Designing Data-Intensive
Applications

The Big Ideas Behind Reliable, Scalable,
and Maintainable Systems

Martin Kleppmann

Beijing + Boston - Fanham - Sebastopol - Tokyo KSYRI=[ANG

Designing Data-Intensive Applications
by Martin Kleppmann

Copyright © 2017 Martin Kleppmann

Printed in the United States of America.

March 2017: First Edition

Revision History for the First Edition
2017-03-01: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781449373320 for release details.

978-1-449-37332-0
[LSI]

http://oreilly.com/safari
http://oreilly.com/catalog/errata.csp?isbn=9781449373320

Contents

Preface. ...oovn xiii
Partl. Foundations of Data Systems
1. Reliable, Scalable, and Maintainable Applications.covvviiinnnne 3
Thinking About Data Systems 4
Reliability 6
Hardware Faults 7
Software Errors 8
Human Errors 9
How Important Is Reliability? 10
Scalability 10
Describing Load 11
Describing Performance 13
Approaches for Coping with Load 17
Maintainability 18
Operability: Making Life Easy for Operations 19
Simplicity: Managing Complexity 20
Evolvability: Making Change Easy 21
Summary 22
2. Data Models and Query Languages.oovievierinnrennrennernnerennnes 27
Relational Model Versus Document Model 28
The Birth of NoSQL 29
The Object-Relational Mismatch 29
Many-to-One and Many-to-Many Relationships 33
Are Document Databases Repeating History? 36

Relational Versus Document Databases Today 38

Query Languages for Data 42
Declarative Queries on the Web 44
MapReduce Querying 46

Graph-Like Data Models 49
Property Graphs 50
The Cypher Query Language 52
Graph Queries in SQL 53
Triple-Stores and SPARQL 55
The Foundation: Datalog 60

Summary 63

. StorageandRetrieval...........ccoiiiiiiiiiii i 69

Data Structures That Power Your Database 70
Hash Indexes 72
SSTables and LSM-Trees 76
B-Trees 79
Comparing B-Trees and LSM-Trees 83
Other Indexing Structures 85

Transaction Processing or Analytics? 90
Data Warehousing 91
Stars and Snowflakes: Schemas for Analytics 93

Column-Oriented Storage 95
Column Compression 97
Sort Order in Column Storage 99
Writing to Column-Oriented Storage 101
Aggregation: Data Cubes and Materialized Views 101

Summary 103

. Encodingand Evolution............cooiiiiiiiiiiiiiiiiiiiiiiii i M

Formats for Encoding Data 112
Language-Specific Formats 113
JSON, XML, and Binary Variants 114
Thrift and Protocol Buffers 117
Avro 122
The Merits of Schemas 127

Modes of Dataflow 128
Dataflow Through Databases 129
Dataflow Through Services: REST and RPC 131
Message-Passing Dataflow 136

Summary 139

Partll. Distributed Data

5. Replication.ccvniiiii i i i e 151
Leaders and Followers 152
Synchronous Versus Asynchronous Replication 153
Setting Up New Followers 155
Handling Node Outages 156
Implementation of Replication Logs 158
Problems with Replication Lag 161
Reading Your Own Writes 162
Monotonic Reads 164
Consistent Prefix Reads 165
Solutions for Replication Lag 167
Multi-Leader Replication 168
Use Cases for Multi-Leader Replication 168
Handling Write Conflicts 171
Multi-Leader Replication Topologies 175
Leaderless Replication 177
Writing to the Database When a Node Is Down 177
Limitations of Quorum Consistency 181
Sloppy Quorums and Hinted Handoff 183
Detecting Concurrent Writes 184
Summary 192
6. Partitioning.........cooviiiiiiiiii i i i i i 199
Partitioning and Replication 200
Partitioning of Key-Value Data 201
Partitioning by Key Range 202
Partitioning by Hash of Key 203
Skewed Workloads and Relieving Hot Spots 205
Partitioning and Secondary Indexes 206
Partitioning Secondary Indexes by Document 206
Partitioning Secondary Indexes by Term 208
Rebalancing Partitions 209
Strategies for Rebalancing 210
Operations: Automatic or Manual Rebalancing 213
Request Routing 214
Parallel Query Execution 216
Summary 216
7. Transactions.ooiiiiiiiiiii e 221

The Slippery Concept of a Transaction 222

The Meaning of ACID

Single-Object and Multi-Object Operations
Weak Isolation Levels

Read Committed

Snapshot Isolation and Repeatable Read

Preventing Lost Updates

Write Skew and Phantoms
Serializability

Actual Serial Execution

Two-Phase Locking (2PL)

Serializable Snapshot Isolation (SSI)
Summary

. The Trouble with Distributed Systems.........................

Faults and Partial Failures

Cloud Computing and Supercomputing
Unreliable Networks

Network Faults in Practice

Detecting Faults

Timeouts and Unbounded Delays

Synchronous Versus Asynchronous Networks

Unreliable Clocks
Monotonic Versus Time-of-Day Clocks
Clock Synchronization and Accuracy
Relying on Synchronized Clocks
Process Pauses

Knowledge, Truth, and Lies
The Truth Is Defined by the Majority
Byzantine Faults
System Model and Reality

Summary

. Consistency and CONSENSUS.ovvvereneeenneerneennerennnns

Consistency Guarantees
Linearizability
What Makes a System Linearizable?
Relying on Linearizability
Implementing Linearizable Systems
The Cost of Linearizability
Ordering Guarantees
Ordering and Causality
Sequence Number Ordering

..............

223
228
233
234
237
242
246
251
252
257
261
266

273
274
275
277
279
280
281
284
287
288
289
291
295
300
300
304
306
310

321
322
324
325
330
332
335
339
339
343

Total Order Broadcast 348
Distributed Transactions and Consensus 352
Atomic Commit and Two-Phase Commit (2PC) 354
Distributed Transactions in Practice 360
Fault-Tolerant Consensus 364
Membership and Coordination Services 370
Summary 373
Partlll. Derived Data
10. Batch Processing. ... ovvueeenneeneenereneeenneennerenerenasennsennanens 389
Batch Processing with Unix Tools 391
Simple Log Analysis 391
The Unix Philosophy 394
MapReduce and Distributed Filesystems 397
MapReduce Job Execution 399
Reduce-Side Joins and Grouping 403
Map-Side Joins 408
The Output of Batch Workflows 411
Comparing Hadoop to Distributed Databases 414
Beyond MapReduce 419
Materialization of Intermediate State 419
Graphs and Iterative Processing 424
High-Level APIs and Languages 426
Summary 429
11, Stream Processing.c.veueeuiiunrinriieeieeneenernereeseneeneeneannns 439
Transmitting Event Streams 440
Messaging Systems 441
Partitioned Logs 446
Databases and Streams 451
Keeping Systems in Sync 452
Change Data Capture 454
Event Sourcing 457
State, Streams, and Immutability 459
Processing Streams 464
Uses of Stream Processing 465
Reasoning About Time 468
Stream Joins 472
Fault Tolerance 476
Summary 479

12. The Future of Data Systems.couireiniiriinnnierierenneerennnns. 489

Data Integration 490
Combining Specialized Tools by Deriving Data 490
Batch and Stream Processing 494

Unbundling Databases 499
Composing Data Storage Technologies 499
Designing Applications Around Dataflow 504
Observing Derived State 509

Aiming for Correctness 515
The End-to-End Argument for Databases 516
Enforcing Constraints 521
Timeliness and Integrity 524
Trust, but Verify 528

Doing the Right Thing 533
Predictive Analytics 533
Privacy and Tracking 536

Summary 543

11117 T 7 553

Preface

If you have worked in software engineering in recent years, especially in server-side
and backend systems, you have probably been bombarded with a plethora of buzz-
words relating to storage and processing of data. NoSQL! Big Datal Web-scale!
Sharding! Eventual consistency! ACID! CAP theorem! Cloud services! MapReduce!
Real-time!

In the last decade we have seen many interesting developments in databases, in dis-
tributed systems, and in the ways we build applications on top of them. There are
various driving forces for these developments:

Internet companies such as Google, Yahoo!, Amazon, Facebook, LinkedIn,
Microsoft, and Twitter are handling huge volumes of data and traffic, forcing
them to create new tools that enable them to efficiently handle such scale.

Businesses need to be agile, test hypotheses cheaply, and respond quickly to new
market insights by keeping development cycles short and data models flexible.

Free and open source software has become very successful and is now preferred
to commercial or bespoke in-house software in many environments.

CPU clock speeds are barely increasing, but multi-core processors are standard,
and networks are getting faster. This means parallelism is only going to increase.

Even if you work on a small team, you can now build systems that are distributed
across many machines and even multiple geographic regions, thanks to infra-
structure as a service (IaaS) such as Amazon Web Services.

Many services are now expected to be highly available; extended downtime due
to outages or maintenance is becoming increasingly unacceptable.

Data-intensive applications are pushing the boundaries of what is possible by making
use of these technological developments. We call an application data-intensive if data
is its primary challenge—the quantity of data, the complexity of data, or the speed at

which it is changing—as opposed to compute-intensive, where CPU cycles are the
bottleneck.

The tools and technologies that help data-intensive applications store and process
data have been rapidly adapting to these changes. New types of database systems
(“NoSQL”) have been getting lots of attention, but message queues, caches, search
indexes, frameworks for batch and stream processing, and related technologies are
very important too. Many applications use some combination of these.

The buzzwords that fill this space are a sign of enthusiasm for the new possibilities,
which is a great thing. However, as software engineers and architects, we also need to
have a technically accurate and precise understanding of the various technologies and
their trade-offs if we want to build good applications. For that understanding, we
have to dig deeper than buzzwords.

Fortunately, behind the rapid changes in technology, there are enduring principles
that remain true, no matter which version of a particular tool you are using. If you
understand those principles, you're in a position to see where each tool fits in, how to
make good use of it, and how to avoid its pitfalls. That’s where this book comes in.

The goal of this book is to help you navigate the diverse and fast-changing landscape
of technologies for processing and storing data. This book is not a tutorial for one
particular tool, nor is it a textbook full of dry theory. Instead, we will look at examples
of successful data systems: technologies that form the foundation of many popular
applications and that have to meet scalability, performance, and reliability require-
ments in production every day.

We will dig into the internals of those systems, tease apart their key algorithms, dis-
cuss their principles and the trade-offs they have to make. On this journey, we will try
to find useful ways of thinking about data systems—not just how they work, but also
why they work that way, and what questions we need to ask.

After reading this book, you will be in a great position to decide which kind of tech-
nology is appropriate for which purpose, and understand how tools can be combined
to form the foundation of a good application architecture. You won’t be ready to
build your own database storage engine from scratch, but fortunately that is rarely
necessary. You will, however, develop a good intuition for what your systems are
doing under the hood so that you can reason about their behavior, make good design
decisions, and track down any problems that may arise.

Who Should Read This Book?

If you develop applications that have some kind of server/backend for storing or pro-
cessing data, and your applications use the internet (e.g., web applications, mobile
apps, or internet-connected sensors), then this book is for you.

This book is for software engineers, software architects, and technical managers who
love to code. It is especially relevant if you need to make decisions about the architec-
ture of the systems you work on—for example, if you need to choose tools for solving
a given problem and figure out how best to apply them. But even if you have no
choice over your tools, this book will help you better understand their strengths and
weaknesses.

You should have some experience building web-based applications or network serv-
ices, and you should be familiar with relational databases and SQL. Any non-
relational databases and other data-related tools you know are a bonus, but not
required. A general understanding of common network protocols like TCP and
HTTP is helpful. Your choice of programming language or framework makes no dif-
ference for this book.

If any of the following are true for you, you’ll find this book valuable:

« You want to learn how to make data systems scalable, for example, to support
web or mobile apps with millions of users.

* You need to make applications highly available (minimizing downtime) and
operationally robust.

* You are looking for ways of making systems easier to maintain in the long run,
even as they grow and as requirements and technologies change.

» You have a natural curiosity for the way things work and want to know what
goes on inside major websites and online services. This book breaks down the
internals of various databases and data processing systems, and it’s great fun to
explore the bright thinking that went into their design.

Sometimes, when discussing scalable data systems, people make comments along the
lines of, “You’re not Google or Amazon. Stop worrying about scale and just use a
relational database.” There is truth in that statement: building for scale that you don’t
need is wasted effort and may lock you into an inflexible design. In effect, it is a form
of premature optimization. However, it’s also important to choose the right tool for
the job, and different technologies each have their own strengths and weaknesses. As
we shall see, relational databases are important but not the final word on dealing with
data.

Scope of This Book

This book does not attempt to give detailed instructions on how to install or use spe-
cific software packages or APIs, since there is already plenty of documentation for
those things. Instead we discuss the various principles and trade-offs that are funda-
mental to data systems, and we explore the different design decisions taken by differ-
ent products.

In the ebook editions we have included links to the full text of online resources. All
links were verified at the time of publication, but unfortunately links tend to break
frequently due to the nature of the web. If you come across a broken link, or if you
are reading a print copy of this book, you can look up references using a search
engine. For academic papers, you can search for the title in Google Scholar to find
open-access PDF files. Alternatively, you can find all of the references at https://
github.com/ept/ddia-references, where we maintain up-to-date links.

We look primarily at the architecture of data systems and the ways they are integrated
into data-intensive applications. This book doesn’t have space to cover deployment,
operations, security, management, and other areas—those are complex and impor-
tant topics, and we wouldn’t do them justice by making them superficial side notes in
this book. They deserve books of their own.

Many of the technologies described in this book fall within the realm of the Big Data
buzzword. However, the term “Big Data” is so overused and underdefined that it is
not useful in a serious engineering discussion. This book uses less ambiguous terms,
such as single-node versus distributed systems, or online/interactive versus offline/
batch processing systems.

This book has a bias toward free and open source software (FOSS), because reading,
modifying, and executing source code is a great way to understand how something
works in detail. Open platforms also reduce the risk of vendor lock-in. However,
where appropriate, we also discuss proprietary software (closed-source software, soft-
ware as a service, or companies’ in-house software that is only described in literature
but not released publicly).

Outline of This Book

This book is arranged into three parts:

1. In Part I, we discuss the fundamental ideas that underpin the design of data-
intensive applications. We start in Chapter 1 by discussing what we’re actually
trying to achieve: reliability, scalability, and maintainability; how we need to
think about them; and how we can achieve them. In Chapter 2 we compare sev-
eral different data models and query languages, and see how they are appropriate
to different situations. In Chapter 3 we talk about storage engines: how databases
arrange data on disk so that we can find it again efficiently. Chapter 4 turns to
formats for data encoding (serialization) and evolution of schemas over time.

2. In Part II, we move from data stored on one machine to data that is distributed
across multiple machines. This is often necessary for scalability, but brings with
it a variety of unique challenges. We first discuss replication (Chapter 5), parti-
tioning/sharding (Chapter 6), and transactions (Chapter 7). We then go into

https://github.com/ept/ddia-references
https://github.com/ept/ddia-references

more detail on the problems with distributed systems (Chapter 8) and what it
means to achieve consistency and consensus in a distributed system (Chapter 9).

3. In Part III, we discuss systems that derive some datasets from other datasets.
Derived data often occurs in heterogeneous systems: when there is no one data-
base that can do everything well, applications need to integrate several different
databases, caches, indexes, and so on. In Chapter 10 we start with a batch pro-
cessing approach to derived data, and we build upon it with stream processing in
Chapter 11. Finally, in Chapter 12 we put everything together and discuss
approaches for building reliable, scalable, and maintainable applications in the
future.

References and Further Reading

Most of what we discuss in this book has already been said elsewhere in some form or
another—in conference presentations, research papers, blog posts, code, bug trackers,
mailing lists, and engineering folklore. This book summarizes the most important
ideas from many different sources, and it includes pointers to the original literature
throughout the text. The references at the end of each chapter are a great resource if
you want to explore an area in more depth, and most of them are freely available
online.

0'Reilly Safari

Safari (formerly Safari Books Online) is a membership-based
1 training and reference platform for enterprise, government,
educators, and individuals.

Members have access to thousands of books, training videos, Learning Paths, interac-
tive tutorials, and curated playlists from over 250 publishers, including O’Reilly
Media, Harvard Business Review, Prentice Hall Professional, Addison-Wesley Pro-
fessional, Microsoft Press, Sams, Que, Peachpit Press, Adobe, Focal Press, Cisco
Press, John Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt,
Adobe Press, FT Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett,
and Course Technology, among others.

For more information, please visit http://oreilly.com/safari.

http://oreilly.com/safari
http://oreilly.com/safari

PART |
Foundations of Data Systems

The first four chapters go through the fundamental ideas that apply to all data sys-
tems, whether running on a single machine or distributed across a cluster of
machines:

1. Chapter 1 introduces the terminology and approach that we’re going to use
throughout this book. It examines what we actually mean by words like reliabil-
ity, scalability, and maintainability, and how we can try to achieve these goals.

2. Chapter 2 compares several different data models and query languages—the
most visible distinguishing factor between databases from a developer’s point of
view. We will see how different models are appropriate to different situations.

3. Chapter 3 turns to the internals of storage engines and looks at how databases lay
out data on disk. Different storage engines are optimized for different workloads,
and choosing the right one can have a huge effect on performance.

4. Chapter 4 compares various formats for data encoding (serialization) and espe-
cially examines how they fare in an environment where application requirements
change and schemas need to adapt over time.

Later, Part IT will turn to the particular issues of distributed data systems.

CHAPTER1

Reliable, Scalable, and
Maintainable Applications

The Internet was done so well that most people think of it as a natural resource like the
Pacific Ocean, rather than something that was man-made. When was the last time a tech-
nology with a scale like that was so error-free?

—Alan Kay, in interview with Dr Dobb’s Journal (2012)

Many applications today are data-intensive, as opposed to compute-intensive. Raw
CPU power is rarely a limiting factor for these applications—bigger problems are
usually the amount of data, the complexity of data, and the speed at which it is
changing.

A data-intensive application is typically built from standard building blocks that pro-
vide commonly needed functionality. For example, many applications need to:

Store data so that they, or another application, can find it again later (databases)
Remember the result of an expensive operation, to speed up reads (caches)
Allow users to search data by keyword or filter it in various ways (search indexes)

Send a message to another process, to be handled asynchronously (stream pro-
cessing)

Periodically crunch a large amount of accumulated data (batch processing)

If that sounds painfully obvious, that’s just because these data systems are such a suc-
cessful abstraction: we use them all the time without thinking too much. When build-
ing an application, most engineers wouldn’t dream of writing a new data storage
engine from scratch, because databases are a perfectly good tool for the job.

http://www.drdobbs.com/architecture-and-design/interview-with-alan-kay/240003442

But reality is not that simple. There are many database systems with different charac-
teristics, because different applications have different requirements. There are vari-
ous approaches to caching, several ways of building search indexes, and so on. When
building an application, we still need to figure out which tools and which approaches
are the most appropriate for the task at hand. And it can be hard to combine tools
when you need to do something that a single tool cannot do alone.

This book is a journey through both the principles and the practicalities of data sys-
tems, and how you can use them to build data-intensive applications. We will explore
what different tools have in common, what distinguishes them, and how they achieve
their characteristics.

In this chapter, we will start by exploring the fundamentals of what we are trying to
achieve: reliable, scalable, and maintainable data systems. We'll clarify what those
things mean, outline some ways of thinking about them, and go over the basics that
we will need for later chapters. In the following chapters we will continue layer by
layer, looking at different design decisions that need to be considered when working
on a data-intensive application.

Thinking About Data Systems

We typically think of databases, queues, caches, etc. as being very different categories
of tools. Although a database and a message queue have some superficial similarity—
both store data for some time—they have very different access patterns, which means
different performance characteristics, and thus very different implementations.

So why should we lump them all together under an umbrella term like data systems?

Many new tools for data storage and processing have emerged in recent years. They
are optimized for a variety of different use cases, and they no longer neatly fit into
traditional categories [1]. For example, there are datastores that are also used as mes-
sage queues (Redis), and there are message queues with database-like durability guar-
antees (Apache Kafka). The boundaries between the categories are becoming blurred.

Secondly, increasingly many applications now have such demanding or wide-ranging
requirements that a single tool can no longer meet all of its data processing and stor-
age needs. Instead, the work is broken down into tasks that can be performed effi-
ciently on a single tool, and those different tools are stitched together using
application code.

For example, if you have an application-managed caching layer (using Memcached
or similar), or a full-text search server (such as Elasticsearch or Solr) separate from
your main database, it is normally the application code’s responsibility to keep those
caches and indexes in sync with the main database. Figure 1-1 gives a glimpse of what
this may look like (we will go into detail in later chapters).

4 | Chapter 1:Reliable, Scalable, and Maintainable Applications

+ In-memory Client
. cache requests

Read requests Asynchronous tasks

first check if

Application code

' data is cached
. Cache misses Search
' and writes requests
; Invalidate Primary Full-text — | Message
' or update datab ind — '
: cache atabase Index —— | queue
! Capture

changes

to data Apply updates Application code

to search index

Application code

e.g.send email

“Outside world”

Figure 1-1. One possible architecture for a data system that combines several
components.

When you combine several tools in order to provide a service, the service’s interface
or application programming interface (API) usually hides those implementation
details from clients. Now you have essentially created a new, special-purpose data
system from smaller, general-purpose components. Your composite data system may
provide certain guarantees: e.g., that the cache will be correctly invalidated or upda-
ted on writes so that outside clients see consistent results. You are now not only an
application developer, but also a data system designer.

If you are designing a data system or service, a lot of tricky questions arise. How do
you ensure that the data remains correct and complete, even when things go wrong
internally? How do you provide consistently good performance to clients, even when
parts of your system are degraded? How do you scale to handle an increase in load?
What does a good API for the service look like?

There are many factors that may influence the design of a data system, including the
skills and experience of the people involved, legacy system dependencies, the time-
scale for delivery, your organization’s tolerance of different kinds of risk, regulatory
constraints, etc. Those factors depend very much on the situation.

Thinking About Data Systems | 5

In this book, we focus on three concerns that are important in most software systems:

Reliability
The system should continue to work correctly (performing the correct function at
the desired level of performance) even in the face of adversity (hardware or soft-
ware faults, and even human error). See “Reliability” on page 6.

Scalability
As the system grows (in data volume, traffic volume, or complexity), there should
be reasonable ways of dealing with that growth. See “Scalability” on page 10.

Maintainability
Over time, many different people will work on the system (engineering and oper-
ations, both maintaining current behavior and adapting the system to new use
cases), and they should all be able to work on it productively. See “Maintainabil-
ity” on page 18.

These words are often cast around without a clear understanding of what they mean.
In the interest of thoughtful engineering, we will spend the rest of this chapter
exploring ways of thinking about reliability, scalability, and maintainability. Then, in
the following chapters, we will look at various techniques, architectures, and algo-
rithms that are used in order to achieve those goals.

Reliability

Everybody has an intuitive idea of what it means for something to be reliable or unre-
liable. For software, typical expectations include:

o The application performs the function that the user expected.

o It can tolerate the user making mistakes or using the software in unexpected
ways.

o Its performance is good enough for the required use case, under the expected
load and data volume.

 The system prevents any unauthorized access and abuse.

If all those things together mean “working correctly,” then we can understand relia-
bility as meaning, roughly, “continuing to work correctly, even when things go
wrong.”

The things that can go wrong are called faults, and systems that anticipate faults and
can cope with them are called fault-tolerant or resilient. The former term is slightly
misleading: it suggests that we could make a system tolerant of every possible kind of
fault, which in reality is not feasible. If the entire planet Earth (and all servers on it)
were swallowed by a black hole, tolerance of that fault would require web hosting in

6 | Chapter 1: Reliable, Scalable, and Maintainable Applications

space—good luck getting that budget item approved. So it only makes sense to talk
about tolerating certain types of faults.

Note that a fault is not the same as a failure [2]. A fault is usually defined as one com-
ponent of the system deviating from its spec, whereas a failure is when the system as a
whole stops providing the required service to the user. It is impossible to reduce the
probability of a fault to zero; therefore it is usually best to design fault-tolerance
mechanisms that prevent faults from causing failures. In this book we cover several
techniques for building reliable systems from unreliable parts.

Counterintuitively, in such fault-tolerant systems, it can make sense to increase the
rate of faults by triggering them deliberately—for example, by randomly killing indi-
vidual processes without warning. Many critical bugs are actually due to poor error
handling [3]; by deliberately inducing faults, you ensure that the fault-tolerance
machinery is continually exercised and tested, which can increase your confidence
that faults will be handled correctly when they occur naturally. The Netflix Chaos
Monkey [4] is an example of this approach.

Although we generally prefer tolerating faults over preventing faults, there are cases
where prevention is better than cure (e.g., because no cure exists). This is the case
with security matters, for example: if an attacker has compromised a system and
gained access to sensitive data, that event cannot be undone. However, this book
mostly deals with the kinds of faults that can be cured, as described in the following
sections.

Hardware Faults

When we think of causes of system failure, hardware faults quickly come to mind.
Hard disks crash, RAM becomes faulty, the power grid has a blackout, someone
unplugs the wrong network cable. Anyone who has worked with large datacenters
can tell you that these things happen all the time when you have a lot of machines.

Hard disks are reported as having a mean time to failure (MTTF) of about 10 to 50
years [5, 6]. Thus, on a storage cluster with 10,000 disks, we should expect on average
one disk to die per day.

Our first response is usually to add redundancy to the individual hardware compo-
nents in order to reduce the failure rate of the system. Disks may be set up in a RAID
configuration, servers may have dual power supplies and hot-swappable CPUs, and
datacenters may have batteries and diesel generators for backup power. When one
component dies, the redundant component can take its place while the broken com-
ponent is replaced. This approach cannot completely prevent hardware problems
from causing failures, but it is well understood and can often keep a machine running
uninterrupted for years.

Reliability | 7

Until recently, redundancy of hardware components was sufficient for most applica-
tions, since it makes total failure of a single machine fairly rare. As long as you can
restore a backup onto a new machine fairly quickly, the downtime in case of failure is
not catastrophic in most applications. Thus, multi-machine redundancy was only
required by a small number of applications for which high availability was absolutely
essential.

However, as data volumes and applications’ computing demands have increased,
more applications have begun using larger numbers of machines, which proportion-
ally increases the rate of hardware faults. Moreover, in some cloud platforms such as
Amazon Web Services (AWY) it is fairly common for virtual machine instances to
become unavailable without warning [7], as the platforms are designed to prioritize
flexibility and elasticity' over single-machine reliability.

Hence there is a move toward systems that can tolerate the loss of entire machines, by
using software fault-tolerance techniques in preference or in addition to hardware
redundancy. Such systems also have operational advantages: a single-server system
requires planned downtime if you need to reboot the machine (to apply operating
system security patches, for example), whereas a system that can tolerate machine
failure can be patched one node at a time, without downtime of the entire system (a
rolling upgrade; see Chapter 4).

Software Errors

We usually think of hardware faults as being random and independent from each
other: one machine’s disk failing does not imply that another machine’s disk is going
to fail. There may be weak correlations (for example due to a common cause, such as
the temperature in the server rack), but otherwise it is unlikely that a large number of
hardware components will fail at the same time.

Another class of fault is a systematic error within the system [8]. Such faults are
harder to anticipate, and because they are correlated across nodes, they tend to cause
many more system failures than uncorrelated hardware faults [5]. Examples include:

o A software bug that causes every instance of an application server to crash when
given a particular bad input. For example, consider the leap second on June 30,
2012, that caused many applications to hang simultaneously due to a bug in the
Linux kernel [9].

A runaway process that uses up some shared resource—CPU time, memory, disk
space, or network bandwidth.

i. Defined in “Approaches for Coping with Load” on page 17.

8 | Chapter 1: Reliable, Scalable, and Maintainable Applications

o A service that the system depends on that slows down, becomes unresponsive, or
starts returning corrupted responses.

 Cascading failures, where a small fault in one component triggers a fault in
another component, which in turn triggers further faults [10].

The bugs that cause these kinds of software faults often lie dormant for a long time
until they are triggered by an unusual set of circumstances. In those circumstances, it
is revealed that the software is making some kind of assumption about its environ-
ment—and while that assumption is usually true, it eventually stops being true for
some reason [11].

There is no quick solution to the problem of systematic faults in software. Lots of
small things can help: carefully thinking about assumptions and interactions in the
system; thorough testing; process isolation; allowing processes to crash and restart;
measuring, monitoring, and analyzing system behavior in production. If a system is
expected to provide some guarantee (for example, in a message queue, that the num-
ber of incoming messages equals the number of outgoing messages), it can constantly
check itself while it is running and raise an alert if a discrepancy is found [12].

Human Errors

Humans design and build software systems, and the operators who keep the systems
running are also human. Even when they have the best intentions, humans are
known to be unreliable. For example, one study of large internet services found that
configuration errors by operators were the leading cause of outages, whereas hard-
ware faults (servers or network) played a role in only 10-25% of outages [13].

How do we make our systems reliable, in spite of unreliable humans? The best sys-
tems combine several approaches:

« Design systems in a way that minimizes opportunities for error. For example,
well-designed abstractions, APIs, and admin interfaces make it easy to do “the
right thing” and discourage “the wrong thing.” However, if the interfaces are too
restrictive people will work around them, negating their benefit, so this is a tricky
balance to get right.

« Decouple the places where people make the most mistakes from the places where
they can cause failures. In particular, provide fully featured non-production
sandbox environments where people can explore and experiment safely, using
real data, without affecting real users.

o Test thoroughly at all levels, from unit tests to whole-system integration tests and
manual tests [3]. Automated testing is widely used, well understood, and espe-
cially valuable for covering corner cases that rarely arise in normal operation.

Reliability | 9

« Allow quick and easy recovery from human errors, to minimize the impact in the
case of a failure. For example, make it fast to roll back configuration changes, roll
out new code gradually (so that any unexpected bugs affect only a small subset of
users), and provide tools to recompute data (in case it turns out that the old com-
putation was incorrect).

o Set up detailed and clear monitoring, such as performance metrics and error
rates. In other engineering disciplines this is referred to as telemetry. (Once a
rocket has left the ground, telemetry is essential for tracking what is happening,
and for understanding failures [14].) Monitoring can show us early warning sig-
nals and allow us to check whether any assumptions or constraints are being vio-
lated. When a problem occurs, metrics can be invaluable in diagnosing the issue.

« Implement good management practices and training—a complex and important
aspect, and beyond the scope of this book.

How Important Is Reliability?

Reliability is not just for nuclear power stations and air traffic control software—
more mundane applications are also expected to work reliably. Bugs in business
applications cause lost productivity (and legal risks if figures are reported incor-
rectly), and outages of ecommerce sites can have huge costs in terms of lost revenue
and damage to reputation.

Even in “noncritical” applications we have a responsibility to our users. Consider a
parent who stores all their pictures and videos of their children in your photo appli-
cation [15]. How would they feel if that database was suddenly corrupted? Would
they know how to restore it from a backup?

There are situations in which we may choose to sacrifice reliability in order to reduce
development cost (e.g., when developing a prototype product for an unproven mar-
ket) or operational cost (e.g., for a service with a very narrow profit margin)—but we
should be very conscious of when we are cutting corners.

Scalability

Even if a system is working reliably today, that doesn’t mean it will necessarily work
reliably in the future. One common reason for degradation is increased load: perhaps
the system has grown from 10,000 concurrent users to 100,000 concurrent users, or
from 1 million to 10 million. Perhaps it is processing much larger volumes of data
than it did before.

Scalability is the term we use to describe a system’s ability to cope with increased
load. Note, however, that it is not a one-dimensional label that we can attach to a sys-
tem: it is meaningless to say “X is scalable” or “Y doesn’t scale.” Rather, discussing

10 | Chapter 1:Reliable, Scalable, and Maintainable Applications

scalability means considering questions like “If the system grows in a particular way,
what are our options for coping with the growth?” and “How can we add computing
resources to handle the additional load?”

Describing Load

First, we need to succinctly describe the current load on the system; only then can we
discuss growth questions (what happens if our load doubles?). Load can be described
with a few numbers which we call load parameters. The best choice of parameters
depends on the architecture of your system: it may be requests per second to a web
server, the ratio of reads to writes in a database, the number of simultaneously active
users in a chat room, the hit rate on a cache, or something else. Perhaps the average
case is what matters for you, or perhaps your bottleneck is dominated by a small
number of extreme cases.

To make this idea more concrete, let’s consider Twitter as an example, using data
published in November 2012 [16]. Two of Twitter’s main operations are:

Post tweet
A user can publish a new message to their followers (4.6k requests/sec on aver-
age, over 12k requests/sec at peak).

Home timeline
A user can view tweets posted by the people they follow (300k requests/sec).

Simply handling 12,000 writes per second (the peak rate for posting tweets) would be
fairly easy. However, Twitter’s scaling challenge is not primarily due to tweet volume,
but due to fan-out’—each user follows many people, and each user is followed by
many people. There are broadly two ways of implementing these two operations:

1. Posting a tweet simply inserts the new tweet into a global collection of tweets.
When a user requests their home timeline, look up all the people they follow,
find all the tweets for each of those users, and merge them (sorted by time). In a
relational database like in Figure 1-2, you could write a query such as:

SELECT tweets.*, users.* FROM tweets
JOIN users ON tweets.sender_id = users.id
JOIN follows ON follows.followee_id = users.id
WHERE follows.follower_id = current_user

ii. A term borrowed from electronic engineering, where it describes the number of logic gate inputs that are
attached to another gate’s output. The output needs to supply enough current to drive all the attached inputs.
In transaction processing systems, we use it to describe the number of requests to other services that we need
to make in order to serve one incoming request.

Scalability | 11

2. Maintain a cache for each user’s home timeline—like a mailbox of tweets for
each recipient user (see Figure 1-3). When a user posts a tweet, look up all the
people who follow that user, and insert the new tweet into each of their home
timeline caches. The request to read the home timeline is then cheap, because its
result has been computed ahead of time.

tweets table

% currently logged-in

user: 17055506 id | sender_id text timestamp
follower id followee id 20 12 just setting up 1142974214
= - /‘ my twttr
N 17055506 /12\
follows table
users table

id screen_name profile_image

12 jack 1234567 .jpg

Figure 1-2. Simple relational schema for implementing a Twitter home timeline.

Get home timeline
(website, API) %

Fan-out: deliver tweet to
each follower (up to 31M
followers per user)

Tweets for recipient 1

User posts tweet

X

Tweets for recipient 2
»Ts .Ts Ts [“ %

Tweets for recipient 3

T3«

All tweets

T

4.6k writes/sec 345k writes/sec 300k reads/sec

Figure 1-3. Twitter’s data pipeline for delivering tweets to followers, with load parame-
ters as of November 2012 [16].

The first version of Twitter used approach 1, but the systems struggled to keep up
with the load of home timeline queries, so the company switched to approach 2. This
works better because the average rate of published tweets is almost two orders of
magnitude lower than the rate of home timeline reads, and so in this case it’s prefera-
ble to do more work at write time and less at read time.

However, the downside of approach 2 is that posting a tweet now requires a lot of
extra work. On average, a tweet is delivered to about 75 followers, so 4.6k tweets per
second become 345k writes per second to the home timeline caches. But this average
hides the fact that the number of followers per user varies wildly, and some users

12 | Chapter 1:Reliable, Scalable, and Maintainable Applications

have over 30 million followers. This means that a single tweet may result in over 30
million writes to home timelines! Doing this in a timely manner—Twitter tries to
deliver tweets to followers within five seconds—is a significant challenge.

In the example of Twitter, the distribution of followers per user (maybe weighted by
how often those users tweet) is a key load parameter for discussing scalability, since it
determines the fan-out load. Your application may have very different characteristics,
but you can apply similar principles to reasoning about its load.

The final twist of the Twitter anecdote: now that approach 2 is robustly implemented,
Twitter is moving to a hybrid of both approaches. Most users’ tweets continue to be
fanned out to home timelines at the time when they are posted, but a small number
of users with a very large number of followers (i.e., celebrities) are excepted from this
fan-out. Tweets from any celebrities that a user may follow are fetched separately and
merged with that user’s home timeline when it is read, like in approach 1. This hybrid
approach is able to deliver consistently good performance. We will revisit this exam-
ple in Chapter 12 after we have covered some more technical ground.

Describing Performance

Once you have described the load on your system, you can investigate what happens
when the load increases. You can look at it in two ways:

o When you increase a load parameter and keep the system resources (CPU, mem-
ory, network bandwidth, etc.) unchanged, how is the performance of your system
affected?

o When you increase a load parameter, how much do you need to increase the
resources if you want to keep performance unchanged?

Both questions require performance numbers, so let’s look briefly at describing the
performance of a system.

In a batch processing system such as Hadoop, we usually care about throughput—the
number of records we can process per second, or the total time it takes to run a job
on a dataset of a certain size.™ In online systems, what’s usually more important is the
service’s response time—that is, the time between a client sending a request and
receiving a response.

iii. In an ideal world, the running time of a batch job is the size of the dataset divided by the throughput. In
practice, the running time is often longer, due to skew (data not being spread evenly across worker processes)
and needing to wait for the slowest task to complete.

Scalability | 13

Latency and response time

Latency and response time are often used synonymously, but they
are not the same. The response time is what the client sees: besides
the actual time to process the request (the service time), it includes
network delays and queueing delays. Latency is the duration that a
request is waiting to be handled—during which it is latent, await-
ing service [17].

Even if you only make the same request over and over again, you'll get a slightly dif-
ferent response time on every try. In practice, in a system handling a variety of
requests, the response time can vary a lot. We therefore need to think of response
time not as a single number, but as a distribution of values that you can measure.

In Figure 1-4, each gray bar represents a request to a service, and its height shows
how long that request took. Most requests are reasonably fast, but there are occa-
sional outliers that take much longer. Perhaps the slow requests are intrinsically more
expensive, e.g., because they process more data. But even in a scenario where you'd
think all requests should take the same time, you get variation: random additional
latency could be introduced by a context switch to a background process, the loss of a
network packet and TCP retransmission, a garbage collection pause, a page fault
forcing a read from disk, mechanical vibrations in the server rack [18], or many other
causes.

response time
OOth PEICENEIIE === o r o m o e e o e e e o oo nnnonans

95tH PEICENLIIE - m e e e e e e

mean (average)

median (p50) -==*" T

requests

Figure 1-4. Illustrating mean and percentiles: response times for a sample of 100
requests to a service.

I’s common to see the average response time of a service reported. (Strictly speaking,
the term “average” doesn’t refer to any particular formula, but in practice it is usually
understood as the arithmetic mean: given n values, add up all the values, and divide
by n.) However, the mean is not a very good metric if you want to know your “typi-
cal” response time, because it doesn’t tell you how many users actually experienced
that delay.

Usually it is better to use percentiles. If you take your list of response times and sort it
from fastest to slowest, then the median is the halfway point: for example, if your

14 | Chapter 1:Reliable, Scalable, and Maintainable Applications

median response time is 200 ms, that means half your requests return in less than
200 ms, and half your requests take longer than that.

This makes the median a good metric if you want to know how long users typically
have to wait: half of user requests are served in less than the median response time,
and the other half take longer than the median. The median is also known as the 50th
percentile, and sometimes abbreviated as p50. Note that the median refers to a single
request; if the user makes several requests (over the course of a session, or because
several resources are included in a single page), the probability that at least one of
them is slower than the median is much greater than 50%.

In order to figure out how bad your outliers are, you can look at higher percentiles:
the 95th, 99th, and 99.9th percentiles are common (abbreviated p95, p99, and p999).
They are the response time thresholds at which 95%, 99%, or 99.9% of requests are
faster than that particular threshold. For example, if the 95th percentile response time
is 1.5 seconds, that means 95 out of 100 requests take less than 1.5 seconds, and 5 out
of 100 requests take 1.5 seconds or more. This is illustrated in Figure 1-4.

High percentiles of response times, also known as tail latencies, are important
because they directly affect users’ experience of the service. For example, Amazon
describes response time requirements for internal services in terms of the 99.9th per-
centile, even though it only affects 1 in 1,000 requests. This is because the customers
with the slowest requests are often those who have the most data on their accounts
because they have made many purchases—that is, they’re the most valuable custom-
ers [19]. It’s important to keep those customers happy by ensuring the website is fast
for them: Amazon has also observed that a 100 ms increase in response time reduces
sales by 1% [20], and others report that a 1-second slowdown reduces a customer sat-
isfaction metric by 16% [21, 22].

On the other hand, optimizing the 99.99th percentile (the slowest 1 in 10,000
requests) was deemed too expensive and to not yield enough benefit for Amazon’s
purposes. Reducing response times at very high percentiles is difficult because they
are easily affected by random events outside of your control, and the benefits are
diminishing.

For example, percentiles are often used in service level objectives (SLOs) and service
level agreements (SLAs), contracts that define the expected performance and availa-
bility of a service. An SLA may state that the service is considered to be up if it has a
median response time of less than 200 ms and a 99th percentile under 1 s (if the
response time is longer, it might as well be down), and the service may be required to
be up at least 99.9% of the time. These metrics set expectations for clients of the ser-
vice and allow customers to demand a refund if the SLA is not met.

Queueing delays often account for a large part of the response time at high percen-
tiles. As a server can only process a small number of things in parallel (limited, for

Scalability | 15

example, by its number of CPU cores), it only takes a small number of slow requests
to hold up the processing of subsequent requests—an effect sometimes known as
head-of-line blocking. Even if those subsequent requests are fast to process on the
server, the client will see a slow overall response time due to the time waiting for the
prior request to complete. Due to this effect, it is important to measure response
times on the client side.

When generating load artificially in order to test the scalability of a system, the load-
generating client needs to keep sending requests independently of the response time.
If the client waits for the previous request to complete before sending the next one,
that behavior has the effect of artificially keeping the queues shorter in the test than
they would be in reality, which skews the measurements [23].

Percentiles in Practice

High percentiles become especially important in backend services that are called mul-
tiple times as part of serving a single end-user request. Even if you make the calls in
parallel, the end-user request still needs to wait for the slowest of the parallel calls to
complete. It takes just one slow call to make the entire end-user request slow, as illus-
trated in Figure 1-5. Even if only a small percentage of backend calls are slow, the
chance of getting a slow call increases if an end-user request requires multiple back-
end calls, and so a higher proportion of end-user requests end up being slow (an
effect known as tail latency amplification [24]).

If you want to add response time percentiles to the monitoring dashboards for your
services, you need to efficiently calculate them on an ongoing basis. For example, you
may want to keep a rolling window of response times of requests in the last 10
minutes. Every minute, you calculate the median and various percentiles over the val-
ues in that window and plot those metrics on a graph.

The naive implementation is to keep a list of response times for all requests within the
time window and to sort that list every minute. If that is too inefficient for you, there
are algorithms that can calculate a good approximation of percentiles at minimal
CPU and memory cost, such as forward decay [25], t-digest [26], or HdrHistogram
[27]. Beware that averaging percentiles, e.g., to reduce the time resolution or to com-
bine data from several machines, is mathematically meaningless—the right way of
aggregating response time data is to add the histograms [28].

16 | Chapter 1:Reliable, Scalable, and Maintainable Applications

End-user request

92 ms
76 ms

103 ms
143 ms

86 ms
487 ms
133 ms

Web application

92 ms 76 103 ms v 143 ms 86 m: 487 ms 133 ms
’ Backend 1 ‘ ‘ Backend 2 ‘ ‘ Backend 3 ‘ ‘ Backend 4 ‘ Backend 5 | ’ Backend 6 ‘ Backend 7

0 0 0 0 0 0 o0

Figure 1-5. When several backend calls are needed to serve a request, it takes just a sin-
gle slow backend request to slow down the entire end-user request.

Approaches for Coping with Load

Now that we have discussed the parameters for describing load and metrics for meas-
uring performance, we can start discussing scalability in earnest: how do we maintain
good performance even when our load parameters increase by some amount?

An architecture that is appropriate for one level of load is unlikely to cope with 10
times that load. If you are working on a fast-growing service, it is therefore likely that
you will need to rethink your architecture on every order of magnitude load increase
—or perhaps even more often than that.

People often talk of a dichotomy between scaling up (vertical scaling, moving to a
more powerful machine) and scaling out (horizontal scaling, distributing the load
across multiple smaller machines). Distributing load across multiple machines is also
known as a shared-nothing architecture. A system that can run on a single machine is
often simpler, but high-end machines can become very expensive, so very intensive
workloads often can’t avoid scaling out. In reality, good architectures usually involve
a pragmatic mixture of approaches: for example, using several fairly powerful
machines can still be simpler and cheaper than a large number of small virtual
machines.

Some systems are elastic, meaning that they can automatically add computing resour-
ces when they detect a load increase, whereas other systems are scaled manually (a
human analyzes the capacity and decides to add more machines to the system). An
elastic system can be useful if load is highly unpredictable, but manually scaled sys-
tems are simpler and may have fewer operational surprises (see “Rebalancing Parti-
tions” on page 209).

Scalability | 17

While distributing stateless services across multiple machines is fairly straightfor-
ward, taking stateful data systems from a single node to a distributed setup can intro-
duce a lot of additional complexity. For this reason, common wisdom until recently
was to keep your database on a single node (scale up) until scaling cost or high-
availability requirements forced you to make it distributed.

As the tools and abstractions for distributed systems get better, this common wisdom
may change, at least for some kinds of applications. It is conceivable that distributed
data systems will become the default in the future, even for use cases that don’t han-
dle large volumes of data or traffic. Over the course of the rest of this book we will
cover many kinds of distributed data systems, and discuss how they fare not just in
terms of scalability, but also ease of use and maintainability.

The architecture of systems that operate at large scale is usually highly specific to the
application—there is no such thing as a generic, one-size-fits-all scalable architecture
(informally known as magic scaling sauce). The problem may be the volume of reads,
the volume of writes, the volume of data to store, the complexity of the data, the
response time requirements, the access patterns, or (usually) some mixture of all of
these plus many more issues.

For example, a system that is designed to handle 100,000 requests per second, each
1 kB in size, looks very different from a system that is designed for 3 requests per
minute, each 2 GB in size—even though the two systems have the same data through-
put.

An architecture that scales well for a particular application is built around assump-
tions of which operations will be common and which will be rare—the load parame-
ters. If those assumptions turn out to be wrong, the engineering effort for scaling is at
best wasted, and at worst counterproductive. In an early-stage startup or an unpro-
ven product it’s usually more important to be able to iterate quickly on product fea-
tures than it is to scale to some hypothetical future load.

Even though they are specific to a particular application, scalable architectures are
nevertheless usually built from general-purpose building blocks, arranged in familiar
patterns. In this book we discuss those building blocks and patterns.

Maintainability

It is well known that the majority of the cost of software is not in its initial develop-
ment, but in its ongoing maintenance—fixing bugs, keeping its systems operational,
investigating failures, adapting it to new platforms, modifying it for new use cases,
repaying technical debt, and adding new features.

Yet, unfortunately, many people working on software systems dislike maintenance of
so-called legacy systems—perhaps it involves fixing other people’s mistakes, or work-

18 | Chapter 1:Reliable, Scalable, and Maintainable Applications

ing with platforms that are now outdated, or systems that were forced to do things
they were never intended for. Every legacy system is unpleasant in its own way, and
so it is difficult to give general recommendations for dealing with them.

However, we can and should design software in such a way that it will hopefully min-
imize pain during maintenance, and thus avoid creating legacy software ourselves. To
this end, we will pay particular attention to three design principles for software
systems:

Operability
Make it easy for operations teams to keep the system running smoothly.

Simplicity
Make it easy for new engineers to understand the system, by removing as much
complexity as possible from the system. (Note this is not the same as simplicity
of the user interface.)

Evolvability
Make it easy for engineers to make changes to the system in the future, adapting
it for unanticipated use cases as requirements change. Also known as extensibil-
ity, modifiability, or plasticity.

As previously with reliability and scalability, there are no easy solutions for achieving
these goals. Rather, we will try to think about systems with operability, simplicity,
and evolvability in mind.

Operability: Making Life Easy for Operations

It has been suggested that “good operations can often work around the limitations of
bad (or incomplete) software, but good software cannot run reliably with bad opera-
tions” [12]. While some aspects of operations can and should be automated, it is still
up to humans to set up that automation in the first place and to make sure it’s work-
ing correctly.

Operations teams are vital to keeping a software system running smoothly. A good
operations team typically is responsible for the following, and more [29]:

+ Monitoring the health of the system and quickly restoring service if it goes into a
bad state

o Tracking down the cause of problems, such as system failures or degraded per-
formance

 Keeping software and platforms up to date, including security patches

+ Keeping tabs on how different systems affect each other, so that a problematic
change can be avoided before it causes damage

Maintainability | 19

o Anticipating future problems and solving them before they occur (e.g., capacity
planning)
o Establishing good practices and tools for deployment, configuration manage-

ment, and more

o Performing complex maintenance tasks, such as moving an application from one
platform to another

» Maintaining the security of the system as configuration changes are made

« Defining processes that make operations predictable and help keep the produc-
tion environment stable

 Preserving the organization’s knowledge about the system, even as individual
people come and go

Good operability means making routine tasks easy, allowing the operations team to
focus their efforts on high-value activities. Data systems can do various things to
make routine tasks easy, including:

o Providing visibility into the runtime behavior and internals of the system, with
good monitoring

« Providing good support for automation and integration with standard tools

« Avoiding dependency on individual machines (allowing machines to be taken
down for maintenance while the system as a whole continues running uninter-
rupted)

 Providing good documentation and an easy-to-understand operational model
(“If I do X, Y will happen”)

« Providing good default behavior, but also giving administrators the freedom to
override defaults when needed

o Self-healing where appropriate, but also giving administrators manual control
over the system state when needed

« Exhibiting predictable behavior, minimizing surprises

Simplicity: Managing Complexity

Small software projects can have delightfully simple and expressive code, but as
projects get larger, they often become very complex and difficult to understand. This
complexity slows down everyone who needs to work on the system, further increas-
ing the cost of maintenance. A software project mired in complexity is sometimes
described as a big ball of mud [30].

20 | Chapter 1:Reliable, Scalable, and Maintainable Applications

There are various possible symptoms of complexity: explosion of the state space, tight
coupling of modules, tangled dependencies, inconsistent naming and terminology,
hacks aimed at solving performance problems, special-casing to work around issues
elsewhere, and many more. Much has been said on this topic already [31, 32, 33].

When complexity makes maintenance hard, budgets and schedules are often over-
run. In complex software, there is also a greater risk of introducing bugs when mak-
ing a change: when the system is harder for developers to understand and reason
about, hidden assumptions, unintended consequences, and unexpected interactions
are more easily overlooked. Conversely, reducing complexity greatly improves the
maintainability of software, and thus simplicity should be a key goal for the systems
we build.

Making a system simpler does not necessarily mean reducing its functionality; it can
also mean removing accidental complexity. Moseley and Marks [32] define complex-
ity as accidental if it is not inherent in the problem that the software solves (as seen
by the users) but arises only from the implementation.

One of the best tools we have for removing accidental complexity is abstraction. A
good abstraction can hide a great deal of implementation detail behind a clean,
simple-to-understand facade. A good abstraction can also be used for a wide range of
different applications. Not only is this reuse more efficient than reimplementing a
similar thing multiple times, but it also leads to higher-quality software, as quality
improvements in the abstracted component benefit all applications that use it.

For example, high-level programming languages are abstractions that hide machine
code, CPU registers, and syscalls. SQL is an abstraction that hides complex on-disk
and in-memory data structures, concurrent requests from other clients, and inconsis-
tencies after crashes. Of course, when programming in a high-level language, we are
still using machine code; we are just not using it directly, because the programming
language abstraction saves us from having to think about it.

However, finding good abstractions is very hard. In the field of distributed systems,
although there are many good algorithms, it is much less clear how we should be
packaging them into abstractions that help us keep the complexity of the system at a
manageable level.

Throughout this book, we will keep our eyes open for good abstractions that allow us
to extract parts of a large system into well-defined, reusable components.

Evolvability: Making Change Easy

It’s extremely unlikely that your system’s requirements will remain unchanged for-
ever. They are much more likely to be in constant flux: you learn new facts, previ-
ously unanticipated use cases emerge, business priorities change, users request new

Maintainability | 21

features, new platforms replace old platforms, legal or regulatory requirements
change, growth of the system forces architectural changes, etc.

In terms of organizational processes, Agile working patterns provide a framework for
adapting to change. The Agile community has also developed technical tools and pat-
terns that are helpful when developing software in a frequently changing environ-
ment, such as test-driven development (TDD) and refactoring.

Most discussions of these Agile techniques focus on a fairly small, local scale (a cou-
ple of source code files within the same application). In this book, we search for ways
of increasing agility on the level of a larger data system, perhaps consisting of several
different applications or services with different characteristics. For example, how
would you “refactor” Twitter’s architecture for assembling home timelines (“Describ-
ing Load” on page 11) from approach 1 to approach 2?

The ease with which you can modify a data system, and adapt it to changing require-
ments, is closely linked to its simplicity and its abstractions: simple and easy-to-
understand systems are usually easier to modify than complex ones. But since this is
such an important idea, we will use a different word to refer to agility on a data sys-
tem level: evolvability [34].

Summary

In this chapter, we have explored some fundamental ways of thinking about data-
intensive applications. These principles will guide us through the rest of the book,
where we dive into deep technical detail.

An application has to meet various requirements in order to be useful. There are
functional requirements (what it should do, such as allowing data to be stored,
retrieved, searched, and processed in various ways), and some nonfunctional require-
ments (general properties like security, reliability, compliance, scalability, compatibil-
ity, and maintainability). In this chapter we discussed reliability, scalability, and
maintainability in detail.

Reliability means making systems work correctly, even when faults occur. Faults can
be in hardware (typically random and uncorrelated), software (bugs are typically sys-
tematic and hard to deal with), and humans (who inevitably make mistakes from
time to time). Fault-tolerance techniques can hide certain types of faults from the end
user.

Scalability means having strategies for keeping performance good, even when load
increases. In order to discuss scalability, we first need ways of describing load and
performance quantitatively. We briefly looked at Twitter’s home timelines as an
example of describing load, and response time percentiles as a way of measuring per-

22 | Chapter 1:Reliable, Scalable, and Maintainable Applications

formance. In a scalable system, you can add processing capacity in order to remain
reliable under high load.

Maintainability has many facets, but in essence it’s about making life better for the
engineering and operations teams who need to work with the system. Good abstrac-
tions can help reduce complexity and make the system easier to modify and adapt for
new use cases. Good operability means having good visibility into the system’s health,
and having effective ways of managing it.

There is unfortunately no easy fix for making applications reliable, scalable, or main-
tainable. However, there are certain patterns and techniques that keep reappearing in
different kinds of applications. In the next few chapters we will take a look at some
examples of data systems and analyze how they work toward those goals.

Later in the book, in Part III, we will look at patterns for systems that consist of sev-
eral components working together, such as the one in Figure 1-1.

References

[1] Michael Stonebraker and Ugur Cetintemel: ““One Size Fits All: An Idea Whose
Time Has Come and Gone,” at 21st International Conference on Data Engineering
(ICDE), April 2005.

[2] Walter L. Heimerdinger and Charles B. Weinstock: “A Conceptual Framework
for System Fault Tolerance,” Technical Report CMU/SEI-92-TR-033, Software Engi-
neering Institute, Carnegie Mellon University, October 1992.

[3] Ding Yuan, Yu Luo, Xin Zhuang, et al.: “Simple Testing Can Prevent Most Criti-
cal Failures: An Analysis of Production Failures in Distributed Data-Intensive Sys-
tems,” at 11th USENIX Symposium on Operating Systems Design and Implementation
(OSDI), October 2014.

[4] Yury Izrailevsky and Ariel Tseitlin: “The Netflix Simian Army,” techblog.net-
flix.com, July 19, 2011.

[5] Daniel Ford, Francois Labelle, Florentina I. Popovici, et al.: “Availability in Glob-
ally Distributed Storage Systems,” at 9th USENIX Symposium on Operating Systems
Design and Implementation (OSDI), October 2010.

[6] Brian Beach: “Hard Drive Reliability Update - Sep 2014,” backblaze.com, Septem-
ber 23, 2014.

[7] Laurie Voss: “AWS: The Good, the Bad and the Ugly,” blog.awe.sm, December 18,
2012.

Summary | 23

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.68.9136&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.68.9136&rep=rep1&type=pdf
http://www.sei.cmu.edu/reports/92tr033.pdf
http://www.sei.cmu.edu/reports/92tr033.pdf
https://www.usenix.org/system/files/conference/osdi14/osdi14-paper-yuan.pdf
https://www.usenix.org/system/files/conference/osdi14/osdi14-paper-yuan.pdf
https://www.usenix.org/system/files/conference/osdi14/osdi14-paper-yuan.pdf
http://techblog.netflix.com/2011/07/netflix-simian-army.html
http://research.google.com/pubs/archive/36737.pdf
http://research.google.com/pubs/archive/36737.pdf
https://www.backblaze.com/blog/hard-drive-reliability-update-september-2014/
https://web.archive.org/web/20160429075023/http://blog.awe.sm/2012/12/18/aws-the-good-the-bad-and-the-ugly/

[8] Haryadi S. Gunawi, Mingzhe Hao, Tanakorn Leesatapornwongsa, et al.: “What
Bugs Live in the Cloud?,” at 5th ACM Symposium on Cloud Computing (SoCC),
November 2014. doi:10.1145/2670979.2670986

[9] Nelson Minar: “Leap Second Crashes Half the Internet,” somebits.com, July 3,
2012.

[10] Amazon Web Services: “Summary of the Amazon EC2 and Amazon RDS Ser-
vice Disruption in the US East Region,” aws.amazon.com, April 29, 2011.

[11] Richard I. Cook: “How Complex Systems Fail,” Cognitive Technologies Labora-
tory, April 2000.

[12] Jay Kreps: “Getting Real About Distributed System Reliability,” blog.empathy-
box.com, March 19, 2012.

[13] David Oppenheimer, Archana Ganapathi, and David A. Patterson: “Why Do
Internet Services Fail, and What Can Be Done About It?,” at 4th USENIX Symposium
on Internet Technologies and Systems (USITS), March 2003.

[14] Nathan Marz: “Principles of Software Engineering, Part 1,” nathanmarz.com,
April 2, 2013.

[15] Michael Jurewitz: “The Human Impact of Bugs,” jury.me, March 15, 2013.
[16] Raffi Krikorian: “Timelines at Scale,” at QCon San Francisco, November 2012.

[17] Martin Fowler: Patterns of Enterprise Application Architecture. Addison Wesley,
2002. ISBN: 978-0-321-12742-6

[18] Kelly Sommers: “After all that run around, what caused 500ms disk latency even
when we replaced physical server?” twitter.com, November 13, 2014.

[19] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, et al.: “Dynamo: Ama-
zon’s Highly Available Key-Value Store,” at 21st ACM Symposium on Operating Sys-
tems Principles (SOSP), October 2007.

[20] Greg Linden: “Make Data Useful,” slides from presentation at Stanford Univer-
sity Data Mining class (CS345), December 2006.

[21] Tammy Everts: “The Real Cost of Slow Time vs Downtime,” webperformanceto-
day.com, November 12, 2014.

[22] Jake Brutlag: “Speed Matters for Google Web Search,” googleresearch.blog-
spot.co.uk, June 22, 2009.

[23] Tyler Treat: “Everything You Know About Latency Is Wrong,” bravenew-
geek.com, December 12, 2015.

24 | Chapter 1: Reliable, Scalable, and Maintainable Applications

http://ucare.cs.uchicago.edu/pdf/socc14-cbs.pdf
http://ucare.cs.uchicago.edu/pdf/socc14-cbs.pdf
http://dx.doi.org/10.1145/2670979.2670986
http://www.somebits.com/weblog/tech/bad/leap-second-2012.html
http://aws.amazon.com/message/65648/
http://aws.amazon.com/message/65648/
http://web.mit.edu/2.75/resources/random/How%20Complex%20Systems%20Fail.pdf
http://blog.empathybox.com/post/19574936361/getting-real-about-distributed-system-reliability
http://static.usenix.org/legacy/events/usits03/tech/full_papers/oppenheimer/oppenheimer.pdf
http://static.usenix.org/legacy/events/usits03/tech/full_papers/oppenheimer/oppenheimer.pdf
http://nathanmarz.com/blog/principles-of-software-engineering-part-1.html
http://jury.me/blog/2013/3/14/the-human-impact-of-bugs
http://www.infoq.com/presentations/Twitter-Timeline-Scalability
https://twitter.com/kellabyte/status/532930540777635840
https://twitter.com/kellabyte/status/532930540777635840
http://www.allthingsdistributed.com/files/amazon-dynamo-sosp2007.pdf
http://www.allthingsdistributed.com/files/amazon-dynamo-sosp2007.pdf
http://glinden.blogspot.co.uk/2006/12/slides-from-my-talk-at-stanford.html
http://www.webperformancetoday.com/2014/11/12/real-cost-slow-time-vs-downtime-slides/
http://googleresearch.blogspot.co.uk/2009/06/speed-matters.html
http://bravenewgeek.com/everything-you-know-about-latency-is-wrong/

[24] Jeftrey Dean and Luiz André Barroso: “The Tail at Scale,” Communications of the
ACM, volume 56, number 2, pages 74-80, February 2013. doi:
10.1145/2408776.2408794

[25] Graham Cormode, Vladislav Shkapenyuk, Divesh Srivastava, and Bojian Xu:
“Forward Decay: A Practical Time Decay Model for Streaming Systems,” at 25th
IEEE International Conference on Data Engineering (ICDE), March 2009.

[26] Ted Dunning and Otmar Ertl: “Computing Extremely Accurate Quantiles Using
t-Digests,” github.com, March 2014.

[27] Gil Tene: “HdrHistogram,” hdrhistogram.org.

[28] Baron Schwartz: “Why Percentiles Don’t Work the Way You Think,” vividcor-
tex.com, December 7, 2015.

[29] James Hamilton: “On Designing and Deploying Internet-Scale Services,” at 21st
Large Installation System Administration Conference (LISA), November 2007.

[30] Brian Foote and Joseph Yoder: “Big Ball of Mud,” at 4th Conference on Pattern
Languages of Programs (PLoP), September 1997.

[31] Frederick P Brooks: “No Silver Bullet — Essence and Accident in Software Engi-
neering,” in The Mythical Man-Month, Anniversary edition, Addison-Wesley, 1995.
ISBN: 978-0-201-83595-3

[32] Ben Moseley and Peter Marks: “Out of the Tar Pit,” at BCS Software Practice
Advancement (SPA), 2006.

[33] Rich Hickey: “Simple Made Easy,” at Strange Loop, September 2011.

[34] Hongyu Pei Breivold, Ivica Crnkovic, and Peter J. Eriksson: “Analyzing Software
Evolvability,” at 32nd Annual IEEE International Computer Software and Applica-
tions Conference (COMPSAC), July 2008. doi:10.1109/COMPSAC.2008.50

Summary | 25

http://cacm.acm.org/magazines/2013/2/160173-the-tail-at-scale/fulltext
http://dx.doi.org/10.1145/2408776.2408794
http://dx.doi.org/10.1145/2408776.2408794
http://dimacs.rutgers.edu/~graham/pubs/papers/fwddecay.pdf
https://github.com/tdunning/t-digest
https://github.com/tdunning/t-digest
http://www.hdrhistogram.org/
https://www.vividcortex.com/blog/why-percentiles-dont-work-the-way-you-think
https://www.usenix.org/legacy/events/lisa07/tech/full_papers/hamilton/hamilton.pdf
http://www.laputan.org/pub/foote/mud.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.93.8928
http://www.infoq.com/presentations/Simple-Made-Easy
http://www.mrtc.mdh.se/publications/1478.pdf
http://www.mrtc.mdh.se/publications/1478.pdf
http://dx.doi.org/10.1109/COMPSAC.2008.50

CHAPTER 2
Data Models and Query Languages

The limits of my language mean the limits of my world.
—Ludwig Wittgenstein, Tractatus Logico-Philosophicus (1922)

Data models are perhaps the most important part of developing software, because
they have such a profound effect: not only on how the software is written, but also on
how we think about the problem that we are solving.

Most applications are built by layering one data model on top of another. For each
layer, the key question is: how is it represented in terms of the next-lower layer? For
example:

1. As an application developer, you look at the real world (in which there are peo-
ple, organizations, goods, actions, money flows, sensors, etc.) and model it in
terms of objects or data structures, and APIs that manipulate those data struc-
tures. Those structures are often specific to your application.

2. When you want to store those data structures, you express them in terms of a
general-purpose data model, such as JSON or XML documents, tables in a rela-
tional database, or a graph model.

3. The engineers who built your database software decided on a way of representing
that JSON/XML/relational/graph data in terms of bytes in memory, on disk, or
on a network. The representation may allow the data to be queried, searched,
manipulated, and processed in various ways.

4. On yet lower levels, hardware engineers have figured out how to represent bytes
in terms of electrical currents, pulses of light, magnetic fields, and more.

In a complex application there may be more intermediary levels, such as APIs built
upon APIs, but the basic idea is still the same: each layer hides the complexity of the
layers below it by providing a clean data model. These abstractions allow different

27

groups of people—for example, the engineers at the database vendor and the applica-
tion developers using their database—to work together effectively.

There are many different kinds of data models, and every data model embodies
assumptions about how it is going to be used. Some kinds of usage are easy and some
are not supported; some operations are fast and some perform badly; some data
transformations feel natural and some are awkward.

It can take a lot of effort to master just one data model (think how many books there
are on relational data modeling). Building software is hard enough, even when work-
ing with just one data model and without worrying about its inner workings. But
since the data model has such a profound effect on what the software above it can
and can’t do, it’s important to choose one that is appropriate to the application.

In this chapter we will look at a range of general-purpose data models for data stor-
age and querying (point 2 in the preceding list). In particular, we will compare the
relational model, the document model, and a few graph-based data models. We will
also look at various query languages and compare their use cases. In Chapter 3 we
will discuss how storage engines work; that is, how these data models are actually
implemented (point 3 in the list).

Relational Model Versus Document Model

The best-known data model today is probably that of SQL, based on the relational
model proposed by Edgar Codd in 1970 [1]: data is organized into relations (called
tables in SQL), where each relation is an unordered collection of tuples (rows in SQL).

The relational model was a theoretical proposal, and many people at the time
doubted whether it could be implemented efficiently. However, by the mid-1980s,
relational database management systems (RDBMSes) and SQL had become the tools
of choice for most people who needed to store and query data with some kind of reg-
ular structure. The dominance of relational databases has lasted around 25-30 years
—an eternity in computing history.

The roots of relational databases lie in business data processing, which was performed
on mainframe computers in the 1960s and *70s. The use cases appear mundane from
today’s perspective: typically transaction processing (entering sales or banking trans-
actions, airline reservations, stock-keeping in warehouses) and batch processing (cus-
tomer invoicing, payroll, reporting).

Other databases at that time forced application developers to think a lot about the
internal representation of the data in the database. The goal of the relational model
was to hide that implementation detail behind a cleaner interface.

Over the years, there have been many competing approaches to data storage and
querying. In the 1970s and early 1980s, the network model and the hierarchical model

28 | Chapter2: Data Models and Query Languages

were the main alternatives, but the relational model came to dominate them. Object
databases came and went again in the late 1980s and early 1990s. XML databases
appeared in the early 2000s, but have only seen niche adoption. Each competitor to
the relational model generated a lot of hype in its time, but it never lasted [2].

As computers became vastly more powerful and networked, they started being used
for increasingly diverse purposes. And remarkably, relational databases turned out to
generalize very well, beyond their original scope of business data processing, to a
broad variety of use cases. Much of what you see on the web today is still powered by
relational databases, be it online publishing, discussion, social networking, ecom-
merce, games, software-as-a-service productivity applications, or much more.

The Birth of NoSQL

Now, in the 2010s, NoSQL is the latest attempt to overthrow the relational model’s
dominance. The name “NoSQL” is unfortunate, since it doesn’t actually refer to any
particular technology—it was originally intended simply as a catchy Twitter hashtag
for a meetup on open source, distributed, nonrelational databases in 2009 [3]. Never-
theless, the term struck a nerve and quickly spread through the web startup commu-
nity and beyond. A number of interesting database systems are now associated with
the #NoSQL hashtag, and it has been retroactively reinterpreted as Not Only SQL [4].

There are several driving forces behind the adoption of NoSQL databases, including:

« A need for greater scalability than relational databases can easily achieve, includ-
ing very large datasets or very high write throughput

o A widespread preference for free and open source software over commercial
database products

« Specialized query operations that are not well supported by the relational model

« Frustration with the restrictiveness of relational schemas, and a desire for a more
dynamic and expressive data model [5]

Different applications have different requirements, and the best choice of technology
for one use case may well be different from the best choice for another use case. It
therefore seems likely that in the foreseeable future, relational databases will continue
to be used alongside a broad variety of nonrelational datastores—an idea that is
sometimes called polyglot persistence [3].

The Object-Relational Mismatch

Most application development today is done in object-oriented programming lan-
guages, which leads to a common criticism of the SQL data model: if data is stored in
relational tables, an awkward translation layer is required between the objects in the

Relational Model Versus Document Model | 29

application code and the database model of tables, rows, and columns. The discon-
nect between the models is sometimes called an impedance mismatch.!

Object-relational mapping (ORM) frameworks like ActiveRecord and Hibernate
reduce the amount of boilerplate code required for this translation layer, but they
can’t completely hide the differences between the two models.

For example, Figure 2-1 illustrates how a résumé (a LinkedIn profile) could be
expressed in a relational schema. The profile as a whole can be identified by a unique
identifier, user_id. Fields like first_name and last_name appear exactly once per
user, so they can be modeled as columns on the users table. However, most people
have had more than one job in their career (positions), and people may have varying
numbers of periods of education and any number of pieces of contact information.
There is a one-to-many relationship from the user to these items, which can be repre-
sented in various ways:

o In the traditional SQL model (prior to SQL:1999), the most common normalized
representation is to put positions, education, and contact information in separate
tables, with a foreign key reference to the users table, as in Figure 2-1.

o Later versions of the SQL standard added support for structured datatypes and
XML data; this allowed multi-valued data to be stored within a single row, with
support for querying and indexing inside those documents. These features are
supported to varying degrees by Oracle, IBM DB2, MS SQL Server, and Post-
greSQL [6, 7]. A JSON datatype is also supported by several databases, including
IBM DB2, MySQL, and PostgreSQL [8].

« A third option is to encode jobs, education, and contact info as a JSON or XML
document, store it on a text column in the database, and let the application inter-
pret its structure and content. In this setup, you typically cannot use the database
to query for values inside that encoded column.

i. A term borrowed from electronics. Every electric circuit has a certain impedance (resistance to alternating
current) on its inputs and outputs. When you connect one circuit’s output to another one’s input, the power
transfer across the connection is maximized if the output and input impedances of the two circuits match. An
impedance mismatch can lead to signal reflections and other troubles.

30 | Chapter2: Data Models and Query Languages

http://www.linkedin.com/in/williamhgates users table

user_id first_name | last_name summary
m Bill Gates L 251 Bill Gates Co-chair of ... blogger.
ﬁ‘. Greater Seattle Area | Philanthropy / region_id | industry_id photo_id
’ us:91 131 ? 57817532
Summary
Co-chair of the Bill & Melinda Gates Foundation. l regions table industries table
Chairman, Microsoft Corporation. Voracious id / region_name id industry_name
reader. Avid traveler. Active blogger. us:7 |/Greater Boston Area 43 | Financial Services
Experience us:91 %Sreater Seattle Area 48 Construction
Co-chair - Bill & Melinda Gates Foundation b 137 Philanthropy

2000 - Present

Co-founder, Chairman « Microsoft
1975 - Present

positions table
Education id user_id job_title organization
Harvard University 458) 251 Co-chair Bill & Melinda Gates F...
1973 -1975
457 251 Co-founder, Microsoft
Lakeside School, Seattle Chairman
Contact Info education table
Blog: thegatesnotes.com id user_id school_name start end
Twitter: @BillGates
807 251 Harvard University 1973 1975
806 251 Lakeside School, NULL NULL
Seattle
contact_info table
id user_id type url
155 251 blog http://thegatesnotes.com
156 251 twitter | http://twitter.com/BillGates

Figure 2-1. Representing a LinkedIn profile using a relational schema. Photo of Bill
Gates courtesy of Wikimedia Commons, Ricardo Stuckert, Agéncia Brasil.

For a data structure like a résumé, which is mostly a self-contained document, a JSON
representation can be quite appropriate: see Example 2-1. JSON has the appeal of
being much simpler than XML. Document-oriented databases like MongoDB [9],
RethinkDB [10], CouchDB [11], and Espresso [12] support this data model.

Example 2-1. Representing a LinkedIn profile as a JSON document

{
"user_id": 251,
"first_name": "Bill",
"last_name": "Gates",
"summary": "Co-chair of the Bill & Melinda Gates... Active blogger.",
"region_id": "us:91",

"industry_id": 131,
"photo_url": "/p/7/000/253/05b/308dd6e. jpg",

Relational Model Versus Document Model | 31

"positions": [
{"job_title": "Co-chair", "organization": "Bill & Melinda Gates Foundation"},
{"job_title": "Co-founder, Chairman", "organization": "Microsoft"}

1,

"education": [
{"school_name": "Harvard University", "start": 1973, "end": 1975},
{"school_name": "Lakeside School, Seattle", "start": null, "end": null}

1,
"contact_info": {
"blog": "http://thegatesnotes.com",
"twitter": "http://twitter.com/BillGates"
}
}

Some developers feel that the JSON model reduces the impedance mismatch between
the application code and the storage layer. However, as we shall see in Chapter 4,
there are also problems with JSON as a data encoding format. The lack of a schema is
often cited as an advantage; we will discuss this in “Schema flexibility in the docu-
ment model” on page 39.

The JSON representation has better locality than the multi-table schema in
Figure 2-1. If you want to fetch a profile in the relational example, you need to either
perform multiple queries (query each table by user_id) or perform a messy multi-
way join between the users table and its subordinate tables. In the JSON representa-
tion, all the relevant information is in one place, and one query is sufficient.

The one-to-many relationships from the user profile to the user’s positions, educa-
tional history, and contact information imply a tree structure in the data, and the
JSON representation makes this tree structure explicit (see Figure 2-2).

user 251

positions education

first_name
last_name
summary

edu 2

@ o c o c v £ T v £ T
= 9 = 9 = 9 £ 8 ¢ £ 8 €
E=R= =R~ E=R=] & 7 O &5 ©

I © | © | © c c
.gu .gu .gu | |

c c c = =
S5 %5 %5 3 3

< < < < <

o o o g 9

Figure 2-2. One-to-many relationships forming a tree structure.

32 | Chapter2: Data Models and Query Languages

Many-to-One and Many-to-Many Relationships

In Example 2-1 in the preceding section, region_id and industry_1id are given as
IDs, not as plain-text strings "Greater Seattle Area" and "Philanthropy". Why?

If the user interface has free-text fields for entering the region and the industry, it
makes sense to store them as plain-text strings. But there are advantages to having
standardized lists of geographic regions and industries, and letting users choose from
a drop-down list or autocompleter:

« Consistent style and spelling across profiles
« Avoiding ambiguity (e.g., if there are several cities with the same name)

« Ease of updating—the name is stored in only one place, so it is easy to update
across the board if it ever needs to be changed (e.g., change of a city name due to
political events)

o Localization support—when the site is translated into other languages, the stand-
ardized lists can be localized, so the region and industry can be displayed in the
viewer’s language

o Better search—e.g., a search for philanthropists in the state of Washington can
match this profile, because the list of regions can encode the fact that Seattle is in
Washington (which is not apparent from the string "Greater Seattle Area")

Whether you store an ID or a text string is a question of duplication. When you use
an ID, the information that is meaningful to humans (such as the word Philanthropy)
is stored in only one place, and everything that refers to it uses an ID (which only has
meaning within the database). When you store the text directly, you are duplicating
the human-meaningful information in every record that uses it.

The advantage of using an ID is that because it has no meaning to humans, it never
needs to change: the ID can remain the same, even if the information it identifies
changes. Anything that is meaningful to humans may need to change sometime in
the future—and if that information is duplicated, all the redundant copies need to be
updated. That incurs write overheads, and risks inconsistencies (where some copies
of the information are updated but others aren’t). Removing such duplication is the
key idea behind normalization in databases.”

ii. Literature on the relational model distinguishes several different normal forms, but the distinctions are of
little practical interest. As a rule of thumb, if you’re duplicating values that could be stored in just one place,
the schema is not normalized.

Relational Model Versus Document Model | 33

Database administrators and developers love to argue about nor-
malization and denormalization, but we will suspend judgment for
now. In Part III of this book we will return to this topic and explore
systematic ways of dealing with caching, denormalization, and
derived data.

Unfortunately, normalizing this data requires many-to-one relationships (many peo-
ple live in one particular region, many people work in one particular industry), which
don’t fit nicely into the document model. In relational databases, it’s normal to refer
to rows in other tables by ID, because joins are easy. In document databases, joins are
not needed for one-to-many tree structures, and support for joins is often weak.™

If the database itself does not support joins, you have to emulate a join in application
code by making multiple queries to the database. (In this case, the lists of regions and
industries are probably small and slow-changing enough that the application can
simply keep them in memory. But nevertheless, the work of making the join is shifted
from the database to the application code.)

Moreover, even if the initial version of an application fits well in a join-free docu-
ment model, data has a tendency of becoming more interconnected as features are
added to applications. For example, consider some changes we could make to the
résumé example:

Organizations and schools as entities
In the previous description, organization (the company where the user worked)
and school_name (where they studied) are just strings. Perhaps they should be
references to entities instead? Then each organization, school, or university could
have its own web page (with logo, news feed, etc.); each résumé could link to the
organizations and schools that it mentions, and include their logos and other
information (see Figure 2-3 for an example from LinkedIn).

Recommendations
Say you want to add a new feature: one user can write a recommendation for
another user. The recommendation is shown on the résumé of the user who was
recommended, together with the name and photo of the user making the recom-
mendation. If the recommender updates their photo, any recommendations they
have written need to reflect the new photo. Therefore, the recommendation
should have a reference to the author’s profile.

iii. At the time of writing, joins are supported in RethinkDB, not supported in MongoDB, and only sup-
ported in predeclared views in CouchDB.

34 | Chapter2: Data Models and Query Languages

Experience

Co-chair
Bill & Melinda Gates Foundation

Co-four ; Chairman

icrosoft{ Microsoft
75— Fres| come as you are. Do what you love. At Microsoft we help
people and businesses throughout the world realize their full

potential. We make this simple mission come to life every day
through our ... More »

& Ed| cCo.Size: 10,001+employees .
Website:

http/Awww.microsoft.com/
Ha: Grealer Seatlle Area .
Harvard | industry: Computer Software

Follow company | Careers

Figure 2-3. The company name is not just a string, but a link to a company entity.
Screenshot of linkedin.com.

Figure 2-4 illustrates how these new features require many-to-many relationships.
The data within each dotted rectangle can be grouped into one document, but the
references to organizations, schools, and other users need to be represented as refer-
ences, and require joins when queried.

© job_title

positions positions

 job_title

. user 467

education education

recommen-
dations

Figure 2-4. Extending résumés with many-to-many relationships.

Relational Model Versus Document Model | 35

Are Document Databases Repeating History?

While many-to-many relationships and joins are routinely used in relational data-
bases, document databases and NoSQL reopened the debate on how best to represent
such relationships in a database. This debate is much older than NoSQL—in fact, it
goes back to the very earliest computerized database systems.

The most popular database for business data processing in the 1970s was IBM’s Infor-
mation Management System (IMS), originally developed for stock-keeping in the
Apollo space program and first commercially released in 1968 [13]. It is still in use
and maintained today, running on OS/390 on IBM mainframes [14].

The design of IMS used a fairly simple data model called the hierarchical model,
which has some remarkable similarities to the JSON model used by document data-
bases [2]. It represented all data as a tree of records nested within records, much like
the JSON structure of Figure 2-2.

Like document databases, IMS worked well for one-to-many relationships, but it
made many-to-many relationships difficult, and it didn’t support joins. Developers
had to decide whether to duplicate (denormalize) data or to manually resolve refer-
ences from one record to another. These problems of the 1960s and ’70s were very
much like the problems that developers are running into with document databases
today [15].

Various solutions were proposed to solve the limitations of the hierarchical model.
The two most prominent were the relational model (which became SQL, and took
over the world) and the network model (which initially had a large following but
eventually faded into obscurity). The “great debate” between these two camps lasted
for much of the 1970s [2].

Since the problem that the two models were solving is still so relevant today, it’s
worth briefly revisiting this debate in today’s light.

The network model

The network model was standardized by a committee called the Conference on Data
Systems Languages (CODASYL) and implemented by several different database ven-
dors; it is also known as the CODASYL model [16].

The CODASYL model was a generalization of the hierarchical model. In the tree
structure of the hierarchical model, every record has exactly one parent; in the net-
work model, a record could have multiple parents. For example, there could be one
record for the "Greater Seattle Area" region, and every user who lived in that
region could be linked to it. This allowed many-to-one and many-to-many relation-
ships to be modeled.

36 | Chapter2: Data Models and Query Languages

The links between records in the network model were not foreign keys, but more like
pointers in a programming language (while still being stored on disk). The only way
of accessing a record was to follow a path from a root record along these chains of
links. This was called an access path.

In the simplest case, an access path could be like the traversal of a linked list: start at
the head of the list, and look at one record at a time until you find the one you want.
But in a world of many-to-many relationships, several different paths can lead to the
same record, and a programmer working with the network model had to keep track
of these different access paths in their head.

A query in CODASYL was performed by moving a cursor through the database by
iterating over lists of records and following access paths. If a record had multiple
parents (i.e., multiple incoming pointers from other records), the application code
had to keep track of all the various relationships. Even CODASYL committee mem-
bers admitted that this was like navigating around an #-dimensional data space [17].

Although manual access path selection was able to make the most efficient use of the
very limited hardware capabilities in the 1970s (such as tape drives, whose seeks are
extremely slow), the problem was that they made the code for querying and updating
the database complicated and inflexible. With both the hierarchical and the network
model, if you didn’t have a path to the data you wanted, you were in a difficult situa-
tion. You could change the access paths, but then you had to go through a lot of
handwritten database query code and rewrite it to handle the new access paths. It was
difficult to make changes to an application’s data model.

The relational model

What the relational model did, by contrast, was to lay out all the data in the open: a
relation (table) is simply a collection of tuples (rows), and that’s it. There are no laby-
rinthine nested structures, no complicated access paths to follow if you want to look
at the data. You can read any or all of the rows in a table, selecting those that match
an arbitrary condition. You can read a particular row by designating some columns
as a key and matching on those. You can insert a new row into any table without
worrying about foreign key relationships to and from other tables.”

In a relational database, the query optimizer automatically decides which parts of the
query to execute in which order, and which indexes to use. Those choices are effec-
tively the “access path,” but the big difference is that they are made automatically by

iv. Foreign key constraints allow you to restrict modifications, but such constraints are not required by the
relational model. Even with constraints, joins on foreign keys are performed at query time, whereas in
CODASYL, the join was effectively done at insert time.

Relational Model Versus Document Model | 37

the query optimizer, not by the application developer, so we rarely need to think
about them.

If you want to query your data in new ways, you can just declare a new index, and
queries will automatically use whichever indexes are most appropriate. You don’t
need to change your queries to take advantage of a new index. (See also “Query Lan-
guages for Data” on page 42.) The relational model thus made it much easier to add
new features to applications.

Query optimizers for relational databases are complicated beasts, and they have con-
sumed many years of research and development effort [18]. But a key insight of the
relational model was this: you only need to build a query optimizer once, and then all
applications that use the database can benefit from it. If you don’t have a query opti-
mizer, it’s easier to handcode the access paths for a particular query than to write a
general-purpose optimizer—but the general-purpose solution wins in the long run.

Comparison to document databases

Document databases reverted back to the hierarchical model in one aspect: storing
nested records (one-to-many relationships, like positions, education, and
contact_info in Figure 2-1) within their parent record rather than in a separate
table.

However, when it comes to representing many-to-one and many-to-many relation-
ships, relational and document databases are not fundamentally different: in both
cases, the related item is referenced by a unique identifier, which is called a foreign
key in the relational model and a document reference in the document model [9].
That identifier is resolved at read time by using a join or follow-up queries. To date,
document databases have not followed the path of CODASYL.

Relational Versus Document Databases Today

There are many differences to consider when comparing relational databases to
document databases, including their fault-tolerance properties (see Chapter 5) and
handling of concurrency (see Chapter 7). In this chapter, we will concentrate only on
the differences in the data model.

The main arguments in favor of the document data model are schema flexibility, bet-
ter performance due to locality, and that for some applications it is closer to the data
structures used by the application. The relational model counters by providing better
support for joins, and many-to-one and many-to-many relationships.

Which data model leads to simpler application code?

If the data in your application has a document-like structure (i.e., a tree of one-to-
many relationships, where typically the entire tree is loaded at once), then it’s proba-

38 | (Chapter2: Data Models and Query Languages

bly a good idea to use a document model. The relational technique of shredding—
splitting a document-like structure into multiple tables (like positions, education,
and contact_info in Figure 2-1)—can lead to cumbersome schemas and unnecessa-
rily complicated application code.

The document model has limitations: for example, you cannot refer directly to a nes-
ted item within a document, but instead you need to say something like “the second
item in the list of positions for user 251” (much like an access path in the hierarchical
model). However, as long as documents are not too deeply nested, that is not usually
a problem.

The poor support for joins in document databases may or may not be a problem,
depending on the application. For example, many-to-many relationships may never
be needed in an analytics application that uses a document database to record which
events occurred at which time [19].

However, if your application does use many-to-many relationships, the document
model becomes less appealing. It’s possible to reduce the need for joins by denormal-
izing, but then the application code needs to do additional work to keep the denor-
malized data consistent. Joins can be emulated in application code by making
multiple requests to the database, but that also moves complexity into the application
and is usually slower than a join performed by specialized code inside the database.
In such cases, using a document model can lead to significantly more complex appli-
cation code and worse performance [15].

It’s not possible to say in general which data model leads to simpler application code;
it depends on the kinds of relationships that exist between data items. For highly
interconnected data, the document model is awkward, the relational model is accept-
able, and graph models (see “Graph-Like Data Models” on page 49) are the most
natural.

Schema flexibility in the document model

Most document databases, and the JSON support in relational databases, do not
enforce any schema on the data in documents. XML support in relational databases
usually comes with optional schema validation. No schema means that arbitrary keys
and values can be added to a document, and when reading, clients have no guaran-
tees as to what fields the documents may contain.

Document databases are sometimes called schemaless, but that’s misleading, as the
code that reads the data usually assumes some kind of structure—i.e., there is an
implicit schema, but it is not enforced by the database [20]. A more accurate term is
schema-on-read (the structure of the data is implicit, and only interpreted when the
data is read), in contrast with schema-on-write (the traditional approach of relational

Relational Model Versus Document Model | 39

databases, where the schema is explicit and the database ensures all written data con-
forms to it) [21].

Schema-on-read is similar to dynamic (runtime) type checking in programming lan-
guages, whereas schema-on-write is similar to static (compile-time) type checking.
Just as the advocates of static and dynamic type checking have big debates about their
relative merits [22], enforcement of schemas in database is a contentious topic, and in
general there’s no right or wrong answer.

The difference between the approaches is particularly noticeable in situations where
an application wants to change the format of its data. For example, say you are cur-
rently storing each user’s full name in one field, and you instead want to store the
first name and last name separately [23]. In a document database, you would just
start writing new documents with the new fields and have code in the application that
handles the case when old documents are read. For example:

if (user && user.name && !user.first_name) {
// Documents written before Dec 8, 2013 don't have first_name
user.first_name = user.name.split(" ")[0];
}
On the other hand, in a “statically typed” database schema, you would typically per-
form a migration along the lines of:

ALTER TABLE users ADD COLUMN first_name text;

UPDATE users SET first_name = split_part(name, ' ', 1); -- PostgreSQL

UPDATE users SET first_name = substring_index(name, ' ', 1); -- MySQL
Schema changes have a bad reputation of being slow and requiring downtime. This
reputation is not entirely deserved: most relational database systems execute the
ALTER TABLE statement in a few milliseconds. MySQL is a notable exception—it
copies the entire table on ALTER TABLE, which can mean minutes or even hours of
downtime when altering a large table—although various tools exist to work around
this limitation [24, 25, 26].

Running the UPDATE statement on a large table is likely to be slow on any database,
since every row needs to be rewritten. If that is not acceptable, the application can
leave first_name set to its default of NULL and fill it in at read time, like it would with
a document database.

The schema-on-read approach is advantageous if the items in the collection don’t all
have the same structure for some reason (i.e., the data is heterogeneous)—for exam-
ple, because:

o There are many different types of objects, and it is not practical to put each type
of object in its own table.

40 | Chapter2: Data Models and Query Languages

o The structure of the data is determined by external systems over which you have
no control and which may change at any time.

In situations like these, a schema may hurt more than it helps, and schemaless docu-
ments can be a much more natural data model. But in cases where all records are
expected to have the same structure, schemas are a useful mechanism for document-
ing and enforcing that structure. We will discuss schemas and schema evolution in
more detail in Chapter 4.

Data locality for queries

A document is usually stored as a single continuous string, encoded as JSON, XML,
or a binary variant thereof (such as MongoDB’s BSON). If your application often
needs to access the entire document (for example, to render it on a web page), there is
a performance advantage to this storage locality. If data is split across multiple tables,
like in Figure 2-1, multiple index lookups are required to retrieve it all, which may
require more disk seeks and take more time.

The locality advantage only applies if you need large parts of the document at the
same time. The database typically needs to load the entire document, even if you
access only a small portion of it, which can be wasteful on large documents. On
updates to a document, the entire document usually needs to be rewritten—only
modifications that don’t change the encoded size of a document can easily be per-
formed in place [19]. For these reasons, it is generally recommended that you keep
documents fairly small and avoid writes that increase the size of a document [9].
These performance limitations significantly reduce the set of situations in which
document databases are useful.

It’s worth pointing out that the idea of grouping related data together for locality is
not limited to the document model. For example, Google’s Spanner database offers
the same locality properties in a relational data model, by allowing the schema to
declare that a table’s rows should be interleaved (nested) within a parent table [27].
Oracle allows the same, using a feature called multi-table index cluster tables [28].
The column-family concept in the Bigtable data model (used in Cassandra and
HBase) has a similar purpose of managing locality [29].

We will also see more on locality in Chapter 3.

Convergence of document and relational databases

Most relational database systems (other than MySQL) have supported XML since the
mid-2000s. This includes functions to make local modifications to XML documents
and the ability to index and query inside XML documents, which allows applications
to use data models very similar to what they would do when using a document data-
base.

Relational Model Versus Document Model | 41

PostgreSQL since version 9.3 [8], MySQL since version 5.7, and IBM DB2 since ver-
sion 10.5 [30] also have a similar level of support for JSON documents. Given the
popularity of JSON for web APIs, it is likely that other relational databases will follow
in their footsteps and add JSON support.

On the document database side, RethinkDB supports relational-like joins in its query
language, and some MongoDB drivers automatically resolve database references
(effectively performing a client-side join, although this is likely to be slower than a
join performed in the database since it requires additional network round-trips and is
less optimized).

It seems that relational and document databases are becoming more similar over
time, and that is a good thing: the data models complement each other.” If a database
is able to handle document-like data and also perform relational queries on it, appli-
cations can use the combination of features that best fits their needs.

A hybrid of the relational and document models is a good route for databases to take
in the future.

Query Languages for Data

When the relational model was introduced, it included a new way of querying data:
SQL is a declarative query language, whereas IMS and CODASYL queried the data-
base using imperative code. What does that mean?

Many commonly used programming languages are imperative. For example, if you
have a list of animal species, you might write something like this to return only the
sharks in the list:

function getSharks() {

var sharks = [];

for (var 1 = 0; 1 < animals.length; i++) {
if (animals[i].family === "Sharks") {

sharks.push(animals[i]);

}

}

return sharks;

}

In the relational algebra, you would instead write:

sharks = Ogmily - “sharks (animals)

v. Codd’s original description of the relational model [1] actually allowed something quite similar to JSON
documents within a relational schema. He called it nonsimple domains. The idea was that a value in a row
doesn’t have to just be a primitive datatype like a number or a string, but could also be a nested relation
(table)—so you can have an arbitrarily nested tree structure as a value, much like the JSON or XML support
that was added to SQL over 30 years later.

42 | Chapter2: Data Models and Query Languages

where o (the Greek letter sigma) is the selection operator, returning only those ani-
mals that match the condition family = “Sharks”.

When SQL was defined, it followed the structure of the relational algebra fairly
closely:

SELECT * FROM animals WHERE family = 'Sharks';

An imperative language tells the computer to perform certain operations in a certain
order. You can imagine stepping through the code line by line, evaluating conditions,
updating variables, and deciding whether to go around the loop one more time.

In a declarative query language, like SQL or relational algebra, you just specify the
pattern of the data you want—what conditions the results must meet, and how you
want the data to be transformed (e.g., sorted, grouped, and aggregated)—but not how
to achieve that goal. It is up to the database system’s query optimizer to decide which
indexes and which join methods to use, and in which order to execute various parts
of the query.

A declarative query language is attractive because it is typically more concise and eas-
ier to work with than an imperative API. But more importantly, it also hides imple-
mentation details of the database engine, which makes it possible for the database
system to introduce performance improvements without requiring any changes to
queries.

For example, in the imperative code shown at the beginning of this section, the list of
animals appears in a particular order. If the database wants to reclaim unused disk
space behind the scenes, it might need to move records around, changing the order in
which the animals appear. Can the database do that safely, without breaking queries?

The SQL example doesn’t guarantee any particular ordering, and so it doesn’t mind if
the order changes. But if the query is written as imperative code, the database can
never be sure whether the code is relying on the ordering or not. The fact that SQL is
more limited in functionality gives the database much more room for automatic opti-
mizations.

Finally, declarative languages often lend themselves to parallel execution. Today,
CPUs are getting faster by adding more cores, not by running at significantly higher
clock speeds than before [31]. Imperative code is very hard to parallelize across mul-
tiple cores and multiple machines, because it specifies instructions that must be per-
formed in a particular order. Declarative languages have a better chance of getting
faster in parallel execution because they specify only the pattern of the results, not the
algorithm that is used to determine the results. The database is free to use a parallel
implementation of the query language, if appropriate [32].

Query Languages forData | 43

Declarative Queries on the Web

The advantages of declarative query languages are not limited to just databases. To
illustrate the point, let’s compare declarative and imperative approaches in a com-
pletely different environment: a web browser.

Say you have a website about animals in the ocean. The user is currently viewing the
page on sharks, so you mark the navigation item “Sharks” as currently selected, like
this:

<li class="selected"> @
<p>Sharks</p> (2]

Great White Shark
Tiger Shark
Hammerhead Shark

</1i>

<p>Whales</p>

Blue Whale</1i>
<lisHumpback Whale</1i>
Fin Whale</1i>

</1i>

@ The selected item is marked with the CSS class "selected".

® <p>Sharks</p> is the title of the currently selected page.

Now say you want the title of the currently selected page to have a blue background,
so that it is visually highlighted. This is easy, using CSS:

1i.selected > p {

background-color: blue;

}
Here the CSS selector 11i.selected > p declares the pattern of elements to which we
want to apply the blue style: namely, all <p> elements whose direct parent is an <1i>
element with a CSS class of selected. The element <p>Sharks</p> in the example
matches this pattern, but <p>Whales</p> does not match because its parent
lacks class="selected".

44 | Chapter 2: Data Models and Query Languages

If you were using XSL instead of CSS, you could do something similar:

<xsl:template match="11[@class="'selected']/p">
<fo:block background-color="blue">
<xsl:apply-templates/>
</fo:block>
</xsl:template>

Here, the XPath expression 1i[@class="'selected']/p is equivalent to the CSS selec-
tor 1i.selected > p in the previous example. What CSS and XSL have in common
is that they are both declarative languages for specifying the styling of a document.

Imagine what life would be like if you had to use an imperative approach. In Java-
Script, using the core Document Object Model (DOM) API, the result might look
something like this:

var liElements = document.getElementsByTagName("1i");
for (var 1 = 0; 1 < liElements.length; 1++) {
if (liElements[i].className === "selected") {
var children = 1iElements[i].childNodes;
for (var j = 0; j < children.length; j++) {
var child = children[j];
if (child.nodeType === Node.ELEMENT_NODE && child.tagName === "P") {
child.setAttribute("style", "background-color: blue");
}

}

This JavaScript imperatively sets the element <p>Sharks</p> to have a blue back-
ground, but the code is awful. Not only is it much longer and harder to understand
than the CSS and XSL equivalents, but it also has some serious problems:

o If the selected class is removed (e.g., because the user clicks a different page),
the blue color won’t be removed, even if the code is rerun—and so the item will
remain highlighted until the entire page is reloaded. With CSS, the browser auto-
matically detects when the 1i.selected > p rule no longer applies and removes
the blue background as soon as the selected class is removed.

o If you want to take advantage of a new API, such as document.getElementsBy
ClassName("selected") or even document.evaluate()—which may improve
performance—you have to rewrite the code. On the other hand, browser vendors
can improve the performance of CSS and XPath without breaking compatibility.

