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To Ernestine, Sarita, and David 





General topology can be a valuable tool to the graduate student of mathe¬ 

matics in such courses as complex analysis, real analysis, and functional analysis. 
Since he is likely to take one or more courses in analysis during his first year 

of graduate work, it is to his advantage to have taken a course in general 

topology before beginning his graduate program. This text is intended as an 

introduction to general topology for upper division undergraduates who intend 

to continue their study of mathematics in graduate school. It is essentially 
self-contained except for elementary calculus. 

The reader who has had sufficient experience with elementary set theory 

can skip Chapter 1, except for whatever review of it he feels necessary. He 

should, of course, become familiar with the notation introduced in that chapter. 

The reader who can already do the review exercises at the end of Chapter 1 
certainly has sufficient background to skip that chapter. The next chapter intro¬ 

duces enough machinery to establish the completeness of Euclidean n-space and 

a few other special properties of that space, for example, the nested interval 

theorem. Thus, the reader who has had a quarter or a semester’s work in ad¬ 

vanced calculus should be able to begin with Chapter 3, using Chapter 2 for 

reference when the need arises. Chapters 3 and 4 present a detailed study of 

metric spaces and mappings on metric spaces. The next chapter deals with sev¬ 

eral important metric spaces and applications to analysis. It is quite likely that 
by the time the reader gets to Chapter 5 he will have had some exposure to an 

elementary course in differential equations. If he has not, he can defer reading 
the application to differential equations without interfering with the continuity 

of the study. Beginning with Chapter 6, the book considers general topological 

spaces and mappings on such spaces. 
Almost every one of the 112 sections in the book ends with a set of 

exercises. Some of the exercises are designed to help the reader to become 

acquainted with the concepts just defined, whereas others are intended to help 
to prepare the reader for what is to follow. The reader is also asked to prove 

a number of theorems; in other exercises he is given a proposition that calls 

for a proof or a counterexample. There are also several sets of review exer¬ 
cises which are designed to help the reader to gain an overview of large portions 

of the subject matter. Throughout, he is given an opportunity to take an active 

part in the development of the subject matter. 
I owe a debt of gratitude to all the professors who taught me at the Uni¬ 

versity of Virginia. In particular, I continue to feel the influence of G. T. Why- 
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burn in my mathematical interests, teaching, and now in the writing of this 

book. I also recognize in this text the influence of various books from which 
I taught, particularly J. L. Kelley’s General Topology. I am grateful to Norman 

Levine, Albert Novikoff, and Arlo Schurle for their critical reading of the 

original manuscript and for their detailed and very helpful reviews. Their valu¬ 
able suggestions aided me greatly in the revision of the original manuscript and 
resulted in many improvements. I wish to thank Ge'orge Cain, William Mc- 

Kibben, and Sanford Wiener for their helpful suggestions and for their careful 

reading of the galleys. I am indebted to my editor George Fleming of W. B. 
Saunders for encouraging me to undertake this project and for his continued 
interest and help all through it. In addition, all the other members of Saunders 
with whom the book brought me in contact were always cooperative and help¬ 
ful. Also, during the early stages of the writing I was fortunate in having sev¬ 

eral students who studied from the manuscript as I was preparing it. I found 

their comments quite helpful. In this respect I wish to thank W. G. Christian, 
C. J. Holland, W. P. McKibben, H. B. Overton, G. Redd, R. J. Schaffer, and 
N. Warsi. I am grateful to my many colleagues who were willing to discuss 
various parts of the manuscript with me and especially to J. M. Osborn, E. J. 
Pitts, and W. R. Smythe, who made valuable suggestions on the basis of their 

classroom experience with parts of the original manuscript. I appreciate the 

conscientious job of typing done on various parts of the manuscript by Mrs. 

Frances Fowler and Mrs. Virginia Wilson and also by my daughter Sarita and 
brother Victor. Finally, I want to thank my wife Ernestine and my son David 
for helping me with the tedious task of proofreading from manuscript to galleys 

and with the indexing. 
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Notation for Some Important Sets 

R = the set of all real numbers 

Q = the set of all rational numbers 

Z = the set of all integers 

P = the set of all positive integers 

P» = {1, 2, 3, ... , n} 

R+ = the set of all positive real numbers 

R'! = the set of all n-tuples of real numbers 



Sets, Functions, and Rela tions 

A fundamental concept in mathematics is that of function, a relation that 
assigns to each element in one set, the domain, a unique element in a second set, 

the range of the function. For functions considered in elementary courses, the 

domains and ranges are very often subsets of real numbers. However, even in 

elementary courses the student comes in contact with functions whose domains 

are sets of objects other than real numbers. For example, the multiplication 
operation for numbers is a function p which relates each ordered pair of real 

numbers (.v,jg) with a unique real number p(x,y) = x ■ y. The domain of this 

product function p is the set of all ordered pairs of real numbers, and the range of 

p is the set of all real numbers. In elementary calculus, the definite integral J’£ 

is a function whose domain is the set of all real-valued functions that are Riemann 
integrable on the closed interval [a, b], and whose range is the set of all real num¬ 

bers. For, given an integrable function /, there corresponds to it a unique real 

number j'baf, usually written J„/(x) dx. Because there are a great many different 

kinds of sets of mathematical objects, and functions defined on these sets, that are 

important in mathematics, a study of elementary set theory and of functions defined 
on abstract sets can provide a unifying foundation for a variety of mathematical 

subjects. 
In this chapter we give a nonaxiomatic treatment of some important topics 

from set theory. The notions of function from one set into another and of relations 

between two sets will be discussed in detail. These two notions will then play a 
critical role in almost every topic discussed in the remainder of the chapter. 

1. SETS AND MEMBERSHIP 

By a set we shall mean a collection of objects. Each object of a particular set 
will be called an element of the set, a point of the set, or a member of the set. 11' 

1 



2 Chapter One 

A is a set and x is an element of A, we shall use the notation x e A to indicate this 
fact. For example, if A is the set of all real numbers x such that .v2 > 2, then 

5 e A. If an object ,v is not a member of the set A, we use the notation A to 
indicate this fact. Thus, if A is the same set of numbers described previously, 

$A. If A is a set and B is a set and we write A B, we mean that each element 
that is in A is also in B and that each element that is in B is also in A. Thus A and 

B are two names for the same set. 
Now suppose that ,y is an object and we consider the set whose only element is 

.y. It will be convenient to designate such a set with the symbol {.y}. Thus {2} is 

the set whose only element is 2. Note that x e {x}. We make a clear distinction 
between the object x and the set {x} whose only element is this object. This is the 

same distinction one makes, for example, between Mr. Jones and a committee of 
one whose only member is Mr. Jones. 

Sometimes we can designate a set by listing all of its elements. If x and _v are 

objects, we shall designate the set whose only elements are x and y by {x,_y}. 
This notation is consistent with the notation {x} described in the previous para¬ 

graph. Let us emphasize that both {x, y} and {y, x} denote the same set. Note 
that there is no notion of order involved here. Next, let n be a positive integer. 

Using the same kind of notation, we may write {1, 2, 3, ...,«} to designate the 
first n positive integers in the set of all positive integers. Sometimes it is not con¬ 

venient or even possible to designate a set by listing its elements explicitly. How¬ 

ever, it might be possible to describe a set by some defining property. For example, 

consider the set of all real numbers x such that 0 5S x ^ 1. We may use {x:x 
is a real number and 0^ xs 1} to designate this set. Actually, since it is clear 
from the statement 0 x sS l that we are dealing with real numbers, the notation 

may be shortened to {x:0 ^ x sS 1}. 

More generally, the notation {x:x . . .} will be used to designate the set of all 
x such that x . . . , where “x . . .” will be replaced by a description of a property 

that defines the set. For example, “{x:x is a number and — 1 < x < 1}” reads 

“the set of all x such that x is a number and —1 < x < 1.” 
We shall also assume that there is a set called the empty set which has no 

elements. The empty set is designated by the symbol 0. Thus, there is no_y such 
that y e 0. Because of the availability of the empty set, it would be perfectly 

proper for someone to say, “Let S be the set of all real solutions of the equation 

x2 + A' + 100 = 0,’’ even though this equation has no real solutions. The set .S' 
is the empty set. 

EXERCISES: SETS AND MEMBERSHIP 

In each of the following exercises we will assume that the sets in¬ 

volved are subsets of real numbers; thus, no explicit mention is 
made of the fact that the elements are real numbers. 

1. List explicitly the elements of the set 

{x:x < 0 and (x — 1) (x + 2)(x + 3) = 0}. 

2. List the elements of the following set. 

{x:3x — 1 is a multiple of 3} 

(A number a is a multiple of 3 provided that a = 3k for some 
integer k.) 
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3. Sketch on a number line each of the following sets. 

(a) {.v: |.v - 1. 3} 
(b) {.y:|.y — 11 ; 3 and |.y| 2 

(c) {.y: |.y — 1| ' 3 or |.y| 2} 
i 

Note that in (b) each of the elements in the set must satisfy 

both of the inequalities, and that in (c) an element .y is in the set if 

it satisfies at least one of the inequalities. We shall always use the 
connective or in that sense. 

2. SOME REMARKS ON THE USE OF THE 

CONNECTIVES and, or, implies 

First of all, we assume that each statement p is either true or false (but not 

both). We sometimes speak of a statement as having true or false as its truth 
value. Thus, a false statement has false as its truth value. This assumption would 

be a real restriction in ordinary language. For example, consider the statement, 

“Professor Robinson is a good lecturer.” A classification for this statement which 

is more appropriate than true or false might be never, seldom, usually, almost 

always, always. 
If p is a statement and q is a statement, the compound statement p and q is 

assigned the truth value as indicated by the following table. Notice that the assign¬ 

ment below agrees with common usage in ordinary conversation. 

Truth Values for p and q 

? q p andq P 

True 

True 
False 

False 

True 
False 

True 

False 

True 

False 

False 
False 

If p, q are statements, we will call the compound statement p or q true pro¬ 

vided that at least one of the statements is true. Otherwise we will give the state¬ 
ment p or q a truth value of false. We indicate this agreement schematically as 

follows: 

Truth Values for p or q 

P 

True 
True 

False 

False 

H 
True 
False 

True 
False 

p or q 

True 

True 

True 
False 

The reader is already familiar with the fact that the conditional if p, then q 
is used frequently in mathematics. In an if p, then q statement, the p is called the 
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hypothesis or the assumption, and the q is called the conclusion. In mathematics, 
when the truth of the conditional if p, then q is known, the truth of q is inferred, 

provided that the truth of p is known. However, nothing can be inferred about q 

if it is known that p is false. For example, if one starts with the incorrect assumption 

that —1 = 1, one can conclude, by squaring both sides, that 1 = 1, a true state¬ 
ment. On the other hand, by beginning with 1 = 1, one can obtain the false 

statement 0 2 by adding 1 to both sides. Consistent with mathematical usage, 
we will label the conditional if p, then q as false in case q is false when p is true. 

Otherwise, the conditional is labeled as true. Thus we have the following truth 
table for the conditional, if p, then q. 

Truth Values for the Conditional if p, then q 

p <7 if p, then q 

True True True 

True False False 

False True True 

False False True 

We must distinguish carefully between the truth of an if p, then q statement and 

the truth of the conclusion q. For we see from the truth table that when the hy¬ 
pothesis p is false, the statement if p, then q is true for an arbitrary q. 

We shall use p implies q to be synonymous with the statement if p, then q. 

Other common ways of saying the same thing are p is a sufficient condition for q, 

and q is a necessary condition for p. The reader should try to convince himself that 

the language of the synonymous statements for the conditional is reasonable. 

From usage in previous mathematics courses, the reader should be familiar 
with the term converse. By the converse of an implication if p, then q, we mean the 

implication if q, then p. 

It is apparent that the truth values for the negation of a statement p, abbrevi¬ 

ated not p, should be as indicated in the next table. 

Truth Values for not p 

p not p 

True False 

False True 

In the previous discussion we have considered a statement p and have called 

its negation not p. In actual situations in mathematics, it is often not enlightening 
for one to negate a statement simply by saying that it is false. It is often better to 

write the negation in a more useful form. For example, consider the following 

statement: 

For each .v, if x is a real number, then (,v + l)2 = a2 + 2.x + 1. 

For the negation of this statement, we may write 

For at least one real number x, it is not true that (x + l)2 = a-2 -f- 2.v + 1. 

The point here is that the negation of the statement that something always happens 
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is not that it never happens, but rather that there is at least one instance for which 
it does not happen. 

From the truth values assigned in the preceding paragraphs, the truth values 
of more complicated statements can be determined. For example, consider the 
following table for the compound statement indicated. The columns are numbered 
in the order in which they were completed. 

(p implies q) and (q implies p) 

(1) (2) (3) (4) (5) 

p q p implies q q implies p (p implies q) and (q implies p) 

True True True True True 
True False False True False 
False True True False False 
False False True True True 

We see that the compound statement (p implies q) and (q implies p) is given a 
value of true when p and q both have the same truth values. Otherwise it is given 
the value false. 

2.1. Definition. Equivalent statements. Suppose that p and q are state¬ 
ments for which the compound statement 

2.1(a). (p implies q) and (q implies p) 

is true for all values under consideration. We then say that p and q are equivalent 
statements. 

In mathematical texts and papers, the language 

p if and only if q 

is often used for the longer statement in 2.1(a). Note that the p if q simply means 
q impliesp\ p only if q refers to the fact thatp implies q. Further, in view of alter¬ 
nate ways of expressing the conditional, the statement (p impliesq) and (q impliesp) 
may be expressed by the statement p is a necessary and sufficient condition for q. 

Suppose that p and q are statements and that we wish to prove that p implies 
q. One of the methods of proof with which the reader is familiar is the so-called 
indirect proof. Essentially, that method of proof consists of assuming that the 
conclusion q is false, and then proving that this assumption leads to a statement 
which is inconsistent with the hypothesis, thus arriving at a contradiction. In 
using this method, we are essentially assuming that the statement (not q implies 
not p) implies the statement (p implies q). Moreover, it can be shown that (p 
implies q) implies (not q implies not p) is true for all statements p and q. Thus, the 
statements p implies q and not q implies not p are equivalent for all statements p 
and q. We shall discuss this further after the next definition. 

2.2. Definition. Contrapositive. The statement 

not q implies not p 

is called the contrapositive of the statement 

p implies q. 
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To prove that the statement p implies q is equivalent to its contrapositive, we 
need to show that the following two statements are both true in all cases. 

(a) (p implies q) implies (not q implies not p) 

(b) (not q implies not p) implies (p implies q) 
The truth of (a) is shown schematically by the following table. As in the 

previous table, the columns are numbered in the order in which they were 

completed. 

(p implies q) implies {not q implies not p) 

(1) (2) (3) 

p q not q 

T T F 

TFT 
F T F 

F F T 

(4) (5) (7) 

not p (p implies q) implies 

FT T 

F F T 
T T T 

T T T 

(6) 

{not q implies not p) 

T 

F 

T 
T 

The verification of part (b) is left as an exercise for the reader. See Exercise 1, 

page 6 . 
Note that the contrapositive of p implies q, just discussed, should not be con¬ 

fused with the converse of p implies q. Recall that the converse of p implies q is 
q implies p, which is not equivalent to p implies q. 

In the previous discussion we have indicated that the statement (p implies q) 

implies {not q implies not p) is true for all possible cases involving the truth values 
of statements p and q. This is an example of a tautology. Suppose 5 is a sentence 

involving statements pu p2, . . . ,pn. Suppose furthermore that S is true for all 

possible cases involving the truth values of. . . , and pu. S is then called a 
tautology. 

EXERCISES: THE USE OF CONNECTIVES and, or, implies 

1. Demonstrate by means of a table showing truth values that the 
following is a true statement for any choice of p and q. Thus, 

show that it is a tautology. 

{not q implies not p) implies {p implies q) 

2. Show by means of a truth table that the statement ((/> implies q) 
ancl {q implies r)) implies {p implies r) is a tautology. 

3. Show by means of a truth table that {p and q) implies {p or q) 

is a tautology. 

4. Suppose that p and q are statements such that {p andq) is a false 
statement. Does it follow that the statement 

{p is false) or {q is false) 

is a true statement? 

5. Negate the following statement: If two angles of a triangle have 

equal measure, then the length of two sides of that triangle are 
equal. 



Sets, Functions, and Relations 7 

6. Write the contrapositive of the statement in Exercise 5. 

7. Write the converse of the statement in Exercise 5. 

8. Write the contrapositive of the following statement: If a person 

belongs to Committee A, then he must be a member of Committee 

B and he must be a member of Committee C. 

9. Write the contrapositive of the following statement. If .y g A 

and x e B, then x e C. 

3. SUBSETS 

3.1. Definition. Subset of a set. Suppose that A and B are sets such that 

each element of A is an element of B. We shall then say that A is a subset of B, or 

that A is contained in B (written A <= B). 

If A <= B we shall also say that B contains A (B => A). It is to be noted that if 
A c B and B c A, then A = B. 

Notice that if A is a set, then A <= A. All other subsets of A are referred to as 
proper subsets of A. 

3.2. Definition. Proper subset. If A and B are sets such that B <= A and 

A B, then B is said to be a proper subset of A. If B is a proper subset of A, then 

B is said to be properly contained in A. 

(It should be pointed out to the reader that some texts use the notation 

A £ B to indicate that A is a subset of B and A <= B is used to indicate that A is 
a proper subset of B. We shall not follow this practice in this book.) 

In the previous section we noted that ifp and q are statements and ifp is false 
and q is true or false, then the statement p implies q is a true statement. This fact 

is used in proving the following statement. 

3.3. Remark. The empty set 0 is a subset of every set. 

Proof. Suppose that A is a set. Then from the previous paragraph, x 6 0 

implies that x e A is a true statement, since x e 0 is a false statement. Then from 

the definition of subset it follows that 0 is a subset of A. 

In our previous discussion we referred to 0 as the empty set. This would not 

be appropriate unless there were only one empty set. We show next that by virtue 

of the definitions that we have agreed to accept, there is indeed only one empty set. 

To see this, notice that if 0X and 02 are empty sets, then the previous argument in 
3.3 would apply to each. This fact would imply that 0X <= 02 and 02 <= 0X. 

However, it would then follow that 0X = 02. 

4. UNION AND INTERSECTION OF SETS 

We define next what is meant by the union and the intersection of two sets. 

The reader should note the critical role that the connectives—and, or—play in the 

definition. 
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4.1. Definition. Union of sets. Suppose that A and B are sets. Then the 

union of A and B (written A U B) is defined to be the set of all objects x such that 
x e A or x £ B. Using set notation, we mav write 

A U B = [x\x £ A or x £ Bj. 

4.2. Definition. Intersection of sets. Suppose that A and B are sets. Then the 

intersection of A and B (written A Pi B) is the set of all objects x such that x £ A 
and x £ B. In set notation, we may write this as 

A n B — [x:x £ A and x £ B). 

Thus, if A is the set of all solutions of the equation (x — l)(x — 2) = 0 and 

B is the set of all solutions of the equation (x — l)(x — 3) = 0, then A U B = 
{1,2, 3} and A n B = {1}. 

If A n B = 0 we say that A and B are disjoint. 

EXERCISES: UNION AND INTERSECTION OF SETS 

The reader is already familiar with the fact that the points in the plane 

can be thought of as ordered pairs of real numbers. All sets in the 

following exercises are subsets of the plane in which a rectangular 
coordinate system has been introduced. 

1. Let Gx be the graph of the equation x2 + y2 = 16, and let G2 
be the graph of the equation a*2 — y2 = 1. Sketch the sets 

Gi U G2 and Gi O C2. 

2. We define the sets A, B, and C as follows: A = {(.y,j):.y2 + 

/ ^ 9},B = {(x,y):x +y ^3}, C = {(x,y):x ^ 0}. 
Draw sketches of each of the following sets: (a) A U 

(B U C), (b) A n (B u C), (c) (A n B) U (AD C), (d) 
(A u B) u C, (e) A u (B n C), (f) (A u B) n (A u C). 

3. Let A = {(x,y):x+y £5}, B = {(x,y):x + y ^ 3}, C 

{(x, y):x ^ 3}, and D = {(.y, y):y ^ 3}. 
Draw a sketch of each of the following sets: (a) (A r~) B) n 

C, (b) [(A n B) n C] n D. 

5. COMPLEMENTATION 

5.1. Definition. Complement of a set. If A and B are sets, then we define 

A — B (A minus B) as follows: 

A — B — {.y:.y e A andx $ B}. 

A — B is said to be the complement of B with respect to A. Note that if B n A — 0 , 

then A — B = A. Also, if B A, then A — B 0. 

Often in a particular study in mathematics, the entire discussion is centered 

around some “universal” set. For example, the setting of a discussion might be 
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the set of all real numbers, R. In a situation such as this, rather than referring to a 

set R — S as the complement of S relative to R, we may simply refer to R - S as 

the complement of S, the phrase “relative to R“ being understood. In that case, the 

shorter notation '—S would be used instead of R — S. Thus, if our universal set 
in a particular discussion is the set of all real numbers R and 1 is the set of all 

irrational real numbers, then is the complement of /, or the set of all rational 

real numbers. 

EXERCISES: COMPLEMENTATION 

In this set of exercises we take our universal set to be the plane. 

Thus ~A will stand for the complement of A with respect to the 
plane. Further, A, B, and C are taken to be the same sets as sets 

A, B, and C in Exercise 2, page 8 . 

1. Sketch each of the following sets: (a) ~(A O B), (b) (^A) U 

(B), (c) ~(A U B), (d) (~A) n (B), (e) C - A, (f) ~(A n C), 

(g) (~A) U (~B), (h) (~/l) O (A), (i) C - (A U B), (j) 

(C- A) n(C - B), (k)~(~/<). 

2. On the basis of some of the sketches made in the previous 

exercise, formulate a proposition about relations that exist 

concerning complementation, union, and intersection. Try out 

your conjecture on other examples. In subsequent exercises 
you will be asked to try to prove such conjectures. 

6. SET IDENTITIES AND OTHER SET REEATIONS 

In Exercise 2, this page, you might have conjectured that if A and B are sub¬ 

sets of a set A, then (X — A) U (X — B) = X — (A n B). Assuming that this 
statement holds in general, we call such a statement a set identity. 

Suppose that X and Y are sets and we wish to prove that X Y. One way of 

doing this is to show that X <= Y and Y c X. Thus, we would let x £ X and show 

that .y e Y. Further, we would let x £ Y and show that .v e X. Often, of course, a 

set identity can be established by making use of previously proved identities. 

As an illustration, let us consider the following statement. 

6.1. Theorem. Let X, A, and B be sets. Then 

(X - A) U (X - B) = X - (A n B). 

Proof. To prove this identity, we will first show that {X — A) U (X — B) c 

X — (A n B). Toward this end, let ,v e (A — A) U (X — B). Then ,v e (X — A) 

or x e (X — B). Suppose that x £ (X — A). Then xeX and x$A. But if 
x $ A, then x $ (A n B). Thus x e X — (A n B). Similarly we can show that if 

x £ (X — B), then x £ X — (A n B). Thus we have shown that (X — A) U 

(X - B) <= x - (A n B). 
Next, we show that X — (A n B) c (A — A) U (A — B). To see this, let 

x £ X — (A n B). Then x £ X and x $ A n B. Since x $ (A n B), it must be 

true that ,v $ A or that .y £ B. Suppose first that x $ A. Then x £ X — A and, 
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hence, x £ {X — A) U (X — B). If the other possibility is true, i.e., if x$ B, 
then x £ X — B so that x e (X — A) <J (X — B). Hence, we have verified that 

X — (A n B) c (X — A) O (X — B), and the proof has been completed. 
In Exercise 2(b) and (c), page 8 , the reader might have been led to make the 

conjecture that A n (B U C) = (A n B) U (A n C) is an identity. We show 
next that this is indeed an identity. 

6.2. Theorem. Let A, B, and C be sets. Then, 

A n (B u C) = (A n B) o (A n C). 

Proof. We show first that A n (B U C) c (A n B) U (zl n C). In order 

to do so, let x £ A n (B U C). Then x e A, and (i) or (ii) x £ C. If (i) 
holds, recalling that x £ A, it follows that x £ A n B. Similarly, if (ii) holds, then 

x £ A O C. In either case, .v £ (A n B) U (A n C). 
To show that (A O B) U (A O C) c A n (2? U C), let x £ (A n B) U 

(/l n C). Then x £ (/( n B) or x £ A n C. Since A D B ^ A n (B U C) 
(see Exercise l(a),thjs page) and TOC<=/ln(fiu C), it follows that in either 

case x £ A n (B U C). This completes the proof. 

Summarizing our discussion, if we want to show that X <= Y, where X and 

Y are sets, we consider an arbitrary element x in X and show that x is also in Y. 
We may show that X = Y by showing that X <= Y and Y ^ X. 

As pointed out previously, once an identity has been proved, it can be used 

to prove others. Or, we may use previously proved identities to see whether we 
may rewrite expressions in a way that will perhaps suit our purposes better. For 

example, consider the set X — [A n (B n C)]. Using Theorem 6.1, we may write 

X — [A Pi (B n C)] as {X — A) U [X — (B n C)]. Then using 6.1 again, we 
have X - [A n (B n C)] = (X - A) U [(2f - B) U (X - C)]. 

EXERCISES: SET IDENTITIES AND OTHER SET RELATIONS 

In the following exercises, all sets are assumed to be subsets of some 

universal set U. Thus will stand for U — A. 

1. Prove that if A c: B, then: 

(a) A n C c b n C 
(b) ^B c ~A 

(c) A n B = A 
(d) A yj C c B yj C 

2. Verify that each of the following is an identity. 

(a) A U 0 = A 

(b) A n 0 = 0 

(c) A n A = A 

(d) A U A = A 

(e) (A U B) yj C = A yj (B u C) 
(f) (A n B) n C = A n (B n C) 
(g) A u (B n C) = (A u B) n (A u C) 
(h) X - (A U B) = (X - A) n (X - B) 
(i) A n = 0 

(j) A yj ~A = U 
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3. Prove that if A <= C and B <= C, then A U B ^ C. 

4. Prove that if A ^ B and A c; c, then define. 

Note that in Theorem 6.1 and Exercise 2(h), if X happens to be 
a universal set, then these identities take the form 

~(A 0 5) = (~A) U (—5) 

~(/4 U B) = (~A) O (~5). 

7. COUNTEREXAMPLES 

In a normal working situation a mathematician is often led to a general state¬ 
ment from some particular examples. If he cannot prove the general statement, he 

then looks for an example to show that the statement is not always true. Such an 
example is called a counterexample to the statement. Often the counterexample 

gives him insight into what additional hypothesis needs to be added to force the 
conclusion to be valid. After he has a correct version of a statement, he often 

wonders if he has as “good” a theorem as he is able to get. Once again, counter¬ 

examples come into play. The mathematician might then try to change various 

parts of the hypothesis and seek counterexamples to show that he may not change 
the hypothesis in the way in which he tried. Sometimes at first one is not able to 

prove a statement which in fact turns out to be correct. Often in attempting 
to construct the counterexample, the mathematician obtains insight into how to 

prove the statement. The role of construction of counterexamples in creative 

mathematics should be emphasized to the student of mathematics. Although some 
individuals seem much more adept at the technique than others, the skill can be 

developed by practice. In many of the excercises in the remainder of the text the 
reader will be asked to determine whether or not the particular statement is 

necessarily true, and to justify his answer with a proof of the statement or a 
counterexample. 

EXERCISES: COUNTEREXAMPLES 

In each of the following exercises state whether the statement is 

necessarily true. Assume that A, B, and C are subsets of a universal 

set U. Justify with a proof or a counterexample. 

1. If A U C = B U C, then A = B 

2. (A U B) - B = A 

3. (A - B) U B = A 

4. —(y4 —B) = ~ (A n ~B) 

5. ~(~(~A)) = r -A 

6. A U(B — C) = (A U B) - C 

7. ~(A - B) = (~A) U B 

8. If A-B = C- - B, then A = C 

9. A — (BC\C) = (A — B) n (A - 
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8. COLLECTIONS OF SETS 

So far we have defined what is meant by the union of two sets and the inter¬ 
section of two sets. We shall have need to form the union and intersection of many 

(rather than just two) sets. To do this, we shall extend the definition of union to 
arbitrary collections of sets, and the definition of intersection to arbitrary non¬ 

empty collections of sets. Note that if we say that Jf is a nonempty collection of 

sets, then Jf has at least one element in it and each element in Jf is itself a set. 

8.1. Definition. Union and intersection of collections of sets. If Jf is a 

collection of sets, then the union of elements of Jf (written (J Jf) is defined by 

|J Jf = {x:x e K for at least one K e Jf}. 

IJ Jf is a nonempty collection of sets, then the intersection of elements of Jf 

{written fj «>f) is defined by 

fl^T = {x'.xgK for each K e Jf}. 

These definitions extend the notions of union and intersection given previously. 

For example, suppose that Jf = (A, B}, where A and B are sets; then (J Jf = 

A U B and fj *>f = A n B. Suppose that Jf — {A, B, C}. We will also agree 

in that case to write \JJf as AUBUC and fj Jf as A n B n C. It is easy to 
see that A U B U C = (A U B) U C = A U (B U C), and that A n B n C = 
(A n B)n c = A n (B n C). 

Suppose that Jf is a collection of sets Klt K2, . . . , Kn. Then using the nota¬ 
tion introduced previously, we may write Jf = {Ki: i = 1,2Thus, we 

can write 

u Jf =U {*<:»= 1> 2,...,/!} 
and 

fj jf = fj {Kyi = 1,2, . . . , n}. 

Sometimes (J {Kyi = 1,2,... , w} is also written as Kx U K2 U ■ • • U Kn, and 

Pi {Ki: i — 1, 2, ...,«} is written as Kx n K2 n • • • O Kn. 

When we consider the collection of sets Jf = {Kp.i = 1,2,... , «}, the sub¬ 

script i is known as an index. In the example just considered, / “runs through” the 
first n positive integers. The set of the first n positive integers in that case is called 
an indexing set for the collection Jf. Sometimes convenient indexing sets occur 

when we consider infinite collections. For example, suppose that for each positive 
real number r, we let Sr be the circle {(.v, y) :.v2 + y2 = r2} in the plane, with center 

at (0, 0) and radius equal to r. Let Jf be the collection of all such circles. Then 

a convenient notation for Jf is {ST\r e set of all positive real numbers}. Here the 
indexing set for Jf is the set of all positive real numbers. We now give a definition 

of an indexing set for a collection of sets. 

8.2. Definition. Indexed collection. Suppose that A is a set, and that for 

each a in A, there corresponds a set Kx. Then the collection of sets .X {Kx: a e A} 
is an indexed collection of sets, and A is said to be an indexing set for the collection 

Jf. {Note that a # /? does not imply that K„ # Kfi.) 
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8.3. Definition. The power set of a set. Let S be a set. By S), the power 

set of S, we shall mean the collection of all subsets of S. 

8.4. Notation for some important sets. At this point it will be convenient 

to introduce notation for some sets that will occur frequently in the text. 

R = the set of all real numbers 

Q = the set of all rational numbers 
Z — the set of all integers 

P = the set of all positive integers 

P„ = {1,2,3,. . . , n) 

R, = the collection of all positive real numbers. 

Also, recall from calculus that if a and b are real numbers such that a < b, then 

(a, b) is the open interval {x:a < x < b} and [a, b] is the closed interval {x:a ^ 

x ^ b}. 

EXERCISES: COLLECTIONS OF SETS 

1. Suppose that A, B, and C are the following subsets of the plane: 

A = {(x, y):x2 + y2 16}, B = {(x, y)\x ^ 0 and y ^ 0}, 
C — {(x,y):y sS x}. If is the collection of sets {A, B, C}, 

sketch each of the following sets: 

(a) n Jtr 

(b) U # 

(c) u # - n * 

2. Recall that P is the symbol for the set of positive integers. 

Suppose that for each n e P, we let A„ = {x:x ^ nj. Describe 

the sets |J {A„:n e P} and fj {^n-n e P}- 

3. Suppose that for each n e P, Kn is a nonempty set such that 

Kn+X c Kn. Let JT = {K„:n e P}. 
In each of the following, if the statement is necessarily 

true, say so and justify your answer. If the statement is not 

necessarily true, give a counterexample to justify your answer. 

(a) U 
(b) n {Kt:i= 1,2,3,...,n} = Kn 

(c) n JT ^ 0 

4. For each real number r > 0, let Lr = {x:x § r}. Sketch the 

sets U {Lr:r > 0} and H {Lr'.r > 0} on a number line. If a 
set happens to be empty, say so. 

5. Let U be a set and let be a nonempty collection of subsets of 
U. ~ will signify the complement with respect to U. Prove the 

following set identities. The identities are quite important and 
are known as De Morgan’s Laws. 

