.
The	cells	actually	get	created	later.	When	you	call	dynamic_rnn(),	it	calls	the	MultiRNNCell,	which
calls	each	individual	BasicRNNCell,	which	create	the	actual	cells	(including	their	variables).
Unfortunately,	none	of	these	classes	provide	any	way	to	control	the	devices	on	which	the	variables	get
created.	If	you	try	to	put	the	dynamic_rnn()	call	within	a	device	block,	the	whole	RNN	gets	pinned	to	a
single	device.	So	are	you	stuck?	Fortunately	not!	The	trick	is	to	create	your	own	cell	wrapper:

import	tensorflow	as	tf

class	DeviceCellWrapper(tf.contrib.rnn.RNNCell):

		def	__init__(self,	device,	cell):

				self._cell	=	cell

				self._device	=	device

		@property

		def	state_size(self):

				return	self._cell.state_size

		@property

		def	output_size(self):

				return	self._cell.output_size

		def	__call__(self,	inputs,	state,	scope=None):

				with	tf.device(self._device):

								return	self._cell(inputs,	state,	scope)

This	wrapper	simply	proxies	every	method	call	to	another	cell,	except	it	wraps	the	__call__()	function
within	a	device	block.2	Now	you	can	distribute	each	layer	on	a	different	GPU:

devices	=	["/gpu:0",	"/gpu:1",	"/gpu:2"]

cells	=	[DeviceCellWrapper(dev,tf.contrib.rnn.BasicRNNCell(num_units=n_neurons))

									for	dev	in	devices]

multi_layer_cell	=	tf.contrib.rnn.MultiRNNCell(cells)

outputs,	states	=	tf.nn.dynamic_rnn(multi_layer_cell,	X,	dtype=tf.float32)

WARNING
Do	not	set	state_is_tuple=False,	or	the	MultiRNNCell	will	concatenate	all	the	cell	states	into	a	single	tensor,	on	a	single	GPU.

Applying	Dropout
If	you	build	a	very	deep	RNN,	it	may	end	up	overfitting	the	training	set.	To	prevent	that,	a	common
technique	is	to	apply	dropout	(introduced	in	Chapter	11).	You	can	simply	add	a	dropout	layer	before	or
after	the	RNN	as	usual,	but	if	you	also	want	to	apply	dropout	between	the	RNN	layers,	you	need	to	use	a
DropoutWrapper.	The	following	code	applies	dropout	to	the	inputs	of	each	layer	in	the	RNN,	dropping
each	input	with	a	50%	probability:

keep_prob	=	0.5

cell	=	tf.contrib.rnn.BasicRNNCell(num_units=n_neurons)

cell_drop	=	tf.contrib.rnn.DropoutWrapper(cell,	input_keep_prob=keep_prob)

multi_layer_cell	=	tf.contrib.rnn.MultiRNNCell([cell_drop]	*	n_layers)

rnn_outputs,	states	=	tf.nn.dynamic_rnn(multi_layer_cell,	X,	dtype=tf.float32)

Note	that	it	is	also	possible	to	apply	dropout	to	the	outputs	by	setting	output_keep_prob.

The	main	problem	with	this	code	is	that	it	will	apply	dropout	not	only	during	training	but	also	during
testing,	which	is	not	what	you	want	(recall	that	dropout	should	be	applied	only	during	training).
Unfortunately,	the	DropoutWrapper	does	not	support	an	is_training	placeholder	(yet?),	so	you	must
either	write	your	own	dropout	wrapper	class,	or	have	two	different	graphs:	one	for	training,	and	the	other
for	testing.	The	second	option	looks	like	this:

import	sys

is_training	=	(sys.argv[-1]	==	"train")

X	=	tf.placeholder(tf.float32,	[None,	n_steps,	n_inputs])

y	=	tf.placeholder(tf.float32,	[None,	n_steps,	n_outputs])

cell	=	tf.contrib.rnn.BasicRNNCell(num_units=n_neurons)

if	is_training:

				cell	=	tf.contrib.rnn.DropoutWrapper(cell,	input_keep_prob=keep_prob)

multi_layer_cell	=	tf.contrib.rnn.MultiRNNCell([cell]	*	n_layers)

rnn_outputs,	states	=	tf.nn.dynamic_rnn(multi_layer_cell,	X,	dtype=tf.float32)

[...]	#	build	the	rest	of	the	graph

init	=	tf.global_variables_initializer()

saver	=	tf.train.Saver()

with	tf.Session()	as	sess:

				if	is_training:

								init.run()

								for	iteration	in	range(n_iterations):

												[...]	#	train	the	model

								save_path	=	saver.save(sess,	"/tmp/my_model.ckpt")

				else:

								saver.restore(sess,	"/tmp/my_model.ckpt")

								[...]	#	use	the	model

With	that	you	should	be	able	to	train	all	sorts	of	RNNs!	Unfortunately,	if	you	want	to	train	an	RNN	on	long
sequences,	things	will	get	a	bit	harder.	Let’s	see	why	and	what	you	can	do	about	it.

The	Difficulty	of	Training	over	Many	Time	Steps
To	train	an	RNN	on	long	sequences,	you	will	need	to	run	it	over	many	time	steps,	making	the	unrolled
RNN	a	very	deep	network.	Just	like	any	deep	neural	network	it	may	suffer	from	the	vanishing/exploding
gradients	problem	(discussed	in	Chapter	11)	and	take	forever	to	train.	Many	of	the	tricks	we	discussed	to
alleviate	this	problem	can	be	used	for	deep	unrolled	RNNs	as	well:	good	parameter	initialization,
nonsaturating	activation	functions	(e.g.,	ReLU),	Batch	Normalization,	Gradient	Clipping,	and	faster
optimizers.	However,	if	the	RNN	needs	to	handle	even	moderately	long	sequences	(e.g.,	100	inputs),	then
training	will	still	be	very	slow.

The	simplest	and	most	common	solution	to	this	problem	is	to	unroll	the	RNN	only	over	a	limited	number
of	time	steps	during	training.	This	is	called	truncated	backpropagation	through	time.	In	TensorFlow	you
can	implement	it	simply	by	truncating	the	input	sequences.	For	example,	in	the	time	series	prediction
problem,	you	would	simply	reduce	n_steps	during	training.	The	problem,	of	course,	is	that	the	model
will	not	be	able	to	learn	long-term	patterns.	One	workaround	could	be	to	make	sure	that	these	shortened
sequences	contain	both	old	and	recent	data,	so	that	the	model	can	learn	to	use	both	(e.g.,	the	sequence
could	contain	monthly	data	for	the	last	five	months,	then	weekly	data	for	the	last	five	weeks,	then	daily
data	over	the	last	five	days).	But	this	workaround	has	its	limits:	what	if	fine-grained	data	from	last	year	is
actually	useful?	What	if	there	was	a	brief	but	significant	event	that	absolutely	must	be	taken	into	account,
even	years	later	(e.g.,	the	result	of	an	election)?

Besides	the	long	training	time,	a	second	problem	faced	by	long-running	RNNs	is	the	fact	that	the	memory
of	the	first	inputs	gradually	fades	away.	Indeed,	due	to	the	transformations	that	the	data	goes	through	when
traversing	an	RNN,	some	information	is	lost	after	each	time	step.	After	a	while,	the	RNN’s	state	contains
virtually	no	trace	of	the	first	inputs.	This	can	be	a	showstopper.	For	example,	say	you	want	to	perform
sentiment	analysis	on	a	long	review	that	starts	with	the	four	words	“I	loved	this	movie,”	but	the	rest	of	the
review	lists	the	many	things	that	could	have	made	the	movie	even	better.	If	the	RNN	gradually	forgets	the
first	four	words,	it	will	completely	misinterpret	the	review.	To	solve	this	problem,	various	types	of	cells
with	long-term	memory	have	been	introduced.	They	have	proved	so	successful	that	the	basic	cells	are	not
much	used	anymore.	Let’s	first	look	at	the	most	popular	of	these	long	memory	cells:	the	LSTM	cell.

LSTM	Cell
The	Long	Short-Term	Memory	(LSTM)	cell	was	proposed	in	19973	by	Sepp	Hochreiter	and	Jürgen
Schmidhuber,	and	it	was	gradually	improved	over	the	years	by	several	researchers,	such	as	Alex	Graves,
Haşim	Sak,4	Wojciech	Zaremba,5	and	many	more.	If	you	consider	the	LSTM	cell	as	a	black	box,	it	can	be
used	very	much	like	a	basic	cell,	except	it	will	perform	much	better;	training	will	converge	faster	and	it
will	detect	long-term	dependencies	in	the	data.	In	TensorFlow,	you	can	simply	use	a	BasicLSTMCell
instead	of	a	BasicRNNCell:

lstm_cell	=	tf.contrib.rnn.BasicLSTMCell(num_units=n_neurons)

LSTM	cells	manage	two	state	vectors,	and	for	performance	reasons	they	are	kept	separate	by	default.	You
can	change	this	default	behavior	by	setting	state_is_tuple=False	when	creating	the	BasicLSTMCell.

So	how	does	an	LSTM	cell	work?	The	architecture	of	a	basic	LSTM	cell	is	shown	in	Figure	14-13.

Figure	14-13.	LSTM	cell

If	you	don’t	look	at	what’s	inside	the	box,	the	LSTM	cell	looks	exactly	like	a	regular	cell,	except	that	its
state	is	split	in	two	vectors:	h(t)	and	c(t)	(“c”	stands	for	“cell”).	You	can	think	of	h(t)	as	the	short-term	state
and	c(t)	as	the	long-term	state.

https://goo.gl/j39AGv
https://goo.gl/6BHh81
https://goo.gl/SZ9kzB

Now	let’s	open	the	box!	The	key	idea	is	that	the	network	can	learn	what	to	store	in	the	long-term	state,
what	to	throw	away,	and	what	to	read	from	it.	As	the	long-term	state	c(t–1)	traverses	the	network	from	left
to	right,	you	can	see	that	it	first	goes	through	a	forget	gate,	dropping	some	memories,	and	then	it	adds
some	new	memories	via	the	addition	operation	(which	adds	the	memories	that	were	selected	by	an	input
gate).	The	result	c(t)	is	sent	straight	out,	without	any	further	transformation.	So,	at	each	time	step,	some
memories	are	dropped	and	some	memories	are	added.	Moreover,	after	the	addition	operation,	the	long-
term	state	is	copied	and	passed	through	the	tanh	function,	and	then	the	result	is	filtered	by	the	output	gate.
This	produces	the	short-term	state	h(t)	(which	is	equal	to	the	cell’s	output	for	this	time	step	y(t)).	Now	let’s
look	at	where	new	memories	come	from	and	how	the	gates	work.

First,	the	current	input	vector	x(t)	and	the	previous	short-term	state	h(t–1)	are	fed	to	four	different	fully
connected	layers.	They	all	serve	a	different	purpose:

The	main	layer	is	the	one	that	outputs	g(t).	It	has	the	usual	role	of	analyzing	the	current	inputs	x(t)	and
the	previous	(short-term)	state	h(t–1).	In	a	basic	cell,	there	is	nothing	else	than	this	layer,	and	its
output	goes	straight	out	to	y(t)	and	h(t).	In	contrast,	in	an	LSTM	cell	this	layer’s	output	does	not	go
straight	out,	but	instead	it	is	partially	stored	in	the	long-term	state.

The	three	other	layers	are	gate	controllers.	Since	they	use	the	logistic	activation	function,	their
outputs	range	from	0	to	1.	As	you	can	see,	their	outputs	are	fed	to	element-wise	multiplication
operations,	so	if	they	output	0s,	they	close	the	gate,	and	if	they	output	1s,	they	open	it.	Specifically:
The	forget	gate	(controlled	by	f(t))	controls	which	parts	of	the	long-term	state	should	be	erased.

The	input	gate	(controlled	by	i(t))	controls	which	parts	of	g(t)	should	be	added	to	the	long-term	state
(this	is	why	we	said	it	was	only	“partially	stored”).

Finally,	the	output	gate	(controlled	by	o(t))	controls	which	parts	of	the	long-term	state	should	be
read	and	output	at	this	time	step	(both	to	h(t))	and	y(t).

In	short,	an	LSTM	cell	can	learn	to	recognize	an	important	input	(that’s	the	role	of	the	input	gate),	store	it
in	the	long-term	state,	learn	to	preserve	it	for	as	long	as	it	is	needed	(that’s	the	role	of	the	forget	gate),	and
learn	to	extract	it	whenever	it	is	needed.	This	explains	why	they	have	been	amazingly	successful	at
capturing	long-term	patterns	in	time	series,	long	texts,	audio	recordings,	and	more.

Equation	14-3	summarizes	how	to	compute	the	cell’s	long-term	state,	its	short-term	state,	and	its	output	at
each	time	step	for	a	single	instance	(the	equations	for	a	whole	mini-batch	are	very	similar).

Equation	14-3.	LSTM	computations

Wxi,	Wxf,	Wxo,	Wxg	are	the	weight	matrices	of	each	of	the	four	layers	for	their	connection	to	the
input	vector	x(t).

Whi,	Whf,	Who,	and	Whg	are	the	weight	matrices	of	each	of	the	four	layers	for	their	connection	to	the
previous	short-term	state	h(t–1).

bi,	bf,	bo,	and	bg	are	the	bias	terms	for	each	of	the	four	layers.	Note	that	TensorFlow	initializes	bf	to
a	vector	full	of	1s	instead	of	0s.	This	prevents	forgetting	everything	at	the	beginning	of	training.

Peephole	Connections
In	a	basic	LSTM	cell,	the	gate	controllers	can	look	only	at	the	input	x(t)	and	the	previous	short-term	state
h(t–1).	It	may	be	a	good	idea	to	give	them	a	bit	more	context	by	letting	them	peek	at	the	long-term	state	as
well.	This	idea	was	proposed	by	Felix	Gers	and	Jürgen	Schmidhuber	in	2000.6	They	proposed	an	LSTM
variant	with	extra	connections	called	peephole	connections:	the	previous	long-term	state	c(t–1)	is	added
as	an	input	to	the	controllers	of	the	forget	gate	and	the	input	gate,	and	the	current	long-term	state	c(t)	is
added	as	input	to	the	controller	of	the	output	gate.

To	implement	peephole	connections	in	TensorFlow,	you	must	use	the	LSTMCell	instead	of	the
BasicLSTMCell	and	set	use_peepholes=True:

lstm_cell	=	tf.contrib.rnn.LSTMCell(num_units=n_neurons,	use_peepholes=True)

There	are	many	other	variants	of	the	LSTM	cell.	One	particularly	popular	variant	is	the	GRU	cell,	which
we	will	look	at	now.

https://goo.gl/ch8xz3

GRU	Cell
The	Gated	Recurrent	Unit	(GRU)	cell	(see	Figure	14-14)	was	proposed	by	Kyunghyun	Cho	et	al.	in	a
2014	paper7	that	also	introduced	the	Encoder–Decoder	network	we	mentioned	earlier.

Figure	14-14.	GRU	cell

The	GRU	cell	is	a	simplified	version	of	the	LSTM	cell,	and	it	seems	to	perform	just	as	well8	(which
explains	its	growing	popularity).	The	main	simplifications	are:

Both	state	vectors	are	merged	into	a	single	vector	h(t).

A	single	gate	controller	controls	both	the	forget	gate	and	the	input	gate.	If	the	gate	controller	outputs	a
1,	the	input	gate	is	open	and	the	forget	gate	is	closed.	If	it	outputs	a	0,	the	opposite	happens.	In	other
words,	whenever	a	memory	must	be	stored,	the	location	where	it	will	be	stored	is	erased	first.	This
is	actually	a	frequent	variant	to	the	LSTM	cell	in	and	of	itself.

There	is	no	output	gate;	the	full	state	vector	is	output	at	every	time	step.	However,	there	is	a	new	gate
controller	that	controls	which	part	of	the	previous	state	will	be	shown	to	the	main	layer.

https://goo.gl/ZnAEOZ

Equation	14-4	summarizes	how	to	compute	the	cell’s	state	at	each	time	step	for	a	single	instance.

Equation	14-4.	GRU	computations

Creating	a	GRU	cell	in	TensorFlow	is	trivial:

gru_cell	=	tf.contrib.rnn.GRUCell(num_units=n_neurons)

LSTM	or	GRU	cells	are	one	of	the	main	reasons	behind	the	success	of	RNNs	in	recent	years,	in	particular
for	applications	in	natural	language	processing	(NLP).

Natural	Language	Processing
Most	of	the	state-of-the-art	NLP	applications,	such	as	machine	translation,	automatic	summarization,
parsing,	sentiment	analysis,	and	more,	are	now	based	(at	least	in	part)	on	RNNs.	In	this	last	section,	we
will	take	a	quick	look	at	what	a	machine	translation	model	looks	like.	This	topic	is	very	well	covered	by
TensorFlow’s	awesome	Word2Vec	and	Seq2Seq	tutorials,	so	you	should	definitely	check	them	out.

https://goo.gl/edArdi
https://goo.gl/L82gvS

Word	Embeddings
Before	we	start,	we	need	to	choose	a	word	representation.	One	option	could	be	to	represent	each	word
using	a	one-hot	vector.	Suppose	your	vocabulary	contains	50,000	words,	then	the	nth	word	would	be
represented	as	a	50,000-dimensional	vector,	full	of	0s	except	for	a	1	at	the	nth	position.	However,	with
such	a	large	vocabulary,	this	sparse	representation	would	not	be	efficient	at	all.	Ideally,	you	want	similar
words	to	have	similar	representations,	making	it	easy	for	the	model	to	generalize	what	it	learns	about	a
word	to	all	similar	words.	For	example,	if	the	model	is	told	that	“I	drink	milk”	is	a	valid	sentence,	and	if
it	knows	that	“milk”	is	close	to	“water”	but	far	from	“shoes,”	then	it	will	know	that	“I	drink	water”	is
probably	a	valid	sentence	as	well,	while	“I	drink	shoes”	is	probably	not.	But	how	can	you	come	up	with
such	a	meaningful	representation?

The	most	common	solution	is	to	represent	each	word	in	the	vocabulary	using	a	fairly	small	and	dense
vector	(e.g.,	150	dimensions),	called	an	embedding,	and	just	let	the	neural	network	learn	a	good
embedding	for	each	word	during	training.	At	the	beginning	of	training,	embeddings	are	simply	chosen
randomly,	but	during	training,	backpropagation	automatically	moves	the	embeddings	around	in	a	way	that
helps	the	neural	network	perform	its	task.	Typically	this	means	that	similar	words	will	gradually	cluster
close	to	one	another,	and	even	end	up	organized	in	a	rather	meaningful	way.	For	example,	embeddings
may	end	up	placed	along	various	axes	that	represent	gender,	singular/plural,	adjective/noun,	and	so	on.
The	result	can	be	truly	amazing.9

In	TensorFlow,	you	first	need	to	create	the	variable	representing	the	embeddings	for	every	word	in	your
vocabulary	(initialized	randomly):

vocabulary_size	=	50000

embedding_size	=	150

embeddings	=	tf.Variable(

				tf.random_uniform([vocabulary_size,	embedding_size],	-1.0,	1.0))

Now	suppose	you	want	to	feed	the	sentence	“I	drink	milk”	to	your	neural	network.	You	should	first
preprocess	the	sentence	and	break	it	into	a	list	of	known	words.	For	example	you	may	remove
unnecessary	characters,	replace	unknown	words	by	a	predefined	token	word	such	as	“[UNK]”,	replace
numerical	values	by	“[NUM]”,	replace	URLs	by	“[URL]”,	and	so	on.	Once	you	have	a	list	of	known
words,	you	can	look	up	each	word’s	integer	identifier	(from	0	to	49999)	in	a	dictionary,	for	example	[72,
3335,	288].	At	that	point,	you	are	ready	to	feed	these	word	identifiers	to	TensorFlow	using	a	placeholder,
and	apply	the	embedding_lookup()	function	to	get	the	corresponding	embeddings:

train_inputs	=	tf.placeholder(tf.int32,	shape=[None])		#	from	ids...

embed	=	tf.nn.embedding_lookup(embeddings,	train_inputs)		#	...to	embeddings

Once	your	model	has	learned	good	word	embeddings,	they	can	actually	be	reused	fairly	efficiently	in	any
NLP	application:	after	all,	“milk”	is	still	close	to	“water”	and	far	from	“shoes”	no	matter	what	your
application	is.	In	fact,	instead	of	training	your	own	word	embeddings,	you	may	want	to	download
pretrained	word	embeddings.	Just	like	when	reusing	pretrained	layers	(see	Chapter	11),	you	can	choose	to
freeze	the	pretrained	embeddings	(e.g.,	creating	the	embeddings	variable	using	trainable=False)	or	let
backpropagation	tweak	them	for	your	application.	The	first	option	will	speed	up	training,	but	the	second

may	lead	to	slightly	higher	performance.

TIP
Embeddings	are	also	useful	for	representing	categorical	attributes	that	can	take	on	a	large	number	of	different	values,	especially
when	there	are	complex	similarities	between	values.	For	example,	consider	professions,	hobbies,	dishes,	species,	brands,	and	so
on.

You	now	have	almost	all	the	tools	you	need	to	implement	a	machine	translation	system.	Let’s	look	at	this
now.

An	Encoder–Decoder	Network	for	Machine	Translation
Let’s	take	a	look	at	a	simple	machine	translation	model10	that	will	translate	English	sentences	to	French
(see	Figure	14-15).

Figure	14-15.	A	simple	machine	translation	model

The	English	sentences	are	fed	to	the	encoder,	and	the	decoder	outputs	the	French	translations.	Note	that
the	French	translations	are	also	used	as	inputs	to	the	decoder,	but	pushed	back	by	one	step.	In	other
words,	the	decoder	is	given	as	input	the	word	that	it	should	have	output	at	the	previous	step	(regardless	of
what	it	actually	output).	For	the	very	first	word,	it	is	given	a	token	that	represents	the	beginning	of	the
sentence	(e.g.,	“<go>”).	The	decoder	is	expected	to	end	the	sentence	with	an	end-of-sequence	(EOS)
token	(e.g.,	“<eos>”).

Note	that	the	English	sentences	are	reversed	before	they	are	fed	to	the	encoder.	For	example	“I	drink
milk”	is	reversed	to	“milk	drink	I.”	This	ensures	that	the	beginning	of	the	English	sentence	will	be	fed	last
to	the	encoder,	which	is	useful	because	that’s	generally	the	first	thing	that	the	decoder	needs	to	translate.

Each	word	is	initially	represented	by	a	simple	integer	identifier	(e.g.,	288	for	the	word	“milk”).	Next,	an
embedding	lookup	returns	the	word	embedding	(as	explained	earlier,	this	is	a	dense,	fairly	low-
dimensional	vector).	These	word	embeddings	are	what	is	actually	fed	to	the	encoder	and	the	decoder.

https://goo.gl/0g9zWP

At	each	step,	the	decoder	outputs	a	score	for	each	word	in	the	output	vocabulary	(i.e.,	French),	and	then
the	Softmax	layer	turns	these	scores	into	probabilities.	For	example,	at	the	first	step	the	word	“Je”	may
have	a	probability	of	20%,	“Tu”	may	have	a	probability	of	1%,	and	so	on.	The	word	with	the	highest
probability	is	output.	This	is	very	much	like	a	regular	classification	task,	so	you	can	train	the	model	using
the	softmax_cross_entropy_with_logits()	function.

Note	that	at	inference	time	(after	training),	you	will	not	have	the	target	sentence	to	feed	to	the	decoder.
Instead,	simply	feed	the	decoder	the	word	that	it	output	at	the	previous	step,	as	shown	in	Figure	14-16
(this	will	require	an	embedding	lookup	that	is	not	shown	on	the	diagram).

Figure	14-16.	Feeding	the	previous	output	word	as	input	at	inference	time

Okay,	now	you	have	the	big	picture.	However,	if	you	go	through	TensorFlow’s	sequence-to-sequence
tutorial	and	you	look	at	the	code	in	rnn/translate/seq2seq_model.py	(in	the	TensorFlow	models),	you
will	notice	a	few	important	differences:

First,	so	far	we	have	assumed	that	all	input	sequences	(to	the	encoder	and	to	the	decoder)	have	a
constant	length.	But	obviously	sentence	lengths	may	vary.	There	are	several	ways	that	this	can	be
handled	—	for	example,	using	the	sequence_length	argument	to	the	static_rnn()	or
dynamic_rnn()	functions	to	specify	each	sentence’s	length	(as	discussed	earlier).	However,	another
approach	is	used	in	the	tutorial	(presumably	for	performance	reasons):	sentences	are	grouped	into
buckets	of	similar	lengths	(e.g.,	a	bucket	for	the	1-	to	6-word	sentences,	another	for	the	7-	to	12-
word	sentences,	and	so	on11),	and	the	shorter	sentences	are	padded	using	a	special	padding	token
(e.g.,	“<pad>”).	For	example	“I	drink	milk”	becomes	“<pad>	<pad>	<pad>	milk	drink	I”,	and	its
translation	becomes	“Je	bois	du	lait	<eos>	<pad>”.	Of	course,	we	want	to	ignore	any	output	past	the
EOS	token.	For	this,	the	tutorial’s	implementation	uses	a	target_weights	vector.	For	example,	for
the	target	sentence	“Je	bois	du	lait	<eos>	<pad>”,	the	weights	would	be	set	to	[1.0,	1.0,	1.0,
1.0,	1.0,	0.0]	(notice	the	weight	0.0	that	corresponds	to	the	padding	token	in	the	target	sentence).
Simply	multiplying	the	losses	by	the	target	weights	will	zero	out	the	losses	that	correspond	to	words

https://github.com/tensorflow/models

past	EOS	tokens.

Second,	when	the	output	vocabulary	is	large	(which	is	the	case	here),	outputting	a	probability	for
each	and	every	possible	word	would	be	terribly	slow.	If	the	target	vocabulary	contains,	say,	50,000
French	words,	then	the	decoder	would	output	50,000-dimensional	vectors,	and	then	computing	the
softmax	function	over	such	a	large	vector	would	be	very	computationally	intensive.	To	avoid	this,
one	solution	is	to	let	the	decoder	output	much	smaller	vectors,	such	as	1,000-dimensional	vectors,
then	use	a	sampling	technique	to	estimate	the	loss	without	having	to	compute	it	over	every	single
word	in	the	target	vocabulary.	This	Sampled	Softmax	technique	was	introduced	in	2015	by	Sébastien
Jean	et	al.12	In	TensorFlow	you	can	use	the	sampled_softmax_loss()	function.

Third,	the	tutorial’s	implementation	uses	an	attention	mechanism	that	lets	the	decoder	peek	into	the
input	sequence.	Attention	augmented	RNNs	are	beyond	the	scope	of	this	book,	but	if	you	are
interested	there	are	helpful	papers	about	machine	translation,13	machine	reading,14	and	image
captions15	using	attention.

Finally,	the	tutorial’s	implementation	makes	use	of	the	tf.nn.legacy_seq2seq	module,	which
provides	tools	to	build	various	Encoder–Decoder	models	easily.	For	example,	the
embedding_rnn_seq2seq()	function	creates	a	simple	Encoder–Decoder	model	that	automatically
takes	care	of	word	embeddings	for	you,	just	like	the	one	represented	in	Figure	14-15.	This	code	will
likely	be	updated	quickly	to	use	the	new	tf.nn.seq2seq	module.

You	now	have	all	the	tools	you	need	to	understand	the	sequence-to-sequence	tutorial’s	implementation.
Check	it	out	and	train	your	own	English-to-French	translator!

https://goo.gl/u0GR8k
https://goo.gl/8RCous
https://goo.gl/X0Nau8
https://goo.gl/xmhvfK

Exercises
1.	 Can	you	think	of	a	few	applications	for	a	sequence-to-sequence	RNN?	What	about	a	sequence-

to-vector	RNN?	And	a	vector-to-sequence	RNN?

2.	 Why	do	people	use	encoder–decoder	RNNs	rather	than	plain	sequence-to-sequence	RNNs	for
automatic	translation?

3.	 How	could	you	combine	a	convolutional	neural	network	with	an	RNN	to	classify	videos?

4.	 What	are	the	advantages	of	building	an	RNN	using	dynamic_rnn()	rather	than	static_rnn()?

5.	 How	can	you	deal	with	variable-length	input	sequences?	What	about	variable-length	output
sequences?

6.	 What	is	a	common	way	to	distribute	training	and	execution	of	a	deep	RNN	across	multiple
GPUs?

7.	 Embedded	Reber	grammars	were	used	by	Hochreiter	and	Schmidhuber	in	their	paper	about
LSTMs.	They	are	artificial	grammars	that	produce	strings	such	as	“BPBTSXXVPSEPE.”	Check
out	Jenny	Orr’s	nice	introduction	to	this	topic.	Choose	a	particular	embedded	Reber	grammar
(such	as	the	one	represented	on	Jenny	Orr’s	page),	then	train	an	RNN	to	identify	whether	a	string
respects	that	grammar	or	not.	You	will	first	need	to	write	a	function	capable	of	generating	a
training	batch	containing	about	50%	strings	that	respect	the	grammar,	and	50%	that	don’t.

8.	 Tackle	the	“How	much	did	it	rain?	II”	Kaggle	competition.	This	is	a	time	series	prediction	task:
you	are	given	snapshots	of	polarimetric	radar	values	and	asked	to	predict	the	hourly	rain	gauge
total.	Luis	Andre	Dutra	e	Silva’s	interview	gives	some	interesting	insights	into	the	techniques	he
used	to	reach	second	place	in	the	competition.	In	particular,	he	used	an	RNN	composed	of	two
LSTM	layers.

9.	 Go	through	TensorFlow’s	Word2Vec	tutorial	to	create	word	embeddings,	and	then	go	through	the
Seq2Seq	tutorial	to	train	an	English-to-French	translation	system.

Solutions	to	these	exercises	are	available	in	Appendix	A.

Note	that	many	researchers	prefer	to	use	the	hyperbolic	tangent	(tanh)	activation	function	in	RNNs	rather	than	the	ReLU	activation
function.	For	example,	take	a	look	at	by	Vu	Pham	et	al.’s	paper	“Dropout	Improves	Recurrent	Neural	Networks	for	Handwriting
Recognition”.	However,	ReLU-based	RNNs	are	also	possible,	as	shown	in	Quoc	V.	Le	et	al.’s	paper	“A	Simple	Way	to	Initialize
Recurrent	Networks	of	Rectified	Linear	Units”.

This	uses	the	decorator	design	pattern.

“Long	Short-Term	Memory,”	S.	Hochreiter	and	J.	Schmidhuber	(1997).

“Long	Short-Term	Memory	Recurrent	Neural	Network	Architectures	for	Large	Scale	Acoustic	Modeling,”	H.	Sak	et	al.	(2014).

“Recurrent	Neural	Network	Regularization,”	W.	Zaremba	et	al.	(2015).

“Recurrent	Nets	that	Time	and	Count,”	F.	Gers	and	J.	Schmidhuber	(2000).

“Learning	Phrase	Representations	using	RNN	Encoder–Decoder	for	Statistical	Machine	Translation,”	K.	Cho	et	al.	(2014).

1

2

3

4

5

6

7

https://goo.gl/7CkNRn
https://goo.gl/0DS5Xe
https://goo.gl/fTA90W
https://goo.gl/edArdi
https://goo.gl/L82gvS
https://goo.gl/2WSnaj
https://goo.gl/NrKAP0

A	2015	paper	by	Klaus	Greff	et	al.,	“LSTM:	A	Search	Space	Odyssey,”	seems	to	show	that	all	LSTM	variants	perform	roughly	the	same.

For	more	details,	check	out	Christopher	Olah’s	great	post,	or	Sebastian	Ruder’s	series	of	posts.

“Sequence	to	Sequence	learning	with	Neural	Networks,”	I.	Sutskever	et	al.	(2014).

The	bucket	sizes	used	in	the	tutorial	are	different.

“On	Using	Very	Large	Target	Vocabulary	for	Neural	Machine	Translation,”	S.	Jean	et	al.	(2015).

“Neural	Machine	Translation	by	Jointly	Learning	to	Align	and	Translate,”	D.	Bahdanau	et	al.	(2014).

“Long	Short-Term	Memory-Networks	for	Machine	Reading,”	J.	Cheng	(2016).

“Show,	Attend	and	Tell:	Neural	Image	Caption	Generation	with	Visual	Attention,”	K.	Xu	et	al.	(2015).

8

9

10

11

12

13

14

15

https://goo.gl/hZB4KW
https://goo.gl/5rLNTj
https://goo.gl/ojJjiE

Chapter	15.	Autoencoders

Autoencoders	are	artificial	neural	networks	capable	of	learning	efficient	representations	of	the	input	data,
called	codings,	without	any	supervision	(i.e.,	the	training	set	is	unlabeled).	These	codings	typically	have
a	much	lower	dimensionality	than	the	input	data,	making	autoencoders	useful	for	dimensionality	reduction
(see	Chapter	8).	More	importantly,	autoencoders	act	as	powerful	feature	detectors,	and	they	can	be	used
for	unsupervised	pretraining	of	deep	neural	networks	(as	we	discussed	in	Chapter	11).	Lastly,	they	are
capable	of	randomly	generating	new	data	that	looks	very	similar	to	the	training	data;	this	is	called	a
generative	model.	For	example,	you	could	train	an	autoencoder	on	pictures	of	faces,	and	it	would	then	be
able	to	generate	new	faces.

Surprisingly,	autoencoders	work	by	simply	learning	to	copy	their	inputs	to	their	outputs.	This	may	sound
like	a	trivial	task,	but	we	will	see	that	constraining	the	network	in	various	ways	can	make	it	rather
difficult.	For	example,	you	can	limit	the	size	of	the	internal	representation,	or	you	can	add	noise	to	the
inputs	and	train	the	network	to	recover	the	original	inputs.	These	constraints	prevent	the	autoencoder	from
trivially	copying	the	inputs	directly	to	the	outputs,	which	forces	it	to	learn	efficient	ways	of	representing
the	data.	In	short,	the	codings	are	byproducts	of	the	autoencoder’s	attempt	to	learn	the	identity	function
under	some	constraints.

In	this	chapter	we	will	explain	in	more	depth	how	autoencoders	work,	what	types	of	constraints	can	be
imposed,	and	how	to	implement	them	using	TensorFlow,	whether	it	is	for	dimensionality	reduction,
feature	extraction,	unsupervised	pretraining,	or	as	generative	models.

Efficient	Data	Representations
Which	of	the	following	number	sequences	do	you	find	the	easiest	to	memorize?

40,	27,	25,	36,	81,	57,	10,	73,	19,	68

50,	25,	76,	38,	19,	58,	29,	88,	44,	22,	11,	34,	17,	52,	26,	13,	40,	20

At	first	glance,	it	would	seem	that	the	first	sequence	should	be	easier,	since	it	is	much	shorter.	However,
if	you	look	carefully	at	the	second	sequence,	you	may	notice	that	it	follows	two	simple	rules:	even
numbers	are	followed	by	their	half,	and	odd	numbers	are	followed	by	their	triple	plus	one	(this	is	a
famous	sequence	known	as	the	hailstone	sequence).	Once	you	notice	this	pattern,	the	second	sequence
becomes	much	easier	to	memorize	than	the	first	because	you	only	need	to	memorize	the	two	rules,	the	first
number,	and	the	length	of	the	sequence.	Note	that	if	you	could	quickly	and	easily	memorize	very	long
sequences,	you	would	not	care	much	about	the	existence	of	a	pattern	in	the	second	sequence.	You	would
just	learn	every	number	by	heart,	and	that	would	be	that.	It	is	the	fact	that	it	is	hard	to	memorize	long
sequences	that	makes	it	useful	to	recognize	patterns,	and	hopefully	this	clarifies	why	constraining	an
autoencoder	during	training	pushes	it	to	discover	and	exploit	patterns	in	the	data.

The	relationship	between	memory,	perception,	and	pattern	matching	was	famously	studied	by	William
Chase	and	Herbert	Simon	in	the	early	1970s.1	They	observed	that	expert	chess	players	were	able	to
memorize	the	positions	of	all	the	pieces	in	a	game	by	looking	at	the	board	for	just	5	seconds,	a	task	that
most	people	would	find	impossible.	However,	this	was	only	the	case	when	the	pieces	were	placed	in
realistic	positions	(from	actual	games),	not	when	the	pieces	were	placed	randomly.	Chess	experts	don’t
have	a	much	better	memory	than	you	and	I,	they	just	see	chess	patterns	more	easily	thanks	to	their
experience	with	the	game.	Noticing	patterns	helps	them	store	information	efficiently.

Just	like	the	chess	players	in	this	memory	experiment,	an	autoencoder	looks	at	the	inputs,	converts	them	to
an	efficient	internal	representation,	and	then	spits	out	something	that	(hopefully)	looks	very	close	to	the
inputs.	An	autoencoder	is	always	composed	of	two	parts:	an	encoder	(or	recognition	network)	that
converts	the	inputs	to	an	internal	representation,	followed	by	a	decoder	(or	generative	network)	that
converts	the	internal	representation	to	the	outputs	(see	Figure	15-1).

As	you	can	see,	an	autoencoder	typically	has	the	same	architecture	as	a	Multi-Layer	Perceptron	(MLP;
see	Chapter	10),	except	that	the	number	of	neurons	in	the	output	layer	must	be	equal	to	the	number	of
inputs.	In	this	example,	there	is	just	one	hidden	layer	composed	of	two	neurons	(the	encoder),	and	one
output	layer	composed	of	three	neurons	(the	decoder).	The	outputs	are	often	called	the	reconstructions
since	the	autoencoder	tries	to	reconstruct	the	inputs,	and	the	cost	function	contains	a	reconstruction	loss
that	penalizes	the	model	when	the	reconstructions	are	different	from	the	inputs.

https://goo.gl/kSNcX0

Figure	15-1.	The	chess	memory	experiment	(left)	and	a	simple	autoencoder	(right)

Because	the	internal	representation	has	a	lower	dimensionality	than	the	input	data	(it	is	2D	instead	of	3D),
the	autoencoder	is	said	to	be	undercomplete.	An	undercomplete	autoencoder	cannot	trivially	copy	its
inputs	to	the	codings,	yet	it	must	find	a	way	to	output	a	copy	of	its	inputs.	It	is	forced	to	learn	the	most
important	features	in	the	input	data	(and	drop	the	unimportant	ones).

Let’s	see	how	to	implement	a	very	simple	undercomplete	autoencoder	for	dimensionality	reduction.

Performing	PCA	with	an	Undercomplete	Linear	Autoencoder
If	the	autoencoder	uses	only	linear	activations	and	the	cost	function	is	the	Mean	Squared	Error	(MSE),
then	it	can	be	shown	that	it	ends	up	performing	Principal	Component	Analysis	(see	Chapter	8).

The	following	code	builds	a	simple	linear	autoencoder	to	perform	PCA	on	a	3D	dataset,	projecting	it	to
2D:

import	tensorflow	as	tf

from	tensorflow.contrib.layers	import	fully_connected

n_inputs	=	3		#	3D	inputs

n_hidden	=	2		#	2D	codings

n_outputs	=	n_inputs

learning_rate	=	0.01

X	=	tf.placeholder(tf.float32,	shape=[None,	n_inputs])

hidden	=	fully_connected(X,	n_hidden,	activation_fn=None)

outputs	=	fully_connected(hidden,	n_outputs,	activation_fn=None)

reconstruction_loss	=	tf.reduce_mean(tf.square(outputs	-	X))		#	MSE

optimizer	=	tf.train.AdamOptimizer(learning_rate)

training_op	=	optimizer.minimize(reconstruction_loss)

init	=	tf.global_variables_initializer()

This	code	is	really	not	very	different	from	all	the	MLPs	we	built	in	past	chapters.	The	two	things	to	note
are:

The	number	of	outputs	is	equal	to	the	number	of	inputs.

To	perform	simple	PCA,	we	set	activation_fn=None	(i.e.,	all	neurons	are	linear)	and	the	cost
function	is	the	MSE.	We	will	see	more	complex	autoencoders	shortly.

Now	let’s	load	the	dataset,	train	the	model	on	the	training	set,	and	use	it	to	encode	the	test	set	(i.e.,	project
it	to	2D):

X_train,	X_test	=	[...]	#	load	the	dataset

n_iterations	=	1000

codings	=	hidden		#	the	output	of	the	hidden	layer	provides	the	codings

with	tf.Session()	as	sess:

				init.run()

				for	iteration	in	range(n_iterations):

								training_op.run(feed_dict={X:	X_train})		#	no	labels	(unsupervised)

				codings_val	=	codings.eval(feed_dict={X:	X_test})

Figure	15-2	shows	the	original	3D	dataset	(at	the	left)	and	the	output	of	the	autoencoder’s	hidden	layer
(i.e.,	the	coding	layer,	at	the	right).	As	you	can	see,	the	autoencoder	found	the	best	2D	plane	to	project	the
data	onto,	preserving	as	much	variance	in	the	data	as	it	could	(just	like	PCA).

Figure	15-2.	PCA	performed	by	an	undercomplete	linear	autoencoder

Stacked	Autoencoders
Just	like	other	neural	networks	we	have	discussed,	autoencoders	can	have	multiple	hidden	layers.	In	this
case	they	are	called	stacked	autoencoders	(or	deep	autoencoders).	Adding	more	layers	helps	the
autoencoder	learn	more	complex	codings.	However,	one	must	be	careful	not	to	make	the	autoencoder	too
powerful.	Imagine	an	encoder	so	powerful	that	it	just	learns	to	map	each	input	to	a	single	arbitrary	number
(and	the	decoder	learns	the	reverse	mapping).	Obviously	such	an	autoencoder	will	reconstruct	the	training
data	perfectly,	but	it	will	not	have	learned	any	useful	data	representation	in	the	process	(and	it	is	unlikely
to	generalize	well	to	new	instances).

The	architecture	of	a	stacked	autoencoder	is	typically	symmetrical	with	regards	to	the	central	hidden	layer
(the	coding	layer).	To	put	it	simply,	it	looks	like	a	sandwich.	For	example,	an	autoencoder	for	MNIST
(introduced	in	Chapter	3)	may	have	784	inputs,	followed	by	a	hidden	layer	with	300	neurons,	then	a
central	hidden	layer	of	150	neurons,	then	another	hidden	layer	with	300	neurons,	and	an	output	layer	with
784	neurons.	This	stacked	autoencoder	is	represented	in	Figure	15-3.

Figure	15-3.	Stacked	autoencoder

TensorFlow	Implementation
You	can	implement	a	stacked	autoencoder	very	much	like	a	regular	deep	MLP.	In	particular,	the	same
techniques	we	used	in	Chapter	11	for	training	deep	nets	can	be	applied.	For	example,	the	following	code
builds	a	stacked	autoencoder	for	MNIST,	using	He	initialization,	the	ELU	activation	function,	and	ℓ2
regularization.	The	code	should	look	very	familiar,	except	that	there	are	no	labels	(no	y):

n_inputs	=	28	*	28		#	for	MNIST

n_hidden1	=	300

n_hidden2	=	150		#	codings

n_hidden3	=	n_hidden1

n_outputs	=	n_inputs

learning_rate	=	0.01

l2_reg	=	0.001

X	=	tf.placeholder(tf.float32,	shape=[None,	n_inputs])

with	tf.contrib.framework.arg_scope(

								[fully_connected],

								activation_fn=tf.nn.elu,

								weights_initializer=tf.contrib.layers.variance_scaling_initializer(),

								weights_regularizer=tf.contrib.layers.l2_regularizer(l2_reg)):

				hidden1	=	fully_connected(X,	n_hidden1)

				hidden2	=	fully_connected(hidden1,	n_hidden2)		#	codings

				hidden3	=	fully_connected(hidden2,	n_hidden3)

				outputs	=	fully_connected(hidden3,	n_outputs,	activation_fn=None)

reconstruction_loss	=	tf.reduce_mean(tf.square(outputs	-	X))		#	MSE

reg_losses	=	tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)

loss	=	tf.add_n([reconstruction_loss]	+	reg_losses)

optimizer	=	tf.train.AdamOptimizer(learning_rate)

training_op	=	optimizer.minimize(loss)

init	=	tf.global_variables_initializer()

You	can	then	train	the	model	normally.	Note	that	the	digit	labels	(y_batch)	are	unused:

n_epochs	=	5

batch_size	=	150

with	tf.Session()	as	sess:

				init.run()

				for	epoch	in	range(n_epochs):

								n_batches	=	mnist.train.num_examples	//	batch_size

								for	iteration	in	range(n_batches):

												X_batch,	y_batch	=	mnist.train.next_batch(batch_size)

												sess.run(training_op,	feed_dict={X:	X_batch})

Tying	Weights
When	an	autoencoder	is	neatly	symmetrical,	like	the	one	we	just	built,	a	common	technique	is	to	tie	the
weights	of	the	decoder	layers	to	the	weights	of	the	encoder	layers.	This	halves	the	number	of	weights	in
the	model,	speeding	up	training	and	limiting	the	risk	of	overfitting.	Specifically,	if	the	autoencoder	has	a
total	of	N	layers	(not	counting	the	input	layer),	and	WL	represents	the	connection	weights	of	the	 	layer

(e.g.,	layer	1	is	the	first	hidden	layer,	layer	 	is	the	coding	layer,	and	layer	N	is	the	output	layer),	then	the

decoder	layer	weights	can	be	defined	simply	as:	WN–L+1	=	WL
T	(with	L	=	1,	2,).

Unfortunately,	implementing	tied	weights	in	TensorFlow	using	the	fully_connected()	function	is	a	bit
cumbersome;	it’s	actually	easier	to	just	define	the	layers	manually.	The	code	ends	up	significantly	more
verbose:

activation	=	tf.nn.elu

regularizer	=	tf.contrib.layers.l2_regularizer(l2_reg)

initializer	=	tf.contrib.layers.variance_scaling_initializer()

X	=	tf.placeholder(tf.float32,	shape=[None,	n_inputs])

weights1_init	=	initializer([n_inputs,	n_hidden1])

weights2_init	=	initializer([n_hidden1,	n_hidden2])

weights1	=	tf.Variable(weights1_init,	dtype=tf.float32,	name="weights1")

weights2	=	tf.Variable(weights2_init,	dtype=tf.float32,	name="weights2")

weights3	=	tf.transpose(weights2,	name="weights3")		#	tied	weights

weights4	=	tf.transpose(weights1,	name="weights4")		#	tied	weights

biases1	=	tf.Variable(tf.zeros(n_hidden1),	name="biases1")

biases2	=	tf.Variable(tf.zeros(n_hidden2),	name="biases2")

biases3	=	tf.Variable(tf.zeros(n_hidden3),	name="biases3")

biases4	=	tf.Variable(tf.zeros(n_outputs),	name="biases4")

hidden1	=	activation(tf.matmul(X,	weights1)	+	biases1)

hidden2	=	activation(tf.matmul(hidden1,	weights2)	+	biases2)

hidden3	=	activation(tf.matmul(hidden2,	weights3)	+	biases3)

outputs	=	tf.matmul(hidden3,	weights4)	+	biases4

reconstruction_loss	=	tf.reduce_mean(tf.square(outputs	-	X))

reg_loss	=	regularizer(weights1)	+	regularizer(weights2)

loss	=	reconstruction_loss	+	reg_loss

optimizer	=	tf.train.AdamOptimizer(learning_rate)

training_op	=	optimizer.minimize(loss)

init	=	tf.global_variables_initializer()

This	code	is	fairly	straightforward,	but	there	are	a	few	important	things	to	note:
First,	weight3	and	weights4	are	not	variables,	they	are	respectively	the	transpose	of	weights2	and
weights1	(they	are	“tied”	to	them).

Second,	since	they	are	not	variables,	it’s	no	use	regularizing	them:	we	only	regularize	weights1	and
weights2.

Third,	biases	are	never	tied,	and	never	regularized.

Training	One	Autoencoder	at	a	Time
Rather	than	training	the	whole	stacked	autoencoder	in	one	go	like	we	just	did,	it	is	often	much	faster	to
train	one	shallow	autoencoder	at	a	time,	then	stack	all	of	them	into	a	single	stacked	autoencoder	(hence
the	name),	as	shown	on	Figure	15-4.	This	is	especially	useful	for	very	deep	autoencoders.

Figure	15-4.	Training	one	autoencoder	at	a	time

During	the	first	phase	of	training,	the	first	autoencoder	learns	to	reconstruct	the	inputs.	During	the	second
phase,	the	second	autoencoder	learns	to	reconstruct	the	output	of	the	first	autoencoder’s	hidden	layer.
Finally,	you	just	build	a	big	sandwich	using	all	these	autoencoders,	as	shown	in	Figure	15-4	(i.e.,	you	first
stack	the	hidden	layers	of	each	autoencoder,	then	the	output	layers	in	reverse	order).	This	gives	you	the
final	stacked	autoencoder.	You	could	easily	train	more	autoencoders	this	way,	building	a	very	deep
stacked	autoencoder.

To	implement	this	multiphase	training	algorithm,	the	simplest	approach	is	to	use	a	different	TensorFlow
graph	for	each	phase.	After	training	an	autoencoder,	you	just	run	the	training	set	through	it	and	capture	the
output	of	the	hidden	layer.	This	output	then	serves	as	the	training	set	for	the	next	autoencoder.	Once	all
autoencoders	have	been	trained	this	way,	you	simply	copy	the	weights	and	biases	from	each	autoencoder
and	use	them	to	build	the	stacked	autoencoder.	Implementing	this	approach	is	quite	straightforward,	so	we
won’t	detail	it	here,	but	please	check	out	the	code	in	the	Jupyter	notebooks	for	an	example.

Another	approach	is	to	use	a	single	graph	containing	the	whole	stacked	autoencoder,	plus	some	extra
operations	to	perform	each	training	phase,	as	shown	in	Figure	15-5.

https://github.com/ageron/handson-ml

Figure	15-5.	A	single	graph	to	train	a	stacked	autoencoder

This	deserves	a	bit	of	explanation:
The	central	column	in	the	graph	is	the	full	stacked	autoencoder.	This	part	can	be	used	after	training.

The	left	column	is	the	set	of	operations	needed	to	run	the	first	phase	of	training.	It	creates	an	output
layer	that	bypasses	hidden	layers	2	and	3.	This	output	layer	shares	the	same	weights	and	biases	as
the	stacked	autoencoder’s	output	layer.	On	top	of	that	are	the	training	operations	that	will	aim	at
making	the	output	as	close	as	possible	to	the	inputs.	Thus,	this	phase	will	train	the	weights	and
biases	for	the	hidden	layer	1	and	the	output	layer	(i.e.,	the	first	autoencoder).

The	right	column	in	the	graph	is	the	set	of	operations	needed	to	run	the	second	phase	of	training.	It
adds	the	training	operation	that	will	aim	at	making	the	output	of	hidden	layer	3	as	close	as	possible
to	the	output	of	hidden	layer	1.	Note	that	we	must	freeze	hidden	layer	1	while	running	phase	2.	This
phase	will	train	the	weights	and	biases	for	hidden	layers	2	and	3	(i.e.,	the	second	autoencoder).

The	TensorFlow	code	looks	like	this:

[...]	#	Build	the	whole	stacked	autoencoder	normally.

						#	In	this	example,	the	weights	are	not	tied.

optimizer	=	tf.train.AdamOptimizer(learning_rate)

with	tf.name_scope("phase1"):

				phase1_outputs	=	tf.matmul(hidden1,	weights4)	+	biases4

				phase1_reconstruction_loss	=	tf.reduce_mean(tf.square(phase1_outputs	-	X))

				phase1_reg_loss	=	regularizer(weights1)	+	regularizer(weights4)

				phase1_loss	=	phase1_reconstruction_loss	+	phase1_reg_loss

				phase1_training_op	=	optimizer.minimize(phase1_loss)

with	tf.name_scope("phase2"):

				phase2_reconstruction_loss	=	tf.reduce_mean(tf.square(hidden3	-	hidden1))

				phase2_reg_loss	=	regularizer(weights2)	+	regularizer(weights3)

				phase2_loss	=	phase2_reconstruction_loss	+	phase2_reg_loss

				train_vars	=	[weights2,	biases2,	weights3,	biases3]

				phase2_training_op	=	optimizer.minimize(phase2_loss,	var_list=train_vars)

The	first	phase	is	rather	straightforward:	we	just	create	an	output	layer	that	skips	hidden	layers	2	and	3,
then	build	the	training	operations	to	minimize	the	distance	between	the	outputs	and	the	inputs	(plus	some
regularization).

The	second	phase	just	adds	the	operations	needed	to	minimize	the	distance	between	the	output	of	hidden
layer	3	and	hidden	layer	1	(also	with	some	regularization).	Most	importantly,	we	provide	the	list	of
trainable	variables	to	the	minimize()	method,	making	sure	to	leave	out	weights1	and	biases1;	this
effectively	freezes	hidden	layer	1	during	phase	2.

During	the	execution	phase,	all	you	need	to	do	is	run	the	phase	1	training	op	for	a	number	of	epochs,	then
the	phase	2	training	op	for	some	more	epochs.

TIP
Since	hidden	layer	1	is	frozen	during	phase	2,	its	output	will	always	be	the	same	for	any	given	training	instance.	To	avoid	having
to	recompute	the	output	of	hidden	layer	1	at	every	single	epoch,	you	can	compute	it	for	the	whole	training	set	at	the	end	of	phase
1,	then	directly	feed	the	cached	output	of	hidden	layer	1	during	phase	2.	This	can	give	you	a	nice	performance	boost.