Query Languages forData | 45

In a web browser, using declarative CSS styling is much better than manipulating
styles imperatively in JavaScript. Similarly, in databases, declarative query languages
like SQL turned out to be much better than imperative query APIs."

MapReduce Querying

MapReduce is a programming model for processing large amounts of data in bulk
across many machines, popularized by Google [33]. A limited form of MapReduce is
supported by some NoSQL datastores, including MongoDB and CouchDB, as a
mechanism for performing read-only queries across many documents.

MapReduce in general is described in more detail in Chapter 10. For now, we’ll just
briefly discuss MongoDB’s use of the model.

MapReduce is neither a declarative query language nor a fully imperative query API,
but somewhere in between: the logic of the query is expressed with snippets of code,
which are called repeatedly by the processing framework. It is based on the map (also
known as collect) and reduce (also known as fold or inject) functions that exist
in many functional programming languages.

To give an example, imagine you are a marine biologist, and you add an observation
record to your database every time you see animals in the ocean. Now you want to
generate a report saying how many sharks you have sighted per month.

In PostgreSQL you might express that query like this:

SELECT date_trunc('month', observation_timestamp) AS observation_month, (1]
sum(num_animals) AS total_animals

FROM observations

WHERE family = 'Sharks'

GROUP BY observation_month;

©® Thedate_trunc('month', timestamp) function determines the calendar month
containing timestamp, and returns another timestamp representing the begin-
ning of that month. In other words, it rounds a timestamp down to the nearest
month.

This query first filters the observations to only show species in the Sharks family,
then groups the observations by the calendar month in which they occurred, and
finally adds up the number of animals seen in all observations in that month.

The same can be expressed with MongoDB’s MapReduce feature as follows:

vi. IMS and CODASYL both used imperative query APIs. Applications typically used COBOL code to iterate
over records in the database, one record at a time [2, 16].

46 | Chapter2: Data Models and Query Languages

(6]

db.observations.mapReduce(

function map() { (2]
var year = this.observationTimestamp.getFullYear();
var month = this.observationTimestamp.getMonth() + 1;
emit(year + "-" + month, this.numAnimals);

1,

function reduce(key, values) { @
return Array.sum(values);

1,

{
query: { family: "Sharks" }, (1]
out: "monthlySharkReport" (6]

}

);

The filter to consider only shark species can be specified declaratively (this is a
MongoDB-specific extension to MapReduce).

The JavaScript function map is called once for every document that matches
query, with this set to the document object.

The map function emits a key (a string consisting of year and month, such as
"2013-12" or "2014-1") and a value (the number of animals in that observation).

The key-value pairs emitted by map are grouped by key. For all key-value pairs
with the same key (i.e., the same month and year), the reduce function is called
once.

The reduce function adds up the number of animals from all observations in a
particular month.

The final output is written to the collection monthlySharkReport.

For example, say the observations collection contains these two documents:

{
observationTimestamp: Date.parse("Mon, 25 Dec 1995 12:34:56 GMT"),
family: "Sharks",
species: "Carcharodon carcharias",
numAnimals: 3
}
{
observationTimestamp: Date.parse("Tue, 12 Dec 1995 16:17:18 GMT"),
family: "Sharks",
species: "Carcharias taurus",
numAnimals: 4
}

Query Languages forData | 47

The map function would be called once for each document, resulting in
emit("1995-12", 3) and emit("1995-12", 4). Subsequently, the reduce function
would be called with reduce("1995-12", [3, 4]), returning 7.

The map and reduce functions are somewhat restricted in what they are allowed to
do. They must be pure functions, which means they only use the data that is passed to
them as input, they cannot perform additional database queries, and they must not
have any side effects. These restrictions allow the database to run the functions any-
where, in any order, and rerun them on failure. However, they are nevertheless pow-
erful: they can parse strings, call library functions, perform calculations, and more.

MapReduce is a fairly low-level programming model for distributed execution on a
cluster of machines. Higher-level query languages like SQL can be implemented as a
pipeline of MapReduce operations (see Chapter 10), but there are also many dis-
tributed implementations of SQL that don’t use MapReduce. Note there is nothing in
SQL that constrains it to running on a single machine, and MapReduce doesn’t have
a monopoly on distributed query execution.

Being able to use JavaScript code in the middle of a query is a great feature for
advanced queries, but it’s not limited to MapReduce—some SQL databases can be
extended with JavaScript functions too [34].

A usability problem with MapReduce is that you have to write two carefully coordi-
nated JavaScript functions, which is often harder than writing a single query. More-
over, a declarative query language offers more opportunities for a query optimizer to
improve the performance of a query. For these reasons, MongoDB 2.2 added support
for a declarative query language called the aggregation pipeline [9]. In this language,
the same shark-counting query looks like this:

db.observations.aggregate([
{ Smatch: { family: "Sharks" } },

{ $group: {
_id: {
year: { Syear: "SobservationTimestamp" },
month: { $month: "SobservationTimestamp" }
1.
totalAnimals: { Ssum: "$SnumAnimals" }

13
s
The aggregation pipeline language is similar in expressiveness to a subset of SQL, but
it uses a JSON-based syntax rather than SQL’s English-sentence-style syntax; the dif-
ference is perhaps a matter of taste. The moral of the story is that a NoSQL system
may find itself accidentally reinventing SQL, albeit in disguise.

48 | Chapter 2: Data Models and Query Languages

Graph-Like Data Models

We saw earlier that many-to-many relationships are an important distinguishing fea-
ture between different data models. If your application has mostly one-to-many rela-
tionships (tree-structured data) or no relationships between records, the document
model is appropriate.

But what if many-to-many relationships are very common in your data? The rela-
tional model can handle simple cases of many-to-many relationships, but as the con-
nections within your data become more complex, it becomes more natural to start
modeling your data as a graph.

A graph consists of two kinds of objects: vertices (also known as nodes or entities) and
edges (also known as relationships or arcs). Many kinds of data can be modeled as a
graph. Typical examples include:

Social graphs
Vertices are people, and edges indicate which people know each other.

The web graph
Vertices are web pages, and edges indicate HTML links to other pages.

Road or rail networks
Vertices are junctions, and edges represent the roads or railway lines between
them.

Well-known algorithms can operate on these graphs: for example, car navigation sys-
tems search for the shortest path between two points in a road network, and
PageRank can be used on the web graph to determine the popularity of a web page
and thus its ranking in search results.

In the examples just given, all the vertices in a graph represent the same kind of thing
(people, web pages, or road junctions, respectively). However, graphs are not limited
to such homogeneous data: an equally powerful use of graphs is to provide a consis-
tent way of storing completely different types of objects in a single datastore. For
example, Facebook maintains a single graph with many different types of vertices and
edges: vertices represent people, locations, events, checkins, and comments made by
users; edges indicate which people are friends with each other, which checkin hap-
pened in which location, who commented on which post, who attended which event,
and so on [35].

In this section we will use the example shown in Figure 2-5. It could be taken from a
social network or a genealogical database: it shows two people, Lucy from Idaho and
Alain from Beaune, France. They are married and living in London.

Graph-Like Data Models | 49

type: continent
name: North America

Twithin

type: country
name: United States

Twithin

type: state
name: ldaho
abbreviation: ID

born_in

type: person

type: continent
name: Europe

within

type: country

name: United Kingdom

Twithin

type: country
name: England

Twithin

type: city
name: London

lives_in

married

lives_in

type: person

name: Lucy

name: Alain

born_in

within

type: country
name: France

Twithin

type: région
name_fr: Bourgogne
name_en: Burgundy

Twithin

type: département
name: Cote-d'Or

Twithin

type: city
name: Beaune

Figure 2-5. Example of graph-structured data (boxes represent vertices, arrows repre-

sent edges).

There are several different, but related, ways of structuring and querying data in
graphs. In this section we will discuss the property graph model (implemented by
Neo4j, Titan, and InfiniteGraph) and the triple-store model (implemented by
Datomic, AllegroGraph, and others). We will look at three declarative query lan-
guages for graphs: Cypher, SPARQL, and Datalog. Besides these, there are also
imperative graph query languages such as Gremlin [36] and graph processing frame-

works like Pregel (see Chapter 10).

Property Graphs

In the property graph model, each vertex consists of:

Each edge consists of:

A unique identifier

A unique identifier
A set of outgoing edges

A set of incoming edges

A collection of properties (key-value pairs)

o The vertex at which the edge starts (the tail vertex)

50

Chapter 2: Data Models and Query Languages

o The vertex at which the edge ends (the head vertex)
o A label to describe the kind of relationship between the two vertices

o A collection of properties (key-value pairs)

You can think of a graph store as consisting of two relational tables, one for vertices
and one for edges, as shown in Example 2-2 (this schema uses the PostgreSQL json
datatype to store the properties of each vertex or edge). The head and tail vertex are
stored for each edge; if you want the set of incoming or outgoing edges for a vertex,
you can query the edges table by head_vertex or tail_vertex, respectively.

Example 2-2. Representing a property graph using a relational schema

CREATE TABLE vertices (
vertex_1id integer PRIMARY KEY,
properties json

);

CREATE TABLE edges (
edge_1id integer PRIMARY KEY,
tail_vertex integer REFERENCES vertices (vertex_id),
head_vertex integer REFERENCES vertices (vertex_id),
label text,
properties json

);

CREATE INDEX edges_tails ON edges (tail_vertex);
CREATE INDEX edges_heads ON edges (head_vertex);

Some important aspects of this model are:

1. Any vertex can have an edge connecting it with any other vertex. There is no
schema that restricts which kinds of things can or cannot be associated.

2. Given any vertex, you can efficiently find both its incoming and its outgoing
edges, and thus traverse the graph—i.e., follow a path through a chain of vertices
—both forward and backward. (That’s why Example 2-2 has indexes on both the
tail_vertex and head_vertex columns.)

3. By using different labels for different kinds of relationships, you can store several
different kinds of information in a single graph, while still maintaining a clean
data model.

Those features give graphs a great deal of flexibility for data modeling, as illustrated
in Figure 2-5. The figure shows a few things that would be difficult to express in a
traditional relational schema, such as different kinds of regional structures in differ-
ent countries (France has départements and régions, whereas the US has counties and
states), quirks of history such as a country within a country (ignoring for now the

Graph-Like Data Models | 51

intricacies of sovereign states and nations), and varying granularity of data (Lucy’s
current residence is specified as a city, whereas her place of birth is specified only at
the level of a state).

You could imagine extending the graph to also include many other facts about Lucy
and Alain, or other people. For instance, you could use it to indicate any food aller-
gies they have (by introducing a vertex for each allergen, and an edge between a per-
son and an allergen to indicate an allergy), and link the allergens with a set of vertices
that show which foods contain which substances. Then you could write a query to
find out what is safe for each person to eat. Graphs are good for evolvability: as you
add features to your application, a graph can easily be extended to accommodate
changes in your application’s data structures.

The Cypher Query Language

Cypher is a declarative query language for property graphs, created for the Neo4j
graph database [37]. (It is named after a character in the movie The Matrix and is not
related to ciphers in cryptography [38].)

Example 2-3 shows the Cypher query to insert the lefthand portion of Figure 2-5 into
a graph database. The rest of the graph can be added similarly and is omitted for
readability. Each vertex is given a symbolic name like USA or Idaho, and other parts of
the query can use those names to create edges between the vertices, using an arrow
notation: (Idaho) -[:WITHIN]-> (USA) creates an edge labeled WITHIN, with Idaho
as the tail node and USA as the head node.

Example 2-3. A subset of the data in Figure 2-5, represented as a Cypher query

CREATE
(NAmerica:Location {name:'North America', type:'continent'}),
(USA:Location {name:'United States', type:'country' 1}),
(Idaho:Location {name: 'Idaho’, type: 'state’ b,
(Lucy:Person {name:'Lucy' }),

(Idaho) -[:WITHIN]-> (USA) -[:WITHIN]-> (NAmerica),
(Lucy) -[:BORN_IN]-> (Idaho)

When all the vertices and edges of Figure 2-5 are added to the database, we can start
asking interesting questions: for example, find the names of all the people who emigra-
ted from the United States to Europe. To be more precise, here we want to find all the
vertices that have a BORN_IN edge to a location within the US, and also a LIVING_IN
edge to a location within Europe, and return the name property of each of those verti-
ces.

Example 2-4 shows how to express that query in Cypher. The same arrow notation is
used in a MATCH clause to find patterns in the graph: (person) -[:BORN_IN]-> ()

52 | Chapter2: Data Models and Query Languages

matches any two vertices that are related by an edge labeled BORN_IN. The tail vertex
of that edge is bound to the variable person, and the head vertex is left unnamed.

Example 2-4. Cypher query to find people who emigrated from the US to Europe

MATCH
(person) -[:BORN_IN]-> () -[:WITHIN*0..]-> (us:Location {name:'United States'}),
(person) -[:LIVES_IN]-> () -[:WITHIN*Q..]-> (eu:Location {name:'Europe'})

RETURN person.name

The query can be read as follows:

Find any vertex (call it person) that meets both of the following conditions:

1. person has an outgoing BORN_IN edge to some vertex. From that vertex, you can
follow a chain of outgoing WITHIN edges until eventually you reach a vertex of
type Location, whose name property is equal to "United States".

2. That same person vertex also has an outgoing LIVES_IN edge. Following that

edge, and then a chain of outgoing WITHIN edges, you eventually reach a vertex of
type Location, whose name property is equal to "Europe".

For each such person vertex, return the name property.

There are several possible ways of executing the query. The description given here
suggests that you start by scanning all the people in the database, examine each per-
son’s birthplace and residence, and return only those people who meet the criteria.

But equivalently, you could start with the two Location vertices and work backward.
If there is an index on the name property, you can probably efficiently find the two
vertices representing the US and Europe. Then you can proceed to find all locations
(states, regions, cities, etc.) in the US and Europe respectively by following all incom-
ing WITHIN edges. Finally, you can look for people who can be found through an
incoming BORN_IN or LIVES_IN edge at one of the location vertices.

As is typical for a declarative query language, you don’t need to specify such execu-
tion details when writing the query: the query optimizer automatically chooses the
strategy that is predicted to be the most efficient, so you can get on with writing the
rest of your application.

Graph Queries in SQL

Example 2-2 suggested that graph data can be represented in a relational database.
But if we put graph data in a relational structure, can we also query it using SQL?

The answer is yes, but with some difficulty. In a relational database, you usually know
in advance which joins you need in your query. In a graph query, you may need to

Graph-Like Data Models | 53

traverse a variable number of edges before you find the vertex you’re looking for—
that is, the number of joins is not fixed in advance.

In our example, that happens in the () -[:WITHIN*0..]-> () rule in the Cypher
query. A person’s LIVES_IN edge may point at any kind of location: a street, a city, a
district, a region, a state, etc. A city may be WITHIN a region, a region WITHIN a state, a
state WITHIN a country, etc. The LIVES_IN edge may point directly at the location ver-
tex you're looking for, or it may be several levels removed in the location hierarchy.

In Cypher, :WITHIN*0. . expresses that fact very concisely: it means “follow a WITHIN
edge, zero or more times.” It is like the * operator in a regular expression.

Since SQL:1999, this idea of variable-length traversal paths in a query can be
expressed using something called recursive common table expressions (the WITH
RECURSIVE syntax). Example 2-5 shows the same query—{finding the names of people
who emigrated from the US to Europe—expressed in SQL using this technique (sup-
ported in PostgreSQL, IBM DB2, Oracle, and SQL Server). However, the syntax is
very clumsy in comparison to Cypher.

Example 2-5. The same query as Example 2-4, expressed in SQL using recursive
common table expressions

WITH RECURSIVE

-- in_usa 1s the set of vertex IDs of all locations within the United States
in_usa(vertex_1id) AS (
SELECT vertex_1id FROM vertices WHERE properties->>'name' = 'United States' (1)
UNION
SELECT edges.tail_vertex FROM edges (2]
JOIN in_usa ON edges.head_vertex = in_usa.vertex_id
WHERE edges.label = 'within'
)’

-- in_europe is the set of vertex IDs of all locations within Europe
in_europe(vertex_id) AS (
SELECT vertex_1id FROM vertices WHERE properties->>'name' = 'Europe' (3]
UNION
SELECT edges.tail_vertex FROM edges
JOIN in_europe ON edges.head_vertex = in_europe.vertex_1id
WHERE edges.label = 'within'
)’

-- born_in_usa is the set of vertex IDs of all people born in the US
born_in_usa(vertex_1id) AS ((4]
SELECT edges.tail_vertex FROM edges
JOIN in_usa ON edges.head_vertex = in_usa.vertex_id
WHERE edges.label = 'born_in'
)’

54 | Chapter2: Data Models and Query Languages

-- lives_1in_europe is the set of vertex IDs of all people living in Europe
lives_1in_europe(vertex_id) AS (()
SELECT edges.tail_vertex FROM edges
JOIN in_europe ON edges.head_vertex = in_europe.vertex_id
WHERE edges.label = 'lives_in'
)

SELECT vertices.properties->>'name'

FROM vertices

-- join to find those people who were both born in the US *and* live in Europe
JOIN born_in_usa ON vertices.vertex_id = born_in_usa.vertex_id (6]

JOIN lives_in_europe ON vertices.vertex_id = lives_in_europe.vertex_id;

© First find the vertex whose name property has the value "United States", and
make it the first element of the set of vertices in_usa.

® Follow all incoming within edges from vertices in the set in_usa, and add them
to the same set, until all incoming within edges have been visited.

©® Do the same starting with the vertex whose name property has the value
"Europe", and build up the set of vertices in_europe.

O For each of the vertices in the set in_usa, follow incoming born_in edges to find
people who were born in some place within the United States.

© Similarly, for each of the vertices in the set in_europe, follow incoming lives_in
edges to find people who live in Europe.

O Finally, intersect the set of people born in the USA with the set of people living in
Europe, by joining them.

If the same query can be written in 4 lines in one query language but requires 29 lines
in another, that just shows that different data models are designed to satisfy different
use cases. It’s important to pick a data model that is suitable for your application.

Triple-Stores and SPARQL

The triple-store model is mostly equivalent to the property graph model, using differ-
ent words to describe the same ideas. It is nevertheless worth discussing, because
there are various tools and languages for triple-stores that can be valuable additions
to your toolbox for building applications.

In a triple-store, all information is stored in the form of very simple three-part state-
ments: (subject, predicate, object). For example, in the triple (Jim, likes, bananas), Jim
is the subject, likes is the predicate (verb), and bananas is the object.

Graph-Like Data Models | 55

The subject of a triple is equivalent to a vertex in a graph. The object is one of two
things:

1. A value in a primitive datatype, such as a string or a number. In that case, the
predicate and object of the triple are equivalent to the key and value of a property
on the subject vertex. For example, (lucy, age, 33) is like a vertex lucy with prop-
erties {"age" :33}.

2. Another vertex in the graph. In that case, the predicate is an edge in the graph,
the subject is the tail vertex, and the object is the head vertex. For example, in
(lucy, marriedTo, alain) the subject and object lucy and alain are both vertices,
and the predicate marriedTo is the label of the edge that connects them.

Example 2-6 shows the same data as in Example 2-3, written as triples in a format
called Turtle, a subset of Notation3 (N3) [39].

Example 2-6. A subset of the data in Figure 2-5, represented as Turtle triples

@prefix : <urn:example:>.

_:lucy a :Person.

_:lucy :name "Lucy".

_:lucy :bornIn _:idaho.

_:1daho a :Location.
_:idaho :name "Idaho".

_:1daho :type "state".

_:idaho :within _:usa.

_:usa a :Location.

_:usa :name "United States".
_:usa :type "country".

_:usa :within _:namerica.
_:namerica a :Location.
_:namerica :name "North America".
_:namerica :type "continent".

In this example, vertices of the graph are written as _: someName. The name doesn’t
mean anything outside of this file; it exists only because we otherwise wouldn’t know
which triples refer to the same vertex. When the predicate represents an edge, the
object is a vertex, as in _:idaho :within _:usa. When the predicate is a property,
the object is a string literal, asin _:usa :name "United States".

It's quite repetitive to repeat the same subject over and over again, but fortunately
you can use semicolons to say multiple things about the same subject. This makes the
Turtle format quite nice and readable: see Example 2-7.

56 | Chapter2: Data Models and Query Languages

Example 2-7. A more concise way of writing the data in Example 2-6

@prefix : <urn:example:>.

_:lucy a :Person; :name "Lucy"; :bornIn _:idaho.
_:idaho a :Location; :name "Idaho"; :type "state"; :within _:usa.
_:usa a :Location; :name "United States"; :type "country"; :within _:namerica.

_:namerica a :Location; :name "North America"; :type "continent".

The semantic web

If you read more about triple-stores, you may get sucked into a maelstrom of articles
written about the semantic web. The triple-store data model is completely independ-
ent of the semantic web—for example, Datomic [40] is a triple-store that does not
claim to have anything to do with it."" But since the two are so closely linked in many
people’s minds, we should discuss them briefly.

The semantic web is fundamentally a simple and reasonable idea: websites already
publish information as text and pictures for humans to read, so why don’t they also
publish information as machine-readable data for computers to read? The Resource
Description Framework (RDF) [41] was intended as a mechanism for different web-
sites to publish data in a consistent format, allowing data from different websites to
be automatically combined into a web of data—a kind of internet-wide “database of
everything.”

Unfortunately, the semantic web was overhyped in the early 2000s but so far hasn’t
shown any sign of being realized in practice, which has made many people cynical
about it. It has also suffered from a dizzying plethora of acronyms, overly complex
standards proposals, and hubris.

However, if you look past those failings, there is also a lot of good work that has come
out of the semantic web project. Triples can be a good internal data model for appli-
cations, even if you have no interest in publishing RDF data on the semantic web.

The RDF data model

The Turtle language we used in Example 2-7 is a human-readable format for RDF
data. Sometimes RDF is also written in an XML format, which does the same thing
much more verbosely—see Example 2-8. Turtle/N3 is preferable as it is much easier
on the eyes, and tools like Apache Jena [42] can automatically convert between differ-
ent RDF formats if necessary.

vii. Technically, Datomic uses 5-tuples rather than triples; the two additional fields are metadata for version-
ing.

Graph-Like Data Models | 57

Example 2-8. The data of Example 2-7, expressed using RDF/XML syntax

<rdf:RDF xmlns="urn:example:"
xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#">

<Location rdf:nodeID="idaho">
<name>Idaho</name>
<type>state</type>
<within>
<Location rdf:nodeID="usa">
<name>United States</name>
<type>country</type>
<within>
<Location rdf:nodeID="namerica">
<name>North America</name>
<type>continent</type>
</Location>
</within>
</Location>
</within>
</Location>

<Person rdf:nodeID="1lucy">
<name>Lucy</name>
<bornIn rdf:nodeID="1daho"/>
</Person>
</rdf:RDF>

RDF has a few quirks due to the fact that it is designed for internet-wide data
exchange. The subject, predicate, and object of a triple are often URIs. For example, a
predicate might be an URI such as <http://my-company.com/namespace#within> or
<http://my-company.com/namespace#lives_in>, rather than just WITHIN or
LIVES_IN. The reasoning behind this design is that you should be able to combine
your data with someone else’s data, and if they attach a different meaning to the word
within or lives_in, you won’t get a conflict because their predicates are actually
<http://other.org/foo#within>and <http://other.org/foo#lives_in>.

The URL <http://my-company.com/namespace> doesn’t necessarily need to resolve
to anything—from RDF’s point of view, it is simply a namespace. To avoid potential
confusion with http:// URLs, the examples in this section use non-resolvable URIs
such as urn:example:within. Fortunately, you can just specify this prefix once at the
top of the file, and then forget about it.

58 | Chapter2: Data Models and Query Languages

The SPARQL query language

SPARQL is a query language for triple-stores using the RDF data model [43]. (It is an
acronym for SPARQL Protocol and RDF Query Language, pronounced “sparkle.”) It
predates Cypher, and since Cypher’s pattern matching is borrowed from SPARQL,
they look quite similar [37].

The same query as before—finding people who have moved from the US to Europe—
is even more concise in SPARQL than it is in Cypher (see Example 2-9).

Example 2-9. The same query as Example 2-4, expressed in SPARQL
PREFIX : <urn:example:>

SELECT ?personName WHERE {
?person :name ?personName.
?person :bornIn / :within* / :name "United States".
?person :livesIn / :within* / :name "Europe".

}

The structure is very similar. The following two expressions are equivalent (variables
start with a question mark in SPARQL):

(person) -[:BORN_IN]-> () -[:WITHIN*@..]-> (location) # Cypher
?person :bornIn / :within* ?location. # SPARQL

Because RDF doesn’t distinguish between properties and edges but just uses predi-
cates for both, you can use the same syntax for matching properties. In the following
expression, the variable usa is bound to any vertex that has a name property whose
value is the string "United States":

(usa {name:'United States'}) # Cypher

?usa :name "United States". # SPARQL

SPARQL is a nice query language—even if the semantic web never happens, it can be
a powerful tool for applications to use internally.

Graph-Like Data Models | 59

Graph Databases Compared to the Network Model

In “Are Document Databases Repeating History?” on page 36 we discussed how
CODASYL and the relational model competed to solve the problem of many-to-
many relationships in IMS. At first glance, CODASYL’s network model looks similar
to the graph model. Are graph databases the second coming of CODASYL in
disguise?

No. They differ in several important ways:

In CODASYL, a database had a schema that specified which record type could be
nested within which other record type. In a graph database, there is no such
restriction: any vertex can have an edge to any other vertex. This gives much
greater flexibility for applications to adapt to changing requirements.

In CODASYL, the only way to reach a particular record was to traverse one of
the access paths to it. In a graph database, you can refer directly to any vertex by
its unique ID, or you can use an index to find vertices with a particular value.

In CODASYL, the children of a record were an ordered set, so the database had
to maintain that ordering (which had consequences for the storage layout) and
applications that inserted new records into the database had to worry about the
positions of the new records in these sets. In a graph database, vertices and edges
are not ordered (you can only sort the results when making a query).

In CODASYL, all queries were imperative, difficult to write and easily broken by
changes in the schema. In a graph database, you can write your traversal in
imperative code if you want to, but most graph databases also support high-level,
declarative query languages such as Cypher or SPARQL.

The Foundation: Datalog

Datalog is a much older language than SPARQL or Cypher, having been studied
extensively by academics in the 1980s [44, 45, 46]. It is less well known among soft-
ware engineers, but it is nevertheless important, because it provides the foundation
that later query languages build upon.

In practice, Datalog is used in a few data systems: for example, it is the query lan-
guage of Datomic [40], and Cascalog [47] is a Datalog implementation for querying
large datasets in Hadoop."™

viii. Datomic and Cascalog use a Clojure S-expression syntax for Datalog. In the following examples we use a
Prolog syntax, which is a little easier to read, but this makes no functional difference.

60 |

Chapter 2: Data Models and Query Languages

Datalog’s data model is similar to the triple-store model, generalized a bit. Instead of
writing a triple as (subject, predicate, object), we write it as predicate(subject, object).
Example 2-10 shows how to write the data from our example in Datalog.

Example 2-10. A subset of the data in Figure 2-5, represented as Datalog facts

name(namerica, 'North America').
type(namerica, continent).

name(usa, 'United States').
type(usa, country).
within(usa, namerica).

name(idaho, 'Idaho').
type(idaho, state).
within(idaho, usa).

name(lucy, 'Lucy').
born_in(lucy, idaho).

Now that we have defined the data, we can write the same query as before, as shown
in Example 2-11. It looks a bit different from the equivalent in Cypher or SPARQL,
but don’t let that put you off. Datalog is a subset of Prolog, which you might have
seen before if you’ve studied computer science.

Example 2-11. The same query as Example 2-4, expressed in Datalog
within_recursive(Location, Name) :- name(Location, Name). /* Rule 1 */

within_recursive(Location, Name) :- within(Location, Via), /* Rule 2 */
within_recursive(Via, Name).

migrated(Name, BornIn, LivingIn) :- name(Person, Name), /* Rule 3 */
born_in(Person, BornLoc),
within_recursive(BornLoc, BornlIn),
lives_1in(Person, LivinglLoc),
within_recursive(LivinglLoc, LivingIn).

?- migrated(Who, 'United States', 'Europe').
/* Who = 'Lucy'. */

Cypher and SPARQL jump in right away with SELECT, but Datalog takes a small step
at a time. We define rules that tell the database about new predicates: here, we define
two new predicates, within_recursive and migrated. These predicates aren’t triples
stored in the database, but instead they are derived from data or from other rules.
Rules can refer to other rules, just like functions can call other functions or recur-
sively call themselves. Like this, complex queries can be built up a small piece at a
time.

Graph-Like Data Models | 61

In rules, words that start with an uppercase letter are variables, and predicates are
matched like in Cypher and SPARQL. For example, name(Location, Name) matches
the triple name(namerica, 'North America') with variable bindings Location =
namerica and Name = 'North America’.

A rule applies if the system can find a match for all predicates on the righthand side
of the :- operator. When the rule applies, it’s as though the lefthand side of the : -
was added to the database (with variables replaced by the values they matched).

One possible way of applying the rules is thus:

1. name(namerica, 'North America') exists in the database, so rule 1 applies. It
generates within_recursive(namerica, 'North America').

2. within(usa, namerica) exists in the database and the previous step generated
within_recursive(namerica, 'North America'), so rule 2 applies. It generates
within_recursive(usa, 'North America').

3. within(idaho, usa) exists in the database and the previous step generated
within_recursive(usa, 'North America'), so rule 2 applies. It generates
within_recursive(idaho, 'North America').

By repeated application of rules 1 and 2, the within_recursive predicate can tell us
all the locations in North America (or any other location name) contained in our
database. This process is illustrated in Figure 2-6.

After applying rule 1: After applying rule 2 once: After applying rule 2 twice:
within(usa,

within_recursive namerica) within_recursive within_recursive

Location Name Location Name Location Name

namerica North America namerica North America namerica North America

Figure 2-6. Determining that Idaho is in North America, using the Datalog rules from
Example 2-11.

Now rule 3 can find people who were born in some location BornIn and live in some
location LivingIn. By querying with BornIn = 'United States' and LivingIn =
'Europe’, and leaving the person as a variable Who, we ask the Datalog system to find
out which values can appear for the variable Who. So, finally we get the same answer as
in the earlier Cypher and SPARQL queries.

62 | Chapter2: Data Models and Query Languages

The Datalog approach requires a different kind of thinking to the other query lan-
guages discussed in this chapter, but it’s a very powerful approach, because rules can
be combined and reused in different queries. It’s less convenient for simple one-off
queries, but it can cope better if your data is complex.

Summary

Data models are a huge subject, and in this chapter we have taken a quick look at a
broad variety of different models. We didn’t have space to go into all the details of
each model, but hopefully the overview has been enough to whet your appetite to
find out more about the model that best fits your application’s requirements.

Historically, data started out being represented as one big tree (the hierarchical
model), but that wasn’t good for representing many-to-many relationships, so the
relational model was invented to solve that problem. More recently, developers found
that some applications don’t fit well in the relational model either. New nonrelational
“NoSQL” datastores have diverged in two main directions:

1. Document databases target use cases where data comes in self-contained docu-
ments and relationships between one document and another are rare.

2. Graph databases go in the opposite direction, targeting use cases where anything
is potentially related to everything.

All three models (document, relational, and graph) are widely used today, and each is
good in its respective domain. One model can be emulated in terms of another model
—for example, graph data can be represented in a relational database—but the result
is often awkward. That’s why we have different systems for different purposes, not a
single one-size-fits-all solution.

One thing that document and graph databases have in common is that they typically
don’t enforce a schema for the data they store, which can make it easier to adapt
applications to changing requirements. However, your application most likely still
assumes that data has a certain structure; it’s just a question of whether the schema is
explicit (enforced on write) or implicit (handled on read).

Each data model comes with its own query language or framework, and we discussed
several examples: SQL, MapReduce, MongoDB’s aggregation pipeline, Cypher,
SPARQL, and Datalog. We also touched on CSS and XSL/XPath, which aren’t data-
base query languages but have interesting parallels.

Although we have covered a lot of ground, there are still many data models left
unmentioned. To give just a few brief examples:

o Researchers working with genome data often need to perform sequence-
similarity searches, which means taking one very long string (representing a

Summary | 63

DNA molecule) and matching it against a large database of strings that are simi-
lar, but not identical. None of the databases described here can handle this kind
of usage, which is why researchers have written specialized genome database
software like GenBank [48].

o Particle physicists have been doing Big Data-style large-scale data analysis for
decades, and projects like the Large Hadron Collider (LHC) now work with hun-
dreds of petabytes! At such a scale custom solutions are required to stop the
hardware cost from spiraling out of control [49].

o Full-text search is arguably a kind of data model that is frequently used alongside
databases. Information retrieval is a large specialist subject that we won’t cover in
great detail in this book, but we’ll touch on search indexes in Chapter 3 and
Part III.

We have to leave it there for now. In the next chapter we will discuss some of the
trade-offs that come into play when implementing the data models described in this
chapter.

References

[1] Edgar F. Codd: “A Relational Model of Data for Large Shared Data Banks,” Com-
munications of the ACM, volume 13, number 6, pages 377-387, June 1970. doi:
10.1145/362384.362685

[2] Michael Stonebraker and Joseph M. Hellerstein: “What Goes Around Comes
Around,” in Readings in Database Systems, 4th edition, MIT Press, pages 2-41, 2005.
ISBN: 978-0-262-69314-1

[3] Pramod J. Sadalage and Martin Fowler: NoSQL Distilled. Addison-Wesley, August
2012. ISBN: 978-0-321-82662-6

[4] Eric Evans: “NoSQL: What’s in a Name?,” blog.sym-link.com, October 30, 2009.

[5] James Phillips: “Surprises in Our NoSQL Adoption Survey,” blog.couchbase.com,
February 8, 2012.

[6] Michael Wagner: SQL/XML:2006 - Evaluierung der Standardkonformitdit ausge-
wihlter Datenbanksysteme. Diplomica Verlag, Hamburg, 2010. ISBN:
978-3-836-64609-3

[7] “XML Data in SQL Server,” SQL Server 2012 documentation, technet.micro-
soft.com, 2013.

[8] “PostgreSQL 9.3.1 Documentation,” The PostgreSQL Global Development
Group, 2013.

[9] “The MongoDB 2.4 Manual,” MongoDB, Inc., 2013.

64 | Chapter2: Data Models and Query Languages

https://www.seas.upenn.edu/~zives/03f/cis550/codd.pdf
http://dx.doi.org/10.1145/362384.362685
http://dx.doi.org/10.1145/362384.362685
http://mitpress2.mit.edu/books/chapters/0262693143chapm1.pdf
http://mitpress2.mit.edu/books/chapters/0262693143chapm1.pdf
http://blog.sym-link.com/2009/10/30/nosql_whats_in_a_name.html
http://blog.couchbase.com/nosql-adoption-survey-surprises
http://technet.microsoft.com/en-us/library/bb522446.aspx
http://www.postgresql.org/docs/9.3/static/index.html
http://docs.mongodb.org/manual/

[10] “RethinkDB 1.11 Documentation,” rethinkdb.com, 2013.
[11] “Apache CouchDB 1.6 Documentation,” docs.couchdb.org, 2014.

[12] Lin Qiao, Kapil Surlaker, Shirshanka Das, et al.: “On Brewing Fresh Espresso:
LinkedIn’s Distributed Data Serving Platform,” at ACM International Conference on
Management of Data (SIGMOD), June 2013.

[13] Rick Long, Mark Harrington, Robert Hain, and Geoff Nicholls: IMS Primer.
IBM Redbook SG24-5352-00, IBM International Technical Support Organization,
January 2000.

[14] Stephen D. Bartlett: “IBM’s IMS—Myths, Realities, and Opportunities,” The
Clipper Group Navigator, TCG2013015LI, July 2013.

[15] Sarah Mei: “Why You Should Never Use MongoDB,” sarahmei.com, November
11, 2013.

[16] J. S. Knowles and D. M. R. Bell: “The CODASYL Model,” in Databases—Role
and Structure: An Advanced Course, edited by P. M. Stocker, P. M. D. Gray, and M. P.
Atkinson, pages 19-56, Cambridge University Press, 1984. ISBN: 978-0-521-25430-4

[17] Charles W. Bachman: “The Programmer as Navigator,” Communications of the
ACM, volume 16, number 11, pages 653-658, November 1973. doi:
10.1145/355611.362534

[18] Joseph M. Hellerstein, Michael Stonebraker, and James Hamilton: “Architecture
of a Database System,” Foundations and Trends in Databases, volume 1, number 2,
pages 141-259, November 2007. doi:10.1561/1900000002

[19] Sandeep Parikh and Kelly Stirman: “Schema Design for Time Series Data in
MongoDB,” blog.mongodb.org, October 30, 2013.

[20] Martin Fowler: “Schemaless Data Structures,” martinfowler.com, January 7,
2013.

[21] Amr Awadallah: “Schema-on-Read vs. Schema-on-Write,” at Berkeley EECS
RAD Lab Retreat, Santa Cruz, CA, May 2009.

[22] Martin Odersky: “The Trouble with Types,” at Strange Loop, September 2013.

[23] Conrad Irwin: “MongoDB—Confessions of a PostgreSQL Lover,” at
HTML5DevConf, October 2013.

[24] “Percona Toolkit Documentation: pt-online-schema-change,” Percona Ireland
Ltd., 2013.

[25] Rany Keddo, Tobias Bielohlawek, and Tobias Schmidt: “Large Hadron Migra-
tor,” SoundCloud, 2013.

Summary | 65

http://www.rethinkdb.com/docs/
http://docs.couchdb.org/en/latest/
http://www.slideshare.net/amywtang/espresso-20952131
http://www.slideshare.net/amywtang/espresso-20952131
http://www.redbooks.ibm.com/redbooks/pdfs/sg245352.pdf
ftp://public.dhe.ibm.com/software/data/ims/pdf/TCG2013015LI.pdf
http://www.sarahmei.com/blog/2013/11/11/why-you-should-never-use-mongodb/
http://dl.acm.org/citation.cfm?id=362534
http://dx.doi.org/10.1145/355611.362534
http://dx.doi.org/10.1145/355611.362534
http://db.cs.berkeley.edu/papers/fntdb07-architecture.pdf
http://db.cs.berkeley.edu/papers/fntdb07-architecture.pdf
http://dx.doi.org/10.1561/1900000002
http://blog.mongodb.org/post/65517193370/schema-design-for-time-series-data-in-mongodb
http://blog.mongodb.org/post/65517193370/schema-design-for-time-series-data-in-mongodb
http://martinfowler.com/articles/schemaless/
http://www.slideshare.net/awadallah/schemaonread-vs-schemaonwrite
http://www.infoq.com/presentations/data-types-issues
https://speakerdeck.com/conradirwin/mongodb-confessions-of-a-postgresql-lover
http://www.percona.com/doc/percona-toolkit/2.2/pt-online-schema-change.html
https://github.com/soundcloud/lhm
https://github.com/soundcloud/lhm

[26] Shlomi Noach: “gh-ost: GitHub’s Online Schema Migration Tool for MySQL,”
githubengineering.com, August 1, 2016.

[27] James C. Corbett, Jeffrey Dean, Michael Epstein, et al.: “Spanner: Google’s
Globally-Distributed Database,” at 10th USENIX Symposium on Operating System
Design and Implementation (OSDI), October 2012.

[28] Donald K. Burleson: “Reduce I/O with Oracle Cluster Tables,” dba-oracle.com.

[29] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, et al.: “Bigtable: A Distributed Stor-
age System for Structured Data,” at 7th USENIX Symposium on Operating System
Design and Implementation (OSDI), November 2006.

[30] Bobbie J. Cochrane and Kathy A. McKnight: “DB2 JSON Capabilities, Part 1:
Introduction to DB2 JSON,” IBM developerWorks, June 20, 2013.

[31] Herb Sutter: “The Free Lunch Is Over: A Fundamental Turn Toward Concur-
rency in Software,” Dr. Dobb’s Journal, volume 30, number 3, pages 202-210, March
2005.

[32] Joseph M. Hellerstein: “The Declarative Imperative: Experiences and Conjec-
tures in Distributed Logic,” Electrical Engineering and Computer Sciences, Univer-
sity of California at Berkeley, Tech report UCB/EECS-2010-90, June 2010.

[33] Jeffrey Dean and Sanjay Ghemawat: “MapReduce: Simplified Data Processing on
Large Clusters,” at 6th USENIX Symposium on Operating System Design and Imple-
mentation (OSDI), December 2004.

[34] Craig Kerstiens: “JavaScript in Your Postgres,” blog.heroku.com, June 5, 2013.

[35] Nathan Bronson, Zach Amsden, George Cabrera, et al.: “TAO: Facebook’s Dis-
tributed Data Store for the Social Graph,” at USENIX Annual Technical Conference

(USENIX ATC), June 2013.
[36] “Apache TinkerPop3.2.3 Documentation,” tinkerpop.apache.org, October 2016.
[37] “The Neo4j Manual v2.0.0,” Neo Technology, 2013.

[38] Emil Eifrem: Twitter correspondence, January 3, 2014.

[39] David Beckett and Tim Berners-Lee: “Turtle — Terse RDF Triple Language,”
W3C Team Submission, March 28, 2011.

[40] “Datomic Development Resources,” Metadata Partners, LLC, 2013.

[41] W3C RDF Working Group: “Resource Description Framework (RDF),” w3.org,
10 February 2004.

[42] “Apache Jena,” Apache Software Foundation.

66 | Chapter2: Data Models and Query Languages

http://githubengineering.com/gh-ost-github-s-online-migration-tool-for-mysql/
http://research.google.com/archive/spanner.html
http://research.google.com/archive/spanner.html
http://www.dba-oracle.com/oracle_tip_hash_index_cluster_table.htm
http://research.google.com/archive/bigtable.html
http://research.google.com/archive/bigtable.html
http://www.ibm.com/developerworks/data/library/techarticle/dm-1306nosqlforjson1/
http://www.ibm.com/developerworks/data/library/techarticle/dm-1306nosqlforjson1/
http://www.gotw.ca/publications/concurrency-ddj.htm
http://www.gotw.ca/publications/concurrency-ddj.htm
http://www.eecs.berkeley.edu/Pubs/TechRpts/2010/EECS-2010-90.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2010/EECS-2010-90.pdf
http://research.google.com/archive/mapreduce.html
http://research.google.com/archive/mapreduce.html
https://blog.heroku.com/javascript_in_your_postgres
https://www.usenix.org/conference/atc13/technical-sessions/presentation/bronson
https://www.usenix.org/conference/atc13/technical-sessions/presentation/bronson
http://tinkerpop.apache.org/docs/3.2.3/reference/
http://docs.neo4j.org/chunked/2.0.0/index.html
https://twitter.com/emileifrem/status/419107961512804352
http://www.w3.org/TeamSubmission/turtle/
http://docs.datomic.com/
http://www.w3.org/RDF/
http://jena.apache.org/

[43] Steve Harris, Andy Seaborne, and Eric Prud’hommeaux: “SPARQL 1.1 Query
Language,” W3C Recommendation, March 2013.

[44] Todd J. Green, Shan Shan Huang, Boon Thau Loo, and Wenchao Zhou: “Data-
log and Recursive Query Processing,” Foundations and Trends in Databases, volume
5, number 2, pages 105-195, November 2013. doi:10.1561/1900000017

[45] Stefano Ceri, Georg Gottlob, and Letizia Tanca: “What You Always Wanted to
Know About Datalog (And Never Dared to Ask),” IEEE Transactions on Knowledge
and Data Engineering, volume 1, number 1, pages 146-166, March 1989. doi:
10.1109/69.43410

[46] Serge Abiteboul, Richard Hull, and Victor Vianu: Foundations of Databases.
Addison-Wesley, 1995. ISBN: 978-0-201-53771-0, available online at web-
dam.inria.fr/Alice

[47] Nathan Marz: “Cascalog,” cascalog.org.

[48] Dennis A. Benson, Ilene Karsch-Mizrachi, David J. Lipman, et al.: “GenBank,”
Nucleic Acids Research, volume 36, Database issue, pages D25-D30, December 2007.
doi:10.1093/nar/gkm929

[49] Fons Rademakers: “ROOT for Big Data Analysis,” at Workshop on the Future of
Big Data Management, London, UK, June 2013.

Summary | 67

http://www.w3.org/TR/sparql11-query/
http://www.w3.org/TR/sparql11-query/
http://blogs.evergreen.edu/sosw/files/2014/04/Green-Vol5-DBS-017.pdf
http://blogs.evergreen.edu/sosw/files/2014/04/Green-Vol5-DBS-017.pdf
http://dx.doi.org/10.1561/1900000017
https://www.researchgate.net/profile/Letizia_Tanca/publication/3296132_What_you_always_wanted_to_know_about_Datalog_and_never_dared_to_ask/links/0fcfd50ca2d20473ca000000.pdf
https://www.researchgate.net/profile/Letizia_Tanca/publication/3296132_What_you_always_wanted_to_know_about_Datalog_and_never_dared_to_ask/links/0fcfd50ca2d20473ca000000.pdf
http://dx.doi.org/10.1109/69.43410
http://dx.doi.org/10.1109/69.43410
http://webdam.inria.fr/Alice/
http://cascalog.org/
http://nar.oxfordjournals.org/content/36/suppl_1/D25.full-text-lowres.pdf
http://dx.doi.org/10.1093/nar/gkm929
http://indico.cern.ch/getFile.py/access?contribId=13&resId=0&materialId=slides&confId=246453

CHAPTER 3
Storage and Retrieval

Wer Ordnung hdlt, ist nur zu faul zum Suchen.
(If you keep things tidily ordered, you’re just too lazy to go searching.)

—German proverb

On the most fundamental level, a database needs to do two things: when you give it
some data, it should store the data, and when you ask it again later, it should give the
data back to you.

In Chapter 2 we discussed data models and query languages—i.e., the format in
which you (the application developer) give the database your data, and the mecha-
nism by which you can ask for it again later. In this chapter we discuss the same from
the database’s point of view: how we can store the data that we're given, and how we
can find it again when we’re asked for it.

Why should you, as an application developer, care how the database handles storage
and retrieval internally? You’re probably not going to implement your own storage
engine from scratch, but you do need to select a storage engine that is appropriate for
your application, from the many that are available. In order to tune a storage engine
to perform well on your kind of workload, you need to have a rough idea of what the
storage engine is doing under the hood.

In particular, there is a big difference between storage engines that are optimized for
transactional workloads and those that are optimized for analytics. We will explore
that distinction later in “Transaction Processing or Analytics?” on page 90, and in
“Column-Oriented Storage” on page 95 we’ll discuss a family of storage engines that
is optimized for analytics.

However, first we’ll start this chapter by talking about storage engines that are used in
the kinds of databases that you're probably familiar with: traditional relational data-
bases, and also most so-called NoSQL databases. We will examine two families of

69

storage engines: log-structured storage engines, and page-oriented storage engines
such as B-trees.

Data Structures That Power Your Database

Consider the world’s simplest database, implemented as two Bash functions:

#!/bin/bash

db_set () {
echo "$1,3$2" >> database
}
db_get () {
grep "~$1," database | sed -e "s/7$1,//" | tail -n 1
}

These two functions implement a key-value store. You can call db_set key value,
which will store key and value in the database. The key and value can be (almost)
anything you like—for example, the value could be a JSON document. You can then
call db_get key, which looks up the most recent value associated with that particular
key and returns it.

And it works:
$ db_set 123456 '{"name":"London","attractions":["Big Ben","London Eye"]}'

$ db_set 42 '{"name":"San Francisco","attractions":["Golden Gate Bridge"]}'

$ db_get 42
"name":"San Francisco","attractions":["Golden Gate Bridge"]}

The underlying storage format is very simple: a text file where each line contains a
key-value pair, separated by a comma (roughly like a CSV file, ignoring escaping
issues). Every call to db_set appends to the end of the file, so if you update a key sev-
eral times, the old versions of the value are not overwritten—you need to look at the
last occurrence of a key in a file to find the latest value (hence the tail -n 1in
db_get):

$ db_set 42 '{"name":"San Francisco","attractions":["Exploratorium"]}'

$ db_get 42
{"name":"San Francisco","attractions":["Exploratorium"]}

$ cat database
123456,{"name": "London" ,"attractions":["Big Ben","London Eye"]}

42,{"name":"San Francisco","attractions":["Golden Gate Bridge"]}

42,{"name":"San Francisco","attractions":["Exploratorium"]}

70 | Chapter3: Storage and Retrieval

Our db_set function actually has pretty good performance for something that is so
simple, because appending to a file is generally very efficient. Similarly to what
db_set does, many databases internally use a log, which is an append-only data file.
Real databases have more issues to deal with (such as concurrency control, reclaim-
ing disk space so that the log doesn’t grow forever, and handling errors and partially
written records), but the basic principle is the same. Logs are incredibly useful, and
we will encounter them several times in the rest of this book.

The word log is often used to refer to application logs, where an
application outputs text that describes what’s happening. In this
book, log is used in the more general sense: an append-only
sequence of records. It doesn’t have to be human-readable; it might
be binary and intended only for other programs to read.

On the other hand, our db_get function has terrible performance if you have a large
number of records in your database. Every time you want to look up a key, db_get
has to scan the entire database file from beginning to end, looking for occurrences of
the key. In algorithmic terms, the cost of a lookup is O(n): if you double the number
of records # in your database, a lookup takes twice as long. That’s not good.

In order to efficiently find the value for a particular key in the database, we need a
different data structure: an index. In this chapter we will look at a range of indexing
structures and see how they compare; the general idea behind them is to keep some
additional metadata on the side, which acts as a signpost and helps you to locate the
data you want. If you want to search the same data in several different ways, you may
need several different indexes on different parts of the data.

An index is an additional structure that is derived from the primary data. Many data-
bases allow you to add and remove indexes, and this doesn’t affect the contents of the
database; it only affects the performance of queries. Maintaining additional structures
incurs overhead, especially on writes. For writes, it’s hard to beat the performance of
simply appending to a file, because that’s the simplest possible write operation. Any
kind of index usually slows down writes, because the index also needs to be updated
every time data is written.

This is an important trade-off in storage systems: well-chosen indexes speed up read
queries, but every index slows down writes. For this reason, databases don’t usually
index everything by default, but require you—the application developer or database
administrator—to choose indexes manually, using your knowledge of the applica-
tion’s typical query patterns. You can then choose the indexes that give your applica-
tion the greatest benefit, without introducing more overhead than necessary.

Data Structures That Power Your Database | 71

Hash Indexes

Let’s start with indexes for key-value data. This is not the only kind of data you can
index, but it’s very common, and it’s a useful building block for more complex
indexes.

Key-value stores are quite similar to the dictionary type that you can find in most
programming languages, and which is usually implemented as a hash map (hash
table). Hash maps are described in many algorithms textbooks [1, 2], so we won’t go
into detail of how they work here. Since we already have hash maps for our in-
memory data structures, why not use them to index our data on disk?

Let’s say our data storage consists only of appending to a file, as in the preceding
example. Then the simplest possible indexing strategy is this: keep an in-memory
hash map where every key is mapped to a byte offset in the data file—the location at
which the value can be found, as illustrated in Figure 3-1. Whenever you append a
new key-value pair to the file, you also update the hash map to reflect the offset of the
data you just wrote (this works both for inserting new keys and for updating existing
keys). When you want to look up a value, use the hash map to find the offset in the
data file, seek to that location, and read the value.

key byte offset | In-memory hash map

123456 O,
Log-structured file on disk

/ / (each box is one byte)

1/2/3456 , {"name" : " London" , "|lattra
ction’ﬁ:["Big Ben" , "Llondon E\y e
"]}\nYZ,{"name":"San Flrlajln c i s/ c|lo|"
, "lattjlr act/ions " :[["Go/lden Gl a t e B

rildge/ "1} \n

Figure 3-1. Storing a log of key-value pairs in a CSV-like format, indexed with an in-
memory hash map.

This may sound simplistic, but it is a viable approach. In fact, this is essentially what
Bitcask (the default storage engine in Riak) does [3]. Bitcask offers high-performance
reads and writes, subject to the requirement that all the keys fit in the available RAM,
since the hash map is kept completely in memory. The values can use more space
than there is available memory, since they can be loaded from disk with just one disk

72 | Chapter3: Storage and Retrieval

seek. If that part of the data file is already in the filesystem cache, a read doesn’t
require any disk I/O at all.

A storage engine like Bitcask is well suited to situations where the value for each key
is updated frequently. For example, the key might be the URL of a cat video, and the
value might be the number of times it has been played (incremented every time
someone hits the play button). In this kind of workload, there are a lot of writes, but
there are not too many distinct keys—you have a large number of writes per key, but
it’s feasible to keep all keys in memory.

As described so far, we only ever append to a file—so how do we avoid eventually
running out of disk space? A good solution is to break the log into segments of a cer-
tain size by closing a segment file when it reaches a certain size, and making subse-
quent writes to a new segment file. We can then perform compaction on these
segments, as illustrated in Figure 3-2. Compaction means throwing away duplicate
keys in the log, and keeping only the most recent update for each key.

Data file segment

mew: 1078 purr: 2103 purr: 2104 mew: 1079 mew: 1080 mew: 1081

purr: 2105 purr: 2106 purr: 2107 yawn: 511 purr: 2108 mew: 1082

@ Compaction process

Compacted segment

S yawn:511 mew: 1082 | purr: 2108

Figure 3-2. Compaction of a key-value update log (counting the number of times each
cat video was played), retaining only the most recent value for each key.

Moreover, since compaction often makes segments much smaller (assuming that a
key is overwritten several times on average within one segment), we can also merge
several segments together at the same time as performing the compaction, as shown
in Figure 3-3. Segments are never modified after they have been written, so the
merged segment is written to a new file. The merging and compaction of frozen seg-
ments can be done in a background thread, and while it is going on, we can still con-
tinue to serve read and write requests as normal, using the old segment files. After the
merging process is complete, we switch read requests to using the new merged seg-
ment instead of the old segments—and then the old segment files can simply be

deleted.

Data Structures That Power Your Database | 73

Data file segment 1

mew: 1078 purr: 2103 purr: 2104 mew: 1079 mew: 1080 mew: 1081

purr: 2105 purr: 2106 purr: 2107 yawn: 511 purr: 2108 mew: 1082

Data file segment 2

purr: 2109 purr: 2110 mew: 1083 scratch: 252 | mew: 1084 mew: 1085

purr: 2111 mew: 1086 purr: 2112 purr: 2113 mew: 1087 purr:2114

+) Compaction and merging process

Merged segments 1 and 2

yawn: 511 scratch: 252 | mew: 1087 purr: 2114

Figure 3-3. Performing compaction and segment merging simultaneously.

Each segment now has its own in-memory hash table, mapping keys to file offsets. In
order to find the value for a key, we first check the most recent segment’s hash map;
if the key is not present we check the second-most-recent segment, and so on. The
merging process keeps the number of segments small, so lookups don’t need to check
many hash maps.

Lots of detail goes into making this simple idea work in practice. Briefly, some of the
issues that are important in a real implementation are:

File format
CSV is not the best format for a log. It’s faster and simpler to use a binary format
that first encodes the length of a string in bytes, followed by the raw string
(without need for escaping).

Deleting records
If you want to delete a key and its associated value, you have to append a special
deletion record to the data file (sometimes called a tombstone). When log seg-
ments are merged, the tombstone tells the merging process to discard any previ-
ous values for the deleted key.

Crash recovery
If the database is restarted, the in-memory hash maps are lost. In principle, you
can restore each segment’s hash map by reading the entire segment file from
beginning to end and noting the offset of the most recent value for every key as
you go along. However, that might take a long time if the segment files are large,
which would make server restarts painful. Bitcask speeds up recovery by storing

74 | Chapter3: Storage and Retrieval

a snapshot of each segment’s hash map on disk, which can be loaded into mem-
ory more quickly.

Partially written records
The database may crash at any time, including halfway through appending a
record to the log. Bitcask files include checksums, allowing such corrupted parts
of the log to be detected and ignored.

Concurrency control
As writes are appended to the log in a strictly sequential order, a common imple-
mentation choice is to have only one writer thread. Data file segments are
append-only and otherwise immutable, so they can be read concurrently by mul-
tiple threads.

An append-only log seems wasteful at first glance: why don’t you update the file in
place, overwriting the old value with the new value? But an append-only design turns
out to be good for several reasons:

+ Appending and segment merging are sequential write operations, which are gen-
erally much faster than random writes, especially on magnetic spinning-disk
hard drives. To some extent sequential writes are also preferable on flash-based
solid state drives (SSDs) [4]. We will discuss this issue further in “Comparing B-
Trees and LSM-Trees” on page 83.

« Concurrency and crash recovery are much simpler if segment files are append-
only or immutable. For example, you don’t have to worry about the case where a
crash happened while a value was being overwritten, leaving you with a file con-
taining part of the old and part of the new value spliced together.

o Merging old segments avoids the problem of data files getting fragmented over
time.

However, the hash table index also has limitations:

o The hash table must fit in memory, so if you have a very large number of keys,
you’re out of luck. In principle, you could maintain a hash map on disk, but
unfortunately it is difficult to make an on-disk hash map perform well. It
requires a lot of random access I/0, it is expensive to grow when it becomes full,
and hash collisions require fiddly logic [5].

» Range queries are not efficient. For example, you cannot easily scan over all keys
between kitty00000 and kitty99999—you’d have to look up each key individu-
ally in the hash maps.

In the next section we will look at an indexing structure that doesn’t have those limi-
tations.

Data Structures That Power Your Database | 75

SSTables and LSM-Trees

In Figure 3-3, each log-structured storage segment is a sequence of key-value pairs.
These pairs appear in the order that they were written, and values later in the log take
precedence over values for the same key earlier in the log. Apart from that, the order
of key-value pairs in the file does not matter.

Now we can make a simple change to the format of our segment files: we require that
the sequence of key-value pairs is sorted by key. At first glance, that requirement
seems to break our ability to use sequential writes, but we’ll get to that in a moment.

We call this format Sorted String Table, or SSTable for short. We also require that
each key only appears once within each merged segment file (the compaction process
already ensures that). SSTables have several big advantages over log segments with
hash indexes:

1. Merging segments is simple and efficient, even if the files are bigger than the
available memory. The approach is like the one used in the mergesort algorithm
and is illustrated in Figure 3-4: you start reading the input files side by side, look
at the first key in each file, copy the lowest key (according to the sort order) to
the output file, and repeat. This produces a new merged segment file, also sorted
by key.

handbag: 8786 | handful: 40308 | handicap: 65995 | handkerchief: 16324 g

1S

/ handlebars: 3869 | handprinted: 11150 o

wv

(o}

handcuffs: 2729 | handful: 42307 | handicap: 67884 | handiwork: 16912 g

IS

4 handkerchief: 20952 | handprinted: 15725 >

wv

m

handful: 44662 | handicap: 70836 | handiwork: 45521 | handlebars: 3869 %

IS

handoff: 5741 | handprinted: 33632 >

LY <
L+ Compaction and merging process

handbag: 8786 | handcuffs: 2729 | handful: 44662 | handicap: 70836 :

handiwork: 45521 | handkerchief: 20952 | handlebars: 3869 = handoff: 5741 %

(=]

handprinted: 33632 2

Figure 3-4. Merging several SSTable segments, retaining only the most recent value
for each key.

76 | Chapter3: Storage and Retrieval

What if the same key appears in several input segments? Remember that each
segment contains all the values written to the database during some period of
time. This means that all the values in one input segment must be more recent
than all the values in the other segment (assuming that we always merge adjacent
segments). When multiple segments contain the same key, we can keep the value
from the most recent segment and discard the values in older segments.

2. In order to find a particular key in the file, you no longer need to keep an index
of all the keys in memory. See Figure 3-5 for an example: say you're looking for
the key handiwork, but you don’t know the exact offset of that key in the segment
file. However, you do know the offsets for the keys handbag and handsome, and
because of the sorting you know that handiwork must appear between those two.
This means you can jump to the offset for handbag and scan from there until you
find handiwork (or not, if the key is not present in the file).

Sparse index Sorted segment file (SSTable) on disk
in memory >

......... hand: 91541
key byte offset

hammock 100491
handbag 102134
handsome 104667>\J handlebars: 3869 = handoff: 5741 | handprinted: 33632

j» handbag: 8786 | handcuffs: 2729 | handful: 44662

handicap: 70836 | handiwork: 45521 | handkerchief: 20952

compressible block

hangout 106812
b handsome: 86478 | handwaving: 44005 | handwriting: 22846

Figure 3-5. An SSTable with an in-memory index.

You still need an in-memory index to tell you the offsets for some of the keys, but
it can be sparse: one key for every few kilobytes of segment file is sufficient,
because a few kilobytes can be scanned very quickly.!

3. Since read requests need to scan over several key-value pairs in the requested
range anyway, it is possible to group those records into a block and compress it
before writing it to disk (indicated by the shaded area in Figure 3-5). Each entry
of the sparse in-memory index then points at the start of a compressed block.
Besides saving disk space, compression also reduces the I/O bandwidth use.

i. Ifall keys and values had a fixed size, you could use binary search on a segment file and avoid the in-
memory index entirely. However, they are usually variable-length in practice, which makes it difficult to tell
where one record ends and the next one starts if you don’t have an index.

Data Structures That Power Your Database | 77

Constructing and maintaining SSTables

Fine so far—but how do you get your data to be sorted by key in the first place? Our
incoming writes can occur in any order.

Maintaining a sorted structure on disk is possible (see “B-Trees” on page 79), but
maintaining it in memory is much easier. There are plenty of well-known tree data
structures that you can use, such as red-black trees or AVL trees [2]. With these data
structures, you can insert keys in any order and read them back in sorted order.

We can now make our storage engine work as follows:

o When a write comes in, add it to an in-memory balanced tree data structure (for
example, a red-black tree). This in-memory tree is sometimes called a memtable.

o When the memtable gets bigger than some threshold—typically a few megabytes
—write it out to disk as an SSTable file. This can be done efficiently because the
tree already maintains the key-value pairs sorted by key. The new SSTable file
becomes the most recent segment of the database. While the SSTable is being
written out to disk, writes can continue to a new memtable instance.

o In order to serve a read request, first try to find the key in the memtable, then in
the most recent on-disk segment, then in the next-older segment, etc.

« From time to time, run a merging and compaction process in the background to
combine segment files and to discard overwritten or deleted values.

This scheme works very well. It only suffers from one problem: if the database
crashes, the most recent writes (which are in the memtable but not yet written out to
disk) are lost. In order to avoid that problem, we can keep a separate log on disk to
which every write is immediately appended, just like in the previous section. That log
is not in sorted order, but that doesn’t matter, because its only purpose is to restore
the memtable after a crash. Every time the memtable is written out to an SSTable, the
corresponding log can be discarded.

Making an LSM-tree out of SSTables

The algorithm described here is essentially what is used in LevelDB [6] and RocksDB
[7], key-value storage engine libraries that are designed to be embedded into other
applications. Among other things, LevelDB can be used in Riak as an alternative to
Bitcask. Similar storage engines are used in Cassandra and HBase [8], both of which
were inspired by Google’s Bigtable paper [9] (which introduced the terms SSTable
and memtable).

Originally this indexing structure was described by Patrick O’Neil et al. under the
name Log-Structured Merge-Tree (or LSM-Tree) [10], building on earlier work on

78 | Chapter3: Storage and Retrieval

log-structured filesystems [11]. Storage engines that are based on this principle of
merging and compacting sorted files are often called LSM storage engines.

Lucene, an indexing engine for full-text search used by Elasticsearch and Solr, uses a
similar method for storing its term dictionary [12, 13]. A full-text index is much more
complex than a key-value index but is based on a similar idea: given a word in a
search query, find all the documents (web pages, product descriptions, etc.) that
mention the word. This is implemented with a key-value structure where the key is a
word (a term) and the value is the list of IDs of all the documents that contain the
word (the postings list). In Lucene, this mapping from term to postings list is kept in
SSTable-like sorted files, which are merged in the background as needed [14].

Performance optimizations

As always, a lot of detail goes into making a storage engine perform well in practice.
For example, the LSM-tree algorithm can be slow when looking up keys that do not
exist in the database: you have to check the memtable, then the segments all the way
back to the oldest (possibly having to read from disk for each one) before you can be
sure that the key does not exist. In order to optimize this kind of access, storage
engines often use additional Bloom filters [15]. (A Bloom filter is a memory-efficient
data structure for approximating the contents of a set. It can tell you if a key does not
appear in the database, and thus saves many unnecessary disk reads for nonexistent
keys.)

There are also different strategies to determine the order and timing of how SSTables
are compacted and merged. The most common options are size-tiered and leveled
compaction. LevelDB and RocksDB use leveled compaction (hence the name of Lev-
elDB), HBase uses size-tiered, and Cassandra supports both [16]. In size-tiered com-
paction, newer and smaller SSTables are successively merged into older and larger
SSTables. In leveled compaction, the key range is split up into smaller SSTables and
older data is moved into separate “levels,” which allows the compaction to proceed
more incrementally and use less disk space.

Even though there are many subtleties, the basic idea of LSM-trees—keeping a cas-
cade of SSTables that are merged in the background—is simple and effective. Even
when the dataset is much bigger than the available memory it continues to work well.
Since data is stored in sorted order, you can efficiently perform range queries (scan-
ning all keys above some minimum and up to some maximum), and because the disk
writes are sequential the LSM-tree can support remarkably high write throughput.

B-Trees

The log-structured indexes we have discussed so far are gaining acceptance, but they
are not the most common type of index. The most widely used indexing structure is
quite different: the B-tree.

Data Structures That Power Your Database | 79

Introduced in 1970 [17] and called “ubiquitous” less than 10 years later [18], B-trees
have stood the test of time very well. They remain the standard index implementation
in almost all relational databases, and many nonrelational databases use them too.

Like SSTables, B-trees keep key-value pairs sorted by key, which allows efficient key-
value lookups and range queries. But that’s where the similarity ends: B-trees have a
very different design philosophy.

The log-structured indexes we saw earlier break the database down into variable-size
segments, typically several megabytes or more in size, and always write a segment
sequentially. By contrast, B-trees break the database down into fixed-size blocks or
pages, traditionally 4 KB in size (sometimes bigger), and read or write one page at a
time. This design corresponds more closely to the underlying hardware, as disks are
also arranged in fixed-size blocks.

Each page can be identified using an address or location, which allows one page to
refer to another—similar to a pointer, but on disk instead of in memory. We can use
these page references to construct a tree of pages, as illustrated in Figure 3-6.

“Look up user_id =251"

| ref |100| ref |200| ref |300| ref |400| ref ‘500‘ ref |

K o e el el T » key =500
ey < 100 “,x _______________ » 400 < key < 500
o 100 < key < 200 200<key <300 N 0TTTeemeaalll » 300 < key < 400

D

y
[rer [111] ref [135] ref [152] ref [169] ref [190] ref |

’ d ’ S

A » ¥ Y Py A

| ref |210| ref |230| ref ‘250‘ ref ‘270‘ ref |290| ref |
PO ¥ DU
50 < key <270
A
[250] val [251] val [252] val [253] val [254] val |

Figure 3-6. Looking up a key using a B-tree index.

One page is designated as the root of the B-tree; whenever you want to look up a key
in the index, you start here. The page contains several keys and references to child
pages. Each child is responsible for a continuous range of keys, and the keys between
the references indicate where the boundaries between those ranges lie.

In the example in Figure 3-6, we are looking for the key 251, so we know that we need
to follow the page reference between the boundaries 200 and 300. That takes us to a
similar-looking page that further breaks down the 200-300 range into subranges.

80 | Chapter3: Storage and Retrieval

Eventually we get down to a page containing individual keys (a leaf page), which
either contains the value for each key inline or contains references to the pages where
the values can be found.

The number of references to child pages in one page of the B-tree is called the
branching factor. For example, in Figure 3-6 the branching factor is six. In practice,
the branching factor depends on the amount of space required to store the page refer-
ences and the range boundaries, but typically it is several hundred.

If you want to update the value for an existing key in a B-tree, you search for the leaf
page containing that key, change the value in that page, and write the page back to
disk (any references to that page remain valid). If you want to add a new key, you
need to find the page whose range encompasses the new key and add it to that page.
If there isn’t enough free space in the page to accommodate the new key, it is split
into two half-full pages, and the parent page is updated to account for the new subdi-
vision of key ranges—see Figure 3-7.1

| ref |310| ref |333| ref |345| ref ‘ (spare space)

e ¥ P
333 <key < 345 :

A
[333] val [335] val [337] val [340] val [342] val |

After adding key 334:

| ref ‘310] ref |333| ref |337| ref |345| ref | (spare)

e » P

333 < key <337 337 <key <345

|333 | val |334‘ val | 335 | val ‘ (spare space) |

|337 | val |340| val ‘ 342 | val I (spare space)

Figure 3-7. Growing a B-tree by splitting a page.

This algorithm ensures that the tree remains balanced: a B-tree with n keys always
has a depth of O(log n). Most databases can fit into a B-tree that is three or four levels
deep, so you don’t need to follow many page references to find the page you are look-
ing for. (A four-level tree of 4 KB pages with a branching factor of 500 can store up to
256 TB.)

ii. Inserting a new key into a B-tree is reasonably intuitive, but deleting one (while keeping the tree balanced)
is somewhat more involved [2].

Data Structures That Power Your Database | 81

Making B-trees reliable

The basic underlying write operation of a B-tree is to overwrite a page on disk with
new data. It is assumed that the overwrite does not change the location of the page;
i.e., all references to that page remain intact when the page is overwritten. This is in
stark contrast to log-structured indexes such as LSM-trees, which only append to files
(and eventually delete obsolete files) but never modify files in place.

You can think of overwriting a page on disk as an actual hardware operation. On a
magnetic hard drive, this means moving the disk head to the right place, waiting for
the right position on the spinning platter to come around, and then overwriting the
appropriate sector with new data. On SSDs, what happens is somewhat more compli-
cated, due to the fact that an SSD must erase and rewrite fairly large blocks of a stor-
age chip at a time [19].

Moreover, some operations require several different pages to be overwritten. For
example, if you split a page because an insertion caused it to be overfull, you need to
write the two pages that were split, and also overwrite their parent page to update the
references to the two child pages. This is a dangerous operation, because if the data-
base crashes after only some of the pages have been written, you end up with a cor-
rupted index (e.g., there may be an orphan page that is not a child of any parent).

In order to make the database resilient to crashes, it is common for B-tree implemen-
tations to include an additional data structure on disk: a write-ahead log (WAL, also
known as a redo log). This is an append-only file to which every B-tree modification
must be written before it can be applied to the pages of the tree itself. When the data-
base comes back up after a crash, this log is used to restore the B-tree back to a con-
sistent state [5, 20].

An additional complication of updating pages in place is that careful concurrency
control is required if multiple threads are going to access the B-tree at the same time
—otherwise a thread may see the tree in an inconsistent state. This is typically done
by protecting the tree’s data structures with latches (lightweight locks). Log-
structured approaches are simpler in this regard, because they do all the merging in
the background without interfering with incoming queries and atomically swap old
segments for new segments from time to time.

B-tree optimizations

As B-trees have been around for so long, it’s not surprising that many optimizations
have been developed over the years. To mention just a few:

« Instead of overwriting pages and maintaining a WAL for crash recovery, some
databases (like LMDB) use a copy-on-write scheme [21]. A modified page is
written to a different location, and a new version of the parent pages in the tree is
created, pointing at the new location. This approach is also useful for concur-

82 | Chapter3: Storage and Retrieval

rency control, as we shall see in “Snapshot Isolation and Repeatable Read” on
page 237.

o We can save space in pages by not storing the entire key, but abbreviating it.
Especially in pages on the interior of the tree, keys only need to provide enough
information to act as boundaries between key ranges. Packing more keys into a
page allows the tree to have a higher branching factor, and thus fewer levels.

« In general, pages can be positioned anywhere on disk; there is nothing requiring
pages with nearby key ranges to be nearby on disk. If a query needs to scan over a
large part of the key range in sorted order, that page-by-page layout can be ineffi-
cient, because a disk seek may be required for every page that is read. Many B-
tree implementations therefore try to lay out the tree so that leaf pages appear in
sequential order on disk. However, it’s difficult to maintain that order as the tree
grows. By contrast, since LSM-trees rewrite large segments of the storage in one
go during merging, it’s easier for them to keep sequential keys close to each other
on disk.

« Additional pointers have been added to the tree. For example, each leaf page may
have references to its sibling pages to the left and right, which allows scanning
keys in order without jumping back to parent pages.

o B-tree variants such as fractal trees [22] borrow some log-structured ideas to
reduce disk seeks (and they have nothing to do with fractals).

Comparing B-Trees and LSM-Trees

Even though B-tree implementations are generally more mature than LSM-tree
implementations, LSM-trees are also interesting due to their performance character-
istics. As a rule of thumb, LSM-trees are typically faster for writes, whereas B-trees
are thought to be faster for reads [23]. Reads are typically slower on LSM-trees
because they have to check several different data structures and SSTables at different
stages of compaction.

However, benchmarks are often inconclusive and sensitive to details of the workload.
You need to test systems with your particular workload in order to make a valid com-
parison. In this section we will briefly discuss a few things that are worth considering
when measuring the performance of a storage engine.

iii. This variant is sometimes known as a B* tree, although the optimization is so common that it often isn’t
distinguished from other B-tree variants.

Data Structures That Power Your Database | 83

Advantages of LSM-trees

A B-tree index must write every piece of data at least twice: once to the write-ahead
log, and once to the tree page itself (and perhaps again as pages are split). There is
also overhead from having to write an entire page at a time, even if only a few bytes in
that page changed. Some storage engines even overwrite the same page twice in order
to avoid ending up with a partially updated page in the event of a power failure [24,
25].

Log-structured indexes also rewrite data multiple times due to repeated compaction
and merging of SSTables. This effect—one write to the database resulting in multiple
writes to the disk over the course of the database’s lifetime—is known as write ampli-
fication. It is of particular concern on SSDs, which can only overwrite blocks a limi-
ted number of times before wearing out.

In write-heavy applications, the performance bottleneck might be the rate at which
the database can write to disk. In this case, write amplification has a direct perfor-
mance cost: the more that a storage engine writes to disk, the fewer writes per second
it can handle within the available disk bandwidth.

Moreover, LSM-trees are typically able to sustain higher write throughput than B-
trees, partly because they sometimes have lower write amplification (although this
depends on the storage engine configuration and workload), and partly because they
sequentially write compact SSTable files rather than having to overwrite several pages
in the tree [26]. This difference is particularly important on magnetic hard drives,
where sequential writes are much faster than random writes.

LSM-trees can be compressed better, and thus often produce smaller files on disk
than B-trees. B-tree storage engines leave some disk space unused due to fragmenta-
tion: when a page is split or when a row cannot fit into an existing page, some space
in a page remains unused. Since LSM-trees are not page-oriented and periodically
rewrite SSTables to remove fragmentation, they have lower storage overheads, espe-
cially when using leveled compaction [27].

On many SSDs, the firmware internally uses a log-structured algorithm to turn ran-
dom writes into sequential writes on the underlying storage chips, so the impact of
the storage engine’s write pattern is less pronounced [19]. However, lower write
amplification and reduced fragmentation are still advantageous on SSDs: represent-

ing data more compactly allows more read and write requests within the available I/O
bandwidth.

Downsides of LSM-trees

A downside of log-structured storage is that the compaction process can sometimes
interfere with the performance of ongoing reads and writes. Even though storage
engines try to perform compaction incrementally and without affecting concurrent

84 | Chapter3: Storage and Retrieval

access, disks have limited resources, so it can easily happen that a request needs to
wait while the disk finishes an expensive compaction operation. The impact on
throughput and average response time is usually small, but at higher percentiles (see
“Describing Performance” on page 13) the response time of queries to log-structured
storage engines can sometimes be quite high, and B-trees can be more predictable
[28].

Another issue with compaction arises at high write throughput: the disk’s finite write
bandwidth needs to be shared between the initial write (logging and flushing a
memtable to disk) and the compaction threads running in the background. When
writing to an empty database, the full disk bandwidth can be used for the initial write,
but the bigger the database gets, the more disk bandwidth is required for compaction.

If write throughput is high and compaction is not configured carefully, it can happen
that compaction cannot keep up with the rate of incoming writes. In this case, the
number of unmerged segments on disk keeps growing until you run out of disk
space, and reads also slow down because they need to check more segment files. Typ-
ically, SSTable-based storage engines do not throttle the rate of incoming writes, even
if compaction cannot keep up, so you need explicit monitoring to detect this situa-
tion [29, 30].

An advantage of B-trees is that each key exists in exactly one place in the index,
whereas a log-structured storage engine may have multiple copies of the same key in
different segments. This aspect makes B-trees attractive in databases that want to
offer strong transactional semantics: in many relational databases, transaction isola-
tion is implemented using locks on ranges of keys, and in a B-tree index, those locks
can be directly attached to the tree [5]. In Chapter 7 we will discuss this point in more
detail.

B-trees are very ingrained in the architecture of databases and provide consistently
good performance for many workloads, so it’s unlikely that they will go away anytime
soon. In new datastores, log-structured indexes are becoming increasingly popular.
There is no quick and easy rule for determining which type of storage engine is better
for your use case, so it is worth testing empirically.

Other Indexing Structures

So far we have only discussed key-value indexes, which are like a primary key index in
the relational model. A primary key uniquely identifies one row in a relational table,
or one document in a document database, or one vertex in a graph database. Other
records in the database can refer to that row/document/vertex by its primary key (or
ID), and the index is used to resolve such references.

It is also very common to have secondary indexes. In relational databases, you can
create several secondary indexes on the same table using the CREATE INDEX com-

Data Structures That Power Your Database | 85

mand, and they are often crucial for performing joins efficiently. For example, in
Figure 2-1 in Chapter 2 you would most likely have a secondary index on the
user_id columns so that you can find all the rows belonging to the same user in each
of the tables.

A secondary index can easily be constructed from a key-value index. The main differ-
ence is that keys are not unique; i.e., there might be many rows (documents, vertices)
with the same key. This can be solved in two ways: either by making each value in the
index a list of matching row identifiers (like a postings list in a full-text index) or by
making each key unique by appending a row identifier to it. Either way, both B-trees
and log-structured indexes can be used as secondary indexes.

Storing values within the index

The key in an index is the thing that queries search for, but the value can be one of
two things: it could be the actual row (document, vertex) in question, or it could be a
reference to the row stored elsewhere. In the latter case, the place where rows are
stored is known as a heap file, and it stores data in no particular order (it may be
append-only, or it may keep track of deleted rows in order to overwrite them with
new data later). The heap file approach is common because it avoids duplicating data
when multiple secondary indexes are present: each index just references a location in
the heap file, and the actual data is kept in one place.

When updating a value without changing the key, the heap file approach can be quite
efficient: the record can be overwritten in place, provided that the new value is not
larger than the old value. The situation is more complicated if the new value is larger,
as it probably needs to be moved to a new location in the heap where there is enough
space. In that case, either all indexes need to be updated to point at the new heap
location of the record, or a forwarding pointer is left behind in the old heap location

(5].

In some situations, the extra hop from the index to the heap file is too much of a per-
formance penalty for reads, so it can be desirable to store the indexed row directly
within an index. This is known as a clustered index. For example, in MySQL’s
InnoDB storage engine, the primary key of a table is always a clustered index, and
secondary indexes refer to the primary key (rather than a heap file location) [31]. In
SQL Server, you can specify one clustered index per table [32].

A compromise between a clustered index (storing all row data within the index) and
a nonclustered index (storing only references to the data within the index) is known
as a covering index or index with included columns, which stores some of a table’s col-
umns within the index [33]. This allows some queries to be answered by using the
index alone (in which case, the index is said to cover the query) [32].

86 | Chapter3: Storage and Retrieval

As with any kind of duplication of data, clustered and covering indexes can speed up
reads, but they require additional storage and can add overhead on writes. Databases
also need to go to additional effort to enforce transactional guarantees, because appli-
cations should not see inconsistencies due to the duplication.

Multi-column indexes

The indexes discussed so far only map a single key to a value. That is not sufficient if
we need to query multiple columns of a table (or multiple fields in a document)
simultaneously.

The most common type of multi-column index is called a concatenated index, which
simply combines several fields into one key by appending one column to another (the
index definition specifies in which order the fields are concatenated). This is like an
old-fashioned paper phone book, which provides an index from (lastname, first-
name) to phone number. Due to the sort order, the index can be used to find all the
people with a particular last name, or all the people with a particular lastname-
firstname combination. However, the index is useless if you want to find all the peo-
ple with a particular first name.

Multi-dimensional indexes are a more general way of querying several columns at
once, which is particularly important for geospatial data. For example, a restaurant-
search website may have a database containing the latitude and longitude of each res-
taurant. When a user is looking at the restaurants on a map, the website needs to
search for all the restaurants within the rectangular map area that the user is cur-
rently viewing. This requires a two-dimensional range query like the following:

SELECT * FROM restaurants WHERE latitude > 51.4946 AND latitude < 51.5079
AND longitude > -0.1162 AND longitude < -0.1004;

A standard B-tree or LSM-tree index is not able to answer that kind of query effi-
ciently: it can give you either all the restaurants in a range of latitudes (but at any lon-
gitude), or all the restaurants in a range of longitudes (but anywhere between the
North and South poles), but not both simultaneously.

One option is to translate a two-dimensional location into a single number using a
space-filling curve, and then to use a regular B-tree index [34]. More commonly, spe-
cialized spatial indexes such as R-trees are used. For example, PostGIS implements
geospatial indexes as R-trees using PostgreSQL’s Generalized Search Tree indexing
facility [35]. We don’t have space to describe R-trees in detail here, but there is plenty
of literature on them.

An interesting idea is that multi-dimensional indexes are not just for geographic
locations. For example, on an ecommerce website you could use a three-dimensional
index on the dimensions (red, green, blue) to search for products in a certain range of
colors, or in a database of weather observations you could have a two-dimensional

Data Structures That Power Your Database | 87

index on (date, temperature) in order to efficiently search for all the observations
during the year 2013 where the temperature was between 25 and 30°C. With a one-
dimensional index, you would have to either scan over all the records from 2013
(regardless of temperature) and then filter them by temperature, or vice versa. A 2D
index could narrow down by timestamp and temperature simultaneously. This tech-
nique is used by HyperDex [36].

Full-text search and fuzzy indexes

All the indexes discussed so far assume that you have exact data and allow you to
query for exact values of a key, or a range of values of a key with a sort order. What
they don’t allow you to do is search for similar keys, such as misspelled words. Such
fuzzy querying requires different techniques.

For example, full-text search engines commonly allow a search for one word to be
expanded to include synonyms of the word, to ignore grammatical variations of
words, and to search for occurrences of words near each other in the same document,
and support various other features that depend on linguistic analysis of the text. To
cope with typos in documents or queries, Lucene is able to search text for words
within a certain edit distance (an edit distance of 1 means that one letter has been
added, removed, or replaced) [37].

As mentioned in “Making an LSM-tree out of SSTables” on page 78, Lucene uses a
SSTable-like structure for its term dictionary. This structure requires a small in-
memory index that tells queries at which offset in the sorted file they need to look for
a key. In LevelDB, this in-memory index is a sparse collection of some of the keys,
but in Lucene, the in-memory index is a finite state automaton over the characters in
the keys, similar to a trie [38]. This automaton can be transformed into a Levenshtein
automaton, which supports efficient search for words within a given edit distance
[39].

Other fuzzy search techniques go in the direction of document classification and
machine learning. See an information retrieval textbook for more detail [e.g., 40].

Keeping everything in memory

The data structures discussed so far in this chapter have all been answers to the limi-
tations of disks. Compared to main memory, disks are awkward to deal with. With
both magnetic disks and SSDs, data on disk needs to be laid out carefully if you want
good performance on reads and writes. However, we tolerate this awkwardness
because disks have two significant advantages: they are durable (their contents are
not lost if the power is turned off), and they have a lower cost per gigabyte than
RAM.

As RAM becomes cheaper, the cost-per-gigabyte argument is eroded. Many datasets
are simply not that big, so it’s quite feasible to keep them entirely in memory, poten-

88 | (Chapter3: Storage and Retrieval

tially distributed across several machines. This has led to the development of in-
memory databases.

Some in-memory key-value stores, such as Memcached, are intended for caching use
only, where it’s acceptable for data to be lost if a machine is restarted. But other in-
memory databases aim for durability, which can be achieved with special hardware
(such as battery-powered RAM), by writing a log of changes to disk, by writing peri-
odic snapshots to disk, or by replicating the in-memory state to other machines.

When an in-memory database is restarted, it needs to reload its state, either from disk
or over the network from a replica (unless special hardware is used). Despite writing
to disk, it’s still an in-memory database, because the disk is merely used as an
append-only log for durability, and reads are served entirely from memory. Writing
to disk also has operational advantages: files on disk can easily be backed up,
inspected, and analyzed by external utilities.

Products such as VoltDB, MemSQL, and Oracle TimesTen are in-memory databases
with a relational model, and the vendors claim that they can offer big performance
improvements by removing all the overheads associated with managing on-disk data
structures [41, 42]. RAMCloud is an open source, in-memory key-value store with
durability (using a log-structured approach for the data in memory as well as the data
on disk) [43]. Redis and Couchbase provide weak durability by writing to disk asyn-
chronously.

Counterintuitively, the performance advantage of in-memory databases is not due to
the fact that they don’t need to read from disk. Even a disk-based storage engine may
never need to read from disk if you have enough memory, because the operating sys-
tem caches recently used disk blocks in memory anyway. Rather, they can be faster
because they can avoid the overheads of encoding in-memory data structures in a
form that can be written to disk [44].

Besides performance, another interesting area for in-memory databases is providing
data models that are difficult to implement with disk-based indexes. For example,
Redis offers a database-like interface to various data structures such as priority
queues and sets. Because it keeps all data in memory, its implementation is compara-
tively simple.

Recent research indicates that an in-memory database architecture could be extended
to support datasets larger than the available memory, without bringing back the over-
heads of a disk-centric architecture [45]. The so-called anti-caching approach works
by evicting the least recently used data from memory to disk when there is not
enough memory, and loading it back into memory when it is accessed again in the
future. This is similar to what operating systems do with virtual memory and swap
files, but the database can manage memory more efficiently than the OS, as it can
work at the granularity of individual records rather than entire memory pages. This

Data Structures That Power Your Database | 89

approach still requires indexes to fit entirely in memory, though (like the Bitcask
example at the beginning of the chapter).

Further changes to storage engine design will probably be needed if non-volatile
memory (NVM) technologies become more widely adopted [46]. At present, this is a
new area of research, but it is worth keeping an eye on in the future.

Transaction Processing or Analytics?

In the early days of business data processing, a write to the database typically corre-
sponded to a commercial transaction taking place: making a sale, placing an order
with a supplier, paying an employee’s salary, etc. As databases expanded into areas
that didn’t involve money changing hands, the term transaction nevertheless stuck,
referring to a group of reads and writes that form a logical unit.

A transaction needn’t necessarily have ACID (atomicity, consis-
tency, isolation, and durability) properties. Transaction processing
just means allowing clients to make low-latency reads and writes—
as opposed to batch processing jobs, which only run periodically
(for example, once per day). We discuss the ACID properties in
Chapter 7 and batch processing in Chapter 10.

Even though databases started being used for many different kinds of data—com-
ments on blog posts, actions in a game, contacts in an address book, etc.—the basic
access pattern remained similar to processing business transactions. An application
typically looks up a small number of records by some key, using an index. Records
are inserted or updated based on the user’s input. Because these applications are
interactive, the access pattern became known as online transaction processing
(OLTP).

However, databases also started being increasingly used for data analytics, which has
very different access patterns. Usually an analytic query needs to scan over a huge
number of records, only reading a few columns per record, and calculates aggregate
statistics (such as count, sum, or average) rather than returning the raw data to the
user. For example, if your data is a table of sales transactions, then analytic queries
might be:

« What was the total revenue of each of our stores in January?
« How many more bananas than usual did we sell during our latest promotion?

o Which brand of baby food is most often purchased together with brand X
diapers?

90 | Chapter3:Storage and Retrieval

These queries are often written by business analysts, and feed into reports that help
the management of a company make better decisions (business intelligence). In order
to differentiate this pattern of using databases from transaction processing, it has
been called online analytic processing (OLAP) [47]." The difference between OLTP
and OLAP is not always clear-cut, but some typical characteristics are listed in
Table 3-1.

Table 3-1. Comparing characteristics of transaction processing versus analytic systems

Property Transaction processing systems (OLTP) Analytic systems (OLAP)

Main read pattern Small number of records per query, fetched by key Aggregate over large number of records
Main write pattern Random-access, low-latency writes from user input Bulk import (ETL) or event stream
Primarily used by End user/customer, via web application Internal analyst, for decision support
What data represents Latest state of data (current point in time) History of events that happened over time
Dataset size Gigabytes to terabytes Terabytes to petabytes

At first, the same databases were used for both transaction processing and analytic
queries. SQL turned out to be quite flexible in this regard: it works well for OLTP-
type queries as well as OLAP-type queries. Nevertheless, in the late 1980s and early
1990s, there was a trend for companies to stop using their OLTP systems for analytics
purposes, and to run the analytics on a separate database instead. This separate data-
base was called a data warehouse.

Data Warehousing

An enterprise may have dozens of different transaction processing systems: systems
powering the customer-facing website, controlling point of sale (checkout) systems in
physical stores, tracking inventory in warehouses, planning routes for vehicles, man-
aging suppliers, administering employees, etc. Each of these systems is complex and
needs a team of people to maintain it, so the systems end up operating mostly auton-
omously from each other.

These OLTP systems are usually expected to be highly available and to process trans-
actions with low latency, since they are often critical to the operation of the business.
Database administrators therefore closely guard their OLTP databases. They are usu-
ally reluctant to let business analysts run ad hoc analytic queries on an OLTP data-
base, since those queries are often expensive, scanning large parts of the dataset,
which can harm the performance of concurrently executing transactions.

iv. The meaning of online in OLAP is unclear; it probably refers to the fact that queries are not just for prede-
fined reports, but that analysts use the OLAP system interactively for explorative queries.

Transaction Processing or Analytics? | 91

A data warehouse, by contrast, is a separate database that analysts can query to their
hearts” content, without affecting OLTP operations [48]. The data warehouse con-
tains a read-only copy of the data in all the various OLTP systems in the company.
Data is extracted from OLTP databases (using either a periodic data dump or a con-
tinuous stream of updates), transformed into an analysis-friendly schema, cleaned
up, and then loaded into the data warehouse. This process of getting data into the
warehouse is known as Extract-Transform-Load (ETL) and is illustrated in
Figure 3-8.

wv
= Warehouse Truck
v Customer .
3 worker driver
é’ ‘ Ecommerce site ‘ ‘ Stock-keeping app ‘ ‘ Vehicle route planner ‘
7] ‘
o
wv
>
wv
& Sales Inventory Geo
=l DB DB DB
(@]
extract extract .| extract
é’ ! transform transform transform
o ,
2 load load
wv
D- '
S Business . query
@) analyst % , Data warehouse

Figure 3-8. Simplified outline of ETL into a data warehouse.

Data warehouses now exist in almost all large enterprises, but in small companies
they are almost unheard of. This is probably because most small companies don’t
have so many different OLTP systems, and most small companies have a small
amount of data—small enough that it can be queried in a conventional SQL database,
or even analyzed in a spreadsheet. In a large company, a lot of heavy lifting is
required to do something that is simple in a small company.

A big advantage of using a separate data warehouse, rather than querying OLTP sys-
tems directly for analytics, is that the data warehouse can be optimized for analytic
access patterns. It turns out that the indexing algorithms discussed in the first half of
this chapter work well for OLTP, but are not very good at answering analytic queries.

92 | Chapter3: Storage and Retrieval

In the rest of this chapter we will look at storage engines that are optimized for ana-
lytics instead.

The divergence between OLTP databases and data warehouses

The data model of a data warehouse is most commonly relational, because SQL is
generally a good fit for analytic queries. There are many graphical data analysis tools
that generate SQL queries, visualize the results, and allow analysts to explore the data
(through operations such as drill-down and slicing and dicing).

On the surface, a data warehouse and a relational OLTP database look similar,
because they both have a SQL query interface. However, the internals of the systems
can look quite different, because they are optimized for very different query patterns.
Many database vendors now focus on supporting either transaction processing or
analytics workloads, but not both.

Some databases, such as Microsoft SQL Server and SAP HANA, have support for
transaction processing and data warehousing in the same product. However, they are
increasingly becoming two separate storage and query engines, which happen to be
accessible through a common SQL interface [49, 50, 51].

Data warehouse vendors such as Teradata, Vertica, SAP HANA, and ParAccel typi-
cally sell their systems under expensive commercial licenses. Amazon RedShift is a
hosted version of ParAccel. More recently, a plethora of open source SQL-on-
Hadoop projects have emerged; they are young but aiming to compete with commer-
cial data warehouse systems. These include Apache Hive, Spark SQL, Cloudera
Impala, Facebook Presto, Apache Tajo, and Apache Drill [52, 53]. Some of them are
based on ideas from Google’s Dremel [54].

Stars and Snowflakes: Schemas for Analytics

As explored in Chapter 2, a wide range of different data models are used in the realm
of transaction processing, depending on the needs of the application. On the other
hand, in analytics, there is much less diversity of data models. Many data warehouses
are used in a fairly formulaic style, known as a star schema (also known as dimen-
sional modeling [55]).

The example schema in Figure 3-9 shows a data warehouse that might be found at a
grocery retailer. At the center of the schema is a so-called fact table (in this example,
it is called fact_sales). Each row of the fact table represents an event that occurred
at a particular time (here, each row represents a customer’s purchase of a product). If
we were analyzing website traffic rather than retail sales, each row might represent a
page view or a click by a user.

Transaction Processing or Analytics? | 93

dim_product table dim_store table

product_sk sku description brand category store_sk | state city
30 OK4012 | Bananas | Freshmax | Fresh fruit 1 WA Seattle
31 - KA9511 | Fishfood | Aquatech | Petsupplies 2 CA | San Francisco
32 v\\AB1 234 | Croissant | Dealicious Bakery - 3 CA Palo Alto

fact_sales table

date_key | product_sk \ store_sk £ promotion_sk | customer_sk | quantity | net_price | discount_price
140102 31— 3 o/ NULL NULL 1 249 249
140102 69 5 19 ~N NULL 3 14.99 9.99
140102 74 3 23 N 191 ~ 1 4.49 3.89
2140102 33 8 NULL \ 235 \ 4 0.99 0.99

dim_date table dim_customer table

date_key | year | month | day | weekday | is_holiday customer_sk | name | date_of_birth
\ 140101 | 2014 | jan 1 wed yes 190 Alice 1979-03-29
A140102 2014 jan 2 thu no \) 191 Bob 1961-09-02
140103 | 2014 fri no 192 Cecil 1991-12-13
dim_promotion table
promotion_sk name ad_type coupon_type

18 New Year sale Poster NULL

~>» 19 Aquarium deal Direct mail Leaflet

20 Coffee & cake bundle | In-store sign NULL

Figure 3-9. Example of a star schema for use in a data warehouse.

Usually, facts are captured as individual events, because this allows maximum flexi-
bility of analysis later. However, this means that the fact table can become extremely
large. A big enterprise like Apple, Walmart, or eBay may have tens of petabytes of
transaction history in its data warehouse, most of which is in fact tables [56].

Some of the columns in the fact table are attributes, such as the price at which the
product was sold and the cost of buying it from the supplier (allowing the profit mar-
gin to be calculated). Other columns in the fact table are foreign key references to
other tables, called dimension tables. As each row in the fact table represents an event,
the dimensions represent the who, what, where, when, how, and why of the event.

For example, in Figure 3-9, one of the dimensions is the product that was sold. Each
row in the dim_product table represents one type of product that is for sale, including

94 | Chapter3: Storage and Retrieval

its stock-keeping unit (SKU), description, brand name, category, fat content, package
size, etc. Each row in the fact_sales table uses a foreign key to indicate which prod-
uct was sold in that particular transaction. (For simplicity, if the customer buys sev-
eral different products at once, they are represented as separate rows in the fact
table.)

Even date and time are often represented using dimension tables, because this allows
additional information about dates (such as public holidays) to be encoded, allowing
queries to differentiate between sales on holidays and non-holidays.

The name “star schema” comes from the fact that when the table relationships are
visualized, the fact table is in the middle, surrounded by its dimension tables; the
connections to these tables are like the rays of a star.

A variation of this template is known as the snowflake schema, where dimensions are
further broken down into subdimensions. For example, there could be separate tables
for brands and product categories, and each row in the dim_product table could ref-
erence the brand and category as foreign keys, rather than storing them as strings in
the dim_product table. Snowflake schemas are more normalized than star schemas,
but star schemas are often preferred because they are simpler for analysts to work
with [55].

In a typical data warehouse, tables are often very wide: fact tables often have over 100
columns, sometimes several hundred [51]. Dimension tables can also be very wide, as
they include all the metadata that may be relevant for analysis—for example, the
dim_store table may include details of which services are offered at each store,
whether it has an in-store bakery, the square footage, the date when the store was first
opened, when it was last remodeled, how far it is from the nearest highway, etc.