(a) ~ (|J {K:Ke JT}) = f) {~K:K e JT} 
(b) — Cf| {K-.KeX}) = U {~K:Ke Jf} 

6. Let S = {1,2, 3, 4, 5} and let S) be the power set of S. 
List the elements in bP(S). 
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9. CARTESIAN PRODUCT 

The student is already familiar with the notion of an ordered pair from analy tic 

geometry. When the pair of so-called Cartesian coordinates (.v, y) is used to 
represent a point in the plane, there are distinct rol'es played by the “first” co¬ 

ordinate and the “second” coordinate. We note that (a, b) = (c, d) if and only if 

a — c and b = d. Thus, one represents the plane as the collection of all ordered 
pairs (.v, j\’), where x and y are real numbers. This notion is the parent of the more 

general notion of the Cartesian product of two sets to be discussed in this section. 

9.1. Definition. Cartesian product of two sets. Let A and B be sets. Then 

by A X B, the Cartesian product of A and B, we shall mean the set of all ordered pairs 

(a, b) for a e A and b e B. Thus 

A X B = {(a, b) :a e A and b e B}. 

Furthermore A2 will denote the set A X A. 

We emphasize that A X B is not, in general, the same as B X A. For example, 
let A = {1,2,3} and B = { 1,2}. A X fl = {(1, 1), (2, 1), (3, 1), (1,2), (2,2), 

(3,2)}. On the other hand, BXA = {(1, 1), (1,2), (1,3), (2, 1), (2,2), (2,3)}. 
[Note that the notation (a, b) for the ordered pair is the same as that used for 

an open interval with endpoints a and b, if a and b are real numbers. This is not 

likely to cause trouble, since it will be clear from the context as to which is meant. 
If it is not clear, the words “ordered pair” or “interval” should be used to modify 

(a, b).] 

9.2. Theorem. Suppose that A, B, and C are sets. Then 

A X (B n C) = (A X B) n (A X C). 

Proof. First we show that A X (B n C) (A X B) n (A X C). To see 

this, suppose that (.v,y) e A X (B n C). Then x s A and yeBn C. Hence, 

x e A and (y e B and y e C). Thus, (x e A and y e B) and (x e A and y e C). 
It then follows that (.v,y’) e A X B and (,\\ y) e A X C. Consequently, (x, v) e 

(A X B) n (A X C). We have shown that A X (B n C) <= (A X B) n (A X C). 

We leave as an exercise the proof that (A X B) n (A X C) c A X (B n C). 

EXERCISES: CARTESIAN PRODUCT 

1. Suppose that A <= B and C is a set. Prove that A X C <= B X C. 

2. Let >4 = {1,2,3}, B = {a, b}, and C {a, /?}. List the ele¬ 

ments in each of the following sets: (a) A X(fiuC), (b) 
(A X B) U (A X C), (c) (A U B) X C, (d) (/fXC)U(fiX C). 

3. Are any of the sets in Exercise 2 the same? If so write the set 
identities that are suggested by your observations. Try to 

prove your conjectures. 



Sets, Functions, and Relations 15 

4. Suppose that A is a set consisting of five elements and B is a 

set consisting of three elements. How many elements does the 
set A X B have? The set B X A? 

5. Suppose that A is a set consisting of m elements and B is a set 

consisting of n elements, where m and n are positive integers. 
How many elements are there in A X B1 

6. Suppose that A consists of three elements, B consists of four 

elements and C consists of two elements. How many elements 
are there in the set (A X B) X C? 

10. FUNCTIONS 

The reader is already familiar with the notion of function from elementary 
texts. As often used in calculus texts, for example, a function/is regarded as a 
correspondence between one set of numbers called the domain of the function 

and another set of numbers called the range of the function such that to each x 

in the domain there corresponds one and only one number /(x) in the range. In 

that approach, the word correspondence is generally not defined. However, the 

notion of function is so primitive that the concept is probably very clear in the 

reader’s mind. 
With the notion of function in mind, the reader should recall that one can 

define the graph of a function / as the collection {(x, y):x e (domain of /) and 

y = fix)). (Do not confuse this abstract notion of the “graph of a function’’ with 

the “sketch” of the graph on paper.) 
Notice that if we know the correspondence, i.e., if we know what fix) is for 

each .r, we can tell whether (x, y) is in the graph. Furthermore, if we know that 
(a, b) is a point in the graph, we know that f(a) = b. This suggests that we might 

define function in terms of what we have been speaking of as its graph. There are 

certain advantages to this approach, and we shall use it in this text. However, the 
reader should keep in mind that the essential feature behind the concept is the 

notion that “to each x there is a uniquely determinedfix)." 

10.1. Definitions. Function, domain, range. A function f is a set of ordered 

pairs such that if (x, jyf) e f and (x, _y2) e f, then >y = y2. (Thus, no two distinct pairs 

making up the function have the same first element.) Iff is a function, then the set of 

all x such that x is the first coordinate of a pair (x, y) e f is called the domain of f. 

The set of all y such that y is the second coordinate of a pair (x, y) e f is called the 

range of f 

The domain of f will be denoted by Dom/and the range of /will be denoted by 

Range f. For each xeDom/, fix) will denote the unique element in Range f 

such that (x,/(x)) e/. 
Although to us a function is defined as a collection of ordered pairs with a 

certain additional property, “single-valuedness,” we will often find it convenient 

to define a particular function / by giving Dom / and a rule that specifies ex¬ 

plicitly the functional value for each x e Dom /. For example, let /be the function 
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whose domain is {x: — 1 x 1}, and whose functional value /(x) for each x in 
this closed interval [—1,1] is given by the rule /(x) = — x2 + 1. Thus, f = 

{(x,y)'. — \ ^ xS 1 andy= -x2 + 1}. 
It should be emphasized that, from our point of view, if two different function¬ 

defining rules give the same set of ordered pairs, the functions so defined are the 
same. For example, let /* be the function whose domain is {x: — 1 ^ x sj 1} 

and whose functional value /*(x) for each x 6 [—1, 1 ] is given by the rule /*(x) — 

\/x4 — 2x2 + 1, where V is the symbol for nonnegative square root. From a 
computational standpoint this rule is different from the rule defining/in the last 

paragraph. However, if we note that for xe [—1, 1], —x2 + 1 is the positive 
square root of x4 — 2x2 + 1, we see that the two rules define the same set of 

ordered pairs for the domain specified. Thus,/ = /*. 
Frequently in elementary texts, a problem is posed something like this: 

“Consider the function y — x2.’’ What is meant by such a statement is this: 
“Consider the function/given by the ruley = f{x) = x2 with the domain being the 

real number system.” A statement such as “Consider the function y = 1/x” is 
probably intended to convey that a function/is to be considered for which/(x) = 

1 /x with Dom/being the set of real numbers x for which 1 /x is meaningful. 

We should note that the function/given by the rule/(x) = x2 for each real x 
is not the same as the function /* given by /*(x) = x2 for each real x e [—1, 1]. 

From our point of view /* is a proper subset of/. In a case like this, we shall also 
say that f* is the restriction of/ to [1, 1]. This concept of the restriction of a 

function will be defined formally later. 
We note abstractly that if x e Dom /, then /(x) is simply the element in 

Range / such that (x,/(x)) e/. However, much of the language currently used 
concerning functions conveys the notion that “/ transforms x into /(x),” or that 

"f maps x onto/(x).” In some of our investigations it will be helpful to emphasize 
the ordered pair aspect of function. At other times it will be more helpful to think 

in terms of the mapping or transformation point of view. For this reason we will 
use the words mapping, map, and transformation as synonyms for function. 

10.2. Definition. Function from X into Y. Suppose that f is a function 

whose domain is X and whose range is contained in but is not necessarily all of Y. 

Then f is said to be a function (mapping, map, or transformation) from X into Y. 

If/is a function from X into Y we also say that/maps or carries X into Y. 

Rather than writing ‘/is a function from X into Y," we often write “/:X—*■ Y 

is a function,” which we read “/from X into Y is a function.” 

10.3. Definitions. Onto mappings or surjections. Suppose that the function 

f : X —*■ Y is such that the range of f is all of Y. Then f is said to be a function from 

X onto Y or, alternatively, f is said to be a surjection from X to Y. In such a case 

we wilt write more briefly, "f:X —► Y is an onto mapping" or “/:X —*■ Y is a sur¬ 

jection." 

The sine function defined on the real line R maps R into R but maps R onto 

[ — 1, 1], Thus, we would say that sine:R -*• [— 1, 1] is a surjection, although 
sine: R -* R is not. Thus, we see that whether a function/on X into Y is a surjection 

depends not only on the function/but also on the set Y. 
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10.4. Definitions. One-to-one or injective function; bijection. A function f 

is said to be a one-to-one or injective function, or an injection, provided that for all 

x and y in Dom f, 

f{x) — f(y) implies that x — y. 

A map f: X —> Y is said to be a bijection if it is both an injection and a surjection. 

If/is a one-to-one function from X onto Y, it is sometimes referred to as a 
one-to-one correspondence between X and Y. 

10.5. Examples. Let/, g, and h be the functions defined on R and given by 
X 

/(x) = x sin x, g(x) = x3, and h(x) =  --—- . The function /maps R onto R 

(/:R —► R is a surjection). Note also that g: R —► R is a one-to-one and onto map¬ 
ping {g: R —*■ R is a bijection). Moreover, the mapping h: R —► R is not a bijection, 

but /z:R —► (— 1, 1) is a bijection. 

10.6. Definition. The image of a subset of the domain. Suppose that 

/: X —*■ Y is a function and A <= X. The set f[A], the image of A under /, is defined 

to be the following subset of Y: 

f[A] = {y:y = f(a) for at least one a e A}. 

Often “/[/!]” is read as “/of A" rather than the longer “the image of A under/.” 

10.7. Example. Let /:R—*■ R be given by/(x) = x2. Let A be the closed 

interval [—2, 2], and B = [0, 2]. Note that f[A] ----- f[B] = [0,4], Furthermore, 

Range/ = /[R] = {.y:0 ^ y}. 

10.8. Remark. Let/: X—* Y be a function. We make the following observa¬ 
tions concerning the image of subsets of X. 

10.8(a). f[0]=0 

10.8(b). f[X] is the range of/ 

10.8(c). /[{x}] = {/(x)} for each x e X 

10.8(d). f[A] = U {f[{a}]:a e A}, where A <= X 

10.8(e). f[A] = {y:(a, y) e f for at least one a e A}, where A c X 

10.8(f). If f[X] = Y, then/: X —>- Y is a surjection. 

EXERCISES: FUNCTIONS 

1. In each of the following a set of ordered pairs T is given. In 
each case, determine whether T is a function and, if it is, de¬ 

termine if it is a one-to-one function. 

(a) Let T = {(x, y): — 1 ^ x ^ 1 and x2 + y2 = 1 }• 
(b) Let T = {(x, y): — 1 ^ x ^ 1, y ^ 0, and x2 + y2 = 1}. 
(c) Let T = {(x,/):0 "S x '5 1,7^0, and x2 + y2 — 1}. 

(d) Let be the collection of all real-valued differentiable 

functions defined on the open interval (a, b). Let T = 

{(/,/'):/e and/' is the derivative of/}. 

(e) Let X be the collection of all continuous real-valued 

functions defined on the closed interval [a, b]. Let 
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(The reader should have determined that the collections of 

ordered pairs in (d) and (e) are functions. Thus, we see that 

there are functions dealt with in calculus whose domains are sets 

other than subsets of reals. This fact is generally not emphasized 

in elementary courses in calculus.) 

2. Let /:RXR—>RXR be the fuhction defined as follows: 

For each (.y, y) e R X R, let f((x,y)) = (a, b) where 

3. 

and 
a — x + 2y 

b = 2.v + 4y. 

Which of the following terms applies to /:RXR 

(a) surjective, (b) bijective, (c) injective. 

Repeat the question in Exercise 2 for the system 

a = 3x + 2y 

b = 6x — 2y. 

->RXR? 

4. Let/be a map from the set of all reals R into R. Suppose further¬ 

more that if jcj and x2 are in R and x1 < x2, then/(xx) </(.v2). 
Is it necessarily true that /is one-to-one? Is it necessarily true 

that /[R] = R? Justify your answers. 

5. Consider the function f'.X—> Y. Suppose that A and B are 
subsets of X. Decide which of the following statements are 

necessarily true. Justify your answers. 
(a) If A n B = 0, then f[A] (Af[B] — 0. 

(b) If f[A] n f[B] = 0, then A n B = 0. 
(c) If A c B, then f[A1 c f[B], 

(d) f[A -B] = f[A] - f[B]. 

(e) f[A Ufi] = f[A] U f[B}. 

(f) f[A n B] ^ f[A] n f[B). 

(g) f[A O B) = f[A] n f[B]. 

11. RELATIONS 

We are all familiar with the term relation when it is used with respect to certain 
sets of human beings. For example, let M be the collection of all male human 

beings living at this moment, and let F be the collection of all female human 
beings now alive. Let us write 

m Rf if and only if m e M,f e Band m is the husband of/. 

Thus, the relation that we are considering is the relation is the husband of. Note 
that, in this example, an element of M is written first and an element of F is written 

last. Also, in this example, since monogamy is not universal, there are elements of 
Al related to more than one element of F, and similarly more than one element 
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of M may be related to a particular element of F. Furthermore, there are ele¬ 

ments of M that are not married and are hence related to no element of F. 

Another familiar example is the relation is greater than (>) between real 
numbers. 

Since there are a multitude of different relations that are useful in mathematics, 

it is economical to abstract certain properties possessed by various relations. The 

abstraction of the notion of relation itself turns out to be quite simple. Notice 

that in each of the two examples given (is the husband of and is greater than), when 

one object is related to a second object, there is a specific role played by the first 
object and a specific role played by the second. This observation immediately 

suggests the use of the notion of an ordered pair. Suppose that in the first example 

we consider the set M X Fand we let R be that subset of M X Fsuch that (m,f) G R 

if and only if m is the husband of f. Then R could be thought of as a listing of all 

married couples for which the husband’s name is always written first. In the second 
example, is greater than, we may think of the relation > as the subset of R X R 

such that (x, y) e > provided that x > y. 

Thus, abstractly we may define a relation R as a collection of ordered pairs. 

However, in applying this abstract definition to particular cases, often we will want 

to revert to the former notation. We can accomplish this very easily by making 
the agreement that if (x,y) e R, then we may write x Ry. 

In defining a relation as a set of ordered pairs, we see that we may also look 

at the notion of relation as a generalization of the notion of function. Thus, a 

function f can be thought of as a relation with an additional single-valuedness 

property, namely, 

(x, jy) e/ and (x, y2) e f implies that jy = y2. 

Accordingly, we shall extend the definitions of domain of R, range of R and R[A] 

to an arbitrary relation R that is not necessarily a function. Furthermore, we shall 

define the inverse of a relation. The notion of the inverse of a relation will be of 

special interest to us when the relation is a function. 

11.1. Definitions. Relation, domain, and range of a relation. A relation is 

defined to be a set of ordered pairs. If R is a relation, then the domain of R (Dom R) 

and the range of R (Range R) are defined as follows: 

Dom R = {x: (x, y) e R for some y} 

Range R = {y: (x, y) e Rfor some x} 

If R is a relation and (x,y) e R, we also write x Ry. 

11.2. Definition. Relation between sets. Suppose that X and Y are sets and 

R <= X X Y. Then R is said to be a relation between X and Y. 

We should observe that if/is a function from X into Y, then / is a relation 

between X and Y with the following additional property: 

For each x G X, there is a unique y e Y 

such that (x, y) e f. 

We see from the definition of relation, that a relation need not have the 

“single-valued” property. Furthermore, if R is a relation between Wand Y, then 
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Dom R <= X but Dom R need not be all of X. Note that in Exercise 1(a), page 

1 7 , T is a relation but not a function. 
Recall that for a function f :X —► Y and A c X, we defined (in 10.6) 

f[A\ = {y:y = f(a) for at least one a e A}. 

We noted in 10.8 (e) that 

f[A] = {y: (a, y) ef for at least one a e A}. 

We can similarly define sets R[A], where A c: X and-/? is a relation between X 

and Y. 

11.3. Definition. The set 7?[^] for a relation R. Let R be a relation between 

sets X and Y. For A c= X, we define 

R[A] — {y\ (a, y) e R for at least one a e A}. 

When A is a set consisting of exactly one point, we make the following 

abbreviation: 

*[{*}] = R[x]. 

In Definition 11.3, it should be noted that A need not be a subset of Dom R, 

since Dom R need not be all of X. 

11.4. Definition. Inverse of a relation. Let R be a relation between X and 

Y. Then R 1 is the following relation defined between Y and X. 

R~1 = {(y,x):(x,y)eR}. 

On the basis of Definition 11.4, we note that 

if jc Ry, then i?”1 x. 

We also note that 
Range R = Dom R~x 

and 
Range R~x = Dom R. 

Furthermore, 
(7?-1)-1 = R. 

The inverse of a function need not be a function (see Exercise 1(b), page 17 ). 
However, if f:X-*- Y is a function, then /_1 is always defined and is a relation 

between Y and X. Consequently the setf~'[B] is also defined for each B <= Y. 

The reader should verify the following remark. 

11.5. Remark. Consider the function/:X-* Y. For B c: Y, 

[5] = {x: (y, .y) ef for at least one y e B} 

= {x:(x,^) ef for at least onejy 6 B} 

= {*:/(*) e B}. 

We point out for emphasis that the equalities in 11.5 are correct for any B Y 

and that B need not be contained in /[AT], the range of /. 
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11.6. Example. Let R = {(x, j):0 < x 4 and y2 = x}. 

From the sketch, note that 

Dom R = {x:0 ^ x ^ 4}, Range R = {y \ —2 ^ y ^ 2}, 

*[2] = {-VI, VI}, i?[{x: 1 ^ x ^ 2}] = _ 

{y: 1 ^ y ^ v2} u {j:-V2 ^ y ^ -1}. 

Note that is not a function but is a function. 

11.7. Example. Let R = {(x,y):0 ^ x ^ 1 and 0 ^ y ^ 5}. Then R~l = 

{(x,^):0 ^ x ^ 5 and 0 ^ y^k 1}. Note that, in this example, for each ae 

Dom R, — {j:0 ^ y Ss 5}, and for each b e Range R, R^1 [b] — {x:0 ^ 

x ^ 1}. 

1L8. Example. Let R be the following subset of R X R: 

R = {(x,y):x <y}. 

Then for each aeR, 

/?[o] = {y\a <y) 

and 
/^[a] = {x:x < a). 

As we have seen, if F is a function, F~l is a relation but not necessarily a 
function, for it is possible that for an elementy e Range F, F_1[y] may consist of 

more than one element. However, for a certain class of functions, it can be proved 
that for each F in the class, F-1 is a function. These are the one-to-one functions 

defined in 10.4. 

11.9. Theorem. If F is a one-to-one function, then F~x is a function. Further, 

F-1 is one-to-one. 
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Proof. Suppose that F is a one-to-one function. Since F is a function, it 

is a relation. Hence, F_1 is a relation. To show that F_1 is a function we need show 
only that for (a, b) e F-1 and (a, d) e F_1, b — d. But (a, b) eF-1 implies that 

{b, a) e F, and (a, r/) e F-1 implies that (</, a) e F. However, since (b, a) e F and 
(cf, a) e F, it follows that b = d since F is one-to-one. Thus F-1 is a function. 

To show that F-1 is one-to-one, we need to show that if (a, 6) e F-1 and (c, 6) e 
F-1, then a — c. But (o, 6) e F-1 and (c, 6) e F-1 imply that (b, a) e Fand (b, c) e 

F, and since F is a function, a = c. This completes the proof. 

11.10. Theorem. Suppose that F is a one-to-one function. Then for each 

x e Dom F, F_1(F(x)) = x. Further, for each y e Range F, F(F_1(jO) = y- 

Proof. By 11.9, F_1 is a function. Let x e Dom F. Then (x, F(x)) 6 F and, 

thus, (F(x), x) e F~x. Hence, F_1(F(x)) = x. Similarly, let y e Range F. Then 

(y, F_1(j)) e F-1 so that (F_1(j’)>7) e F. From this it follows that F(F_1(>0) = J- 
This completes the proof. 

We can now show that the converse of 11.10 is also true. Suppose that Fis a 

function such that F-1 is also a function. Note that the proof of 11.10 depended 
only on the fact that F and F-1 were functions. Hence, if F(x) = F(y), then 

F_1(F(x)) = F-1(F(j)), and by the proof of 11.10, x = y so that F is one-to-one. 
This together with 11.9 gives the following characterization of one-to-one func¬ 

tions. 

11.11. Theorem. A function F is a one-to-one function if and only if F 1 

is a function. 

EXERCISES: RELATIONS 

In Exercises 1 through 5, all relations are subsets of the plane. In 

each case, draw a sketch of R, and give Dom R, Range R, F[0] and 

R-'[ 0]. 

1. Let (x, y) e R provided that (x, _y) satisfies each of the follow¬ 
ing inequalities: x + y ^ 3, y — x ^ 0, x ^ —3. 

2. Let R be the set of all (x,y) that satisfy x2 — y2 ^ 1 and 

/ - x2 ^ 1. 

3. Let R be the set of all (x, y) such that x — y is a multiple of 3. 

4. Let R be a subset of the plane such that (x,y) 6 R provided that 

x —y ^ i 

5. Let R be the subset of the plane such that (x, y) e R provided 
that y = x4. 

6. Let R = {(x,jf):x 2? 0, x2 +y2 = 26}. Find F[0], /?[5], and 

/?[/], where I — {r:0 r < 1}; where J = {r: — 1 ^ 
r ^ 1}. 

Let R = {(x, y):x is real and y x(x — l)(x — 2)}. Find 
R[0], R[ 1], F[2], F‘[0], and R[I], where I = {x:0 : x g 2}. 

7. 
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8. Let R be a relation between sets X and Y, and suppose that A 

and B are subsets of X. In each of the following, tell whether 
the statement is necessarily true and give a justification of your 
answer: (a) R[A n B] = n , (b) R[A n B] <= 
??[A] n /?[£], (c) R[A n B] => R[A] n R[B]. 

9. Let Z be the set of all integers. For each m and n in Z, let 
us write m R n if and only if m — n is an even integer. Thus, 

this relation R is the set R = {(m, n):m — n — 2k for some 

integer/:}. Find 2?[1] and/?[2]. How many distinct sets of the 
form R[i] are there? 

10. Let R be the relation defined as follows: For each ordered pair 

of integers (m, n), let m R n if and only if m — n is an integral 

multiple of 5 (including negative multiples of 5). Find /?[1], 

/?[2], and /?[6], How many distinct sets of the form i?[i] are 
there? Find .R^fl] and i?_1[2]. Is Rr1 [i] = i?[i] for each z? 

For this relation R, if i R j and j R k, does it follow that i R kl 

12. SET INCLUSIONS FOR IMAGE AND INVERSE IMAGE SETS 

There are important set inclusions and identities involving image sets and 

inverse image sets under a function f'.X-> Y. Some of these can be established 

for both image sets and inverse image sets simultaneously because they are true 

for relations in general. There are other identities that are not true for relations 

in general but are true for the special case involving image sets or inverse image 

sets of functions. 

12.1. Theorem. Suppose that R is a relation between X and Y. Suppose 

A cz B c= X. Then R[A] c= /?[£]. 

Proof. Suppose that y e R[A). Then there is an * e A such that (x, y) e R. 

But since A <= B, x e B and so y e ??[£]. 

The reader should have discovered in Exercises 5(e) and 5(f), page 1 8 , that 

the statements found there are correct. The next theorem shows that these state¬ 

ments are true for relations in general. 

12.2. Theorem. Suppose that R is a relation between sets X and Y. Then 

if A and B are subsets of X, the following hold. 

12.2(a). R[A U B] = R[A] U /?[£]. 

12.2(b). R[A r\B] c n 

Proof. We establish first that R[A U /?[/?]. To see that 
R[A U B] xz /?[/!] U 2?[j5], let y 6 R[A U B}. Then there is an x e A U B such 

that (x, y) e R. If .y g A, then y e R[A] c R[A] U R[B], On the other hand, if 
x e B, then y e c /?[A] U In either case, y e R[A] U and we 

have shown that R[A U B] <= ??[/!] U To show that R[A] U ??[5] c 

R[A Ufi], note from 12.1, that /?[/!] <= R[A U5] and R[B] <= R[A U B], 
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Hence, R[A] U c; R[A u B] (see Exercise 3, page 11). Thus we have 

established 12.2(a). 

To prove that R[A Pi B] <=■ R[A] Pi note from 12.1 that R[A Pi B] <= 

R[A] and R[A n B] <= /?[£]. Hence, n B] c i?[^l n /?[£]. 

The inclusion 2?[/I] Pi c Pi fi] does not necessarily hold, even if a 
relation R is a function. The next example illustrates .this. 

12.3. Example. Refer back to Example 11.6 and note that R 1 is a function. 

Let f=R~\ I={x: l^x^ 2}, J = {y:—yfl ^ y ^ -1}, and ^ = {y:lg 

y ^ \ 2}. Note that f[J Pi K] = f[0] = 0. On the other hand, /[/] = f[K] = 

I. 
Example 12.3 shows that R[A] Pi A [2?] <= R[A Pi B] does not necessarily 

hold even if R is a function. It turns out, however, that if R happens to be the 
inverse of a function, then the inclusion does hold. 

12.4. Theorem. Let f:X-+ Y be a function and step pose that C and D are 

subsets of Y. Then 

f~x[C Pi D] =f~l[C] n/-i[Z>]. 

Proof. Since/-1 is a relation, it follows from 12.2(b) that 

HCnD]c/-i[c] n/-i[Z>]. 

To see that f~l[C] n/-x[Z>] c=/-i[C n D], let x ef-'[C] nf-^D]. Then 

f(x) e C and f(x) e D, so that f(x) e C Pi D. Hence, x ef _1[C Pi D]. Thus, 

/-'[C] nf-'lD] c/-i[C P /)]. 

The reader should note the role of the single-valuedness of/in the proof just 
completed. 

The next theorem is an extension of Theorem 12.2 to collections of sets. The 

proof is left as an exercise. 

12.5. Theorem. Suppose that R is a relation between X and Y. Then if 

{Aa: a G A} is a nonempty collection of subsets of X, the following hold: 

12.5(a). /?[U {Aa:* e A}] = U e A) 

12.5(b). i?[fl{^a:«eA}]c n{*I4J:«eA} 

The next theorem includes special cases of Theorem 12.5 and an extension of 
Theorem 12.4. The proof is left as an exercise. 

12.6. Theorem. Let f: X -> Y be a function. Let {Ad: (5 e A} and {Bx: X e A} 

be nonempty collection of subsets of X and Y respectively. Then 

12.6(a). /[(J {As:d e A}] = U {/W* e 

12.6(b). /[fl {As:d e A}] c: D{/M8]:<5gA} 

12.6(c). /-MU {BY* e A}] = U {f~l[B,]:X e A} 

/-MD {BY* e A}] = fl {f-'lBxY.X e A} 

In the next theorem we list a number of other set inclusions and identities of 
importance. Where a proof is not given, it is left as an exercise. 



Sets, Functions, and Relations 25 

12.7. Theorem. Let f\X-+ Y be a function. Then each of the following 

holds. 

12.7(a). For each x e X, 

xef-1 [/ML 
12.7(b). For each A <= X, 

Acf-'lfiA] ]. 

12.7(c). For each e Range/, 

/[/-« = 0>L 
12.7(d). For each subset B <= Y, 

f[f~l[B)} = B n Range/. 

Proof of (d). Let e/[/_1[5]]. Then there is an x e/-1[5] such that 

f(x) — y. But then f(x) e B and obviously/(.v) e Range f, so that f(x) = y e B n 

Range/. Hence, /[/-1 [5]] c; B n Range f. Next choose a y e B r\ Range /. 

Then there is an x e f~'[B] such that f{x) = y. But since x e fl[B], y = f(x) e 

f[f~l[B\\. Hence, we have shown that B O Range/<= f[f^[B]]. This completes 

the proof. 

EXERCISES: SET INCLUSIONS FOR IMAGE AND INVERSE IMAGE SETS 

1. Prove Theorem 12.5. 

2. Prove Theorem 12.6. 

3. Prove Theorem 12.7(a), (b), and (c). 

Suppose that/: X -+ Y is a function and A and B are subsets of 

X. Suppose also that C and D are subsets of Y. For each of the 
following, determine whether the statement is necessarily true. 

In any case for which the statement is not necessarily true. 

4. 
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determine whether it is under any of the following conditions: 

Y is a surjection, f'.X—*■ Y is an injection, f:X—*■ Y 

is a bijection. 

(a) f[A-B]=f[A\-f[B] 

(b) fix[D — C] — f~l[D] — f~l[C] 

(c) f-'flA] = A 
(d) fif-'ic]] = C 

5. Let fl:RXR->-R be the map from R X R into R defined as 

follows: For each (a, b) e R X R, let M((a, b)) — ab. Is M a 

map from R X R onto R? Representing R X R as a plane, draw 
a sketch of each of the following sets: M-1[0], A/-1 [1 ], A/-1[/], 

where I is the closed interval [0, 1], 

6. Examine carefully the content of Theorem 12.6 and your 

answers to Exercise 4(a) and (b). Which seems to have a nicer 
behavior on collections of sets,/or fix2 

13. THE RESTRICTION OF A FUNCTION 

13.1. Definition. The restriction of a function. Suppose that f is a function 

defined on a set X, and A c= X. Suppose further that g is the function defined on A 

with the property that g(.v) = fix) for each x e A. Then g is called the restriction 

off to A and is denoted by/ j A. (Note that / | T <= /) 

The reader is already familiar with this notion from more elementary courses. 

For example, consider the sine function defined on all the reals. Often one is 
required to consider only the sine restricted to an interval of say 2-n in length. 

13.2. Theorem. Suppose that X — A OB, and that f:A —Y and g.B -* Y 

are maps such that f\AC\B = g\A D B. Then f U g is a function. 

Before proceeding with the proof we shall look at an example. Consider 

g: [—1,0] —R and/: [0, 1] —> R given by the following: f(x) = x for 0 .v 1, 

and g(x) = —x for — 1 ^ x sS 0. Note that the function h defined on [—1, 1], 

given by /i(x) = x for 0 ^ x ^ 1 and h(x) — —x for — 1 ^ x ^ 0, is precisely 
/ O g. There is no ambiguity since / and g agree where their domains intersect. 

Proof. / U g is a relation whose domain is A OB. To show that / U g is a 

function, we need simply to show that (.v, y^) ef O g and (x, y2) efOg imply that 

Ti = Yz- Notice that one of the following must be true: (i) (x, y^) e f and (x, y2) e /, 
(ii) (x, yx) g g and (x,y2)eg, (iii) (x, yq) e/ and (x,y2)eg, (iv) (x, yy) eg and 

(x, y2) e/. Since/and g are functions, (i) and (ii) imply yy = y2. If case (iii) holds, 

then yy = /(x) and y2 = g(x). However, in that case x e A n B, and from hy¬ 
pothesis, yy = /(x) = g(x) = y2. In case (iv), the proof is similar. 

EXERCISES: THE RESTRICTION OF A FUNCTION 

1. Let /:R —>■ R and g:R -► R be mappings such that fix) = sin x 

for each x e R and g(x) = v 1 — cos2 x for each x 6 R. Find 
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the largest interval of real numbers, I, whose left hand endpoint 

is 0 and which satisfies / | / = g 11. 

2. Let/:R —► R be defined as follows: For each reR, letf(x) = 

\x — 1|. Let g:R -> R be defined by g(x) = x — 1 for each 

xeR, Find the largest set S <= R for which f\ S — g | S. 

3. Let /: R -> R and g: R —► R be given by g(x) = cos x and /(x) = 

V 1 — sin2 x for x s R. Find the largest set 5 c R for which 

f\S=g\S. 

14. COMPOSITION OF FUNCTIONS 

Suppose one wanted to consider the function f defined on R and given by the 

formula f{x) = sin (cos x). Actually this is a rather complicated function. How¬ 

ever, since the sine and cosine are well-known functions, it is easier to study / 

by means of what is already known about the sine and cosine. This technique of 

studying complicated functions by representing them as the composition of simpler 

ones has proved to be an extremely useful technique at all levels of mathematical 

investigation. The reader who has studied elementary calculus will, for example, 

recall the technique of finding the derivative of a complicated function by means of 

the so-called chain rule for composite functions. As a matter of fact, the student 

is brought into contact with the notion of composition as early as in elementary 

high school algebra. For example, in finding the zeros of the function given by 

F(x) = (x2 — l)2 — 3(x2 — 1) + 2, one could introduce the functions given by 

/j(x) = x2 — 1 and /(z) — z2 — 3z + 2 and represent F(x) as/(/?(x)). The problem 

then reduces itself to finding the zeros zx and z2 of f(z) and then, provided that 

Zj and z2 are in the range of h, solving the equations h(x) = zx and h(x) = z2. 