Visualizing	the	Reconstructions
One	way	to	ensure	that	an	autoencoder	is	properly	trained	is	to	compare	the	inputs	and	the	outputs.	They
must	be	fairly	similar,	and	the	differences	should	be	unimportant	details.	Let’s	plot	two	random	digits	and
their	reconstructions:

n_test_digits	=	2

X_test	=	mnist.test.images[:n_test_digits]

with	tf.Session()	as	sess:

				[...]	#	Train	the	Autoencoder

				outputs_val	=	outputs.eval(feed_dict={X:	X_test})

def	plot_image(image,	shape=[28,	28]):

				plt.imshow(image.reshape(shape),	cmap="Greys",	interpolation="nearest")

				plt.axis("off")

for	digit_index	in	range(n_test_digits):

				plt.subplot(n_test_digits,	2,	digit_index	*	2	+	1)

				plot_image(X_test[digit_index])

				plt.subplot(n_test_digits,	2,	digit_index	*	2	+	2)

				plot_image(outputs_val[digit_index])

Figure	15-6	shows	the	resulting	images.

Figure	15-6.	Original	digits	(left)	and	their	reconstructions	(right)

Looks	close	enough.	So	the	autoencoder	has	properly	learned	to	reproduce	its	inputs,	but	has	it	learned
useful	features?	Let’s	take	a	look.

Visualizing	Features
Once	your	autoencoder	has	learned	some	features,	you	may	want	to	take	a	look	at	them.	There	are	various
techniques	for	this.	Arguably	the	simplest	technique	is	to	consider	each	neuron	in	every	hidden	layer,	and
find	the	training	instances	that	activate	it	the	most.	This	is	especially	useful	for	the	top	hidden	layers	since
they	often	capture	relatively	large	features	that	you	can	easily	spot	in	a	group	of	training	instances	that
contain	them.	For	example,	if	a	neuron	strongly	activates	when	it	sees	a	cat	in	a	picture,	it	will	be	pretty
obvious	that	the	pictures	that	activate	it	the	most	all	contain	cats.	However,	for	lower	layers,	this
technique	does	not	work	so	well,	as	the	features	are	smaller	and	more	abstract,	so	it’s	often	hard	to
understand	exactly	what	the	neuron	is	getting	all	excited	about.

Let’s	look	at	another	technique.	For	each	neuron	in	the	first	hidden	layer,	you	can	create	an	image	where	a
pixel’s	intensity	corresponds	to	the	weight	of	the	connection	to	the	given	neuron.	For	example,	the
following	code	plots	the	features	learned	by	five	neurons	in	the	first	hidden	layer:

with	tf.Session()	as	sess:

				[...]	#	train	autoencoder

				weights1_val	=	weights1.eval()

for	i	in	range(5):

				plt.subplot(1,	5,	i	+	1)

				plot_image(weights1_val.T[i])

You	may	get	low-level	features	such	as	the	ones	shown	in	Figure	15-7.

Figure	15-7.	Features	learned	by	five	neurons	from	the	first	hidden	layer

The	first	four	features	seem	to	correspond	to	small	patches,	while	the	fifth	feature	seems	to	look	for
vertical	strokes	(note	that	these	features	come	from	the	stacked	denoising	autoencoder	that	we	will
discuss	later).

Another	technique	is	to	feed	the	autoencoder	a	random	input	image,	measure	the	activation	of	the	neuron
you	are	interested	in,	and	then	perform	backpropagation	to	tweak	the	image	in	such	a	way	that	the	neuron
will	activate	even	more.	If	you	iterate	several	times	(performing	gradient	ascent),	the	image	will
gradually	turn	into	the	most	exciting	image	(for	the	neuron).	This	is	a	useful	technique	to	visualize	the
kinds	of	inputs	that	a	neuron	is	looking	for.

Finally,	if	you	are	using	an	autoencoder	to	perform	unsupervised	pretraining	—	for	example,	for	a
classification	task	—	a	simple	way	to	verify	that	the	features	learned	by	the	autoencoder	are	useful	is	to
measure	the	performance	of	the	classifier.

Unsupervised	Pretraining	Using	Stacked	Autoencoders
As	we	discussed	in	Chapter	11,	if	you	are	tackling	a	complex	supervised	task	but	you	do	not	have	a	lot	of
labeled	training	data,	one	solution	is	to	find	a	neural	network	that	performs	a	similar	task,	and	then	reuse
its	lower	layers.	This	makes	it	possible	to	train	a	high-performance	model	using	only	little	training	data
because	your	neural	network	won’t	have	to	learn	all	the	low-level	features;	it	will	just	reuse	the	feature
detectors	learned	by	the	existing	net.

Similarly,	if	you	have	a	large	dataset	but	most	of	it	is	unlabeled,	you	can	first	train	a	stacked	autoencoder
using	all	the	data,	then	reuse	the	lower	layers	to	create	a	neural	network	for	your	actual	task,	and	train	it
using	the	labeled	data.	For	example,	Figure	15-8	shows	how	to	use	a	stacked	autoencoder	to	perform
unsupervised	pretraining	for	a	classification	neural	network.	The	stacked	autoencoder	itself	is	typically
trained	one	autoencoder	at	a	time,	as	discussed	earlier.	When	training	the	classifier,	if	you	really	don’t
have	much	labeled	training	data,	you	may	want	to	freeze	the	pretrained	layers	(at	least	the	lower	ones).

Figure	15-8.	Unsupervised	pretraining	using	autoencoders

NOTE
This	situation	is	actually	quite	common,	because	building	a	large	unlabeled	dataset	is	often	cheap	(e.g.,	a	simple	script	can
download	millions	of	images	off	the	internet),	but	labeling	them	can	only	be	done	reliably	by	humans	(e.g.,	classifying	images	as
cute	or	not).	Labeling	instances	is	time-consuming	and	costly,	so	it	is	quite	common	to	have	only	a	few	thousand	labeled

instances.

As	we	discussed	earlier,	one	of	the	triggers	of	the	current	Deep	Learning	tsunami	is	the	discovery	in	2006
by	Geoffrey	Hinton	et	al.	that	deep	neural	networks	can	be	pretrained	in	an	unsupervised	fashion.	They
used	restricted	Boltzmann	machines	for	that	(see	Appendix	E),	but	in	2007	Yoshua	Bengio	et	al.	showed2
that	autoencoders	worked	just	as	well.

There	is	nothing	special	about	the	TensorFlow	implementation:	just	train	an	autoencoder	using	all	the
training	data,	then	reuse	its	encoder	layers	to	create	a	new	neural	network	(see	Chapter	11	for	more
details	on	how	to	reuse	pretrained	layers,	or	check	out	the	code	examples	in	the	Jupyter	notebooks).

Up	to	now,	in	order	to	force	the	autoencoder	to	learn	interesting	features,	we	have	limited	the	size	of	the
coding	layer,	making	it	undercomplete.	There	are	actually	many	other	kinds	of	constraints	that	can	be
used,	including	ones	that	allow	the	coding	layer	to	be	just	as	large	as	the	inputs,	or	even	larger,	resulting
in	an	overcomplete	autoencoder.	Let’s	look	at	some	of	those	approaches	now.

https://goo.gl/R5L7HJ

Denoising	Autoencoders
Another	way	to	force	the	autoencoder	to	learn	useful	features	is	to	add	noise	to	its	inputs,	training	it	to
recover	the	original,	noise-free	inputs.	This	prevents	the	autoencoder	from	trivially	copying	its	inputs	to
its	outputs,	so	it	ends	up	having	to	find	patterns	in	the	data.

The	idea	of	using	autoencoders	to	remove	noise	has	been	around	since	the	1980s	(e.g.,	it	is	mentioned	in
Yann	LeCun’s	1987	master’s	thesis).	In	a	2008	paper,3	Pascal	Vincent	et	al.	showed	that	autoencoders
could	also	be	used	for	feature	extraction.	In	a	2010	paper,4	Vincent	et	al.	introduced	stacked	denoising
autoencoders.

The	noise	can	be	pure	Gaussian	noise	added	to	the	inputs,	or	it	can	be	randomly	switched	off	inputs,	just
like	in	dropout	(introduced	in	Chapter	11).	Figure	15-9	shows	both	options.

Figure	15-9.	Denoising	autoencoders,	with	Gaussian	noise	(left)	or	dropout	(right)

https://goo.gl/K9pqcx
https://goo.gl/HgCDIA

TensorFlow	Implementation
Implementing	denoising	autoencoders	in	TensorFlow	is	not	too	hard.	Let’s	start	with	Gaussian	noise.	It’s
really	just	like	training	a	regular	autoencoder,	except	you	add	noise	to	the	inputs,	and	the	reconstruction
loss	is	calculated	based	on	the	original	inputs:

X	=	tf.placeholder(tf.float32,	shape=[None,	n_inputs])

X_noisy	=	X	+	tf.random_normal(tf.shape(X))

[...]

hidden1	=	activation(tf.matmul(X_noisy,	weights1)	+	biases1)

[...]

reconstruction_loss	=	tf.reduce_mean(tf.square(outputs	-	X))		#	MSE

[...]

WARNING
Since	the	shape	of	X	is	only	partially	defined	during	the	construction	phase,	we	cannot	know	in	advance	the	shape	of	the	noise
that	we	must	add	to	X.	We	cannot	call	X.get_shape()	because	this	would	just	return	the	partially	defined	shape	of	X	([None,
n_inputs]),	and	random_normal()	expects	a	fully	defined	shape	so	it	would	raise	an	exception.	Instead,	we	call	tf.shape(X),
which	creates	an	operation	that	will	return	the	shape	of	X	at	runtime,	which	will	be	fully	defined	at	that	point.

Implementing	the	dropout	version,	which	is	more	common,	is	not	much	harder:

from	tensorflow.contrib.layers	import	dropout

keep_prob	=	0.7

is_training	=	tf.placeholder_with_default(False,	shape=(),	name='is_training')

X	=	tf.placeholder(tf.float32,	shape=[None,	n_inputs])

X_drop	=	dropout(X,	keep_prob,	is_training=is_training)

[...]

hidden1	=	activation(tf.matmul(X_drop,	weights1)	+	biases1)

[...]

reconstruction_loss	=	tf.reduce_mean(tf.square(outputs	-	X))		#	MSE

[...]

During	training	we	must	set	is_training	to	True	(as	explained	in	Chapter	11)	using	the	feed_dict:

sess.run(training_op,	feed_dict={X:	X_batch,	is_training:	True})

However,	during	testing	it	is	not	necessary	to	set	is_training	to	False,	since	we	set	that	as	the	default
in	the	call	to	the	placeholder_with_default()	function.

Sparse	Autoencoders
Another	kind	of	constraint	that	often	leads	to	good	feature	extraction	is	sparsity:	by	adding	an	appropriate
term	to	the	cost	function,	the	autoencoder	is	pushed	to	reduce	the	number	of	active	neurons	in	the	coding
layer.	For	example,	it	may	be	pushed	to	have	on	average	only	5%	significantly	active	neurons	in	the
coding	layer.	This	forces	the	autoencoder	to	represent	each	input	as	a	combination	of	a	small	number	of
activations.	As	a	result,	each	neuron	in	the	coding	layer	typically	ends	up	representing	a	useful	feature	(if
you	could	speak	only	a	few	words	per	month,	you	would	probably	try	to	make	them	worth	listening	to).

In	order	to	favor	sparse	models,	we	must	first	measure	the	actual	sparsity	of	the	coding	layer	at	each
training	iteration.	We	do	so	by	computing	the	average	activation	of	each	neuron	in	the	coding	layer,	over
the	whole	training	batch.	The	batch	size	must	not	be	too	small,	or	else	the	mean	will	not	be	accurate.

Once	we	have	the	mean	activation	per	neuron,	we	want	to	penalize	the	neurons	that	are	too	active	by
adding	a	sparsity	loss	to	the	cost	function.	For	example,	if	we	measure	that	a	neuron	has	an	average
activation	of	0.3,	but	the	target	sparsity	is	0.1,	it	must	be	penalized	to	activate	less.	One	approach	could
be	simply	adding	the	squared	error	(0.3	–	0.1)2	to	the	cost	function,	but	in	practice	a	better	approach	is	to
use	the	Kullback–Leibler	divergence	(briefly	discussed	in	Chapter	4),	which	has	much	stronger	gradients
than	the	Mean	Squared	Error,	as	you	can	see	in	Figure	15-10.

Figure	15-10.	Sparsity	loss

Given	two	discrete	probability	distributions	P	and	Q,	the	KL	divergence	between	these	distributions,
noted	DKL(P	∥	Q),	can	be	computed	using	Equation	15-1.

Equation	15-1.	Kullback–Leibler	divergence

In	our	case,	we	want	to	measure	the	divergence	between	the	target	probability	p	that	a	neuron	in	the
coding	layer	will	activate,	and	the	actual	probability	q	(i.e.,	the	mean	activation	over	the	training	batch).
So	the	KL	divergence	simplifies	to	Equation	15-2.

Equation	15-2.	KL	divergence	between	the	target	sparsity	p	and	the	actual	sparsity	q

Once	we	have	computed	the	sparsity	loss	for	each	neuron	in	the	coding	layer,	we	just	sum	up	these	losses,
and	add	the	result	to	the	cost	function.	In	order	to	control	the	relative	importance	of	the	sparsity	loss	and
the	reconstruction	loss,	we	can	multiply	the	sparsity	loss	by	a	sparsity	weight	hyperparameter.	If	this
weight	is	too	high,	the	model	will	stick	closely	to	the	target	sparsity,	but	it	may	not	reconstruct	the	inputs
properly,	making	the	model	useless.	Conversely,	if	it	is	too	low,	the	model	will	mostly	ignore	the	sparsity
objective	and	it	will	not	learn	any	interesting	features.

TensorFlow	Implementation
We	now	have	all	we	need	to	implement	a	sparse	autoencoder	using	TensorFlow:

def	kl_divergence(p,	q):

				return	p	*	tf.log(p	/	q)	+	(1	-	p)	*	tf.log((1	-	p)	/	(1	-	q))

learning_rate	=	0.01

sparsity_target	=	0.1

sparsity_weight	=	0.2

[...]	#	Build	a	normal	autoencoder	(in	this	example	the	coding	layer	is	hidden1)

optimizer	=	tf.train.AdamOptimizer(learning_rate)

hidden1_mean	=	tf.reduce_mean(hidden1,	axis=0)		#	batch	mean

sparsity_loss	=	tf.reduce_sum(kl_divergence(sparsity_target,	hidden1_mean))

reconstruction_loss	=	tf.reduce_mean(tf.square(outputs	-	X))		#	MSE

loss	=	reconstruction_loss	+	sparsity_weight	*	sparsity_loss

training_op	=	optimizer.minimize(loss)

An	important	detail	is	the	fact	that	the	activations	of	the	coding	layer	must	be	between	0	and	1	(but	not
equal	to	0	or	1),	or	else	the	KL	divergence	will	return	NaN	(Not	a	Number).	A	simple	solution	is	to	use
the	logistic	activation	function	for	the	coding	layer:

hidden1	=	tf.nn.sigmoid(tf.matmul(X,	weights1)	+	biases1)

One	simple	trick	can	speed	up	convergence:	instead	of	using	the	MSE,	we	can	choose	a	reconstruction
loss	that	will	have	larger	gradients.	Cross	entropy	is	often	a	good	choice.	To	use	it,	we	must	normalize	the
inputs	to	make	them	take	on	values	from	0	to	1,	and	use	the	logistic	activation	function	in	the	output	layer
so	the	outputs	also	take	on	values	from	0	to	1.	TensorFlow’s	sigmoid_cross_entropy_with_logits()
function	takes	care	of	efficiently	applying	the	logistic	(sigmoid)	activation	function	to	the	outputs	and
computing	the	cross	entropy:

[...]

logits	=	tf.matmul(hidden1,	weights2)	+	biases2)

outputs	=	tf.nn.sigmoid(logits)

reconstruction_loss	=	tf.reduce_sum(

				tf.nn.sigmoid_cross_entropy_with_logits(labels=X,	logits=logits))

Note	that	the	outputs	operation	is	not	needed	during	training	(we	use	it	only	when	we	want	to	look	at	the
reconstructions).

Variational	Autoencoders
Another	important	category	of	autoencoders	was	introduced	in	2014	by	Diederik	Kingma	and	Max
Welling,5	and	has	quickly	become	one	of	the	most	popular	types	of	autoencoders:	variational
autoencoders.

They	are	quite	different	from	all	the	autoencoders	we	have	discussed	so	far,	in	particular:
They	are	probabilistic	autoencoders,	meaning	that	their	outputs	are	partly	determined	by	chance,
even	after	training	(as	opposed	to	denoising	autoencoders,	which	use	randomness	only	during
training).

Most	importantly,	they	are	generative	autoencoders,	meaning	that	they	can	generate	new	instances
that	look	like	they	were	sampled	from	the	training	set.

Both	these	properties	make	them	rather	similar	to	RBMs	(see	Appendix	E),	but	they	are	easier	to	train	and
the	sampling	process	is	much	faster	(with	RBMs	you	need	to	wait	for	the	network	to	stabilize	into	a
“thermal	equilibrium”	before	you	can	sample	a	new	instance).

Let’s	take	a	look	at	how	they	work.	Figure	15-11	(left)	shows	a	variational	autoencoder.	You	can
recognize,	of	course,	the	basic	structure	of	all	autoencoders,	with	an	encoder	followed	by	a	decoder	(in
this	example,	they	both	have	two	hidden	layers),	but	there	is	a	twist:	instead	of	directly	producing	a
coding	for	a	given	input,	the	encoder	produces	a	mean	coding	μ	and	a	standard	deviation	σ.	The	actual
coding	is	then	sampled	randomly	from	a	Gaussian	distribution	with	mean	μ	and	standard	deviation	σ.
After	that	the	decoder	just	decodes	the	sampled	coding	normally.	The	right	part	of	the	diagram	shows	a
training	instance	going	through	this	autoencoder.	First,	the	encoder	produces	μ	and	σ,	then	a	coding	is
sampled	randomly	(notice	that	it	is	not	exactly	located	at	μ),	and	finally	this	coding	is	decoded,	and	the
final	output	resembles	the	training	instance.

https://goo.gl/NZq7r2

Figure	15-11.	Variational	autoencoder	(left),	and	an	instance	going	through	it	(right)

As	you	can	see	on	the	diagram,	although	the	inputs	may	have	a	very	convoluted	distribution,	a	variational
autoencoder	tends	to	produce	codings	that	look	as	though	they	were	sampled	from	a	simple	Gaussian
distribution:6	during	training,	the	cost	function	(discussed	next)	pushes	the	codings	to	gradually	migrate
within	the	coding	space	(also	called	the	latent	space)	to	occupy	a	roughly	(hyper)spherical	region	that
looks	like	a	cloud	of	Gaussian	points.	One	great	consequence	is	that	after	training	a	variational
autoencoder,	you	can	very	easily	generate	a	new	instance:	just	sample	a	random	coding	from	the	Gaussian
distribution,	decode	it,	and	voilà!

So	let’s	look	at	the	cost	function.	It	is	composed	of	two	parts.	The	first	is	the	usual	reconstruction	loss	that
pushes	the	autoencoder	to	reproduce	its	inputs	(we	can	use	cross	entropy	for	this,	as	discussed	earlier).
The	second	is	the	latent	loss	that	pushes	the	autoencoder	to	have	codings	that	look	as	though	they	were
sampled	from	a	simple	Gaussian	distribution,	for	which	we	use	the	KL	divergence	between	the	target
distribution	(the	Gaussian	distribution)	and	the	actual	distribution	of	the	codings.	The	math	is	a	bit	more
complex	than	earlier,	in	particular	because	of	the	Gaussian	noise,	which	limits	the	amount	of	information

that	can	be	transmitted	to	the	coding	layer	(thus	pushing	the	autoencoder	to	learn	useful	features).	Luckily,
the	equations	simplify	to	the	following	code	for	the	latent	loss:7

eps	=	1e-10		#	smoothing	term	to	avoid	computing	log(0)	which	is	NaN

latent_loss	=	0.5	*	tf.reduce_sum(

				tf.square(hidden3_sigma)	+	tf.square(hidden3_mean)

				-	1	-	tf.log(eps	+	tf.square(hidden3_sigma)))

One	common	variant	is	to	train	the	encoder	to	output	γ	=	log(σ2)	rather	than	σ.	Wherever	we	need	σ	we

can	just	compute	 .	This	makes	it	a	bit	easier	for	the	encoder	to	capture	sigmas	of	different
scales,	and	thus	it	helps	speed	up	convergence.	The	latent	loss	ends	up	a	bit	simpler:

latent_loss	=	0.5	*	tf.reduce_sum(

				tf.exp(hidden3_gamma)	+	tf.square(hidden3_mean)	-	1	-	hidden3_gamma)

The	following	code	builds	the	variational	autoencoder	shown	in	Figure	15-11	(left),	using	the	log(σ2)
variant:

n_inputs	=	28	*	28		#	for	MNIST

n_hidden1	=	500

n_hidden2	=	500

n_hidden3	=	20		#	codings

n_hidden4	=	n_hidden2

n_hidden5	=	n_hidden1

n_outputs	=	n_inputs

learning_rate	=	0.001

with	tf.contrib.framework.arg_scope(

								[fully_connected],

								activation_fn=tf.nn.elu,

								weights_initializer=tf.contrib.layers.variance_scaling_initializer()):

				X	=	tf.placeholder(tf.float32,	[None,	n_inputs])

				hidden1	=	fully_connected(X,	n_hidden1)

				hidden2	=	fully_connected(hidden1,	n_hidden2)

				hidden3_mean	=	fully_connected(hidden2,	n_hidden3,	activation_fn=None)

				hidden3_gamma	=	fully_connected(hidden2,	n_hidden3,	activation_fn=None)

				hidden3_sigma	=	tf.exp(0.5	*	hidden3_gamma)

				noise	=	tf.random_normal(tf.shape(hidden3_sigma),	dtype=tf.float32)

				hidden3	=	hidden3_mean	+	hidden3_sigma	*	noise

				hidden4	=	fully_connected(hidden3,	n_hidden4)

				hidden5	=	fully_connected(hidden4,	n_hidden5)

				logits	=	fully_connected(hidden5,	n_outputs,	activation_fn=None)

				outputs	=	tf.sigmoid(logits)

reconstruction_loss	=	tf.reduce_sum(

				tf.nn.sigmoid_cross_entropy_with_logits(labels=X,	logits=logits))

latent_loss	=	0.5	*	tf.reduce_sum(

				tf.exp(hidden3_gamma)	+	tf.square(hidden3_mean)	-	1	-	hidden3_gamma)

cost	=	reconstruction_loss	+	latent_loss

optimizer	=	tf.train.AdamOptimizer(learning_rate=learning_rate)

training_op	=	optimizer.minimize(cost)

init	=	tf.global_variables_initializer()

Generating	Digits
Now	let’s	use	this	variational	autoencoder	to	generate	images	that	look	like	handwritten	digits.	All	we
need	to	do	is	train	the	model,	then	sample	random	codings	from	a	Gaussian	distribution	and	decode	them.

import	numpy	as	np

n_digits	=	60

n_epochs	=	50

batch_size	=	150

with	tf.Session()	as	sess:

				init.run()

				for	epoch	in	range(n_epochs):

								n_batches	=	mnist.train.num_examples	//	batch_size

								for	iteration	in	range(n_batches):

												X_batch,	y_batch	=	mnist.train.next_batch(batch_size)

												sess.run(training_op,	feed_dict={X:	X_batch})

				codings_rnd	=	np.random.normal(size=[n_digits,	n_hidden3])

				outputs_val	=	outputs.eval(feed_dict={hidden3:	codings_rnd})

That’s	it.	Now	we	can	see	what	the	“handwritten”	digits	produced	by	the	autoencoder	look	like	(see
Figure	15-12):

for	iteration	in	range(n_digits):

				plt.subplot(n_digits,	10,	iteration	+	1)

				plot_image(outputs_val[iteration])

Figure	15-12.	Images	of	handwritten	digits	generated	by	the	variational	autoencoder

A	majority	of	these	digits	look	pretty	convincing,	while	a	few	are	rather	“creative.”	But	don’t	be	too	harsh
on	the	autoencoder	—	it	only	started	learning	less	than	an	hour	ago.	Give	it	a	bit	more	training	time,	and
those	digits	will	look	better	and	better.

Other	Autoencoders
The	amazing	successes	of	supervised	learning	in	image	recognition,	speech	recognition,	text	translation,
and	more	have	somewhat	overshadowed	unsupervised	learning,	but	it	is	actually	booming.	New
architectures	for	autoencoders	and	other	unsupervised	learning	algorithms	are	invented	regularly,	so	much
so	that	we	cannot	cover	them	all	in	this	book.	Here	is	a	brief	(by	no	means	exhaustive)	overview	of	a	few
more	types	of	autoencoders	that	you	may	want	to	check	out:

Contractive	autoencoder	(CAE)8

The	autoencoder	is	constrained	during	training	so	that	the	derivatives	of	the	codings	with	regards	to
the	inputs	are	small.	In	other	words,	two	similar	inputs	must	have	similar	codings.

Stacked	convolutional	autoencoders9

Autoencoders	that	learn	to	extract	visual	features	by	reconstructing	images	processed	through
convolutional	layers.

Generative	stochastic	network	(GSN)10

A	generalization	of	denoising	autoencoders,	with	the	added	capability	to	generate	data.

Winner-take-all	(WTA)	autoencoder11

During	training,	after	computing	the	activations	of	all	the	neurons	in	the	coding	layer,	only	the	top	k%
activations	for	each	neuron	over	the	training	batch	are	preserved,	and	the	rest	are	set	to	zero.
Naturally	this	leads	to	sparse	codings.	Moreover,	a	similar	WTA	approach	can	be	used	to	produce
sparse	convolutional	autoencoders.

Adversarial	autoencoders12

One	network	is	trained	to	reproduce	its	inputs,	and	at	the	same	time	another	is	trained	to	find	inputs
that	the	first	network	is	unable	to	properly	reconstruct.	This	pushes	the	first	autoencoder	to	learn
robust	codings.

https://goo.gl/U5t9Ux
https://goo.gl/PTwsol
https://goo.gl/HjON1m
https://goo.gl/I1LvzL
https://goo.gl/enC5fB

Exercises
1.	 What	are	the	main	tasks	that	autoencoders	are	used	for?

2.	 Suppose	you	want	to	train	a	classifier	and	you	have	plenty	of	unlabeled	training	data,	but	only	a
few	thousand	labeled	instances.	How	can	autoencoders	help?	How	would	you	proceed?

3.	 If	an	autoencoder	perfectly	reconstructs	the	inputs,	is	it	necessarily	a	good	autoencoder?	How
can	you	evaluate	the	performance	of	an	autoencoder?

4.	 What	are	undercomplete	and	overcomplete	autoencoders?	What	is	the	main	risk	of	an
excessively	undercomplete	autoencoder?	What	about	the	main	risk	of	an	overcomplete
autoencoder?

5.	 How	do	you	tie	weights	in	a	stacked	autoencoder?	What	is	the	point	of	doing	so?

6.	 What	is	a	common	technique	to	visualize	features	learned	by	the	lower	layer	of	a	stacked
autoencoder?	What	about	higher	layers?

7.	 What	is	a	generative	model?	Can	you	name	a	type	of	generative	autoencoder?

8.	 Let’s	use	a	denoising	autoencoder	to	pretrain	an	image	classifier:
You	can	use	MNIST	(simplest),	or	another	large	set	of	images	such	as	CIFAR10	if	you	want
a	bigger	challenge.	If	you	choose	CIFAR10,	you	need	to	write	code	to	load	batches	of
images	for	training.	If	you	want	to	skip	this	part,	TensorFlow’s	model	zoo	contains	tools	to
do	just	that.

Split	the	dataset	into	a	training	set	and	a	test	set.	Train	a	deep	denoising	autoencoder	on	the
full	training	set.

Check	that	the	images	are	fairly	well	reconstructed,	and	visualize	the	low-level	features.
Visualize	the	images	that	most	activate	each	neuron	in	the	coding	layer.

Build	a	classification	deep	neural	network,	reusing	the	lower	layers	of	the	autoencoder.
Train	it	using	only	10%	of	the	training	set.	Can	you	get	it	to	perform	as	well	as	the	same
classifier	trained	on	the	full	training	set?

9.	 Semantic	hashing,	introduced	in	2008	by	Ruslan	Salakhutdinov	and	Geoffrey	Hinton,13	is	a
technique	used	for	efficient	information	retrieval:	a	document	(e.g.,	an	image)	is	passed	through
a	system,	typically	a	neural	network,	which	outputs	a	fairly	low-dimensional	binary	vector	(e.g.,
30	bits).	Two	similar	documents	are	likely	to	have	identical	or	very	similar	hashes.	By	indexing
each	document	using	its	hash,	it	is	possible	to	retrieve	many	documents	similar	to	a	particular
document	almost	instantly,	even	if	there	are	billions	of	documents:	just	compute	the	hash	of	the
document	and	look	up	all	documents	with	that	same	hash	(or	hashes	differing	by	just	one	or	two
bits).	Let’s	implement	semantic	hashing	using	a	slightly	tweaked	stacked	autoencoder:

Create	a	stacked	autoencoder	containing	two	hidden	layers	below	the	coding	layer,	and

https://goo.gl/VbsmxG
https://goo.gl/3iENgb
https://goo.gl/LXzFX6

train	it	on	the	image	dataset	you	used	in	the	previous	exercise.	The	coding	layer	should
contain	30	neurons	and	use	the	logistic	activation	function	to	output	values	between	0	and	1.
After	training,	to	produce	the	hash	of	an	image,	you	can	simply	run	it	through	the
autoencoder,	take	the	output	of	the	coding	layer,	and	round	every	value	to	the	closest	integer
(0	or	1).

One	neat	trick	proposed	by	Salakhutdinov	and	Hinton	is	to	add	Gaussian	noise	(with	zero
mean)	to	the	inputs	of	the	coding	layer,	during	training	only.	In	order	to	preserve	a	high
signal-to-noise	ratio,	the	autoencoder	will	learn	to	feed	large	values	to	the	coding	layer	(so
that	the	noise	becomes	negligible).	In	turn,	this	means	that	the	logistic	function	of	the	coding
layer	will	likely	saturate	at	0	or	1.	As	a	result,	rounding	the	codings	to	0	or	1	won’t	distort
them	too	much,	and	this	will	improve	the	reliability	of	the	hashes.

Compute	the	hash	of	every	image,	and	see	if	images	with	identical	hashes	look	alike.	Since
MNIST	and	CIFAR10	are	labeled,	a	more	objective	way	to	measure	the	performance	of	the
autoencoder	for	semantic	hashing	is	to	ensure	that	images	with	the	same	hash	generally	have
the	same	class.	One	way	to	do	this	is	to	measure	the	average	Gini	purity	(introduced	in
Chapter	6)	of	the	sets	of	images	with	identical	(or	very	similar)	hashes.

Try	fine-tuning	the	hyperparameters	using	cross-validation.

Note	that	with	a	labeled	dataset,	another	approach	is	to	train	a	convolutional	neural	network
(see	Chapter	13)	for	classification,	then	use	the	layer	below	the	output	layer	to	produce	the
hashes.	See	Jinma	Gua	and	Jianmin	Li’s	2015	paper.14	See	if	that	performs	better.

10.	 Train	a	variational	autoencoder	on	the	image	dataset	used	in	the	previous	exercises	(MNIST	or
CIFAR10),	and	make	it	generate	images.	Alternatively,	you	can	try	to	find	an	unlabeled	dataset
that	you	are	interested	in	and	see	if	you	can	generate	new	samples.

Solutions	to	these	exercises	are	available	in	Appendix	A.

“Perception	in	chess,”	W.	Chase	and	H.	Simon	(1973).

“Greedy	Layer-Wise	Training	of	Deep	Networks,”	Y.	Bengio	et	al.	(2007).

“Extracting	and	Composing	Robust	Features	with	Denoising	Autoencoders,”	P.	Vincent	et	al.	(2008).

“Stacked	Denoising	Autoencoders:	Learning	Useful	Representations	in	a	Deep	Network	with	a	Local	Denoising	Criterion,”	P.	Vincent	et
al.	(2010).

“Auto-Encoding	Variational	Bayes,”	D.	Kingma	and	M.	Welling	(2014).

Variational	autoencoders	are	actually	more	general;	the	codings	are	not	limited	to	Gaussian	distributions.

For	more	mathematical	details,	check	out	the	original	paper	on	variational	autoencoders,	or	Carl	Doersch’s	great	tutorial	(2016).

“Contractive	Auto-Encoders:	Explicit	Invariance	During	Feature	Extraction,”	S.	Rifai	et	al.	(2011).

“Stacked	Convolutional	Auto-Encoders	for	Hierarchical	Feature	Extraction,”	J.	Masci	et	al.	(2011).

“GSNs:	Generative	Stochastic	Networks,”	G.	Alain	et	al.	(2015).

“Winner-Take-All	Autoencoders,”	A.	Makhzani	and	B.	Frey	(2015).

“Adversarial	Autoencoders,”	A.	Makhzani	et	al.	(2016).

“Semantic	Hashing,”	R.	Salakhutdinov	and	G.	Hinton	(2008).

1

2

3

4

5

6

7

8

9

10

11

12

13

14

https://goo.gl/i9FTln
https://goo.gl/ViiAzQ

“CNN	Based	Hashing	for	Image	Retrieval,”	J.	Gua	and	J.	Li	(2015).14

Chapter	16.	Reinforcement	Learning

Reinforcement	Learning	(RL)	is	one	of	the	most	exciting	fields	of	Machine	Learning	today,	and	also	one
of	the	oldest.	It	has	been	around	since	the	1950s,	producing	many	interesting	applications	over	the	years,1
in	particular	in	games	(e.g.,	TD-Gammon,	a	Backgammon	playing	program)	and	in	machine	control,	but
seldom	making	the	headline	news.	But	a	revolution	took	place	in	2013	when	researchers	from	an	English
startup	called	DeepMind	demonstrated	a	system	that	could	learn	to	play	just	about	any	Atari	game	from
scratch,2	eventually	outperforming	humans3	in	most	of	them,	using	only	raw	pixels	as	inputs	and	without
any	prior	knowledge	of	the	rules	of	the	games.4	This	was	the	first	of	a	series	of	amazing	feats,	culminating
in	March	2016	with	the	victory	of	their	system	AlphaGo	against	Lee	Sedol,	the	world	champion	of	the
game	of	Go.	No	program	had	ever	come	close	to	beating	a	master	of	this	game,	let	alone	the	world
champion.	Today	the	whole	field	of	RL	is	boiling	with	new	ideas,	with	a	wide	range	of	applications.
DeepMind	was	bought	by	Google	for	over	500	million	dollars	in	2014.

So	how	did	they	do	it?	With	hindsight	it	seems	rather	simple:	they	applied	the	power	of	Deep	Learning	to
the	field	of	Reinforcement	Learning,	and	it	worked	beyond	their	wildest	dreams.	In	this	chapter	we	will
first	explain	what	Reinforcement	Learning	is	and	what	it	is	good	at,	and	then	we	will	present	two	of	the
most	important	techniques	in	deep	Reinforcement	Learning:	policy	gradients	and	deep	Q-networks
(DQN),	including	a	discussion	of	Markov	decision	processes	(MDP).	We	will	use	these	techniques	to
train	a	model	to	balance	a	pole	on	a	moving	cart,	and	another	to	play	Atari	games.	The	same	techniques
can	be	used	for	a	wide	variety	of	tasks,	from	walking	robots	to	self-driving	cars.

https://goo.gl/hceDs5
https://goo.gl/hgpvz7

Learning	to	Optimize	Rewards
In	Reinforcement	Learning,	a	software	agent	makes	observations	and	takes	actions	within	an
environment,	and	in	return	it	receives	rewards.	Its	objective	is	to	learn	to	act	in	a	way	that	will	maximize
its	expected	long-term	rewards.	If	you	don’t	mind	a	bit	of	anthropomorphism,	you	can	think	of	positive
rewards	as	pleasure,	and	negative	rewards	as	pain	(the	term	“reward”	is	a	bit	misleading	in	this	case).	In
short,	the	agent	acts	in	the	environment	and	learns	by	trial	and	error	to	maximize	its	pleasure	and	minimize
its	pain.

This	is	quite	a	broad	setting,	which	can	apply	to	a	wide	variety	of	tasks.	Here	are	a	few	examples	(see
Figure	16-1):

1.	 The	agent	can	be	the	program	controlling	a	walking	robot.	In	this	case,	the	environment	is	the
real	world,	the	agent	observes	the	environment	through	a	set	of	sensors	such	as	cameras	and
touch	sensors,	and	its	actions	consist	of	sending	signals	to	activate	motors.	It	may	be
programmed	to	get	positive	rewards	whenever	it	approaches	the	target	destination,	and	negative
rewards	whenever	it	wastes	time,	goes	in	the	wrong	direction,	or	falls	down.

2.	 The	agent	can	be	the	program	controlling	Ms.	Pac-Man.	In	this	case,	the	environment	is	a
simulation	of	the	Atari	game,	the	actions	are	the	nine	possible	joystick	positions	(upper	left,
down,	center,	and	so	on),	the	observations	are	screenshots,	and	the	rewards	are	just	the	game
points.

3.	 Similarly,	the	agent	can	be	the	program	playing	a	board	game	such	as	the	game	of	Go.

4.	 The	agent	does	not	have	to	control	a	physically	(or	virtually)	moving	thing.	For	example,	it	can
be	a	smart	thermostat,	getting	rewards	whenever	it	is	close	to	the	target	temperature	and	saves
energy,	and	negative	rewards	when	humans	need	to	tweak	the	temperature,	so	the	agent	must
learn	to	anticipate	human	needs.

5.	 The	agent	can	observe	stock	market	prices	and	decide	how	much	to	buy	or	sell	every	second.
Rewards	are	obviously	the	monetary	gains	and	losses.

Figure	16-1.	Reinforcement	Learning	examples:	(a)	walking	robot,	(b)	Ms.	Pac-Man,	(c)	Go	player,	(d)	thermostat,	(e)	automatic
trader5

Note	that	there	may	not	be	any	positive	rewards	at	all;	for	example,	the	agent	may	move	around	in	a	maze,
getting	a	negative	reward	at	every	time	step,	so	it	better	find	the	exit	as	quickly	as	possible!	There	are
many	other	examples	of	tasks	where	Reinforcement	Learning	is	well	suited,	such	as	self-driving	cars,
placing	ads	on	a	web	page,	or	controlling	where	an	image	classification	system	should	focus	its	attention.

Policy	Search
The	algorithm	used	by	the	software	agent	to	determine	its	actions	is	called	its	policy.	For	example,	the
policy	could	be	a	neural	network	taking	observations	as	inputs	and	outputting	the	action	to	take	(see
Figure	16-2).

Figure	16-2.	Reinforcement	Learning	using	a	neural	network	policy

The	policy	can	be	any	algorithm	you	can	think	of,	and	it	does	not	even	have	to	be	deterministic.	For
example,	consider	a	robotic	vacuum	cleaner	whose	reward	is	the	amount	of	dust	it	picks	up	in	30	minutes.
Its	policy	could	be	to	move	forward	with	some	probability	p	every	second,	or	randomly	rotate	left	or
right	with	probability	1	–	p.	The	rotation	angle	would	be	a	random	angle	between	–r	and	+r.	Since	this
policy	involves	some	randomness,	it	is	called	a	stochastic	policy.	The	robot	will	have	an	erratic
trajectory,	which	guarantees	that	it	will	eventually	get	to	any	place	it	can	reach	and	pick	up	all	the	dust.
The	question	is:	how	much	dust	will	it	pick	up	in	30	minutes?

How	would	you	train	such	a	robot?	There	are	just	two	policy	parameters	you	can	tweak:	the	probability
p	and	the	angle	range	r.	One	possible	learning	algorithm	could	be	to	try	out	many	different	values	for
these	parameters,	and	pick	the	combination	that	performs	best	(see	Figure	16-3).	This	is	an	example	of
policy	search,	in	this	case	using	a	brute	force	approach.	However,	when	the	policy	space	is	too	large
(which	is	generally	the	case),	finding	a	good	set	of	parameters	this	way	is	like	searching	for	a	needle	in	a
gigantic	haystack.

Another	way	to	explore	the	policy	space	is	to	use	genetic	algorithms.	For	example,	you	could	randomly
create	a	first	generation	of	100	policies	and	try	them	out,	then	“kill”	the	80	worst	policies6	and	make	the
20	survivors	produce	4	offspring	each.	An	offspring	is	just	a	copy	of	its	parent7	plus	some	random
variation.	The	surviving	policies	plus	their	offspring	together	constitute	the	second	generation.	You	can
continue	to	iterate	through	generations	this	way,	until	you	find	a	good	policy.

Figure	16-3.	Four	points	in	policy	space	and	the	agent’s	corresponding	behavior

Yet	another	approach	is	to	use	optimization	techniques,	by	evaluating	the	gradients	of	the	rewards	with
regards	to	the	policy	parameters,	then	tweaking	these	parameters	by	following	the	gradient	toward	higher
rewards	(gradient	ascent).	This	approach	is	called	policy	gradients	(PG),	which	we	will	discuss	in
more	detail	later	in	this	chapter.	For	example,	going	back	to	the	vacuum	cleaner	robot,	you	could	slightly
increase	p	and	evaluate	whether	this	increases	the	amount	of	dust	picked	up	by	the	robot	in	30	minutes;	if
it	does,	then	increase	p	some	more,	or	else	reduce	p.	We	will	implement	a	popular	PG	algorithm	using
TensorFlow,	but	before	we	do	we	need	to	create	an	environment	for	the	agent	to	live	in,	so	it’s	time	to
introduce	OpenAI	gym.

Introduction	to	OpenAI	Gym
One	of	the	challenges	of	Reinforcement	Learning	is	that	in	order	to	train	an	agent,	you	first	need	to	have	a
working	environment.	If	you	want	to	program	an	agent	that	will	learn	to	play	an	Atari	game,	you	will	need
an	Atari	game	simulator.	If	you	want	to	program	a	walking	robot,	then	the	environment	is	the	real	world
and	you	can	directly	train	your	robot	in	that	environment,	but	this	has	its	limits:	if	the	robot	falls	off	a	cliff,
you	can’t	just	click	“undo.”	You	can’t	speed	up	time	either;	adding	more	computing	power	won’t	make	the
robot	move	any	faster.	And	it’s	generally	too	expensive	to	train	1,000	robots	in	parallel.	In	short,	training
is	hard	and	slow	in	the	real	world,	so	you	generally	need	a	simulated	environment	at	least	to	bootstrap
training.

OpenAI	gym8	is	a	toolkit	that	provides	a	wide	variety	of	simulated	environments	(Atari	games,	board
games,	2D	and	3D	physical	simulations,	and	so	on),	so	you	can	train	agents,	compare	them,	or	develop
new	RL	algorithms.

Let’s	install	OpenAI	gym.	For	a	minimal	OpenAI	gym	installation,	simply	use	pip:

$	pip3	install	--upgrade	gym

Next	open	up	a	Python	shell	or	a	Jupyter	notebook	and	create	your	first	environment:

>>>	import	gym

>>>	env	=	gym.make("CartPole-v0")

[2016-10-14	16:03:23,199]	Making	new	env:	MsPacman-v0

>>>	obs	=	env.reset()

>>>	obs

array([-0.03799846,	-0.03288115,		0.02337094,		0.00720711])

>>>	env.render()

The	make()	function	creates	an	environment,	in	this	case	a	CartPole	environment.	This	is	a	2D	simulation
in	which	a	cart	can	be	accelerated	left	or	right	in	order	to	balance	a	pole	placed	on	top	of	it	(see
Figure	16-4).	After	the	environment	is	created,	we	must	initialize	it	using	the	reset()	method.	This
returns	the	first	observation.	Observations	depend	on	the	type	of	environment.	For	the	CartPole
environment,	each	observation	is	a	1D	NumPy	array	containing	four	floats:	these	floats	represent	the
cart’s	horizontal	position	(0.0	=	center),	its	velocity,	the	angle	of	the	pole	(0.0	=	vertical),	and	its
angular	velocity.	Finally,	the	render()	method	displays	the	environment	as	shown	in	Figure	16-4.

https://gym.openai.com/

Figure	16-4.	The	CartPole	environment

If	you	want	render()	to	return	the	rendered	image	as	a	NumPy	array,	you	can	set	the	mode	parameter	to
rgb_array	(note	that	other	environments	may	support	different	modes):

>>>	img	=	env.render(mode="rgb_array")

>>>	img.shape		#	height,	width,	channels	(3=RGB)

(400,	600,	3)

TIP
Unfortunately,	the	CartPole	(and	a	few	other	environments)	renders	the	image	to	the	screen	even	if	you	set	the	mode	to
"rgb_array".	The	only	way	to	avoid	this	is	to	use	a	fake	X	server	such	as	Xvfb	or	Xdummy.	For	example,	you	can	install	Xvfb
and	start	Python	using	the	following	command:	xvfb-run	-s	"-screen	0	1400x900x24"	python.	Or	use	the	xvfbwrapper
package.

Let’s	ask	the	environment	what	actions	are	possible:

>>>	env.action_space

Discrete(2)

Discrete(2)	means	that	the	possible	actions	are	integers	0	and	1,	which	represent	accelerating	left	(0)
or	right	(1).	Other	environments	may	have	more	discrete	actions,	or	other	kinds	of	actions	(e.g.,

https://goo.gl/wR1oJl

continuous).	Since	the	pole	is	leaning	toward	the	right,	let’s	accelerate	the	cart	toward	the	right:

>>>	action	=	1		#	accelerate	right

>>>	obs,	reward,	done,	info	=	env.step(action)

>>>	obs

array([-0.03865608,		0.16189797,		0.02351508,	-0.27801135])

>>>	reward

1.0

>>>	done

False

>>>	info

{}

The	step()	method	executes	the	given	action	and	returns	four	values:

obs

This	is	the	new	observation.	The	cart	is	now	moving	toward	the	right	(obs[1]>0).	The	pole	is	still
tilted	toward	the	right	(obs[2]>0),	but	its	angular	velocity	is	now	negative	(obs[3]<0),	so	it	will
likely	be	tilted	toward	the	left	after	the	next	step.

reward

In	this	environment,	you	get	a	reward	of	1.0	at	every	step,	no	matter	what	you	do,	so	the	goal	is	to
keep	running	as	long	as	possible.

done

This	value	will	be	True	when	the	episode	is	over.	This	will	happen	when	the	pole	tilts	too	much.
After	that,	the	environment	must	be	reset	before	it	can	be	used	again.

info

This	dictionary	may	provide	extra	debug	information	in	other	environments.	This	data	should	not	be
used	for	training	(it	would	be	cheating).

Let’s	hardcode	a	simple	policy	that	accelerates	left	when	the	pole	is	leaning	toward	the	left	and
accelerates	right	when	the	pole	is	leaning	toward	the	right.	We	will	run	this	policy	to	see	the	average
rewards	it	gets	over	500	episodes:

def	basic_policy(obs):

				angle	=	obs[2]

				return	0	if	angle	<	0	else	1

totals	=	[]

for	episode	in	range(500):

				episode_rewards	=	0

				obs	=	env.reset()

				for	step	in	range(1000):	#	1000	steps	max,	we	don't	want	to	run	forever

								action	=	basic_policy(obs)

								obs,	reward,	done,	info	=	env.step(action)

								episode_rewards	+=	reward

								if	done:

												break

				totals.append(episode_rewards)

This	code	is	hopefully	self-explanatory.	Let’s	look	at	the	result:

>>>	import	numpy	as	np

>>>	np.mean(totals),	np.std(totals),	np.min(totals),	np.max(totals)

(42.125999999999998,	9.1237121830974033,	24.0,	68.0)

Even	with	500	tries,	this	policy	never	managed	to	keep	the	pole	upright	for	more	than	68	consecutive
steps.	Not	great.	If	you	look	at	the	simulation	in	the	Jupyter	notebooks,	you	will	see	that	the	cart	oscillates
left	and	right	more	and	more	strongly	until	the	pole	tilts	too	much.	Let’s	see	if	a	neural	network	can	come
up	with	a	better	policy.

https://github.com/ageron/handson-ml

Neural	Network	Policies
Let’s	create	a	neural	network	policy.	Just	like	the	policy	we	hardcoded	earlier,	this	neural	network	will
take	an	observation	as	input,	and	it	will	output	the	action	to	be	executed.	More	precisely,	it	will	estimate	a
probability	for	each	action,	and	then	we	will	select	an	action	randomly	according	to	the	estimated
probabilities	(see	Figure	16-5).	In	the	case	of	the	CartPole	environment,	there	are	just	two	possible
actions	(left	or	right),	so	we	only	need	one	output	neuron.	It	will	output	the	probability	p	of	action	0	(left),
and	of	course	the	probability	of	action	1	(right)	will	be	1	–	p.	For	example,	if	it	outputs	0.7,	then	we	will
pick	action	0	with	70%	probability,	and	action	1	with	30%	probability.

Figure	16-5.	Neural	network	policy

You	may	wonder	why	we	are	picking	a	random	action	based	on	the	probability	given	by	the	neural
network,	rather	than	just	picking	the	action	with	the	highest	score.	This	approach	lets	the	agent	find	the
right	balance	between	exploring	new	actions	and	exploiting	the	actions	that	are	known	to	work	well.
Here’s	an	analogy:	suppose	you	go	to	a	restaurant	for	the	first	time,	and	all	the	dishes	look	equally
appealing	so	you	randomly	pick	one.	If	it	turns	out	to	be	good,	you	can	increase	the	probability	to	order	it
next	time,	but	you	shouldn’t	increase	that	probability	up	to	100%,	or	else	you	will	never	try	out	the	other
dishes,	some	of	which	may	be	even	better	than	the	one	you	tried.

Also	note	that	in	this	particular	environment,	the	past	actions	and	observations	can	safely	be	ignored,
since	each	observation	contains	the	environment’s	full	state.	If	there	were	some	hidden	state,	then	you	may
need	to	consider	past	actions	and	observations	as	well.	For	example,	if	the	environment	only	revealed	the
position	of	the	cart	but	not	its	velocity,	you	would	have	to	consider	not	only	the	current	observation	but
also	the	previous	observation	in	order	to	estimate	the	current	velocity.	Another	example	is	when	the
observations	are	noisy;	in	that	case,	you	generally	want	to	use	the	past	few	observations	to	estimate	the
most	likely	current	state.	The	CartPole	problem	is	thus	as	simple	as	can	be;	the	observations	are	noise-
free	and	they	contain	the	environment’s	full	state.

Here	is	the	code	to	build	this	neural	network	policy	using	TensorFlow:

import	tensorflow	as	tf

from	tensorflow.contrib.layers	import	fully_connected

#	1.	Specify	the	neural	network	architecture

n_inputs	=	4		#	==	env.observation_space.shape[0]

n_hidden	=	4		#	it's	a	simple	task,	we	don't	need	more	hidden	neurons

n_outputs	=	1	#	only	outputs	the	probability	of	accelerating	left

initializer	=	tf.contrib.layers.variance_scaling_initializer()

#	2.	Build	the	neural	network

X	=	tf.placeholder(tf.float32,	shape=[None,	n_inputs])

hidden	=	fully_connected(X,	n_hidden,	activation_fn=tf.nn.elu,

																									weights_initializer=initializer)

logits	=	fully_connected(hidden,	n_outputs,	activation_fn=None,

																									weights_initializer=initializer)

outputs	=	tf.nn.sigmoid(logits)

#	3.	Select	a	random	action	based	on	the	estimated	probabilities

p_left_and_right	=	tf.concat(axis=1,	values=[outputs,	1	-	outputs])

action	=	tf.multinomial(tf.log(p_left_and_right),	num_samples=1)

init	=	tf.global_variables_initializer()

Let’s	go	through	this	code:
1.	 After	the	imports,	we	define	the	neural	network	architecture.	The	number	of	inputs	is	the	size	of

the	observation	space	(which	in	the	case	of	the	CartPole	is	four),	we	just	have	four	hidden	units
and	no	need	for	more,	and	we	have	just	one	output	probability	(the	probability	of	going	left).

2.	 Next	we	build	the	neural	network.	In	this	example,	it’s	a	vanilla	Multi-Layer	Perceptron,	with	a
single	output.	Note	that	the	output	layer	uses	the	logistic	(sigmoid)	activation	function	in	order	to
output	a	probability	from	0.0	to	1.0.	If	there	were	more	than	two	possible	actions,	there	would	be
one	output	neuron	per	action,	and	you	would	use	the	softmax	activation	function	instead.

3.	 Lastly,	we	call	the	multinomial()	function	to	pick	a	random	action.	This	function	independently

samples	one	(or	more)	integers,	given	the	log	probability	of	each	integer.	For	example,	if	you
call	it	with	the	array	[np.log(0.5),	np.log(0.2),	np.log(0.3)]	and	with
num_samples=5,	then	it	will	output	five	integers,	each	of	which	will	have	a	50%	probability	of
being	0,	20%	of	being	1,	and	30%	of	being	2.	In	our	case	we	just	need	one	integer	representing
the	action	to	take.	Since	the	outputs	tensor	only	contains	the	probability	of	going	left,	we	must
first	concatenate	1-outputs	to	it	to	have	a	tensor	containing	the	probability	of	both	left	and	right
actions.	Note	that	if	there	were	more	than	two	possible	actions,	the	neural	network	would	have	to
output	one	probability	per	action	so	you	would	not	need	the	concatenation	step.