Column-Oriented Storage

If you have trillions of rows and petabytes of data in your fact tables, storing and
querying them efficiently becomes a challenging problem. Dimension tables are usu-
ally much smaller (millions of rows), so in this section we will concentrate primarily
on storage of facts.

Although fact tables are often over 100 columns wide, a typical data warehouse query
only accesses 4 or 5 of them at one time ("SELECT *" queries are rarely needed for
analytics) [51]. Take the query in Example 3-1: it accesses a large number of rows
(every occurrence of someone buying fruit or candy during the 2013 calendar year),
but it only needs to access three columns of the fact_sales table: date_key,
product_sk, and quantity. The query ignores all other columns.

Column-Oriented Storage | 95

Example 3-1. Analyzing whether people are more inclined to buy fresh fruit or candy,
depending on the day of the week

SELECT
dim_date.weekday, dim_product.category,
SUM(fact_sales.quantity) AS quantity_sold
FROM fact_sales
JOIN dim_date ON fact_sales.date_key = dim_date.date_key
JOIN dim_product ON fact_sales.product_sk = dim_product.product_sk
WHERE
dim_date.year = 2013 AND
dim_product.category IN ('Fresh fruit', 'Candy')
GROUP BY
dim_date.weekday, dim_product.category;

How can we execute this query efficiently?

In most OLTP databases, storage is laid out in a row-oriented fashion: all the values
from one row of a table are stored next to each other. Document databases are simi-
lar: an entire document is typically stored as one contiguous sequence of bytes. You
can see this in the CSV example of Figure 3-1.

In order to process a query like Example 3-1, you may have indexes on
fact_sales.date_key and/or fact_sales.product_sk that tell the storage engine
where to find all the sales for a particular date or for a particular product. But then, a
row-oriented storage engine still needs to load all of those rows (each consisting of
over 100 attributes) from disk into memory, parse them, and filter out those that
don’t meet the required conditions. That can take a long time.

The idea behind column-oriented storage is simple: don’t store all the values from one
row together, but store all the values from each column together instead. If each col-
umn is stored in a separate file, a query only needs to read and parse those columns
that are used in that query, which can save a lot of work. This principle is illustrated
in Figure 3-10.

Column storage is easiest to understand in a relational data model,
but it applies equally to nonrelational data. For example, Parquet
[57] is a columnar storage format that supports a document data
model, based on Google’s Dremel [54].

96 | Chapter3:Storage and Retrieval

fact_sales table

date_key | product_sk | store_sk | promotion_sk | customer_sk | quantity | net_price | discount_price
140102 69 4 NULL NULL 1 13.99 13.99
140102 69 5 19 NULL 3 14.99 9.99
140102 69 5 NULL 191 1 14.99 14.99
140102 74 3 23 202 5 0.99 0.89
140103 31 2 NULL NULL 1 249 249
140103 31 3 NULL NULL 3 14.99 9.99
140103 31 3 21 123 1 49.99 39.99
140103 31 8 NULL 233 1 0.99 0.99

Columnar storage layout:

date_key file contents: 140102, 140102, 140102, 140102, 140103, 140103, 140103, 140103
product_sk file contents: 69,69, 69,74,31,31,31,31
store_sk file contents: 4,5,53,2,3,3,8

promotion_sk file contents: NULL, 19, NULL, 23, NULL, NULL, 21, NULL
customer_sk file contents: NULL, NULL, 191, 202, NULL, NULL, 123, 233
quantity file contents: 1,3,1,51,3,1,1

net_price file contents: 13.99, 14.99, 14.99, 0.99, 2.49, 14.99, 49.99, 0.99
discount_price file contents: 13.99, 9.99, 14.99, 0.89, 2.49, 9.99, 39.99, 0.99

Figure 3-10. Storing relational data by column, rather than by row.

The column-oriented storage layout relies on each column file containing the rows in
the same order. Thus, if you need to reassemble an entire row, you can take the 23rd
entry from each of the individual column files and put them together to form the
23rd row of the table.

Column Compression

Besides only loading those columns from disk that are required for a query, we can
further reduce the demands on disk throughput by compressing data. Fortunately,
column-oriented storage often lends itself very well to compression.

Take a look at the sequences of values for each column in Figure 3-10: they often look
quite repetitive, which is a good sign for compression. Depending on the data in the
column, different compression techniques can be used. One technique that is particu-
larly effective in data warehouses is bitmap encoding, illustrated in Figure 3-11.

Column-Oriented Storage | 97

Column values:
product_sk: 69|69 6969|/74 /31/|31|31/31//29//30 /30//31|31//31//68 |69 |69

Bitmap for each possible value:
product sk=29: |0 | 0| 0o/|o|o/lo/o| o0 0|10 0/0o/0|0/l0O0]O

product_sk=30: (0| 0| O O/ O| OO O/ OO 1/ 1|0 0|00 00O
product_sk=31: |[0| O OO/ O /1 /[1|[1] 1|0 O0/O /1 |/1||[1]/0] OO0
product_sk=68: (0| 0| 0 O/ 0|/ OO O] O[O O OO O|O0|1T 00O
product_sk=69: | 1| 1| 1 [1|[0[[0/|[0]| O/|[O|[O] O O OO0 O0O 11

product_sk=74. (0| 0|/O0/|/O//1T |O|/O| O] O||O|/O|O/|O| O] O[O0 O

Run-length encoding:

product_sk=29: 9,1 (9 zeros, 1 one, rest zeros)
product_sk=30: 10,2 (10 zeros, 2 ones, rest zeros)
product_sk=31: 5,4,3,3 (5 zeros, 4 ones, 3 zeros, 3 ones, rest zeros)
product_sk=68: 15,1 (15 zeros, 1 one, rest zeros)

product_sk=69: 0,4,12,2 (0 zeros, 4 ones, 12 zeros, 2 ones)
product_sk=74: 4,1 (4 zeros, 1 one, rest zeros)

Figure 3-11. Compressed, bitmap-indexed storage of a single column.

Often, the number of distinct values in a column is small compared to the number of
rows (for example, a retailer may have billions of sales transactions, but only 100,000
distinct products). We can now take a column with # distinct values and turn it into
n separate bitmaps: one bitmap for each distinct value, with one bit for each row. The
bit is 1 if the row has that value, and 0 if not.

If n is very small (for example, a country column may have approximately 200 dis-
tinct values), those bitmaps can be stored with one bit per row. But if n is bigger,
there will be a lot of zeros in most of the bitmaps (we say that they are sparse). In that
case, the bitmaps can additionally be run-length encoded, as shown at the bottom of
Figure 3-11. This can make the encoding of a column remarkably compact.

Bitmap indexes such as these are very well suited for the kinds of queries that are
common in a data warehouse. For example:

WHERE product_sk IN (30, 68, 69):
Load the three bitmaps for product_sk = 30, product_sk = 68, and product_sk
= 69, and calculate the bitwise OR of the three bitmaps, which can be done very
efficiently.

98 | Chapter3: Storage and Retrieval

WHERE product_sk = 31 AND store_sk = 3:
Load the bitmaps for product_sk = 31 and store_sk = 3, and calculate the bit-
wise AND. This works because the columns contain the rows in the same order,
so the kth bit in one column’s bitmap corresponds to the same row as the kth bit
in another column’s bitmap.

There are also various other compression schemes for different kinds of data, but we
won’t go into them in detail—see [58] for an overview.

Column-oriented storage and column families

Cassandra and HBase have a concept of column families, which
they inherited from Bigtable [9]. However, it is very misleading to
call them column-oriented: within each column family, they store
all columns from a row together, along with a row key, and they do
not use column compression. Thus, the Bigtable model is still
mostly row-oriented.

Memory bandwidth and vectorized processing

For data warehouse queries that need to scan over millions of rows, a big bottleneck
is the bandwidth for getting data from disk into memory. However, that is not the
only bottleneck. Developers of analytical databases also worry about efficiently using
the bandwidth from main memory into the CPU cache, avoiding branch mispredic-
tions and bubbles in the CPU instruction processing pipeline, and making use of
single-instruction-multi-data (SIMD) instructions in modern CPUs [59, 60].

Besides reducing the volume of data that needs to be loaded from disk, column-
oriented storage layouts are also good for making efficient use of CPU cycles. For
example, the query engine can take a chunk of compressed column data that fits
comfortably in the CPU’s L1 cache and iterate through it in a tight loop (that is, with
no function calls). A CPU can execute such a loop much faster than code that
requires a lot of function calls and conditions for each record that is processed. Col-
umn compression allows more rows from a column to fit in the same amount of L1
cache. Operators, such as the bitwise AND and OR described previously, can be
designed to operate on such chunks of compressed column data directly. This techni-
que is known as vectorized processing [58, 49].

Sort Order in Column Storage

In a column store, it doesn’t necessarily matter in which order the rows are stored.
It’s easiest to store them in the order in which they were inserted, since then inserting
a new row just means appending to each of the column files. However, we can choose
to impose an order, like we did with SSTables previously, and use that as an indexing
mechanism.

Column-Oriented Storage | 99

Note that it wouldn’t make sense to sort each column independently, because then
we would no longer know which items in the columns belong to the same row. We
can only reconstruct a row because we know that the kth item in one column belongs
to the same row as the kth item in another column.

Rather, the data needs to be sorted an entire row at a time, even though it is stored by
column. The administrator of the database can choose the columns by which the
table should be sorted, using their knowledge of common queries. For example, if
queries often target date ranges, such as the last month, it might make sense to make
date_key the first sort key. Then the query optimizer can scan only the rows from the
last month, which will be much faster than scanning all rows.

A second column can determine the sort order of any rows that have the same value
in the first column. For example, if date_key is the first sort key in Figure 3-10, it
might make sense for product_sk to be the second sort key so that all sales for the
same product on the same day are grouped together in storage. That will help queries
that need to group or filter sales by product within a certain date range.

Another advantage of sorted order is that it can help with compression of columns. If
the primary sort column does not have many distinct values, then after sorting, it will
have long sequences where the same value is repeated many times in a row. A simple
run-length encoding, like we used for the bitmaps in Figure 3-11, could compress
that column down to a few kilobytes—even if the table has billions of rows.

That compression effect is strongest on the first sort key. The second and third sort
keys will be more jumbled up, and thus not have such long runs of repeated values.
Columns further down the sorting priority appear in essentially random order, so
they probably won’t compress as well. But having the first few columns sorted is still
a win overall.

Several different sort orders

A clever extension of this idea was introduced in C-Store and adopted in the com-
mercial data warehouse Vertica [61, 62]. Different queries benefit from different sort
orders, so why not store the same data sorted in several different ways? Data needs to
be replicated to multiple machines anyway, so that you don’t lose data if one machine
fails. You might as well store that redundant data sorted in different ways so that
when you’re processing a query, you can use the version that best fits the query
pattern.

Having multiple sort orders in a column-oriented store is a bit similar to having mul-
tiple secondary indexes in a row-oriented store. But the big difference is that the row-
oriented store keeps every row in one place (in the heap file or a clustered index), and
secondary indexes just contain pointers to the matching rows. In a column store,
there normally aren’t any pointers to data elsewhere, only columns containing values.

100 | Chapter 3: Storage and Retrieval

Writing to Column-Oriented Storage

These optimizations make sense in data warehouses, because most of the load con-
sists of large read-only queries run by analysts. Column-oriented storage, compres-
sion, and sorting all help to make those read queries faster. However, they have the
downside of making writes more difficult.

An update-in-place approach, like B-trees use, is not possible with compressed col-
umns. If you wanted to insert a row in the middle of a sorted table, you would most
likely have to rewrite all the column files. As rows are identified by their position
within a column, the insertion has to update all columns consistently.

Fortunately, we have already seen a good solution earlier in this chapter: LSM-trees.
All writes first go to an in-memory store, where they are added to a sorted structure
and prepared for writing to disk. It doesn’t matter whether the in-memory store is
row-oriented or column-oriented. When enough writes have accumulated, they are
merged with the column files on disk and written to new files in bulk. This is essen-
tially what Vertica does [62].

Queries need to examine both the column data on disk and the recent writes in mem-
ory, and combine the two. However, the query optimizer hides this distinction from
the user. From an analyst’s point of view, data that has been modified with inserts,
updates, or deletes is immediately reflected in subsequent queries.

Aggregation: Data Cubes and Materialized Views

Not every data warehouse is necessarily a column store: traditional row-oriented
databases and a few other architectures are also used. However, columnar storage can
be significantly faster for ad hoc analytical queries, so it is rapidly gaining popularity
[51, 63].

Another aspect of data warehouses that is worth mentioning briefly is materialized
aggregates. As discussed earlier, data warehouse queries often involve an aggregate
function, such as COUNT, SUM, AVG, MIN, or MAX in SQL. If the same aggregates are used
by many different queries, it can be wasteful to crunch through the raw data every
time. Why not cache some of the counts or sums that queries use most often?

One way of creating such a cache is a materialized view. In a relational data model, it
is often defined like a standard (virtual) view: a table-like object whose contents are
the results of some query. The difference is that a materialized view is an actual copy
of the query results, written to disk, whereas a virtual view is just a shortcut for writ-
ing queries. When you read from a virtual view, the SQL engine expands it into the
view’s underlying query on the fly and then processes the expanded query.

When the underlying data changes, a materialized view needs to be updated, because
it is a denormalized copy of the data. The database can do that automatically, but

Column-Oriented Storage | 101

such updates make writes more expensive, which is why materialized views are not
often used in OLTP databases. In read-heavy data warehouses they can make more
sense (whether or not they actually improve read performance depends on the indi-
vidual case).

A common special case of a materialized view is known as a data cube or OLAP cube
[64]. It is a grid of aggregates grouped by different dimensions. Figure 3-12 shows an
example.

SELECT SUM(net_price) SELECT SUM(net_price)
FROM fact_sales FROM fact_sales
WHERE date_key = 140101 WHERE date_key = 140101
AND product_sk =32 product_sk
32 33 34 I35 || coooso total)
N d
140101 | 149.60-(1)-31.01~(+)-84.58 ~(+)-28.18 (—=—=—+ 40710.53

O]
ﬂ@.

_ | 140102 | 13218 | 1978 | 8291 | 1096 | . 73091.28
g ® O
o | 140103 | 19675 | 000 1252 | 6467 | ... 54688.10
5 ® H—
140104 | 17836 | 9.98 8875 | 5616 | ... 9513109

SELECT SUM(net_price) | ... | .|, | ... | e | |

FROM fact_sales

WHERE product sk =32 total | 14967.09| 591043 | 732885 | 688539 | lots

Figure 3-12. Two dimensions of a data cube, aggregating data by summing.

Imagine for now that each fact has foreign keys to only two dimension tables—in
Figure 3-12, these are date and product. You can now draw a two-dimensional table,
with dates along one axis and products along the other. Each cell contains the aggre-
gate (e.g., SUM) of an attribute (e.g., net_price) of all facts with that date-product
combination. Then you can apply the same aggregate along each row or column and
get a summary that has been reduced by one dimension (the sales by product regard-
less of date, or the sales by date regardless of product).

In general, facts often have more than two dimensions. In Figure 3-9 there are five
dimensions: date, product, store, promotion, and customer. It’s a lot harder to imag-
ine what a five-dimensional hypercube would look like, but the principle remains the
same: each cell contains the sales for a particular date-product-store-promotion-
customer combination. These values can then repeatedly be summarized along each
of the dimensions.

The advantage of a materialized data cube is that certain queries become very fast
because they have effectively been precomputed. For example, if you want to know

102 | Chapter 3: Storage and Retrieval

the total sales per store yesterday, you just need to look at the totals along the appro-
priate dimension—no need to scan millions of rows.

The disadvantage is that a data cube doesn’t have the same flexibility as querying the
raw data. For example, there is no way of calculating which proportion of sales comes
from items that cost more than $100, because the price isn’t one of the dimensions.
Most data warehouses therefore try to keep as much raw data as possible, and use
aggregates such as data cubes only as a performance boost for certain queries.

Summary

In this chapter we tried to get to the bottom of how databases handle storage and
retrieval. What happens when you store data in a database, and what does the data-
base do when you query for the data again later?

On a high level, we saw that storage engines fall into two broad categories: those opti-
mized for transaction processing (OLTP), and those optimized for analytics (OLAP).
There are big differences between the access patterns in those use cases:

o OLTP systems are typically user-facing, which means that they may see a huge
volume of requests. In order to handle the load, applications usually only touch a
small number of records in each query. The application requests records using
some kind of key, and the storage engine uses an index to find the data for the
requested key. Disk seek time is often the bottleneck here.

« Data warehouses and similar analytic systems are less well known, because they
are primarily used by business analysts, not by end users. They handle a much
lower volume of queries than OLTP systems, but each query is typically very
demanding, requiring many millions of records to be scanned in a short time.
Disk bandwidth (not seek time) is often the bottleneck here, and column-
oriented storage is an increasingly popular solution for this kind of workload.

On the OLTP side, we saw storage engines from two main schools of thought:

o The log-structured school, which only permits appending to files and deleting
obsolete files, but never updates a file that has been written. Bitcask, SSTables,
LSM-trees, Level DB, Cassandra, HBase, Lucene, and others belong to this group.

o The update-in-place school, which treats the disk as a set of fixed-size pages that
can be overwritten. B-trees are the biggest example of this philosophy, being used
in all major relational databases and also many nonrelational ones.

Log-structured storage engines are a comparatively recent development. Their key
idea is that they systematically turn random-access writes into sequential writes on
disk, which enables higher write throughput due to the performance characteristics
of hard drives and SSDs.

Summary | 103

Finishing off the OLTP side, we did a brief tour through some more complicated
indexing structures, and databases that are optimized for keeping all data in memory.

We then took a detour from the internals of storage engines to look at the high-level
architecture of a typical data warehouse. This background illustrated why analytic
workloads are so different from OLTP: when your queries require sequentially scan-
ning across a large number of rows, indexes are much less relevant. Instead it
becomes important to encode data very compactly, to minimize the amount of data
that the query needs to read from disk. We discussed how column-oriented storage
helps achieve this goal.

As an application developer, if you're armed with this knowledge about the internals
of storage engines, you are in a much better position to know which tool is best suited
for your particular application. If you need to adjust a database’s tuning parameters,
this understanding allows you to imagine what effect a higher or a lower value may
have.

Although this chapter couldn’t make you an expert in tuning any one particular stor-
age engine, it has hopefully equipped you with enough vocabulary and ideas that you
can make sense of the documentation for the database of your choice.

References

[1] Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman: Data Structures and
Algorithms. Addison-Wesley, 1983. ISBN: 978-0-201-00023-8

[2] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein:
Introduction to Algorithms, 3rd edition. MIT Press, 2009. ISBN: 978-0-262-53305-8

[3] Justin Sheehy and David Smith: “Bitcask: A Log-Structured Hash Table for Fast
Key/Value Data,” Basho Technologies, April 2010.

[4] Yinan Li, Bingsheng He, Robin Jun Yang, et al.: “Tree Indexing on Solid State
Drives,” Proceedings of the VLDB Endowment, volume 3, number 1, pages 1195-1206,
September 2010.

[5] Goetz Graefe: “Modern B-Tree Techniques,” Foundations and Trends in Data-
bases, volume 3, number 4, pages 203-402, August 2011. doi:10.1561/1900000028

[6] Jeffrey Dean and Sanjay Ghemawat: “LevelDB Implementation Notes,” lev-
eldb.googlecode.com.

[7] Dhruba Borthakur: “The History of RocksDB,” rocksdb.blogspot.com, November
24,2013.

[8] Matteo Bertozzi: “Apache HBase I/O - HFile,” blog.cloudera.com, June, 29 2012.

104 | Chapter 3: Storage and Retrieval

http://basho.com/wp-content/uploads/2015/05/bitcask-intro.pdf
http://basho.com/wp-content/uploads/2015/05/bitcask-intro.pdf
http://www.vldb.org/pvldb/vldb2010/papers/R106.pdf
http://www.vldb.org/pvldb/vldb2010/papers/R106.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.219.7269&rep=rep1&type=pdf
http://dx.doi.org/10.1561/1900000028
https://github.com/google/leveldb/blob/master/doc/impl.html
http://rocksdb.blogspot.com/
http://blog.cloudera.com/blog/2012/06/hbase-io-hfile-input-output/

[9] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, et al.: “Bigtable: A Distributed Stor-
age System for Structured Data,” at 7th USENIX Symposium on Operating System
Design and Implementation (OSDI), November 2006.

[10] Patrick O’Neil, Edward Cheng, Dieter Gawlick, and Elizabeth O’Neil: “The Log-
Structured Merge-Tree (LSM-Tree),” Acta Informatica, volume 33, number 4, pages
351-385, June 1996. doi:10.1007/s002360050048

[11] Mendel Rosenblum and John K. Ousterhout: “The Design and Implementation
of a Log-Structured File System,” ACM Transactions on Computer Systems, volume
10, number 1, pages 26-52, February 1992. doi:10.1145/146941.146943

[12] Adrien Grand: “What Is in a Lucene Index?,” at Lucene/Solr Revolution, Novem-
ber 14, 2013.

[13] Deepak Kandepet: “Hacking Lucene—The Index Format,” hackerlabs.org, Octo-
ber 1, 2011.

[14] Michael McCandless: “Visualizing Lucene’s Segment Merges,” blog.mikemccand-
less.com, February 11, 2011.

[15] Burton H. Bloom: “Space/Time Trade-offs in Hash Coding with Allowable
Errors,” Communications of the ACM, volume 13, number 7, pages 422-426, July
1970. doi:10.1145/362686.362692

[16] “Operating Cassandra: Compaction,” Apache Cassandra Documentation v4.0,
2016.

[17] Rudolf Bayer and Edward M. McCreight: “Organization and Maintenance of
Large Ordered Indices,” Boeing Scientific Research Laboratories, Mathematical and
Information Sciences Laboratory, report no. 20, July 1970.

[18] Douglas Comer: “The Ubiquitous B-Tree,” ACM Computing Surveys, volume 11,
number 2, pages 121-137, June 1979. doi:10.1145/356770.356776

[19] Emmanuel Goossaert: “Coding for SSDs,” codecapsule.com, February 12, 2014.

[20] C. Mohan and Frank Levine: “ARIES/IM: An Efficient and High Concurrency
Index Management Method Using Write-Ahead Logging,” at ACM International
Conference on Management of Data (SIGMOD), June 1992. doi:
10.1145/130283.130338

[21] Howard Chu: “LDAP at Lightning Speed,” at Build Stuff 14, November 2014.

[22] Bradley C. Kuszmaul: “A Comparison of Fractal Trees to Log-Structured Merge
(LSM) Trees,” tokutek.com, April 22, 2014.

[23] Manos Athanassoulis, Michael S. Kester, Lukas M. Maas, et al.: “Designing
Access Methods: The RUM Conjecture,” at 19th International Conference on Extend-
ing Database Technology (EDBT), March 2016. doi:10.5441/002/edbt.2016.42

Summary | 105

http://research.google.com/archive/bigtable.html
http://research.google.com/archive/bigtable.html
http://www.cs.umb.edu/~poneil/lsmtree.pdf
http://www.cs.umb.edu/~poneil/lsmtree.pdf
http://dx.doi.org/10.1007/s002360050048
http://research.cs.wisc.edu/areas/os/Qual/papers/lfs.pdf
http://research.cs.wisc.edu/areas/os/Qual/papers/lfs.pdf
http://dx.doi.org/10.1145/146941.146943
http://www.slideshare.net/lucenerevolution/what-is-inaluceneagrandfinal
http://hackerlabs.github.io/blog/2011/10/01/hacking-lucene-the-index-format/index.html
http://blog.mikemccandless.com/2011/02/visualizing-lucenes-segment-merges.html
http://www.cs.upc.edu/~diaz/p422-bloom.pdf
http://www.cs.upc.edu/~diaz/p422-bloom.pdf
http://dx.doi.org/10.1145/362686.362692
https://cassandra.apache.org/doc/latest/operating/compaction.html
http://www.dtic.mil/cgi-bin/GetTRDoc?AD=AD0712079
http://www.dtic.mil/cgi-bin/GetTRDoc?AD=AD0712079
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.96.6637&rep=rep1&type=pdf
http://dx.doi.org/10.1145/356770.356776
http://codecapsule.com/2014/02/12/coding-for-ssds-part-1-introduction-and-table-of-contents/
http://www.ics.uci.edu/~cs223/papers/p371-mohan.pdf
http://www.ics.uci.edu/~cs223/papers/p371-mohan.pdf
http://dx.doi.org/10.1145/130283.130338
http://dx.doi.org/10.1145/130283.130338
https://buildstuff14.sched.com/event/08a1a368e272eb599a52e08b4c3c779d
http://insideanalysis.com/wp-content/uploads/2014/08/Tokutek_lsm-vs-fractal.pdf
http://insideanalysis.com/wp-content/uploads/2014/08/Tokutek_lsm-vs-fractal.pdf
http://openproceedings.org/2016/conf/edbt/paper-12.pdf
http://openproceedings.org/2016/conf/edbt/paper-12.pdf
http://dx.doi.org/10.5441/002/edbt.2016.42

[24] Peter Zaitsev: “Innodb Double Write,” percona.com, August 4, 2006.

[25] Tomas Vondra: “On the Impact of Full-Page Writes,” blog.2ndquadrant.com,
November 23, 2016.

[26] Mark Callaghan: “The Advantages of an LSM vs a B-Tree,” smalldatum.blog-
spot.co.uk, January 19, 2016.

[27] Mark Callaghan: “Choosing Between Efficiency and Performance with
RocksDB,” at Code Mesh, November 4, 2016.

[28] Michi Mutsuzaki: “MySQL vs. LevelDB,” github.com, August 2011.

[29] Benjamin Coverston, Jonathan Ellis, et al.: “CASSANDRA-1608: Redesigned
Compaction, issues.apache.org, July 2011.

[30] Igor Canadi, Siying Dong, and Mark Callaghan: “RocksDB Tuning Guide,” git-
hub.com, 2016.

[31] MySQL 5.7 Reference Manual. Oracle, 2014.
[32] Books Online for SQL Server 2012. Microsoft, 2012.

[33] Joe Webb: “Using Covering Indexes to Improve Query Performance,” simple-
talk.com, 29 September 2008.

[34] Frank Ramsak, Volker Markl, Robert Fenk, et al.: “Integrating the UB-Tree into
a Database System Kernel,” at 26th International Conference on Very Large Data
Bases (VLDB), September 2000.

[35] The PostGIS Development Group: “PostGIS 2.1.2dev Manual,” postgis.net, 2014.

[36] Robert Escriva, Bernard Wong, and Emin Giin Sirer: “HyperDex: A Distributed,
Searchable Key-Value Store,” at ACM SIGCOMM Conference, August 2012. doi:
10.1145/2377677.2377681

[37] Michael McCandless: “Lucene’s FuzzyQuery Is 100 Times Faster in 4.0,”
blog.mikemccandless.com, March 24, 2011.

[38] Steffen Heinz, Justin Zobel, and Hugh E. Williams: “Burst Tries: A Fast, Efficient
Data Structure for String Keys,” ACM Transactions on Information Systems, volume
20, number 2, pages 192-223, April 2002. doi:10.1145/506309.506312

[39] Klaus U. Schulz and Stoyan Mihov: “Fast String Correction with Levenshtein
Automata,” International Journal on Document Analysis and Recognition, volume 5,
number 1, pages 67-85, November 2002. doi:10.1007/s10032-002-0082-8

[40] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schiitze: Introduc-
tion to Information Retrieval. Cambridge University Press, 2008. ISBN:
978-0-521-86571-5, available online at nlp.stanford.edu/IR-book

106 | Chapter 3: Storage and Retrieval

https://www.percona.com/blog/2006/08/04/innodb-double-write/
http://blog.2ndquadrant.com/on-the-impact-of-full-page-writes/
http://smalldatum.blogspot.co.uk/2016/01/summary-of-advantages-of-lsm-vs-b-tree.html
http://www.codemesh.io/codemesh/mark-callaghan
http://www.codemesh.io/codemesh/mark-callaghan
https://github.com/m1ch1/mapkeeper/wiki/MySQL-vs.-LevelDB
https://issues.apache.org/jira/browse/CASSANDRA-1608
https://issues.apache.org/jira/browse/CASSANDRA-1608
https://github.com/facebook/rocksdb/wiki/RocksDB-Tuning-Guide
http://dev.mysql.com/doc/refman/5.7/en/index.html
http://msdn.microsoft.com/en-us/library/ms130214.aspx
https://www.simple-talk.com/sql/learn-sql-server/using-covering-indexes-to-improve-query-performance/
http://www.vldb.org/conf/2000/P263.pdf
http://www.vldb.org/conf/2000/P263.pdf
http://postgis.net/docs/manual-2.1/
http://www.cs.princeton.edu/courses/archive/fall13/cos518/papers/hyperdex.pdf
http://www.cs.princeton.edu/courses/archive/fall13/cos518/papers/hyperdex.pdf
http://dx.doi.org/10.1145/2377677.2377681
http://dx.doi.org/10.1145/2377677.2377681
http://blog.mikemccandless.com/2011/03/lucenes-fuzzyquery-is-100-times-faster.html
http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.18.3499
http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.18.3499
http://dx.doi.org/10.1145/506309.506312
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.16.652
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.16.652
http://dx.doi.org/10.1007/s10032-002-0082-8
http://nlp.stanford.edu/IR-book/
http://nlp.stanford.edu/IR-book/

[41] Michael Stonebraker, Samuel Madden, Daniel J. Abadi, et al.: “The End of an
Architectural Era (It’s Time for a Complete Rewrite),” at 33rd International Confer-
ence on Very Large Data Bases (VLDB), September 2007.

[42] “VoltDB Technical Overview White Paper,” VoltDB, 2014.

[43] Stephen M. Rumble, Ankita Kejriwal, and John K. Ousterhout: “Log-Structured
Memory for DRAM-Based Storage,” at 12th USENIX Conference on File and Storage
Technologies (FAST), February 2014.

[44] Stavros Harizopoulos, Daniel J. Abadi, Samuel Madden, and Michael Stone-
braker: “OLTP Through the Looking Glass, and What We Found There,” at ACM
International Conference on Management of Data (SIGMOD), June 2008. doi:
10.1145/1376616.1376713

[45] Justin DeBrabant, Andrew Pavlo, Stephen Tu, et al.: “Anti-Caching: A New
Approach to Database Management System Architecture,” Proceedings of the VLDB
Endowment, volume 6, number 14, pages 1942-1953, September 2013.

[46] Joy Arulraj, Andrew Pavlo, and Subramanya R. Dulloor: “Let’s Talk About Stor-
age & Recovery Methods for Non-Volatile Memory Database Systems,” at ACM
International Conference on Management of Data (SIGMOD), June 2015. doi:
10.1145/2723372.2749441

[47] Edgar F. Codd, S. B. Codd, and C. T. Salley: “Providing OLAP to User-Analysts:
An IT Mandate,” E. F. Codd Associates, 1993.

[48] Surajit Chaudhuri and Umeshwar Dayal: “An Overview of Data Warehousing
and OLAP Technology,” ACM SIGMOD Record, volume 26, number 1, pages 65-74,
March 1997. d0i:10.1145/248603.248616

[49] Per-Ake Larson, Cipri Clinciu, Campbell Fraser, et al.: “Enhancements to SQL
Server Column Stores,” at ACM International Conference on Management of Data
(SIGMOD), June 2013.

[50] Franz Farber, Norman May, Wolfgang Lehner, et al.: “The SAP HANA Database
— An Architecture Overview,” IEEE Data Engineering Bulletin, volume 35, number 1,
pages 28-33, March 2012.

[51] Michael Stonebraker: “The Traditional RDBMS Wisdom Is (Almost Certainly)
All Wrong,” presentation at EPFL, May 2013.

[52] Daniel J. Abadi: “Classifying the SQL-on-Hadoop Solutions,” hadapt.com, Octo-
ber 2, 2013.

[53] Marcel Kornacker, Alexander Behm, Victor Bittorf, et al.: “Impala: A Modern,
Open-Source SQL Engine for Hadoop,” at 7th Biennial Conference on Innovative
Data Systems Research (CIDR), January 2015.

Summary | 107

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.137.3697&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.137.3697&rep=rep1&type=pdf
https://www.voltdb.com/wptechnicaloverview
https://www.usenix.org/system/files/conference/fast14/fast14-paper_rumble.pdf
https://www.usenix.org/system/files/conference/fast14/fast14-paper_rumble.pdf
http://hstore.cs.brown.edu/papers/hstore-lookingglass.pdf
http://dx.doi.org/10.1145/1376616.1376713
http://dx.doi.org/10.1145/1376616.1376713
http://www.vldb.org/pvldb/vol6/p1942-debrabant.pdf
http://www.vldb.org/pvldb/vol6/p1942-debrabant.pdf
http://www.pdl.cmu.edu/PDL-FTP/NVM/storage.pdf
http://www.pdl.cmu.edu/PDL-FTP/NVM/storage.pdf
http://dx.doi.org/10.1145/2723372.2749441
http://dx.doi.org/10.1145/2723372.2749441
http://www.minet.uni-jena.de/dbis/lehre/ss2005/sem_dwh/lit/Cod93.pdf
http://www.minet.uni-jena.de/dbis/lehre/ss2005/sem_dwh/lit/Cod93.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/sigrecord.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/sigrecord.pdf
http://dx.doi.org/10.1145/248603.248616
http://research.microsoft.com/pubs/193599/Apollo3%20-%20Sigmod%202013%20-%20final.pdf
http://research.microsoft.com/pubs/193599/Apollo3%20-%20Sigmod%202013%20-%20final.pdf
http://sites.computer.org/debull/A12mar/hana.pdf
http://sites.computer.org/debull/A12mar/hana.pdf
http://slideshot.epfl.ch/talks/166
http://slideshot.epfl.ch/talks/166
https://web.archive.org/web/20150622074951/http://hadapt.com/blog/2013/10/02/classifying-the-sql-on-hadoop-solutions/
http://pandis.net/resources/cidr15impala.pdf
http://pandis.net/resources/cidr15impala.pdf

[54] Sergey Melnik, Andrey Gubarev, Jing Jing Long, et al.: “Dremel: Interactive
Analysis of Web-Scale Datasets,” at 36th International Conference on Very Large Data
Bases (VLDB), pages 330-339, September 2010.

[55] Ralph Kimball and Margy Ross: The Data Warehouse Toolkit: The Definitive
Guide to Dimensional Modeling, 3rd edition. John Wiley & Sons, July 2013. ISBN:
978-1-118-53080-1

[56] Derrick Harris: “Why Apple, eBay, and Walmart Have Some of the Biggest Data
Warehouses You've Ever Seen,” gigaom.com, March 27, 2013.

[57] Julien Le Dem: “Dremel Made Simple with Parquet,” blog.twitter.com, Septem-
ber 11, 2013.

[58] Daniel J. Abadi, Peter Boncz, Stavros Harizopoulos, et al.: “The Design and
Implementation of Modern Column-Oriented Database Systems,” Foundations and
Trends in Databases, volume 5, number 3, pages 197-280, December 2013. doi:
10.1561/1900000024

[59] Peter Boncz, Marcin Zukowski, and Niels Nes: “MonetDB/X100: Hyper-
Pipelining Query Execution,” at 2nd Biennial Conference on Innovative Data Systems
Research (CIDR), January 2005.

[60] Jingren Zhou and Kenneth A. Ross: “Implementing Database Operations Using
SIMD Instructions,” at ACM International Conference on Management of Data (SIG-
MOD), pages 145-156, June 2002. doi:10.1145/564691.564709

[61] Michael Stonebraker, Daniel J. Abadi, Adam Batkin, et al.: “C-Store: A Column-
oriented DBMS,” at 31st International Conference on Very Large Data Bases (VLDB),
pages 553-564, September 2005.

[62] Andrew Lamb, Matt Fuller, Ramakrishna Varadarajan, et al.: “The Vertica Ana-
lytic Database: C-Store 7 Years Later,” Proceedings of the VLDB Endowment, volume
5, number 12, pages 1790-1801, August 2012.

[63] Julien Le Dem and Nong Li: “Efficient Data Storage for Analytics with Apache
Parquet 2.0,” at Hadoop Summit, San Jose, June 2014.

[64] Jim Gray, Surajit Chaudhuri, Adam Bosworth, et al.: “Data Cube: A Relational
Aggregation Operator Generalizing Group-By, Cross-Tab, and Sub-Totals,” Data
Mining and Knowledge Discovery, volume 1, number 1, pages 29-53, March 2007.
doi:10.1023/A:1009726021843

108 | Chapter 3: Storage and Retrieval

http://research.google.com/pubs/pub36632.html
http://research.google.com/pubs/pub36632.html
http://gigaom.com/2013/03/27/why-apple-ebay-and-walmart-have-some-of-the-biggest-data-warehouses-youve-ever-seen/
http://gigaom.com/2013/03/27/why-apple-ebay-and-walmart-have-some-of-the-biggest-data-warehouses-youve-ever-seen/
https://blog.twitter.com/2013/dremel-made-simple-with-parquet
http://cs-www.cs.yale.edu/homes/dna/papers/abadi-column-stores.pdf
http://cs-www.cs.yale.edu/homes/dna/papers/abadi-column-stores.pdf
http://dx.doi.org/10.1561/1900000024
http://dx.doi.org/10.1561/1900000024
http://www.cidrdb.org/cidr2005/papers/P19.pdf
http://www.cidrdb.org/cidr2005/papers/P19.pdf
http://www1.cs.columbia.edu/~kar/pubsk/simd.pdf
http://www1.cs.columbia.edu/~kar/pubsk/simd.pdf
http://dx.doi.org/10.1145/564691.564709
http://www.vldb2005.org/program/paper/thu/p553-stonebraker.pdf
http://www.vldb2005.org/program/paper/thu/p553-stonebraker.pdf
http://vldb.org/pvldb/vol5/p1790_andrewlamb_vldb2012.pdf
http://vldb.org/pvldb/vol5/p1790_andrewlamb_vldb2012.pdf
http://www.slideshare.net/julienledem/th-210pledem
http://www.slideshare.net/julienledem/th-210pledem
http://arxiv.org/pdf/cs/0701155.pdf
http://arxiv.org/pdf/cs/0701155.pdf
http://dx.doi.org/10.1023/A:1009726021843

CHAPTER 4
Encoding and Evolution

Everything changes and nothing stands still.
—Heraclitus of Ephesus, as quoted by Plato in Cratylus (360 BCE)

Applications inevitably change over time. Features are added or modified as new
products are launched, user requirements become better understood, or business cir-
cumstances change. In Chapter 1 we introduced the idea of evolvability: we should
aim to build systems that make it easy to adapt to change (see “Evolvability: Making
Change Easy” on page 21).

In most cases, a change to an application’s features also requires a change to data that
it stores: perhaps a new field or record type needs to be captured, or perhaps existing
data needs to be presented in a new way.

The data models we discussed in Chapter 2 have different ways of coping with such
change. Relational databases generally assume that all data in the database conforms
to one schema: although that schema can be changed (through schema migrations;
i.e., ALTER statements), there is exactly one schema in force at any one point in time.
By contrast, schema-on-read (“schemaless”) databases don’t enforce a schema, so the
database can contain a mixture of older and newer data formats written at different
times (see “Schema flexibility in the document model” on page 39).

When a data format or schema changes, a corresponding change to application code
often needs to happen (for example, you add a new field to a record, and the applica-
tion code starts reading and writing that field). However, in a large application, code
changes often cannot happen instantaneously:

m

o With server-side applications you may want to perform a rolling upgrade (also
known as a staged rollout), deploying the new version to a few nodes at a time,
checking whether the new version is running smoothly, and gradually working
your way through all the nodes. This allows new versions to be deployed without
service downtime, and thus encourages more frequent releases and better evolva-
bility.

« With client-side applications you're at the mercy of the user, who may not install
the update for some time.

This means that old and new versions of the code, and old and new data formats,
may potentially all coexist in the system at the same time. In order for the system to
continue running smoothly, we need to maintain compatibility in both directions:

Backward compatibility
Newer code can read data that was written by older code.

Forward compatibility
Older code can read data that was written by newer code.

Backward compatibility is normally not hard to achieve: as author of the newer code,
you know the format of data written by older code, and so you can explicitly handle it
(if necessary by simply keeping the old code to read the old data). Forward compati-
bility can be trickier, because it requires older code to ignore additions made by a
newer version of the code.

In this chapter we will look at several formats for encoding data, including JSON,
XML, Protocol Buffers, Thrift, and Avro. In particular, we will look at how they han-
dle schema changes and how they support systems where old and new data and code
need to coexist. We will then discuss how those formats are used for data storage and
for communication: in web services, Representational State Transfer (REST), and
remote procedure calls (RPC), as well as message-passing systems such as actors and
message queues.

Formats for Encoding Data

Programs usually work with data in (at least) two different representations:

1. In memory, data is kept in objects, structs, lists, arrays, hash tables, trees, and so
on. These data structures are optimized for efficient access and manipulation by
the CPU (typically using pointers).

2. When you want to write data to a file or send it over the network, you have to
encode it as some kind of self-contained sequence of bytes (for example, a JSON
document). Since a pointer wouldn’t make sense to any other process, this

112 | Chapter4: Encoding and Evolution

sequence-of-bytes representation looks quite different from the data structures
that are normally used in memory.!

Thus, we need some kind of translation between the two representations. The trans-
lation from the in-memory representation to a byte sequence is called encoding (also
known as serialization or marshalling), and the reverse is called decoding (parsing,
deserialization, unmarshalling) .l

Terminology clash

Serialization is unfortunately also used in the context of transac-
tions (see Chapter 7), with a completely different meaning. To
avoid overloading the word we’ll stick with encoding in this book,
even though serialization is perhaps a more common term.

As this is such a common problem, there are a myriad different libraries and encod-
ing formats to choose from. Let’s do a brief overview.

Language-Specific Formats

Many programming languages come with built-in support for encoding in-memory
objects into byte sequences. For example, Java has java.io.Serializable [1], Ruby
has Marshal [2], Python has pickle [3], and so on. Many third-party libraries also
exist, such as Kryo for Java [4].

These encoding libraries are very convenient, because they allow in-memory objects
to be saved and restored with minimal additional code. However, they also have a
number of deep problems:

o The encoding is often tied to a particular programming language, and reading
the data in another language is very difficult. If you store or transmit data in such
an encoding, you are committing yourself to your current programming lan-
guage for potentially a very long time, and precluding integrating your systems
with those of other organizations (which may use different languages).

o In order to restore data in the same object types, the decoding process needs to
be able to instantiate arbitrary classes. This is frequently a source of security
problems [5]: if an attacker can get your application to decode an arbitrary byte
sequence, they can instantiate arbitrary classes, which in turn often allows them
to do terrible things such as remotely executing arbitrary code [6, 7].

i. With the exception of some special cases, such as certain memory-mapped files or when operating directly
on compressed data (as described in “Column Compression” on page 97).

ii. Note that encoding has nothing to do with encryption. We don’t discuss encryption in this book.

Formats for Encoding Data | 113

 Versioning data is often an afterthought in these libraries: as they are intended
for quick and easy encoding of data, they often neglect the inconvenient prob-
lems of forward and backward compatibility.

« Efficiency (CPU time taken to encode or decode, and the size of the encoded
structure) is also often an afterthought. For example, Java’s built-in serialization
is notorious for its bad performance and bloated encoding [8].

For these reasons it’s generally a bad idea to use your language’s built-in encoding for
anything other than very transient purposes.

JSON, XML, and Binary Variants

Moving to standardized encodings that can be written and read by many program-
ming languages, JSON and XML are the obvious contenders. They are widely known,
widely supported, and almost as widely disliked. XML is often criticized for being too
verbose and unnecessarily complicated [9]. JSON’s popularity is mainly due to its
built-in support in web browsers (by virtue of being a subset of JavaScript) and sim-
plicity relative to XML. CSV is another popular language-independent format, albeit
less powerful.

JSON, XML, and CSV are textual formats, and thus somewhat human-readable
(although the syntax is a popular topic of debate). Besides the superficial syntactic
issues, they also have some subtle problems:

o There is a lot of ambiguity around the encoding of numbers. In XML and CSV,
you cannot distinguish between a number and a string that happens to consist of
digits (except by referring to an external schema). JSON distinguishes strings and
numbers, but it doesn’t distinguish integers and floating-point numbers, and it
doesn’t specify a precision.

This is a problem when dealing with large numbers; for example, integers greater
than 2% cannot be exactly represented in an IEEE 754 double-precision floating-
point number, so such numbers become inaccurate when parsed in a language
that uses floating-point numbers (such as JavaScript). An example of numbers
larger than 2> occurs on Twitter, which uses a 64-bit number to identify each
tweet. The JSON returned by Twitter’s API includes tweet IDs twice, once as a
JSON number and once as a decimal string, to work around the fact that the
numbers are not correctly parsed by JavaScript applications [10].

« JSON and XML have good support for Unicode character strings (i.e., human-
readable text), but they don’t support binary strings (sequences of bytes without
a character encoding). Binary strings are a useful feature, so people get around
this limitation by encoding the binary data as text using Base64. The schema is
then used to indicate that the value should be interpreted as Base64-encoded.
This works, but it’s somewhat hacky and increases the data size by 33%.

114 | Chapter4: Encoding and Evolution

o There is optional schema support for both XML [11] and JSON [12]. These
schema languages are quite powerful, and thus quite complicated to learn and
implement. Use of XML schemas is fairly widespread, but many JSON-based
tools don’t bother using schemas. Since the correct interpretation of data (such
as numbers and binary strings) depends on information in the schema, applica-
tions that don’t use XML/JSON schemas need to potentially hardcode the appro-
priate encoding/decoding logic instead.

« CSV does not have any schema, so it is up to the application to define the mean-
ing of each row and column. If an application change adds a new row or column,
you have to handle that change manually. CSV is also a quite vague format (what
happens if a value contains a comma or a newline character?). Although its
escaping rules have been formally specified [13], not all parsers implement them
correctly.

Despite these flaws, JSON, XML, and CSV are good enough for many purposes. It’s
likely that they will remain popular, especially as data interchange formats (i.e., for
sending data from one organization to another). In these situations, as long as people
agree on what the format is, it often doesn’t matter how pretty or efficient the format
is. The difficulty of getting different organizations to agree on anything outweighs
most other concerns.

Binary encoding

For data that is used only internally within your organization, there is less pressure to
use a lowest-common-denominator encoding format. For example, you could choose
a format that is more compact or faster to parse. For a small dataset, the gains are
negligible, but once you get into the terabytes, the choice of data format can have a
big impact.

JSON is less verbose than XML, but both still use a lot of space compared to binary
formats. This observation led to the development of a profusion of binary encodings
for JSON (MessagePack, BSON, BJSON, UBJSON, BISON, and Smile, to name a few)
and for XML (WBXML and Fast Infoset, for example). These formats have been
adopted in various niches, but none of them are as widely adopted as the textual ver-
sions of JSON and XML.

Some of these formats extend the set of datatypes (e.g., distinguishing integers and
floating-point numbers, or adding support for binary strings), but otherwise they
keep the JSON/XML data model unchanged. In particular, since they don’t prescribe
a schema, they need to include all the object field names within the encoded data.
That is, in a binary encoding of the JSON document in Example 4-1, they will need to
include the strings userName, favoriteNumber, and interests somewhere.

Formats for Encoding Data | 115

Example 4-1. Example record which we will encode in several binary formats in this
chapter

{
"userName": "Martin",
"favoriteNumber": 1337,
"interests": ["daydreaming", "hacking"]
}

Let’s look at an example of MessagePack, a binary encoding for JSON. Figure 4-1
shows the byte sequence that you get if you encode the JSON document in
Example 4-1 with MessagePack [14]. The first few bytes are as follows:

1. The first byte, ©x83, indicates that what follows is an object (top four bits = 6x80)
with three fields (bottom four bits = 8x03). (In case you’re wondering what hap-
pens if an object has more than 15 fields, so that the number of fields doesn’t fit
in four bits, it then gets a different type indicator, and the number of fields is
encoded in two or four bytes.)

2. The second byte, 8xa8, indicates that what follows is a string (top four bits =
0xao0) that is eight bytes long (bottom four bits = 0x08).

3. The next eight bytes are the field name userName in ASCII. Since the length was
indicated previously, there’s no need for any marker to tell us where the string
ends (or any escaping).

4. The next seven bytes encode the six-letter string value Martin with a prefix 0xa6,
and so on.

The binary encoding is 66 bytes long, which is only a little less than the 81 bytes taken
by the textual JSON encoding (with whitespace removed). All the binary encodings of
JSON are similar in this regard. It’s not clear whether such a small space reduction
(and perhaps a speedup in parsing) is worth the loss of human-readability.

In the following sections we will see how we can do much better, and encode the
same record in just 32 bytes.

116 | Chapter4: Encoding and Evolution

MessagePack

Byte sequence (66 bytes):

[83]|a8[75 73 65 72 4e 61 6d 65[a6]4a 61 72 74 69 6e|ac|66 61

76 6£ 72 69 74 65 de 75 6d 62 65 72|cd[05 39[a9[69 6e 74 65

72 65 73 74 73[92[ab64 61 79 64 72 65 61 6d 69 6e 67|a7[68

61 63 6b 69 6e 67|

Breakdown:
object string string
(3 entries) (length 8) u s e r N a m e (length 6) M a r t i n
. . [75 73 65 72 4e 61 6a 65| [4a 61 72 74 69 6e
string
(length1y £ a v o r i t e N u m b e r

|66 61 76 6f 72 69 74 65 4e 75 6d 62 65 72|

string

uint16 1337 (length 9) i n t e r e s t s
05 39 |69 6e 74 65 72 65 73 74 73|
array string
(2 entries) (length 11) d a y d r e a m i n g
. . [64 61 79 64 72 65 61 6d 69 6e 67
string
(length 7) h a ¢ k i n g

[68 61 63 6b 69 6e 67|

Figure 4-1. Example record (Example 4-1) encoded using MessagePack.

Thrift and Protocol Buffers

Apache Thrift [15] and Protocol Buffers (protobuf) [16] are binary encoding libraries
that are based on the same principle. Protocol Buffers was originally developed at
Google, Thrift was originally developed at Facebook, and both were made open
source in 2007-08 [17].

Both Thrift and Protocol Buffers require a schema for any data that is encoded. To
encode the data in Example 4-1 in Thrift, you would describe the schema in the
Thrift interface definition language (IDL) like this:

struct Person {
1: required string userName,
2: optional i64 favoriteNumber,
3: optional list<string> interests

}

Formats for Encoding Data | 117

The equivalent schema definition for Protocol Buffers looks very similar:

message Person {

required string user_name =1;
optional int64 favorite_number = 2;
repeated string interests = 3;

}

Thrift and Protocol Buffers each come

with a code generation tool that takes a

schema definition like the ones shown here, and produces classes that implement the
schema in various programming languages [18]. Your application code can call this
generated code to encode or decode records of the schema.

What does data encoded with this schema look like? Confusingly, Thrift has two dif-
ferent binary encoding formats,™ called BinaryProtocol and CompactProtocol, respec-
tively. Let’s look at BinaryProtocol first. Encoding Example 4-1 in that format takes

59 bytes, as shown in Figure 4-2 [19].

Thrift BinaryProtocol

Byte sequence (59 bytes):

[ob[00 01[00 00 00 06/4d 61 72 74 69 6e[0a]00 02[00 00 00 00
00 00 05 39]0£[00 03[ob[00 00 00 02[00 00 00 Ob|64 61 79 64
72 65 61 6d 69 6e 67|00 00 00 07|68 61 63 6b 69 6e 67|00
Breakdown:
type 11 (string) field tag=1 length 6 M a r t i n
[00 01| [00 00 00 06| [4d 61 72 74 69 6e|
type 10 (i64) field tag =2 1337
[oo 02| [0o0 00 00 00 00 00 05 39|
type 15 (list) field tag =3 item type 11 (string) 2 listitems
length 11 d a y d r e a m i n g

[00 00 00 ob|

[64 61 79 64 72 65 61 6d 69 6e 67|

length 7

h a ¢ k i n g

end of struct

l00 00 00 07|

|68 61 63 6b 69 6e 67|

Figure 4-2. Example record encoded using Thrift’s BinaryProtocol.

iii. Actually, it has three—BinaryProtocol, CompactProtocol, and DenseProtocol—although DenseProtocol
is only supported by the C++ implementation, so it doesn’t count as cross-language [18]. Besides those, it also
has two different JSON-based encoding formats [19]. What fun!

118 | Chapter4: Encoding and Evolution

Similarly to Figure 4-1, each field has a type annotation (to indicate whether it is a
string, integer, list, etc.) and, where required, a length indication (length of a string,
number of items in a list). The strings that appear in the data (“Martin”, “daydream-
ing”, “hacking”) are also encoded as ASCII (or rather, UTF-8), similar to before.

The big difference compared to Figure 4-1 is that there are no field names (userName,
favoriteNumber, interests). Instead, the encoded data contains field tags, which are
numbers (1, 2, and 3). Those are the numbers that appear in the schema definition.
Field tags are like aliases for fields—they are a compact way of saying what field we’re
talking about, without having to spell out the field name.

The Thrift CompactProtocol encoding is semantically equivalent to BinaryProtocol,
but as you can see in Figure 4-3, it packs the same information into only 34 bytes. It
does this by packing the field type and tag number into a single byte, and by using
variable-length integers. Rather than using a full eight bytes for the number 1337, it is
encoded in two bytes, with the top bit of each byte used to indicate whether there are
still more bytes to come. This means numbers between -64 and 63 are encoded in
one byte, numbers between -8192 and 8191 are encoded in two bytes, etc. Bigger
numbers use more bytes.

Thrift CompactProtocol

Byte sequence (34 bytes):

[18[06]4a 61 72 74 69 6e|16]|£2 14[19]|28[0b|64 61 79 64 72 65

61 6d 69 6e 67/07[68 61 63 6b 69 6e 67]00]

Breakdown:

fieldtag=1 type 8 (string) lengthe M a = t i n 1337
ool ool fos] [aa etz mm e se] [
fieldtag+=1 type6 (i64) m \
4/\‘1|111001|0‘ |o|00101oo|

field tag +=1 type 9 (list) 2 listitems item type 8 (string)

length11 d a y d r e a m i n g
[on] [64 61 79 64 72 65 61 6d 69 6e 67]

lengh7 h a ¢ k 1 n g end of struct

[07] [68 61 63 b 69 6e 67]

Figure 4-3. Example record encoded using Thrift’s CompactProtocol.

Finally, Protocol Buffers (which has only one binary encoding format) encodes the
same data as shown in Figure 4-4. It does the bit packing slightly differently, but is

Formats for Encoding Data | 119

otherwise very similar to Thrift's CompactProtocol. Protocol Buffers fits the same
record in 33 bytes.

Protocol Buffers

Byte sequence (33 bytes):

[0a[06]4a 61 72 74 69 6e[10[b9 0a[1a]0b|64 61 79 64 72 65 61

6d 69 6e 67]1a07[68 61 63 6b 69 6e 67|

Breakdown:

fieldtag=1 type 2 (string) lengthe M a r t

n
1337
4d 61 72 74 69 6
[ocoiforo] Joa][os] | |

fieldtag=2 type O (varint) f\
[ociofoos] [rof[es oaf™ TRies [Tefeoe o]

field tag=3 type 2 (string) lengh11 d a y d r e a m i n g

|64 61 79 64 72 65 61 6d 69 6e 67 |

fieldtag=3 type 2 (string) length7 h a ¢ k i

n g
|68 61 63 6b 69 6e 67|

Figure 4-4. Example record encoded using Protocol Buffers.

One detail to note: in the schemas shown earlier, each field was marked either
required or optional, but this makes no difference to how the field is encoded
(nothing in the binary data indicates whether a field was required). The difference is
simply that required enables a runtime check that fails if the field is not set, which
can be useful for catching bugs.

Field tags and schema evolution

We said previously that schemas inevitably need to change over time. We call this
schema evolution. How do Thrift and Protocol Buffers handle schema changes while
keeping backward and forward compatibility?

As you can see from the examples, an encoded record is just the concatenation of its
encoded fields. Each field is identified by its tag number (the numbers 1, 2, 3 in the
sample schemas) and annotated with a datatype (e.g., string or integer). If a field
value is not set, it is simply omitted from the encoded record. From this you can see
that field tags are critical to the meaning of the encoded data. You can change the
name of a field in the schema, since the encoded data never refers to field names, but
you cannot change a field’s tag, since that would make all existing encoded data
invalid.

120 | Chapter4: Encoding and Evolution

You can add new fields to the schema, provided that you give each field a new tag
number. If old code (which doesn’t know about the new tag numbers you added)
tries to read data written by new code, including a new field with a tag number it
doesn’t recognize, it can simply ignore that field. The datatype annotation allows the
parser to determine how many bytes it needs to skip. This maintains forward com-
patibility: old code can read records that were written by new code.

What about backward compatibility? As long as each field has a unique tag number,
new code can always read old data, because the tag numbers still have the same
meaning. The only detail is that if you add a new field, you cannot make it required.
If you were to add a field and make it required, that check would fail if new code read
data written by old code, because the old code will not have written the new field that
you added. Therefore, to maintain backward compatibility, every field you add after
the initial deployment of the schema must be optional or have a default value.

Removing a field is just like adding a field, with backward and forward compatibility
concerns reversed. That means you can only remove a field that is optional (a
required field can never be removed), and you can never use the same tag number
again (because you may still have data written somewhere that includes the old tag
number, and that field must be ignored by new code).

Datatypes and schema evolution

What about changing the datatype of a field? That may be possible—check the docu-
mentation for details—but there is a risk that values will lose precision or get trunca-
ted. For example, say you change a 32-bit integer into a 64-bit integer. New code can
easily read data written by old code, because the parser can fill in any missing bits
with zeros. However, if old code reads data written by new code, the old code is still
using a 32-bit variable to hold the value. If the decoded 64-bit value won'’t fit in 32
bits, it will be truncated.

A curious detail of Protocol Buffers is that it does not have a list or array datatype,
but instead has a repeated marker for fields (which is a third option alongside
required and optional). As you can see in Figure 4-4, the encoding of a repeated
field is just what it says on the tin: the same field tag simply appears multiple times in
the record. This has the nice effect that it’s okay to change an optional (single-
valued) field into a repeated (multi-valued) field. New code reading old data sees a
list with zero or one elements (depending on whether the field was present); old code
reading new data sees only the last element of the list.

Thrift has a dedicated list datatype, which is parameterized with the datatype of the
list elements. This does not allow the same evolution from single-valued to multi-
valued as Protocol Buffers does, but it has the advantage of supporting nested lists.

Formats for Encoding Data | 121

Avro

Apache Avro [20] is another binary encoding format that is interestingly different
from Protocol Buffers and Thrift. It was started in 2009 as a subproject of Hadoop, as
a result of Thrift not being a good fit for Hadoop’s use cases [21].

Avro also uses a schema to specify the structure of the data being encoded. It has two
schema languages: one (Avro IDL) intended for human editing, and one (based on
JSON) that is more easily machine-readable.

Our example schema, written in Avro IDL, might look like this:

record Person {

string userName;
union { null, long } favoriteNumber = null;
array<string> interests;
}
The equivalent JSON representation of that schema is as follows:
{
"type": "record",
"name": "Person",
"fields": [
"name": "userName", "type": "string"},
"name": "favoriteNumber", "type": ["null", "long"], "default": null},
"name": "interests", "type": {"type": "array", "items": "string"}}
1
}

First of all, notice that there are no tag numbers in the schema. If we encode our
example record (Example 4-1) using this schema, the Avro binary encoding is just 32
bytes long—the most compact of all the encodings we have seen. The breakdown of
the encoded byte sequence is shown in Figure 4-5.

If you examine the byte sequence, you can see that there is nothing to identify fields
or their datatypes. The encoding simply consists of values concatenated together. A
string is just a length prefix followed by UTF-8 bytes, but there’s nothing in the enco-
ded data that tells you that it is a string. It could just as well be an integer, or some-
thing else entirely. An integer is encoded using a variable-length encoding (the same
as Thrift’s CompactProtocol).

122 | Chapter4: Encoding and Evolution

Avro

Byte sequence (32 bytes):

[oc[4a 61 72 74 69 6e02]£2 14[04[16]64 61 79 64 72 65 61 6a

69 6e 67|0e[68 61 63 6b 69 6e 67]00]

Breakdown:
length 6 sign M a r t i n

[4d 61 72 74 69 6e| 1337

|0010100‘111001|

union branch 1 (Iong not nuII

0000001 . f214 ¥ sign _
1|111001||||00101oo|

2 array items follow

OOOOOlO m

length 11 d a y d r e amin g
[0001011]0] |64 61 79 64 72 65 61 6d 69 6e 67|
length 7 h a ¢ k i n g end of array

[0000111]0] 0e| [68 61 63 6b 69 6e 67]

Figure 4-5. Example record encoded using Avro.

To parse the binary data, you go through the fields in the order that they appear in
the schema and use the schema to tell you the datatype of each field. This means that
the binary data can only be decoded correctly if the code reading the data is using the
exact same schema as the code that wrote the data. Any mismatch in the schema
between the reader and the writer would mean incorrectly decoded data.

So, how does Avro support schema evolution?

The writer’s schema and the reader’s schema

With Avro, when an application wants to encode some data (to write it to a file or
database, to send it over the network, etc.), it encodes the data using whatever version
of the schema it knows about—for example, that schema may be compiled into the
application. This is known as the writer’s schema.

When an application wants to decode some data (read it from a file or database,
receive it from the network, etc.), it is expecting the data to be in some schema, which
is known as the reader’s schema. That is the schema the application code is relying on
—code may have been generated from that schema during the application’s build
process.

The key idea with Avro is that the writer’s schema and the reader’s schema don’t have
to be the same—they only need to be compatible. When data is decoded (read), the

Formats for Encoding Data | 123

Avro library resolves the differences by looking at the writer’s schema and the
reader’s schema side by side and translating the data from the writer’s schema into
the reader’s schema. The Avro specification [20] defines exactly how this resolution
works, and it is illustrated in Figure 4-6.

For example, it’s no problem if the writer’s schema and the reader’s schema have
their fields in a different order, because the schema resolution matches up the fields
by field name. If the code reading the data encounters a field that appears in the
writer’s schema but not in the reader’s schema, it is ignored. If the code reading the
data expects some field, but the writer’s schema does not contain a field of that name,
it is filled in with a default value declared in the reader’s schema.

Writer's schema for Person record Reader’s schema for Person record
Datatype Field name Datatype Field name
string userName long userlD
union {nulllong} favoriteNumber | union fnull, int} favoriteNumber |
amay<stiing> interests [~ | sting userName |
sting | photoURL | \ aray<string> interests |

Figure 4-6. An Avro reader resolves differences between the writer’s schema and the
reader’s schema.

Schema evolution rules

With Avro, forward compatibility means that you can have a new version of the
schema as writer and an old version of the schema as reader. Conversely, backward
compatibility means that you can have a new version of the schema as reader and an
old version as writer.

To maintain compatibility, you may only add or remove a field that has a default
value. (The field favoriteNumber in our Avro schema has a default value of null.)
For example, say you add a field with a default value, so this new field exists in the
new schema but not the old one. When a reader using the new schema reads a record
written with the old schema, the default value is filled in for the missing field.

If you were to add a field that has no default value, new readers wouldn’t be able to
read data written by old writers, so you would break backward compatibility. If you
were to remove a field that has no default value, old readers wouldn’t be able to read
data written by new writers, so you would break forward compatibility.

124 | Chapter4: Encoding and Evolution

In some programming languages, null is an acceptable default for any variable, but
this is not the case in Avro: if you want to allow a field to be null, you have to use a
union type. For example, union { null, long, string } field; indicates that
field can be a number, or a string, or null. You can only use null as a default value if
it is one of the branches of the union.” This is a little more verbose than having every-
thing nullable by default, but it helps prevent bugs by being explicit about what can
and cannot be null [22].

Consequently, Avro doesn’t have optional and required markers in the same way as
Protocol Buffers and Thrift do (it has union types and default values instead).

Changing the datatype of a field is possible, provided that Avro can convert the type.
Changing the name of a field is possible but a little tricky: the reader’s schema can
contain aliases for field names, so it can match an old writer’s schema field names
against the aliases. This means that changing a field name is backward compatible but
not forward compatible. Similarly, adding a branch to a union type is backward com-
patible but not forward compatible.

But what is the writer's schema?

There is an important question that we’ve glossed over so far: how does the reader
know the writer’s schema with which a particular piece of data was encoded? We
can’t just include the entire schema with every record, because the schema would
likely be much bigger than the encoded data, making all the space savings from the
binary encoding futile.

The answer depends on the context in which Avro is being used. To give a few exam-
ples:

Large file with lots of records
A common use for Avro—especially in the context of Hadoop—is for storing a
large file containing millions of records, all encoded with the same schema. (We
will discuss this kind of situation in Chapter 10.) In this case, the writer of that
file can just include the writer’s schema once at the beginning of the file. Avro
specifies a file format (object container files) to do this.

Database with individually written records
In a database, different records may be written at different points in time using
different writer’s schemas—you cannot assume that all the records will have the
same schema. The simplest solution is to include a version number at the begin-
ning of every encoded record, and to keep a list of schema versions in your data-

iv. To be precise, the default value must be of the type of the first branch of the union, although this is a
specific limitation of Avro, not a general feature of union types.

Formats for Encoding Data | 125

base. A reader can fetch a record, extract the version number, and then fetch the
writer’s schema for that version number from the database. Using that writer’s
schema, it can decode the rest of the record. (Espresso [23] works this way, for
example.)

Sending records over a network connection
When two processes are communicating over a bidirectional network connec-
tion, they can negotiate the schema version on connection setup and then use
that schema for the lifetime of the connection. The Avro RPC protocol (see
“Dataflow Through Services: REST and RPC” on page 131) works like this.

A database of schema versions is a useful thing to have in any case, since it acts as
documentation and gives you a chance to check schema compatibility [24]. As the
version number, you could use a simple incrementing integer, or you could use a
hash of the schema.

Dynamically generated schemas

One advantage of Avro’s approach, compared to Protocol Buffers and Thrift, is that
the schema doesn’t contain any tag numbers. But why is this important? What’s the
problem with keeping a couple of numbers in the schema?

The difference is that Avro is friendlier to dynamically generated schemas. For exam-
ple, say you have a relational database whose contents you want to dump to a file, and
you want to use a binary format to avoid the aforementioned problems with textual
formats (JSON, CSV, SQL). If you use Avro, you can fairly easily generate an Avro
schema (in the JSON representation we saw earlier) from the relational schema and
encode the database contents using that schema, dumping it all to an Avro object
container file [25]. You generate a record schema for each database table, and each
column becomes a field in that record. The column name in the database maps to the
field name in Avro.

Now, if the database schema changes (for example, a table has one column added and
one column removed), you can just generate a new Avro schema from the updated
database schema and export data in the new Avro schema. The data export process
does not need to pay any attention to the schema change—it can simply do the
schema conversion every time it runs. Anyone who reads the new data files will see
that the fields of the record have changed, but since the fields are identified by name,
the updated writer’s schema can still be matched up with the old reader’s schema.

By contrast, if you were using Thrift or Protocol Buffers for this purpose, the field
tags would likely have to be assigned by hand: every time the database schema
changes, an administrator would have to manually update the mapping from data-
base column names to field tags. (It might be possible to automate this, but the
schema generator would have to be very careful to not assign previously used field

126 | Chapter4: Encoding and Evolution

tags.) This kind of dynamically generated schema simply wasn’t a design goal of
Thrift or Protocol Buffers, whereas it was for Avro.

Code generation and dynamically typed languages

Thrift and Protocol Buffers rely on code generation: after a schema has been defined,
you can generate code that implements this schema in a programming language of
your choice. This is useful in statically typed languages such as Java, C++, or C#,
because it allows efficient in-memory structures to be used for decoded data, and it
allows type checking and autocompletion in IDEs when writing programs that access
the data structures.

In dynamically typed programming languages such as JavaScript, Ruby, or Python,
there is not much point in generating code, since there is no compile-time type
checker to satisty. Code generation is often frowned upon in these languages, since
they otherwise avoid an explicit compilation step. Moreover, in the case of a dynami-
cally generated schema (such as an Avro schema generated from a database table),
code generation is an unnecessarily obstacle to getting to the data.

Avro provides optional code generation for statically typed programming languages,
but it can be used just as well without any code generation. If you have an object con-
tainer file (which embeds the writer’s schema), you can simply open it using the Avro
library and look at the data in the same way as you could look at a JSON file. The file
is self-describing since it includes all the necessary metadata.

This property is especially useful in conjunction with dynamically typed data pro-
cessing languages like Apache Pig [26]. In Pig, you can just open some Avro files,
start analyzing them, and write derived datasets to output files in Avro format
without even thinking about schemas.

The Merits of Schemas

As we saw, Protocol Buffers, Thrift, and Avro all use a schema to describe a binary
encoding format. Their schema languages are much simpler than XML Schema or
JSON Schema, which support much more detailed validation rules (e.g., “the string
value of this field must match this regular expression” or “the integer value of this
field must be between 0 and 100”). As Protocol Buffers, Thrift, and Avro are simpler
to implement and simpler to use, they have grown to support a fairly wide range of
programming languages.

The ideas on which these encodings are based are by no means new. For example,
they have a lot in common with ASN.1, a schema definition language that was first
standardized in 1984 [27]. It was used to define various network protocols, and its
binary encoding (DER) is still used to encode SSL certificates (X.509), for example
[28]. ASN.1 supports schema evolution using tag numbers, similar to Protocol Buf-

Formats for Encoding Data | 127

fers and Thrift [29]. However, it’s also very complex and badly documented, so
ASN.1 is probably not a good choice for new applications.

Many data systems also implement some kind of proprietary binary encoding for
their data. For example, most relational databases have a network protocol over
which you can send queries to the database and get back responses. Those protocols
are generally specific to a particular database, and the database vendor provides a
driver (e.g., using the ODBC or JDBC APIs) that decodes responses from the data-
base’s network protocol into in-memory data structures.

So, we can see that although textual data formats such as JSON, XML, and CSV are
widespread, binary encodings based on schemas are also a viable option. They have a
number of nice properties:

+ They can be much more compact than the various “binary JSON” variants, since
they can omit field names from the encoded data.

o The schema is a valuable form of documentation, and because the schema is
required for decoding, you can be sure that it is up to date (whereas manually
maintained documentation may easily diverge from reality).

+ Keeping a database of schemas allows you to check forward and backward com-
patibility of schema changes, before anything is deployed.

o For users of statically typed programming languages, the ability to generate code
from the schema is useful, since it enables type checking at compile time.

In summary, schema evolution allows the same kind of flexibility as schemaless/
schema-on-read JSON databases provide (see “Schema flexibility in the document
model” on page 39), while also providing better guarantees about your data and bet-
ter tooling.

Modes of Dataflow

At the beginning of this chapter we said that whenever you want to send some data to
another process with which you don’t share memory—for example, whenever you
want to send data over the network or write it to a file—you need to encode it as a
sequence of bytes. We then discussed a variety of different encodings for doing this.

We talked about forward and backward compatibility, which are important for evolv-
ability (making change easy by allowing you to upgrade different parts of your system
independently, and not having to change everything at once). Compatibility is a rela-
tionship between one process that encodes the data, and another process that decodes
it.

128 | Chapter4: Encoding and Evolution

That’s a fairly abstract idea—there are many ways data can flow from one process to
another. Who encodes the data, and who decodes it? In the rest of this chapter we
will explore some of the most common ways how data flows between processes:

« Via databases (see “Dataflow Through Databases” on page 129)
« Via service calls (see “Dataflow Through Services: REST and RPC” on page 131)

« Via asynchronous message passing (see “Message-Passing Dataflow” on page 136)

Dataflow Through Databases

In a database, the process that writes to the database encodes the data, and the pro-
cess that reads from the database decodes it. There may just be a single process
accessing the database, in which case the reader is simply a later version of the same
process—in that case you can think of storing something in the database as sending a
message to your future self.

Backward compatibility is clearly necessary here; otherwise your future self won’t be
able to decode what you previously wrote.

In general, it's common for several different processes to be accessing a database at
the same time. Those processes might be several different applications or services, or
they may simply be several instances of the same service (running in parallel for scal-
ability or fault tolerance). Either way, in an environment where the application is
changing, it is likely that some processes accessing the database will be running newer
code and some will be running older code—for example because a new version is cur-
rently being deployed in a rolling upgrade, so some instances have been updated
while others haven’t yet.

This means that a value in the database may be written by a newer version of the
code, and subsequently read by an older version of the code that is still running.
Thus, forward compatibility is also often required for databases.

However, there is an additional snag. Say you add a field to a record schema, and the
newer code writes a value for that new field to the database. Subsequently, an older
version of the code (which doesn’t yet know about the new field) reads the record,
updates it, and writes it back. In this situation, the desirable behavior is usually for
the old code to keep the new field intact, even though it couldn’t be interpreted.

The encoding formats discussed previously support such preservation of unknown
fields, but sometimes you need to take care at an application level, as illustrated in
Figure 4-7. For example, if you decode a database value into model objects in the
application, and later reencode those model objects, the unknown field might be lost
in that translation process. Solving this is not a hard problem; you just need to be
aware of it.

Modes of Dataflow | 129

public class Person { Person person = db.read(...);
private String userName; person.setFavoriteNumber(42);
private Long favoriteNumber; db.write(person.toJSONO);
private List<String> interests;
// getters and setters...

}

Read and decode
into model object

Update, reencode

0Old version of code (does not know and write back
about photoURL field)
{ {
“userName”: “Martin”, “userName”: “Martin”,
—3 . ” — . . ”
“favoriteNumber”: 1337, favoriteNumber”: 42,
“interests”: [“hacking”], “interests”; [“hacking”]
“photoURL":"http://...” }
}
Value of photoURL field is lost

Data written by new version of code
(including new photoURL field)

Figure 4-7. When an older version of the application updates data previously written
by a newer version of the application, data may be lost if you’re not careful.

Different values written at different times

A database generally allows any value to be updated at any time. This means that
within a single database you may have some values that were written five milli-
seconds ago, and some values that were written five years ago.

When you deploy a new version of your application (of a server-side application, at
least), you may entirely replace the old version with the new version within a few
minutes. The same is not true of database contents: the five-year-old data will still be
there, in the original encoding, unless you have explicitly rewritten it since then. This
observation is sometimes summed up as data outlives code.

Rewriting (migrating) data into a new schema is certainly possible, but it’s an expen-
sive thing to do on a large dataset, so most databases avoid it if possible. Most rela-
tional databases allow simple schema changes, such as adding a new column with a
null default value, without rewriting existing data." When an old row is read, the
database fills in nulls for any columns that are missing from the encoded data on
disk. LinkedIn’s document database Espresso uses Avro for storage, allowing it to use
Avro’s schema evolution rules [23].

v. Except for MySQL, which often rewrites an entire table even though it is not strictly necessary, as men-
tioned in “Schema flexibility in the document model” on page 39.

130 | Chapter4: Encoding and Evolution

Schema evolution thus allows the entire database to appear as if it was encoded with a
single schema, even though the underlying storage may contain records encoded with
various historical versions of the schema.

Archival storage

Perhaps you take a snapshot of your database from time to time, say for backup pur-
poses or for loading into a data warehouse (see “Data Warehousing” on page 91). In
this case, the data dump will typically be encoded using the latest schema, even if the
original encoding in the source database contained a mixture of schema versions
from different eras. Since you're copying the data anyway, you might as well encode
the copy of the data consistently.

As the data dump is written in one go and is thereafter immutable, formats like Avro
object container files are a good fit. This is also a good opportunity to encode the data
in an analytics-friendly column-oriented format such as Parquet (see “Column Com-
pression” on page 97).

In Chapter 10 we will talk more about using data in archival storage.

Dataflow Through Services: REST and RPC

When you have processes that need to communicate over a network, there are a few
different ways of arranging that communication. The most common arrangement is
to have two roles: clients and servers. The servers expose an API over the network,
and the clients can connect to the servers to make requests to that API. The API
exposed by the server is known as a service.

The web works this way: clients (web browsers) make requests to web servers, mak-
ing GET requests to download HTML, CSS, JavaScript, images, etc., and making POST
requests to submit data to the server. The API consists of a standardized set of proto-
cols and data formats (HTTP, URLs, SSL/TLS, HTML, etc.). Because web browsers,
web servers, and website authors mostly agree on these standards, you can use any
web browser to access any website (at least in theory!).

Web browsers are not the only type of client. For example, a native app running on a
mobile device or a desktop computer can also make network requests to a server, and
a client-side JavaScript application running inside a web browser can use
XMLHttpRequest to become an HTTP client (this technique is known as Ajax [30]).
In this case, the server’s response is typically not HTML for displaying to a human,
but rather data in an encoding that is convenient for further processing by the client-
side application code (such as JSON). Although HTTP may be used as the transport
protocol, the API implemented on top is application-specific, and the client and
server need to agree on the details of that APL

Modes of Dataflow | 131

Moreover, a server can itself be a client to another service (for example, a typical web
app server acts as client to a database). This approach is often used to decompose a
large application into smaller services by area of functionality, such that one service
makes a request to another when it requires some functionality or data from that
other service. This way of building applications has traditionally been called a service-
oriented architecture (SOA), more recently refined and rebranded as microservices
architecture [31, 32].

In some ways, services are similar to databases: they typically allow clients to submit
and query data. However, while databases allow arbitrary queries using the query lan-
guages we discussed in Chapter 2, services expose an application-specific API that
only allows inputs and outputs that are predetermined by the business logic (applica-
tion code) of the service [33]. This restriction provides a degree of encapsulation:
services can impose fine-grained restrictions on what clients can and cannot do.

A key design goal of a service-oriented/microservices architecture is to make the
application easier to change and maintain by making services independently deploya-
ble and evolvable. For example, each service should be owned by one team, and that
team should be able to release new versions of the service frequently, without having
to coordinate with other teams. In other words, we should expect old and new ver-
sions of servers and clients to be running at the same time, and so the data encoding
used by servers and clients must be compatible across versions of the service API—
precisely what we’ve been talking about in this chapter.

Web services

When HTTP is used as the underlying protocol for talking to the service, it is called a
web service. This is perhaps a slight misnomer, because web services are not only used
on the web, but in several different contexts. For example:

1. A client application running on a user’s device (e.g., a native app on a mobile
device, or JavaScript web app using Ajax) making requests to a service over
HTTP. These requests typically go over the public internet.

2. One service making requests to another service owned by the same organization,
often located within the same datacenter, as part of a service-oriented/microser-
vices architecture. (Software that supports this kind of use case is sometimes
called middleware.)

3. One service making requests to a service owned by a different organization, usu-
ally via the internet. This is used for data exchange between different organiza-
tions’ backend systems. This category includes public APIs provided by online
services, such as credit card processing systems, or OAuth for shared access to
user data.

132 | Chapter4: Encoding and Evolution

There are two popular approaches to web services: REST and SOAP. They are almost
diametrically opposed in terms of philosophy, and often the subject of heated debate
among their respective proponents."

REST is not a protocol, but rather a design philosophy that builds upon the principles
of HTTP [34, 35]. It emphasizes simple data formats, using URLs for identifying
resources and using HTTP features for cache control, authentication, and content
type negotiation. REST has been gaining popularity compared to SOAP, at least in
the context of cross-organizational service integration [36], and is often associated
with microservices [31]. An API designed according to the principles of REST is
called RESTful.

By contrast, SOAP is an XML-based protocol for making network API requests.”
Although it is most commonly used over HTTP, it aims to be independent from
HTTP and avoids using most HTTP features. Instead, it comes with a sprawling and
complex multitude of related standards (the web service framework, known as WS-*)
that add various features [37].

The API of a SOAP web service is described using an XML-based language called the
Web Services Description Language, or WSDL. WSDL enables code generation so
that a client can access a remote service using local classes and method calls (which
are encoded to XML messages and decoded again by the framework). This is useful in
statically typed programming languages, but less so in dynamically typed ones (see
“Code generation and dynamically typed languages” on page 127).

As WSDL is not designed to be human-readable, and as SOAP messages are often too
complex to construct manually, users of SOAP rely heavily on tool support, code
generation, and IDEs [38]. For users of programming languages that are not sup-
ported by SOAP vendors, integration with SOAP services is difficult.

Even though SOAP and its various extensions are ostensibly standardized, interoper-
ability between different vendors’ implementations often causes problems [39]. For
all of these reasons, although SOAP is still used in many large enterprises, it has fallen
out of favor in most smaller companies.

RESTful APIs tend to favor simpler approaches, typically involving less code genera-
tion and automated tooling. A definition format such as OpenAPI, also known as
Swagger [40], can be used to describe RESTful APIs and produce documentation.

vi. Even within each camp there are plenty of arguments. For example, HATEOAS (hypermedia as the engine
of application state), often provokes discussions [35].

vii. Despite the similarity of acronyms, SOAP is not a requirement for SOA. SOAP is a particular technology,
whereas SOA is a general approach to building systems.

Modes of Dataflow | 133

The problems with remote procedure calls (RPCs)

Web services are merely the latest incarnation of a long line of technologies for mak-
ing API requests over a network, many of which received a lot of hype but have seri-
ous problems. Enterprise JavaBeans (EJB) and Java’s Remote Method Invocation
(RMI) are limited to Java. The Distributed Component Object Model (DCOM) is
limited to Microsoft platforms. The Common Object Request Broker Architecture
(CORBA) is excessively complex, and does not provide backward or forward compat-
ibility [41].

All of these are based on the idea of a remote procedure call (RPC), which has been
around since the 1970s [42]. The RPC model tries to make a request to a remote net-
work service look the same as calling a function or method in your programming lan-
guage, within the same process (this abstraction is called location transparency).
Although RPC seems convenient at first, the approach is fundamentally flawed [43,
44]. A network request is very different from a local function call:

o Alocal function call is predictable and either succeeds or fails, depending only on
parameters that are under your control. A network request is unpredictable: the
request or response may be lost due to a network problem, or the remote
machine may be slow or unavailable, and such problems are entirely outside of
your control. Network problems are common, so you have to anticipate them,
for example by retrying a failed request.

o A local function call either returns a result, or throws an exception, or never
returns (because it goes into an infinite loop or the process crashes). A network
request has another possible outcome: it may return without a result, due to a
timeout. In that case, you simply don’t know what happened: if you don’t get a
response from the remote service, you have no way of knowing whether the
request got through or not. (We discuss this issue in more detail in Chapter 8.)

o If you retry a failed network request, it could happen that the requests are
actually getting through, and only the responses are getting lost. In that case,
retrying will cause the action to be performed multiple times, unless you build a
mechanism for deduplication (idempotence) into the protocol. Local function
calls don’t have this problem. (We discuss idempotence in more detail in Chap-
ter 11.)

« Every time you call a local function, it normally takes about the same time to exe-
cute. A network request is much slower than a function call, and its latency is
also wildly variable: at good times it may complete in less than a millisecond, but
when the network is congested or the remote service is overloaded it may take
many seconds to do exactly the same thing.

o When you call a local function, you can efficiently pass it references (pointers) to
objects in local memory. When you make a network request, all those parameters

134 | Chapter4: Encoding and Evolution

need to be encoded into a sequence of bytes that can be sent over the network.
That’s okay if the parameters are primitives like numbers or strings, but quickly
becomes problematic with larger objects.

o The client and the service may be implemented in different programming lan-
guages, so the RPC framework must translate datatypes from one language into
another. This can end up ugly, since not all languages have the same types—
recall JavaScript’s problems with numbers greater than 2>, for example (see
“JSON, XML, and Binary Variants” on page 114). This problem doesn’t exist in a
single process written in a single language.

All of these factors mean that there’s no point trying to make a remote service look
too much like a local object in your programming language, because it’s a fundamen-
tally different thing. Part of the appeal of REST is that it doesn’t try to hide the fact
that it’s a network protocol (although this doesn’t seem to stop people from building
RPC libraries on top of REST).

Current directions for RPC

Despite all these problems, RPC isn’t going away. Various RPC frameworks have
been built on top of all the encodings mentioned in this chapter: for example, Thrift
and Avro come with RPC support included, gRPC is an RPC implementation using
Protocol Buffers, Finagle also uses Thrift, and Rest.li uses JSON over HTTP.

This new generation of RPC frameworks is more explicit about the fact that a remote
request is different from a local function call. For example, Finagle and Rest.li use
futures (promises) to encapsulate asynchronous actions that may fail. Futures also
simplify situations where you need to make requests to multiple services in parallel,
and combine their results [45]. gRPC supports streams, where a call consists of not
just one request and one response, but a series of requests and responses over time
[46].

Some of these frameworks also provide service discovery—that is, allowing a client to
find out at which IP address and port number it can find a particular service. We will
return to this topic in “Request Routing” on page 214.

Custom RPC protocols with a binary encoding format can achieve better perfor-
mance than something generic like JSON over REST. However, a RESTful API has
other significant advantages: it is good for experimentation and debugging (you can
simply make requests to it using a web browser or the command-line tool curl,
without any code generation or software installation), it is supported by all main-
stream programming languages and platforms, and there is a vast ecosystem of tools
available (servers, caches, load balancers, proxies, firewalls, monitoring, debugging
tools, testing tools, etc.).

Modes of Dataflow | 135

For these reasons, REST seems to be the predominant style for public APIs. The main
focus of RPC frameworks is on requests between services owned by the same organi-
zation, typically within the same datacenter.

Data encoding and evolution for RPC

For evolvability, it is important that RPC clients and servers can be changed and
deployed independently. Compared to data flowing through databases (as described
in the last section), we can make a simplifying assumption in the case of dataflow
through services: it is reasonable to assume that all the servers will be updated first,
and all the clients second. Thus, you only need backward compatibility on requests,
and forward compatibility on responses.

The backward and forward compatibility properties of an RPC scheme are inherited
from whatever encoding it uses:

« Thrift, gRPC (Protocol Buffers), and Avro RPC can be evolved according to the
compatibility rules of the respective encoding format.

o In SOAP, requests and responses are specified with XML schemas. These can be
evolved, but there are some subtle pitfalls [47].

o RESTful APIs most commonly use JSON (without a formally specified schema)
for responses, and JSON or URI-encoded/form-encoded request parameters for
requests. Adding optional request parameters and adding new fields to response
objects are usually considered changes that maintain compatibility.

Service compatibility is made harder by the fact that RPC is often used for communi-
cation across organizational boundaries, so the provider of a service often has no
control over its clients and cannot force them to upgrade. Thus, compatibility needs
to be maintained for a long time, perhaps indefinitely. If a compatibility-breaking
change is required, the service provider often ends up maintaining multiple versions
of the service API side by side.

There is no agreement on how API versioning should work (i.e., how a client can
indicate which version of the API it wants to use [48]). For RESTful APIs, common
approaches are to use a version number in the URL or in the HTTP Accept header.
For services that use API keys to identify a particular client, another option is to store
a client’s requested API version on the server and to allow this version selection to be
updated through a separate administrative interface [49].

Message-Passing Dataflow

We have been looking at the different ways encoded data flows from one process to
another. So far, we’ve discussed REST and RPC (where one process sends a request
over the network to another process and expects a response as quickly as possible),

136 | Chapter4: Encoding and Evolution

and databases (where one process writes encoded data, and another process reads it
again sometime in the future).

In this final section, we will briefly look at asynchronous message-passing systems,
which are somewhere between RPC and databases. They are similar to RPC in that a
client’s request (usually called a message) is delivered to another process with low
latency. They are similar to databases in that the message is not sent via a direct net-
work connection, but goes via an intermediary called a message broker (also called a
message queue or message-oriented middleware), which stores the message temporar-

ily.

Using a message broker has several advantages compared to direct RPC:

o It can act as a buffer if the recipient is unavailable or overloaded, and thus
improve system reliability.

o It can automatically redeliver messages to a process that has crashed, and thus
prevent messages from being lost.

o It avoids the sender needing to know the IP address and port number of the
recipient (which is particularly useful in a cloud deployment where virtual
machines often come and go).

« It allows one message to be sent to several recipients.

o It logically decouples the sender from the recipient (the sender just publishes
messages and doesn’t care who consumes them).

However, a difference compared to RPC is that message-passing communication is
usually one-way: a sender normally doesn’t expect to receive a reply to its messages. It
is possible for a process to send a response, but this would usually be done on a sepa-
rate channel. This communication pattern is asynchronous: the sender doesn’t wait
for the message to be delivered, but simply sends it and then forgets about it.

Message brokers

In the past, the landscape of message brokers was dominated by commercial enter-
prise software from companies such as TIBCO, IBM WebSphere, and webMethods.
More recently, open source implementations such as RabbitMQ, ActiveMQ, Hor-
netQ, NATS, and Apache Kafka have become popular. We will compare them in
more detail in Chapter 11.

The detailed delivery semantics vary by implementation and configuration, but in
general, message brokers are used as follows: one process sends a message to a named
queue or topic, and the broker ensures that the message is delivered to one or more
consumers of or subscribers to that queue or topic. There can be many producers and
many consumers on the same topic.

Modes of Dataflow | 137

A topic provides only one-way dataflow. However, a consumer may itself publish
messages to another topic (so you can chain them together, as we shall see in Chap-
ter 11), or to a reply queue that is consumed by the sender of the original message
(allowing a request/response dataflow, similar to RPC).

Message brokers typically don’t enforce any particular data model—a message is just
a sequence of bytes with some metadata, so you can use any encoding format. If the
encoding is backward and forward compatible, you have the greatest flexibility to
change publishers and consumers independently and deploy them in any order.

If a consumer republishes messages to another topic, you may need to be careful to
preserve unknown fields, to prevent the issue described previously in the context of
databases (Figure 4-7).

Distributed actor frameworks

The actor model is a programming model for concurrency in a single process. Rather
than dealing directly with threads (and the associated problems of race conditions,
locking, and deadlock), logic is encapsulated in actors. Each actor typically represents
one client or entity, it may have some local state (which is not shared with any other
actor), and it communicates with other actors by sending and receiving asynchro-
nous messages. Message delivery is not guaranteed: in certain error scenarios, mes-
sages will be lost. Since each actor processes only one message at a time, it doesn’t
need to worry about threads, and each actor can be scheduled independently by the
framework.

In distributed actor frameworks, this programming model is used to scale an applica-
tion across multiple nodes. The same message-passing mechanism is used, no matter
whether the sender and recipient are on the same node or different nodes. If they are
on different nodes, the message is transparently encoded into a byte sequence, sent
over the network, and decoded on the other side.

Location transparency works better in the actor model than in RPC, because the actor
model already assumes that messages may be lost, even within a single process.
Although latency over the network is likely higher than within the same process,
there is less of a fundamental mismatch between local and remote communication
when using the actor model.

A distributed actor framework essentially integrates a message broker and the actor
programming model into a single framework. However, if you want to perform roll-
ing upgrades of your actor-based application, you still have to worry about forward
and backward compatibility, as messages may be sent from a node running the new
version to a node running the old version, and vice versa.

Three popular distributed actor frameworks handle message encoding as follows:

138 | Chapter4: Encoding and Evolution

o Akka uses Java’s built-in serialization by default, which does not provide forward
or backward compatibility. However, you can replace it with something like Pro-
tocol Buffers, and thus gain the ability to do rolling upgrades [50].

o Orleans by default uses a custom data encoding format that does not support
rolling upgrade deployments; to deploy a new version of your application, you
need to set up a new cluster, move traffic from the old cluster to the new one, and
shut down the old one [51, 52]. Like with Akka, custom serialization plug-ins can
be used.

o In Erlang OTP it is surprisingly hard to make changes to record schemas (despite
the system having many features designed for high availability); rolling upgrades
are possible but need to be planned carefully [53]. An experimental new maps
datatype (a JSON-like structure, introduced in Erlang R17 in 2014) may make
this easier in the future [54].

Summary

In this chapter we looked at several ways of turning data structures into bytes on the
network or bytes on disk. We saw how the details of these encodings affect not only
their efficiency, but more importantly also the architecture of applications and your
options for deploying them.

In particular, many services need to support rolling upgrades, where a new version of
a service is gradually deployed to a few nodes at a time, rather than deploying to all
nodes simultaneously. Rolling upgrades allow new versions of a service to be released
without downtime (thus encouraging frequent small releases over rare big releases)
and make deployments less risky (allowing faulty releases to be detected and rolled
back before they affect a large number of users). These properties are hugely benefi-
cial for evolvability, the ease of making changes to an application.

During rolling upgrades, or for various other reasons, we must assume that different
nodes are running the different versions of our application’s code. Thus, it is impor-
tant that all data flowing around the system is encoded in a way that provides back-
ward compatibility (new code can read old data) and forward compatibility (old code
can read new data).

We discussed several data encoding formats and their compatibility properties:

o Programming language-specific encodings are restricted to a single program-
ming language and often fail to provide forward and backward compatibility.

o Textual formats like JSON, XML, and CSV are widespread, and their compatibil-
ity depends on how you use them. They have optional schema languages, which
are sometimes helpful and sometimes a hindrance. These formats are somewhat

Summary | 139

vague about datatypes, so you have to be careful with things like numbers and
binary strings.

o Binary schema-driven formats like Thrift, Protocol Buffers, and Avro allow
compact, efficient encoding with clearly defined forward and backward compati-
bility semantics. The schemas can be useful for documentation and code genera-
tion in statically typed languages. However, they have the downside that data
needs to be decoded before it is human-readable.

We also discussed several modes of dataflow, illustrating different scenarios in which
data encodings are important:

 Databases, where the process writing to the database encodes the data and the
process reading from the database decodes it

o RPC and REST APIs, where the client encodes a request, the server decodes the
request and encodes a response, and the client finally decodes the response

« Asynchronous message passing (using message brokers or actors), where nodes
communicate by sending each other messages that are encoded by the sender
and decoded by the recipient

We can conclude that with a bit of care, backward/forward compatibility and rolling
upgrades are quite achievable. May your application’s evolution be rapid and your
deployments be frequent.

References
[1] “Java Object Serialization Specification,” docs.oracle.com, 2010.
[2] “Ruby 2.2.0 API Documentation,” ruby-doc.org, Dec 2014.

[3] “The Python 3.4.3 Standard Library Reference Manual,” docs.python.org, Febru-
ary 2015.

[4] “EsotericSoftware/kryo,” github.com, October 2014.

[5] “CWE-502: Deserialization of Untrusted Data,” Common Weakness Enumera-
tion, cwe.mitre.org, July 30, 2014.

[6] Steve Breen: “What Do WebLogic, WebSphere, JBoss, Jenkins, OpenNMS, and
Your Application Have in Common? This Vulnerability,” foxglovesecurity.com,
November 6, 2015.

[7] Patrick McKenzie: “What the Rails Security Issue Means for Your Startup,” kalzu-
meus.com, January 31, 2013.

(8] Eishay Smith: “jvm-serializers wiki,” github.com, November 2014.

140 | Chapter4: Encoding and Evolution

http://docs.oracle.com/javase/7/docs/platform/serialization/spec/serialTOC.html
http://ruby-doc.org/core-2.2.0/
https://docs.python.org/3/library/pickle.html
https://github.com/EsotericSoftware/kryo
http://cwe.mitre.org/data/definitions/502.html
http://foxglovesecurity.com/2015/11/06/what-do-weblogic-websphere-jboss-jenkins-opennms-and-your-application-have-in-common-this-vulnerability/
http://foxglovesecurity.com/2015/11/06/what-do-weblogic-websphere-jboss-jenkins-opennms-and-your-application-have-in-common-this-vulnerability/
http://www.kalzumeus.com/2013/01/31/what-the-rails-security-issue-means-for-your-startup/
https://github.com/eishay/jvm-serializers/wiki

[9] “XML Is a Poor Copy of S-Expressions,” c2.com wiki.

[10] Matt Harris: “Snowflake: An Update and Some Very Important Information,”
email to Twitter Development Talk mailing list, October 19, 2010.

[11] Shudi (Sandy) Gao, C. M. Sperberg-McQueen, and Henry S. Thompson: “XML
Schema 1.1,” W3C Recommendation, May 2001.

[12] Francis Galiegue, Kris Zyp, and Gary Court: “JSON Schema,” IETF Internet-
Draft, February 2013.

[13] Yakov Shafranovich: “RFC 4180: Common Format and MIME Type for
Comma-Separated Values (CSV) Files,” October 2005.

[14] “MessagePack Specification,” msgpack.org.

[15] Mark Slee, Aditya Agarwal, and Marc Kwiatkowski: “Thrift: Scalable Cross-
Language Services Implementation,” Facebook technical report, April 2007.

[16] “Protocol Buffers Developer Guide,” Google, Inc., developers.google.com.

[17] Igor Anishchenko: “Thrift vs Protocol Buffers vs Avro - Biased Comparison,”
slideshare.net, September 17, 2012.

[18] “A Matrix of the Features Each Individual Language Library Supports,”
wiki.apache.org.

[19] Martin Kleppmann: “Schema Evolution in Avro, Protocol Buffers and Thrift,”
martin.kleppmann.com, December 5, 2012.

[20] “Apache Avro 1.7.7 Documentation,” avro.apache.org, July 2014.

[21] Doug Cutting, Chad Walters, Jim Kellerman, et al.: “[PROPOSAL] New Subpro-
ject: Avro,” email thread on hadoop-general mailing list, mail-archives.apache.org,
April 2009.