14.1. Definition. Composite function. Suppose f and g are functions such 

that Range / c: Dorn g. We then define the function g °f (read the composition of 

f and g, or ffollowed by g) as the function defined on Dom f and given by g ° /(x) = 

g{f{x)) for each x e Dom/. 

We make some simple observations implied by this definition. 

Dom/ = Dom g °/, Range g °f <= Range g 

The following schematic diagram can be of help in visualizing the various 

aspects of the definition. 
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14.2. Example. Let /:R—>R and g:R—>-R be given by f(x) = sin .v and 

g(x) = x3 + 1. Then g°/:R->-R and /°g:R—>-R are given by g °f(x) = 

(sin a-)3 + 1 and f °g(x) == sin (a3 -f 1). 

14.3. Example. Let R+ be defined as in 8.4. Suppose that /:Rf—>-R 

is given by f(x) = x2 and g:R+ —► R is given by g(x) — yf x. Then g °/(.y) = 

y/x2 = x for x in Rf and /° g(x) — {y/x)2 = x for .V in R^. Note that in this 

example g ° f — f ° g but that in 14.2 such is not the case. 

14.4. Theorem. Suppose that f g, and h are functions such that Range / c: 
Dom g and Range g <= Dom h. Then h ° (g °f) — {h ° g) °f. 

Proof. First note that the hypothesis implies that both h ° (g ° f) and 

(/i o g) of are well defined. Note also that Dom / = Dom h ° (g ° /) = Dom 

(h o g) o f Also, for each x 6 Dom/, {{h ° g) o /)(x) = h ° g(f(x)) = h(g(f(x)), 

(h 0 (g 0 /))(•*) = h(g °/(x)) = h(g(f(x)). Thus, (h ° g) of = /, ° (g o /). 

We see from this that with the proper restrictions on their domains and ranges, 
composition of functions is associative. As in multiplication for real numbers, 

since the operation is associative we agree to write both (/; ° g)°f and h ° (g ° /) 
as h o go f (There are some texts, especially algebra texts, that write “(x)/” for 

‘/(x).” In such books, ‘ f°g” would be used instead of “g ° f." This reversal of 
order would be natural, for then (x)/°g = ((x)f)g. On the other hand, in this 

text we would have g °/(x) = g(f{x)).) 

14.5. Function diagrams. Suppose that f:X~* Y, g: Y -> Z, and h:X-+Z 

are mappings such that g°f — h. A diagram such as the following will help the 

reader to visualize the situation. 

In such a diagram it is customary to say that the diagram is commutative, to indi¬ 

cate that the same image point may be obtained by any sequence of mappings 

obtained by following the arrows. For example, the following commutative 
diagram would indicate that the mappings 

f:X—> V, g: Y —► W, h:X —*■ Y, and k: V —*■ W satisfy g ° h = k of 

X 
f 
—> V 

h 

T 

Y g 
—> 

k 

T 

w 

14.6. Definitions. The identity and the inclusion maps. Suppose that X c: y 

and i is the function given by i(x) = x for each x e X. Then the map i:X -> X is 

called the identity map on X, and the map i: X —*■ Y is called the inclusion map of X 

into Y. 

The following two statements follow easily from the definition of the identity 

map. The proofs are left as exercises. 
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14.7. Theorem. Suppose that i:X-*-X is the identity map on X and 

/: X —Y is a map. Then i ° i = i and f ° i = f. 

In view of the previous theorem, we have the following commutative diagrams: 

f x- -* X X- 
i I 

'X' 

-> Y 
/. 

14.8. Theorem. Suppose that f\X-*- Y is a map and i: Y —*■ Y is the identity 

map on Y. Then i °f =f 

Theorem 14.8 gives the following commutative diagram: 

X- 
J * 

Y' 

-> Y 

EXERCISES: COMPOSITION OF FUNCTIONS 

1. Let/:R—>-R and g:R —► R be given by f(x) = x/(x2 + 1) and 

g(x) = x2. Give explicit formulas for g ° f(x) and / ° g(x). 

Determine the ranges of g °f and f ° g. 

2. Let/:R^R and ,g:R —>■ R be defined as follows: 

f(x) = x2 for x ^ 0 
= 2 for x < 0 

g(x) = \Jx for x ^ 0 
= x for x < 0 

(a) Sketch the graph of g °f. 

(b) Sketch the graph of f ° g. 

(c) Find (f og)-![x] for each x e R. 

3. Let /:R-^-R and g:R—R be given by /(x) = sin x and 

g(x) = |x|. Write explicit expressions for g °f(x) and/°^(x) 

and find the range of each. 

4. Let/: R —R and g: R —> R be the maps given by/(x) = x2 + 2 

and g(x) = x — 1. Find expressions for (/° g)(x) and (g ° /)(x) 

and note that/ ° g g 0 f 

5. Let /:R->R, g^:R—>R and /2:R^>-R be given by: /(x) = 

x2 + x, g(x) = (x — l)2, and h(x) — x + 1 for each xeR. 

Find an expression for li ° g °/(x) for x e R. 

6. Suppose f:X->-Y is a bijection. Show that f~l °f=i where 

i:X—>X is the identity map on X and where 
j: Y —*■ Y is the identity map on Y. 

Solution to first part. Let x e X. Then, (x,/(x)) e/. 

Hence, (/(x), x) e/-1. Thus,/-1(/(x)) = x and (J1 ° f)(x) — x 

for each x 6 X. Hence, °f=i, the identity map on X. 
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7. Let f:X —>■ Y and g: Y —► X be surjections. Suppose g °f = i, 
where i:X->- X is the identity map on X. Show: (a)/is one- 

to-one, (b) g is one-to-one, (c)f°g—j where j: Y —► Y is the 
identity map from Y onto Y, (d)/ = g-1, and (e) g = /-1. 

8. Recall that R+ = {x:xeR and x > 0}. Recall also that the 
natural logarithm function, In, is defined on R+ with range R; 

the exponential function, {(x, e*):x eR}, is the inverse of the 
ex -j- e~x 

In function; cosh x —-for each )cgR. 
2 

Sketch the cosh function and note that although cosh is 

not one-to-one, the restriction, cosh |R. is one-to-one and 

hence, its inverse is a function. By using results of Exercise 

7, prove that cosh-1 (x) = In (x + Vx2 — 1) for x ^ 1. 

9. Consider the map a:R2->R2 such that for each (xjjeR2 

a((x, y)) is the element (w, v) e R2 given by u = 2x — y, v = 
5x + y. Recall that R2 denotes R X R. 
(a) Does a[R2] = R2? (b) Is a one-to-one? (c) If a is one- 

to-one, find a rule for a-1 analogous to the rule given for a. 

10. Consider the map P:R2—>-R such that for each (xj)eR2, 

P((x, y)) = x. Note that P is not one-to-one. Find a subset S 

of R2 such that P | S: S —► R is a one-to-one map from S onto R. 

11. Suppose f\A->B is a one-to-one map from A into B and 

g:B-+C is a one-to-one map from B into C. Prove that 

go f'-A—v C is a one-to-one map from A into C. 

12. Let f.R —»-R be a map such that for each pair of numbers x 

and y,f{x + y) =/(x) +/(>’)• 
(a) Show that /(0) = 0. 

(b) Show that/(x) = —f(x) for all xeR. 
(c) Show that f(mx) — mf(x) for each integer m and x e R. 

(d) Show that f(rx) — r/(x) for each rational number r and 

X G R. 

15. SEQUENCES 

Recall that P denotes the set of all positive integers and P„ denotes the first n 

positive integers. Functions that have P or P„ as domains occur frequently, and 

such functions are given special names. 

15.1. Definition. Sequence or infinite sequence. A function defined on the 

set P of positive integers is called a sequence or an infinite sequence. 

15.2. Definition. Finite-sequence or n-tuple. A function defined on the set 

P„ of the first n positive integers is known as a finite-sequence or an ordered n-tuple. 

We use the hyphen between the “finite” and “sequence” to indicate that 

“finite-sequence” is one word. Since “sequence” in mathematics is usually used 
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synonymously with “infinite sequence,” we do not wish to use “finite” as an 

adjective modifying sequence. 

If / is an infinite sequence or a finite-sequence, then for a fixed n, we call 

f(n) the nth term of the sequence. It is also customary to write f[ni) as fn. Although, 
strictly speaking, an infinite sequence / is a function {(/,/(/)): i e P}, one often 

encounters the notation or (/,) for the sequence. 

If is an infinite sequence, we shall sometimes write it as (aq, a2, . . . , 

an, . . .). Likewise, we shall usually write (cq, a2, . . . , an) for the finite-sequence 

{(/, a,): i 6 Pn}. Observe that the notation (aq, a2, . . . , an) exhibits the range 
explicitly. The term in the zth position is the value of the sequence corresponding 

to i. 
Recall that we built up the concept of function from the concept of ordered 

pair. At this point in our discussion, we now have a certain kind of function called 

a finite-sequence. For the special case where the finite-sequence is defined on 
P2 = {1,2}, it would take the form {(1, cq), (2, a2)} which we have agreed to 

abbreviate as (oq, a2). But (cq, a2) has also been used as the symbol for an ordered 

pair. This should lead to no confusion. As a matter of fact, it should be clear that 
two finite-sequences (<aq, a2, . . . , an) and (Zq, b2, . . . , bn) are equal if and only if 

a, = bj for i e P„. Recall that this was a crucial property possessed by ordered 

pairs. Thus, ordered pairs and finite-sequences on P2 “act alike.” 
There are certain types of sequences that occur with sufficient frequency to 

warrant our having special names for them. 

15.3. Definition. Increasing and decreasing sequences of numbers. A 

sequence (a,) of real numbers is said to be increasing (decreasing) provided that 

a, ^ al+1(ai+1 ^ a,) for i e P. 

Moreover, the sequence (a,-) is said to be a strictly increasing (decreasing) sequence 

if 
at < ai+1(ai+1 < at) for i e P. 

15.4. Definition. Increasing and decreasing sequences of sets. A sequence 

of sets (K,) is said to be increasing (decreasing) provided that 

Kt c Ki+l(Ki+1 c Kj). 

Moreover, the sequence of sets (K{) is said to be strictly increasing (decreasing) 

provided that for each i e P, 

Kt f Ki+1 and Kt <= Kl+fKi+1 c= Kt). 

Sometimes the term monotone is used to refer to sequences of numbers or sets 
that are either increasing or decreasing. 

In the next definition, w'e use the notions offinite-sequence and infinite sequence 
to extend the concept of Cartesian product. 

15.5. Definition. Cartesian product of nonempty countable collections of sets. 

Let n be a positive integer and let {Ap.i e P„) be a collection of sets indexed by P„. 

The Cartesian product of {Ap.i e P„}, denoted by X {Ag-i e P„}, is defined to be 
the set of all finite sequences (cq, a2, . . . , an) such that at e A,- for / e P„. 
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Similarly, the Cartesian product of a collection of sets {Ap.i 6 P}, denoted by 

X {At:i e P}, is defined to be the collection of all infinite sequences (a,) such that 
a{ e Aifor i e P. 

Often X {Ap.i e P„} is denoted by A1 X A2 X A3 X . . . X A„. 

EXERCISES: SEQUENCES 

1. In each of the following find a formula for the nth term an 

of an infinite sequence whose first five terms are given. 

(a) ax = I, a2 = a3 — a4 = i, a5 = jV 
(b) a3 = 1, a2 = 0, a3 = 1, a4 = 0, ah = 1. 
(c) = 1, a2 = 0, a3 = — 1, a4 = 0, a5 = 1. 

(d) a1 = 1, a2 = 3, a3 = 6, a4 = 10, n5 = 15. 

2. Let f = (fi)*Lv be the sequence defined as follow's: Let 
g(x) = sin x. For each positive integer /, let f — g(i,(0), where 

g{,) is the zth derivative of g. Write the terms off sufficiently far 
to see the pattern followed. 

n 

3. For each n e P, let an = ^ j2- Try to discover a formula for 
<7 . ;=1 

n 

4. Suppose that a is a sequence such that ax = 1, a., = 3, a3 — 

a\ + a2> and for j 3, ay — + a,_2. Find n4, o5, a6, and 

aT 

5. Suppose a sequence a is given by an = 2'1 for each positive 

integer n. For which values of n is it true that an ^ 10,000? 

6. Let a be the sequence given by an = n/(n + 1). Find the small¬ 

est integer TV such that for n ^ N, an > fo- 

7. Let a be the sequence given by an = \ n T 1 — Vn. Find an 
integer N such that for n ^ N, a„+1 < an. Find an integer M 

such that for n M, an sS 

8. For each (x, y) e R2, let /(x, y) — (x2 — y2, 2xy). Let the 
point /?! in the plane be given by f{\, \), p2 = f(px), p3 = f{p2). 

Pi = fiPz)y Ps =f(Pi)- Calculate and plot the points plf 

P2, • • • > Pi- 

9. Let A1 = {1,2, 3}, X2 = {1,2}, /13 = {a, b}. Write out the 

elements of A, X A2 X A3. White out the elements of (At X A2) 
X A3. Show that there is a “natural” one-to-one correspond¬ 

ence between the elements of these two sets. 

10. Suppose that for each i e P, A,■ = {0, 1}. Describe in words 

the set X (A,:i e P}. 

11. Let Ax be the set of all real numbers R. For each / e P such 
that / > 2, let A, = {0}. Describe in words the set X {A,: 

iePj. Show that there exists a bijection from X {X,:ieP} 
onto R. 
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16. SUBSEQUENCES 

We wish to give a formal definition of a subsequence of a sequence. Before 
doing so, however, we give an example of the concept we wish to define. 

16.1. Example. Consider the sequence / = {(/, 3/):/eP}. Consider the 

sequence h given by h( 1) = /(2), h{2) = /(4), h(3) = /(6), and in general h(n) = 

f(2n) = 6n. Notice that the original sequence / can be written (3, 6, 9, ... , 

3n, . . .) and that h can be written as (6, 12, . . . , 6n, . . .). Roughly, we can obtain 

h = (6, 12, . . . , 6n, . . .) from /= (3, 6, 9, . . . , 3n . ..) by leaving out some of 
the terms off, keeping an infinite number of terms, and keeping the order the same. 

The sequence h given above is a subsequence of the sequence /. The concept 

can be made precise by appealing to the concept of composite function 

as indicated next. 

16.2. Definition. Subsequence of a sequence. Let f:P —> X be a sequence with 

functional values in a set X. Let N: P —> P be a strictly increasing sequence from 
P into P (i.e., if i > j, then N{i) > N{jj). Then the composite function h = f ° N 

is said to be a subsequence of f 

Notice that in 16.1, if map tV:P->P is given by N(i) = 2i, then h(i) = 

f° N(i) —f(.2i) = 6/. 

It is often the case in mathematics that if is a sequence and N:P —► P 
is a strictly increasing sequence, then the /'th term of the subsequence (a(N(i))) is 

written as aN . Notice this is consistent with the notation introduced before, since 

a(N(i)) = aNU) = aN.. 

EXERCISES: SEQUENCES AND SUBSEQUENCES 

1. Consider the sequence S = (1, . . . , 1 /«, . . .). Find a map 

N'.'P —► P such that S ° N is the sequence (i, i,. . . , 1/3n . . .). 

2. Consider the sequence S such that S(n) = (— l)n 1/2". Find 

the «th term of the subsequence of 5 whose terms consist of all 

the positive terms of S and none of the negative terms of S. 

3. For each positive integer n, let hn be the function given by 

hn = {(x, xn+1):0 ^ x ^ 1}. Suppose that lc is the sequence 
such that for each «eP, I, = JJ hn(t) dt. Find the «th term of 

k. 

4. In each of the following determine whether or not the sequence 

is a strictly increasing sequence. 

(b) ((» - |)2)“=i 
(c) /= (50/7 - nX=1 
(d) g °f, where f is a strictly increasing sequence of positive 

integers and g is a strictly increasing sequence of real 

numbers. 
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5. Suppose that h is a subsequence of a sequence k and / is a sub¬ 

sequence of It. Is/a subsequence of A:? 

17. FINITE INDUCTION AND WELL-ORDERING 
FOR POSITIVE INTEGERS 

The reader will recall that in algebra courses certain statements about natural 

numbers or positive integers were proved with the aid of the principle of finite 
induction. In any logical development of the natural number system, some form 

of this principle is given as an axiom or some axiom is given that implies it. We 

next give a formal statement of one form of the principle which we accept for the 

system of natural numbers. We prove it equivalent to the so-called well-ordering 
principle for the natural numbers. In this text we shall take the system of natural 

numbers to be the same as the set P of all positive integers. 
I 

17.1. The principle of finite induction. Suppose that M is a subset of P such 

that 1 e M, and h e M implies that h + 1 e M. Then M = P. 

17.2. The principle of well-ordering for the set P of all positive integers. Let 

K be a nonempty set of positive integers. Then there is a first (smallest) element in K. 

17.3. Theorem. The principle of finite induction and the well-ordering 

principle for positive integers are equivalent. 

Proof. We first assume the truth of the principle of finite induction and 

prove the well-ordering principle for positive integers. (Later we will show the 
converse.) Let P be the set of all positive integers and suppose that A is a 

nonempty subset of P. Assume that, contrary to the well-ordering principle, K 

has no first element. Let 

M = {oeP and {1,2,3,...,«}<= P — K). 

Note that 1 e M, for otherwise 1 would be the first element in K. Next assume that 

h e M. Then h + 1 e M, for otherwise h + 1 would be the first element in K. 
Hence, by induction, M = P. From the definition of M, it now follows that 

K = 0 and we have a contradiction. 

Next we assume the well-ordering principle for P and prove the principle for 
finite induction. Let M be a set of positive integers such that 1 e M, and h E M 
implies that h + 1 e M. We wish to show that M — P. If M zfi P, then P — M 

is a nonempty set of positive integers. By the well-ordering principle, there is a 

smallest integer k in P — A/, and thus A' — 1 £ P — A/. Since k ^ 1, A — 1 e P 
and, thus, k — 1 e M. However, by our assumption for the set A/, it now follows 

that k e M and we have a contradiction. 

EXERCISES: FINITE INDUCTION AND WELL-ORDERING 
FOR POSITIVE INTEGERS 

1. Prove that the following statement is equivalent to 17.1. 
Suppose that h is an integer. Suppose further that S(n) is 
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a statement for each integer n ^ h, S(h) is true, and S(n) 

implies S(n + 1) for each integer n ^ h. Then S{n) is true for 
each integer n ^ h. 

2. Prove that the sum of the first n positive integers is ln(n + 1). 

3. Prove that l2 + 22 + 32 + ■ ■ • + n2 — \n(n + 1)(2n + 1) for 
each n e P. 

4. Prove or disprove the following statement: For each neP, 

l3 + 23 + 33 + • • ’ «3 = 1 n2(n + l)2 

5. Is the following statement true? Justify your answer. For 

each positive integer n, 2n — 1 ^ n. 

6. Either prove or disprove the following statement: For each 

positive integer n, 

1-2 + 2- 3 + 3- 4-J-f- /!(/!+ 1) 

\{n{n + 1 ){n + 2) + 3], 

7. Either prove or disprove the following statement: For each 
n e P, 7n — 3" is divisible by 4. 

8. Suppose that K is a nonempty collection of negative integers. 

Prove that there is a largest element in K. 

9. Is 3n2 + n an even integer for each positive integer n ? Justify 

your answer. 

10. Try to discover a formula for the number of subsets (including 

the empty set) of a set of n objects. Then prove by induction 

that your conjecture is correct. 

11. Is n(n + 1)(« + 2) divisible by 3 for each positive integer nl 
Justify your answer. 

12. Is [n(n + 1)(« + 2)(n + 3)]/24 an integer for each positive 
integer «? Justify your answer. 

18. SEQUENCES DEFINED INDUCTIVELY 

It often happens that a sequence is defined inductively. In this section we give 
an example illustrating the process and state a theorem that covers such an ex¬ 

ample. As a preliminary to the discussion we first state and prove a theorem that is 

basic to the process of defining a sequence inductively. 

18.1. Union of Functions Theorem. Suppose that {Xi:i e P) is a collection of 

sets such that for each i e P, Xi+l ^ Xt and X is a set such that X — (J {Xt: i e P}. 
Suppose further that for each positive integer /, g,: V, -> Y is a map from X, into the 

set Y and gi+i|A,- = gr Then, (J {gp.i e P) is a function defined on X. 
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Proof, g = (J (g,:/ G P} is a relation whose domain is X. Suppose that g is 

not a function. Then for some .v e X and positive integers i and /;, 

18.1(a). x g X, and g,(x) # g,+*(*). 

Let k be the smallest positive integer for which g/.v) T-where.v and i are 

the same as in 18.1(a). Then g(+l._1W= g,(-v). But this is a contradiction, since 

g,+k | Xi+k_k = g1+*-i- This completes the proof. 

18.2. Remark. Note that it follows from the proof of the preceding theorem 

that g(x) = g„(.v) for each n for which x g X„. It will be important to recall this 
fact when applying Theorem 18.1. 

18.3. Example. Let/(l) — 2,/(2) = 7. Furthermore, let it be given that 

for each positive integer n > 3,/(/;) = i[/(/7 — 1) + f(n — 2)]. At this point it 
would be instructive for the reader to calculate a few terms of/. It is intuitively 
clear that there should exist a unique function satisfying the above properties. 

It furthermore seems reasonable that we should be able to prove by induction that 
such a function exists. This wre can do, but not in as straightforward a manner 

as we might guess. To establish the existence of a function / satisfying the required 

properties, we proceed as follows: Let /, = {(1,2), (2, 7)}, and for n 2s 3, let 
S(n) be the following statement. 

18.3(a). There exists a map /n:P„ —*■ R such that /„(1) = 2 and /„(2) = 7, 

and for i e {3, 4, . . . , nj, 

fn(i) =Ufnd -!)+/„(/ -2)]. 

We see that S(3) is true by considering the function/3 = {(1,2), (2, 7), (3, f)}. Let 
h 2? 3 and assume that S(h) is true. We show that S(h + 1) is true. To see this 

let A+i -/* u {{h + 1, \(fh{h) +fh(h - 1))}. 

It is easy to show that fh, L satisfies the properties required of it so that S(h + 1) is 

true. Hence, by induction, S(n) is true for each integer n ' 3. Thus, there exists 

a collection of functions {f„:n 3}, each of which satisfies the conditions stated 

in 18.1(a). 
We next prove that for each/,, in the collection,/ ., j P„ =/„. To see this, 

suppose that for some fixed integer n X- 3,/n+1 | P, ? /„• Let j be the first posi¬ 
tive integer for which #/n(j). We observe that 3 i- j n. Then 

fn+l(j - 1) =fn(j~ !) and fn+l(j ~ 2) = f„(J ~ 2). 

From this, we obtain 

fnel(j) = h[fn+l(j— 1) +/.+10‘- 2)] = ttUj- 1) +/„0- 2)] =fn(J) 

and we have arrived at a contradiction. 

For each n e P. let/„ be a function satisfying 18.3(a). We may apply 18.1 to 

{f„:ne P} and conclude that /' (J ' 3)} is a function. Next recall the 
remark in 18.2, about the union of functions theorem, which states that f(x) 

f„(x) for all x for which .y g Dorn /„. Thus, /(l) — /3(1) 2/(2) /;1(2) = 

7, and/(3) = /3(3) = A(/3(2) + /3(1)). Also, for i > 3, 

AO =/■(«) = IW - i) +/.(' - 2)) = iCAi - i) +A{ - 2))- 
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Thatf is a unique function that satisfies the given conditions is seen as follows: 

Suppose that there is another function /* that satisfies the required conditions. 

Then the set K — {j:/*(/) f(j)} would be a nonempty set of positive integers. 

Let m be the first element in K. Obviously m 2? 4. But then/(/') = f*{i) for i < m. 

However, f(m) = \(f{m — 1) + f(m — 2)) = — 1) + f*(m — 2)) - 
f*(m), and we have a contradiction. 

Obviously we would not want to repeat this procedure for every example. 

It is convenient, therefore, to formulate a theorem that would include as special 

cases examples such as the one just discussed. 

18.4. Theorem (Inductive definition). Let X be a set, h a positive integer, 

and a, e X for i = 1, 2, . . . , h. Suppose further that G: S —*■ X is a map defined on 

the set S of all finite-sequences with ranges in X. Then there is a unique sequence f 

with range in Xsuch thatf(i) = a, for i = 1,2, . . . , h andf(i) = <7((/(l),/(2), . . . , 

f(i — 1))) for i ^ h + 1. 
Notice how this theorem covers our example. In the example h = 2, ax — 2, 

a2 = 7, /(l) = alt /(2) = a2, C((51; s„ s3, , sn)) = i(jB + J„_i) for each 
finite sequence (slt s2, . . . , sn) with range in X. (We need not be concerned with 

the rule G for sequences with less than two terms.) 

So we see that we can “inductively” define a sequence if we specify how to get 
it started and have a rule that tells us how to use the values already determined to 

get the next value. 

The proof of the theorem can be patterned after the discussion in 18.3 and is 

left as an exercise. (See Exercise 1, following.) 

EXERCISES: SEQUENCES DEFINED INDUCTIVELY 

1. Prove Theorem 18.4, using the discussion in 18.3 as a hint. 

2. Using Theorem 18.4, prove that there exists a unique function 

f on the set of all nonnegative integers that satisfies the follow¬ 

ing conditions. 

/(0) = 1 and f{n) = nf{n — 1) for each positive integer n. 

(Recall that common notation for f(j) as defined inductively in 

this exercise is j\, read “y factorial.”) 

Following are some exercises concerning the factorial 

function that are useful in various branches of mathematics. 

3. For each positive integer n and each nonnegative integer r 

such that r ^ n define 
following: 

Verify each of the 

(a) =1 for each positive integer n. 
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(c) For each positive integer h and for each positive integer 

We can make use of Exercise 3 to prove the binomial ex¬ 

pansion theorem in the next exercise. 

4. Prove that for each positive integer n, (a + b)n — a"b° + 

^\an~2b2 + — • + ” j Note 

that a short form for writing this, using summation notation, is 

19. SOME IMPORTANT PROPERTIES OF RELATIONS 

In Section 11 a relation between sets X ami Y was defined as a subset of A X Y. 

This gave us a generalization of the notion of function in which the single-valued- 

ness property was dropped. So far most of our attention to the study of relations 

has been in connection with the study of functions and their inverses. In the next 
several sections we turn our attention to relations between a set X and itself. By 

imposing special conditions on such relations, we shall be able to study useful 

generalizations of relations of “ordering” such as Ss and < for the reals R. Also 
there will be included a study of equivalence relation which is defined in this 
section. 

19.1. Definition. Relations in a set. Let S be a set, and suppose that 

R c= S X S. The relation R is then said to be a relation in S or the relation R is 

said to be defined in S. 

Note that if a relation R is defined in 5, then Dom R c 5 and Range R c 5. 

It is not required that Dom R = S. Also, recall in what follows that a R b means 
that (a, b) e R. 

Suppose that R is a relation in a set S so that R cz s X S. If A <= 5, then 

R* — R n (A X A) is a relation in A. We shall refer to R* as the restriction of 

R to A. Where there is no chance of confusion, w;e will use the same symbol for a 
relation R and a restriction of R. For example, if we consider in the reals R 

and we wish to restrict ^ to a closed interval [a, />], we still use the symbol “A.” 

19.2. Definition. Properties for relations. Suppose that R is a relation in 

a set S. Then, 

R is transitive in S if and only if for all x, 3’, and z in S, 

x R y and y R z imply that x R z. 

R is reflexive in S if and only if for all x in S, 

xRx. 
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R is antireflexive in S if and only if for all x in S, 

x flx{{x, x) $ R). 

R is symmetric in S if and only if for all x and y in S, 

xRy implies yRx. 

R is antisymmetric in S if and only if for all x and y in S, 

x R y and y R x imply that x = y. 

19.3. Definition. Equivalence relation. A relation E in a set S is said to he 

an equivalence relation in S if and only if for all x, y, and z in S, 

x E x (i.eE is reflexive in S), 

x Ey implies y E x {i.e., E is symmetric in S), 

x Ey andy E z imply x E z {i.e., E is transitive in S). 

19.4. Examples. In the set of all real numbers R, 
the relation = is an equivalence relation, 

the relations 5? and ^ are transitive, reflexive, and antisymmetric, 
the relations < and > are transitive, antisymmetric, and antireflexive. 

19.5. Examples. Let I be a set and let EP{X) denote the power set of X. 

The relations <= and => are transitive, reflexive, and antisymmetric in SP{X). 

EXERCISES: SOME IMPORTANT PROPERTIES OF RELATIONS 

1. In each of the following, classify the relation as to which of the 
properties discussed in Section 19 it possesses. 

(a) Let S be the set of all triangles in the plane. Let R be the 

relation in S defined as follows: for all a and b in S, 

a R b if and only if a is congruent to b. 

(b) Let R be the set of all real numbers. Let S' = {(x,.y): 
(rj)eR X R and y -=f 0}. 

For all {a, b) and {c, d) in S, let 

{a, b) R {c, d) provided that ad — be. 

(c) Supposey is a fixed positive integer. For each a and b in 
Z, let 

a R b if and only i 1 a — b — jk for some integer k. 

(See Exercises 9 and 10, page 2 3 .) 

2. Suppose that R is a relation that is transitive in a set S. Let 

us define a new relation in S as follows: For each a and b in S, 

let a R*b if and only if a — b or a R b. Is R* transitive in S? 
Is R* reflexive in SI Illustrate with an R that is not reflexive. 

3. Suppose that R is a relation in a set S. We define a new rela¬ 
tion R* as follows: For each a and b in S, let a R* b if and only 

if a R b is true and b R a is false. Suppose that R is transitive. 

Is R* also transitive? Is R* necessarily antisymmetric? 
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4. Suppose that a relation R in a set S is transitive and antire¬ 

flexive. Is it necessarily antisymmetric? 

5. Are the following propositions true? 

(a) Suppose that R is a relation in a set S. Then R is sym¬ 
metric if and only if R c: R-1. 

(b) Suppose that R is a relation in a set S. Then R is sym¬ 
metric if and only if R — R-1. 

6. Suppose that R is a relation defined in S. Is R n /?_1 a sym¬ 

metric relation in 5? 

7. Suppose that R is a transitive relation in S. Is R~l transitive in 

5? 

8. Suppose that R is symmetric in S. Is R1 symmetric in 5? 

9. Suppose that R is reflexive in S. Is R~1 reflexive in 5? 

10. Does there exist a nonempty set S and a relation R in S such 
that R is both symmetric and antisymmetric in 5? 

20. DECOMPOSITION OF A SET 

20.1. Definition. Decomposition of a set. Let be a collection of sets. 

.yiT is said to be pairwise disjoint provided that if A e , B e Jf, and A B, then 

A n B = 0. Suppose that S is a set and XT is a collection of nonempty pairwise 

disjoint subsets of S such that (J C/T = S. Then is said to be a decomposition (or 

partition) of S. 

20.2. Example. Let P be the set of all positive integers. Let O be the set 

of all positive odd integers and let E be the set of all positive even integers. Then 
JT = {O, E} is a decomposition of P. 

20.3. Example. Let Z be the collection of all integers and let R be the rela¬ 

tion defined as follows: For each ordered pair of integers (m, n), let m R n if and 

only if m — n is a multiple of 5. (See Exercise 10, page 2 3.) It can be shown that 
R is an equivalence relation in Z. The reader who did Exercise 10, page 23, 
should have determined that there are five distinct sets of the form /?[/]. Now note 

that {/?[/]:/ = 0, 1,2, 3, 4) is a decomposition of Z. 

EXERCISES: DECOMPOSITION OF A SET 

1. For each real number r, let Fr = {(r,>’):3; e R}. Is {Fr:r e R} a 
partition of R X R ? 

2. Let A0 = {.v: — 1 ^ x ^ 1}. For each .v 6 R — A0, let Ax = 

{.y}. Is the following collection Jf a decomposition of the real 
line R? 

— {Ax:x = 0 or |jc| > 1} 

3. Suppose A is a nonempty set and f'.X —> Y is a surjection. Is 

{/ 1 [>’] 'y e a decomposition of XI 
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21. EQUIVALENCE CLASSES 

Let S be a nonempty set and suppose that E is an equivalence relation in S 

(See 19.3). In terms of the notation introduced in Section 11, for each aeS 

E[a] = {x:a E x}. 

We shall show in this section that {E[a]:a e S} is a decomposition of S. 