Okay,	we	now	have	a	neural	network	policy	that	will	take	observations	and	output	actions.	But	how	do
we	train	it?

Evaluating	Actions:	The	Credit	Assignment	Problem
If	we	knew	what	the	best	action	was	at	each	step,	we	could	train	the	neural	network	as	usual,	by
minimizing	the	cross	entropy	between	the	estimated	probability	and	the	target	probability.	It	would	just	be
regular	supervised	learning.	However,	in	Reinforcement	Learning	the	only	guidance	the	agent	gets	is
through	rewards,	and	rewards	are	typically	sparse	and	delayed.	For	example,	if	the	agent	manages	to
balance	the	pole	for	100	steps,	how	can	it	know	which	of	the	100	actions	it	took	were	good,	and	which	of
them	were	bad?	All	it	knows	is	that	the	pole	fell	after	the	last	action,	but	surely	this	last	action	is	not
entirely	responsible.	This	is	called	the	credit	assignment	problem:	when	the	agent	gets	a	reward,	it	is
hard	for	it	to	know	which	actions	should	get	credited	(or	blamed)	for	it.	Think	of	a	dog	that	gets	rewarded
hours	after	it	behaved	well;	will	it	understand	what	it	is	rewarded	for?

To	tackle	this	problem,	a	common	strategy	is	to	evaluate	an	action	based	on	the	sum	of	all	the	rewards	that
come	after	it,	usually	applying	a	discount	rate	r	at	each	step.	For	example	(see	Figure	16-6),	if	an	agent
decides	to	go	right	three	times	in	a	row	and	gets	+10	reward	after	the	first	step,	0	after	the	second	step,
and	finally	–50	after	the	third	step,	then	assuming	we	use	a	discount	rate	r	=	0.8,	the	first	action	will	have
a	total	score	of	10	+	r	×	0	+	r2	×	(–50)	=	–22.	If	the	discount	rate	is	close	to	0,	then	future	rewards	won’t
count	for	much	compared	to	immediate	rewards.	Conversely,	if	the	discount	rate	is	close	to	1,	then
rewards	far	into	the	future	will	count	almost	as	much	as	immediate	rewards.	Typical	discount	rates	are
0.95	or	0.99.	With	a	discount	rate	of	0.95,	rewards	13	steps	into	the	future	count	roughly	for	half	as	much
as	immediate	rewards	(since	0.9513	≈	0.5),	while	with	a	discount	rate	of	0.99,	rewards	69	steps	into	the
future	count	for	half	as	much	as	immediate	rewards.	In	the	CartPole	environment,	actions	have	fairly
short-term	effects,	so	choosing	a	discount	rate	of	0.95	seems	reasonable.

Figure	16-6.	Discounted	rewards

Of	course,	a	good	action	may	be	followed	by	several	bad	actions	that	cause	the	pole	to	fall	quickly,
resulting	in	the	good	action	getting	a	low	score	(similarly,	a	good	actor	may	sometimes	star	in	a	terrible
movie).	However,	if	we	play	the	game	enough	times,	on	average	good	actions	will	get	a	better	score	than
bad	ones.	So,	to	get	fairly	reliable	action	scores,	we	must	run	many	episodes	and	normalize	all	the	action
scores	(by	subtracting	the	mean	and	dividing	by	the	standard	deviation).	After	that,	we	can	reasonably
assume	that	actions	with	a	negative	score	were	bad	while	actions	with	a	positive	score	were	good.
Perfect	—	now	that	we	have	a	way	to	evaluate	each	action,	we	are	ready	to	train	our	first	agent	using
policy	gradients.	Let’s	see	how.

Policy	Gradients
As	discussed	earlier,	PG	algorithms	optimize	the	parameters	of	a	policy	by	following	the	gradients
toward	higher	rewards.	One	popular	class	of	PG	algorithms,	called	REINFORCE	algorithms,	was
introduced	back	in	19929	by	Ronald	Williams.	Here	is	one	common	variant:

1.	 First,	let	the	neural	network	policy	play	the	game	several	times	and	at	each	step	compute	the
gradients	that	would	make	the	chosen	action	even	more	likely,	but	don’t	apply	these	gradients	yet.

2.	 Once	you	have	run	several	episodes,	compute	each	action’s	score	(using	the	method	described	in
the	previous	paragraph).

3.	 If	an	action’s	score	is	positive,	it	means	that	the	action	was	good	and	you	want	to	apply	the
gradients	computed	earlier	to	make	the	action	even	more	likely	to	be	chosen	in	the	future.
However,	if	the	score	is	negative,	it	means	the	action	was	bad	and	you	want	to	apply	the
opposite	gradients	to	make	this	action	slightly	less	likely	in	the	future.	The	solution	is	simply	to
multiply	each	gradient	vector	by	the	corresponding	action’s	score.

4.	 Finally,	compute	the	mean	of	all	the	resulting	gradient	vectors,	and	use	it	to	perform	a	Gradient
Descent	step.

Let’s	implement	this	algorithm	using	TensorFlow.	We	will	train	the	neural	network	policy	we	built	earlier
so	that	it	learns	to	balance	the	pole	on	the	cart.	Let’s	start	by	completing	the	construction	phase	we	coded
earlier	to	add	the	target	probability,	the	cost	function,	and	the	training	operation.	Since	we	are	acting	as
though	the	chosen	action	is	the	best	possible	action,	the	target	probability	must	be	1.0	if	the	chosen	action
is	action	0	(left)	and	0.0	if	it	is	action	1	(right):

y	=	1.	-	tf.to_float(action)

Now	that	we	have	a	target	probability,	we	can	define	the	cost	function	(cross	entropy)	and	compute	the
gradients:

learning_rate	=	0.01

cross_entropy	=	tf.nn.sigmoid_cross_entropy_with_logits(

																				labels=y,	logits=logits)

optimizer	=	tf.train.AdamOptimizer(learning_rate)

grads_and_vars	=	optimizer.compute_gradients(cross_entropy)

Note	that	we	are	calling	the	optimizer’s	compute_gradients()	method	instead	of	the	minimize()
method.	This	is	because	we	want	to	tweak	the	gradients	before	we	apply	them.10	The
compute_gradients()	method	returns	a	list	of	gradient	vector/variable	pairs	(one	pair	per	trainable
variable).	Let’s	put	all	the	gradients	in	a	list,	to	make	it	more	convenient	to	obtain	their	values:

gradients	=	[grad	for	grad,	variable	in	grads_and_vars]

Okay,	now	comes	the	tricky	part.	During	the	execution	phase,	the	algorithm	will	run	the	policy	and	at	each

https://goo.gl/tUe4Sh

step	it	will	evaluate	these	gradient	tensors	and	store	their	values.	After	a	number	of	episodes	it	will	tweak
these	gradients	as	explained	earlier	(i.e.,	multiply	them	by	the	action	scores	and	normalize	them)	and
compute	the	mean	of	the	tweaked	gradients.	Next,	it	will	need	to	feed	the	resulting	gradients	back	to	the
optimizer	so	that	it	can	perform	an	optimization	step.	This	means	we	need	one	placeholder	per	gradient
vector.	Moreover,	we	must	create	the	operation	that	will	apply	the	updated	gradients.	For	this	we	will
call	the	optimizer’s	apply_gradients()	function,	which	takes	a	list	of	gradient	vector/variable	pairs.
Instead	of	giving	it	the	original	gradient	vectors,	we	will	give	it	a	list	containing	the	updated	gradients
(i.e.,	the	ones	fed	through	the	gradient	placeholders):

gradient_placeholders	=	[]

grads_and_vars_feed	=	[]

for	grad,	variable	in	grads_and_vars:

				gradient_placeholder	=	tf.placeholder(tf.float32,	shape=grad.get_shape())

				gradient_placeholders.append(gradient_placeholder)

				grads_and_vars_feed.append((gradient_placeholder,	variable))

training_op	=	optimizer.apply_gradients(grads_and_vars_feed)

Let’s	step	back	and	take	a	look	at	the	full	construction	phase:

n_inputs	=	4

n_hidden	=	4

n_outputs	=	1

initializer	=	tf.contrib.layers.variance_scaling_initializer()

learning_rate	=	0.01

X	=	tf.placeholder(tf.float32,	shape=[None,	n_inputs])

hidden	=	fully_connected(X,	n_hidden,	activation_fn=tf.nn.elu,

																									weights_initializer=initializer)

logits	=	fully_connected(hidden,	n_outputs,	activation_fn=None,

																									weights_initializer=initializer)

outputs	=	tf.nn.sigmoid(logits)

p_left_and_right	=	tf.concat(axis=1,	values=[outputs,	1	-	outputs])

action	=	tf.multinomial(tf.log(p_left_and_right),	num_samples=1)

y	=	1.	-	tf.to_float(action)

cross_entropy	=	tf.nn.sigmoid_cross_entropy_with_logits(

																				labels=y,	logits=logits)

optimizer	=	tf.train.AdamOptimizer(learning_rate)

grads_and_vars	=	optimizer.compute_gradients(cross_entropy)

gradients	=	[grad	for	grad,	variable	in	grads_and_vars]

gradient_placeholders	=	[]

grads_and_vars_feed	=	[]

for	grad,	variable	in	grads_and_vars:

				gradient_placeholder	=	tf.placeholder(tf.float32,	shape=grad.get_shape())

				gradient_placeholders.append(gradient_placeholder)

				grads_and_vars_feed.append((gradient_placeholder,	variable))

training_op	=	optimizer.apply_gradients(grads_and_vars_feed)

init	=	tf.global_variables_initializer()

saver	=	tf.train.Saver()

On	to	the	execution	phase!	We	will	need	a	couple	of	functions	to	compute	the	total	discounted	rewards,
given	the	raw	rewards,	and	to	normalize	the	results	across	multiple	episodes:

def	discount_rewards(rewards,	discount_rate):

				discounted_rewards	=	np.empty(len(rewards))

				cumulative_rewards	=	0

				for	step	in	reversed(range(len(rewards))):

								cumulative_rewards	=	rewards[step]	+	cumulative_rewards	*	discount_rate

								discounted_rewards[step]	=	cumulative_rewards

				return	discounted_rewards

def	discount_and_normalize_rewards(all_rewards,	discount_rate):

				all_discounted_rewards	=	[discount_rewards(rewards)

																														for	rewards	in	all_rewards]

				flat_rewards	=	np.concatenate(all_discounted_rewards)

				reward_mean	=	flat_rewards.mean()

				reward_std	=	flat_rewards.std()

				return	[(discounted_rewards	-	reward_mean)/reward_std

												for	discounted_rewards	in	all_discounted_rewards]

Let’s	check	that	this	works:

>>>	discount_rewards([10,	0,	-50],	discount_rate=0.8)

array([-22.,	-40.,	-50.])

>>>	discount_and_normalize_rewards([[10,	0,	-50],	[10,	20]],	discount_rate=0.8)

[array([-0.28435071,	-0.86597718,	-1.18910299]),

	array([1.26665318,		1.0727777])]

The	call	to	discount_rewards()	returns	exactly	what	we	expect	(see	Figure	16-6).	You	can	verify	that
the	function	discount_and_normalize_rewards()	does	indeed	return	the	normalized	scores	for	each
action	in	both	episodes.	Notice	that	the	first	episode	was	much	worse	than	the	second,	so	its	normalized
scores	are	all	negative;	all	actions	from	the	first	episode	would	be	considered	bad,	and	conversely	all
actions	from	the	second	episode	would	be	considered	good.

We	now	have	all	we	need	to	train	the	policy:

n_iterations	=	250						#	number	of	training	iterations

n_max_steps	=	1000						#	max	steps	per	episode

n_games_per_update	=	10	#	train	the	policy	every	10	episodes

save_iterations	=	10				#	save	the	model	every	10	training	iterations

discount_rate	=	0.95

with	tf.Session()	as	sess:

				init.run()

				for	iteration	in	range(n_iterations):

								all_rewards	=	[]				#	all	sequences	of	raw	rewards	for	each	episode

								all_gradients	=	[]		#	gradients	saved	at	each	step	of	each	episode

								for	game	in	range(n_games_per_update):

												current_rewards	=	[]			#	all	raw	rewards	from	the	current	episode

												current_gradients	=	[]	#	all	gradients	from	the	current	episode

												obs	=	env.reset()

												for	step	in	range(n_max_steps):

																action_val,	gradients_val	=	sess.run(

																								[action,	gradients],

																								feed_dict={X:	obs.reshape(1,	n_inputs)})	#	one	obs

																obs,	reward,	done,	info	=	env.step(action_val[0][0])

																current_rewards.append(reward)

																current_gradients.append(gradients_val)

																if	done:

																				break

												all_rewards.append(current_rewards)

												all_gradients.append(current_gradients)

								#	At	this	point	we	have	run	the	policy	for	10	episodes,	and	we	are

								#	ready	for	a	policy	update	using	the	algorithm	described	earlier.

								all_rewards	=	discount_and_normalize_rewards(all_rewards)

								feed_dict	=	{}

								for	var_index,	grad_placeholder	in	enumerate(gradient_placeholders):

												#	multiply	the	gradients	by	the	action	scores,	and	compute	the	mean

												mean_gradients	=	np.mean(

																[reward	*	all_gradients[game_index][step][var_index]

																				for	game_index,	rewards	in	enumerate(all_rewards)

																				for	step,	reward	in	enumerate(rewards)],

																axis=0)

												feed_dict[grad_placeholder]	=	mean_gradients

								sess.run(training_op,	feed_dict=feed_dict)

								if	iteration	%	save_iterations	==	0:

												saver.save(sess,	"./my_policy_net_pg.ckpt")

Each	training	iteration	starts	by	running	the	policy	for	10	episodes	(with	maximum	1,000	steps	per
episode,	to	avoid	running	forever).	At	each	step,	we	also	compute	the	gradients,	pretending	that	the
chosen	action	was	the	best.	After	these	10	episodes	have	been	run,	we	compute	the	action	scores	using	the
discount_and_normalize_rewards()	function;	we	go	through	each	trainable	variable,	across	all
episodes	and	all	steps,	to	multiply	each	gradient	vector	by	its	corresponding	action	score;	and	we
compute	the	mean	of	the	resulting	gradients.	Finally,	we	run	the	training	operation,	feeding	it	these	mean
gradients	(one	per	trainable	variable).	We	also	save	the	model	every	10	training	operations.

And	we’re	done!	This	code	will	train	the	neural	network	policy,	and	it	will	successfully	learn	to	balance
the	pole	on	the	cart	(you	can	try	it	out	in	the	Jupyter	notebooks).	Note	that	there	are	actually	two	ways	the
agent	can	lose	the	game:	either	the	pole	can	tilt	too	much,	or	the	cart	can	go	completely	off	the	screen.
With	250	training	iterations,	the	policy	learns	to	balance	the	pole	quite	well,	but	it	is	not	yet	good	enough
at	avoiding	going	off	the	screen.	A	few	hundred	more	training	iterations	will	fix	that.

TIP
Researchers	try	to	find	algorithms	that	work	well	even	when	the	agent	initially	knows	nothing	about	the	environment.	However,
unless	you	are	writing	a	paper,	you	should	inject	as	much	prior	knowledge	as	possible	into	the	agent,	as	it	will	speed	up	training
dramatically.	For	example,	you	could	add	negative	rewards	proportional	to	the	distance	from	the	center	of	the	screen,	and	to	the
pole’s	angle.	Also,	if	you	already	have	a	reasonably	good	policy	(e.g.,	hardcoded),	you	may	want	to	train	the	neural	network	to
imitate	it	before	using	policy	gradients	to	improve	it.

Despite	its	relative	simplicity,	this	algorithm	is	quite	powerful.	You	can	use	it	to	tackle	much	harder
problems	than	balancing	a	pole	on	a	cart.	In	fact,	AlphaGo	was	based	on	a	similar	PG	algorithm	(plus
Monte	Carlo	Tree	Search,	which	is	beyond	the	scope	of	this	book).

We	will	now	look	at	another	popular	family	of	algorithms.	Whereas	PG	algorithms	directly	try	to	optimize
the	policy	to	increase	rewards,	the	algorithms	we	will	look	at	now	are	less	direct:	the	agent	learns	to
estimate	the	expected	sum	of	discounted	future	rewards	for	each	state,	or	the	expected	sum	of	discounted
future	rewards	for	each	action	in	each	state,	then	uses	this	knowledge	to	decide	how	to	act.	To	understand
these	algorithms,	we	must	first	introduce	Markov	decision	processes	(MDP).

Markov	Decision	Processes
In	the	early	20th	century,	the	mathematician	Andrey	Markov	studied	stochastic	processes	with	no	memory,
called	Markov	chains.	Such	a	process	has	a	fixed	number	of	states,	and	it	randomly	evolves	from	one
state	to	another	at	each	step.	The	probability	for	it	to	evolve	from	a	state	s	to	a	state	s′	is	fixed,	and	it
depends	only	on	the	pair	(s,s′),	not	on	past	states	(the	system	has	no	memory).

Figure	16-7	shows	an	example	of	a	Markov	chain	with	four	states.	Suppose	that	the	process	starts	in	state
s0,	and	there	is	a	70%	chance	that	it	will	remain	in	that	state	at	the	next	step.	Eventually	it	is	bound	to
leave	that	state	and	never	come	back	since	no	other	state	points	back	to	s0.	If	it	goes	to	state	s1,	it	will	then
most	likely	go	to	state	s2	(90%	probability),	then	immediately	back	to	state	s1	(with	100%	probability).	It
may	alternate	a	number	of	times	between	these	two	states,	but	eventually	it	will	fall	into	state	s3	and
remain	there	forever	(this	is	a	terminal	state).	Markov	chains	can	have	very	different	dynamics,	and	they
are	heavily	used	in	thermodynamics,	chemistry,	statistics,	and	much	more.

Figure	16-7.	Example	of	a	Markov	chain

Markov	decision	processes	were	first	described	in	the	1950s	by	Richard	Bellman.11	They	resemble
Markov	chains	but	with	a	twist:	at	each	step,	an	agent	can	choose	one	of	several	possible	actions,	and	the
transition	probabilities	depend	on	the	chosen	action.	Moreover,	some	state	transitions	return	some	reward

https://goo.gl/wZTVIN

(positive	or	negative),	and	the	agent’s	goal	is	to	find	a	policy	that	will	maximize	rewards	over	time.

For	example,	the	MDP	represented	in	Figure	16-8	has	three	states	and	up	to	three	possible	discrete
actions	at	each	step.	If	it	starts	in	state	s0,	the	agent	can	choose	between	actions	a0,	a1,	or	a2.	If	it	chooses
action	a1,	it	just	remains	in	state	s0	with	certainty,	and	without	any	reward.	It	can	thus	decide	to	stay	there
forever	if	it	wants.	But	if	it	chooses	action	a0,	it	has	a	70%	probability	of	gaining	a	reward	of	+10,	and
remaining	in	state	s0.	It	can	then	try	again	and	again	to	gain	as	much	reward	as	possible.	But	at	one	point	it
is	going	to	end	up	instead	in	state	s1.	In	state	s1	it	has	only	two	possible	actions:	a0	or	a1.	It	can	choose	to
stay	put	by	repeatedly	choosing	action	a1,	or	it	can	choose	to	move	on	to	state	s2	and	get	a	negative
reward	of	–50	(ouch).	In	state	s3	it	has	no	other	choice	than	to	take	action	a1,	which	will	most	likely	lead
it	back	to	state	s0,	gaining	a	reward	of	+40	on	the	way.	You	get	the	picture.	By	looking	at	this	MDP,	can
you	guess	which	strategy	will	gain	the	most	reward	over	time?	In	state	s0	it	is	clear	that	action	a0	is	the
best	option,	and	in	state	s3	the	agent	has	no	choice	but	to	take	action	a1,	but	in	state	s1	it	is	not	obvious
whether	the	agent	should	stay	put	(a0)	or	go	through	the	fire	(a2).

Figure	16-8.	Example	of	a	Markov	decision	process

Bellman	found	a	way	to	estimate	the	optimal	state	value	of	any	state	s,	noted	V*(s),	which	is	the	sum	of
all	discounted	future	rewards	the	agent	can	expect	on	average	after	it	reaches	a	state	s,	assuming	it	acts
optimally.	He	showed	that	if	the	agent	acts	optimally,	then	the	Bellman	Optimality	Equation	applies	(see
Equation	16-1).	This	recursive	equation	says	that	if	the	agent	acts	optimally,	then	the	optimal	value	of	the
current	state	is	equal	to	the	reward	it	will	get	on	average	after	taking	one	optimal	action,	plus	the	expected
optimal	value	of	all	possible	next	states	that	this	action	can	lead	to.

Equation	16-1.	Bellman	Optimality	Equation

T(s,	a,	s′)	is	the	transition	probability	from	state	s	to	state	s′,	given	that	the	agent	chose	action	a.

R(s,	a,	s′)	is	the	reward	that	the	agent	gets	when	it	goes	from	state	s	to	state	s′,	given	that	the	agent
chose	action	a.

γ	is	the	discount	rate.

This	equation	leads	directly	to	an	algorithm	that	can	precisely	estimate	the	optimal	state	value	of	every
possible	state:	you	first	initialize	all	the	state	value	estimates	to	zero,	and	then	you	iteratively	update	them
using	the	Value	Iteration	algorithm	(see	Equation	16-2).	A	remarkable	result	is	that,	given	enough	time,
these	estimates	are	guaranteed	to	converge	to	the	optimal	state	values,	corresponding	to	the	optimal
policy.

Equation	16-2.	Value	Iteration	algorithm

Vk(s)	is	the	estimated	value	of	state	s	at	the	kth	iteration	of	the	algorithm.

NOTE
This	algorithm	is	an	example	of	Dynamic	Programming,	which	breaks	down	a	complex	problem	(in	this	case	estimating	a
potentially	infinite	sum	of	discounted	future	rewards)	into	tractable	sub-problems	that	can	be	tackled	iteratively	(in	this	case
finding	the	action	that	maximizes	the	average	reward	plus	the	discounted	next	state	value).

Knowing	the	optimal	state	values	can	be	useful,	in	particular	to	evaluate	a	policy,	but	it	does	not	tell	the
agent	explicitly	what	to	do.	Luckily,	Bellman	found	a	very	similar	algorithm	to	estimate	the	optimal	state-
action	values,	generally	called	Q-Values.	The	optimal	Q-Value	of	the	state-action	pair	(s,a),	noted	Q*
(s,a),	is	the	sum	of	discounted	future	rewards	the	agent	can	expect	on	average	after	it	reaches	the	state	s
and	chooses	action	a,	but	before	it	sees	the	outcome	of	this	action,	assuming	it	acts	optimally	after	that
action.

Here	is	how	it	works:	once	again,	you	start	by	initializing	all	the	Q-Value	estimates	to	zero,	then	you
update	them	using	the	Q-Value	Iteration	algorithm	(see	Equation	16-3).

Equation	16-3.	Q-Value	Iteration	algorithm

Once	you	have	the	optimal	Q-Values,	defining	the	optimal	policy,	noted	π*(s),	is	trivial:	when	the	agent	is

in	state	s,	it	should	choose	the	action	with	the	highest	Q-Value	for	that	state:	 .

Let’s	apply	this	algorithm	to	the	MDP	represented	in	Figure	16-8.	First,	we	need	to	define	the	MDP:

nan=np.nan		#	represents	impossible	actions

T	=	np.array([#	shape=[s,	a,	s']

								[[0.7,	0.3,	0.0],	[1.0,	0.0,	0.0],	[0.8,	0.2,	0.0]],

								[[0.0,	1.0,	0.0],	[nan,	nan,	nan],	[0.0,	0.0,	1.0]],

								[[nan,	nan,	nan],	[0.8,	0.1,	0.1],	[nan,	nan,	nan]],

])

R	=	np.array([#	shape=[s,	a,	s']

								[[10.,	0.0,	0.0],	[0.0,	0.0,	0.0],	[0.0,	0.0,	0.0]],

								[[10.,	0.0,	0.0],	[nan,	nan,	nan],	[0.0,	0.0,	-50.]],

								[[nan,	nan,	nan],	[40.,	0.0,	0.0],	[nan,	nan,	nan]],

])

possible_actions	=	[[0,	1,	2],	[0,	2],	[1]]

Now	let’s	run	the	Q-Value	Iteration	algorithm:

Q	=	np.full((3,	3),	-np.inf)		#	-inf	for	impossible	actions

for	state,	actions	in	enumerate(possible_actions):

				Q[state,	actions]	=	0.0		#	Initial	value	=	0.0,	for	all	possible	actions

learning_rate	=	0.01

discount_rate	=	0.95

n_iterations	=	100

for	iteration	in	range(n_iterations):

				Q_prev	=	Q.copy()

				for	s	in	range(3):

								for	a	in	possible_actions[s]:

												Q[s,	a]	=	np.sum([

																T[s,	a,	sp]	*	(R[s,	a,	sp]	+	discount_rate	*	np.max(Q_prev[sp]))

																for	sp	in	range(3)

])

The	resulting	Q-Values	look	like	this:

>>>	Q

array([[21.89498982,		20.80024033,		16.86353093],

							[1.11669335,									-inf,			1.17573546],

							[-inf,		53.86946068,									-inf]])

>>>	np.argmax(Q,	axis=1)		#	optimal	action	for	each	state

array([0,	2,	1])

This	gives	us	the	optimal	policy	for	this	MDP,	when	using	a	discount	rate	of	0.95:	in	state	s0	choose
action	a0,	in	state	s1	choose	action	a2	(go	through	the	fire!),	and	in	state	s2	choose	action	a1	(the	only
possible	action).	Interestingly,	if	you	reduce	the	discount	rate	to	0.9,	the	optimal	policy	changes:	in	state
s1	the	best	action	becomes	a0	(stay	put;	don’t	go	through	the	fire).	It	makes	sense	because	if	you	value	the
present	much	more	than	the	future,	then	the	prospect	of	future	rewards	is	not	worth	immediate	pain.

Temporal	Difference	Learning	and	Q-Learning
Reinforcement	Learning	problems	with	discrete	actions	can	often	be	modeled	as	Markov	decision
processes,	but	the	agent	initially	has	no	idea	what	the	transition	probabilities	are	(it	does	not	know	T(s,	a,
s′)),	and	it	does	not	know	what	the	rewards	are	going	to	be	either	(it	does	not	know	R(s,	a,	s′)).	It	must
experience	each	state	and	each	transition	at	least	once	to	know	the	rewards,	and	it	must	experience	them
multiple	times	if	it	is	to	have	a	reasonable	estimate	of	the	transition	probabilities.

The	Temporal	Difference	Learning	(TD	Learning)	algorithm	is	very	similar	to	the	Value	Iteration
algorithm,	but	tweaked	to	take	into	account	the	fact	that	the	agent	has	only	partial	knowledge	of	the	MDP.
In	general	we	assume	that	the	agent	initially	knows	only	the	possible	states	and	actions,	and	nothing	more.
The	agent	uses	an	exploration	policy	—	for	example,	a	purely	random	policy	—	to	explore	the	MDP,	and
as	it	progresses	the	TD	Learning	algorithm	updates	the	estimates	of	the	state	values	based	on	the
transitions	and	rewards	that	are	actually	observed	(see	Equation	16-4).

Equation	16-4.	TD	Learning	algorithm

α	is	the	learning	rate	(e.g.,	0.01).

TIP
TD	Learning	has	many	similarities	with	Stochastic	Gradient	Descent,	in	particular	the	fact	that	it	handles	one	sample	at	a	time.
Just	like	SGD,	it	can	only	truly	converge	if	you	gradually	reduce	the	learning	rate	(otherwise	it	will	keep	bouncing	around	the
optimum).

For	each	state	s,	this	algorithm	simply	keeps	track	of	a	running	average	of	the	immediate	rewards	the
agent	gets	upon	leaving	that	state,	plus	the	rewards	it	expects	to	get	later	(assuming	it	acts	optimally).

Similarly,	the	Q-Learning	algorithm	is	an	adaptation	of	the	Q-Value	Iteration	algorithm	to	the	situation
where	the	transition	probabilities	and	the	rewards	are	initially	unknown	(see	Equation	16-5).

Equation	16-5.	Q-Learning	algorithm

For	each	state-action	pair	(s,	a),	this	algorithm	keeps	track	of	a	running	average	of	the	rewards	r	the	agent
gets	upon	leaving	the	state	s	with	action	a,	plus	the	rewards	it	expects	to	get	later.	Since	the	target	policy
would	act	optimally,	we	take	the	maximum	of	the	Q-Value	estimates	for	the	next	state.

Here	is	how	Q-Learning	can	be	implemented:

import	numpy.random	as	rnd

learning_rate0	=	0.05

learning_rate_decay	=	0.1

n_iterations	=	20000

s	=	0	#	start	in	state	0

Q	=	np.full((3,	3),	-np.inf)		#	-inf	for	impossible	actions

for	state,	actions	in	enumerate(possible_actions):

				Q[state,	actions]	=	0.0		#	Initial	value	=	0.0,	for	all	possible	actions

for	iteration	in	range(n_iterations):

				a	=	rnd.choice(possible_actions[s])		#	choose	an	action	(randomly)

				sp	=	rnd.choice(range(3),	p=T[s,	a])	#	pick	next	state	using	T[s,	a]

				reward	=	R[s,	a,	sp]

				learning_rate	=	learning_rate0	/	(1	+	iteration	*	learning_rate_decay)

				Q[s,	a]	=	learning_rate	*	Q[s,	a]	+	(1	-	learning_rate)	*	(

												reward	+	discount_rate	*	np.max(Q[sp])

)

				s	=	sp	#	move	to	next	state

Given	enough	iterations,	this	algorithm	will	converge	to	the	optimal	Q-Values.	This	is	called	an	off-policy
algorithm	because	the	policy	being	trained	is	not	the	one	being	executed.	It	is	somewhat	surprising	that
this	algorithm	is	capable	of	learning	the	optimal	policy	by	just	watching	an	agent	act	randomly	(imagine
learning	to	play	golf	when	your	teacher	is	a	drunken	monkey).	Can	we	do	better?

Exploration	Policies
Of	course	Q-Learning	can	work	only	if	the	exploration	policy	explores	the	MDP	thoroughly	enough.
Although	a	purely	random	policy	is	guaranteed	to	eventually	visit	every	state	and	every	transition	many
times,	it	may	take	an	extremely	long	time	to	do	so.	Therefore,	a	better	option	is	to	use	the	ε-greedy	policy:
at	each	step	it	acts	randomly	with	probability	ε,	or	greedily	(choosing	the	action	with	the	highest	Q-Value)
with	probability	1-ε.	The	advantage	of	the	ε-greedy	policy	(compared	to	a	completely	random	policy)	is
that	it	will	spend	more	and	more	time	exploring	the	interesting	parts	of	the	environment,	as	the	Q-Value
estimates	get	better	and	better,	while	still	spending	some	time	visiting	unknown	regions	of	the	MDP.	It	is
quite	common	to	start	with	a	high	value	for	ε	(e.g.,	1.0)	and	then	gradually	reduce	it	(e.g.,	down	to	0.05).

Alternatively,	rather	than	relying	on	chance	for	exploration,	another	approach	is	to	encourage	the
exploration	policy	to	try	actions	that	it	has	not	tried	much	before.	This	can	be	implemented	as	a	bonus
added	to	the	Q-Value	estimates,	as	shown	in	Equation	16-6.

Equation	16-6.	Q-Learning	using	an	exploration	function

N(s′,	a′)	counts	the	number	of	times	the	action	a′	was	chosen	in	state	s′.

f(q,	n)	is	an	exploration	function,	such	as	f(q,	n)	=	q	+	K/(1	+	n),	where	K	is	a	curiosity
hyperparameter	that	measures	how	much	the	agent	is	attracted	to	to	the	unknown.

Approximate	Q-Learning
The	main	problem	with	Q-Learning	is	that	it	does	not	scale	well	to	large	(or	even	medium)	MDPs	with
many	states	and	actions.	Consider	trying	to	use	Q-Learning	to	train	an	agent	to	play	Ms.	Pac-Man.	There
are	over	250	pellets	that	Ms.	Pac-Man	can	eat,	each	of	which	can	be	present	or	absent	(i.e.,	already
eaten).	So	the	number	of	possible	states	is	greater	than	2250	≈	1075	(and	that’s	considering	the	possible
states	only	of	the	pellets).	This	is	way	more	than	atoms	in	the	observable	universe,	so	there’s	absolutely
no	way	you	can	keep	track	of	an	estimate	for	every	single	Q-Value.

The	solution	is	to	find	a	function	that	approximates	the	Q-Values	using	a	manageable	number	of
parameters.	This	is	called	Approximate	Q-Learning.	For	years	it	was	recommended	to	use	linear
combinations	of	hand-crafted	features	extracted	from	the	state	(e.g.,	distance	of	the	closest	ghosts,	their
directions,	and	so	on)	to	estimate	Q-Values,	but	DeepMind	showed	that	using	deep	neural	networks	can
work	much	better,	especially	for	complex	problems,	and	it	does	not	require	any	feature	engineering.	A
DNN	used	to	estimate	Q-Values	is	called	a	deep	Q-network	(DQN),	and	using	a	DQN	for	Approximate
Q-Learning	is	called	Deep	Q-Learning.

In	the	rest	of	this	chapter,	we	will	use	Deep	Q-Learning	to	train	an	agent	to	play	Ms.	Pac-Man,	much	like
DeepMind	did	in	2013.	The	code	can	easily	be	tweaked	to	learn	to	play	the	majority	of	Atari	games	quite
well.	It	can	achieve	superhuman	skill	at	most	action	games,	but	it	is	not	so	good	at	games	with	long-
running	storylines.

Learning	to	Play	Ms.	Pac-Man	Using	Deep	Q-Learning
Since	we	will	be	using	an	Atari	environment,	we	must	first	install	OpenAI	gym’s	Atari	dependencies.
While	we’re	at	it,	we	will	also	install	dependencies	for	other	OpenAI	gym	environments	that	you	may
want	to	play	with.	On	macOS,	assuming	you	have	installed	Homebrew,	you	need	to	run:

$	brew	install	cmake	boost	boost-python	sdl2	swig	wget

On	Ubuntu,	type	the	following	command	(replacing	python3	with	python	if	you	are	using	Python	2):

$	apt-get	install	-y	python3-numpy	python3-dev	cmake	zlib1g-dev	libjpeg-dev\

				xvfb	libav-tools	xorg-dev	python3-opengl	libboost-all-dev	libsdl2-dev	swig

Then	install	the	extra	Python	modules:

$	pip3	install	--upgrade	'gym[all]'

If	everything	went	well,	you	should	be	able	to	create	a	Ms.	Pac-Man	environment:

>>>	env	=	gym.make("MsPacman-v0")

>>>	obs	=	env.reset()

>>>	obs.shape		#	[height,	width,	channels]

(210,	160,	3)

>>>	env.action_space

Discrete(9)

As	you	can	see,	there	are	nine	discrete	actions	available,	which	correspond	to	the	nine	possible	positions
of	the	joystick	(left,	right,	up,	down,	center,	upper	left,	and	so	on),	and	the	observations	are	simply
screenshots	of	the	Atari	screen	(see	Figure	16-9,	left),	represented	as	3D	NumPy	arrays.	These	images
are	a	bit	large,	so	we	will	create	a	small	preprocessing	function	that	will	crop	the	image	and	shrink	it
down	to	88	×	80	pixels,	convert	it	to	grayscale,	and	improve	the	contrast	of	Ms.	Pac-Man.	This	will
reduce	the	amount	of	computations	required	by	the	DQN,	and	speed	up	training.

mspacman_color	=	np.array([210,	164,	74]).mean()

def	preprocess_observation(obs):

				img	=	obs[1:176:2,	::2]	#	crop	and	downsize

				img	=	img.mean(axis=2)	#	to	greyscale

				img[img==mspacman_color]	=	0	#	improve	contrast

				img	=	(img	-	128)	/	128	-	1	#	normalize	from	-1.	to	1.

				return	img.reshape(88,	80,	1)

The	result	of	preprocessing	is	shown	in	Figure	16-9	(right).

http://brew.sh/

Figure	16-9.	Ms.	Pac-Man	observation,	original	(left)	and	after	preprocessing	(right)

Next,	let’s	create	the	DQN.	It	could	just	take	a	state-action	pair	(s,a)	as	input,	and	output	an	estimate	of
the	corresponding	Q-Value	Q(s,a),	but	since	the	actions	are	discrete	it	is	more	convenient	to	use	a	neural
network	that	takes	only	a	state	s	as	input	and	outputs	one	Q-Value	estimate	per	action.	The	DQN	will	be
composed	of	three	convolutional	layers,	followed	by	two	fully	connected	layers,	including	the	output
layer	(see	Figure	16-10).

Figure	16-10.	Deep	Q-network	to	play	Ms.	Pac-Man

As	we	will	see,	the	training	algorithm	we	will	use	requires	two	DQNs	with	the	same	architecture	(but
different	parameters):	one	will	be	used	to	drive	Ms.	Pac-Man	during	training	(the	actor),	and	the	other
will	watch	the	actor	and	learn	from	its	trials	and	errors	(the	critic).	At	regular	intervals	we	will	copy	the
critic	to	the	actor.	Since	we	need	two	identical	DQNs,	we	will	create	a	q_network()	function	to	build

them:

from	tensorflow.contrib.layers	import	convolution2d,	fully_connected

input_height	=	88

input_width	=	80

input_channels	=	1

conv_n_maps	=	[32,	64,	64]

conv_kernel_sizes	=	[(8,8),	(4,4),	(3,3)]

conv_strides	=	[4,	2,	1]

conv_paddings	=	["SAME"]*3

conv_activation	=	[tf.nn.relu]*3

n_hidden_in	=	64	*	11	*	10		#	conv3	has	64	maps	of	11x10	each

n_hidden	=	512

hidden_activation	=	tf.nn.relu

n_outputs	=	env.action_space.n		#	9	discrete	actions	are	available

initializer	=	tf.contrib.layers.variance_scaling_initializer()

def	q_network(X_state,	scope):

				prev_layer	=	X_state

				conv_layers	=	[]

				with	tf.variable_scope(scope)	as	scope:

								for	n_maps,	kernel_size,	stride,	padding,	activation	in	zip(

																conv_n_maps,	conv_kernel_sizes,	conv_strides,

																conv_paddings,	conv_activation):

												prev_layer	=	convolution2d(

																prev_layer,	num_outputs=n_maps,	kernel_size=kernel_size,

																stride=stride,	padding=padding,	activation_fn=activation,

																weights_initializer=initializer)

												conv_layers.append(prev_layer)

								last_conv_layer_flat	=	tf.reshape(prev_layer,	shape=[-1,	n_hidden_in])

								hidden	=	fully_connected(

												last_conv_layer_flat,	n_hidden,	activation_fn=hidden_activation,

												weights_initializer=initializer)

								outputs	=	fully_connected(

												hidden,	n_outputs,	activation_fn=None,

												weights_initializer=initializer)

				trainable_vars	=	tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES,

																																							scope=scope.name)

				trainable_vars_by_name	=	{var.name[len(scope.name):]:	var

																														for	var	in	trainable_vars}

				return	outputs,	trainable_vars_by_name

The	first	part	of	this	code	defines	the	hyperparameters	of	the	DQN	architecture.	Then	the	q_network()
function	creates	the	DQN,	taking	the	environment’s	state	X_state	as	input,	and	the	name	of	the	variable
scope.	Note	that	we	will	just	use	one	observation	to	represent	the	environment’s	state	since	there’s	almost
no	hidden	state	(except	for	blinking	objects	and	the	ghosts’	directions).

The	trainable_vars_by_name	dictionary	gathers	all	the	trainable	variables	of	this	DQN.	It	will	be
useful	in	a	minute	when	we	create	operations	to	copy	the	critic	DQN	to	the	actor	DQN.	The	keys	of	the
dictionary	are	the	names	of	the	variables,	stripping	the	part	of	the	prefix	that	just	corresponds	to	the
scope’s	name.	It	looks	like	this:

>>>	trainable_vars_by_name

{'/Conv/biases:0':	<tensorflow.python.ops.variables.Variable	at	0x121cf7b50>,

	'/Conv/weights:0':	<tensorflow.python.ops.variables.Variable...>,

	'/Conv_1/biases:0':	<tensorflow.python.ops.variables.Variable...>,

	'/Conv_1/weights:0':	<tensorflow.python.ops.variables.Variable...>,

	'/Conv_2/biases:0':	<tensorflow.python.ops.variables.Variable...>,

	'/Conv_2/weights:0':	<tensorflow.python.ops.variables.Variable...>,

	'/fully_connected/biases:0':	<tensorflow.python.ops.variables.Variable...>,

	'/fully_connected/weights:0':	<tensorflow.python.ops.variables.Variable...>,

	'/fully_connected_1/biases:0':	<tensorflow.python.ops.variables.Variable...>,

	'/fully_connected_1/weights:0':	<tensorflow.python.ops.variables.Variable...>}

Now	let’s	create	the	input	placeholder,	the	two	DQNs,	and	the	operation	to	copy	the	critic	DQN	to	the

actor	DQN:

X_state	=	tf.placeholder(tf.float32,	shape=[None,	input_height,	input_width,

																																												input_channels])

actor_q_values,	actor_vars	=	q_network(X_state,	scope="q_networks/actor")

critic_q_values,	critic_vars	=	q_network(X_state,	scope="q_networks/critic")

copy_ops	=	[actor_var.assign(critic_vars[var_name])

												for	var_name,	actor_var	in	actor_vars.items()]

copy_critic_to_actor	=	tf.group(*copy_ops)

Let’s	step	back	for	a	second:	we	now	have	two	DQNs	that	are	both	capable	of	taking	an	environment	state
(i.e.,	a	preprocessed	observation)	as	input	and	outputting	an	estimated	Q-Value	for	each	possible	action	in
that	state.	Plus	we	have	an	operation	called	copy_critic_to_actor	to	copy	all	the	trainable	variables
of	the	critic	DQN	to	the	actor	DQN.	We	use	TensorFlow’s	tf.group()	function	to	group	all	the
assignment	operations	into	a	single	convenient	operation.

The	actor	DQN	can	be	used	to	play	Ms.	Pac-Man	(initially	very	badly).	As	discussed	earlier,	you	want	it
to	explore	the	game	thoroughly	enough,	so	you	generally	want	to	combine	it	with	an	ε-greedy	policy	or
another	exploration	strategy.

But	what	about	the	critic	DQN?	How	will	it	learn	to	play	the	game?	The	short	answer	is	that	it	will	try	to
make	its	Q-Value	predictions	match	the	Q-Values	estimated	by	the	actor	through	its	experience	of	the
game.	Specifically,	we	will	let	the	actor	play	for	a	while,	storing	all	its	experiences	in	a	replay	memory.
Each	memory	will	be	a	5-tuple	(state,	action,	next	state,	reward,	continue),	where	the	“continue”	item	will
be	equal	to	0.0	when	the	game	is	over,	or	1.0	otherwise.	Next,	at	regular	intervals	we	will	sample	a	batch
of	memories	from	the	replay	memory,	and	we	will	estimate	the	Q-Values	from	these	memories.	Finally,
we	will	train	the	critic	DQN	to	predict	these	Q-Values	using	regular	supervised	learning	techniques.	Once
every	few	training	iterations,	we	will	copy	the	critic	DQN	to	the	actor	DQN.	And	that’s	it!	Equation	16-7
shows	the	cost	function	used	to	train	the	critic	DQN:

Equation	16-7.	Deep	Q-Learning	cost	function

s(i),	a(i),	r(i)	and	s′(i)	are	respectively	the	state,	action,	reward,	and	next	state	of	the	ith	memory
sampled	from	the	replay	memory.

m	is	the	size	of	the	memory	batch.

θcritic	and	θactor	are	the	critic	and	the	actor’s	parameters.

Q(s(i),a(i),θcritic)	is	the	critic	DQN’s	prediction	of	the	ith	memorized	state-action’s	Q-Value.

Q(s′(i),	a′,	θactor)	is	the	actor	DQN’s	prediction	of	the	Q-Value	it	can	expect	from	the	next	state	s′(i)	if
it	chooses	action	a′.

y(i)	is	the	target	Q-Value	for	the	ith	memory.	Note	that	it	is	equal	to	the	reward	actually	observed	by
the	actor,	plus	the	actor’s	prediction	of	what	future	rewards	it	should	expect	if	it	were	to	play
optimally	(as	far	as	it	knows).

J(θcritic)	is	the	cost	function	used	to	train	the	critic	DQN.	As	you	can	see,	it	is	just	the	Mean	Squared
Error	between	the	target	Q-Values	y(i)	as	estimated	by	the	actor	DQN,	and	the	critic	DQN’s
predictions	of	these	Q-Values.

NOTE
The	replay	memory	is	optional,	but	highly	recommended.	Without	it,	you	would	train	the	critic	DQN	using	consecutive
experiences	that	may	be	very	correlated.	This	would	introduce	a	lot	of	bias	and	slow	down	the	training	algorithm’s	convergence.
By	using	a	replay	memory,	we	ensure	that	the	memories	fed	to	the	training	algorithm	can	be	fairly	uncorrelated.

Let’s	add	the	critic	DQN’s	training	operations.	First,	we	need	to	be	able	to	compute	its	predicted	Q-
Values	for	each	state-action	in	the	memory	batch.	Since	the	DQN	outputs	one	Q-Value	for	every	possible
action,	we	need	to	keep	only	the	Q-Value	that	corresponds	to	the	action	that	was	actually	chosen	in	this
memory.	For	this,	we	will	convert	the	action	to	a	one-hot	vector	(recall	that	this	is	a	vector	full	of	0s
except	for	a	1	at	the	ith	index),	and	multiply	it	by	the	Q-Values:	this	will	zero	out	all	Q-Values	except	for
the	one	corresponding	to	the	memorized	action.	Then	just	sum	over	the	first	axis	to	obtain	only	the	desired
Q-Value	prediction	for	each	memory.

X_action	=	tf.placeholder(tf.int32,	shape=[None])

q_value	=	tf.reduce_sum(critic_q_values	*	tf.one_hot(X_action,	n_outputs),

																								axis=1,	keep_dims=True)

Next	let’s	add	the	training	operations,	assuming	the	target	Q-Values	will	be	fed	through	a	placeholder.	We
also	create	a	nontrainable	variable	called	global_step.	The	optimizer’s	minimize()	operation	will
take	care	of	incrementing	it.	Plus	we	create	the	usual	init	operation	and	a	Saver.

y	=	tf.placeholder(tf.float32,	shape=[None,	1])

cost	=	tf.reduce_mean(tf.square(y	-	q_value))

global_step	=	tf.Variable(0,	trainable=False,	name='global_step')

optimizer	=	tf.train.AdamOptimizer(learning_rate)

training_op	=	optimizer.minimize(cost,	global_step=global_step)

init	=	tf.global_variables_initializer()

saver	=	tf.train.Saver()

That’s	it	for	the	construction	phase.	Before	we	look	at	the	execution	phase,	we	will	need	a	couple	of
tools.	First,	let’s	start	by	implementing	the	replay	memory.	We	will	use	a	deque	list	since	it	is	very
efficient	at	pushing	items	to	the	queue	and	popping	them	out	from	the	end	of	the	list	when	the	maximum
memory	size	is	reached.	We	will	also	write	a	small	function	to	randomly	sample	a	batch	of	experiences

from	the	replay	memory:

from	collections	import	deque

replay_memory_size	=	10000

replay_memory	=	deque([],	maxlen=replay_memory_size)

def	sample_memories(batch_size):

				indices	=	rnd.permutation(len(replay_memory))[:batch_size]

				cols	=	[[],	[],	[],	[],	[]]	#	state,	action,	reward,	next_state,	continue

				for	idx	in	indices:

								memory	=	replay_memory[idx]

								for	col,	value	in	zip(cols,	memory):

												col.append(value)

				cols	=	[np.array(col)	for	col	in	cols]

				return	(cols[0],	cols[1],	cols[2].reshape(-1,	1),	cols[3],

												cols[4].reshape(-1,	1))

Next,	we	will	need	the	actor	to	explore	the	game.	We	will	use	the	ε-greedy	policy,	and	gradually	decrease
ε	from	1.0	to	0.05,	in	50,000	training	steps:

eps_min	=	0.05

eps_max	=	1.0

eps_decay_steps	=	50000

def	epsilon_greedy(q_values,	step):

				epsilon	=	max(eps_min,	eps_max	-	(eps_max-eps_min)	*	step/eps_decay_steps)

				if	rnd.rand()	<	epsilon:

								return	rnd.randint(n_outputs)	#	random	action

				else:

								return	np.argmax(q_values)	#	optimal	action

That’s	it!	We	have	all	we	need	to	start	training.	The	execution	phase	does	not	contain	anything	too
complex,	but	it	is	a	bit	long,	so	take	a	deep	breath.	Ready?	Let’s	go!	First,	let’s	initialize	a	few	variables:

n_steps	=	100000		#	total	number	of	training	steps

training_start	=	1000		#	start	training	after	1,000	game	iterations

training_interval	=	3		#	run	a	training	step	every	3	game	iterations

save_steps	=	50		#	save	the	model	every	50	training	steps

copy_steps	=	25		#	copy	the	critic	to	the	actor	every	25	training	steps

discount_rate	=	0.95

skip_start	=	90		#	skip	the	start	of	every	game	(it's	just	waiting	time)

batch_size	=	50

iteration	=	0		#	game	iterations

checkpoint_path	=	"./my_dqn.ckpt"

done	=	True	#	env	needs	to	be	reset

Next,	let’s	open	the	session	and	run	the	main	training	loop:

with	tf.Session()	as	sess:

				if	os.path.isfile(checkpoint_path):

								saver.restore(sess,	checkpoint_path)

				else:

								init.run()

				while	True:

								step	=	global_step.eval()

								if	step	>=	n_steps:

												break

								iteration	+=	1

								if	done:	#	game	over,	start	again

												obs	=	env.reset()

												for	skip	in	range(skip_start):	#	skip	the	start	of	each	game

																obs,	reward,	done,	info	=	env.step(0)

												state	=	preprocess_observation(obs)

								#	Actor	evaluates	what	to	do

								q_values	=	actor_q_values.eval(feed_dict={X_state:	[state]})

								action	=	epsilon_greedy(q_values,	step)

								#	Actor	plays

								obs,	reward,	done,	info	=	env.step(action)

								next_state	=	preprocess_observation(obs)

								#	Let's	memorize	what	just	happened

								replay_memory.append((state,	action,	reward,	next_state,	1.0	-	done))

								state	=	next_state

								if	iteration	<	training_start	or	iteration	%	training_interval	!=	0:

												continue

								#	Critic	learns

								X_state_val,	X_action_val,	rewards,	X_next_state_val,	continues	=	(

												sample_memories(batch_size))

								next_q_values	=	actor_q_values.eval(

												feed_dict={X_state:	X_next_state_val})

								max_next_q_values	=	np.max(next_q_values,	axis=1,	keepdims=True)

								y_val	=	rewards	+	continues	*	discount_rate	*	max_next_q_values

								training_op.run(feed_dict={X_state:	X_state_val,

																																			X_action:	X_action_val,	y:	y_val})

								#	Regularly	copy	critic	to	actor

								if	step	%	copy_steps	==	0:

												copy_critic_to_actor.run()

								#	And	save	regularly

								if	step	%	save_steps	==	0:

												saver.save(sess,	checkpoint_path)

We	start	by	restoring	the	models	if	a	checkpoint	file	exists,	or	else	we	just	initialize	the	variables
normally.	Then	the	main	loop	starts,	where	iteration	counts	the	total	number	of	game	steps	we	have
gone	through	since	the	program	started,	and	step	counts	the	total	number	of	training	steps	since	training
started	(if	a	checkpoint	is	restored,	the	global	step	is	restored	as	well).	Then	the	code	resets	the	game
(and	skips	the	first	boring	game	steps,	where	nothing	happens).	Next,	the	actor	evaluates	what	to	do,	and
plays	the	game,	and	its	experience	is	memorized	in	replay	memory.	Then,	at	regular	intervals	(after	a
warmup	period),	the	critic	goes	through	a	training	step.	It	samples	a	batch	of	memories	and	asks	the	actor
to	estimate	the	Q-Values	of	all	actions	for	the	next	state,	and	it	applies	Equation	16-7	to	compute	the	target
Q-Value	y_val.	The	only	tricky	part	here	is	that	we	must	multiply	the	next	state’s	Q-Values	by	the
continues	vector	to	zero	out	the	Q-Values	corresponding	to	memories	where	the	game	was	over.	Next
we	run	a	training	operation	to	improve	the	critic’s	ability	to	predict	Q-Values.	Finally,	at	regular	intervals
we	copy	the	critic	to	the	actor,	and	we	save	the	model.