[22] Tony Hoare: “Null References: The Billion Dollar Mistake,” at QCon London,
March 2009.

[23] Aditya Auradkar and Tom Quiggle: “Introducing Espresso—LinkedIn’s Hot
New Distributed Document Store,” engineering.linkedin.com, January 21, 2015.

[24] Jay Kreps: “Putting Apache Kafka to Use: A Practical Guide to Building a Stream
Data Platform (Part 2),” blog.confluent.io, February 25, 2015.

[25] Gwen Shapira: “The Problem of Managing Schemas,” radar.oreilly.com, Novem-
ber 4, 2014.

[26] “Apache Pig 0.14.0 Documentation,” pig.apache.org, November 2014.

[27] John Larmouth: ASN.I Complete. Morgan Kaufmann, 1999. ISBN:
978-0-122-33435-1

Summary | 141

http://c2.com/cgi/wiki?XmlIsaPoorCopyOfEssExpressions
https://groups.google.com/forum/#!topic/twitter-development-talk/ahbvo3VTIYI
http://www.w3.org/XML/Schema
http://www.w3.org/XML/Schema
http://json-schema.org/
https://tools.ietf.org/html/rfc4180
https://tools.ietf.org/html/rfc4180
http://msgpack.org/
http://thrift.apache.org/static/files/thrift-20070401.pdf
http://thrift.apache.org/static/files/thrift-20070401.pdf
https://developers.google.com/protocol-buffers/docs/overview
http://www.slideshare.net/IgorAnishchenko/pb-vs-thrift-vs-avro
http://wiki.apache.org/thrift/LibraryFeatures
http://martin.kleppmann.com/2012/12/05/schema-evolution-in-avro-protocol-buffers-thrift.html
http://avro.apache.org/docs/1.7.7/
http://mail-archives.apache.org/mod_mbox/hadoop-general/200904.mbox/%3C49D53694.1050906@apache.org%3E
http://mail-archives.apache.org/mod_mbox/hadoop-general/200904.mbox/%3C49D53694.1050906@apache.org%3E
http://www.infoq.com/presentations/Null-References-The-Billion-Dollar-Mistake-Tony-Hoare
https://engineering.linkedin.com/espresso/introducing-espresso-linkedins-hot-new-distributed-document-store
https://engineering.linkedin.com/espresso/introducing-espresso-linkedins-hot-new-distributed-document-store
http://blog.confluent.io/2015/02/25/stream-data-platform-2/
http://blog.confluent.io/2015/02/25/stream-data-platform-2/
http://radar.oreilly.com/2014/11/the-problem-of-managing-schemas.html
http://pig.apache.org/docs/r0.14.0/
http://www.oss.com/asn1/resources/books-whitepapers-pubs/larmouth-asn1-book.pdf

[28] Russell Housley, Warwick Ford, Tim Polk, and David Solo: “RFC 2459: Internet
X.509 Public Key Infrastructure: Certificate and CRL Profile,” IETF Network Work-
ing Group, Standards Track, January 1999.

[29] Lev Walkin: “Question: Extensibility and Dropping Fields,” lionet.info, Septem-
ber 21, 2010.

[30] Jesse James Garrett: “Ajax: A New Approach to Web Applications,” adaptive-
path.com, February 18, 2005.

[31] Sam Newman: Building Microservices. O’Reilly Media, 2015. ISBN:
978-1-491-95035-7

[32] Chris Richardson: “Microservices: Decomposing Applications for Deployability
and Scalability,” infoq.com, May 25, 2014.

[33] Pat Helland: “Data on the Outside Versus Data on the Inside,” at 2nd Biennial
Conference on Innovative Data Systems Research (CIDR), January 2005.

[34] Roy Thomas Fielding: “Architectural Styles and the Design of Network-Based
Software Architectures,” PhD Thesis, University of California, Irvine, 2000.

[35] Roy Thomas Fielding: “REST APIs Must Be Hypertext-Driven,” roy.gbiv.com,
October 20 2008.

[36] “REST in Peace, SOAP,” royal.pingdom.com, October 15, 2010.

[37] “Web Services Standards as of Q1 2007,” innog.com, February 2007.

[38] Pete Lacey: “The S Stands for Simple,” harmful.cat-v.org, November 15, 2006.
[39] Stefan Tilkov: “Interview: Pete Lacey Criticizes Web Services,” infoq.com,
December 12, 2006.

[40] “OpenAPI Specification (fka Swagger RESTful API Documentation Specifica-
tion) Version 2.0,” swagger.io, September 8, 2014.

[41] Michi Henning: “The Rise and Fall of CORBA,” ACM Queue, volume 4, number
5, pages 28-34, June 2006. doi:10.1145/1142031.1142044

[42] Andrew D. Birrell and Bruce Jay Nelson: “Implementing Remote Procedure
Calls,” ACM Transactions on Computer Systems (TOCS), volume 2, number 1, pages
39-59, February 1984. doi:10.1145/2080.357392

[43] Jim Waldo, Geoff Wyant, Ann Wollrath, and Sam Kendall: “A Note on Dis-
tributed Computing,” Sun Microsystems Laboratories, Inc., Technical Report
TR-94-29, November 1994.

[44] Steve Vinoski: “Convenience over Correctness,” IEEE Internet Computing, vol-
ume 12, number 4, pages 89-92, July 2008. doi:10.1109/MIC.2008.75

142 | Chapter4: Encoding and Evolution

https://www.ietf.org/rfc/rfc2459.txt
https://www.ietf.org/rfc/rfc2459.txt
http://lionet.info/asn1c/blog/2010/09/21/question-extensibility-removing-fields/
http://www.adaptivepath.com/ideas/ajax-new-approach-web-applications/
http://www.infoq.com/articles/microservices-intro
http://www.infoq.com/articles/microservices-intro
http://cidrdb.org/cidr2005/papers/P12.pdf
https://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf
https://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf
http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
http://royal.pingdom.com/2010/10/15/rest-in-peace-soap/
https://www.innoq.com/resources/ws-standards-poster/
http://harmful.cat-v.org/software/xml/soap/simple
http://www.infoq.com/articles/pete-lacey-ws-criticism
http://swagger.io/specification/
http://swagger.io/specification/
http://queue.acm.org/detail.cfm?id=1142044
http://dx.doi.org/10.1145/1142031.1142044
http://www.cs.princeton.edu/courses/archive/fall03/cs518/papers/rpc.pdf
http://www.cs.princeton.edu/courses/archive/fall03/cs518/papers/rpc.pdf
http://dx.doi.org/10.1145/2080.357392
http://m.mirror.facebook.net/kde/devel/smli_tr-94-29.pdf
http://m.mirror.facebook.net/kde/devel/smli_tr-94-29.pdf
http://steve.vinoski.net/pdf/IEEE-Convenience_Over_Correctness.pdf
http://dx.doi.org/10.1109/MIC.2008.75

[45] Marius Eriksen: “Your Server as a Function,” at 7th Workshop on Programming
Languages and Operating Systems (PLOS), November 2013. doi:
10.1145/2525528.2525538

[46] “grpc-common Documentation,” Google, Inc., github.com, February 2015.

[47] Aditya Narayan and Irina Singh: “Designing and Versioning Compatible Web
Services,” ibm.com, March 28, 2007.

[48] Troy Hunt: “Your API Versioning Is Wrong, Which Is Why I Decided to Do It 3
Different Wrong Ways,” troyhunt.com, February 10, 2014.

[49] “API Upgrades,” Stripe, Inc., April 2015.

[50] Jonas Bonér: “Upgrade in an Akka Cluster,” email to akka-user mailing list, grok-
base.com, August 28, 2013.

[51] Philip A. Bernstein, Sergey Bykov, Alan Geller, et al.: “Orleans: Distributed Vir-
tual Actors for Programmability and Scalability,” Microsoft Research Technical
Report MSR-TR-2014-41, March 2014.

[52] “Microsoft Project Orleans Documentation,” Microsoft Research, dotnet.git-
hub.io, 2015.

[53] David Mercer, Sean Hinde, Yinso Chen, and Richard A O’Keefe: “beginner:
Updating Data Structures,” email thread on erlang-questions mailing list, erlang.com,
October 29, 2007.

[54] Fred Hebert: “Postscript: Maps,” learnyousomeerlang.com, April 9, 2014.

Summary | 143

http://monkey.org/~marius/funsrv.pdf
http://dx.doi.org/10.1145/2525528.2525538
http://dx.doi.org/10.1145/2525528.2525538
https://github.com/grpc/grpc-common
http://www.ibm.com/developerworks/websphere/library/techarticles/0705_narayan/0705_narayan.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0705_narayan/0705_narayan.html
http://www.troyhunt.com/2014/02/your-api-versioning-is-wrong-which-is.html
http://www.troyhunt.com/2014/02/your-api-versioning-is-wrong-which-is.html
https://stripe.com/docs/upgrades
http://grokbase.com/t/gg/akka-user/138wd8j9e3/upgrade-in-an-akka-cluster
http://research.microsoft.com/pubs/210931/Orleans-MSR-TR-2014-41.pdf
http://research.microsoft.com/pubs/210931/Orleans-MSR-TR-2014-41.pdf
http://dotnet.github.io/orleans/
http://erlang.org/pipermail/erlang-questions/2007-October/030318.html
http://erlang.org/pipermail/erlang-questions/2007-October/030318.html
http://learnyousomeerlang.com/maps

PART Il
Distributed Data

For a successful technology, reality must take precedence over public relations, for nature
cannot be fooled.

—Richard Feynman, Rogers Commission Report (1986)

In Part I of this book, we discussed aspects of data systems that apply when data is
stored on a single machine. Now, in Part II, we move up a level and ask: what hap-
pens if multiple machines are involved in storage and retrieval of data?

There are various reasons why you might want to distribute a database across multi-
ple machines:

Scalability
If your data volume, read load, or write load grows bigger than a single machine
can handle, you can potentially spread the load across multiple machines.

Fault tolerance/high availability
If your application needs to continue working even if one machine (or several
machines, or the network, or an entire datacenter) goes down, you can use multi-
ple machines to give you redundancy. When one fails, another one can take over.

Latency
If you have users around the world, you might want to have servers at various
locations worldwide so that each user can be served from a datacenter that is geo-
graphically close to them. That avoids the users having to wait for network pack-
ets to travel halfway around the world.

Scaling to Higher Load

If all you need is to scale to higher load, the simplest approach is to buy a more pow-
erful machine (sometimes called vertical scaling or scaling up). Many CPUs, many
RAM chips, and many disks can be joined together under one operating system, and
a fast interconnect allows any CPU to access any part of the memory or disk. In this
kind of shared-memory architecture, all the components can be treated as a single
machine [1].!

The problem with a shared-memory approach is that the cost grows faster than line-
arly: a machine with twice as many CPUs, twice as much RAM, and twice as much
disk capacity as another typically costs significantly more than twice as much. And
due to bottlenecks, a machine twice the size cannot necessarily handle twice the load.

A shared-memory architecture may offer limited fault tolerance—high-end machines
have hot-swappable components (you can replace disks, memory modules, and even
CPUs without shutting down the machines)—but it is definitely limited to a single
geographic location.

Another approach is the shared-disk architecture, which uses several machines with
independent CPUs and RAM, but stores data on an array of disks that is shared
between the machines, which are connected via a fast network.! This architecture is
used for some data warehousing workloads, but contention and the overhead of lock-
ing limit the scalability of the shared-disk approach [2].

Shared-Nothing Architectures

By contrast, shared-nothing architectures [3] (sometimes called horizontal scaling or
scaling out) have gained a lot of popularity. In this approach, each machine or virtual
machine running the database software is called a node. Each node uses its CPUs,
RAM, and disks independently. Any coordination between nodes is done at the soft-
ware level, using a conventional network.

No special hardware is required by a shared-nothing system, so you can use whatever
machines have the best price/performance ratio. You can potentially distribute data
across multiple geographic regions, and thus reduce latency for users and potentially
be able to survive the loss of an entire datacenter. With cloud deployments of virtual

i. Inalarge machine, although any CPU can access any part of memory, some banks of memory are closer to
one CPU than to others (this is called nonuniform memory access, or NUMA [1]). To make efficient use of
this architecture, the processing needs to be broken down so that each CPU mostly accesses memory that is
nearby—which means that partitioning is still required, even when ostensibly running on one machine.

ii. Network Attached Storage (NAS) or Storage Area Network (SAN).

machines, you don’t need to be operating at Google scale: even for small companies,
a multi-region distributed architecture is now feasible.

In this part of the book, we focus on shared-nothing architectures—not because they
are necessarily the best choice for every use case, but rather because they require the
most caution from you, the application developer. If your data is distributed across
multiple nodes, you need to be aware of the constraints and trade-offs that occur in
such a distributed system—the database cannot magically hide these from you.

While a distributed shared-nothing architecture has many advantages, it usually also
incurs additional complexity for applications and sometimes limits the expressive-
ness of the data models you can use. In some cases, a simple single-threaded program
can perform significantly better than a cluster with over 100 CPU cores [4]. On the
other hand, shared-nothing systems can be very powerful. The next few chapters go
into details on the issues that arise when data is distributed.

Replication Versus Partitioning

There are two common ways data is distributed across multiple nodes:

Replication
Keeping a copy of the same data on several different nodes, potentially in differ-
ent locations. Replication provides redundancy: if some nodes are unavailable,
the data can still be served from the remaining nodes. Replication can also help
improve performance. We discuss replication in Chapter 5.

Partitioning
Splitting a big database into smaller subsets called partitions so that different par-
titions can be assigned to different nodes (also known as sharding). We discuss
partitioning in Chapter 6.

These are separate mechanisms, but they often go hand in hand, as illustrated in
Figure II-1.

Partition 1, Replica 1 Partition 2, Replica 1
136 — 211 — 377 > 629 — 696 — 858 —
Four score Johannes Whereas Die Wiirde Whereas We hold
and seven Dei gracia recognition des Men- the Lords these truths
years ago Rex Anglie, of the schen ist Spiritual to be self-
our fathers Dominus inherent unantastbar and Tempo- evident
X x
1 copy of 1 copy of
! the same ! the same
Partition 1, Replica 2 y data Partition 2, Replica 2 i data
136 — 211 — 377 — 629 — 696 — 858 —
Four score Johannes Whereas Die Wiirde Whereas We hold
and seven Dei gracia recognition des Men- the Lords these truths
years ago Rex Anglie, of the schen ist Spiritual to be self-
our fathers Dominus inherent unantastbar and Tempo- evident

Figure II-1. A database split into two partitions, with two replicas per partition.

With an understanding of those concepts, we can discuss the difficult trade-offs that
you need to make in a distributed system. We'll discuss transactions in Chapter 7, as
that will help you understand all the many things that can go wrong in a data system,
and what you can do about them. We'll conclude this part of the book by discussing
the fundamental limitations of distributed systems in Chapters 8 and 9.

Later, in Part IIT of this book, we will discuss how you can take several (potentially
distributed) datastores and integrate them into a larger system, satisfying the needs of
a complex application. But first, let’s talk about distributed data.

References

[1] Ulrich Drepper: “What Every Programmer Should Know About Memory,” akka-
dia.org, November 21, 2007.

[2] Ben Stopford: “Shared Nothing vs. Shared Disk Architectures: An Independent
View,” benstopford.com, November 24, 2009.

[3] Michael Stonebraker: “The Case for Shared Nothing,” IEEE Database Engineering
Bulletin, volume 9, number 1, pages 4-9, March 1986.

[4] Frank McSherry, Michael Isard, and Derek G. Murray: “Scalability! But at What
COST?,” at 15th USENIX Workshop on Hot Topics in Operating Systems (HotOS),
May 2015.

http://www.akkadia.org/drepper/cpumemory.pdf
http://www.benstopford.com/2009/11/24/understanding-the-shared-nothing-architecture/
http://www.benstopford.com/2009/11/24/understanding-the-shared-nothing-architecture/
http://db.cs.berkeley.edu/papers/hpts85-nothing.pdf
http://www.frankmcsherry.org/assets/COST.pdf
http://www.frankmcsherry.org/assets/COST.pdf

CHAPTER 5
Replication

The major difference between a thing that might go wrong and a thing that cannot possibly
go wrong is that when a thing that cannot possibly go wrong goes wrong it usually turns out
to be impossible to get at or repair.

—Douglas Adams, Mostly Harmless (1992)

Replication means keeping a copy of the same data on multiple machines that are
connected via a network. As discussed in the introduction to Part II, there are several
reasons why you might want to replicate data:

 To keep data geographically close to your users (and thus reduce latency)

 To allow the system to continue working even if some of its parts have failed
(and thus increase availability)

o To scale out the number of machines that can serve read queries (and thus
increase read throughput)

In this chapter we will assume that your dataset is so small that each machine can
hold a copy of the entire dataset. In Chapter 6 we will relax that assumption and dis-
cuss partitioning (sharding) of datasets that are too big for a single machine. In later
chapters we will discuss various kinds of faults that can occur in a replicated data sys-
tem, and how to deal with them.

If the data that you’re replicating does not change over time, then replication is easy:
you just need to copy the data to every node once, and you're done. All of the diffi-
culty in replication lies in handling changes to replicated data, and that’s what this
chapter is about. We will discuss three popular algorithms for replicating changes
between nodes: single-leader, multi-leader, and leaderless replication. Almost all dis-
tributed databases use one of these three approaches. They all have various pros and
cons, which we will examine in detail.

151

There are many trade-offs to consider with replication: for example, whether to use
synchronous or asynchronous replication, and how to handle failed replicas. Those
are often configuration options in databases, and although the details vary by data-
base, the general principles are similar across many different implementations. We
will discuss the consequences of such choices in this chapter.

Replication of databases is an old topic—the principles haven’t changed much since
they were studied in the 1970s [1], because the fundamental constraints of networks
have remained the same. However, outside of research, many developers continued
to assume for a long time that a database consisted of just one node. Mainstream use
of distributed databases is more recent. Since many application developers are new to
this area, there has been a lot of misunderstanding around issues such as eventual
consistency. In “Problems with Replication Lag” on page 161 we will get more precise
about eventual consistency and discuss things like the read-your-writes and mono-
tonic reads guarantees.

Leaders and Followers

Each node that stores a copy of the database is called a replica. With multiple replicas,
a question inevitably arises: how do we ensure that all the data ends up on all the rep-
licas?

Every write to the database needs to be processed by every replica; otherwise, the rep-
licas would no longer contain the same data. The most common solution for this is
called leader-based replication (also known as active/passive or master-slave replica-
tion) and is illustrated in Figure 5-1. It works as follows:

1. One of the replicas is designated the leader (also known as master or primary).
When clients want to write to the database, they must send their requests to the
leader, which first writes the new data to its local storage.

2. The other replicas are known as followers (read replicas, slaves, secondaries, or hot
standbys).! Whenever the leader writes new data to its local storage, it also sends
the data change to all of its followers as part of a replication log or change stream.
Each follower takes the log from the leader and updates its local copy of the data-
base accordingly, by applying all writes in the same order as they were processed
on the leader.

i. Different people have different definitions for hot, warm, and cold standby servers. In PostgreSQL, for
example, hot standby is used to refer to a replica that accepts reads from clients, whereas a warm standby
processes changes from the leader but doesn’t process any queries from clients. For purposes of this book, the
difference isn’t important.

152 | Chapter5:Replication

3. When a client wants to read from the database, it can query either the leader or
any of the followers. However, writes are only accepted on the leader (the follow-
ers are read-only from the client’s point of view).

User 1234 = Follower
configures new Leaqer replica
profile picture replica

% read-write queries

update users
set picture_url =’'me-new.jpg’

Replication streams

read-only queries

select * from users
—_——

3
>

Data change

. where user_id = 1234
where user_id = 1234 table: users <

primary key: 1234 Eoll
column: icture_url —— rollower

o old,j ; User 2345
old_value: me-old.jpg replica)
new_value: me-new.,jpg V"?WS u;ler
transaction: 987654321 1234’ profile

Figure 5-1. Leader-based (master-slave) replication.

This mode of replication is a built-in feature of many relational databases, such as
PostgreSQL (since version 9.0), MySQL, Oracle Data Guard [2], and SQL Server’s
AlwaysOn Availability Groups [3]. It is also used in some nonrelational databases,
including MongoDB, RethinkDB, and Espresso [4]. Finally, leader-based replication
is not restricted to only databases: distributed message brokers such as Kafka [5] and
RabbitMQ highly available queues [6] also use it. Some network filesystems and
replicated block devices such as DRBD are similar.

Synchronous Versus Asynchronous Replication

An important detail of a replicated system is whether the replication happens syn-
chronously or asynchronously. (In relational databases, this is often a configurable
option; other systems are often hardcoded to be either one or the other.)

Think about what happens in Figure 5-1, where the user of a website updates their
profile image. At some point in time, the client sends the update request to the leader;
shortly afterward, it is received by the leader. At some point, the leader forwards the
data change to the followers. Eventually, the leader notifies the client that the update
was successful.

Figure 5-2 shows the communication between various components of the system: the
user’s client, the leader, and two followers. Time flows from left to right. A request or
response message is shown as a thick arrow.

Leaders and Followers | 153

update users
set picture_url ='me-new.jpg’

where user_id = 1234 time
User 1234 % >

ok
waiting for follower’s ok
Leader | | -------------1 R

data change

data change

Figure 5-2. Leader-based replication with one synchronous and one asynchronous fol-
lower.

In the example of Figure 5-2, the replication to follower 1 is synchronous: the leader
waits until follower 1 has confirmed that it received the write before reporting success
to the user, and before making the write visible to other clients. The replication to
follower 2 is asynchronous: the leader sends the message, but doesn’t wait for a
response from the follower.

The diagram shows that there is a substantial delay before follower 2 processes the
message. Normally, replication is quite fast: most database systems apply changes to
followers in less than a second. However, there is no guarantee of how long it might
take. There are circumstances when followers might fall behind the leader by several
minutes or more; for example, if a follower is recovering from a failure, if the system
is operating near maximum capacity, or if there are network problems between the
nodes.

The advantage of synchronous replication is that the follower is guaranteed to have
an up-to-date copy of the data that is consistent with the leader. If the leader sud-
denly fails, we can be sure that the data is still available on the follower. The disad-
vantage is that if the synchronous follower doesn’t respond (because it has crashed,
or there is a network fault, or for any other reason), the write cannot be processed.
The leader must block all writes and wait until the synchronous replica is available
again.

For that reason, it is impractical for all followers to be synchronous: any one node
outage would cause the whole system to grind to a halt. In practice, if you enable syn-
chronous replication on a database, it usually means that one of the followers is syn-
chronous, and the others are asynchronous. If the synchronous follower becomes
unavailable or slow, one of the asynchronous followers is made synchronous. This
guarantees that you have an up-to-date copy of the data on at least two nodes: the

154 | Chapter5: Replication

leader and one synchronous follower. This configuration is sometimes also called
semi-synchronous [7].

Often, leader-based replication is configured to be completely asynchronous. In this
case, if the leader fails and is not recoverable, any writes that have not yet been repli-
cated to followers are lost. This means that a write is not guaranteed to be durable,
even if it has been confirmed to the client. However, a fully asynchronous configura-
tion has the advantage that the leader can continue processing writes, even if all of its
followers have fallen behind.

Weakening durability may sound like a bad trade-off, but asynchronous replication is
nevertheless widely used, especially if there are many followers or if they are geo-
graphically distributed. We will return to this issue in “Problems with Replication
Lag” on page 161.

Research on Replication

It can be a serious problem for asynchronously replicated systems to lose data if the
leader fails, so researchers have continued investigating replication methods that do
not lose data but still provide good performance and availability. For example, chain
replication [8, 9] is a variant of synchronous replication that has been successfully
implemented in a few systems such as Microsoft Azure Storage [10, 11].

There is a strong connection between consistency of replication and consensus (get-
ting several nodes to agree on a value), and we will explore this area of theory in more
detail in Chapter 9. In this chapter we will concentrate on the simpler forms of repli-
cation that are most commonly used in databases in practice.

Setting Up New Followers

From time to time, you need to set up new followers—perhaps to increase the num-
ber of replicas, or to replace failed nodes. How do you ensure that the new follower
has an accurate copy of the leader’s data?

Simply copying data files from one node to another is typically not sufficient: clients
are constantly writing to the database, and the data is always in flux, so a standard file
copy would see different parts of the database at different points in time. The result
might not make any sense.

You could make the files on disk consistent by locking the database (making it
unavailable for writes), but that would go against our goal of high availability. Fortu-
nately, setting up a follower can usually be done without downtime. Conceptually,
the process looks like this:

Leaders and Followers | 155

1. Take a consistent snapshot of the leader’s database at some point in time—if pos-
sible, without taking a lock on the entire database. Most databases have this fea-
ture, as it is also required for backups. In some cases, third-party tools are
needed, such as innobackupex for MySQL [12].

2. Copy the snapshot to the new follower node.

3. The follower connects to the leader and requests all the data changes that have
happened since the snapshot was taken. This requires that the snapshot is associ-
ated with an exact position in the leader’s replication log. That position has vari-
ous names: for example, PostgreSQL calls it the log sequence number, and
MySQL calls it the binlog coordinates.

4. When the follower has processed the backlog of data changes since the snapshot,
we say it has caught up. It can now continue to process data changes from the
leader as they happen.

The practical steps of setting up a follower vary significantly by database. In some
systems the process is fully automated, whereas in others it can be a somewhat arcane
multi-step workflow that needs to be manually performed by an administrator.

Handling Node Outages

Any node in the system can go down, perhaps unexpectedly due to a fault, but just as
likely due to planned maintenance (for example, rebooting a machine to install a ker-
nel security patch). Being able to reboot individual nodes without downtime is a big
advantage for operations and maintenance. Thus, our goal is to keep the system as a
whole running despite individual node failures, and to keep the impact of a node out-
age as small as possible.

How do you achieve high availability with leader-based replication?

Follower failure: Catch-up recovery

On its local disk, each follower keeps a log of the data changes it has received from
the leader. If a follower crashes and is restarted, or if the network between the leader
and the follower is temporarily interrupted, the follower can recover quite easily:
from its log, it knows the last transaction that was processed before the fault occur-
red. Thus, the follower can connect to the leader and request all the data changes that
occurred during the time when the follower was disconnected. When it has applied
these changes, it has caught up to the leader and can continue receiving a stream of
data changes as before.

156 | Chapter5: Replication

Leader failure: Failover

Handling a failure of the leader is trickier: one of the followers needs to be promoted
to be the new leader, clients need to be reconfigured to send their writes to the new
leader, and the other followers need to start consuming data changes from the new
leader. This process is called failover.

Failover can happen manually (an administrator is notified that the leader has failed
and takes the necessary steps to make a new leader) or automatically. An automatic
failover process usually consists of the following steps:

1. Determining that the leader has failed. There are many things that could poten-
tially go wrong: crashes, power outages, network issues, and more. There is no
foolproof way of detecting what has gone wrong, so most systems simply use a
timeout: nodes frequently bounce messages back and forth between each other,
and if a node doesn’t respond for some period of time—say, 30 seconds—it is
assumed to be dead. (If the leader is deliberately taken down for planned mainte-
nance, this doesn’t apply.)

2. Choosing a new leader. This could be done through an election process (where
the leader is chosen by a majority of the remaining replicas), or a new leader
could be appointed by a previously elected controller node. The best candidate for
leadership is usually the replica with the most up-to-date data changes from the
old leader (to minimize any data loss). Getting all the nodes to agree on a new
leader is a consensus problem, discussed in detail in Chapter 9.

3. Reconfiguring the system to use the new leader. Clients now need to send
their write requests to the new leader (we discuss this in “Request Routing” on
page 214). If the old leader comes back, it might still believe that it is the leader,
not realizing that the other replicas have forced it to step down. The system
needs to ensure that the old leader becomes a follower and recognizes the new
leader.

Failover is fraught with things that can go wrong:

o If asynchronous replication is used, the new leader may not have received all the
writes from the old leader before it failed. If the former leader rejoins the cluster
after a new leader has been chosen, what should happen to those writes? The new
leader may have received conflicting writes in the meantime. The most common
solution is for the old leader’s unreplicated writes to simply be discarded, which
may violate clients’ durability expectations.

« Discarding writes is especially dangerous if other storage systems outside of the
database need to be coordinated with the database contents. For example, in one
incident at GitHub [13], an out-of-date MySQL follower was promoted to leader.
The database used an autoincrementing counter to assign primary keys to new

Leaders and Followers | 157

rows, but because the new leader’s counter lagged behind the old leader’s, it
reused some primary keys that were previously assigned by the old leader. These
primary keys were also used in a Redis store, so the reuse of primary keys resul-
ted in inconsistency between MySQL and Redis, which caused some private data
to be disclosed to the wrong users.

o In certain fault scenarios (see Chapter 8), it could happen that two nodes both
believe that they are the leader. This situation is called split brain, and it is dan-
gerous: if both leaders accept writes, and there is no process for resolving con-
flicts (see “Multi-Leader Replication” on page 168), data is likely to be lost or
corrupted. As a safety catch, some systems have a mechanism to shut down one
node if two leaders are detected.” However, if this mechanism is not carefully
designed, you can end up with both nodes being shut down [14].

o What is the right timeout before the leader is declared dead? A longer timeout
means a longer time to recovery in the case where the leader fails. However, if the
timeout is too short, there could be unnecessary failovers. For example, a tempo-
rary load spike could cause a node’s response time to increase above the timeout,
or a network glitch could cause delayed packets. If the system is already strug-
gling with high load or network problems, an unnecessary failover is likely to
make the situation worse, not better.

There are no easy solutions to these problems. For this reason, some operations
teams prefer to perform failovers manually, even if the software supports automatic
failover.

These issues—node failures; unreliable networks; and trade-offs around replica con-
sistency, durability, availability, and latency—are in fact fundamental problems in
distributed systems. In Chapter 8 and Chapter 9 we will discuss them in greater
depth.

Implementation of Replication Logs

How does leader-based replication work under the hood? Several different replica-
tion methods are used in practice, so let’s look at each one briefly.

Statement-based replication

In the simplest case, the leader logs every write request (statement) that it executes
and sends that statement log to its followers. For a relational database, this means
that every INSERT, UPDATE, or DELETE statement is forwarded to followers, and each

ii. This approach is known as fencing or, more emphatically, Shoot The Other Node In The Head (STONITH).
We will discuss fencing in more detail in “The leader and the lock” on page 301.

158 | Chapter5:Replication

follower parses and executes that SQL statement as if it had been received from a
client.

Although this may sound reasonable, there are various ways in which this approach
to replication can break down:

+ Any statement that calls a nondeterministic function, such as NOW() to get the
current date and time or RAND() to get a random number, is likely to generate a
different value on each replica.

o If statements use an autoincrementing column, or if they depend on the existing
data in the database (e.g., UPDATE .. WHERE <some condition>), they must be
executed in exactly the same order on each replica, or else they may have a differ-
ent effect. This can be limiting when there are multiple concurrently executing
transactions.

o Statements that have side effects (e.g., triggers, stored procedures, user-defined
functions) may result in different side effects occurring on each replica, unless
the side effects are absolutely deterministic.

It is possible to work around those issues—for example, the leader can replace any
nondeterministic function calls with a fixed return value when the statement is log-
ged so that the followers all get the same value. However, because there are so many
edge cases, other replication methods are now generally preferred.

Statement-based replication was used in MySQL before version 5.1. It is still some-
times used today, as it is quite compact, but by default MySQL now switches to row-
based replication (discussed shortly) if there is any nondeterminism in a statement.
VoltDB uses statement-based replication, and makes it safe by requiring transactions
to be deterministic [15].

Write-ahead log (WAL) shipping

In Chapter 3 we discussed how storage engines represent data on disk, and we found
that usually every write is appended to a log:

« In the case of a log-structured storage engine (see “SSTables and LSM-Trees” on
page 76), this log is the main place for storage. Log segments are compacted and
garbage-collected in the background.

o In the case of a B-tree (see “B-Trees” on page 79), which overwrites individual
disk blocks, every modification is first written to a write-ahead log so that the
index can be restored to a consistent state after a crash.

In either case, the log is an append-only sequence of bytes containing all writes to the
database. We can use the exact same log to build a replica on another node: besides
writing the log to disk, the leader also sends it across the network to its followers.

Leaders and Followers | 159

When the follower processes this log, it builds a copy of the exact same data struc-
tures as found on the leader.

This method of replication is used in PostgreSQL and Oracle, among others [16]. The
main disadvantage is that the log describes the data on a very low level: a WAL con-
tains details of which bytes were changed in which disk blocks. This makes replica-
tion closely coupled to the storage engine. If the database changes its storage format
from one version to another, it is typically not possible to run different versions of
the database software on the leader and the followers.

That may seem like a minor implementation detail, but it can have a big operational
impact. If the replication protocol allows the follower to use a newer software version
than the leader, you can perform a zero-downtime upgrade of the database software
by first upgrading the followers and then performing a failover to make one of the
upgraded nodes the new leader. If the replication protocol does not allow this version
mismatch, as is often the case with WAL shipping, such upgrades require downtime.

Logical (row-based) log replication

An alternative is to use different log formats for replication and for the storage
engine, which allows the replication log to be decoupled from the storage engine
internals. This kind of replication log is called a logical log, to distinguish it from the
storage engine’s (physical) data representation.

A logical log for a relational database is usually a sequence of records describing
writes to database tables at the granularity of a row:

« For an inserted row, the log contains the new values of all columns.

o For a deleted row, the log contains enough information to uniquely identify the
row that was deleted. Typically this would be the primary key, but if there is no
primary key on the table, the old values of all columns need to be logged.

 For an updated row, the log contains enough information to uniquely identify
the updated row, and the new values of all columns (or at least the new values of
all columns that changed).

A transaction that modifies several rows generates several such log records, followed
by a record indicating that the transaction was committed. MySQL’s binlog (when
configured to use row-based replication) uses this approach [17].

Since a logical log is decoupled from the storage engine internals, it can more easily
be kept backward compatible, allowing the leader and the follower to run different
versions of the database software, or even different storage engines.

A logical log format is also easier for external applications to parse. This aspect is use-
ful if you want to send the contents of a database to an external system, such as a data

160 | Chapter5: Replication

warehouse for offline analysis, or for building custom indexes and caches [18]. This
technique is called change data capture, and we will return to it in Chapter 11.

Trigger-based replication

The replication approaches described so far are implemented by the database system,
without involving any application code. In many cases, that’s what you want—but
there are some circumstances where more flexibility is needed. For example, if you
want to only replicate a subset of the data, or want to replicate from one kind of
database to another, or if you need conflict resolution logic (see “Handling Write
Conflicts” on page 171), then you may need to move replication up to the application
layer.

Some tools, such as Oracle GoldenGate [19], can make data changes available to an
application by reading the database log. An alternative is to use features that are
available in many relational databases: triggers and stored procedures.

A trigger lets you register custom application code that is automatically executed
when a data change (write transaction) occurs in a database system. The trigger has
the opportunity to log this change into a separate table, from which it can be read by
an external process. That external process can then apply any necessary application
logic and replicate the data change to another system. Databus for Oracle [20] and
Bucardo for Postgres [21] work like this, for example.

Trigger-based replication typically has greater overheads than other replication
methods, and is more prone to bugs and limitations than the database’s built-in repli-
cation. However, it can nevertheless be useful due to its flexibility.

Problems with Replication Lag

Being able to tolerate node failures is just one reason for wanting replication. As
mentioned in the introduction to Part II, other reasons are scalability (processing
more requests than a single machine can handle) and latency (placing replicas geo-
graphically closer to users).

Leader-based replication requires all writes to go through a single node, but read-
only queries can go to any replica. For workloads that consist of mostly reads and
only a small percentage of writes (a common pattern on the web), there is an attrac-
tive option: create many followers, and distribute the read requests across those fol-
lowers. This removes load from the leader and allows read requests to be served by
nearby replicas.

In this read-scaling architecture, you can increase the capacity for serving read-only
requests simply by adding more followers. However, this approach only realistically
works with asynchronous replication—if you tried to synchronously replicate to all
followers, a single node failure or network outage would make the entire system

Problems with ReplicationLag | 161

unavailable for writing. And the more nodes you have, the likelier it is that one will
be down, so a fully synchronous configuration would be very unreliable.

Unfortunately, if an application reads from an asynchronous follower, it may see out-
dated information if the follower has fallen behind. This leads to apparent inconsis-
tencies in the database: if you run the same query on the leader and a follower at the
same time, you may get different results, because not all writes have been reflected in
the follower. This inconsistency is just a temporary state—if you stop writing to the
database and wait a while, the followers will eventually catch up and become consis-
tent with the leader. For that reason, this effect is known as eventual consistency 22,
23].iii

The term “eventually” is deliberately vague: in general, there is no limit to how far a
replica can fall behind. In normal operation, the delay between a write happening on
the leader and being reflected on a follower—the replication lag—may be only a frac-
tion of a second, and not noticeable in practice. However, if the system is operating
near capacity or if there is a problem in the network, the lag can easily increase to
several seconds or even minutes.

When the lag is so large, the inconsistencies it introduces are not just a theoretical
issue but a real problem for applications. In this section we will highlight three exam-
ples of problems that are likely to occur when there is replication lag and outline
some approaches to solving them.

Reading Your Own Writes

Many applications let the user submit some data and then view what they have sub-
mitted. This might be a record in a customer database, or a comment on a discussion
thread, or something else of that sort. When new data is submitted, it must be sent to
the leader, but when the user views the data, it can be read from a follower. This is
especially appropriate if data is frequently viewed but only occasionally written.

With asynchronous replication, there is a problem, illustrated in Figure 5-3: if the
user views the data shortly after making a write, the new data may not yet have
reached the replica. To the user, it looks as though the data they submitted was lost,
so they will be understandably unhappy.

iii. The term eventual consistency was coined by Douglas Terry et al. [24], popularized by Werner Vogels
[22], and became the battle cry of many NoSQL projects. However, not only NoSQL databases are eventually
consistent: followers in an asynchronously replicated relational database have the same characteristics.

162 | Chapter5: Replication

insertinto comments

(author, reply_to, message) select * from comments

values(1234, 55555, 'Sounds good!’) where reply_to = 55555 no results! time
User 1234 % ---

insert ok

insert into
comments...

insertinto
comments...

Figure 5-3. A user makes a write, followed by a read from a stale replica. To prevent
this anomaly, we need read-after-write consistency.

In this situation, we need read-after-write consistency, also known as read-your-writes
consistency [24]. This is a guarantee that if the user reloads the page, they will always
see any updates they submitted themselves. It makes no promises about other users:
other users’ updates may not be visible until some later time. However, it reassures
the user that their own input has been saved correctly.

How can we implement read-after-write consistency in a system with leader-based
replication? There are various possible techniques. To mention a few:

o When reading something that the user may have modified, read it from the
leader; otherwise, read it from a follower. This requires that you have some way
of knowing whether something might have been modified, without actually
querying it. For example, user profile information on a social network is nor-
mally only editable by the owner of the profile, not by anybody else. Thus, a sim-
ple rule is: always read the user’s own profile from the leader, and any other
users’ profiles from a follower.

o If most things in the application are potentially editable by the user, that
approach won’t be effective, as most things would have to be read from the
leader (negating the benefit of read scaling). In that case, other criteria may be
used to decide whether to read from the leader. For example, you could track the
time of the last update and, for one minute after the last update, make all reads
from the leader. You could also monitor the replication lag on followers and pre-
vent queries on any follower that is more than one minute behind the leader.

o The client can remember the timestamp of its most recent write—then the sys-
tem can ensure that the replica serving any reads for that user reflects updates at
least until that timestamp. If a replica is not sufficiently up to date, either the read
can be handled by another replica or the query can wait until the replica has

Problems with Replicationlag | 163

caught up. The timestamp could be a logical timestamp (something that indicates
ordering of writes, such as the log sequence number) or the actual system clock
(in which case clock synchronization becomes critical; see “Unreliable Clocks”
on page 287).

o If your replicas are distributed across multiple datacenters (for geographical
proximity to users or for availability), there is additional complexity. Any request
that needs to be served by the leader must be routed to the datacenter that con-
tains the leader.

Another complication arises when the same user is accessing your service from mul-
tiple devices, for example a desktop web browser and a mobile app. In this case you
may want to provide cross-device read-after-write consistency: if the user enters some
information on one device and then views it on another device, they should see the
information they just entered.

In this case, there are some additional issues to consider:

 Approaches that require remembering the timestamp of the user’s last update
become more difficult, because the code running on one device doesn’t know
what updates have happened on the other device. This metadata will need to be
centralized.

o If your replicas are distributed across different datacenters, there is no guarantee
that connections from different devices will be routed to the same datacenter.
(For example, if the user’s desktop computer uses the home broadband connec-
tion and their mobile device uses the cellular data network, the devices’ network
routes may be completely different.) If your approach requires reading from the
leader, you may first need to route requests from all of a user’s devices to the
same datacenter.

Monotonic Reads

Our second example of an anomaly that can occur when reading from asynchronous
followers is that it’s possible for a user to see things moving backward in time.

This can happen if a user makes several reads from different replicas. For example,
Figure 5-4 shows user 2345 making the same query twice, first to a follower with little
lag, then to a follower with greater lag. (This scenario is quite likely if the user
refreshes a web page, and each request is routed to a random server.) The first query
returns a comment that was recently added by user 1234, but the second query
doesn’t return anything because the lagging follower has not yet picked up that write.
In effect, the second query is observing the system at an earlier point in time than the
first query. This wouldn’t be so bad if the first query hadn’t returned anything,
because user 2345 probably wouldn’t know that user 1234 had recently added a com-

164 | Chapter5:Replication

ment. However, it’s very confusing for user 2345 if they first see user 1234’s comment
appear, and then see it disappear again.

insert into comments
(author, reply_to, message)

insert ok

insert into
comments...

insert into
comments...

Follower 2 @ 77 i 2

no results!

1 result

User 2345 % ———————————————————— --
select * from comments select * from comments
where reply_to = 55555 where reply_to = 55555

Figure 5-4. A user first reads from a fresh replica, then from a stale replica. Time
appears to go backward. To prevent this anomaly, we need monotonic reads.

Monotonic reads [23] is a guarantee that this kind of anomaly does not happen. It’s a
lesser guarantee than strong consistency, but a stronger guarantee than eventual con-
sistency. When you read data, you may see an old value; monotonic reads only means
that if one user makes several reads in sequence, they will not see time go backward—
i.e., they will not read older data after having previously read newer data.

One way of achieving monotonic reads is to make sure that each user always makes
their reads from the same replica (different users can read from different replicas).
For example, the replica can be chosen based on a hash of the user ID, rather than
randomly. However, if that replica fails, the user’s queries will need to be rerouted to
another replica.

Consistent Prefix Reads

Our third example of replication lag anomalies concerns violation of causality. Imag-
ine the following short dialog between Mr. Poons and Mrs. Cake:

Mr. Poons
How far into the future can you see, Mrs. Cake?

Mrs. Cake
About ten seconds usually, Mr. Poons.

Problems with Replicationlag | 165

There is a causal dependency between those two sentences: Mrs. Cake heard Mr.
Poons’s question and answered it.

Now, imagine a third person is listening to this conversation through followers. The
things said by Mrs. Cake go through a follower with little lag, but the things said by
Mr. Poons have a longer replication lag (see Figure 5-5). This observer would hear
the following:

Mrs. Cake
About ten seconds usually, Mr. Poons.

Mr. Poons
How far into the future can you see, Mrs. Cake?

To the observer it looks as though Mrs. Cake is answering the question before Mr.
Poons has even asked it. Such psychic powers are impressive, but very confusing [25].

“How far into the future

can you see, Mrs, Cake?” time
Mr. Poons % R N e >
Partiton1 — 4 N
Leader
Partition 1
__ >
Follower
“About ten seconds
usually, Mr. Poons”
Mrs.Cake ------------ (e e >
Partiton2 — 3/ N .
Leader
Partition 2
__ >
Follower

Observer % fff >

“About ten seconds “How far into the future
usually, Mr. Poons” can you see, Mrs. Cake?”

Figure 5-5. If some partitions are replicated slower than others, an observer may see the
answer before they see the question.

Preventing this kind of anomaly requires another type of guarantee: consistent prefix
reads [23]. This guarantee says that if a sequence of writes happens in a certain order,
then anyone reading those writes will see them appear in the same order.

This is a particular problem in partitioned (sharded) databases, which we will discuss
in Chapter 6. If the database always applies writes in the same order, reads always see
a consistent prefix, so this anomaly cannot happen. However, in many distributed

166 | Chapter5: Replication

databases, different partitions operate independently, so there is no global ordering of
writes: when a user reads from the database, they may see some parts of the database
in an older state and some in a newer state.

One solution is to make sure that any writes that are causally related to each other are
written to the same partition—but in some applications that cannot be done effi-
ciently. There are also algorithms that explicitly keep track of causal dependencies, a
topic that we will return to in “The “happens-before” relationship and concurrency”
on page 186.

Solutions for Replication Lag

When working with an eventually consistent system, it is worth thinking about how
the application behaves if the replication lag increases to several minutes or even
hours. If the answer is “no problem,” that’s great. However, if the result is a bad expe-
rience for users, it’s important to design the system to provide a stronger guarantee,
such as read-after-write. Pretending that replication is synchronous when in fact it is
asynchronous is a recipe for problems down the line.

As discussed earlier, there are ways in which an application can provide a stronger
guarantee than the underlying database—for example, by performing certain kinds of
reads on the leader. However, dealing with these issues in application code is com-
plex and easy to get wrong.

It would be better if application developers didn’t have to worry about subtle replica-
tion issues and could just trust their databases to “do the right thing.” This is why
transactions exist: they are a way for a database to provide stronger guarantees so that
the application can be simpler.

Single-node transactions have existed for a long time. However, in the move to dis-
tributed (replicated and partitioned) databases, many systems have abandoned them,
claiming that transactions are too expensive in terms of performance and availability,
and asserting that eventual consistency is inevitable in a scalable system. There is
some truth in that statement, but it is overly simplistic, and we will develop a more
nuanced view over the course of the rest of this book. We will return to the topic of
transactions in Chapters 7 and 9, and we will discuss some alternative mechanisms in
Part III.

Problems with ReplicationLag | 167

Multi-Leader Replication

So far in this chapter we have only considered replication architectures using a single
leader. Although that is a common approach, there are interesting alternatives.

Leader-based replication has one major downside: there is only one leader, and all
writes must go through it.” If you can’t connect to the leader for any reason, for
example due to a network interruption between you and the leader, you can’t write to
the database.

A natural extension of the leader-based replication model is to allow more than one
node to accept writes. Replication still happens in the same way: each node that pro-
cesses a write must forward that data change to all the other nodes. We call this a
multi-leader configuration (also known as master-master or active/active replication).
In this setup, each leader simultaneously acts as a follower to the other leaders.

Use Cases for Multi-Leader Replication

It rarely makes sense to use a multi-leader setup within a single datacenter, because
the benefits rarely outweigh the added complexity. However, there are some situa-
tions in which this configuration is reasonable.

Multi-datacenter operation

Imagine you have a database with replicas in several different datacenters (perhaps so
that you can tolerate failure of an entire datacenter, or perhaps in order to be closer
to your users). With a normal leader-based replication setup, the leader has to be in
one of the datacenters, and all writes must go through that datacenter.

In a multi-leader configuration, you can have a leader in each datacenter. Figure 5-6
shows what this architecture might look like. Within each datacenter, regular leader—
follower replication is used; between datacenters, each datacenter’s leader replicates
its changes to the leaders in other datacenters.

iv. If the database is partitioned (see Chapter 6), each partition has one leader. Different partitions may have
their leaders on different nodes, but each partition must nevertheless have one leader node.

168 | Chapter5: Replication

r-—-——--z----—-——-—-—---=-=-=--=-32 '\ J e ——————— — — — — 1

Datacenter 1

conflict
resolution

conflict
resolution

changes changes

I
|
I
|
|
I
|
I
leader I
I
|
I

____________________________________ - ——a

read-write
queries

read-write
queries

X X

Figure 5-6. Multi-leader replication across multiple datacenters.

Let’s compare how the single-leader and multi-leader configurations fare in a multi-
datacenter deployment:

Performance

In a single-leader configuration, every write must go over the internet to the
datacenter with the leader. This can add significant latency to writes and might
contravene the purpose of having multiple datacenters in the first place. In a
multi-leader configuration, every write can be processed in the local datacenter
and is replicated asynchronously to the other datacenters. Thus, the inter-
datacenter network delay is hidden from users, which means the perceived per-
formance may be better.

Tolerance of datacenter outages
In a single-leader configuration, if the datacenter with the leader fails, failover
can promote a follower in another datacenter to be leader. In a multi-leader con-
figuration, each datacenter can continue operating independently of the others,
and replication catches up when the failed datacenter comes back online.

Tolerance of network problems
Traffic between datacenters usually goes over the public internet, which may be
less reliable than the local network within a datacenter. A single-leader configu-
ration is very sensitive to problems in this inter-datacenter link, because writes
are made synchronously over this link. A multi-leader configuration with asyn-
chronous replication can usually tolerate network problems better: a temporary
network interruption does not prevent writes being processed.

Multi-Leader Replication | 169

Some databases support multi-leader configurations by default, but it is also often
implemented with external tools, such as Tungsten Replicator for MySQL [26], BDR
for PostgreSQL [27], and GoldenGate for Oracle [19].

Although multi-leader replication has advantages, it also has a big downside: the
same data may be concurrently modified in two different datacenters, and those write
conflicts must be resolved (indicated as “conflict resolution” in Figure 5-6). We will
discuss this issue in “Handling Write Conflicts” on page 171.

As multi-leader replication is a somewhat retrofitted feature in many databases, there
are often subtle configuration pitfalls and surprising interactions with other database
features. For example, autoincrementing keys, triggers, and integrity constraints can
be problematic. For this reason, multi-leader replication is often considered danger-
ous territory that should be avoided if possible [28].

Clients with offline operation

Another situation in which multi-leader replication is appropriate is if you have an
application that needs to continue to work while it is disconnected from the internet.

For example, consider the calendar apps on your mobile phone, your laptop, and
other devices. You need to be able to see your meetings (make read requests) and
enter new meetings (make write requests) at any time, regardless of whether your
device currently has an internet connection. If you make any changes while you are
offline, they need to be synced with a server and your other devices when the device
is next online.

In this case, every device has a local database that acts as a leader (it accepts write
requests), and there is an asynchronous multi-leader replication process (sync)
between the replicas of your calendar on all of your devices. The replication lag may
be hours or even days, depending on when you have internet access available.

From an architectural point of view, this setup is essentially the same as multi-leader
replication between datacenters, taken to the extreme: each device is a “datacenter,”
and the network connection between them is extremely unreliable. As the rich his-
tory of broken calendar sync implementations demonstrates, multi-leader replication
is a tricky thing to get right.

There are tools that aim to make this kind of multi-leader configuration easier. For
example, CouchDB is designed for this mode of operation [29].

Collaborative editing

Real-time collaborative editing applications allow several people to edit a document
simultaneously. For example, Etherpad [30] and Google Docs [31] allow multiple
people to concurrently edit a text document or spreadsheet (the algorithm is briefly
discussed in “Automatic Conflict Resolution” on page 174).

170 | Chapter 5: Replication

We don’t usually think of collaborative editing as a database replication problem, but
it has a lot in common with the previously mentioned offline editing use case. When
one user edits a document, the changes are instantly applied to their local replica (the
state of the document in their web browser or client application) and asynchronously
replicated to the server and any other users who are editing the same document.

If you want to guarantee that there will be no editing conflicts, the application must
obtain a lock on the document before a user can edit it. If another user wants to edit
the same document, they first have to wait until the first user has committed their
changes and released the lock. This collaboration model is equivalent to single-leader
replication with transactions on the leader.

However, for faster collaboration, you may want to make the unit of change very
small (e.g., a single keystroke) and avoid locking. This approach allows multiple users
to edit simultaneously, but it also brings all the challenges of multi-leader replication,
including requiring conflict resolution [32].

Handling Write Conflicts

The biggest problem with multi-leader replication is that write conflicts can occur,
which means that conflict resolution is required.

For example, consider a wiki page that is simultaneously being edited by two users, as
shown in Figure 5-7. User 1 changes the title of the page from A to B, and user 2
changes the title from A to C at the same time. Each user’s change is successfully
applied to their local leader. However, when the changes are asynchronously replica-
ted, a conflict is detected [33]. This problem does not occur in a single-leader data-
base.

update pages
set title ="B’

where id =123 time
User 1 % -- >

conflict: can't change title from Ato C,

because title is now B
Leader1 | [-----m--e e >

=A

initially, there is a

page with

id=123, title

,_
©
Y
Q
[]
N

id

conflict: can't change title from A to B,
because title is now C

User 2 % ,, >
update pages

set title="C"
whereid =123

Figure 5-7. A write conflict caused by two leaders concurrently updating the same
record.

Multi-Leader Replication | 171

Synchronous versus asynchronous conflict detection

In a single-leader database, the second writer will either block and wait for the first
write to complete, or abort the second write transaction, forcing the user to retry the
write. On the other hand, in a multi-leader setup, both writes are successful, and the
conflict is only detected asynchronously at some later point in time. At that time, it
may be too late to ask the user to resolve the conflict.

In principle, you could make the conflict detection synchronous—i.e., wait for the
write to be replicated to all replicas before telling the user that the write was success-
ful. However, by doing so, you would lose the main advantage of multi-leader repli-
cation: allowing each replica to accept writes independently. If you want synchronous
conflict detection, you might as well just use single-leader replication.

Conflict avoidance

The simplest strategy for dealing with conflicts is to avoid them: if the application can
ensure that all writes for a particular record go through the same leader, then con-
flicts cannot occur. Since many implementations of multi-leader replication handle
conflicts quite poorly, avoiding conflicts is a frequently recommended approach [34].

For example, in an application where a user can edit their own data, you can ensure
that requests from a particular user are always routed to the same datacenter and use
the leader in that datacenter for reading and writing. Different users may have differ-
ent “home” datacenters (perhaps picked based on geographic proximity to the user),
but from any one user’s point of view the configuration is essentially single-leader.

However, sometimes you might want to change the designated leader for a record—
perhaps because one datacenter has failed and you need to reroute traffic to another
datacenter, or perhaps because a user has moved to a different location and is now
closer to a different datacenter. In this situation, conflict avoidance breaks down, and
you have to deal with the possibility of concurrent writes on different leaders.

Converging toward a consistent state

A single-leader database applies writes in a sequential order: if there are several
updates to the same field, the last write determines the final value of the field.

In a multi-leader configuration, there is no defined ordering of writes, so it’s not clear
what the final value should be. In Figure 5-7, at leader 1 the title is first updated to B
and then to C; at leader 2 it is first updated to C and then to B. Neither order is “more
correct” than the other.

If each replica simply applied writes in the order that it saw the writes, the database
would end up in an inconsistent state: the final value would be C at leader 1 and B at
leader 2. That is not acceptable—every replication scheme must ensure that the data
is eventually the same in all replicas. Thus, the database must resolve the conflict in a

172 | Chapter5: Replication

convergent way, which means that all replicas must arrive at the same final value
when all changes have been replicated.

There are various ways of achieving convergent conflict resolution:

« Give each write a unique ID (e.g., a timestamp, a long random number, a UUID,
or a hash of the key and value), pick the write with the highest ID as the winner,
and throw away the other writes. If a timestamp is used, this technique is known
as last write wins (LWW). Although this approach is popular, it is dangerously
prone to data loss [35]. We will discuss LWW in more detail at the end of this
chapter (“Detecting Concurrent Writes” on page 184).

+ Give each replica a unique ID, and let writes that originated at a higher-
numbered replica always take precedence over writes that originated at a lower-
numbered replica. This approach also implies data loss.

o Somehow merge the values together—e.g., order them alphabetically and then
concatenate them (in Figure 5-7, the merged title might be something like
“B/C”).

 Record the conflict in an explicit data structure that preserves all information,
and write application code that resolves the conflict at some later time (perhaps
by prompting the user).

Custom conflict resolution logic

As the most appropriate way of resolving a conflict may depend on the application,
most multi-leader replication tools let you write conflict resolution logic using appli-
cation code. That code may be executed on write or on read:

On write
As soon as the database system detects a conflict in the log of replicated changes,
it calls the conflict handler. For example, Bucardo allows you to write a snippet of
Perl for this purpose. This handler typically cannot prompt a user—it runs in a
background process and it must execute quickly.

On read
When a conflict is detected, all the conflicting writes are stored. The next time
the data is read, these multiple versions of the data are returned to the applica-
tion. The application may prompt the user or automatically resolve the conflict,
and write the result back to the database. CouchDB works this way, for example.

Note that conflict resolution usually applies at the level of an individual row or docu-
ment, not for an entire transaction [36]. Thus, if you have a transaction that atomi-
cally makes several different writes (see Chapter 7), each write is still considered
separately for the purposes of conflict resolution.

Multi-Leader Replication | 173

Automatic Conflict Resolution

Conflict resolution rules can quickly become complicated, and custom code can be
error-prone. Amazon is a frequently cited example of surprising effects due to a con-
flict resolution handler: for some time, the conflict resolution logic on the shopping
cart would preserve items added to the cart, but not items removed from the cart.
Thus, customers would sometimes see items reappearing in their carts even though
they had previously been removed [37].

There has been some interesting research into automatically resolving conflicts
caused by concurrent data modifications. A few lines of research are worth mention-
ing:

o Conflict-free replicated datatypes (CRDTs) [32, 38] are a family of data structures
for sets, maps, ordered lists, counters, etc. that can be concurrently edited by
multiple users, and which automatically resolve conflicts in sensible ways. Some
CRDTs have been implemented in Riak 2.0 [39, 40].

o Mergeable persistent data structures [41] track history explicitly, similarly to the
Git version control system, and use a three-way merge function (whereas CRDT's
use two-way merges).

o Operational transformation [42] is the conflict resolution algorithm behind col-
laborative editing applications such as Etherpad [30] and Google Docs [31]. It
was designed particularly for concurrent editing of an ordered list of items, such
as the list of characters that constitute a text document.

Implementations of these algorithms in databases are still young, but it’s likely that
they will be integrated into more replicated data systems in the future. Automatic
conflict resolution could make multi-leader data synchronization much simpler for
applications to deal with.

What is a conflict?

Some kinds of conflict are obvious. In the example in Figure 5-7, two writes concur-
rently modified the same field in the same record, setting it to two different values.
There is little doubt that this is a conflict.

Other kinds of conflict can be more subtle to detect. For example, consider a meeting
room booking system: it tracks which room is booked by which group of people at
which time. This application needs to ensure that each room is only booked by one
group of people at any one time (i.e., there must not be any overlapping bookings for
the same room). In this case, a conflict may arise if two different bookings are created
for the same room at the same time. Even if the application checks availability before

174 | Chapter5: Replication

allowing a user to make a booking, there can be a conflict if the two bookings are
made on two different leaders.

There isn’t a quick ready-made answer, but in the following chapters we will trace a
path toward a good understanding of this problem. We will see some more examples
of conflicts in Chapter 7, and in Chapter 12 we will discuss scalable approaches for
detecting and resolving conflicts in a replicated system.

Multi-Leader Replication Topologies

A replication topology describes the communication paths along which writes are
propagated from one node to another. If you have two leaders, like in Figure 5-7,
there is only one plausible topology: leader 1 must send all of its writes to leader 2,
and vice versa. With more than two leaders, various different topologies are possible.
Some examples are illustrated in Figure 5-8.

/N 3 A5
g 9 2 SNy
o’ = g N

(a) Circular topology (b) Star topology (c) All-to-all topology

Figure 5-8. Three example topologies in which multi-leader replication can be set up.

The most general topology is all-to-all (Figure 5-8 [c]), in which every leader sends its
writes to every other leader. However, more restricted topologies are also used: for
example, MySQL by default supports only a circular topology [34], in which each
node receives writes from one node and forwards those writes (plus any writes of its
own) to one other node. Another popular topology has the shape of a star:" one desig-
nated root node forwards writes to all of the other nodes. The star topology can be
generalized to a tree.

In circular and star topologies, a write may need to pass through several nodes before
it reaches all replicas. Therefore, nodes need to forward data changes they receive
from other nodes. To prevent infinite replication loops, each node is given a unique
identifier, and in the replication log, each write is tagged with the identifiers of all the
nodes it has passed through [43]. When a node receives a data change that is tagged

v. Not to be confused with a star schema (see “Stars and Snowflakes: Schemas for Analytics” on page 93),
which describes the structure of a data model, not the communication topology between nodes.

Multi-Leader Replication | 175

with its own identifier, that data change is ignored, because the node knows that it
has already been processed.

A problem with circular and star topologies is that if just one node fails, it can inter-
rupt the flow of replication messages between other nodes, causing them to be unable
to communicate until the node is fixed. The topology could be reconfigured to work
around the failed node, but in most deployments such reconfiguration would have to
be done manually. The fault tolerance of a more densely connected topology (such as
all-to-all) is better because it allows messages to travel along different paths, avoiding
a single point of failure.

On the other hand, all-to-all topologies can have issues too. In particular, some net-
work links may be faster than others (e.g., due to network congestion), with the result
that some replication messages may “overtake” others, as illustrated in Figure 5-9.

insert into data
(key, value)

values ('x; 1) time
Client A % e >

insert...
value =1

insert...
value=1

update... Dependent update
value=2 arrives before insert

Client B % ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, >
update data

set value = value + 1
where key ='x’

Figure 5-9. With multi-leader replication, writes may arrive in the wrong order at some
replicas.

In Figure 5-9, client A inserts a row into a table on leader 1, and client B updates that
row on leader 3. However, leader 2 may receive the writes in a different order: it may
first receive the update (which, from its point of view, is an update to a row that does
not exist in the database) and only later receive the corresponding insert (which
should have preceded the update).

This is a problem of causality, similar to the one we saw in “Consistent Prefix Reads”
on page 165: the update depends on the prior insert, so we need to make sure that all
nodes process the insert first, and then the update. Simply attaching a timestamp to

176 | Chapter5: Replication

every write is not sufficient, because clocks cannot be trusted to be sufficiently in sync
to correctly order these events at leader 2 (see Chapter 8).

To order these events correctly, a technique called version vectors can be used, which
we will discuss later in this chapter (see “Detecting Concurrent Writes” on page 184).
However, conflict detection techniques are poorly implemented in many multi-leader
replication systems. For example, at the time of writing, PostgreSQL BDR does not
provide causal ordering of writes [27], and Tungsten Replicator for MySQL doesn’t
even try to detect conflicts [34].

If you are using a system with multi-leader replication, it is worth being aware of
these issues, carefully reading the documentation, and thoroughly testing your data-
base to ensure that it really does provide the guarantees you believe it to have.

Leaderless Replication

The replication approaches we have discussed so far in this chapter—single-leader
and multi-leader replication—are based on the idea that a client sends a write request
to one node (the leader), and the database system takes care of copying that write to
the other replicas. A leader determines the order in which writes should be processed,
and followers apply the leader’s writes in the same order.

Some data storage systems take a different approach, abandoning the concept of a
leader and allowing any replica to directly accept writes from clients. Some of the ear-
liest replicated data systems were leaderless [1, 44], but the idea was mostly forgotten
during the era of dominance of relational databases. It once again became a fashiona-
ble architecture for databases after Amazon used it for its in-house Dynamo system
[37]. Riak, Cassandra, and Voldemort are open source datastores with leaderless
replication models inspired by Dynamo, so this kind of database is also known as
Dynamo-style.

In some leaderless implementations, the client directly sends its writes to several rep-
licas, while in others, a coordinator node does this on behalf of the client. However,
unlike a leader database, that coordinator does not enforce a particular ordering of
writes. As we shall see, this difference in design has profound consequences for the
way the database is used.

Writing to the Database When a Node Is Down

Imagine you have a database with three replicas, and one of the replicas is currently
unavailable—perhaps it is being rebooted to install a system update. In a leader-based

vi. Dynamo is not available to users outside of Amazon. Confusingly, AWS offers a hosted database product
called DynamoDB, which uses a completely different architecture: it is based on single-leader replication.

Leaderless Replication | 177

configuration, if you want to continue processing writes, you may need to perform a
failover (see “Handling Node Outages” on page 156).

On the other hand, in a leaderless configuration, failover does not exist. Figure 5-10
shows what happens: the client (user 1234) sends the write to all three replicas in par-
allel, and the two available replicas accept the write but the unavailable replica misses
it. Let’s say that it’s sufficient for two out of three replicas to acknowledge the write:
after user 1234 has received two ok responses, we consider the write to be successful.
The client simply ignores the fact that one of the replicas missed the write.

set key = users.1234.picture_url

value =‘me-new.jpg’ time
User 1234 % B e o p >

value =‘me-new.jpg’
version =7

value ='me-new.jpg’
version =7

Replica 3 B | node offline Ry Y e R >

value ='me-old.jpg’
User 2345 % —————————————————

version =6

- >

get key = users.1234.picture_url set value =‘me-new.jpg’
version =7

Figure 5-10. A quorum write, quorum read, and read repair after a node outage.

Now imagine that the unavailable node comes back online, and clients start reading
from it. Any writes that happened while the node was down are missing from that
node. Thus, if you read from that node, you may get stale (outdated) values as
responses.

To solve that problem, when a client reads from the database, it doesn’t just send its
request to one replica: read requests are also sent to several nodes in parallel. The cli-
ent may get different responses from different nodes; i.e., the up-to-date value from
one node and a stale value from another. Version numbers are used to determine
which value is newer (see “Detecting Concurrent Writes” on page 184).

Read repair and anti-entropy

The replication scheme should ensure that eventually all the data is copied to every
replica. After an unavailable node comes back online, how does it catch up on the
writes that it missed?

178 | Chapter5: Replication

Two mechanisms are often used in Dynamo-style datastores:

Read repair
When a client makes a read from several nodes in parallel, it can detect any stale
responses. For example, in Figure 5-10, user 2345 gets a version 6 value from rep-
lica 3 and a version 7 value from replicas 1 and 2. The client sees that replica 3
has a stale value and writes the newer value back to that replica. This approach
works well for values that are frequently read.

Anti-entropy process
In addition, some datastores have a background process that constantly looks for
differences in the data between replicas and copies any missing data from one
replica to another. Unlike the replication log in leader-based replication, this
anti-entropy process does not copy writes in any particular order, and there may
be a significant delay before data is copied.

Not all systems implement both of these; for example, Voldemort currently does not
have an anti-entropy process. Note that without an anti-entropy process, values that
are rarely read may be missing from some replicas and thus have reduced durability,
because read repair is only performed when a value is read by the application.

Quorums for reading and writing

In the example of Figure 5-10, we considered the write to be successful even though it
was only processed on two out of three replicas. What if only one out of three replicas
accepted the write? How far can we push this?

If we know that every successful write is guaranteed to be present on at least two out
of three replicas, that means at most one replica can be stale. Thus, if we read from at
least two replicas, we can be sure that at least one of the two is up to date. If the third
replica is down or slow to respond, reads can nevertheless continue returning an up-
to-date value.

More generally, if there are n replicas, every write must be confirmed by w nodes to
be considered successful, and we must query at least r nodes for each read. (In our
example, n =3, w = 2, r = 2.) As long as w + r > n, we expect to get an up-to-date
value when reading, because at least one of the r nodes we’re reading from must be
up to date. Reads and writes that obey these r and w values are called quorum reads
and writes [44]." You can think of 7 and w as the minimum number of votes required
for the read or write to be valid.

vii. Sometimes this kind of quorum is called a strict quorum, to contrast with sloppy quorums (discussed in
“Sloppy Quorums and Hinted Handoff” on page 183).

Leaderless Replication | 179

In Dynamo-style databases, the parameters n, w, and r are typically configurable. A
common choice is to make n an odd number (typically 3 or 5) and to set w = r =
(n + 1) / 2 (rounded up). However, you can vary the numbers as you see fit. For
example, a workload with few writes and many reads may benefit from setting w = n
and r = 1. This makes reads faster, but has the disadvantage that just one failed node
causes all database writes to fail.

There may be more than #n nodes in the cluster, but any given value
is stored only on n nodes. This allows the dataset to be partitioned,
supporting datasets that are larger than you can fit on one node.
We will return to partitioning in Chapter 6.

The quorum condition, w + r > n, allows the system to tolerate unavailable nodes as
follows:

o If w < n, we can still process writes if a node is unavailable.
o If r < n, we can still process reads if a node is unavailable.
o With n =3, w=2, r=2 we can tolerate one unavailable node.

e With n =5, w =3, r=3 we can tolerate two unavailable nodes. This case is illus-
trated in Figure 5-11.

o Normally, reads and writes are always sent to all n replicas in parallel. The
parameters w and r determine how many nodes we wait for—i.e., how many of
the n nodes need to report success before we consider the read or write to be suc-
cessful.

n =5 replicas

'
'
@ @ 1
'
'
'
'
'

successful
Replica 4 Replica5 r=3

| i |
| : |
. | ' |
writes | ' |
| i |
| ' |
| |
| | '
| + successful

e Rl ! reads

% read

Figure 5-11. If w + r > n, at least one of the r replicas you read from must have seen the
most recent successful write.

w=3

180 | Chapter5:Replication

If fewer than the required w or r nodes are available, writes or reads return an error.
A node could be unavailable for many reasons: because the node is down (crashed,
powered down), due to an error executing the operation (can’t write because the disk
is full), due to a network interruption between the client and the node, or for any
number of other reasons. We only care whether the node returned a successful
response and don’t need to distinguish between different kinds of fault.

Limitations of Quorum Consistency

If you have n replicas, and you choose w and r such that w + r > n, you can generally
expect every read to return the most recent value written for a key. This is the case
because the set of nodes to which you’ve written and the set of nodes from which
you’ve read must overlap. That is, among the nodes you read there must be at least
one node with the latest value (illustrated in Figure 5-11).

Often, r and w are chosen to be a majority (more than n/2) of nodes, because that
ensures w + r > n while still tolerating up to #/2 node failures. But quorums are not
necessarily majorities—it only matters that the sets of nodes used by the read and
write operations overlap in at least one node. Other quorum assignments are possi-
ble, which allows some flexibility in the design of distributed algorithms [45].

You may also set w and r to smaller numbers, so that w + r < n (i.e., the quorum con-
dition is not satisfied). In this case, reads and writes will still be sent to n nodes, but a
smaller number of successful responses is required for the operation to succeed.

With a smaller w and r you are more likely to read stale values, because it’s more
likely that your read didn’t include the node with the latest value. On the upside, this
configuration allows lower latency and higher availability: if there is a network inter-
ruption and many replicas become unreachable, there’s a higher chance that you can
continue processing reads and writes. Only after the number of reachable replicas
falls below w or r does the database become unavailable for writing or reading,
respectively.

However, even with w + r > n, there are likely to be edge cases where stale values are
returned. These depend on the implementation, but possible scenarios include:

o If a sloppy quorum is used (see “Sloppy Quorums and Hinted Handoff” on page
183), the w writes may end up on different nodes than the r reads, so there is no
longer a guaranteed overlap between the r nodes and the w nodes [46].

o If two writes occur concurrently, it is not clear which one happened first. In this
case, the only safe solution is to merge the concurrent writes (see “Handling
Write Conflicts” on page 171). If a winner is picked based on a timestamp (last
write wins), writes can be lost due to clock skew [35]. We will return to this topic
in “Detecting Concurrent Writes” on page 184.

Leaderless Replication | 181

o If a write happens concurrently with a read, the write may be reflected on only
some of the replicas. In this case, it’s undetermined whether the read returns the
old or the new value.

o If a write succeeded on some replicas but failed on others (for example because
the disks on some nodes are full), and overall succeeded on fewer than w replicas,
it is not rolled back on the replicas where it succeeded. This means that if a write
was reported as failed, subsequent reads may or may not return the value from
that write [47].

o If a node carrying a new value fails, and its data is restored from a replica carry-
ing an old value, the number of replicas storing the new value may fall below w,
breaking the quorum condition.

« Even if everything is working correctly, there are edge cases in which you can get
unlucky with the timing, as we shall see in “Linearizability and quorums” on
page 334.

Thus, although quorums appear to guarantee that a read returns the latest written
value, in practice it is not so simple. Dynamo-style databases are generally optimized
for use cases that can tolerate eventual consistency. The parameters w and r allow you
to adjust the probability of stale values being read, but it’s wise to not take them as
absolute guarantees.

In particular, you usually do not get the guarantees discussed in “Problems with Rep-
lication Lag” on page 161 (reading your writes, monotonic reads, or consistent prefix
reads), so the previously mentioned anomalies can occur in applications. Stronger
guarantees generally require transactions or consensus. We will return to these topics
in Chapter 7 and Chapter 9.

Monitoring staleness

From an operational perspective, it’s important to monitor whether your databases
are returning up-to-date results. Even if your application can tolerate stale reads, you
need to be aware of the health of your replication. If it falls behind significantly, it
should alert you so that you can investigate the cause (for example, a problem in the
network or an overloaded node).

For leader-based replication, the database typically exposes metrics for the replication
lag, which you can feed into a monitoring system. This is possible because writes are
applied to the leader and to followers in the same order, and each node has a position
in the replication log (the number of writes it has applied locally). By subtracting a
follower’s current position from the leader’s current position, you can measure the
amount of replication lag.

However, in systems with leaderless replication, there is no fixed order in which
writes are applied, which makes monitoring more difficult. Moreover, if the database

182 | Chapter5: Replication

only uses read repair (no anti-entropy), there is no limit to how old a value might be
—if a value is only infrequently read, the value returned by a stale replica may be
ancient.

There has been some research on measuring replica staleness in databases with lead-
erless replication and predicting the expected percentage of stale reads depending on
the parameters n, w, and r [48]. This is unfortunately not yet common practice, but it
would be good to include staleness measurements in the standard set of metrics for
databases. Eventual consistency is a deliberately vague guarantee, but for operability
it’s important to be able to quantify “eventual.”

Sloppy Quorums and Hinted Handoff

Databases with appropriately configured quorums can tolerate the failure of individ-
ual nodes without the need for failover. They can also tolerate individual nodes going
slow, because requests don’t have to wait for all # nodes to respond—they can return
when w or r nodes have responded. These characteristics make databases with leader-
less replication appealing for use cases that require high availability and low latency,
and that can tolerate occasional stale reads.

However, quorums (as described so far) are not as fault-tolerant as they could be. A
network interruption can easily cut off a client from a large number of database
nodes. Although those nodes are alive, and other clients may be able to connect to
them, to a client that is cut off from the database nodes, they might as well be dead. In
this situation, it’s likely that fewer than w or r reachable nodes remain, so the client
can no longer reach a quorum.

In a large cluster (with significantly more than n nodes) it’s likely that the client can
connect to some database nodes during the network interruption, just not to the
nodes that it needs to assemble a quorum for a particular value. In that case, database
designers face a trade-oft:

o Is it better to return errors to all requests for which we cannot reach a quorum of
w or r nodes?

o Or should we accept writes anyway, and write them to some nodes that are
reachable but aren’t among the n nodes on which the value usually lives?

The latter is known as a sloppy quorum [37]: writes and reads still require w and r
successful responses, but those may include nodes that are not among the designated
n “home” nodes for a value. By analogy, if you lock yourself out of your house, you
may knock on the neighbor’s door and ask whether you may stay on their couch tem-
porarily.

Once the network interruption is fixed, any writes that one node temporarily
accepted on behalf of another node are sent to the appropriate “home” nodes. This is

Leaderless Replication | 183

called hinted handoff. (Once you find the keys to your house again, your neighbor
politely asks you to get off their couch and go home.)

Sloppy quorums are particularly useful for increasing write availability: as long as any
w nodes are available, the database can accept writes. However, this means that even
when w + r > n, you cannot be sure to read the latest value for a key, because the
latest value may have been temporarily written to some nodes outside of n [47].

Thus, a sloppy quorum actually isn’t a quorum at all in the traditional sense. It’s only
an assurance of durability, namely that the data is stored on w nodes somewhere.
There is no guarantee that a read of r nodes will see it until the hinted handoff has
completed.

Sloppy quorums are optional in all common Dynamo implementations. In Riak they
are enabled by default, and in Cassandra and Voldemort they are disabled by default
(46, 49, 50].

Multi-datacenter operation

We previously discussed cross-datacenter replication as a use case for multi-leader
replication (see “Multi-Leader Replication” on page 168). Leaderless replication is
also suitable for multi-datacenter operation, since it is designed to tolerate conflicting
concurrent writes, network interruptions, and latency spikes.

Cassandra and Voldemort implement their multi-datacenter support within the nor-
mal leaderless model: the number of replicas # includes nodes in all datacenters, and
in the configuration you can specify how many of the # replicas you want to have in
each datacenter. Each write from a client is sent to all replicas, regardless of datacen-
ter, but the client usually only waits for acknowledgment from a quorum of nodes
within its local datacenter so that it is unaffected by delays and interruptions on the
cross-datacenter link. The higher-latency writes to other datacenters are often config-
ured to happen asynchronously, although there is some flexibility in the configura-
tion [50, 51].

Riak keeps all communication between clients and database nodes local to one data-
center, so n describes the number of replicas within one datacenter. Cross-datacenter
replication between database clusters happens asynchronously in the background, in
a style that is similar to multi-leader replication [52].

Detecting Concurrent Writes

Dynamo-style databases allow several clients to concurrently write to the same key,
which means that conflicts will occur even if strict quorums are used. The situation is
similar to multi-leader replication (see “Handling Write Conflicts” on page 171),
although in Dynamo-style databases conflicts can also arise during read repair or
hinted handoff.

184 | Chapter5: Replication

The problem is that events may arrive in a different order at different nodes, due to
variable network delays and partial failures. For example, Figure 5-12 shows two cli-
ents, A and B, simultaneously writing to a key X in a three-node datastore:

« Node 1 receives the write from A, but never receives the write from B due to a
transient outage.

o Node 2 first receives the write from A, then the write from B.

o Node 3 first receives the write from B, then the write from A.

ClientB %
setX=B getX

Figure 5-12. Concurrent writes in a Dynamo-style datastore: there is no well-defined
ordering.

If each node simply overwrote the value for a key whenever it received a write request
from a client, the nodes would become permanently inconsistent, as shown by the
final get request in Figure 5-12: node 2 thinks that the final value of X is B, whereas
the other nodes think that the value is A.

In order to become eventually consistent, the replicas should converge toward the
same value. How do they do that? One might hope that replicated databases would
handle this automatically, but unfortunately most implementations are quite poor: if
you want to avoid losing data, you—the application developer—need to know a lot
about the internals of your database’s conflict handling.

We briefly touched on some techniques for conflict resolution in “Handling Write
Conflicts” on page 171. Before we wrap up this chapter, let’s explore the issue in a bit
more detail.

Leaderless Replication | 185

Last write wins (discarding concurrent writes)

One approach for achieving eventual convergence is to declare that each replica need
only store the most “recent” value and allow “older” values to be overwritten and dis-
carded. Then, as long as we have some way of unambiguously determining which
write is more “recent,” and every write is eventually copied to every replica, the repli-
cas will eventually converge to the same value.

As indicated by the quotes around “recent,” this idea is actually quite misleading. In
the example of Figure 5-12, neither client knew about the other one when it sent its
write requests to the database nodes, so it’s not clear which one happened first. In
fact, it doesn’t really make sense to say that either happened “first”: we say the writes
are concurrent, so their order is undefined.

Even though the writes don’t have a natural ordering, we can force an arbitrary order
on them. For example, we can attach a timestamp to each write, pick the biggest
timestamp as the most “recent,” and discard any writes with an earlier timestamp.
This conflict resolution algorithm, called last write wins (LWW), is the only sup-
ported conflict resolution method in Cassandra [53], and an optional feature in Riak
[35].

LWW achieves the goal of eventual convergence, but at the cost of durability: if there
are several concurrent writes to the same key, even if they were all reported as suc-
cessful to the client (because they were written to w replicas), only one of the writes
will survive and the others will be silently discarded. Moreover, LWW may even drop
writes that are not concurrent, as we shall discuss in “Timestamps for ordering
events” on page 291.

There are some situations, such as caching, in which lost writes are perhaps accepta-
ble. If losing data is not acceptable, LWW is a poor choice for conflict resolution.

The only safe way of using a database with LWW is to ensure that a key is only writ-
ten once and thereafter treated as immutable, thus avoiding any concurrent updates
to the same key. For example, a recommended way of using Cassandra is to use a
UUID as the key, thus giving each write operation a unique key [53].

The “happens-before” relationship and concurrency

How do we decide whether two operations are concurrent or not? To develop an
intuition, let’s look at some examples:

« In Figure 5-9, the two writes are not concurrent: A’s insert happens before B’s
increment, because the value incremented by B is the value inserted by A. In
other words, B’s operation builds upon A’s operation, so B’s operation must have
happened later. We also say that B is causally dependent on A.

186 | Chapter5: Replication

o On the other hand, the two writes in Figure 5-12 are concurrent: when each cli-
ent starts the operation, it does not know that another client is also performing
an operation on the same key. Thus, there is no causal dependency between the
operations.

An operation A happens before another operation B if B knows about A, or depends
on A, or builds upon A in some way. Whether one operation happens before another
operation is the key to defining what concurrency means. In fact, we can simply say
that two operations are concurrent if neither happens before the other (i.e., neither
knows about the other) [54].

Thus, whenever you have two operations A and B, there are three possibilities: either
A happened before B, or B happened before A, or A and B are concurrent. What we
need is an algorithm to tell us whether two operations are concurrent or not. If one
operation happened before another, the later operation should overwrite the earlier
operation, but if the operations are concurrent, we have a conflict that needs to be
resolved.

Concurrency, Time, and Relativity

It may seem that two operations should be called concurrent if they occur “at the
same time”—but in fact, it is not important whether they literally overlap in time.
Because of problems with clocks in distributed systems, it is actually quite difficult to
tell whether two things happened at exactly the same time—an issue we will discuss
in more detail in Chapter 8.

For defining concurrency, exact time doesn’t matter: we simply call two operations
concurrent if they are both unaware of each other, regardless of the physical time at
which they occurred. People sometimes make a connection between this principle
and the special theory of relativity in physics [54], which introduced the idea that
information cannot travel faster than the speed of light. Consequently, two events
that occur some distance apart cannot possibly affect each other if the time between
the events is shorter than the time it takes light to travel the distance between them.

In computer systems, two operations might be concurrent even though the speed of
light would in principle have allowed one operation to affect the other. For example,
if the network was slow or interrupted at the time, two operations can occur some
time apart and still be concurrent, because the network problems prevented one
operation from being able to know about the other.

Capturing the happens-before relationship

Let’s look at an algorithm that determines whether two operations are concurrent, or
whether one happened before another. To keep things simple, let’s start with a data-

Leaderless Replication | 187

base that has only one replica. Once we have worked out how to do this on a single
replica, we can generalize the approach to a leaderless database with multiple replicas.

Figure 5-13 shows two clients concurrently adding items to the same shopping cart.
(If that example strikes you as too inane, imagine instead two air traffic controllers
concurrently adding aircraft to the sector they are tracking.) Initially, the cart is
empty. Between them, the clients make five writes to the database:

1.

Client 1 adds milk to the cart. This is the first write to that key, so the server suc-
cessfully stores it and assigns it version 1. The server also echoes the value back
to the client, along with the version number.

. Client 2 adds eggs to the cart, not knowing that client 1 concurrently added milk

(client 2 thought that its eggs were the only item in the cart). The server assigns
version 2 to this write, and stores eggs and milk as two separate values. It then
returns both values to the client, along with the version number of 2.

. Client 1, oblivious to client 2’s write, wants to add flour to the cart, so it thinks

the current cart contents should be [milk, flour]. It sends this value to the
server, along with the version number 1 that the server gave client 1 previously.
The server can tell from the version number that the write of [milk, flour]
supersedes the prior value of [milk] but that it is concurrent with [eggs]. Thus,
the server assigns version 3 to [milk, flour], overwrites the version 1 value
[milk], but keeps the version 2 value [eggs] and returns both remaining values
to the client.

. Meanwhile, client 2 wants to add ham to the cart, unaware that client 1 just added

flour. Client 2 received the two values [milk] and [eggs] from the server in the
last response, so the client now merges those values and adds ham to form a new
value, [eggs, milk, ham]. It sends that value to the server, along with the previ-
ous version number 2. The server detects that version 2 overwrites [eggs] but is
concurrent with [milk, flour], so the two remaining values are [milk, flour]
with version 3, and [eggs, milk, ham] with version 4.

. Finally, client 1 wants to add bacon. It previously received [milk, flour] and

[eggs] from the server at version 3, so it merges those, adds bacon, and sends the
final value [milk, flour, eggs, bacon] to the server, along with the version
number 3. This overwrites [milk, flour] (note that [eggs] was already over-
written in the last step) but is concurrent with [eggs, milk, ham], so the server
keeps those two concurrent values.

188

| Chapter5: Replication

c

= 5 set key: cart 8 set key: cart

£ set key: cart é’ value: [milk, flour] 8 value: [milk, flour, eggs, bacon]
+ + +

. value: [milk] version: 1 version: 3
Client1 4 -------—F——F4—-----

,,,,,,,,,,,,,,,, >
time
ok ok
version: 1 version: 3 version: 5
value: [milk] value: [milk, flour] value: [milk, flour,
value: [eggs] eggs, bacon]

value: [eggs, milk, ham]

Database@ —————————— e e >
1 3 5

ok

version: 2
value: [milk]
value: [eggs]

ok

version: 4

value: [eggs, milk, ham]
value: [milk, flour]

Client 2 % 777777777777777777777777777777777777 >
5 setkey:cart £ set key: cart
D value:[eggs] 2 value: [eggs, milk, ham]
+ + version: 2

Figure 5-13. Capturing causal dependencies between two clients concurrently editing a
shopping cart.

The dataflow between the operations in Figure 5-13 is illustrated graphically in
Figure 5-14. The arrows indicate which operation happened before which other oper-
ation, in the sense that the later operation knew about or depended on the earlier one.
In this example, the clients are never fully up to date with the data on the server, since
there is always another operation going on concurrently. But old versions of the value
do get overwritten eventually, and no writes are lost.

[milk, flour,
eggs, bacon]

empty

leggs] [eggs, milk, ham]

Figure 5-14. Graph of causal dependencies in Figure 5-13.

Note that the server can determine whether two operations are concurrent by looking
at the version numbers—it does not need to interpret the value itself (so the value
could be any data structure). The algorithm works as follows:

Leaderless Replication | 189

o The server maintains a version number for every key, increments the version
number every time that key is written, and stores the new version number along
with the value written.

« When a client reads a key, the server returns all values that have not been over-
written, as well as the latest version number. A client must read a key before
writing.

o When a client writes a key, it must include the version number from the prior
read, and it must merge together all values that it received in the prior read. (The
response from a write request can be like a read, returning all current values,
which allows us to chain several writes like in the shopping cart example.)

o When the server receives a write with a particular version number, it can over-
write all values with that version number or below (since it knows that they have
been merged into the new value), but it must keep all values with a higher ver-
sion number (because those values are concurrent with the incoming write).

When a write includes the version number from a prior read, that tells us which pre-
vious state the write is based on. If you make a write without including a version
number, it is concurrent with all other writes, so it will not overwrite anything—it
will just be returned as one of the values on subsequent reads.

Merging concurrently written values

This algorithm ensures that no data is silently dropped, but it unfortunately requires
that the clients do some extra work: if several operations happen concurrently, clients
have to clean up afterward by merging the concurrently written values. Riak calls
these concurrent values siblings.

Merging sibling values is essentially the same problem as conflict resolution in multi-
leader replication, which we discussed previously (see “Handling Write Conflicts” on
page 171). A simple approach is to just pick one of the values based on a version
number or timestamp (last write wins), but that implies losing data. So, you may
need to do something more intelligent in application code.

With the example of a shopping cart, a reasonable approach to merging siblings is to
just take the union. In Figure 5-14, the two final siblings are [milk, flour, eggs,
bacon] and [eggs, milk, ham]; note that milk and eggs appear in both, even
though they were each only written once. The merged value might be something like
[milk, flour, eggs, bacon, ham], without duplicates.

However, if you want to allow people to also remove things from their carts, and not
just add things, then taking the union of siblings may not yield the right result: if you
merge two sibling carts and an item has been removed in only one of them, then the
removed item will reappear in the union of the siblings [37]. To prevent this prob-

190 | Chapter5: Replication

lem, an item cannot simply be deleted from the database when it is removed; instead,
the system must leave a marker with an appropriate version number to indicate that
the item has been removed when merging siblings. Such a deletion marker is known
as a tombstone. (We previously saw tombstones in the context of log compaction in
“Hash Indexes” on page 72.)

As merging siblings in application code is complex and error-prone, there are some
efforts to design data structures that can perform this merging automatically, as dis-
cussed in “Automatic Conflict Resolution” on page 174. For example, Riak’s datatype
support uses a family of data structures called CRDTs [38, 39, 55] that can automati-
cally merge siblings in sensible ways, including preserving deletions.

Version vectors

The example in Figure 5-13 used only a single replica. How does the algorithm
change when there are multiple replicas, but no leader?

Figure 5-13 uses a single version number to capture dependencies between opera-
tions, but that is not sufficient when there are multiple replicas accepting writes con-
currently. Instead, we need to use a version number per replica as well as per key.
Each replica increments its own version number when processing a write, and also
keeps track of the version numbers it has seen from each of the other replicas. This
information indicates which values to overwrite and which values to keep as siblings.

The collection of version numbers from all the replicas is called a version vector [56].
A few variants of this idea are in use, but the most interesting is probably the dotted
version vector [57], which is used in Riak 2.0 [58, 59]. We won’t go into the details,
but the way it works is quite similar to what we saw in our cart example.

Like the version numbers in Figure 5-13, version vectors are sent from the database
replicas to clients when values are read, and need to be sent back to the database
when a value is subsequently written. (Riak encodes the version vector as a string that
it calls causal context.) The version vector allows the database to distinguish between
overwrites and concurrent writes.

Also, like in the single-replica example, the application may need to merge siblings.
The version vector structure ensures that it is safe to read from one replica and subse-
quently write back to another replica. Doing so may result in siblings being created,
but no data is lost as long as siblings are merged correctly.

Version vectors and vector clocks

A version vector is sometimes also called a vector clock, even though
they are not quite the same. The difference is subtle—please see the
references for details [57, 60, 61]. In brief, when comparing the
state of replicas, version vectors are the right data structure to use.

Leaderless Replication | 191

Summary

In this chapter we looked at the issue of replication. Replication can serve several
purposes:

High availability
Keeping the system running, even when one machine (or several machines, or an
entire datacenter) goes down

Disconnected operation
Allowing an application to continue working when there is a network interrup-
tion

Latency
Placing data geographically close to users, so that users can interact with it faster

Scalability
Being able to handle a higher volume of reads than a single machine could han-
dle, by performing reads on replicas

Despite being a simple goal—keeping a copy of the same data on several machines—
replication turns out to be a remarkably tricky problem. It requires carefully thinking
about concurrency and about all the things that can go wrong, and dealing with the
consequences of those faults. At a minimum, we need to deal with unavailable nodes
and network interruptions (and that’s not even considering the more insidious kinds
of fault, such as silent data corruption due to software bugs).

We discussed three main approaches to replication:

Single-leader replication
Clients send all writes to a single node (the leader), which sends a stream of data
change events to the other replicas (followers). Reads can be performed on any
replica, but reads from followers might be stale.

Multi-leader replication
Clients send each write to one of several leader nodes, any of which can accept
writes. The leaders send streams of data change events to each other and to any
follower nodes.

Leaderless replication
Clients send each write to several nodes, and read from several nodes in parallel
in order to detect and correct nodes with stale data.

Each approach has advantages and disadvantages. Single-leader replication is popular
because it is fairly easy to understand and there is no conflict resolution to worry
about. Multi-leader and leaderless replication can be more robust in the presence of

192 | Chapter5: Replication

faulty nodes, network interruptions, and latency spikes—at the cost of being harder
to reason about and providing only very weak consistency guarantees.

Replication can be synchronous or asynchronous, which has a profound effect on the
system behavior when there is a fault. Although asynchronous replication can be fast
when the system is running smoothly, it’s important to figure out what happens
when replication lag increases and servers fail. If a leader fails and you promote an
asynchronously updated follower to be the new leader, recently committed data may
be lost.

We looked at some strange effects that can be caused by replication lag, and we dis-
cussed a few consistency models which are helpful for deciding how an application
should behave under replication lag:

Read-after-write consistency
Users should always see data that they submitted themselves.

Monotonic reads
After users have seen the data at one point in time, they shouldn’t later see the
data from some earlier point in time.

Consistent prefix reads
Users should see the data in a state that makes causal sense: for example, seeing a
question and its reply in the correct order.

Finally, we discussed the concurrency issues that are inherent in multi-leader and
leaderless replication approaches: because they allow multiple writes to happen con-
currently, conflicts may occur. We examined an algorithm that a database might use
to determine whether one operation happened before another, or whether they hap-
pened concurrently. We also touched on methods for resolving conflicts by merging
together concurrent updates.

In the next chapter we will continue looking at data that is distributed across multiple
machines, through the counterpart of replication: splitting a large dataset into parti-
tions.

References

[1] Bruce G. Lindsay, Patricia Griffiths Selinger, C. Galtieri, et al.: “Notes on Dis-
tributed Databases,” IBM Research, Research Report RJ2571(33471), July 1979.

[2] “Oracle Active Data Guard Real-Time Data Protection and Availability,” Oracle
White Paper, June 2013.

[3] “AlwaysOn Availability Groups,” in SQL Server Books Online, Microsoft, 2012.

Summary | 193

http://domino.research.ibm.com/library/cyberdig.nsf/papers/A776EC17FC2FCE73852579F100578964/$File/RJ2571.pdf
http://domino.research.ibm.com/library/cyberdig.nsf/papers/A776EC17FC2FCE73852579F100578964/$File/RJ2571.pdf
http://www.oracle.com/technetwork/database/availability/active-data-guard-wp-12c-1896127.pdf
http://msdn.microsoft.com/en-us/library/hh510230.aspx

[4] Lin Qiao, Kapil Surlaker, Shirshanka Das, et al.: “On Brewing Fresh Espresso:
LinkedIn’s Distributed Data Serving Platform,” at ACM International Conference on
Management of Data (SIGMOD), June 2013.

[5] Jun Rao: “Intra-Cluster Replication for Apache Kafka,” at ApacheCon North
America, February 2013.

[6] “Highly Available Queues,” in RabbitMQ Server Documentation, Pivotal Software,
Inc., 2014.

[7] Yoshinori Matsunobu: “Semi-Synchronous Replication at Facebook,” yoshinori-
matsunobu.blogspot.co.uk, April 1, 2014.

[8] Robbert van Renesse and Fred B. Schneider: “Chain Replication for Supporting
High Throughput and Availability,” at 6th USENIX Symposium on Operating System
Design and Implementation (OSDI), December 2004.

[9] Jeff Terrace and Michael J. Freedman: “Object Storage on CRAQ: High-
Throughput Chain Replication for Read-Mostly Workloads,” at USENIX Annual
Technical Conference (ATC), June 2009.

[10] Brad Calder, Ju Wang, Aaron Ogus, et al.: “Windows Azure Storage: A Highly
Available Cloud Storage Service with Strong Consistency,” at 23rd ACM Symposium
on Operating Systems Principles (SOSP), October 2011.

[11] Andrew Wang: “Windows Azure Storage,” umbrant.com, February 4, 2016.
[12] “Percona Xtrabackup - Documentation,” Percona LLC, 2014.

[13] Jesse Newland: “GitHub Availability This Week,” github.com, September 14,
2012.

[14] Mark Imbriaco: “Downtime Last Saturday,” github.com, December 26, 2012.

[15] John Hugg: “‘All in” with Determinism for Performance and Testing in Dis-
tributed Systems,” at Strange Loop, September 2015.

[16] Amit Kapila: “WAL Internals of PostgreSQL,” at PostgreSQL Conference
(PGCon), May 2012.

[17] MySQL Internals Manual. Oracle, 2014.

[18] Yogeshwer Sharma, Philippe Ajoux, Petchean Ang, et al.: “Wormhole: Reliable
Pub-Sub to Support Geo-Replicated Internet Services,” at 12th USENIX Symposium
on Networked Systems Design and Implementation (NSDI), May 2015.

[19] “Oracle GoldenGate 12¢: Real-Time Access to Real-Time Information,” Oracle
White Paper, October 2013.

[20] Shirshanka Das, Chavdar Botev, Kapil Surlaker, et al.: “All Aboard the Data-
bus!,” at ACM Symposium on Cloud Computing (SoCC), October 2012.