21.1. Theorem. Suppose that S is a nonempty set and E is an equivalence 

relation in S. Then: 

21.1. (a). For all a e S 

a g E[a]. 
21.1. (b). For all a and b in S, 

ifbe E[a], then E[a] = E[b], 

21.1. (c). For all a and b in S, 

E[a] n E[b] = 0 or E[a] — E[b] 

and hence {E[a\ :a e 5} is a decomposition of S. 

Proof. Part (a) follows from the fact that E is a reflexive relation in S. 

To prove Part (b), we first prove 

21.1. (d). If x G E[y], then E[x] <= E[y], 

To see this, assume that xg%] and choose a u!g£[x]. (We will show that 

h>g%],) Since h’g£[x] and since E is symmetric, w E x. Similarly, since 
x g E[y], x Ey. Then the transitivity of E gives w Ey. Consequently w e E[y] and 

we have shown that £[x] <= E[y]. 

Part (b) now follows easily. For suppose that b e E[a], Then since E is 
symmetric, we also have a e E\b]. By using 21.1 (d) twice, we then get E[b] <= 

E[a\ and E[a\ <= E[b]. 

Part (c) follows from (b) by the following argument: Suppose that z e E[a\ n 

E[b], Then from (b), E[z] = E[a] and E[z] — E[b\. Hence, E[a] = E[b], This 

completes the proof. 

Each of the sets E[a] in the previous discussion is called an E-equivalence class. 

Note that for each a e S, E[a] represents the set of ally e S to which a is E-related, 

or since E is symmetric, E[a] is the set of all y e S, each of which is related to a. 

Notice also that because of 21.1 (a) and (b), an equivalence class E[a] can be 
written as E[z] where z is any member of £[a], Furthermore, the fact that 

{E[a]\a G 5} is a decomposition of S shows that what happened in Example 20.3 

happens in general. That is, if E is an equivalence relation in S, then E effects a 
decomposition of S. Moreover, it is of interest to note that if is a partition of a 

set S, then there exists an equivalence relation E in S such that the E-equivalence 
classes are precisely the elements of To see this, simply define E as follows: 

For each a and b in S, let a E b if and only if a and b are in the same element of the 

partition Jf. It is easy to see that E is indeed an equivalence relation in S. 
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EXERCISES: EQUIVALENCE CLASSES 

1. For each ordered pair of real numbers (a, b) such that a ^ 0 

and b 0, let E(a, b) be the equation ax + by = 0. Let 

f = {E(a, b):a 0 and b 0}. For E(a, b) and E(c, d) in £, 
let us define a relation as follows. E(a, b) ~ E(c, d) if and 

only if every solution (x,v) of ax + by — 0 is a solution of 
cx + dy = 0, and every solution of cx + dy = 0 is a solution of 
ax -j by — 0. Note that ~ is an equivalence relation. Is it 

true that E(2, 3) ~ E(4, 6)? Try to discover an equation relat¬ 

ing a, b, c, and d so that E{a, b) ~ E(c, d) provided that a, b, c, 

and d satisfy your equation. Justify your conjecture. Write an 

equation that is in the same equivalence class as is E(3, 2) but 

which is not the same as E{3, 2). 

2. Let R be the collection of all positive real numbers. For 
aeR, and b e R+, let a R b if and only if a -F b is a rational 

number. Is R an equivalence relation on R+ ? Justify your an¬ 

swer. What is the form of all the numbers b such that b e 

R[V2]? If a is an irrational positive number and b R a, is b 

necessarily an irrational number? 

3. Let R be the set of all real numbers and let R2 = R X R. Let 

m be a fixed real number. For each (xl5 jq) and (x2,>’2) in R2 

let (x1# >q) R (x2, y2) provided that y\ — mxx = y2 — mx2. Is 
R an equivalence relation? Let m = 3. Sketch R[(l, 2)]. 

4. Let 2 be the set of all real-valued functions which are defined and 

have derivatives on the open interval (a, b). For f e 2 and g e 2, 

let f R g provided that/' = g'. Is R an equivalence relation in 
Let/(:x) = x2 for x e (a, b). Find /?[/]. 

22. PARTIALLY ORDERED AND TOTALLY ORDERED SETS 

In Examples 19.4 and 19.5 we saw examples of well-known relations, some of 

which were transitive, reflexive, and antisymmetric. Such relations are called partial 

orders. In the forthcoming discussion when we are speaking of a particular relation 

such as c or ^, we shall, of course, use one of the standard symbols for that 
relation. However, in a general discussion about partial orders, we shall use the 

symbol “iS”. This should not cause any confusion, since it will be known from 
the context that we are not necessarily referring to the usual “g ” for real numbers. 

22. L Definitions. Partially ordered sets. Suppose that S is a set and a 

relation ^ in S is 

transitive: for all a, b, and c in S, a < b and h <r c, imply a < c; 

reflexive: for all a in S, a ^ a; 

antisymmetric: for all a and b in S, a b and b : a imply a = b. 

and 
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Then, ^ w said to be a partial order for S and the pair (S, f) w said to be a partially 

ordered set or a partially ordered system. 

It should be noted that if ^ is a partial order for a set S, then for each subset 

A c S, the relation ^ restricted to A is also a partial order for S. 

If (S, 5s) is a partially ordered set, we shall sometimes use the following ter¬ 

minology: For a and b in S, if a ^ b we shall say that a precedes b or that bfollow s a. 

22.2. Example. _Let C/f be a collection of sets. Then (Jf, =>) and (Cf, <=) 

are partially ordered sets. 

22.3. Example. Let 5 be a set of real numbers and let sS and 2= have their 

usual meanings. Then (S, 2g) and (S, sS) are partially ordered sets. 

22.4. Example. Let IF be the collection of all real-valued functions defined 

on R. For all f and g in R, let/ g if and only iff(x) < g(x) for all .v e R. Then 

(SF, is a partially ordered set. 
There may be points a and b in a partially ordered set (5, for which it is 

true that neither a sS b nor b ^ a. The partially ordered set (C/f, <=) jn Example 

22.2 may be of this type, depending on the particular collection of sets C/f. How¬ 

ever, notice that in the example (S, ^) of 22.3, for each pair of numbers a and b in 

S, either a ^ b or b a. This is an example of a totally ordered set, which will be 

defined next. 

22.5. Definition. Totally ordered set. Suppose that S is a set and is a 

partial order for S that satisfies the following additional property: 

For each x and y in S, x ^ y or y ^ x. 

The relation ^ is then said to be a total (or linear) order for S, and (S, ') is said 

to be a totally (or linearly) ordered set. 

The following special kind of set that is linearly ordered occurs so frequently 

that a special name has been given to it. 

22.6. Definition. A nested collection of sets. Let Cf' be a collection of sets 

such that for each A e C/f and B e C/f, either A c= B or B c A. Then C/if is said 

to be a nested collection of sets. 

22.7. Example. If (Kt) is an increasing or a decreasing sequence of sets 

(see 15.4), then the collection {A',:/eP} is nested. In particular, the collection 

{Am\m e P} in Exercise 2, page 1 3 , is a nested collection. 

22.8. Example. For each real number r, let Kr = {.y:.y =2 r). The collec¬ 

tion [K/.r g R} is a nested collection of subsets of R. 

23. PROPERTIES OF BOUNDEDNESS FOR 

PARTIALLY ORDERED SETS 

The reader is probably familiar with the concepts of upper bound, lower bound, 

least upper bound, and greatest lower bound for subsets of real numbers. In this 
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section, we shall define these and related concepts in the more general framework 

of partially ordered sets. 

23.1. Definitions. Upper and lower bounds for partially ordered sets. Suppose 

that (S, g) is a partially ordered set. If A <= S, u e S, and 

a fS, u for all a e A, 

then u is said to be an upper bound of A (or for A). Similarly, if l e S and 

l sS a for alt a e A, 

then I is said to be a lower bound of A. 

23.2. Definition. Bounded subsets. Let (S, -yd) be a partially ordered set. 

If A c 5 and A has both an upper and a lower bound, then A is said to be a bounded 

subset of S. 

23.3. Example. Let [a, b] be a closed interval in R. Let ^ be given the 

usual meaning of equal to or less than. Then for any .v e R, if „y a, x is a lower 

bound for [a, A]. Similarly if b d x, x is an upper bound for [a, b]. 

It should be pointed out that the choice of words lower and upper for partially 

ordered systems (S, sS) is purely arbitrary. Their usage is motivated by their usage 
in (R, rS). If we consider (R, 2s) then upper and lower bounds as defined in 23.1 

exchange roles with respect to their usual meanings. Thus, to be consistent with 

the usual language, it is preferable to deal with (R. rather than (R, 2;). 

23.4. Example. Let A" be a set and let SP(X) be the power set of X. Consider 
the partially ordered system (3P(X), <=). Let Jf <= gfi(X). Then X is an upper 

bound for Also (JJf is an upper bound for Likewise, 0 and C\df 

are lower bounds for $T. 

Observe that if A is a subset of a partially ordered set (S, g), then at most one 

upper bound of A can be an element of A. This follows at once from the definition 

of upper bound and from the fact that the partial order is antisymmetric. Thus, 
in the following definition we use the term the greatest element in a set, and 

similarly, the least element. 

23.5. Definitions. Least and greatest elements. Suppose that (S. ) is a 

partially ordered set. Suppose that A c S. Then l is said to be the least (or smallest 

or first or minimum) element of S provided that 

l e A and 1 ^ x for all x e A. 

Similarly, g is said to be the greatest (largest or last or maximum) element of S 

provided that 

g G A and x ^ g for all ,veL 

23.6. Definition. Least upper bound and greatest lower bound. Let (S, d) 

be a partially ordered set. Suppose that A is a subset of S and A has an upper bound 

in S. If the set of upper bounds of S has a least element /, then 1 is called the least 

upper bound of A (l.u.b. (A)). If A has a lower bound and the set of lower bounds of 

S has a greatest element g, then g is called the greatest lower bound of A (g.l.b. (A)). 

23.7. Example. In Example 23.4, p| Jf = g.l.b. (JC) and (J — l.u.b 

(Jf). Suppose in particular that X = {1,2, 3,4} and Jt' = {{1,2}, {1,3}}. In 
this case, neither l.u.b. (Jf ) nor g.l.b. (Jf) belongs to Jf. 
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23.8. Example. Consider (R, Si). Let U be the open interval (0, 1) and let 

F be the closed interval [0, 1], We observe that 

g.l.b. (t/) = g.l.b. (F) = 0 

and 

l.u.b. (U) = l.u.b. (F) = 1. 

23.9. Example. Consider (Q, Si), recalling that Q is the set of all rational 
numbers in R. Let S = {.v:x e Q and x2 < 2}. Note that S has many lower bounds 

and many upper bounds. However, S has neither a least upper bound nor a greatest 

lower bound in the system (Q,S=). 
Often the word supremum is used for least upper bound, and infimum is used 

for greatest lower bound. The corresponding abbreviations are: supremum of 

A = sup (A) and infimum of A — inf (A). 

23.10. Example. Let a, b, and c be different objects and let = {{a}, 

{b}, {c}, {b, c}, {a, c}}. Consider the partially ordered set (Jf, <=). Note that Jf 

has neither a maximum element nor a minimum element in Jf\ However, neither 

{a} nor {b} is preceded by any other element in . Likewise, neither {b, c} nor 
{a, c} is followed by any other element in Jf. The properties illustrated by {a} 

and {b} on the one hand and by {b, cj on the other are defined next. 

23.11. Definition. Maximal and minimal elements. Let (S, Ss) be a partially 

ordered set. An element m in S is said to be a maximal element in S, if m is not 

followed by any other element in S, that is, if for all s e S, 

m ti s implies that m = s. 

Similarly, m is a minimal element in S provided that m is not preceded by any other 

element in S, that is, if for all s e S 

s ^ m implies that s = m. 

We see that in Example 23.10, {a} and {b} are minimal elements while {b, c} and 

{a, c} are maximal elements in Jf’. 

23.12. Definition. Well-ordered set. If (S, =£) is a partially ordered set such 

that every nonempty subset of S has a first element, then g is said to be a well¬ 

ordering for S. Also, in such a case (S, 5S) is said to be a well-ordered set. 

It should be clear to the reader that if ^ is a well-ordering for S, then it is also 

a linear ordering. (See Exercise 6 in the next set of exercises.) It is to be noted that 

the set P of positive integers is well-ordered by ^, where ^ is given the usual 

meaning (See 17.2). 

EXERCISES: PARTIALLY ORDERED AND TOTALLY ORDERED SETS 

1. Consider the system (R, ^) of the real line R together with the 

usual ordering ;g. 

(a) Give an example of subset A of R that is bounded below but 

not above. Similarly, give an example of a subset B ofR 

that is bounded above but not below. 
(b) Give an example of a subset S of R that has a least upper 

bound but whose least upper bound does not belong to S. 
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2. Give an example of a collection of sets X such that the partially 
ordered set (X, c) satisfies the following two conditions: 

(a) X is not linearly ordered. 

(b) Every linearly ordered subset of X has an upper bound in 
X. In your example, does X have a maximal element? 

3. Suppose that 5 is a set and R is a relation in 5 that is transitive 

and antireflexive (19.2). Define R in 5 as follows: For all x 

and y in S, 

x R y if and only if x R y or x = y. 

Is R a partial ordering in SI 

4. Let (A, R) and (B, F) be partially ordered sets. Define a 

relation 5S in A X B, 

(ax, bx) ^ (a2, b2) if and only if a1 R a2 and b1 T b2. 

(a) Show that ^ is a partial ordering for AX B. 

(b) Suppose that R and T are total orderings for A and B, 

respectively. 
Is is necessarily a total ordering for A X B1 

5. Let X be the relation defined in R X R as follows. For all 

(a1, a2) and (bx, b2) in R X R, let (a*, a2) X(bx, b2) if and only if 

ax ^ bx, and if ax = bx, then a2 ^ b2. 

For obvious reasons this relation, dX, is called a dictionary or 

lexicographical order for R X R. 

(a) Is a partial ordering for R X R? 
(b) If the answer to (a) is yes, is ££ a total ordering for R X R ? 

6. Prove that if (S, is a well-ordered set, then it is a linearly 

ordered set. 

24. AXIOM OF CHOICE AND ZORN’S LEMMA 

Some form of the axiom of choice is usually included in any axiomatic treat¬ 

ment of set theory. The axiom of choice asserts that if is a nonempty collection 
of nonempty sets, then there is a set that can be formed by choosing one element 

from each set in the collection X'. The statement known as Zorn's lemma is 

equivalent to the axiom of choice. We shall accept from set theory and make use 

of Zorn’s lemma. The reader who is interested in reading a proof of the equiva¬ 
lence of the axiom of choice and Zorn’s lemma is referred to, for example, [1], 

[20], or [26]. We now state a form of the axiom of choice in terms of a so-called 
choice function. 

24.1. Axiom of Choice. Suppose that X~ is a nonempty collection of nonempty 

sets. Then there is a function s defined on JT such that s(K) G K for each K G X'. 

(This function s selects or chooses an element out of each K G X. ) 
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In this statement, it is seen that if XT is a nonempty collection of nonempty 

sets and s is a choice function for XT, then s[J>f] is a set formed by choosing one 

element from each K e XT. Furthermore, if the elements of XT are pairwise disjoint, 

we see that a choice function for XT is a one-to-one function. 

The following example illustrates a use of the axiom of choice. 

24.2. Example. Let f'.X—>Y be a surjection. We show that there is an 

X* <= X such that f\ X*:X* —► Y is a bijection. To see this let s be a choice func¬ 

tion for the collection of sets {/-1[y] :y e F). Then X* = j[{/_1Ly]:.y 6 F}] has 
the properties we'are seeking. What we have done, using language which sounds 

more intuitive, is to choose one x from each f~l[y]. The set X* is the collection of 
all x’s so chosen. 

24.3. Zorn’s Lemma. Suppose that (S, sj) is a nonempty partially ordered 

set such that every linearly ordered subset in S has an upper {lower) bound in S. 

Then S has a maximal (minimal) element in S. 

Suppose that X is a set and there exists a subset of X with some property P. 

Sometimes it may be of interest to know if there exists a maximal subset of X 

having that property (i.e., a subset S of X that has property P and is not contained 

in any other subset of X that has property P). If there is an affirmative answer to 

such a question, that fact is often proved by making use of Zorn’s lemma. We 

illustrate this in the next proof. 

24.4. Hausdorff Maximality Principle. Let (S, 5S) be a partially ordered set. 

Then S contains a maximal linearly ordered subset. 

Proof. Let XT be the collection of all subsets of S that are linearly ordered 

with respect to ^. Then {XT, <=) is a partially ordered system. We shall show that 

{XT, <=) satisfies the condition needed to apply Zorn’s lemma. Let XT* be a. subset 

of XT that is linearly ordered with respect to <=■. (Thus, if A and B e XT*, 

then A and B are subsets of S that are linearly ordered with respect to g, and 
d c 5or£c A.) Now (J XT* is a subset of S. Furthermore, |J XT* is linearly 

ordered by ^. For suppose that a e \J XT* and b e |J XT*; then a e A and b e B 

for some A e XT* and B e XT*. However, A <= B or B <= A. Suppose, for ex¬ 

ample, that A <= B. Then a e B and b e B, and since B is linearly ordered with 

respect to ^, it follows that a ^ b or b ^ a. Hence, we have shown that (J XT* 

is linearly ordered by ^ and thus (J XT* e XT. Moreover, for each A e XT*, 

A c (J XT* so that (J XT* is an upper bound for XT* with respect to the relation 
c:. Hence, by Zorn’s lemma, XT has an element M that is a maximal element with 

respect to c:. This means that there exists a subset M of S that is maximal with 

respect to the property of being a linearly ordered subset of S. 

Note. We used Zorn’s lemma to prove the Hausdorff maximality principle. 

Actually, the Hausdorff maximality principle is equivalent to Zorn’s lemma and, 
hence, to the axiom of choice. Another statement that is equivalent to the axiom 

of choice is the well-ordering principle. Recall that the relation equal to or less than 

well-orders the positive integers (see 17.2). The well-ordering principle states that 
for each set S, there exists a partial ordering w for S such that with respect to this 

relation (S, w) is a well-ordered set (see 23.12). Of course, this does not mean 
that for a given set we will necessarily know how to find such an ordering explicitly. 
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EXERCISES: AXIOM OF CHOICE AND ZORN’S LEMMA 

1. Show that the two forms of Zorn's lemma given in 24.3 are 

equivalent. 

2. Prove the following variation of 24.4. Let (S, :§) be a partially 

ordered set. If A is a linearly ordered subset of 5, then there 

exists a maximal linearly ordered subset M of S such that 

A <=■ M. 

3. Let Jf be a collection of sets. Prove that there exists a maximal 

nested subcollection of Jf. 

25. CARDINALITY OF SETS (INTRODUCTION) 

Suppose that two piles of pennies are set before us. We can determine whether 

one pile has the same number of pennies as the second pile by pairing off the pennies. 
If the piles do not have the same number, we can determine which pile has more 
pennies. Here we are considering so-called finite sets. Can such a comparison also 
be made between infinite sets? This and the next several sections deal with certain 

concepts suggested by this question. 

In the previous paragraph we used the terms finite set and infinite set. At this 

point we give precise definitions of these terms. 

25.1. Definitions. Finite and infinite sets. Suppose that S is a set andfor 

some positive integer n, there exists a one-to-one map from P„ = {1, 2, . . . , n} 
onto S. Then S is said to be a finite set and n is said to be its cardinal number. If a 

set is empty it is also called a finite set, and it is said to have 0 as its cardinal number. 

If a set is not a finite set it is said to be an infinite set. 

Notice that if we count the number of elements in a finite collection and 

determine that it has n elements, we are essentially putting the set into one-to-one 
correspondence with a “standard set,” Pn. (Recall that a one-to-one corre¬ 

spondence between two sets is a one-to-one map from one set onto the other.) 
However, one could compare two sets without actually having the positive numbers 

available. Suppose, for example, that each of two children has a collection of 
marbles. Let us imagine that the children do not know how to count with natural 

numbers but do have an aptitude for counting. They could pair off each marble 
in the first collection with a marble in the second collection. If both collections are 

exhausted by the pairing, then the collections are the same “size.” However, if the 
first collection is exhausted but the second collection still has elements, we would 

agree, in the case of the marble collection, that the second collection is larger. 

This approach is suggestive of what could be done in the infinite case, but it must 
be modified because, as illustrated in the next paragraph, something happens in the 
infinite case that does not happen in the finite case. 

Consider the set P of all positive integers and the set N of negative integers. 

Consider the following pairing (or function): {(1, —1), (2, —2), (3, —3), . . . , 
(/?, —n), ...,}. We see that we have defined a one-to-one function whose domain 
is P and whose range is N. Thus, we will want to consider P and N as having the 

same number of elements. On the other hand, consider the map/: P —N given 
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by/(«) = —In for each «eP. Here we have a one-to-one function from P into 
a proper subset of N so that N is not exhausted. When this situation occurred 

in our consideration of finite collections, we would have been willing to say that 

the second set had more elements in it than did the first set. However, here we see 

a situation in which, from the standpoint of one map, we might be tempted to say 

that one set has more elements than does the other, but from the standpoint of 
another map we would want to say that the two sets have the same number of 

elements* As we shall see, the situation can be handled by making appropriate 

definitions. 
We now define a concept that will generalize the notion of two sets having the 

same number of points. 

25.2. Definition. Equivalent sets. Two sets A and B are said to be equivalent 

(with respect to cardinality) provided that there is a one-to-one map from A onto B. 

We shall use the notation A ~ B to indicate this. 

It is to be emphasized that for A and B to be equivalent there must exist at 
least one map which is one-to-one and which takes A onto B. In the finite case, if 

there exists a one-to-one mapping from A onto B, there cannot exist a one-to-one 
mapping from A onto a proper subset of B. This is not so in the infinite case. It 

can be shown that if S is an infinite set, then there exists a one-to-one mapping 

from S onto a proper subset of itself (see Exercise 5, page 5 3). Thus, just because 
there is a one-to-one correspondence between A and a proper subset of B, we would 

not wish to think of A as having fewer points than does B. However, there is a 

famous theorem, called the Schroder-Bernstein theorem, which asserts that if A is 

equivalent to a subset of B and B is equivalent to a subset of A, then A and B are 

equivalent. Thus, we would want to think of A as having fewer points than B if 

and only if A is equivalent to a proper subset of B but is not equivalent to B. 

25.3. Theorem. Let be a nonempty collection of sets. Then •—' as defined 

in 25.2 defines an equivalence relation in C/f. 

The proof is straightforward and is left as an exercise. 

EXERCISES: CARDINALITY OF SETS (INTRODUCTION) 

1. Prove Theorem 25.3. 

2. Show that the set P of all positive integers is equivalent to the 

set of all positive even integers. 

3. Show that the set P of all positive integers is equivalent to the 

set P — {1}. 

4. Recall that Pn = {1,2, . . . , n). Show that P ~ (P — P„). 

26. COUNTABLE SETS 

We observe that the notions of finite set and infinite set are disjoint alterna¬ 
tives. It is useful to introduce other classifications of sets with respect to cardinal¬ 

ity. For this section we shall consider finite sets and also sets which are equivalent 
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to the set P of positive integers. In the next section we shall show that there are 

infinite sets that have so many elements that they cannot be put into one-to-one 

correspondence with the set P. 

26.1. Definitions. Countable set, countably infinite set. A set C that is 

either finite or equivalent to the set P of all positive integers is said to be a countable 

set. If C is countable and infinite, it is called a countably infinite set. 

The following theorem is easy to see and we omit a formal proof. 

26.2. Theorem. Let {Kx, K2, . . . , Kn} be a finite collection of finite sets K(. 

Then U {*X, K2, . . . , Kn} is a finite set. 

26.3. Theorem. If A is a countably infinite set and B is an infinite subset of A, 

then B is countably infinite. 

Proof. We shall show that there is a one-to-one sequence that maps P 

onto B. Since A is countably infinite, there is a one-to-one sequence p that maps 
P onto A. Now let jV(1) be the first positive integer such that p(N(l)) £ B. Let 
N{2) be the first positive integer such that p{N(2)) e B — {p(N( 1))}. After A'(l), 
7V(2), . . . , N(j) have been chosen, let N(j + 1) be the first positive integer such that 

p(N(j + 1)) e B — {p(N{i)):i £ P,-}. Since B is an infinite set, B — {p(N(i)): 

i £ P3} is an infinite set, so that N(j + 1) exists. By 18.4, the sequence (N(i)) is 

well defined. Next, for each i £ P, let /?(/) = p(N(i)). It is clear that /? is one-to-one 
since N and p are each one-to-one. To see that p maps P onto B, let x e B. There 

exists ay e P such that p(j) = x. Notice that if j $ {jV(1), N( 2), . . . , N(j — 1)}, 
then x £ B — {p(N(i)):i £Pj_1}. However, in that case, N(j)—j and (i(j) — 

p(N(j)) = x. This completes the proof. 

The following is an immediate consequence of the last two theorems. 

26.4. Theorem. Every subset of a countable set is a countable set. 

The following theorem is easy to prove and is left as an exercise. 

26.5. Theorem. If X is a set that is equivalent to a countable set, then it is 

also a countable set. 

26.6. Theorem. Iff\ X -* Y is a surjection and X is countable, then Y is count¬ 

able. 

Proof. Let P* be P„ or P according to whether X is finite with cardinality 
n 1 or is infinite. Then there exists a bijection a:P*—> X. Using the well¬ 

ordering principle for positive integers, define f$\ Y —► P* by /3(y) = least element of 
a-1[/-1[y]]. The mapping /?: Y—► P* is an injection (one-to-one) and /?[ T] is a 
countable set by 26.4. The fact that/5: T —►/?[ T] is a bijection shows, by 26.5, that 
Y is countable. 

26.7. Theorem. P X P is countably infinite. 

Proof. For each (m, n) £ P X P, letf((m, n)) = 2m-3". This defines a map f 

from P X P onto a subset of P. Further, / is a one-to-one map. Then f~l: 
f[P X P] —► P X P is a one-to-one map from /[P X P] onto P X P. f[P X P] 

is a subset of the countable set P so that it is countable. Hence, P X P is countable. 
Obviously P X P is an infinite set, so that it is countably infinite. 
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26.8. Theorem. The union of a countable collection of countable sets is 

countable. 

Proof. Let C/f be a countable collection of countable sets. Without loss of 

generality, we may assume that Jf is nonempty and that none of the elements of 
Jf" is empty. We may write Jf = {AT,:/ e P*}, where P* = P; or P according to 

whether Jf" is finite with j elements or is countably infinite. Since for each / e P*, 

AT, is a countable set, there is a one-to-one map a(i> from P(,) onto AT,, where PU) 

is P if AT, is infinite, or P{t) is the set {1,2, ... , n(i)} where n(i) is the number of 

points in AT, if AT, is finite. Next let X = {(ra, «):meP* and neP{m)}. (For ex¬ 
ample, if ATj had exactly six elements, then (1, 1), (1,2), . . . , (1,6) would each be 

a member of X, but (1,7) would not be. More generally, if (m,n)eX, then 

Km e Jf, and there is an /?th element in Km.) Notice that X is a subset of P X P, 

and hence it is countable. 
We will next define a map ip from X onto (J JY. By 26.6 it will then follow 

that |J JT is countable and the proof will be complete. 

Define ip\X U Jf' as follows. For each (m, n) e X, let ip((m, n)) — 

a(m)(«). (Thus, ip((m, n)) is simply the “/7th element” in the set AT,,,.) This completes 

the proof. 
Note that in the proof of 26.8, we did not know that ip was one-to-one, since 

we did not know if the AT,’s were pairwise disjoint. 

EXERCISES: COUNTABLE SETS 

1. Prove that the set of all rational real numbers is a countably 

infinite set. 

2. Prove that if A" is a set that is equivalent to a countable set, 

then X is also a countable set. 

3. Suppose that f:X-*- Y is a map from a set X onto a countable 

set Y. Suppose that for each y e Y, f~l[y] is a countable set. 

Is X necessarily a countable set? 

4. Prove that if A and B are countable sets, then so is A X B. 

5. Let f:X~* Y be a surjection. Show that there is a subset of X 

that is equivalent to Y. 

27. UNCOUNTABLE SETS 

In the last section, we defined a set as being a countably infinite set if the set P 

of all positive integers could be put into one-to-one correspondence with it. We 

show next, by an example, that there are infinite sets that have “so many points” 

in them that they are not countably infinite. 

27.1. Example. Let a be the collection of all infinite sequences s such that 

s(i) — 0 or 1 for each i e P. It is easy to see that a is an infinite set by considering 

the sequences (1,0,0,0,.. .), (0, 1,0,0,. . .), (0, 0, 1,0, 0, 0, ...),... . We prove 
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that a is not countably infinite by contradiction. Suppose that there existed a one- 

to-one map/from P onto a. Notice that for each /,/(/) is a sequence whose range is 

contained in the set {0, 1}. Designate they'th term of/(/) as/(/),-. We shall obtain 
a contradiction by exhibiting a sequence a that is an element of a and at the same 
time could not be an element of J. Toward this end, let 

«(y) = 1 — A/);, ye?- 

Note that the range of a is contained in {0, 1}, so that a 6 a. However, since 

a e a, and f maps P onto a, there must be an integer k such that//:) = a. Then 
f{k)k = <xk. But a* = 1 — f(k)k. Hence, f {k)k = 1 — f(k)k, from which we obtain 

a contradiction. Thus, x e a implies a contradiction and so the map f cannot exist. 
The proof given in 27.1 is known as a “Cantor diagonal proof.” The use of 

the term diagonal will become apparent in the following, less formal version of the 
same proof. If the set a in Example 27.1 were countable, we could think of being 

able to “list” its elements s(i) as follows: 

s(n) — (s(n)i, s{n)2, s(n)3-- s(n)„, . . .) 

Now define the sequence a as follows: 

“(0 = 1 - HOt 

Notice that every term of a is different from the corresponding term down the main 

diagonal of the array shown. For example, a(l) / ^(l)i< a(2) ^ j(2)2, etc. Next, 

note that a 6 a, so that it must appear in the listing. Suppose that it were s(j). 

This could not be so, since s(j),- a(y). 

27.2. Definition. Uncountable set. A set that is not countable is said to be 

an uncountable set. 

It is clear that if a set is uncountable, then it is an infinite set. Thus, the follow¬ 

ing diagram schematically summarizes the classification of sets discussed in the last 
several sections. 

FINITE 
COUNTABFE 

COUNTABFY INFINITE 
INFINITE 

UNCOUNTABFE 

Figure 4. 
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EXERCISES: UNCOUNTABLE SETS 

1. It is known that every real number between 0 and 1 inclusive has 

a (binary) representation in the form . ax a2 a3 • ■ • an ■ • • where 

each a, is either 0 or 1. However, as in the decimal system, the 
representation is not unique. For example, .01100 (remaining 

terms 0) represents the same number as .0101111 (remaining 
terms 1). But each real number between 0 and 1 has at least one 

and no more than two representations. Use this information to 

prove that the reals are uncountable. Point out why this implies 
that the set of all irrational numbers is uncountable. 

2. Suppose that A is an uncountable set and C is a countable subset 

of A. Show that A — C is an uncountable set. 

3. Suppose that A, B, C, and D are sets such that A n C — 

Bn D — 0. Suppose further that A ~ B and C ~ D. Is 
(A U C)~ (B U D)? 

4. Prove that every infinite set contains a countably infinite subset. 

5. Prove that if S is an infinite set and x e S, then S — {x} ~ S. 

6. Suppose S is an uncountable set and C is a countable set. 

Show that S — C ~ S. 

28. NONEQUIVALENT SETS 

We wish to formalize the notion of one set having “fewer points” than another. 

To do this we introduce the following notation: If A is a set and B is a set, then we 

shall say A < B (A is less than B with respect to cardinality) provided A is equiva¬ 

lent to a proper subset of B and A is not equivalent to B. The following fact about 

this relation between sets is of interest. If A and B are sets, then exactly one of the 
following holds: (i) A < B (ii) B < A (iii) A ~ B. The proof of this will not be 

taken up. 

In Exercise 1, page 5 3 , it was pointed out that Q < R. Does there exist a 

set M such that R < A/? The answer is yes. As a matter of fact it can be shown 

that for any set S, there is a set S* such that S < S*. To prove this fact, we shall 
consider the so-called power set of a set. Recall that if S is a set, by the power set 

S) of S we mean the collection of all subsets of S. For example, if S = {1,2, 3}, 

then ^*(S) = {0, {1}, {2}, {3}, {1,2}, {1, 3}, {2, 3}, {1,2, 3}}. Note that in this 
case S < &{S). What we propose to do is show that, in general, if 5 is a 

set then S < 8P(S). Before doing so, we shall discuss the special case for which 5 

is a finite nonempty set. Notice that in the example in which S — {1,2, 3}, we 

listed the elements of 0>{S). There were eight elements. It would be instructive at 
this point for the reader to list the elements in ^(S) if S = {1,2, 3, 4}. After doing 

this and observing that the number of elements in 3A(S) is 16, make a guess as to the 

cardinal number of if the cardinal number of S is n. (See Exercise 10, page 

35.) 
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28.1. Theorem. Let S be a finite set whose cardinal number is n. Then the 

cardinal number of its power set is 2". 