TIP
Unfortunately,	training	is	very	slow:	if	you	use	your	laptop	for	training,	it	will	take	days	before	Ms.	Pac-Man	gets	any	good,	and	if
you	look	at	the	learning	curve,	measuring	the	average	rewards	per	episode,	you	will	notice	that	it	is	extremely	noisy.	At	some
points	there	may	be	no	apparent	progress	for	a	very	long	time	until	suddenly	the	agent	learns	to	survive	a	reasonable	amount	of
time.	As	mentioned	earlier,	one	solution	is	to	inject	as	much	prior	knowledge	as	possible	into	the	model	(e.g.,	through
preprocessing,	rewards,	and	so	on),	and	you	can	also	try	to	bootstrap	the	model	by	first	training	it	to	imitate	a	basic	strategy.	In
any	case,	RL	still	requires	quite	a	lot	of	patience	and	tweaking,	but	the	end	result	is	very	exciting.

Exercises
1.	 How	would	you	define	Reinforcement	Learning?	How	is	it	different	from	regular	supervised	or

unsupervised	learning?

2.	 Can	you	think	of	three	possible	applications	of	RL	that	were	not	mentioned	in	this	chapter?	For
each	of	them,	what	is	the	environment?	What	is	the	agent?	What	are	possible	actions?	What	are
the	rewards?

3.	 What	is	the	discount	rate?	Can	the	optimal	policy	change	if	you	modify	the	discount	rate?

4.	 How	do	you	measure	the	performance	of	a	Reinforcement	Learning	agent?

5.	 What	is	the	credit	assignment	problem?	When	does	it	occur?	How	can	you	alleviate	it?

6.	 What	is	the	point	of	using	a	replay	memory?

7.	 What	is	an	off-policy	RL	algorithm?

8.	 Use	Deep	Q-Learning	to	tackle	OpenAI	gym’s	“BypedalWalker-v2.”	The	Q-networks	do	not
need	to	be	very	deep	for	this	task.

9.	 Use	policy	gradients	to	train	an	agent	to	play	Pong,	the	famous	Atari	game	(Pong-v0	in	the
OpenAI	gym).	Beware:	an	individual	observation	is	insufficient	to	tell	the	direction	and	speed	of
the	ball.	One	solution	is	to	pass	two	observations	at	a	time	to	the	neural	network	policy.	To
reduce	dimensionality	and	speed	up	training,	you	should	definitely	preprocess	these	images
(crop,	resize,	and	convert	them	to	black	and	white),	and	possibly	merge	them	into	a	single	image
(e.g.,	by	overlaying	them).

10.	 If	you	have	about	$100	to	spare,	you	can	purchase	a	Raspberry	Pi	3	plus	some	cheap	robotics
components,	install	TensorFlow	on	the	Pi,	and	go	wild!	For	an	example,	check	out	this	fun	post
by	Lukas	Biewald,	or	take	a	look	at	GoPiGo	or	BrickPi.	Why	not	try	to	build	a	real-life	cartpole
by	training	the	robot	using	policy	gradients?	Or	build	a	robotic	spider	that	learns	to	walk;	give	it
rewards	any	time	it	gets	closer	to	some	objective	(you	will	need	sensors	to	measure	the	distance
to	the	objective).	The	only	limit	is	your	imagination.

Solutions	to	these	exercises	are	available	in	Appendix	A.

https://goo.gl/Eu5u28

Thank	You!
Before	we	close	the	last	chapter	of	this	book,	I	would	like	to	thank	you	for	reading	it	up	to	the	last
paragraph.	I	truly	hope	that	you	had	as	much	pleasure	reading	this	book	as	I	had	writing	it,	and	that	it	will
be	useful	for	your	projects,	big	or	small.

If	you	find	errors,	please	send	feedback.	More	generally,	I	would	love	to	know	what	you	think,	so	please
don’t	hesitate	to	contact	me	via	O’Reilly,	or	through	the	ageron/handson-ml	GitHub	project.

Going	forward,	my	best	advice	to	you	is	to	practice	and	practice:	try	going	through	all	the	exercises	if	you
have	not	done	so	already,	play	with	the	Jupyter	notebooks,	join	Kaggle.com	or	some	other	ML	community,
watch	ML	courses,	read	papers,	attend	conferences,	meet	experts.	You	may	also	want	to	study	some	topics
that	we	did	not	cover	in	this	book,	including	recommender	systems,	clustering	algorithms,	anomaly
detection	algorithms,	and	genetic	algorithms.

My	greatest	hope	is	that	this	book	will	inspire	you	to	build	a	wonderful	ML	application	that	will	benefit
all	of	us!	What	will	it	be?

Aurélien	Géron,	November	26th,	2016

For	more	details,	be	sure	to	check	out	Richard	Sutton	and	Andrew	Barto’s	book	on	RL,	Reinforcement	Learning:	An	Introduction	(MIT
Press),	or	David	Silver’s	free	online	RL	course	at	University	College	London.

“Playing	Atari	with	Deep	Reinforcement	Learning,”	V.	Mnih	et	al.	(2013).

“Human-level	control	through	deep	reinforcement	learning,”	V.	Mnih	et	al.	(2015).

Check	out	the	videos	of	DeepMind’s	system	learning	to	play	Space	Invaders,	Breakout,	and	more	at	https://goo.gl/yTsH6X.

Images	(a),	(c),	and	(d)	are	reproduced	from	Wikipedia.	(a)	and	(d)	are	in	the	public	domain.	(c)	was	created	by	user	Stevertigo	and
released	under	Creative	Commons	BY-SA	2.0.	(b)	is	a	screenshot	from	the	Ms.	Pac-Man	game,	copyright	Atari	(the	author	believes	it	to
be	fair	use	in	this	chapter).	(e)	was	reproduced	from	Pixabay,	released	under	Creative	Commons	CC0.

It	is	often	better	to	give	the	poor	performers	a	slight	chance	of	survival,	to	preserve	some	diversity	in	the	“gene	pool.”

If	there	is	a	single	parent,	this	is	called	asexual	reproduction.	With	two	(or	more)	parents,	it	is	called	sexual	reproduction.	An	offspring’s
genome	(in	this	case	a	set	of	policy	parameters)	is	randomly	composed	of	parts	of	its	parents’	genomes.

OpenAI	is	a	nonprofit	artificial	intelligence	research	company,	funded	in	part	by	Elon	Musk.	Its	stated	goal	is	to	promote	and	develop
friendly	AIs	that	will	benefit	humanity	(rather	than	exterminate	it).

“Simple	Statistical	Gradient-Following	Algorithms	for	Connectionist	Reinforcement	Learning,”	R.	Williams	(1992).

We	already	did	something	similar	in	Chapter	11	when	we	discussed	Gradient	Clipping:	we	first	computed	the	gradients,	then	we	clipped
them,	and	finally	we	applied	the	clipped	gradients.

“A	Markovian	Decision	Process,”	R.	Bellman	(1957).

1

2

3

4

5

6

7

8

9

10

11

https://goo.gl/7utZaz
https://goo.gl/AWcMFW
https://goo.gl/yTsH6X
https://creativecommons.org/licenses/by-sa/2.0/
https://creativecommons.org/publicdomain/zero/1.0/

Appendix	A.	Exercise	Solutions

NOTE
Solutions	to	the	coding	exercises	are	available	in	the	online	Jupyter	notebooks	at	https://github.com/ageron/handson-ml.

https://github.com/ageron/handson-ml

Chapter	1:	The	Machine	Learning	Landscape
1.	 Machine	Learning	is	about	building	systems	that	can	learn	from	data.	Learning	means	getting

better	at	some	task,	given	some	performance	measure.

2.	 Machine	Learning	is	great	for	complex	problems	for	which	we	have	no	algorithmic	solution,	to
replace	long	lists	of	hand-tuned	rules,	to	build	systems	that	adapt	to	fluctuating	environments,	and
finally	to	help	humans	learn	(e.g.,	data	mining).

3.	 A	labeled	training	set	is	a	training	set	that	contains	the	desired	solution	(a.k.a.	a	label)	for	each
instance.

4.	 The	two	most	common	supervised	tasks	are	regression	and	classification.

5.	 Common	unsupervised	tasks	include	clustering,	visualization,	dimensionality	reduction,	and
association	rule	learning.

6.	 Reinforcement	Learning	is	likely	to	perform	best	if	we	want	a	robot	to	learn	to	walk	in	various
unknown	terrains	since	this	is	typically	the	type	of	problem	that	Reinforcement	Learning	tackles.
It	might	be	possible	to	express	the	problem	as	a	supervised	or	semisupervised	learning	problem,
but	it	would	be	less	natural.

7.	 If	you	don’t	know	how	to	define	the	groups,	then	you	can	use	a	clustering	algorithm
(unsupervised	learning)	to	segment	your	customers	into	clusters	of	similar	customers.	However,
if	you	know	what	groups	you	would	like	to	have,	then	you	can	feed	many	examples	of	each	group
to	a	classification	algorithm	(supervised	learning),	and	it	will	classify	all	your	customers	into
these	groups.

8.	 Spam	detection	is	a	typical	supervised	learning	problem:	the	algorithm	is	fed	many	emails	along
with	their	label	(spam	or	not	spam).

9.	 An	online	learning	system	can	learn	incrementally,	as	opposed	to	a	batch	learning	system.	This
makes	it	capable	of	adapting	rapidly	to	both	changing	data	and	autonomous	systems,	and	of
training	on	very	large	quantities	of	data.

10.	 Out-of-core	algorithms	can	handle	vast	quantities	of	data	that	cannot	fit	in	a	computer’s	main
memory.	An	out-of-core	learning	algorithm	chops	the	data	into	mini-batches	and	uses	online
learning	techniques	to	learn	from	these	mini-batches.

11.	 An	instance-based	learning	system	learns	the	training	data	by	heart;	then,	when	given	a	new
instance,	it	uses	a	similarity	measure	to	find	the	most	similar	learned	instances	and	uses	them	to
make	predictions.

12.	 A	model	has	one	or	more	model	parameters	that	determine	what	it	will	predict	given	a	new
instance	(e.g.,	the	slope	of	a	linear	model).	A	learning	algorithm	tries	to	find	optimal	values	for
these	parameters	such	that	the	model	generalizes	well	to	new	instances.	A	hyperparameter	is	a
parameter	of	the	learning	algorithm	itself,	not	of	the	model	(e.g.,	the	amount	of	regularization	to

apply).

13.	 Model-based	learning	algorithms	search	for	an	optimal	value	for	the	model	parameters	such	that
the	model	will	generalize	well	to	new	instances.	We	usually	train	such	systems	by	minimizing	a
cost	function	that	measures	how	bad	the	system	is	at	making	predictions	on	the	training	data,	plus
a	penalty	for	model	complexity	if	the	model	is	regularized.	To	make	predictions,	we	feed	the
new	instance’s	features	into	the	model’s	prediction	function,	using	the	parameter	values	found	by
the	learning	algorithm.

14.	 Some	of	the	main	challenges	in	Machine	Learning	are	the	lack	of	data,	poor	data	quality,
nonrepresentative	data,	uninformative	features,	excessively	simple	models	that	underfit	the
training	data,	and	excessively	complex	models	that	overfit	the	data.

15.	 If	a	model	performs	great	on	the	training	data	but	generalizes	poorly	to	new	instances,	the	model
is	likely	overfitting	the	training	data	(or	we	got	extremely	lucky	on	the	training	data).	Possible
solutions	to	overfitting	are	getting	more	data,	simplifying	the	model	(selecting	a	simpler
algorithm,	reducing	the	number	of	parameters	or	features	used,	or	regularizing	the	model),	or
reducing	the	noise	in	the	training	data.

16.	 A	test	set	is	used	to	estimate	the	generalization	error	that	a	model	will	make	on	new	instances,
before	the	model	is	launched	in	production.

17.	 A	validation	set	is	used	to	compare	models.	It	makes	it	possible	to	select	the	best	model	and	tune
the	hyperparameters.

18.	 If	you	tune	hyperparameters	using	the	test	set,	you	risk	overfitting	the	test	set,	and	the
generalization	error	you	measure	will	be	optimistic	(you	may	launch	a	model	that	performs
worse	than	you	expect).

19.	 Cross-validation	is	a	technique	that	makes	it	possible	to	compare	models	(for	model	selection
and	hyperparameter	tuning)	without	the	need	for	a	separate	validation	set.	This	saves	precious
training	data.

Chapter	2:	End-to-End	Machine	Learning	Project
See	the	Jupyter	notebooks	available	at	https://github.com/ageron/handson-ml.

https://github.com/ageron/handson-ml

Chapter	3:	Classification
See	the	Jupyter	notebooks	available	at	https://github.com/ageron/handson-ml.

https://github.com/ageron/handson-ml

Chapter	4:	Training	Linear	Models
1.	 If	you	have	a	training	set	with	millions	of	features	you	can	use	Stochastic	Gradient	Descent	or

Mini-batch	Gradient	Descent,	and	perhaps	Batch	Gradient	Descent	if	the	training	set	fits	in
memory.	But	you	cannot	use	the	Normal	Equation	because	the	computational	complexity	grows
quickly	(more	than	quadratically)	with	the	number	of	features.

2.	 If	the	features	in	your	training	set	have	very	different	scales,	the	cost	function	will	have	the	shape
of	an	elongated	bowl,	so	the	Gradient	Descent	algorithms	will	take	a	long	time	to	converge.	To
solve	this	you	should	scale	the	data	before	training	the	model.	Note	that	the	Normal	Equation
will	work	just	fine	without	scaling.

3.	 Gradient	Descent	cannot	get	stuck	in	a	local	minimum	when	training	a	Logistic	Regression	model
because	the	cost	function	is	convex.1

4.	 If	the	optimization	problem	is	convex	(such	as	Linear	Regression	or	Logistic	Regression),	and
assuming	the	learning	rate	is	not	too	high,	then	all	Gradient	Descent	algorithms	will	approach	the
global	optimum	and	end	up	producing	fairly	similar	models.	However,	unless	you	gradually
reduce	the	learning	rate,	Stochastic	GD	and	Mini-batch	GD	will	never	truly	converge;	instead,
they	will	keep	jumping	back	and	forth	around	the	global	optimum.	This	means	that	even	if	you	let
them	run	for	a	very	long	time,	these	Gradient	Descent	algorithms	will	produce	slightly	different
models.

5.	 If	the	validation	error	consistently	goes	up	after	every	epoch,	then	one	possibility	is	that	the
learning	rate	is	too	high	and	the	algorithm	is	diverging.	If	the	training	error	also	goes	up,	then	this
is	clearly	the	problem	and	you	should	reduce	the	learning	rate.	However,	if	the	training	error	is
not	going	up,	then	your	model	is	overfitting	the	training	set	and	you	should	stop	training.

6.	 Due	to	their	random	nature,	neither	Stochastic	Gradient	Descent	nor	Mini-batch	Gradient
Descent	is	guaranteed	to	make	progress	at	every	single	training	iteration.	So	if	you	immediately
stop	training	when	the	validation	error	goes	up,	you	may	stop	much	too	early,	before	the	optimum
is	reached.	A	better	option	is	to	save	the	model	at	regular	intervals,	and	when	it	has	not
improved	for	a	long	time	(meaning	it	will	probably	never	beat	the	record),	you	can	revert	to	the
best	saved	model.

7.	 Stochastic	Gradient	Descent	has	the	fastest	training	iteration	since	it	considers	only	one	training
instance	at	a	time,	so	it	is	generally	the	first	to	reach	the	vicinity	of	the	global	optimum	(or	Mini-
batch	GD	with	a	very	small	mini-batch	size).	However,	only	Batch	Gradient	Descent	will
actually	converge,	given	enough	training	time.	As	mentioned,	Stochastic	GD	and	Mini-batch	GD
will	bounce	around	the	optimum,	unless	you	gradually	reduce	the	learning	rate.

8.	 If	the	validation	error	is	much	higher	than	the	training	error,	this	is	likely	because	your	model	is
overfitting	the	training	set.	One	way	to	try	to	fix	this	is	to	reduce	the	polynomial	degree:	a	model
with	fewer	degrees	of	freedom	is	less	likely	to	overfit.	Another	thing	you	can	try	is	to	regularize
the	model	—	for	example,	by	adding	an	ℓ2	penalty	(Ridge)	or	an	ℓ1	penalty	(Lasso)	to	the	cost
function.	This	will	also	reduce	the	degrees	of	freedom	of	the	model.	Lastly,	you	can	try	to

increase	the	size	of	the	training	set.

9.	 If	both	the	training	error	and	the	validation	error	are	almost	equal	and	fairly	high,	the	model	is
likely	underfitting	the	training	set,	which	means	it	has	a	high	bias.	You	should	try	reducing	the
regularization	hyperparameter	α.

10.	 Let’s	see:
A	model	with	some	regularization	typically	performs	better	than	a	model	without	any
regularization,	so	you	should	generally	prefer	Ridge	Regression	over	plain	Linear
Regression.2

Lasso	Regression	uses	an	ℓ1	penalty,	which	tends	to	push	the	weights	down	to	exactly	zero.
This	leads	to	sparse	models,	where	all	weights	are	zero	except	for	the	most	important
weights.	This	is	a	way	to	perform	feature	selection	automatically,	which	is	good	if	you
suspect	that	only	a	few	features	actually	matter.	When	you	are	not	sure,	you	should	prefer
Ridge	Regression.

Elastic	Net	is	generally	preferred	over	Lasso	since	Lasso	may	behave	erratically	in	some
cases	(when	several	features	are	strongly	correlated	or	when	there	are	more	features	than
training	instances).	However,	it	does	add	an	extra	hyperparameter	to	tune.	If	you	just	want
Lasso	without	the	erratic	behavior,	you	can	just	use	Elastic	Net	with	an	l1_ratio	close	to
1.

11.	 If	you	want	to	classify	pictures	as	outdoor/indoor	and	daytime/nighttime,	since	these	are	not
exclusive	classes	(i.e.,	all	four	combinations	are	possible)	you	should	train	two	Logistic
Regression	classifiers.

12.	 See	the	Jupyter	notebooks	available	at	https://github.com/ageron/handson-ml.

https://github.com/ageron/handson-ml

Chapter	5:	Support	Vector	Machines
1.	 The	fundamental	idea	behind	Support	Vector	Machines	is	to	fit	the	widest	possible	“street”

between	the	classes.	In	other	words,	the	goal	is	to	have	the	largest	possible	margin	between	the
decision	boundary	that	separates	the	two	classes	and	the	training	instances.	When	performing	soft
margin	classification,	the	SVM	searches	for	a	compromise	between	perfectly	separating	the	two
classes	and	having	the	widest	possible	street	(i.e.,	a	few	instances	may	end	up	on	the	street).
Another	key	idea	is	to	use	kernels	when	training	on	nonlinear	datasets.

2.	 After	training	an	SVM,	a	support	vector	is	any	instance	located	on	the	“street”	(see	the	previous
answer),	including	its	border.	The	decision	boundary	is	entirely	determined	by	the	support
vectors.	Any	instance	that	is	not	a	support	vector	(i.e.,	off	the	street)	has	no	influence
whatsoever;	you	could	remove	them,	add	more	instances,	or	move	them	around,	and	as	long	as
they	stay	off	the	street	they	won’t	affect	the	decision	boundary.	Computing	the	predictions	only
involves	the	support	vectors,	not	the	whole	training	set.

3.	 SVMs	try	to	fit	the	largest	possible	“street”	between	the	classes	(see	the	first	answer),	so	if	the
training	set	is	not	scaled,	the	SVM	will	tend	to	neglect	small	features	(see	Figure	5-2).

4.	 An	SVM	classifier	can	output	the	distance	between	the	test	instance	and	the	decision	boundary,
and	you	can	use	this	as	a	confidence	score.	However,	this	score	cannot	be	directly	converted	into
an	estimation	of	the	class	probability.	If	you	set	probability=True	when	creating	an	SVM	in
Scikit-Learn,	then	after	training	it	will	calibrate	the	probabilities	using	Logistic	Regression	on
the	SVM’s	scores	(trained	by	an	additional	five-fold	cross-validation	on	the	training	data).	This
will	add	the	predict_proba()	and	predict_log_proba()	methods	to	the	SVM.

5.	 This	question	applies	only	to	linear	SVMs	since	kernelized	can	only	use	the	dual	form.	The
computational	complexity	of	the	primal	form	of	the	SVM	problem	is	proportional	to	the	number
of	training	instances	m,	while	the	computational	complexity	of	the	dual	form	is	proportional	to	a
number	between	m2	and	m3.	So	if	there	are	millions	of	instances,	you	should	definitely	use	the
primal	form,	because	the	dual	form	will	be	much	too	slow.

6.	 If	an	SVM	classifier	trained	with	an	RBF	kernel	underfits	the	training	set,	there	might	be	too
much	regularization.	To	decrease	it,	you	need	to	increase	gamma	or	C	(or	both).

7.	 Let’s	call	the	QP	parameters	for	the	hard-margin	problem	H′,	f′,	A′	and	b′	(see	“Quadratic
Programming”).	The	QP	parameters	for	the	soft-margin	problem	have	m	additional	parameters
(np	=	n	+	1	+	m)	and	m	additional	constraints	(nc	=	2m).	They	can	be	defined	like	so:

H	is	equal	to	H′,	plus	m	columns	of	0s	on	the	right	and	m	rows	of	0s	at	the	bottom:	

f	is	equal	to	f′	with	m	additional	elements,	all	equal	to	the	value	of	the	hyperparameter	C.

b	is	equal	to	b′	with	m	additional	elements,	all	equal	to	0.

A	is	equal	to	A′,	with	an	extra	m	×	m	identity	matrix	Im	appended	to	the	right,	–	Im	just

below	it,	and	the	rest	filled	with	zeros:	

For	the	solutions	to	exercises	8,	9,	and	10,	please	see	the	Jupyter	notebooks	available	at
https://github.com/ageron/handson-ml.

https://github.com/ageron/handson-ml

Chapter	6:	Decision	Trees
1.	 The	depth	of	a	well-balanced	binary	tree	containing	m	leaves	is	equal	to	log2(m)3,	rounded	up.	A

binary	Decision	Tree	(one	that	makes	only	binary	decisions,	as	is	the	case	of	all	trees	in	Scikit-
Learn)	will	end	up	more	or	less	well	balanced	at	the	end	of	training,	with	one	leaf	per	training
instance	if	it	is	trained	without	restrictions.	Thus,	if	the	training	set	contains	one	million
instances,	the	Decision	Tree	will	have	a	depth	of	log2(106)	≈	20	(actually	a	bit	more	since	the
tree	will	generally	not	be	perfectly	well	balanced).

2.	 A	node’s	Gini	impurity	is	generally	lower	than	its	parent’s.	This	is	ensured	by	the	CART	training
algorithm’s	cost	function,	which	splits	each	node	in	a	way	that	minimizes	the	weighted	sum	of	its
children’s	Gini	impurities.	However,	if	one	child	is	smaller	than	the	other,	it	is	possible	for	it	to
have	a	higher	Gini	impurity	than	its	parent,	as	long	as	this	increase	is	more	than	compensated	for
by	a	decrease	of	the	other	child’s	impurity.	For	example,	consider	a	node	containing	four

instances	of	class	A	and	1	of	class	B.	Its	Gini	impurity	is	 	=	0.32.	Now	suppose	the
dataset	is	one-dimensional	and	the	instances	are	lined	up	in	the	following	order:	A,	B,	A,	A,	A.
You	can	verify	that	the	algorithm	will	split	this	node	after	the	second	instance,	producing	one
child	node	with	instances	A,	B,	and	the	other	child	node	with	instances	A,	A,	A.	The	first	child

node’s	Gini	impurity	is	 	=	0.5,	which	is	higher	than	its	parent.	This	is	compensated

for	by	the	fact	that	the	other	node	is	pure,	so	the	overall	weighted	Gini	impurity	is	 	0.5	+	

	=	0.2	,	which	is	lower	than	the	parent’s	Gini	impurity.

3.	 If	a	Decision	Tree	is	overfitting	the	training	set,	it	may	be	a	good	idea	to	decrease	max_depth,
since	this	will	constrain	the	model,	regularizing	it.

4.	 Decision	Trees	don’t	care	whether	or	not	the	training	data	is	scaled	or	centered;	that’s	one	of	the
nice	things	about	them.	So	if	a	Decision	Tree	underfits	the	training	set,	scaling	the	input	features
will	just	be	a	waste	of	time.

5.	 The	computational	complexity	of	training	a	Decision	Tree	is	O(n	×	m	log(m)).	So	if	you	multiply
the	training	set	size	by	10,	the	training	time	will	be	multiplied	by	K	=	(n	×	10m	×	log(10m))	/	(n
×	m	×	log(m))	=	10	×	log(10m)	/	log(m).	If	m	=	106,	then	K	≈	11.7,	so	you	can	expect	the	training
time	to	be	roughly	11.7	hours.

6.	 Presorting	the	training	set	speeds	up	training	only	if	the	dataset	is	smaller	than	a	few	thousand
instances.	If	it	contains	100,000	instances,	setting	presort=True	will	considerably	slow	down
training.

For	the	solutions	to	exercises	7	and	8,	please	see	the	Jupyter	notebooks	available	at
https://github.com/ageron/handson-ml.

https://github.com/ageron/handson-ml

Chapter	7:	Ensemble	Learning	and	Random	Forests
1.	 If	you	have	trained	five	different	models	and	they	all	achieve	95%	precision,	you	can	try

combining	them	into	a	voting	ensemble,	which	will	often	give	you	even	better	results.	It	works
better	if	the	models	are	very	different	(e.g.,	an	SVM	classifier,	a	Decision	Tree	classifier,	a
Logistic	Regression	classifier,	and	so	on).	It	is	even	better	if	they	are	trained	on	different	training
instances	(that’s	the	whole	point	of	bagging	and	pasting	ensembles),	but	if	not	it	will	still	work	as
long	as	the	models	are	very	different.

2.	 A	hard	voting	classifier	just	counts	the	votes	of	each	classifier	in	the	ensemble	and	picks	the
class	that	gets	the	most	votes.	A	soft	voting	classifier	computes	the	average	estimated	class
probability	for	each	class	and	picks	the	class	with	the	highest	probability.	This	gives	high-
confidence	votes	more	weight	and	often	performs	better,	but	it	works	only	if	every	classifier	is
able	to	estimate	class	probabilities	(e.g.,	for	the	SVM	classifiers	in	Scikit-Learn	you	must	set
probability=True).

3.	 It	is	quite	possible	to	speed	up	training	of	a	bagging	ensemble	by	distributing	it	across	multiple
servers,	since	each	predictor	in	the	ensemble	is	independent	of	the	others.	The	same	goes	for
pasting	ensembles	and	Random	Forests,	for	the	same	reason.	However,	each	predictor	in	a
boosting	ensemble	is	built	based	on	the	previous	predictor,	so	training	is	necessarily	sequential,
and	you	will	not	gain	anything	by	distributing	training	across	multiple	servers.	Regarding
stacking	ensembles,	all	the	predictors	in	a	given	layer	are	independent	of	each	other,	so	they	can
be	trained	in	parallel	on	multiple	servers.	However,	the	predictors	in	one	layer	can	only	be
trained	after	the	predictors	in	the	previous	layer	have	all	been	trained.

4.	 With	out-of-bag	evaluation,	each	predictor	in	a	bagging	ensemble	is	evaluated	using	instances
that	it	was	not	trained	on	(they	were	held	out).	This	makes	it	possible	to	have	a	fairly	unbiased
evaluation	of	the	ensemble	without	the	need	for	an	additional	validation	set.	Thus,	you	have	more
instances	available	for	training,	and	your	ensemble	can	perform	slightly	better.

5.	 When	you	are	growing	a	tree	in	a	Random	Forest,	only	a	random	subset	of	the	features	is
considered	for	splitting	at	each	node.	This	is	true	as	well	for	Extra-Trees,	but	they	go	one	step
further:	rather	than	searching	for	the	best	possible	thresholds,	like	regular	Decision	Trees	do,
they	use	random	thresholds	for	each	feature.	This	extra	randomness	acts	like	a	form	of
regularization:	if	a	Random	Forest	overfits	the	training	data,	Extra-Trees	might	perform	better.
Moreover,	since	Extra-Trees	don’t	search	for	the	best	possible	thresholds,	they	are	much	faster
to	train	than	Random	Forests.	However,	they	are	neither	faster	nor	slower	than	Random	Forests
when	making	predictions.

6.	 If	your	AdaBoost	ensemble	underfits	the	training	data,	you	can	try	increasing	the	number	of
estimators	or	reducing	the	regularization	hyperparameters	of	the	base	estimator.	You	may	also	try
slightly	increasing	the	learning	rate.

7.	 If	your	Gradient	Boosting	ensemble	overfits	the	training	set,	you	should	try	decreasing	the
learning	rate.	You	could	also	use	early	stopping	to	find	the	right	number	of	predictors	(you
probably	have	too	many).

For	the	solutions	to	exercises	8	and	9,	please	see	the	Jupyter	notebooks	available	at
https://github.com/ageron/handson-ml.

https://github.com/ageron/handson-ml

Chapter	8:	Dimensionality	Reduction
1.	 Motivations	and	drawbacks:

The	main	motivations	for	dimensionality	reduction	are:
To	speed	up	a	subsequent	training	algorithm	(in	some	cases	it	may	even	remove	noise	and
redundant	features,	making	the	training	algorithm	perform	better).

To	visualize	the	data	and	gain	insights	on	the	most	important	features.

Simply	to	save	space	(compression).

The	main	drawbacks	are:
Some	information	is	lost,	possibly	degrading	the	performance	of	subsequent	training
algorithms.

It	can	be	computationally	intensive.

It	adds	some	complexity	to	your	Machine	Learning	pipelines.

Transformed	features	are	often	hard	to	interpret.

2.	 The	curse	of	dimensionality	refers	to	the	fact	that	many	problems	that	do	not	exist	in	low-
dimensional	space	arise	in	high-dimensional	space.	In	Machine	Learning,	one	common
manifestation	is	the	fact	that	randomly	sampled	high-dimensional	vectors	are	generally	very
sparse,	increasing	the	risk	of	overfitting	and	making	it	very	difficult	to	identify	patterns	in	the
data	without	having	plenty	of	training	data.

3.	 Once	a	dataset’s	dimensionality	has	been	reduced	using	one	of	the	algorithms	we	discussed,	it	is
almost	always	impossible	to	perfectly	reverse	the	operation,	because	some	information	gets	lost
during	dimensionality	reduction.	Moreover,	while	some	algorithms	(such	as	PCA)	have	a	simple
reverse	transformation	procedure	that	can	reconstruct	a	dataset	relatively	similar	to	the	original,
other	algorithms	(such	as	T-SNE)	do	not.

4.	 PCA	can	be	used	to	significantly	reduce	the	dimensionality	of	most	datasets,	even	if	they	are
highly	nonlinear,	because	it	can	at	least	get	rid	of	useless	dimensions.	However,	if	there	are	no
useless	dimensions	—	for	example,	the	Swiss	roll	—	then	reducing	dimensionality	with	PCA
will	lose	too	much	information.	You	want	to	unroll	the	Swiss	roll,	not	squash	it.

5.	 That’s	a	trick	question:	it	depends	on	the	dataset.	Let’s	look	at	two	extreme	examples.	First,
suppose	the	dataset	is	composed	of	points	that	are	almost	perfectly	aligned.	In	this	case,	PCA	can
reduce	the	dataset	down	to	just	one	dimension	while	still	preserving	95%	of	the	variance.	Now
imagine	that	the	dataset	is	composed	of	perfectly	random	points,	scattered	all	around	the	1,000
dimensions.	In	this	case	all	1,000	dimensions	are	required	to	preserve	95%	of	the	variance.	So
the	answer	is,	it	depends	on	the	dataset,	and	it	could	be	any	number	between	1	and	1,000.
Plotting	the	explained	variance	as	a	function	of	the	number	of	dimensions	is	one	way	to	get	a
rough	idea	of	the	dataset’s	intrinsic	dimensionality.

6.	 Regular	PCA	is	the	default,	but	it	works	only	if	the	dataset	fits	in	memory.	Incremental	PCA	is
useful	for	large	datasets	that	don’t	fit	in	memory,	but	it	is	slower	than	regular	PCA,	so	if	the
dataset	fits	in	memory	you	should	prefer	regular	PCA.	Incremental	PCA	is	also	useful	for	online
tasks,	when	you	need	to	apply	PCA	on	the	fly,	every	time	a	new	instance	arrives.	Randomized
PCA	is	useful	when	you	want	to	considerably	reduce	dimensionality	and	the	dataset	fits	in
memory;	in	this	case,	it	is	much	faster	than	regular	PCA.	Finally,	Kernel	PCA	is	useful	for
nonlinear	datasets.

7.	 Intuitively,	a	dimensionality	reduction	algorithm	performs	well	if	it	eliminates	a	lot	of
dimensions	from	the	dataset	without	losing	too	much	information.	One	way	to	measure	this	is	to
apply	the	reverse	transformation	and	measure	the	reconstruction	error.	However,	not	all
dimensionality	reduction	algorithms	provide	a	reverse	transformation.	Alternatively,	if	you	are
using	dimensionality	reduction	as	a	preprocessing	step	before	another	Machine	Learning
algorithm	(e.g.,	a	Random	Forest	classifier),	then	you	can	simply	measure	the	performance	of	that
second	algorithm;	if	dimensionality	reduction	did	not	lose	too	much	information,	then	the
algorithm	should	perform	just	as	well	as	when	using	the	original	dataset.

8.	 It	can	absolutely	make	sense	to	chain	two	different	dimensionality	reduction	algorithms.	A
common	example	is	using	PCA	to	quickly	get	rid	of	a	large	number	of	useless	dimensions,	then
applying	another	much	slower	dimensionality	reduction	algorithm,	such	as	LLE.	This	two-step
approach	will	likely	yield	the	same	performance	as	using	LLE	only,	but	in	a	fraction	of	the	time.

For	the	solutions	to	exercises	9	and	10,	please	see	the	Jupyter	notebooks	available	at
https://github.com/ageron/handson-ml.

https://github.com/ageron/handson-ml

Chapter	9:	Up	and	Running	with	TensorFlow
1.	 Main	benefits	and	drawbacks	of	creating	a	computation	graph	rather	than	directly	executing	the

computations:
Main	benefits:
TensorFlow	can	automatically	compute	the	gradients	for	you	(using	reverse-mode
autodiff).

TensorFlow	can	take	care	of	running	the	operations	in	parallel	in	different	threads.

It	makes	it	easier	to	run	the	same	model	across	different	devices.

It	simplifies	introspection	—	for	example,	to	view	the	model	in	TensorBoard.

Main	drawbacks:
It	makes	the	learning	curve	steeper.

It	makes	step-by-step	debugging	harder.

2.	 Yes,	the	statement	a_val	=	a.eval(session=sess)	is	indeed	equivalent	to	a_val	=
sess.run(a).

3.	 No,	the	statement	a_val,	b_val	=	a.eval(session=sess),	b.eval(session=sess)	is	not
equivalent	to	a_val,	b_val	=	sess.run([a,	b]).	Indeed,	the	first	statement	runs	the	graph
twice	(once	to	compute	a,	once	to	compute	b),	while	the	second	statement	runs	the	graph	only
once.	If	any	of	these	operations	(or	the	ops	they	depend	on)	have	side	effects	(e.g.,	a	variable	is
modified,	an	item	is	inserted	in	a	queue,	or	a	reader	reads	a	file),	then	the	effects	will	be
different.	If	they	don’t	have	side	effects,	both	statements	will	return	the	same	result,	but	the
second	statement	will	be	faster	than	the	first.

4.	 No,	you	cannot	run	two	graphs	in	the	same	session.	You	would	have	to	merge	the	graphs	into	a
single	graph	first.

5.	 In	local	TensorFlow,	sessions	manage	variable	values,	so	if	you	create	a	graph	g	containing	a
variable	w,	then	start	two	threads	and	open	a	local	session	in	each	thread,	both	using	the	same
graph	g,	then	each	session	will	have	its	own	copy	of	the	variable	w.	However,	in	distributed
TensorFlow,	variable	values	are	stored	in	containers	managed	by	the	cluster,	so	if	both	sessions
connect	to	the	same	cluster	and	use	the	same	container,	then	they	will	share	the	same	variable
value	for	w.

6.	 A	variable	is	initialized	when	you	call	its	initializer,	and	it	is	destroyed	when	the	session	ends.
In	distributed	TensorFlow,	variables	live	in	containers	on	the	cluster,	so	closing	a	session	will
not	destroy	the	variable.	To	destroy	a	variable,	you	need	to	clear	its	container.

7.	 Variables	and	placeholders	are	extremely	different,	but	beginners	often	confuse	them:

A	variable	is	an	operation	that	holds	a	value.	If	you	run	the	variable,	it	returns	that	value.
Before	you	can	run	it,	you	need	to	initialize	it.	You	can	change	the	variable’s	value	(for
example,	by	using	an	assignment	operation).	It	is	stateful:	the	variable	keeps	the	same	value
upon	successive	runs	of	the	graph.	It	is	typically	used	to	hold	model	parameters	but	also	for
other	purposes	(e.g.,	to	count	the	global	training	step).

Placeholders	technically	don’t	do	much:	they	just	hold	information	about	the	type	and	shape
of	the	tensor	they	represent,	but	they	have	no	value.	In	fact,	if	you	try	to	evaluate	an
operation	that	depends	on	a	placeholder,	you	must	feed	TensorFlow	the	value	of	the
placeholder	(using	the	feed_dict	argument)	or	else	you	will	get	an	exception.
Placeholders	are	typically	used	to	feed	training	or	test	data	to	TensorFlow	during	the
execution	phase.	They	are	also	useful	to	pass	a	value	to	an	assignment	node,	to	change	the
value	of	a	variable	(e.g.,	model	weights).

8.	 If	you	run	the	graph	to	evaluate	an	operation	that	depends	on	a	placeholder	but	you	don’t	feed	its
value,	you	get	an	exception.	If	the	operation	does	not	depend	on	the	placeholder,	then	no
exception	is	raised.

9.	 When	you	run	a	graph,	you	can	feed	the	output	value	of	any	operation,	not	just	the	value	of
placeholders.	In	practice,	however,	this	is	rather	rare	(it	can	be	useful,	for	example,	when	you
are	caching	the	output	of	frozen	layers;	see	Chapter	11).

10.	 You	can	specify	a	variable’s	initial	value	when	constructing	the	graph,	and	it	will	be	initialized
later	when	you	run	the	variable’s	initializer	during	the	execution	phase.	If	you	want	to	change	that
variable’s	value	to	anything	you	want	during	the	execution	phase,	then	the	simplest	option	is	to
create	an	assignment	node	(during	the	graph	construction	phase)	using	the	tf.assign()	function,
passing	the	variable	and	a	placeholder	as	parameters.	During	the	execution	phase,	you	can	run
the	assignment	operation	and	feed	the	variable’s	new	value	using	the	placeholder.

import	tensorflow	as	tf

x	=	tf.Variable(tf.random_uniform(shape=(),	minval=0.0,	maxval=1.0))

x_new_val	=	tf.placeholder(shape=(),	dtype=tf.float32)

x_assign	=	tf.assign(x,	x_new_val)

with	tf.Session():

				x.initializer.run()	#	random	number	is	sampled	*now*

				print(x.eval())	#	0.646157	(some	random	number)

				x_assign.eval(feed_dict={x_new_val:	5.0})

				print(x.eval())	#	5.0

11.	 Reverse-mode	autodiff	(implemented	by	TensorFlow)	needs	to	traverse	the	graph	only	twice	in
order	to	compute	the	gradients	of	the	cost	function	with	regards	to	any	number	of	variables.	On
the	other	hand,	forward-mode	autodiff	would	need	to	run	once	for	each	variable	(so	10	times	if
we	want	the	gradients	with	regards	to	10	different	variables).	As	for	symbolic	differentiation,	it
would	build	a	different	graph	to	compute	the	gradients,	so	it	would	not	traverse	the	original
graph	at	all	(except	when	building	the	new	gradients	graph).	A	highly	optimized	symbolic
differentiation	system	could	potentially	run	the	new	gradients	graph	only	once	to	compute	the
gradients	with	regards	to	all	variables,	but	that	new	graph	may	be	horribly	complex	and
inefficient	compared	to	the	original	graph.

12.	 See	the	Jupyter	notebooks	available	at	https://github.com/ageron/handson-ml.

https://github.com/ageron/handson-ml

Chapter	10:	Introduction	to	Artificial	Neural	Networks
1.	 Here	is	a	neural	network	based	on	the	original	artificial	neurons	that	computes	A	⊕	B	(where	⊕

represents	the	exclusive	OR),	using	the	fact	that	A	⊕	B	=	(A	∧	¬	B)	∨	(¬	A	∧	B).	There	are	other
solutions	—	for	example,	using	the	fact	that	A	⊕	B	=	(A	∨	B)	∧	¬(A	∧	B),	or	the	fact	that	A	⊕	B
=	(A	∨	B)	∧	(¬	A	∨	∧	B),	and	so	on.

2.	 A	classical	Perceptron	will	converge	only	if	the	dataset	is	linearly	separable,	and	it	won’t	be
able	to	estimate	class	probabilities.	In	contrast,	a	Logistic	Regression	classifier	will	converge	to
a	good	solution	even	if	the	dataset	is	not	linearly	separable,	and	it	will	output	class	probabilities.
If	you	change	the	Perceptron’s	activation	function	to	the	logistic	activation	function	(or	the
softmax	activation	function	if	there	are	multiple	neurons),	and	if	you	train	it	using	Gradient
Descent	(or	some	other	optimization	algorithm	minimizing	the	cost	function,	typically	cross
entropy),	then	it	becomes	equivalent	to	a	Logistic	Regression	classifier.

3.	 The	logistic	activation	function	was	a	key	ingredient	in	training	the	first	MLPs	because	its
derivative	is	always	nonzero,	so	Gradient	Descent	can	always	roll	down	the	slope.	When	the
activation	function	is	a	step	function,	Gradient	Descent	cannot	move,	as	there	is	no	slope	at	all.

4.	 The	step	function,	the	logistic	function,	the	hyperbolic	tangent,	the	rectified	linear	unit	(see
Figure	10-8).	See	Chapter	11	for	other	examples,	such	as	ELU	and	variants	of	the	ReLU.

5.	 Considering	the	MLP	described	in	the	question:	suppose	you	have	an	MLP	composed	of	one
input	layer	with	10	passthrough	neurons,	followed	by	one	hidden	layer	with	50	artificial	neurons,
and	finally	one	output	layer	with	3	artificial	neurons.	All	artificial	neurons	use	the	ReLU
activation	function.

The	shape	of	the	input	matrix	X	is	m	×	10,	where	m	represents	the	training	batch	size.

The	shape	of	the	hidden	layer’s	weight	vector	Wh	is	10	×	50	and	the	length	of	its	bias
vector	bh	is	50.

The	shape	of	the	output	layer’s	weight	vector	Wo	is	50	×	3,	and	the	length	of	its	bias	vector
bo	is	3.

The	shape	of	the	network’s	output	matrix	Y	is	m	×	3.

Y	=	(X	·	Wh	+	bh)	·	Wo	+	bo.	Note	that	when	you	are	adding	a	bias	vector	to	a	matrix,	it	is
added	to	every	single	row	in	the	matrix,	which	is	called	broadcasting.

6.	 To	classify	email	into	spam	or	ham,	you	just	need	one	neuron	in	the	output	layer	of	a	neural
network	—	for	example,	indicating	the	probability	that	the	email	is	spam.	You	would	typically
use	the	logistic	activation	function	in	the	output	layer	when	estimating	a	probability.	If	instead
you	want	to	tackle	MNIST,	you	need	10	neurons	in	the	output	layer,	and	you	must	replace	the
logistic	function	with	the	softmax	activation	function,	which	can	handle	multiple	classes,
outputting	one	probability	per	class.	Now,	if	you	want	your	neural	network	to	predict	housing
prices	like	in	Chapter	2,	then	you	need	one	output	neuron,	using	no	activation	function	at	all	in	the
output	layer.4

7.	 Backpropagation	is	a	technique	used	to	train	artificial	neural	networks.	It	first	computes	the
gradients	of	the	cost	function	with	regards	to	every	model	parameter	(all	the	weights	and	biases),
and	then	it	performs	a	Gradient	Descent	step	using	these	gradients.	This	backpropagation	step	is
typically	performed	thousands	or	millions	of	times,	using	many	training	batches,	until	the	model
parameters	converge	to	values	that	(hopefully)	minimize	the	cost	function.	To	compute	the
gradients,	backpropagation	uses	reverse-mode	autodiff	(although	it	wasn’t	called	that	when
backpropagation	was	invented,	and	it	has	been	reinvented	several	times).	Reverse-mode	autodiff
performs	a	forward	pass	through	a	computation	graph,	computing	every	node’s	value	for	the
current	training	batch,	and	then	it	performs	a	reverse	pass,	computing	all	the	gradients	at	once
(see	Appendix	D	for	more	details).	So	what’s	the	difference?	Well,	backpropagation	refers	to	the
whole	process	of	training	an	artificial	neural	network	using	multiple	backpropagation	steps,	each
of	which	computes	gradients	and	uses	them	to	perform	a	Gradient	Descent	step.	In	contrast,
reverse-mode	autodiff	is	a	simply	a	technique	to	compute	gradients	efficiently,	and	it	happens	to
be	used	by	backpropagation.

8.	 Here	is	a	list	of	all	the	hyperparameters	you	can	tweak	in	a	basic	MLP:	the	number	of	hidden
layers,	the	number	of	neurons	in	each	hidden	layer,	and	the	activation	function	used	in	each
hidden	layer	and	in	the	output	layer.5	In	general,	the	ReLU	activation	function	(or	one	of	its
variants;	see	Chapter	11)	is	a	good	default	for	the	hidden	layers.	For	the	output	layer,	in	general
you	will	want	the	logistic	activation	function	for	binary	classification,	the	softmax	activation
function	for	multiclass	classification,	or	no	activation	function	for	regression.	
If	the	MLP	overfits	the	training	data,	you	can	try	reducing	the	number	of	hidden	layers	and
reducing	the	number	of	neurons	per	hidden	layer.

9.	 See	the	Jupyter	notebooks	available	at	https://github.com/ageron/handson-ml.

https://github.com/ageron/handson-ml

Chapter	11:	Training	Deep	Neural	Nets
1.	 No,	all	weights	should	be	sampled	independently;	they	should	not	all	have	the	same	initial	value.

One	important	goal	of	sampling	weights	randomly	is	to	break	symmetries:	if	all	the	weights	have
the	same	initial	value,	even	if	that	value	is	not	zero,	then	symmetry	is	not	broken	(i.e.,	all	neurons
in	a	given	layer	are	equivalent),	and	backpropagation	will	be	unable	to	break	it.	Concretely,	this
means	that	all	the	neurons	in	any	given	layer	will	always	have	the	same	weights.	It’s	like	having
just	one	neuron	per	layer,	and	much	slower.	It	is	virtually	impossible	for	such	a	configuration	to
converge	to	a	good	solution.

2.	 It	is	perfectly	fine	to	initialize	the	bias	terms	to	zero.	Some	people	like	to	initialize	them	just	like
weights,	and	that’s	okay	too;	it	does	not	make	much	difference.

3.	 A	few	advantages	of	the	ELU	function	over	the	ReLU	function	are:
It	can	take	on	negative	values,	so	the	average	output	of	the	neurons	in	any	given	layer	is
typically	closer	to	0	than	when	using	the	ReLU	activation	function	(which	never	outputs
negative	values).	This	helps	alleviate	the	vanishing	gradients	problem.

It	always	has	a	nonzero	derivative,	which	avoids	the	dying	units	issue	that	can	affect	ReLU
units.

It	is	smooth	everywhere,	whereas	the	ReLU’s	slope	abruptly	jumps	from	0	to	1	at	z	=	0.
Such	an	abrupt	change	can	slow	down	Gradient	Descent	because	it	will	bounce	around	z	=
0.

4.	 The	ELU	activation	function	is	a	good	default.	If	you	need	the	neural	network	to	be	as	fast	as
possible,	you	can	use	one	of	the	leaky	ReLU	variants	instead	(e.g.,	a	simple	leaky	ReLU	using	the
default	hyperparameter	value).	The	simplicity	of	the	ReLU	activation	function	makes	it	many
people’s	preferred	option,	despite	the	fact	that	they	are	generally	outperformed	by	the	ELU	and
leaky	ReLU.	However,	the	ReLU	activation	function’s	capability	of	outputting	precisely	zero	can
be	useful	in	some	cases	(e.g.,	see	Chapter	15).	The	hyperbolic	tangent	(tanh)	can	be	useful	in	the
output	layer	if	you	need	to	output	a	number	between	–1	and	1,	but	nowadays	it	is	not	used	much
in	hidden	layers.	The	logistic	activation	function	is	also	useful	in	the	output	layer	when	you	need
to	estimate	a	probability	(e.g.,	for	binary	classification),	but	it	is	also	rarely	used	in	hidden
layers	(there	are	exceptions	—	for	example,	for	the	coding	layer	of	variational	autoencoders;	see
Chapter	15).	Finally,	the	softmax	activation	function	is	useful	in	the	output	layer	to	output
probabilities	for	mutually	exclusive	classes,	but	other	than	that	it	is	rarely	(if	ever)	used	in
hidden	layers.

5.	 If	you	set	the	momentum	hyperparameter	too	close	to	1	(e.g.,	0.99999)	when	using	a
MomentumOptimizer,	then	the	algorithm	will	likely	pick	up	a	lot	of	speed,	hopefully	roughly
toward	the	global	minimum,	but	then	it	will	shoot	right	past	the	minimum,	due	to	its	momentum.
Then	it	will	slow	down	and	come	back,	accelerate	again,	overshoot	again,	and	so	on.	It	may
oscillate	this	way	many	times	before	converging,	so	overall	it	will	take	much	longer	to	converge
than	with	a	smaller	momentum	value.

6.	 One	way	to	produce	a	sparse	model	(i.e.,	with	most	weights	equal	to	zero)	is	to	train	the	model
normally,	then	zero	out	tiny	weights.	For	more	sparsity,	you	can	apply	ℓ1	regularization	during
training,	which	pushes	the	optimizer	toward	sparsity.	A	third	option	is	to	combine	ℓ1
regularization	with	dual	averaging,	using	TensorFlow’s	FTRLOptimizer	class.

7.	 Yes,	dropout	does	slow	down	training,	in	general	roughly	by	a	factor	of	two.	However,	it	has	no
impact	on	inference	since	it	is	only	turned	on	during	training.

For	the	solutions	to	exercises	8,	9,	and	10,	please	see	the	Jupyter	notebooks	available	at
https://github.com/ageron/handson-ml.

https://github.com/ageron/handson-ml

Chapter	12:	Distributing	TensorFlow	Across	Devices	and	Servers
1.	 When	a	TensorFlow	process	starts,	it	grabs	all	the	available	memory	on	all	GPU	devices	that	are

visible	to	it,	so	if	you	get	a	CUDA_ERROR_OUT_OF_MEMORY	when	starting	your	TensorFlow
program,	it	probably	means	that	other	processes	are	running	that	have	already	grabbed	all	the
memory	on	at	least	one	visible	GPU	device	(most	likely	it	is	another	TensorFlow	process).	To
fix	this	problem,	a	trivial	solution	is	to	stop	the	other	processes	and	try	again.	However,	if	you
need	all	processes	to	run	simultaneously,	a	simple	option	is	to	dedicate	different	devices	to	each
process,	by	setting	the	CUDA_VISIBLE_DEVICES	environment	variable	appropriately	for	each
device.	Another	option	is	to	configure	TensorFlow	to	grab	only	part	of	the	GPU	memory,	instead
of	all	of	it,	by	creating	a	ConfigProto,	setting	its
gpu_options.per_process_gpu_memory_fraction	to	the	proportion	of	the	total	memory	that
it	should	grab	(e.g.,	0.4),	and	using	this	ConfigProto	when	opening	a	session.	The	last	option	is
to	tell	TensorFlow	to	grab	memory	only	when	it	needs	it	by	setting	the
gpu_options.allow_growth	to	True.	However,	this	last	option	is	usually	not	recommended
because	any	memory	that	TensorFlow	grabs	is	never	released,	and	it	is	harder	to	guarantee	a
repeatable	behavior	(there	may	be	race	conditions	depending	on	which	processes	start	first,	how
much	memory	they	need	during	training,	and	so	on).

2.	 By	pinning	an	operation	on	a	device,	you	are	telling	TensorFlow	that	this	is	where	you	would
like	this	operation	to	be	placed.	However,	some	constraints	may	prevent	TensorFlow	from
honoring	your	request.	For	example,	the	operation	may	have	no	implementation	(called	a	kernel)
for	that	particular	type	of	device.	In	this	case,	TensorFlow	will	raise	an	exception	by	default,	but
you	can	configure	it	to	fall	back	to	the	CPU	instead	(this	is	called	soft	placement).	Another
example	is	an	operation	that	can	modify	a	variable;	this	operation	and	the	variable	need	to	be
collocated.	So	the	difference	between	pinning	an	operation	and	placing	an	operation	is	that
pinning	is	what	you	ask	TensorFlow	(“Please	place	this	operation	on	GPU	#1”)	while	placement
is	what	TensorFlow	actually	ends	up	doing	(“Sorry,	falling	back	to	the	CPU”).