194 | Chapter5:Replication

http://www.slideshare.net/amywtang/espresso-20952131
http://www.slideshare.net/amywtang/espresso-20952131
http://www.slideshare.net/junrao/kafka-replication-apachecon2013
https://www.rabbitmq.com/ha.html
http://yoshinorimatsunobu.blogspot.co.uk/2014/04/semi-synchronous-replication-at-facebook.html
http://static.usenix.org/legacy/events/osdi04/tech/full_papers/renesse/renesse.pdf
http://static.usenix.org/legacy/events/osdi04/tech/full_papers/renesse/renesse.pdf
https://www.usenix.org/legacy/event/usenix09/tech/full_papers/terrace/terrace.pdf
https://www.usenix.org/legacy/event/usenix09/tech/full_papers/terrace/terrace.pdf
http://sigops.org/sosp/sosp11/current/2011-Cascais/printable/11-calder.pdf
http://sigops.org/sosp/sosp11/current/2011-Cascais/printable/11-calder.pdf
http://umbrant.com/blog/2016/windows_azure_storage.html
https://www.percona.com/doc/percona-xtrabackup/2.1/index.html
https://github.com/blog/1261-github-availability-this-week
https://github.com/blog/1364-downtime-last-saturday
https://www.youtube.com/watch?v=gJRj3vJL4wE
https://www.youtube.com/watch?v=gJRj3vJL4wE
http://www.pgcon.org/2012/schedule/attachments/258_212_Internals%20Of%20PostgreSQL%20Wal.pdf
http://dev.mysql.com/doc/internals/en/index.html
https://www.usenix.org/system/files/conference/nsdi15/nsdi15-paper-sharma.pdf
https://www.usenix.org/system/files/conference/nsdi15/nsdi15-paper-sharma.pdf
http://www.oracle.com/us/products/middleware/data-integration/oracle-goldengate-realtime-access-2031152.pdf
http://www.socc2012.org/s18-das.pdf
http://www.socc2012.org/s18-das.pdf

[21] Greg Sabino Mullane: “Version 5 of Bucardo Database Replication System,”
blog.endpoint.com, June 23, 2014.

[22] Werner Vogels: “Eventually Consistent,” ACM Queue, volume 6, number 6,
pages 14-19, October 2008. doi:10.1145/1466443.1466448

[23] Douglas B. Terry: “Replicated Data Consistency Explained Through Baseball,”
Microsoft Research, Technical Report MSR-TR-2011-137, October 2011.

[24] Douglas B. Terry, Alan J. Demers, Karin Petersen, et al.: “Session Guarantees for
Weakly Consistent Replicated Data,” at 3rd International Conference on Parallel and
Distributed Information Systems (PDIS), September 1994. doi:10.1109/PDIS.
1994.331722

[25] Terry Pratchett: Reaper Man: A Discworld Novel. Victor Gollancz, 1991. ISBN:
978-0-575-04979-6

[26] “Tungsten Replicator,” Continuent, Inc., 2014.

[27] “BDR 0.10.0 Documentation,” The PostgreSQL Global Development Group,
bdr-project.org, 2015.

[28] Robert Hodges: “If You *Must* Deploy Multi-Master Replication, Read This
First,” scale-out-blog.blogspot.co.uk, March 30, 2012.

[29] J. Chris Anderson, Jan Lehnardt, and Noah Slater: CouchDB: The Definitive
Guide. O’Reilly Media, 2010. ISBN: 978-0-596-15589-6

[30] AppJet, Inc.: “Etherpad and EasySync Technical Manual,” github.com, March 26,
2011.

[31] John Day-Richter: “What’s Different About the New Google Docs: Making Col-
laboration Fast,” googledrive.blogspot.com, 23 September 2010.

[32] Martin Kleppmann and Alastair R. Beresford: “A Conflict-Free Replicated JSON
Datatype,” arXiv:1608.03960, August 13, 2016.

[33] Frazer Clement: “Eventual Consistency - Detecting Conflicts,” messagepass-
ing.blogspot.co.uk, October 20, 2011.

[34] Robert Hodges: “State of the Art for MySQL Multi-Master Replication,” at Per-
cona Live: MySQL Conference & Expo, April 2013.

[35] John Daily: “Clocks Are Bad, or, Welcome to the Wonderful World of Dis-
tributed Systems,” basho.com, November 12, 2013.

[36] Riley Berton: “Is Bi-Directional Replication (BDR) in Postgres Transactional?,”
sdf.org, January 4, 2016.

Summary | 195

http://blog.endpoint.com/2014/06/bucardo-5-multimaster-postgres-released.html
http://queue.acm.org/detail.cfm?id=1466448
http://dx.doi.org/10.1145/1466443.1466448
http://research.microsoft.com/pubs/157411/ConsistencyAndBaseballReport.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.71.2269&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.71.2269&rep=rep1&type=pdf
http://dx.doi.org/10.1109/PDIS.1994.331722
http://dx.doi.org/10.1109/PDIS.1994.331722
http://tungsten-replicator.org/
http://bdr-project.org/docs/next/index.html
http://scale-out-blog.blogspot.co.uk/2012/04/if-you-must-deploy-multi-master.html
http://scale-out-blog.blogspot.co.uk/2012/04/if-you-must-deploy-multi-master.html
https://github.com/ether/etherpad-lite/blob/e2ce9dc/doc/easysync/easysync-full-description.pdf
http://googledrive.blogspot.com/2010/09/whats-different-about-new-google-docs.html
http://googledrive.blogspot.com/2010/09/whats-different-about-new-google-docs.html
http://arxiv.org/abs/1608.03960
http://arxiv.org/abs/1608.03960
http://messagepassing.blogspot.co.uk/2011/10/eventual-consistency-detecting.html
https://www.percona.com/live/mysql-conference-2013/sessions/state-art-mysql-multi-master-replication
http://basho.com/clocks-are-bad-or-welcome-to-distributed-systems/
http://basho.com/clocks-are-bad-or-welcome-to-distributed-systems/
http://sdf.org/~riley/blog/2016/01/04/is-bi-directional-replication-bdr-in-postgres-transactional/

[37] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, et al.: “Dynamo: Ama-
zon’s Highly Available Key-Value Store,” at 21st ACM Symposium on Operating Sys-
tems Principles (SOSP), October 2007.

[38] Marc Shapiro, Nuno Preguica, Carlos Baquero, and Marek Zawirski: “A Com-
prehensive Study of Convergent and Commutative Replicated Data Types,” INRIA
Research Report no. 7506, January 2011.

[39] Sam Elliott: “CRDTs: An UPDATE (or Maybe Just a PUT),” at RICON West,
October 2013.

[40] Russell Brown: “A Bluffers Guide to CRDTs in Riak,” gist.github.com, October
28,2013.

[41] Benjamin Farinier, Thomas Gazagnaire, and Anil Madhavapeddy: “Mergeable
Persistent Data Structures,” at 26es Journées Francophones des Langages Applicatifs
(JFLA), January 2015.

[42] Chengzheng Sun and Clarence Ellis: “Operational Transformation in Real-Time
Group Editors: Issues, Algorithms, and Achievements,” at ACM Conference on Com-
puter Supported Cooperative Work (CSCW), November 1998.

[43] Lars Hothansl: “HBASE-7709: Infinite Loop Possible in Master/Master Replica-
tion,” issues.apache.org, January 29, 2013.

[44] David K. Gifford: “Weighted Voting for Replicated Data,” at 7th ACM Sympo-
sium on Operating Systems Principles (SOSP), December 1979. doi:
10.1145/800215.806583

[45] Heidi Howard, Dahlia Malkhi, and Alexander Spiegelman: “Flexible Paxos: Quo-
rum Intersection Revisited,” arXiv:1608.06696, August 24, 2016.

[46] Joseph Blomstedt: “Re: Absolute Consistency,” email to riak-users mailing list,
lists.basho.com, January 11, 2012.

[47] Joseph Blomstedt: “Bringing Consistency to Riak,” at RICON West, October
2012.

[48] Peter Bailis, Shivaram Venkataraman, Michael J. Franklin, et al.: “Quantifying
Eventual Consistency with PBS,” Communications of the ACM, volume 57, number 8,
pages 93-102, August 2014. doi:10.1145/2632792

[49] Jonathan Ellis: “Modern Hinted Handoff,” datastax.com, December 11, 2012.
[50] “Project Voldemort Wiki,” github.com, 2013.
[51] “Apache Cassandra 2.0 Documentation,” DataStax, Inc., 2014.

[52] “Riak Enterprise: Multi-Datacenter Replication.” Technical whitepaper, Basho
Technologies, Inc., September 2014.

196 | Chapter5:Replication

http://www.allthingsdistributed.com/files/amazon-dynamo-sosp2007.pdf
http://www.allthingsdistributed.com/files/amazon-dynamo-sosp2007.pdf
http://hal.inria.fr/inria-00555588/
http://hal.inria.fr/inria-00555588/
https://speakerdeck.com/lenary/crdts-an-update-or-just-a-put
https://gist.github.com/russelldb/f92f44bdfb619e089a4d
http://gazagnaire.org/pub/FGM15.pdf
http://gazagnaire.org/pub/FGM15.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.53.933&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.53.933&rep=rep1&type=pdf
https://issues.apache.org/jira/browse/HBASE-7709
https://issues.apache.org/jira/browse/HBASE-7709
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.84.7698
http://dx.doi.org/10.1145/800215.806583
http://dx.doi.org/10.1145/800215.806583
https://arxiv.org/abs/1608.06696
https://arxiv.org/abs/1608.06696
http://lists.basho.com/pipermail/riak-users_lists.basho.com/2012-January/007157.html
https://vimeo.com/51973001
http://www.bailis.org/papers/pbs-cacm2014.pdf
http://www.bailis.org/papers/pbs-cacm2014.pdf
http://dx.doi.org/10.1145/2632792
http://www.datastax.com/dev/blog/modern-hinted-handoff
https://github.com/voldemort/voldemort/wiki
http://www.datastax.com/documentation/cassandra/2.0/index.html
http://basho.com/assets/MultiDatacenter_Replication.pdf

[53] Jonathan Ellis: “Why Cassandra Doesn’t Need Vector Clocks,” datastax.com,
September 2, 2013.

[54] Leslie Lamport: “Time, Clocks, and the Ordering of Events in a Distributed Sys-
tem,” Communications of the ACM, volume 21, number 7, pages 558-565, July 1978.
doi:10.1145/359545.359563

[55] Joel Jacobson: “Riak 2.0: Data Types,” blog.joeljacobson.com, March 23, 2014.

[56] D. Stott Parker Jr., Gerald J. Popek, Gerard Rudisin, et al.: “Detection of Mutual
Inconsistency in Distributed Systems,” IEEE Transactions on Software Engineering,
volume 9, number 3, pages 240-247, May 1983. doi:10.1109/TSE.1983.236733

[57] Nuno Preguica, Carlos Baquero, Paulo Sérgio Almeida, et al.: “Dotted Version
Vectors: Logical Clocks for Optimistic Replication,” arXiv:1011.5808, November 26,
2010.

[58] Sean Cribbs: “A Brief History of Time in Riak,” at RICON, October 2014.

[59] Russell Brown: “Vector Clocks Revisited Part 2: Dotted Version Vectors,”
basho.com, November 10, 2015.

[60] Carlos Baquero: “Version Vectors Are Not Vector Clocks,” haslab.word-
press.com, July 8, 2011.

[61] Reinhard Schwarz and Friedemann Mattern: “Detecting Causal Relationships in
Distributed Computations: In Search of the Holy Grail,” Distributed Computing, vol-
ume 7, number 3, pages 149-174, March 1994. doi:10.1007/BF02277859

Summary | 197

http://www.datastax.com/dev/blog/why-cassandra-doesnt-need-vector-clocks
http://research.microsoft.com/en-US/um/people/Lamport/pubs/time-clocks.pdf
http://research.microsoft.com/en-US/um/people/Lamport/pubs/time-clocks.pdf
http://dx.doi.org/10.1145/359545.359563
http://blog.joeljacobson.com/riak-2-0-data-types/
http://zoo.cs.yale.edu/classes/cs426/2013/bib/parker83detection.pdf
http://zoo.cs.yale.edu/classes/cs426/2013/bib/parker83detection.pdf
http://dx.doi.org/10.1109/TSE.1983.236733
http://arxiv.org/pdf/1011.5808v1.pdf
http://arxiv.org/pdf/1011.5808v1.pdf
https://www.youtube.com/watch?v=HHkKPdOi-ZU
http://basho.com/posts/technical/vector-clocks-revisited-part-2-dotted-version-vectors/
https://haslab.wordpress.com/2011/07/08/version-vectors-are-not-vector-clocks/
http://dcg.ethz.ch/lectures/hs08/seminar/papers/mattern4.pdf
http://dcg.ethz.ch/lectures/hs08/seminar/papers/mattern4.pdf
http://dx.doi.org/10.1007/BF02277859

CHAPTER 6
Partitioning

Clearly, we must break away from the sequential and not limit the computers. We must
state definitions and provide for priorities and descriptions of data. We must state relation-
ships, not procedures.

—Grace Murray Hopper, Management and the Computer of the Future (1962)

In Chapter 5 we discussed replication—that is, having multiple copies of the same
data on different nodes. For very large datasets, or very high query throughput, that is
not sufficient: we need to break the data up into partitions, also known as sharding.!

Terminological confusion

What we call a partition here is called a shard in MongoDB, Elas-
ticsearch, and SolrCloud; it’s known as a region in HBase, a tablet
in Bigtable, a vnode in Cassandra and Riak, and a vBucket in
Couchbase. However, partitioning is the most established term, so
we’ll stick with that.

Normally, partitions are defined in such a way that each piece of data (each record,
row, or document) belongs to exactly one partition. There are various ways of achiev-
ing this, which we discuss in depth in this chapter. In effect, each partition is a small
database of its own, although the database may support operations that touch multi-
ple partitions at the same time.

The main reason for wanting to partition data is scalability. Different partitions can
be placed on different nodes in a shared-nothing cluster (see the introduction to

i. Partitioning, as discussed in this chapter, is a way of intentionally breaking a large database down into
smaller ones. It has nothing to do with network partitions (netsplits), a type of fault in the network between
nodes. We will discuss such faults in Chapter 8.

199

Part II for a definition of shared nothing). Thus, a large dataset can be distributed
across many disks, and the query load can be distributed across many processors.

For queries that operate on a single partition, each node can independently execute
the queries for its own partition, so query throughput can be scaled by adding more
nodes. Large, complex queries can potentially be parallelized across many nodes,
although this gets significantly harder.

Partitioned databases were pioneered in the 1980s by products such as Teradata and
Tandem NonStop SQL [1], and more recently rediscovered by NoSQL databases and
Hadoop-based data warehouses. Some systems are designed for transactional work-
loads, and others for analytics (see “Transaction Processing or Analytics?” on page
90): this difference affects how the system is tuned, but the fundamentals of partition-
ing apply to both kinds of workloads.

In this chapter we will first look at different approaches for partitioning large datasets
and observe how the indexing of data interacts with partitioning. We'll then talk
about rebalancing, which is necessary if you want to add or remove nodes in your
cluster. Finally, we'll get an overview of how databases route requests to the right par-
titions and execute queries.

Partitioning and Replication

Partitioning is usually combined with replication so that copies of each partition are
stored on multiple nodes. This means that, even though each record belongs to
exactly one partition, it may still be stored on several different nodes for fault toler-
ance.

A node may store more than one partition. If a leader—follower replication model is
used, the combination of partitioning and replication can look like Figure 6-1. Each
partition’s leader is assigned to one node, and its followers are assigned to other
nodes. Each node may be the leader for some partitions and a follower for other par-
titions.

Everything we discussed in Chapter 5 about replication of databases applies equally
to replication of partitions. The choice of partitioning scheme is mostly independent
of the choice of replication scheme, so we will keep things simple and ignore replica-
tion in this chapter.

200 | Chapter6: Partitioning

Node 1 Node 2
Partition 1 Partition 2 Partition 3 Partition 2 Partition 3 Partition 4
Leader Follower Follower Follower Leader Follower
Partition 1 Partition 2 Partition 4 Partition 1 Partition 3 Partition 4
Follower Leader Follower Follower Follower Leader

f
Node 3 K Node 4
Writing to
= replication streams (per partition) partition 4

Figure 6-1. Combining replication and partitioning: each node acts as leader for some
partitions and follower for other partitions.

Partitioning of Key-Value Data

Say you have a large amount of data, and you want to partition it. How do you decide
which records to store on which nodes?

Our goal with partitioning is to spread the data and the query load evenly across
nodes. If every node takes a fair share, then—in theory—10 nodes should be able to
handle 10 times as much data and 10 times the read and write throughput of a single
node (ignoring replication for now).

If the partitioning is unfair, so that some partitions have more data or queries than
others, we call it skewed. The presence of skew makes partitioning much less effective.
In an extreme case, all the load could end up on one partition, so 9 out of 10 nodes
are idle and your bottleneck is the single busy node. A partition with disproportion-
ately high load is called a hot spot.

The simplest approach for avoiding hot spots would be to assign records to nodes
randomly. That would distribute the data quite evenly across the nodes, but it has a
big disadvantage: when you'’re trying to read a particular item, you have no way of
knowing which node it is on, so you have to query all nodes in parallel.

We can do better. Let’s assume for now that you have a simple key-value data model,
in which you always access a record by its primary key. For example, in an old-
fashioned paper encyclopedia, you look up an entry by its title; since all the entries
are alphabetically sorted by title, you can quickly find the one you’re looking for.

Partitioning of Key-Value Data | 201

Partitioning by Key Range

One way of partitioning is to assign a continuous range of keys (from some mini-
mum to some maximum) to each partition, like the volumes of a paper encyclopedia
(Figure 6-2). If you know the boundaries between the ranges, you can easily deter-
mine which partition contains a given key. If you also know which partition is
assigned to which node, then you can make your request directly to the appropriate
node (or, in the case of the encyclopedia, pick the correct book off the shelf).

©
o (| B
g 3 ‘g g c
2 allsllgll=] g e [
Sl vl @l 3> | Ellellell 21 3
c I~ 3 = £ T =,
] ac | 2 (< || =2 | <l o |l ES IRl [
ellell = Sl o ||l 2 =121 |
A =) | T a £ | 21l s |
o c 4] c 2 >
| | 5 | c X] | v) =]
| 2 = <] o > ©
= © @ c) c @ P ‘ > <
~ 7] = S <] ° 7 c 9] = [+ °
Tl sl ell=ilelellsllellzllElsllz2
< @ v} [a) g T v = o < v =
1 2 3 4 5 6 7 8 9 101112
R R e e) T I i e P I N Y

Figure 6-2. A print encyclopedia is partitioned by key range.

The ranges of keys are not necessarily evenly spaced, because your data may not be
evenly distributed. For example, in Figure 6-2, volume 1 contains words starting with
A and B, but volume 12 contains words starting with T, U, V, X, Y, and Z. Simply
having one volume per two letters of the alphabet would lead to some volumes being
much bigger than others. In order to distribute the data evenly, the partition bound-
aries need to adapt to the data.

The partition boundaries might be chosen manually by an administrator, or the data-
base can choose them automatically (we will discuss choices of partition boundaries
in more detail in “Rebalancing Partitions” on page 209). This partitioning strategy is
used by Bigtable, its open source equivalent HBase [2, 3], RethinkDB, and MongoDB
before version 2.4 [4].

Within each partition, we can keep keys in sorted order (see “SSTables and LSM-
Trees” on page 76). This has the advantage that range scans are easy, and you can
treat the key as a concatenated index in order to fetch several related records in one
query (see “Multi-column indexes” on page 87). For example, consider an application
that stores data from a network of sensors, where the key is the timestamp of the
measurement (year-month-day-hour-minute-second). Range scans are very useful in
this case, because they let you easily fetch, say, all the readings from a particular
month.

202 | Chapter6: Partitioning

However, the downside of key range partitioning is that certain access patterns can
lead to hot spots. If the key is a timestamp, then the partitions correspond to ranges
of time—e.g., one partition per day. Unfortunately, because we write data from the
sensors to the database as the measurements happen, all the writes end up going to
the same partition (the one for today), so that partition can be overloaded with writes
while others sit idle [5].

To avoid this problem in the sensor database, you need to use something other than
the timestamp as the first element of the key. For example, you could prefix each
timestamp with the sensor name so that the partitioning is first by sensor name and
then by time. Assuming you have many sensors active at the same time, the write
load will end up more evenly spread across the partitions. Now, when you want to
fetch the values of multiple sensors within a time range, you need to perform a sepa-
rate range query for each sensor name.

Partitioning by Hash of Key

Because of this risk of skew and hot spots, many distributed datastores use a hash
function to determine the partition for a given key.

A good hash function takes skewed data and makes it uniformly distributed. Say you
have a 32-bit hash function that takes a string. Whenever you give it a new string, it
returns a seemingly random number between 0 and 2** — 1. Even if the input strings
are very similar, their hashes are evenly distributed across that range of numbers.

For partitioning purposes, the hash function need not be cryptographically strong:
for example, Cassandra and MongoDB use MD5, and Voldemort uses the Fowler—
Noll-Vo function. Many programming languages have simple hash functions built in
(as they are used for hash tables), but they may not be suitable for partitioning: for
example, in Java’s Object.hashCode() and Ruby’s Object#hash, the same key may
have a different hash value in different processes [6].

Once you have a suitable hash function for keys, you can assign each partition a
range of hashes (rather than a range of keys), and every key whose hash falls within a
partition’s range will be stored in that partition. This is illustrated in Figure 6-3.

Partitioning of Key-Value Data | 203

“2014-04-19 17:08:10" > 7,372
“2014-04-19 17:08:11" » 18,805
“2014-04-19 17:08:12" » 50,537
“2014-04-19 17:08:13" > 31,579

“2014-04-19 17:08:14" — 62,253
“2014-04-19 17:08:15” > 24,510 l
hash A A 4
(here: first 2 bytes p0 ‘ p1 p2 p3 p4 ‘ p5 p6 ‘ p7
of MD5 hash)
0 16,383 32,767 49,151 65,535

Figure 6-3. Partitioning by hash of key.

This technique is good at distributing keys fairly among the partitions. The partition
boundaries can be evenly spaced, or they can be chosen pseudorandomly (in which
case the technique is sometimes known as consistent hashing).

Consistent Hashing

Consistent hashing, as defined by Karger et al. [7], is a way of evenly distributing load
across an internet-wide system of caches such as a content delivery network (CDN).
It uses randomly chosen partition boundaries to avoid the need for central control or
distributed consensus. Note that consistent here has nothing to do with replica consis-
tency (see Chapter 5) or ACID consistency (see Chapter 7), but rather describes a
particular approach to rebalancing.

As we shall see in “Rebalancing Partitions” on page 209, this particular approach
actually doesn’t work very well for databases [8], so it is rarely used in practice (the
documentation of some databases still refers to consistent hashing, but it is often
inaccurate). Because this is so confusing, it’s best to avoid the term consistent hashing
and just call it hash partitioning instead.

Unfortunately however, by using the hash of the key for partitioning we lose a nice
property of key-range partitioning: the ability to do efficient range queries. Keys that
were once adjacent are now scattered across all the partitions, so their sort order is
lost. In MongoDB, if you have enabled hash-based sharding mode, any range query
has to be sent to all partitions [4]. Range queries on the primary key are not sup-
ported by Riak [9], Couchbase [10], or Voldemort.

Cassandra achieves a compromise between the two partitioning strategies [11, 12,
13]. A table in Cassandra can be declared with a compound primary key consisting of
several columns. Only the first part of that key is hashed to determine the partition,
but the other columns are used as a concatenated index for sorting the data in Cas-
sandra’s SSTables. A query therefore cannot search for a range of values within the

204 | Chapter6: Partitioning

first column of a compound key, but if it specifies a fixed value for the first column, it
can perform an efficient range scan over the other columns of the key.

The concatenated index approach enables an elegant data model for one-to-many
relationships. For example, on a social media site, one user may post many updates. If
the primary key for updates is chosen to be (user_id, update_timestamp), then you
can efficiently retrieve all updates made by a particular user within some time inter-
val, sorted by timestamp. Different users may be stored on different partitions, but
within each user, the updates are stored ordered by timestamp on a single partition.

Skewed Workloads and Relieving Hot Spots

As discussed, hashing a key to determine its partition can help reduce hot spots.
However, it can’t avoid them entirely: in the extreme case where all reads and writes
are for the same key, you still end up with all requests being routed to the same parti-
tion.

This kind of workload is perhaps unusual, but not unheard of: for example, on a
social media site, a celebrity user with millions of followers may cause a storm of
activity when they do something [14]. This event can result in a large volume of
writes to the same key (where the key is perhaps the user ID of the celebrity, or the ID
of the action that people are commenting on). Hashing the key doesn’t help, as the
hash of two identical IDs is still the same.

Today, most data systems are not able to automatically compensate for such a highly
skewed workload, so it’s the responsibility of the application to reduce the skew. For
example, if one key is known to be very hot, a simple technique is to add a random
number to the beginning or end of the key. Just a two-digit decimal random number
would split the writes to the key evenly across 100 different keys, allowing those keys
to be distributed to different partitions.

However, having split the writes across different keys, any reads now have to do addi-
tional work, as they have to read the data from all 100 keys and combine it. This tech-
nique also requires additional bookkeeping: it only makes sense to append the
random number for the small number of hot keys; for the vast majority of keys with
low write throughput this would be unnecessary overhead. Thus, you also need some
way of keeping track of which keys are being split.

Perhaps in the future, data systems will be able to automatically detect and compen-
sate for skewed workloads; but for now, you need to think through the trade-offs for
your own application.

Partitioning of Key-Value Data | 205

Partitioning and Secondary Indexes

The partitioning schemes we have discussed so far rely on a key-value data model. If
records are only ever accessed via their primary key, we can determine the partition
from that key and use it to route read and write requests to the partition responsible
for that key.

The situation becomes more complicated if secondary indexes are involved (see also
“Other Indexing Structures” on page 85). A secondary index usually doesn’t identify
a record uniquely but rather is a way of searching for occurrences of a particular
value: find all actions by user 123, find all articles containing the word hogwash, find
all cars whose color is red, and so on.

Secondary indexes are the bread and butter of relational databases, and they are com-
mon in document databases too. Many key-value stores (such as HBase and Volde-
mort) have avoided secondary indexes because of their added implementation
complexity, but some (such as Riak) have started adding them because they are so
useful for data modeling. And finally, secondary indexes are the raison d’étre of
search servers such as Solr and Elasticsearch.

The problem with secondary indexes is that they don’t map neatly to partitions.
There are two main approaches to partitioning a database with secondary indexes:
document-based partitioning and term-based partitioning.

Partitioning Secondary Indexes by Document

For example, imagine you are operating a website for selling used cars (illustrated in
Figure 6-4). Each listing has a unique ID—call it the document ID—and you partition
the database by the document ID (for example, IDs 0 to 499 in partition 0, IDs 500 to
999 in partition 1, etc.).

You want to let users search for cars, allowing them to filter by color and by make, so
you need a secondary index on color and make (in a document database these would
be fields; in a relational database they would be columns). If you have declared the
index, the database can perform the indexing automatically.” For example, whenever
a red car is added to the database, the database partition automatically adds it to the
list of document IDs for the index entry color:red.

ii. If your database only supports a key-value model, you might be tempted to implement a secondary index
yourself by creating a mapping from values to document IDs in application code. If you go down this route,
you need to take great care to ensure your indexes remain consistent with the underlying data. Race condi-
tions and intermittent write failures (where some changes were saved but others weren’t) can very easily cause
the data to go out of sync—see “The need for multi-object transactions” on page 231.

206 | Chapter6: Partitioning

Partition O Partition 1

PRIMARY KEY INDEX PRIMARY KEY INDEX
191 — {color:“red’, make: “"Honda", location:“Palo Alto"} 515 — {color:“silver’, make:“Ford”, location:“Milpitas”}
214 — {color: “black’, make:“Dodge’, location:“San Jose"} 768 — {color:“red’, make:“Volvo’, location: “Cupertino”}

306 — {color:“red’, make:“Ford”, location:“Sunnyvale”} | | 893 — {color:“silver’, make:“Audi’, location:“Santa Clara"}

SECONDARY INDEXES (Partitioned by document) SECONDARY INDEXES (Partitioned by document)
color:black — [214] colorblack —]

color:red — [191, 306] color:red — [768]

color:yellow — [] colorssilver — [515,893]

make:Dodge — [214] make:Audi — [893]

make:Ford — [306] make:Ford — [515]

make:Honda — [191] make:Volvo — [768]

scatter/gather read from all partitions

% “I am looking for a red car”

Figure 6-4. Partitioning secondary indexes by document.

In this indexing approach, each partition is completely separate: each partition main-
tains its own secondary indexes, covering only the documents in that partition. It
doesn’t care what data is stored in other partitions. Whenever you need to write to
the database—to add, remove, or update a document—you only need to deal with the
partition that contains the document ID that you are writing. For that reason, a
document-partitioned index is also known as a local index (as opposed to a global
index, described in the next section).

However, reading from a document-partitioned index requires care: unless you have
done something special with the document IDs, there is no reason why all the cars
with a particular color or a particular make would be in the same partition. In
Figure 6-4, red cars appear in both partition 0 and partition 1. Thus, if you want to
search for red cars, you need to send the query to all partitions, and combine all the
results you get back.

This approach to querying a partitioned database is sometimes known as scatter/
gather, and it can make read queries on secondary indexes quite expensive. Even if
you query the partitions in parallel, scatter/gather is prone to tail latency amplifica-
tion (see “Percentiles in Practice” on page 16). Nevertheless, it is widely used: Mon-
goDB, Riak [15], Cassandra [16], Elasticsearch [17], SolrCloud [18], and VoltDB [19]
all use document-partitioned secondary indexes. Most database vendors recommend
that you structure your partitioning scheme so that secondary index queries can be
served from a single partition, but that is not always possible, especially when you're
using multiple secondary indexes in a single query (such as filtering cars by color and
by make at the same time).

Partitioning and Secondary Indexes | 207

Partition O Partition 1

PRIMARY KEY INDEX PRIMARY KEY INDEX
191 — {color:“red’, make:“"Honda", location:“Palo Alto"} 515 — {color:“silver’, make:“Ford”, location:“Milpitas”}
214 — {color: “black’, make:“Dodge’, location:“San Jose"} 768 — {color:“red’, make:“Volvo’, location: “Cupertino”}

306 — {color:"red’, make:"Ford’, location:"Sunnyvale"} | | 893 — {color: “silver’, make:“Audi’, location:“Santa Clara"}

....... s

J 55 e 3
" 'y

SECONDARY INDEXES (Partitioned by term) s '{4,SECONDARY INDEXES (Partitioned by term) ‘:
color:black — [214] ’ colorssilver — [515,893] »'
color:red — [191, 306, 768] coloryellow — []

make:Audi — [893] «----==-""""" make:Honda — [191]

make:Dodge — [214] make:Volvo — [768]

make:Ford ~ — [306, 515]

% “I am looking for a red car”

Figure 6-5. Partitioning secondary indexes by term.

Partitioning Secondary Indexes by Term

Rather than each partition having its own secondary index (a local index), we can
construct a global index that covers data in all partitions. However, we can’t just store
that index on one node, since it would likely become a bottleneck and defeat the pur-
pose of partitioning. A global index must also be partitioned, but it can be partitioned
differently from the primary key index.

Figure 6-5 illustrates what this could look like: red cars from all partitions appear
under color:red in the index, but the index is partitioned so that colors starting with
the letters a to r appear in partition 0 and colors starting with s to z appear in parti-
tion 1. The index on the make of car is partitioned similarly (with the partition
boundary being between fand h).

We call this kind of index term-partitioned, because the term we’re looking for deter-
mines the partition of the index. Here, a term would be color:red, for example. The
name ferm comes from full-text indexes (a particular kind of secondary index), where
the terms are all the words that occur in a document.

As before, we can partition the index by the term itself, or using a hash of the term.
Partitioning by the term itself can be useful for range scans (e.g., on a numeric prop-
erty, such as the asking price of the car), whereas partitioning on a hash of the term
gives a more even distribution of load.

The advantage of a global (term-partitioned) index over a document-partitioned
index is that it can make reads more efficient: rather than doing scatter/gather over
all partitions, a client only needs to make a request to the partition containing the
term that it wants. However, the downside of a global index is that writes are slower
and more complicated, because a write to a single document may now affect multiple

208 | Chapter 6: Partitioning

partitions of the index (every term in the document might be on a different partition,
on a different node).

In an ideal world, the index would always be up to date, and every document written
to the database would immediately be reflected in the index. However, in a term-
partitioned index, that would require a distributed transaction across all partitions
affected by a write, which is not supported in all databases (see Chapter 7 and Chap-
ter 9).

In practice, updates to global secondary indexes are often asynchronous (that is, if
you read the index shortly after a write, the change you just made may not yet be
reflected in the index). For example, Amazon DynamoDB states that its global secon-
dary indexes are updated within a fraction of a second in normal circumstances, but
may experience longer propagation delays in cases of faults in the infrastructure [20].

Other uses of global term-partitioned indexes include Riak’s search feature [21] and
the Oracle data warehouse, which lets you choose between local and global indexing
[22]. We will return to the topic of implementing term-partitioned secondary indexes
in Chapter 12.

Rebalancing Partitions

Over time, things change in a database:

+ The query throughput increases, so you want to add more CPUs to handle the
load.

o The dataset size increases, so you want to add more disks and RAM to store it.
o A machine fails, and other machines need to take over the failed machine’s

responsibilities.

All of these changes call for data and requests to be moved from one node to another.
The process of moving load from one node in the cluster to another is called reba-
lancing.

No matter which partitioning scheme is used, rebalancing is usually expected to meet
some minimum requirements:

o After rebalancing, the load (data storage, read and write requests) should be
shared fairly between the nodes in the cluster.

o While rebalancing is happening, the database should continue accepting reads
and writes.

» No more data than necessary should be moved between nodes, to make rebalanc-
ing fast and to minimize the network and disk I/O load.

Rebalancing Partitions | 209

Strategies for Rebalancing

There are a few different ways of assigning partitions to nodes [23]. Let’s briefly dis-
cuss each in turn.

How not to do it: hash mod N

When partitioning by the hash of a key, we said earlier (Figure 6-3) that it’s best to
divide the possible hashes into ranges and assign each range to a partition (e.g., assign
key to partition 0 if 0 < hash(key) < b,, to partition 1 if b, < hash(key) < b,, etc.).

Perhaps you wondered why we don’t just use mod (the % operator in many program-
ming languages). For example, hash(key) mod 10 would return a number between 0
and 9 (if we write the hash as a decimal number, the hash mod 10 would be the last
digit). If we have 10 nodes, numbered 0 to 9, that seems like an easy way of assigning
each key to a node.

The problem with the mod N approach is that if the number of nodes N changes,
most of the keys will need to be moved from one node to another. For example, say
hash(key) = 123456. If you initially have 10 nodes, that key starts out on node 6
(because 123456 mod 10 = 6). When you grow to 11 nodes, the key needs to move to
node 3 (123456 mod 11 = 3), and when you grow to 12 nodes, it needs to move to
node 0 (123456 mod 12 = 0). Such frequent moves make rebalancing excessively
expensive.

We need an approach that doesn’t move data around more than necessary.

Fixed number of partitions

Fortunately, there is a fairly simple solution: create many more partitions than there
are nodes, and assign several partitions to each node. For example, a database run-
ning on a cluster of 10 nodes may be split into 1,000 partitions from the outset so that
approximately 100 partitions are assigned to each node.

Now, if a node is added to the cluster, the new node can steal a few partitions from
every existing node until partitions are fairly distributed once again. This process is
illustrated in Figure 6-6. If a node is removed from the cluster, the same happens in
reverse.

Only entire partitions are moved between nodes. The number of partitions does not
change, nor does the assignment of keys to partitions. The only thing that changes is
the assignment of partitions to nodes. This change of assignment is not immediate—
it takes some time to transfer a large amount of data over the network—so the old
assignment of partitions is used for any reads and writes that happen while the trans-
fer is in progress.

210 | Chapter6: Partitioning

Before rebalancing (4 nodes in cluster)

Node 0 Node 1 Node 2 Node 3

PO | p4 | p8 |p12|p16 pl|p5|p9 |p13|p17 p2 | p6 [p10|p14|p18 p3 | p7 [p11|p15[p19

pO | p8 [pl12|pl16 pl | p5 |p13|p17 p2 | p6 |p10|p18 p3 | p7 |pl11|p15 p4 | p9 |p14|pl19

Node 0 Node 1 Node 2 Node 3 Node 4

After rebalancing (5 nodes in cluster) Legend:
-------- partition remains on the same node

——) partition migrated to another node

Figure 6-6. Adding a new node to a database cluster with multiple partitions per node.

In principle, you can even account for mismatched hardware in your cluster: by
assigning more partitions to nodes that are more powerful, you can force those nodes
to take a greater share of the load.

This approach to rebalancing is used in Riak [15], Elasticsearch [24], Couchbase [10],
and Voldemort [25].

In this configuration, the number of partitions is usually fixed when the database is
first set up and not changed afterward. Although in principle it’s possible to split and
merge partitions (see the next section), a fixed number of partitions is operationally
simpler, and so many fixed-partition databases choose not to implement partition
splitting. Thus, the number of partitions configured at the outset is the maximum
number of nodes you can have, so you need to choose it high enough to accommo-
date future growth. However, each partition also has management overhead, so it’s
counterproductive to choose too high a number.

Choosing the right number of partitions is difficult if the total size of the dataset is
highly variable (for example, if it starts small but may grow much larger over time).
Since each partition contains a fixed fraction of the total data, the size of each parti-
tion grows proportionally to the total amount of data in the cluster. If partitions are
very large, rebalancing and recovery from node failures become expensive. But if par-
titions are too small, they incur too much overhead. The best performance is
achieved when the size of partitions is “just right,” neither too big nor too small,
which can be hard to achieve if the number of partitions is fixed but the dataset size
varies.

Rebalancing Partitions | 211

Dynamic partitioning

For databases that use key range partitioning (see “Partitioning by Key Range” on
page 202), a fixed number of partitions with fixed boundaries would be very incon-
venient: if you got the boundaries wrong, you could end up with all of the data in one
partition and all of the other partitions empty. Reconfiguring the partition bound-
aries manually would be very tedious.

For that reason, key range—partitioned databases such as HBase and RethinkDB cre-
ate partitions dynamically. When a partition grows to exceed a configured size (on
HBase, the default is 10 GB), it is split into two partitions so that approximately half
of the data ends up on each side of the split [26]. Conversely, if lots of data is deleted
and a partition shrinks below some threshold, it can be merged with an adjacent par-
tition. This process is similar to what happens at the top level of a B-tree (see “B-
Trees” on page 79).

Each partition is assigned to one node, and each node can handle multiple partitions,
like in the case of a fixed number of partitions. After a large partition has been split,
one of its two halves can be transferred to another node in order to balance the load.
In the case of HBase, the transfer of partition files happens through HDFS, the
underlying distributed filesystem [3].

An advantage of dynamic partitioning is that the number of partitions adapts to the
total data volume. If there is only a small amount of data, a small number of parti-
tions is sufficient, so overheads are small; if there is a huge amount of data, the size of
each individual partition is limited to a configurable maximum [23].

However, a caveat is that an empty database starts off with a single partition, since
there is no a priori information about where to draw the partition boundaries. While
the dataset is small—until it hits the point at which the first partition is split—all
writes have to be processed by a single node while the other nodes sit idle. To miti-
gate this issue, HBase and MongoDB allow an initial set of partitions to be configured
on an empty database (this is called pre-splitting). In the case of key-range partition-
ing, pre-splitting requires that you already know what the key distribution is going to
look like [4, 26].

Dynamic partitioning is not only suitable for key range-partitioned data, but can
equally well be used with hash-partitioned data. MongoDB since version 2.4 supports
both key-range and hash partitioning, and it splits partitions dynamically in either
case.

Partitioning proportionally to nodes

With dynamic partitioning, the number of partitions is proportional to the size of the
dataset, since the splitting and merging processes keep the size of each partition
between some fixed minimum and maximum. On the other hand, with a fixed num-

212 | Chapter6: Partitioning

ber of partitions, the size of each partition is proportional to the size of the dataset. In
both of these cases, the number of partitions is independent of the number of nodes.

A third option, used by Cassandra and Ketama, is to make the number of partitions
proportional to the number of nodes—in other words, to have a fixed number of par-
titions per node [23, 27, 28]. In this case, the size of each partition grows proportion-
ally to the dataset size while the number of nodes remains unchanged, but when you
increase the number of nodes, the partitions become smaller again. Since a larger
data volume generally requires a larger number of nodes to store, this approach also
keeps the size of each partition fairly stable.

When a new node joins the cluster, it randomly chooses a fixed number of existing
partitions to split, and then takes ownership of one half of each of those split parti-
tions while leaving the other half of each partition in place. The randomization can
produce unfair splits, but when averaged over a larger number of partitions (in Cas-
sandra, 256 partitions per node by default), the new node ends up taking a fair share
of the load from the existing nodes. Cassandra 3.0 introduced an alternative rebalanc-
ing algorithm that avoids unfair splits [29].

Picking partition boundaries randomly requires that hash-based partitioning is used
(so the boundaries can be picked from the range of numbers produced by the hash
function). Indeed, this approach corresponds most closely to the original definition
of consistent hashing [7] (see “Consistent Hashing” on page 204). Newer hash func-
tions can achieve a similar effect with lower metadata overhead [8].

Operations: Automatic or Manual Rebalancing

There is one important question with regard to rebalancing that we have glossed
over: does the rebalancing happen automatically or manually?

There is a gradient between fully automatic rebalancing (the system decides automat-
ically when to move partitions from one node to another, without any administrator
interaction) and fully manual (the assignment of partitions to nodes is explicitly con-
figured by an administrator, and only changes when the administrator explicitly
reconfigures it). For example, Couchbase, Riak, and Voldemort generate a suggested
partition assignment automatically, but require an administrator to commit it before
it takes effect.

Fully automated rebalancing can be convenient, because there is less operational
work to do for normal maintenance. However, it can be unpredictable. Rebalancing
is an expensive operation, because it requires rerouting requests and moving a large
amount of data from one node to another. If it is not done carefully, this process can
overload the network or the nodes and harm the performance of other requests while
the rebalancing is in progress.

Rebalancing Partitions | 213

Such automation can be dangerous in combination with automatic failure detection.
For example, say one node is overloaded and is temporarily slow to respond to
requests. The other nodes conclude that the overloaded node is dead, and automati-
cally rebalance the cluster to move load away from it. This puts additional load on the
overloaded node, other nodes, and the network—making the situation worse and
potentially causing a cascading failure.

For that reason, it can be a good thing to have a human in the loop for rebalancing.
It’s slower than a fully automatic process, but it can help prevent operational
surprises.

Request Routing

We have now partitioned our dataset across multiple nodes running on multiple
machines. But there remains an open question: when a client wants to make a
request, how does it know which node to connect to? As partitions are rebalanced,
the assignment of partitions to nodes changes. Somebody needs to stay on top of
those changes in order to answer the question: if I want to read or write the key “foo”,
which IP address and port number do I need to connect to?

This is an instance of a more general problem called service discovery, which isn’t
limited to just databases. Any piece of software that is accessible over a network has
this problem, especially if it is aiming for high availability (running in a redundant
configuration on multiple machines). Many companies have written their own in-
house service discovery tools, and many of these have been released as open source
[30].

On a high level, there are a few different approaches to this problem (illustrated in
Figure 6-7):

1. Allow clients to contact any node (e.g., via a round-robin load balancer). If that
node coincidentally owns the partition to which the request applies, it can handle
the request directly; otherwise, it forwards the request to the appropriate node,
receives the reply, and passes the reply along to the client.

2. Send all requests from clients to a routing tier first, which determines the node
that should handle each request and forwards it accordingly. This routing tier
does not itself handle any requests; it only acts as a partition-aware load balancer.

3. Require that clients be aware of the partitioning and the assignment of partitions
to nodes. In this case, a client can connect directly to the appropriate node,
without any intermediary.

In all cases, the key problem is: how does the component making the routing decision
(which may be one of the nodes, or the routing tier, or the client) learn about changes
in the assignment of partitions to nodes?

214 | Chapter 6: Partitioning

client

choose node 0
randomly

get“foo”

“foo” lives on node 2

ON=

get “foo”

N

“foo” lives on node 2

node 0 node 1 node 2
“foo”
- __J __J

e = the knowledge of which partition is assigned to which node

get “foo”
connect directly
to node 2
node 0 node 1 node 2
— L L
“foo!
) _J

Figure 6-7. Three different ways of routing a request to the right node.

This is a challenging problem, because it is important that all participants agree—
otherwise requests would be sent to the wrong nodes and not handled correctly.
There are protocols for achieving consensus in a distributed system, but they are hard
to implement correctly (see Chapter 9).

Many distributed data systems rely on a separate coordination service such as Zoo-
Keeper to keep track of this cluster metadata, as illustrated in Figure 6-8. Each node
registers itself in ZooKeeper, and ZooKeeper maintains the authoritative mapping of
partitions to nodes. Other actors, such as the routing tier or the partitioning-aware
client, can subscribe to this information in ZooKeeper. Whenever a partition changes
ownership, or a node is added or removed, ZooKeeper notifies the routing tier so that
it can keep its routing information up to date.

get“Danube”

node 0 node 1 node 2
L L L
) _J _J

(Key range

A-ak — Bayes

Bayeu — Ceanothus
Ceara — Deluc
Delusion — Frenssen
Freon — Holderlin
Holderness — Krasnoje
Krasnokamsk — Menadra
Menage — Ottawa
Otter — Rethimnon
Reti — Solovets
Solovyov — Truck

_ Trudeau — Zywiec

Partition
partition 0
partition 1
partition 2
partition 3
partition 4
partition 5
partition 6
partition 7
partition 8
partition 9
partition 10
partition 11

N\ = the knowledge of which partition is assigned to which node

Node IP address
node 0 10.20.30.100
node 1 10.20.30.101
node 2 10.20.30.102
node 0 10.20.30.100
node 1 10.20.30.101
node 2 10.20.30.102
node 0 10.20.30.100
node 1 10.20.30.101
node 2 10.20.30.102
node 0 10.20.30.100
node 1 10.20.30.101
node 2 10.20.30.102

Figure 6-8. Using ZooKeeper to keep track of assignment of partitions to nodes.

Request Routing |

215

For example, LinkedIn’s Espresso uses Helix [31] for cluster management (which in
turn relies on ZooKeeper), implementing a routing tier as shown in Figure 6-8.
HBase, SolrCloud, and Kafka also use ZooKeeper to track partition assignment.
MongoDB has a similar architecture, but it relies on its own config server implemen-
tation and mongos daemons as the routing tier.

Cassandra and Riak take a different approach: they use a gossip protocol among the
nodes to disseminate any changes in cluster state. Requests can be sent to any node,
and that node forwards them to the appropriate node for the requested partition
(approach 1 in Figure 6-7). This model puts more complexity in the database nodes
but avoids the dependency on an external coordination service such as ZooKeeper.

Couchbase does not rebalance automatically, which simplifies the design. Normally it
is configured with a routing tier called moxi, which learns about routing changes
from the cluster nodes [32].

When using a routing tier or when sending requests to a random node, clients still
need to find the IP addresses to connect to. These are not as fast-changing as the
assignment of partitions to nodes, so it is often sufficient to use DNS for this purpose.

Parallel Query Execution

So far we have focused on very simple queries that read or write a single key (plus
scatter/gather queries in the case of document-partitioned secondary indexes). This is
about the level of access supported by most NoSQL distributed datastores.

However, massively parallel processing (MPP) relational database products, often
used for analytics, are much more sophisticated in the types of queries they support.
A typical data warehouse query contains several join, filtering, grouping, and aggre-
gation operations. The MPP query optimizer breaks this complex query into a num-
ber of execution stages and partitions, many of which can be executed in parallel on
different nodes of the database cluster. Queries that involve scanning over large parts
of the dataset particularly benefit from such parallel execution.

Fast parallel execution of data warehouse queries is a specialized topic, and given the
business importance of analytics, it receives a lot of commercial interest. We will dis-
cuss some techniques for parallel query execution in Chapter 10. For a more detailed
overview of techniques used in parallel databases, please see the references [1, 33].

Summary

In this chapter we explored different ways of partitioning a large dataset into smaller
subsets. Partitioning is necessary when you have so much data that storing and pro-
cessing it on a single machine is no longer feasible.

216 | Chapter 6: Partitioning

The goal of partitioning is to spread the data and query load evenly across multiple
machines, avoiding hot spots (nodes with disproportionately high load). This
requires choosing a partitioning scheme that is appropriate to your data, and reba-
lancing the partitions when nodes are added to or removed from the cluster.

We discussed two main approaches to partitioning:

 Key range partitioning, where keys are sorted, and a partition owns all the keys
from some minimum up to some maximum. Sorting has the advantage that effi-
cient range queries are possible, but there is a risk of hot spots if the application
often accesses keys that are close together in the sorted order.

In this approach, partitions are typically rebalanced dynamically by splitting the
range into two subranges when a partition gets too big.

o Hash partitioning, where a hash function is applied to each key, and a partition
owns a range of hashes. This method destroys the ordering of keys, making range
queries inefficient, but may distribute load more evenly.

When partitioning by hash, it is common to create a fixed number of partitions
in advance, to assign several partitions to each node, and to move entire parti-
tions from one node to another when nodes are added or removed. Dynamic
partitioning can also be used.

Hybrid approaches are also possible, for example with a compound key: using one
part of the key to identify the partition and another part for the sort order.

We also discussed the interaction between partitioning and secondary indexes. A sec-
ondary index also needs to be partitioned, and there are two methods:

o Document-partitioned indexes (local indexes), where the secondary indexes are
stored in the same partition as the primary key and value. This means that only a
single partition needs to be updated on write, but a read of the secondary index
requires a scatter/gather across all partitions.

o Term-partitioned indexes (global indexes), where the secondary indexes are parti-
tioned separately, using the indexed values. An entry in the secondary index may
include records from all partitions of the primary key. When a document is writ-
ten, several partitions of the secondary index need to be updated; however, a read
can be served from a single partition.

Finally, we discussed techniques for routing queries to the appropriate partition,
which range from simple partition-aware load balancing to sophisticated parallel
query execution engines.

By design, every partition operates mostly independently—that’s what allows a parti-
tioned database to scale to multiple machines. However, operations that need to write

Summary | 217

to several partitions can be difficult to reason about: for example, what happens if the
write to one partition succeeds, but another fails? We will address that question in the
following chapters.

References

[1] David J. DeWitt and Jim N. Gray: “Parallel Database Systems: The Future of High
Performance Database Systems,” Communications of the ACM, volume 35, number 6,
pages 85-98, June 1992. doi:10.1145/129888.129894

[2] Lars George: “HBase vs. BigTable Comparison,” larsgeorge.com, November 2009.

[3] “The Apache HBase Reference Guide,” Apache Software Foundation,
hbase.apache.org, 2014.

[4] MongoDB, Inc.: “New Hash-Based Sharding Feature in MongoDB 2.4,” blog.mon-
godb.org, April 10, 2013.

[5] Ikai Lan: “App Engine Datastore Tip: Monotonically Increasing Values Are Bad,”
ikaisays.com, January 25, 2011.

[6] Martin Kleppmann: “Java’s hashCode Is Not Safe for Distributed Systems,” mar-
tin.kleppmann.com, June 18, 2012.

[7] David Karger, Eric Lehman, Tom Leighton, et al.: “Consistent Hashing and Ran-
dom Trees: Distributed Caching Protocols for Relieving Hot Spots on the World
Wide Web,” at 29th Annual ACM Symposium on Theory of Computing (STOC),
pages 654-663, 1997. doi:10.1145/258533.258660

[8] John Lamping and Eric Veach: “A Fast, Minimal Memory, Consistent Hash Algo-
rithm,” arxiv.org, June 2014.

[9] Eric Redmond: “A Little Riak Book,” Version 1.4.0, Basho Technologies, Septem-
ber 2013.

[10] “Couchbase 2.5 Administrator Guide,” Couchbase, Inc., 2014.

[11] Avinash Lakshman and Prashant Malik: “Cassandra - A Decentralized Struc-
tured Storage System,” at 3rd ACM SIGOPS International Workshop on Large Scale
Distributed Systems and Middleware (LADIS), October 2009.

[12] Jonathan Ellis: “Facebook’s Cassandra Paper, Annotated and Compared to
Apache Cassandra 2.0,” datastax.com, September 12, 2013.

[13] “Introduction to Cassandra Query Language,” DataStax, Inc., 2014.

[14] Samuel Axon: “3% of Twitter’s Servers Dedicated to Justin Bieber,” masha-
ble.com, September 7, 2010.

[15] “Riak 1.4.8 Docs,” Basho Technologies, Inc., 2014.

218 | Chapter 6: Partitioning

http://www.cs.cmu.edu/~pavlo/courses/fall2013/static/papers/dewittgray92.pdf
http://www.cs.cmu.edu/~pavlo/courses/fall2013/static/papers/dewittgray92.pdf
http://dx.doi.org/10.1145/129888.129894
http://www.larsgeorge.com/2009/11/hbase-vs-bigtable-comparison.html
https://hbase.apache.org/book/book.html
http://blog.mongodb.org/post/47633823714/new-hash-based-sharding-feature-in-mongodb-24
http://ikaisays.com/2011/01/25/app-engine-datastore-tip-monotonically-increasing-values-are-bad/
http://martin.kleppmann.com/2012/06/18/java-hashcode-unsafe-for-distributed-systems.html
http://www.akamai.com/dl/technical_publications/ConsistenHashingandRandomTreesDistributedCachingprotocolsforrelievingHotSpotsontheworldwideweb.pdf
http://www.akamai.com/dl/technical_publications/ConsistenHashingandRandomTreesDistributedCachingprotocolsforrelievingHotSpotsontheworldwideweb.pdf
http://www.akamai.com/dl/technical_publications/ConsistenHashingandRandomTreesDistributedCachingprotocolsforrelievingHotSpotsontheworldwideweb.pdf
http://dx.doi.org/10.1145/258533.258660
http://arxiv.org/pdf/1406.2294v1.pdf
http://arxiv.org/pdf/1406.2294v1.pdf
http://littleriakbook.com/
http://docs.couchbase.com/couchbase-manual-2.5/cb-admin/
http://www.cs.cornell.edu/Projects/ladis2009/papers/Lakshman-ladis2009.PDF
http://www.cs.cornell.edu/Projects/ladis2009/papers/Lakshman-ladis2009.PDF
http://www.datastax.com/documentation/articles/cassandra/cassandrathenandnow.html
http://www.datastax.com/documentation/articles/cassandra/cassandrathenandnow.html
http://www.datastax.com/documentation/cql/3.1/cql/cql_intro_c.html
http://mashable.com/2010/09/07/justin-bieber-twitter/
http://docs.basho.com/riak/1.4.8/

[16] Richard Low: “The Sweet Spot for Cassandra Secondary Indexing,” wentnet.com,
October 21, 2013.

[17] Zachary Tong: “Customizing Your Document Routing,” elasticsearch.org, June
3,2013.

[18] “Apache Solr Reference Guide,” Apache Software Foundation, 2014.

[19] Andrew Pavlo: “H-Store Frequently Asked Questions,” hstore.cs.brown.edu,
October 2013.

[20] “Amazon DynamoDB Developer Guide,” Amazon Web Services, Inc., 2014.

[21] Rusty Klophaus: “Difference Between 2I and Search,” email to riak-users mailing
list, lists.basho.com, October 25, 2011.

[22] Donald K. Burleson: “Object Partitioning in Oracle,” dba-oracle.com, November
8, 2000.

[23] Eric Evans: “Rethinking Topology in Cassandra,” at ApacheCon Europe, Novem-
ber 2012.

[24] Rafat Ku¢: “Reroute API Explained,” elasticsearchserverbook.com, September 30,
2013.

[25] “Project Voldemort Documentation,” project-voldemort.com.

[26] Enis Soztutar: “Apache HBase Region Splitting and Merging,” hortonworks.com,
February 1, 2013.

[27] Brandon Williams: “Virtual Nodes in Cassandra 1.2,” datastax.com, December
4,2012.

[28] Richard Jones: “libketama: Consistent Hashing Library for Memcached Clients,”
metabrew.com, April 10, 2007.

[29] Branimir Lambov: “New Token Allocation Algorithm in Cassandra 3.0,” data-
stax.com, January 28, 2016.

[30] Jason Wilder: “Open-Source Service Discovery,” jasonwilder.com, February
2014.

[31] Kishore Gopalakrishna, Shi Lu, Zhen Zhang, et al.: “Untangling Cluster Manage-
ment with Helix,” at ACM Symposium on Cloud Computing (SoCC), October 2012.
doi:10.1145/2391229.2391248

[32] “Moxi 1.8 Manual,” Couchbase, Inc., 2014.

[33] Shivnath Babu and Herodotos Herodotou: “Massively Parallel Databases and
MapReduce Systems,” Foundations and Trends in Databases, volume 5, number 1,
pages 1-104, November 2013. doi:10.1561/1900000036

Summary | 219

http://www.wentnet.com/blog/?p=77
http://www.elasticsearch.org/blog/customizing-your-document-routing/
https://cwiki.apache.org/confluence/display/solr/Apache+Solr+Reference+Guide
http://hstore.cs.brown.edu/documentation/faq/
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/
http://lists.basho.com/pipermail/riak-users_lists.basho.com/2011-October/006220.html
http://www.dba-oracle.com/art_partit.htm
http://www.slideshare.net/jericevans/virtual-nodes-rethinking-topology-in-cassandra
http://elasticsearchserverbook.com/reroute-api-explained/
http://www.project-voldemort.com/voldemort/
http://hortonworks.com/blog/apache-hbase-region-splitting-and-merging/
http://www.datastax.com/dev/blog/virtual-nodes-in-cassandra-1-2
https://www.metabrew.com/article/libketama-consistent-hashing-algo-memcached-clients
http://www.datastax.com/dev/blog/token-allocation-algorithm
http://jasonwilder.com/blog/2014/02/04/service-discovery-in-the-cloud/
http://www.socc2012.org/helix_onecol.pdf?attredirects=0
http://www.socc2012.org/helix_onecol.pdf?attredirects=0
http://dx.doi.org/10.1145/2391229.2391248
http://docs.couchbase.com/moxi-manual-1.8/
http://research.microsoft.com/pubs/206464/db-mr-survey-final.pdf
http://research.microsoft.com/pubs/206464/db-mr-survey-final.pdf
http://dx.doi.org/10.1561/1900000036

CHAPTER 7

Transactions

Some authors have claimed that general two-phase commit is too expensive to support,
because of the performance or availability problems that it brings. We believe it is better to
have application programmers deal with performance problems due to overuse of transac-
tions as bottlenecks arise, rather than always coding around the lack of transactions.

—James Corbett et al., Spanner: Google’s Globally-Distributed Database (2012)

In the harsh reality of data systems, many things can go wrong:

The database software or hardware may fail at any time (including in the middle
of a write operation).

The application may crash at any time (including halfway through a series of
operations).

Interruptions in the network can unexpectedly cut off the application from the
database, or one database node from another.

Several clients may write to the database at the same time, overwriting each
other’s changes.

A client may read data that doesn’t make sense because it has only partially been
updated.

Race conditions between clients can cause surprising bugs.

In order to be reliable, a system has to deal with these faults and ensure that they
don’t cause catastrophic failure of the entire system. However, implementing fault-
tolerance mechanisms is a lot of work. It requires a lot of careful thinking about all
the things that can go wrong, and a lot of testing to ensure that the solution actually
works.

221

For decades, transactions have been the mechanism of choice for simplifying these
issues. A transaction is a way for an application to group several reads and writes
together into a logical unit. Conceptually, all the reads and writes in a transaction are
executed as one operation: either the entire transaction succeeds (commit) or it fails
(abort, rollback). If it fails, the application can safely retry. With transactions, error
handling becomes much simpler for an application, because it doesn’t need to worry
about partial failure—i.e., the case where some operations succeed and some fail (for
whatever reason).

If you have spent years working with transactions, they may seem obvious, but we
shouldn’t take them for granted. Transactions are not a law of nature; they were cre-
ated with a purpose, namely to simplify the programming model for applications
accessing a database. By using transactions, the application is free to ignore certain
potential error scenarios and concurrency issues, because the database takes care of
them instead (we call these safety guarantees).

Not every application needs transactions, and sometimes there are advantages to
weakening transactional guarantees or abandoning them entirely (for example, to
achieve higher performance or higher availability). Some safety properties can be
achieved without transactions.

How do you figure out whether you need transactions? In order to answer that ques-
tion, we first need to understand exactly what safety guarantees transactions can pro-
vide, and what costs are associated with them. Although transactions seem
straightforward at first glance, there are actually many subtle but important details
that come into play.

In this chapter, we will examine many examples of things that can go wrong, and
explore the algorithms that databases use to guard against those issues. We will go
especially deep in the area of concurrency control, discussing various kinds of race
conditions that can occur and how databases implement isolation levels such as read
committed, snapshot isolation, and serializability.

This chapter applies to both single-node and distributed databases; in Chapter 8 we
will focus the discussion on the particular challenges that arise only in distributed
systems.

The Slippery Concept of a Transaction

Almost all relational databases today, and some nonrelational databases, support
transactions. Most of them follow the style that was introduced in 1975 by IBM Sys-
tem R, the first SQL database [1, 2, 3]. Although some implementation details have
changed, the general idea has remained virtually the same for 40 years: the transac-
tion support in MySQL, PostgreSQL, Oracle, SQL Server, etc., is uncannily similar to
that of System R.

222 | Chapter7: Transactions

In the late 2000s, nonrelational (NoSQL) databases started gaining popularity. They
aimed to improve upon the relational status quo by offering a choice of new data
models (see Chapter 2), and by including replication (Chapter 5) and partitioning
(Chapter 6) by default. Transactions were the main casualty of this movement: many
of this new generation of databases abandoned transactions entirely, or redefined the
word to describe a much weaker set of guarantees than had previously been under-
stood [4].

With the hype around this new crop of distributed databases, there emerged a popu-
lar belief that transactions were the antithesis of scalability, and that any large-scale
system would have to abandon transactions in order to maintain good performance
and high availability [5, 6]. On the other hand, transactional guarantees are some-
times presented by database vendors as an essential requirement for “serious applica-
tions” with “valuable data.” Both viewpoints are pure hyperbole.

The truth is not that simple: like every other technical design choice, transactions
have advantages and limitations. In order to understand those trade-offs, let’s go into
the details of the guarantees that transactions can provide—both in normal operation
and in various extreme (but realistic) circumstances.

The Meaning of ACID

The safety guarantees provided by transactions are often described by the well-
known acronym ACID, which stands for Atomicity, Consistency, Isolation, and Dura-
bility. It was coined in 1983 by Theo Hérder and Andreas Reuter [7] in an effort to
establish precise terminology for fault-tolerance mechanisms in databases.

However, in practice, one database’s implementation of ACID does not equal
another’s implementation. For example, as we shall see, there is a lot of ambiguity
around the meaning of isolation [8]. The high-level idea is sound, but the devil is in
the details. Today, when a system claims to be “ACID compliant,” it’s unclear what
guarantees you can actually expect. ACID has unfortunately become mostly a mar-
keting term.

(Systems that do not meet the ACID criteria are sometimes called BASE, which
stands for Basically Available, Soft state, and Eventual consistency [9]. This is even
more vague than the definition of ACID. It seems that the only sensible definition of
BASE is “not ACID”; i.e., it can mean almost anything you want.)

Let’s dig into the definitions of atomicity, consistency, isolation, and durability, as
this will let us refine our idea of transactions.

Atomicity

In general, atomic refers to something that cannot be broken down into smaller parts.
The word means similar but subtly different things in different branches of comput-

The Slippery Concept of a Transaction | 223

ing. For example, in multi-threaded programming, if one thread executes an atomic
operation, that means there is no way that another thread could see the half-finished
result of the operation. The system can only be in the state it was before the operation
or after the operation, not something in between.

By contrast, in the context of ACID, atomicity is not about concurrency. It does not
describe what happens if several processes try to access the same data at the same
time, because that is covered under the letter I, for isolation (see “Isolation” on page
225).

Rather, ACID atomicity describes what happens if a client wants to make several
writes, but a fault occurs after some of the writes have been processed—for example,
a process crashes, a network connection is interrupted, a disk becomes full, or some
integrity constraint is violated. If the writes are grouped together into an atomic
transaction, and the transaction cannot be completed (committed) due to a fault, then
the transaction is aborted and the database must discard or undo any writes it has
made so far in that transaction.

Without atomicity, if an error occurs partway through making multiple changes, it’s
difficult to know which changes have taken effect and which haven’t. The application
could try again, but that risks making the same change twice, leading to duplicate or
incorrect data. Atomicity simplifies this problem: if a transaction was aborted, the
application can be sure that it didn’t change anything, so it can safely be retried.

The ability to abort a transaction on error and have all writes from that transaction
discarded is the defining feature of ACID atomicity. Perhaps abortability would have
been a better term than atomicity, but we will stick with atomicity since that’s the
usual word.

Consistency

The word consistency is terribly overloaded:

o In Chapter 5 we discussed replica consistency and the issue of eventual consis-
tency that arises in asynchronously replicated systems (see “Problems with Repli-
cation Lag” on page 161).

o Consistent hashing is an approach to partitioning that some systems use for reba-
lancing (see “Consistent Hashing” on page 204).

o In the CAP theorem (see Chapter 9), the word consistency is used to mean linear-
izability (see “Linearizability” on page 324).

« In the context of ACID, consistency refers to an application-specific notion of the
database being in a “good state.”

It’s unfortunate that the same word is used with at least four different meanings.

224 | Chapter7: Transactions

The idea of ACID consistency is that you have certain statements about your data
(invariants) that must always be true—for example, in an accounting system, credits
and debits across all accounts must always be balanced. If a transaction starts with a
database that is valid according to these invariants, and any writes during the transac-
tion preserve the validity, then you can be sure that the invariants are always satisfied.

However, this idea of consistency depends on the application’s notion of invariants,
and it’s the application’s responsibility to define its transactions correctly so that they
preserve consistency. This is not something that the database can guarantee: if you
write bad data that violates your invariants, the database can’t stop you. (Some spe-
cific kinds of invariants can be checked by the database, for example using foreign
key constraints or uniqueness constraints. However, in general, the application
defines what data is valid or invalid—the database only stores it.)

Atomicity, isolation, and durability are properties of the database, whereas consis-
tency (in the ACID sense) is a property of the application. The application may rely
on the database’s atomicity and isolation properties in order to achieve consistency,
but it’s not up to the database alone. Thus, the letter C doesn’t really belong in ACID.!

Isolation

Most databases are accessed by several clients at the same time. That is no problem if
they are reading and writing different parts of the database, but if they are accessing
the same database records, you can run into concurrency problems (race conditions).

Figure 7-1 is a simple example of this kind of problem. Say you have two clients
simultaneously incrementing a counter that is stored in a database. Each client needs
to read the current value, add 1, and write the new value back (assuming there is no
increment operation built into the database). In Figure 7-1 the counter should have
increased from 42 to 44, because two increments happened, but it actually only went
to 43 because of the race condition.

Isolation in the sense of ACID means that concurrently executing transactions are
isolated from each other: they cannot step on each other’s toes. The classic database
textbooks formalize isolation as serializability, which means that each transaction can
pretend that it is the only transaction running on the entire database. The database
ensures that when the transactions have committed, the result is the same as if they
had run serially (one after another), even though in reality they may have run con-
currently [10].

i. Joe Hellerstein has remarked that the C in ACID was “tossed in to make the acronym work” in Harder and
Reuter’s paper [7], and that it wasn’t considered important at the time.

The Slippery Concept of a Transaction | 225

get counter [42+1=43] setcounter=43 time
User 1 % -

User 2 % ———————————— R S
get counter [42+1=43] set counter =43

Figure 7-1. A race condition between two clients concurrently incrementing a counter.

However, in practice, serializable isolation is rarely used, because it carries a perfor-
mance penalty. Some popular databases, such as Oracle 11g, don’t even implement it.
In Oracle there is an isolation level called “serializable,” but it actually implements
something called snapshot isolation, which is a weaker guarantee than serializability
[8, 11]. We will explore snapshot isolation and other forms of isolation in “Weak Iso-
lation Levels” on page 233.

Durability

The purpose of a database system is to provide a safe place where data can be stored
without fear of losing it. Durability is the promise that once a transaction has com-
mitted successfully, any data it has written will not be forgotten, even if there is a
hardware fault or the database crashes.

In a single-node database, durability typically means that the data has been written to
nonvolatile storage such as a hard drive or SSD. It usually also involves a write-ahead
log or similar (see “Making B-trees reliable” on page 82), which allows recovery in the
event that the data structures on disk are corrupted. In a replicated database, durabil-
ity may mean that the data has been successfully copied to some number of nodes. In
order to provide a durability guarantee, a database must wait until these writes or
replications are complete before reporting a transaction as successfully committed.

As discussed in “Reliability” on page 6, perfect durability does not exist: if all your
hard disks and all your backups are destroyed at the same time, there’s obviously
nothing your database can do to save you.

226 | Chapter7: Transactions

Replication and Durability

Historically, durability meant writing to an archive tape. Then it was understood as
writing to a disk or SSD. More recently, it has been adapted to mean replication.
Which implementation is better?

The truth is, nothing is perfect:

o If you write to disk and the machine dies, even though your data isn’t lost, it is
inaccessible until you either fix the machine or transfer the disk to another
machine. Replicated systems can remain available.

o A correlated fault—a power outage or a bug that crashes every node on a particu-
lar input—can knock out all replicas at once (see “Reliability” on page 6), losing
any data that is only in memory. Writing to disk is therefore still relevant for in-
memory databases.

« In an asynchronously replicated system, recent writes may be lost when the
leader becomes unavailable (see “Handling Node Outages” on page 156).

o When the power is suddenly cut, SSDs in particular have been shown to some-
times violate the guarantees they are supposed to provide: even fsync isn’t guar-
anteed to work correctly [12]. Disk firmware can have bugs, just like any other
kind of software [13, 14].

o Subtle interactions between the storage engine and the filesystem implementa-
tion can lead to bugs that are hard to track down, and may cause files on disk to
be corrupted after a crash [15, 16].

o Data on disk can gradually become corrupted without this being detected [17]. If
data has been corrupted for some time, replicas and recent backups may also be
corrupted. In this case, you will need to try to restore the data from a historical
backup.

« One study of SSDs found that between 30% and 80% of drives develop at least
one bad block during the first four years of operation [18]. Magnetic hard drives
have a lower rate of bad sectors, but a higher rate of complete failure than SSDs.

o Ifan SSD is disconnected from power, it can start losing data within a few weeks,
depending on the temperature [19].

In practice, there is no one technique that can provide absolute guarantees. There are
only various risk-reduction techniques, including writing to disk, replicating to
remote machines, and backups—and they can and should be used together. As
always, it’s wise to take any theoretical “guarantees” with a healthy grain of salt.

The Slippery Concept of a Transaction | 227

Single-Object and Multi-Object Operations

To recap, in ACID, atomicity and isolation describe what the database should do if a
client makes several writes within the same transaction:

Atomicity
If an error occurs halfway through a sequence of writes, the transaction should
be aborted, and the writes made up to that point should be discarded. In other
words, the database saves you from having to worry about partial failure, by giv-
ing an all-or-nothing guarantee.

Isolation
Concurrently running transactions shouldn’t interfere with each other. For
example, if one transaction makes several writes, then another transaction should
see either all or none of those writes, but not some subset.

These definitions assume that you want to modify several objects (rows, documents,
records) at once. Such multi-object transactions are often needed if several pieces of
data need to be kept in sync. Figure 7-2 shows an example from an email application.
To display the number of unread messages for a user, you could query something
like:

SELECT COUNT(*) FROM emails WHERE recipient_id = 2 AND unread_flag = true

However, you might find this query to be too slow if there are many emails, and
decide to store the number of unread messages in a separate field (a kind of denorm-
alization). Now, whenever a new message comes in, you have to increment the
unread counter as well, and whenever a message is marked as read, you also have to
decrement the unread counter.

In Figure 7-2, user 2 experiences an anomaly: the mailbox listing shows an unread
message, but the counter shows zero unread messages because the counter increment
has not yet happened.” Isolation would have prevented this issue by ensuring that
user 2 sees either both the inserted email and the updated counter, or neither, but not
an inconsistent halfway point.

ii. Arguably, an incorrect counter in an email application is not a particularly critical problem. Alternatively,
think of a customer account balance instead of an unread counter, and a payment transaction instead of an
email.

228 | Chapter7: Transactions

insert into emails update mailboxes

(recipient_id, body, unread_flag) set unread = unread + 1

values(2,‘Hello; true) where recipient_id =2 time
User 1 % -

Database Ej

(‘Hello; true)
User 2 % —————————
select body, unread_flag select unread
from emails from mailboxes
where recipient_id = 2 where recipient_id =2
limit 50

Figure 7-2. Violating isolation: one transaction reads another transaction’s uncommit-
ted writes (a “dirty read”).

Figure 7-3 illustrates the need for atomicity: if an error occurs somewhere over the
course of the transaction, the contents of the mailbox and the unread counter might
become out of sync. In an atomic transaction, if the update to the counter fails, the
transaction is aborted and the inserted email is rolled back.

insert into emails update mailboxes

(recipient_id, body, unread_flag) setunread = unread + 1

values(2,'Hello; true) where recipient_id = 2 time
User 1 %

Figure 7-3. Atomicity ensures that if an error occurs any prior writes from that transac-
tion are undone, to avoid an inconsistent state.

Multi-object transactions require some way of determining which read and write
operations belong to the same transaction. In relational databases, that is typically
done based on the client’s TCP connection to the database server: on any particular
connection, everything between a BEGIN TRANSACTION and a COMMIT statement is
considered to be part of the same transaction.’

iii. This is not ideal. If the TCP connection is interrupted, the transaction must be aborted. If the interruption
happens after the client has requested a commit but before the server acknowledges that the commit hap-
pened, the client doesn’t know whether the transaction was committed or not. To solve this issue, a transac-
tion manager can group operations by a unique transaction identifier that is not bound to a particular TCP
connection. We will return to this topic in “The End-to-End Argument for Databases” on page 516.

The Slippery Concept of a Transaction | 229

On the other hand, many nonrelational databases don’t have such a way of grouping
operations together. Even if there is a multi-object API (for example, a key-value
store may have a multi-put operation that updates several keys in one operation), that
doesn’t necessarily mean it has transaction semantics: the command may succeed for
some keys and fail for others, leaving the database in a partially updated state.

Single-object writes

Atomicity and isolation also apply when a single object is being changed. For exam-
ple, imagine you are writing a 20 KB JSON document to a database:

o If the network connection is interrupted after the first 10 KB have been sent, does
the database store that unparseable 10 KB fragment of JSON?

o If the power fails while the database is in the middle of overwriting the previous
value on disk, do you end up with the old and new values spliced together?

o If another client reads that document while the write is in progress, will it see a
partially updated value?

Those issues would be incredibly confusing, so storage engines almost universally
aim to provide atomicity and isolation on the level of a single object (such as a key-
value pair) on one node. Atomicity can be implemented using a log for crash recov-
ery (see “Making B-trees reliable” on page 82), and isolation can be implemented
using a lock on each object (allowing only one thread to access an object at any one
time).

Some databases also provide more complex atomic operations,” such as an increment
operation, which removes the need for a read-modify-write cycle like that in
Figure 7-1. Similarly popular is a compare-and-set operation, which allows a write to
happen only if the value has not been concurrently changed by someone else (see
“Compare-and-set” on page 245).

These single-object operations are useful, as they can prevent lost updates when sev-
eral clients try to write to the same object concurrently (see “Preventing Lost
Updates” on page 242). However, they are not transactions in the usual sense of the
word. Compare-and-set and other single-object operations have been dubbed “light-
weight transactions” or even “ACID” for marketing purposes [20, 21, 22], but that
terminology is misleading. A transaction is usually understood as a mechanism for
grouping multiple operations on multiple objects into one unit of execution.

iv. Strictly speaking, the term atomic increment uses the word atomic in the sense of multi-threaded pro-
gramming. In the context of ACID, it should actually be called isolated or serializable increment. But that’s
getting nitpicky.

230 | Chapter7: Transactions

The need for multi-object transactions

Many distributed datastores have abandoned multi-object transactions because they
are difficult to implement across partitions, and they can get in the way in some sce-
narios where very high availability or performance is required. However, there is
nothing that fundamentally prevents transactions in a distributed database, and we
will discuss implementations of distributed transactions in Chapter 9.

But do we need multi-object transactions at all? Would it be possible to implement
any application with only a key-value data model and single-object operations?

There are some use cases in which single-object inserts, updates, and deletes are suffi-
cient. However, in many other cases writes to several different objects need to be
coordinated:

« In arelational data model, a row in one table often has a foreign key reference to
a row in another table. (Similarly, in a graph-like data model, a vertex has edges
to other vertices.) Multi-object transactions allow you to ensure that these refer-
ences remain valid: when inserting several records that refer to one another, the
foreign keys have to be correct and up to date, or the data becomes nonsensical.

« In a document data model, the fields that need to be updated together are often
within the same document, which is treated as a single object—no multi-object
transactions are needed when updating a single document. However, document
databases lacking join functionality also encourage denormalization (see “Rela-
tional Versus Document Databases Today” on page 38). When denormalized
information needs to be updated, like in the example of Figure 7-2, you need to
update several documents in one go. Transactions are very useful in this situation
to prevent denormalized data from going out of sync.

« In databases with secondary indexes (almost everything except pure key-value
stores), the indexes also need to be updated every time you change a value. These
indexes are different database objects from a transaction point of view: for exam-
ple, without transaction isolation, it’s possible for a record to appear in one index
but not another, because the update to the second index hasn’t happened yet.

Such applications can still be implemented without transactions. However, error han-
dling becomes much more complicated without atomicity, and the lack of isolation
can cause concurrency problems. We will discuss those in “Weak Isolation Levels” on
page 233, and explore alternative approaches in Chapter 12.

Handling errors and aborts

A key feature of a transaction is that it can be aborted and safely retried if an error
occurred. ACID databases are based on this philosophy: if the database is in danger

The Slippery Concept of a Transaction | 231

of violating its guarantee of atomicity, isolation, or durability, it would rather aban-
don the transaction entirely than allow it to remain half-finished.

Not all systems follow that philosophy, though. In particular, datastores with leader-
less replication (see “Leaderless Replication” on page 177) work much more on a
“best effort” basis, which could be summarized as “the database will do as much as it
can, and if it runs into an error, it won’t undo something it has already done”—so it’s
the application’s responsibility to recover from errors.

Errors will inevitably happen, but many software developers prefer to think only
about the happy path rather than the intricacies of error handling. For example, pop-
ular object-relational mapping (ORM) frameworks such as Rails’s ActiveRecord and
Django don’t retry aborted transactions—the error usually results in an exception
bubbling up the stack, so any user input is thrown away and the user gets an error
message. This is a shame, because the whole point of aborts is to enable safe retries.

Although retrying an aborted transaction is a simple and effective error handling
mechanism, it isn’t perfect:

« If the transaction actually succeeded, but the network failed while the server tried
to acknowledge the successful commit to the client (so the client thinks it failed),
then retrying the transaction causes it to be performed twice—unless you have an
additional application-level deduplication mechanism in place.

o If the error is due to overload, retrying the transaction will make the problem
worse, not better. To avoid such feedback cycles, you can limit the number of
retries, use exponential backoff, and handle overload-related errors differently
from other errors (if possible).

o It is only worth retrying after transient errors (for example due to deadlock, iso-
lation violation, temporary network interruptions, and failover); after a perma-
nent error (e.g., constraint violation) a retry would be pointless.

o If the transaction also has side effects outside of the database, those side effects
may happen even if the transaction is aborted. For example, if you’re sending an
email, you wouldn’t want to send the email again every time you retry the trans-
action. If you want to make sure that several different systems either commit or
abort together, two-phase commit can help (we will discuss this in “Atomic
Commit and Two-Phase Commit (2PC)” on page 354).

o If the client process fails while retrying, any data it was trying to write to the
database is lost.

232 | Chapter7: Transactions

Weak Isolation Levels

If two transactions don’t touch the same data, they can safely be run in parallel,
because neither depends on the other. Concurrency issues (race conditions) only
come into play when one transaction reads data that is concurrently modified by
another transaction, or when two transactions try to simultaneously modify the same
data.

Concurrency bugs are hard to find by testing, because such bugs are only triggered
when you get unlucky with the timing. Such timing issues might occur very rarely,
and are usually difficult to reproduce. Concurrency is also very difficult to reason
about, especially in a large application where you don’t necessarily know which other
pieces of code are accessing the database. Application development is difficult
enough if you just have one user at a time; having many concurrent users makes it
much harder still, because any piece of data could unexpectedly change at any time.

For that reason, databases have long tried to hide concurrency issues from applica-
tion developers by providing transaction isolation. In theory, isolation should make
your life easier by letting you pretend that no concurrency is happening: serializable
isolation means that the database guarantees that transactions have the same effect as
if they ran serially (i.e., one at a time, without any concurrency).

In practice, isolation is unfortunately not that simple. Serializable isolation has a per-
formance cost, and many databases don’t want to pay that price [8]. It’s therefore
common for systems to use weaker levels of isolation, which protect against some
concurrency issues, but not all. Those levels of isolation are much harder to under-
stand, and they can lead to subtle bugs, but they are nevertheless used in practice
[23].

Concurrency bugs caused by weak transaction isolation are not just a theoretical
problem. They have caused substantial loss of money [24, 25], led to investigation by
financial auditors [26], and caused customer data to be corrupted [27]. A popular
comment on revelations of such problems is “Use an ACID database if you’re han-
dling financial data!”—but that misses the point. Even many popular relational data-
base systems (which are usually considered “ACID”) use weak isolation, so they
wouldn’t necessarily have prevented these bugs from occurring.

Rather than blindly relying on tools, we need to develop a good understanding of the
kinds of concurrency problems that exist, and how to prevent them. Then we can
build applications that are reliable and correct, using the tools at our disposal.

In this section we will look at several weak (nonserializable) isolation levels that are
used in practice, and discuss in detail what kinds of race conditions can and cannot
occur, so that you can decide what level is appropriate to your application. Once
we’ve done that, we will discuss serializability in detail (see “Serializability” on page

Weak Isolation Levels | 233

251). Our discussion of isolation levels will be informal, using examples. If you want
rigorous definitions and analyses of their properties, you can find them in the aca-
demic literature [28, 29, 30].

Read Committed

The most basic level of transaction isolation is read committed.” It makes two guaran-
tees:

1. When reading from the database, you will only see data that has been committed
(no dirty reads).

2. When writing to the database, you will only overwrite data that has been com-
mitted (no dirty writes).

Let’s discuss these two guarantees in more detail.

No dirty reads

Imagine a transaction has written some data to the database, but the transaction has
not yet committed or aborted. Can another transaction see that uncommitted data? If
yes, that is called a dirty read [2].

Transactions running at the read committed isolation level must prevent dirty reads.
This means that any writes by a transaction only become visible to others when that
transaction commits (and then all of its writes become visible at once). This is illus-
trated in Figure 7-4, where user 1 has set x = 3, but user 2’s get x still returns the old
value, 2, while user 1 has not yet committed.

sety=3 commit time
User 1 % ,,,,,,,,,,,,,,,,

Database Ej

User 2 % .
getx getx getx

Figure 7-4. No dirty reads: user 2 sees the new value for x only after user 1’s transaction
has committed.

v. Some databases support an even weaker isolation level called read uncommitted. It prevents dirty writes,
but does not prevent dirty reads.

234 | Chapter7: Transactions

There are a few reasons why it’s useful to prevent dirty reads:

o If a transaction needs to update several objects, a dirty read means that another
transaction may see some of the updates but not others. For example, in
Figure 7-2, the user sees the new unread email but not the updated counter. This
is a dirty read of the email. Seeing the database in a partially updated state is con-
fusing to users and may cause other transactions to take incorrect decisions.

o If a transaction aborts, any writes it has made need to be rolled back (like in
Figure 7-3). If the database allows dirty reads, that means a transaction may see
data that is later rolled back—i.e., which is never actually committed to the data-
base. Reasoning about the consequences quickly becomes mind-bending.

No dirty writes

What happens if two transactions concurrently try to update the same object in a
database? We don’t know in which order the writes will happen, but we normally
assume that the later write overwrites the earlier write.

However, what happens if the earlier write is part of a transaction that has not yet
committed, so the later write overwrites an uncommitted value? This is called a dirty
write [28]. Transactions running at the read committed isolation level must prevent
dirty writes, usually by delaying the second write until the first write’s transaction has
committed or aborted.

By preventing dirty writes, this isolation level avoids some kinds of concurrency
problems:

o If transactions update multiple objects, dirty writes can lead to a bad outcome.
For example, consider Figure 7-5, which illustrates a used car sales website on
which two people, Alice and Bob, are simultaneously trying to buy the same car.
Buying a car requires two database writes: the listing on the website needs to be
updated to reflect the buyer, and the sales invoice needs to be sent to the buyer.
In the case of Figure 7-5, the sale is awarded to Bob (because he performs the
winning update to the listings table), but the invoice is sent to Alice (because
she performs the winning update to the invoices table). Read committed pre-
vents such mishaps.

o However, read committed does not prevent the race condition between two
counter increments in Figure 7-1. In this case, the second write happens after the
first transaction has committed, so it’s not a dirty write. It’s still incorrect, but for
a different reason—in “Preventing Lost Updates” on page 242 we will discuss how
to make such counter increments safe.

Weak Isolation Levels | 235

update listings update invoices

set buyer ="Alice’ set recipient ="Alice’

where id = 1234 where listing_id = 1234 time
Alice % }

Listings Ej

Bob %
update listings update invoices commit
set buyer =‘Bob’ set recipient ='Bob’
where id = 1234 where listing_id = 1234

Figure 7-5. With dirty writes, conflicting writes from different transactions can be
mixed up.

Implementing read committed

Read committed is a very popular isolation level. It is the default setting in Oracle
11g, PostgreSQL, SQL Server 2012, MemSQL, and many other databases [8].

Most commonly, databases prevent dirty writes by using row-level locks: when a
transaction wants to modify a particular object (row or document), it must first
acquire a lock on that object. It must then hold that lock until the transaction is com-
mitted or aborted. Only one transaction can hold the lock for any given object; if
another transaction wants to write to the same object, it must wait until the first
transaction is committed or aborted before it can acquire the lock and continue. This
locking is done automatically by databases in read committed mode (or stronger iso-
lation levels).

How do we prevent dirty reads? One option would be to use the same lock, and to
require any transaction that wants to read an object to briefly acquire the lock and
then release it again immediately after reading. This would ensure that a read
couldn’t happen while an object has a dirty, uncommitted value (because during that
time the lock would be held by the transaction that has made the write).

However, the approach of requiring read locks does not work well in practice,
because one long-running write transaction can force many read-only transactions to
wait until the long-running transaction has completed. This harms the response time
of read-only transactions and is bad for operability: a slowdown in one part of an
application can have a knock-on effect in a completely different part of the applica-
tion, due to waiting for locks.

236 | Chapter7: Transactions

For that reason, most databases" prevent dirty reads using the approach illustrated in
Figure 7-4: for every object that is written, the database remembers both the old com-
mitted value and the new value set by the transaction that currently holds the write
lock. While the transaction is ongoing, any other transactions that read the object are
simply given the old value. Only when the new value is committed do transactions
switch over to reading the new value.

Snapshot Isolation and Repeatable Read

If you look superficially at read committed isolation, you could be forgiven for think-
ing that it does everything that a transaction needs to do: it allows aborts (required
for atomicity), it prevents reading the incomplete results of transactions, and it pre-
vents concurrent writes from getting intermingled. Indeed, those are useful features,
and much stronger guarantees than you can get from a system that has no transac-
tions.

However, there are still plenty of ways in which you can have concurrency bugs when
using this isolation level. For example, Figure 7-6 illustrates a problem that can occur
with read committed.

select balance select balance

from accounts from accounts

where id =1 where id =2 time
Alice % - - -

now balance = 600

now balance = 400

Transfer % —————— I >
update accounts update accounts commit
set balance = balance + 100 set balance = balance - 100
whereid =1 whereid =2

Figure 7-6. Read skew: Alice observes the database in an inconsistent state.

Say Alice has $1,000 of savings at a bank, split across two accounts with $500 each.
Now a transaction transfers $100 from one of her accounts to the other. If she is
unlucky enough to look at her list of account balances in the same moment as that
transaction is being processed, she may see one account balance at a time before the

vi. At the time of writing, the only mainstream databases that use locks for read committed isolation are IBM
DB2 and Microsoft SQL Server in the read_committed_snapshot=off configuration [23, 36].

Weak Isolation Levels | 237

incoming payment has arrived (with a balance of $500), and the other account after
the outgoing transfer has been made (the new balance being $400). To Alice it now
appears as though she only has a total of $900 in her accounts—it seems that $100 has
vanished into thin air.

This anomaly is called a nonrepeatable read or read skew: if Alice were to read the
balance of account 1 again at the end of the transaction, she would see a different
value ($600) than she saw in her previous query. Read skew is considered acceptable
under read committed isolation: the account balances that Alice saw were indeed
committed at the time when she read them.

The term skew is unfortunately overloaded: we previously used it in
the sense of an unbalanced workload with hot spots (see “Skewed
Workloads and Relieving Hot Spots” on page 205), whereas here it
means timing anomaly.

In Alice’s case, this is not a lasting problem, because she will most likely see consis-
tent account balances if she reloads the online banking website a few seconds later.
However, some situations cannot tolerate such temporary inconsistency:

Backups
Taking a backup requires making a copy of the entire database, which may take
hours on a large database. During the time that the backup process is running,
writes will continue to be made to the database. Thus, you could end up with
some parts of the backup containing an older version of the data, and other parts
containing a newer version. If you need to restore from such a backup, the
inconsistencies (such as disappearing money) become permanent.

Analytic queries and integrity checks
Sometimes, you may want to run a query that scans over large parts of the data-
base. Such queries are common in analytics (see “Transaction Processing or Ana-
lytics?” on page 90), or may be part of a periodic integrity check that everything
is in order (monitoring for data corruption). These queries are likely to return
nonsensical results if they observe parts of the database at different points in
time.

Snapshot isolation [28] is the most common solution to this problem. The idea is that
each transaction reads from a consistent snapshot of the database—that is, the trans-
action sees all the data that was committed in the database at the start of the transac-
tion. Even if the data is subsequently changed by another transaction, each
transaction sees only the old data from that particular point in time.

Snapshot isolation is a boon for long-running, read-only queries such as backups and
analytics. It is very hard to reason about the meaning of a query if the data on which

238 | Chapter7: Transactions

it operates is changing at the same time as the query is executing. When a transaction
can see a consistent snapshot of the database, frozen at a particular point in time, it is
much easier to understand.

Snapshot isolation is a popular feature: it is supported by PostgreSQL, MySQL with
the InnoDB storage engine, Oracle, SQL Server, and others [23, 31, 32].

Implementing snapshot isolation

Like read committed isolation, implementations of snapshot isolation typically use
write locks to prevent dirty writes (see “Implementing read committed” on page 236),
which means that a transaction that makes a write can block the progress of another
transaction that writes to the same object. However, reads do not require any locks.
From a performance point of view, a key principle of snapshot isolation is readers
never block writers, and writers never block readers. This allows a database to handle
long-running read queries on a consistent snapshot at the same time as processing
writes normally, without any lock contention between the two.

To implement snapshot isolation, databases use a generalization of the mechanism
we saw for preventing dirty reads in Figure 7-4. The database must potentially keep
several different committed versions of an object, because various in-progress trans-
actions may need to see the state of the database at different points in time. Because it
maintains several versions of an object side by side, this technique is known as multi-
version concurrency control (MVCC).

If a database only needed to provide read committed isolation, but not snapshot iso-
lation, it would be sufficient to keep two versions of an object: the committed version
and the overwritten-but-not-yet-committed version. However, storage engines that
support snapshot isolation typically use MVCC for their read committed isolation
level as well. A typical approach is that read committed uses a separate snapshot for
each query, while snapshot isolation uses the same snapshot for an entire transaction.

Figure 7-7 illustrates how MVCC-based snapshot isolation is implemented in Post-
greSQL [31] (other implementations are similar). When a transaction is started, it is
given a unique, always-increasing" transaction ID (txid). Whenever a transaction
writes anything to the database, the data it writes is tagged with the transaction ID of
the writer.

vii. To be precise, transaction IDs are 32-bit integers, so they overflow after approximately 4 billion transac-
tions. PostgreSQL’s vacuum process performs cleanup which ensures that overflow does not affect the data.

Weak Isolation Levels | 239

select balance
from accounts

select balance
from accounts

Trans'actlon % whereid =1 whereid =2 =t_|ms
txid =12 commit
Account 1 Ej ————————————————————————————————————— >

created by =3 created by =3
deleted by = nil deleted by =13
id=1 id=1
balance = 500 balance = 500
created by =13
deleted by = nil
id=1
balance = 600
Account 2 Ej ---------------------------- >
created by =5 created by =5
deleted by = nil deleted by =13
id=2 id=2
balance = 500 balance = 500
created by =13
deleted by = nil
id=2
balance = 400
Transaction % ______ o R
. 1
txid =13 update accounts update accounts commit
set balance = set balance =
balance + 100 balance - 100
whereid =1 where id =2

Figure 7-7. Implementing snapshot isolation using multi-version objects.

Each row in a table has a created_by field, containing the ID of the transaction that
inserted this row into the table. Moreover, each row has a deleted_by field, which is
initially empty. If a transaction deletes a row, the row isn’t actually deleted from the
database, but it is marked for deletion by setting the deleted_by field to the ID of the
transaction that requested the deletion. At some later time, when it is certain that no
transaction can any longer access the deleted data, a garbage collection process in the
database removes any rows marked for deletion and frees their space.

An update is internally translated into a delete and a create. For example, in
Figure 7-7, transaction 13 deducts $100 from account 2, changing the balance from
$500 to $400. The accounts table now actually contains two rows for account 2: a
row with a balance of $500 which was marked as deleted by transaction 13, and a row
with a balance of $400 which was created by transaction 13.

Visibility rules for observing a consistent snapshot

When a transaction reads from the database, transaction IDs are used to decide
which objects it can see and which are invisible. By carefully defining visibility rules,

240 | Chapter7: Transactions

the database can present a consistent snapshot of the database to the application. This
works as follows:

1. At the start of each transaction, the database makes a list of all the other transac-
tions that are in progress (not yet committed or aborted) at that time. Any writes
that those transactions have made are ignored, even if the transactions subse-
quently commit.

2. Any writes made by aborted transactions are ignored.

3. Any writes made by transactions with a later transaction ID (i.e., which started
after the current transaction started) are ignored, regardless of whether those
transactions have committed.

4. All other writes are visible to the application’s queries.

These rules apply to both creation and deletion of objects. In Figure 7-7, when trans-
action 12 reads from account 2, it sees a balance of $500 because the deletion of the
$500 balance was made by transaction 13 (according to rule 3, transaction 12 cannot
see a deletion made by transaction 13), and the creation of the $400 balance is not yet
visible (by the same rule).

Put another way, an object is visible if both of the following conditions are true:

o At the time when the reader’s transaction started, the transaction that created the
object had already committed.

« The object is not marked for deletion, or if it is, the transaction that requested
deletion had not yet committed at the time when the reader’s transaction started.

A long-running transaction may continue using a snapshot for a long time, continu-
ing to read values that (from other transactions’ point of view) have long been over-
written or deleted. By never updating values in place but instead creating a new
version every time a value is changed, the database can provide a consistent snapshot
while incurring only a small overhead.

Indexes and snapshot isolation

How do indexes work in a multi-version database? One option is to have the index
simply point to all versions of an object and require an index query to filter out any
object versions that are not visible to the current transaction. When garbage collec-
tion removes old object versions that are no longer visible to any transaction, the cor-
responding index entries can also be removed.

In practice, many implementation details determine the performance of multi-
version concurrency control. For example, PostgreSQL has optimizations for avoid-
ing index updates if different versions of the same object can fit on the same page
[31].

Weak Isolation Levels | 241

Another approach is used in CouchDB, Datomic, and LMDB. Although they also use
B-trees (see “B-Trees” on page 79), they use an append-only/copy-on-write variant
that does not overwrite pages of the tree when they are updated, but instead creates a
new copy of each modified page. Parent pages, up to the root of the tree, are copied
and updated to point to the new versions of their child pages. Any pages that are not
affected by a write do not need to be copied, and remain immutable [33, 34, 35].

With append-only B-trees, every write transaction (or batch of transactions) creates a
new B-tree root, and a particular root is a consistent snapshot of the database at the
point in time when it was created. There is no need to filter out objects based on
transaction IDs because subsequent writes cannot modify an existing B-tree; they can
only create new tree roots. However, this approach also requires a background pro-
cess for compaction and garbage collection.

Repeatable read and naming confusion

Snapshot isolation is a useful isolation level, especially for read-only transactions.
However, many databases that implement it call it by different names. In Oracle it is
called serializable, and in PostgreSQL and MySQL it is called repeatable read [23].

The reason for this naming confusion is that the SQL standard doesn’t have the con-
cept of snapshot isolation, because the standard is based on System R’s 1975 defini-
tion of isolation levels [2] and snapshot isolation hadn’t yet been invented then.
Instead, it defines repeatable read, which looks superficially similar to snapshot isola-
tion. PostgreSQL and MySQL call their snapshot isolation level repeatable read
because it meets the requirements of the standard, and so they can claim standards
compliance.