Proof. We see by inspection that the statement is true when n = 0 (i.e., 
when 5=0). Next we assume that h is a nonnegative integer and that the state¬ 

ment is true for h. Suppose that S is a set with cardinal number h + 1. Let x e S 

and let M — S — {x}. From the inductive hypothesis, M has exactly 2h subsets. 
Notice that a set is a subset of S if and only if it is a subset of M or if it is a set of 

the form L U {x} where L is a subset of M. Furthermore, there is a one-to-one 
correspondence between the subsets of M and those of the form L U {x}, L c M. 

Thus, we can set up a two-to-one map from &{S) onto ^(M). Hence, LP(S) has 

twice as many elements as so that the cardinal number of £P(S) is 2(2h) = 

2ft+1. By induction, the proof is complete. 

28.2. Theorem. Let S be a set. Then S < £P{S), where SPif) is the power set 

ofS. 

Proof. The statement is clearly true if S = 0. We prove the statement for 

the case S ^ 0 by showing that S is equivalent to a subset of S) and that the 
assumption S ~ £P{S) leads to a contradiction. It will then follow that S < &(S) 

from the definition of < (less than with respect to cardinality). 

Let S* — {{x} :x e S}. Each {x} e &(S), so that S* <= &(S), and further, it is 
clear that S ~ S*. 

Next assume that there is a one-to-one map ip from S onto £?(S). Let Q = 

{x:xeS and x ^ y(x)}. Now 0 e ^(5). So there must be aq e S such that y>(q) — 

Q. This, however, leads to an interesting contradiction. Note first that q e Q or 

q Q. Suppose that q e Q. Then q e ip(q). But then from the definition of Q, 

q $ Q. Thus, it is false that q e Q, and we have therefore shown that q <£ Q. But 
then q $ ip(q) — Q, and it follows from the definition of Q that q E Q. We have 
arrived at a contradiction and the proof is complete. 

29. REVIEW EXERCISES 

I. Let p and q, r, and s be statements. Consider the following 
compound statement: If (p and q), then (r or L). 

Choose the statement or statements below which w'ould 

be the correct way to state the contrapositive of the given 
compound statement. 

1. If (r is false and s is false), then (p is false or q is false). 

2. If r is false or s is false, then p is false and q is false. 

3. If (p and q) is a false statement, then (r or s) is a false 
statement. 

4. If (r or s), then (p and q). 

5. None of the previous choices is correct, but a correct one 

is---, 
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II. Let A and B and C be nonempty sets. Either prove the 
following statement or give a counterexample. 

(A X B) n (C X D) = (A nC)X(fin z>). 

III. 1. Give the names of the three properties that a relation 
must possess in order for it to be called an equivalence 
relation. 

2. Suppose that R is a relation defined on the set of real 
numbers as follows: x Ry if and only if there exists an 
integer k such that x—y — k. Is 7? an equivalence 
relation? Justify your answer. 

3. Suppose that R is an equivalence relation defined in a 
set A. Which of the following is necessarily true? 
Justify your answers. 

(a) R = A X A 
(b) R c A X A 
(c) {(x, x):x e A) c= R 
(d) If a and b are distinct elements in A, then R[a] n 

R[b] — 0 
(e) If R[a\ n R[b] ^ 0, then = R[6] 
(f) R = R-1 

IV. Let R be the relation defined as follows: 

R — {(x,j):x is real, y is real, and |x — y| = 5} 

1. Is R a symmetric relation? 

2. Is R a transitive relation ? 

3. Determine R [2]. 

4. Is R a function? 

5. Find the domain of Rrx. 

V. Let f '.X —> Y be a bijection. Let A and B be subsets of X. 

1. Prove that f[A n B] = f[A] n f[B]. 

2. Give a counterexample to show that the preceding is not 
true if / is not a one-to-one function but simply a func¬ 
tion. 

3. Explain what step in your proof of the first part breaks 
down if the hypothesis does not say “one-to-one.” 

VI. Consider the map/:R —► R given by the following: 

/(x) = x(x — 2) for each x in R 

1. Find the range off 

2. Determine the set f~l[{y'- — 1 sS y ^ 0}]. 
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3. Find the largest number z such that / restricted to the 

set {x:0 5=1 x ^ z} is a one-to-one function. 

VII. 1. Give a precise statement of the principle of finite induc¬ 
tion. 

2. Give a precise statement of the well-ordering principle 

for integers. 

3. Prove that the well-ordering principle implies the prin¬ 

ciple of finite induction. 

4. Prove that 9n — Sn — 1 is divisible by 64, if n is any 

positive integer. 

VIII. 1. Define what is meant by an infinite sequence. 

2. Define what is meant by a subsequence of an infinite 

sequence. 

3. Define what is meant by a decomposition of a set. 

4. Define what is meant by a function that is one-to-one. 

5. Suppose that f'.X-+ Y is a one-to-one function, and 
g .Y ^-Z is also a one-to-one function. Prove that the 
composition g ° f is a one-to-one function. 

IX. Is the following statement necessarily true? Justify your 

answer. 
If R is a relation and Rr1 <= R, then R is a symmetric 

relation. 

X. 1. Define what is meant by a partially ordered set. 

2. Define what is meant by a totally ordered set. 

3. Give an example of a partially ordered set that is not 
totally ordered. 

4. Give an example of a partially ordered set that has a 

maximal element but no greatest element. 

5. Prove that a set has at most one greatest lower bound. 

XI. 1. Use the axiom of choice to give an alternate proof of 
Theorem 26.6. 

2. Let Sf be the collection of all finite-sequences of integers. 
Is iZ a countable set? 

XIF. Let ^ be the set of all functions that map the closed interval 
[0, 1] into [0, 1], Prove that [0, 1] < (Hint: Imitate 
somewhat the proof of 27.1.) 

XIII. 1. Give an example of a set A and a relation R in A that is 

symmetric and transitive in A but is not reflexive. 
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2. Tell what is wrong with the following argument, which 

claims to show that if a relation R in a set A is transitive 

and symmetric, then it is also reflexive. 

Let aeA. Choose an element be A such that 

a Rb. Since R is symmetric, it then follows that b R a. 
Since R is transitive, a R b and b R a imply that a R a. 
Hence, we have shown that R is reflexive. 

XIV. Let (S', be a nonempty partially ordered set such that 

every linearly ordered subset has an upper bound. Show 
that if aeA, then there is a maximal element m in S such 
that a S m. 



2 

Structure oj R and R" 

Thus far our study has been largely restricted to that of abstract sets and 

functions, or relations defined on abstract sets. The study of sets generally becomes 

more useful when a structure of one kind or another is imposed on the sets to be 
studied. For example, sometimes the set studied is endowed with an algebraic 
structure and sometimes with a geometric structure. Often the sets studied have 

both an algebraic and a geometric structure. When the domain and range of a 
function are endowed with enough geometric structure so that the concept of 

distance between points or some generalization of the notion is available, then the 
notion of a continuous function is also available. For, roughly, the idea of a 
function /being continuous at x0 is that f(x) can be made as close as we wish to 

f(x0) provided x is sufficiently close to x0. Similarly, if the domain and range of a 
function are endowed with an algebraic structure, it is often useful to study certain 

algebraic properties that the function might possess. 
The real number system R has both a geometric and an algebraic structure. 

The reader is already familiar with the distance formula for points in the plane. 

Recall that the distance between points (xl5 x2) and (yy, j2) in the plane is given by 

[(x! — yy)2 + (x2 — y^)2]^- Similarly in three-dimensional space, the distance 

between points (xlf x2, x3) and (yy, y2, J/)is [(xx — yy)2 + (x2—y2)2 + (x3 —y’a)2]4- 
In this chapter, we shall extend this distance formula to R’\ the collection of all 
^-tuples of real numbers. There is also a useful algebraic structure that can be 
imposed on Rr‘. We shall give detailed consideration to the geometric (metric) 

structure of R and R". However, since the geometric structure we will consider is 
related to certain algebraic considerations, it will be useful for us to also consider, 
at least to some small extent, the algebraic structure of those spaces. 

By making use of the notion of distance in R", we will define the important 
concepts of open set, closed set, limit point, and convergent sequence. Some 

important theorems in classical analysis are related to these concepts. Among 

those covered in this chapter are the Bolzano-Weierstrass, Heine-Borel, and 
Lindelof theorems. 

58 
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30. ALGEBRAIC STRUCTURE OE R 

For reference we list in this section those properties of the real number system 
that give it algebraic structure. 

30.1. Properties of addition. To each ordered pair of numbers (a, b), there 

corresponds a unique number a b. Addition satisfies the following: 

30.1(a). Addition is commutative. 

For each pair of numbers a and b in R, 

a + b = b + a. 

30.1(b). Addition is associative. 

For all numbers a, b, and c 

a + (b + c) = {a + b) + c. 

30.1(c). The zero element. 

There is a number 0 that has the property that 

a + 0 = a for each a 6 R. 

30.1(d). Existence of additive inverse. 

To each a e R there corresponds an element aeR such that 

a + (-a) = 0. 

30.2. Properties of multiplication. To each pair of numbers a and b in 

R there corresponds a unique number a • b called the product of a and b. 

The properties of product {or binary operation of multiplication) are: 

30.2(a). Multiplication is commutative. 

For each a and b in R, 

a • b = b ■ a. 

30.2(b). Multiplication is associative. 

For a, b, and c in R, 

a • {b • c) = (a • b) • c. 

30.2(c). Existence of a unit or multiplicative identity. 

There is a number 1 such that 

1 • a = a for each aeR. 

30.2(d). Multiplicative inverse for nonzero numbers. 

To each a e R such that a # 0, there exists a number a~x such that 

a ■ a~x = 1. 

The following property relates to both addition and multiplication. 

30.2(e). Distributive taw. For all a, b, and c in R, 

a • (b + c) = a ■ b + a • c. 
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(The reader familiar with the notion of group and field should notice that the 

properties listed in 30.1 tell us that (R, +) is a commutative group. From the prop¬ 

erties listed in 30.2(a) through (d), we see that (R {0}, •) is also a commutative 
group. Furthermore, the properties listed in 30.1 and 30.2 make (R. + , •) a 

field.) 

30.3. Order relation in R. The set of real members R possesses an order 

(<) structure satisfying the following: 

30.3(a). For all a and b in R. exactly one of the following holds. 

a = b, a < b, b < a 

For all a, b, and c in R. 

30.3(b). if a < b, then a + c < b + c, 

30.3(c). if a < b and 0 < c, then a • c < b • c, 

30.3(d). if a < b and b < c, then a < c; that is, the relation is transitive. 

Thus (R+, R , {0}} is a decomposition of R, where 

R.. = {x:0 < x}, the set of positive real numbers 

and 

R_ = {x:x < 0}, the set of negative real numbers. 

(If a < b, we may alternatively write b > a.) 

30.4. Archimedean property. If x and y are real numbers and y > 0, then 

there is a positive integer n such that x < n • y. 

By making use of the Archimedean property, we can show that the set Q 

of all rational numbers is dense in the real number system. By this, we mean that 

if x and y are real numbers, then there is a rational number between x and y. 

Equivalently, for every open interval (a, b) <= R, (a, b) n Q 0. 

30.5. Theorem. Density of rationals in the reals. Let x and y be two real 

numbers such that x < y. Then there is a rational number r such that x < r < y. 

Proof. We first consider the case 0 < x < y. (Once we prove the theorem 

for this case, the general case will follow easily.) Since y — x > 0, it follows from 
the Archimedean property that we may choose an integer n such that 1 < n( r — x). 

Hence, - < y — x. Again, by the Archimedean property, there is a positive 

n /1\ 
integer M such that x < A/l-l. We choose the first positive integer m such that 

m m 
x < —. We claim that x < — < y and justify this assertion as follows: If it is 

n n 
m m 

false that 0 < x < — < v, then v —. But from the wav in which m was chosen, 
n n 

it would then have to follow that 

m — 1 ^ _ m 

So " 

^ x < y ^ 

y — x 
m 

n 

m - 1 

n 

1 

n 

. . m m 
a contradiction. Hence, the rational number — satisfies 0 < x < — < y. 

n n 
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We next consider the case x < y and x g 0. Let JV be a positive integer such 
that 0 < N + jc. Then 0</V + .v<iV+jg. From the proof of the first part, 

there is a rational number r such that N-\-x<r<N+y. But then r — N is a 

rational number and x < r — N < y. 

In terms of some of the language used in the previous chapter, the relation 

is transitive, reflexive, and antisymmetric in R (Sections 22 and 23) and, hence, 

(R, SS) is a partially ordered system. Moreover, because of 30.3(a), (R, sS) is a 
linearly ordered set. Recall that we have already used this fact in some of our 

examples in Section 23. Notions of upper bound, lower bound, bounded set, least 

and greatest elements, least upper bound and greatest lower bound have already 

been defined in that section. To apply these terms in the usual way to the real 
number system R, we simply consider the partially ordered system (R, gj) where g 

has the usual meaning. Thus, a subset A c R is bounded above (below) by b 

provided that a gi b (b sg a) for all a e A. The number b is then called an upper 
(lower) bound for A. A subset of R is a bounded set if it has both an upper and a 
lower bound. The number b is the greatest (least) element of A provided it belongs 

to the set A and is greater (less) than all other elements of A. A number / is the 

least upper bound of A, (l.u.b. (A)) provided that A is bounded above and / is the 
least element of the set of all upper bounds of A. More explicitly, / = l.u.b. (A) 

if and only if 

a gg / for all a e A 

l <* b for all upper bounds b of A 

Also, a number g is the greatest lower bound of A (g.l.b. (A)) if and only if 

g gg a for all a e A 

b gi g for all lower bounds b of A 

Recall that for a partially ordered set (S, =i), a nonempty subset might have 
an upper bound but not necessarily a least upper bound in S (see Example 23.9). 

This cannot happen in the real number system. 

30.6. The least upper bound axiom for the real number system R. If S is a 

nonempty subset of R and S has an upper bound then S has a least upper bound in R. 

The algebraic and order properties stated in 30.1, 30.2, and 30.3 are still not 

sufficient to make R “act geometrically like a line.” For example, the set of 
rationals Q satisfies all these properties. However, the least upper bound axiom 
makes R “connected,” as will be shown in a later chapter. 

30.7. Definition. Maximum value and minimum value of a real-valued function 

on a set. Suppose that f is a real-valued function and S c Dom/. Then M is said 

to be the maximum value of f on S provided M is the maximum or greatest element in 

the set/[£]. Similarly, m is said to be the minimum value of f on S provided m is 

the minimum or least element of the set/[S']. 

We see that if M is the maximum value of/on S, then 

M = l.u.b. (/[S]) 

Mef[S]. 
and 



62 Chapter Two 

30.8. Example. Consider the function /:R->R given by f{x) = x2. /[R] 
is not bounded above, so that / does not have a maximum value on R. However, 

/has a minimum value of 0 on R. Also,/has a minimum value of 0 on [0,2] 
and a maximum value of 4 on [0, 2], On the open interval (0, 2),/has neither a 
minimum value nor a maximum value. Note that l.u.b. (/[(0,2)]) = 4 but 

4*/[(0,2)]. 

At this point it would be helpful to work with these concepts, and the follow¬ 
ing exercises are provided for that purpose. In doing these and subsequent exer¬ 

cises, the reader should use his knowledge of elementary algebra freely rather than 
show that every step can ultimately be justified on the basis of the properties stated 

in 30.1, 30.2, and 30.3. 

EXERCISES: ALGEBRAIC STRUCTURE OF R 

All sets are understood to be subsets of R. 

1. Explain by example why it is that the system of all rational 

numbers does not satisfy the least upper bound axiom. 

2. Prove that the least upper bound property implies the following: 
If S is a nonempty subset of real numbers that has a lower 
bound, then S has a greatest lower bound. 

3. Let S = jx:x = 1 — - , n e pj. Find l.u.b. (S) and g.l.b. (5) 

if they exist. 

4. Let/:R—> R be given by f{x) = x3. Find the l.u.b. (/[{x: 0 < 
x < 1}]). Find l.u.b. (/[{x:0 ^ x ^ 1}]). 

5. Suppose that /: {x: 0 < x} —*■ R is given by /(x) = - for 0 < x. 

Does/[{x:0 < x}] have a l.u.b.? Does it have a g.l.b.? 

6. Give an example of a function /defined on a closed interval S 

such that l.u.b. (/[S’]) exists but/does not attain a maximum 
value on S. 

7. Prove the following statement: If a = l.u.b. (A), then for each 

e > 0, there is an x e A such that a — e < x ^ a. State and 
prove an analogous proposition for g.l.b. (/I). 

8. Prove that if A is a nonempty bounded set of real numbers then 
g.l.b. (A) iS l.u.b. (A). For what kind of set A is g.l.b. (A) = 

l.u.b. (A)? 

9. Prove that if A and B are nonempty subsets of R and A <= B, 

then g.l.b. (B) F g.l.b. (A) < l.u.b. (A) < l.u.b. (B). 
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31. DISTANCE BETWEEN TWO POINTS IN R 

Recall that by the absolute value |x| of a number x we mean x if x ^ 0 and 

—x if x < 0. Using the absolute value function, we can introduce the notion of 

the distance, d(x,y), between points x and y in R as follows. 

31.1. Definition. Distance formula for R. For x e R and yeR, by the 

distance between x and y we shall mean the number d(x, y) given by the following 

formula'. 

d(x,y) -- |x —y\. 

The distance function as defined in 31.1 satisfies the following. For all a, b, 

and c in R, 

31.2(a). d(a, b) — 0 if and only if a — b 

31.2(b). d(a, b) = d(b, a) 

31.2(c). d(a, b) + d(b, c) ^ d(a, c) (Triangle inequality). 

31.3. Definition. e-Neighborhood of a point in R. Let p e R and e > 0. 

By an e-neighborhood of p, N(p', e), we shall mean the following subset o/R: 

N(p\ e) = {q:d(q, p) < e} = {q:\q — p\ < e}. 

Notice that N(p; e) is the open interval (p — e, p + e). 

We shall sometimes refer to an e-neighborhood simply as a neighborhood. 

EXERCISES: DISTANCE BETWEEN TWO POINTS IN R 

1. Verify the properties stated in 31.2. 

2. Let p e R. Give an example of a collection of neighborhoods 
of p such that is not a neighborhood. Show that if CfT 

is a nonempty finite collection of neighborhoods of p, then 

U JT and f| Jf are neighborhoods of p. 

32. LIMIT OF A SEQUENCE IN R 

The following concept should be familiar to the reader from his study of 

calculus. 

32.1. Definition. Limit of a sequence in R. Let (an) be a sequence in R. 

Then a number A is said to be the limit of (an) provided that for each e > 0, there 

is an integer N such that 

if n =5: N then \an — A\ < e. 

In that case, we write lim an = A, or lim (tf„) = A. 
n—*• oo 
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Notice that if N satisfies the requirement just stated, then so does any integer 

M ^ N. 

If lim (a„) = A, we shall say that the sequence (an) converges to A. It should 

be noted that if a sequence converges, its limit is unique. (See Exercise 6 in the 

following set of exercises.) 

EXERCISES: LIMIT OF A SEQUENCE IN R 

Assume that all sequences are in R. Prove each of the following. 

1. Suppose that (an) is a sequence such that an a,i+1, (a„4x ^ an) 

for each positive integer n. Suppose further that the sequence 

(a„) is bounded above (below). Then lim (an) exists. 

2. Let the sequence (cj in R be given by cn = an + b„, where 
lim (an) = A and lim (b„) = B. Then, lim (c„) = A + B. 

3. Let the sequence (c„) in R be given by cn = kan where k is a 
constant and lim (a„) = A. Then lim (c„) = kA. 

4. Let the sequence (cn) in R be given by c„ — an • bn where 
lim (an) = A and lim (bn) = B. Then lim (cn) = A • B. 

5. Let the sequence (c„) = (ajbn) where bn # 0, lim (o„) = A, 

lim (bn) = 5^0. Then lim (cn) = A\B. 

6. If a sequence (a,) has a limit, it is unique. 

33. THE NESTED INTERVAL THEOREM FOR R 

In Exercise 3, page 1 3 , it should have been noted that it is possible to have a 

decreasing sequence {A,} of nonempty sets such that f) {AT,-} = 0. By making 
use of the least upper bound and greatest lower bound properties of the real num¬ 
ber system, one can prove that if the A, have certain restrictions, then f) {AT,} ^ 0. 
We shall prove this fact in this section for closed intervals (i.e., sets of the form 

{x\a x b}, allowing the possibility that a = b) in R. At various points in our 
development, we shall extend this important result to certain more general types of 
sets. The following theorem is of considerable importance. 

33.1. Nested interval theorem. For each positive integer i, let Aj he the dosed 
00 

interval [a,, b,]. Suppose that AT, Ki+1, i e P. Then f) A, ^ 0. Furthermore, 
1=1 

if lim (|6, — a,\) — 0, then f) A, has exactly one element. 
i=i 

An outline of the proof follows. The details are left as an exercise (see Exercise 
1, page 6 5). 

(i) r: a, - T ai+l < 6, and ai g. bl+l s: b{ bx. 

(ii) Show that lim (a,) exists; call it A. Show that lim (b,) exists; call it B. 

Further, A g B. 
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(iii) The closed interval [A, B] <= Kn for each n e P and the conclusion that 
00 

n *^ follows. 
i— 1 

(iv) If x and y are two different points in f) K,, then \bt — at| 2> \x — y\ > 0 

for all i e P. Hence, lim (\bi — aj) =£ 0. 

In the previous theorem we used the notion of closed interval [a, b] = 

{x\a ^ x ^3 b} where we allow the possibility of a = b. If a — b, then we call the 

interval degenerate. Previously we have also used the notion of open intervals of 
the form {x:a < x < b}. Next, we define a more general type of interval in R. 

33.2. Definition. Interval in R. A set S in R is called an interval provided 

that it satisfies the following condition. If a e S and b e S with a •£ b, then the 

closed interval [a, b] <= S'. 

EXERCISES: THE NESTED INTERVAL THEOREM FOR R 

1. Give the details of the proof of Theorem 33.1. 

2. Give an example of nonempty intervals I, (see 33.2) such that 
oo 

A /2 =3 and fl A = 0 • 
i— 1 

3. Is the following statement true? Given an interval I and a point 

pel, there exists a countable collection of closed intervals {/,} 
such that e /, c /2 c /3 ■ ■ • c /n c • • • (possibly only a 

00 

finite number needed) and such that / = (J {/J. 
f = i 

4. Suppose that Jf is a collection of intervals such that f) 0. 

Is JJ K necessarily an interval? 

34. ALGEBRAIC STRUCTURE FOR R 

We shall use the symbol R" to represent the Cartesian product R X R X • • • X 

R of R taken n times. Thus, R" is the collection of n-tuples of real numbers. The 
reader is probably familiar with the vector space in which elements are equivalence 

classes of directed line segments with vector addition, scalar multiplication, and 

inner product defined. That is but one model of a so-called 3-dimensional vector 
space with inner product. The algebraic structure that we shall discuss for R" 

represents a model “algebraically equivalent” to the above model when n = 3. 

(Also, R1 = R.) 

34.1. Definitions 

34.1(a). Vector addition and multiplication by a scalar. Let x = (x1# .v2, 

. . . , xn) andy = (jq, y2, . . . ,y„). By x + y, the vector sum of x andy, we mean 

the element of R'1 given by (xq +>q, x2 + y2, . . . , x„ + yn). For each scalar (real 

number) a and x = (xq, xq, . . . , xn) e R", a.v, the scalar multiple of x by a, is 

defined to be the element in R" given by (axq, axq, . . . , ax,,). 
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34.1(b). The zero element for R". The element in R'1, each of whose coordinates 

is 0, is called the zero vector for Rn and will be designated by 0. 

34.1(c). The negative of an element in R". For each x — (xlt x2, . . . , xn) 

we shall mean by —x, the element in Rn given by (—xlf —x2, . . . , — x„). 

34.2. Properties of vector addition and scalar multiplication 

34.2(a). For vector addition: For all x, y, and z in R ‘, 

(i) * + y = y + x 

(ii) x + (y + z) = (x + y) + ^ 
(iii) 0 + x = x 

(iv) x — x — 0 (by x — y we shall mean x + (— y)) 

34.2(b). For scalar multiplication: For scalars a, /3 and vectors x andy, 

(i) a(/?x) = oc/3(x) 

(ii) (a + fi)x = ocx -j~ fix 

(iii) oc(x +>>) = ax + ocy 

(iv) lx — x 

34.3. Definition. Inner (or dot) product. For x — (xlf x2, . . . , x„) and 

y = (y1,y2, . . . ,y„), the inner product of x andy is denoted by x • y and is defined 

by the real number xxyx + x2y2 + • • • + xnyn. 

34.4. Properties of the inner product. For x, y, and z in R" and scalars 

a and ft, 

(i) x • y = y ■ x 

(ii) x ■ (ocy + fiz) = a(x • y) + /5(x • z) 

(iii) (ax + fiy) ■ z = a(x ■ z) + f}(y ■ z) 

(iv) x-x>0 if x 0 and 0-0 = 0 

34.5. Definition. The magnitude of a vector x e R". By |x|, the magnitude 

of xeR", we shall mean the nonnegative real number (x • x)i (i.e., (x\ + x\ + 
• • • + x^)i). If\x\ = 1, x is called a unit vector. 

The following exercises should help the reader to see the geometric motivation 

for the previous definitions and should serve to motivate several forthcoming 
notions. 

EXERCISES: ALGEBRAIC STRUCTURE FOR R’1 

1. Verify the properties stated in 34.2 and 34.4. 

2. Show that for points in R2, |x — _y| gives the usual distance 

formula with which the reader is familiar from analytic 
geometry. 

3. Let x, y, and z be distinct points in R2. Let Lx be the line seg¬ 
ment with endpoints x and z. Let L2 be the line segment with 

endpoints y and z. Let a be the smaller angle (or one of the 
angles if equal) formed by Lx and L2 at z. Show that 

x - z| \y - z| 
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4. Let x and y be two elements in R2. Show that |x • y\ < 1*1 \y\ 
and |x +_y| ^ |x| + |_y|. 

5. The results of this exercise will be needed in the next section. 

Consider the function / given by f(x) — Ax2 + 2Bx + C, 

where A > 0, and which further satisfies f(x) ^ 0 for all real x. 
Prove that B2 — AC ^ 0. 

35. THE CAUCHY-SCHWARZ INEQUALITY 

In Exercise 4, this page, it was pointed out that for vectors x and y in R2, 

|x • y\ ^ |x| |_y|. This inequality is true for vectors in R” and is of considerable 

importance in analysis. For us, it will be used in proving the triangle inequality 

for Rn. The “natural” way to try to prove the inequality would be to write the 
inequality in terms of coordinates. This can be done, and it would be instructive 

for the reader to try this. However, in proving general relations for vectors in 

R", one can often use to good advantage the general properties of vector addition, 
scalar multiplication, and inner product. Such is the case in the proof of the 

inequality presented next. 

35.1. Theorem. Cauchy-Schwarz inequality for R '. Let x and v be elements 

in R". Then |x ■ y\ sS |x| |_p|. 

Proof. For each real number a, (ax + y) • (ax + y) 2: 0, by 34.4 (iv). 

Then by making use of various properties listed in 34.2 and 34.4, 

(ax + y) ■ (ax + y) = (ax + j) • (ax) + (ax + y) • y 

= a2(x • x) + a(y • x) + a(x * y) + (y • y) 

= (x • x)a2 + 2(x • y)a + (y • y) ^ 0 

Notice that the function here is a quadradic in a that is nonnegative for all real a. 

Hence, its discriminant must be nonpositive (see Exercise 5, this page). Hence, 
(x • y)2 — (x • x)(_y • y) ^ 0. From this it follows that (x • y)2 g |x|2 |jp|2 or 

|x * y\ ^ |x| |^|. This completes the proof. 

By means of this last inequality we can now prove the important triangle 

inequality for R". 

35.2. Theorem (triangle inequality). Let x and y be elements in R". Then 

|x +j| ^ |x| + \y\ 

Proof. Each of the following first four statements is clearly equivalent to the 

next. The last statement is true because of 35.1 and, hence, the first statement is 
correct. 

|x +tI ^ \x\ +\y\ 

|x + y\2 < (|x| + |j|)2. 

(x +y) • (x +y) ^ (x ■ x) + 2|x| |j| + (y-y) 

X ■ X + 2(x • y) + y • y ^ (x • x) + 2|x| |y\ +(7-7) 

x ■ — 1*1 \y\- 
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35.3. Theorem. For all x, y, and z in R" and real numbers a, 

35.3(a). |.v| > 0 if x =£ 0 and \0\ = 0 

35.3(b). |a.v| = |a| |.y| 

35.3(c). |.y| = \—x\ 

35.3(d). \x — y\ + \y - z\ ^ \x — z\ 

The proofs are left as exercises. 

35.4. Definition. Orthogonal vectors. Vectors x and y in R’1 are said to be 

orthogonal provided that x • y = 0. (See Exercise 3, page 6 6 for motivation.) 

35.5. Definitions. Line segments and lines in R''. Let a and b be points in R". 

Then the set {x:.xe R" and x — (1 - t)a + tb for 0 t < 1} is called the line 

segment L(a, b) with endpoints a and b. If a = b, the line segment is said to be 

degenerate. If a f b and 0 < s < 1, then the point x — (1 — 5)0 + sb is said to be 

between a and b. 

Let a f b. The set {x:x = (1 t)a + tb, t real) is called the line in Rn 

determined by a and b. 

The reader should convince himself that these definitions are consistent with 
the notion of line and line segment in R2 and R3, with which he is familiar. 

35.6. Definition. Polygon in R". We shall call S a polygon in R" provided 

that there exist points .y0, y,, .y2, . . . , xm, not necessarily distinct, such that S is 

the union of the collection of line segments {L(x,, x ,+1):/ = 0, 1,2, ,m — 1}. 

In that case we shall say that S joins x0 to xm. 

EXERCISES: THE CAUCHY-SCHWARZ INEQUALITY 

1. Verify 35.3 

2. Suppose that a e R'h Consider the collection S = {era: — 00 < 

a < 00}. Show that S is a line. 

36. THE DISTANCE FORMULA IN R‘ 

Recall that for R“, |x| is defined as (x • x)- = (x2 + x| + • • • + x2)- w'here 
x = (xl5 x2, . . . , xn). Thus, 

\x -y\ = [Oi - T1)2 + (*2 - J2)2 -4-+ (X„ - >’J2]2 

We see that for n = I we have, in this expression, the distance formula already 

introduced for R. For/; = 2 and 3, we recognize the distance formula from analytic 
geometry. Thus, we would expect that if we define the distance between x and y in 

R'' as d(x,y) = |x — y|, this function should satisfy the properties listed in 31.2. 
Such is the case, and we have the following. 

36.1. T heorem. Let d(x,y) = |x — y| for x and y in R". Then for every 
x, y, and z in R'1 

36.1(a). d(x,y) ^ 0 
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36.1(b). d{x,y) = 0 if and only if x = y 

36.1(c). d(x, y) = d(y, x) 

36.1(d). d(x,y) + d(y, z) ^ d(x, z). 

The proof follows directly from the properties proved about the magnitude func¬ 
tion. 

36.2. Definition. Euclidean metric for R". By the Euclidean metric, or the 

Euclidean distance formula for R", we shall mean the function c/: R" X Rn — R 
given by 

d(x, y) = \x - y\ = [(xx - yj)2 + (x2 - y2)2 + • • • + (xn - yn)2]1 

In the remainder of this chapter, when reference is made to the distance 

between points it shall be understood that distance is measured by the Euclidean 
distance formula. The reader should verify the following remark, which will be 

useful for some of our subsequent considerations. 

36.3. Remark. Let x — {xx, x2, ... , xn) and y = (yu y2, . . . , yn) be points 
in R“. Then for each i e Pn, 

l*» - Til ^ d(x,y) 
and 

d(x, y) ^ Vn max {\xf - yt\: i e Pn} 

36.4. Definition. e-Neighborhood. Let e > 0. By the e-neighborhood of a 

point p £ R” we shall mean the set of all points in R'1 that are less than e distance 

from p. N(p; e.) will be the symbol used to designate that set. Thus, 

N(p‘, e) = {x:d(x, p) < e}. 

If we visualize R:! as we did in solid analytic geometry, the set {x:d{x, p) /'}, 

where r > 0, has the appearance of a solid ball. On the other hand, the set 
{x' d(x, p) = r) is the spherical surface of the solid ball {x:d(x, p) sS r}. The corre¬ 

sponding sets in R" take their names from these familiar objects in R3 as follows. 