3.	 If	you	are	running	on	a	GPU-enabled	TensorFlow	installation,	and	you	just	use	the	default
placement,	then	if	all	operations	have	a	GPU	kernel	(i.e.,	a	GPU	implementation),	yes,	they	will
all	be	placed	on	the	first	GPU.	However,	if	one	or	more	operations	do	not	have	a	GPU	kernel,
then	by	default	TensorFlow	will	raise	an	exception.	If	you	configure	TensorFlow	to	fall	back	to
the	CPU	instead	(soft	placement),	then	all	operations	will	be	placed	on	the	first	GPU	except	the
ones	without	a	GPU	kernel	and	all	the	operations	that	must	be	collocated	with	them	(see	the
answer	to	the	previous	exercise).

4.	 Yes,	if	you	pin	a	variable	to	"/gpu:0",	it	can	be	used	by	operations	placed	on	/gpu:1.
TensorFlow	will	automatically	take	care	of	adding	the	appropriate	operations	to	transfer	the
variable’s	value	across	devices.	The	same	goes	for	devices	located	on	different	servers	(as	long
as	they	are	part	of	the	same	cluster).

5.	 Yes,	two	operations	placed	on	the	same	device	can	run	in	parallel:	TensorFlow	automatically
takes	care	of	running	operations	in	parallel	(on	different	CPU	cores	or	different	GPU	threads),	as
long	as	no	operation	depends	on	another	operation’s	output.	Moreover,	you	can	start	multiple
sessions	in	parallel	threads	(or	processes),	and	evaluate	operations	in	each	thread.	Since

sessions	are	independent,	TensorFlow	will	be	able	to	evaluate	any	operation	from	one	session	in
parallel	with	any	operation	from	another	session.

6.	 Control	dependencies	are	used	when	you	want	to	postpone	the	evaluation	of	an	operation	X	until
after	some	other	operations	are	run,	even	though	these	operations	are	not	required	to	compute	X.
This	is	useful	in	particular	when	X	would	occupy	a	lot	of	memory	and	you	only	need	it	later	in
the	computation	graph,	or	if	X	uses	up	a	lot	of	I/O	(for	example,	it	requires	a	large	variable	value
located	on	a	different	device	or	server)	and	you	don’t	want	it	to	run	at	the	same	time	as	other
I/O-hungry	operations,	to	avoid	saturating	the	bandwidth.

7.	 You’re	in	luck!	In	distributed	TensorFlow,	the	variable	values	live	in	containers	managed	by	the
cluster,	so	even	if	you	close	the	session	and	exit	the	client	program,	the	model	parameters	are
still	alive	and	well	on	the	cluster.	You	simply	need	to	open	a	new	session	to	the	cluster	and	save
the	model	(make	sure	you	don’t	call	the	variable	initializers	or	restore	a	previous	model,	as	this
would	destroy	your	precious	new	model!).

For	the	solutions	to	exercises	8,	9,	and	10,	please	see	the	Jupyter	notebooks	available	at
https://github.com/ageron/handson-ml.

https://github.com/ageron/handson-ml

Chapter	13:	Convolutional	Neural	Networks
1.	 These	are	the	main	advantages	of	a	CNN	over	a	fully	connected	DNN	for	image	classification:

Because	consecutive	layers	are	only	partially	connected	and	because	it	heavily	reuses	its
weights,	a	CNN	has	many	fewer	parameters	than	a	fully	connected	DNN,	which	makes	it
much	faster	to	train,	reduces	the	risk	of	overfitting,	and	requires	much	less	training	data.

When	a	CNN	has	learned	a	kernel	that	can	detect	a	particular	feature,	it	can	detect	that
feature	anywhere	on	the	image.	In	contrast,	when	a	DNN	learns	a	feature	in	one	location,	it
can	detect	it	only	in	that	particular	location.	Since	images	typically	have	very	repetitive
features,	CNNs	are	able	to	generalize	much	better	than	DNNs	for	image	processing	tasks
such	as	classification,	using	fewer	training	examples.

Finally,	a	DNN	has	no	prior	knowledge	of	how	pixels	are	organized;	it	does	not	know	that
nearby	pixels	are	close.	A	CNN’s	architecture	embeds	this	prior	knowledge.	Lower	layers
typically	identify	features	in	small	areas	of	the	images,	while	higher	layers	combine	the
lower-level	features	into	larger	features.	This	works	well	with	most	natural	images,	giving
CNNs	a	decisive	head	start	compared	to	DNNs.

2.	 Let’s	compute	how	many	parameters	the	CNN	has.	Since	its	first	convolutional	layer	has	3	×	3
kernels,	and	the	input	has	three	channels	(red,	green,	and	blue),	then	each	feature	map	has	3	×	3	×
3	weights,	plus	a	bias	term.	That’s	28	parameters	per	feature	map.	Since	this	first	convolutional
layer	has	100	feature	maps,	it	has	a	total	of	2,800	parameters.	The	second	convolutional	layer
has	3	×	3	kernels,	and	its	input	is	the	set	of	100	feature	maps	of	the	previous	layer,	so	each
feature	map	has	3	×	3	×	100	=	900	weights,	plus	a	bias	term.	Since	it	has	200	feature	maps,	this
layer	has	901	×	200	=	180,200	parameters.	Finally,	the	third	and	last	convolutional	layer	also
has	3	×	3	kernels,	and	its	input	is	the	set	of	200	feature	maps	of	the	previous	layers,	so	each
feature	map	has	3	×	3	×	200	=	1,800	weights,	plus	a	bias	term.	Since	it	has	400	feature	maps,	this
layer	has	a	total	of	1,801	×	400	=	720,400	parameters.	All	in	all,	the	CNN	has	2,800	+	180,200
+	720,400	=	903,400	parameters.	
Now	let’s	compute	how	much	RAM	this	neural	network	will	require	(at	least)	when	making	a
prediction	for	a	single	instance.	First	let’s	compute	the	feature	map	size	for	each	layer.	Since	we
are	using	a	stride	of	2	and	SAME	padding,	the	horizontal	and	vertical	size	of	the	feature	maps
are	divided	by	2	at	each	layer	(rounding	up	if	necessary),	so	as	the	input	channels	are	200	×	300
pixels,	the	first	layer’s	feature	maps	are	100	×	150,	the	second	layer’s	feature	maps	are	50	×	75,
and	the	third	layer’s	feature	maps	are	25	×	38.	Since	32	bits	is	4	bytes	and	the	first	convolutional
layer	has	100	feature	maps,	this	first	layer	takes	up	4	x	100	×	150	×	100	=	6	million	bytes	(about
5.7	MB,	considering	that	1	MB	=	1,024	KB	and	1	KB	=	1,024	bytes).	The	second	layer	takes	up
4	×	50	×	75	×	200	=	3	million	bytes	(about	2.9	MB).	Finally,	the	third	layer	takes	up	4	×	25	×	38
×	400	=	1,520,000	bytes	(about	1.4	MB).	However,	once	a	layer	has	been	computed,	the	memory
occupied	by	the	previous	layer	can	be	released,	so	if	everything	is	well	optimized,	only	6	+	9	=
15	million	bytes	(about	14.3	MB)	of	RAM	will	be	required	(when	the	second	layer	has	just	been
computed,	but	the	memory	occupied	by	the	first	layer	is	not	released	yet).	But	wait,	you	also
need	to	add	the	memory	occupied	by	the	CNN’s	parameters.	We	computed	earlier	that	it	has
903,400	parameters,	each	using	up	4	bytes,	so	this	adds	3,613,600	bytes	(about	3.4	MB).	The

total	RAM	required	is	(at	least)	18,613,600	bytes	(about	17.8	MB).	
Lastly,	let’s	compute	the	minimum	amount	of	RAM	required	when	training	the	CNN	on	a	mini-
batch	of	50	images.	During	training	TensorFlow	uses	backpropagation,	which	requires	keeping
all	values	computed	during	the	forward	pass	until	the	reverse	pass	begins.	So	we	must	compute
the	total	RAM	required	by	all	layers	for	a	single	instance	and	multiply	that	by	50!	At	that	point
let’s	start	counting	in	megabytes	rather	than	bytes.	We	computed	before	that	the	three	layers
require	respectively	5.7,	2.9,	and	1.4	MB	for	each	instance.	That’s	a	total	of	10.0	MB	per
instance.	So	for	50	instances	the	total	RAM	is	500	MB.	Add	to	that	the	RAM	required	by	the
input	images,	which	is	50	×	4	×	200	×	300	×	3	=	36	million	bytes	(about	34.3	MB),	plus	the
RAM	required	for	the	model	parameters,	which	is	about	3.4	MB	(computed	earlier),	plus	some
RAM	for	the	gradients	(we	will	neglect	them	since	they	can	be	released	gradually	as
backpropagation	goes	down	the	layers	during	the	reverse	pass).	We	are	up	to	a	total	of	roughly
500.0	+	34.3	+	3.4	=	537.7	MB.	And	that’s	really	an	optimistic	bare	minimum.

3.	 If	your	GPU	runs	out	of	memory	while	training	a	CNN,	here	are	five	things	you	could	try	to	solve
the	problem	(other	than	purchasing	a	GPU	with	more	RAM):

Reduce	the	mini-batch	size.

Reduce	dimensionality	using	a	larger	stride	in	one	or	more	layers.

Remove	one	or	more	layers.

Use	16-bit	floats	instead	of	32-bit	floats.

Distribute	the	CNN	across	multiple	devices.

4.	 A	max	pooling	layer	has	no	parameters	at	all,	whereas	a	convolutional	layer	has	quite	a	few	(see
the	previous	questions).

5.	 A	local	response	normalization	layer	makes	the	neurons	that	most	strongly	activate	inhibit
neurons	at	the	same	location	but	in	neighboring	feature	maps,	which	encourages	different	feature
maps	to	specialize	and	pushes	them	apart,	forcing	them	to	explore	a	wider	range	of	features.	It	is
typically	used	in	the	lower	layers	to	have	a	larger	pool	of	low-level	features	that	the	upper
layers	can	build	upon.

6.	 The	main	innovations	in	AlexNet	compared	to	LeNet-5	are	(1)	it	is	much	larger	and	deeper,	and
(2)	it	stacks	convolutional	layers	directly	on	top	of	each	other,	instead	of	stacking	a	pooling	layer
on	top	of	each	convolutional	layer.	The	main	innovation	in	GoogLeNet	is	the	introduction	of
inception	modules,	which	make	it	possible	to	have	a	much	deeper	net	than	previous	CNN
architectures,	with	fewer	parameters.	Finally,	ResNet’s	main	innovation	is	the	introduction	of
skip	connections,	which	make	it	possible	to	go	well	beyond	100	layers.	Arguably,	its	simplicity
and	consistency	are	also	rather	innovative.

For	the	solutions	to	exercises	7,	8,	9,	and	10,	please	see	the	Jupyter	notebooks	available	at
https://github.com/ageron/handson-ml.

https://github.com/ageron/handson-ml

Chapter	14:	Recurrent	Neural	Networks
1.	 Here	are	a	few	RNN	applications:

For	a	sequence-to-sequence	RNN:	predicting	the	weather	(or	any	other	time	series),
machine	translation	(using	an	encoder–decoder	architecture),	video	captioning,	speech	to
text,	music	generation	(or	other	sequence	generation),	identifying	the	chords	of	a	song.

For	a	sequence-to-vector	RNN:	classifying	music	samples	by	music	genre,	analyzing	the
sentiment	of	a	book	review,	predicting	what	word	an	aphasic	patient	is	thinking	of	based	on
readings	from	brain	implants,	predicting	the	probability	that	a	user	will	want	to	watch	a
movie	based	on	her	watch	history	(this	is	one	of	many	possible	implementations	of
collaborative	filtering).

For	a	vector-to-sequence	RNN:	image	captioning,	creating	a	music	playlist	based	on	an
embedding	of	the	current	artist,	generating	a	melody	based	on	a	set	of	parameters,	locating
pedestrians	in	a	picture	(e.g.,	a	video	frame	from	a	self-driving	car’s	camera).

2.	 In	general,	if	you	translate	a	sentence	one	word	at	a	time,	the	result	will	be	terrible.	For	example,
the	French	sentence	“Je	vous	en	prie”	means	“You	are	welcome,”	but	if	you	translate	it	one	word
at	a	time,	you	get	“I	you	in	pray.”	Huh?	It	is	much	better	to	read	the	whole	sentence	first	and	then
translate	it.	A	plain	sequence-to-sequence	RNN	would	start	translating	a	sentence	immediately
after	reading	the	first	word,	while	an	encoder–decoder	RNN	will	first	read	the	whole	sentence
and	then	translate	it.	That	said,	one	could	imagine	a	plain	sequence-to-sequence	RNN	that	would
output	silence	whenever	it	is	unsure	about	what	to	say	next	(just	like	human	translators	do	when
they	must	translate	a	live	broadcast).

3.	 To	classify	videos	based	on	the	visual	content,	one	possible	architecture	could	be	to	take	(say)
one	frame	per	second,	then	run	each	frame	through	a	convolutional	neural	network,	feed	the
output	of	the	CNN	to	a	sequence-to-vector	RNN,	and	finally	run	its	output	through	a	softmax
layer,	giving	you	all	the	class	probabilities.	For	training	you	would	just	use	cross	entropy	as	the
cost	function.	If	you	wanted	to	use	the	audio	for	classification	as	well,	you	could	convert	every
second	of	audio	to	a	spectrograph,	feed	this	spectrograph	to	a	CNN,	and	feed	the	output	of	this
CNN	to	the	RNN	(along	with	the	corresponding	output	of	the	other	CNN).

4.	 Building	an	RNN	using	dynamic_rnn()	rather	than	static_rnn()	offers	several	advantages:
It	is	based	on	a	while_loop()	operation	that	is	able	to	swap	the	GPU’s	memory	to	the
CPU’s	memory	during	backpropagation,	avoiding	out-of-memory	errors.

It	is	arguably	easier	to	use,	as	it	can	directly	take	a	single	tensor	as	input	and	output
(covering	all	time	steps),	rather	than	a	list	of	tensors	(one	per	time	step).	No	need	to	stack,
unstack,	or	transpose.

It	generates	a	smaller	graph,	easier	to	visualize	in	TensorBoard.

5.	 To	handle	variable	length	input	sequences,	the	simplest	option	is	to	set	the	sequence_length
parameter	when	calling	the	static_rnn()	or	dynamic_rnn()	functions.	Another	option	is	to

pad	the	smaller	inputs	(e.g.,	with	zeros)	to	make	them	the	same	size	as	the	largest	input	(this	may
be	faster	than	the	first	option	if	the	input	sequences	all	have	very	similar	lengths).	To	handle
variable-length	output	sequences,	if	you	know	in	advance	the	length	of	each	output	sequence,	you
can	use	the	sequence_length	parameter	(for	example,	consider	a	sequence-to-sequence	RNN
that	labels	every	frame	in	a	video	with	a	violence	score:	the	output	sequence	will	be	exactly	the
same	length	as	the	input	sequence).	If	you	don’t	know	in	advance	the	length	of	the	output
sequence,	you	can	use	the	padding	trick:	always	output	the	same	size	sequence,	but	ignore	any
outputs	that	come	after	the	end-of-sequence	token	(by	ignoring	them	when	computing	the	cost
function).

6.	 To	distribute	training	and	execution	of	a	deep	RNN	across	multiple	GPUs,	a	common	technique
is	simply	to	place	each	layer	on	a	different	GPU	(see	Chapter	12).

For	the	solutions	to	exercises	7,	8,	and	9,	please	see	the	Jupyter	notebooks	available	at
https://github.com/ageron/handson-ml.

https://github.com/ageron/handson-ml

Chapter	15:	Autoencoders
1.	 Here	are	some	of	the	main	tasks	that	autoencoders	are	used	for:

Feature	extraction

Unsupervised	pretraining

Dimensionality	reduction

Generative	models

Anomaly	detection	(an	autoencoder	is	generally	bad	at	reconstructing	outliers)

2.	 If	you	want	to	train	a	classifier	and	you	have	plenty	of	unlabeled	training	data,	but	only	a	few
thousand	labeled	instances,	then	you	could	first	train	a	deep	autoencoder	on	the	full	dataset
(labeled	+	unlabeled),	then	reuse	its	lower	half	for	the	classifier	(i.e.,	reuse	the	layers	up	to	the
codings	layer,	included)	and	train	the	classifier	using	the	labeled	data.	If	you	have	little	labeled
data,	you	probably	want	to	freeze	the	reused	layers	when	training	the	classifier.

3.	 The	fact	that	an	autoencoder	perfectly	reconstructs	its	inputs	does	not	necessarily	mean	that	it	is	a
good	autoencoder;	perhaps	it	is	simply	an	overcomplete	autoencoder	that	learned	to	copy	its
inputs	to	the	codings	layer	and	then	to	the	outputs.	In	fact,	even	if	the	codings	layer	contained	a
single	neuron,	it	would	be	possible	for	a	very	deep	autoencoder	to	learn	to	map	each	training
instance	to	a	different	coding	(e.g.,	the	first	instance	could	be	mapped	to	0.001,	the	second	to
0.002,	the	third	to	0.003,	and	so	on),	and	it	could	learn	“by	heart”	to	reconstruct	the	right	training
instance	for	each	coding.	It	would	perfectly	reconstruct	its	inputs	without	really	learning	any
useful	pattern	in	the	data.	In	practice	such	a	mapping	is	unlikely	to	happen,	but	it	illustrates	the
fact	that	perfect	reconstructions	are	not	a	guarantee	that	the	autoencoder	learned	anything	useful.
However,	if	it	produces	very	bad	reconstructions,	then	it	is	almost	guaranteed	to	be	a	bad
autoencoder.	To	evaluate	the	performance	of	an	autoencoder,	one	option	is	to	measure	the
reconstruction	loss	(e.g.,	compute	the	MSE,	the	mean	square	of	the	outputs	minus	the	inputs).
Again,	a	high	reconstruction	loss	is	a	good	sign	that	the	autoencoder	is	bad,	but	a	low
reconstruction	loss	is	not	a	guarantee	that	it	is	good.	You	should	also	evaluate	the	autoencoder
according	to	what	it	will	be	used	for.	For	example,	if	you	are	using	it	for	unsupervised
pretraining	of	a	classifier,	then	you	should	also	evaluate	the	classifier’s	performance.

4.	 An	undercomplete	autoencoder	is	one	whose	codings	layer	is	smaller	than	the	input	and	output
layers.	If	it	is	larger,	then	it	is	an	overcomplete	autoencoder.	The	main	risk	of	an	excessively
undercomplete	autoencoder	is	that	it	may	fail	to	reconstruct	the	inputs.	The	main	risk	of	an
overcomplete	autoencoder	is	that	it	may	just	copy	the	inputs	to	the	outputs,	without	learning	any
useful	feature.

5.	 To	tie	the	weights	of	an	encoder	layer	and	its	corresponding	decoder	layer,	you	simply	make	the
decoder	weights	equal	to	the	transpose	of	the	encoder	weights.	This	reduces	the	number	of
parameters	in	the	model	by	half,	often	making	training	converge	faster	with	less	training	data,	and
reducing	the	risk	of	overfitting	the	training	set.

6.	 To	visualize	the	features	learned	by	the	lower	layer	of	a	stacked	autoencoder,	a	common
technique	is	simply	to	plot	the	weights	of	each	neuron,	by	reshaping	each	weight	vector	to	the
size	of	an	input	image	(e.g.,	for	MNIST,	reshaping	a	weight	vector	of	shape	[784]	to	[28,	28]).
To	visualize	the	features	learned	by	higher	layers,	one	technique	is	to	display	the	training
instances	that	most	activate	each	neuron.

7.	 A	generative	model	is	a	model	capable	of	randomly	generating	outputs	that	resemble	the	training
instances.	For	example,	once	trained	successfully	on	the	MNIST	dataset,	a	generative	model	can
be	used	to	randomly	generate	realistic	images	of	digits.	The	output	distribution	is	typically
similar	to	the	training	data.	For	example,	since	MNIST	contains	many	images	of	each	digit,	the
generative	model	would	output	roughly	the	same	number	of	images	of	each	digit.	Some
generative	models	can	be	parametrized	—	for	example,	to	generate	only	some	kinds	of	outputs.
An	example	of	a	generative	autoencoder	is	the	variational	autoencoder.

For	the	solutions	to	exercises	8,	9,	and	10,	please	see	the	Jupyter	notebooks	available	at
https://github.com/ageron/handson-ml.

https://github.com/ageron/handson-ml

Chapter	16:	Reinforcement	Learning
1.	 Reinforcement	Learning	is	an	area	of	Machine	Learning	aimed	at	creating	agents	capable	of

taking	actions	in	an	environment	in	a	way	that	maximizes	rewards	over	time.	There	are	many
differences	between	RL	and	regular	supervised	and	unsupervised	learning.	Here	are	a	few:

In	supervised	and	unsupervised	learning,	the	goal	is	generally	to	find	patterns	in	the	data.	In
Reinforcement	Learning,	the	goal	is	to	find	a	good	policy.

Unlike	in	supervised	learning,	the	agent	is	not	explicitly	given	the	“right”	answer.	It	must
learn	by	trial	and	error.

Unlike	in	unsupervised	learning,	there	is	a	form	of	supervision,	through	rewards.	We	do	not
tell	the	agent	how	to	perform	the	task,	but	we	do	tell	it	when	it	is	making	progress	or	when
it	is	failing.

A	Reinforcement	Learning	agent	needs	to	find	the	right	balance	between	exploring	the
environment,	looking	for	new	ways	of	getting	rewards,	and	exploiting	sources	of	rewards
that	it	already	knows.	In	contrast,	supervised	and	unsupervised	learning	systems	generally
don’t	need	to	worry	about	exploration;	they	just	feed	on	the	training	data	they	are	given.

In	supervised	and	unsupervised	learning,	training	instances	are	typically	independent	(in
fact,	they	are	generally	shuffled).	In	Reinforcement	Learning,	consecutive	observations	are
generally	not	independent.	An	agent	may	remain	in	the	same	region	of	the	environment	for	a
while	before	it	moves	on,	so	consecutive	observations	will	be	very	correlated.	In	some
cases	a	replay	memory	is	used	to	ensure	that	the	training	algorithm	gets	fairly	independent
observations.

2.	 Here	are	a	few	possible	applications	of	Reinforcement	Learning,	other	than	those	mentioned	in
Chapter	16:

Music	personalization
The	environment	is	a	user’s	personalized	web	radio.	The	agent	is	the	software	deciding
what	song	to	play	next	for	that	user.	Its	possible	actions	are	to	play	any	song	in	the	catalog
(it	must	try	to	choose	a	song	the	user	will	enjoy)	or	to	play	an	advertisement	(it	must	try	to
choose	an	ad	that	the	user	will	be	interested	in).	It	gets	a	small	reward	every	time	the	user
listens	to	a	song,	a	larger	reward	every	time	the	user	listens	to	an	ad,	a	negative	reward
when	the	user	skips	a	song	or	an	ad,	and	a	very	negative	reward	if	the	user	leaves.

Marketing
The	environment	is	your	company’s	marketing	department.	The	agent	is	the	software	that
defines	which	customers	a	mailing	campaign	should	be	sent	to,	given	their	profile	and
purchase	history	(for	each	customer	it	has	two	possible	actions:	send	or	don’t	send).	It	gets
a	negative	reward	for	the	cost	of	the	mailing	campaign,	and	a	positive	reward	for	estimated
revenue	generated	from	this	campaign.

Product	delivery

Let	the	agent	control	a	fleet	of	delivery	trucks,	deciding	what	they	should	pick	up	at	the
depots,	where	they	should	go,	what	they	should	drop	off,	and	so	on.	They	would	get	positive
rewards	for	each	product	delivered	on	time,	and	negative	rewards	for	late	deliveries.

3.	 When	estimating	the	value	of	an	action,	Reinforcement	Learning	algorithms	typically	sum	all	the
rewards	that	this	action	led	to,	giving	more	weight	to	immediate	rewards,	and	less	weight	to	later
rewards	(considering	that	an	action	has	more	influence	on	the	near	future	than	on	the	distant
future).	To	model	this,	a	discount	rate	is	typically	applied	at	each	time	step.	For	example,	with	a
discount	rate	of	0.9,	a	reward	of	100	that	is	received	two	time	steps	later	is	counted	as	only	0.92
×	100	=	81	when	you	are	estimating	the	value	of	the	action.	You	can	think	of	the	discount	rate	as
a	measure	of	how	much	the	future	is	valued	relative	to	the	present:	if	it	is	very	close	to	1,	then	the
future	is	valued	almost	as	much	as	the	present.	If	it	is	close	to	0,	then	only	immediate	rewards
matter.	Of	course,	this	impacts	the	optimal	policy	tremendously:	if	you	value	the	future,	you	may
be	willing	to	put	up	with	a	lot	of	immediate	pain	for	the	prospect	of	eventual	rewards,	while	if
you	don’t	value	the	future,	you	will	just	grab	any	immediate	reward	you	can	find,	never	investing
in	the	future.

4.	 To	measure	the	performance	of	a	Reinforcement	Learning	agent,	you	can	simply	sum	up	the
rewards	it	gets.	In	a	simulated	environment,	you	can	run	many	episodes	and	look	at	the	total
rewards	it	gets	on	average	(and	possibly	look	at	the	min,	max,	standard	deviation,	and	so	on).

5.	 The	credit	assignment	problem	is	the	fact	that	when	a	Reinforcement	Learning	agent	receives	a
reward,	it	has	no	direct	way	of	knowing	which	of	its	previous	actions	contributed	to	this	reward.
It	typically	occurs	when	there	is	a	large	delay	between	an	action	and	the	resulting	rewards	(e.g.,
during	a	game	of	Atari’s	Pong,	there	may	be	a	few	dozen	time	steps	between	the	moment	the
agent	hits	the	ball	and	the	moment	it	wins	the	point).	One	way	to	alleviate	it	is	to	provide	the
agent	with	shorter-term	rewards,	when	possible.	This	usually	requires	prior	knowledge	about	the
task.	For	example,	if	we	want	to	build	an	agent	that	will	learn	to	play	chess,	instead	of	giving	it	a
reward	only	when	it	wins	the	game,	we	could	give	it	a	reward	every	time	it	captures	one	of	the
opponent’s	pieces.

6.	 An	agent	can	often	remain	in	the	same	region	of	its	environment	for	a	while,	so	all	of	its
experiences	will	be	very	similar	for	that	period	of	time.	This	can	introduce	some	bias	in	the
learning	algorithm.	It	may	tune	its	policy	for	this	region	of	the	environment,	but	it	will	not
perform	well	as	soon	as	it	moves	out	of	this	region.	To	solve	this	problem,	you	can	use	a	replay
memory;	instead	of	using	only	the	most	immediate	experiences	for	learning,	the	agent	will	learn
based	on	a	buffer	of	its	past	experiences,	recent	and	not	so	recent	(perhaps	this	is	why	we	dream
at	night:	to	replay	our	experiences	of	the	day	and	better	learn	from	them?).

7.	 An	off-policy	RL	algorithm	learns	the	value	of	the	optimal	policy	(i.e.,	the	sum	of	discounted
rewards	that	can	be	expected	for	each	state	if	the	agent	acts	optimally),	independently	of	how	the
agent	actually	acts.	Q-Learning	is	a	good	example	of	such	an	algorithm.	In	contrast,	an	on-policy
algorithm	learns	the	value	of	the	policy	that	the	agent	actually	executes,	including	both
exploration	and	exploitation.

For	the	solutions	to	exercises	8,	9,	and	10,	please	see	the	Jupyter	notebooks	available	at
https://github.com/ageron/handson-ml.

https://github.com/ageron/handson-ml

If	you	draw	a	straight	line	between	any	two	points	on	the	curve,	the	line	never	crosses	the	curve.

Moreover,	the	Normal	Equation	requires	computing	the	inverse	of	a	matrix,	but	that	matrix	is	not	always	invertible.	In	contrast,	the	matrix
for	Ridge	Regression	is	always	invertible.

log2	is	the	binary	log,	log2(m)	=	log(m)	/	log(2).

When	the	values	to	predict	can	vary	by	many	orders	of	magnitude,	then	you	may	want	to	predict	the	logarithm	of	the	target	value	rather
than	the	target	value	directly.	Simply	computing	the	exponential	of	the	neural	network’s	output	will	give	you	the	estimated	value	(since
exp(log	v)	=	v).

In	Chapter	11	we	discuss	many	techniques	that	introduce	additional	hyperparameters:	type	of	weight	initialization,	activation	function
hyperparameters	(e.g.,	amount	of	leak	in	leaky	ReLU),	Gradient	Clipping	threshold,	type	of	optimizer	and	its	hyperparameters	(e.g.,	the
momentum	hyperparameter	when	using	a	MomentumOptimizer),	type	of	regularization	for	each	layer,	and	the	regularization
hyperparameters	(e.g.,	dropout	rate	when	using	dropout)	and	so	on.

1

2

3

4

5

Appendix	B.	Machine	Learning	Project
Checklist

This	checklist	can	guide	you	through	your	Machine	Learning	projects.	There	are	eight	main	steps:
1.	 Frame	the	problem	and	look	at	the	big	picture.

2.	 Get	the	data.

3.	 Explore	the	data	to	gain	insights.

4.	 Prepare	the	data	to	better	expose	the	underlying	data	patterns	to	Machine	Learning	algorithms.

5.	 Explore	many	different	models	and	short-list	the	best	ones.

6.	 Fine-tune	your	models	and	combine	them	into	a	great	solution.

7.	 Present	your	solution.

8.	 Launch,	monitor,	and	maintain	your	system.

Obviously,	you	should	feel	free	to	adapt	this	checklist	to	your	needs.

Frame	the	Problem	and	Look	at	the	Big	Picture
1.	 Define	the	objective	in	business	terms.

2.	 How	will	your	solution	be	used?

3.	 What	are	the	current	solutions/workarounds	(if	any)?

4.	 How	should	you	frame	this	problem	(supervised/unsupervised,	online/offline,	etc.)?

5.	 How	should	performance	be	measured?

6.	 Is	the	performance	measure	aligned	with	the	business	objective?

7.	 What	would	be	the	minimum	performance	needed	to	reach	the	business	objective?

8.	 What	are	comparable	problems?	Can	you	reuse	experience	or	tools?

9.	 Is	human	expertise	available?

10.	 How	would	you	solve	the	problem	manually?

11.	 List	the	assumptions	you	(or	others)	have	made	so	far.

12.	 Verify	assumptions	if	possible.

Get	the	Data
Note:	automate	as	much	as	possible	so	you	can	easily	get	fresh	data.

1.	 List	the	data	you	need	and	how	much	you	need.

2.	 Find	and	document	where	you	can	get	that	data.

3.	 Check	how	much	space	it	will	take.

4.	 Check	legal	obligations,	and	get	authorization	if	necessary.

5.	 Get	access	authorizations.

6.	 Create	a	workspace	(with	enough	storage	space).

7.	 Get	the	data.

8.	 Convert	the	data	to	a	format	you	can	easily	manipulate	(without	changing	the	data	itself).

9.	 Ensure	sensitive	information	is	deleted	or	protected	(e.g.,	anonymized).

10.	 Check	the	size	and	type	of	data	(time	series,	sample,	geographical,	etc.).

11.	 Sample	a	test	set,	put	it	aside,	and	never	look	at	it	(no	data	snooping!).

Explore	the	Data
Note:	try	to	get	insights	from	a	field	expert	for	these	steps.

1.	 Create	a	copy	of	the	data	for	exploration	(sampling	it	down	to	a	manageable	size	if	necessary).

2.	 Create	a	Jupyter	notebook	to	keep	a	record	of	your	data	exploration.

3.	 Study	each	attribute	and	its	characteristics:
Name

Type	(categorical,	int/float,	bounded/unbounded,	text,	structured,	etc.)

%	of	missing	values

Noisiness	and	type	of	noise	(stochastic,	outliers,	rounding	errors,	etc.)

Possibly	useful	for	the	task?

Type	of	distribution	(Gaussian,	uniform,	logarithmic,	etc.)

4.	 For	supervised	learning	tasks,	identify	the	target	attribute(s).

5.	 Visualize	the	data.

6.	 Study	the	correlations	between	attributes.

7.	 Study	how	you	would	solve	the	problem	manually.

8.	 Identify	the	promising	transformations	you	may	want	to	apply.

9.	 Identify	extra	data	that	would	be	useful	(go	back	to	“Get	the	Data”).

10.	 Document	what	you	have	learned.

Prepare	the	Data
Notes:

Work	on	copies	of	the	data	(keep	the	original	dataset	intact).

Write	functions	for	all	data	transformations	you	apply,	for	five	reasons:
So	you	can	easily	prepare	the	data	the	next	time	you	get	a	fresh	dataset

So	you	can	apply	these	transformations	in	future	projects

To	clean	and	prepare	the	test	set

To	clean	and	prepare	new	data	instances	once	your	solution	is	live

To	make	it	easy	to	treat	your	preparation	choices	as	hyperparameters

1.	 Data	cleaning:
Fix	or	remove	outliers	(optional).

Fill	in	missing	values	(e.g.,	with	zero,	mean,	median…)	or	drop	their	rows	(or	columns).

2.	 Feature	selection	(optional):
Drop	the	attributes	that	provide	no	useful	information	for	the	task.

3.	 Feature	engineering,	where	appropriate:
Discretize	continuous	features.

Decompose	features	(e.g.,	categorical,	date/time,	etc.).

Add	promising	transformations	of	features	(e.g.,	log(x),	sqrt(x),	x^2,	etc.).

Aggregate	features	into	promising	new	features.

4.	 Feature	scaling:	standardize	or	normalize	features.

Short-List	Promising	Models
Notes:

If	the	data	is	huge,	you	may	want	to	sample	smaller	training	sets	so	you	can	train	many	different
models	in	a	reasonable	time	(be	aware	that	this	penalizes	complex	models	such	as	large	neural	nets
or	Random	Forests).

Once	again,	try	to	automate	these	steps	as	much	as	possible.

1.	 Train	many	quick	and	dirty	models	from	different	categories	(e.g.,	linear,	naive	Bayes,	SVM,
Random	Forests,	neural	net,	etc.)	using	standard	parameters.

2.	 Measure	and	compare	their	performance.
For	each	model,	use	N-fold	cross-validation	and	compute	the	mean	and	standard	deviation
of	the	performance	measure	on	the	N	folds.

3.	 Analyze	the	most	significant	variables	for	each	algorithm.

4.	 Analyze	the	types	of	errors	the	models	make.
What	data	would	a	human	have	used	to	avoid	these	errors?

5.	 Have	a	quick	round	of	feature	selection	and	engineering.

6.	 Have	one	or	two	more	quick	iterations	of	the	five	previous	steps.

7.	 Short-list	the	top	three	to	five	most	promising	models,	preferring	models	that	make	different
types	of	errors.

Fine-Tune	the	System
Notes:

You	will	want	to	use	as	much	data	as	possible	for	this	step,	especially	as	you	move	toward	the	end
of	fine-tuning.

As	always	automate	what	you	can.

1.	 Fine-tune	the	hyperparameters	using	cross-validation.
Treat	your	data	transformation	choices	as	hyperparameters,	especially	when	you	are	not
sure	about	them	(e.g.,	should	I	replace	missing	values	with	zero	or	with	the	median	value?
Or	just	drop	the	rows?).

Unless	there	are	very	few	hyperparameter	values	to	explore,	prefer	random	search	over
grid	search.	If	training	is	very	long,	you	may	prefer	a	Bayesian	optimization	approach	(e.g.,
using	Gaussian	process	priors,	as	described	by	Jasper	Snoek,	Hugo	Larochelle,	and	Ryan
Adams).1

2.	 Try	Ensemble	methods.	Combining	your	best	models	will	often	perform	better	than	running	them
individually.

3.	 Once	you	are	confident	about	your	final	model,	measure	its	performance	on	the	test	set	to
estimate	the	generalization	error.

WARNING
Don’t	tweak	your	model	after	measuring	the	generalization	error:	you	would	just	start	overfitting	the	test	set.

https://goo.gl/PEFfGr

Present	Your	Solution
1.	 Document	what	you	have	done.

2.	 Create	a	nice	presentation.
Make	sure	you	highlight	the	big	picture	first.

3.	 Explain	why	your	solution	achieves	the	business	objective.

4.	 Don’t	forget	to	present	interesting	points	you	noticed	along	the	way.
Describe	what	worked	and	what	did	not.

List	your	assumptions	and	your	system’s	limitations.

5.	 Ensure	your	key	findings	are	communicated	through	beautiful	visualizations	or	easy-to-remember
statements	(e.g.,	“the	median	income	is	the	number-one	predictor	of	housing	prices”).

Launch!
1.	 Get	your	solution	ready	for	production	(plug	into	production	data	inputs,	write	unit	tests,	etc.).

2.	 Write	monitoring	code	to	check	your	system’s	live	performance	at	regular	intervals	and	trigger
alerts	when	it	drops.

Beware	of	slow	degradation	too:	models	tend	to	“rot”	as	data	evolves.

Measuring	performance	may	require	a	human	pipeline	(e.g.,	via	a	crowdsourcing	service).

Also	monitor	your	inputs’	quality	(e.g.,	a	malfunctioning	sensor	sending	random	values,	or
another	team’s	output	becoming	stale).	This	is	particularly	important	for	online	learning
systems.

3.	 Retrain	your	models	on	a	regular	basis	on	fresh	data	(automate	as	much	as	possible).

“Practical	Bayesian	Optimization	of	Machine	Learning	Algorithms,”	J.	Snoek,	H.	Larochelle,	R.	Adams	(2012).1

Appendix	C.	SVM	Dual	Problem

To	understand	duality,	you	first	need	to	understand	the	Lagrange	multipliers	method.	The	general	idea	is
to	transform	a	constrained	optimization	objective	into	an	unconstrained	one,	by	moving	the	constraints
into	the	objective	function.	Let’s	look	at	a	simple	example.	Suppose	you	want	to	find	the	values	of	x	and	y
that	minimize	the	function	f(x,y)	=	x2	+	2y,	subject	to	an	equality	constraint:	3x	+	2y	+	1	=	0.	Using	the
Lagrange	multipliers	method,	we	start	by	defining	a	new	function	called	the	Lagrangian	(or	Lagrange
function):	g(x,	y,	α)	=	f(x,	y)	–	α(3x	+	2y	+	1).	Each	constraint	(in	this	case	just	one)	is	subtracted	from
the	original	objective,	multiplied	by	a	new	variable	called	a	Lagrange	multiplier.

Joseph-Louis	Lagrange	showed	that	if	 	is	a	solution	to	the	constrained	optimization	problem,	then

there	must	exist	an	 	such	that	 	is	a	stationary	point	of	the	Lagrangian	(a	stationary	point	is	a
point	where	all	partial	derivatives	are	equal	to	zero).	In	other	words,	we	can	compute	the	partial
derivatives	of	g(x,	y,	α)	with	regards	to	x,	y,	and	α;	we	can	find	the	points	where	these	derivatives	are	all
equal	to	zero;	and	the	solutions	to	the	constrained	optimization	problem	(if	they	exist)	must	be	among
these	stationary	points.

In	this	example	the	partial	derivatives	are:	

When	all	these	partial	derivatives	are	equal	to	0,	we	find	that	

,	from	which	we	can	easily	find	that	 ,	

,	and	 .	This	is	the	only	stationary	point,	and	as	it	respects	the	constraint,	it	must	be	the
solution	to	the	constrained	optimization	problem.

However,	this	method	applies	only	to	equality	constraints.	Fortunately,	under	some	regularity	conditions
(which	are	respected	by	the	SVM	objectives),	this	method	can	be	generalized	to	inequality	constraints	as
well	(e.g.,	3x	+	2y	+	1	≥	0).	The	generalized	Lagrangian	for	the	hard	margin	problem	is	given	by
Equation	C-1,	where	the	α(i)	variables	are	called	the	Karush–Kuhn–Tucker	(KKT)	multipliers,	and	they
must	be	greater	or	equal	to	zero.

Equation	C-1.	Generalized	Lagrangian	for	the	hard	margin	problem

Just	like	with	the	Lagrange	multipliers	method,	you	can	compute	the	partial	derivatives	and	locate	the

stationary	points.	If	there	is	a	solution,	it	will	necessarily	be	among	the	stationary	points	 	that

respect	the	KKT	conditions:

Respect	the	problem’s	constraints:	 ,

Verify	 ,

Either	 	or	the	ith	constraint	must	be	an	active	constraint,	meaning	it	must	hold	by	equality:	

.	This	condition	is	called	the	complementary	slackness	condition.	It	implies
that	either	 	or	the	ith	instance	lies	on	the	boundary	(it	is	a	support	vector).

Note	that	the	KKT	conditions	are	necessary	conditions	for	a	stationary	point	to	be	a	solution	of	the
constrained	optimization	problem.	Under	some	conditions,	they	are	also	sufficient	conditions.	Luckily,	the
SVM	optimization	problem	happens	to	meet	these	conditions,	so	any	stationary	point	that	meets	the	KKT
conditions	is	guaranteed	to	be	a	solution	to	the	constrained	optimization	problem.

We	can	compute	the	partial	derivatives	of	the	generalized	Lagrangian	with	regards	to	w	and	b	with
Equation	C-2.

Equation	C-2.	Partial	derivatives	of	the	generalized	Lagrangian

When	these	partial	derivatives	are	equal	to	0,	we	have	Equation	C-3.

Equation	C-3.	Properties	of	the	stationary	points

If	we	plug	these	results	into	the	definition	of	the	generalized	Lagrangian,	some	terms	disappear	and	we
find	Equation	C-4.

Equation	C-4.	Dual	form	of	the	SVM	problem

The	goal	is	now	to	find	the	vector	 	that	minimizes	this	function,	with	 	for	all	instances.	This
constrained	optimization	problem	is	the	dual	problem	we	were	looking	for.

Once	you	find	the	optimal	 ,	you	can	compute	 	using	the	first	line	of	Equation	C-3.	To	compute	 ,	you
can	use	the	fact	that	a	support	vector	verifies	t(i)(wT	·	x(i)	+	b)	=	1,	so	if	the	kth	instance	is	a	support	vector

(i.e.,	αk	>	0),	you	can	use	it	to	compute	 .	However,	it	is	often	prefered	to	compute
the	average	over	all	support	vectors	to	get	a	more	stable	and	precise	value,	as	in	Equation	C-5.

Equation	C-5.	Bias	term	estimation	using	the	dual	form

Appendix	D.	Autodiff

This	appendix	explains	how	TensorFlow’s	autodiff	feature	works,	and	how	it	compares	to	other	solutions.

Suppose	you	define	a	function	f(x,y)	=	x2y	+	y	+	2,	and	you	need	its	partial	derivatives	 	and	 ,
typically	to	perform	Gradient	Descent	(or	some	other	optimization	algorithm).	Your	main	options	are
manual	differentiation,	symbolic	differentiation,	numerical	differentiation,	forward-mode	autodiff,	and
finally	reverse-mode	autodiff.	TensorFlow	implements	this	last	option.	Let’s	go	through	each	of	these
options.

Manual	Differentiation
The	first	approach	is	to	pick	up	a	pencil	and	a	piece	of	paper	and	use	your	calculus	knowledge	to	derive
the	partial	derivatives	manually.	For	the	function	f(x,y)	just	defined,	it	is	not	too	hard;	you	just	need	to	use
five	rules:

The	derivative	of	a	constant	is	0.

The	derivative	of	λx	is	λ	(where	λ	is	a	constant).

The	derivative	of	xλ	is	λxλ	–	1,	so	the	derivative	of	x2	is	2x.

The	derivative	of	a	sum	of	functions	is	the	sum	of	these	functions’	derivatives.

The	derivative	of	λ	times	a	function	is	λ	times	its	derivative.

From	these	rules,	you	can	derive	Equation	D-1:

Equation	D-1.	Partial	derivatives	of	f(x,y)

This	approach	can	become	very	tedious	for	more	complex	functions,	and	you	run	the	risk	of	making
mistakes.	The	good	news	is	that	deriving	the	mathematical	equations	for	the	partial	derivatives	like	we
just	did	can	be	automated,	through	a	process	called	symbolic	differentiation.

Symbolic	Differentiation
Figure	D-1	shows	how	symbolic	differentiation	works	on	an	even	simpler	function,	g(x,y)	=	5	+	xy.	The
graph	for	that	function	is	represented	on	the	left.	After	symbolic	differentiation,	we	get	the	graph	on	the

right,	which	represents	the	partial	derivative	 	(we	could	similarly	obtain
the	partial	derivative	with	regards	to	y).

Figure	D-1.	Symbolic	differentiation

The	algorithm	starts	by	getting	the	partial	derivative	of	the	leaf	nodes.	The	constant	node	(5)	returns	the
constant	0,	since	the	derivative	of	a	constant	is	always	0.	The	variable	x	returns	the	constant	1	since	

,	and	the	variable	y	returns	the	constant	0	since	 	(if	we	were	looking	for	the	partial
derivative	with	regards	to	y,	it	would	be	the	reverse).

Now	we	have	all	we	need	to	move	up	the	graph	to	the	multiplication	node	in	function	g.	Calculus	tells	us

that	the	derivative	of	the	product	of	two	functions	u	and	v	is	 .	We	can
therefore	construct	a	large	part	of	the	graph	on	the	right,	representing	0	×	x	+	y	×	1.

Finally,	we	can	go	up	to	the	addition	node	in	function	g.	As	mentioned,	the	derivative	of	a	sum	of
functions	is	the	sum	of	these	functions’	derivatives.	So	we	just	need	to	create	an	addition	node	and
connect	it	to	the	parts	of	the	graph	we	have	already	computed.	We	get	the	correct	partial	derivative:	

.

However,	it	can	be	simplified	(a	lot).	A	few	trivial	pruning	steps	can	be	applied	to	this	graph	to	get	rid	of

all	unnecessary	operations,	and	we	get	a	much	smaller	graph	with	just	one	node:	 .

In	this	case,	simplification	is	fairly	easy,	but	for	a	more	complex	function,	symbolic	differentiation	can
produce	a	huge	graph	that	may	be	tough	to	simplify	and	lead	to	suboptimal	performance.	Most	importantly,
symbolic	differentiation	cannot	deal	with	functions	defined	with	arbitrary	code	—	for	example,	the
following	function	discussed	in	Chapter	9:

def	my_func(a,	b):

				z	=	0

				for	i	in	range(100):

								z	=	a	*	np.cos(z	+	i)	+	z	*	np.sin(b	-	i)

				return	z

Numerical	Differentiation
The	simplest	solution	is	to	compute	an	approximation	of	the	derivatives,	numerically.	Recall	that	the
derivative	h′(x0)	of	a	function	h(x)	at	a	point	x0	is	the	slope	of	the	function	at	that	point,	or	more	precisely
Equation	D-2.

Equation	D-2.	Derivative	of	a	function	h(x)	at	point	x0

So	if	we	want	to	calculate	the	partial	derivative	of	f(x,y)	with	regards	to	x,	at	x	=	3	and	y	=	4,	we	can
simply	compute	f(3	+	ϵ,	4)	–	f(3,	4)	and	divide	the	result	by	ϵ,	using	a	very	small	value	for	ϵ.	That’s
exactly	what	the	following	code	does:

def	f(x,	y):

				return	x**2*y	+	y	+	2

def	derivative(f,	x,	y,	x_eps,	y_eps):

				return	(f(x	+	x_eps,	y	+	y_eps)	-	f(x,	y))	/	(x_eps	+	y_eps)

df_dx	=	derivative(f,	3,	4,	0.00001,	0)

df_dy	=	derivative(f,	3,	4,	0,	0.00001)

Unfortunately,	the	result	is	imprecise	(and	it	gets	worse	for	more	complex	functions).	The	correct	results
are	respectively	24	and	10,	but	instead	we	get:

>>>	print(df_dx)

24.000039999805264

>>>	print(df_dy)

10.000000000331966

Notice	that	to	compute	both	partial	derivatives,	we	have	to	call	f()	at	least	three	times	(we	called	it	four
times	in	the	preceding	code,	but	it	could	be	optimized).	If	there	were	1,000	parameters,	we	would	need	to
call	f()	at	least	1,001	times.	When	you	are	dealing	with	large	neural	networks,	this	makes	numerical
differentiation	way	too	inefficient.

However,	numerical	differentiation	is	so	simple	to	implement	that	it	is	a	great	tool	to	check	that	the	other
methods	are	implemented	correctly.	For	example,	if	it	disagrees	with	your	manually	derived	function,	then

your	function	probably	contains	a	mistake.

Forward-Mode	Autodiff
Forward-mode	autodiff	is	neither	numerical	differentiation	nor	symbolic	differentiation,	but	in	some
ways	it	is	their	love	child.	It	relies	on	dual	numbers,	which	are	(weird	but	fascinating)	numbers	of	the
form	a	+	bϵ	where	a	and	b	are	real	numbers	and	ϵ	is	an	infinitesimal	number	such	that	ϵ2	=	0	(but	ϵ	≠	0).
You	can	think	of	the	dual	number	42	+	24ϵ	as	something	akin	to	42.0000⋯000024	with	an	infinite	number
of	0s	(but	of	course	this	is	simplified	just	to	give	you	some	idea	of	what	dual	numbers	are).	A	dual
number	is	represented	in	memory	as	a	pair	of	floats.	For	example,	42	+	24ϵ	is	represented	by	the	pair
(42.0,	24.0).

Dual	numbers	can	be	added,	multiplied,	and	so	on,	as	shown	in	Equation	D-3.

Equation	D-3.	A	few	operations	with	dual	numbers

Most	importantly,	it	can	be	shown	that	h(a	+	bϵ)	=	h(a)	+	b	×	h′(a)ϵ,	so	computing	h(a	+	ϵ)	gives	you	both
h(a)	and	the	derivative	h′(a)	in	just	one	shot.	Figure	D-2	shows	how	forward-mode	autodiff	computes	the
partial	derivative	of	f(x,y)	with	regards	to	x	at	x	=	3	and	y	=	4.	All	we	need	to	do	is	compute	f(3	+	ϵ,	4);
this	will	output	a	dual	number	whose	first	component	is	equal	to	f(3,	4)	and	whose	second	component	is

equal	to	 .

Figure	D-2.	Forward-mode	autodiff

To	compute	 	we	would	have	to	go	through	the	graph	again,	but	this	time	with	x	=	3	and	y	=	4	+	ϵ.

So	forward-mode	autodiff	is	much	more	accurate	than	numerical	differentiation,	but	it	suffers	from	the
same	major	flaw:	if	there	were	1,000	parameters,	it	would	require	1,000	passes	through	the	graph	to
compute	all	the	partial	derivatives.	This	is	where	reverse-mode	autodiff	shines:	it	can	compute	all	of
them	in	just	two	passes	through	the	graph.

Reverse-Mode	Autodiff
Reverse-mode	autodiff	is	the	solution	implemented	by	TensorFlow.	It	first	goes	through	the	graph	in	the
forward	direction	(i.e.,	from	the	inputs	to	the	output)	to	compute	the	value	of	each	node.	Then	it	does	a
second	pass,	this	time	in	the	reverse	direction	(i.e.,	from	the	output	to	the	inputs)	to	compute	all	the	partial
derivatives.	Figure	D-3	represents	the	second	pass.	During	the	first	pass,	all	the	node	values	were
computed,	starting	from	x	=	3	and	y	=	4.	You	can	see	those	values	at	the	bottom	right	of	each	node	(e.g.,	x
×	x	=	9).	The	nodes	are	labeled	n1	to	n7	for	clarity.	The	output	node	is	n7:	f(3,4)	=	n7	=	42.

Figure	D-3.	Reverse-mode	autodiff

The	idea	is	to	gradually	go	down	the	graph,	computing	the	partial	derivative	of	f(x,y)	with	regards	to	each
consecutive	node,	until	we	reach	the	variable	nodes.	For	this,	reverse-mode	autodiff	relies	heavily	on	the
chain	rule,	shown	in	Equation	D-4.

Equation	D-4.	Chain	rule

Since	n7	is	the	output	node,	f	=	n7	so	trivially	 .

Let’s	continue	down	the	graph	to	n5:	how	much	does	f	vary	when	n5	varies?	The	answer	is	 .

We	already	know	that	 ,	so	all	we	need	is	 .	Since	n7	simply	performs	the	sum	n5	+	n6,	we	find

that	 ,	so	 .

Now	we	can	proceed	to	node	n4:	how	much	does	f	vary	when	n4	varies?	The	answer	is	 .

Since	n5	=	n4	×	n2,	we	find	that	 ,	so	 .

The	process	continues	until	we	reach	the	bottom	of	the	graph.	At	that	point	we	will	have	calculated	all	the

partial	derivatives	of	f(x,y)	at	the	point	x	=	3	and	y	=	4.	In	this	example,	we	find	 	and	 .
Sounds	about	right!

Reverse-mode	autodiff	is	a	very	powerful	and	accurate	technique,	especially	when	there	are	many	inputs
and	few	outputs,	since	it	requires	only	one	forward	pass	plus	one	reverse	pass	per	output	to	compute	all
the	partial	derivatives	for	all	outputs	with	regards	to	all	the	inputs.	Most	importantly,	it	can	deal	with
functions	defined	by	arbitrary	code.	It	can	also	handle	functions	that	are	not	entirely	differentiable,	as	long
as	you	ask	it	to	compute	the	partial	derivatives	at	points	that	are	differentiable.