Unfortunately, the SQL standard’s definition of isolation levels is flawed—it is ambig-
uous, imprecise, and not as implementation-independent as a standard should be
[28]. Even though several databases implement repeatable read, there are big differ-
ences in the guarantees they actually provide, despite being ostensibly standardized
[23]. There has been a formal definition of repeatable read in the research literature
[29, 30], but most implementations don’t satisfy that formal definition. And to top it
off, IBM DB2 uses “repeatable read” to refer to serializability [8].

As a result, nobody really knows what repeatable read means.

Preventing Lost Updates

The read committed and snapshot isolation levels we’ve discussed so far have been
primarily about the guarantees of what a read-only transaction can see in the pres-
ence of concurrent writes. We have mostly ignored the issue of two transactions writ-
ing concurrently—we have only discussed dirty writes (see “No dirty writes” on page
235), one particular type of write-write conflict that can occur.

242 | Chapter7: Transactions

There are several other interesting kinds of conflicts that can occur between concur-
rently writing transactions. The best known of these is the lost update problem, illus-
trated in Figure 7-1 with the example of two concurrent counter increments.

The lost update problem can occur if an application reads some value from the data-
base, modifies it, and writes back the modified value (a read-modify-write cycle). If
two transactions do this concurrently, one of the modifications can be lost, because
the second write does not include the first modification. (We sometimes say that the
later write clobbers the earlier write.) This pattern occurs in various different
scenarios:

« Incrementing a counter or updating an account balance (requires reading the
current value, calculating the new value, and writing back the updated value)

» Making a local change to a complex value, e.g., adding an element to a list within
a JSON document (requires parsing the document, making the change, and writ-
ing back the modified document)

o Two users editing a wiki page at the same time, where each user saves their
changes by sending the entire page contents to the server, overwriting whatever
is currently in the database

Because this is such a common problem, a variety of solutions have been developed.

Atomic write operations

Many databases provide atomic update operations, which remove the need to imple-
ment read-modify-write cycles in application code. They are usually the best solution
if your code can be expressed in terms of those operations. For example, the follow-
ing instruction is concurrency-safe in most relational databases:

UPDATE counters SET value = value + 1 WHERE key = 'foo';

Similarly, document databases such as MongoDB provide atomic operations for
making local modifications to a part of a JSON document, and Redis provides atomic
operations for modifying data structures such as priority queues. Not all writes can
easily be expressed in terms of atomic operations—for example, updates to a wiki
page involve arbitrary text editing"—but in situations where atomic operations can
be used, they are usually the best choice.

Atomic operations are usually implemented by taking an exclusive lock on the object
when it is read so that no other transaction can read it until the update has been

viil. Itis possible, albeit fairly complicated, to express the editing of a text document as a stream of atomic
mutations. See “Automatic Conflict Resolution” on page 174 for some pointers.

Weak Isolation Levels | 243

applied. This technique is sometimes known as cursor stability [36, 37]. Another
option is to simply force all atomic operations to be executed on a single thread.

Unfortunately, object-relational mapping frameworks make it easy to accidentally
write code that performs unsafe read-modify-write cycles instead of using atomic
operations provided by the database [38]. That’s not a problem if you know what you
are doing, but it is potentially a source of subtle bugs that are difficult to find by
testing.

Explicit locking

Another option for preventing lost updates, if the database’s built-in atomic opera-
tions don’t provide the necessary functionality, is for the application to explicitly lock
objects that are going to be updated. Then the application can perform a read-
modify-write cycle, and if any other transaction tries to concurrently read the same
object, it is forced to wait until the first read-modify-write cycle has completed.

For example, consider a multiplayer game in which several players can move the
same figure concurrently. In this case, an atomic operation may not be sufficient,
because the application also needs to ensure that a player’s move abides by the rules
of the game, which involves some logic that you cannot sensibly implement as a data-
base query. Instead, you may use a lock to prevent two players from concurrently
moving the same piece, as illustrated in Example 7-1.

Example 7-1. Explicitly locking rows to prevent lost updates
BEGIN TRANSACTION;
SELECT * FROM figures

WHERE name = 'robot' AND game_id = 222

FOR UPDATE; @
-- Check whether move is valid, then update the position
-- of the piece that was returned by the previous SELECT.

UPDATE figures SET position = 'c4' WHERE id = 1234;

COMMIT;

@ The FOR UPDATE clause indicates that the database should take a lock on all rows
returned by this query.

This works, but to get it right, you need to carefully think about your application
logic. It’s easy to forget to add a necessary lock somewhere in the code, and thus
introduce a race condition.

244 | Chapter7: Transactions

Automatically detecting lost updates

Atomic operations and locks are ways of preventing lost updates by forcing the read-
modify-write cycles to happen sequentially. An alternative is to allow them to execute
in parallel and, if the transaction manager detects a lost update, abort the transaction
and force it to retry its read-modify-write cycle.

An advantage of this approach is that databases can perform this check efficiently in
conjunction with snapshot isolation. Indeed, PostgreSQL’s repeatable read, Oracle’s
serializable, and SQL Server’s snapshot isolation levels automatically detect when a
lost update has occurred and abort the offending transaction. However, MySQL/
InnoDB’s repeatable read does not detect lost updates [23]. Some authors [28, 30]
argue that a database must prevent lost updates in order to qualify as providing snap-
shot isolation, so MySQL does not provide snapshot isolation under this definition.

Lost update detection is a great feature, because it doesn’t require application code to
use any special database features—you may forget to use a lock or an atomic opera-
tion and thus introduce a bug, but lost update detection happens automatically and is
thus less error-prone.

Compare-and-set

In databases that don’t provide transactions, you sometimes find an atomic compare-
and-set operation (previously mentioned in “Single-object writes” on page 230). The
purpose of this operation is to avoid lost updates by allowing an update to happen
only if the value has not changed since you last read it. If the current value does not
match what you previously read, the update has no effect, and the read-modify-write
cycle must be retried.

For example, to prevent two users concurrently updating the same wiki page, you
might try something like this, expecting the update to occur only if the content of the
page hasn’t changed since the user started editing it:

-- This may or may not be safe, depending on the database implementation
UPDATE wiki_pages SET content = 'new content'
WHERE id = 1234 AND content = 'old content';

If the content has changed and no longer matches 'old content’, this update will
have no effect, so you need to check whether the update took effect and retry if neces-
sary. However, if the database allows the WHERE clause to read from an old snapshot,
this statement may not prevent lost updates, because the condition may be true even
though another concurrent write is occurring. Check whether your database’s
compare-and-set operation is safe before relying on it.

Weak Isolation Levels | 245

Conflict resolution and replication

In replicated databases (see Chapter 5), preventing lost updates takes on another
dimension: since they have copies of the data on multiple nodes, and the data can
potentially be modified concurrently on different nodes, some additional steps need
to be taken to prevent lost updates.

Locks and compare-and-set operations assume that there is a single up-to-date copy
of the data. However, databases with multi-leader or leaderless replication usually
allow several writes to happen concurrently and replicate them asynchronously, so
they cannot guarantee that there is a single up-to-date copy of the data. Thus, techni-
ques based on locks or compare-and-set do not apply in this context. (We will revisit
this issue in more detail in “Linearizability” on page 324.)

Instead, as discussed in “Detecting Concurrent Writes” on page 184, a common
approach in such replicated databases is to allow concurrent writes to create several
conflicting versions of a value (also known as siblings), and to use application code or
special data structures to resolve and merge these versions after the fact.

Atomic operations can work well in a replicated context, especially if they are com-
mutative (i.e., you can apply them in a different order on different replicas, and still
get the same result). For example, incrementing a counter or adding an element to a
set are commutative operations. That is the idea behind Riak 2.0 datatypes, which
prevent lost updates across replicas. When a value is concurrently updated by differ-
ent clients, Riak automatically merges together the updates in such a way that no
updates are lost [39].

On the other hand, the last write wins (LWW) conflict resolution method is prone to
lost updates, as discussed in “Last write wins (discarding concurrent writes)” on page
186. Unfortunately, LWW is the default in many replicated databases.

Write Skew and Phantoms

In the previous sections we saw dirty writes and lost updates, two kinds of race condi-
tions that can occur when different transactions concurrently try to write to the same
objects. In order to avoid data corruption, those race conditions need to be prevented
—either automatically by the database, or by manual safeguards such as using locks
or atomic write operations.

However, that is not the end of the list of potential race conditions that can occur
between concurrent writes. In this section we will see some subtler examples of
conflicts.

To begin, imagine this example: you are writing an application for doctors to manage
their on-call shifts at a hospital. The hospital usually tries to have several doctors on
call at any one time, but it absolutely must have at least one doctor on call. Doctors

246 | Chapter7: Transactions

can give up their shifts (e.g., if they are sick themselves), provided that at least one
colleague remains on call in that shift [40, 41].

Now imagine that Alice and Bob are the two on-call doctors for a particular shift.
Both are feeling unwell, so they both decide to request leave. Unfortunately, they
happen to click the button to go off call at approximately the same time. What hap-
pens next is illustrated in Figure 7-8.

Alice: Bob:
begin transaction begin transaction
1 name on_call

currently_on_call = (Alice true currently_on_call = (
select count(*) from doctors Bob true select count(*) from doctors
where on_call =true Carol false where on_call = true
and shift_id = 1234 and shift_id = 1234

))

Now currently_on_call =2 Now currently_on_call =2

8 if (currently_on_call >=2) {
update doctors
set on_call =false
where name ="Alice’
and shift_id = 1234 S if (currently_on_call >=2) {
} update doctors
set on_call =false
where name ='Bob’
and shift_id = 1234
}

& commit transaction

name on_call

Alice false
Bob false

Y .. .
O commit transaction

Carol false

Figure 7-8. Example of write skew causing an application bug.

In each transaction, your application first checks that two or more doctors are cur-
rently on call; if yes, it assumes it’s safe for one doctor to go off call. Since the data-
base is using snapshot isolation, both checks return 2, so both transactions proceed to
the next stage. Alice updates her own record to take herself off call, and Bob updates
his own record likewise. Both transactions commit, and now no doctor is on call.
Your requirement of having at least one doctor on call has been violated.

Characterizing write skew

This anomaly is called write skew [28]. It is neither a dirty write nor a lost update,
because the two transactions are updating two different objects (Alice’s and Bob’s on-
call records, respectively). It is less obvious that a conflict occurred here, but it’s defi-
nitely a race condition: if the two transactions had run one after another, the second

Weak Isolation Levels | 247

doctor would have been prevented from going off call. The anomalous behavior was
only possible because the transactions ran concurrently.

You can think of write skew as a generalization of the lost update problem. Write
skew can occur if two transactions read the same objects, and then update some of
those objects (different transactions may update different objects). In the special case
where different transactions update the same object, you get a dirty write or lost
update anomaly (depending on the timing).

We saw that there are various different ways of preventing lost updates. With write
skew, our options are more restricted:

« Atomic single-object operations don’t help, as multiple objects are involved.

 The automatic detection of lost updates that you find in some implementations
of snapshot isolation unfortunately doesn’t help either: write skew is not auto-
matically detected in PostgreSQL’s repeatable read, MySQL/InnoDB’s repeatable
read, Oracle’s serializable, or SQL Server’s snapshot isolation level [23]. Auto-
matically preventing write skew requires true serializable isolation (see “Serializa-
bility” on page 251).

o Some databases allow you to configure constraints, which are then enforced by
the database (e.g., uniqueness, foreign key constraints, or restrictions on a partic-
ular value). However, in order to specify that at least one doctor must be on call,
you would need a constraint that involves multiple objects. Most databases do
not have built-in support for such constraints, but you may be able to implement
them with triggers or materialized views, depending on the database [42].

o If you can’t use a serializable isolation level, the second-best option in this case is
probably to explicitly lock the rows that the transaction depends on. In the doc-
tors example, you could write something like the following:

BEGIN TRANSACTION;

SELECT * FROM doctors
WHERE on_call = true
AND shift_id = 1234 FOR UPDATE; (1]

UPDATE doctors
SET on_call = false
WHERE name = 'Alice'
AND shift_id = 1234;

COMMIT;

© As before, FOR UPDATE tells the database to lock all rows returned by this
query.

248 | (Chapter7: Transactions

More examples of write skew

Write skew may seem like an esoteric issue at first, but once you're aware of it, you

may notice more situations in which it can occur. Here are some more examples:

Meeting room booking system

Say you want to enforce that there cannot be two bookings for the same meeting
room at the same time [43]. When someone wants to make a booking, you first
check for any conflicting bookings (i.e., bookings for the same room with an
overlapping time range), and if none are found, you create the meeting (see

Example 7-2).%

Example 7-2. A meeting room booking system tries to avoid double-booking (not

safe under snapshot isolation)

BEGIN TRANSACTION;

-- Check for any existing bookings that overlap with the period of noon-1pm

SELECT COUNT(*) FROM bookings
WHERE room_1id = 123 AND
end_time > '2015-01-01 12:00' AND start_time < '2015-01-01 13:00';

-- If the previous query returned zero:
INSERT INTO bookings
(room_id, start_time, end_time, user_id)
VALUES (123, '2015-01-01 12:00', '2015-01-01 13:00', 666);

COMMIT;

Unfortunately, snapshot isolation does not prevent another user from concur-
rently inserting a conflicting meeting. In order to guarantee you won’t get sched-

uling conflicts, you once again need serializable isolation.

Multiplayer game

In Example 7-1, we used a lock to prevent lost updates (that is, making sure that
two players can’t move the same figure at the same time). However, the lock
doesn’t prevent players from moving two different figures to the same position
on the board or potentially making some other move that violates the rules of the
game. Depending on the kind of rule you are enforcing, you might be able to use

a unique constraint, but otherwise you’re vulnerable to write skew.

ix. In PostgreSQL you can do this more elegantly using range types, but they are not widely supported in
other databases.

Weak Isolation Levels |

249

Claiming a username
On a website where each user has a unique username, two users may try to create
accounts with the same username at the same time. You may use a transaction to
check whether a name is taken and, if not, create an account with that name.
However, like in the previous examples, that is not safe under snapshot isolation.
Fortunately, a unique constraint is a simple solution here (the second transaction
that tries to register the username will be aborted due to violating the constraint).

Preventing double-spending
A service that allows users to spend money or points needs to check that a user
doesn’t spend more than they have. You might implement this by inserting a ten-
tative spending item into a user’s account, listing all the items in the account, and
checking that the sum is positive [44]. With write skew, it could happen that two
spending items are inserted concurrently that together cause the balance to go
negative, but that neither transaction notices the other.

Phantoms causing write skew

All of these examples follow a similar pattern:

1. A SELECT query checks whether some requirement is satisfied by searching for
rows that match some search condition (there are at least two doctors on call,
there are no existing bookings for that room at that time, the position on the
board doesn’t already have another figure on it, the username isn’t already taken,
there is still money in the account).

2. Depending on the result of the first query, the application code decides how to
continue (perhaps to go ahead with the operation, or perhaps to report an error
to the user and abort).

3. If the application decides to go ahead, it makes a write (INSERT, UPDATE, or
DELETE) to the database and commits the transaction.

The effect of this write changes the precondition of the decision of step 2. In
other words, if you were to repeat the SELECT query from step 1 after commiting
the write, you would get a different result, because the write changed the set of
rows matching the search condition (there is now one fewer doctor on call, the
meeting room is now booked for that time, the position on the board is now
taken by the figure that was moved, the username is now taken, there is now less
money in the account).

The steps may occur in a different order. For example, you could first make the write,
then the SELECT query, and finally decide whether to abort or commit based on the
result of the query.

250 | Chapter7: Transactions

In the case of the doctor on call example, the row being modified in step 3 was one of
the rows returned in step 1, so we could make the transaction safe and avoid write
skew by locking the rows in step 1 (SELECT FOR UPDATE). However, the other four
examples are different: they check for the absence of rows matching some search con-
dition, and the write adds a row matching the same condition. If the query in step 1
doesn’t return any rows, SELECT FOR UPDATE can’t attach locks to anything.

This effect, where a write in one transaction changes the result of a search query in
another transaction, is called a phantom [3]. Snapshot isolation avoids phantoms in
read-only queries, but in read-write transactions like the examples we discussed,
phantoms can lead to particularly tricky cases of write skew.

Materializing conflicts

If the problem of phantoms is that there is no object to which we can attach the locks,
perhaps we can artificially introduce a lock object into the database?

For example, in the meeting room booking case you could imagine creating a table of
time slots and rooms. Each row in this table corresponds to a particular room for a
particular time period (say, 15 minutes). You create rows for all possible combina-
tions of rooms and time periods ahead of time, e.g. for the next six months.

Now a transaction that wants to create a booking can lock (SELECT FOR UPDATE) the
rows in the table that correspond to the desired room and time period. After it has
acquired the locks, it can check for overlapping bookings and insert a new booking as
before. Note that the additional table isn’t used to store information about the book-
ing—it’s purely a collection of locks which is used to prevent bookings on the same
room and time range from being modified concurrently.

This approach is called materializing conflicts, because it takes a phantom and turns it
into a lock conflict on a concrete set of rows that exist in the database [11]. Unfortu-
nately, it can be hard and error-prone to figure out how to materialize conflicts, and
it’s ugly to let a concurrency control mechanism leak into the application data model.
For those reasons, materializing conflicts should be considered a last resort if no
alternative is possible. A serializable isolation level is much preferable in most cases.

Serializability

In this chapter we have seen several examples of transactions that are prone to race
conditions. Some race conditions are prevented by the read committed and snapshot
isolation levels, but others are not. We encountered some particularly tricky exam-
ples with write skew and phantoms. It’s a sad situation:

o Isolation levels are hard to understand, and inconsistently implemented in differ-
ent databases (e.g., the meaning of “repeatable read” varies significantly).

Serializability | 251

« If youlook at your application code, it’s difficult to tell whether it is safe to run at
a particular isolation level—especially in a large application, where you might not
be aware of all the things that may be happening concurrently.

o There are no good tools to help us detect race conditions. In principle, static
analysis may help [26], but research techniques have not yet found their way into
practical use. Testing for concurrency issues is hard, because they are usually
nondeterministic—problems only occur if you get unlucky with the timing.

This is not a new problem—it has been like this since the 1970s, when weak isolation
levels were first introduced [2]. All along, the answer from researchers has been sim-
ple: use serializable isolation!

Serializable isolation is usually regarded as the strongest isolation level. It guarantees
that even though transactions may execute in parallel, the end result is the same as if
they had executed one at a time, serially, without any concurrency. Thus, the database
guarantees that if the transactions behave correctly when run individually, they con-
tinue to be correct when run concurrently—in other words, the database prevents all
possible race conditions.

But if serializable isolation is so much better than the mess of weak isolation levels,
then why isn’t everyone using it? To answer this question, we need to look at the
options for implementing serializability, and how they perform. Most databases that
provide serializability today use one of three techniques, which we will explore in the
rest of this chapter:

o Literally executing transactions in a serial order (see “Actual Serial Execution” on
page 252)

« Two-phase locking (see “Two-Phase Locking (2PL)” on page 257), which for sev-
eral decades was the only viable option

« Optimistic concurrency control techniques such as serializable snapshot isolation
(see “Serializable Snapshot Isolation (SSI)” on page 261)

For now, we will discuss these techniques primarily in the context of single-node
databases; in Chapter 9 we will examine how they can be generalized to transactions
that involve multiple nodes in a distributed system.

Actual Serial Execution

The simplest way of avoiding concurrency problems is to remove the concurrency
entirely: to execute only one transaction at a time, in serial order, on a single thread.
By doing so, we completely sidestep the problem of detecting and preventing con-
flicts between transactions: the resulting isolation is by definition serializable.

252 | Chapter7: Transactions

Even though this seems like an obvious idea, database designers only fairly recently—
around 2007—decided that a single-threaded loop for executing transactions was fea-
sible [45]. If multi-threaded concurrency was considered essential for getting good
performance during the previous 30 years, what changed to make single-threaded
execution possible?

Two developments caused this rethink:

o RAM became cheap enough that for many use cases is now feasible to keep the
entire active dataset in memory (see “Keeping everything in memory” on page
88). When all data that a transaction needs to access is in memory, transactions
can execute much faster than if they have to wait for data to be loaded from disk.

o Database designers realized that OLTP transactions are usually short and only
make a small number of reads and writes (see “Transaction Processing or Ana-
lytics?” on page 90). By contrast, long-running analytic queries are typically read-
only, so they can be run on a consistent snapshot (using snapshot isolation)
outside of the serial execution loop.

The approach of executing transactions serially is implemented in VoltDB/H-Store,
Redis, and Datomic [46, 47, 48]. A system designed for single-threaded execution can
sometimes perform better than a system that supports concurrency, because it can
avoid the coordination overhead of locking. However, its throughput is limited to
that of a single CPU core. In order to make the most of that single thread, transac-
tions need to be structured differently from their traditional form.

Encapsulating transactions in stored procedures

In the early days of databases, the intention was that a database transaction could
encompass an entire flow of user activity. For example, booking an airline ticket is a
multi-stage process (searching for routes, fares, and available seats; deciding on an
itinerary; booking seats on each of the flights of the itinerary; entering passenger
details; making payment). Database designers thought that it would be neat if that
entire process was one transaction so that it could be committed atomically.

Unfortunately, humans are very slow to make up their minds and respond. If a data-
base transaction needs to wait for input from a user, the database needs to support a
potentially huge number of concurrent transactions, most of them idle. Most data-
bases cannot do that efficiently, and so almost all OLTP applications keep transac-
tions short by avoiding interactively waiting for a user within a transaction. On the
web, this means that a transaction is committed within the same HTTP request—a
transaction does not span multiple requests. A new HTTP request starts a new trans-
action.

Even though the human has been taken out of the critical path, transactions have
continued to be executed in an interactive client/server style, one statement at a time.

Serializability | 253

An application makes a query, reads the result, perhaps makes another query
depending on the result of the first query, and so on. The queries and results are sent
back and forth between the application code (running on one machine) and the data-
base server (on another machine).

In this interactive style of transaction, a lot of time is spent in network communica-
tion between the application and the database. If you were to disallow concurrency in
the database and only process one transaction at a time, the throughput would be
dreadful because the database would spend most of its time waiting for the applica-
tion to issue the next query for the current transaction. In this kind of database, it’s
necessary to process multiple transactions concurrently in order to get reasonable
performance.

For this reason, systems with single-threaded serial transaction processing don’t
allow interactive multi-statement transactions. Instead, the application must submit
the entire transaction code to the database ahead of time, as a stored procedure. The
differences between these approaches is illustrated in Figure 7-9. Provided that all
data required by a transaction is in memory, the stored procedure can execute very
fast, without waiting for any network or disk I/O.

Interactive transaction:

select count(*) if (currently_ update doctors

from doctors on_call = 2){ set on_call = false

where on_call = true where name ='Bob’ X
and shift_id = 1234 } and shift_id = 1234 time

Application

Query processor

Storage
Stored procedure: execute stored procedure
take_doctor_off_call_if_safe .
o with name ='Bob shift_id = 1234 time
Application

Query processor

Storage

Figure 7-9. The difference between an interactive transaction and a stored procedure
(using the example transaction of Figure 7-8).

254 | Chapter7: Transactions

Pros and cons of stored procedures

Stored procedures have existed for some time in relational databases, and they have
been part of the SQL standard (SQL/PSM) since 1999. They have gained a somewhat
bad reputation, for various reasons:

« Each database vendor has its own language for stored procedures (Oracle has PL/
SQL, SQL Server has T-SQL, PostgreSQL has PL/pgSQL, etc.). These languages
haven’t kept up with developments in general-purpose programming languages,
so they look quite ugly and archaic from today’s point of view, and they lack the
ecosystem of libraries that you find with most programming languages.

» Code running in a database is difficult to manage: compared to an application
server, it’s harder to debug, more awkward to keep in version control and deploy,
trickier to test, and difficult to integrate with a metrics collection system for
monitoring.

o A database is often much more performance-sensitive than an application server,
because a single database instance is often shared by many application servers. A
badly written stored procedure (e.g., using a lot of memory or CPU time) in a
database can cause much more trouble than equivalent badly written code in an
application server.

However, those issues can be overcome. Modern implementations of stored proce-
dures have abandoned PL/SQL and use existing general-purpose programming lan-
guages instead: VoltDB uses Java or Groovy, Datomic uses Java or Clojure, and Redis
uses Lua.

With stored procedures and in-memory data, executing all transactions on a single
thread becomes feasible. As they don’t need to wait for I/O and they avoid the over-
head of other concurrency control mechanisms, they can achieve quite good
throughput on a single thread.

VoltDB also uses stored procedures for replication: instead of copying a transaction’s
writes from one node to another, it executes the same stored procedure on each rep-
lica. VoltDB therefore requires that stored procedures are deterministic (when run on
different nodes, they must produce the same result). If a transaction needs to use the
current date and time, for example, it must do so through special deterministic APIs.

Partitioning

Executing all transactions serially makes concurrency control much simpler, but lim-
its the transaction throughput of the database to the speed of a single CPU core on a
single machine. Read-only transactions may execute elsewhere, using snapshot isola-
tion, but for applications with high write throughput, the single-threaded transaction
processor can become a serious bottleneck.

Serializability | 255

In order to scale to multiple CPU cores, and multiple nodes, you can potentially par-
tition your data (see Chapter 6), which is supported in VoltDB. If you can find a way
of partitioning your dataset so that each transaction only needs to read and write data
within a single partition, then each partition can have its own transaction processing
thread running independently from the others. In this case, you can give each CPU
core its own partition, which allows your transaction throughput to scale linearly
with the number of CPU cores [47].

However, for any transaction that needs to access multiple partitions, the database
must coordinate the transaction across all the partitions that it touches. The stored
procedure needs to be performed in lock-step across all partitions to ensure serializa-
bility across the whole system.

Since cross-partition transactions have additional coordination overhead, they are
vastly slower than single-partition transactions. VoltDB reports a throughput of
about 1,000 cross-partition writes per second, which is orders of magnitude below its
single-partition throughput and cannot be increased by adding more machines [49].

Whether transactions can be single-partition depends very much on the structure of
the data used by the application. Simple key-value data can often be partitioned very
easily, but data with multiple secondary indexes is likely to require a lot of cross-
partition coordination (see “Partitioning and Secondary Indexes” on page 206).

Summary of serial execution

Serial execution of transactions has become a viable way of achieving serializable iso-
lation within certain constraints:

« Every transaction must be small and fast, because it takes only one slow transac-
tion to stall all transaction processing.

o It is limited to use cases where the active dataset can fit in memory. Rarely
accessed data could potentially be moved to disk, but if it needed to be accessed
in a single-threaded transaction, the system would get very slow.

» Write throughput must be low enough to be handled on a single CPU core, or
else transactions need to be partitioned without requiring cross-partition coordi-
nation.

« Cross-partition transactions are possible, but there is a hard limit to the extent to
which they can be used.

x. Ifa transaction needs to access data that’s not in memory, the best solution may be to abort the transac-
tion, asynchronously fetch the data into memory while continuing to process other transactions, and then
restart the transaction when the data has been loaded. This approach is known as anti-caching, as previously
mentioned in “Keeping everything in memory” on page 88.

256 | Chapter7: Transactions

Two-Phase Locking (2PL)

For around 30 years, there was only one widely used algorithm for serializability in
databases: two-phase locking (2PL).x

2PLis not 2PC

Note that while two-phase locking (2PL) sounds very similar to
two-phase commit (2PC), they are completely different things. We
will discuss 2PC in Chapter 9.

We saw previously that locks are often used to prevent dirty writes (see “No dirty
writes” on page 235): if two transactions concurrently try to write to the same object,
the lock ensures that the second writer must wait until the first one has finished its
transaction (aborted or committed) before it may continue.

Two-phase locking is similar, but makes the lock requirements much stronger. Sev-
eral transactions are allowed to concurrently read the same object as long as nobody
is writing to it. But as soon as anyone wants to write (modify or delete) an object,
exclusive access is required:

o If transaction A has read an object and transaction B wants to write to that
object, B must wait until A commits or aborts before it can continue. (This
ensures that B can’t change the object unexpectedly behind A’s back.)

o If transaction A has written an object and transaction B wants to read that object,
B must wait until A commits or aborts before it can continue. (Reading an old
version of the object, like in Figure 7-1, is not acceptable under 2PL.)

In 2PL, writers don’t just block other writers; they also block readers and vice versa.
Snapshot isolation has the mantra readers never block writers, and writers never block
readers (see “Implementing snapshot isolation” on page 239), which captures this key
difference between snapshot isolation and two-phase locking. On the other hand,
because 2PL provides serializability, it protects against all the race conditions dis-
cussed earlier, including lost updates and write skew.

Implementation of two-phase locking

2PL is used by the serializable isolation level in MySQL (InnoDB) and SQL Server,
and the repeatable read isolation level in DB2 [23, 36].

xi. Sometimes called strong strict two-phase locking (SS2PL) to distinguish it from other variants of 2PL.

Serializability | 257

The blocking of readers and writers is implemented by a having a lock on each object
in the database. The lock can either be in shared mode or in exclusive mode. The lock
is used as follows:

o If a transaction wants to read an object, it must first acquire the lock in shared
mode. Several transactions are allowed to hold the lock in shared mode simulta-
neously, but if another transaction already has an exclusive lock on the object,
these transactions must wait.

o Ifa transaction wants to write to an object, it must first acquire the lock in exclu-
sive mode. No other transaction may hold the lock at the same time (either in
shared or in exclusive mode), so if there is any existing lock on the object, the
transaction must wait.

o If a transaction first reads and then writes an object, it may upgrade its shared
lock to an exclusive lock. The upgrade works the same as getting an exclusive
lock directly.

o After a transaction has acquired the lock, it must continue to hold the lock until
the end of the transaction (commit or abort). This is where the name “two-
phase” comes from: the first phase (while the transaction is executing) is when
the locks are acquired, and the second phase (at the end of the transaction) is
when all the locks are released.

Since so many locks are in use, it can happen quite easily that transaction A is stuck
waiting for transaction B to release its lock, and vice versa. This situation is called
deadlock. The database automatically detects deadlocks between transactions and
aborts one of them so that the others can make progress. The aborted transaction
needs to be retried by the application.

Performance of two-phase locking

The big downside of two-phase locking, and the reason why it hasn’t been used by
everybody since the 1970s, is performance: transaction throughput and response
times of queries are significantly worse under two-phase locking than under weak
isolation.

This is partly due to the overhead of acquiring and releasing all those locks, but more
importantly due to reduced concurrency. By design, if two concurrent transactions
try to do anything that may in any way result in a race condition, one has to wait for
the other to complete.

Traditional relational databases don’t limit the duration of a transaction, because
they are designed for interactive applications that wait for human input. Conse-
quently, when one transaction has to wait on another, there is no limit on how long it
may have to wait. Even if you make sure that you keep all your transactions short, a

258 | Chapter7: Transactions

queue may form if several transactions want to access the same object, so a transac-
tion may have to wait for several others to complete before it can do anything.

For this reason, databases running 2PL can have quite unstable latencies, and they
can be very slow at high percentiles (see “Describing Performance” on page 13) if
there is contention in the workload. It may take just one slow transaction, or one
transaction that accesses a lot of data and acquires many locks, to cause the rest of the
system to grind to a halt. This instability is problematic when robust operation is
required.

Although deadlocks can happen with the lock-based read committed isolation level,
they occur much more frequently under 2PL serializable isolation (depending on the
access patterns of your transaction). This can be an additional performance problem:
when a transaction is aborted due to deadlock and is retried, it needs to do its work
all over again. If deadlocks are frequent, this can mean significant wasted effort.

Predicate locks

In the preceding description of locks, we glossed over a subtle but important detail.
In “Phantoms causing write skew” on page 250 we discussed the problem of phan-
toms—that is, one transaction changing the results of another transaction’s search
query. A database with serializable isolation must prevent phantoms.

In the meeting room booking example this means that if one transaction has
searched for existing bookings for a room within a certain time window (see
Example 7-2), another transaction is not allowed to concurrently insert or update
another booking for the same room and time range. (It’s okay to concurrently insert
bookings for other rooms, or for the same room at a different time that doesn’t affect
the proposed booking.)

How do we implement this? Conceptually, we need a predicate lock [3]. It works sim-
ilarly to the shared/exclusive lock described earlier, but rather than belonging to a
particular object (e.g., one row in a table), it belongs to all objects that match some
search condition, such as:

SELECT * FROM bookings
WHERE room_id = 123 AND
end_time > '2018-01-01 12:00" AND
start_time < '2018-01-01 13:00';

A predicate lock restricts access as follows:

o If transaction A wants to read objects matching some condition, like in that
SELECT query, it must acquire a shared-mode predicate lock on the conditions of
the query. If another transaction B currently has an exclusive lock on any object
matching those conditions, A must wait until B releases its lock before it is
allowed to make its query.

Serializability | 259

o If transaction A wants to insert, update, or delete any object, it must first check
whether either the old or the new value matches any existing predicate lock. If
there is a matching predicate lock held by transaction B, then A must wait until B
has committed or aborted before it can continue.

The key idea here is that a predicate lock applies even to objects that do not yet exist
in the database, but which might be added in the future (phantoms). If two-phase
locking includes predicate locks, the database prevents all forms of write skew and
other race conditions, and so its isolation becomes serializable.

Index-range locks

Unfortunately, predicate locks do not perform well: if there are many locks by active
transactions, checking for matching locks becomes time-consuming. For that reason,
most databases with 2PL actually implement index-range locking (also known as next-
key locking), which is a simplified approximation of predicate locking [41, 50].

It’s safe to simplify a predicate by making it match a greater set of objects. For exam-
ple, if you have a predicate lock for bookings of room 123 between noon and 1 p.m.,
you can approximate it by locking bookings for room 123 at any time, or you can
approximate it by locking all rooms (not just room 123) between noon and 1 p.m.
This is safe, because any write that matches the original predicate will definitely also
match the approximations.

In the room bookings database you would probably have an index on the room_1id
column, and/or indexes on start_time and end_time (otherwise the preceding query
would be very slow on a large database):

o Say your index is on room_1id, and the database uses this index to find existing
bookings for room 123. Now the database can simply attach a shared lock to this
index entry, indicating that a transaction has searched for bookings of room 123.

o Alternatively, if the database uses a time-based index to find existing bookings, it
can attach a shared lock to a range of values in that index, indicating that a trans-
action has searched for bookings that overlap with the time period of noon to 1
p-m. on January 1, 2018.

Either way, an approximation of the search condition is attached to one of the
indexes. Now, if another transaction wants to insert, update, or delete a booking for
the same room and/or an overlapping time period, it will have to update the same
part of the index. In the process of doing so, it will encounter the shared lock, and it
will be forced to wait until the lock is released.

This provides effective protection against phantoms and write skew. Index-range
locks are not as precise as predicate locks would be (they may lock a bigger range of

260 | Chapter7: Transactions

objects than is strictly necessary to maintain serializability), but since they have much
lower overheads, they are a good compromise.

If there is no suitable index where a range lock can be attached, the database can fall
back to a shared lock on the entire table. This will not be good for performance, since
it will stop all other transactions writing to the table, but it’s a safe fallback position.

Serializable Snapshot Isolation (SSI)

This chapter has painted a bleak picture of concurrency control in databases. On the
one hand, we have implementations of serializability that don’t perform well (two-
phase locking) or don’t scale well (serial execution). On the other hand, we have weak
isolation levels that have good performance, but are prone to various race conditions
(lost updates, write skew, phantoms, etc.). Are serializable isolation and good perfor-
mance fundamentally at odds with each other?

Perhaps not: an algorithm called serializable snapshot isolation (SSI) is very promis-
ing. It provides full serializability, but has only a small performance penalty com-
pared to snapshot isolation. SSI is fairly new: it was first described in 2008 [40] and is
the subject of Michael Cahill’s PhD thesis [51].

Today SSI is used both in single-node databases (the serializable isolation level in
PostgreSQL since version 9.1 [41]) and distributed databases (FoundationDB uses a
similar algorithm). As SSI is so young compared to other concurrency control mech-
anisms, it is still proving its performance in practice, but it has the possibility of being
fast enough to become the new default in the future.

Pessimistic versus optimistic concurrency control

Two-phase locking is a so-called pessimistic concurrency control mechanism: it is
based on the principle that if anything might possibly go wrong (as indicated by a
lock held by another transaction), it’s better to wait until the situation is safe again
before doing anything. It is like mutual exclusion, which is used to protect data struc-
tures in multi-threaded programming.

Serial execution is, in a sense, pessimistic to the extreme: it is essentially equivalent to
each transaction having an exclusive lock on the entire database (or one partition of
the database) for the duration of the transaction. We compensate for the pessimism
by making each transaction very fast to execute, so it only needs to hold the “lock” for
a short time.

By contrast, serializable snapshot isolation is an optimistic concurrency control tech-
nique. Optimistic in this context means that instead of blocking if something poten-
tially dangerous happens, transactions continue anyway, in the hope that everything
will turn out all right. When a transaction wants to commit, the database checks
whether anything bad happened (i.e., whether isolation was violated); if so, the trans-

Serializability | 261

action is aborted and has to be retried. Only transactions that executed serializably
are allowed to commit.

Optimistic concurrency control is an old idea [52], and its advantages and disadvan-
tages have been debated for a long time [53]. It performs badly if there is high con-
tention (many transactions trying to access the same objects), as this leads to a high
proportion of transactions needing to abort. If the system is already close to its maxi-
mum throughput, the additional transaction load from retried transactions can make
performance worse.

However, if there is enough spare capacity, and if contention between transactions is
not too high, optimistic concurrency control techniques tend to perform better than
pessimistic ones. Contention can be reduced with commutative atomic operations:
for example, if several transactions concurrently want to increment a counter, it
doesn’t matter in which order the increments are applied (as long as the counter isn’t
read in the same transaction), so the concurrent increments can all be applied
without conflicting.

As the name suggests, SSI is based on snapshot isolation—that is, all reads within a
transaction are made from a consistent snapshot of the database (see “Snapshot Isola-
tion and Repeatable Read” on page 237). This is the main difference compared to ear-
lier optimistic concurrency control techniques. On top of snapshot isolation, SSI adds
an algorithm for detecting serialization conflicts among writes and determining
which transactions to abort.

Decisions based on an outdated premise

When we previously discussed write skew in snapshot isolation (see “Write Skew and
Phantoms” on page 246), we observed a recurring pattern: a transaction reads some
data from the database, examines the result of the query, and decides to take some
action (write to the database) based on the result that it saw. However, under snap-
shot isolation, the result from the original query may no longer be up-to-date by the
time the transaction commits, because the data may have been modified in the mean-
time.

Put another way, the transaction is taking an action based on a premise (a fact that
was true at the beginning of the transaction, e.g., “There are currently two doctors on
call”). Later, when the transaction wants to commit, the original data may have
changed—the premise may no longer be true.

When the application makes a query (e.g., “How many doctors are currently on
call?”), the database doesn’t know how the application logic uses the result of that
query. To be safe, the database needs to assume that any change in the query result
(the premise) means that writes in that transaction may be invalid. In other words,
there may be a causal dependency between the queries and the writes in the transac-
tion. In order to provide serializable isolation, the database must detect situations in

262 | Chapter7: Transactions

which a transaction may have acted on an outdated premise and abort the transac-
tion in that case.

How does the database know if a query result might have changed? There are two
cases to consider:

+ Detecting reads of a stale MVCC object version (uncommitted write occurred
before the read)

o Detecting writes that affect prior reads (the write occurs after the read)

Detecting stale MV(C reads

Recall that snapshot isolation is usually implemented by multi-version concurrency
control (MVCC; see Figure 7-10). When a transaction reads from a consistent snap-
shot in an MVCC database, it ignores writes that were made by any other transac-
tions that hadn’t yet committed at the time when the snapshot was taken. In
Figure 7-10, transaction 43 sees Alice as having on_call = true, because transaction
42 (which modified Alice’s on-call status) is uncommitted. However, by the time
transaction 43 wants to commit, transaction 42 has already committed. This means
that the write that was ignored when reading from the consistent snapshot has now
taken effect, and transaction 43’s premise is no longer true.

select count(*) update doctors

from doctors set on_call = false

where on_call=true where name ="Alice’

and shift_id=1234 and shift_id = 1234 commit time

Transaction 42

Database Ej

Transaction 43

select count(*) update doctors commit retry...
from doctors set on_call =false

where on_call = true where name ='Bob’

and shift_id =1234 and shift_id = 1234

shift_id name on_call created_by deleted_by

1234 Alice true 1 42
1234 Alice false 42
1234 Bob true 1 —
1234 Carol false 1

Transaction 42 hasn’t committed yet,
so transaction 43 sees Alice as still
being on call. However, the transaction
manager notes that this value is no
longer up-to-date.

Figure 7-10. Detecting when a transaction reads outdated values from an MVCC
snapshot.

Serializability | 263

In order to prevent this anomaly, the database needs to track when a transaction
ignores another transaction’s writes due to MV CC visibility rules. When the transac-
tion wants to commit, the database checks whether any of the ignored writes have
now been committed. If so, the transaction must be aborted.

Why wait until committing? Why not abort transaction 43 immediately when the
stale read is detected? Well, if transaction 43 was a read-only transaction, it wouldn’t
need to be aborted, because there is no risk of write skew. At the time when transac-
tion 43 makes its read, the database doesn’t yet know whether that transaction is
going to later perform a write. Moreover, transaction 42 may yet abort or may still be
uncommitted at the time when transaction 43 is committed, and so the read may
turn out not to have been stale after all. By avoiding unnecessary aborts, SSI preserves
snapshot isolation’s support for long-running reads from a consistent snapshot.

Detecting writes that affect prior reads

The second case to consider is when another transaction modifies data after it has
been read. This case is illustrated in Figure 7-11.

select count(*) update doctors

from doctors set on_call = false

where on_call = true where name ="Alice’

and shift_id = 1234 and shift_id = 1234 commit time

Transaction 42 -

Database @

Transaction 43

select count(*) update doctors commit retry...

from doctors seton_call =false

where on_call = true where name =‘Bob’

and shift_id = 1234 and shift_id = 1234
key range information shift_id name on_call
1234 read by transaction 42 old | 1234 Alice true
1234 read by transaction 43 6/— new | 1234 Alice false
Index-range locks on Note: update by transaction 42
doctors.shift_id index affects read by transaction 43

Figure 7-11. In serializable snapshot isolation, detecting when one transaction modifies
another transaction’s reads.

In the context of two-phase locking we discussed index-range locks (see “Index-range
locks” on page 260), which allow the database to lock access to all rows matching
some search query, such as WERE shift_id = 1234. We can use a similar technique
here, except that SSI locks don’t block other transactions.

264 | Chapter7: Transactions

In Figure 7-11, transactions 42 and 43 both search for on-call doctors during shift
1234. If there is an index on shift_id, the database can use the index entry 1234 to
record the fact that transactions 42 and 43 read this data. (If there is no index, this
information can be tracked at the table level.) This information only needs to be kept
for a while: after a transaction has finished (committed or aborted), and all concur-
rent transactions have finished, the database can forget what data it read.

When a transaction writes to the database, it must look in the indexes for any other
transactions that have recently read the affected data. This process is similar to
acquiring a write lock on the affected key range, but rather than blocking until the
readers have committed, the lock acts as a tripwire: it simply notifies the transactions
that the data they read may no longer be up to date.

In Figure 7-11, transaction 43 notifies transaction 42 that its prior read is outdated,
and vice versa. Transaction 42 is first to commit, and it is successful: although trans-
action 43’s write affected 42, 43 hasn’t yet committed, so the write has not yet taken
effect. However, when transaction 43 wants to commit, the conflicting write from 42
has already been committed, so 43 must abort.

Performance of serializable snapshot isolation

As always, many engineering details affect how well an algorithm works in practice.
For example, one trade-off is the granularity at which transactions’ reads and writes
are tracked. If the database keeps track of each transaction’s activity in great detail, it
can be precise about which transactions need to abort, but the bookkeeping overhead
can become significant. Less detailed tracking is faster, but may lead to more transac-
tions being aborted than strictly necessary.

In some cases, it’s okay for a transaction to read information that was overwritten by
another transaction: depending on what else happened, it’s sometimes possible to
prove that the result of the execution is nevertheless serializable. PostgreSQL uses this
theory to reduce the number of unnecessary aborts [11, 41].

Compared to two-phase locking, the big advantage of serializable snapshot isolation
is that one transaction doesn’t need to block waiting for locks held by another trans-
action. Like under snapshot isolation, writers don’t block readers, and vice versa. This
design principle makes query latency much more predictable and less variable. In
particular, read-only queries can run on a consistent snapshot without requiring any
locks, which is very appealing for read-heavy workloads.

Compared to serial execution, serializable snapshot isolation is not limited to the
throughput of a single CPU core: FoundationDB distributes the detection of seriali-
zation conflicts across multiple machines, allowing it to scale to very high through-
put. Even though data may be partitioned across multiple machines, transactions can
read and write data in multiple partitions while ensuring serializable isolation [54].

Serializability | 265

The rate of aborts significantly affects the overall performance of SSI. For example, a
transaction that reads and writes data over a long period of time is likely to run into
conflicts and abort, so SSI requires that read-write transactions be fairly short (long-
running read-only transactions may be okay). However, SSI is probably less sensitive
to slow transactions than two-phase locking or serial execution.

Summary

Transactions are an abstraction layer that allows an application to pretend that cer-
tain concurrency problems and certain kinds of hardware and software faults don’t
exist. A large class of errors is reduced down to a simple transaction abort, and the
application just needs to try again.

In this chapter we saw many examples of problems that transactions help prevent.
Not all applications are susceptible to all those problems: an application with very
simple access patterns, such as reading and writing only a single record, can probably
manage without transactions. However, for more complex access patterns, transac-
tions can hugely reduce the number of potential error cases you need to think about.

Without transactions, various error scenarios (processes crashing, network interrup-
tions, power outages, disk full, unexpected concurrency, etc.) mean that data can
become inconsistent in various ways. For example, denormalized data can easily go
out of sync with the source data. Without transactions, it becomes very difficult to
reason about the effects that complex interacting accesses can have on the database.

In this chapter, we went particularly deep into the topic of concurrency control. We
discussed several widely used isolation levels, in particular read committed, snapshot
isolation (sometimes called repeatable read), and serializable. We characterized those
isolation levels by discussing various examples of race conditions:

Dirty reads
One client reads another client’s writes before they have been committed. The
read committed isolation level and stronger levels prevent dirty reads.

Dirty writes
One client overwrites data that another client has written, but not yet committed.
Almost all transaction implementations prevent dirty writes.

Read skew (nonrepeatable reads)
A client sees different parts of the database at different points in time. This issue
is most commonly prevented with snapshot isolation, which allows a transaction
to read from a consistent snapshot at one point in time. It is usually implemented
with multi-version concurrency control (MVCC).

266 | Chapter7: Transactions

Lost updates
Two clients concurrently perform a read-modify-write cycle. One overwrites the
other’s write without incorporating its changes, so data is lost. Some implemen-
tations of snapshot isolation prevent this anomaly automatically, while others
require a manual lock (SELECT FOR UPDATE).

Write skew
A transaction reads something, makes a decision based on the value it saw, and
writes the decision to the database. However, by the time the write is made, the
premise of the decision is no longer true. Only serializable isolation prevents this
anomaly.

Phantom reads
A transaction reads objects that match some search condition. Another client
makes a write that affects the results of that search. Snapshot isolation prevents
straightforward phantom reads, but phantoms in the context of write skew
require special treatment, such as index-range locks.

Weak isolation levels protect against some of those anomalies but leave you, the
application developer, to handle others manually (e.g., using explicit locking). Only
serializable isolation protects against all of these issues. We discussed three different
approaches to implementing serializable transactions:

Literally executing transactions in a serial order
If you can make each transaction very fast to execute, and the transaction
throughput is low enough to process on a single CPU core, this is a simple and
effective option.

Two-phase locking
For decades this has been the standard way of implementing serializability, but
many applications avoid using it because of its performance characteristics.

Serializable snapshot isolation (SSI)
A fairly new algorithm that avoids most of the downsides of the previous
approaches. It uses an optimistic approach, allowing transactions to proceed
without blocking. When a transaction wants to commit, it is checked, and it is
aborted if the execution was not serializable.

The examples in this chapter used a relational data model. However, as discussed in
“The need for multi-object transactions” on page 231, transactions are a valuable
database feature, no matter which data model is used.

In this chapter, we explored ideas and algorithms mostly in the context of a database
running on a single machine. Transactions in distributed databases open a new set of
difficult challenges, which we’ll discuss in the next two chapters.

Summary | 267

References

[1] Donald D. Chamberlin, Morton M. Astrahan, Michael W. Blasgen, et al.: “A His-
tory and Evaluation of System R,” Communications of the ACM, volume 24, number
10, pages 632-646, October 1981. doi:10.1145/358769.358784

[2] Jim N. Gray, Raymond A. Lorie, Gianfranco R. Putzolu, and Irving L. Traiger:
“Granularity of Locks and Degrees of Consistency in a Shared Data Base,” in Model-
ling in Data Base Management Systems: Proceedings of the IFIP Working Conference
on Modelling in Data Base Management Systems, edited by G. M. Nijssen, pages 364—
394, Elsevier/North Holland Publishing, 1976. Also in Readings in Database Systems,
4th edition, edited by Joseph M. Hellerstein and Michael Stonebraker, MIT Press,
2005. ISBN: 978-0-262-69314-1

[3] Kapali P. Eswaran, Jim N. Gray, Raymond A. Lorie, and Irving L. Traiger: “The
Notions of Consistency and Predicate Locks in a Database System,” Communications
of the ACM, volume 19, number 11, pages 624-633, November 1976.

[4] “ACID Transactions Are Incredibly Helpful,” FoundationDB, LLC, 2013.

[5] John D. Cook: “ACID Versus BASE for Database Transactions,” johndcook.com,
July 6, 2009.

[6] Gavin Clarke: “NoSQL’s CAP Theorem Busters: We Don’t Drop ACID,” theregis-
ter.co.uk, November 22, 2012.

[7] Theo Hérder and Andreas Reuter: “Principles of Transaction-Oriented Database
Recovery,” ACM Computing Surveys, volume 15, number 4, pages 287-317, Decem-
ber 1983. d0i:10.1145/289.291

[8] Peter Bailis, Alan Fekete, Ali Ghodsi, et al.: “HAT, not CAP: Towards Highly
Available Transactions,” at 14th USENIX Workshop on Hot Topics in Operating Sys-
tems (HotOS), May 2013.

[9] Armando Fox, Steven D. Gribble, Yatin Chawathe, et al.: “Cluster-Based Scalable
Network Services,” at 16th ACM Symposium on Operating Systems Principles (SOSP),
October 1997.

[10] Philip A. Bernstein, Vassos Hadzilacos, and Nathan Goodman: Concurrency
Control and Recovery in Database Systems. Addison-Wesley, 1987. ISBN:
978-0-201-10715-9, available online at research.microsoft.com.

[11] Alan Fekete, Dimitrios Liarokapis, Elizabeth O’Neil, et al.: “Making Snapshot
Isolation Serializable,” ACM Transactions on Database Systems, volume 30, number
2, pages 492-528, June 2005. doi:10.1145/1071610.1071615

268 | Chapter7: Transactions

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.84.348&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.84.348&rep=rep1&type=pdf
http://dx.doi.org/10.1145/358769.358784
http://citeseer.ist.psu.edu/viewdoc/download?doi=10.1.1.92.8248&rep=rep1&type=pdf
http://research.microsoft.com/en-us/um/people/gray/papers/On%20the%20Notions%20of%20Consistency%20and%20Predicate%20Locks%20in%20a%20Database%20System%20CACM.pdf
http://research.microsoft.com/en-us/um/people/gray/papers/On%20the%20Notions%20of%20Consistency%20and%20Predicate%20Locks%20in%20a%20Database%20System%20CACM.pdf
http://web.archive.org/web/20150320053809/https://foundationdb.com/acid-claims
http://www.johndcook.com/blog/2009/07/06/brewer-cap-theorem-base/
http://www.theregister.co.uk/2012/11/22/foundationdb_fear_of_cap_theorem/
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.87.2812&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.87.2812&rep=rep1&type=pdf
http://dx.doi.org/10.1145/289.291
http://www.bailis.org/papers/hat-hotos2013.pdf
http://www.bailis.org/papers/hat-hotos2013.pdf
http://www.cs.berkeley.edu/~brewer/cs262b/TACC.pdf
http://www.cs.berkeley.edu/~brewer/cs262b/TACC.pdf
http://research.microsoft.com/en-us/people/philbe/ccontrol.aspx
http://research.microsoft.com/en-us/people/philbe/ccontrol.aspx
https://www.cse.iitb.ac.in/infolab/Data/Courses/CS632/2009/Papers/p492-fekete.pdf
https://www.cse.iitb.ac.in/infolab/Data/Courses/CS632/2009/Papers/p492-fekete.pdf
http://dx.doi.org/10.1145/1071610.1071615

[12] Mai Zheng, Joseph Tucek, Feng Qin, and Mark Lillibridge: “Understanding the
Robustness of SSDs Under Power Fault,” at 11th USENIX Conference on File and
Storage Technologies (FAST), February 2013.

[13] Laurie Denness: “SSDs: A Gift and a Curse,” laur.ie, June 2, 2015.

[14] Adam Surak: “When Solid State Drives Are Not That Solid,” blog.algolia.com,
June 15, 2015.

[15] Thanumalayan Sankaranarayana Pillai, Vijay Chidambaram, Ramnatthan Ala-
gappan, et al.: “All File Systems Are Not Created Equal: On the Complexity of Craft-
ing Crash-Consistent Applications,” at I1I1th USENIX Symposium on Operating
Systems Design and Implementation (OSDI), October 2014.

[16] Chris Siebenmann: “Unix’s File Durability Problem,” utcc.utoronto.ca, April 14,
2016.

[17] Lakshmi N. Bairavasundaram, Garth R. Goodson, Bianca Schroeder, et al.: “An
Analysis of Data Corruption in the Storage Stack,” at 6th USENIX Conference on File
and Storage Technologies (FAST), February 2008.

[18] Bianca Schroeder, Raghav Lagisetty, and Arif Merchant: “Flash Reliability in
Production: The Expected and the Unexpected,” at 14th USENIX Conference on File
and Storage Technologies (FAST), February 2016.

[19] Don Allison: “SSD Storage — Ignorance of Technology Is No Excuse,” blog.kore-
logic.com, March 24, 2015.

[20] Dave Scherer: “Those Are Not Transactions (Cassandra 2.0),” blog.founda-
tiondb.com, September 6, 2013.

[21] Kyle Kingsbury: “Call Me Maybe: Cassandra,” aphyr.com, September 24, 2013.
[22] “ACID Support in Aerospike,” Aerospike, Inc., June 2014.

[23] Martin Kleppmann: “Hermitage: Testing the T in ACID,” martin.klepp-
mann.com, November 25, 2014.

[24] Tristan D’Agosta: “BTC Stolen from Poloniex,” bitcointalk.org, March 4, 2014.

[25] bitcointhief2: “How I Stole Roughly 100 BTC from an Exchange and How I
Could Have Stolen More!,” reddit.com, February 2, 2014.

[26] Sudhir Jorwekar, Alan Fekete, Krithi Ramamritham, and S. Sudarshan: “Auto-
mating the Detection of Snapshot Isolation Anomalies,” at 33rd International Confer-
ence on Very Large Data Bases (VLDB), September 2007.

[27] Michael Melanson: “Transactions: The Limits of Isolation,” michaelmelan-
son.net, March 20, 2014.

Summary | 269

https://www.usenix.org/system/files/conference/fast13/fast13-final80.pdf
https://www.usenix.org/system/files/conference/fast13/fast13-final80.pdf
https://laur.ie/blog/2015/06/ssds-a-gift-and-a-curse/
https://blog.algolia.com/when-solid-state-drives-are-not-that-solid/
http://research.cs.wisc.edu/wind/Publications/alice-osdi14.pdf
http://research.cs.wisc.edu/wind/Publications/alice-osdi14.pdf
https://utcc.utoronto.ca/~cks/space/blog/unix/FileSyncProblem
http://research.cs.wisc.edu/adsl/Publications/corruption-fast08.pdf
http://research.cs.wisc.edu/adsl/Publications/corruption-fast08.pdf
https://www.usenix.org/conference/fast16/technical-sessions/presentation/schroeder
https://www.usenix.org/conference/fast16/technical-sessions/presentation/schroeder
https://blog.korelogic.com/blog/2015/03/24
http://web.archive.org/web/20150526065247/http://blog.foundationdb.com/those-are-not-transactions-cassandra-2-0
http://aphyr.com/posts/294-call-me-maybe-cassandra/
http://www.aerospike.com/docs/architecture/assets/AerospikeACIDSupport.pdf
http://martin.kleppmann.com/2014/11/25/hermitage-testing-the-i-in-acid.html
https://bitcointalk.org/index.php?topic=499580
http://www.reddit.com/r/Bitcoin/comments/1wtbiu/how_i_stole_roughly_100_btc_from_an_exchange_and/
http://www.reddit.com/r/Bitcoin/comments/1wtbiu/how_i_stole_roughly_100_btc_from_an_exchange_and/
http://www.vldb.org/conf/2007/papers/industrial/p1263-jorwekar.pdf
http://www.vldb.org/conf/2007/papers/industrial/p1263-jorwekar.pdf
http://www.michaelmelanson.net/2014/03/20/transactions/

[28] Hal Berenson, Philip A. Bernstein, Jim N. Gray, et al.: “A Critique of ANSI SQL
Isolation Levels,” at ACM International Conference on Management of Data (SIG-
MOD), May 1995.

[29] Atul Adya: “Weak Consistency: A Generalized Theory and Optimistic Imple-
mentations for Distributed Transactions,” PhD Thesis, Massachusetts Institute of
Technology, March 1999.

[30] Peter Bailis, Aaron Davidson, Alan Fekete, et al.: “Highly Available Transactions:
Virtues and Limitations (Extended Version),” at 40th International Conference on
Very Large Data Bases (VLDB), September 2014.

[31] Bruce Momjian: “MVCC Unmasked,” momjian.us, July 2014.

[32] Annamalai Gurusami: “Repeatable Read Isolation Level in InnoDB - How Con-
sistent Read View Works,” blogs.oracle.com, January 15, 2013.

[33] Nikita Prokopov: “Unoftficial Guide to Datomic Internals,” tonsky.me, May 6,
2014.

[34] Baron Schwartz: “Immutability, MVCC, and Garbage Collection,” xaprb.com,
December 28, 2013.

[35] J. Chris Anderson, Jan Lehnardt, and Noah Slater: CouchDB: The Definitive
Guide. O’Reilly Media, 2010. ISBN: 978-0-596-15589-6

[36] Rikdeb Mukherjee: “Isolation in DB2 (Repeatable Read, Read Stability, Cursor
Stability, Uncommitted Read) with Examples,” mframes.blogspot.co.uk, July 4, 2013.

[37] Steve Hilker: “Cursor Stability (CS) - IBM DB2 Community,” toadworld.com,
March 14, 2013.

[38] Nate Wiger: “An Atomic Rant,” nateware.com, February 18, 2010.
[39] Joel Jacobson: “Riak 2.0: Data Types,” blog.joeljacobson.com, March 23, 2014.

[40] Michael J. Cahill, Uwe Rohm, and Alan Fekete: “Serializable Isolation for Snap-
shot Databases,” at ACM International Conference on Management of Data (SIG-
MOD), June 2008. doi:10.1145/1376616.1376690

[41] Dan R. K. Ports and Kevin Grittner: “Serializable Snapshot Isolation in Post-
greSQL,” at 38th International Conference on Very Large Databases (VLDB), August
2012.

[42] Tony Andrews: “Enforcing Complex Constraints in Oracle,” tonyandrews.blog-
spot.co.uk, October 15, 2004.

[43] Douglas B. Terry, Marvin M. Theimer, Karin Petersen, et al.: “Managing Update
Conflicts in Bayou, a Weakly Connected Replicated Storage System,” at 15th ACM

270 | Chapter7: Transactions

http://research.microsoft.com/pubs/69541/tr-95-51.pdf
http://research.microsoft.com/pubs/69541/tr-95-51.pdf
http://pmg.csail.mit.edu/papers/adya-phd.pdf
http://pmg.csail.mit.edu/papers/adya-phd.pdf
http://arxiv.org/pdf/1302.0309.pdf
http://arxiv.org/pdf/1302.0309.pdf
http://momjian.us/main/presentations/internals.html#mvcc
https://blogs.oracle.com/mysqlinnodb/entry/repeatable_read_isolation_level_in
https://blogs.oracle.com/mysqlinnodb/entry/repeatable_read_isolation_level_in
http://tonsky.me/blog/unofficial-guide-to-datomic-internals/
http://www.xaprb.com/blog/2013/12/28/immutability-mvcc-and-garbage-collection/
http://mframes.blogspot.co.uk/2013/07/isolation-in-cursor.html
http://mframes.blogspot.co.uk/2013/07/isolation-in-cursor.html
http://www.toadworld.com/platforms/ibmdb2/w/wiki/6661.cursor-stability-cs.aspx
http://www.nateware.com/an-atomic-rant.html
http://blog.joeljacobson.com/riak-2-0-data-types/
http://www.cs.nyu.edu/courses/fall12/CSCI-GA.2434-001/p729-cahill.pdf
http://www.cs.nyu.edu/courses/fall12/CSCI-GA.2434-001/p729-cahill.pdf
http://dx.doi.org/10.1145/1376616.1376690
http://drkp.net/papers/ssi-vldb12.pdf
http://drkp.net/papers/ssi-vldb12.pdf
http://tonyandrews.blogspot.co.uk/2004/10/enforcing-complex-constraints-in.html
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.141.7889&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.141.7889&rep=rep1&type=pdf

Symposium on Operating Systems Principles (SOSP), December 1995. doi:
10.1145/224056.224070

[44] Gary Fredericks: “Postgres Serializability Bug,” github.com, September 2015.

[45] Michael Stonebraker, Samuel Madden, Daniel J. Abadi, et al.: “The End of an
Architectural Era (I's Time for a Complete Rewrite),” at 33rd International Confer-
ence on Very Large Data Bases (VLDB), September 2007.

[46] John Hugg: “H-Store/VoltDB Architecture vs. CEP Systems and Newer Stream-
ing Architectures,” at Data @Scale Boston, November 2014.

[47] Robert Kallman, Hideaki Kimura, Jonathan Natkins, et al.: “H-Store: A High-
Performance, Distributed Main Memory Transaction Processing System,” Proceed-
ings of the VLDB Endowment, volume 1, number 2, pages 1496-1499, August 2008.

[48] Rich Hickey: “The Architecture of Datomic,” infoq.com, November 2, 2012.

[49] John Hugg: “Debunking Myths About the VoltDB In-Memory Database,”
voltdb.com, May 12, 2014.

[50] Joseph M. Hellerstein, Michael Stonebraker, and James Hamilton: “Architecture
of a Database System,” Foundations and Trends in Databases, volume 1, number 2,
pages 141-259, November 2007. doi:10.1561/1900000002

[51] Michael J. Cahill: “Serializable Isolation for Snapshot Databases,” PhD Thesis,
University of Sydney, July 2009.

[52] D. Z. Badal: “Correctness of Concurrency Control and Implications in Dis-
tributed Databases,” at 3rd International IEEE Computer Software and Applications
Conference (COMPSAC), November 1979.

[53] Rakesh Agrawal, Michael J. Carey, and Miron Livny: “Concurrency Control Per-
formance Modeling: Alternatives and Implications,” ACM Transactions on Database
Systems (TODS), volume 12, number 4, pages 609-654, December 1987. doi:
10.1145/32204.32220

[54] Dave Rosenthal: “Databases at 14.4MHz,” blog.foundationdb.com, December 10,
2014.

Summary | 271

http://dx.doi.org/10.1145/224056.224070
http://dx.doi.org/10.1145/224056.224070
https://github.com/gfredericks/pg-serializability-bug
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.137.3697&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.137.3697&rep=rep1&type=pdf
https://www.youtube.com/watch?v=hD5M4a1UVz8
https://www.youtube.com/watch?v=hD5M4a1UVz8
http://www.vldb.org/pvldb/1/1454211.pdf
http://www.vldb.org/pvldb/1/1454211.pdf
http://www.infoq.com/articles/Architecture-Datomic
http://voltdb.com/blog/debunking-myths-about-voltdb-memory-database
http://db.cs.berkeley.edu/papers/fntdb07-architecture.pdf
http://db.cs.berkeley.edu/papers/fntdb07-architecture.pdf
http://dx.doi.org/10.1561/1900000002
http://cahill.net.au/wp-content/uploads/2010/02/cahill-thesis.pdf
http://ieeexplore.ieee.org/abstract/document/762563/
http://ieeexplore.ieee.org/abstract/document/762563/
http://www.eecs.berkeley.edu/~brewer/cs262/ConcControl.pdf
http://www.eecs.berkeley.edu/~brewer/cs262/ConcControl.pdf
http://dx.doi.org/10.1145/32204.32220
http://dx.doi.org/10.1145/32204.32220
http://web.archive.org/web/20150427041746/http://blog.foundationdb.com/databases-at-14.4mhz

CHAPTER 8
The Trouble with Distributed Systems

Hey I just met you
The network’s laggy
But here’s my data
So store it maybe

—XKyle Kingsbury, Carly Rae Jepsen and the Perils of Network Partitions (2013)

A recurring theme in the last few chapters has been how systems handle things going
wrong. For example, we discussed replica failover (“Handling Node Outages” on
page 156), replication lag (“Problems with Replication Lag” on page 161), and con-
currency control for transactions (“Weak Isolation Levels” on page 233). As we come
to understand various edge cases that can occur in real systems, we get better at han-
dling them.

However, even though we have talked a lot about faults, the last few chapters have
still been too optimistic. The reality is even darker. We will now turn our pessimism
to the maximum and assume that anything that can go wrong will go wrong.! (Expe-
rienced systems operators will tell you that is a reasonable assumption. If you ask
nicely, they might tell you some frightening stories while nursing their scars of past
battles.)

Working with distributed systems is fundamentally different from writing software
on a single computer—and the main difference is that there are lots of new and excit-
ing ways for things to go wrong [1, 2]. In this chapter, we will get a taste of the prob-
lems that arise in practice, and an understanding of the things we can and cannot rely
on.

i. With one exception: we will assume that faults are non-Byzantine (see “Byzantine Faults” on page 304).

273

In the end, our task as engineers is to build systems that do their job (i.e., meet the
guarantees that users are expecting), in spite of everything going wrong. In Chapter 9,
we will look at some examples of algorithms that can provide such guarantees in a
distributed system. But first, in this chapter, we must understand what challenges we
are up against.

This chapter is a thoroughly pessimistic and depressing overview of things that may
go wrong in a distributed system. We will look into problems with networks (“Unre-
liable Networks” on page 277); clocks and timing issues (“Unreliable Clocks” on page
287); and we’ll discuss to what degree they are avoidable. The consequences of all
these issues are disorienting, so we’ll explore how to think about the state of a dis-
tributed system and how to reason about things that have happened (“Knowledge,
Truth, and Lies” on page 300).

Faults and Partial Failures

When you are writing a program on a single computer, it normally behaves in a fairly
predictable way: either it works or it doesn’t. Buggy software may give the appearance
that the computer is sometimes “having a bad day” (a problem that is often fixed by a
reboot), but that is mostly just a consequence of badly written software.

There is no fundamental reason why software on a single computer should be flaky:
when the hardware is working correctly, the same operation always produces the
same result (it is deterministic). If there is a hardware problem (e.g., memory corrup-
tion or a loose connector), the consequence is usually a total system failure (e.g., ker-
nel panic, “blue screen of death,” failure to start up). An individual computer with
good software is usually either fully functional or entirely broken, but not something
in between.

This is a deliberate choice in the design of computers: if an internal fault occurs, we
prefer a computer to crash completely rather than returning a wrong result, because
wrong results are difficult and confusing to deal with. Thus, computers hide the fuzzy
physical reality on which they are implemented and present an idealized system
model that operates with mathematical perfection. A CPU instruction always does
the same thing; if you write some data to memory or disk, that data remains intact
and doesn’t get randomly corrupted. This design goal of always-correct computation
goes all the way back to the very first digital computer [3].

When you are writing software that runs on several computers, connected by a net-
work, the situation is fundamentally different. In distributed systems, we are no
longer operating in an idealized system model—we have no choice but to confront
the messy reality of the physical world. And in the physical world, a remarkably wide
range of things can go wrong, as illustrated by this anecdote [4]:

274 | Chapter 8: The Trouble with Distributed Systems

In my limited experience I've dealt with long-lived network partitions in a single data
center (DC), PDU [power distribution unit] failures, switch failures, accidental power
cycles of whole racks, whole-DC backbone failures, whole-DC power failures, and a
hypoglycemic driver smashing his Ford pickup truck into a DC’s HVAC [heating, ven-
tilation, and air conditioning] system. And I'm not even an ops guy.

—Coda Hale

In a distributed system, there may well be some parts of the system that are broken in
some unpredictable way, even though other parts of the system are working fine. This
is known as a partial failure. The difficulty is that partial failures are nondeterministic:
if you try to do anything involving multiple nodes and the network, it may sometimes
work and sometimes unpredictably fail. As we shall see, you may not even know
whether something succeeded or not, as the time it takes for a message to travel
across a network is also nondeterministic!

This nondeterminism and possibility of partial failures is what makes distributed sys-
tems hard to work with [5].

Cloud Computing and Supercomputing

There is a spectrum of philosophies on how to build large-scale computing systems:

+ At one end of the scale is the field of high-performance computing (HPC). Super-
computers with thousands of CPUs are typically used for computationally inten-
sive scientific computing tasks, such as weather forecasting or molecular
dynamics (simulating the movement of atoms and molecules).

o At the other extreme is cloud computing, which is not very well defined [6] but is
often associated with multi-tenant datacenters, commodity computers connected
with an IP network (often Ethernet), elastic/on-demand resource allocation, and
metered billing.

o Traditional enterprise datacenters lie somewhere between these extremes.

With these philosophies come very different approaches to handling faults. In a
supercomputer, a job typically checkpoints the state of its computation to durable
storage from time to time. If one node fails, a common solution is to simply stop the
entire cluster workload. After the faulty node is repaired, the computation is restarted
from the last checkpoint [7, 8]. Thus, a supercomputer is more like a single-node
computer than a distributed system: it deals with partial failure by letting it escalate
into total failure—if any part of the system fails, just let everything crash (like a kernel
panic on a single machine).

In this book we focus on systems for implementing internet services, which usually
look very different from supercomputers:

Faults and Partial Failures | 275

o Many internet-related applications are online, in the sense that they need to be
able to serve users with low latency at any time. Making the service unavailable—
for example, stopping the cluster for repair—is not acceptable. In contrast, off-
line (batch) jobs like weather simulations can be stopped and restarted with fairly
low impact.

o Supercomputers are typically built from specialized hardware, where each node
is quite reliable, and nodes communicate through shared memory and remote
direct memory access (RDMA). On the other hand, nodes in cloud services are
built from commodity machines, which can provide equivalent performance at
lower cost due to economies of scale, but also have higher failure rates.

o Large datacenter networks are often based on IP and Ethernet, arranged in Clos
topologies to provide high bisection bandwidth [9]. Supercomputers often use
specialized network topologies, such as multi-dimensional meshes and toruses
[10], which yield better performance for HPC workloads with known communi-
cation patterns.

« The bigger a system gets, the more likely it is that one of its components is bro-
ken. Over time, broken things get fixed and new things break, but in a system
with thousands of nodes, it is reasonable to assume that something is always bro-
ken [7]. When the error handling strategy consists of simply giving up, a large
system can end up spending a lot of its time recovering from faults rather than
doing useful work [8].

o If the system can tolerate failed nodes and still keep working as a whole, that is a
very useful feature for operations and maintenance: for example, you can per-
form a rolling upgrade (see Chapter 4), restarting one node at a time, while the
service continues serving users without interruption. In cloud environments, if
one virtual machine is not performing well, you can just kill it and request a new
one (hoping that the new one will be faster).

o In a geographically distributed deployment (keeping data geographically close to
your users to reduce access latency), communication most likely goes over the
internet, which is slow and unreliable compared to local networks. Supercom-
puters generally assume that all of their nodes are close together.

If we want to make distributed systems work, we must accept the possibility of partial
failure and build fault-tolerance mechanisms into the software. In other words, we
need to build a reliable system from unreliable components. (As discussed in “Relia-
bility” on page 6, there is no such thing as perfect reliability, so we’ll need to under-
stand the limits of what we can realistically promise.)

Even in smaller systems consisting of only a few nodes, it’s important to think about
partial failure. In a small system, it’s quite likely that most of the components are
working correctly most of the time. However, sooner or later, some part of the system

276 | Chapter 8: The Trouble with Distributed Systems

will become faulty, and the software will have to somehow handle it. The fault han-
dling must be part of the software design, and you (as operator of the software) need
to know what behavior to expect from the software in the case of a fault.

It would be unwise to assume that faults are rare and simply hope for the best. It is
important to consider a wide range of possible faults—even fairly unlikely ones—and
to artificially create such situations in your testing environment to see what happens.
In distributed systems, suspicion, pessimism, and paranoia pay off.

Building a Reliable System from Unreliable Components

You may wonder whether this makes any sense—intuitively it may seem like a system
can only be as reliable as its least reliable component (its weakest link). This is not the
case: in fact, it is an old idea in computing to construct a more reliable system from a
less reliable underlying base [11]. For example:

o Error-correcting codes allow digital data to be transmitted accurately across a
communication channel that occasionally gets some bits wrong, for example due
to radio interference on a wireless network [12].

« IP (the Internet Protocol) is unreliable: it may drop, delay, duplicate, or reorder
packets. TCP (the Transmission Control Protocol) provides a more reliable
transport layer on top of IP: it ensures that missing packets are retransmitted,
duplicates are eliminated, and packets are reassembled into the order in which
they were sent.

Although the system can be more reliable than its underlying parts, there is always a
limit to how much more reliable it can be. For example, error-correcting codes can
deal with a small number of single-bit errors, but if your signal is swamped by inter-
ference, there is a fundamental limit to how much data you can get through your
communication channel [13]. TCP can hide packet loss, duplication, and reordering
from you, but it cannot magically remove delays in the network.

Although the more reliable higher-level system is not perfect, it’s still useful because it
takes care of some of the tricky low-level faults, and so the remaining faults are usu-
ally easier to reason about and deal with. We will explore this matter further in “The
end-to-end argument” on page 519.

Unreliable Networks

As discussed in the introduction to Part II, the distributed systems we focus on in this
book are shared-nothing systems: i.e., a bunch of machines connected by a network.
The network is the only way those machines can communicate—we assume that each

Unreliable Networks | 277

machine has its own memory and disk, and one machine cannot access another
machine’s memory or disk (except by making requests to a service over the network).

Shared-nothing is not the only way of building systems, but it has become the domi-
nant approach for building internet services, for several reasons: it’s comparatively
cheap because it requires no special hardware, it can make use of commoditized
cloud computing services, and it can achieve high reliability through redundancy
across multiple geographically distributed datacenters.

The internet and most internal networks in datacenters (often Ethernet) are asyn-
chronous packet networks. In this kind of network, one node can send a message (a
packet) to another node, but the network gives no guarantees as to when it will arrive,
or whether it will arrive at all. If you send a request and expect a response, many
things could go wrong (some of which are illustrated in Figure 8-1):

1. Your request may have been lost (perhaps someone unplugged a network cable).

2. Your request may be waiting in a queue and will be delivered later (perhaps the
network or the recipient is overloaded).

3. The remote node may have failed (perhaps it crashed or it was powered down).

4. The remote node may have temporarily stopped responding (perhaps it is expe-
riencing a long garbage collection pause; see “Process Pauses” on page 295), but it
will start responding again later.

5. The remote node may have processed your request, but the response has been
lost on the network (perhaps a network switch has been misconfigured).

6. The remote node may have processed your request, but the response has been
delayed and will be delivered later (perhaps the network or your own machine is
overloaded).

(a)

Client %

Network ¢ -----3

Service @ ---------------- node unresponsive

Figure 8-1. If you send a request and don’t get a response, it’s not possible to distinguish
whether (a) the request was lost, (b) the remote node is down, or (c) the response was
lost.

278 | Chapter 8: The Trouble with Distributed Systems

The sender can’t even tell whether the packet was delivered: the only option is for the
recipient to send a response message, which may in turn be lost or delayed. These
issues are indistinguishable in an asynchronous network: the only information you
have is that you haven’t received a response yet. If you send a request to another node
and don’t receive a response, it is impossible to tell why.

The usual way of handling this issue is a timeout: after some time you give up waiting
and assume that the response is not going to arrive. However, when a timeout occurs,
you still don’t know whether the remote node got your request or not (and if the
request is still queued somewhere, it may still be delivered to the recipient, even if the
sender has given up on it).

Network Faults in Practice

We have been building computer networks for decades—one might hope that by now
we would have figured out how to make them reliable. However, it seems that we
have not yet succeeded.

There are some systematic studies, and plenty of anecdotal evidence, showing that
network problems can be surprisingly common, even in controlled environments like
a datacenter operated by one company [14]. One study in a medium-sized datacenter
found about 12 network faults per month, of which half disconnected a single
machine, and half disconnected an entire rack [15]. Another study measured the fail-
ure rates of components like top-of-rack switches, aggregation switches, and load bal-
ancers [16]. It found that adding redundant networking gear doesn’t reduce faults as
much as you might hope, since it doesn’t guard against human error (e.g., misconfig-
ured switches), which is a major cause of outages.

Public cloud services such as EC2 are notorious for having frequent transient net-
work glitches [14], and well-managed private datacenter networks can be stabler
environments. Nevertheless, nobody is immune from network problems: for exam-
ple, a problem during a software upgrade for a switch could trigger a network topol-
ogy reconfiguration, during which network packets could be delayed for more than a
minute [17]. Sharks might bite undersea cables and damage them [18]. Other surpris-
ing faults include a network interface that sometimes drops all inbound packets but
sends outbound packets successfully [19]: just because a network link works in one
direction doesn’t guarantee it’s also working in the opposite direction.

Network partitions

When one part of the network is cut off from the rest due to a net-
work fault, that is sometimes called a network partition or netsplit.
In this book we’ll generally stick with the more general term net-
work fault, to avoid confusion with partitions (shards) of a storage
system, as discussed in Chapter 6.

Unreliable Networks | 279

Even if network faults are rare in your environment, the fact that faults can occur
means that your software needs to be able to handle them. Whenever any communi-
cation happens over a network, it may fail—there is no way around it.

If the error handling of network faults is not defined and tested, arbitrarily bad things
could happen: for example, the cluster could become deadlocked and permanently
unable to serve requests, even when the network recovers [20], or it could even delete
all of your data [21]. If software is put in an unanticipated situation, it may do arbi-
trary unexpected things.

Handling network faults doesn’t necessarily mean tolerating them: if your network is
normally fairly reliable, a valid approach may be to simply show an error message to
users while your network is experiencing problems. However, you do need to know
how your software reacts to network problems and ensure that the system can
recover from them. It may make sense to deliberately trigger network problems and
test the system’s response (this is the idea behind Chaos Monkey; see “Reliability” on

page 6).

Detecting Faults

Many systems need to automatically detect faulty nodes. For example:

« A load balancer needs to stop sending requests to a node that is dead (i.e., take it
out of rotation).

« In a distributed database with single-leader replication, if the leader fails, one of
the followers needs to be promoted to be the new leader (see “Handling Node
Outages” on page 156).

Unfortunately, the uncertainty about the network makes it difficult to tell whether a
node is working or not. In some specific circumstances you might get some feedback
to explicitly tell you that something is not working:

« If you can reach the machine on which the node should be running, but no pro-
cess is listening on the destination port (e.g., because the process crashed), the
operating system will helpfully close or refuse TCP connections by sending a RST
or FIN packet in reply. However, if the node crashed while it was handling your
request, you have no way of knowing how much data was actually processed by
the remote node [22].

o Ifanode process crashed (or was killed by an administrator) but the node’s oper-
ating system is still running, a script can notify other nodes about the crash so
that another node can take over quickly without having to wait for a timeout to
expire. For example, HBase does this [23].

280 | Chapter8: The Trouble with Distributed Systems

o If you have access to the management interface of the network switches in your
datacenter, you can query them to detect link failures at a hardware level (e.g., if
the remote machine is powered down). This option is ruled out if you're con-
necting via the internet, or if you’re in a shared datacenter with no access to the
switches themselves, or if you can’t reach the management interface due to a net-
work problem.

o Ifarouter is sure that the IP address you're trying to connect to is unreachable, it
may reply to you with an ICMP Destination Unreachable packet. However, the
router doesn’t have a magic failure detection capability either—it is subject to the
same limitations as other participants of the network.

Rapid feedback about a remote node being down is useful, but you can’t count on it.
Even if TCP acknowledges that a packet was delivered, the application may have
crashed before handling it. If you want to be sure that a request was successful, you
need a positive response from the application itself [24].

Conversely, if something has gone wrong, you may get an error response at some
level of the stack, but in general you have to assume that you will get no response at
all. You can retry a few times (TCP retries transparently, but you may also retry at the
application level), wait for a timeout to elapse, and eventually declare the node dead if
you don’t hear back within the timeout.

Timeouts and Unbounded Delays

If a timeout is the only sure way of detecting a fault, then how long should the time-
out be? There is unfortunately no simple answer.

A long timeout means a long wait until a node is declared dead (and during this time,
users may have to wait or see error messages). A short timeout detects faults faster,
but carries a higher risk of incorrectly declaring a node dead when in fact it has only
suffered a temporary slowdown (e.g., due to a load spike on the node or the network).

Prematurely declaring a node dead is problematic: if the node is actually alive and in
the middle of performing some action (for example, sending an email), and another
node takes over, the action may end up being performed twice. We will discuss this
issue in more detail in “Knowledge, Truth, and Lies” on page 300, and in Chapters 9
and 11.

When a node is declared dead, its responsibilities need to be transferred to other
nodes, which places additional load on other nodes and the network. If the system is
already struggling with high load, declaring nodes dead prematurely can make the
problem worse. In particular, it could happen that the node actually wasn’t dead but
only slow to respond due to overload; transferring its load to other nodes can cause a
cascading failure (in the extreme case, all nodes declare each other dead, and every-
thing stops working).

Unreliable Networks | 281

Imagine a fictitious system with a network that guaranteed a maximum delay for
packets—every packet is either delivered within some time d, or it is lost, but delivery
never takes longer than d. Furthermore, assume that you can guarantee that a non-
failed node always handles a request within some time r. In this case, you could guar-
antee that every successful request receives a response within time 2d + r—and if you
don’t receive a response within that time, you know that either the network or the
remote node is not working. If this was true, 2d + r would be a reasonable timeout to
use.

Unfortunately, most systems we work with have neither of those guarantees: asyn-
chronous networks have unbounded delays (that is, they try to deliver packets as
quickly as possible, but there is no upper limit on the time it may take for a packet to
arrive), and most server implementations cannot guarantee that they can handle
requests within some maximum time (see “Response time guarantees” on page 298).
For failure detection, it’s not sufficient for the system to be fast most of the time: if
your timeout is low, it only takes a transient spike in round-trip times to throw the
system off-balance.

Network congestion and queueing

When driving a car, travel times on road networks often vary most due to traftic con-
gestion. Similarly, the variability of packet delays on computer networks is most often
due to queueing [25]:

o If several different nodes simultaneously try to send packets to the same destina-
tion, the network switch must queue them up and feed them into the destination
network link one by one (as illustrated in Figure 8-2). On a busy network link, a
packet may have to wait a while until it can get a slot (this is called network con-
gestion). If there is so much incoming data that the switch queue fills up, the
packet is dropped, so it needs to be resent—even though the network is function-
ing fine.

o When a packet reaches the destination machine, if all CPU cores are currently
busy, the incoming request from the network is queued by the operating system
until the application is ready to handle it. Depending on the load on the machine,
this may take an arbitrary length of time.

o In virtualized environments, a running operating system is often paused for tens
of milliseconds while another virtual machine uses a CPU core. During this time,
the VM cannot consume any data from the network, so the incoming data is
queued (buffered) by the virtual machine monitor [26], further increasing the
variability of network delays.

o TCP performs flow control (also known as congestion avoidance or backpressure),
in which a node limits its own rate of sending in order to avoid overloading a

282 | Chapter8: The Trouble with Distributed Systems

network link or the receiving node [27]. This means additional queueing at the
sender before the data even enters the network.

Input links Network switch Output links
Port 2> :[------- D -------------- D ----------- » Port 2
Port 4 DDDDDDD») D —————————————— D —————— > Port4
Switch fabric Output queues

Figure 8-2. If several machines send network traffic to the same destination, its switch
queue can fill up. Here, ports 1, 2, and 4 are all trying to send packets to port 3.

Moreover, TCP considers a packet to be lost if it is not acknowledged within some
timeout (which is calculated from observed round-trip times), and lost packets are
automatically retransmitted. Although the application does not see the packet loss
and retransmission, it does see the resulting delay (waiting for the timeout to expire,
and then waiting for the retransmitted packet to be acknowledged).

TCP Versus UDP

Some latency-sensitive applications, such as videoconferencing and Voice over IP
(VoIP), use UDP rather than TCP. It’s a trade-off between reliability and variability
of delays: as UDP does not perform flow control and does not retransmit lost packets,
it avoids some of the reasons for variable network delays (although it is still suscepti-
ble to switch queues and scheduling delays).

UDP is a good choice in situations where delayed data is worthless. For example, in a
VoIP phone call, there probably isn’t enough time to retransmit a lost packet before
its data is due to be played over the loudspeakers. In this case, there’s no point in
retransmitting the packet—the application must instead fill the missing packet’s time
slot with silence (causing a brief interruption in the sound) and move on in the
stream. The retry happens at the human layer instead. (“Could you repeat that please?
The sound just cut out for a moment.”)

All of these factors contribute to the variability of network delays. Queueing delays
have an especially wide range when a system is close to its maximum capacity: a sys-

Unreliable Networks | 283

tem with plenty of spare capacity can easily drain queues, whereas in a highly utilized
system, long queues can build up very quickly.

In public clouds and multi-tenant datacenters, resources are shared among many
customers: the network links and switches, and even each machine’s network inter-
face and CPUs (when running on virtual machines), are shared. Batch workloads
such as MapReduce (see Chapter 10) can easily saturate network links. As you have
no control over or insight into other customers’ usage of the shared resources, net-
work delays can be highly variable if someone near you (a noisy neighbor) is using a
lot of resources [28, 29].

In such environments, you can only choose timeouts experimentally: measure the
distribution of network round-trip times over an extended period, and over many
machines, to determine the expected variability of delays. Then, taking into account
your application’s characteristics, you can determine an appropriate trade-off
between failure detection delay and risk of premature timeouts.

Even better, rather than using configured constant timeouts, systems can continually
measure response times and their variability (jitter), and automatically adjust time-
outs according to the observed response time distribution. This can be done with a
Phi Accrual failure detector [30], which is used for example in Akka and Cassandra
[31]. TCP retransmission timeouts also work similarly [27].

Synchronous Versus Asynchronous Networks

Distributed systems would be a lot simpler if we could rely on the network to deliver
packets with some fixed maximum delay, and not to drop packets. Why can’t we
solve this at the hardware level and make the network reliable so that the software
doesn’t need to worry about it?

To answer this question, it’s interesting to compare datacenter networks to the tradi-
tional fixed-line telephone network (non-cellular, non-VoIP), which is extremely
reliable: delayed audio frames and dropped calls are very rare. A phone call requires a
constantly low end-to-end latency and enough bandwidth to transfer the audio sam-
ples of your voice. Wouldn’t it be nice to have similar reliability and predictability in
computer networks?

When you make a call over the telephone network, it establishes a circuit: a fixed,
guaranteed amount of bandwidth is allocated for the call, along the entire route
between the two callers. This circuit remains in place until the call ends [32]. For
example, an ISDN network runs at a fixed rate of 4,000 frames per second. When a
call is established, it is allocated 16 bits of space within each frame (in each direction).
Thus, for the duration of the call, each side is guaranteed to be able to send exactly 16
bits of audio data every 250 microseconds [33, 34].

284 | Chapter 8: The Trouble with Distributed Systems

This kind of network is synchronous: even as data passes through several routers, it
does not suffer from queueing, because the 16 bits of space for the call have already
been reserved in the next hop of the network. And because there is no queueing, the
maximum end-to-end latency of the network is fixed. We call this a bounded delay.

Can we not simply make network delays predictable?

Note that a circuit in a telephone network is very different from a TCP connection: a
circuit is a fixed amount of reserved bandwidth which nobody else can use while the
circuit is established, whereas the packets of a TCP connection opportunistically use
whatever network bandwidth is available. You can give TCP a variable-sized block of
data (e.g., an email or a web page), and it will try to transfer it in the shortest time
possible. While a TCP connection is idle, it doesn’t use any bandwidth.™

If datacenter networks and the internet were circuit-switched networks, it would be
possible to establish a guaranteed maximum round-trip time when a circuit was set
up. However, they are not: Ethernet and IP are packet-switched protocols, which suf-
fer from queueing and thus unbounded delays in the network. These protocols do
not have the concept of a circuit.

Why do datacenter networks and the internet use packet switching? The answer is
that they are optimized for bursty traffic. A circuit is good for an audio or video call,
which needs to transfer a fairly constant number of bits per second for the duration
of the call. On the other hand, requesting a web page, sending an email, or transfer-
ring a file doesn’t have any particular bandwidth requirement—we just want it to
complete as quickly as possible.

If you wanted to transfer a file over a circuit, you would have to guess a bandwidth
allocation. If you guess too low, the transfer is unnecessarily slow, leaving network
capacity unused. If you guess too high, the circuit cannot be set up (because the net-
work cannot allow a circuit to be created if its bandwidth allocation cannot be guar-
anteed). Thus, using circuits for bursty data transfers wastes network capacity and
makes transfers unnecessarily slow. By contrast, TCP dynamically adapts the rate of
data transfer to the available network capacity.

There have been some attempts to build hybrid networks that support both circuit
switching and packet switching, such as ATM.™ InfiniBand has some similarities [35]:
it implements end-to-end flow control at the link layer, which reduces the need for

ii. Except perhaps for an occasional keepalive packet, if TCP keepalive is enabled.

iii. Asynchronous Transfer Mode (ATM) was a competitor to Ethernet in the 1980s [32], but it didn’t gain
much adoption outside of telephone network core switches. It has nothing to do with automatic teller
machines (also known as cash machines), despite sharing an acronym. Perhaps, in some parallel universe, the
internet is based on something like ATM—in that universe, internet video calls are probably a lot more relia-
ble than they are in ours, because they don’t suffer from dropped and delayed packets.

Unreliable Networks | 285

queueing in the network, although it can still suffer from delays due to link conges-
tion [36]. With careful use of quality of service (QoS, prioritization and scheduling of
packets) and admission control (rate-limiting senders), it is possible to emulate circuit
switching on packet networks, or provide statistically bounded delay [25, 32].

Latency and Resource Utilization

More generally, you can think of variable delays as a consequence of dynamic
resource partitioning.

Say you have a wire between two telephone switches that can carry up to 10,000
simultaneous calls. Each circuit that is switched over this wire occupies one of those
call slots. Thus, you can think of the wire as a resource that can be shared by up to
10,000 simultaneous users. The resource is divided up in a static way: even if you're
the only call on the wire right now, and all other 9,999 slots are unused, your circuit is
still allocated the same fixed amount of bandwidth as when the wire is fully utilized.

By contrast, the internet shares network bandwidth dynamically. Senders push and
jostle with each other to get their packets over the wire as quickly as possible, and the
network switches decide which packet to send (i.e., the bandwidth allocation) from
one moment to the next. This approach has the downside of queueing, but the advan-
tage is that it maximizes utilization of the wire. The wire has a fixed cost, so if you
utilize it better, each byte you send over the wire is cheaper.

A similar situation arises with CPUs: if you share each CPU core dynamically
between several threads, one thread sometimes has to wait in the operating system’s
run queue while another thread is running, so a thread can be paused for varying
lengths of time. However, this utilizes the hardware better than if you allocated a
static number of CPU cycles to each thread (see “Response time guarantees” on page
298). Better hardware utilization is also a significant motivation for using virtual
machines.

Latency guarantees are achievable in certain environments, if resources are statically
partitioned (e.g., dedicated hardware and exclusive bandwidth allocations). However,
it comes at the cost of reduced utilization—in other words, it is more expensive. On
the other hand, multi-tenancy with dynamic resource partitioning provides better
utilization, so it is cheaper, but it has the downside of variable delays.

Variable delays in networks are not a law of nature, but simply the result of a cost/
benefit trade-off.

286 | Chapter 8: The Trouble with Distributed Systems

However, such quality of service is currently not enabled in multi-tenant datacenters
and public clouds, or when communicating via the internet.” Currently deployed
technology does not allow us to make any guarantees about delays or reliability of the
network: we have to assume that network congestion, queueing, and unbounded
delays will happen. Consequently, there’s no “correct” value for timeouts—they need
to be determined experimentally.

Unreliable Clocks

Clocks and time are important. Applications depend on clocks in various ways to
answer questions like the following:

1. Has this request timed out yet?

2. What’s the 99th percentile response time of this service?

bt

How many queries per second did this service handle on average in the last five
minutes?

How long did the user spend on our site?
When was this article published?
At what date and time should the reminder email be sent?

When does this cache entry expire?

® N N e

What is the timestamp on this error message in the log file?

Examples 1-4 measure durations (e.g., the time interval between a request being sent
and a response being received), whereas examples 5-8 describe points in time (events
that occur on a particular date, at a particular time).

In a distributed system, time is a tricky business, because communication is not
instantaneous: it takes time for a message to travel across the network from one
machine to another. The time when a message is received is always later than the
time when it is sent, but due to variable delays in the network, we don’t know how
much later. This fact sometimes makes it difficult to determine the order in which
things happened when multiple machines are involved.

Moreover, each machine on the network has its own clock, which is an actual hard-
ware device: usually a quartz crystal oscillator. These devices are not perfectly accu-
rate, so each machine has its own notion of time, which may be slightly faster or

iv. Peering agreements between internet service providers and the establishment of routes through the Bor-
der Gateway Protocol (BGP), bear closer resemblance to circuit switching than IP itself. At this level, it is pos-
sible to buy dedicated bandwidth. However, internet routing operates at the level of networks, not individual
connections between hosts, and at a much longer timescale.

Unreliable Clocks | 287

slower than on other machines. It is possible to synchronize clocks to some degree:
the most commonly used mechanism is the Network Time Protocol (NTP), which
allows the computer clock to be adjusted according to the time reported by a group of
servers [37]. The servers in turn get their time from a more accurate time source,
such as a GPS receiver.

Monotonic Versus Time-of-Day Clocks

Modern computers have at least two different kinds of clocks: a time-of-day clock and
a monotonic clock. Although they both measure time, it is important to distinguish
the two, since they serve different purposes.

Time-of-day clocks

A time-of-day clock does what you intuitively expect of a clock: it returns the current
date and time according to some calendar (also known as wall-clock time). For exam-
ple, clock_gettime(CLOCK_REALTIME) on Linux' and System.currentTimeMillis()
in Java return the number of seconds (or milliseconds) since the epoch: midnight
UTC on January 1, 1970, according to the Gregorian calendar, not counting leap sec-
onds. Some systems use other dates as their reference point.

Time-of-day clocks are usually synchronized with NTP, which means that a time-
stamp from one machine (ideally) means the same as a timestamp on another
machine. However, time-of-day clocks also have various oddities, as described in the
next section. In particular, if the local clock is too far ahead of the NTP server, it may
be forcibly reset and appear to jump back to a previous point in time. These jumps, as
well as the fact that they often ignore leap seconds, make time-of-day clocks unsuita-
ble for measuring elapsed time [38].

Time-of-day clocks have also historically had quite a coarse-grained resolution, e.g.,
moving forward in steps of 10 ms on older Windows systems [39]. On recent sys-
tems, this is less of a problem.

Monotonic clocks

A monotonic clock is suitable for measuring a duration (time interval), such as a
timeout or a service’s response time: clock_gettime(CLOCK_MONOTONIC) on Linux
and System.nanoTime() in Java are monotonic clocks, for example. The name comes
from the fact that they are guaranteed to always move forward (whereas a time-of-
day clock may jump back in time).

v. Although the clock is called real-time, it has nothing to do with real-time operating systems, as discussed
in “Response time guarantees” on page 298.

288 | Chapter 8: The Trouble with Distributed Systems

You can check the value of the monotonic clock at one point in time, do something,
and then check the clock again at a later time. The difference between the two values
tells you how much time elapsed between the two checks. However, the absolute
value of the clock is meaningless: it might be the number of nanoseconds since the
computer was started, or something similarly arbitrary. In particular, it makes no
sense to compare monotonic clock values from two different computers, because they
don’t mean the same thing.

On a server with multiple CPU sockets, there may be a separate timer per CPU,
which is not necessarily synchronized with other CPUs. Operating systems compen-
sate for any discrepancy and try to present a monotonic view of the clock to applica-
tion threads, even as they are scheduled across different CPUs. However, it is wise to
take this guarantee of monotonicity with a pinch of salt [40].