36.5. Definitions. Closed balls and (n — l)-spheres in R“. Let r > 0. 

The set {x:d(x, p) ^ r) in R'1 is called the closed ball with center p and radius r. 
The set {x:d(x, p) — r} in R'1 is known as the (n — \)-sphere with center p and 

radius r. 

Notice in particular that if n — 1, the closed ball with center /?eR and radius 

r is the closed interval [p — r, p + /■]. Its corresponding spherical boundary is the 

two-point set {p — r, p.+ r). In R2 the closed ball with center p e R2 and radius 
r is often known as a disc, and of course its spherical boundary is the circle with 

center p and radius r. 

EXERCISES: THE DISTANCE FORMULA IN R- 

1. Prove Theorem 36.1. 

2. Verify that if properties (b), (c), and (d) of 36.1 are assumed for 
a real-valued function defined on R" X R”, then (a) follows 

automatically. 

3. Prove Remark 36.3. 
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37. OPEN SUBSETS OF R' 

The notion of an open subset of R" will be of fundamental importance in our 

study. 

37.1. Definition. Open set in R". A subset U of R" is said to be open (in R") 
provided that for each p e U, there is an e > 0 such that N(p\ e) <= jj. 

To get a feeling for this concept, the reader should verify what is called for 

in each of the following examples. 

0 and R'1 are open subsets of R'1. 

R X {0} is not an open subset of R2. 

The following subset S of R2 is an open set in R2. 

S = {(*,y)-x +y < 2} 

Let A and B be the following subsets of R2. A = 

B = {(x,j):(x — |)2 + (y — |)2 < 1}. A, B, A n B, A U 

B are open subsets of R2. 

37.2. Example. 

37.3. Example. 

37.4. Example. 

37.5. Example. 

{(x,j):x2 + / < 1} 

EXERCISES: OPEN SUBSETS OF R- 

1. Verify Examples 37.2, 37.3, 37.4, and 37.5. Let p e R" and let 

e > 0. Prove that the set N(p\ e) is an open subset of R". 

2. Prove that if A and B are open subsets of R", then A U B and 

A n B are open subsets of R”. 

3. Let be a collection of open subsets of R". Prove that |J Jf 
is an open subset of Rn. Prove that if .yf is a nonempty finite 

collection of open subsets of R", then D >s open. 

The reader, by virtue of having proved the previous exercise 
has proved the following very important theorem. The union of 

an arbitrary collection of open subsets of R" is open. The inter¬ 
section of a finite collection of open subsets of R" is open. 
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38. LIMIT POINTS IN R 

38.1. Definition. Limit point of a subset of R". A point p £ Rn is said to 

be a limit point (or an accumulation point) of a subset S of Ru provided that each 

neighborhood N(p; e) of p intersects S in at least one point distinct from p; i.e.,for 

each e > 0, 

(N(p;e)-{p})nS^0. 

In each of the subsets of R2 pictured next, pi,p2, and p3 are limit points of the 

set and z is not a limit point of the set (Figure 6 )• 

38.2. Example. Each point x in the real line R is a limit point of the set Q 
of rationals. Likewise, each point p e R is a limit point of R. 

38.3. Example. Let r > 0. Each point in the disc {x:d(x, p) ^ r} <= R2 is 

a limit point of the r-neighborhood N(p; r). 

38.4. Example. Let 5 = \-:n £ p) <= R. The number 0 is the only limit 

point of S. n 

EXERCISES: LIMIT POINTS IN R" 

1. Let F be a finite subset of R". Can Fhave any limit points? 

2. Give an example of a subset S of R2 such that every point of S 

is a limit point of S. 

3. Give an example of a subset S of R2 that is infinite and has no 

limit points. 

4. Suppose S’ is a nonempty open subset of R". Is every point of 
S a limit point of S'? Give an example of an open nonempty 

subset of R2 that contains all of its limit points. 

5. Suppose that is a collection of subsets of Rn. Suppose p is a 

limit point of U Is p necessarily a limit point of at least one 

A £ JT? 

6. If your answer to Exercise 5 is no, prove the following: Suppose 

that is a finite collection of subsets of R". If/> is a limit point 

of U , then p is a limit point of at least one A £ Jf\ 

7. Let S' c Ru and let z be a limit point of S. Show that for every 

e > 0, N(z; e) n S is an infinite set. 

Figure 6 
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39. CLOSED SUBSETS OF R" 

Among the examples in Section 38, some sets contain all their limit points 

(see 38.3) and some sets do not (see 38.2). Those sets that contain all their limit 
points will play a significant role in what is to follow. 

39.1. Definition. Closed subsets of R'*. A subset S of R" is said to be a 
closed subset of R" provided that S contains all its limit points. 

The following theorem characterizes closed sets of R” in terms of open sets, 

and its easy proof is left as an exercise. 

39.2. Theorem. Let S c R". Then S is closed if and only if its complement 

is open in Rn. 

Recall from Example 37.2 that 0 and R" are open sets. Also, the union of an 

arbitrary collection of open sets is open and the intersection of a nonempty finite 

collection of open sets is open (see comment in Exercise 3, page 70). By making 
use of these facts, 39.2, and De Morgan's Laws(Exercise5, page 13 ), we can prove 
the following. It is equivalent to the corresponding facts just quoted for open 
sets, with intersection and union replacing each other. 

39.3. Theorem, (a) The empty set and R" are closed subsets of R". (b) The 

intersection of an arbitrary nonempty collection of dosed sets is closed. (c) The 

union of a finite collection of closed sets is closed. 

39.4. Definition. The closure of a set in R *. Let S be a subset of R”. The 

closure of S is defined to be the union of S and the set of all limit points of S. We 
shall use the notation cl (S) to denote the closure of S. 

39.5. Theorem. For each subset of R", cl (S’) is a closed subset ofR". 

Proof. Let x be a limit point of cl (S). We wish to show that x e cl (S). 

If x $ cl (S), then x £ S and x is not a limit point of S. Hence, there is an e > 0 
such that A(x; e) c R'1 — S. However, since x is a limit point of cl (S), there is a 

point zed (5) such that 0 < c/(x, z) < e. Then since z $ S, z is a limit point of 

Figure 7 
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S. Since e — d(x, z) > 0 and z is a limit point of S, there is a point y e S such that 

d(y, z) < e — d(x, z). However, d{x,y) ^ d(y, z) + d(z, x) < £ — d(x, z) + 

d(z, x) = £ (see accompanying figure). Hence, y e S n ?V(x; £), contrary to the 
way in which e was chosen. 

EXERCISES: CLOSED SUBSETS IN R" 

1. Suppose that F is a finite subset of R". Is F necessarily closed 
‘in R”? 

2. Prove Theorems 39.2 and 39.3. 

3. Is the set in Example 37.3 a closed set? 

4. Let a and b be real numbers and let S be the following subset of 

R2. S — {(x, y):ax f- by 1}. Is S' a closed set ? 

5. Let S' be a subset of R". Let S' = {x:x eR" and x is a limit 
point of S}. Is S' necessarily a closed set? 

6. Give an example of a countable collection JT of closed subsets 

of R2 such that (J is not closed. 

7. Let S be a subset of Rtt. Let F consist of all points p in R" 

such that for each e > 0, N(p; e) n S 0 and N(p; e) n 

(~S) ^ 0. Is F necessarily a closed set? 

8. Show that lines and polygons are closed subsets ofR” (see 35.5 
and 35.6). 

40. BOUNDED SUBSETS OF Rn 

Recall that a subset of R is a bounded set if it has both an upper and a lower 

bound. Equivalently, we may say that S' is a bounded subset of R provided the 

distance function is bounded on S X S, that is, for some number M, d(x,y) = 
|x — y\ St 1XI for all x and y in S . It is this form of the definition that we use 

in R'\ 

40.1. Definitions. Bounded subsets of R"; the diameter of bounded sets. A 

subset S of R" is said to be bounded if there exists a number M > 0 such that 

d(x, y) ^ M for all x and y in S. 

If S is a bounded set, then the diameter of S, written diam (S) is defined as follows: 

diam (S) = l.u.b. {d(x,y):x e S,y e S}, if S 7^ 0 

diam (0) = 0. 

Note that the diameter of a closed interval in the real line is the length of the 
interval. The notion of closed interval can be extended to R", and a formula can be 

given for its diameter as shown next. 
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40.2. Definition. Closed interval in R'\ Let ^ Pt for i — 1,2,...,«. 

The set {(xl5 x2, . . . , x„): for each i G P„, a, ^ x, ^ /?,} w known as a closed 

interval in R". 
Notice that 

diam {(xu x2,. .,. xn) : a, ^ xf ^ ftf I (ft - a,)2 
1* 

L t=l 

Recall from Exercise 3, page 7 1, that there exist infinite subsets of R" that have 

no limit points. However, for an infinite set to have no limit point it must be un¬ 
bounded. Stated another way, every bounded infinite subset of R" has a limit 
point in R". In order to prove this important theorem, we shall first extend the 

nested interval theorem (33.1) to Rn. 

40.3. Theorem (Nested Interval Theorem). Let (Kj) be a sequence of 

nonempty closed intervals of R" such that Kj K ;+1 for each j e P. Then 

f) {Kj: ; 6 P} ^ 0. Further, if lim (diam (Kj)) = 0, then there is only one point 

in the intersection. 

Proof. (See accompanying figure.) For i e Pn and j e P, let aJ t- and /3;i, 

be such that Kj = {(jl5 y2, ■ . . ,}>„)'■ “j.i ^ yt = Put for *e PJ- For each i e P„, 
the collection {[a,-,,-, /93>i]:j G P} satisfies the hypothesis for the nested interval 

theorem (33.1). So there is an x, e f) {[a,.,-, /?3ii]:j G P}. Choose one such x, for 
each / e P„ and let x = (xx, x2, . .. , xf). It follows that x e Kj for each j e P and, 

thus, x G H {Kj'.j G P}. 
We next prove the contrapositive of the last part of the conclusion. Suppose 

there were two different points x = (xl5 x2, . . . , x„) and y = (jx, y2, . . . ,yn) in 

H {Kj'.j G P}. Then d(x,y) > 0, and since {x,j} c Kj, diam {Kj) ^ d{x,y) for 
each j G P. Thus, lim (diam {Kj)) S d(x,y) > 0, a contradiction. 

X I 

Figure 8 



Structure of R and R” 75 

40.4. The Bolzano-Weierstrass Theorem. Suppose that S is a bounded 

infinite subset of R". Then S has at least one limit point in Rn. 

Proof. (It will be helpful if the reader will draw a “picture” of the various 

steps in the proof for the special case of R2.) Suppose that S is a bounded infinite 
subset of R". Then there is a closed interval K0 in R'1 that contains S’ and that can 

be taken to have sides all equal in length. Thus, we may take K0 as [a, /5]x X 
[a, /?]., X • • • X [a, /?]n, where the subscript i will designate the zth side. Now for 

each i, the zth side can be subdivided into two equal subintervals. By choosing a 

subinterval of [a, /?], for each i e P„, we can construct a closed interval J1 X 
J2 X • • • X Jn. This closed interval is a subset of K0 and each of its sides has length 

— a). But each Jt could have been chosen in one of two ways, so that there are 

2” such subintervals of K0. Since K0 is the union of these subintervals, at least one 

of the 2n subintervals of K0 must contain an infinite subset of S. Choose one such 
subinterval that has an infinite intersection with S and call it Kx. Now assume that 

for z = 1,2,... , k, K, has been chosen as a closed subinterval of K{_x such that 

Kt n S is an infinite set and such that the length of each side of K, is — (/? — a). 
2l 

We can proceed to the (k + l)th step in a manner similar to the way we took the 

first step. Thus, by induction we have a collection {Kp.i e P} of closed intervals 

such that Kt <= Kt_x, K{ n S is infinite, and each K{ has all sides of length 

(P — a). By the nested interval theorem, there is single point p e f| [Kp.i e P}. 
2l 

Let us show that p is a limit point of S. Let e > 0. Choose z so that < 

n~h. Then, it is easy to verify that Kt «= N(p; e). For if x = (xx, x2, . . . xn) e Ku 
P —■ a 

then for each / e Pn, \p, — xp ^ -;— . Thus, d(x, p) < 
2l 

But K, n S is an infinite set so that N(p; e) n S certainly contains a point of S 
distinct from p. Hence, p is a limit point of S. 

P n 
l 2* ) 

< e. 

41. CONVERGENT SEQUENCES IN R' 

We have already dealt briefly with convergent sequences in R. We can take 
over the definition to Rn without change. 

41.1. Definition. Convergent sequence. If (af is a sequence in R'1 and 

l e R'', we say that (a,) converges to l provided that for each s > 0, there is a positive 

integer N such that d(at, l) < e whenever i ^ N (or equivalently \a, — l\ < e 

whenever i 2? N). In that case we write lim (af = l or lim at = /. 
i~> oo 

It should be observed that if a sequence in R" has a limit, then that limit is 

unique. 
One would guess, looking at a picture such as the accompanying figure, that 

if (p.) = ((x4, /,)) is a sequence in R2, then lim P, = P0 = (x0,_y0) if and only if 
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lim x£ — x0 and lim y{ = y0. Such is indeed the case, and the following theorem 
states this result for Rn. 

41.2. Theorem. Suppose that x£ = (x{1; xi 2, ■ ■ ■ , xin) for each i £ P and 

x0 = (x0i, x0 2, ■ ■ ■ , x0n). Then lim (xf) = x0 if and only //lim x, k = x0 kfor each 
k e Pn. 

The proof follows easily from 36.3 and is left as an important exercise for the 
reader. 

We shall say that a sequence in R" is bounded provided that its range is bounded. 
Note that a sequence with finite range is bounded. Likewise, note that if (a,) 

converges to L, then N(L; 1) contains all but k terms for some positive integer k. 
Thus, if M = max {c/(<7£, L)\i £ P,.}, then the range of (a() is contained in /V(L; M + 
1). Thus, we have verified the following statement. 

41.3. Remark. If (tf£) is a convergent sequence, then («,) is a bounded 
sequence. 

It is certainly not true that every bounded sequence in R" is convergent. 

However, by making use of the Bolzano-Weierstrass theorem we can prove the 
following. 

41.4. Theorem. Let {at) he a bounded sequence in R' . Then there is a sub¬ 
sequence {an ) of (a,) that converges. 

Proof. Suppose the range of (a() is a finite set. Then there is a strictly in¬ 
creasing sequence of positive integers (//,) and a point z e R , such that a„. — z for 

i e P. Hence, lim (a„ ) = z and we arc through. Next suppose the range S of 
(a,) is an infinite set. By the Bolzano-Weierstrass theorem there is a point z that is 
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a limit point of S. (We shall find a subsequence (an) of (at) by choosing for each 

i e P, an an such that d(an , z) < However, we must be careful to choose these 
1 * / 

in such a way that («,) is a strictly increasing sequence of positive integers. We shall 

do this inductively.) Since z is a limit point of S, there is a positive integer n1 such 
that 

0 < d(an^ z) < 1. 

Assume that for 1,2,..., h, increasing integers nx, n2, . . . , nh have been chosen 
such that 

0 < d(ant, z) < - . 
/ 

Since S n Ntz;--j is an infinite set (see Exercise 7, page 71 ), there is an 
\ i 1 1 / j 

integer nh+l such that nh < nh+1 and for which d(a„h z) < --. Hence, by 

induction (see 18.4), a strictly increasing sequence of integers («,) has been chosen 

such that d(an., z) < It is clear from the way in which the integers («,) were 

chosen that (a„ ) is a subsequence of (a,) and that lim (#„_) — z. 

EXERCISES: CONVERGENT SEQUENCES IN R" 

1. Prove that if S is a subset of R" and z e Rn, then z is a limit point 

of S if and only if there exists a sequence (<?,■) in S that converges 
to z and which is such that a, ^ cfy for i ^ j. 

2. Suppose (a,) is a sequence in Rn that has the following property: 

For each e > 0, there is an integer N such that d(am, an) < e 

for m ^ N and n ^ N. Show that (a,) is a bounded sequence. 

3. Prove that if (a,) is a convergent sequence in R", then for each 

subsequence (aNJ of (a,-), lim (ax) = lim (aN). 

4. Give the details of the proof of 41.2. 

5. Prove that a subset S of R" is closed and bounded if and only if 

every sequence in S has a convergent subsequence whose limit 

is a point in S. 

6. Suppose (Si) is a sequence of nonempty bounded and closed 

subsets of R'1 such that for each i e P, Si+1 c Sx. Prove that there 

is at least one point p e f) {5*: / e P}. (Note that this is a general¬ 
ization of the nested interval theorem. After proving the prop¬ 

osition, see if your proof depended on some consequence of 

the nested interval theorem.) 

7. Suppose that (a,) and (b,) are sequences in Rn. Suppose also 

that c, = dj + bt for i e P. Show that if two of the sequences 
(cr,), (bx), (cf) converge, then so does the remaining one and 

further lim (c,) = lim (<z,) + lim (bt). 

8. Prove that lim (a) — a if and only if lim (</(«,, a)) = 0. 
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42. CAUCHY CRITERION FOR CONVERGENCE 

To use the definition directly to determine if a sequence (x,) converges to a 
point x, one generally first has to find a “candidate” x and then determine if indeed 

the terms are getting arbitrarily close to x. In fact, it may be impossible to deter¬ 

mine what the limit is likely to be. If it could be determined that a sequence con¬ 
verges without first determining a “candidate,” then it might be possible to 

determine how large i must be for xt to be a sufficiently good approximation to the 

limit. The so-called Cauchy criterion for sequences gives us a criterion involving 

the sequence alone. 

42.1. Cauchy criterion for convergence in R". Suppose that (a,) is a sequence 

in R". Then (at) converges if and only if the following condition is satisfied. 

42.1(a). For each e > 0, there is a positive integer M such that for m M 

and n ^ M, d{am, an) < e. 

Proof. We first prove that if (a,-) converges, then (a,) satisfies the stated con¬ 

dition. To see this, let lim a{ — a and suppose that e > 0. Then there is an integer 
M such that for m ^ M, d(am, a) < e/2. Then if w ^ M and n S M, d(am, an) ^ 

d(am, a) + d{an, a) < e. 
Next, suppose that (a,) satisfies the given condition. In that case it is not hard 

to prove that {at) is a bounded sequence in R" (see Exercise 2, page 7 7). By 
41.4, since (at) is a bounded sequence in R", there is a subsequence (a„) of 

(a,) that converges to a point z. We complete the proof by showing that because 

of the Cauchy condition, the sequence (a() itself converges to z. To see this let 
s > 0. There is an integer N such that for m ^ N and n S N, d(am, an) < Ie. 

Now there is an M = nk ^ N such that d(aM, z) < Ie since (an ) converges to z. 

Then for m > M, 

d(am, z) g d(am, aM) + d(aM, z) 

e e 
< - + - = e. 

2 2 

This completes the proof. 

EXERCISES: CAUCHY CRITERION FOR CONVERGENCE 

1. Show directly from the definition that the sequence (1 //) satisfies 
the Cauchy criterion. 

2. Define the sequence (x„) in R inductively as follows: Let 

xx = a, x2 = b, x„ = H*n-1 + -W-2). « ^ 3. Show that (x„) 
converges. 

3. Suppose that (x,) is a sequence in R’1. For each /, let x,- = 
(xf>1, xt>2, . . . , x, n). Show that (x,) satisfies the Cauchy con¬ 

dition for R'1 stated in 42.1 (a) if and only if for each j e P„, the 
sequence (x, j)t® t satisfies the condition for R. 
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4. Suppose that (a,) is a sequence in R" that satisfies the following 

property. There exists a 0, where 0 £= 0 < 1, such that for 

each neP, d(an+1, an+2) < 0 d(an, an+1). Show that (an) 

converges. 

43. SOME ADDITIONAL PROPERTIES FOR R" 

In this section we state several important theorems. These theorems are not 
only important in their own right, but they will be useful in some of our considera¬ 

tions in subsequent chapters. The proof of each of these theorems is left as an 
exercise. 

A subset S of R" is said to be dense in R'! provided that each nonempty open 

subset of R" has in it at least one point of S. This is equivalent to requiring that 

cl (5) — R". From 30.5, the set of rationals Q is dense in R. Thus, R contains a 
countable dense subset. Similarly, the following is true for R". 

43.1. Theorem. Let D be the collection of all points x2, . . . , xn) in 

R" such that for i e P„, x, is rational. Then D is dense in R". Hence, Rn contains a 

countable dense subset. 

By making use of the previous theorem, we can prove the following. 

43.2. Theorem. There exists a countable collection 3d = {Bi: i e P} of open 

subsets of R7* that have the following property. 

If U is open in R" and p e U, then there is a B, e 3d such that 

peBc U. 

Hence, each open set U <= Rn is the union of a countable subcollection of 3d. 

The previous theorem can be used to prove the following important theorem. 

43.3. Lindelof Theorem for R“. Let X be a subset of R". Suppose that 3d 

is a collection of open subsets of R " such that (J 3d X. Then for some countable 

subcollection 3d* c 3d, (J 3d* ^ X. 

Suppose that S is a subset of a space X and 3d is a collection of subsets of X 

such that (J 3d => S. Then 3d is called a covering of S’ and is said to cover S. 

43.4. Heine-Borel Theorem. Suppose that X is a bounded and closed subset 

of Rn. Let XT be a collection of open subsets of R'* that covers X. Then some finite 

subcollection of XT also covers X. 

(Hint: Use 43.3 to first find a countable subcollection XT* that covers X. 

Then assume that no finite subcollection of XT* covers X.) 

EXERCISES: SOME ADDITIONAL PROPERTIES FOR R" 

1. Prove the theorems in this section. 

2. Suppose 3d is a collection of pairwise disjoint open subsets of 

R". Show that 3d is a countable collection. 
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44. SOME FURTHER REMARKS ABOUT R" 

We have discussed in this chapter some important properties possessed by 

R". Other important properties possessed by R" will be considered in subsequent 
chapters. We shall also discuss in detail the nature of continuous and uniformly 

continuous mappings from Rm into R'*. However, much of our discussion will 
depend on the fact that R'* has a distance function defined on it and will hold 

equally well for the more general type of metric spaces to be studied next. On the 
other hand, there are properties possessed by Rn because of its particular structure 
that do not necessarily hold for the more general spaces. The Cauchy criterion 

for convergence (42.1) and the properties stated in the Bolzano-Weierstrass 
(40.4), the Heine-Borel (43.4), and the Lindelof (43.3) theorems are examples. 

Such properties have motivated many useful definitions and concepts. These 
permit analogies to be made between theorems and proofs in R'* and in certain other 

more general spaces. 

REVIEW EXERCISES 

1. Suppose that A is an uncountable collection of real numbers. 

Prove that there exists at least one z e A such that z is a limit 

point of A. Prove that there is an uncountable collection of 

limit points of A in A. 

2. Suppose that S <= R, S ^ 0 and S ^ R. Prove that S is not 

both open and closed. 

3. Suppose that {Kp.ieP} is a collection of nonempty bounded 

and closed subsets of R'* such that Ki+l c A, for / e P. Is 

P) {A,: / e P} necessarily nonempty? 

4. Suppose that A is a nonempty closed and bounded subset of R". 
Do there exist points x and y in A such that d(x, y) = diam (A)? 

5. Suppose that M is a countable subset of R2 and p e R2 — M. 
Does there necessarily exist a line L c: R2 such that p e L xz 

R2 - Ml 

6. Suppose that A and B are subsets of R". Is cl (A U B) — 
cl (A) U cl (B) (see 39.4)? Is cl (A) n cl (B) = cl (A n B)1 

7. Determine whether the following proposition is correct. 

Suppose that A is a bounded subset of R”, and e > 0. 
Then there exists a finite set F <= X such that 

X c (J {N(x;e):xeF}. 
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Metric Spaces: Introduction 

At this juncture it should be apparent to the reader that the notion of distance 

between points in R" has been of fundamental importance in our discussion. 

There are numerous other types of sets, in addition to subsets of R'', that mathe¬ 
maticians have had to study. Often in studying some set of mathematical objects, 

it is possible to measure in some useful way the distance between each pair of these 

objects. The word “useful” should be emphasized, for, as we shall see, it is always 
possible to define a mapping d that satisfies the properties listed in 36.1. However, 

to make the notion useful, the distance function has to be introduced in a way that 

is compatible with the proposed application. This is not always possible, and 
one often has to generalize the notion of “closeness” in ways that do not depend on 

distance. 
In this chapter we shall formalize the notion of a metric space and we shall 

give definitions of various concepts which have been introduced earlier only for 

R''. For example, the notions of open set, closed set, limit point, and convergent 
sequence will be defined and studied for metric spaces. The very important con¬ 

cepts of continuous and uniformly continuous mappings will be introduced and 

will continue to be studied in subsequent chapters. 

45. DISTANCE FUNCTION ANI) METRIC SPACES 

In 36 a distance function was defined and in 36.1 some important properties 
for this function were listed. These properties give motivation for the definition 

which follows. 

45.1. Definitions. Distance function and metric space. Let X be a set. 

Let d be a nonnegative real-valued function defined on XXX that satisfies the 

following: For all x, y, and z in X, 
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45.1(a). d{x, y) = 0 if and only if x = y 

45.1(b). d(x, y) = d(y, x) 

45.1(c). d(x,y) + d(y, z) ^ d(x, z) (triangle inequality). 

The function d is called a distance function or a metric for X and (X, d) is called a 

metric space. 

When there seems to be no chance for confusion, we shall sometimes speak of 
a “metric space Xwith the notation for the metric being understood. It should be 

emphasized, however, that for a given set there are, in general, many possible 
metrics. The reader is familiar with the Euclidean metric for R" (see 36). Next, we 
give other examples of metrics. In each case the reader should verify that the 
function is indeed a metric for the given set. 

45.2. Example. Let k > 0 and p :R" X R'! —>- R be given by 

p(x, y) — k\x — y\ for all x and y in RT 

45.3. Example. The function g:R2 X R2 —> R given by 

g(x,y) = |xx — Til + \xs -y2\ 

where x = (xls x2) and y = (y1} y2). 
45.4. Example. Let X be an arbitrary set. Define m: X X X —*■ R as follows: 

m(x, y) — 0 if x = y 

m(x, y) — 1 if x^y, 

45.5. Example. Let p be the real-valued function defined on R2 X R2 by 

p(x, y) = max {|x, - y{\ :i = 1,2} 

where x = (xl5 x2) and y = (_yi,j2). The function p is a metric for R2. 
45.6. Example. Let the function h be defined as follows: Lor all x and y 

in R2, let 

h(x, y) = 
\x - yI 

1 + |x — y\ 

The function h is a metric for R2. 

45.7- Example. Lor all x e Q and yeQ. where Q is the set of all rationals, 
let 

d(x,y) = |x — y\. 

(Note that c/:Q X Q —>- R is the restriction to Q X Q of the Euclidean distance 
function for R.) (Q, d) is a metric space. 

EXERCISES: DISTANCE FUNCTION AND METRIC SPACES 

1. Verify that the functions given in 45.2 through 45.6 are metrics. 

2. Let (X, d) be a metric space. Define d*: X X X —► R as follows: 

d*(x, y) = min (1 ,d{x,y)} 

for all x and y in X. Show that d* is a metric for X. 
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3. Let d:XXX~* R be a function that satisfies the following: 

For all x, y, and z, in X 

d(x, y) = 0 if and only if x = y 

d{z, x) + d(z, y) ^ d(x, y). 

Show that for all x and y in X, d(x,y) ^ 0 and d(x,y) — 

d(y, x). (Hence, a function satisfying the two given properties 

is a metric for X.) 

46. OPEN SETS AND CLOSED SETS 

In 36.4 we defined for R'1 the notion of e-neighborhood with respect to the 

Euclidean distance formula given in 36. The notion of limit point was defined in 

terms of e-neighborhood and, in turn, closed set was defined in terms of limit point. 

Thus, ultimately all these concepts rest on the idea of a metric. In this section we 

extend all these concepts to metric spaces. The Euclidean metric given in 36 will 

continue to come up in our discussions. If we use the phrase “the space Rn” or 

more simply “Rn” without specific mention of a metric, it will be understood to 
stand for (R", d), where d is the Euclidean metric defined in 36. In some books this 

space is referred to as En (Euclidean n-dimensional metric space). 

In the following definitions (X, d) is a metric space. 

46.1. Definitions. Open spheres and closed balls. Let e > 0 and p e X. 

Then by the e-neighborhood of p or the open sphere with center p and radius e, we 

shall mean the set 

N(p; e) — {x:x e X and d(x,p)<e}. 

By the closed ball with p as center and radius e, we shall mean the set 

B(p; e) = {x:x e X and d{x, p) e}. 

If more than one metric is used in a discussion, we shall sometimes use sub¬ 

scripts to denote which metric is involved. For example, Bd(x; e) would denote 

an e-ball with respect to the metric d. We shall follow the same convention with 

other special types of sets involving a metric. 

In order for one to get a feel for the concepts under discussion, it is helpful 

to draw pictures of open spheres and closed balls using various metrics for the set 

R2 that were given in Examples 45.2 through 45.6. We give some consideration to 

such pictures in the following examples, and the reader will be asked to draw 

further pictures in the next set of exercises. 
46.2. Example. Let the metrics g and p be as in Example 45.3 and Example 

45.5, respectively. Let d be the Euclidean metric for R2. The 1-neighborhoods of 

0 = (0, 0) for these three metrics are shown in Figure 1 0. 

46.3. Definition. Open set. Let S be a subset of X. S is said to be an open 

subset of X provided that for each p e S, there exists an e > 0 such that N(p; e) c S. 
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d(x,y) = |x - y| P(x,y) = max {|x, — y,| , |x2-y2|} g(x.y) = Ix, - y,| + |x2 - y 

Figure 10 

46.4. Definition. Limit point of a set. Let S <= X and let p e X. The point 

p is said to be a limit point of S provided that each neighborhood N(p; e) of p inter¬ 
sects S in at least one point different from p. 

46.5. Definition. Closed set. A subset S of X is said to be closed provided S 
contains all its limit points. 

46.6. Definition. Closure of a set. Let S <= X. The set S u S', where S' 
is the set of all limit points of S, is known as the closure of S, abbreviated cl (S). 

Just as in R", closed subsets can be characterized in terms of open subsets as 
follows. 

46.7. Theorem. A subset S of a metric space X is closed if and only if its 
complement is open. 

In the definitions just given and in other definitions related to a space (X, d) 
the following should be kept in mind: The definitions are made in the setting of a 

given fixed metric space. It would probably be more accurate to say, for example, 
that S is closed with respect to (X. d) or S is a {/-closed set. However, where there 
is no chance for confusion, we will generally not refer to the space. 
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Since thus far our experience with these concepts is related to the Euclidean 
space R2, we must be cautious about dealing with sets when other metrics are used. 

For example, for the Euclidean metric d for R", cl (Nd(p; e)) = Bd(p; e). Further, 

in the space R", N(p; e) is a proper subset of B(p\ e). Again, this need not be so in 

general. There will be examples in the next set of exercises that will bring out these 
facts. 

EXERCISES: OPEN SETS AND CLOSED SETS 

1. In this exercise, let d be the Euclidean metric for R2. Further, 

let g, m, p, and h be the metrics given in Examples 45.3 through 
45.6. Let 6 — (0, 0). Draw each of the following sets (some 

will simply be verifications of the pictures given in the text). 

(a) Nd(6;l),Bd(d;\) 
(b) N0(6; 1 ),Ba(6; 1) 

(c) Nje;t),Nn(d; 1), Bm(6; 1) 
(d) NP(6; 1), Bp(6; 1) 
(e) A/,/0; 1), Bh(Q- 1) 

2. Using Exercise 1 or other examples, show that for some metrics 

it need not be so that cl (N(p; e)) = B(p\ e). Further, show that 

N(p; e) need not be a proper subset of B(p; e). 

3. Prove that if (X, d) is a metric space, p e X, and e > 0, then 
N(p; e) is an open set. Is it possible in some cases that N(p; e) 

is also a closed set? 

4. Are closed balls B(p\ e) necessarily closed sets? 

5. Show that if (X, d) is a metric space, then X can be expressed as 

the union of a countable collection of neighborhoods with a 
common center. 

6. Let (X, d) be a metric space. Prove that if A <= B <= X, then 
cl (A) <= cl (B). 

7. In each of the following either prove the statement or give a 

counterexample: 

(a) cl (A n B) C Cl {A) n cl (B) 

(b) cl (A n B) = cl (A) n cl (B) 
(c) cl (A U B) c cl (A) U cl (B) 

(d) cl (A U B) = cl (A) U cl (B) 

47. SOME BASIC THEOREMS CONCERNING OPEN AND 
CLOSED SETS 

The theorems listed in this section include some already met by the reader in 

the context of R'1 (see 39 and Exercises on page 7 0). The reader should provide a 

proof in each case in which a proof is not given in the text. 
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47.1. Theorem, (a) 0 and X are open subsets of X. (b) The intersection of 

any two open subsets of X is open, (c) The union of each arbitrary collection of 

open subsets is open. 