TIP
If	you	implement	a	new	type	of	operation	in	TensorFlow	and	you	want	to	make	it	compatible	with	autodiff,	then	you	need	to
provide	a	function	that	builds	a	subgraph	to	compute	its	partial	derivatives	with	regards	to	its	inputs.	For	example,	suppose	you
implement	a	function	that	computes	the	square	of	its	input	f(x)	=	x2.	In	that	case	you	would	need	to	provide	the	corresponding
derivative	function	f′(x)	=	2x.	Note	that	this	function	does	not	compute	a	numerical	result,	but	instead	builds	a	subgraph	that	will
(later)	compute	the	result.	This	is	very	useful	because	it	means	that	you	can	compute	gradients	of	gradients	(to	compute	second-
order	derivatives,	or	even	higher-order	derivatives).

Appendix	E.	Other	Popular	ANN	Architectures

In	this	appendix	we	will	give	a	quick	overview	of	a	few	historically	important	neural	network
architectures	that	are	much	less	used	today	than	deep	Multi-Layer	Perceptrons	(Chapter	10),
convolutional	neural	networks	(Chapter	13),	recurrent	neural	networks	(Chapter	14),	or	autoencoders
(Chapter	15).	They	are	often	mentioned	in	the	literature,	and	some	are	still	used	in	many	applications,	so
it	is	worth	knowing	about	them.	Moreover,	we	will	discuss	deep	belief	nets	(DBNs),	which	were	the
state	of	the	art	in	Deep	Learning	until	the	early	2010s.	They	are	still	the	subject	of	very	active	research,	so
they	may	well	come	back	with	a	vengeance	in	the	near	future.

Hopfield	Networks
Hopfield	networks	were	first	introduced	by	W.	A.	Little	in	1974,	then	popularized	by	J.	Hopfield	in	1982.
They	are	associative	memory	networks:	you	first	teach	them	some	patterns,	and	then	when	they	see	a	new
pattern	they	(hopefully)	output	the	closest	learned	pattern.	This	has	made	them	useful	in	particular	for
character	recognition	before	they	were	outperformed	by	other	approaches.	You	first	train	the	network	by
showing	it	examples	of	character	images	(each	binary	pixel	maps	to	one	neuron),	and	then	when	you	show
it	a	new	character	image,	after	a	few	iterations	it	outputs	the	closest	learned	character.

They	are	fully	connected	graphs	(see	Figure	E-1);	that	is,	every	neuron	is	connected	to	every	other	neuron.
Note	that	on	the	diagram	the	images	are	6	×	6	pixels,	so	the	neural	network	on	the	left	should	contain	36
neurons	(and	648	connections),	but	for	visual	clarity	a	much	smaller	network	is	represented.

Figure	E-1.	Hopfield	network

The	training	algorithm	works	by	using	Hebb’s	rule:	for	each	training	image,	the	weight	between	two
neurons	is	increased	if	the	corresponding	pixels	are	both	on	or	both	off,	but	decreased	if	one	pixel	is	on
and	the	other	is	off.

To	show	a	new	image	to	the	network,	you	just	activate	the	neurons	that	correspond	to	active	pixels.	The
network	then	computes	the	output	of	every	neuron,	and	this	gives	you	a	new	image.	You	can	then	take	this
new	image	and	repeat	the	whole	process.	After	a	while,	the	network	reaches	a	stable	state.	Generally,	this

corresponds	to	the	training	image	that	most	resembles	the	input	image.

A	so-called	energy	function	is	associated	with	Hopfield	nets.	At	each	iteration,	the	energy	decreases,	so
the	network	is	guaranteed	to	eventually	stabilize	to	a	low-energy	state.	The	training	algorithm	tweaks	the
weights	in	a	way	that	decreases	the	energy	level	of	the	training	patterns,	so	the	network	is	likely	to
stabilize	in	one	of	these	low-energy	configurations.	Unfortunately,	some	patterns	that	were	not	in	the
training	set	also	end	up	with	low	energy,	so	the	network	sometimes	stabilizes	in	a	configuration	that	was
not	learned.	These	are	called	spurious	patterns.

Another	major	flaw	with	Hopfield	nets	is	that	they	don’t	scale	very	well	—	their	memory	capacity	is
roughly	equal	to	14%	of	the	number	of	neurons.	For	example,	to	classify	28	×	28	images,	you	would	need
a	Hopfield	net	with	784	fully	connected	neurons	and	306,936	weights.	Such	a	network	would	only	be	able
to	learn	about	110	different	characters	(14%	of	784).	That’s	a	lot	of	parameters	for	such	a	small	memory.

Boltzmann	Machines
Boltzmann	machines	were	invented	in	1985	by	Geoffrey	Hinton	and	Terrence	Sejnowski.	Just	like
Hopfield	nets,	they	are	fully	connected	ANNs,	but	they	are	based	on	stochastic	neurons:	instead	of	using
a	deterministic	step	function	to	decide	what	value	to	output,	these	neurons	output	1	with	some	probability,
and	0	otherwise.	The	probability	function	that	these	ANNs	use	is	based	on	the	Boltzmann	distribution
(used	in	statistical	mechanics)	hence	their	name.	Equation	E-1	gives	the	probability	that	a	particular
neuron	will	output	a	1.

Equation	E-1.	Probability	that	the	ith	neuron	will	output	1

sj	is	the	jth	neuron’s	state	(0	or	1).

wi,j	is	the	connection	weight	between	the	ith	and	jth	neurons.	Note	that	wi,i	=	0.

bi	is	the	ith	neuron’s	bias	term.	We	can	implement	this	term	by	adding	a	bias	neuron	to	the	network.

N	is	the	number	of	neurons	in	the	network.

T	is	a	number	called	the	network’s	temperature;	the	higher	the	temperature,	the	more	random	the
output	is	(i.e.,	the	more	the	probability	approaches	50%).

σ	is	the	logistic	function.

Neurons	in	Boltzmann	machines	are	separated	into	two	groups:	visible	units	and	hidden	units	(see
Figure	E-2).	All	neurons	work	in	the	same	stochastic	way,	but	the	visible	units	are	the	ones	that	receive
the	inputs	and	from	which	outputs	are	read.

Figure	E-2.	Boltzmann	machine

Because	of	its	stochastic	nature,	a	Boltzmann	machine	will	never	stabilize	into	a	fixed	configuration,	but
instead	it	will	keep	switching	between	many	configurations.	If	it	is	left	running	for	a	sufficiently	long	time,
the	probability	of	observing	a	particular	configuration	will	only	be	a	function	of	the	connection	weights
and	bias	terms,	not	of	the	original	configuration	(similarly,	after	you	shuffle	a	deck	of	cards	for	long
enough,	the	configuration	of	the	deck	does	not	depend	on	the	initial	state).	When	the	network	reaches	this
state	where	the	original	configuration	is	“forgotten,”	it	is	said	to	be	in	thermal	equilibrium	(although	its
configuration	keeps	changing	all	the	time).	By	setting	the	network	parameters	appropriately,	letting	the
network	reach	thermal	equilibrium,	and	then	observing	its	state,	we	can	simulate	a	wide	range	of
probability	distributions.	This	is	called	a	generative	model.

Training	a	Boltzmann	machine	means	finding	the	parameters	that	will	make	the	network	approximate	the
training	set’s	probability	distribution.	For	example,	if	there	are	three	visible	neurons	and	the	training	set
contains	75%	(0,	1,	1)	triplets,	10%	(0,	0,	1)	triplets,	and	15%	(1,	1,	1)	triplets,	then	after	training	a
Boltzmann	machine,	you	could	use	it	to	generate	random	binary	triplets	with	about	the	same	probability
distribution.	For	example,	about	75%	of	the	time	it	would	output	the	(0,	1,	1)	triplet.

Such	a	generative	model	can	be	used	in	a	variety	of	ways.	For	example,	if	it	is	trained	on	images,	and	you
provide	an	incomplete	or	noisy	image	to	the	network,	it	will	automatically	“repair”	the	image	in	a
reasonable	way.	You	can	also	use	a	generative	model	for	classification.	Just	add	a	few	visible	neurons	to
encode	the	training	image’s	class	(e.g.,	add	10	visible	neurons	and	turn	on	only	the	fifth	neuron	when	the
training	image	represents	a	5).	Then,	when	given	a	new	image,	the	network	will	automatically	turn	on	the
appropriate	visible	neurons,	indicating	the	image’s	class	(e.g.,	it	will	turn	on	the	fifth	visible	neuron	if	the
image	represents	a	5).

Unfortunately,	there	is	no	efficient	technique	to	train	Boltzmann	machines.	However,	fairly	efficient
algorithms	have	been	developed	to	train	restricted	Boltzmann	machines	(RBM).

Restricted	Boltzmann	Machines
An	RBM	is	simply	a	Boltzmann	machine	in	which	there	are	no	connections	between	visible	units	or
between	hidden	units,	only	between	visible	and	hidden	units.	For	example,	Figure	E-3	represents	an	RBM
with	three	visible	units	and	four	hidden	units.

Figure	E-3.	Restricted	Boltzmann	machine

A	very	efficient	training	algorithm,	called	Contrastive	Divergence,	was	introduced	in	2005	by	Miguel	Á.
Carreira-Perpiñán	and	Geoffrey	Hinton.1	Here	is	how	it	works:	for	each	training	instance	x,	the	algorithm
starts	by	feeding	it	to	the	network	by	setting	the	state	of	the	visible	units	to	x1,	x2,	⋯,	xn.	Then	you
compute	the	state	of	the	hidden	units	by	applying	the	stochastic	equation	described	before	(Equation	E-1).
This	gives	you	a	hidden	vector	h	(where	hi	is	equal	to	the	state	of	the	ith	unit).	Next	you	compute	the	state
of	the	visible	units,	by	applying	the	same	stochastic	equation.	This	gives	you	a	vector	 .	Then	once	again
you	compute	the	state	of	the	hidden	units,	which	gives	you	a	vector	 .	Now	you	can	update	each
connection	weight	by	applying	the	rule	in	Equation	E-2.

Equation	E-2.	Contrastive	divergence	weight	update

The	great	benefit	of	this	algorithm	it	that	it	does	not	require	waiting	for	the	network	to	reach	thermal

http://goo.gl/ZCP6Ir

equilibrium:	it	just	goes	forward,	backward,	and	forward	again,	and	that’s	it.	This	makes	it	incomparably
more	efficient	than	previous	algorithms,	and	it	was	a	key	ingredient	to	the	first	success	of	Deep	Learning
based	on	multiple	stacked	RBMs.

Deep	Belief	Nets
Several	layers	of	RBMs	can	be	stacked;	the	hidden	units	of	the	first-level	RBM	serves	as	the	visible	units
for	the	second-layer	RBM,	and	so	on.	Such	an	RBM	stack	is	called	a	deep	belief	net	(DBN).

Yee-Whye	Teh,	one	of	Geoffrey	Hinton’s	students,	observed	that	it	was	possible	to	train	DBNs	one	layer
at	a	time	using	Contrastive	Divergence,	starting	with	the	lower	layers	and	then	gradually	moving	up	to	the
top	layers.	This	led	to	the	groundbreaking	article	that	kickstarted	the	Deep	Learning	tsunami	in	2006.2

Just	like	RBMs,	DBNs	learn	to	reproduce	the	probability	distribution	of	their	inputs,	without	any
supervision.	However,	they	are	much	better	at	it,	for	the	same	reason	that	deep	neural	networks	are	more
powerful	than	shallow	ones:	real-world	data	is	often	organized	in	hierarchical	patterns,	and	DBNs	take
advantage	of	that.	Their	lower	layers	learn	low-level	features	in	the	input	data,	while	higher	layers	learn
high-level	features.

Just	like	RBMs,	DBNs	are	fundamentally	unsupervised,	but	you	can	also	train	them	in	a	supervised
manner	by	adding	some	visible	units	to	represent	the	labels.	Moreover,	one	great	feature	of	DBNs	is	that
they	can	be	trained	in	a	semisupervised	fashion.	Figure	E-4	represents	such	a	DBN	configured	for
semisupervised	learning.

Figure	E-4.	A	deep	belief	network	configured	for	semisupervised	learning

http://goo.gl/BcZQrH

First,	the	RBM	1	is	trained	without	supervision.	It	learns	low-level	features	in	the	training	data.	Then
RBM	2	is	trained	with	RBM	1’s	hidden	units	as	inputs,	again	without	supervision:	it	learns	higher-level
features	(note	that	RBM	2’s	hidden	units	include	only	the	three	rightmost	units,	not	the	label	units).
Several	more	RBMs	could	be	stacked	this	way,	but	you	get	the	idea.	So	far,	training	was	100%
unsupervised.	Lastly,	RBM	3	is	trained	using	both	RBM	2’s	hidden	units	as	inputs,	as	well	as	extra
visible	units	used	to	represent	the	target	labels	(e.g.,	a	one-hot	vector	representing	the	instance	class).	It
learns	to	associate	high-level	features	with	training	labels.	This	is	the	supervised	step.

At	the	end	of	training,	if	you	feed	RBM	1	a	new	instance,	the	signal	will	propagate	up	to	RBM	2,	then	up
to	the	top	of	RBM	3,	and	then	back	down	to	the	label	units;	hopefully,	the	appropriate	label	will	light	up.
This	is	how	a	DBN	can	be	used	for	classification.

One	great	benefit	of	this	semisupervised	approach	is	that	you	don’t	need	much	labeled	training	data.	If	the
unsupervised	RBMs	do	a	good	enough	job,	then	only	a	small	amount	of	labeled	training	instances	per
class	will	be	necessary.	Similarly,	a	baby	learns	to	recognize	objects	without	supervision,	so	when	you
point	to	a	chair	and	say	“chair,”	the	baby	can	associate	the	word	“chair”	with	the	class	of	objects	it	has
already	learned	to	recognize	on	its	own.	You	don’t	need	to	point	to	every	single	chair	and	say	“chair”;
only	a	few	examples	will	suffice	(just	enough	so	the	baby	can	be	sure	that	you	are	indeed	referring	to	the
chair,	not	to	its	color	or	one	of	the	chair’s	parts).

Quite	amazingly,	DBNs	can	also	work	in	reverse.	If	you	activate	one	of	the	label	units,	the	signal	will
propagate	up	to	the	hidden	units	of	RBM	3,	then	down	to	RBM	2,	and	then	RBM	1,	and	a	new	instance
will	be	output	by	the	visible	units	of	RBM	1.	This	new	instance	will	usually	look	like	a	regular	instance
of	the	class	whose	label	unit	you	activated.	This	generative	capability	of	DBNs	is	quite	powerful.	For
example,	it	has	been	used	to	automatically	generate	captions	for	images,	and	vice	versa:	first	a	DBN	is
trained	(without	supervision)	to	learn	features	in	images,	and	another	DBN	is	trained	(again	without
supervision)	to	learn	features	in	sets	of	captions	(e.g.,	“car”	often	comes	with	“automobile”).	Then	an
RBM	is	stacked	on	top	of	both	DBNs	and	trained	with	a	set	of	images	along	with	their	captions;	it	learns
to	associate	high-level	features	in	images	with	high-level	features	in	captions.	Next,	if	you	feed	the	image
DBN	an	image	of	a	car,	the	signal	will	propagate	through	the	network,	up	to	the	top-level	RBM,	and	back
down	to	the	bottom	of	the	caption	DBN,	producing	a	caption.	Due	to	the	stochastic	nature	of	RBMs	and
DBNs,	the	caption	will	keep	changing	randomly,	but	it	will	generally	be	appropriate	for	the	image.	If	you
generate	a	few	hundred	captions,	the	most	frequently	generated	ones	will	likely	be	a	good	description	of
the	image.3

Self-Organizing	Maps
Self-organizing	maps	(SOM)	are	quite	different	from	all	the	other	types	of	neural	networks	we	have
discussed	so	far.	They	are	used	to	produce	a	low-dimensional	representation	of	a	high-dimensional
dataset,	generally	for	visualization,	clustering,	or	classification.	The	neurons	are	spread	across	a	map
(typically	2D	for	visualization,	but	it	can	be	any	number	of	dimensions	you	want),	as	shown	in	Figure	E-5,
and	each	neuron	has	a	weighted	connection	to	every	input	(note	that	the	diagram	shows	just	two	inputs,	but
there	are	typically	a	very	large	number,	since	the	whole	point	of	SOMs	is	to	reduce	dimensionality).

Figure	E-5.	Self-organizing	maps

Once	the	network	is	trained,	you	can	feed	it	a	new	instance	and	this	will	activate	only	one	neuron	(i.e.,
hence	one	point	on	the	map):	the	neuron	whose	weight	vector	is	closest	to	the	input	vector.	In	general,
instances	that	are	nearby	in	the	original	input	space	will	activate	neurons	that	are	nearby	on	the	map.	This
makes	SOMs	useful	for	visualization	(in	particular,	you	can	easily	identify	clusters	on	the	map),	but	also

for	applications	like	speech	recognition.	For	example,	if	each	instance	represents	the	audio	recording	of	a
person	pronouncing	a	vowel,	then	different	pronunciations	of	the	vowel	“a”	will	activate	neurons	in	the
same	area	of	the	map,	while	instances	of	the	vowel	“e”	will	activate	neurons	in	another	area,	and
intermediate	sounds	will	generally	activate	intermediate	neurons	on	the	map.

NOTE
One	important	difference	with	the	other	dimensionality	reduction	techniques	discussed	in	Chapter	8	is	that	all	instances	get
mapped	to	a	discrete	number	of	points	in	the	low-dimensional	space	(one	point	per	neuron).	When	there	are	very	few	neurons,
this	technique	is	better	described	as	clustering	rather	than	dimensionality	reduction.

The	training	algorithm	is	unsupervised.	It	works	by	having	all	the	neurons	compete	against	each	other.
First,	all	the	weights	are	initialized	randomly.	Then	a	training	instance	is	picked	randomly	and	fed	to	the
network.	All	neurons	compute	the	distance	between	their	weight	vector	and	the	input	vector	(this	is	very
different	from	the	artificial	neurons	we	have	seen	so	far).	The	neuron	that	measures	the	smallest	distance
wins	and	tweaks	its	weight	vector	to	be	even	slightly	closer	to	the	input	vector,	making	it	more	likely	to
win	future	competitions	for	other	inputs	similar	to	this	one.	It	also	recruits	its	neighboring	neurons,	and
they	too	update	their	weight	vector	to	be	slightly	closer	to	the	input	vector	(but	they	don’t	update	their
weights	as	much	as	the	winner	neuron).	Then	the	algorithm	picks	another	training	instance	and	repeats	the
process,	again	and	again.	This	algorithm	tends	to	make	nearby	neurons	gradually	specialize	in	similar
inputs.4

“On	Contrastive	Divergence	Learning,”	M.	Á.	Carreira-Perpiñán	and	G.	Hinton	(2005).

“A	Fast	Learning	Algorithm	for	Deep	Belief	Nets,”	G.	Hinton,	S.	Osindero,	Y.	Teh	(2006).

See	this	video	by	Geoffrey	Hinton	for	more	details	and	a	demo:	http://goo.gl/7Z5QiS.

You	can	imagine	a	class	of	young	children	with	roughly	similar	skills.	One	child	happens	to	be	slightly	better	at	basketball.	This	motivates
her	to	practice	more,	especially	with	her	friends.	After	a	while,	this	group	of	friends	gets	so	good	at	basketball	that	other	kids	cannot
compete.	But	that’s	okay,	because	the	other	kids	specialize	in	other	topics.	After	a	while,	the	class	is	full	of	little	specialized	groups.

1

2

3

4

http://goo.gl/7Z5QiS

Index

Symbols

__call__(),	Static	Unrolling	Through	Time

ε-greedy	policy,	Exploration	Policies,	Learning	to	Play	Ms.	Pac-Man	Using	Deep	Q-Learning

ε-insensitive,	SVM	Regression

χ	2	test	(see	chi	square	test)

ℓ	0	norm,	Select	a	Performance	Measure

ℓ	1	and	ℓ	2	regularization,	ℓ1	and	ℓ2	Regularization-ℓ1	and	ℓ2	Regularization

ℓ	1	norm,	Select	a	Performance	Measure,	Lasso	Regression,	Decision	Boundaries,	Adam
Optimization,	Avoiding	Overfitting	Through	Regularization

ℓ	2	norm,	Select	a	Performance	Measure,	Ridge	Regression-Lasso	Regression,	Decision
Boundaries,	Softmax	Regression,	Avoiding	Overfitting	Through	Regularization,	Max-Norm
Regularization

ℓ	k	norm,	Select	a	Performance	Measure

ℓ	∞	norm,	Select	a	Performance	Measure

A

accuracy,	What	Is	Machine	Learning?,	Measuring	Accuracy	Using	Cross-Validation-Measuring
Accuracy	Using	Cross-Validation

actions,	evaluating,	Evaluating	Actions:	The	Credit	Assignment	Problem-Evaluating	Actions:	The
Credit	Assignment	Problem

activation	functions,	Multi-Layer	Perceptron	and	Backpropagation-Multi-Layer	Perceptron	and
Backpropagation

active	constraints,	SVM	Dual	Problem

actors,	Learning	to	Play	Ms.	Pac-Man	Using	Deep	Q-Learning

actual	class,	Confusion	Matrix

AdaBoost,	AdaBoost-AdaBoost

Adagrad,	AdaGrad-AdaGrad

Adam	optimization,	Faster	Optimizers,	Adam	Optimization-Adam	Optimization

adaptive	learning	rate,	AdaGrad

adaptive	moment	optimization,	Adam	Optimization

agents,	Learning	to	Optimize	Rewards

AlexNet	architecture,	AlexNet-AlexNet

algorithms

preparing	data	for,	Prepare	the	Data	for	Machine	Learning	Algorithms-Select	and	Train	a	Model

AlphaGo,	Reinforcement	Learning,	Introduction	to	Artificial	Neural	Networks,	Reinforcement
Learning,	Policy	Gradients

Anaconda,	Create	the	Workspace

anomaly	detection,	Unsupervised	learning

Apple’s	Siri,	Introduction	to	Artificial	Neural	Networks

apply_gradients(),	Gradient	Clipping,	Policy	Gradients

area	under	the	curve	(AUC),	The	ROC	Curve

arg_scope(),	Implementing	Batch	Normalization	with	TensorFlow

array_split(),	Incremental	PCA

artificial	neural	networks	(ANNs),	Introduction	to	Artificial	Neural	Networks-Exercises

Boltzmann	Machines,	Boltzmann	Machines-Boltzmann	Machines

deep	belief	networks	(DBNs),	Deep	Belief	Nets-Deep	Belief	Nets

evolution	of,	From	Biological	to	Artificial	Neurons

Hopfield	Networks,	Hopfield	Networks-Hopfield	Networks

hyperparameter	fine-tuning,	Fine-Tuning	Neural	Network	Hyperparameters-Activation	Functions

overview,	Introduction	to	Artificial	Neural	Networks-From	Biological	to	Artificial	Neurons

Perceptrons,	The	Perceptron-Multi-Layer	Perceptron	and	Backpropagation

self-organizing	maps,	Self-Organizing	Maps-Self-Organizing	Maps

training	a	DNN	with	TensorFlow,	Training	a	DNN	Using	Plain	TensorFlow-Using	the	Neural
Network

artificial	neuron,	Logical	Computations	with	Neurons

(see	also	artificial	neural	network	(ANN))

assign(),	Manually	Computing	the	Gradients

association	rule	learning,	Unsupervised	learning

associative	memory	networks,	Hopfield	Networks

assumptions,	checking,	Check	the	Assumptions

asynchronous	updates,	Asynchronous	updates-Asynchronous	updates

asynchrous	communication,	Asynchronous	Communication	Using	TensorFlow	Queues-
PaddingFifoQueue

atrous_conv2d(),	ResNet

attention	mechanism,	An	Encoder–Decoder	Network	for	Machine	Translation

attributes,	Supervised	learning,	Take	a	Quick	Look	at	the	Data	Structure-Take	a	Quick	Look	at
the	Data	Structure

(see	also	data	structure)

combinations	of,	Experimenting	with	Attribute	Combinations-Experimenting	with	Attribute
Combinations

preprocessed,	Take	a	Quick	Look	at	the	Data	Structure

target,	Take	a	Quick	Look	at	the	Data	Structure

autodiff,	Using	autodiff-Using	autodiff,	Autodiff-Reverse-Mode	Autodiff

forward-mode,	Forward-Mode	Autodiff-Forward-Mode	Autodiff

manual	differentiation,	Manual	Differentiation

numerical	differentiation,	Numerical	Differentiation

reverse-mode,	Reverse-Mode	Autodiff-Reverse-Mode	Autodiff

symbolic	differentiation,	Symbolic	Differentiation-Numerical	Differentiation

autoencoders,	Autoencoders-Exercises

adversarial,	Other	Autoencoders

contractive,	Other	Autoencoders

denoising,	Denoising	Autoencoders-TensorFlow	Implementation

efficient	data	representations,	Efficient	Data	Representations

generative	stochastic	network	(GSN),	Other	Autoencoders

overcomplete,	Unsupervised	Pretraining	Using	Stacked	Autoencoders

PCA	with	undercomplete	linear	autoencoder,	Performing	PCA	with	an	Undercomplete	Linear
Autoencoder

reconstructions,	Efficient	Data	Representations

sparse,	Sparse	Autoencoders-TensorFlow	Implementation

stacked,	Stacked	Autoencoders-Unsupervised	Pretraining	Using	Stacked	Autoencoders

stacked	convolutional,	Other	Autoencoders

undercomplete,	Efficient	Data	Representations

variational,	Variational	Autoencoders-Generating	Digits

visualizing	features,	Visualizing	Features-Visualizing	Features

winner-take-all	(WTA),	Other	Autoencoders

automatic	differentiating,	Up	and	Running	with	TensorFlow

autonomous	driving	systems,	Recurrent	Neural	Networks

Average	Absolute	Deviation,	Select	a	Performance	Measure

average	pooling	layer,	Pooling	Layer

avg_pool(),	Pooling	Layer

B

backpropagation,	Multi-Layer	Perceptron	and	Backpropagation-Multi-Layer	Perceptron	and
Backpropagation,	Vanishing/Exploding	Gradients	Problems,	Unsupervised	Pretraining,	Visualizing
Features

backpropagation	through	time	(BPTT),	Training	RNNs

bagging	and	pasting,	Bagging	and	Pasting-Out-of-Bag	Evaluation

out-of-bag	evaluation,	Out-of-Bag	Evaluation-Out-of-Bag	Evaluation

in	Scikit-Learn,	Bagging	and	Pasting	in	Scikit-Learn-Bagging	and	Pasting	in	Scikit-Learn

bandwidth	saturation,	Bandwidth	saturation-Bandwidth	saturation

BasicLSTMCell,	LSTM	Cell

BasicRNNCell,	Distributing	a	Deep	RNN	Across	Multiple	GPUs-Distributing	a	Deep	RNN	Across
Multiple	GPUs

Batch	Gradient	Descent,	Batch	Gradient	Descent-Batch	Gradient	Descent,	Lasso	Regression

batch	learning,	Batch	learning-Batch	learning

Batch	Normalization,	Batch	Normalization-Implementing	Batch	Normalization	with	TensorFlow,
ResNet

operation	summary,	Batch	Normalization

with	TensorFlow,	Implementing	Batch	Normalization	with	TensorFlow-Implementing	Batch
Normalization	with	TensorFlow

batch(),	Other	convenience	functions

batch_join(),	Other	convenience	functions

batch_norm(),	Implementing	Batch	Normalization	with	TensorFlow-Implementing	Batch
Normalization	with	TensorFlow

Bellman	Optimality	Equation,	Markov	Decision	Processes

between-graph	replication,	In-Graph	Versus	Between-Graph	Replication

bias	neurons,	The	Perceptron

bias	term,	Linear	Regression

bias/variance	tradeoff,	Learning	Curves

biases,	Construction	Phase

binary	classifiers,	Training	a	Binary	Classifier,	Logistic	Regression

biological	neurons,	From	Biological	to	Artificial	Neurons-Biological	Neurons

black	box	models,	Making	Predictions

blending,	Stacking-Exercises

Boltzmann	Machines,	Boltzmann	Machines-Boltzmann	Machines

(see	also	restricted	Boltzman	machines	(RBMs))

boosting,	Boosting-Gradient	Boosting

AdaBoost,	AdaBoost-AdaBoost

Gradient	Boosting,	Gradient	Boosting-Gradient	Boosting

bootstrap	aggregation	(see	bagging)

bootstrapping,	Grid	Search,	Bagging	and	Pasting,	Introduction	to	OpenAI	Gym,	Learning	to	Play
Ms.	Pac-Man	Using	Deep	Q-Learning

bottleneck	layers,	GoogLeNet

brew,	Stacking

C

Caffe	model	zoo,	Model	Zoos

call__(),	Distributing	a	Deep	RNN	Across	Multiple	GPUs

CART	(Classification	and	Regression	Tree)	algorithm,	Making	Predictions-The	CART	Training

Algorithm,	Regression

categorical	attributes,	Handling	Text	and	Categorical	Attributes-Handling	Text	and	Categorical
Attributes

cell	wrapper,	Training	to	Predict	Time	Series

chi	square	test,	Regularization	Hyperparameters

classification	versus	regression,	Supervised	learning,	Multioutput	Classification

classifiers

binary,	Training	a	Binary	Classifier

error	analysis,	Error	Analysis-Error	Analysis

evaluating,	Multiclass	Classification

MNIST	dataset,	MNIST-MNIST

multiclass,	Multiclass	Classification-Multiclass	Classification

multilabel,	Multilabel	Classification-Multilabel	Classification

multioutput,	Multioutput	Classification-Multioutput	Classification

performance	measures,	Performance	Measures-The	ROC	Curve

precision	of,	Confusion	Matrix

voting,	Voting	Classifiers-Voting	Classifiers

clip_by_value(),	Gradient	Clipping

closed-form	equation,	Training	Models,	Ridge	Regression,	Training	and	Cost	Function

cluster	specification,	Multiple	Devices	Across	Multiple	Servers

clustering	algorithms,	Unsupervised	learning

clusters,	Multiple	Devices	Across	Multiple	Servers

coding	space,	Variational	Autoencoders

codings,	Autoencoders

complementary	slackness	condition,	SVM	Dual	Problem

components_,	Using	Scikit-Learn

computational	complexity,	Computational	Complexity,	Computational	Complexity,	Computational
Complexity

compute_gradients(),	Gradient	Clipping,	Policy	Gradients

concat(),	GoogLeNet

config.gpu_options,	Managing	the	GPU	RAM

ConfigProto,	Managing	the	GPU	RAM

confusion	matrix,	Confusion	Matrix-Confusion	Matrix,	Error	Analysis-Error	Analysis

connectionism,	The	Perceptron

constrained	optimization,	Training	Objective,	SVM	Dual	Problem

Contrastive	Divergence,	Restricted	Boltzmann	Machines

control	dependencies,	Control	Dependencies

conv1d(),	ResNet

conv2d_transpose(),	ResNet

conv3d(),	ResNet

convergence	rate,	Batch	Gradient	Descent

convex	function,	Gradient	Descent

convolution	kernels,	Filters,	CNN	Architectures,	GoogLeNet

convolutional	neural	networks	(CNNs),	Convolutional	Neural	Networks-Exercises

architectures,	CNN	Architectures-ResNet

AlexNet,	AlexNet-AlexNet

GoogleNet,	GoogLeNet-GoogLeNet

LeNet5,	LeNet-5-LeNet-5

ResNet,	ResNet-ResNet

convolutional	layer,	Convolutional	Layer-Memory	Requirements,	GoogLeNet,	ResNet

feature	maps,	Stacking	Multiple	Feature	Maps-TensorFlow	Implementation

filters,	Filters

memory	requirement,	Memory	Requirements-Memory	Requirements

evolution	of,	The	Architecture	of	the	Visual	Cortex

pooling	layer,	Pooling	Layer-Pooling	Layer

TensorFlow	implementation,	TensorFlow	Implementation-TensorFlow	Implementation

Coordinator	class,	Multithreaded	readers	using	a	Coordinator	and	a	QueueRunner-Multithreaded
readers	using	a	Coordinator	and	a	QueueRunner

correlation	coefficient,	Looking	for	Correlations-Looking	for	Correlations

correlations,	finding,	Looking	for	Correlations-Looking	for	Correlations

cost	function,	Model-based	learning,	Select	a	Performance	Measure

in	AdaBoost,	AdaBoost

in	adagrad,	AdaGrad

in	artificial	neural	networks,	Training	an	MLP	with	TensorFlow’s	High-Level	API,	Construction
Phase-Construction	Phase

in	autodiff,	Using	autodiff

in	batch	normalization,	Implementing	Batch	Normalization	with	TensorFlow

cross	entropy,	LeNet-5

deep	Q-Learning,	Learning	to	Play	Ms.	Pac-Man	Using	Deep	Q-Learning

in	Elastic	Net,	Elastic	Net

in	Gradient	Descent,	Training	Models,	Gradient	Descent-Gradient	Descent,	Batch	Gradient

Descent,	Batch	Gradient	Descent-Stochastic	Gradient	Descent,	Gradient	Boosting,
Vanishing/Exploding	Gradients	Problems

in	Logistic	Regression,	Training	and	Cost	Function-Training	and	Cost	Function

in	PG	algorithms,	Policy	Gradients

in	variational	autoencoders,	Variational	Autoencoders

in	Lasso	Regression,	Lasso	Regression-Lasso	Regression

in	Linear	Regression,	The	Normal	Equation,	Gradient	Descent

in	Momentum	optimization,	Momentum	optimization-Nesterov	Accelerated	Gradient

in	pretrained	layers	reuse,	Pretraining	on	an	Auxiliary	Task

in	ridge	regression,	Ridge	Regression-Ridge	Regression

in	RNNs,	Training	RNNs,	Training	to	Predict	Time	Series

stale	gradients	and,	Asynchronous	updates

creative	sequences,	Creative	RNN

credit	assignment	problem,	Evaluating	Actions:	The	Credit	Assignment	Problem-Evaluating
Actions:	The	Credit	Assignment	Problem

critics,	Learning	to	Play	Ms.	Pac-Man	Using	Deep	Q-Learning

cross	entropy,	Softmax	Regression-Softmax	Regression,	Training	an	MLP	with	TensorFlow’s	High-
Level	API,	TensorFlow	Implementation,	Policy	Gradients

cross-validation,	Testing	and	Validating,	Better	Evaluation	Using	Cross-Validation-Better
Evaluation	Using	Cross-Validation,	Measuring	Accuracy	Using	Cross-Validation-Measuring
Accuracy	Using	Cross-Validation

CUDA	library,	Installation

cuDNN	library,	Installation

curse	of	dimensionality,	Dimensionality	Reduction-The	Curse	of	Dimensionality

(see	also	dimensionality	reduction)

custom	transformers,	Custom	Transformers-Custom	Transformers

D

data,	Testing	and	Validating

(see	also	test	data;	training	data)

creating	workspace	for,	Get	the	Data-Download	the	Data

downloading,	Download	the	Data-Download	the	Data

finding	correlations	in,	Looking	for	Correlations-Looking	for	Correlations

making	assumptions	about,	Testing	and	Validating

preparing	for	Machine	Learning	algorithms,	Prepare	the	Data	for	Machine	Learning	Algorithms-
Select	and	Train	a	Model

test-set	creation,	Create	a	Test	Set-Create	a	Test	Set

working	with	real	data,	Working	with	Real	Data

data	augmentation,	Data	Augmentation-Data	Augmentation

data	cleaning,	Data	Cleaning-Handling	Text	and	Categorical	Attributes

data	mining,	Why	Use	Machine	Learning?

data	parallelism,	Data	Parallelism-TensorFlow	implementation

asynchronous	updates,	Asynchronous	updates-Asynchronous	updates

bandwidth	saturation,	Bandwidth	saturation-Bandwidth	saturation

synchronous	updates,	Synchronous	updates

TensorFlow	implementation,	TensorFlow	implementation

data	pipeline,	Frame	the	Problem

data	snooping	bias,	Create	a	Test	Set

data	structure,	Take	a	Quick	Look	at	the	Data	Structure-Take	a	Quick	Look	at	the	Data	Structure

data	visualization,	Visualizing	Geographical	Data-Visualizing	Geographical	Data

DataFrame,	Data	Cleaning

dataquest,	Other	Resources

decay,	Implementing	Batch	Normalization	with	TensorFlow

decision	boundaries,	Decision	Boundaries-Decision	Boundaries,	Softmax	Regression,	Making
Predictions

decision	function,	Precision/Recall	Tradeoff,	Decision	Function	and	Predictions-Decision	Function
and	Predictions

Decision	Stumps,	AdaBoost

decision	threshold,	Precision/Recall	Tradeoff

Decision	Trees,	Training	and	Evaluating	on	the	Training	Set-Better	Evaluation	Using	Cross-
Validation,	Decision	Trees-Exercises,	Ensemble	Learning	and	Random	Forests

binary	trees,	Making	Predictions

class	probability	estimates,	Estimating	Class	Probabilities

computational	complexity,	Computational	Complexity

decision	boundaries,	Making	Predictions

GINI	impurity,	Gini	Impurity	or	Entropy?

instability	with,	Instability-Instability

numbers	of	children,	Making	Predictions

predictions,	Making	Predictions-Estimating	Class	Probabilities

Random	Forests	(see	Random	Forests)

regression	tasks,	Regression-Regression

regularization	hyperparameters,	Regularization	Hyperparameters-Regularization
Hyperparameters

training	and	visualizing,	Training	and	Visualizing	a	Decision	Tree-Making	Predictions

decoder,	Efficient	Data	Representations

deconvolutional	layer,	ResNet

deep	autoencoders	(see	stacked	autoencoders)

deep	belief	networks	(DBNs),	Semisupervised	learning,	Deep	Belief	Nets-Deep	Belief	Nets

Deep	Learning,	Reinforcement	Learning

(see	also	Reinforcement	Learning;	TensorFlow)

about,	The	Machine	Learning	Tsunami,	Roadmap

libraries,	Up	and	Running	with	TensorFlow-Up	and	Running	with	TensorFlow

deep	neural	networks	(DNNs),	Multi-Layer	Perceptron	and	Backpropagation,	Training	Deep	Neural
Nets-Exercises

(see	also	Multi-Layer	Perceptrons	(MLP))

faster	optimizers	for,	Faster	Optimizers-Learning	Rate	Scheduling

regularization,	Avoiding	Overfitting	Through	Regularization-Data	Augmentation

reusing	pretrained	layers,	Reusing	Pretrained	Layers-Pretraining	on	an	Auxiliary	Task

training	guidelines	overview,	Practical	Guidelines

training	with	TensorFlow,	Training	a	DNN	Using	Plain	TensorFlow-Using	the	Neural	Network

training	with	TF.Learn,	Training	an	MLP	with	TensorFlow’s	High-Level	API

unstable	gradients,	Vanishing/Exploding	Gradients	Problems

vanishing	and	exploding	gradients,	Training	Deep	Neural	Nets-Gradient	Clipping

Deep	Q-Learning,	Approximate	Q-Learning-Learning	to	Play	Ms.	Pac-Man	Using	Deep	Q-
Learning

Ms.	Pac	Man	example,	Learning	to	Play	Ms.	Pac-Man	Using	Deep	Q-Learning-Learning	to	Play
Ms.	Pac-Man	Using	Deep	Q-Learning

deep	Q-network,	Approximate	Q-Learning

deep	RNNs,	Deep	RNNs-The	Difficulty	of	Training	over	Many	Time	Steps

applying	dropout,	Applying	Dropout

distributing	across	multiple	GPUs,	Distributing	a	Deep	RNN	Across	Multiple	GPUs

long	sequence	difficulties,	The	Difficulty	of	Training	over	Many	Time	Steps

truncated	backpropagation	through	time,	The	Difficulty	of	Training	over	Many	Time	Steps

DeepMind,	Reinforcement	Learning,	Introduction	to	Artificial	Neural	Networks,	Reinforcement
Learning,	Approximate	Q-Learning

degrees	of	freedom,	Overfitting	the	Training	Data,	Learning	Curves

denoising	autoencoders,	Denoising	Autoencoders-TensorFlow	Implementation

depth	concat	layer,	GoogLeNet

depth	radius,	AlexNet

depthwise_conv2d(),	ResNet

dequeue(),	Queues	of	tuples

dequeue_many(),	Queues	of	tuples,	PaddingFifoQueue

dequeue_up_to(),	Closing	a	queue-PaddingFifoQueue

dequeuing	data,	Dequeuing	data

describe(),	Take	a	Quick	Look	at	the	Data	Structure

device	blocks,	Sharding	Variables	Across	Multiple	Parameter	Servers

device(),	Simple	placement

dimensionality	reduction,	Unsupervised	learning,	Dimensionality	Reduction-Exercises,
Autoencoders

approaches	to

Manifold	Learning,	Manifold	Learning

projection,	Projection-Projection

choosing	the	right	number	of	dimensions,	Choosing	the	Right	Number	of	Dimensions

curse	of	dimensionality,	Dimensionality	Reduction-The	Curse	of	Dimensionality

and	data	visualization,	Dimensionality	Reduction

Isomap,	Other	Dimensionality	Reduction	Techniques

LLE	(Locally	Linear	Embedding),	LLE-LLE

Multidimensional	Scaling,	Other	Dimensionality	Reduction	Techniques-Other	Dimensionality
Reduction	Techniques

PCA	(Principal	Component	Analysis),	PCA-Randomized	PCA

t-Distributed	Stochastic	Neighbor	Embedding	(t-SNE),	Other	Dimensionality	Reduction
Techniques

discount	rate,	Evaluating	Actions:	The	Credit	Assignment	Problem

distributed	computing,	Up	and	Running	with	TensorFlow

distributed	sessions,	Sharing	State	Across	Sessions	Using	Resource	Containers-Sharing	State
Across	Sessions	Using	Resource	Containers

DNNClassifier,	Training	an	MLP	with	TensorFlow’s	High-Level	API

drop(),	Prepare	the	Data	for	Machine	Learning	Algorithms

dropconnect,	Dropout

dropna(),	Data	Cleaning

dropout,	Number	of	Neurons	per	Hidden	Layer,	Applying	Dropout

dropout	rate,	Dropout

dropout(),	Dropout

DropoutWrapper,	Applying	Dropout

DRY	(Don’t	Repeat	Yourself),	Modularity

Dual	Averaging,	Adam	Optimization

dual	numbers,	Forward-Mode	Autodiff

dual	problem,	The	Dual	Problem

duality,	SVM	Dual	Problem

dying	ReLUs,	Nonsaturating	Activation	Functions

dynamic	placements,	Dynamic	placement	function

dynamic	placer,	Placing	Operations	on	Devices

Dynamic	Programming,	Markov	Decision	Processes

dynamic	unrolling	through	time,	Dynamic	Unrolling	Through	Time

dynamic_rnn(),	Dynamic	Unrolling	Through	Time,	Distributing	a	Deep	RNN	Across	Multiple	GPUs,
An	Encoder–Decoder	Network	for	Machine	Translation

E

early	stopping,	Early	Stopping-Early	Stopping,	Gradient	Boosting,	Number	of	Neurons	per	Hidden
Layer,	Early	Stopping

Elastic	Net,	Elastic	Net

embedded	device	blocks,	Sharding	Variables	Across	Multiple	Parameter	Servers

Embedded	Reber	grammars,	Exercises

embeddings,	Word	Embeddings-Word	Embeddings

embedding_lookup(),	Word	Embeddings

encoder,	Efficient	Data	Representations

Encoder–Decoder,	Input	and	Output	Sequences

end-of-sequence	(EOS)	token,	Handling	Variable-Length	Output	Sequences

energy	functions,	Hopfield	Networks

enqueuing	data,	Enqueuing	data

Ensemble	Learning,	Better	Evaluation	Using	Cross-Validation,	Ensemble	Methods,	Ensemble
Learning	and	Random	Forests-Exercises

bagging	and	pasting,	Bagging	and	Pasting-Out-of-Bag	Evaluation

boosting,	Boosting-Gradient	Boosting

in-graph	versus	between-graph	replication,	In-Graph	Versus	Between-Graph	Replication-In-
Graph	Versus	Between-Graph	Replication

Random	Forests,	Random	Forests-Feature	Importance

(see	also	Random	Forests)

random	patches	and	random	subspaces,	Random	Patches	and	Random	Subspaces

stacking,	Stacking-Stacking

entropy	impurity	measure,	Gini	Impurity	or	Entropy?

environments,	in	reinforcement	learning,	Learning	to	Optimize	Rewards-Evaluating	Actions:	The
Credit	Assignment	Problem,	Exploration	Policies,	Learning	to	Play	Ms.	Pac-Man	Using	Deep	Q-
Learning

episodes	(in	RL),	Introduction	to	OpenAI	Gym,	Evaluating	Actions:	The	Credit	Assignment
Problem-Policy	Gradients,	Policy	Gradients-Policy	Gradients,	Learning	to	Play	Ms.	Pac-Man	Using
Deep	Q-Learning

epochs,	Stochastic	Gradient	Descent

ε-insensitive,	SVM	Regression

equality	contraints,	SVM	Dual	Problem

error	analysis,	Error	Analysis-Error	Analysis

estimators,	Data	Cleaning

Euclidian	norm,	Select	a	Performance	Measure

eval(),	Feeding	Data	to	the	Training	Algorithm

evaluating	models,	Testing	and	Validating-Testing	and	Validating

explained	variance,	Choosing	the	Right	Number	of	Dimensions

explained	variance	ratio,	Explained	Variance	Ratio

exploding	gradients,	Vanishing/Exploding	Gradients	Problems

(see	also	gradients,	vanishing	and	exploding)

exploration	policies,	Exploration	Policies

exponential	decay,	Implementing	Batch	Normalization	with	TensorFlow

exponential	linear	unit	(ELU),	Nonsaturating	Activation	Functions-Nonsaturating	Activation
Functions

exponential	scheduling,	Learning	Rate	Scheduling

Extra-Trees,	Extra-Trees

F

F-1	score,	Precision	and	Recall-Precision	and	Recall

face-recognition,	Multilabel	Classification

fake	X	server,	Introduction	to	OpenAI	Gym

false	positive	rate	(FPR),	The	ROC	Curve-The	ROC	Curve

fan-in,	Xavier	and	He	Initialization,	Xavier	and	He	Initialization

fan-out,	Xavier	and	He	Initialization,	Xavier	and	He	Initialization

feature	detection,	Autoencoders

feature	engineering,	Irrelevant	Features

feature	extraction,	Unsupervised	learning

feature	importance,	Feature	Importance-Feature	Importance

feature	maps,	Selecting	a	Kernel	and	Tuning	Hyperparameters,	Filters-TensorFlow	Implementation,
ResNet

feature	scaling,	Feature	Scaling

feature	selection,	Irrelevant	Features,	Grid	Search,	Lasso	Regression,	Feature	Importance,
Prepare	the	Data

feature	space,	Kernel	PCA,	Selecting	a	Kernel	and	Tuning	Hyperparameters

feature	vector,	Select	a	Performance	Measure,	Linear	Regression,	Under	the	Hood,	Implementing
Gradient	Descent

features,	Supervised	learning

FeatureUnion,	Transformation	Pipelines

feedforward	neural	network	(FNN),	Multi-Layer	Perceptron	and	Backpropagation

feed_dict,	Feeding	Data	to	the	Training	Algorithm

FIFOQueue,	Asynchronous	Communication	Using	TensorFlow	Queues,	RandomShuffleQueue

fillna(),	Data	Cleaning

first-in	first-out	(FIFO)	queues,	Asynchronous	Communication	Using	TensorFlow	Queues

first-order	partial	derivatives	(Jacobians),	Adam	Optimization

fit(),	Data	Cleaning,	Transformation	Pipelines,	Incremental	PCA

fitness	function,	Model-based	learning

fit_inverse_transform=,	Selecting	a	Kernel	and	Tuning	Hyperparameters

fit_transform(),	Data	Cleaning,	Transformation	Pipelines

folds,	Better	Evaluation	Using	Cross-Validation,	MNIST,	Measuring	Accuracy	Using	Cross-
Validation-Measuring	Accuracy	Using	Cross-Validation

Follow	The	Regularized	Leader	(FTRL),	Adam	Optimization

forget	gate,	LSTM	Cell

forward-mode	autodiff,	Forward-Mode	Autodiff-Forward-Mode	Autodiff

framing	a	problem,	Frame	the	Problem-Frame	the	Problem

frozen	layers,	Freezing	the	Lower	Layers-Caching	the	Frozen	Layers

fully_connected(),	Construction	Phase,	Xavier	and	He	Initialization,	Implementing	Batch
Normalization	with	TensorFlow-Implementing	Batch	Normalization	with	TensorFlow,	Tying	Weights

G

game	play	(see	reinforcement	learning)

gamma	value,	Gaussian	RBF	Kernel

gate	controllers,	LSTM	Cell

Gaussian	distribution,	Select	a	Performance	Measure,	Variational	Autoencoders,	Generating	Digits

Gaussian	RBF,	Adding	Similarity	Features

Gaussian	RBF	kernel,	Gaussian	RBF	Kernel-Gaussian	RBF	Kernel,	Kernelized	SVM

generalization	error,	Testing	and	Validating

generalized	Lagrangian,	SVM	Dual	Problem-SVM	Dual	Problem

generative	autoencoders,	Variational	Autoencoders

generative	models,	Autoencoders,	Boltzmann	Machines

genetic	algorithms,	Policy	Search

geodesic	distance,	Other	Dimensionality	Reduction	Techniques

get_variable(),	Sharing	Variables-Sharing	Variables

GINI	impurity,	Making	Predictions,	Gini	Impurity	or	Entropy?

global	average	pooling,	GoogLeNet

global_step,	Learning	to	Play	Ms.	Pac-Man	Using	Deep	Q-Learning

global_variables(),	Max-Norm	Regularization

global_variables_initializer(),	Creating	Your	First	Graph	and	Running	It	in	a	Session

Glorot	initialization,	Vanishing/Exploding	Gradients	Problems-Xavier	and	He	Initialization

Google,	Up	and	Running	with	TensorFlow

Google	Images,	Introduction	to	Artificial	Neural	Networks

Google	Photos,	Semisupervised	learning

GoogleNet	architecture,	GoogLeNet-GoogLeNet

gpu_options.per_process_gpu_memory_fraction,	Managing	the	GPU	RAM

gradient	ascent,	Policy	Search

Gradient	Boosted	Regression	Trees	(GBRT),	Gradient	Boosting

Gradient	Boosting,	Gradient	Boosting-Gradient	Boosting

Gradient	Descent	(GD),	Training	Models,	Gradient	Descent-Mini-batch	Gradient	Descent,	Online
SVMs,	Training	Deep	Neural	Nets,	Momentum	optimization,	AdaGrad

algorithm	comparisons,	Mini-batch	Gradient	Descent-Mini-batch	Gradient	Descent

automatically	computing	gradients,	Using	autodiff-Using	autodiff

Batch	GD,	Batch	Gradient	Descent-Batch	Gradient	Descent,	Lasso	Regression

defining,	Gradient	Descent

local	minimum	versus	global	minimum,	Gradient	Descent

manually	computing	gradients,	Manually	Computing	the	Gradients

Mini-batch	GD,	Mini-batch	Gradient	Descent-Mini-batch	Gradient	Descent,	Feeding	Data	to	the
Training	Algorithm-Feeding	Data	to	the	Training	Algorithm

optimizer,	Using	an	Optimizer

Stochastic	GD,	Stochastic	Gradient	Descent-Stochastic	Gradient	Descent,	Soft	Margin
Classification

with	TensorFlow,	Implementing	Gradient	Descent-Using	an	Optimizer

Gradient	Tree	Boosting,	Gradient	Boosting

GradientDescentOptimizer,	Construction	Phase

gradients(),	Using	autodiff

gradients,	vanishing	and	exploding,	Training	Deep	Neural	Nets-Gradient	Clipping,	The	Difficulty	of
Training	over	Many	Time	Steps

Batch	Normalization,	Batch	Normalization-Implementing	Batch	Normalization	with	TensorFlow

Glorot	and	He	initialization,	Vanishing/Exploding	Gradients	Problems-Xavier	and	He
Initialization

gradient	clipping,	Gradient	Clipping

nonsaturating	activation	functions,	Nonsaturating	Activation	Functions-Nonsaturating	Activation
Functions

graphviz,	Training	and	Visualizing	a	Decision	Tree

greedy	algorithm,	The	CART	Training	Algorithm

grid	search,	Fine-Tune	Your	Model-Grid	Search,	Polynomial	Kernel

group(),	Learning	to	Play	Ms.	Pac-Man	Using	Deep	Q-Learning

GRU	(Gated	Recurrent	Unit)	cell,	GRU	Cell-GRU	Cell

H

hailstone	sequence,	Efficient	Data	Representations

hard	margin	classification,	Soft	Margin	Classification-Soft	Margin	Classification

hard	voting	classifiers,	Voting	Classifiers-Voting	Classifiers

harmonic	mean,	Precision	and	Recall

He	initialization,	Vanishing/Exploding	Gradients	Problems-Xavier	and	He	Initialization

Heaviside	step	function,	The	Perceptron

Hebb's	rule,	The	Perceptron,	Hopfield	Networks

Hebbian	learning,	The	Perceptron

hidden	layers,	Multi-Layer	Perceptron	and	Backpropagation

hierarchical	clustering,	Unsupervised	learning

hinge	loss	function,	Online	SVMs

histograms,	Take	a	Quick	Look	at	the	Data	Structure-Take	a	Quick	Look	at	the	Data	Structure

hold-out	sets,	Stacking

(see	also	blenders)