NTP may adjust the frequency at which the monotonic clock moves forward (this is
known as slewing the clock) if it detects that the computer’s local quartz is moving
faster or slower than the NTP server. By default, NTP allows the clock rate to be spee-
ded up or slowed down by up to 0.05%, but NTP cannot cause the monotonic clock
to jump forward or backward. The resolution of monotonic clocks is usually quite
good: on most systems they can measure time intervals in microseconds or less.

In a distributed system, using a monotonic clock for measuring elapsed time (e.g.,
timeouts) is usually fine, because it doesn’t assume any synchronization between dif-
ferent nodes’ clocks and is not sensitive to slight inaccuracies of measurement.

Clock Synchronization and Accuracy

Monotonic clocks don’t need synchronization, but time-of-day clocks need to be set
according to an NTP server or other external time source in order to be useful.
Unfortunately, our methods for getting a clock to tell the correct time aren’t nearly as
reliable or accurate as you might hope—hardware clocks and NTP can be fickle
beasts. To give just a few examples:

o The quartz clock in a computer is not very accurate: it drifts (runs faster or
slower than it should). Clock drift varies depending on the temperature of the
machine. Google assumes a clock drift of 200 ppm (parts per million) for its
servers [41], which is equivalent to 6 ms drift for a clock that is resynchronized
with a server every 30 seconds, or 17 seconds drift for a clock that is resynchron-
ized once a day. This drift limits the best possible accuracy you can achieve, even
if everything is working correctly.

o If a computer’s clock differs too much from an NTP server, it may refuse to syn-
chronize, or the local clock will be forcibly reset [37]. Any applications observing
the time before and after this reset may see time go backward or suddenly jump
forward.

Unreliable Clocks | 289

o If a node is accidentally firewalled off from NTP servers, the misconfiguration
may go unnoticed for some time. Anecdotal evidence suggests that this does hap-
pen in practice.

o NTP synchronization can only be as good as the network delay, so there is a limit
to its accuracy when you’re on a congested network with variable packet delays.
One experiment showed that a minimum error of 35 ms is achievable when syn-
chronizing over the internet [42], though occasional spikes in network delay lead
to errors of around a second. Depending on the configuration, large network
delays can cause the NTP client to give up entirely.

« Some NTP servers are wrong or misconfigured, reporting time that is off by
hours [43, 44]. NTP clients are quite robust, because they query several servers
and ignore outliers. Nevertheless, it’s somewhat worrying to bet the correctness
of your systems on the time that you were told by a stranger on the internet.

o Leap seconds result in a minute that is 59 seconds or 61 seconds long, which
messes up timing assumptions in systems that are not designed with leap seconds
in mind [45]. The fact that leap seconds have crashed many large systems [38,
46] shows how easy it is for incorrect assumptions about clocks to sneak into a
system. The best way of handling leap seconds may be to make NTP servers “lie,”
by performing the leap second adjustment gradually over the course of a day
(this is known as smearing) [47, 48], although actual NTP server behavior varies
in practice [49].

o In virtual machines, the hardware clock is virtualized, which raises additional
challenges for applications that need accurate timekeeping [50]. When a CPU
core is shared between virtual machines, each VM is paused for tens of milli-
seconds while another VM is running. From an application’s point of view, this
pause manifests itself as the clock suddenly jumping forward [26].

o If you run software on devices that you don’t fully control (e.g., mobile or
embedded devices), you probably cannot trust the device’s hardware clock at all.
Some users deliberately set their hardware clock to an incorrect date and time,
for example to circumvent timing limitations in games. As a result, the clock
might be set to a time wildly in the past or the future.

It is possible to achieve very good clock accuracy if you care about it sufficiently to
invest significant resources. For example, the MiFID II draft European regulation for
financial institutions requires all high-frequency trading funds to synchronize their
clocks to within 100 microseconds of UTC, in order to help debug market anomalies
such as “flash crashes” and to help detect market manipulation [51].

Such accuracy can be achieved using GPS receivers, the Precision Time Protocol
(PTP) [52], and careful deployment and monitoring. However, it requires significant
effort and expertise, and there are plenty of ways clock synchronization can go

290 | Chapter8: The Trouble with Distributed Systems

wrong. If your NTP daemon is misconfigured, or a firewall is blocking NTP traffic,
the clock error due to drift can quickly become large.

Relying on Synchronized Clocks

The problem with clocks is that while they seem simple and easy to use, they have a
surprising number of pitfalls: a day may not have exactly 86,400 seconds, time-of-day
clocks may move backward in time, and the time on one node may be quite different
from the time on another node.

Earlier in this chapter we discussed networks dropping and arbitrarily delaying pack-
ets. Even though networks are well behaved most of the time, software must be
designed on the assumption that the network will occasionally be faulty, and the soft-
ware must handle such faults gracefully. The same is true with clocks: although they
work quite well most of the time, robust software needs to be prepared to deal with
incorrect clocks.

Part of the problem is that incorrect clocks easily go unnoticed. If a machine’s CPU is
defective or its network is misconfigured, it most likely won’t work at all, so it will
quickly be noticed and fixed. On the other hand, if its quartz clock is defective or its
NTP client is misconfigured, most things will seem to work fine, even though its
clock gradually drifts further and further away from reality. If some piece of software
is relying on an accurately synchronized clock, the result is more likely to be silent
and subtle data loss than a dramatic crash [53, 54].

Thus, if you use software that requires synchronized clocks, it is essential that you
also carefully monitor the clock offsets between all the machines. Any node whose
clock drifts too far from the others should be declared dead and removed from the
cluster. Such monitoring ensures that you notice the broken clocks before they can
cause too much damage.

Timestamps for ordering events

Let’s consider one particular situation in which it is tempting, but dangerous, to rely
on clocks: ordering of events across multiple nodes. For example, if two clients write
to a distributed database, who got there first? Which write is the more recent one?

Figure 8-3 illustrates a dangerous use of time-of-day clocks in a database with multi-
leader replication (the example is similar to Figure 5-9). Client A writes x = 1 on node
1; the write is replicated to node 3; client B increments x on node 3 (we now have
x = 2); and finally, both writes are replicated to node 2.

Unreliable Clocks | 291

ok
[42.003] [[42.005] [42.006] [42.007] [42.008]
Node1@»—»i »»»»»»»»»»» [T T e e--o- To---»

[42.001] [42.004] [42.005]
Node 3 @ ---------- N b W - | R - >

ClientB + - -------c i . >
incrementx +=1

Figure 8-3. The write by client B is causally later than the write by client A, but B’s
write has an earlier timestamp.

In Figure 8-3, when a write is replicated to other nodes, it is tagged with a timestamp
according to the time-of-day clock on the node where the write originated. The clock
synchronization is very good in this example: the skew between node 1 and node 3 is
less than 3 ms, which is probably better than you can expect in practice.

Nevertheless, the timestamps in Figure 8-3 fail to order the events correctly: the write
x =1 has a timestamp of 42.004 seconds, but the write x = 2 has a timestamp of
42.003 seconds, even though x = 2 occurred unambiguously later. When node 2
receives these two events, it will incorrectly conclude that x = 1 is the more recent
value and drop the write x = 2. In effect, client B’s increment operation will be lost.

This conflict resolution strategy is called last write wins (LWW), and it is widely used
in both multi-leader replication and leaderless databases such as Cassandra [53] and
Riak [54] (see “Last write wins (discarding concurrent writes)” on page 186). Some
implementations generate timestamps on the client rather than the server, but this
doesn’t change the fundamental problems with LWW:

o Database writes can mysteriously disappear: a node with a lagging clock is unable
to overwrite values previously written by a node with a fast clock until the clock
skew between the nodes has elapsed [54, 55]. This scenario can cause arbitrary
amounts of data to be silently dropped without any error being reported to the
application.

o LWW cannot distinguish between writes that occurred sequentially in quick suc-
cession (in Figure 8-3, client B’s increment definitely occurs after client A’s
write) and writes that were truly concurrent (neither writer was aware of the
other). Additional causality tracking mechanisms, such as version vectors, are

292 | Chapter8: The Trouble with Distributed Systems

needed in order to prevent violations of causality (see “Detecting Concurrent
Writes” on page 184).

o It is possible for two nodes to independently generate writes with the same time-
stamp, especially when the clock only has millisecond resolution. An additional
tiebreaker value (which can simply be a large random number) is required to
resolve such conflicts, but this approach can also lead to violations of causality
[53].

Thus, even though it is tempting to resolve conflicts by keeping the most “recent”
value and discarding others, it’s important to be aware that the definition of “recent”
depends on a local time-of-day clock, which may well be incorrect. Even with tightly
NTP-synchronized clocks, you could send a packet at timestamp 100 ms (according
to the sender’s clock) and have it arrive at timestamp 99 ms (according to the recipi-
ent’s clock)—so it appears as though the packet arrived before it was sent, which is
impossible.

Could NTP synchronization be made accurate enough that such incorrect orderings
cannot occur? Probably not, because NTP’s synchronization accuracy is itself limited
by the network round-trip time, in addition to other sources of error such as quartz
drift. For correct ordering, you would need the clock source to be significantly more
accurate than the thing you are measuring (namely network delay).

So-called logical clocks [56, 57], which are based on incrementing counters rather
than an oscillating quartz crystal, are a safer alternative for ordering events (see
“Detecting Concurrent Writes” on page 184). Logical clocks do not measure the time
of day or the number of seconds elapsed, only the relative ordering of events
(whether one event happened before or after another). In contrast, time-of-day and
monotonic clocks, which measure actual elapsed time, are also known as physical
clocks. We'll look at ordering a bit more in “Ordering Guarantees” on page 339.

Clock readings have a confidence interval

You may be able to read a machine’s time-of-day clock with microsecond or even
nanosecond resolution. But even if you can get such a fine-grained measurement,
that doesn’t mean the value is actually accurate to such precision. In fact, it most
likely is not—as mentioned previously, the drift in an imprecise quartz clock can
easily be several milliseconds, even if you synchronize with an NTP server on the
local network every minute. With an NTP server on the public internet, the best pos-
sible accuracy is probably to the tens of milliseconds, and the error may easily spike
to over 100 ms when there is network congestion [57].

Thus, it doesn’t make sense to think of a clock reading as a point in time—it is more
like a range of times, within a confidence interval: for example, a system may be 95%
confident that the time now is between 10.3 and 10.5 seconds past the minute, but it

Unreliable Clocks | 293

doesn’t know any more precisely than that [58]. If we only know the time +/- 100 ms,
the microsecond digits in the timestamp are essentially meaningless.

The uncertainty bound can be calculated based on your time source. If you have a
GPS receiver or atomic (caesium) clock directly attached to your computer, the
expected error range is reported by the manufacturer. If you're getting the time from
a server, the uncertainty is based on the expected quartz drift since your last sync
with the server, plus the NTP server’s uncertainty, plus the network round-trip time
to the server (to a first approximation, and assuming you trust the server).

Unfortunately, most systems don’t expose this uncertainty: for example, when you
call clock_gettime(), the return value doesn’t tell you the expected error of the
timestamp, so you don’t know if its confidence interval is five milliseconds or five
years.

An interesting exception is Google’s TrueTime API in Spanner [41], which explicitly
reports the confidence interval on the local clock. When you ask it for the current
time, you get back two values: [earliest, latest], which are the earliest possible
and the latest possible timestamp. Based on its uncertainty calculations, the clock
knows that the actual current time is somewhere within that interval. The width of
the interval depends, among other things, on how long it has been since the local
quartz clock was last synchronized with a more accurate clock source.

Synchronized clocks for global snapshots

In “Snapshot Isolation and Repeatable Read” on page 237 we discussed snapshot iso-
lation, which is a very useful feature in databases that need to support both small, fast
read-write transactions and large, long-running read-only transactions (e.g., for
backups or analytics). It allows read-only transactions to see the database in a consis-
tent state at a particular point in time, without locking and interfering with read-
write transactions.

The most common implementation of snapshot isolation requires a monotonically
increasing transaction ID. If a write happened later than the snapshot (i.e., the write
has a greater transaction ID than the snapshot), that write is invisible to the snapshot
transaction. On a single-node database, a simple counter is sufficient for generating
transaction IDs.

However, when a database is distributed across many machines, potentially in multi-
ple datacenters, a global, monotonically increasing transaction ID (across all parti-
tions) is difficult to generate, because it requires coordination. The transaction ID
must reflect causality: if transaction B reads a value that was written by transaction A,
then B must have a higher transaction ID than A—otherwise, the snapshot would not

294 | Chapter8: The Trouble with Distributed Systems

be consistent. With lots of small, rapid transactions, creating transaction IDs in a dis-
tributed system becomes an untenable bottleneck.”

Can we use the timestamps from synchronized time-of-day clocks as transaction IDs?
If we could get the synchronization good enough, they would have the right proper-
ties: later transactions have a higher timestamp. The problem, of course, is the uncer-
tainty about clock accuracy.

Spanner implements snapshot isolation across datacenters in this way [59, 60]. It uses
the clock’s confidence interval as reported by the TrueTime API, and is based on the
following observation: if you have two confidence intervals, each consisting of an ear-
liest and latest possible timestamp (A = [A,. s> Alaresr] a0d B = [Biaiespr Biarest])> and
those two intervals do not overlap (i.e., A, e < Ajaress < B < Biuesr)> then B defi-
nitely happened after A—there can be no doubt. Only if the intervals overlap are we
unsure in which order A and B happened.

earliest

In order to ensure that transaction timestamps reflect causality, Spanner deliberately
waits for the length of the confidence interval before committing a read-write trans-
action. By doing so, it ensures that any transaction that may read the data is at a suffi-
ciently later time, so their confidence intervals do not overlap. In order to keep the
wait time as short as possible, Spanner needs to keep the clock uncertainty as small as
possible; for this purpose, Google deploys a GPS receiver or atomic clock in each
datacenter, allowing clocks to be synchronized to within about 7 ms [41].

Using clock synchronization for distributed transaction semantics is an area of active
research [57, 61, 62]. These ideas are interesting, but they have not yet been imple-
mented in mainstream databases outside of Google.

Process Pauses

Let’s consider another example of dangerous clock use in a distributed system. Say
you have a database with a single leader per partition. Only the leader is allowed to
accept writes. How does a node know that it is still leader (that it hasn’t been declared
dead by the others), and that it may safely accept writes?

One option is for the leader to obtain a lease from the other nodes, which is similar to
a lock with a timeout [63]. Only one node can hold the lease at any one time—thus,
when a node obtains a lease, it knows that it is the leader for some amount of time,
until the lease expires. In order to remain leader, the node must periodically renew

vi. There are distributed sequence number generators, such as Twitter’s Snowflake, that generate approxi-
mately monotonically increasing unique IDs in a scalable way (e.g., by allocating blocks of the ID space to
different nodes). However, they typically cannot guarantee an ordering that is consistent with causality,
because the timescale at which blocks of IDs are assigned is longer than the timescale of database reads and
writes. See also “Ordering Guarantees” on page 339.

Unreliable Clocks | 295

the lease before it expires. If the node fails, it stops renewing the lease, so another
node can take over when it expires.

You can imagine the request-handling loop looking something like this:

while (true) {
request = getIncomingRequest();

// Ensure that the lease always has at least 10 seconds remaining
if (lease.expiryTimeMillis - System.currentTimeMillis() < 10000) {
lease = lease.renew();

}

if (lease.isValid()) {
process(request);
}
}

What’s wrong with this code? Firstly, it’s relying on synchronized clocks: the expiry
time on the lease is set by a different machine (where the expiry may be calculated as
the current time plus 30 seconds, for example), and it’s being compared to the local
system clock. If the clocks are out of sync by more than a few seconds, this code will
start doing strange things.

Secondly, even if we change the protocol to only use the local monotonic clock, there
is another problem: the code assumes that very little time passes between the point
that it checks the time (System.currentTimeMillis()) and the time when the
request is processed (process(request)). Normally this code runs very quickly, so
the 10 second buffer is more than enough to ensure that the lease doesn’t expire in
the middle of processing a request.

However, what if there is an unexpected pause in the execution of the program? For
example, imagine the thread stops for 15 seconds around the line lease.isvalid()
before finally continuing. In that case, it’s likely that the lease will have expired by the
time the request is processed, and another node has already taken over as leader.
However, there is nothing to tell this thread that it was paused for so long, so this
code won’t notice that the lease has expired until the next iteration of the loop—by
which time it may have already done something unsafe by processing the request.

Is it crazy to assume that a thread might be paused for so long? Unfortunately not.
There are various reasons why this could happen:

o Many programming language runtimes (such as the Java Virtual Machine) have
a garbage collector (GC) that occasionally needs to stop all running threads.
These “stop-the-world” GC pauses have sometimes been known to last for several
minutes [64]! Even so-called “concurrent” garbage collectors like the HotSpot
JVM’s CMS cannot fully run in parallel with the application code—even they
need to stop the world from time to time [65]. Although the pauses can often be

296 | Chapter8: The Trouble with Distributed Systems

reduced by changing allocation patterns or tuning GC settings [66], we must
assume the worst if we want to offer robust guarantees.

In virtualized environments, a virtual machine can be suspended (pausing the
execution of all processes and saving the contents of memory to disk) and
resumed (restoring the contents of memory and continuing execution). This
pause can occur at any time in a process’s execution and can last for an arbitrary
length of time. This feature is sometimes used for live migration of virtual
machines from one host to another without a reboot, in which case the length of
the pause depends on the rate at which processes are writing to memory [67].

On end-user devices such as laptops, execution may also be suspended and
resumed arbitrarily, e.g., when the user closes the lid of their laptop.

When the operating system context-switches to another thread, or when the
hypervisor switches to a different virtual machine (when running in a virtual
machine), the currently running thread can be paused at any arbitrary point in
the code. In the case of a virtual machine, the CPU time spent in other virtual
machines is known as steal time. If the machine is under heavy load—i.e., if there
is a long queue of threads waiting to run—it may take some time before the
paused thread gets to run again.

If the application performs synchronous disk access, a thread may be paused
waiting for a slow disk I/O operation to complete [68]. In many languages, disk
access can happen surprisingly, even if the code doesn’t explicitly mention file
access—for example, the Java classloader lazily loads class files when they are first
used, which could happen at any time in the program execution. I/O pauses and
GC pauses may even conspire to combine their delays [69]. If the disk is actually
a network filesystem or network block device (such as Amazon’s EBS), the I/O
latency is further subject to the variability of network delays [29].

If the operating system is configured to allow swapping to disk (paging), a simple
memory access may result in a page fault that requires a page from disk to be
loaded into memory. The thread is paused while this slow I/O operation takes
place. If memory pressure is high, this may in turn require a different page to be
swapped out to disk. In extreme circumstances, the operating system may spend
most of its time swapping pages in and out of memory and getting little actual
work done (this is known as thrashing). To avoid this problem, paging is often
disabled on server machines (if you would rather kill a process to free up mem-
ory than risk thrashing).

A Unix process can be paused by sending it the SIGSTOP signal, for example by
pressing Ctrl-Z in a shell. This signal immediately stops the process from getting
any more CPU cycles until it is resumed with SIGCONT, at which point it contin-
ues running where it left off. Even if your environment does not normally use
SIGSTOP, it might be sent accidentally by an operations engineer.

Unreliable Clocks | 297

All of these occurrences can preempt the running thread at any point and resume it at
some later time, without the thread even noticing. The problem is similar to making
multi-threaded code on a single machine thread-safe: you can’t assume anything
about timing, because arbitrary context switches and parallelism may occur.

When writing multi-threaded code on a single machine, we have fairly good tools for
making it thread-safe: mutexes, semaphores, atomic counters, lock-free data struc-
tures, blocking queues, and so on. Unfortunately, these tools don’t directly translate
to distributed systems, because a distributed system has no shared memory—only
messages sent over an unreliable network.

A node in a distributed system must assume that its execution can be paused for a
significant length of time at any point, even in the middle of a function. During the
pause, the rest of the world keeps moving and may even declare the paused node
dead because it’s not responding. Eventually, the paused node may continue running,
without even noticing that it was asleep until it checks its clock sometime later.

Response time guarantees

In many programming languages and operating systems, threads and processes may
pause for an unbounded amount of time, as discussed. Those reasons for pausing can
be eliminated if you try hard enough.

Some software runs in environments where a failure to respond within a specified
time can cause serious damage: computers that control aircraft, rockets, robots, cars,
and other physical objects must respond quickly and predictably to their sensor
inputs. In these systems, there is a specified deadline by which the software must
respond; if it doesn’t meet the deadline, that may cause a failure of the entire system.
These are so-called hard real-time systems.

Is real-time really real?

In embedded systems, real-time means that a system is carefully
designed and tested to meet specified timing guarantees in all cir-
cumstances. This meaning is in contrast to the more vague use of
the term real-time on the web, where it describes servers pushing
data to clients and stream processing without hard response time
constraints (see Chapter 11).

For example, if your car’s onboard sensors detect that you are currently experiencing
a crash, you wouldn’t want the release of the airbag to be delayed due to an inoppor-
tune GC pause in the airbag release system.

Providing real-time guarantees in a system requires support from all levels of the
software stack: a real-time operating system (RTOS) that allows processes to be sched-
uled with a guaranteed allocation of CPU time in specified intervals is needed; library

298 | Chapter 8: The Trouble with Distributed Systems

functions must document their worst-case execution times; dynamic memory alloca-
tion may be restricted or disallowed entirely (real-time garbage collectors exist, but
the application must still ensure that it doesn’t give the GC too much work to do);
and an enormous amount of testing and measurement must be done to ensure that
guarantees are being met.

All of this requires a large amount of additional work and severely restricts the range
of programming languages, libraries, and tools that can be used (since most lan-
guages and tools do not provide real-time guarantees). For these reasons, developing
real-time systems is very expensive, and they are most commonly used in safety-
critical embedded devices. Moreover, “real-time” is not the same as “high-
performance”—in fact, real-time systems may have lower throughput, since they
have to prioritize timely responses above all else (see also “Latency and Resource Uti-
lization” on page 286).

For most server-side data processing systems, real-time guarantees are simply not
economical or appropriate. Consequently, these systems must suffer the pauses and
clock instability that come from operating in a non-real-time environment.

Limiting the impact of garbage collection

The negative effects of process pauses can be mitigated without resorting to expen-
sive real-time scheduling guarantees. Language runtimes have some flexibility
around when they schedule garbage collections, because they can track the rate of
object allocation and the remaining free memory over time.

An emerging idea is to treat GC pauses like brief planned outages of a node, and to
let other nodes handle requests from clients while one node is collecting its garbage.
If the runtime can warn the application that a node soon requires a GC pause, the
application can stop sending new requests to that node, wait for it to finish process-
ing outstanding requests, and then perform the GC while no requests are in progress.
This trick hides GC pauses from clients and reduces the high percentiles of response
time [70, 71]. Some latency-sensitive financial trading systems [72] use this approach.

A varjant of this idea is to use the garbage collector only for short-lived objects
(which are fast to collect) and to restart processes periodically, before they accumu-
late enough long-lived objects to require a full GC of long-lived objects [65, 73]. One
node can be restarted at a time, and traffic can be shifted away from the node before
the planned restart, like in a rolling upgrade (see Chapter 4).

These measures cannot fully prevent garbage collection pauses, but they can usefully
reduce their impact on the application.

Unreliable Clocks | 299

Knowledge, Truth, and Lies

So far in this chapter we have explored the ways in which distributed systems are dif-
ferent from programs running on a single computer: there is no shared memory, only
message passing via an unreliable network with variable delays, and the systems may
suffer from partial failures, unreliable clocks, and processing pauses.

The consequences of these issues are profoundly disorienting if you're not used to
distributed systems. A node in the network cannot know anything for sure—it can
only make guesses based on the messages it receives (or doesn’t receive) via the net-
work. A node can only find out what state another node is in (what data it has stored,
whether it is correctly functioning, etc.) by exchanging messages with it. If a remote
node doesn’t respond, there is no way of knowing what state it is in, because prob-
lems in the network cannot reliably be distinguished from problems at a node.

Discussions of these systems border on the philosophical: What do we know to be
true or false in our system? How sure can we be of that knowledge, if the mechanisms
for perception and measurement are unreliable? Should software systems obey the
laws that we expect of the physical world, such as cause and effect?

Fortunately, we don’t need to go as far as figuring out the meaning of life. In a dis-
tributed system, we can state the assumptions we are making about the behavior (the
system model) and design the actual system in such a way that it meets those assump-
tions. Algorithms can be proved to function correctly within a certain system model.
This means that reliable behavior is achievable, even if the underlying system model
provides very few guarantees.

However, although it is possible to make software well behaved in an unreliable sys-
tem model, it is not straightforward to do so. In the rest of this chapter we will further
explore the notions of knowledge and truth in distributed systems, which will help us
think about the kinds of assumptions we can make and the guarantees we may want
to provide. In Chapter 9 we will proceed to look at some examples of distributed sys-
tems, algorithms that provide particular guarantees under particular assumptions.

The Truth Is Defined by the Majority

Imagine a network with an asymmetric fault: a node is able to receive all messages
sent to it, but any outgoing messages from that node are dropped or delayed [19].
Even though that node is working perfectly well, and is receiving requests from other
nodes, the other nodes cannot hear its responses. After some timeout, the other
nodes declare it dead, because they haven’t heard from the node. The situation
unfolds like a nightmare: the semi-disconnected node is dragged to the graveyard,
kicking and screaming “I'm not dead!”—but since nobody can hear its screaming, the
funeral procession continues with stoic determination.

300 | Chapter8: The Trouble with Distributed Systems

In a slightly less nightmarish scenario, the semi-disconnected node may notice that
the messages it is sending are not being acknowledged by other nodes, and so realize
that there must be a fault in the network. Nevertheless, the node is wrongly declared
dead by the other nodes, and the semi-disconnected node cannot do anything about
it.

As a third scenario, imagine a node that experiences a long stop-the-world garbage
collection pause. All of the node’s threads are preempted by the GC and paused for
one minute, and consequently, no requests are processed and no responses are sent.
The other nodes wait, retry, grow impatient, and eventually declare the node dead
and load it onto the hearse. Finally, the GC finishes and the node’s threads continue
as if nothing had happened. The other nodes are surprised as the supposedly dead
node suddenly raises its head out of the coffin, in full health, and starts cheerfully
chatting with bystanders. At first, the GCing node doesn’t even realize that an entire
minute has passed and that it was declared dead—from its perspective, hardly any
time has passed since it was last talking to the other nodes.

The moral of these stories is that a node cannot necessarily trust its own judgment of
a situation. A distributed system cannot exclusively rely on a single node, because a
node may fail at any time, potentially leaving the system stuck and unable to recover.
Instead, many distributed algorithms rely on a quorum, that is, voting among the
nodes (see “Quorums for reading and writing” on page 179): decisions require some
minimum number of votes from several nodes in order to reduce the dependence on
any one particular node.

That includes decisions about declaring nodes dead. If a quorum of nodes declares
another node dead, then it must be considered dead, even if that node still very much
feels alive. The individual node must abide by the quorum decision and step down.

Most commonly, the quorum is an absolute majority of more than half the nodes
(although other kinds of quorums are possible). A majority quorum allows the sys-
tem to continue working if individual nodes have failed (with three nodes, one failure
can be tolerated; with five nodes, two failures can be tolerated). However, it is still
safe, because there can only be only one majority in the system—there cannot be two
majorities with conflicting decisions at the same time. We will discuss the use of quo-
rums in more detail when we get to consensus algorithms in Chapter 9.

The leader and the lock
Frequently, a system requires there to be only one of some thing. For example:

o Only one node is allowed to be the leader for a database partition, to avoid split
brain (see “Handling Node Outages” on page 156).

 Only one transaction or client is allowed to hold the lock for a particular resource
or object, to prevent concurrently writing to it and corrupting it.

Knowledge, Truth, and Lies | 301

o Only one user is allowed to register a particular username, because a username
must uniquely identify a user.

Implementing this in a distributed system requires care: even if a node believes that it
is “the chosen one” (the leader of the partition, the holder of the lock, the request
handler of the user who successfully grabbed the username), that doesn’t necessarily
mean a quorum of nodes agrees! A node may have formerly been the leader, but if
the other nodes declared it dead in the meantime (e.g., due to a network interruption
or GC pause), it may have been demoted and another leader may have already been
elected.

If a node continues acting as the chosen one, even though the majority of nodes have
declared it dead, it could cause problems in a system that is not carefully designed.
Such a node could send messages to other nodes in its self-appointed capacity, and if
other nodes believe it, the system as a whole may do something incorrect.

For example, Figure 8-4 shows a data corruption bug due to an incorrect implemen-
tation of locking. (The bug is not theoretical: HBase used to have this problem [74,
75].) Say you want to ensure that a file in a storage service can only be accessed by
one client at a time, because if multiple clients tried to write to it, the file would
become corrupted. You try to implement this by requiring a client to obtain a lease
from a lock service before accessing the file.

Lock lock held by client 1 lock held by client 2 time
B s e Yy4— - - - - >
service a
get ok lease ok
lease expired
Client 1 % .- stop-the-world GC pause | \ -

get
lease

Client 2 % ffffffffffffffffffffffffff
write
Storage @ —————————————————————————————————————

Figure 8-4. Incorrect implementation of a distributed lock: client 1 believes that it still
has a valid lease, even though it has expired, and thus corrupts a file in storage.

The problem is an example of what we discussed in “Process Pauses” on page 295: if
the client holding the lease is paused for too long, its lease expires. Another client can
obtain a lease for the same file, and start writing to the file. When the paused client
comes back, it believes (incorrectly) that it still has a valid lease and proceeds to also
write to the file. As a result, the clients’ writes clash and corrupt the file.

302 | Chapter8: The Trouble with Distributed Systems

Fencing tokens

When using a lock or lease to protect access to some resource, such as the file storage
in Figure 8-4, we need to ensure that a node that is under a false belief of being “the
chosen one” cannot disrupt the rest of the system. A fairly simple technique that ach-
ieves this goal is called fencing, and is illustrated in Figure 8-5.

Lock lock held by client 1 lock held by client 2 time
B e B - —— — >
service
get ok, lease ok,
lease token: 33 expired token: 34
Client 1 % .- stop-the-world GCpause | | ->
get write
lease token: 33

Client 2

- >

rejected:
old token

Storage ->

Figure 8-5. Making access to storage safe by allowing writes only in the order of increas-
ing fencing tokens.

Let’s assume that every time the lock server grants a lock or lease, it also returns a
fencing token, which is a number that increases every time a lock is granted (e.g.,
incremented by the lock service). We can then require that every time a client sends a
write request to the storage service, it must include its current fencing token.

In Figure 8-5, client 1 acquires the lease with a token of 33, but then it goes into a
long pause and the lease expires. Client 2 acquires the lease with a token of 34 (the
number always increases) and then sends its write request to the storage service,
including the token of 34. Later, client 1 comes back to life and sends its write to the
storage service, including its token value 33. However, the storage server remembers
that it has already processed a write with a higher token number (34), and so it rejects
the request with token 33.

If ZooKeeper is used as lock service, the transaction ID zxid or the node version
cversion can be used as fencing token. Since they are guaranteed to be monotoni-
cally increasing, they have the required properties [74].

Note that this mechanism requires the resource itself to take an active role in check-
ing tokens by rejecting any writes with an older token than one that has already been
processed—it is not sufficient to rely on clients checking their lock status themselves.
For resources that do not explicitly support fencing tokens, you might still be able
work around the limitation (for example, in the case of a file storage service you
could include the fencing token in the filename). However, some kind of check is
necessary to avoid processing requests outside of the lock’s protection.

Knowledge, Truth, and Lies | 303

Checking a token on the server side may seem like a downside, but it is arguably a
good thing: it is unwise for a service to assume that its clients will always be well
behaved, because the clients are often run by people whose priorities are very differ-
ent from the priorities of the people running the service [76]. Thus, it is a good idea
for any service to protect itself from accidentally abusive clients.

Byzantine Faults

Fencing tokens can detect and block a node that is inadvertently acting in error (e.g.,
because it hasn’t yet found out that its lease has expired). However, if the node delib-
erately wanted to subvert the system’s guarantees, it could easily do so by sending
messages with a fake fencing token.

In this book we assume that nodes are unreliable but honest: they may be slow or
never respond (due to a fault), and their state may be outdated (due to a GC pause or
network delays), but we assume that if a node does respond, it is telling the “truth”: to
the best of its knowledge, it is playing by the rules of the protocol.

Distributed systems problems become much harder if there is a risk that nodes may
“lie” (send arbitrary faulty or corrupted responses)—for example, if a node may claim
to have received a particular message when in fact it didn’t. Such behavior is known
as a Byzantine fault, and the problem of reaching consensus in this untrusting envi-
ronment is known as the Byzantine Generals Problem [77].

The Byzantine Generals Problem

The Byzantine Generals Problem is a generalization of the so-called Two Generals
Problem [78], which imagines a situation in which two army generals need to agree
on a battle plan. As they have set up camp on two different sites, they can only com-
municate by messenger, and the messengers sometimes get delayed or lost (like pack-
ets in a network). We will discuss this problem of consensus in Chapter 9.

In the Byzantine version of the problem, there are n generals who need to agree, and
their endeavor is hampered by the fact that there are some traitors in their midst.
Most of the generals are loyal, and thus send truthful messages, but the traitors may
try to deceive and confuse the others by sending fake or untrue messages (while try-
ing to remain undiscovered). It is not known in advance who the traitors are.

Byzantium was an ancient Greek city that later became Constantinople, in the place
which is now Istanbul in Turkey. There isn’t any historic evidence that the generals of
Byzantium were any more prone to intrigue and conspiracy than those elsewhere.
Rather, the name is derived from Byzantine in the sense of excessively complicated,
bureaucratic, devious, which was used in politics long before computers [79]. Lamp-
ort wanted to choose a nationality that would not offend any readers, and he was
advised that calling it The Albanian Generals Problem was not such a good idea [80].

304 | Chapter8: The Trouble with Distributed Systems

A system is Byzantine fault-tolerant if it continues to operate correctly even if some
of the nodes are malfunctioning and not obeying the protocol, or if malicious attack-
ers are interfering with the network. This concern is relevant in certain specific cir-
cumstances. For example:

« In aerospace environments, the data in a computer’s memory or CPU register
could become corrupted by radiation, leading it to respond to other nodes in
arbitrarily unpredictable ways. Since a system failure would be very expensive
(e.g., an aircraft crashing and killing everyone on board, or a rocket colliding
with the International Space Station), flight control systems must tolerate Byzan-
tine faults [81, 82].

o In a system with multiple participating organizations, some participants may
attempt to cheat or defraud others. In such circumstances, it is not safe for a
node to simply trust another node’s messages, since they may be sent with mali-
cious intent. For example, peer-to-peer networks like Bitcoin and other block-
chains can be considered to be a way of getting mutually untrusting parties to
agree whether a transaction happened or not, without relying on a central
authority [83].

However, in the kinds of systems we discuss in this book, we can usually safely
assume that there are no Byzantine faults. In your datacenter, all the nodes are con-
trolled by your organization (so they can hopefully be trusted) and radiation levels
are low enough that memory corruption is not a major problem. Protocols for mak-
ing systems Byzantine fault-tolerant are quite complicated [84], and fault-tolerant
embedded systems rely on support from the hardware level [81]. In most server-side
data systems, the cost of deploying Byzantine fault-tolerant solutions makes them
impractical.

Web applications do need to expect arbitrary and malicious behavior of clients that
are under end-user control, such as web browsers. This is why input validation, sani-
tization, and output escaping are so important: to prevent SQL injection and cross-
site scripting, for example. However, we typically don’t use Byzantine fault-tolerant
protocols here, but simply make the server the authority on deciding what client
behavior is and isn’t allowed. In peer-to-peer networks, where there is no such cen-
tral authority, Byzantine fault tolerance is more relevant.

A bug in the software could be regarded as a Byzantine fault, but if you deploy the
same software to all nodes, then a Byzantine fault-tolerant algorithm cannot save you.
Most Byzantine fault-tolerant algorithms require a supermajority of more than two-
thirds of the nodes to be functioning correctly (i.e., if you have four nodes, at most
one may malfunction). To use this approach against bugs, you would have to have
four independent implementations of the same software and hope that a bug only
appears in one of the four implementations.

Knowledge, Truth, and Lies | 305

Similarly, it would be appealing if a protocol could protect us from vulnerabilities,
security compromises, and malicious attacks. Unfortunately, this is not realistic
either: in most systems, if an attacker can compromise one node, they can probably
compromise all of them, because they are probably running the same software. Thus,
traditional mechanisms (authentication, access control, encryption, firewalls, and so
on) continue to be the main protection against attackers.

Weak forms of lying

Although we assume that nodes are generally honest, it can be worth adding mecha-
nisms to software that guard against weak forms of “lying”—for example, invalid
messages due to hardware issues, software bugs, and misconfiguration. Such protec-
tion mechanisms are not full-blown Byzantine fault tolerance, as they would not
withstand a determined adversary, but they are nevertheless simple and pragmatic
steps toward better reliability. For example:

« Network packets do sometimes get corrupted due to hardware issues or bugs in
operating systems, drivers, routers, etc. Usually, corrupted packets are caught by
the checksums built into TCP and UDP, but sometimes they evade detection [85,
86, 87]. Simple measures are usually sufficient protection against such corrup-
tion, such as checksums in the application-level protocol.

A publicly accessible application must carefully sanitize any inputs from users,
for example checking that a value is within a reasonable range and limiting the
size of strings to prevent denial of service through large memory allocations. An
internal service behind a firewall may be able to get away with less strict checks
on inputs, but some basic sanity-checking of values (e.g., in protocol parsing
[85]) is a good idea.

« NTP clients can be configured with multiple server addresses. When synchroniz-
ing, the client contacts all of them, estimates their errors, and checks that a
majority of servers agree on some time range. As long as most of the servers are
okay, a misconfigured NTP server that is reporting an incorrect time is detected
as an outlier and is excluded from synchronization [37]. The use of multiple
servers makes NTP more robust than if it only uses a single server.

System Model and Reality

Many algorithms have been designed to solve distributed systems problems—for
example, we will examine solutions for the consensus problem in Chapter 9. In order
to be useful, these algorithms need to tolerate the various faults of distributed systems
that we discussed in this chapter.

Algorithms need to be written in a way that does not depend too heavily on the
details of the hardware and software configuration on which they are run. This in

306 | Chapter8: The Trouble with Distributed Systems

turn requires that we somehow formalize the kinds of faults that we expect to happen
in a system. We do this by defining a system model, which is an abstraction that
describes what things an algorithm may assume.

With regard to timing assumptions, three system models are in common use:

Synchronous model
The synchronous model assumes bounded network delay, bounded process pau-
ses, and bounded clock error. This does not imply exactly synchronized clocks or
zero network delay; it just means you know that network delay, pauses, and clock
drift will never exceed some fixed upper bound [88]. The synchronous model is
not a realistic model of most practical systems, because (as discussed in this
chapter) unbounded delays and pauses do occur.

Partially synchronous model

Partial synchrony means that a system behaves like a synchronous system most of
the time, but it sometimes exceeds the bounds for network delay, process pauses,
and clock drift [88]. This is a realistic model of many systems: most of the time,
networks and processes are quite well behaved—otherwise we would never be
able to get anything done—but we have to reckon with the fact that any timing
assumptions may be shattered occasionally. When this happens, network delay,
pauses, and clock error may become arbitrarily large.

Asynchronous model
In this model, an algorithm is not allowed to make any timing assumptions—in
fact, it does not even have a clock (so it cannot use timeouts). Some algorithms
can be designed for the asynchronous model, but it is very restrictive.

Moreover, besides timing issues, we have to consider node failures. The three most
common system models for nodes are:

Crash-stop faults
In the crash-stop model, an algorithm may assume that a node can fail in only
one way, namely by crashing. This means that the node may suddenly stop
responding at any moment, and thereafter that node is gone forever—it never
comes back.

Crash-recovery faults
We assume that nodes may crash at any moment, and perhaps start responding
again after some unknown time. In the crash-recovery model, nodes are assumed
to have stable storage (i.e., nonvolatile disk storage) that is preserved across
crashes, while the in-memory state is assumed to be lost.

Byzantine (arbitrary) faults
Nodes may do absolutely anything, including trying to trick and deceive other
nodes, as described in the last section.

Knowledge, Truth, and Lies | 307

For modeling real systems, the partially synchronous model with crash-recovery
faults is generally the most useful model. But how do distributed algorithms cope
with that model?

Correctness of an algorithm

To define what it means for an algorithm to be correct, we can describe its properties.
For example, the output of a sorting algorithm has the property that for any two dis-
tinct elements of the output list, the element further to the left is smaller than the ele-
ment further to the right. That is simply a formal way of defining what it means for a
list to be sorted.

Similarly, we can write down the properties we want of a distributed algorithm to
define what it means to be correct. For example, if we are generating fencing tokens
for a lock (see “Fencing tokens” on page 303), we may require the algorithm to have
the following properties:

Uniqueness
No two requests for a fencing token return the same value.

Monotonic sequence
If request x returned token t,, and request y returned token ¢, and x completed
before y began, then t, < t,.

Availability
A node that requests a fencing token and does not crash eventually receives a
response.

An algorithm is correct in some system model if it always satisfies its properties in all
situations that we assume may occur in that system model. But how does this make
sense? If all nodes crash, or all network delays suddenly become infinitely long, then
no algorithm will be able to get anything done.

Safety and liveness

To clarify the situation, it is worth distinguishing between two different kinds of
properties: safety and liveness properties. In the example just given, uniqueness and
monotonic sequence are safety properties, but availability is a liveness property.

What distinguishes the two kinds of properties? A giveaway is that liveness properties
often include the word “eventually” in their definition. (And yes, you guessed it—
eventual consistency is a liveness property [89].)

Safety is often informally defined as nothing bad happens, and liveness as something
good eventually happens. However, it’s best to not read too much into those informal
definitions, because the meaning of good and bad is subjective. The actual definitions
of safety and liveness are precise and mathematical [90]:

308 | Chapter8: The Trouble with Distributed Systems

o If a safety property is violated, we can point at a particular point in time at which
it was broken (for example, if the uniqueness property was violated, we can iden-
tify the particular operation in which a duplicate fencing token was returned).
After a safety property has been violated, the violation cannot be undone—the
damage is already done.

o A liveness property works the other way round: it may not hold at some point in
time (for example, a node may have sent a request but not yet received a
response), but there is always hope that it may be satisfied in the future (namely
by receiving a response).

An advantage of distinguishing between safety and liveness properties is that it helps
us deal with difficult system models. For distributed algorithms, it is common to
require that safety properties always hold, in all possible situations of a system model
[88]. That is, even if all nodes crash, or the entire network fails, the algorithm must
nevertheless ensure that it does not return a wrong result (i.e., that the safety proper-
ties remain satisfied).

However, with liveness properties we are allowed to make caveats: for example, we
could say that a request needs to receive a response only if a majority of nodes have
not crashed, and only if the network eventually recovers from an outage. The defini-
tion of the partially synchronous model requires that eventually the system returns to
a synchronous state—that is, any period of network interruption lasts only for a finite
duration and is then repaired.

Mapping system models to the real world

Safety and liveness properties and system models are very useful for reasoning about
the correctness of a distributed algorithm. However, when implementing an algo-
rithm in practice, the messy facts of reality come back to bite you again, and it
becomes clear that the system model is a simplified abstraction of reality.

For example, algorithms in the crash-recovery model generally assume that data in
stable storage survives crashes. However, what happens if the data on disk is corrup-
ted, or the data is wiped out due to hardware error or misconfiguration [91]? What
happens if a server has a firmware bug and fails to recognize its hard drives on
reboot, even though the drives are correctly attached to the server [92]?

Quorum algorithms (see “Quorums for reading and writing” on page 179) rely on a
node remembering the data that it claims to have stored. If a node may suffer from
amnesia and forget previously stored data, that breaks the quorum condition, and
thus breaks the correctness of the algorithm. Perhaps a new system model is needed,
in which we assume that stable storage mostly survives crashes, but may sometimes
be lost. But that model then becomes harder to reason about.

Knowledge, Truth, and Lies | 309

The theoretical description of an algorithm can declare that certain things are simply
assumed not to happen—and in non-Byzantine systems, we do have to make some
assumptions about faults that can and cannot happen. However, a real implementa-
tion may still have to include code to handle the case where something happens that
was assumed to be impossible, even if that handling boils down to printf("Sucks to
be you") and exit(666)—i.e., letting a human operator clean up the mess [93].
(This is arguably the difference between computer science and software engineering.)

That is not to say that theoretical, abstract system models are worthless—quite the
opposite. They are incredibly helpful for distilling down the complexity of real sys-
tems to a manageable set of faults that we can reason about, so that we can under-
stand the problem and try to solve it systematically. We can prove algorithms correct
by showing that their properties always hold in some system model.

Proving an algorithm correct does not mean its implementation on a real system will
necessarily always behave correctly. But it’s a very good first step, because the theo-
retical analysis can uncover problems in an algorithm that might remain hidden for a
long time in a real system, and that only come to bite you when your assumptions
(e.g., about timing) are defeated due to unusual circumstances. Theoretical analysis
and empirical testing are equally important.

Summary

In this chapter we have discussed a wide range of problems that can occur in dis-
tributed systems, including:

« Whenever you try to send a packet over the network, it may be lost or arbitrarily
delayed. Likewise, the reply may be lost or delayed, so if you don’t get a reply,
you have no idea whether the message got through.

« A node’s clock may be significantly out of sync with other nodes (despite your
best efforts to set up NTP), it may suddenly jump forward or back in time, and
relying on it is dangerous because you most likely don’t have a good measure of
your clocK’s error interval.

« A process may pause for a substantial amount of time at any point in its execu-
tion (perhaps due to a stop-the-world garbage collector), be declared dead by
other nodes, and then come back to life again without realizing that it was
paused.

The fact that such partial failures can occur is the defining characteristic of dis-
tributed systems. Whenever software tries to do anything involving other nodes,
there is the possibility that it may occasionally fail, or randomly go slow, or not
respond at all (and eventually time out). In distributed systems, we try to build toler-

310 | Chapter8: The Trouble with Distributed Systems

ance of partial failures into software, so that the system as a whole may continue
functioning even when some of its constituent parts are broken.

To tolerate faults, the first step is to detect them, but even that is hard. Most systems
don’t have an accurate mechanism of detecting whether a node has failed, so most
distributed algorithms rely on timeouts to determine whether a remote node is still
available. However, timeouts can’t distinguish between network and node failures,
and variable network delay sometimes causes a node to be falsely suspected of crash-
ing. Moreover, sometimes a node can be in a degraded state: for example, a Gigabit
network interface could suddenly drop to 1 Kb/s throughput due to a driver bug [94].
Such a node that is “limping” but not dead can be even more difficult to deal with
than a cleanly failed node.

Once a fault is detected, making a system tolerate it is not easy either: there is no
global variable, no shared memory, no common knowledge or any other kind of
shared state between the machines. Nodes can’t even agree on what time it is, let
alone on anything more profound. The only way information can flow from one
node to another is by sending it over the unreliable network. Major decisions cannot
be safely made by a single node, so we require protocols that enlist help from other
nodes and try to get a quorum to agree.

If you’re used to writing software in the idealized mathematical perfection of a single
computer, where the same operation always deterministically returns the same result,
then moving to the messy physical reality of distributed systems can be a bit of a
shock. Conversely, distributed systems engineers will often regard a problem as triv-
ial if it can be solved on a single computer [5], and indeed a single computer can do a
lot nowadays [95]. If you can avoid opening Pandora’s box and simply keep things on
a single machine, it is generally worth doing so.

However, as discussed in the introduction to Part II, scalability is not the only reason
for wanting to use a distributed system. Fault tolerance and low latency (by placing
data geographically close to users) are equally important goals, and those things can-
not be achieved with a single node.

In this chapter we also went on some tangents to explore whether the unreliability of
networks, clocks, and processes is an inevitable law of nature. We saw that it isn’t: it
is possible to give hard real-time response guarantees and bounded delays in net-
works, but doing so is very expensive and results in lower utilization of hardware
resources. Most non-safety-critical systems choose cheap and unreliable over expen-
sive and reliable.

We also touched on supercomputers, which assume reliable components and thus
have to be stopped and restarted entirely when a component does fail. By contrast,
distributed systems can run forever without being interrupted at the service level,
because all faults and maintenance can be handled at the node level—at least in

Summary | 311

theory. (In practice, if a bad configuration change is rolled out to all nodes, that will
still bring a distributed system to its knees.)

This chapter has been all about problems, and has given us a bleak outlook. In the
next chapter we will move on to solutions, and discuss some algorithms that have
been designed to cope with all the problems in distributed systems.

References

[1] Mark Cavage: “There’s Just No Getting Around It: You're Building a Distributed
System,” ACM Queue, volume 11, number 4, pages 80-89, April 2013. doi:
10.1145/2466486.2482856

[2] Jay Kreps: “Getting Real About Distributed System Reliability,” blog.empathy-
box.com, March 19, 2012.

[3] Sydney Padua: The Thrilling Adventures of Lovelace and Babbage: The (Mostly)
True Story of the First Computer. Particular Books, April 2015. ISBN:
978-0-141-98151-2

[4] Coda Hale: “You Can’t Sacrifice Partition Tolerance,” codahale.com, October 7,
2010.

[5] Jeff Hodges: “Notes on Distributed Systems for Young Bloods,” somethingsimi-
lar.com, January 14, 2013.

[6] Antonio Regalado: “Who Coined ‘Cloud Computing’?,” technologyreview.com,
October 31, 2011.

[7] Luiz André Barroso, Jimmy Clidaras, and Urs Holzle: “The Datacenter as a Com-
puter: An Introduction to the Design of Warehouse-Scale Machines, Second Edi-
tion,” Synthesis Lectures on Computer Architecture, volume 8, number 3, Morgan &
Claypool Publishers, July 2013. doi:10.2200/S00516ED2V01Y201306CAC024, ISBN:
978-1-627-05010-4

[8] David Fiala, Frank Mueller, Christian Engelmann, et al.: “Detection and Correc-
tion of Silent Data Corruption for Large-Scale High-Performance Computing,” at
International Conference for High Performance Computing, Networking, Storage and
Analysis (SC12), November 2012.

[9] Arjun Singh, Joon Ong, Amit Agarwal, et al.: “Jupiter Rising: A Decade of Clos
Topologies and Centralized Control in Google’s Datacenter Network,” at Annual
Conference of the ACM Special Interest Group on Data Communication (SSIGCOMM),
August 2015. doi:10.1145/2785956.2787508

[10] Glenn K. Lockwood: “Hadoop’s Uncomfortable Fit in HPC,” glennklock-
wood.blogspot.co.uk, May 16, 2014.

312 | Chapter8: The Trouble with Distributed Systems

http://queue.acm.org/detail.cfm?id=2482856
http://queue.acm.org/detail.cfm?id=2482856
http://dx.doi.org/10.1145/2466486.2482856
http://dx.doi.org/10.1145/2466486.2482856
http://blog.empathybox.com/post/19574936361/getting-real-about-distributed-system-reliability
http://codahale.com/you-cant-sacrifice-partition-tolerance/
http://www.somethingsimilar.com/2013/01/14/notes-on-distributed-systems-for-young-bloods/
http://www.technologyreview.com/news/425970/who-coined-cloud-computing/
http://www.morganclaypool.com/doi/abs/10.2200/S00516ED2V01Y201306CAC024
http://www.morganclaypool.com/doi/abs/10.2200/S00516ED2V01Y201306CAC024
http://www.morganclaypool.com/doi/abs/10.2200/S00516ED2V01Y201306CAC024
http://dx.doi.org/10.2200/S00516ED2V01Y201306CAC024
http://moss.csc.ncsu.edu/~mueller/ftp/pub/mueller/papers/sc12.pdf
http://moss.csc.ncsu.edu/~mueller/ftp/pub/mueller/papers/sc12.pdf
http://conferences.sigcomm.org/sigcomm/2015/pdf/papers/p183.pdf
http://conferences.sigcomm.org/sigcomm/2015/pdf/papers/p183.pdf
http://dx.doi.org/10.1145/2785956.2787508
http://glennklockwood.blogspot.co.uk/2014/05/hadoops-uncomfortable-fit-in-hpc.html

[11] John von Neumann: “Probabilistic Logics and the Synthesis of Reliable Organ-
isms from Unreliable Components,” in Automata Studies (AM-34), edited by Claude
E. Shannon and John McCarthy, Princeton University Press, 1956. ISBN:
978-0-691-07916-5

[12] Richard W. Hamming: The Art of Doing Science and Engineering. Taylor & Fran-
cis, 1997. ISBN: 978-9-056-99500-3

[13] Claude E. Shannon: “A Mathematical Theory of Communication,” The Bell Sys-
tem Technical Journal, volume 27, number 3, pages 379-423 and 623-656, July 1948.

[14] Peter Bailis and Kyle Kingsbury: “The Network Is Reliable,” ACM Queue, vol-
ume 12, number 7, pages 48-55, July 2014. doi:10.1145/2639988.2639988

[15] Joshua B. Leners, Trinabh Gupta, Marcos K. Aguilera, and Michael Walfish:
“Taming Uncertainty in Distributed Systems with Help from the Network,” at 10th
European Conference on Computer Systems (EuroSys), April 2015. doi:
10.1145/2741948.2741976

[16] Phillipa Gill, Navendu Jain, and Nachiappan Nagappan: “Understanding Net-
work Failures in Data Centers: Measurement, Analysis, and Implications,” at ACM
SIGCOMM Conference, August 2011. doi:10.1145/2018436.2018477

[17] Mark Imbriaco: “Downtime Last Saturday,” github.com, December 26, 2012.

[18] Will Oremus: “The Global Internet Is Being Attacked by Sharks, Google Con-
tirms,” slate.com, August 15, 2014.

[19] Marc A. Donges: “Re: bnx2 cards Intermittantly Going Offline,” Message to
Linux netdev mailing list, spinics.net, September 13, 2012.

[20] Kyle Kingsbury: “Call Me Maybe: Elasticsearch,” aphyr.com, June 15, 2014.

[21] Salvatore Sanfilippo: “A Few Arguments About Redis Sentinel Properties and
Fail Scenarios,” antirez.com, October 21, 2014.

[22] Bert Hubert: “The Ultimate SO_LINGER Page, or: Why Is My TCP Not Relia-
ble,” blog.netherlabs.nl, January 18, 2009.

[23] Nicolas Liochon: “CAP: If All You Have Is a Timeout, Everything Looks Like a
Partition,” blog.thislongrun.com, May 25, 2015.

[24] Jerome H. Saltzer, David P. Reed, and David D. Clark: “End-To-End Arguments
in System Design,” ACM Transactions on Computer Systems, volume 2, number 4,
pages 277-288, November 1984. doi:10.1145/357401.357402

[25] Matthew P. Grosvenor, Malte Schwarzkopf, Ionel Gog, et al.: “Queues Don’t
Matter When You Can JUMP Them!,” at 12th USENIX Symposium on Networked
Systems Design and Implementation (NSDI), May 2015.

Summary | 313

https://ece.uwaterloo.ca/~ssundara/courses/prob_logics.pdf
https://ece.uwaterloo.ca/~ssundara/courses/prob_logics.pdf
http://cs.brynmawr.edu/Courses/cs380/fall2012/shannon1948.pdf
https://queue.acm.org/detail.cfm?id=2655736
http://dx.doi.org/10.1145/2639988.2639988
http://www.cs.nyu.edu/~mwalfish/papers/albatross-eurosys15.pdf
http://dx.doi.org/10.1145/2741948.2741976
http://dx.doi.org/10.1145/2741948.2741976
http://conferences.sigcomm.org/sigcomm/2011/papers/sigcomm/p350.pdf
http://conferences.sigcomm.org/sigcomm/2011/papers/sigcomm/p350.pdf
http://dx.doi.org/10.1145/2018436.2018477
https://github.com/blog/1364-downtime-last-saturday
http://www.slate.com/blogs/future_tense/2014/08/15/shark_attacks_threaten_google_s_undersea_internet_cables_video.html
http://www.slate.com/blogs/future_tense/2014/08/15/shark_attacks_threaten_google_s_undersea_internet_cables_video.html
http://www.spinics.net/lists/netdev/msg210485.html
https://aphyr.com/posts/317-call-me-maybe-elasticsearch
http://antirez.com/news/80
http://antirez.com/news/80
http://blog.netherlabs.nl/articles/2009/01/18/the-ultimate-so_linger-page-or-why-is-my-tcp-not-reliable
http://blog.netherlabs.nl/articles/2009/01/18/the-ultimate-so_linger-page-or-why-is-my-tcp-not-reliable
http://blog.thislongrun.com/2015/05/CAP-theorem-partition-timeout-zookeeper.html
http://blog.thislongrun.com/2015/05/CAP-theorem-partition-timeout-zookeeper.html
http://www.ece.drexel.edu/courses/ECE-C631-501/SalRee1984.pdf
http://www.ece.drexel.edu/courses/ECE-C631-501/SalRee1984.pdf
http://dx.doi.org/10.1145/357401.357402
https://www.usenix.org/system/files/conference/nsdi15/nsdi15-paper-grosvenor_update.pdf
https://www.usenix.org/system/files/conference/nsdi15/nsdi15-paper-grosvenor_update.pdf

[26] Guohui Wang and T. S. Eugene Ng: “The Impact of Virtualization on Network
Performance of Amazon EC2 Data Center,” at 29th IEEE International Conference on
Computer Communications (INFOCOM), March 2010. doi:10.1109/INFCOM.
2010.5461931

[27] Van Jacobson: “Congestion Avoidance and Control,” at ACM Symposium on
Communications Architectures and Protocols (SIGCOMM), August 1988. doi:
10.1145/52324.52356

[28] Brandon Philips: “etcd: Distributed Locking and Service Discovery,” at Strange
Loop, September 2014.

[29] Steve Newman: “A Systematic Look at EC2 1/O,” blog.scalyr.com, October 16,
2012.

[30] Naohiro Hayashibara, Xavier Défago, Rami Yared, and Takuya Katayama: “The
¢ Accrual Failure Detector,” Japan Advanced Institute of Science and Technology,
School of Information Science, Technical Report IS-RR-2004-010, May 2004.

[31] Jeffrey Wang: “Phi Accrual Failure Detector,” ternarysearch.blogspot.co.uk,
August 11, 2013.

[32] Srinivasan Keshav: An Engineering Approach to Computer Networking: ATM
Networks, the Internet, and the Telephone Network. Addison-Wesley Professional,
May 1997. ISBN: 978-0-201-63442-6

[33] Cisco, “Integrated Services Digital Network,” docwiki.cisco.com.

[34] Othmar Kyas: ATM Networks. International Thomson Publishing, 1995. ISBN:
978-1-850-32128-6

[35] “InfiniBand FAQ,” Mellanox Technologies, December 22, 2014.

[36] Jose Renato Santos, Yoshio Turner, and G. (John) Janakiraman: “End-to-End
Congestion Control for InfiniBand,” at 22nd Annual Joint Conference of the IEEE
Computer and Communications Societies INFOCOM), April 2003. Also published by
HP Laboratories Palo Alto, Tech Report HPL-2002-359. doi:10.1109/INFCOM.
2003.1208949

[37] Ulrich Windl, David Dalton, Marc Martinec, and Dale R. Worley: “The NTP
FAQ and HOWTO,” ntp.org, November 2006.

[38] John Graham-Cumming: “How and why the leap second affected Cloudflare
DNS,” blog.cloudflare.com, January 1, 2017.

[39] David Holmes: “Inside the Hotspot VM: Clocks, Timers and Scheduling Events
- Part I - Windows,” blogs.oracle.com, October 2, 2006.

[40] Steve Loughran: “Time on Multi-Core, Multi-Socket Servers,” stevelough-
ran.blogspot.co.uk, September 17, 2015.

314 | Chapter8: The Trouble with Distributed Systems

http://www.cs.rice.edu/~eugeneng/papers/INFOCOM10-ec2.pdf
http://www.cs.rice.edu/~eugeneng/papers/INFOCOM10-ec2.pdf
http://dx.doi.org/10.1109/INFCOM.2010.5461931
http://dx.doi.org/10.1109/INFCOM.2010.5461931
http://www.cs.usask.ca/ftp/pub/discus/seminars2002-2003/p314-jacobson.pdf
http://dx.doi.org/10.1145/52324.52356
http://dx.doi.org/10.1145/52324.52356
https://www.youtube.com/watch?v=HJIjTTHWYnE
http://blog.scalyr.com/2012/10/a-systematic-look-at-ec2-io/
http://hdl.handle.net/10119/4784
http://hdl.handle.net/10119/4784
http://ternarysearch.blogspot.co.uk/2013/08/phi-accrual-failure-detector.html
http://docwiki.cisco.com/wiki/Integrated_Services_Digital_Network
http://www.mellanox.com/related-docs/whitepapers/InfiniBandFAQ_FQ_100.pdf
http://www.hpl.hp.com/techreports/2002/HPL-2002-359.pdf
http://www.hpl.hp.com/techreports/2002/HPL-2002-359.pdf
http://dx.doi.org/10.1109/INFCOM.2003.1208949
http://dx.doi.org/10.1109/INFCOM.2003.1208949
http://www.ntp.org/ntpfaq/NTP-a-faq.htm
http://www.ntp.org/ntpfaq/NTP-a-faq.htm
https://blog.cloudflare.com/how-and-why-the-leap-second-affected-cloudflare-dns/
https://blog.cloudflare.com/how-and-why-the-leap-second-affected-cloudflare-dns/
https://blogs.oracle.com/dholmes/entry/inside_the_hotspot_vm_clocks
https://blogs.oracle.com/dholmes/entry/inside_the_hotspot_vm_clocks
http://steveloughran.blogspot.co.uk/2015/09/time-on-multi-core-multi-socket-servers.html

[41] James C. Corbett, Jeffrey Dean, Michael Epstein, et al.: “Spanner: Google’s
Globally-Distributed Database,” at 10th USENIX Symposium on Operating System
Design and Implementation (OSDI), October 2012.

[42] M. Caporaloni and R. Ambrosini: “How Closely Can a Personal Computer
Clock Track the UTC Timescale Via the Internet?,” European Journal of Physics, vol-
ume 23, number 4, pages L17-121, June 2012. doi:10.1088/0143-0807/23/4/103

[43] Nelson Minar: “A Survey of the NTP Network,” alumni.media.mit.edu, Decem-
ber 1999.

[44] Viliam Holub: “Synchronizing Clocks in a Cassandra Cluster Pt. 1 — The Prob-
lem,” blog.logentries.com, March 14, 2014.

[45] Poul-Henning Kamp: “The One-Second War (What Time Will You Die?),”
ACM Queue, volume 9, number 4, pages 44-48, April 2011. doi:
10.1145/1966989.1967009

»

[46] Nelson Minar: “Leap Second Crashes Half the Internet,” somebits.com, July 3,
2012.

[47] Christopher Pascoe: “Time, Technology and Leaping Seconds,” googleblog.blog-
spot.co.uk, September 15, 2011.

[48] Mingxue Zhao and Jeff Barr: “Look Before You Leap — The Coming Leap Second
and AWS,” aws.amazon.com, May 18, 2015.

[49] Darryl Veitch and Kanthaiah Vijayalayan: “Network Timing and the 2015 Leap
Second,” at 17th International Conference on Passive and Active Measurement
(PAM), April 2016. d0i:10.1007/978-3-319-30505-9_29

[50] “Timekeeping in VMware Virtual Machines,” Information Guide, VMware, Inc.,
December 2011.

[51] “MIiFID II / MiFIR: Regulatory Technical and Implementing Standards — Annex
I (Draft),” European Securities and Markets Authority, Report ESMA/2015/1464,
September 2015.

[52] Luke Bigum: “Solving MiFID II Clock Synchronisation With Minimum Spend
(Part 1),” Imax.com, November 27, 2015.

[53] Kyle Kingsbury: “Call Me Maybe: Cassandra,” aphyr.com, September 24, 2013.

[54] John Daily: “Clocks Are Bad, or, Welcome to the Wonderful World of Dis-
tributed Systems,” basho.com, November 12, 2013.

[55] Kyle Kingsbury: “The Trouble with Timestamps,” aphyr.com, October 12, 2013.

Summary | 315

http://research.google.com/archive/spanner.html
http://research.google.com/archive/spanner.html
https://iopscience.iop.org/0143-0807/23/4/103/
https://iopscience.iop.org/0143-0807/23/4/103/
http://dx.doi.org/10.1088/0143-0807/23/4/103
http://alumni.media.mit.edu/~nelson/research/ntp-survey99/
https://blog.logentries.com/2014/03/synchronizing-clocks-in-a-cassandra-cluster-pt-1-the-problem/
https://blog.logentries.com/2014/03/synchronizing-clocks-in-a-cassandra-cluster-pt-1-the-problem/
http://queue.acm.org/detail.cfm?id=1967009
http://dx.doi.org/10.1145/1966989.1967009
http://dx.doi.org/10.1145/1966989.1967009
http://www.somebits.com/weblog/tech/bad/leap-second-2012.html
http://googleblog.blogspot.co.uk/2011/09/time-technology-and-leaping-seconds.html
https://aws.amazon.com/blogs/aws/look-before-you-leap-the-coming-leap-second-and-aws/
https://aws.amazon.com/blogs/aws/look-before-you-leap-the-coming-leap-second-and-aws/
http://crin.eng.uts.edu.au/~darryl/Publications/LeapSecond_camera.pdf
http://crin.eng.uts.edu.au/~darryl/Publications/LeapSecond_camera.pdf
http://dx.doi.org/10.1007/978-3-319-30505-9_29
http://www.vmware.com/resources/techresources/238
https://www.esma.europa.eu/sites/default/files/library/2015/11/2015-esma-1464_annex_i_-_draft_rts_and_its_on_mifid_ii_and_mifir.pdf
https://www.esma.europa.eu/sites/default/files/library/2015/11/2015-esma-1464_annex_i_-_draft_rts_and_its_on_mifid_ii_and_mifir.pdf
https://www.lmax.com/blog/staff-blogs/2015/11/27/solving-mifid-ii-clock-synchronisation-minimum-spend-part-1/
https://www.lmax.com/blog/staff-blogs/2015/11/27/solving-mifid-ii-clock-synchronisation-minimum-spend-part-1/
https://aphyr.com/posts/294-call-me-maybe-cassandra/
http://basho.com/clocks-are-bad-or-welcome-to-distributed-systems/
http://basho.com/clocks-are-bad-or-welcome-to-distributed-systems/
https://aphyr.com/posts/299-the-trouble-with-timestamps

[56] Leslie Lamport: “Time, Clocks, and the Ordering of Events in a Distributed Sys-
tem,” Communications of the ACM, volume 21, number 7, pages 558-565, July 1978.
d0i:10.1145/359545.359563

[57] Sandeep Kulkarni, Murat Demirbas, Deepak Madeppa, et al.: “Logical Physical
Clocks and Consistent Snapshots in Globally Distributed Databases,” State University
of New York at Buffalo, Computer Science and Engineering Technical Report
2014-04, May 2014.

[58] Justin Sheehy: “There Is No Now: Problems With Simultaneity in Distributed
Systems,” ACM Queue, volume 13, number 3, pages 36-41, March 2015. doi:
10.1145/2733108

[59] Murat Demirbas: “Spanner: Google’s Globally-Distributed Database,” muratbuf-
falo.blogspot.co.uk, July 4, 2013.

[60] Dahlia Malkhi and Jean-Philippe Martin: “Spanner’s Concurrency Control,”
ACM SIGACT News, volume 44, number 3, pages 73-77, September 2013. doi:
10.1145/2527748.2527767

[61] Manuel Bravo, Nuno Diegues, Jingna Zeng, et al.: “On the Use of Clocks to
Enforce Consistency in the Cloud,” IEEE Data Engineering Bulletin, volume 38, num-
ber 1, pages 18-31, March 2015.

[62] Spencer Kimball: “Living Without Atomic Clocks,” cockroachlabs.com, February
17, 2016.

[63] Cary G. Gray and David R. Cheriton: “Leases: An Efficient Fault-Tolerant Mech-
anism for Distributed File Cache Consistency,” at 12th ACM Symposium on Operat-
ing Systems Principles (SOSP), December 1989. doi:10.1145/74850.74870

[64] Todd Lipcon: “Avoiding Full GCs in Apache HBase with MemStore-Local Allo-
cation Buffers: Part 1,” blog.cloudera.com, February 24, 2011.

[65] Martin Thompson: “Java Garbage Collection Distilled,” mechanical-
sympathy.blogspot.co.uk, July 16, 2013.

[66] Alexey Ragozin: “How to Tame Java GC Pauses? Surviving 16GiB Heap and
Greater,” java.dzone.com, June 28, 2011.

[67] Christopher Clark, Keir Fraser, Steven Hand, et al.: “Live Migration of Virtual
Machines,” at 2nd USENIX Symposium on Symposium on Networked Systems Design
& Implementation (NSDI), May 2005.

[68] Mike Shaver: “fsyncers and Curveballs,” shaver.off.net, May 25, 2008.

[69] Zhenyun Zhuang and Cuong Tran: “Eliminating Large JVM GC Pauses Caused
by Background IO Traffic,” engineering.linkedin.com, February 10, 2016.

316 | Chapter8: The Trouble with Distributed Systems

http://research.microsoft.com/en-US/um/people/Lamport/pubs/time-clocks.pdf
http://research.microsoft.com/en-US/um/people/Lamport/pubs/time-clocks.pdf
http://dx.doi.org/10.1145/359545.359563
http://www.cse.buffalo.edu/tech-reports/2014-04.pdf
http://www.cse.buffalo.edu/tech-reports/2014-04.pdf
https://queue.acm.org/detail.cfm?id=2745385
https://queue.acm.org/detail.cfm?id=2745385
http://dx.doi.org/10.1145/2733108
http://dx.doi.org/10.1145/2733108
http://muratbuffalo.blogspot.co.uk/2013/07/spanner-googles-globally-distributed_4.html
http://www.cs.cornell.edu/~ie53/publications/DC-col51-Sep13.pdf
http://dx.doi.org/10.1145/2527748.2527767
http://dx.doi.org/10.1145/2527748.2527767
http://sites.computer.org/debull/A15mar/p18.pdf
http://sites.computer.org/debull/A15mar/p18.pdf
http://www.cockroachlabs.com/blog/living-without-atomic-clocks/
http://web.stanford.edu/class/cs240/readings/89-leases.pdf
http://web.stanford.edu/class/cs240/readings/89-leases.pdf
http://dx.doi.org/10.1145/74850.74870
http://blog.cloudera.com/blog/2011/02/avoiding-full-gcs-in-hbase-with-memstore-local-allocation-buffers-part-1/
http://blog.cloudera.com/blog/2011/02/avoiding-full-gcs-in-hbase-with-memstore-local-allocation-buffers-part-1/
http://mechanical-sympathy.blogspot.co.uk/2013/07/java-garbage-collection-distilled.html
http://java.dzone.com/articles/how-tame-java-gc-pauses
http://java.dzone.com/articles/how-tame-java-gc-pauses
http://www.cl.cam.ac.uk/research/srg/netos/papers/2005-nsdi-migration.pdf
http://www.cl.cam.ac.uk/research/srg/netos/papers/2005-nsdi-migration.pdf
http://shaver.off.net/diary/2008/05/25/fsyncers-and-curveballs/
https://engineering.linkedin.com/blog/2016/02/eliminating-large-jvm-gc-pauses-caused-by-background-io-traffic
https://engineering.linkedin.com/blog/2016/02/eliminating-large-jvm-gc-pauses-caused-by-background-io-traffic

[70] David Terei and Amit Levy: “Blade: A Data Center Garbage Collector,” arXiv:
1504.02578, April 13, 2015.

[71] Martin Maas, Tim Harris, Krste Asanovi¢, and John Kubiatowicz: “Trash Day:
Coordinating Garbage Collection in Distributed Systems,” at 15th USENIX Workshop
on Hot Topics in Operating Systems (HotOS), May 2015.

[72] “Predictable Low Latency,” Cinnober Financial Technology AB, cinnober.com,
November 24, 2013.

[73] Martin Fowler: “The LMAX Architecture,” martinfowler.com, July 12, 2011.

[74] Flavio P. Junqueira and Benjamin Reed: ZooKeeper: Distributed Process Coordi-
nation. O’Reilly Media, 2013. ISBN: 978-1-449-36130-3

[75] Enis Soztutar: “HBase and HDFS: Understanding Filesystem Usage in HBase,” at
HBaseCon, June 2013.

[76] Caitie McCaftrey: “Clients Are Jerks: AKA How Halo 4 DoSed the Services at
Launch & How We Survived,” caitiem.com, June 23, 2015.

[77] Leslie Lamport, Robert Shostak, and Marshall Pease: “The Byzantine Generals
Problem,” ACM Transactions on Programming Languages and Systems (TOPLAS),
volume 4, number 3, pages 382-401, July 1982. doi:10.1145/357172.357176

[78] Jim N. Gray: “Notes on Data Base Operating Systems,” in Operating Systems: An
Advanced Course, Lecture Notes in Computer Science, volume 60, edited by R. Bayer,
R. M. Graham, and G. Seegmiiller, pages 393-481, Springer-Verlag, 1978. ISBN:
978-3-540-08755-7

[79] Brian Palmer: “How Complicated Was the Byzantine Empire?,” slate.com, Octo-
ber 20, 2011.

[80] Leslie Lamport: “My Writings,” research.microsoft.com, December 16, 2014. This
page can be found by searching the web for the 23-character string obtained by
removing the hyphens from the string allla-mport-spubso-ntheweb.

[81] John Rushby: “Bus Architectures for Safety-Critical Embedded Systems,” at Ist
International Workshop on Embedded Software (EMSOFT), October 2001.

[82] Jake Edge: “ELC: SpaceX Lessons Learned,” Iwn.net, March 6, 2013.

[83] Andrew Miller and Joseph J. LaViola, Jr.: “Anonymous Byzantine Consensus
from Moderately-Hard Puzzles: A Model for Bitcoin,” University of Central Florida,
Technical Report CS-TR-14-01, April 2014.

[84] James Mickens: “The Saddest Moment,” USENIX ;login: logout, May 2013.

[85] Evan Gilman: “The Discovery of Apache ZooKeeper’s Poison Packet,” pagerd-
uty.com, May 7, 2015.

Summary | 317

http://arxiv.org/pdf/1504.02578.pdf
https://timharris.uk/papers/2015-hotos.pdf
https://timharris.uk/papers/2015-hotos.pdf
http://cdn2.hubspot.net/hubfs/1624455/Website_2016/content/White%20papers/Cinnober%20on%20GC%20pause%20free%20Java%20applications.pdf
http://martinfowler.com/articles/lmax.html
http://www.slideshare.net/enissoz/hbase-and-hdfs-understanding-filesystem-usage
http://caitiem.com/2015/06/23/clients-are-jerks-aka-how-halo-4-dosed-the-services-at-launch-how-we-survived/
http://caitiem.com/2015/06/23/clients-are-jerks-aka-how-halo-4-dosed-the-services-at-launch-how-we-survived/
http://research.microsoft.com/en-us/um/people/lamport/pubs/byz.pdf
http://research.microsoft.com/en-us/um/people/lamport/pubs/byz.pdf
http://dx.doi.org/10.1145/357172.357176
http://research.microsoft.com/en-us/um/people/gray/papers/DBOS.pdf
http://www.slate.com/articles/news_and_politics/explainer/2011/10/the_byzantine_tax_code_how_complicated_was_byzantium_anyway_.html
http://research.microsoft.com/en-us/um/people/lamport/pubs/pubs.html
http://www.csl.sri.com/papers/emsoft01/emsoft01.pdf
http://lwn.net/Articles/540368/
http://nakamotoinstitute.org/static/docs/anonymous-byzantine-consensus.pdf
http://nakamotoinstitute.org/static/docs/anonymous-byzantine-consensus.pdf
https://www.usenix.org/system/files/login-logout_1305_mickens.pdf
http://www.pagerduty.com/blog/the-discovery-of-apache-zookeepers-poison-packet/

[86] Jonathan Stone and Craig Partridge: “When the CRC and TCP Checksum Disa-
gree,” at ACM Conference on Applications, Technologies, Architectures, and Protocols
for Computer ~ Communication (SIGCOMM), August 2000. doi:
10.1145/347059.347561

[87] Evan Jones: “How Both TCP and Ethernet Checksums Fail,” evanjones.ca, Octo-
ber 5, 2015.

[88] Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer: “Consensus in the Pres-
ence of Partial Synchrony,” Journal of the ACM, volume 35, number 2, pages 288-
323, April 1988. d0i:10.1145/42282.42283

[89] Peter Bailis and Ali Ghodsi: “Eventual Consistency Today: Limitations, Exten-
sions, and Beyond,” ACM Queue, volume 11, number 3, pages 55-63, March 2013.
doi:10.1145/2460276.2462076

[90] Bowen Alpern and Fred B. Schneider: “Defining Liveness,” Information Process-
ing Letters, volume 21, number 4, pages 181-185, October 1985. doi:
10.1016/0020-0190(85)90056-0

[91] Flavio P. Junqueira: “Dude, Where’s My Metadata?,” fpj.me, May 28, 2015.
[92] Scott Sanders: “January 28th Incident Report,” github.com, February 3, 2016.

[93] Jay Kreps: “A Few Notes on Kafka and Jepsen,” blog.empathybox.com, Septem-
ber 25, 2013.

[94] Thanh Do, Mingzhe Hao, Tanakorn Leesatapornwongsa, et al.: “Limplock:
Understanding the Impact of Limpware on Scale-out Cloud Systems,” at 4th ACM
Symposium on Cloud Computing (SoCC), October 2013. doi:
10.1145/2523616.2523627

[95] Frank McSherry, Michael Isard, and Derek G. Murray: “Scalability! But at What
COST?,” at 15th USENIX Workshop on Hot Topics in Operating Systems (HotOS),
May 2015.

318 | Chapter8: The Trouble with Distributed Systems

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.27.7611&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.27.7611&rep=rep1&type=pdf
http://dx.doi.org/10.1145/347059.347561
http://dx.doi.org/10.1145/347059.347561
http://www.evanjones.ca/tcp-and-ethernet-checksums-fail.html
http://www.net.t-labs.tu-berlin.de/~petr/ADC-07/papers/DLS88.pdf
http://www.net.t-labs.tu-berlin.de/~petr/ADC-07/papers/DLS88.pdf
http://dx.doi.org/10.1145/42282.42283
http://queue.acm.org/detail.cfm?id=2462076
http://queue.acm.org/detail.cfm?id=2462076
http://dx.doi.org/10.1145/2460276.2462076
https://www.cs.cornell.edu/fbs/publications/DefLiveness.pdf
http://dx.doi.org/10.1016/0020-0190(85)90056-0
http://dx.doi.org/10.1016/0020-0190(85)90056-0
http://fpj.me/2015/05/28/dude-wheres-my-metadata/
https://github.com/blog/2106-january-28th-incident-report
http://blog.empathybox.com/post/62279088548/a-few-notes-on-kafka-and-jepsen
http://ucare.cs.uchicago.edu/pdf/socc13-limplock.pdf
http://ucare.cs.uchicago.edu/pdf/socc13-limplock.pdf
http://dx.doi.org/10.1145/2523616.2523627
http://dx.doi.org/10.1145/2523616.2523627
http://www.frankmcsherry.org/assets/COST.pdf
http://www.frankmcsherry.org/assets/COST.pdf

CHAPTER 9
Consistency and Consensus

Is it better to be alive and wrong or right and dead?
—]Jay Kreps, A Few Notes on Kafka and Jepsen (2013)

Lots of things can go wrong in distributed systems, as discussed in Chapter 8. The
simplest way of handling such faults is to simply let the entire service fail, and show
the user an error message. If that solution is unacceptable, we need to find ways of
tolerating faults—that is, of keeping the service functioning correctly, even if some
internal component is faulty.

In this chapter, we will talk about some examples of algorithms and protocols for
building fault-tolerant distributed systems. We will assume that all the problems
from Chapter 8 can occur: packets can be lost, reordered, duplicated, or arbitrarily
delayed in the network; clocks are approximate at best; and nodes can pause (e.g., due
to garbage collection) or crash at any time.

The best way of building fault-tolerant systems is to find some general-purpose
abstractions with useful guarantees, implement them once, and then let applications
rely on those guarantees. This is the same approach as we used with transactions in
Chapter 7: by using a transaction, the application can pretend that there are no
crashes (atomicity), that nobody else is concurrently accessing the database (isola-
tion), and that storage devices are perfectly reliable (durability). Even though crashes,
race conditions, and disk failures do occur, the transaction abstraction hides those
problems so that the application doesn’t need to worry about them.

We will now continue along the same lines, and seek abstractions that can allow an
application to ignore some of the problems with distributed systems. For example,
one of the most important abstractions for distributed systems is consensus: that is,
getting all of the nodes to agree on something. As we shall see in this chapter, reliably

321

reaching consensus in spite of network faults and process failures is a surprisingly
tricky problem.

Once you have an implementation of consensus, applications can use it for various
purposes. For example, say you have a database with single-leader replication. If the
leader dies and you need to fail over to another node, the remaining database nodes
can use consensus to elect a new leader. As discussed in “Handling Node Outages” on
page 156, it’s important that there is only one leader, and that all nodes agree who the
leader is. If two nodes both believe that they are the leader, that situation is called split
brain, and it often leads to data loss. Correct implementations of consensus help
avoid such problems.

Later in this chapter, in “Distributed Transactions and Consensus” on page 352, we
will look into algorithms to solve consensus and related problems. But first we first
need to explore the range of guarantees and abstractions that can be provided in a
distributed system.

We need to understand the scope of what can and cannot be done: in some situa-
tions, it’s possible for the system to tolerate faults and continue working; in other sit-
uations, that is not possible. The limits of what is and isn’t possible have been
explored in depth, both in theoretical proofs and in practical implementations. We
will get an overview of those fundamental limits in this chapter.

Researchers in the field of distributed systems have been studying these topics for
decades, so there is a lot of material—we’ll only be able to scratch the surface. In this
book we don’t have space to go into details of the formal models and proofs, so we
will stick with informal intuitions. The literature references offer plenty of additional
depth if you're interested.

Consistency Guarantees

In “Problems with Replication Lag” on page 161 we looked at some timing issues that
occur in a replicated database. If you look at two database nodes at the same moment
in time, you’re likely to see different data on the two nodes, because write requests
arrive on different nodes at different times. These inconsistencies occur no matter
what replication method the database uses (single-leader, multi-leader, or leaderless
replication).

Most replicated databases provide at least eventual consistency, which means that if
you stop writing to the database and wait for some unspecified length of time, then
eventually all read requests will return the same value [1]. In other words, the incon-
sistency is temporary, and it eventually resolves itself (assuming that any faults in the
network are also eventually repaired). A better name for eventual consistency may be
convergence, as we expect all replicas to eventually converge to the same value [2].

322 | Chapter9: Consistency and Consensus

However, this is a very weak guarantee—it doesn’t say anything about when the repli-
cas will converge. Until the time of convergence, reads could return anything or
nothing [1]. For example, if you write a value and then immediately read it again,
there is no guarantee that you will see the value you just wrote, because the read may
be routed to a different replica (see “Reading Your Own Writes” on page 162).

Eventual consistency is hard for application developers because it is so different from
the behavior of variables in a normal single-threaded program. If you assign a value
to a variable and then read it shortly afterward, you don’t expect to read back the old
value, or for the read to fail. A database looks superficially like a variable that you can
read and write, but in fact it has much more complicated semantics [3].

When working with a database that provides only weak guarantees, you need to be
constantly aware of its limitations and not accidentally assume too much. Bugs are
often subtle and hard to find by testing, because the application may work well most
of the time. The edge cases of eventual consistency only become apparent when there
is a fault in the system (e.g., a network interruption) or at high concurrency.

In this chapter we will explore stronger consistency models that data systems may
choose to provide. They don’t come for free: systems with stronger guarantees may
have worse performance or be less fault-tolerant than systems with weaker guaran-
tees. Nevertheless, stronger guarantees can be appealing because they are easier to use
correctly. Once you have seen a few different consistency models, you'll be in a better
position to decide which one best fits your needs.

There is some similarity between distributed consistency models and the hierarchy of
transaction isolation levels we discussed previously [4, 5] (see “Weak Isolation Lev-
els” on page 233). But while there is some overlap, they are mostly independent con-
cerns: transaction isolation is primarily about avoiding race conditions due to
concurrently executing transactions, whereas distributed consistency is mostly about
coordinating the state of replicas in the face of delays and faults.

This chapter covers a broad range of topics, but as we shall see, these areas are in fact
deeply linked:

« We will start by looking at one of the strongest consistency models in common
use, linearizability, and examine its pros and cons.

« We'll then examine the issue of ordering events in a distributed system (“Order-
ing Guarantees” on page 339), particularly around causality and total ordering.

o In the third section (“Distributed Transactions and Consensus” on page 352) we
will explore how to atomically commit a distributed transaction, which will
finally lead us toward solutions for the consensus problem.

Consistency Guarantees | 323

Linearizability

In an eventually consistent database, if you ask two different replicas the same ques-
tion at the same time, you may get two different answers. That’s confusing. Wouldn’t
it be a lot simpler if the database could give the illusion that there is only one replica
(i.e., only one copy of the data)? Then every client would have the same view of the
data, and you wouldn’t have to worry about replication lag.

This is the idea behind linearizability [6] (also known as atomic consistency [7], strong
consistency, immediate consistency, or external consistency [8]). The exact definition
of linearizability is quite subtle, and we will explore it in the rest of this section. But
the basic idea is to make a system appear as if there were only one copy of the data,
and all operations on it are atomic. With this guarantee, even though there may be
multiple replicas in reality, the application does not need to worry about them.

In a linearizable system, as soon as one client successfully completes a write, all cli-
ents reading from the database must be able to see the value just written. Maintaining
the illusion of a single copy of the data means guaranteeing that the value read is the
most recent, up-to-date value, and doesn’t come from a stale cache or replica. In
other words, linearizability is a recency guarantee. To clarify this idea, let’s look at an
example of a system that is not linearizable.

insert into final_scores

(player1, score1, player2, score2)

values(‘Germany; 1, Argentina; 0) time
Referee % ———————————————————————————————————— >

ok

insert...

insert...

Alice % »»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»» >
select * from final_scores

select * from final_scores

Hey, Germany
has won the
World Cup!

Really? The
website says they're
still playing.

Figure 9-1. This system is not linearizable, causing football fans to be confused.

324 | Chapter9: Consistency and Consensus

Figure 9-1 shows an example of a nonlinearizable sports website [9]. Alice and Bob
are sitting in the same room, both checking their phones to see the outcome of the
2014 FIFA World Cup final. Just after the final score is announced, Alice refreshes
the page, sees the winner announced, and excitedly tells Bob about it. Bob incredu-
lously hits reload on his own phone, but his request goes to a database replica that is
lagging, and so his phone shows that the game is still ongoing.

If Alice and Bob had hit reload at the same time, it would have been less surprising if
they had gotten two different query results, because they wouldn’t know at exactly
what time their respective requests were processed by the server. However, Bob
knows that he hit the reload button (initiated his query) after he heard Alice exclaim
the final score, and therefore he expects his query result to be at least as recent as
Alice’s. The fact that his query returned a stale result is a violation of linearizability.

What Makes a System Linearizable?

The basic idea behind linearizability is simple: to make a system appear as if there is
only a single copy of the data. However, nailing down precisely what that means
actually requires some care. In order to understand linearizability better, let’s look at
some more examples.

Figure 9-2 shows three clients concurrently reading and writing the same key x in a
linearizable database. In the distributed systems literature, x is called a register—in
practice, it could be one key in a key-value store, one row in a relational database, or
one document in a document database, for example.

time
ClientA % ~-[readt) 50]---- - oo freadty 200r1f oo i oo [readey — =1]--»>
ClientB . ---------- - [300] oo | TR .
Client C % *************** 1write(x,1) on| ,,,,,,,,,,,,,,, >

Figure 9-2. If a read request is concurrent with a write request, it may return either the
old or the new value.

For simplicity, Figure 9-2 shows only the requests from the clients’ point of view, not
the internals of the database. Each bar is a request made by a client, where the start of
a bar is the time when the request was sent, and the end of a bar is when the response
was received by the client. Due to variable network delays, a client doesn’t know

Linearizability | 325

exactly when the database processed its request—it only knows that it must have hap-
pened sometime between the client sending the request and receiving the response.!

In this example, the register has two types of operations:

o read(x) = v means the client requested to read the value of register x, and the
database returned the value v.

o write(x, v) = r means the client requested to set the register x to value v, and the
database returned response r (which could be ok or error).

In Figure 9-2, the value of x is initially 0, and client C performs a write request to set
it to 1. While this is happening, clients A and B are repeatedly polling the database to
read the latest value. What are the possible responses that A and B might get for their
read requests?

o The first read operation by client A completes before the write begins, so it must
definitely return the old value 0.

o The last read by client A begins after the write has completed, so it must defi-
nitely return the new value 1 if the database is linearizable: we know that the
write must have been processed sometime between the start and end of the write
operation, and the read must have been processed sometime between the start
and end of the read operation. If the read started after the write ended, then the
read must have been processed after the write, and therefore it must see the new
value that was written.

+ Any read operations that overlap in time with the write operation might return
either 0 or 1, because we don’t know whether or not the write has taken effect at
the time when the read operation is processed. These operations are concurrent
with the write.

However, that is not yet sufficient to fully describe linearizability: if reads that are
concurrent with a write can return either the old or the new value, then readers could
see a value flip back and forth between the old and the new value several times while
a write is going on. That is not what we expect of a system that emulates a “single
copy of the data.™

i. A subtle detail of this diagram is that it assumes the existence of a global clock, represented by the horizon-
tal axis. Even though real systems typically don’t have accurate clocks (see “Unreliable Clocks” on page 287),
this assumption is okay: for the purposes of analyzing a distributed algorithm, we may pretend that an accu-
rate global clock exists, as long as the algorithm doesn’t have access to it [47]. Instead, the algorithm can only
see a mangled approximation of real time, as produced by a quartz oscillator and NTP.

ii. A register in which reads may return either the old or the new value if they are concurrent with a write is
known as a regular register [7, 25].

326 | Chapter9: Consistency and Consensus

To make the system linearizable, we need to add another constraint, illustrated in
Figure 9-3.

time
ClientA [l 0] ------- - T P esd 7]
Client B % ------------ read(x) 0| ---------- read(x) S 1}---------o-- >
Client C % ——————————————— Jwrite(x, 1) S0k >

Figure 9-3. After any one read has returned the new value, all following reads (on the
same or other clients) must also return the new value.

In a linearizable system we imagine that there must be some point in time (between
the start and end of the write operation) at which the value of x atomically flips from
0 to 1. Thus, if one client’s read returns the new value 1, all subsequent reads must
also return the new value, even if the write operation has not yet completed.

This timing dependency is illustrated with an arrow in Figure 9-3. Client A is the first
to read the new value, 1. Just after A’s read returns, B begins a new read. Since B’s
read occurs strictly after A’s read, it must also return 1, even though the write by C is
still ongoing. (It’s the same situation as with Alice and Bob in Figure 9-1: after Alice
has read the new value, Bob also expects to read the new value.)

We can further refine this timing diagram to visualize each operation taking effect
atomically at some point in time. A more complex example is shown in Figure 9-4
[10].

In Figure 9-4 we add a third type of operation besides read and write:

o cas(x, Vog Vnew) = t means the client requested an atomic compare-and-set oper-
ation (see “Compare-and-set” on page 245). If the current value of the register x
equals v, it should be atomically set to v,.,. If x # v, then the operation should
leave the register unchanged and return an error. r is the database’s response (ok
or error).

Each operation in Figure 9-4 is marked with a vertical line (inside the bar for each
operation) at the time when we think the operation was executed. Those markers are
joined up in a sequential order, and the result must be a valid sequence of reads and
writes for a register (every read must return the value set by the most recent write).

The requirement of linearizability is that the lines joining up the operation markers
always move forward in time (from left to right), never backward. This requirement

Linearizability | 327

ensures the recency guarantee we discussed earlier: once a new value has been written
or read, all subsequent reads see the value that was written, until it is overwritten

again.

time
Client A % -------- [write(x, 1) sok]------- read(x) 4| ------------ >
Client B % - - [read(x)] H >1][casix, 1,2)] aok‘»—»—»——{s‘—»—» read) | =2[-»
Client C % -------- [[eaaw | 51|{eeaw |52} - - - {Fwza Sok}---- >
Client D % cee - |Wri1#:é(x, 0) > ok]- - - -[cas(x,0,3) [serror |- - - - oo oo >

Database [] _ _— :
x=0 x=1 read read x=2 read read x=4 read read

Figure 9-4. Visualizing the points in time at which the reads and writes appear to have
taken effect. The final read by B is not linearizable.

There are a few interesting details to point out in Figure 9-4:

First client B sent a request to read x, then client D sent a request to set x to 0,
and then client A sent a request to set x to 1. Nevertheless, the value returned to
B’s read is 1 (the value written by A). This is okay: it means that the database first
processed D’s write, then A’s write, and finally B’s read. Although this is not the
order in which the requests were sent, it’s an acceptable order, because the three
requests are concurrent. Perhaps B’s read request was slightly delayed in the net-
work, so it only reached the database after the two writes.

Client B’s read returned 1 before client A received its response from the database,
saying that the write of the value 1 was successful. This is also okay: it doesn’t
mean the value was read before it was written, it just means the ok response from
the database to client A was slightly delayed in the network.

This model doesn’t assume any transaction isolation: another client may change
a value at any time. For example, C first reads 1 and then reads 2, because the
value was changed by B between the two reads. An atomic compare-and-set (cas)
operation can be used to check the value hasn’t been concurrently changed by
another client: B and C’s cas requests succeed, but D’s cas request fails (by the
time the database processes it, the value of x is no longer 0).

The final read by client B (in a shaded bar) is not linearizable. The operation is
concurrent with C’s cas write, which updates x from 2 to 4. In the absence of

328

| Chapter9: Consistency and Consensus

other requests, it would be okay for B’s read to return 2. However, client A has
already read the new value 4 before B’s read started, so B is not allowed to read
an older value than A. Again, it’s the same situation as with Alice and Bob in
Figure 9-1.

That is the intuition behind linearizability; the formal definition [6] describes it more
precisely. It is possible (though computationally expensive) to test whether a system’s
behavior is linearizable by recording the timings of all requests and responses, and
checking whether they can be arranged into a valid sequential order [11].

Linearizability Versus Serializability

Linearizability is easily confused with serializability (see “Serializability” on page 251),
as both words seem to mean something like “can be arranged in a sequential order.”
However, they are two quite different guarantees, and it is important to distinguish
between them:

Serializability

Serializability is an isolation property of transactions, where every transaction
may read and write multiple objects (rows, documents, records)—see “Single-
Object and Multi-Object Operations” on page 228. It guarantees that transac-
tions behave the same as if they had executed in some serial order (each
transaction running to completion before the next transaction starts). It is okay
for that serial order to be different from the order in which transactions were
actually run [12].

Linearizability
Linearizability is a recency guarantee on reads and writes of a register (an indi-
vidual object). It doesn’t group operations together into transactions, so it does
not prevent problems such as write skew (see “Write Skew and Phantoms” on
page 246), unless you take additional measures such as materializing conflicts
(see “Materializing conflicts” on page 251).

A database may provide both serializability and linearizability, and this combination
is known as strict serializability or strong one-copy serializability (strong-1SR) [4, 13].
Implementations of serializability based on two-phase locking (see “Two-Phase Lock-
ing (2PL)” on page 257) or actual serial execution (see “Actual Serial Execution” on
page 252) are typically linearizable.

However, serializable snapshot isolation (see “Serializable Snapshot Isolation (SSI)”
on page 261) is not linearizable: by design, it makes reads from a consistent snapshot,
to avoid lock contention between readers and writers. The whole point of a consistent
snapshot is that it does not include writes that are more recent than the snapshot, and
thus reads from the snapshot are not linearizable.

Linearizability | 329

Relying on Linearizability

In what circumstances is linearizability useful? Viewing the final score of a sporting
match is perhaps a frivolous example: a result that is outdated by a few seconds is
unlikely to cause any real harm in this situation. However, there a few areas in which
linearizability is an important requirement for making a system work correctly.

Locking and leader election

A system that uses single-leader replication needs to ensure that there is indeed only
one leader, not several (split brain). One way of electing a leader is to use a lock: every
node that starts up tries to acquire the lock, and the one that succeeds becomes the
leader [14]. No matter how this lock is implemented, it must be linearizable: all nodes
must agree which node owns the lock; otherwise it is useless.

Coordination services like Apache ZooKeeper [15] and etcd [16] are often used to
implement distributed locks and leader election. They use consensus algorithms to
implement linearizable operations in a fault-tolerant way (we discuss such algorithms
later in this chapter, in “Fault-Tolerant Consensus” on page 364).™ There are still
many subtle details to implementing locks and leader election correctly (see for
example the fencing issue in “The leader and the lock” on page 301), and libraries like
Apache Curator [17] help by providing higher-level recipes on top of ZooKeeper.
However, a linearizable storage service is the basic foundation for these coordination
tasks.