The dual of 47.1 is the following important theorem. 

47.2. Theorem, (a) 0 and X are closed subsets of X. (b) The union of any 

two closed subsets of X is closed. (c) The intersection of each nonempty arbitrary 

collection of closed subsets is closed. 

The proof of Theorem 39.5 for the closure of sets in R" carries over for metric 

spaces to give the following. 

47.3. Theorem. For each subset S of X, cl (S) is closed. 

47.4. Theorem. For each subset S of X, cl (S) is the intersection of the 

collection of all closed subsets of X that contain S, that is, 

cl (5) = n {F' S c: F and F is a closed subset of X). 

Proof. Let K = p| {F:S <= F and F is a closed subset of X}. By 47.3, 

cl (5) is a closed set and since 5 c cl (S), it follows that K c cl (S). We complete 

the proof by showing that cl (5) <=■ K. For each He {F:S <= F and F is closed}, 
S <=■ H and, hence, cl (S) <= cl (H) = H. Therefore, cl (S) <= D {F:S <= F and 

Fis closed}. 

EXERCISE: SOME BASIC THEOREMS CONCERNING OPEN AND CLOSED SETS 

1. (a) Prove Theorem 47.1. 
(b) Prove Theorem 47.2. 
(c) Prove Theorem 47.3. 

48. TOPOLOGY GENERATED BY A METRIC 

Let (X, d) be a metric space. Let 3~{d) be the collection of all open subsets of 
X with respect to the metric d. Then (d) is said to be the topology for X generated 

by d. As we proceed with our discussion we shall see that many of the concepts 
with which we deal can be completely defined or characterized in terms of the open 
subsets of X. 

We shall also see that different metrics for a set X may generate the same 

collection of open sets. Hence, those properties that depend only on the open sets 
will be possessed by both (X, df and (X, d2) if dx and d2 generate the same open 

sets. Furthermore, as we shall see later, concepts characterized by open sets lend 
themselves to useful generalizations. 

48.1. Definition. Topology generated by a metric. Let (X, d) be a metric 

space. The collection .T(d) of all d-open subsets of X is called the topology for X 

generated by d. 

48.2. Definition. Equivalent metrics. Let dx and d2 be metrics for a set X. 

The metrics are said to be equivalent provided that the topologies FT (c/J and ST(d2) 

generated by dx and d2 are the same (i.e., 3F(dx) — SF(d2)). 
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48.3. Definition. Topological property for metric spaces. If P is a property 

for metric spaces that can be characterized completely by the topology (i.e., the open 

sets) of the space, then P is said to be a topological property. 

The following theorem is a useful device for determining whether two metrics 

are equivalent. The easy proof is left as an exercise. 

48.4. Theorem. Let X be a set and let dx and d2 be metrics for X. Then 

dx and d2 are equivalent if and only if the following condition is satisfied. For each 

p G X and e > 0, there is a dx > 0 and 62 > 0 such that 

Ndfp-, <= Ndfp; e) 

and 

Ndfp; <52) c Ndfp; e). 

48.5. Example. Let d be the Euclidean metric for R2, p the metric for 
R2 as given in Example 45.5 and g the metric of Example 45.3. Then each of these 

three metrics is equivalent to the others. See the figure accompanying Example 

46.2 (Figure 10). 

EXERCISES: TOPOLOGY GENERATED BY A METRIC 

1. Prove Theorem 48.4. 

2. Verify Example 48.5. 

3. Let (X, d) be a metric space. Prove that there is a metric d* 

which is equivalent to d and which satisfies the inequality 
d*(x,y) ^ 1 for each x and y in X. Hint: Let d*{x,y) = 

min {1, d(x, y)}. 

4. Let (X, d) be a metric space. Let k > 0 and d* be defined on 
X X X as follows: 

d*(x,y) = k d(x,y). 

Show that d* is a metric for X and that d* is equivalent to d. 

5. Let X be a set and m be as in Example 45.4. Show that every 

subset of X is an w-open set. Hence, (w), the topology for X 

generated by m, is the largest topology for X that can be gener¬ 
ated by a metric d; that is, 3~(d) <= (m) for each metric dfor X 

49. SUBSPACE OF A METRIC SPACE 

Suppose we wish to have a measure of distance between points on a circle in 

R2. One obvious way to do this is simply to apply the Euclidean metric for R2 

to the circle. Similarly the metric for R3 can be used to measure the distance 

between points on a 2-sphere in R3. More generally, if (X, d) is a metric space and 

Y cz x, the restriction d \ Y X Y is a metric for Y. 

49.1. Definition. Subspace of a metric space. Let (X, d) be a metric space 

and suppose Y <=■ X. Then (Y, d | EX Y) is called a sub space of (X, d). 
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Generally we will use the shorter notation (Y,d) for (T, d | YX Y). Also, 

when there is little chance for confusion, we shall say that Y is a subspace of X, 

the reference to the metric d being understood. 

49.2. Example. Consider the line L = {(x, 0):x eR] <= R2. If we restrict 

the Euclidean metric d for R2 to points in L, then we see that 

d((x, 0), (y, 0)) = \x—y\ 

for all (x, 0) and (y, 0) in L. 

It should be noted especially that just because a set S is open (closed) in a 

subspace ( Y, d) of (X, d) it does not necessarily follow that S is open (closed) in 

(X, d). For example, in 49.2 any set of the form {(x, 0):a < x < b) is open in 
(L, d) but is not open in (R2, d). 

49.3. Example. Let d be the Euclidean metric for R. Let Q be the set of all 

rational numbers in R. We note that Q is both open and closed in (Q, d) but 

neither open nor closed in (R, d). 

Note that if we call d* = d \ Y X Y and let p e Y, then Nd(p; e) = {y:y e X 

and d{y, p) < e} and Nd.(p\ e) = {y\y e Y and d*(y,p) = d(y,p) < e}. Thus, 

Nd*(p] s) = Nd(p; e) n Y. 

This observation is useful in proving the following theorem. 

49.4. Theorem. Let (Y, d) be a subspace of (X, d). Then S c y is open 

(closed) in ( Y, d) if and only if there is a set Q c x, open (closed) in X, such that 

S = Q n Y. 

Proof. We shall prove the part for open sets and leave the part for closed 

sets as an exercise. 

Let d* — d | Y X Y. First we assume that S is open in Y and that p e S. 

Since S is open in Y, there is an e(p) > 0 such that Nd,(p\ e(p)) c S. Choose one 

such e(p) for each p e S. Recall that Ndt{p\ e(p)) = Nd(p‘, e(p)) n Y. Let Q = 

U {2Vd(/>; e(p)):p e S}. Note that Q is open in X and that Q n* Y = S. 

We next prove the converse. Suppose S = Q n Y where Q is open in X. 

We show that S is open in Y. Let p e S = Q n Y. Since Q is open in X, there is an 

e > 0 such that Nd(p; e) <= Q. But then, Nd*(p; e) = Nd(p\ e) n Y Q n Y. 

Thus, S is open in Y and the proof for this part is complete. 

EXERCISES: SUBSPACE OF A METRIC SPACE 

1. Prove the part of Theorem 49.4 for closed sets. 

2. Let (T, d) be an open (a closed) subspace of (X, d). Then 
W cz y is open (closed) in Y if and only if W is open (closed) 
in X. 

3. Let A = (ax, a2) and B = (bx, b2) be distinct points in R2. Let 
S be the line {(1 — t) A + tB:te.R\ in R2. Notice that each 

point in S’ can be represented uniquely in the form 

P(t) = (1 - t)A + tB. 

Define d*:S X S -> R by 

d*(P(tl), P(t2)) = |- /,|. 
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Is d* a metric for SI If your answer is yes, is d* equivalent to 
d I S X S, where d is the Euclidean metric? 

50. CONVERGENT SEQUENCES IN METRIC SPACES 

We have already considered the notion of convergent sequence in the real line 
(32) and, more generally, in R" (41). The definition carries over directly to metric 

spaces. 

50.1. Definition. Convergent sequences in metric spaces. Let (X, d) be a 

metric space. Let (y„) be a sequence in X and let x e X. We say that (xn) converges 

to x or lim (y„) = y provided that for each e > 0 there is a positive integer Ne 

such that 

if n Ne, then d(xn, y) < e. 

Just as in Rn, it follows easily from the definition that a sequence in a metric 
space can converge to, at most, one point. Also, it should be observed that that 

convergence is defined with reference to a space. Suppose, for example, that 

(y,) is a sequence in (X, d) such that each y* e S c X. If (y,) converges in (X, d) 

to a point in X — S, then (y4) converges in (X, d) but does not converge in the 

subspace {S, d). 

50.2. Example. Consider the space (R, d) where d is the Euclidean metric 

and S is the open interval (0, 1) c R. Note that the sequence (1//?) converges in 

(R, d) but does not converge in (S, d). 

The next theorem follows immediately from the definition of convergence in a 

metric space. 

50.3. Theorem. Let (X, d) be a metric space and let (S, d) be a subspace of 

{X, d). If (y,) is a sequence in S, then (y,) converges in (S, d) if and only if (y,) 

converges in (X, d) to a point in S. 

The proof of the following statement is easy and is left as an exercise. 

50.4. Theorem. Suppose that (yJ is a sequence in a metric space (X, d) 

and x e X. The sequence (xn) converges to x if and only if for each open set U in 

X that contains x, there is a positive integer Nv such that if n Nv, then xn e U. 

Suppose that d1 and d2 are equivalent metrics for a set X. It follows easily 

from 50.4 that a sequence converges in (A, df if and only if it converges in (X, d2). 

For metric spaces, limit points of sets and, hence, closed sets can be character¬ 

ized in a very useful way by means of sequences. 

50.5. Theorem. Let S <= X and l e X. Then, 

50.5(a). I is a limit point of the set S if and only if there exists a sequence of 

points in S — {/} that converges to I. 

50.5(b). S is a closed subset of X if and only if every convergent sequence in S 

converges to a point in S. 
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Proof. We prove (a) and leave (b) as an exercise. 

First suppose that / is a limit point of S. Then for each positive integer i, 

choose xt e N(l; 1//) n [5 — {/}]. Obviously lim (x,) = /. 
Next suppose that (x,) is a sequence of points in S — {/} such that lim (x,) = /. 

Given a neighborhood N(l; e), there is an n such that xn e N(l; e). Upon noting 

that xn /, we conclude that / is a limit point of S. 

EXERCISES: CONVERGENT SEQUENCES IN METRIC SPACES 

1. Prove Theorem 50.4 and Theorem 50.5(b). 

2. Suppose that (x,) is a convergent sequence in a metric space 
(.X, d). Show that for each e > 0, there is a positive integer M 

such that if m >, M and n ^ M, then d(xm, x„) < e. 

3. Let Q be the set of all rationals and let d be the Euclidean metric 
for R. Consider the subspace (Q, d) of (R, d). Show by an 
example that if a sequence in Q satisfies the condition in the 

conclusion of the previous exercise, the sequence need not 
converge to a point in Q. 

4. Consider the space of Example 45.4. Describe the nature of 
convergent sequences in that space. 

5. Suppose that (xj and (j;) are two convergent sequences in 

{X, d) that converge to the same point x. Let zf be given by 

z*i-i = xt and z2t- = yt so that z = (xj, ylt x2, y2, x3, y3, ■ ■ •). 
Show that lim (zt) = x. 

6. Prove the following: 

Let (X, d) be a metric space. Let S be a subset of X. 

Then x e cl (S) if and only if x is a limit of a sequence in S. 

7. Suppose (X, d) is a metric space and (x,) is a sequence in X 

and leX. Prove: 

(a) lim (x,) = / if and only if lim (d(x{, /)) = 0. 
(b) If (yt) is also a sequence in X and lim (x,) = /, then 

lim (j>,) = / if and only if lim (rf(xt, y()) = 0. 

51. CARTESIAN PRODUCT OF A FINITE NUMBER OF METRIC SPACES 

Recall that in Chapter 2 the distance function d for R" was given as 

d(x, y) = 
i i 

Notice that in this formula |x, — yt\ represents the distance between the ;th co¬ 
ordinates of x and This observation motivates what turns out to be a very useful 

metric for the Cartesian product set X {X,:i e P„}, where {(A,, d,).i e P,,} is a 
finite collection of metric spaces. 
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51.1. Theorem. Let {{Xt. dt):i e Pn} be a finite collection of metric spaces. 

Let X = X {Xp.i e P)(}. Then the function d:X X X ^R, given by the following 

formula, is a metric for X. 

d(x, y) 'Z(di(xi, ydf 
_l=l 

where x = (xls x2, . . . , xn) and y = (yl5 y2, ... , yn). 

Before beginning the proof of this proposition, let us recall that we proved the 

triangle inequality for the Euclidean metric for R" by proving the triangle inequality 

for the magnitude function (see 35.2). We shall also make strategic use of the 

magnitude function in the proof of 51.1, by noticing, for example, that if we set 

A = (d1(x1, yd, d2(x2,y2), . . . , dn{xn,yn)), 

then A e R" and 

\A\ = d(x,y). 

Proof. That d(x, y) — 0 if and only if x = y and that d(x, y) — d(y, x) are 

obvious from the definition. We prove next that for x, y, and z in X, d(x,y) + 

d(y, z) Si d(x, z). Set 

A = (dfx^yj, d2(x2,y2), . . . , dn(xn,yn)) 

and 
B = {dfyx, Zj), d2(y2, z2), . . . , dn(yn, zj). 

Then, 

d(x, y) + d(y, z) 

- Ml + \B\ 

^\A + B | 

= |(rfi(xi, yO + dfy^ zx), d2(x2, y2) + d2(y2, z2),. . dn(xn, yn) + dn(yn, zj)| 

Xidfct, yd + dfyit zff 
ni 

i=i 

Then, since for each / e P„ 

we get 
dfa, yd + djyit zd X dt(.x{, zd, 

d(x, y) -f d(y, z) ^ ^ (di(xo zi)Y 
i=1 

= d(x, z). 

We shall refer to the metric just defined as the product metric and designate 

the corresponding metric space by X {(A'i, dd'.i e P„}. 
We have shown that, given a finite collection of metric spaces, we can define a 

product metric in a manner that generalizes the Euclidean metric for R". Many 

of the concepts that we shall study depend entirely on the topology, that is, on the 
sets which are open with respect to the product metric. Thus, in dealing with the 

product space, it is often not necessary to make explicit use of the product metric 
itself. For this reason it is useful to have a characterization of the open sets in 
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terms of the open sets for the coordinate spaces. We accomplish this by means of 

the following important theorem. 

51.2. Theorem. Let {(I,, be a finite collection of metric spaces 

and let (X, d) be the corresponding product space. Then U is open in (X, d) if and 

only if U is the union of sets of the form 

51.2(a). 
X {Up.i e Pn} where each Ut is open in X,. 

Proof. We first show that a set of the form 51.2(a) is open in (X, d) and, 

hence, a union of such sets is open. Let (px, p2, . . . , pn) e X {Up. i e P„}, where 

each Ut is open in X, and pt e U(. Since each Ut is open, for each / e Pn, there is a 
<3* > 0 such that Nd{pp, Ut. Now let 6 = min {dpi e Pn}. If x e N{p', d), 

then d^p^ xf) ^ d(p, x) < d ■£ dt. Hence, x e X {Up.i e P„} and we have shown 

that N(p; <3) <= X {Up. i e P„}. Thus, X [Upie PJ is an open subset of (X, d). 

Next suppose that U is an open subset of (X, d). Let p e U. We complete the 

proof by showing that p is an element of a set W of the form 51.2(a) which is con¬ 
tained in U. Since U is open in {X, d), there is a <5 > 0 such that N(p; (3) c: U. 

Let W = X {N(pp n~^5)\i e Pn} and note that p e W. Also, if x £ W, then each 

dfXi, p^ < (n)~$d and, hence, d(x,p) 1 d\(,Xi,Pl) 
Hi 

< I {rtfiW 
i 
= (5. 

Li=l L j'=l 

Thus, x e W implies that x e N(p; 6). We have shown therefore that p e W xz 

N(p; (3) c= U, where IT is a subset of the form 51.2(a). 

For the case R2=RX R, with the usual metric for each factor R, the product 
metric gives the usual Euclidean distance formula for R2. Recall that for this 

distance formula, the e-neighborhoods are “circular.” It was pointed out in 

Example 48.5 that a metric g for R2 that is equivalent to the Euclidean metric is 

g(x,y) = |xj —yx| + |x2 -y21. 

The generalization of this metric to a finite collection of metric spaces is given in 

the next theorem. 

51.3. Theorem. Let {(A,-, dt):i e Pn} be a finite collection of metric spaces. 

Let X = X {Xpi e P„). For each x = (xx, x2, . . . , xn) and y = (yy, j2, . . . ,;'„) 

in X, define 

n 

g(x, y) = ldi(xi, yfi 
<=i 

Then g is a metric for X and, furthermore, g is equivalent to the product metric d as 

defined in 51.1. 

Proof. It is easy to verify that g(x, _y) = 0 if and only if x = y. Also it is 

obvious that g(x, _y) = g(y, x). We verify the triangle inequality as follows. 

g(x, y) + g(y, z) = I d,(xu y\) + i’ d£yt, z.) 
i=1 t-1 

= i. [dfXi, >’,) + dt(y„ z,)] 
1—1 
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Then, since for each i e Pn, 

yd + dfyit zj) ^ di(xit zj), 
we obtain 

n 

g(x, y) + g(y, z) ^ 2 d^, zt) 
i=1 

= g(x, z). 

We next show that the metric g is equivalent to the product metric. To do this 

we shall make use of Theorem 48.4. Let e > 0 and p e X. We shall complete the 
proof by finding positive numbers bx and d2 such that 

51.3(a). Ng{p; <5X) <= Nd(p; e) 

and 

51.3(b). Nd(p;c32)c Ng(p;e) 

We set = e and b2 = /7_1e. 

To verify 51.3(a), let x e Ng(p; <5X). Observe that 

d(p, x) = 

< 

J,(di(Xi, pdf 
i=l 

n 

2 di(xt, pd 
1=1 

ni 

2^(x«, a) = g(A -x) < <5i = £. 
i=l 

Hence, x e Nd(p; e) and we have verified that Ng{p\ (3X) <= Nd(p; 

51.3(b), let x G Nd(p; d2). Then d(x, p) — ^ ^ 2 (d^x^pi))2 
Li=l 

< bo. 

follows that for each i e Pn, dt{x{, pj) < b2. But then 

e). To verify 

From this it 

S(x, p) ='£di(xi, p^ < nd2 = £. 
i=1 

Hence, we have shown that x e Ng(p; e) and, consequently, Nd{p\ b2) c= £). 

This completes the proof that d and g are equivalent metrics for X. 

51.4. Definition. Projection functions. Let X be the Cartesian product of 

the collection of nonempty sets {Xp.i e P„}. For each i eP„, X, is called the ith 

coordinate space of X and for each (xx, x2, . . . , x„) G X, xf is called the ith co¬ 

ordinate. Further, the surjection rrp.X Xt given by 

"■<((x 1, x„ . . . , xj) = xf 

is called the projection function of X onto Xv 

in terms of these projection maps, we generalize Theorem 41.2 from R" to 

the situation with which we are presently dealing. It is instructive to observe that 

the proof of the following theorem makes use of Theorem 51.2, appealing to the 
open sets in the product and in the coordinate spaces, rather than to the product 

metric itself. 

51.5. Theorem. Consider the space X = X {(Ari, dj): / G P„)}. Then a 

sequence (xk)j=l in X converges to a point p G X if and only if for each j G P„, 

(^i(xk))f=1 converges to vfp). 
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Proof. First assume that (xk) is a sequence in the product space X and that 

lim (xfc) = p. Fix j and consider the sequence (7rJ(xfc))^=1. We show next that 
lim = rrfp). Let U} be an open set in Xs such that ■nj{p)eUj. Note 

£-►00 

that p e nf1 [nfp)] and 

7= Xx x A2 x • • • x IF x • • • x Xn 

which by 51.2 is an open subset of X. Since p e Trf} [Uj] and lim (xfc) = p, there 

is an N such that for k ^ N, xk E 7ry-1[C/y]. But then for k ^ N, nfxfi e \Ji and 
we have shown that {rrfxfi)^ converges to nfp). 

Next, suppose for each j, (irj(xk))k=l converges to -nfp). Let U be an open 

subset of X such that p e U. By Theorem 51.2 there are open sets Ul <= X, such that 
Pi E Ui and X {Up.i E P„} <= (J. Since (7ri(xi.))”=1 converges to rrfp), then for 

each j, there is an integer A/,- such that for k ^ Njt rrfxfi e U,. But then for 

k ^ max {N, :j e P„}, xk e X {Uj :j e Pn} «= U. 

EXERCISES: CARTESIAN PRODUCT OF A FINITE NUMBER OF METRIC SPACES 

1. Let {(Xi,dt):iE P„} be a collection of metric spaces. Let 

X = X {Xp.i e P„}. For each x = (xl5 x2, x3, . . . , x„) and 

y = (yi>y», ■ ■ ■ .JO* define /t(xj) = max{(ij(x(j1):/6Pll}. 
Show that p is equivalent to d, where d is the product metric 

discussed in this section. 

2. Let d = (0, 0). For each metric p for R2, define S(p) = 
{x:x E R2 and p(x, 0) — 1} and B(p) = {x:x e R2 and p(x, 0) g 

1}. The real interval {r:0 ^ r ^ 1} will be denoted by I. Also 
let d be the usual R2-metric; g and p will be the metrics for R2 

as defined in Examples 45.3 and 45.5. Notice that B(d) X / can 
be perceived as a solid cylinder with radius 1 and height 1. 
The set S{d) X S(d) can be visualized as a torus. Describe the 

sets B{d) X S(d), S{p) X /, S(g) X I, B(g) X I, and B(g) X S(d). 

3. In the proof of Theorem 51.3 it was shown that Nd(p\ n1 e) c: 
Naip; e). From the picture on page 84 , we might conjecture 

that the larger (/-neighborhood Nd(p; n ^e) is contained in 
Ng(p; e). Prove that this conjecture is correct. 

52. CONTINUOUS MAPPINGS: INTRODUCTION 

The intuitive idea behind the notion of continuity of a function is that of 

preserving closeness of points; that is,/(x0) can be approximated as closely as we 
wish by /(x) provided that x is a sufficiently good approximation of x0. Recall 
from the calculus that for a real-valued function defined on an open interval 
(a, b) ^ R, this notion was formalized as follows: 

The function / is continuous at x0 e (a, b), provided that for each e > 0, 
there is a <5 > 0 such that if |x — x„| < 6, then |/(x) —/(x0)| < e. 

52.1. Definition. Continuous function. Suppose (X, d) and (Y, p) are metric 

spaces and the function f.X —> Y satisfies the following condition at a point x0 e X. 
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For each e > 0, there is a d > 0 such that if x e X and d{x, x0) < d, then 

p(f(x), /(x0)) < e. We then say that the function f from (X, d) to (T, p) is con¬ 

tinuous at x0. If f is continuous at each point x in X, then f is said to be a continuous 

function from (X, d) into ( Y, p). 

52.2. Example. Let dn and d be the Euclidean metrics for R" and R, re¬ 

spectively. Let a be a fixed element in R" and let /be the function given by 

/(.v) = a ■ x for each x e R" (see 34.3). 

Then / is a continuous function from (R", d„) into (R, d). To prove this, let 

x0 G R" and let e > 0. If \a\ — 0, it should be clear that f is continuous at x0. If 

\a\ f 0, then let b = (I/|a|) e. Then, for dn(x, x0) = |x — x„| < b, using the 
properties of the dot product (34.4 and 35.1), we obtain 

d(f(x),f(x„)) = | a ■ x — a ■ x0\ 

= \a ■ (x — x0)| ^ N \x — x0| 

rS |<a| <5 = |u| — e = e. 
\a\ 

Hence,/is continuous at x0. 
In the previous chapter when we spoke of a function/from X into Y, we used 

the notation f :X -* Y. Continuity is an example of a notion that involves the 

behavior of a function with respect to spaces rather than just sets. This is the 
reason for our using, in the definition of continuity, the expression / is a continuous 

function from (X, d) into ( T, p). We shall abbreviate such a statement by writing 

/: (W, d) -*■ ( Y, p) is continuous. However, when there is little chance for confusion, 
it is quite common to drop the reference to the metrics involved and refer to a 

“continuous mapping/:X ->- Y" or more simply to a “continuous mapping j". 

Recall that we have been doing the same sort of thing when we refer to “an open 

set U in X” when perhaps it would be more appropriate to refer to “a </-open set 

U in X." 

There is another remark about notation that is appropriate at this point. 

Sometimes in a proof one function is used in several different metric settings (see 

Example 52.3). In such a case it may be notationally clearer if a different name is 
given to the function in each case. 

52.3. Example. Let d be the Euclidean metric for R" and let m be the metric 

for the set R" given by m(x, y) — 0 if x = y and m(x, y) = 1 if x f y (see Example 
45.4). In what follows both / and g denote the identity function on the set R''. 

We shall show that f:(Rn,m) (Rn,d) is continuous. However, the function 

g:(Rn, d) -* (R", m) is not continuous. The point of the example is that con¬ 
tinuity depends not only on the function but also on the metrics that are involved. 
We first verify that /:(Rn, m) ->-(Rn,d) is continuous. Let aeR" and e > 0. 

We choose <5 = 1. Next suppose xeR" and m(x,a) < 1. Note that the only x 

that satisfies this condition is x = a. Hence, d{f (x), /(a)) = d(x, a) = d(a, a) = 

0 < £. Hence, we have shown that / is a continuous map from (R'!, m) into 

(RVsO- We next consider g: (Rn, d) -* (R", m), where g(x) = x for each x e R'1. 
We prove that g is not continuous by contradiction. Suppose g were continuous. 

Let e = 1. Then there is a b > 0 such that if d(x, a) < b, then tn(g(x), g(a)) < 

e = 1. Now choose an x eR" such that d(x, a) < b and x f a (there are such 
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points). Then m(g(x), g(a)) = m(x, a) < 1. However, this implies that x — a 

and we have a contradiction. 

In the next theorem we give several statements, each of which is equivalent to 
the form of continuity given in the definition. All the forms are useful, and one 

of them in particular emphasizes the fact that continuity depends only on the 

topologies involved. 

52.4. Theorem. Each of the following properties is equivalent to continuity 

of f: (X, d) -* ( Y, p) at x0 e X. 

52.4(a). For each e > 0, there is a d > 0 such that 

f[Nd(x0; (5)] c Np(f(x0); e). 

52.4(b). For each sequence (*,) in X that converges to x0, the sequence (/(*,)) 
converges to f(x0). 
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52.4(c). For each open set V in Y that contains f (x0), there is an open set U in X 

such that A'0 G U and f[U] <= V. 

Proof. That (a) is equivalent to the continuity of f at x0 is obvious. We 

assume that/is continuous at x0 and show that (b) holds. Suppose that lim (xf) = 
x0 and e > 0. Then there is a d > 0 such that if d(x, x0) < 6, then p(f (x),f (x0)) < 

e. Since lim (xt) = x0, there is a positive integer N such that for i ^ N, d(xt, x0) < 

d. But then for i S N, p(/(x,),/(x0)) < £ and, hence, lim (/(**)) = f(x0). 

We next show that (b) implies (c). Assume (b) and let V be an open set in Y 

with f(x0) G V. Suppose that, contrary to what we wish to prove, for no open set 
U in X for which x0 g U is it true that f[U] <= V. Then for each positive integer n, 

f[Nd(x1 In)] n (~K)^ 0. Thus, for each positive integer n, there is an 

xn G X such that d(x0, xn) < - and /(x„) G ~ V. By (b), since lim (xn) = x0, 

lim (f(xn)) — /(x0). Then for n large enough, f(xn) e V. This is a contradiction 

to the way the xn’s were chosen and the proof that (b) implies (c) is complete. 

We next prove that (c) implies (a). Assume that (c) holds at x0. Let e > 0. 
The set Np(f(x0); e) is open in Y. Then by (c), there is an open set U in X such 
that x0eU and f[U] cz Np(f(x0); e). However, there is a d > 0 such that 

Nd(x0; d) <= U from which it follows that f[Nd(x0; 6)] <= Np(f(x0); e). Hence, 

(c) implies (a) and the proof of the theorem has been completed. 
The following theorem gives a useful characterization of continuity. The proof 

is left as an exercise. 

52.5. Theorem. A mapping J':(X,d)-^-(Y,p) is continuous if and only if 

either of the following conditions is satisfied. 

52.5(a). For each set U that is open in Y,f~l[U] is open in X. 
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Figure 14 

52.5(b). For each set K that is closed in Y.f~1[K] is closed in X. 

The next theorem emphasizes, as does Theorem 52.5, that continuity depends 

only on the topologies involved and not specifically on the underlying metric. 

The proof follows easily from Theorem 52.5. 

52.6. Theorem. Let d1 and d2 be equivalent metrics for a set X and let pt 

and p2 be equivalent metrics for a set Y. Then a mapping f'.(X, dy) -*■ ( Y, px) is 

continuous if and only f: (X, d2) -* (Y, p2) is continuous. 

If f:(X, d) (F, p) is a mapping, we shall often speak of some property as 

being invariant under / or f~x. For example, Theorem 52.5 tells us that if /: 
{X, d) (Y, p) is continuous, then the property of being an open (closed) subset 
is invariant under f~x\ that is, if U is an open (closed) set in Y, then f~l[U] is 

an open (closed) set in X. Sometimes the expression is preserved is used instead of 
is invariant. For example, for one of the cases just cited we may say “the openness 

of sets is preserved under the inverse of a continuous function." 
The following theorem is easy to verify and the proof of each part is left as an 

exercise. 

52.7. Theorem 

52.7(a). Suppose f: (X, d) -*{Y,p) is continuous and S <= X. Then f\S: 

(S, d) -*■ (Y, p) is continuous. 

52.7(b). A function f:(X, d) -* (Y, p) is continuous if and only if /:(X, d) -*■ 
{f[X}, p) is continuous. 

Notice that in Example 52.3 the function g is the inverse of/. Thus, the 
example illustrates the fact that the continuity of a bijection f :(X,d) -*■ ( K, p) 

does not guarantee the continuity of/-1:( Y, p) -*• (X, d). A continuous function 
that has a continuous inverse is given a special name as indicated in the next 
definition. 
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52.8. Definition. Topological mapping. Suppose h:(X, d) —► (Y, p) is a 

continuous bijection such that h 1: (Y, p) -> (X, d) is also continuous. Then h is 

called a topological mapping (from (X, d) onto ( Y. p)). The terms homeomorphism 

and bicontinuous bijection are used as synonymns for topological mapping. 

It is obvious that if h is a topological mapping from (X, d) onto ( Y, p), then 

h1 is a topological mapping from (Y, p) onto (X, d). If there exists a homeo¬ 
morphism h that maps (X, d) onto ( Y. p), then (X, d) and ( T, p) are said to be 
homeomorphic or topologically equivalent. 

52.9. Example. Let a be a positive real number. Suppose/: (X, d) ->- ( Y. p) 

is a surjection such that d(a, b) = ap(f (a),f(b)) for all x and y in X. Then/is a 

homeomorphism. To see this, first note that f is one-to-one. For if J(a) = f(b), 

then d(a,b) = oc p(J'(a),f(b)) = 0 and a = b. To see that f is continuous, let 

a e X and let e > 0. Choose d — ae. Then if d(a, b) < 6, it follows that 

p(f(a), f(b)) — -d(a, b) < - ole = e. Hence, f is continuous. A completely 
a a 

similar argument that /~x is continuous can be used if we make the following 

observation: For all c and d in Y, p(c, d) = - d(f _1(c),f~l(d)). 
a 

52.10. Example. An example of a function that satisfies the condition 

imposed on the f in 52.9 is the function/:R" ^R" given by f(x) = a.v + b, where 

a^O and b e R". 
The following theorem is often an aid in determining whether a continuous 

bijection is a homeomorphism. The proof is an easy consequence of Theorem 52.5 

and is left as an exercise. 

52.11. Theorem. Let f:(X, d)—> (Y, p) be a continuous bijection. Then f 

is a homeomorphism if and only if either of the following conditions is satisfied. 

52.11(a). f[U] is open in Y, if U is open in X. 

52.11(b). / [A] is closed in Y, if K is closed in X. 