Hopfield	Networks,	Hopfield	Networks-Hopfield	Networks

hyperbolic	tangent	(htan	activation	function),	Multi-Layer	Perceptron	and	Backpropagation,
Activation	Functions,	Vanishing/Exploding	Gradients	Problems,	Xavier	and	He	Initialization,
Recurrent	Neurons

hyperparameters,	Overfitting	the	Training	Data,	Custom	Transformers,	Grid	Search-Grid	Search,
Evaluate	Your	System	on	the	Test	Set,	Gradient	Descent,	Polynomial	Kernel,	Computational
Complexity,	Fine-Tuning	Neural	Network	Hyperparameters

(see	also	neural	network	hyperparameters)

hyperplane,	Decision	Function	and	Predictions,	Manifold	Learning-PCA,	Projecting	Down	to	d
Dimensions,	Other	Dimensionality	Reduction	Techniques

hypothesis,	Select	a	Performance	Measure

manifold,	Manifold	Learning

hypothesis	boosting	(see	boosting)

hypothesis	function,	Linear	Regression

hypothesis,	null,	Regularization	Hyperparameters

I

identity	matrix,	Ridge	Regression,	Quadratic	Programming

ILSVRC	ImageNet	challenge,	CNN	Architectures

image	classification,	CNN	Architectures

impurity	measures,	Making	Predictions,	Gini	Impurity	or	Entropy?

in-graph	replication,	In-Graph	Versus	Between-Graph	Replication

inception	modules,	GoogLeNet

Inception-v4,	ResNet

incremental	learning,	Online	learning,	Incremental	PCA

inequality	constraints,	SVM	Dual	Problem

inference,	Model-based	learning,	Exercises,	Memory	Requirements,	An	Encoder–Decoder	Network
for	Machine	Translation

info(),	Take	a	Quick	Look	at	the	Data	Structure

information	gain,	Gini	Impurity	or	Entropy?

information	theory,	Gini	Impurity	or	Entropy?

init	node,	Saving	and	Restoring	Models

input	gate,	LSTM	Cell

input	neurons,	The	Perceptron

input_put_keep_prob,	Applying	Dropout

instance-based	learning,	Instance-based	learning,	Model-based	learning

InteractiveSession,	Creating	Your	First	Graph	and	Running	It	in	a	Session

intercept	term,	Linear	Regression

Internal	Covariate	Shift	problem,	Batch	Normalization

inter_op_parallelism_threads,	Parallel	Execution

intra_op_parallelism_threads,	Parallel	Execution

inverse_transform(),	Selecting	a	Kernel	and	Tuning	Hyperparameters

in_top_k(),	Construction	Phase

irreducible	error,	Learning	Curves

isolated	environment,	Create	the	Workspace-Create	the	Workspace

Isomap,	Other	Dimensionality	Reduction	Techniques

is_training,	Implementing	Batch	Normalization	with	TensorFlow-Implementing	Batch	Normalization
with	TensorFlow,	Applying	Dropout

J

jobs,	Multiple	Devices	Across	Multiple	Servers

join(),	Multiple	Devices	Across	Multiple	Servers,	Multithreaded	readers	using	a	Coordinator	and	a
QueueRunner

Jupyter,	Create	the	Workspace,	Create	the	Workspace,	Take	a	Quick	Look	at	the	Data	Structure

K

K-fold	cross-validation,	Better	Evaluation	Using	Cross-Validation-Better	Evaluation	Using	Cross-
Validation,	Measuring	Accuracy	Using	Cross-Validation

k-Nearest	Neighbors,	Model-based	learning,	Multilabel	Classification

Karush–Kuhn–Tucker	(KKT)	conditions,	SVM	Dual	Problem

keep	probability,	Dropout

Keras,	Up	and	Running	with	TensorFlow

Kernel	PCA	(kPCA),	Kernel	PCA-Selecting	a	Kernel	and	Tuning	Hyperparameters

kernel	trick,	Polynomial	Kernel,	Gaussian	RBF	Kernel,	The	Dual	Problem-Kernelized	SVM,	Kernel
PCA

kernelized	SVM,	Kernelized	SVM-Kernelized	SVM

kernels,	Polynomial	Kernel-Gaussian	RBF	Kernel,	Operations	and	kernels

Kullback–Leibler	divergence,	Softmax	Regression,	Sparse	Autoencoders

L

l1_l2_regularizer(),	ℓ1	and	ℓ2	Regularization

LabelBinarizer,	Transformation	Pipelines

labels,	Supervised	learning,	Frame	the	Problem

Lagrange	function,	SVM	Dual	Problem-SVM	Dual	Problem

Lagrange	multiplier,	SVM	Dual	Problem

landmarks,	Adding	Similarity	Features-Adding	Similarity	Features

large	margin	classification,	Linear	SVM	Classification-Linear	SVM	Classification

Lasso	Regression,	Lasso	Regression-Lasso	Regression

latent	loss,	Variational	Autoencoders

latent	space,	Variational	Autoencoders

law	of	large	numbers,	Voting	Classifiers

leaky	ReLU,	Nonsaturating	Activation	Functions

learning	rate,	Online	learning,	Gradient	Descent,	Batch	Gradient	Descent-Stochastic	Gradient
Descent

learning	rate	scheduling,	Stochastic	Gradient	Descent,	Learning	Rate	Scheduling-Learning	Rate
Scheduling

LeNet-5	architecture,	The	Architecture	of	the	Visual	Cortex,	LeNet-5-LeNet-5

Levenshtein	distance,	Gaussian	RBF	Kernel

liblinear	library,	Computational	Complexity

libsvm	library,	Computational	Complexity

Linear	Discriminant	Analysis	(LDA),	Other	Dimensionality	Reduction	Techniques

linear	models

early	stopping,	Early	Stopping-Early	Stopping

Elastic	Net,	Elastic	Net

Lasso	Regression,	Lasso	Regression-Lasso	Regression

Linear	Regression	(see	Linear	Regression)

regression	(see	Linear	Regression)

Ridge	Regression,	Ridge	Regression-Ridge	Regression,	Elastic	Net

SVM,	Linear	SVM	Classification-Soft	Margin	Classification

Linear	Regression,	Model-based	learning,	Training	and	Evaluating	on	the	Training	Set,	Training
Models-Mini-batch	Gradient	Descent,	Elastic	Net

computational	complexity,	Computational	Complexity

Gradient	Descent	in,	Gradient	Descent-Mini-batch	Gradient	Descent

learning	curves	in,	Learning	Curves-Learning	Curves

Normal	Equation,	The	Normal	Equation-Computational	Complexity

regularizing	models	(see	regularization)

using	Stochastic	Gradient	Descent	(SGD),	Stochastic	Gradient	Descent

with	TensorFlow,	Linear	Regression	with	TensorFlow-Linear	Regression	with	TensorFlow

linear	SVM	classification,	Linear	SVM	Classification-Soft	Margin	Classification

linear	threshold	units	(LTUs),	The	Perceptron

Lipschitz	continuous,	Gradient	Descent

LLE	(Locally	Linear	Embedding),	LLE-LLE

load_sample_images(),	TensorFlow	Implementation

local	receptive	field,	The	Architecture	of	the	Visual	Cortex

local	response	normalization,	AlexNet

local	sessions,	Sharing	State	Across	Sessions	Using	Resource	Containers

location	invariance,	Pooling	Layer

log	loss,	Training	and	Cost	Function

logging	placements,	Logging	placements-Logging	placements

logistic	function,	Estimating	Probabilities

Logistic	Regression,	Supervised	learning,	Logistic	Regression-Softmax	Regression

decision	boundaries,	Decision	Boundaries-Decision	Boundaries

estimating	probablities,	Estimating	Probabilities-Estimating	Probabilities

Softmax	Regression	model,	Softmax	Regression-Softmax	Regression

training	and	cost	function,	Training	and	Cost	Function-Training	and	Cost	Function

log_device_placement,	Logging	placements

LSTM	(Long	Short-Term	Memory)	cell,	LSTM	Cell-GRU	Cell

M

machine	control	(see	reinforcement	learning)

Machine	Learning

large-scale	projects	(see	TensorFlow)

notations,	Select	a	Performance	Measure-Select	a	Performance	Measure

process	example,	End-to-End	Machine	Learning	Project-Exercises

project	checklist,	Look	at	the	Big	Picture,	Machine	Learning	Project	Checklist-Launch!

resources	on,	Other	Resources-Other	Resources

uses	for,	Machine	Learning	in	Your	Projects-Machine	Learning	in	Your	Projects

Machine	Learning	basics

attributes,	Supervised	learning

challenges,	Main	Challenges	of	Machine	Learning-Stepping	Back

algorithm	problems,	Overfitting	the	Training	Data-Underfitting	the	Training	Data

training	data	problems,	Poor-Quality	Data

definition,	What	Is	Machine	Learning?

features,	Supervised	learning

overview,	The	Machine	Learning	Landscape

reasons	for	using,	Why	Use	Machine	Learning?-Why	Use	Machine	Learning?

spam	filter	example,	What	Is	Machine	Learning?-Why	Use	Machine	Learning?

summary,	Stepping	Back

testing	and	validating,	Testing	and	Validating-Testing	and	Validating

types	of	systems,	Types	of	Machine	Learning	Systems-Model-based	learning

batch	and	online	learning,	Batch	and	Online	Learning-Online	learning

instance-based	versus	model-based	learning,	Instance-Based	Versus	Model-Based	Learning-
Model-based	learning

supervised/unsupervised	learning,	Supervised/Unsupervised	Learning-Reinforcement	Learning

workflow	example,	Model-based	learning-Model-based	learning

machine	translation	(see	natural	language	processing	(NLP))

make(),	Introduction	to	OpenAI	Gym

Manhattan	norm,	Select	a	Performance	Measure

manifold	assumption/hypothesis,	Manifold	Learning

Manifold	Learning,	Manifold	Learning,	LLE

(see	also	LLE	(Locally	Linear	Embedding)

MapReduce,	Frame	the	Problem

margin	violations,	Soft	Margin	Classification

Markov	chains,	Markov	Decision	Processes

Markov	decision	processes,	Markov	Decision	Processes-Markov	Decision	Processes

master	service,	The	Master	and	Worker	Services

Matplotlib,	Create	the	Workspace,	Take	a	Quick	Look	at	the	Data	Structure,	The	ROC	Curve,
Error	Analysis

max	margin	learning,	Pretraining	on	an	Auxiliary	Task

max	pooling	layer,	Pooling	Layer

max-norm	regularization,	Max-Norm	Regularization-Max-Norm	Regularization

max_norm(),	Max-Norm	Regularization

max_norm_regularizer(),	Max-Norm	Regularization

max_pool(),	Pooling	Layer

Mean	Absolute	Error	(MAE),	Select	a	Performance	Measure-Select	a	Performance	Measure

mean	coding,	Variational	Autoencoders

Mean	Square	Error	(MSE),	Linear	Regression,	Manually	Computing	the	Gradients,	Sparse
Autoencoders

measure	of	similarity,	Instance-based	learning

memmap,	Incremental	PCA

memory	cells,	Model	Parallelism,	Memory	Cells

Mercer's	theorem,	Kernelized	SVM

meta	learner	(see	blending)

min-max	scaling,	Feature	Scaling

Mini-batch	Gradient	Descent,	Mini-batch	Gradient	Descent-Mini-batch	Gradient	Descent,	Training
and	Cost	Function,	Feeding	Data	to	the	Training	Algorithm-Feeding	Data	to	the	Training	Algorithm

mini-batches,	Online	learning

minimize(),	Gradient	Clipping,	Freezing	the	Lower	Layers,	Policy	Gradients,	Learning	to	Play	Ms.
Pac-Man	Using	Deep	Q-Learning

min_after_dequeue,	RandomShuffleQueue

MNIST	dataset,	MNIST-MNIST

model	parallelism,	Model	Parallelism-Model	Parallelism

model	parameters,	Gradient	Descent,	Batch	Gradient	Descent,	Early	Stopping,	Under	the	Hood,
Quadratic	Programming,	Creating	Your	First	Graph	and	Running	It	in	a	Session,	Construction
Phase,	Training	RNNs

defining,	Model-based	learning

model	selection,	Model-based	learning

model	zoos,	Model	Zoos

model-based	learning,	Model-based	learning-Model-based	learning

models

analyzing,	Analyze	the	Best	Models	and	Their	Errors-Analyze	the	Best	Models	and	Their	Errors

evaluating	on	test	set,	Evaluate	Your	System	on	the	Test	Set-Evaluate	Your	System	on	the	Test
Set

moments,	Adam	Optimization

Momentum	optimization,	Momentum	optimization-Momentum	optimization

Monte	Carlo	tree	search,	Policy	Gradients

Multi-Layer	Perceptrons	(MLP),	Introduction	to	Artificial	Neural	Networks,	The	Perceptron-
Multi-Layer	Perceptron	and	Backpropagation,	Neural	Network	Policies

training	with	TF.Learn,	Training	an	MLP	with	TensorFlow’s	High-Level	API

multiclass	classifiers,	Multiclass	Classification-Multiclass	Classification

Multidimensional	Scaling	(MDS),	Other	Dimensionality	Reduction	Techniques

multilabel	classifiers,	Multilabel	Classification-Multilabel	Classification

Multinomial	Logistic	Regression	(see	Softmax	Regression)

multinomial(),	Neural	Network	Policies

multioutput	classifiers,	Multioutput	Classification-Multioutput	Classification

MultiRNNCell,	Distributing	a	Deep	RNN	Across	Multiple	GPUs

multithreaded	readers,	Multithreaded	readers	using	a	Coordinator	and	a	QueueRunner-
Multithreaded	readers	using	a	Coordinator	and	a	QueueRunner

multivariate	regression,	Frame	the	Problem

N

naive	Bayes	classifiers,	Multiclass	Classification

name	scopes,	Name	Scopes

natural	language	processing	(NLP),	Recurrent	Neural	Networks,	Natural	Language	Processing-An
Encoder–Decoder	Network	for	Machine	Translation

encoder-decoder	network	for	machine	translation,	An	Encoder–Decoder	Network	for	Machine
Translation-An	Encoder–Decoder	Network	for	Machine	Translation

TensorFlow	tutorials,	Natural	Language	Processing,	An	Encoder–Decoder	Network	for	Machine
Translation

word	embeddings,	Word	Embeddings-Word	Embeddings

Nesterov	Accelerated	Gradient	(NAG),	Nesterov	Accelerated	Gradient-Nesterov	Accelerated
Gradient

Nesterov	momentum	optimization,	Nesterov	Accelerated	Gradient-Nesterov	Accelerated	Gradient

network	topology,	Fine-Tuning	Neural	Network	Hyperparameters

neural	network	hyperparameters,	Fine-Tuning	Neural	Network	Hyperparameters-Activation
Functions

activation	functions,	Activation	Functions

neurons	per	hidden	layer,	Number	of	Neurons	per	Hidden	Layer

number	of	hidden	layers,	Number	of	Hidden	Layers-Number	of	Hidden	Layers

neural	network	policies,	Neural	Network	Policies-Neural	Network	Policies

neurons

biological,	From	Biological	to	Artificial	Neurons-Biological	Neurons

logical	computations	with,	Logical	Computations	with	Neurons

neuron_layer(),	Construction	Phase

next_batch(),	Execution	Phase

No	Free	Lunch	theorem,	Testing	and	Validating

node	edges,	Visualizing	the	Graph	and	Training	Curves	Using	TensorBoard

nonlinear	dimensionality	reduction	(NLDR),	LLE

(see	also	Kernel	PCA;	LLE	(Locally	Linear	Embedding))

nonlinear	SVM	classification,	Nonlinear	SVM	Classification-Computational	Complexity

computational	complexity,	Computational	Complexity

Gaussian	RBF	kernel,	Gaussian	RBF	Kernel-Gaussian	RBF	Kernel

with	polynomial	features,	Nonlinear	SVM	Classification-Polynomial	Kernel

polynomial	kernel,	Polynomial	Kernel-Polynomial	Kernel

similarity	features,	adding,	Adding	Similarity	Features-Adding	Similarity	Features

nonparametric	models,	Regularization	Hyperparameters

nonresponse	bias,	Nonrepresentative	Training	Data

nonsaturating	activation	functions,	Nonsaturating	Activation	Functions-Nonsaturating	Activation
Functions

normal	distribution	(see	Gaussian	distribution)

Normal	Equation,	The	Normal	Equation-Computational	Complexity

normalization,	Feature	Scaling

normalized	exponential,	Softmax	Regression

norms,	Select	a	Performance	Measure

notations,	Select	a	Performance	Measure-Select	a	Performance	Measure

NP-Complete	problems,	The	CART	Training	Algorithm

null	hypothesis,	Regularization	Hyperparameters

numerical	differentiation,	Numerical	Differentiation

NumPy,	Create	the	Workspace

NumPy	arrays,	Handling	Text	and	Categorical	Attributes

NVidia	Compute	Capability,	Installation

nvidia-smi,	Managing	the	GPU	RAM

n_components,	Choosing	the	Right	Number	of	Dimensions

O

observation	space,	Neural	Network	Policies

off-policy	algorithm,	Temporal	Difference	Learning	and	Q-Learning

offline	learning,	Batch	learning

one-hot	encoding,	Handling	Text	and	Categorical	Attributes

one-versus-all	(OvA)	strategy,	Multiclass	Classification,	Softmax	Regression,	Exercises

one-versus-one	(OvO)	strategy,	Multiclass	Classification

online	learning,	Online	learning-Online	learning

online	SVMs,	Online	SVMs-Online	SVMs

OpenAI	Gym,	Introduction	to	OpenAI	Gym-Introduction	to	OpenAI	Gym

operation_timeout_in_ms,	In-Graph	Versus	Between-Graph	Replication

Optical	Character	Recognition	(OCR),	The	Machine	Learning	Landscape

optimal	state	value,	Markov	Decision	Processes

optimizers,	Faster	Optimizers-Learning	Rate	Scheduling

AdaGrad,	AdaGrad-AdaGrad

Adam	optimization,	Faster	Optimizers,	Adam	Optimization-Adam	Optimization

Gradient	Descent	(see	Gradient	Descent	optimizer)

learning	rate	scheduling,	Learning	Rate	Scheduling-Learning	Rate	Scheduling

Momentum	optimization,	Momentum	optimization-Momentum	optimization

Nesterov	Accelerated	Gradient	(NAG),	Nesterov	Accelerated	Gradient-Nesterov	Accelerated
Gradient

RMSProp,	RMSProp

out-of-bag	evaluation,	Out-of-Bag	Evaluation-Out-of-Bag	Evaluation

out-of-core	learning,	Online	learning

out-of-memory	(OOM)	errors,	Static	Unrolling	Through	Time

out-of-sample	error,	Testing	and	Validating

OutOfRangeError,	Reading	the	training	data	directly	from	the	graph,	Multithreaded	readers	using
a	Coordinator	and	a	QueueRunner

output	gate,	LSTM	Cell

output	layer,	Multi-Layer	Perceptron	and	Backpropagation

OutputProjectionWrapper,	Training	to	Predict	Time	Series-Training	to	Predict	Time	Series

output_put_keep_prob,	Applying	Dropout

overcomplete	autoencoder,	Unsupervised	Pretraining	Using	Stacked	Autoencoders

overfitting,	Overfitting	the	Training	Data-Overfitting	the	Training	Data,	Create	a	Test	Set,	Soft
Margin	Classification,	Gaussian	RBF	Kernel,	Regularization	Hyperparameters,	Regression,
Number	of	Neurons	per	Hidden	Layer

avoiding	through	regularization,	Avoiding	Overfitting	Through	Regularization-Data
Augmentation

P

p-value,	Regularization	Hyperparameters

PaddingFIFOQueue,	PaddingFifoQueue

Pandas,	Create	the	Workspace,	Download	the	Data

scatter_matrix,	Looking	for	Correlations-Looking	for	Correlations

parallel	distributed	computing,	Distributing	TensorFlow	Across	Devices	and	Servers-Exercises

data	parallelism,	Data	Parallelism-TensorFlow	implementation

in-graph	versus	between-graph	replication,	In-Graph	Versus	Between-Graph	Replication-Model
Parallelism

model	parallelism,	Model	Parallelism-Model	Parallelism

multiple	devices	across	multiple	servers,	Multiple	Devices	Across	Multiple	Servers-Other
convenience	functions

asynchronous	communication	using	queues,	Asynchronous	Communication	Using	TensorFlow
Queues-PaddingFifoQueue

loading	training	data,	Loading	Data	Directly	from	the	Graph-Other	convenience	functions

master	and	worker	services,	The	Master	and	Worker	Services

opening	a	session,	Opening	a	Session

pinning	operations	across	tasks,	Pinning	Operations	Across	Tasks

sharding	variables,	Sharding	Variables	Across	Multiple	Parameter	Servers

sharing	state	across	sessions,	Sharing	State	Across	Sessions	Using	Resource	Containers-
Sharing	State	Across	Sessions	Using	Resource	Containers

multiple	devices	on	a	single	machine,	Multiple	Devices	on	a	Single	Machine-Control
Dependencies

control	dependencies,	Control	Dependencies

installation,	Installation-Installation

managing	the	GPU	RAM,	Managing	the	GPU	RAM-Managing	the	GPU	RAM

parallel	execution,	Parallel	Execution-Parallel	Execution

placing	operations	on	devices,	Placing	Operations	on	Devices-Soft	placement

one	neural	network	per	device,	One	Neural	Network	per	Device-One	Neural	Network	per
Device

parameter	efficiency,	Number	of	Hidden	Layers

parameter	matrix,	Softmax	Regression

parameter	server	(ps),	Multiple	Devices	Across	Multiple	Servers

parameter	space,	Gradient	Descent

parameter	vector,	Linear	Regression,	Gradient	Descent,	Training	and	Cost	Function,	Softmax
Regression

parametric	models,	Regularization	Hyperparameters

partial	derivative,	Batch	Gradient	Descent

partial_fit(),	Incremental	PCA

Pearson's	r,	Looking	for	Correlations

peephole	connections,	Peephole	Connections

penalties	(see	rewards,	in	RL)

percentiles,	Take	a	Quick	Look	at	the	Data	Structure

Perceptron	convergence	theorem,	The	Perceptron

Perceptrons,	The	Perceptron-Multi-Layer	Perceptron	and	Backpropagation

versus	Logistic	Regression,	The	Perceptron

training,	The	Perceptron-The	Perceptron

performance	measures,	Select	a	Performance	Measure-Select	a	Performance	Measure

confusion	matrix,	Confusion	Matrix-Confusion	Matrix

cross-validation,	Measuring	Accuracy	Using	Cross-Validation-Measuring	Accuracy	Using	Cross-
Validation

precision	and	recall,	Precision	and	Recall-Precision/Recall	Tradeoff

ROC	(receiver	operating	characteristic)	curve,	The	ROC	Curve-The	ROC	Curve

performance	scheduling,	Learning	Rate	Scheduling

permutation(),	Create	a	Test	Set

PG	algorithms,	Policy	Gradients

photo-hosting	services,	Semisupervised	learning

pinning	operations,	Pinning	Operations	Across	Tasks

pip,	Create	the	Workspace

Pipeline	constructor,	Transformation	Pipelines-Select	and	Train	a	Model

pipelines,	Frame	the	Problem

placeholder	nodes,	Feeding	Data	to	the	Training	Algorithm

placers	(see	simple	placer;	dynamic	placer)

policy,	Policy	Search

policy	gradients,	Policy	Search	(see	PG	algorithms)

policy	space,	Policy	Search

polynomial	features,	adding,	Nonlinear	SVM	Classification-Polynomial	Kernel

polynomial	kernel,	Polynomial	Kernel-Polynomial	Kernel,	Kernelized	SVM

Polynomial	Regression,	Training	Models,	Polynomial	Regression-Polynomial	Regression

learning	curves	in,	Learning	Curves-Learning	Curves

pooling	kernel,	Pooling	Layer

pooling	layer,	Pooling	Layer-Pooling	Layer

power	scheduling,	Learning	Rate	Scheduling

precision,	Confusion	Matrix

precision	and	recall,	Precision	and	Recall-Precision/Recall	Tradeoff

F-1	score,	Precision	and	Recall-Precision	and	Recall

precision/recall	(PR)	curve,	The	ROC	Curve

precision/recall	tradeoff,	Precision/Recall	Tradeoff-Precision/Recall	Tradeoff

predetermined	piecewise	constant	learning	rate,	Learning	Rate	Scheduling

predict(),	Data	Cleaning

predicted	class,	Confusion	Matrix

predictions,	Confusion	Matrix-Confusion	Matrix,	Decision	Function	and	Predictions-Decision
Function	and	Predictions,	Making	Predictions-Estimating	Class	Probabilities

predictors,	Supervised	learning,	Data	Cleaning

preloading	training	data,	Preload	the	data	into	a	variable

PReLU	(parametric	leaky	ReLU),	Nonsaturating	Activation	Functions

preprocessed	attributes,	Take	a	Quick	Look	at	the	Data	Structure

pretrained	layers	reuse,	Reusing	Pretrained	Layers-Pretraining	on	an	Auxiliary	Task

auxiliary	task,	Pretraining	on	an	Auxiliary	Task-Pretraining	on	an	Auxiliary	Task

caching	frozen	layers,	Caching	the	Frozen	Layers

freezing	lower	layers,	Freezing	the	Lower	Layers

model	zoos,	Model	Zoos

other	frameworks,	Reusing	Models	from	Other	Frameworks

TensorFlow	model,	Reusing	a	TensorFlow	Model-Reusing	a	TensorFlow	Model

unsupervised	pretraining,	Unsupervised	Pretraining-Unsupervised	Pretraining

upper	layers,	Tweaking,	Dropping,	or	Replacing	the	Upper	Layers

Pretty	Tensor,	Up	and	Running	with	TensorFlow

primal	problem,	The	Dual	Problem

principal	component,	Principal	Components

Principal	Component	Analysis	(PCA),	PCA-Randomized	PCA

explained	variance	ratios,	Explained	Variance	Ratio

finding	principal	components,	Principal	Components-Principal	Components

for	compression,	PCA	for	Compression-Incremental	PCA

Incremental	PCA,	Incremental	PCA-Randomized	PCA

Kernel	PCA	(kPCA),	Kernel	PCA-Selecting	a	Kernel	and	Tuning	Hyperparameters

projecting	down	to	d	dimensions,	Projecting	Down	to	d	Dimensions

Randomized	PCA,	Randomized	PCA

Scikit	Learn	for,	Using	Scikit-Learn

variance,	preserving,	Preserving	the	Variance-Preserving	the	Variance

probabilistic	autoencoders,	Variational	Autoencoders

probabilities,	estimating,	Estimating	Probabilities-Estimating	Probabilities,	Estimating	Class
Probabilities

producer	functions,	Other	convenience	functions

projection,	Projection-Projection

propositional	logic,	From	Biological	to	Artificial	Neurons

pruning,	Regularization	Hyperparameters,	Symbolic	Differentiation

Python

isolated	environment	in,	Create	the	Workspace-Create	the	Workspace

notebooks	in,	Create	the	Workspace-Download	the	Data

pickle,	Better	Evaluation	Using	Cross-Validation

pip,	Create	the	Workspace

Q

Q-Learning	algorithm,	Temporal	Difference	Learning	and	Q-Learning-Learning	to	Play	Ms.	Pac-
Man	Using	Deep	Q-Learning

approximate	Q-Learning,	Approximate	Q-Learning

deep	Q-Learning,	Approximate	Q-Learning-Learning	to	Play	Ms.	Pac-Man	Using	Deep	Q-
Learning

Q-Value	Iteration	Algorithm,	Markov	Decision	Processes

Q-Values,	Markov	Decision	Processes

Quadratic	Programming	(QP)	Problems,	Quadratic	Programming-Quadratic	Programming

quantizing,	Bandwidth	saturation

queries	per	second	(QPS),	One	Neural	Network	per	Device

QueueRunner,	Multithreaded	readers	using	a	Coordinator	and	a	QueueRunner-Multithreaded
readers	using	a	Coordinator	and	a	QueueRunner

queues,	Asynchronous	Communication	Using	TensorFlow	Queues-PaddingFifoQueue

closing,	Closing	a	queue

dequeuing	data,	Dequeuing	data

enqueuing	data,	Enqueuing	data

first-in	first-out	(FIFO),	Asynchronous	Communication	Using	TensorFlow	Queues

of	tuples,	Queues	of	tuples

PaddingFIFOQueue,	PaddingFifoQueue

RandomShuffleQueue,	RandomShuffleQueue

q_network(),	Learning	to	Play	Ms.	Pac-Man	Using	Deep	Q-Learning

R

Radial	Basis	Function	(RBF),	Adding	Similarity	Features

Random	Forests,	Better	Evaluation	Using	Cross-Validation-Grid	Search,	Multiclass	Classification,
Decision	Trees,	Instability,	Ensemble	Learning	and	Random	Forests,	Random	Forests-Feature
Importance

Extra-Trees,	Extra-Trees

feature	importance,	Feature	Importance-Feature	Importance

random	initialization,	Gradient	Descent,	Batch	Gradient	Descent,	Stochastic	Gradient	Descent,
Vanishing/Exploding	Gradients	Problems

Random	Patches	and	Random	Subspaces,	Random	Patches	and	Random	Subspaces

randomized	leaky	ReLU	(RReLU),	Nonsaturating	Activation	Functions

Randomized	PCA,	Randomized	PCA

randomized	search,	Randomized	Search,	Fine-Tuning	Neural	Network	Hyperparameters

RandomShuffleQueue,	RandomShuffleQueue,	Reading	the	training	data	directly	from	the	graph

random_uniform(),	Manually	Computing	the	Gradients

reader	operations,	Reading	the	training	data	directly	from	the	graph

recall,	Confusion	Matrix

recognition	network,	Efficient	Data	Representations

reconstruction	error,	PCA	for	Compression

reconstruction	loss,	Efficient	Data	Representations,	TensorFlow	Implementation,	Variational
Autoencoders

reconstruction	pre-image,	Selecting	a	Kernel	and	Tuning	Hyperparameters

reconstructions,	Efficient	Data	Representations

recurrent	neural	networks	(RNNs),	Recurrent	Neural	Networks-Exercises

deep	RNNs,	Deep	RNNs-The	Difficulty	of	Training	over	Many	Time	Steps

exploration	policies,	Exploration	Policies

GRU	cell,	GRU	Cell-GRU	Cell

input	and	output	sequences,	Input	and	Output	Sequences-Input	and	Output	Sequences

LSTM	cell,	LSTM	Cell-GRU	Cell

natural	language	processing	(NLP),	Natural	Language	Processing-An	Encoder–Decoder	Network
for	Machine	Translation

in	TensorFlow,	Basic	RNNs	in	TensorFlow-Handling	Variable-Length	Output	Sequences

dynamic	unrolling	through	time,	Dynamic	Unrolling	Through	Time

static	unrolling	through	time,	Static	Unrolling	Through	Time-Static	Unrolling	Through	Time

variable	length	input	sequences,	Handling	Variable	Length	Input	Sequences

variable	length	output	sequences,	Handling	Variable-Length	Output	Sequences

training,	Training	RNNs-Creative	RNN

backpropagation	through	time	(BPTT),	Training	RNNs

creative	sequences,	Creative	RNN

sequence	classifiers,	Training	a	Sequence	Classifier-Training	a	Sequence	Classifier

time	series	predictions,	Training	to	Predict	Time	Series-Training	to	Predict	Time	Series

recurrent	neurons,	Recurrent	Neurons-Input	and	Output	Sequences

memory	cells,	Memory	Cells

reduce_mean(),	Construction	Phase

reduce_sum(),	TensorFlow	Implementation-TensorFlow	Implementation,	Variational	Autoencoders,
Learning	to	Play	Ms.	Pac-Man	Using	Deep	Q-Learning

regression,	Supervised	learning

Decision	Trees,	Regression-Regression

regression	models

linear,	Training	and	Evaluating	on	the	Training	Set

regression	versus	classification,	Multioutput	Classification

regularization,	Overfitting	the	Training	Data-Overfitting	the	Training	Data,	Testing	and	Validating,
Regularized	Linear	Models-Early	Stopping

data	augmentation,	Data	Augmentation-Data	Augmentation

Decision	Trees,	Regularization	Hyperparameters-Regularization	Hyperparameters

dropout,	Dropout-Dropout

early	stopping,	Early	Stopping-Early	Stopping,	Early	Stopping

Elastic	Net,	Elastic	Net

Lasso	Regression,	Lasso	Regression-Lasso	Regression

max-norm,	Max-Norm	Regularization-Max-Norm	Regularization

Ridge	Regression,	Ridge	Regression-Ridge	Regression

shrinkage,	Gradient	Boosting

ℓ	1	and	ℓ	2	regularization,	ℓ1	and	ℓ2	Regularization-ℓ1	and	ℓ2	Regularization

REINFORCE	algorithms,	Policy	Gradients

Reinforcement	Learning	(RL),	Reinforcement	Learning-Reinforcement	Learning,	Reinforcement
Learning-Thank	You!

actions,	Evaluating	Actions:	The	Credit	Assignment	Problem-Evaluating	Actions:	The	Credit
Assignment	Problem

credit	assignment	problem,	Evaluating	Actions:	The	Credit	Assignment	Problem-Evaluating
Actions:	The	Credit	Assignment	Problem

discount	rate,	Evaluating	Actions:	The	Credit	Assignment	Problem

examples	of,	Learning	to	Optimize	Rewards

Markov	decision	processes,	Markov	Decision	Processes-Markov	Decision	Processes

neural	network	policies,	Neural	Network	Policies-Neural	Network	Policies

OpenAI	gym,	Introduction	to	OpenAI	Gym-Introduction	to	OpenAI	Gym

PG	algorithms,	Policy	Gradients-Policy	Gradients

policy	search,	Policy	Search-Policy	Search

Q-Learning	algorithm,	Temporal	Difference	Learning	and	Q-Learning-Learning	to	Play	Ms.	Pac-
Man	Using	Deep	Q-Learning

rewards,	learning	to	optimize,	Learning	to	Optimize	Rewards-Learning	to	Optimize	Rewards

Temporal	Difference	(TD)	Learning,	Temporal	Difference	Learning	and	Q-Learning-Temporal
Difference	Learning	and	Q-Learning

ReLU	(rectified	linear	units),	Modularity-Modularity

ReLU	activation,	ResNet

ReLU	function,	Multi-Layer	Perceptron	and	Backpropagation,	Activation	Functions,	Xavier	and	He
Initialization-Nonsaturating	Activation	Functions

relu(z),	Construction	Phase

render(),	Introduction	to	OpenAI	Gym

replay	memory,	Learning	to	Play	Ms.	Pac-Man	Using	Deep	Q-Learning

replica_device_setter(),	Sharding	Variables	Across	Multiple	Parameter	Servers

request_stop(),	Multithreaded	readers	using	a	Coordinator	and	a	QueueRunner

reset(),	Introduction	to	OpenAI	Gym

reset_default_graph(),	Managing	Graphs

reshape(),	Training	to	Predict	Time	Series

residual	errors,	Gradient	Boosting-Gradient	Boosting

residual	learning,	ResNet

residual	network	(ResNet),	Model	Zoos,	ResNet-ResNet

residual	units,	ResNet

ResNet,	ResNet-ResNet

resource	containers,	Sharing	State	Across	Sessions	Using	Resource	Containers-Sharing	State
Across	Sessions	Using	Resource	Containers

restore(),	Saving	and	Restoring	Models

restricted	Boltzmann	machines	(RBMs),	Semisupervised	learning,	Unsupervised	Pretraining,
Boltzmann	Machines

reuse_variables(),	Sharing	Variables

reverse-mode	autodiff,	Reverse-Mode	Autodiff-Reverse-Mode	Autodiff

rewards,	in	RL,	Learning	to	Optimize	Rewards-Learning	to	Optimize	Rewards

rgb_array,	Introduction	to	OpenAI	Gym

Ridge	Regression,	Ridge	Regression-Ridge	Regression,	Elastic	Net

RMSProp,	RMSProp

ROC	(receiver	operating	characteristic)	curve,	The	ROC	Curve-The	ROC	Curve

Root	Mean	Square	Error	(RMSE),	Select	a	Performance	Measure-Select	a	Performance	Measure,
Linear	Regression

RReLU	(randomized	leaky	ReLU),	Nonsaturating	Activation	Functions

run(),	Creating	Your	First	Graph	and	Running	It	in	a	Session,	In-Graph	Versus	Between-Graph
Replication

S

Sampled	Softmax,	An	Encoder–Decoder	Network	for	Machine	Translation

sampling	bias,	Nonrepresentative	Training	Data-Poor-Quality	Data,	Create	a	Test	Set

sampling	noise,	Nonrepresentative	Training	Data

save(),	Saving	and	Restoring	Models

Saver	node,	Saving	and	Restoring	Models

Scikit	Flow,	Up	and	Running	with	TensorFlow

Scikit-Learn,	Create	the	Workspace

about,	Objective	and	Approach

bagging	and	pasting	in,	Bagging	and	Pasting	in	Scikit-Learn-Bagging	and	Pasting	in	Scikit-Learn

CART	algorithm,	Making	Predictions-The	CART	Training	Algorithm,	Regression

cross-validation,	Better	Evaluation	Using	Cross-Validation-Better	Evaluation	Using	Cross-
Validation

design	principles,	Data	Cleaning-Data	Cleaning

imputer,	Data	Cleaning-Handling	Text	and	Categorical	Attributes

LinearSVR	class,	SVM	Regression

MinMaxScaler,	Feature	Scaling

min_	and	max_	hyperparameters,	Regularization	Hyperparameters

PCA	implementation,	Using	Scikit-Learn

Perceptron	class,	The	Perceptron

Pipeline	constructor,	Transformation	Pipelines-Select	and	Train	a	Model,	Nonlinear	SVM
Classification

Randomized	PCA,	Randomized	PCA

Ridge	Regression	with,	Ridge	Regression

SAMME,	AdaBoost

SGDClassifier,	Training	a	Binary	Classifier,	Precision/Recall	Tradeoff-Precision/Recall	Tradeoff,
Multiclass	Classification

SGDRegressor,	Stochastic	Gradient	Descent

sklearn.base.BaseEstimator,	Custom	Transformers,	Transformation	Pipelines,	Measuring
Accuracy	Using	Cross-Validation

sklearn.base.clone(),	Measuring	Accuracy	Using	Cross-Validation,	Early	Stopping

sklearn.base.TransformerMixin,	Custom	Transformers,	Transformation	Pipelines

sklearn.datasets.fetch_california_housing(),	Linear	Regression	with	TensorFlow

sklearn.datasets.fetch_mldata(),	MNIST

sklearn.datasets.load_iris(),	Decision	Boundaries,	Soft	Margin	Classification,	Training	and
Visualizing	a	Decision	Tree,	Feature	Importance,	The	Perceptron

sklearn.datasets.load_sample_images(),	TensorFlow	Implementation-TensorFlow	Implementation

sklearn.datasets.make_moons(),	Nonlinear	SVM	Classification,	Exercises

sklearn.decomposition.IncrementalPCA,	Incremental	PCA

sklearn.decomposition.KernelPCA,	Kernel	PCA-Selecting	a	Kernel	and	Tuning	Hyperparameters,
Selecting	a	Kernel	and	Tuning	Hyperparameters

sklearn.decomposition.PCA,	Using	Scikit-Learn

sklearn.ensemble.AdaBoostClassifier,	AdaBoost

sklearn.ensemble.BaggingClassifier,	Bagging	and	Pasting	in	Scikit-Learn-Random	Forests

sklearn.ensemble.GradientBoostingRegressor,	Gradient	Boosting,	Gradient	Boosting-Gradient
Boosting

sklearn.ensemble.RandomForestClassifier,	The	ROC	Curve,	Multiclass	Classification,	Voting
Classifiers

sklearn.ensemble.RandomForestRegressor,	Better	Evaluation	Using	Cross-Validation,	Grid
Search-Analyze	the	Best	Models	and	Their	Errors,	Random	Forests-Extra-Trees,	Gradient
Boosting

sklearn.ensemble.VotingClassifier,	Voting	Classifiers

sklearn.externals.joblib,	Better	Evaluation	Using	Cross-Validation

sklearn.linear_model.ElasticNet,	Elastic	Net

sklearn.linear_model.Lasso,	Lasso	Regression

sklearn.linear_model.LinearRegression,	Model-based	learning-Model-based	learning,	Data
Cleaning,	Training	and	Evaluating	on	the	Training	Set,	The	Normal	Equation,	Mini-batch
Gradient	Descent,	Polynomial	Regression,	Learning	Curves-Learning	Curves

sklearn.linear_model.LogisticRegression,	Decision	Boundaries,	Decision	Boundaries,	Softmax
Regression,	Voting	Classifiers,	Selecting	a	Kernel	and	Tuning	Hyperparameters

sklearn.linear_model.Perceptron,	The	Perceptron

sklearn.linear_model.Ridge,	Ridge	Regression

sklearn.linear_model.SGDClassifier,	Training	a	Binary	Classifier

sklearn.linear_model.SGDRegressor,	Stochastic	Gradient	Descent-Mini-batch	Gradient	Descent,
Ridge	Regression,	Lasso	Regression-Early	Stopping

sklearn.manifold.LocallyLinearEmbedding,	LLE-LLE

sklearn.metrics.accuracy_score(),	Voting	Classifiers,	Out-of-Bag	Evaluation,	Training	an	MLP
with	TensorFlow’s	High-Level	API

sklearn.metrics.confusion_matrix(),	Confusion	Matrix,	Error	Analysis

sklearn.metrics.f1_score(),	Precision	and	Recall,	Multilabel	Classification

sklearn.metrics.mean_squared_error(),	Training	and	Evaluating	on	the	Training	Set-Training	and
Evaluating	on	the	Training	Set,	Evaluate	Your	System	on	the	Test	Set,	Learning	Curves,	Early
Stopping,	Gradient	Boosting-Gradient	Boosting,	Selecting	a	Kernel	and	Tuning	Hyperparameters

sklearn.metrics.precision_recall_curve(),	Precision/Recall	Tradeoff

sklearn.metrics.precision_score(),	Precision	and	Recall,	Precision/Recall	Tradeoff

sklearn.metrics.recall_score(),	Precision	and	Recall,	Precision/Recall	Tradeoff

sklearn.metrics.roc_auc_score(),	The	ROC	Curve-The	ROC	Curve

sklearn.metrics.roc_curve(),	The	ROC	Curve-The	ROC	Curve

sklearn.model_selection.cross_val_predict(),	Confusion	Matrix,	Precision/Recall	Tradeoff,	The
ROC	Curve,	Error	Analysis,	Multilabel	Classification

sklearn.model_selection.cross_val_score(),	Better	Evaluation	Using	Cross-Validation-Better
Evaluation	Using	Cross-Validation,	Measuring	Accuracy	Using	Cross-Validation-Confusion
Matrix

sklearn.model_selection.GridSearchCV,	Grid	Search-Randomized	Search,	Exercises,	Error
Analysis,	Exercises,	Selecting	a	Kernel	and	Tuning	Hyperparameters

sklearn.model_selection.StratifiedKFold,	Measuring	Accuracy	Using	Cross-Validation

sklearn.model_selection.StratifiedShuffleSplit,	Create	a	Test	Set

sklearn.model_selection.train_test_split(),	Create	a	Test	Set,	Training	and	Evaluating	on	the
Training	Set,	Learning	Curves,	Exercises,	Gradient	Boosting

sklearn.multiclass.OneVsOneClassifier,	Multiclass	Classification

sklearn.neighbors.KNeighborsClassifier,	Multilabel	Classification,	Exercises

sklearn.neighbors.KNeighborsRegressor,	Model-based	learning

sklearn.pipeline.FeatureUnion,	Transformation	Pipelines

sklearn.pipeline.Pipeline,	Transformation	Pipelines,	Learning	Curves,	Soft	Margin	Classification-
Nonlinear	SVM	Classification,	Selecting	a	Kernel	and	Tuning	Hyperparameters

sklearn.preprocessing.Imputer,	Data	Cleaning,	Transformation	Pipelines

sklearn.preprocessing.LabelBinarizer,	Handling	Text	and	Categorical	Attributes,	Transformation
Pipelines

sklearn.preprocessing.LabelEncoder,	Handling	Text	and	Categorical	Attributes

sklearn.preprocessing.OneHotEncoder,	Handling	Text	and	Categorical	Attributes

sklearn.preprocessing.PolynomialFeatures,	Polynomial	Regression-Polynomial	Regression,
Learning	Curves,	Ridge	Regression,	Nonlinear	SVM	Classification

sklearn.preprocessing.StandardScaler,	Feature	Scaling-Transformation	Pipelines,	Multiclass
Classification,	Gradient	Descent,	Ridge	Regression,	Linear	SVM	Classification,	Soft	Margin
Classification-Polynomial	Kernel,	Gaussian	RBF	Kernel,	Implementing	Gradient	Descent,
Training	an	MLP	with	TensorFlow’s	High-Level	API

sklearn.svm.LinearSVC,	Soft	Margin	Classification-Nonlinear	SVM	Classification,	Gaussian	RBF
Kernel-Computational	Complexity,	SVM	Regression,	Exercises

sklearn.svm.LinearSVR,	SVM	Regression-SVM	Regression

sklearn.svm.SVC,	Soft	Margin	Classification,	Polynomial	Kernel,	Gaussian	RBF	Kernel-
Computational	Complexity,	SVM	Regression,	Exercises,	Voting	Classifiers

sklearn.svm.SVR,	Exercises,	SVM	Regression

sklearn.tree.DecisionTreeClassifier,	Regularization	Hyperparameters,	Exercises,	Bagging	and
Pasting	in	Scikit-Learn-Out-of-Bag	Evaluation,	Random	Forests,	AdaBoost

sklearn.tree.DecisionTreeRegressor,	Training	and	Evaluating	on	the	Training	Set,	Decision
Trees,	Regression,	Gradient	Boosting-Gradient	Boosting

sklearn.tree.export_graphviz(),	Training	and	Visualizing	a	Decision	Tree

StandardScaler,	Gradient	Descent,	Implementing	Gradient	Descent,	Training	an	MLP	with
TensorFlow’s	High-Level	API

SVM	classification	classes,	Computational	Complexity

TF.Learn,	Up	and	Running	with	TensorFlow

user	guide,	Other	Resources

score(),	Data	Cleaning

search	space,	Randomized	Search,	Fine-Tuning	Neural	Network	Hyperparameters

second-order	partial	derivatives	(Hessians),	Adam	Optimization

self-organizing	maps	(SOMs),	Self-Organizing	Maps-Self-Organizing	Maps

semantic	hashing,	Exercises

semisupervised	learning,	Semisupervised	learning

sensitivity,	Confusion	Matrix,	The	ROC	Curve

sentiment	analysis,	Recurrent	Neural	Networks

separable_conv2d(),	ResNet

sequences,	Recurrent	Neural	Networks

sequence_length,	Handling	Variable	Length	Input	Sequences-Handling	Variable-Length	Output
Sequences,	An	Encoder–Decoder	Network	for	Machine	Translation

Shannon's	information	theory,	Gini	Impurity	or	Entropy?

shortcut	connections,	ResNet

show(),	Take	a	Quick	Look	at	the	Data	Structure

show_graph(),	Visualizing	the	Graph	and	Training	Curves	Using	TensorBoard

shrinkage,	Gradient	Boosting

shuffle_batch(),	Other	convenience	functions

shuffle_batch_join(),	Other	convenience	functions

sigmoid	function,	Estimating	Probabilities

sigmoid_cross_entropy_with_logits(),	TensorFlow	Implementation

similarity	function,	Adding	Similarity	Features-Adding	Similarity	Features

simulated	annealing,	Stochastic	Gradient	Descent

simulated	environments,	Introduction	to	OpenAI	Gym

(see	also	OpenAI	Gym)

Singular	Value	Decomposition	(SVD),	Principal	Components

skewed	datasets,	Measuring	Accuracy	Using	Cross-Validation

skip	connections,	Data	Augmentation,	ResNet

slack	variable,	Training	Objective

smoothing	terms,	Batch	Normalization,	AdaGrad,	Adam	Optimization,	Variational	Autoencoders

soft	margin	classification,	Soft	Margin	Classification-Soft	Margin	Classification

soft	placements,	Soft	placement

soft	voting,	Voting	Classifiers

softmax	function,	Softmax	Regression,	Multi-Layer	Perceptron	and	Backpropagation,	Training	an
MLP	with	TensorFlow’s	High-Level	API

Softmax	Regression,	Softmax	Regression-Softmax	Regression

source	ops,	Linear	Regression	with	TensorFlow,	Parallel	Execution

spam	filters,	The	Machine	Learning	Landscape-Why	Use	Machine	Learning?,	Supervised	learning

sparse	autoencoders,	Sparse	Autoencoders-TensorFlow	Implementation

sparse	matrix,	Handling	Text	and	Categorical	Attributes

sparse	models,	Lasso	Regression,	Adam	Optimization

sparse_softmax_cross_entropy_with_logits(),	Construction	Phase

sparsity	loss,	Sparse	Autoencoders

specificity,	The	ROC	Curve

speech	recognition,	Why	Use	Machine	Learning?

spurious	patterns,	Hopfield	Networks

stack(),	Static	Unrolling	Through	Time

stacked	autoencoders,	Stacked	Autoencoders-Unsupervised	Pretraining	Using	Stacked
Autoencoders

TensorFlow	implementation,	TensorFlow	Implementation

training	one-at-a-time,	Training	One	Autoencoder	at	a	Time-Training	One	Autoencoder	at	a
Time

tying	weights,	Tying	Weights-Tying	Weights

unsupervised	pretraining	with,	Unsupervised	Pretraining	Using	Stacked	Autoencoders-
Unsupervised	Pretraining	Using	Stacked	Autoencoders

visualizing	the	reconstructions,	Visualizing	the	Reconstructions-Visualizing	the	Reconstructions

stacked	denoising	autoencoders,	Visualizing	Features,	Denoising	Autoencoders

stacked	denoising	encoders,	Denoising	Autoencoders

stacked	generalization	(see	stacking)

stacking,	Stacking-Stacking

stale	gradients,	Asynchronous	updates

standard	correlation	coefficient,	Looking	for	Correlations

standard	deviation,	Select	a	Performance	Measure

standardization,	Feature	Scaling

StandardScaler,	Transformation	Pipelines,	Implementing	Gradient	Descent,	Training	an	MLP	with
TensorFlow’s	High-Level	API

state-action	values,	Markov	Decision	Processes

states	tensor,	Handling	Variable	Length	Input	Sequences

state_is_tuple,	Distributing	a	Deep	RNN	Across	Multiple	GPUs,	LSTM	Cell

static	unrolling	through	time,	Static	Unrolling	Through	Time-Static	Unrolling	Through	Time

static_rnn(),	Static	Unrolling	Through	Time-Static	Unrolling	Through	Time,	An	Encoder–Decoder

Network	for	Machine	Translation

stationary	point,	SVM	Dual	Problem-SVM	Dual	Problem

statistical	mode,	Bagging	and	Pasting

statistical	significance,	Regularization	Hyperparameters

stemming,	Exercises

step	functions,	The	Perceptron

step(),	Introduction	to	OpenAI	Gym

Stochastic	Gradient	Boosting,	Gradient	Boosting

Stochastic	Gradient	Descent	(SGD),	Stochastic	Gradient	Descent-Stochastic	Gradient	Descent,
Soft	Margin	Classification,	The	Perceptron

training,	Training	and	Cost	Function

Stochastic	Gradient	Descent	(SGD)	classifier,	Training	a	Binary	Classifier,	Ridge	Regression

stochastic	neurons,	Boltzmann	Machines

stochastic	policy,	Policy	Search

stratified	sampling,	Create	a	Test	Set-Create	a	Test	Set,	Measuring	Accuracy	Using	Cross-
Validation

stride,	Convolutional	Layer

string	kernels,	Gaussian	RBF	Kernel

string_input_producer(),	Other	convenience	functions

strong	learners,	Voting	Classifiers

subderivatives,	Online	SVMs

subgradient	vector,	Lasso	Regression

subsample,	Gradient	Boosting,	Pooling	Layer

supervised	learning,	Supervised/Unsupervised	Learning-Supervised	learning

Support	Vector	Machines	(SVMs),	Multiclass	Classification,	Support	Vector	Machines-Exercises

decision	function	and	predictions,	Decision	Function	and	Predictions-Decision	Function	and
Predictions

dual	problem,	SVM	Dual	Problem-SVM	Dual	Problem

kernelized	SVM,	Kernelized	SVM-Kernelized	SVM

linear	classification,	Linear	SVM	Classification-Soft	Margin	Classification

mechanics	of,	Under	the	Hood-Online	SVMs

nonlinear	classification,	Nonlinear	SVM	Classification-Computational	Complexity

online	SVMs,	Online	SVMs-Online	SVMs

Quadratic	Programming	(QP)	problems,	Quadratic	Programming-Quadratic	Programming

SVM	regression,	SVM	Regression-Online	SVMs

the	dual	problem,	The	Dual	Problem

training	objective,	Training	Objective-Training	Objective

support	vectors,	Linear	SVM	Classification

svd(),	Principal	Components

symbolic	differentiation,	Using	autodiff,	Symbolic	Differentiation-Numerical	Differentiation

synchronous	updates,	Synchronous	updates

T

t-Distributed	Stochastic	Neighbor	Embedding	(t-SNE),	Other	Dimensionality	Reduction	Techniques

tail	heavy,	Take	a	Quick	Look	at	the	Data	Structure

target	attributes,	Take	a	Quick	Look	at	the	Data	Structure

target_weights,	An	Encoder–Decoder	Network	for	Machine	Translation

tasks,	Multiple	Devices	Across	Multiple	Servers

Temporal	Difference	(TD)	Learning,	Temporal	Difference	Learning	and	Q-Learning-Temporal