Distributed locking is also used at a much more granular level in some distributed
databases, such as Oracle Real Application Clusters (RAC) [18]. RAC uses a lock per
disk page, with multiple nodes sharing access to the same disk storage system. Since
these linearizable locks are on the critical path of transaction execution, RAC deploy-
ments usually have a dedicated cluster interconnect network for communication
between database nodes.

Constraints and uniqueness guarantees

Uniqueness constraints are common in databases: for example, a username or email
address must uniquely identify one user, and in a file storage service there cannot be
two files with the same path and filename. If you want to enforce this constraint as
the data is written (such that if two people try to concurrently create a user or a file
with the same name, one of them will be returned an error), you need linearizability.

iii. Strictly speaking, ZooKeeper and etcd provide linearizable writes, but reads may be stale, since by default
they can be served by any one of the replicas. You can optionally request a linearizable read: etcd calls this a
quorum read [16], and in ZooKeeper you need to call sync() before the read [15]; see “Implementing linear-
izable storage using total order broadcast” on page 350.

330 | Chapter9: Consistency and Consensus

This situation is actually similar to a lock: when a user registers for your service, you
can think of them acquiring a “lock” on their chosen username. The operation is also
very similar to an atomic compare-and-set, setting the username to the ID of the user
who claimed it, provided that the username is not already taken.

Similar issues arise if you want to ensure that a bank account balance never goes neg-
ative, or that you don’t sell more items than you have in stock in the warehouse, or
that two people don’t concurrently book the same seat on a flight or in a theater.
These constraints all require there to be a single up-to-date value (the account bal-
ance, the stock level, the seat occupancy) that all nodes agree on.

In real applications, it is sometimes acceptable to treat such constraints loosely (for
example, if a flight is overbooked, you can move customers to a different flight and
offer them compensation for the inconvenience). In such cases, linearizability may
not be needed, and we will discuss such loosely interpreted constraints in “Timeliness
and Integrity” on page 524.

However, a hard uniqueness constraint, such as the one you typically find in rela-
tional databases, requires linearizability. Other kinds of constraints, such as foreign
key or attribute constraints, can be implemented without requiring linearizability
[19].

Cross-channel timing dependencies

Notice a detail in Figure 9-1: if Alice hadn’t exclaimed the score, Bob wouldn’t have
known that the result of his query was stale. He would have just refreshed the page
again a few seconds later, and eventually seen the final score. The linearizability viola-
tion was only noticed because there was an additional communication channel in the
system (Alice’s voice to Bob’s ears).

Similar situations can arise in computer systems. For example, say you have a website
where users can upload a photo, and a background process resizes the photos to
lower resolution for faster download (thumbnails). The architecture and dataflow of
this system is illustrated in Figure 9-5.

The image resizer needs to be explicitly instructed to perform a resizing job, and this
instruction is sent from the web server to the resizer via a message queue (see Chap-
ter 11). The web server doesn’t place the entire photo on the queue, since most mes-
sage brokers are designed for small messages, and a photo may be several megabytes
in size. Instead, the photo is first written to a file storage service, and once the write is
complete, the instruction to the resizer is placed on the queue.

Linearizability | 331

1. upload image 2. store full-size image .
_— Web server > File storage

5. fetch full- 6. store resized
3.send message size iImage Image
4. deliver message .
> Image resizer

Message queue

Figure 9-5. The web server and image resizer communicate both through file storage
and a message queue, opening the potential for race conditions.

If the file storage service is linearizable, then this system should work fine. If it is not
linearizable, there is the risk of a race condition: the message queue (steps 3 and 4 in
Figure 9-5) might be faster than the internal replication inside the storage service. In
this case, when the resizer fetches the image (step 5), it might see an old version of the
image, or nothing at all. If it processes an old version of the image, the full-size and
resized images in the file storage become permanently inconsistent.

This problem arises because there are two different communication channels
between the web server and the resizer: the file storage and the message queue.
Without the recency guarantee of linearizability, race conditions between these two
channels are possible. This situation is analogous to Figure 9-1, where there was also
a race condition between two communication channels: the database replication and
the real-life audio channel between Alice’s mouth and Bob’s ears.

Linearizability is not the only way of avoiding this race condition, but it’s the simplest
to understand. If you control the additional communication channel (like in the case
of the message queue, but not in the case of Alice and Bob), you can use alternative
approaches similar to what we discussed in “Reading Your Own Writes” on page 162,
at the cost of additional complexity.

Implementing Linearizable Systems

Now that we’ve looked at a few examples in which linearizability is useful, let’s think
about how we might implement a system that offers linearizable semantics.

Since linearizability essentially means “behave as though there is only a single copy of
the data, and all operations on it are atomic,” the simplest answer would be to really
only use a single copy of the data. However, that approach would not be able to toler-
ate faults: if the node holding that one copy failed, the data would be lost, or at least
inaccessible until the node was brought up again.

332 | Chapter9: Consistency and Consensus

The most common approach to making a system fault-tolerant is to use replication.
Let’s revisit the replication methods from Chapter 5, and compare whether they can
be made linearizable:

Single-leader replication (potentially linearizable)

In a system with single-leader replication (see “Leaders and Followers” on page
152), the leader has the primary copy of the data that is used for writes, and the
followers maintain backup copies of the data on other nodes. If you make reads
from the leader, or from synchronously updated followers, they have the poten-
tial to be linearizable." However, not every single-leader database is actually line-
arizable, either by design (e.g., because it uses snapshot isolation) or due to
concurrency bugs [10].

Using the leader for reads relies on the assumption that you know for sure who
the leader is. As discussed in “The Truth Is Defined by the Majority” on page
300, it is quite possible for a node to think that it is the leader, when in fact it is
not—and if the delusional leader continues to serve requests, it is likely to violate
linearizability [20]. With asynchronous replication, failover may even lose com-
mitted writes (see “Handling Node Outages” on page 156), which violates both
durability and linearizability.

Consensus algorithms (linearizable)
Some consensus algorithms, which we will discuss later in this chapter, bear a
resemblance to single-leader replication. However, consensus protocols contain
measures to prevent split brain and stale replicas. Thanks to these details, con-
sensus algorithms can implement linearizable storage safely. This is how Zoo-
Keeper [21] and etcd [22] work, for example.

Multi-leader replication (not linearizable)
Systems with multi-leader replication are generally not linearizable, because they
concurrently process writes on multiple nodes and asynchronously replicate
them to other nodes. For this reason, they can produce conflicting writes that
require resolution (see “Handling Write Conflicts” on page 171). Such conflicts
are an artifact of the lack of a single copy of the data.

Leaderless replication (probably not linearizable)
For systems with leaderless replication (Dynamo-style; see “Leaderless Replica-
tion” on page 177), people sometimes claim that you can obtain “strong consis-
tency” by requiring quorum reads and writes (w + r > n). Depending on the exact

iv. Partitioning (sharding) a single-leader database, so that there is a separate leader per partition, does not
affect linearizability, since it is only a single-object guarantee. Cross-partition transactions are a different mat-
ter (see “Distributed Transactions and Consensus” on page 352).

Linearizability | 333

configuration of the quorums, and depending on how you define strong consis-
tency, this is not quite true.

“Last write wins” conflict resolution methods based on time-of-day clocks (e.g.,
in Cassandra; see “Relying on Synchronized Clocks” on page 291) are almost cer-
tainly nonlinearizable, because clock timestamps cannot be guaranteed to be
consistent with actual event ordering due to clock skew. Sloppy quorums
(“Sloppy Quorums and Hinted Handoff” on page 183) also ruin any chance of
linearizability. Even with strict quorums, nonlinearizable behavior is possible, as
demonstrated in the next section.

Linearizability and quorums

Intuitively, it seems as though strict quorum reads and writes should be linearizable
in a Dynamo-style model. However, when we have variable network delays, it is pos-
sible to have race conditions, as demonstrated in Figure 9-6.

Reader A %

Reader B %
getx 0 0

Figure 9-6. A nonlinearizable execution, despite using a strict quorum.

In Figure 9-6, the initial value of x is 0, and a writer client is updating x to 1 by send-
ing the write to all three replicas (n = 3, w = 3). Concurrently, client A reads from a
quorum of two nodes (r = 2) and sees the new value 1 on one of the nodes. Also con-
currently with the write, client B reads from a different quorum of two nodes, and
gets back the old value 0 from both.

The quorum condition is met (w + r > n), but this execution is nevertheless not line-
arizable: B’s request begins after A’s request completes, but B returns the old value

334 | Chapter9: Consistency and Consensus

while A returns the new value. (It's once again the Alice and Bob situation from
Figure 9-1.)

Interestingly, it is possible to make Dynamo-style quorums linearizable at the cost of
reduced performance: a reader must perform read repair (see “Read repair and anti-
entropy” on page 178) synchronously, before returning results to the application
[23], and a writer must read the latest state of a quorum of nodes before sending its
writes [24, 25]. However, Riak does not perform synchronous read repair due to the
performance penalty [26]. Cassandra does wait for read repair to complete on quo-
rum reads [27], but it loses linearizability if there are multiple concurrent writes to
the same key, due to its use of last-write-wins conflict resolution.

Moreover, only linearizable read and write operations can be implemented in this
way; a linearizable compare-and-set operation cannot, because it requires a consen-
sus algorithm [28].

In summary, it is safest to assume that a leaderless system with Dynamo-style replica-
tion does not provide linearizability.

The Cost of Linearizability

As some replication methods can provide linearizability and others cannot, it is inter-
esting to explore the pros and cons of linearizability in more depth.

We already discussed some use cases for different replication methods in Chapter 5;
for example, we saw that multi-leader replication is often a good choice for multi-
datacenter replication (see “Multi-datacenter operation” on page 168). An example of
such a deployment is illustrated in Figure 9-7.

Datacenter 1 Datacenter 2

< |Replication -
connection
Application H /N/\] E Application
Network interruption

S S

Clients

S S

Figure 9-7. A network interruption forcing a choice between linearizability and availa-
bility.

Linearizability | 335

Consider what happens if there is a network interruption between the two datacen-
ters. Let’s assume that the network within each datacenter is working, and clients can
reach the datacenters, but the datacenters cannot connect to each other.

With a multi-leader database, each datacenter can continue operating normally: since
writes from one datacenter are asynchronously replicated to the other, the writes are
simply queued up and exchanged when network connectivity is restored.

On the other hand, if single-leader replication is used, then the leader must be in one
of the datacenters. Any writes and any linearizable reads must be sent to the leader—
thus, for any clients connected to a follower datacenter, those read and write requests
must be sent synchronously over the network to the leader datacenter.

If the network between datacenters is interrupted in a single-leader setup, clients con-
nected to follower datacenters cannot contact the leader, so they cannot make any
writes to the database, nor any linearizable reads. They can still make reads from the
follower, but they might be stale (nonlinearizable). If the application requires linear-
izable reads and writes, the network interruption causes the application to become
unavailable in the datacenters that cannot contact the leader.

If clients can connect directly to the leader datacenter, this is not a problem, since the
application continues to work normally there. But clients that can only reach a fol-
lower datacenter will experience an outage until the network link is repaired.

The CAP theorem

This issue is not just a consequence of single-leader and multi-leader replication: any
linearizable database has this problem, no matter how it is implemented. The issue
also isn’t specific to multi-datacenter deployments, but can occur on any unreliable
network, even within one datacenter. The trade-off is as follows:"

o If your application requires linearizability, and some replicas are disconnected
from the other replicas due to a network problem, then some replicas cannot
process requests while they are disconnected: they must either wait until the net-
work problem is fixed, or return an error (either way, they become unavailable).

o If your application does not require linearizability, then it can be written in a way
that each replica can process requests independently, even if it is disconnected
from other replicas (e.g., multi-leader). In this case, the application can remain
available in the face of a network problem, but its behavior is not linearizable.

v. These two choices are sometimes known as CP (consistent but not available under network partitions) and
AP (available but not consistent under network partitions), respectively. However, this classification scheme
has several flaws [9], so it is best avoided.

336 | Chapter9: Consistency and Consensus

Thus, applications that don’t require linearizability can be more tolerant of network
problems. This insight is popularly known as the CAP theorem [29, 30, 31, 32],
named by Eric Brewer in 2000, although the trade-off has been known to designers of
distributed databases since the 1970s [33, 34, 35, 36].

CAP was originally proposed as a rule of thumb, without precise definitions, with the
goal of starting a discussion about trade-offs in databases. At the time, many dis-
tributed databases focused on providing linearizable semantics on a cluster of
machines with shared storage [18], and CAP encouraged database engineers to
explore a wider design space of distributed shared-nothing systems, which were more
suitable for implementing large-scale web services [37]. CAP deserves credit for this
culture shift—witness the explosion of new database technologies since the
mid-2000s (known as NoSQL).

The Unhelpful CAP Theorem

CAP is sometimes presented as Consistency, Availability, Partition tolerance: pick 2
out of 3. Unfortunately, putting it this way is misleading [32] because network parti-
tions are a kind of fault, so they aren’t something about which you have a choice: they
will happen whether you like it or not [38].

At times when the network is working correctly, a system can provide both consis-
tency (linearizability) and total availability. When a network fault occurs, you have to
choose between either linearizability or total availability. Thus, a better way of phras-
ing CAP would be either Consistent or Available when Partitioned [39]. A more relia-
ble network needs to make this choice less often, but at some point the choice is
inevitable.

In discussions of CAP there are several contradictory definitions of the term availa-
bility, and the formalization as a theorem [30] does not match its usual meaning [40].
Many so-called “highly available” (fault-tolerant) systems actually do not meet CAP’s
idiosyncratic definition of availability. All in all, there is a lot of misunderstanding
and confusion around CAP, and it does not help us understand systems better, so
CAP is best avoided.

The CAP theorem as formally defined [30] is of very narrow scope: it only considers
one consistency model (namely linearizability) and one kind of fault (network parti-
tions," or nodes that are alive but disconnected from each other). It doesn’t say any-

vi. Asdiscussed in “Network Faults in Practice” on page 279, this book uses partitioning to refer to deliber-
ately breaking down a large dataset into smaller ones (sharding; see Chapter 6). By contrast, a network parti-
tion is a particular type of network fault, which we normally don’t consider separately from other kinds of
faults. However, since it’s the P in CAP, we can’t avoid the confusion in this case.

Linearizability | 337

thing about network delays, dead nodes, or other trade-offs. Thus, although CAP has
been historically influential, it has little practical value for designing systems [9, 40].

There are many more interesting impossibility results in distributed systems [41],
and CAP has now been superseded by more precise results [2, 42], so it is of mostly
historical interest today.

Linearizability and network delays

Although linearizability is a useful guarantee, surprisingly few systems are actually
linearizable in practice. For example, even RAM on a modern multi-core CPU is not
linearizable [43]: if a thread running on one CPU core writes to a memory address,
and a thread on another CPU core reads the same address shortly afterward, it is not
guaranteed to read the value written by the first thread (unless a memory barrier or
fence [44] is used).

The reason for this behavior is that every CPU core has its own memory cache and
store buffer. Memory access first goes to the cache by default, and any changes are
asynchronously written out to main memory. Since accessing data in the cache is
much faster than going to main memory [45], this feature is essential for good per-
formance on modern CPUs. However, there are now several copies of the data (one
in main memory, and perhaps several more in various caches), and these copies are
asynchronously updated, so linearizability is lost.

Why make this trade-off? It makes no sense to use the CAP theorem to justify the
multi-core memory consistency model: within one computer we usually assume reli-
able communication, and we don’t expect one CPU core to be able to continue oper-
ating normally if it is disconnected from the rest of the computer. The reason for
dropping linearizability is performance, not fault tolerance.

The same is true of many distributed databases that choose not to provide lineariza-
ble guarantees: they do so primarily to increase performance, not so much for fault
tolerance [46]. Linearizability is slow—and this is true all the time, not only during a
network fault.

Can’t we maybe find a more efficient implementation of linearizable storage? It
seems the answer is no: Attiya and Welch [47] prove that if you want linearizability,
the response time of read and write requests is at least proportional to the uncertainty
of delays in the network. In a network with highly variable delays, like most com-
puter networks (see “Timeouts and Unbounded Delays” on page 281), the response
time of linearizable reads and writes is inevitably going to be high. A faster algorithm
for linearizability does not exist, but weaker consistency models can be much faster,
so this trade-off is important for latency-sensitive systems. In Chapter 12 we will dis-
cuss some approaches for avoiding linearizability without sacrificing correctness.

338 | Chapter9: Consistency and Consensus

Ordering Guarantees

We said previously that a linearizable register behaves as if there is only a single copy
of the data, and that every operation appears to take effect atomically at one point in
time. This definition implies that operations are executed in some well-defined order.
We illustrated the ordering in Figure 9-4 by joining up the operations in the order in
which they seem to have executed.

Ordering has been a recurring theme in this book, which suggests that it might be an
important fundamental idea. Let’s briefly recap some of the other contexts in which
we have discussed ordering:

o In Chapter 5 we saw that the main purpose of the leader in single-leader replica-
tion is to determine the order of writes in the replication log—that is, the order in
which followers apply those writes. If there is no single leader, conflicts can occur
due to concurrent operations (see “Handling Write Conflicts” on page 171).

o Serializability, which we discussed in Chapter 7, is about ensuring that transac-
tions behave as if they were executed in some sequential order. It can be achieved
by literally executing transactions in that serial order, or by allowing concurrent
execution while preventing serialization conflicts (by locking or aborting).

o The use of timestamps and clocks in distributed systems that we discussed in
Chapter 8 (see “Relying on Synchronized Clocks” on page 291) is another
attempt to introduce order into a disorderly world, for example to determine
which one of two writes happened later.

It turns out that there are deep connections between ordering, linearizability, and
consensus. Although this notion is a bit more theoretical and abstract than the rest of
this book, it is very helpful for clarifying our understanding of what systems can and
cannot do. We will explore this topic in the next few sections.

Ordering and Causality

There are several reasons why ordering keeps coming up, and one of the reasons is
that it helps preserve causality. We have already seen several examples over the
course of this book where causality has been important:

o In “Consistent Prefix Reads” on page 165 (Figure 5-5) we saw an example where
the observer of a conversation saw first the answer to a question, and then the
question being answered. This is confusing because it violates our intuition of
cause and effect: if a question is answered, then clearly the question had to be
there first, because the person giving the answer must have seen the question
(assuming they are not psychic and cannot see into the future). We say that there
is a causal dependency between the question and the answer.

Ordering Guarantees | 339

+ A similar pattern appeared in Figure 5-9, where we looked at the replication
between three leaders and noticed that some writes could “overtake” others due
to network delays. From the perspective of one of the replicas it would look as
though there was an update to a row that did not exist. Causality here means that
a row must first be created before it can be updated.

o In “Detecting Concurrent Writes” on page 184 we observed that if you have two
operations A and B, there are three possibilities: either A happened before B, or B
happened before A, or A and B are concurrent. This happened before relationship
is another expression of causality: if A happened before B, that means B might
have known about A, or built upon A, or depended on A. If A and B are concur-
rent, there is no causal link between them; in other words, we are sure that nei-
ther knew about the other.

o In the context of snapshot isolation for transactions (“Snapshot Isolation and
Repeatable Read” on page 237), we said that a transaction reads from a consistent
snapshot. But what does “consistent” mean in this context? It means consistent
with causality: if the snapshot contains an answer, it must also contain the ques-
tion being answered [48]. Observing the entire database at a single point in time
makes it consistent with causality: the effects of all operations that happened cau-
sally before that point in time are visible, but no operations that happened cau-
sally afterward can be seen. Read skew (non-repeatable reads, as illustrated in
Figure 7-6) means reading data in a state that violates causality.

o Our examples of write skew between transactions (see “Write Skew and Phan-
toms” on page 246) also demonstrated causal dependencies: in Figure 7-8, Alice
was allowed to go off call because the transaction thought that Bob was still on
call, and vice versa. In this case, the action of going off call is causally dependent
on the observation of who is currently on call. Serializable snapshot isolation (see
“Serializable Snapshot Isolation (SSI)” on page 261) detects write skew by track-
ing the causal dependencies between transactions.

o In the example of Alice and Bob watching football (Figure 9-1), the fact that Bob
got a stale result from the server after hearing Alice exclaim the result is a causal-
ity violation: Alice’s exclamation is causally dependent on the announcement of
the score, so Bob should also be able to see the score after hearing Alice. The
same pattern appeared again in “Cross-channel timing dependencies” on page
331 in the guise of an image resizing service.

Causality imposes an ordering on events: cause comes before effect; a message is sent
before that message is received; the question comes before the answer. And, like in
real life, one thing leads to another: one node reads some data and then writes some-
thing as a result, another node reads the thing that was written and writes something
else in turn, and so on. These chains of causally dependent operations define the
causal order in the system—i.e., what happened before what.

340 | Chapter9: Consistency and Consensus

If a system obeys the ordering imposed by causality, we say that it is causally consis-
tent. For example, snapshot isolation provides causal consistency: when you read
from the database, and you see some piece of data, then you must also be able to see
any data that causally precedes it (assuming it has not been deleted in the meantime).

The causal order is not a total order

A total order allows any two elements to be compared, so if you have two elements,
you can always say which one is greater and which one is smaller. For example, natu-
ral numbers are totally ordered: if I give you any two numbers, say 5 and 13, you can
tell me that 13 is greater than 5.

However, mathematical sets are not totally ordered: is {a, b} greater than {b, c}? Well,
you can’t really compare them, because neither is a subset of the other. We say they
are incomparable, and therefore mathematical sets are partially ordered: in some cases
one set is greater than another (if one set contains all the elements of another), but in
other cases they are incomparable.

The difference between a total order and a partial order is reflected in different data-
base consistency models:

Linearizability
In a linearizable system, we have a total order of operations: if the system behaves
as if there is only a single copy of the data, and every operation is atomic, this
means that for any two operations we can always say which one happened first.
This total ordering is illustrated as a timeline in Figure 9-4.

Causality
We said that two operations are concurrent if neither happened before the other
(see “The “happens-before” relationship and concurrency” on page 186). Put
another way, two events are ordered if they are causally related (one happened
before the other), but they are incomparable if they are concurrent. This means
that causality defines a partial order, not a total order: some operations are
ordered with respect to each other, but some are incomparable.

Therefore, according to this definition, there are no concurrent operations in a line-
arizable datastore: there must be a single timeline along which all operations are
totally ordered. There might be several requests waiting to be handled, but the data-
store ensures that every request is handled atomically at a single point in time, acting
on a single copy of the data, along a single timeline, without any concurrency.

Concurrency would mean that the timeline branches and merges again—and in this
case, operations on different branches are incomparable (i.e., concurrent). We saw
this phenomenon in Chapter 5: for example, Figure 5-14 is not a straight-line total
order, but rather a jumble of different operations going on concurrently. The arrows
in the diagram indicate causal dependencies—the partial ordering of operations.

Ordering Guarantees | 341

If you are familiar with distributed version control systems such as Git, their version
histories are very much like the graph of causal dependencies. Often one commit
happens after another, in a straight line, but sometimes you get branches (when sev-
eral people concurrently work on a project), and merges are created when those con-
currently created commits are combined.

Linearizability is stronger than causal consistency

So what is the relationship between the causal order and linearizability? The answer is
that linearizability implies causality: any system that is linearizable will preserve cau-
sality correctly [7]. In particular, if there are multiple communication channels in a
system (such as the message queue and the file storage service in Figure 9-5), lineariz-
ability ensures that causality is automatically preserved without the system having to
do anything special (such as passing around timestamps between different compo-
nents).

The fact that linearizability ensures causality is what makes linearizable systems sim-
ple to understand and appealing. However, as discussed in “The Cost of Linearizabil-
ity” on page 335, making a system linearizable can harm its performance and
availability, especially if the system has significant network delays (for example, if it’s
geographically distributed). For this reason, some distributed data systems have
abandoned linearizability, which allows them to achieve better performance but can
make them difficult to work with.

The good news is that a middle ground is possible. Linearizability is not the only way
of preserving causality—there are other ways too. A system can be causally consistent
without incurring the performance hit of making it linearizable (in particular, the
CAP theorem does not apply). In fact, causal consistency is the strongest possible
consistency model that does not slow down due to network delays, and remains
available in the face of network failures [2, 42].

In many cases, systems that appear to require linearizability in fact only really require
causal consistency, which can be implemented more efficiently. Based on this obser-
vation, researchers are exploring new kinds of databases that preserve causality, with
performance and availability characteristics that are similar to those of eventually
consistent systems [49, 50, 51].

As this research is quite recent, not much of it has yet made its way into production
systems, and there are still challenges to be overcome [52, 53]. However, it is a prom-
ising direction for future systems.

Capturing causal dependencies

We won’t go into all the nitty-gritty details of how nonlinearizable systems can main-
tain causal consistency here, but just briefly explore some of the key ideas.

342 | Chapter9: Consistency and Consensus

In order to maintain causality, you need to know which operation happened before
which other operation. This is a partial order: concurrent operations may be pro-
cessed in any order, but if one operation happened before another, then they must be
processed in that order on every replica. Thus, when a replica processes an operation,
it must ensure that all causally preceding operations (all operations that happened
before) have already been processed; if some preceding operation is missing, the later
operation must wait until the preceding operation has been processed.

In order to determine causal dependencies, we need some way of describing the
“knowledge” of a node in the system. If a node had already seen the value X when it
issued the write Y, then X and Y may be causally related. The analysis uses the kinds
of questions you would expect in a criminal investigation of fraud charges: did the
CEO know about X at the time when they made decision Y?

The techniques for determining which operation happened before which other oper-
ation are similar to what we discussed in “Detecting Concurrent Writes” on page 184.
That section discussed causality in a leaderless datastore, where we need to detect
concurrent writes to the same key in order to prevent lost updates. Causal consis-
tency goes further: it needs to track causal dependencies across the entire database,
not just for a single key. Version vectors can be generalized to do this [54].

In order to determine the causal ordering, the database needs to know which version
of the data was read by the application. This is why, in Figure 5-13, the version num-
ber from the prior operation is passed back to the database on a write. A similar idea
appears in the conflict detection of SSI, as discussed in “Serializable Snapshot Isola-
tion (SSI)” on page 261: when a transaction wants to commit, the database checks
whether the version of the data that it read is still up to date. To this end, the database
keeps track of which data has been read by which transaction.

Sequence Number Ordering

Although causality is an important theoretical concept, actually keeping track of all
causal dependencies can become impractical. In many applications, clients read lots
of data before writing something, and then it is not clear whether the write is causally
dependent on all or only some of those prior reads. Explicitly tracking all the data
that has been read would mean a large overhead.

However, there is a better way: we can use sequence numbers or timestamps to order
events. A timestamp need not come from a time-of-day clock (or physical clock,
which have many problems, as discussed in “Unreliable Clocks” on page 287). It can
instead come from a logical clock, which is an algorithm to generate a sequence of
numbers to identify operations, typically using counters that are incremented for
every operation.

Ordering Guarantees | 343

Such sequence numbers or timestamps are compact (only a few bytes in size), and
they provide a total order: that is, every operation has a unique sequence number, and
you can always compare two sequence numbers to determine which is greater (i.e.,
which operation happened later).

In particular, we can create sequence numbers in a total order that is consistent with
causality:" we promise that if operation A causally happened before B, then A occurs
before B in the total order (A has a lower sequence number than B). Concurrent
operations may be ordered arbitrarily. Such a total order captures all the causality
information, but also imposes more ordering than strictly required by causality.

In a database with single-leader replication (see “Leaders and Followers” on page
152), the replication log defines a total order of write operations that is consistent
with causality. The leader can simply increment a counter for each operation, and
thus assign a monotonically increasing sequence number to each operation in the
replication log. If a follower applies the writes in the order they appear in the replica-
tion log, the state of the follower is always causally consistent (even if it is lagging

behind the leader).

Noncausal sequence number generators

If there is not a single leader (perhaps because you are using a multi-leader or leader-
less database, or because the database is partitioned), it is less clear how to generate
sequence numbers for operations. Various methods are used in practice:

« Each node can generate its own independent set of sequence numbers. For exam-
ple, if you have two nodes, one node can generate only odd numbers and the
other only even numbers. In general, you could reserve some bits in the binary
representation of the sequence number to contain a unique node identifier, and
this would ensure that two different nodes can never generate the same sequence
number.

* You can attach a timestamp from a time-of-day clock (physical clock) to each
operation [55]. Such timestamps are not sequential, but if they have sufficiently
high resolution, they might be sufficient to totally order operations. This fact is
used in the last write wins conflict resolution method (see “Timestamps for
ordering events” on page 291).

» You can preallocate blocks of sequence numbers. For example, node A might
claim the block of sequence numbers from 1 to 1,000, and node B might claim

vii. A total order that is inconsistent with causality is easy to create, but not very useful. For example, you can
generate a random UUID for each operation, and compare UUIDs lexicographically to define the total order-
ing of operations. This is a valid total order, but the random UUIDs tell you nothing about which operation
actually happened first, or whether the operations were concurrent.

344 | Chapter9: Consistency and Consensus

the block from 1,001 to 2,000. Then each node can independently assign
sequence numbers from its block, and allocate a new block when its supply of
sequence numbers begins to run low.

These three options all perform better and are more scalable than pushing all opera-
tions through a single leader that increments a counter. They generate a unique,
approximately increasing sequence number for each operation. However, they all
have a problem: the sequence numbers they generate are not consistent with causality.

The causality problems occur because these sequence number generators do not cor-
rectly capture the ordering of operations across different nodes:

 Each node may process a different number of operations per second. Thus, if one
node generates even numbers and the other generates odd numbers, the counter
for even numbers may lag behind the counter for odd numbers, or vice versa. If
you have an odd-numbered operation and an even-numbered operation, you
cannot accurately tell which one causally happened first.

 Timestamps from physical clocks are subject to clock skew, which can make
them inconsistent with causality. For example, see Figure 8-3, which shows a sce-
nario in which an operation that happened causally later was actually assigned a
lower timestamp. "

o In the case of the block allocator, one operation may be given a sequence number
in the range from 1,001 to 2,000, and a causally later operation may be given a
number in the range from 1 to 1,000. Here, again, the sequence number is incon-
sistent with causality.

Lamport timestamps

Although the three sequence number generators just described are inconsistent with
causality, there is actually a simple method for generating sequence numbers that is
consistent with causality. It is called a Lamport timestamp, proposed in 1978 by Leslie
Lamport [56], in what is now one of the most-cited papers in the field of distributed
systems.

The use of Lamport timestamps is illustrated in Figure 9-8. Each node has a unique
identifier, and each node keeps a counter of the number of operations it has pro-
cessed. The Lamport timestamp is then simply a pair of (counter, node ID). Two

viil. Itis possible to make physical clock timestamps consistent with causality: in “Synchronized clocks for
global snapshots” on page 294 we discussed Google’s Spanner, which estimates the expected clock skew and
waits out the uncertainty interval before committing a write. This method ensures that a causally later trans-
action is given a greater timestamp. However, most clocks cannot provide the required uncertainty metric.

Ordering Guarantees | 345

nodes may sometimes have the same counter value, but by including the node ID in
the timestamp, each timestamp is made unique.

max =0
Client A 7(% - -

Client B 5% .-
write write write

max =0 max =1 max =2

Figure 9-8. Lamport timestamps provide a total ordering consistent with causality.

A Lamport timestamp bears no relationship to a physical time-of-day clock, but it
provides total ordering: if you have two timestamps, the one with a greater counter
value is the greater timestamps; if the counter values are the same, the one with the
greater node ID is the greater timestamp.

So far this description is essentially the same as the even/odd counters described in
the last section. The key idea about Lamport timestamps, which makes them consis-
tent with causality, is the following: every node and every client keeps track of the
maximum counter value it has seen so far, and includes that maximum on every
request. When a node receives a request or response with a maximum counter value
greater than its own counter value, it immediately increases its own counter to that
maximum.

This is shown in Figure 9-8, where client A receives a counter value of 5 from node 2,
and then sends that maximum of 5 to node 1. At that time, node 1’s counter was only
1, but it was immediately moved forward to 5, so the next operation had an incre-
mented counter value of 6.

As long as the maximum counter value is carried along with every operation, this
scheme ensures that the ordering from the Lamport timestamps is consistent with
causality, because every causal dependency results in an increased timestamp.

Lamport timestamps are sometimes confused with version vectors, which we saw in
“Detecting Concurrent Writes” on page 184. Although there are some similarities,
they have a different purpose: version vectors can distinguish whether two operations
are concurrent or whether one is causally dependent on the other, whereas Lamport
timestamps always enforce a total ordering. From the total ordering of Lamport time-

346 | Chapter9: Consistency and Consensus

stamps, you cannot tell whether two operations are concurrent or whether they are
causally dependent. The advantage of Lamport timestamps over version vectors is
that they are more compact.

Timestamp ordering is not sufficient

Although Lamport timestamps define a total order of operations that is consistent
with causality, they are not quite sufficient to solve many common problems in dis-
tributed systems.

For example, consider a system that needs to ensure that a username uniquely identi-
fies a user account. If two users concurrently try to create an account with the same
username, one of the two should succeed and the other should fail. (We touched on
this problem previously in “The leader and the lock” on page 301.)

At first glance, it seems as though a total ordering of operations (e.g., using Lamport
timestamps) should be sufficient to solve this problem: if two accounts with the same
username are created, pick the one with the lower timestamp as the winner (the one
who grabbed the username first), and let the one with the greater timestamp fail.
Since timestamps are totally ordered, this comparison is always valid.

This approach works for determining the winner after the fact: once you have collec-
ted all the username creation operations in the system, you can compare their time-
stamps. However, it is not sufficient when a node has just received a request from a
user to create a username, and needs to decide right now whether the request should
succeed or fail. At that moment, the node does not know whether another node is
concurrently in the process of creating an account with the same username, and what
timestamp that other node may assign to the operation.

In order to be sure that no other node is in the process of concurrently creating an
account with the same username and a lower timestamp, you would have to check
with every other node to see what it is doing [56]. If one of the other nodes has failed
or cannot be reached due to a network problem, this system would grind to a halt.
This is not the kind of fault-tolerant system that we need.

The problem here is that the total order of operations only emerges after you have
collected all of the operations. If another node has generated some operations, but
you don’t yet know what they are, you cannot construct the final ordering of opera-
tions: the unknown operations from the other node may need to be inserted at vari-
ous positions in the total order.

To conclude: in order to implement something like a uniqueness constraint for user-
names, it’s not sufficient to have a total ordering of operations—you also need to
know when that order is finalized. If you have an operation to create a username, and
you are sure that no other node can insert a claim for the same username ahead of
your operation in the total order, then you can safely declare the operation successful.

Ordering Guarantees | 347

This idea of knowing when your total order is finalized is captured in the topic of
total order broadcast.

Total Order Broadcast

If your program runs only on a single CPU core, it is easy to define a total ordering of
operations: it is simply the order in which they were executed by the CPU. However,
in a distributed system, getting all nodes to agree on the same total ordering of opera-
tions is tricky. In the last section we discussed ordering by timestamps or sequence
numbers, but found that it is not as powerful as single-leader replication (if you use
timestamp ordering to implement a uniqueness constraint, you cannot tolerate any
faults).

As discussed, single-leader replication determines a total order of operations by
choosing one node as the leader and sequencing all operations on a single CPU core
on the leader. The challenge then is how to scale the system if the throughput is
greater than a single leader can handle, and also how to handle failover if the leader
fails (see “Handling Node Outages” on page 156). In the distributed systems litera-
ture, this problem is known as total order broadcast or atomic broadcast [25, 57, 58].*

Scope of ordering guarantee

Partitioned databases with a single leader per partition often main-
tain ordering only per partition, which means they cannot offer
consistency guarantees (e.g., consistent snapshots, foreign key ref-
erences) across partitions. Total ordering across all partitions is
possible, but requires additional coordination [59].

Total order broadcast is usually described as a protocol for exchanging messages
between nodes. Informally, it requires that two safety properties always be satisfied:

Reliable delivery
No messages are lost: if a message is delivered to one node, it is delivered to all
nodes.

Totally ordered delivery
Messages are delivered to every node in the same order.

A correct algorithm for total order broadcast must ensure that the reliability and
ordering properties are always satisfied, even if a node or the network is faulty. Of

ix. The term atomic broadcast is traditional, but it is very confusing as it’s inconsistent with other uses of the

word atomic: it has nothing to do with atomicity in ACID transactions and is only indirectly related to atomic
operations (in the sense of multi-threaded programming) or atomic registers (linearizable storage). The term

total order multicast is another synonym.

348 | (Chapter9: Consistency and Consensus

course, messages will not be delivered while the network is interrupted, but an algo-
rithm can keep retrying so that the messages get through when the network is even-
tually repaired (and then they must still be delivered in the correct order).

Using total order broadcast

Consensus services such as ZooKeeper and etcd actually implement total order
broadcast. This fact is a hint that there is a strong connection between total order
broadcast and consensus, which we will explore later in this chapter.

Total order broadcast is exactly what you need for database replication: if every mes-
sage represents a write to the database, and every replica processes the same writes in
the same order, then the replicas will remain consistent with each other (aside from
any temporary replication lag). This principle is known as state machine replication
[60], and we will return to it in Chapter 11.

Similarly, total order broadcast can be used to implement serializable transactions: as
discussed in “Actual Serial Execution” on page 252, if every message represents a
deterministic transaction to be executed as a stored procedure, and if every node pro-
cesses those messages in the same order, then the partitions and replicas of the data-
base are kept consistent with each other [61].

An important aspect of total order broadcast is that the order is fixed at the time the
messages are delivered: a node is not allowed to retroactively insert a message into an
earlier position in the order if subsequent messages have already been delivered. This
fact makes total order broadcast stronger than timestamp ordering.

Another way of looking at total order broadcast is that it is a way of creating a log (as
in a replication log, transaction log, or write-ahead log): delivering a message is like
appending to the log. Since all nodes must deliver the same messages in the same
order, all nodes can read the log and see the same sequence of messages.

Total order broadcast is also useful for implementing a lock service that provides
fencing tokens (see “Fencing tokens” on page 303). Every request to acquire the lock
is appended as a message to the log, and all messages are sequentially numbered in
the order they appear in the log. The sequence number can then serve as a fencing
token, because it is monotonically increasing. In ZooKeeper, this sequence number is
called zxid [15].

Ordering Guarantees | 349

Implementing linearizable storage using total order broadcast

As illustrated in Figure 9-4, in a linearizable system there is a total order of opera-
tions. Does that mean linearizability is the same as total order broadcast? Not quite,
but there are close links between the two.*

Total order broadcast is asynchronous: messages are guaranteed to be delivered relia-
bly in a fixed order, but there is no guarantee about when a message will be delivered
(so one recipient may lag behind the others). By contrast, linearizability is a recency
guarantee: a read is guaranteed to see the latest value written.

However, if you have total order broadcast, you can build linearizable storage on top
of it. For example, you can ensure that usernames uniquely identify user accounts.

Imagine that for every possible username, you can have a linearizable register with an
atomic compare-and-set operation. Every register initially has the value null (indi-
cating that the username is not taken). When a user wants to create a username, you
execute a compare-and-set operation on the register for that username, setting it to
the user account ID, under the condition that the previous register value is null. If
multiple users try to concurrently grab the same username, only one of the compare-
and-set operations will succeed, because the others will see a value other than null
(due to linearizability).

You can implement such a linearizable compare-and-set operation as follows by
using total order broadcast as an append-only log [62, 63]:

1. Append a message to the log, tentatively indicating the username you want to
claim.

2. Read the log, and wait for the message you appended to be delivered back to
you.™

3. Check for any messages claiming the username that you want. If the first message
for your desired username is your own message, then you are successful: you can
commit the username claim (perhaps by appending another message to the log)
and acknowledge it to the client. If the first message for your desired username is
from another user, you abort the operation.

x. Inaformal sense, a linearizable read-write register is an “easier” problem. Total order broadcast is equiva-
lent to consensus [67], which has no deterministic solution in the asynchronous crash-stop model [68],
whereas a linearizable read-write register can be implemented in the same system model [23, 24, 25]. How-
ever, supporting atomic operations such as compare-and-set or increment-and-get in a register makes it
equivalent to consensus [28]. Thus, the problems of consensus and a linearizable register are closely related.

xi. If you don’t wait, but acknowledge the write immediately after it has been enqueued, you get something
similar to the memory consistency model of multi-core x86 processors [43]. That model is neither lineariza-
ble nor sequentially consistent.

350 | Chapter9: Consistency and Consensus

Because log entries are delivered to all nodes in the same order, if there are several
concurrent writes, all nodes will agree on which one came first. Choosing the first of
the conflicting writes as the winner and aborting later ones ensures that all nodes
agree on whether a write was committed or aborted. A similar approach can be used
to implement serializable multi-object transactions on top of a log [62].

While this procedure ensures linearizable writes, it doesn’t guarantee linearizable
reads—if you read from a store that is asynchronously updated from the log, it may
be stale. (To be precise, the procedure described here provides sequential consistency
[47, 64], sometimes also known as timeline consistency [65, 66], a slightly weaker
guarantee than linearizability.) To make reads linearizable, there are a few options:

» You can sequence reads through the log by appending a message, reading the log,
and performing the actual read when the message is delivered back to you. The
message’s position in the log thus defines the point in time at which the read
happens. (Quorum reads in etcd work somewhat like this [16].)

o If the log allows you to fetch the position of the latest log message in a lineariza-
ble way, you can query that position, wait for all entries up to that position to be
delivered to you, and then perform the read. (This is the idea behind Zoo-
Keeper’s sync() operation [15].)

+ You can make your read from a replica that is synchronously updated on writes,
and is thus sure to be up to date. (This technique is used in chain replication
[63]; see also “Research on Replication” on page 155.)

Implementing total order broadcast using linearizable storage

The last section showed how to build a linearizable compare-and-set operation from
total order broadcast. We can also turn it around, assume that we have linearizable
storage, and show how to build total order broadcast from it.

The easiest way is to assume you have a linearizable register that stores an integer and
that has an atomic increment-and-get operation [28]. Alternatively, an atomic
compare-and-set operation would also do the job.

The algorithm is simple: for every message you want to send through total order
broadcast, you increment-and-get the linearizable integer, and then attach the value
you got from the register as a sequence number to the message. You can then send
the message to all nodes (resending any lost messages), and the recipients will deliver
the messages consecutively by sequence number.

Note that unlike Lamport timestamps, the numbers you get from incrementing the
linearizable register form a sequence with no gaps. Thus, if a node has delivered mes-
sage 4 and receives an incoming message with a sequence number of 6, it knows that
it must wait for message 5 before it can deliver message 6. The same is not the case

Ordering Guarantees | 351

with Lamport timestamps—in fact, this is the key difference between total order
broadcast and timestamp ordering.

How hard could it be to make a linearizable integer with an atomic increment-and-
get operation? As usual, if things never failed, it would be easy: you could just keep it
in a variable on one node. The problem lies in handling the situation when network
connections to that node are interrupted, and restoring the value when that node fails
[59]. In general, if you think hard enough about linearizable sequence number gener-
ators, you inevitably end up with a consensus algorithm.

This is no coincidence: it can be proved that a linearizable compare-and-set (or
increment-and-get) register and total order broadcast are both equivalent to consen-
sus [28, 67]. That is, if you can solve one of these problems, you can transform it into
a solution for the others. This is quite a profound and surprising insight!

It is time to finally tackle the consensus problem head-on, which we will do in the
rest of this chapter.

Distributed Transactions and Consensus

Consensus is one of the most important and fundamental problems in distributed
computing. On the surface, it seems simple: informally, the goal is simply to get sev-
eral nodes to agree on something. You might think that this shouldn’t be too hard.
Unfortunately, many broken systems have been built in the mistaken belief that this
problem is easy to solve.

Although consensus is very important, the section about it appears late in this book
because the topic is quite subtle, and appreciating the subtleties requires some pre-
requisite knowledge. Even in the academic research community, the understanding
of consensus only gradually crystallized over the course of decades, with many mis-
understandings along the way. Now that we have discussed replication (Chapter 5),
transactions (Chapter 7), system models (Chapter 8), linearizability, and total order
broadcast (this chapter), we are finally ready to tackle the consensus problem.

There are a number of situations in which it is important for nodes to agree. For
example:

Leader election

In a database with single-leader replication, all nodes need to agree on which
node is the leader. The leadership position might become contested if some
nodes can’t communicate with others due to a network fault. In this case, con-
sensus is important to avoid a bad failover, resulting in a split brain situation in
which two nodes both believe themselves to be the leader (see “Handling Node
Outages” on page 156). If there were two leaders, they would both accept writes
and their data would diverge, leading to inconsistency and data loss.

352 | Chapter9: Consistency and Consensus

Atomic commit

In a database that supports transactions spanning several nodes or partitions, we
have the problem that a transaction may fail on some nodes but succeed on oth-
ers. If we want to maintain transaction atomicity (in the sense of ACID; see
“Atomicity” on page 223), we have to get all nodes to agree on the outcome of the
transaction: either they all abort/roll back (if anything goes wrong) or they all
commit (if nothing goes wrong). This instance of consensus is known as the
atomic commit problem.

The Impossibility of Consensus

You may have heard about the FLP result [68] —named after the authors Fischer,
Lynch, and Paterson—which proves that there is no algorithm that is always able to
reach consensus if there is a risk that a node may crash. In a distributed system, we
must assume that nodes may crash, so reliable consensus is impossible. Yet, here we
are, discussing algorithms for achieving consensus. What is going on here?

The answer is that the FLP result is proved in the asynchronous system model (see
“System Model and Reality” on page 306), a very restrictive model that assumes a
deterministic algorithm that cannot use any clocks or timeouts. If the algorithm is
allowed to use timeouts, or some other way of identifying suspected crashed nodes
(even if the suspicion is sometimes wrong), then consensus becomes solvable [67].
Even just allowing the algorithm to use random numbers is sufficient to get around
the impossibility result [69].

Thus, although the FLP result about the impossibility of consensus is of great theoret-
ical importance, distributed systems can usually achieve consensus in practice.

In this section we will first examine the atomic commit problem in more detail. In
particular, we will discuss the two-phase commit (2PC) algorithm, which is the most
common way of solving atomic commit and which is implemented in various data-
bases, messaging systems, and application servers. It turns out that 2PC is a kind of
consensus algorithm—but not a very good one [70, 71].

By learning from 2PC we will then work our way toward better consensus algorithms,
such as those used in ZooKeeper (Zab) and etcd (Raft).

xii. Atomic commit is formalized slightly differently from consensus: an atomic transaction can commit only
if all participants vote to commit, and must abort if any participant needs to abort. Consensus is allowed to
decide on any value that is proposed by one of the participants. However, atomic commit and consensus are
reducible to each other [70, 71]. Nonblocking atomic commit is harder than consensus—see “Three-phase
commit” on page 359.

Distributed Transactions and Consensus | 353

Atomic Commit and Two-Phase Commit (2PC)

In Chapter 7 we learned that the purpose of transaction atomicity is to provide sim-
ple semantics in the case where something goes wrong in the middle of making sev-
eral writes. The outcome of a transaction is either a successful commit, in which case
all of the transaction’s writes are made durable, or an abort, in which case all of the
transaction’s writes are rolled back (i.e., undone or discarded).

Atomicity prevents failed transactions from littering the database with half-finished
results and half-updated state. This is especially important for multi-object transac-
tions (see “Single-Object and Multi-Object Operations” on page 228) and databases
that maintain secondary indexes. Each secondary index is a separate data structure
from the primary data—thus, if you modify some data, the corresponding change
needs to also be made in the secondary index. Atomicity ensures that the secondary
index stays consistent with the primary data (if the index became inconsistent with
the primary data, it would not be very useful).

From single-node to distributed atomic commit

For transactions that execute at a single database node, atomicity is commonly imple-
mented by the storage engine. When the client asks the database node to commit the
transaction, the database makes the transaction’s writes durable (typically in a write-
ahead log; see “Making B-trees reliable” on page 82) and then appends a commit
record to the log on disk. If the database crashes in the middle of this process, the
transaction is recovered from the log when the node restarts: if the commit record
was successfully written to disk before the crash, the transaction is considered com-
mitted; if not, any writes from that transaction are rolled back.

Thus, on a single node, transaction commitment crucially depends on the order in
which data is durably written to disk: first the data, then the commit record [72]. The
key deciding moment for whether the transaction commits or aborts is the moment
at which the disk finishes writing the commit record: before that moment, it is still
possible to abort (due to a crash), but after that moment, the transaction is commit-
ted (even if the database crashes). Thus, it is a single device (the controller of one par-
ticular disk drive, attached to one particular node) that makes the commit atomic.

However, what if multiple nodes are involved in a transaction? For example, perhaps
you have a multi-object transaction in a partitioned database, or a term-partitioned
secondary index (in which the index entry may be on a different node from the pri-
mary data; see “Partitioning and Secondary Indexes” on page 206). Most “NoSQL”
distributed datastores do not support such distributed transactions, but various clus-
tered relational systems do (see “Distributed Transactions in Practice” on page 360).

In these cases, it is not sufficient to simply send a commit request to all of the nodes
and independently commit the transaction on each one. In doing so, it could easily

354 | Chapter9: Consistency and Consensus

happen that the commit succeeds on some nodes and fails on other nodes, which
would violate the atomicity guarantee:

« Some nodes may detect a constraint violation or conflict, making an abort neces-
sary, while other nodes are successfully able to commit.

 Some of the commit requests might be lost in the network, eventually aborting
due to a timeout, while other commit requests get through.

+ Some nodes may crash before the commit record is fully written and roll back on
recovery, while others successfully commit.

If some nodes commit the transaction but others abort it, the nodes become inconsis-
tent with each other (like in Figure 7-3). And once a transaction has been committed
on one node, it cannot be retracted again if it later turns out that it was aborted on
another node. For this reason, a node must only commit once it is certain that all
other nodes in the transaction are also going to commit.

A transaction commit must be irrevocable—you are not allowed to change your
mind and retroactively abort a transaction after it has been committed. The reason
for this rule is that once data has been committed, it becomes visible to other transac-
tions, and thus other clients may start relying on that data; this principle forms the
basis of read committed isolation, discussed in “Read Committed” on page 234. If a
transaction was allowed to abort after committing, any transactions that read the
committed data would be based on data that was retroactively declared not to have
existed—so they would have to be reverted as well.

(It is possible for the effects of a committed transaction to later be undone by
another, compensating transaction [73, 74]. However, from the database’s point of
view this is a separate transaction, and thus any cross-transaction correctness
requirements are the application’s problem.)

Introduction to two-phase commit

Two-phase commit is an algorithm for achieving atomic transaction commit across
multiple nodes—i.e., to ensure that either all nodes commit or all nodes abort. It is a
classic algorithm in distributed databases [13, 35, 75]. 2PC is used internally in some
databases and also made available to applications in the form of XA transactions [76,
77] (which are supported by the Java Transaction API, for example) or via WS-
AtomicTransaction for SOAP web services [78, 79].

The basic flow of 2PC is illustrated in Figure 9-9. Instead of a single commit request,
as with a single-node transaction, the commit/abort process in 2PC is split into two
phases (hence the name).

Distributed Transactions and Consensus | 355

.)) time
write data write data _ prepare _ commit
Coordinator % : : >
ok ok yes
Database 1 B —————— ->
yes
Database 2 Ej —————————————— ->
=locks held by transaction : phase 1 : phase 2

Figure 9-9. A successful execution of two-phase commit (2PC).

Don’t confuse 2PCand 2PL

Two-phase commit (2PC) and two-phase locking (see “Two-Phase
Locking (2PL)” on page 257) are two very different things. 2PC
provides atomic commit in a distributed database, whereas 2PL
provides serializable isolation. To avoid confusion, it’s best to think
of them as entirely separate concepts and to ignore the unfortunate
similarity in the names.

2PC uses a new component that does not normally appear in single-node transac-
tions: a coordinator (also known as transaction manager). The coordinator is often
implemented as a library within the same application process that is requesting the
transaction (e.g., embedded in a Java EE container), but it can also be a separate pro-
cess or service. Examples of such coordinators include Narayana, JOTM, BTM, or
MSDTC.

A 2PC transaction begins with the application reading and writing data on multiple
database nodes, as normal. We call these database nodes participants in the transac-
tion. When the application is ready to commit, the coordinator begins phase 1: it
sends a prepare request to each of the nodes, asking them whether they are able to
commit. The coordinator then tracks the responses from the participants:

o If all participants reply “yes,” indicating they are ready to commit, then the coor-
dinator sends out a commit request in phase 2, and the commit actually takes
place.

o If any of the participants replies “no,” the coordinator sends an abort request to
all nodes in phase 2.

This process is somewhat like the traditional marriage ceremony in Western cultures:
the minister asks the bride and groom individually whether each wants to marry the
other, and typically receives the answer “I do” from both. After receiving both

356 | Chapter9: Consistency and Consensus

acknowledgments, the minister pronounces the couple husband and wife: the trans-
action is committed, and the happy fact is broadcast to all attendees. If either bride or
groom does not say “yes,” the ceremony is aborted [73].

A system of promises

From this short description it might not be clear why two-phase commit ensures
atomicity, while one-phase commit across several nodes does not. Surely the prepare
and commit requests can just as easily be lost in the two-phase case. What makes 2PC
different?

To understand why it works, we have to break down the process in a bit more detail:

1.

When the application wants to begin a distributed transaction, it requests a
transaction ID from the coordinator. This transaction ID is globally unique.

. The application begins a single-node transaction on each of the participants, and

attaches the globally unique transaction ID to the single-node transaction. All
reads and writes are done in one of these single-node transactions. If anything
goes wrong at this stage (for example, a node crashes or a request times out), the
coordinator or any of the participants can abort.

. When the application is ready to commit, the coordinator sends a prepare

request to all participants, tagged with the global transaction ID. If any of these
requests fails or times out, the coordinator sends an abort request for that trans-
action ID to all participants.

. When a participant receives the prepare request, it makes sure that it can defi-

nitely commit the transaction under all circumstances. This includes writing all
transaction data to disk (a crash, a power failure, or running out of disk space is
not an acceptable excuse for refusing to commit later), and checking for any con-
flicts or constraint violations. By replying “yes” to the coordinator, the node
promises to commit the transaction without error if requested. In other words,
the participant surrenders the right to abort the transaction, but without actually
committing it.

. When the coordinator has received responses to all prepare requests, it makes a

definitive decision on whether to commit or abort the transaction (committing
only if all participants voted “yes”). The coordinator must write that decision to
its transaction log on disk so that it knows which way it decided in case it subse-
quently crashes. This is called the commit point.

. Once the coordinator’s decision has been written to disk, the commit or abort

request is sent to all participants. If this request fails or times out, the coordinator
must retry forever until it succeeds. There is no more going back: if the decision
was to commit, that decision must be enforced, no matter how many retries it
takes. If a participant has crashed in the meantime, the transaction will be com-

Distributed Transactions and Consensus | 357

mitted when it recovers—since the participant voted “yes,” it cannot refuse to
commit when it recovers.

Thus, the protocol contains two crucial “points of no return”: when a participant
votes “yes,” it promises that it will definitely be able to commit later (although the
coordinator may still choose to abort); and once the coordinator decides, that deci-
sion is irrevocable. Those promises ensure the atomicity of 2PC. (Single-node atomic
commit lumps these two events into one: writing the commit record to the transac-
tion log.)

Returning to the marriage analogy, before saying “I do,” you and your bride/groom
have the freedom to abort the transaction by saying “No way!” (or something to that
effect). However, after saying “I do,” you cannot retract that statement. If you faint
after saying “I do” and you don’t hear the minister speak the words “You are now
husband and wife,” that doesn’t change the fact that the transaction was committed.
When you recover consciousness later, you can find out whether you are married or
not by querying the minister for the status of your global transaction ID, or you can
wait for the minister’s next retry of the commit request (since the retries will have
continued throughout your period of unconsciousness).

Coordinator failure

We have discussed what happens if one of the participants or the network fails during
2PC: if any of the prepare requests fail or time out, the coordinator aborts the trans-
action; if any of the commit or abort requests fail, the coordinator retries them indefi-
nitely. However, it is less clear what happens if the coordinator crashes.

If the coordinator fails before sending the prepare requests, a participant can safely
abort the transaction. But once the participant has received a prepare request and
voted “yes,” it can no longer abort unilaterally—it must wait to hear back from the
coordinator whether the transaction was committed or aborted. If the coordinator
crashes or the network fails at this point, the participant can do nothing but wait. A
participant’s transaction in this state is called in doubt or uncertain.

The situation is illustrated in Figure 9-10. In this particular example, the coordinator
actually decided to commit, and database 2 received the commit request. However,
the coordinator crashed before it could send the commit request to database 1, and so
database 1 does not know whether to commit or abort. Even a timeout does not help
here: if database 1 unilaterally aborts after a timeout, it will end up inconsistent with
database 2, which has committed. Similarly, it is not safe to unilaterally commit,
because another participant may have aborted.

358 | Chapter9: Consistency and Consensus

) W time
write data prepare <
Coordinator % - - 7 crashed - >

stuck in “prepared” state

commit

phase 1 phase 2

Figure 9-10. The coordinator crashes after participants vote “yes.” Database 1 does not
know whether to commit or abort.

Without hearing from the coordinator, the participant has no way of knowing
whether to commit or abort. In principle, the participants could communicate among
themselves to find out how each participant voted and come to some agreement, but
that is not part of the 2PC protocol.

The only way 2PC can complete is by waiting for the coordinator to recover. This is
why the coordinator must write its commit or abort decision to a transaction log on
disk before sending commit or abort requests to participants: when the coordinator
recovers, it determines the status of all in-doubt transactions by reading its transac-
tion log. Any transactions that don’t have a commit record in the coordinator’s log
are aborted. Thus, the commit point of 2PC comes down to a regular single-node
atomic commit on the coordinator.

Three-phase commit

Two-phase commit is called a blocking atomic commit protocol due to the fact that
2PC can become stuck waiting for the coordinator to recover. In theory, it is possible
to make an atomic commit protocol nonblocking, so that it does not get stuck if a
node fails. However, making this work in practice is not so straightforward.

As an alternative to 2PC, an algorithm called three-phase commit (3PC) has been pro-
posed [13, 80]. However, 3PC assumes a network with bounded delay and nodes with
bounded response times; in most practical systems with unbounded network delay
and process pauses (see Chapter 8), it cannot guarantee atomicity.

In general, nonblocking atomic commit requires a perfect failure detector [67, 71]—
i.e., a reliable mechanism for telling whether a node has crashed or not. In a network
with unbounded delay a timeout is not a reliable failure detector, because a request
may time out due to a network problem even if no node has crashed. For this reason,
2PC continues to be used, despite the known problem with coordinator failure.

Distributed Transactions and Consensus | 359

Distributed Transactions in Practice

Distributed transactions, especially those implemented with two-phase commit, have
a mixed reputation. On the one hand, they are seen as providing an important safety
guarantee that would be hard to achieve otherwise; on the other hand, they are criti-
cized for causing operational problems, killing performance, and promising more
than they can deliver [81, 82, 83, 84]. Many cloud services choose not to implement
distributed transactions due to the operational problems they engender [85, 86].

Some implementations of distributed transactions carry a heavy performance penalty
—for example, distributed transactions in MySQL are reported to be over 10 times
slower than single-node transactions [87], so it is not surprising when people advise
against using them. Much of the performance cost inherent in two-phase commit is
due to the additional disk forcing (fsync) that is required for crash recovery [88], and
the additional network round-trips.

However, rather than dismissing distributed transactions outright, we should exam-
ine them in some more detail, because there are important lessons to be learned from
them. To begin, we should be precise about what we mean by “distributed transac-
tions.” Two quite different types of distributed transactions are often conflated:

Database-internal distributed transactions
Some distributed databases (i.e., databases that use replication and partitioning
in their standard configuration) support internal transactions among the nodes
of that database. For example, VoltDB and MySQL Cluster’s NDB storage engine
have such internal transaction support. In this case, all the nodes participating in
the transaction are running the same database software.

Heterogeneous distributed transactions
In a heterogeneous transaction, the participants are two or more different tech-
nologies: for example, two databases from different vendors, or even non-
database systems such as message brokers. A distributed transaction across these
systems must ensure atomic commit, even though the systems may be entirely
different under the hood.

Database-internal transactions do not have to be compatible with any other system,
so they can use any protocol and apply optimizations specific to that particular tech-
nology. For that reason, database-internal distributed transactions can often work
quite well. On the other hand, transactions spanning heterogeneous technologies are
a lot more challenging.

Exactly-once message processing

Heterogeneous distributed transactions allow diverse systems to be integrated in
powerful ways. For example, a message from a message queue can be acknowledged
as processed if and only if the database transaction for processing the message was

360 | Chapter9: Consistency and Consensus

successfully committed. This is implemented by atomically committing the message
acknowledgment and the database writes in a single transaction. With distributed
transaction support, this is possible, even if the message broker and the database are
two unrelated technologies running on different machines.

If either the message delivery or the database transaction fails, both are aborted, and
so the message broker may safely redeliver the message later. Thus, by atomically
committing the message and the side effects of its processing, we can ensure that the
message is effectively processed exactly once, even if it required a few retries before it
succeeded. The abort discards any side effects of the partially completed transaction.

Such a distributed transaction is only possible if all systems affected by the transac-
tion are able to use the same atomic commit protocol, however. For example, say a
side effect of processing a message is to send an email, and the email server does not
support two-phase commit: it could happen that the email is sent two or more times
if message processing fails and is retried. But if all side effects of processing a message
are rolled back on transaction abort, then the processing step can safely be retried as
if nothing had happened.

We will return to the topic of exactly-once message processing in Chapter 11. Let’s
look first at the atomic commit protocol that allows such heterogeneous distributed
transactions.

XA transactions

X/Open XA (short for eXtended Architecture) is a standard for implementing two-
phase commit across heterogeneous technologies [76, 77]. It was introduced in 1991
and has been widely implemented: XA is supported by many traditional relational
databases (including PostgreSQL, MySQL, DB2, SQL Server, and Oracle) and mes-
sage brokers (including ActiveMQ, HornetQ, MSMQ, and IBM MQ).

XA is not a network protocol—it is merely a C API for interfacing with a transaction
coordinator. Bindings for this API exist in other languages; for example, in the world
of Java EE applications, XA transactions are implemented using the Java Transaction
API (JTA), which in turn is supported by many drivers for databases using Java Data-
base Connectivity (JDBC) and drivers for message brokers using the Java Message
Service (JMS) APIs.

XA assumes that your application uses a network driver or client library to commu-
nicate with the participant databases or messaging services. If the driver supports XA,
that means it calls the XA API to find out whether an operation should be part of a
distributed transaction—and if so, it sends the necessary information to the database
server. The driver also exposes callbacks through which the coordinator can ask the
participant to prepare, commit, or abort.

Distributed Transactions and Consensus | 361

The transaction coordinator implements the XA API. The standard does not specify
how it should be implemented, but in practice the coordinator is often simply a
library that is loaded into the same process as the application issuing the transaction
(not a separate service). It keeps track of the participants in a transaction, collects
partipants’ responses after asking them to prepare (via a callback into the driver), and
uses a log on the local disk to keep track of the commit/abort decision for each trans-
action.

If the application process crashes, or the machine on which the application is running
dies, the coordinator goes with it. Any participants with prepared but uncommitted
transactions are then stuck in doubt. Since the coordinator’s log is on the application
server’s local disk, that server must be restarted, and the coordinator library must
read the log to recover the commit/abort outcome of each transaction. Only then can
the coordinator use the database driver’s XA callbacks to ask participants to commit
or abort, as appropriate. The database server cannot contact the coordinator directly,
since all communication must go via its client library.

Holding locks while in doubt

Why do we care so much about a transaction being stuck in doubt? Can’t the rest of
the system just get on with its work, and ignore the in-doubt transaction that will be
cleaned up eventually?

The problem is with locking. As discussed in “Read Committed” on page 234, data-
base transactions usually take a row-level exclusive lock on any rows they modity, to
prevent dirty writes. In addition, if you want serializable isolation, a database using
two-phase locking would also have to take a shared lock on any rows read by the

»

transaction (see “Two-Phase Locking (2PL)” on page 257).

The database cannot release those locks until the transaction commits or aborts
(illustrated as a shaded area in Figure 9-9). Therefore, when using two-phase commit,
a transaction must hold onto the locks throughout the time it is in doubt. If the coor-
dinator has crashed and takes 20 minutes to start up again, those locks will be held
for 20 minutes. If the coordinator’s log is entirely lost for some reason, those locks
will be held forever—or at least until the situation is manually resolved by an admin-
istrator.

While those locks are held, no other transaction can modify those rows. Depending
on the database, other transactions may even be blocked from reading those rows.
Thus, other transactions cannot simply continue with their business—if they want to
access that same data, they will be blocked. This can cause large parts of your applica-
tion to become unavailable until the in-doubt transaction is resolved.

362 | Chapter9: Consistency and Consensus

Recovering from coordinator failure

In theory, if the coordinator crashes and is restarted, it should cleanly recover its state
from the log and resolve any in-doubt transactions. However, in practice, orphaned
in-doubt transactions do occur [89, 90]—that is, transactions for which the coordina-
tor cannot decide the outcome for whatever reason (e.g., because the transaction log
has been lost or corrupted due to a software bug). These transactions cannot be
resolved automatically, so they sit forever in the database, holding locks and blocking
other transactions.

Even rebooting your database servers will not fix this problem, since a correct imple-
mentation of 2PC must preserve the locks of an in-doubt transaction even across
restarts (otherwise it would risk violating the atomicity guarantee). It’s a sticky
situation.

The only way out is for an administrator to manually decide whether to commit or
roll back the transactions. The administrator must examine the participants of each
in-doubt transaction, determine whether any participant has committed or aborted
already, and then apply the same outcome to the other participants. Resolving the
problem potentially requires a lot of manual effort, and most likely needs to be done
under high stress and time pressure during a serious production outage (otherwise,
why would the coordinator be in such a bad state?).

Many XA implementations have an emergency escape hatch called heuristic decisions:
allowing a participant to unilaterally decide to abort or commit an in-doubt transac-
tion without a definitive decision from the coordinator [76, 77, 91]. To be clear, heu-
ristic here is a euphemism for probably breaking atomicity, since it violates the system
of promises in two-phase commit. Thus, heuristic decisions are intended only for
getting out of catastrophic situations, and not for regular use.

Limitations of distributed transactions

XA transactions solve the real and important problem of keeping several participant
data systems consistent with each other, but as we have seen, they also introduce
major operational problems. In particular, the key realization is that the transaction
coordinator is itself a kind of database (in which transaction outcomes are stored),
and so it needs to be approached with the same care as any other important database:

o If the coordinator is not replicated but runs only on a single machine, it is a sin-
gle point of failure for the entire system (since its failure causes other application
servers to block on locks held by in-doubt transactions). Surprisingly, many
coordinator implementations are not highly available by default, or have only
rudimentary replication support.

« Many server-side applications are developed in a stateless model (as favored by
HTTP), with all persistent state stored in a database, which has the advantage

Distributed Transactions and Consensus | 363

that application servers can be added and removed at will. However, when the
coordinator is part of the application server, it changes the nature of the deploy-
ment. Suddenly, the coordinator’s logs become a crucial part of the durable sys-
tem state—as important as the databases themselves, since the coordinator logs
are required in order to recover in-doubt transactions after a crash. Such applica-
tion servers are no longer stateless.

Since XA needs to be compatible with a wide range of data systems, it is necessar-
ily a lowest common denominator. For example, it cannot detect deadlocks
across different systems (since that would require a standardized protocol for
systems to exchange information on the locks that each transaction is waiting
for), and it does not work with SSI (see “Serializable Snapshot Isolation (SSI)” on
page 261), since that would require a protocol for identifying conflicts across dif-
ferent systems.

For database-internal distributed transactions (not XA), the limitations are not
so great—for example, a distributed version of SSI is possible. However, there
remains the problem that for 2PC to successfully commit a transaction, all par-
ticipants must respond. Consequently, if any part of the system is broken, the
transaction also fails. Distributed transactions thus have a tendency of amplifying
failures, which runs counter to our goal of building fault-tolerant systems.

Do these facts mean we should give up all hope of keeping several systems consistent
with each other? Not quite—there are alternative methods that allow us to achieve
the same thing without the pain of heterogeneous distributed transactions. We will
return to these in Chapters 11 and 12. But first, we should wrap up the topic of
consensus.

Fault-Tolerant Consensus

Informally, consensus means getting several nodes to agree on something. For exam-
ple, if several people concurrently try to book the last seat on an airplane, or the same
seat in a theater, or try to register an account with the same username, then a consen-
sus algorithm could be used to determine which one of these mutually incompatible
operations should be the winner.

The consensus problem is normally formalized as follows: one or more nodes may
propose values, and the consensus algorithm decides on one of those values. In the
seat-booking example, when several customers are concurrently trying to buy the last
seat, each node handling a customer request may propose the ID of the customer it is
serving, and the decision indicates which one of those customers got the seat.

364 | Chapter9: Consistency and Consensus

In this formalism, a consensus algorithm must satisfy the following properties [25]:*

Uniform agreement
No two nodes decide differently.

Integrity
No node decides twice.

Validity
If a node decides value v, then v was proposed by some node.

Termination
Every node that does not crash eventually decides some value.

The uniform agreement and integrity properties define the core idea of consensus:
everyone decides on the same outcome, and once you have decided, you cannot
change your mind. The validity property exists mostly to rule out trivial solutions: for
example, you could have an algorithm that always decides null, no matter what was
proposed; this algorithm would satisfy the agreement and integrity properties, but
not the validity property.

If you don’t care about fault tolerance, then satisfying the first three properties is
easy: you can just hardcode one node to be the “dictator,” and let that node make all
of the decisions. However, if that one node fails, then the system can no longer make
any decisions. This is, in fact, what we saw in the case of two-phase commit: if the
coordinator fails, in-doubt participants cannot decide whether to commit or abort.

The termination property formalizes the idea of fault tolerance. It essentially says that
a consensus algorithm cannot simply sit around and do nothing forever—in other
words, it must make progress. Even if some nodes fail, the other nodes must still
reach a decision. (Termination is a liveness property, whereas the other three are
safety properties—see “Safety and liveness” on page 308.)

The system model of consensus assumes that when a node “crashes,” it suddenly dis-
appears and never comes back. (Instead of a software crash, imagine that there is an
earthquake, and the datacenter containing your node is destroyed by a landslide. You
must assume that your node is buried under 30 feet of mud and is never going to
come back online.) In this system model, any algorithm that has to wait for a node to
recover is not going to be able to satisfy the termination property. In particular, 2PC
does not meet the requirements for termination.

xiii. This particular variant of consensus is called uniform consensus, which is equivalent to regular consensus
in asynchronous systems with unreliable failure detectors [71]. The academic literature usually refers to pro-
cesses rather than nodes, but we use nodes here for consistency with the rest of this book.

Distributed Transactions and Consensus | 365

Of course, if all nodes crash and none of them are running, then it is not possible for
any algorithm to decide anything. There is a limit to the number of failures that an
algorithm can tolerate: in fact, it can be proved that any consensus algorithm requires
at least a majority of nodes to be functioning correctly in order to assure termination
[67]. That majority can safely form a quorum (see “Quorums for reading and writ-
ing” on page 179).

Thus, the termination property is subject to the assumption that fewer than half of
the nodes are crashed or unreachable. However, most implementations of consensus
ensure that the safety properties—agreement, integrity, and validity—are always met,
even if a majority of nodes fail or there is a severe network problem [92]. Thus, a
large-scale outage can stop the system from being able to process requests, but it can-
not corrupt the consensus system by causing it to make invalid decisions.

Most consensus algorithms assume that there are no Byzantine faults, as discussed in
“Byzantine Faults” on page 304. That is, if a node does not correctly follow the proto-
col (for example, if it sends contradictory messages to different nodes), it may break
the safety properties of the protocol. It is possible to make consensus robust against
Byzantine faults as long as fewer than one-third of the nodes are Byzantine-faulty [25,
93], but we don’t have space to discuss those algorithms in detail in this book.

Consensus algorithms and total order broadcast

The best-known fault-tolerant consensus algorithms are Viewstamped Replication
(VSR) [94, 95], Paxos [96, 97, 98, 99], Raft [22, 100, 101], and Zab [15, 21, 102]. There
are quite a few similarities between these algorithms, but they are not the same [103].
In this book we won’t go into full details of the different algorithms: it’s sufficient to
be aware of some of the high-level ideas that they have in common, unless you’re
implementing a consensus system yourself (which is probably not advisable—it’s
hard [98, 104]).

Most of these algorithms actually don’t directly use the formal model described here
(proposing and deciding on a single value, while satisfying the agreement, integrity,
validity, and termination properties). Instead, they decide on a sequence of values,
which makes them total order broadcast algorithms, as discussed previously in this
chapter (see “Total Order Broadcast” on page 348).

Remember that total order broadcast requires messages to be delivered exactly once,
in the same order, to all nodes. If you think about it, this is equivalent to performing
several rounds of consensus: in each round, nodes propose the message that they
want to send next, and then decide on the next message to be delivered in the total
order [67].

So, total order broadcast is equivalent to repeated rounds of consensus (each consen-
sus decision corresponding to one message delivery):

366 | Chapter9: Consistency and Consensus

o Due to the agreement property of consensus, all nodes decide to deliver the same
messages in the same order.

o Due to the integrity property, messages are not duplicated.

« Due to the validity property, messages are not corrupted and not fabricated out
of thin air.

« Due to the termination property, messages are not lost.

Viewstamped Replication, Raft, and Zab implement total order broadcast directly,
because that is more efficient than doing repeated rounds of one-value-at-a-time
consensus. In the case of Paxos, this optimization is known as Multi-Paxos.

Single-leader replication and consensus

In Chapter 5 we discussed single-leader replication (see “Leaders and Followers” on
page 152), which takes all the writes to the leader and applies them to the followers in
the same order, thus keeping replicas up to date. Isn’t this essentially total order
broadcast? How come we didn’t have to worry about consensus in Chapter 52

The answer comes down to how the leader is chosen. If the leader is manually chosen
and configured by the humans in your operations team, you essentially have a “con-
sensus algorithm” of the dictatorial variety: only one node is allowed to accept writes
(i.e., make decisions about the order of writes in the replication log), and if that node
goes down, the system becomes unavailable for writes until the operators manually
configure a different node to be the leader. Such a system can work well in practice,
but it does not satisfy the termination property of consensus because it requires
human intervention in order to make progress.

Some databases perform automatic leader election and failover, promoting a follower
to be the new leader if the old leader fails (see “Handling Node Outages” on page
156). This brings us closer to fault-tolerant total order broadcast, and thus to solving
consensus.

However, there is a problem. We previously discussed the problem of split brain, and
said that all nodes need to agree who the leader is—otherwise two different nodes
could each believe themselves to be the leader, and consequently get the database into
an inconsistent state. Thus, we need consensus in order to elect a leader. But if the
consensus algorithms described here are actually total order broadcast algorithms,
and total order broadcast is like single-leader replication, and single-leader replica-
tion requires a leader, then...

It seems that in order to elect a leader, we first need a leader. In order to solve con-
sensus, we must first solve consensus. How do we break out of this conundrum?

Distributed Transactions and Consensus | 367

Epoch numbering and quorums

All of the consensus protocols discussed so far internally use a leader in some form or
another, but they don’t guarantee that the leader is unique. Instead, they can make a
weaker guarantee: the protocols define an epoch number (called the ballot number in
Paxos, view number in Viewstamped Replication, and term number in Raft) and
guarantee that within each epoch, the leader is unique.

Every time the current leader is thought to be dead, a vote is started among the nodes
to elect a new leader. This election is given an incremented epoch number, and thus
epoch numbers are totally ordered and monotonically increasing. If there is a conflict
between two different leaders in two different epochs (perhaps because the previous
leader actually wasn’t dead after all), then the leader with the higher epoch number
prevails.

Before a leader is allowed to decide anything, it must first check that there isn’t some
other leader with a higher epoch number which might take a conflicting decision.
How does a leader know that it hasn’t been ousted by another node? Recall “The
Truth Is Defined by the Majority” on page 300: a node cannot necessarily trust its
own judgment—just because a node thinks that it is the leader, that does not neces-
sarily mean the other nodes accept it as their leader.

Instead, it must collect votes from a quorum of nodes (see “Quorums for reading and
writing” on page 179). For every decision that a leader wants to make, it must send
the proposed value to the other nodes and wait for a quorum of nodes to respond in
favor of the proposal. The quorum typically, but not always, consists of a majority of
nodes [105]. A node votes in favor of a proposal only if it is not aware of any other
leader with a higher epoch.

Thus, we have two rounds of voting: once to choose a leader, and a second time to
vote on a leader’s proposal. The key insight is that the quorums for those two votes
must overlap: if a vote on a proposal succeeds, at least one of the nodes that voted for
it must have also participated in the most recent leader election [105]. Thus, if the
vote on a proposal does not reveal any higher-numbered epoch, the current leader
can conclude that no leader election with a higher epoch number has happened, and
therefore be sure that it still holds the leadership. It can then safely decide the pro-
posed value.

This voting process looks superficially similar to two-phase commit. The biggest dif-
ferences are that in 2PC the coordinator is not elected, and that fault-tolerant consen-
sus algorithms only require votes from a majority of nodes, whereas 2PC requires a
“yes” vote from every participant. Moreover, consensus algorithms define a recovery
process by which nodes can get into a consistent state after a new leader is elected,
ensuring that the safety properties are always met. These differences are key to the
correctness and fault tolerance of a consensus algorithm.

368 | Chapter9: Consistency and Consensus

Limitations of consensus

Consensus algorithms are a huge breakthrough for distributed systems: they bring
concrete safety properties (agreement, integrity, and validity) to systems where every-
thing else is uncertain, and they nevertheless remain fault-tolerant (able to make pro-
gress as long as a majority of nodes are working and reachable). They provide total
order broadcast, and therefore they can also implement linearizable atomic opera-
tions in a fault-tolerant way (see “Implementing linearizable storage using total order
broadcast” on page 350).

Nevertheless, they are not used everywhere, because the benefits come at a cost.

The process by which nodes vote on proposals before they are decided is a kind of
synchronous replication. As discussed in “Synchronous Versus Asynchronous Repli-
cation” on page 153, databases are often configured to use asynchronous replication.
In this configuration, some committed data can potentially be lost on failover—but
many people choose to accept this risk for the sake of better performance.

Consensus systems always require a strict majority to operate. This means you need a
minimum of three nodes in order to tolerate one failure (the remaining two out of
three form a majority), or a minimum of five nodes to tolerate two failures (the
remaining three out of five form a majority). If a network failure cuts off some nodes
from the rest, only the majority portion of the network can make progress, and the
rest is blocked (see also “The Cost of Linearizability” on page 335).

Most consensus algorithms assume a fixed set of nodes that participate in voting,
which means that you can’t just add or remove nodes in the cluster. Dynamic mem-
bership extensions to consensus algorithms allow the set of nodes in the cluster to
change over time, but they are much less well understood than static membership
algorithms.

Consensus systems generally rely on timeouts to detect failed nodes. In environments
with highly variable network delays, especially geographically distributed systems, it
often happens that a node falsely believes the leader to have failed due to a transient
network issue. Although this error does not harm the safety properties, frequent
leader elections result in terrible performance because the system can end up spend-
ing more time choosing a leader than doing any useful work.

Sometimes, consensus algorithms are particularly sensitive to network problems. For
example, Raft has been shown to have unpleasant edge cases [106]: if the entire net-
work is working correctly except for one particular network link that is consistently
unreliable, Raft can get into situations where leadership continually bounces between
two nodes, or the current leader is continually forced to resign, so the system effec-
tively never makes progress. Other consensus algorithms have similar problems, and
designing algorithms that are more robust to unreliable networks is still an open
research problem.

Distributed Transactions and Consensus | 369

Membership and Coordination Services

Projects like ZooKeeper or etcd are often described as “distributed key-value stores”
or “coordination and configuration services.” The API of such a service looks pretty
much like that of a database: you can read and write the value for a given key, and
iterate over keys. So if they’re basically databases, why do they go to all the effort of
implementing a consensus algorithm? What makes them different from any other
kind of database?

To understand this, it is helpful to briefly explore how a service like ZooKeeper is
used. As an application developer, you will rarely need to use ZooKeeper directly,
because it is actually not well suited as a general-purpose database. It is more likely
that you will end up relying on it indirectly via some other project: for example,
HBase, Hadoop YARN, OpenStack Nova, and Kafka all rely on ZooKeeper running
in the background. What is it that these projects get from it?

ZooKeeper and etcd are designed to hold small amounts of data that can fit entirely
in memory (although they still write to disk for durability)—so you wouldn’t want to
store all of your application’s data here. That small amount of data is replicated
across all the nodes using a fault-tolerant total order broadcast algorithm. As dis-
cussed previously, total order broadcast is just what you need for database replica-
tion: if each message represents a write to the database, applying the same writes in
the same order keeps replicas consistent with each other.

ZooKeeper is modeled after Google’s Chubby lock service [14, 98], implementing not
only total order broadcast (and hence consensus), but also an interesting set of other
features that turn out to be particularly useful when building distributed systems:

Linearizable atomic operations
Using an atomic compare-and-set operation, you can implement a lock: if several
nodes concurrently try to perform the same operation, only one of them will suc-
ceed. The consensus protocol guarantees that the operation will be atomic and
linearizable, even if a node fails or the network is interrupted at any point. A dis-
tributed lock is usually implemented as a lease, which has an expiry time so that
it is eventually released in case the client fails (see “Process Pauses” on page 295).

Total ordering of operations

As discussed in “The leader and the lock” on page 301, when some resource is
protected by a lock or lease, you need a fencing token to prevent clients from con-
flicting with each other in the case of a process pause. The fencing token is some
number that monotonically increases every time the lock is acquired. ZooKeeper
provides this by totally ordering all operations and giving each operation a
monotonically increasing transaction ID (zxid) and version number (cversion)
[15].

370 | Chapter9: Consistency and Consensus

Failure detection

Clients maintain a long-lived session on ZooKeeper servers, and the client and
server periodically exchange heartbeats to check that the other node is still alive.
Even if the connection is temporarily interrupted, or a ZooKeeper node fails, the
session remains active. However, if the heartbeats cease for a duration that is
longer than the session timeout, ZooKeeper declares the session to be dead. Any
locks held by a session can be configured to be automatically released when the
session times out (ZooKeeper calls these ephemeral nodes).

Change notifications
Not only can one client read locks and values that were created by another client,
but it can also watch them for changes. Thus, a client can find out when another
client joins the cluster (based on the value it writes to ZooKeeper), or if another
client fails (because its session times out and its ephemeral nodes disappear). By
subscribing to notifications, a client avoids having to frequently poll to find out
about changes.

Of these features, only the linearizable atomic operations really require consensus.
However, it is the combination of these features that makes systems like ZooKeeper
so useful for distributed coordination.

Allocating work to nodes

One example in which the ZooKeeper/Chubby model works well is if you have sev-
eral instances of a process or service, and one of them needs to be chosen as leader or
primary. If the leader fails, one of the other nodes should take over. This is of course
useful for single-leader databases, but it’s also useful for job schedulers and similar
stateful systems.

Another example arises when you have some partitioned resource (database, message
streams, file storage, distributed actor system, etc.) and need to decide which parti-
tion to assign to which node. As new nodes join the cluster, some of the partitions
need to be moved from existing nodes to the new nodes in order to rebalance the
load (see “Rebalancing Partitions” on page 209). As nodes are removed or fail, other
nodes need to take over the failed nodes’” work.

These kinds of tasks can be achieved by judicious use of atomic operations, ephem-
eral nodes, and notifications in ZooKeeper. If done correctly, this approach allows
the application to automatically recover from faults without human intervention. It’s
not easy, despite the appearance of libraries such as Apache Curator [17] that have
sprung up to provide higher-level tools on top of the ZooKeeper client API—but it is
still much better than attempting to implement the necessary consensus algorithms
from scratch, which has a poor success record [107].

Distributed Transactions and Consensus | 371

An application may initially run only on a single node, but eventually may grow to
thousands of nodes. Trying to perform majority votes over so many nodes would be
terribly inefficient. Instead, ZooKeeper runs on a fixed number of nodes (usually
three or five) and performs its majority votes among those nodes while supporting a
potentially large number of clients. Thus, ZooKeeper provides a way of “outsourcing”
some of the work of coordinating nodes (consensus, operation ordering, and failure
detection) to an external service.

Normally, the kind of data managed by ZooKeeper is quite slow-changing: it repre-
sents information like “the node running on 10.1.1.23 is the leader for partition 7,”
which may change on a timescale of minutes or hours. It is not intended for storing
the runtime state of the application, which may change thousands or even millions of
times per second. If application state needs to be replicated from one node to
another, other tools (such as Apache BookKeeper [108]) can be used.

Service discovery

ZooKeeper, etcd, and Consul are also often used for service discovery—that is, to find
out which IP address you need to connect to in order to reach a particular service. In
cloud datacenter environments, where it is common for virtual machines to continu-
ally come and go, you often don’t know the IP addresses of your services ahead of
time. Instead, you can configure your services such that when they start up they reg-
ister their network endpoints in a service registry, where they can then be found by
other services.

However, it is less clear whether service discovery actually requires consensus. DNS is
the traditional way of looking up the IP address for a service name, and it uses multi-
ple layers of caching to achieve good performance and availability. Reads from DNS
are absolutely not linearizable, and it is usually not considered problematic if the
results from a DNS query are a little stale [109]. It is more important that DNS is reli-
ably available and robust to network interruptions.

Although service discovery does not require consensus, leader election does. Thus, if
your consensus system already knows who the leader is, then it can make sense to
also use that information to help other services discover who the leader is. For this
purpose, some consensus systems support read-only caching replicas. These replicas
asynchronously receive the log of all decisions of the consensus algorithm, but do not
actively participate in voting. They are therefore able to serve read requests that do
not need to be linearizable.

Membership services

ZooKeeper and friends can be seen as part of a long history of research into member-
ship services, which goes back to the 1980s and has been important for building
highly reliable systems, e.g., for air traffic control [110].

372 | Chapter9: Consistency and Consensus

A membership service determines which nodes are currently active and live members
of a cluster. As we saw throughout Chapter 8, due to unbounded network delays it’s
not possible to reliably detect whether another node has failed. However, if you cou-
ple failure detection with consensus, nodes can come to an agreement about which
nodes should be considered alive or not.

It could still happen that a node is incorrectly declared dead by consensus, even
though it is actually alive. But it is nevertheless very useful for a system to have agree-
ment on which nodes constitute the current membership. For example, choosing a
leader could mean simply choosing the lowest-numbered among the current mem-
bers, but this approach would not work if different nodes have divergent opinions on
who the current members are.

Summary

In this chapter we examined the topics of consistency and consensus from several dif-
ferent angles. We looked in depth at linearizability, a popular consistency model: its
goal is to make replicated data appear as though there were only a single copy, and to
make all operations act on it atomically. Although linearizability is appealing because
it is easy to understand—it makes a database behave like a variable in a single-
threaded program—it has the downside of being slow, especially in environments
with large network delays.

We also explored causality, which imposes an ordering on events in a system (what
happened before what, based on cause and effect). Unlike linearizability, which puts
all operations in a single, totally ordered timeline, causality provides us with a weaker
consistency model: some things can be concurrent, so the version history is like a
timeline with branching and merging. Causal consistency does not have the coordi-
nation overhead of linearizability and is much less sensitive to network problems.

However, even if we capture the causal ordering (for example using Lamport time-
stamps), we saw that some things cannot be implemented this way: in “Timestamp
ordering is not sufficient” on page 347 we considered the example of ensuring that a
username is unique and rejecting concurrent registrations for the same username. If
one node is going to accept a registration, it needs to somehow know that another
node isn’t concurrently in the process of registering the same name. This problem led
us toward consensus.

We saw that achieving consensus means deciding something in such a way that all
nodes agree on what was decided, and such that the decision is irrevocable. With
some digging, it turns out that a wide range of problems are actually reducible to
consensus and are equivalent to each other (in the sense that if you have a solution
for one of them, you can easily transform it into a solution for one of the others).
Such equivalent problems include:

Summary | 373

Linearizable compare-and-set registers
The register needs to atomically decide whether to set its value, based on whether
its current value equals the parameter given in the operation.

Atomic transaction commit
A database must decide whether to commit or abort a distributed transaction.

Total order broadcast
The messaging system must decide on the order in which to deliver messages.

Locks and leases
When several clients are racing to grab a lock or lease, the lock decides which one
successfully acquired it.

Membership/coordination service
Given a failure detector (e.g., timeouts), the system must decide which nodes are
alive, and which should be considered dead because their sessions timed out.

Uniqueness constraint
When several transactions concurrently try to create conflicting records with the
same key, the constraint must decide which one to allow and which should fail
with a constraint violation.

All of these are straightforward if you only have a single node, or if you are willing to
assign the decision-making capability to a single node. This is what happens in a
single-leader database: all the power to make decisions is vested in the leader, which
is why such databases are able to provide linearizable operations, uniqueness con-
straints, a totally ordered replication log, and more.

However, if that single leader fails, or if a network interruption makes the leader
unreachable, such a system becomes unable to make any progress. There are three
ways of handling that situation:

1. Wait for the leader to recover, and accept that the system will be blocked in the
meantime. Many XA/JTA transaction coordinators choose this option. This
approach does not fully solve consensus because it does not satisfy the termina-
tion property: if the leader does not recover, the system can be blocked forever.

2. Manually fail over by getting humans to choose a new leader node and reconfig-
ure the system to use it. Many relational databases take this approach. It is a kind
of consensus by “act of God”—the human operator, outside of the computer sys-
tem, makes the decision. The speed of failover is limited by the speed at which
humans can act, which is generally slower than computers.

374 | Chapter9: Consistency and Consensus

3. Use an algorithm to automatically choose a new leader. This approach requires a
consensus algorithm, and it is advisable to use a proven algorithm that correctly
handles adverse network conditions [107].

Although a single-leader database can provide linearizability without executing a
consensus algorithm on every write, it still requires consensus to maintain its leader-
ship and for leadership changes. Thus, in some sense, having a leader only “kicks the
can down the road”™: consensus is still required, only in a different place, and less fre-
quently. The good news is that fault-tolerant algorithms and systems for consensus
exist, and we briefly discussed them in this chapter.

Tools like ZooKeeper play an important role in providing an “outsourced” consen-
sus, failure detection, and membership service that applications can use. It’s not easy
to use, but it is much better than trying to develop your own algorithms that can
withstand all the problems discussed in Chapter 8. If you find yourself wanting to do
one of those things that is reducible to consensus, and you want it to be fault-tolerant,
then it is advisable to use something like ZooKeeper.

Nevertheless, not every system necessarily requires consensus: for example, leaderless
and multi-leader replication systems typically do not use global consensus. The con-
flicts that occur in these systems (see “Handling Write Conflicts” on page 171) are a
consequence of not having consensus across different leaders, but maybe that’s okay:
maybe we simply need to cope without linearizability and learn to work better with
data that has branching and merging version histories.

This chapter referenced a large body of research on the theory of distributed systems.
Although the theoretical papers and proofs are not always easy to understand, and
sometimes make unrealistic assumptions, they are incredibly valuable for informing
practical work in this field: they help us reason about what can and cannot be done,
and help us find the counterintuitive ways in which distributed systems are often
flawed. If you have the time, the references are well worth exploring.

This brings us to the end of Part II of this book, in which we covered replication
(Chapter 5), partitioning (Chapter 6), transactions (Chapter 7), distributed system
failure models (Chapter 8), and finally consistency and consensus (Chapter 9). Now
that we have laid a firm foundation of theory, in Part III we will turn once again to
more practical systems, and discuss how to build powerful applications from hetero-
geneous building blocks.

References

[1] Peter Bailis and Ali Ghodsi: “Eventual Consistency Today: Limitations, Exten-
sions, and Beyond,” ACM Queue, volume 11, number 3, pages 55-63, March 2013.
doi:10.1145/2460276.2462076

Summary | 375

http://queue.acm.org/detail.cfm?id=2462076
http://queue.acm.org/detail.cfm?id=2462076
http://dx.doi.org/10.1145/2460276.2462076

[2] Prince Mahajan, Lorenzo Alvisi, and Mike Dahlin: “Consistency, Availability, and
Convergence,” University of Texas at Austin, Department of Computer Science, Tech
Report UTCS TR-11-22, May 2011.

[3] Alex Scotti: “Adventures in Building Your Own Database,” at All Your Base,
November 2015.

[4] Peter Bailis, Aaron Davidson, Alan Fekete, et al.: “Highly Available Transactions:
Virtues and Limitations,” at 40th International Conference on Very Large Data Bases
(VLDB), September 2014. Extended version published as pre-print arXiv:1302.0309
[cs.DB].

[5] Paolo Viotti and Marko Vukoli¢: “Consistency in Non-Transactional Distributed
Storage Systems,” arXiv:1512.00168, 12 April 2016.

[6] Maurice P. Herlihy and Jeannette M. Wing: “Linearizability: A Correctness Con-
dition for Concurrent Objects,” ACM Transactions on Programming Languages and
Systems (TOPLAS), volume 12, number 3, pages 463-492, July 1990. doi:
10.1145/78969.78972

[7] Leslie Lamport: “On interprocess communication,” Distributed Computing, vol-
ume 1, number 2, pages 77-101, June 1986. doi:10.1007/BF01786228

[8] David K. Gifford: “Information Storage in a Decentralized Computer System,”
Xerox Palo Alto Research Centers, CSL-81-8, June 1981.

[9] Martin Kleppmann: “Please Stop Calling Databases CP or AP,” martin.klepp-
mann.com, May 11, 2015.

[10] Kyle Kingsbury: “Call Me Maybe: MongoDB Stale Reads,” aphyr.com, April 20,
2015.

[11] Kyle Kingsbury: “Computational Techniques in Knossos,” aphyr.com, May 17,
2014.

[12] Peter Bailis: “Linearizability Versus Serializability,” bailis.org, September 24,
2014.

[13] Philip A. Bernstein, Vassos Hadzilacos, and Nathan Goodman: Concurrency
Control and Recovery in Database Systems. Addison-Wesley, 1987. ISBN:
978-0-201-10715-9, available online at research.microsoft.com.

[14] Mike Burrows: “The Chubby Lock Service for Loosely-Coupled Distributed Sys-
tems,” at 7th USENIX Symposium on Operating System Design and Implementation
(OSDI), November 2006.

[15] Flavio P. Junqueira and Benjamin Reed: ZooKeeper: Distributed Process Coordi-
nation. O’Reilly Media, 2013. ISBN: 978-1-449-36130-3

[16] “etcd 2.0.12 Documentation,” CoreOS, Inc., 2015.

376 | Chapter9: Consistency and Consensus

http://apps.cs.utexas.edu/tech_reports/reports/tr/TR-2036.pdf
http://apps.cs.utexas.edu/tech_reports/reports/tr/TR-2036.pdf
http://www.slideshare.net/AlexScotti1/allyourbase-55212398
http://arxiv.org/pdf/1302.0309.pdf
http://arxiv.org/pdf/1302.0309.pdf
http://arxiv.org/abs/1512.00168
http://arxiv.org/abs/1512.00168
http://cs.brown.edu/~mph/HerlihyW90/p463-herlihy.pdf
http://cs.brown.edu/~mph/HerlihyW90/p463-herlihy.pdf
http://dx.doi.org/10.1145/78969.78972
http://dx.doi.org/10.1145/78969.78972
http://research.microsoft.com/en-us/um/people/lamport/pubs/interprocess.pdf
http://dx.doi.org/10.1007/BF01786228
http://www.mirrorservice.org/sites/www.bitsavers.org/pdf/xerox/parc/techReports/CSL-81-8_Information_Storage_in_a_Decentralized_Computer_System.pdf
http://martin.kleppmann.com/2015/05/11/please-stop-calling-databases-cp-or-ap.html
https://aphyr.com/posts/322-call-me-maybe-mongodb-stale-reads
https://aphyr.com/posts/314-computational-techniques-in-knossos
http://www.bailis.org/blog/linearizability-versus-serializability/
http://research.microsoft.com/en-us/people/philbe/ccontrol.aspx
http://research.microsoft.com/en-us/people/philbe/ccontrol.aspx
http://research.google.com/archive/chubby.html
http://research.google.com/archive/chubby.html
https://coreos.com/etcd/docs/2.0.12/

[17] “Apache Curator,” Apache Software Foundation, curator.apache.org, 2015.

[18] Morali Vallath: Oracle 10g RAC Grid, Services ¢ Clustering. Elsevier Digital
Press, 2006. ISBN: 978-1-555-58321-7

[19] Peter Bailis, Alan Fekete, Michael J Franklin, et al.: “Coordination-Avoiding
Database Systems,” Proceedings of the VLDB Endowment, volume 8, number 3, pages
185-196, November 2014.

[20] Kyle Kingsbury: “Call Me Maybe: etcd and Consul,” aphyr.com, June 9, 2014.

[21] Flavio P. Junqueira, Benjamin C. Reed, and Marco Serafini: “Zab: High-
Performance Broadcast for Primary-Backup Systems,” at 4Ist IEEE International
Conference on Dependable Systems and Networks (DSN), June 2011. doi:10.1109/
DSN.2011.5958223

[22] Diego Ongaro and John K. Ousterhout: “In Search of an Understandable Con-
sensus Algorithm (Extended Version),