Difference	Learning	and	Q-Learning

tensor	processing	units	(TPUs),	Installation

TensorBoard,	Up	and	Running	with	TensorFlow

TensorFlow,	Up	and	Running	with	TensorFlow-Exercises

about,	Objective	and	Approach

autodiff,	Using	autodiff-Using	autodiff,	Autodiff-Reverse-Mode	Autodiff

Batch	Normalization	with,	Implementing	Batch	Normalization	with	TensorFlow-Implementing
Batch	Normalization	with	TensorFlow

construction	phase,	Creating	Your	First	Graph	and	Running	It	in	a	Session

control	dependencies,	Control	Dependencies

convenience	functions,	Other	convenience	functions

convolutional	layers,	ResNet

convolutional	neural	networks	and,	TensorFlow	Implementation-TensorFlow	Implementation

data	parallelism	and,	TensorFlow	implementation

denoising	autoencoders,	TensorFlow	Implementation-TensorFlow	Implementation

dropout	with,	Dropout

dynamic	placer,	Placing	Operations	on	Devices

execution	phase,	Creating	Your	First	Graph	and	Running	It	in	a	Session

feeding	data	to	the	training	algorithm,	Feeding	Data	to	the	Training	Algorithm-Feeding	Data	to
the	Training	Algorithm

Gradient	Descent	with,	Implementing	Gradient	Descent-Using	an	Optimizer

graphs,	managing,	Managing	Graphs

initial	graph	creation	and	session	run,	Creating	Your	First	Graph	and	Running	It	in	a	Session-
Creating	Your	First	Graph	and	Running	It	in	a	Session

installation,	Installation

l1	and	l2	regularization	with,	ℓ1	and	ℓ2	Regularization

learning	schedules	in,	Learning	Rate	Scheduling

Linear	Regression	with,	Linear	Regression	with	TensorFlow-Linear	Regression	with	TensorFlow

max	pooling	layer	in,	Pooling	Layer

max-norm	regularization	with,	Max-Norm	Regularization

model	zoo,	Model	Zoos

modularity,	Modularity-Modularity

Momentum	optimization	in,	Momentum	optimization

name	scopes,	Name	Scopes

neural	network	policies,	Neural	Network	Policies

NLP	tutorials,	Natural	Language	Processing,	An	Encoder–Decoder	Network	for	Machine
Translation

node	value	lifecycle,	Lifecycle	of	a	Node	Value

operations	(ops),	Linear	Regression	with	TensorFlow

optimizer,	Using	an	Optimizer

overview,	Up	and	Running	with	TensorFlow-Up	and	Running	with	TensorFlow

parallel	distributed	computing	(see	parallel	distributed	computing	with	TensorFlow)

Python	API

construction,	Construction	Phase-Construction	Phase

execution,	Execution	Phase

using	the	neural	network,	Using	the	Neural	Network

queues	(see	queues)

reusing	pretrained	layers,	Reusing	a	TensorFlow	Model-Reusing	a	TensorFlow	Model

RNNs	in,	Basic	RNNs	in	TensorFlow-Handling	Variable-Length	Output	Sequences

(see	also	recurrent	neural	networks	(RNNs))

saving	and	restoring	models,	Saving	and	Restoring	Models-Saving	and	Restoring	Models

sharing	variables,	Sharing	Variables-Sharing	Variables

simple	placer,	Placing	Operations	on	Devices

sklearn.metrics.accuracy_score(),	Implementing	Batch	Normalization	with	TensorFlow

sparse	autoencoders	with,	TensorFlow	Implementation

and	stacked	autoencoders,	TensorFlow	Implementation

TensorBoard,	Visualizing	the	Graph	and	Training	Curves	Using	TensorBoard-Visualizing	the
Graph	and	Training	Curves	Using	TensorBoard

tf.abs(),	ℓ1	and	ℓ2	Regularization

tf.add(),	Modularity,	ℓ1	and	ℓ2	Regularization-ℓ1	and	ℓ2	Regularization

tf.add_n(),	Modularity-Sharing	Variables,	Sharing	Variables-Sharing	Variables

tf.add_to_collection(),	Max-Norm	Regularization

tf.assign(),	Manually	Computing	the	Gradients,	Reusing	Models	from	Other	Frameworks,	Max-
Norm	Regularization-Max-Norm	Regularization,	Chapter	9:	Up	and	Running	with	TensorFlow

tf.bfloat16,	Bandwidth	saturation

tf.bool,	Implementing	Batch	Normalization	with	TensorFlow,	Dropout

tf.cast(),	Construction	Phase,	Training	a	Sequence	Classifier

tf.clip_by_norm(),	Max-Norm	Regularization-Max-Norm	Regularization

tf.clip_by_value(),	Gradient	Clipping

tf.concat(),	Exercises,	GoogLeNet,	Neural	Network	Policies,	Policy	Gradients

tf.ConfigProto,	Managing	the	GPU	RAM,	Logging	placements-Soft	placement,	In-Graph	Versus

Between-Graph	Replication,	Chapter	12:	Distributing	TensorFlow	Across	Devices	and	Servers

tf.constant(),	Lifecycle	of	a	Node	Value-Manually	Computing	the	Gradients,	Simple	placement-
Dynamic	placement	function,	Control	Dependencies,	Opening	a	Session-Pinning	Operations
Across	Tasks

tf.constant_initializer(),	Sharing	Variables-Sharing	Variables

tf.container(),	Sharing	State	Across	Sessions	Using	Resource	Containers-Asynchronous
Communication	Using	TensorFlow	Queues,	TensorFlow	implementation-Exercises,	Chapter	9:	Up
and	Running	with	TensorFlow

tf.contrib.framework.arg_scope(),	Implementing	Batch	Normalization	with	TensorFlow,
TensorFlow	Implementation,	Variational	Autoencoders

tf.contrib.layers.batch_norm(),	Implementing	Batch	Normalization	with	TensorFlow-
Implementing	Batch	Normalization	with	TensorFlow

tf.contrib.layers.convolution2d(),	Learning	to	Play	Ms.	Pac-Man	Using	Deep	Q-Learning

tf.contrib.layers.fully_connected(),	Construction	Phase

tf.contrib.layers.l1_regularizer(),	ℓ1	and	ℓ2	Regularization,	Max-Norm	Regularization

tf.contrib.layers.l2_regularizer(),	ℓ1	and	ℓ2	Regularization,	TensorFlow	Implementation-Tying
Weights

tf.contrib.layers.variance_scaling_initializer(),	Xavier	and	He	Initialization-Xavier	and	He
Initialization,	Training	a	Sequence	Classifier,	TensorFlow	Implementation-Tying	Weights,
Variational	Autoencoders,	Neural	Network	Policies,	Policy	Gradients,	Learning	to	Play	Ms.	Pac-
Man	Using	Deep	Q-Learning

tf.contrib.learn.DNNClassifier,	Training	an	MLP	with	TensorFlow’s	High-Level	API

tf.contrib.learn.infer_real_valued_columns_from_input(),	Training	an	MLP	with	TensorFlow’s
High-Level	API

tf.contrib.rnn.BasicLSTMCell,	LSTM	Cell,	Peephole	Connections

tf.contrib.rnn.BasicRNNCell,	Static	Unrolling	Through	Time-Dynamic	Unrolling	Through	Time,
Training	a	Sequence	Classifier,	Training	to	Predict	Time	Series-Training	to	Predict	Time	Series,
Training	to	Predict	Time	Series,	Deep	RNNs-Applying	Dropout,	LSTM	Cell

tf.contrib.rnn.DropoutWrapper,	Applying	Dropout

tf.contrib.rnn.GRUCell,	GRU	Cell

tf.contrib.rnn.LSTMCell,	Peephole	Connections

tf.contrib.rnn.MultiRNNCell,	Deep	RNNs-Applying	Dropout

tf.contrib.rnn.OutputProjectionWrapper,	Training	to	Predict	Time	Series-Training	to	Predict
Time	Series

tf.contrib.rnn.RNNCell,	Distributing	a	Deep	RNN	Across	Multiple	GPUs

tf.contrib.rnn.static_rnn(),	Basic	RNNs	in	TensorFlow-Handling	Variable	Length	Input	Sequences,
An	Encoder–Decoder	Network	for	Machine	Translation-Exercises,	Chapter	14:	Recurrent
Neural	Networks-Chapter	14:	Recurrent	Neural	Networks

tf.contrib.slim	module,	Up	and	Running	with	TensorFlow,	Exercises

tf.contrib.slim.nets	module	(nets),	Exercises

tf.control_dependencies(),	Control	Dependencies

tf.decode_csv(),	Reading	the	training	data	directly	from	the	graph,	Multithreaded	readers	using	a
Coordinator	and	a	QueueRunner

tf.device(),	Simple	placement-Soft	placement,	Pinning	Operations	Across	Tasks-Sharding
Variables	Across	Multiple	Parameter	Servers,	Distributing	a	Deep	RNN	Across	Multiple	GPUs-
Distributing	a	Deep	RNN	Across	Multiple	GPUs

tf.exp(),	Variational	Autoencoders-Generating	Digits

tf.FIFOQueue,	Asynchronous	Communication	Using	TensorFlow	Queues,	Queues	of	tuples-
RandomShuffleQueue,	Reading	the	training	data	directly	from	the	graph,	Multithreaded	readers
using	a	Coordinator	and	a	QueueRunner

tf.float32,	Linear	Regression	with	TensorFlow,	Chapter	9:	Up	and	Running	with	TensorFlow

tf.get_collection(),	Reusing	a	TensorFlow	Model-Freezing	the	Lower	Layers,	ℓ1	and	ℓ2
Regularization,	Max-Norm	Regularization,	TensorFlow	Implementation,	Learning	to	Play	Ms.
Pac-Man	Using	Deep	Q-Learning

tf.get_default_graph(),	Managing	Graphs,	Visualizing	the	Graph	and	Training	Curves	Using

TensorBoard

tf.get_default_session(),	Creating	Your	First	Graph	and	Running	It	in	a	Session

tf.get_variable(),	Sharing	Variables-Sharing	Variables,	Reusing	Models	from	Other	Frameworks,
ℓ1	and	ℓ2	Regularization-Max-Norm	Regularization

tf.global_variables(),	Max-Norm	Regularization

tf.global_variables_initializer(),	Creating	Your	First	Graph	and	Running	It	in	a	Session,	Manually
Computing	the	Gradients

tf.gradients(),	Using	autodiff

tf.Graph,	Creating	Your	First	Graph	and	Running	It	in	a	Session,	Managing	Graphs,	Visualizing
the	Graph	and	Training	Curves	Using	TensorBoard,	Loading	Data	Directly	from	the	Graph,	In-
Graph	Versus	Between-Graph	Replication

tf.GraphKeys.REGULARIZATION_LOSSES,	ℓ1	and	ℓ2	Regularization,	TensorFlow
Implementation

tf.GraphKeys.TRAINABLE_VARIABLES,	Reusing	a	TensorFlow	Model-Freezing	the	Lower
Layers,	Learning	to	Play	Ms.	Pac-Man	Using	Deep	Q-Learning

tf.group(),	Learning	to	Play	Ms.	Pac-Man	Using	Deep	Q-Learning

tf.int32,	Operations	and	kernels-Queues	of	tuples,	Reading	the	training	data	directly	from	the
graph,	Handling	Variable	Length	Input	Sequences,	Training	a	Sequence	Classifier,	Word
Embeddings,	Learning	to	Play	Ms.	Pac-Man	Using	Deep	Q-Learning

tf.int64,	Construction	Phase

tf.InteractiveSession,	Creating	Your	First	Graph	and	Running	It	in	a	Session

TF.Learn,	Training	an	MLP	with	TensorFlow’s	High-Level	API

tf.log(),	TensorFlow	Implementation,	Variational	Autoencoders,	Neural	Network	Policies,	Policy
Gradients

tf.matmul(),	Linear	Regression	with	TensorFlow-Manually	Computing	the	Gradients,	Modularity,
Construction	Phase,	Basic	RNNs	in	TensorFlow,	Tying	Weights,	Training	One	Autoencoder	at	a
Time,	TensorFlow	Implementation,	TensorFlow	Implementation-TensorFlow	Implementation

tf.matrix_inverse(),	Linear	Regression	with	TensorFlow

tf.maximum(),	Modularity,	Sharing	Variables-Sharing	Variables,	Nonsaturating	Activation
Functions

tf.multinomial(),	Neural	Network	Policies,	Policy	Gradients

tf.name_scope(),	Name	Scopes,	Modularity-Sharing	Variables,	Construction	Phase,	Construction
Phase-Construction	Phase,	Training	One	Autoencoder	at	a	Time-Training	One	Autoencoder	at	a
Time

tf.nn.conv2d(),	TensorFlow	Implementation-TensorFlow	Implementation

tf.nn.dynamic_rnn(),	Static	Unrolling	Through	Time-Dynamic	Unrolling	Through	Time,	Training	a
Sequence	Classifier,	Training	to	Predict	Time	Series,	Training	to	Predict	Time	Series,	Deep
RNNs-Applying	Dropout,	An	Encoder–Decoder	Network	for	Machine	Translation-Exercises,
Chapter	14:	Recurrent	Neural	Networks-Chapter	14:	Recurrent	Neural	Networks

tf.nn.elu(),	Nonsaturating	Activation	Functions,	TensorFlow	Implementation-Tying	Weights,
Variational	Autoencoders,	Neural	Network	Policies,	Policy	Gradients

tf.nn.embedding_lookup(),	Word	Embeddings

tf.nn.in_top_k(),	Construction	Phase,	Training	a	Sequence	Classifier

tf.nn.max_pool(),	Pooling	Layer-Pooling	Layer

tf.nn.relu(),	Construction	Phase,	Training	to	Predict	Time	Series-Training	to	Predict	Time	Series,
Training	to	Predict	Time	Series,	Learning	to	Play	Ms.	Pac-Man	Using	Deep	Q-Learning

tf.nn.sigmoid_cross_entropy_with_logits(),	TensorFlow	Implementation,	Generating	Digits,	Policy
Gradients-Policy	Gradients

tf.nn.sparse_softmax_cross_entropy_with_logits(),	Construction	Phase-Construction	Phase,
Training	a	Sequence	Classifier

tf.one_hot(),	Learning	to	Play	Ms.	Pac-Man	Using	Deep	Q-Learning

tf.PaddingFIFOQueue,	PaddingFifoQueue

tf.placeholder(),	Feeding	Data	to	the	Training	Algorithm-Feeding	Data	to	the	Training	Algorithm,
Chapter	9:	Up	and	Running	with	TensorFlow

tf.placeholder_with_default(),	TensorFlow	Implementation

tf.RandomShuffleQueue,	RandomShuffleQueue,	Reading	the	training	data	directly	from	the
graph-Reading	the	training	data	directly	from	the	graph,	Multithreaded	readers	using	a
Coordinator	and	a	QueueRunner-Other	convenience	functions

tf.random_normal(),	Modularity,	Basic	RNNs	in	TensorFlow,	TensorFlow	Implementation,
Variational	Autoencoders

tf.random_uniform(),	Manually	Computing	the	Gradients,	Saving	and	Restoring	Models,	Word
Embeddings,	Chapter	9:	Up	and	Running	with	TensorFlow

tf.reduce_mean(),	Manually	Computing	the	Gradients,	Name	Scopes,	Construction	Phase-
Construction	Phase,	ℓ1	and	ℓ2	Regularization,	Training	a	Sequence	Classifier-Training	a
Sequence	Classifier,	Performing	PCA	with	an	Undercomplete	Linear	Autoencoder,	TensorFlow
Implementation,	Training	One	Autoencoder	at	a	Time,	Training	One	Autoencoder	at	a	Time,
TensorFlow	Implementation,	TensorFlow	Implementation,	Learning	to	Play	Ms.	Pac-Man	Using
Deep	Q-Learning

tf.reduce_sum(),	ℓ1	and	ℓ2	Regularization,	TensorFlow	Implementation-TensorFlow
Implementation,	Variational	Autoencoders-Generating	Digits,	Learning	to	Play	Ms.	Pac-Man
Using	Deep	Q-Learning-Learning	to	Play	Ms.	Pac-Man	Using	Deep	Q-Learning

tf.reset_default_graph(),	Managing	Graphs

tf.reshape(),	Training	to	Predict	Time	Series,	Learning	to	Play	Ms.	Pac-Man	Using	Deep	Q-
Learning

tf.RunOptions,	In-Graph	Versus	Between-Graph	Replication

tf.Session,	Creating	Your	First	Graph	and	Running	It	in	a	Session,	Chapter	9:	Up	and	Running
with	TensorFlow

tf.shape(),	TensorFlow	Implementation,	Variational	Autoencoders

tf.square(),	Manually	Computing	the	Gradients,	Name	Scopes,	Training	to	Predict	Time	Series,
Performing	PCA	with	an	Undercomplete	Linear	Autoencoder,	TensorFlow	Implementation,
Training	One	Autoencoder	at	a	Time,	Training	One	Autoencoder	at	a	Time,	TensorFlow
Implementation,	TensorFlow	Implementation,	Variational	Autoencoders-Generating	Digits,
Learning	to	Play	Ms.	Pac-Man	Using	Deep	Q-Learning

tf.stack(),	Reading	the	training	data	directly	from	the	graph,	Multithreaded	readers	using	a

Coordinator	and	a	QueueRunner,	Static	Unrolling	Through	Time

tf.string,	Reading	the	training	data	directly	from	the	graph,	Multithreaded	readers	using	a
Coordinator	and	a	QueueRunner

tf.summary.FileWriter,	Visualizing	the	Graph	and	Training	Curves	Using	TensorBoard-
Visualizing	the	Graph	and	Training	Curves	Using	TensorBoard

tf.summary.scalar(),	Visualizing	the	Graph	and	Training	Curves	Using	TensorBoard

tf.tanh(),	Basic	RNNs	in	TensorFlow

tf.TextLineReader,	Reading	the	training	data	directly	from	the	graph,	Multithreaded	readers
using	a	Coordinator	and	a	QueueRunner

tf.to_float(),	Policy	Gradients-Policy	Gradients

tf.train.AdamOptimizer,	Faster	Optimizers,	Adam	Optimization,	Training	a	Sequence	Classifier,
Training	to	Predict	Time	Series,	Performing	PCA	with	an	Undercomplete	Linear	Autoencoder,
TensorFlow	Implementation-Tying	Weights,	Training	One	Autoencoder	at	a	Time,	TensorFlow
Implementation,	Generating	Digits,	Policy	Gradients-Policy	Gradients,	Learning	to	Play	Ms.
Pac-Man	Using	Deep	Q-Learning

tf.train.ClusterSpec,	Multiple	Devices	Across	Multiple	Servers

tf.train.Coordinator,	Multithreaded	readers	using	a	Coordinator	and	a	QueueRunner-
Multithreaded	readers	using	a	Coordinator	and	a	QueueRunner

tf.train.exponential_decay(),	Learning	Rate	Scheduling

tf.train.GradientDescentOptimizer,	Using	an	Optimizer,	Construction	Phase,	Gradient	Clipping,
Faster	Optimizers,	Momentum	optimization

tf.train.MomentumOptimizer,	Using	an	Optimizer,	Momentum	optimization-Nesterov
Accelerated	Gradient,	Learning	Rate	Scheduling,	Exercises,	TensorFlow	implementation,
Chapter	10:	Introduction	to	Artificial	Neural	Networks-Chapter	11:	Training	Deep	Neural	Nets

tf.train.QueueRunner,	Multithreaded	readers	using	a	Coordinator	and	a	QueueRunner-Other
convenience	functions

tf.train.replica_device_setter(),	Sharding	Variables	Across	Multiple	Parameter	Servers-Sharing
State	Across	Sessions	Using	Resource	Containers

tf.train.RMSPropOptimizer,	RMSProp

tf.train.Saver,	Saving	and	Restoring	Models-Saving	and	Restoring	Models,	Construction	Phase,
Exercises,	Applying	Dropout,	Policy	Gradients,	Learning	to	Play	Ms.	Pac-Man	Using	Deep	Q-
Learning

tf.train.Server,	Multiple	Devices	Across	Multiple	Servers

tf.train.start_queue_runners(),	Other	convenience	functions

tf.transpose(),	Linear	Regression	with	TensorFlow-Manually	Computing	the	Gradients,	Static
Unrolling	Through	Time,	Tying	Weights

tf.truncated_normal(),	Construction	Phase

tf.unstack(),	Static	Unrolling	Through	Time-Dynamic	Unrolling	Through	Time,	Training	to
Predict	Time	Series,	Chapter	14:	Recurrent	Neural	Networks

tf.Variable,	Creating	Your	First	Graph	and	Running	It	in	a	Session,	Chapter	9:	Up	and	Running
with	TensorFlow

tf.variable_scope(),	Sharing	Variables-Sharing	Variables,	Reusing	Models	from	Other
Frameworks,	Max-Norm	Regularization-Max-Norm	Regularization,	Sharing	State	Across
Sessions	Using	Resource	Containers,	Training	a	Sequence	Classifier,	Learning	to	Play	Ms.	Pac-
Man	Using	Deep	Q-Learning

tf.zeros(),	Construction	Phase,	Basic	RNNs	in	TensorFlow,	Tying	Weights

truncated	backpropagation	through	time,	The	Difficulty	of	Training	over	Many	Time	Steps

visualizing	graph	and	training	curves,	Visualizing	the	Graph	and	Training	Curves	Using
TensorBoard-Visualizing	the	Graph	and	Training	Curves	Using	TensorBoard

TensorFlow	Serving,	One	Neural	Network	per	Device

tensorflow.contrib,	Construction	Phase

test	set,	Testing	and	Validating,	Create	a	Test	Set-Create	a	Test	Set,	MNIST

testing	and	validating,	Testing	and	Validating-Testing	and	Validating

text	attributes,	Handling	Text	and	Categorical	Attributes-Handling	Text	and	Categorical	Attributes

TextLineReader,	Reading	the	training	data	directly	from	the	graph

TF-slim,	Up	and	Running	with	TensorFlow

TF.Learn,	Up	and	Running	with	TensorFlow,	Training	an	MLP	with	TensorFlow’s	High-Level	API

thermal	equilibrium,	Boltzmann	Machines

thread	pools	(inter-op/intra-op,	in	TensorFlow,	Parallel	Execution

threshold	variable,	Sharing	Variables-Sharing	Variables

Tikhonov	regularization,	Ridge	Regression

time	series	data,	Recurrent	Neural	Networks

toarray(),	Handling	Text	and	Categorical	Attributes

tolerance	hyperparameter,	Computational	Complexity

trainable,	Reusing	a	TensorFlow	Model

training	data,	What	Is	Machine	Learning?

insufficient	quantities,	Insufficient	Quantity	of	Training	Data

irrelevant	features,	Irrelevant	Features

loading,	Loading	Data	Directly	from	the	Graph-Other	convenience	functions

nonrepresentative,	Nonrepresentative	Training	Data

overfitting,	Overfitting	the	Training	Data-Overfitting	the	Training	Data

poor	quality,	Poor-Quality	Data

underfitting,	Underfitting	the	Training	Data

training	instance,	What	Is	Machine	Learning?

training	models,	Model-based	learning,	Training	Models-Exercises

learning	curves	in,	Learning	Curves-Learning	Curves

Linear	Regression,	Training	Models,	Linear	Regression-Mini-batch	Gradient	Descent

Logistic	Regression,	Logistic	Regression-Softmax	Regression

overview,	Training	Models-Training	Models

Polynomial	Regression,	Training	Models,	Polynomial	Regression-Polynomial	Regression

training	objectives,	Training	Objective-Training	Objective

training	set,	What	Is	Machine	Learning?,	Testing	and	Validating,	Discover	and	Visualize	the	Data	to
Gain	Insights,	Prepare	the	Data	for	Machine	Learning	Algorithms,	Training	and	Evaluating	on	the
Training	Set-Training	and	Evaluating	on	the	Training	Set

cost	function	of,	Training	and	Cost	Function-Training	and	Cost	Function

shuffling,	MNIST

transfer	learning,	Reusing	Pretrained	Layers-Pretraining	on	an	Auxiliary	Task

(see	also	pretrained	layers	reuse)

transform(),	Data	Cleaning,	Transformation	Pipelines

transformation	pipelines,	Transformation	Pipelines-Select	and	Train	a	Model

transformers,	Data	Cleaning

transformers,	custom,	Custom	Transformers-Custom	Transformers

transpose(),	Static	Unrolling	Through	Time

true	negative	rate	(TNR),	The	ROC	Curve

true	positive	rate	(TPR),	Confusion	Matrix,	The	ROC	Curve

truncated	backpropagation	through	time,	The	Difficulty	of	Training	over	Many	Time	Steps

tuples,	Queues	of	tuples

tying	weights,	Tying	Weights

U

underfitting,	Underfitting	the	Training	Data,	Training	and	Evaluating	on	the	Training	Set,	Gaussian
RBF	Kernel

univariate	regression,	Frame	the	Problem

unstack(),	Static	Unrolling	Through	Time

unsupervised	learning,	Unsupervised	learning-Unsupervised	learning

anomaly	detection,	Unsupervised	learning

association	rule	learning,	Unsupervised	learning,	Unsupervised	learning

clustering,	Unsupervised	learning

dimensionality	reduction	algorithm,	Unsupervised	learning

visualization	algorithms,	Unsupervised	learning

unsupervised	pretraining,	Unsupervised	Pretraining-Unsupervised	Pretraining,	Unsupervised
Pretraining	Using	Stacked	Autoencoders-Unsupervised	Pretraining	Using	Stacked	Autoencoders

upsampling,	ResNet

utility	function,	Model-based	learning

V

validation	set,	Testing	and	Validating

Value	Iteration,	Markov	Decision	Processes

value_counts(),	Take	a	Quick	Look	at	the	Data	Structure

vanishing	gradients,	Vanishing/Exploding	Gradients	Problems

(see	also	gradients,	vanishing	and	exploding)

variables,	sharing,	Sharing	Variables-Sharing	Variables

variable_scope(),	Sharing	Variables-Sharing	Variables

variance

bias/variance	tradeoff,	Learning	Curves

variance	preservation,	Preserving	the	Variance-Preserving	the	Variance

variance_scaling_initializer(),	Xavier	and	He	Initialization

variational	autoencoders,	Variational	Autoencoders-Generating	Digits

VGGNet,	ResNet

visual	cortex,	The	Architecture	of	the	Visual	Cortex

visualization,	Visualizing	the	Graph	and	Training	Curves	Using	TensorBoard-Visualizing	the	Graph
and	Training	Curves	Using	TensorBoard

visualization	algorithms,	Unsupervised	learning-Unsupervised	learning

voice	recognition,	Convolutional	Neural	Networks

voting	classifiers,	Voting	Classifiers-Voting	Classifiers

W

warmup	phase,	Asynchronous	updates

weak	learners,	Voting	Classifiers

weight-tying,	Tying	Weights

weights,	Construction	Phase,	Reusing	Models	from	Other	Frameworks

freezing,	Freezing	the	Lower	Layers

while_loop(),	Dynamic	Unrolling	Through	Time

white	box	models,	Making	Predictions

worker,	Multiple	Devices	Across	Multiple	Servers

worker	service,	The	Master	and	Worker	Services

worker_device,	Sharding	Variables	Across	Multiple	Parameter	Servers

workspace	directory,	Get	the	Data-Download	the	Data

X

Xavier	initialization,	Vanishing/Exploding	Gradients	Problems-Xavier	and	He	Initialization

Y

YouTube,	Introduction	to	Artificial	Neural	Networks

Z

zero	padding,	Convolutional	Layer,	TensorFlow	Implementation

About	the	Author
Aurélien	Géron	is	a	Machine	Learning	consultant.	A	former	Googler,	he	led	the	YouTube	video
classification	team	from	2013	to	2016.	He	was	also	a	founder	and	CTO	of	Wifirst	from	2002	to	2012,	a
leading	Wireless	ISP	in	France;	and	a	founder	and	CTO	of	Polyconseil	in	2001,	the	firm	that	now
manages	the	electric	car	sharing	service	Autolib’.

Before	this	he	worked	as	an	engineer	in	a	variety	of	domains:	finance	(JP	Morgan	and	Société	Générale),
defense	(Canada’s	DOD),	and	healthcare	(blood	transfusion).	He	published	a	few	technical	books	(on
C++,	WiFi,	and	internet	architectures),	and	was	a	Computer	Science	lecturer	in	a	French	engineering
school.

A	few	fun	facts:	he	taught	his	three	children	to	count	in	binary	with	their	fingers	(up	to	1023),	he	studied
microbiology	and	evolutionary	genetics	before	going	into	software	engineering,	and	his	parachute	didn’t
open	on	the	second	jump.

Colophon
The	animal	on	the	cover	of	Hands-On	Machine	Learning	with	Scikit-Learn	and	TensorFlow	is	the	far
eastern	fire	salamander	(Salamandra	infraimmaculata),	an	amphibian	found	in	the	Middle	East.	They
have	black	skin	featuring	large	yellow	spots	on	their	back	and	head.	These	spots	are	a	warning	coloration
meant	to	keep	predators	at	bay.	Full-grown	salamanders	can	be	over	a	foot	in	length.

Far	eastern	fire	salamanders	live	in	subtropical	shrubland	and	forests	near	rivers	or	other	freshwater
bodies.	They	spend	most	of	their	life	on	land,	but	lay	their	eggs	in	the	water.	They	subsist	mostly	on	a	diet
of	insects,	worms,	and	small	crustaceans,	but	occasionally	eat	other	salamanders.	Males	of	the	species
have	been	known	to	live	up	to	23	years,	while	females	can	live	up	to	21	years.

Although	not	yet	endangered,	the	far	eastern	fire	salamander	population	is	in	decline.	Primary	threats
include	damming	of	rivers	(which	disrupts	the	salamander’s	breeding)	and	pollution.	They	are	also
threatened	by	the	recent	introduction	of	predatory	fish,	such	as	the	mosquitofish.	These	fish	were	intended
to	control	the	mosquito	population,	but	they	also	feed	on	young	salamanders.

Many	of	the	animals	on	O’Reilly	covers	are	endangered;	all	of	them	are	important	to	the	world.	To	learn
more	about	how	you	can	help,	go	to	animals.oreilly.com.

The	cover	image	is	from	Wood’s	Illustrated	Natural	History.	The	cover	fonts	are	URW	Typewriter	and
Guardian	Sans.	The	text	font	is	Adobe	Minion	Pro;	the	heading	font	is	Adobe	Myriad	Condensed;	and	the
code	font	is	Dalton	Maag’s	Ubuntu	Mono.

http://animals.oreilly.com

Preface
The	Machine	Learning	Tsunami

Machine	Learning	in	Your	Projects

Objective	and	Approach

Prerequisites

Roadmap

Other	Resources

Conventions	Used	in	This	Book

Using	Code	Examples

O’Reilly	Safari

How	to	Contact	Us

Acknowledgments

I.	The	Fundamentals	of	Machine	Learning

1.	The	Machine	Learning	Landscape
What	Is	Machine	Learning?

Why	Use	Machine	Learning?

Types	of	Machine	Learning	Systems
Supervised/Unsupervised	Learning

Batch	and	Online	Learning

Instance-Based	Versus	Model-Based	Learning

Main	Challenges	of	Machine	Learning
Insufficient	Quantity	of	Training	Data

Nonrepresentative	Training	Data

Poor-Quality	Data

Irrelevant	Features

Overfitting	the	Training	Data

Underfitting	the	Training	Data

Stepping	Back

Testing	and	Validating

Exercises

2.	End-to-End	Machine	Learning	Project
Working	with	Real	Data

Look	at	the	Big	Picture
Frame	the	Problem

Select	a	Performance	Measure

Check	the	Assumptions

Get	the	Data
Create	the	Workspace

Download	the	Data

Take	a	Quick	Look	at	the	Data	Structure

Create	a	Test	Set

Discover	and	Visualize	the	Data	to	Gain	Insights
Visualizing	Geographical	Data

Looking	for	Correlations

Experimenting	with	Attribute	Combinations

Prepare	the	Data	for	Machine	Learning	Algorithms
Data	Cleaning

Handling	Text	and	Categorical	Attributes

Custom	Transformers

Feature	Scaling

Transformation	Pipelines

Select	and	Train	a	Model
Training	and	Evaluating	on	the	Training	Set

Better	Evaluation	Using	Cross-Validation

Fine-Tune	Your	Model
Grid	Search

Randomized	Search

Ensemble	Methods

Analyze	the	Best	Models	and	Their	Errors

Evaluate	Your	System	on	the	Test	Set

Launch,	Monitor,	and	Maintain	Your	System

Try	It	Out!

Exercises

3.	Classification
MNIST

Training	a	Binary	Classifier

Performance	Measures
Measuring	Accuracy	Using	Cross-Validation

Confusion	Matrix

Precision	and	Recall

Precision/Recall	Tradeoff

The	ROC	Curve

Multiclass	Classification

Error	Analysis

Multilabel	Classification

Multioutput	Classification

Exercises

4.	Training	Models
Linear	Regression

The	Normal	Equation

Computational	Complexity

Gradient	Descent
Batch	Gradient	Descent

Stochastic	Gradient	Descent

Mini-batch	Gradient	Descent

Polynomial	Regression

Learning	Curves

Regularized	Linear	Models
Ridge	Regression

Lasso	Regression

Elastic	Net

Early	Stopping

Logistic	Regression
Estimating	Probabilities

Training	and	Cost	Function

Decision	Boundaries

Softmax	Regression

Exercises

5.	Support	Vector	Machines
Linear	SVM	Classification

Soft	Margin	Classification

Nonlinear	SVM	Classification
Polynomial	Kernel

Adding	Similarity	Features

Gaussian	RBF	Kernel

Computational	Complexity

SVM	Regression

Under	the	Hood
Decision	Function	and	Predictions

Training	Objective

Quadratic	Programming

The	Dual	Problem

Kernelized	SVM

Online	SVMs

Exercises

6.	Decision	Trees
Training	and	Visualizing	a	Decision	Tree

Making	Predictions

Estimating	Class	Probabilities

The	CART	Training	Algorithm

Computational	Complexity

Gini	Impurity	or	Entropy?

Regularization	Hyperparameters

Regression

Instability

Exercises

7.	Ensemble	Learning	and	Random	Forests
Voting	Classifiers

Bagging	and	Pasting
Bagging	and	Pasting	in	Scikit-Learn

Out-of-Bag	Evaluation

Random	Patches	and	Random	Subspaces

Random	Forests
Extra-Trees

Feature	Importance

Boosting
AdaBoost

Gradient	Boosting

Stacking

Exercises

8.	Dimensionality	Reduction
The	Curse	of	Dimensionality

Main	Approaches	for	Dimensionality	Reduction
Projection

Manifold	Learning

PCA
Preserving	the	Variance

Principal	Components

Projecting	Down	to	d	Dimensions

Using	Scikit-Learn

Explained	Variance	Ratio

Choosing	the	Right	Number	of	Dimensions

PCA	for	Compression

Incremental	PCA

Randomized	PCA

Kernel	PCA
Selecting	a	Kernel	and	Tuning	Hyperparameters

LLE

Other	Dimensionality	Reduction	Techniques

Exercises

II.	Neural	Networks	and	Deep	Learning

9.	Up	and	Running	with	TensorFlow
Installation

Creating	Your	First	Graph	and	Running	It	in	a	Session

Managing	Graphs

Lifecycle	of	a	Node	Value

Linear	Regression	with	TensorFlow

Implementing	Gradient	Descent
Manually	Computing	the	Gradients

Using	autodiff

Using	an	Optimizer

Feeding	Data	to	the	Training	Algorithm

Saving	and	Restoring	Models

Visualizing	the	Graph	and	Training	Curves	Using	TensorBoard

Name	Scopes

Modularity

Sharing	Variables

Exercises

10.	Introduction	to	Artificial	Neural	Networks
From	Biological	to	Artificial	Neurons

Biological	Neurons

Logical	Computations	with	Neurons

The	Perceptron

Multi-Layer	Perceptron	and	Backpropagation

Training	an	MLP	with	TensorFlow’s	High-Level	API

Training	a	DNN	Using	Plain	TensorFlow
Construction	Phase

Execution	Phase

Using	the	Neural	Network

Fine-Tuning	Neural	Network	Hyperparameters
Number	of	Hidden	Layers

Number	of	Neurons	per	Hidden	Layer

Activation	Functions

Exercises

11.	Training	Deep	Neural	Nets
Vanishing/Exploding	Gradients	Problems

Xavier	and	He	Initialization

Nonsaturating	Activation	Functions

Batch	Normalization

Gradient	Clipping

Reusing	Pretrained	Layers
Reusing	a	TensorFlow	Model

Reusing	Models	from	Other	Frameworks

Freezing	the	Lower	Layers

Caching	the	Frozen	Layers

Tweaking,	Dropping,	or	Replacing	the	Upper	Layers

Model	Zoos

Unsupervised	Pretraining

Pretraining	on	an	Auxiliary	Task

Faster	Optimizers
Momentum	optimization

Nesterov	Accelerated	Gradient

AdaGrad

RMSProp

Adam	Optimization

Learning	Rate	Scheduling

Avoiding	Overfitting	Through	Regularization
Early	Stopping

ℓ1	and	ℓ2	Regularization

Dropout

Max-Norm	Regularization

Data	Augmentation

Practical	Guidelines

Exercises

12.	Distributing	TensorFlow	Across	Devices	and	Servers
Multiple	Devices	on	a	Single	Machine

Installation

Managing	the	GPU	RAM

Placing	Operations	on	Devices

Parallel	Execution

Control	Dependencies

Multiple	Devices	Across	Multiple	Servers
Opening	a	Session

The	Master	and	Worker	Services

Pinning	Operations	Across	Tasks

Sharding	Variables	Across	Multiple	Parameter	Servers

Sharing	State	Across	Sessions	Using	Resource	Containers

Asynchronous	Communication	Using	TensorFlow	Queues

Loading	Data	Directly	from	the	Graph

Parallelizing	Neural	Networks	on	a	TensorFlow	Cluster
One	Neural	Network	per	Device

In-Graph	Versus	Between-Graph	Replication

Model	Parallelism

Data	Parallelism

Exercises

13.	Convolutional	Neural	Networks
The	Architecture	of	the	Visual	Cortex

Convolutional	Layer
Filters

Stacking	Multiple	Feature	Maps

TensorFlow	Implementation

Memory	Requirements

Pooling	Layer

CNN	Architectures
LeNet-5

AlexNet

GoogLeNet

ResNet

Exercises

14.	Recurrent	Neural	Networks
Recurrent	Neurons

Memory	Cells

Input	and	Output	Sequences

Basic	RNNs	in	TensorFlow
Static	Unrolling	Through	Time

Dynamic	Unrolling	Through	Time

Handling	Variable	Length	Input	Sequences

Handling	Variable-Length	Output	Sequences

Training	RNNs

Training	a	Sequence	Classifier

Training	to	Predict	Time	Series

Creative	RNN

Deep	RNNs
Distributing	a	Deep	RNN	Across	Multiple	GPUs

Applying	Dropout

The	Difficulty	of	Training	over	Many	Time	Steps

LSTM	Cell
Peephole	Connections

GRU	Cell

Natural	Language	Processing
Word	Embeddings

An	Encoder–Decoder	Network	for	Machine	Translation

Exercises

15.	Autoencoders
Efficient	Data	Representations

Performing	PCA	with	an	Undercomplete	Linear	Autoencoder

Stacked	Autoencoders
TensorFlow	Implementation

Tying	Weights

Training	One	Autoencoder	at	a	Time

Visualizing	the	Reconstructions

Visualizing	Features

Unsupervised	Pretraining	Using	Stacked	Autoencoders

Denoising	Autoencoders
TensorFlow	Implementation

Sparse	Autoencoders

TensorFlow	Implementation

Variational	Autoencoders
Generating	Digits

Other	Autoencoders

Exercises

16.	Reinforcement	Learning
Learning	to	Optimize	Rewards

Policy	Search

Introduction	to	OpenAI	Gym

Neural	Network	Policies

Evaluating	Actions:	The	Credit	Assignment	Problem

Policy	Gradients

Markov	Decision	Processes

Temporal	Difference	Learning	and	Q-Learning
Exploration	Policies

Approximate	Q-Learning

Learning	to	Play	Ms.	Pac-Man	Using	Deep	Q-Learning

Exercises

Thank	You!

A.	Exercise	Solutions
Chapter	1:	The	Machine	Learning	Landscape

Chapter	2:	End-to-End	Machine	Learning	Project

Chapter	3:	Classification

Chapter	4:	Training	Linear	Models

Chapter	5:	Support	Vector	Machines

Chapter	6:	Decision	Trees

Chapter	7:	Ensemble	Learning	and	Random	Forests

Chapter	8:	Dimensionality	Reduction

Chapter	9:	Up	and	Running	with	TensorFlow

Chapter	10:	Introduction	to	Artificial	Neural	Networks

Chapter	11:	Training	Deep	Neural	Nets

Chapter	12:	Distributing	TensorFlow	Across	Devices	and	Servers

Chapter	13:	Convolutional	Neural	Networks

Chapter	14:	Recurrent	Neural	Networks

Chapter	15:	Autoencoders

Chapter	16:	Reinforcement	Learning

B.	Machine	Learning	Project	Checklist
Frame	the	Problem	and	Look	at	the	Big	Picture

Get	the	Data

Explore	the	Data

Prepare	the	Data

Short-List	Promising	Models

Fine-Tune	the	System

Present	Your	Solution

Launch!

C.	SVM	Dual	Problem

D.	Autodiff
Manual	Differentiation

Symbolic	Differentiation

Numerical	Differentiation

Forward-Mode	Autodiff

Reverse-Mode	Autodiff

E.	Other	Popular	ANN	Architectures
Hopfield	Networks

Boltzmann	Machines

Restricted	Boltzmann	Machines

Deep	Belief	Nets

Self-Organizing	Maps

Index

	Preface
	The Machine Learning Tsunami
	Machine Learning in Your Projects
	Objective and Approach
	Prerequisites
	Roadmap
	Other Resources
	Conventions Used in This Book
	Using Code Examples
	O’Reilly Safari
	How to Contact Us
	Acknowledgments

	I. The Fundamentals of Machine Learning
	1. The Machine Learning Landscape
	What Is Machine Learning?
	Why Use Machine Learning?
	Types of Machine Learning Systems
	Supervised/Unsupervised Learning
	Supervised learning
	Unsupervised learning
	Semisupervised learning
	Reinforcement Learning

	Batch and Online Learning
	Batch learning
	Online learning

	Instance-Based Versus Model-Based Learning
	Instance-based learning
	Model-based learning

	Main Challenges of Machine Learning
	Insufficient Quantity of Training Data
	Nonrepresentative Training Data
	Poor-Quality Data
	Irrelevant Features
	Overfitting the Training Data
	Underfitting the Training Data
	Stepping Back

	Testing and Validating
	Exercises

	2. End-to-End Machine Learning Project
	Working with Real Data
	Look at the Big Picture
	Frame the Problem
	Select a Performance Measure
	Check the Assumptions

	Get the Data
	Create the Workspace
	Download the Data
	Take a Quick Look at the Data Structure
	Create a Test Set

	Discover and Visualize the Data to Gain Insights
	Visualizing Geographical Data
	Looking for Correlations
	Experimenting with Attribute Combinations

	Prepare the Data for Machine Learning Algorithms
	Data Cleaning
	Handling Text and Categorical Attributes
	Custom Transformers
	Feature Scaling
	Transformation Pipelines

	Select and Train a Model
	Training and Evaluating on the Training Set
	Better Evaluation Using Cross-Validation

	Fine-Tune Your Model
	Grid Search
	Randomized Search
	Ensemble Methods
	Analyze the Best Models and Their Errors
	Evaluate Your System on the Test Set

	Launch, Monitor, and Maintain Your System
	Try It Out!
	Exercises

	3. Classification
	MNIST
	Training a Binary Classifier
	Performance Measures
	Measuring Accuracy Using Cross-Validation
	Confusion Matrix
	Precision and Recall
	Precision/Recall Tradeoff
	The ROC Curve

	Multiclass Classification
	Error Analysis
	Multilabel Classification
	Multioutput Classification
	Exercises

	4. Training Models
	Linear Regression
	The Normal Equation
	Computational Complexity

	Gradient Descent
	Batch Gradient Descent
	Stochastic Gradient Descent
	Mini-batch Gradient Descent

	Polynomial Regression
	Learning Curves
	Regularized Linear Models
	Ridge Regression
	Lasso Regression
	Elastic Net
	Early Stopping

	Logistic Regression
	Estimating Probabilities
	Training and Cost Function
	Decision Boundaries
	Softmax Regression

	Exercises

	5. Support Vector Machines
	Linear SVM Classification
	Soft Margin Classification

	Nonlinear SVM Classification
	Polynomial Kernel
	Adding Similarity Features
	Gaussian RBF Kernel
	Computational Complexity

	SVM Regression
	Under the Hood
	Decision Function and Predictions
	Training Objective
	Quadratic Programming
	The Dual Problem
	Kernelized SVM
	Online SVMs

	Exercises

	6. Decision Trees
	Training and Visualizing a Decision Tree
	Making Predictions
	Estimating Class Probabilities
	The CART Training Algorithm
	Computational Complexity
	Gini Impurity or Entropy?
	Regularization Hyperparameters
	Regression
	Instability
	Exercises

	7. Ensemble Learning and Random Forests
	Voting Classifiers
	Bagging and Pasting
	Bagging and Pasting in Scikit-Learn
	Out-of-Bag Evaluation

	Random Patches and Random Subspaces
	Random Forests
	Extra-Trees
	Feature Importance

	Boosting
	AdaBoost
	Gradient Boosting

	Stacking
	Exercises

	8. Dimensionality Reduction
	The Curse of Dimensionality
	Main Approaches for Dimensionality Reduction
	Projection
	Manifold Learning

	PCA
	Preserving the Variance
	Principal Components
	Projecting Down to d Dimensions
	Using Scikit-Learn
	Explained Variance Ratio
	Choosing the Right Number of Dimensions
	PCA for Compression
	Incremental PCA
	Randomized PCA

	Kernel PCA
	Selecting a Kernel and Tuning Hyperparameters

	LLE
	Other Dimensionality Reduction Techniques
	Exercises

	II. Neural Networks and Deep Learning
	9. Up and Running with TensorFlow
	Installation
	Creating Your First Graph and Running It in a Session
	Managing Graphs
	Lifecycle of a Node Value
	Linear Regression with TensorFlow
	Implementing Gradient Descent
	Manually Computing the Gradients
	Using autodiff
	Using an Optimizer

	Feeding Data to the Training Algorithm
	Saving and Restoring Models
	Visualizing the Graph and Training Curves Using TensorBoard
	Name Scopes
	Modularity
	Sharing Variables
	Exercises

	10. Introduction to Artificial Neural Networks
	From Biological to Artificial Neurons
	Biological Neurons
	Logical Computations with Neurons
	The Perceptron
	Multi-Layer Perceptron and Backpropagation

	Training an MLP with TensorFlow’s High-Level API
	Training a DNN Using Plain TensorFlow
	Construction Phase
	Execution Phase
	Using the Neural Network

	Fine-Tuning Neural Network Hyperparameters
	Number of Hidden Layers
	Number of Neurons per Hidden Layer
	Activation Functions

	Exercises

	11. Training Deep Neural Nets
	Vanishing/Exploding Gradients Problems
	Xavier and He Initialization
	Nonsaturating Activation Functions
	Batch Normalization
	Implementing Batch Normalization with TensorFlow

	Gradient Clipping

	Reusing Pretrained Layers
	Reusing a TensorFlow Model
	Reusing Models from Other Frameworks
	Freezing the Lower Layers
	Caching the Frozen Layers
	Tweaking, Dropping, or Replacing the Upper Layers
	Model Zoos
	Unsupervised Pretraining
	Pretraining on an Auxiliary Task

	Faster Optimizers
	Momentum optimization
	Nesterov Accelerated Gradient
	AdaGrad
	RMSProp
	Adam Optimization
	Learning Rate Scheduling

	Avoiding Overfitting Through Regularization
	Early Stopping
	ℓ1 and ℓ2 Regularization
	Dropout
	Max-Norm Regularization
	Data Augmentation

	Practical Guidelines
	Exercises

	12. Distributing TensorFlow Across Devices and Servers
	Multiple Devices on a Single Machine
	Installation
	Managing the GPU RAM
	Placing Operations on Devices
	Simple placement
	Logging placements
	Dynamic placement function
	Operations and kernels
	Soft placement

	Parallel Execution
	Control Dependencies

	Multiple Devices Across Multiple Servers
	Opening a Session
	The Master and Worker Services
	Pinning Operations Across Tasks
	Sharding Variables Across Multiple Parameter Servers
	Sharing State Across Sessions Using Resource Containers
	Asynchronous Communication Using TensorFlow Queues
	Enqueuing data
	Dequeuing data
	Queues of tuples
	Closing a queue
	RandomShuffleQueue
	PaddingFifoQueue

	Loading Data Directly from the Graph
	Preload the data into a variable
	Reading the training data directly from the graph
	Multithreaded readers using a Coordinator and a QueueRunner
	Other convenience functions

	Parallelizing Neural Networks on a TensorFlow Cluster
	One Neural Network per Device
	In-Graph Versus Between-Graph Replication
	Model Parallelism
	Data Parallelism
	Synchronous updates
	Asynchronous updates
	Bandwidth saturation
	TensorFlow implementation

	Exercises

	13. Convolutional Neural Networks
	The Architecture of the Visual Cortex
	Convolutional Layer
	Filters
	Stacking Multiple Feature Maps
	TensorFlow Implementation
	Memory Requirements

	Pooling Layer
	CNN Architectures
	LeNet-5
	AlexNet
	GoogLeNet
	ResNet

	Exercises

	14. Recurrent Neural Networks
	Recurrent Neurons
	Memory Cells
	Input and Output Sequences

	Basic RNNs in TensorFlow
	Static Unrolling Through Time
	Dynamic Unrolling Through Time
	Handling Variable Length Input Sequences
	Handling Variable-Length Output Sequences

	Training RNNs
	Training a Sequence Classifier
	Training to Predict Time Series
	Creative RNN

	Deep RNNs
	Distributing a Deep RNN Across Multiple GPUs
	Applying Dropout
	The Difficulty of Training over Many Time Steps

	LSTM Cell
	Peephole Connections

	GRU Cell
	Natural Language Processing
	Word Embeddings
	An Encoder–Decoder Network for Machine Translation

	Exercises

	15. Autoencoders
	Efficient Data Representations
	Performing PCA with an Undercomplete Linear Autoencoder
	Stacked Autoencoders
	TensorFlow Implementation
	Tying Weights
	Training One Autoencoder at a Time
	Visualizing the Reconstructions
	Visualizing Features

	Unsupervised Pretraining Using Stacked Autoencoders
	Denoising Autoencoders
	TensorFlow Implementation

	Sparse Autoencoders
	TensorFlow Implementation

	Variational Autoencoders
	Generating Digits

	Other Autoencoders
	Exercises

	16. Reinforcement Learning
	Learning to Optimize Rewards
	Policy Search
	Introduction to OpenAI Gym
	Neural Network Policies
	Evaluating Actions: The Credit Assignment Problem
	Policy Gradients
	Markov Decision Processes
	Temporal Difference Learning and Q-Learning
	Exploration Policies
	Approximate Q-Learning

	Learning to Play Ms. Pac-Man Using Deep Q-Learning
	Exercises
	Thank You!

	A. Exercise Solutions
	Chapter 1: The Machine Learning Landscape
	Chapter 2: End-to-End Machine Learning Project
	Chapter 3: Classification
	Chapter 4: Training Linear Models
	Chapter 5: Support Vector Machines
	Chapter 6: Decision Trees
	Chapter 7: Ensemble Learning and Random Forests
	Chapter 8: Dimensionality Reduction
	Chapter 9: Up and Running with TensorFlow
	Chapter 10: Introduction to Artificial Neural Networks
	Chapter 11: Training Deep Neural Nets
	Chapter 12: Distributing TensorFlow Across Devices and Servers
	Chapter 13: Convolutional Neural Networks
	Chapter 14: Recurrent Neural Networks
	Chapter 15: Autoencoders
	Chapter 16: Reinforcement Learning

	B. Machine Learning Project Checklist
	Frame the Problem and Look at the Big Picture
	Get the Data
	Explore the Data
	Prepare the Data
	Short-List Promising Models
	Fine-Tune the System
	Present Your Solution
	Launch!

	C. SVM Dual Problem
	D. Autodiff
	Manual Differentiation
	Symbolic Differentiation
	Numerical Differentiation
	Forward-Mode Autodiff
	Reverse-Mode Autodiff

	E. Other Popular ANN Architectures
	Hopfield Networks
	Boltzmann Machines
	Restricted Boltzmann Machines
	Deep Belief Nets
	Self-Organizing Maps

	Index