Because of Theorems 52.5 and 52.11, we see that a bijection f: (X, d) -* (Y, p) 

is a homeomorphism if and only if the openness (closedness) of sets is preserved 
under/and f l. Recall that in 48.3 we called a property a topological property if 

it could be characterized in terms of open sets. Thus, we see that a property which 

is possessed by a subset of_a metric space is a topological property only if that 

property is invariant under homeomorphisms. For example, suppose A is a metric 
space and it has the property that every point of A is a limit point of A. The notion 

of limit point is a topological property and any metric space Y that is topologically 
equivalent to A will have the property that every point of Y is a limit point of Y. 

On the other hand, boundedness is not a topological property. A subset S of a 

metric space A can be bounded and yet under a homeomorphism f:X ->■ Y it is 
possible that f [5] is not bounded in Y (see Exercise 3, page 8 7 ). Topologists are 

often interested in determining spaces “up to a homeomorphism.” To show that a 

space A is not homeomorphic to a space Y it is sufficient to find one topological 
property that is possessed by one of the spaces and not by the other. 

The reader will recall from a study of calculus that the composition of two 

continuous functions is continuous. This remains true in the more general setting 
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that we are now considering. The following lemma for composite functions will be 

useful in proving this fact. 

52.12. Lemma. Suppose f\X-*Y and g:Y-*Z are functions. Then for 

each U <= Z, (g °f)~1[U] = f~1[g~1[U] ]• 

Proof. Let x e (g °/)_1[C/]. Then g ° f(x) = g(f{x)) e U. From the fact 

that g{f{x))eU, it follows that /(x) eg_1[t/] and, hence, * ef~1[f(x)] <= 

f~l[g~x[U]]. Thus, we have shown that {g°f)~1[U] ‘c= /-1[g-1[C/]]. We next 
show that/-Mg-1 [t/]] C (go/)-i[(/]. Let x ef-^^U]]. Then /(x) eg-1 [U]. 

But this implies that g ° /(x) — g(f(x)) egfg-Mt/]] <= U. Hence, x e (g ° f)~l [£/] 

and the proof is complete. 

52.13. Theorem. Let fl:(Ar1, df -> (X2, d2) and f2:(X2, d2) —*■ (X3, d3) be 

continuous functions. Then f2 ° f1\{X1, df -+ (X3, d3) w also continuous. Further, 

if fx and f2 are topological mappings, then so is f2 °fv 

Proof. In a proof involving composition, it is often helpful to refer to a 

function diagram. 

h°h 

Let U be open in X3. Then since f2 is continuous, by 52.5, ff[U] is open in X2. 

But f is also continuous so that/~1[/^'1[t/]] is open in Xv Now note that by the 
previous lemma {f^°fi)~1[U]=f~'l[f~l[U]]. Hence, since openness of sets is 

preserved under (f2 °ff~l, it follows from 52.5 that f2 ° f is continuous. 
The part of the proof of the theorem concerning topological mappings is left 

as an exercise. 
Previously, we studied the notion of equivalent metrics for a set. It will follow 

from the next theorem that if d and p are equivalent metrics for a set X, then 
(X, d) and (X, p) are topologically equivalent spaces. 

52.14. Theorem. Suppose d and p are metrics for a set X. Then d and p 

are equivalent metrics for X if and only if the identity function on X is a topological 

mapping from (X, d) onto (X, p). 

Proof. First we assume that the identity function /:(A\ d) —► {X, p) is a 

topological map. We need to show that the topologies.^ (d) and FT (p) of {X, d) 

and (X, p), respectively, are the same. Let U e LX (d). Since i is a topological 

mapping, by 52.11, i[U] is p-open in X. Hence, U = i[U] is p-open in Xand so 
U e (p). Thus, ST (d) «= FT (p). Next let V e F (p). Since / is continuous, by 52.5, 

i~l[V) is (/-open. But V = i~x[V] so that V e .T (d). Hence, (p) ci XT (d) and, 
consequently,.^- (d) — ^(p). It now remains to be proved that if dand pare equiva¬ 

lent metrics, then /': (X, d) —► (A', p) is a topological mapping. This part also 

follows from 52.5 and 52.11 and the details are left as an exercise for the reader. 
Suppose two metric spaces are topologically equivalent. Then the metric in 

one space can be used to measure distances in the other space in the following 

sense. 
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52.15. Theorem. Suppose f:(X,d)->(Y,p) is a topological mapping. 

For each x andy in X, define d*(x, y) = p(f (x),/(_>’)). Then d* defines a metric for 

X that is equivalent to d. 

Proof. That d*(x, y) = 0 if and only if x = y follows easily from the facts 

that /is one-to-one and p is a metric. That d*(x,y) = d*(y, x) and the triangle 

inequality of d* follow at once from the fact that p is a metric. We next show that 

d and d* are equivalent metrics by making use of the previous theorem as follows: 

(X,d) - f ■■->(¥, p) 

/s' 

(X, d*) 

Let g(y) — f~l(y) for each y e Y and consider the mapping g:(Y, p) —► {X, d*). 

Note that g is a surjection and that p{c, d) = d*(f^1(c), /_1 (d)) = d*(g(c), g(d)) 

for all c and d in Y. Hence, it follows from Example 52.9 that g is a homeo- 

morphism. Since / is a homeomorphism it then follows from 52.13 that g°f: 

(X, d) —*■ (X, d*) is a homeomorphism. But since g °f is the identity function on 
X, we may conclude from 52.14 that d and d* are equivalent metrics for X. 

52.16. Example. Consider the set R+ = {x:x > 0} and let d be the Euclid¬ 
ean metric. The mapping /:(R+, d)-+ (R+, d), given by fix) = 1/x for x eR+, 

is a homeomorphism. For all x > 0 and y > 0, define 

d*(x, y) = d(f(x),f(y)) 

1 _ 1 = J_ | x _ , 

x y xy 

By 52.15, d* is a metric for R+ that is equivalent to the Euclidean metric. Notice 

that the effect of this change of metric is to greatly expand distances between points 

near 0 and greatly contract distances between points far from the origin. 

EXERCISES: CONTINUOUS MAPPINGS 

(Recall our agreement that when we refer to R" as a space, 

unless otherwise indicated, it is understood to be endowed with the 
Euclidean metric. We also make this agreement for subsets of R".) 

1. In each of the following examples, decide whether the mapping 

is continuous. If it is not, find the set of discontinuities (i.e., 

the set of all points in the domain at which the function is not 

continuous.) 
(a) Let /:R—»-R be given by f(x) — x2 for x>0 and 

f (x) = —x for x ^ 0. 
(b) Let /:R ->R2 be given by f(x) = (x, x) for each x e R. 
(c) Let /:R —>-R be given by fix) = 1 for x rational and 

fix) = 2 for x irrational. 
(d) Let /: R — {0} -> R be given by /(x) = 1/x for xe 

R - {0}. 

(e) Let /: R —► R be given by fix) — - for x fiO and f (0) = 0. 
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2. Suppose /:R —► R and g:R —*■ R are continuous. Let G:R2 -> 

R2 be given by G(x,y) = (f(x), g(y)) for each (x,/)gR2. 
Show that G:R2 —R2 is a continuous mapping. 

3. Suppose /:R2-*R and g:R2—»-R are continuous. Suppose 

further G:R2->R2 is given by G(z) — (f (z), g(z)) for each 

z g R2. Show that G:R2 —► R2 is continuous. 

4. Let ^:R2 —>- R, /?:R2 —>- R. and fRX(R- {0}) -> R be given 

by the rules $(x, y) = X + y, p(x, y) = xy, and q(x,y) = 

x -E y, y / 0. Prove that each of these functions is con¬ 
tinuous. Also prove that Ss 0} —► R, where /-(.x) = 

yjx for X > 0, is a continuous function. 

5. Prove each of the following theorems: (a) 52.5; (b) 52.6; 

(c) 52.11; (d) the second part of 52.13; (e) the second part of 
52.14. 

6. Recall that a subset S in R" is bounded and closed (with respect 

to the Euclidean metric) if and only if every sequence in S has 

a convergent subsequence that converges to a point in S 

(see Exercise 5 on page 7 7 ). Let S' <= R" and suppose S is 

closed and bounded and f:S —> R"‘ is continuous. Prove that 
/[S] is a closed and bounded subset of Rm. Prove that if in 
addition to being continuous,/is one-to-one on the bounded 

and closed set S, then f:S ->/[S] is a homeomorphism. 

7. (Do Exercise 6 before doing this exercise.) Let S be a closed 

and bounded subset of R". Suppose /:S—► R is continuous. 
Then there exists an x0 G S and a j0g5 such that /(.v0) = 

g.l.b. (/[S]), and f(y0) = l.u.b. (/[5]). Thus,/ attains its 
maximum and minimum values on S. 

8. Suppose/:Rm —> Rn satisfies the following: For each .v and y 

in RTO» /(x + /) =f(x) + /(>’)• f-et 0 be the zero vector in 
R"*. Prove that if/is continuous at 0, then/is continuous on 
Rm. 

9. Let Jf be a family of metric spaces. Show that “topologically 

equivalent to” is an equivalence relation in Jf\ 

10. Prove that the real line R is homeomorphic to the open interval 

(0, 1). 

11. Let A = {x:x e R“ and |.v| < 1}. Is A topologically equivalent 
to R'*? 

12. Suppose dj) is topologically equivalent to (£lt pt) and 
(A2, d2) is topologically equivalent to (#2, p2). Is the product 

metric space X {(A,,d,)\i 1,2} topologically equivalent to 

X {(/?,, Pl)-i= 1,2}? 
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13. Consider the function f:(X, d)-*-(Y, p). Let ST(d) and 2T(p) 

be the topologies of (X, d) and (Y, p), respectively. In each of 

the following, determine whether the statement is true. 

(a) If/is continuous, then (d) <= {/—1 [L/]: U e 07~(p)}. 

(b) If/is continuous, then {/_1[U]: U e (p)} <= ZX(d). 

(c) If^”(d) ci {/_1[U]:t/ e^{p)}, then/is continuous. 
(d) If {/_1[U]: U G 2E(p)} c= 2T(d), then/is continuous. 

14. Suppose that (X, d) and (F, p) are metric spaces whose topol¬ 

ogies are ST(d) and 3~(p), respectively. Further assume that 

/:(X, d)-*-(Y, p) is a bijection for which 2T(p) = {/[£/]: U e 

^(d)}. What can you conclude about /? 

53. UNIFORM CONTINUITY 

Suppose f'.(X, d)-+ (Y, p) is a mapping. For/to be continuous on X, we 
required that for each x0 e X and e > 0, there was a b > 0 (depending on x0 and 
e) such that if x e X and d(x, x0) < <5, then p(/(x), f(x0)) < e. The following 

question arises: Given an arbitrary positive e, can a positive 6 (depending only on 

e) be found that satisfies the required conditions for all x0 e X. We give examples 

that indicate that for some functions the answer to the previous question is yes 
and for some functions the answer is no. The term uniform continuity is given to 

the strong type of continuity associated with the “yes” answer. As we shall see, 

there are certain types of metric spaces on which all continuous functions are 

uniformly continuous. For example, it is an important theorem in the theory of 

calculus that a continuous function on a closed interval [a, b] is uniformly con¬ 
tinuous. This will be a very special case of a theorem that we will prove later. 

53.1. Definition. Uniform continuity. Let f'-(X, d)-+(Y, p) be a mapping. 

/ is said to be uniformly continuous on X provided that for each e > 0, there is a 

6 > 0 such that if xx e X, x2 e X, and d(xlt x2) < b, then pifix^), f(x2)) < s. 

If S is a subset of X and if f | 5: (S, d) —> (F, p) is uniformly continuous, then we 

say that f is uniformly continuous on S. 

53.2. Example. Consider the function /: [0, 1] —> R given by f (x) = x2 for 

xe [0, 1], We show that /is uniformly continuous on [0, 1]. Suppose xx and x2 

are in [0, 1], Then I/O/) -/(.v2)| = |.\q - x*l = l-xy - x2\ |xx + x2| ^ 

(|jcx| + |x2|) \x-l — x2| ^ 2\xx — x2\. From this, we see that if |xt — x2| < -f-, 
then |/(x1) — /(x2)| < e. Thus, we have found that the condition in the definition 

can be satisfied for e > 0 by taking d = 
53.3. Example. We show that the function /:R —► R given by /(x) = x2 is 

not uniformly continuous on R. To do this, assume that/is uniformly continuous 

on R. Then for e — 1, there is a <3 > 0 such that if \xx — x2| < d, then |/(xj) — 

/(x2)| < 1. Now let Xj > 0 and x2 = xx + \d. Then 

l/0c) ~f(x2)| = |Xi + x2| |xt - x2| 
= |2xx + |(3| |£<5| = i(4xx + b)b > i5(4xx) = x^. 

Now note that if xx =-, then |/(xx) —/(.v2)| > 1, whereas it should be that 

!/(xi) —/(-y2)| < 1. 
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An interesting example of a mapping that is uniformly continuous is the metric 

d associated with a metric space {X, d). We prove this fact next. 
53.4. Example. Let (X,d) be a metric space. Then d:(XXX, p)^>~ R is 

uniformly continuous, where p is the product metric (as defined in 51.1). 

Proof. Suppose e > 0. Let d = |e. Now suppose p((;cl5 x2), (yx, y2)) < d. 

Then, d(xx,yx) < 6 and d(x2,y2) < d. Hence, d(xx, x2) ^ d(xx,yx) + d(ylty2) + 

d(y2, x2) and, thus, d(xx, x2) — d(yx,y2) ^ d(xx, yx)> -h d(x2, y2) < e. Similarly, 

d{yi,yz) ~~ d{xi, x2) < e and we have that \d(xx, x2) — d{yx,y^)\ < e. Thus, we 
have shown that d: X X X —*■ R is uniformly continuous. 

In analytic geometry one derives a formula that gives the distance from a point 
to a line. By the distance from a given point to a line is meant the distance from 

the given point to the point on the line closest to it. Note that if A is an arbitrary 
nonempty set, say in R2, and p is a point in that space, then there may not be a 

point in A that is closest to p. However, the g.l.b. {d(p, x):x e A} always exists 
and agrees with the distance from a point to a line if A is a line. 

53.5. Example. Let 0 = (0, 0). Consider the unit neighborhood N(0; 1) ci 
R2 and the unit closed disc B(6; 1) <= R2. Note that the point (1,0) is the closest 
point in B(B\ 1) to the point (2, 0). There is no point in the open set N(0\ 1) that is 

closest to (2,0). However, g.l.b. {\p — (2, 0)| :p e N(d; 1)} = 1. Observe also 

that there may not be a unique point in a set that is closest to a given point. For 

example, in the set R2 — N(0; 1), every point in the circle {(x,^):*2 + y2 — 1} is a 

closest point to 6. 

53.6. Definitions. Distance from a point to a set and distance between two sets. 

Let (X, d) be a metric space and let A be a nonempty subset of X and p e X. By 

d(p. A), the distance from p to A, we shall mean the real number g.l.b. {d(p, x): x e A}. 

If A and B are two nonempty subsets of X, then by d(A, B), the distance between A 

and B, we shall mean the real number g.l.b. {d(a, b):a e A, b e B}. 

53.7. Example. In Example 53.5, d(6, N(6\ 1)) = 0, d((2, 0), N(0; 1)) = 1, 

d{0, ~B(Q; 1)) = 1, and d(N(6; 1), ~B(0; 1)) = 0. 

53.8. Theorem. Let (X, d) be a metric space. Let A be a nonempty subset 

of X. Then the mapping dA:X-> R given by dA(x) = d{x. A) is a uniformly con¬ 

tinuous real-valued function. 

Proof. Let £ > 0. We shall show that if d{xx, x2) < £, then l^fivj) — 
dA{x^)\ < £. Let as A. Then d(xx, a) ^ d(x2, a) + d(xx, x2). Hence, g.l.b. 

{d(xx, a):a e A} < g.l.b. {d(x2; a):a e A} + £ and d(xx. A) < d(x2. A) + £• By 
a symmetric argument we can also show that d(x2, A) < d(xx, A) + e. Hence, it 

follows that |d(xx. A) — d(x2, A)\ < e and the proof is complete. 

53.9. Definition. Isometry. If f:(X, d)—>(Y, p) maps X onto Y in such a 

way that distances are preserved (i.e., d(x, y) = p(f(x),f(y))), then f is called an 

isometry. 

It is to be noted that if/is an isometry, then it is both uniformly continuous 
and a homeomorphism. 

53.10. Examples. Each of the following are isometries on R2. 

53.10(a). The reflection in R2 through a line L. For example, let r:R2 -* R2 
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be the reflection through the “x-axis” given by r(x,y) = (x, —y) for each 
(x, y) e R2. 

53.10(b). The translation T: R2 -> R2 given for a fixed b by T(x) = x -f b, 
for each x e R2. 

53.10(c). Any rotation in R2. 

Let/be a function from X into Y. Suppose d and d* are equivalent metrics for 
X, p and p* are equivalent metrics for Y, and f:(X, d) -* (Y, p) is uniformly 
continuous. This is not enough to assure us thatf:(X, d*) -> ( T, p*) is uniformly 
continuous. This fact is itlustrated in the next example. 

53.11. Example. Let d be the Euclidean metric for R+ and let d* be the 
1 I 1 

xy 
x — y\. Recall from Example metric for R+ given by d*(x, y) = 

x y 
52.16 that d and d* are equivalent metrics. Consider the functions /:(R+, d) -*■ 
(R+, d) and/* :(R+, d) (R., d*) where/and/* both denote the identity function 
on R+. Since d(f(x),f (y)) — d(x,y) for each (xj)eR, X R+, it is obvious that 
/:(R+, d) -* (R+, d) is uniformly continuous. However, the fact that/*:(R+, d)-+ 
(R+, d*) is not uniformly continuous is seen by the following argument: Suppose 
/*:(Rf,<i) -*■ (R+, d*) were uniformly continuous. Then there is a d > 0 such 
that for all x > 0 and y > 0, 

|x — y\ < d implies d*(f*(x),f*(y)) = — |x — y\ < 1. 
xy 

However, this leads to a contradiction. For let /? = min {£, Id}, 

fi < 6. However, d*(f*(2P),f*(@)) — ^ ^ ^ 1. 

Then d(2(1, ft) = 

EXERCISES: UNIFORM CONTINUITY AND MISCELLANEOUS EXERCISES 

1. Let /:R ^ R be given by/(x) = 3x. Isf uniformly continuous ? 
(Recall our convention is that, unless otherwise specified, the 
metric for Rri is assumed to be the Euclidean metric.) 

2. Let X = {x:0 < x} and suppose /(x) = 1 /x for x e X. Is f 
uniformly continuous on XI 

3. Suppose/: {X, d) -*• ( Y, p) is uniformly continuous and Z c X. 
Is f uniformly continuous on Z? 

4. Let f : R -*• R be given by /(x) = x3 4 5 6. Is/ uniformly continuous 
on R? 

5. Prove the following. Suppose (X, d) is a metric space and 
S <= X. Then d(x, S) — 0 if and only if x e cl (S'). Hence, if 
x e X — S and S is closed, d(x, S) > 0. 

6. Use 53.8 and Exercise 5 to prove the following: Suppose S is a 
closed set in (X, d) and x e X — S. Then there exists a pair of 
disjoint open sets U and V such that x e U and S c V. 
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1. Let A be a nonempty closed subset of a metric space (X, d). 

Let d,:X — R be as in Theorem 53.8. Show that A = 

:n e Pj. Give a counterexample to show n^'H^c- 
that the conclusion need not hold if A is not closed. 

8. Let A be a closed subset of a metric space. Show that A is the 
intersection of a countable collection of open subsets. Show 

that if U is an open subset of X, then U is the union of a count¬ 
able collection of closed subsets. 

9. Suppose A is a nonempty closed subset of R'1. Show that if 
x $ A, then there is a point a e A such that d{x, a) — d(x. A). 

10. G ive an example of a pair of disjoint closed subsets A and B 

such that d(A, B) = 0. 

11. Suppose that f:(X,d) -*■ (Y, p) and g:(Y, p) -+(Z,d*) are 
uniformly continuous mappings. Is g ° f:(X, d) -*• (Z, d*) 

necessarily uniformly continuous? 

12. In each of the following, determine if the function is uniformly 
continuous. 

(a) The function /in Example 52.2. 

(b) The function/in Example 52.3. 

(c) The function /in Example 52.9. 

(d) The function/in Example 52.10. 

13. Let Z be the set of all integers and let g:Z X Z -*■ R be given 
by the following: 

g(Uj) 
1 _ 1 

' j 
if i / 0 and j / 0 

g(0, 0) - 0 

g(0, o = g(i, 0) = if i/ 0 

Isg a metric for Z? If the answer is yes, does the sequence 

(a,) converge, where a, = i for / e P? 

14. Suppose that f:(X,d) -* ( Y, p) is a function for which the 
following is given: If (.v.) converges in X, then (/(jc,)) con¬ 

verges in Y. (Note that we are not assuming that lim (.x,) = x 

implies that lim (f(x,)) -/(.x).) Is/necessarily continuous? 

15. Suppose that (X, d) is a metric space. Let d*:XXX—► R 

be given by: 
d*(a, b) = d(a, b){ 1 + d(a, b))~l 

Is d* a metric for XI If the answer is yes, determine whether 
d* is equivalent to d. 
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Metric Spaces: Special Properties 

and Mappings on Metric Spaces 

There are a number of useful properties that are possessed by all metric spaces. 
We shall show, for example, that metric spaces are sufficiently rich in open sets so 

that each metric space has the following topological property known as normality. 
If A and B are disjoint closed sets, then there exist disjoint open sets UA and Uu 

that contain A and B, respectively. Some of the other properties that we shall study 

in this chapter, although not possessed by all metric spaces, are possessed by 

important special classes. Our previous study of R" and certain types of subsets of 

R" will serve as a foundation for our study of various properties. For example, we 
proved in 42.1 that a sequence in R" converges if and only if it satisfies the Cauchy 

criterion. Metric spaces for which convergence is characterized by the Cauchy 

criterion are called complete metric spaces and are very important for many appli¬ 
cations. Such spaces enjoy some useful properties that metric spaces, in general, 

do not have. For example, an important theorem that can be regarded as a general¬ 

ization of the nested interval theorem can be proved for complete metric spaces. 

In this chapter we shall also define the concept of connectedness and prove that 
the real line R is connected. By making use of this fact, we will then be able to 

prove that R" is connected. Connectedness is an extremely important concept with 

useful implications in the application of topology to analysis. For example, we shall 

see that the intermediate value theorem in calculus depends upon the fact that con¬ 
nectedness is preserved under continuous mappings. In Chapter 2 we saw that 

closed and bounded subsets of R" possessed some very strong properties. For 

example, if 5 is a closed and bounded subset of Ru, then every sequence in 5 has a 
convergent subsequence that converges to a point in S (see 41.4). This property 

is called sequential compactness. We will prove that it is equivalent to the finite 

subcovering property of the classic Heine-Borel theorem (43.4). Recall from calculus 
that if a real-valued function is continuous on a closed interval then it is uniformly 
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continuous on that interval. We give a generalization of this theorem for metric 
spaces provided the domain is compact. Recall also the Lindelof theorem for R" 

(43.3). Not all metric spaces satisfy the countable subcovering property of that 
theorem. However, we shall show that the Lindelof theorem can be extended to a 

class of metric spaces known as separable metric spaces. 
As mentioned in the last chapter, to show that two spaces are not homeo- 

morphic, it is necessary only to show that one of the spaces possesses a topological 

property that the other space does not have. For this as well as other reasons, as 
we study various special properties, it will be of interest to note which are topologi¬ 
cal properties. For those properties that are topological, it is useful to determine 

which are invariant under continuous mappings. Since homeomorphisms are 
continuous, nontopological properties cannot be invariant under all continuous 

mappings. However, for nontopological properties it is useful to know if the 
property is invariant under uniformly continuous mappings. 

The reader is probably familiar with the notion of uniformly convergent 

sequences of real-valued functions. In this chapter this notion will be extended to 
sequences of metric-valued functions. For example, it will be proved that the 

limit function of a uniformly convergent sequence of continuous functions 
(ft: (X, cl) ->- (Y, p)) is itself continuous. 

In the material that follows, properties will be stated for metric spaces. If 

we then say that a subset 5 of a space (X, d) has that property, this will be taken to 
mean that the subspace (S, d) has the property. 

54. SEPARATION PROPERTIES 

Suppose x and y are distinct points in a metric space {X, d). Then x can be 
“separated” from y by an open set U such that x e U and y V. Notice that the 

effect of this property is to make the complement of {j>} open. Thus, a set consisting 
of a single point is a closed set. This is a rather weak separation property. A little 

stronger separation property is that for every two points x and y there exist dis¬ 
joint open sets U and V such that x e U and y e V. This follows from the fact that 

if x f y and d = \d{x,y), then N(x; \d) n N{y; Id) = 0. We shall show in 
Theorem 54.1 that metric spaces have a rather strong separation property called 
normality, i.e., for every pair of disjoint closed sets A and B, there exists a pair of 
disjoint open sets U and V such that A (J and B <=■ V. Since sets consisting of a 

single point are closed, the property stated in Exercise 6, page 105, is a special case 
of normality for metric spaces. 

54.1. Theorem. Let (X, d) be a metric space. Let A and B be disjoint closed 
subsets of X. Then there exist disjoint open sets (/., and U}! such that A c: U4 and 
B^ Uu. 

Proof. The conclusion obviously holds if at least one of the sets is empty. 
We shall assume that A ^ 0 and B ^ 0. For each a e A, a is not a limit point of 
B. Hence, we may choose an e(a) > 0 such that N(a; r(a))n B = 0. Similarly, 

for each b e B we may choose an e(b) > 0 such that N(b', e(b))n A — 0. Note 
that for each a e A and b e B, N(a: \e(a)) n N(b\ le(b)) = 0. For suppose 
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z e N(a; |e(a)) n N(b; ^e(b)). Then 

d(a, b) ^ d(a, z) + d(z, b) < ^e(a) + \e(b). 

Suppose e(b) ^ e(a). Then d(a, b) < e(a). This gives a contradiction because 

N(a\ e(a)) n B — 0. We get a similar contradiction if e(a) < e(b). Next let 

UA — (J [N(a\ \e(a))'.a e A} 

and 

UB= U {N(b-Ae(b)):beB} 

and notice that these two sets are open. Obviously, A c UAandB<^ \JB. Further¬ 

more, it should be clear that UA n UB = 0 since for a e A and b E B, 

N(a; ^(a)) n N(b; £e(6)) = 0. 

Note that in the previous proof for a e A to have a neighborhood N(a; e(a)) 
that is disjoint from B, it is merely required that the point a not be a point of B or 

a limit point of B. Thus, if A n cl {B) = 0 , then there exists for each a e A, a 

neighborhood N(a; e(a)) such that N(a; e(a)) n B = 0. Similarly if B n cl (A) = 

0, there exists for each b 6 B, a neighborhood N(b; e{b)) such that 7V(6; e{b)) n 

A — 0. Hence, the proof of 54.1 yields the following result. 

54.2. Theorem. Suppose A and B are subsets of X such that cl (A) n B — 

A n cl (B) = 0. Then there exist disjoint open subsets UA and UB such that 
A c UA and B <= UD. 

The property for metric spaces given in the previous theorem is referred to as 

complete normality. A pair of sets A and B that satisfies the condition stated in 

the hypothesis of the theorem is given a special name as indicated next. 

54.3. Definitions. Mutually separated sets and separation of a set. Suppose 
X is a metric space. Two subsets A and B of X are said to be mutually separated in X 

provided that 
cl (A) n B = A n cl (B) — 0. 

If S c x is the union of a pair of nonempty mutually separated sets A and B, then 
{A, B) is said to be a separation of S (in X). 

It should be noted that any pair of sets A and B such that cl (A) n cl (B) = 0 

are mutually separated. However, this condition is not necessary for A and B to 

be mutually separated as the following example indicates. 

54.4. Example. Using the notation B(p; r) for a closed disc in R'2 with center 

at p and radius r, consider the following two subsets of R2: 

C = 2?((0, 0); 1) - {(1,0)}, D = B((2, 0); 1) - {(1,0)}. 

The sets C and D are mutually separated sets. 
In the definition of mutually separated sets the condition, cl (A) n B — 

A n cl (B) — 0, is given with reference to the closure operation for the containing 

space X. However, whether A and B are actually mutually separated depends only 
on the topology of the subspace A U B. To see this it is necessary only to observe 
the following fact. 
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54.5. Remark. Suppose X is a metric space. Then subsets A and B are 
mutually separated subsets of X if and only if A and B are both closed (or equiva¬ 

lently both open) in A U B (Exercise 4, this page). 
There is another useful separation property possessed by metric spaces. 

Nonempty disjoint closed sets can be “separated” by a continuous function in the 

sense of the following theorem. 

54.6. Theorem. Suppose A and B are closed nonempty disjoint subsets of a 
metric space (X, d). Then there exists a continuous function f from X into the real, 

closed interval [0, 1] such that f[A] = {0} andf[B] = {1}. 

Proof. Let /: X —*■ R given by 

fix) = d(x, A)[d{x, A) + d(x, B)]-1. 

The proof that this function has the required properties is left as an exercise. 

54.7. Remark. It is instructive to note that the function given by the 

previous theorem suggests an alternate proof that a metric space possesses the 
normality property. Suppose that A and B are nonempty disjoint closed subsets 

of a metric space X. By 54.6, there exists a continuous function f:X -*■ R such that 
f[A] = {0} and f[B] = {1}. Let UA = f~' [y:y e R and y < £] and let UB = 

f1 eR and y > W Recall that, by Theorem 52.5, openness is preserved 
under the inverse of a continuous mapping. Linally, observe that A <= UA, 

B <= Un, and UA n UB = 0. 

EXERCISES: SEPARATION PROPERTIES 

1. Let {Ap.i e P„} be a collection of n pairwise disjoint closed sub¬ 
sets of a metric space. Show that there exists a collection 

{Up.i e Pn} of open subsets such that {cl (£/,):/ e P„} is pair¬ 
wise disjoint and for each i e Pn, A,- c= U{. 

2. Suppose {A, B) is a separation of an open set U in a space X. 

Prove that A and B are both open in X. 

3. Suppose {A, B) is a separation of a closed set F in a space X. 
Prove that A and B are both closed in X. 

4. Prove 54.5. 

5. Complete the proof of 54.6. 

6. Suppose A and B are two nonempty closed disjoint subsets of 

a metric space X. Let a and b be real numbers with a < b. 
Prove that there exists a continuous real-valued function 

f:X -+ [a, b] such that f(x) — a if and only if x e A and 

f{x) = b if and only if x e B. 

55. CONNECTEDNESS IN METRIC SPACES 

An extremely important topological property is that of connectedness. As 
we shall see, it is essentially this property that makes the intermediate value theorem 
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hold for continuous real-valued functions defined on intervals. Intuitively we would 

like to say that a set is connected if it “hangs together” in one piece. Whatever 

definition we choose for connected space, we would certainly wish, for example, the 

real line R to have that property. Notice that there are many ways in which the 

real line can be decomposed into a pair of nonempty disjoint subsets. However, it 

can be shown that R is not the union of two nonempty disjoint open sets. This is 
one of the facts to be verified in this section. 

55.1. Definition. Connected space. Let (X, d) be a metric space. Then 

{X, d) is connected provided X is not the union of two nonempty disjoint open sets. 

A subset S of X is said to be connected provided (S, d) is a connected space. 

If a set is not connected we shall say that it is disconnected. 

The following theorem gives some properties that are equivalent to con¬ 

nectedness. The proof is left as an exercise for the reader. 

55.2. Theorem. Let X be a metric space. Then the following statements are 
equivalent. 

55.2(a). X is connected. 

55.2(b). X is not the union of two nonempty disjoint closed sets. 

55.2(c). There exists no separation of X. 

55.2(d). A subset S of X is both open and closed if and only ifS= 0 or S = X. 

Note that connectedness is a topological property. Also the connectedness of 

a subset S of a space depends only on the space S and not on the containing space. 
Nevertheless, in investigating the possible connectedness of a subset S of a metric 
space X, often we will find it convenient to deal directly with the topology of the 

containing space X rather than explicitly with the open subsets of the subspace S. 

We accomplish this by making use of the notion of separation of a set defined 

in 54.3 as follows. 

55.3. Theorem. Suppose X is a metric space and S is a subset of X. Then 

S is connected if and only if S is not the union of sets A and B such that 

A ^ 0, B 0, 4 n cl (5) = B n cl (A) = 0 

(/.<?., there exists no separation of S in X). 

Proof. The condition that A 0, B ^ 0, and A n cl (B) B n cl (A) = 

0 is equivalent to the condition that A and B are disjoint nonempty open subsets 

of S — A U B (see 54.5). The theorem now follows from the definition of con¬ 

nected set. 

If what we have given is a reasonable definition of connectedness, we should 
be able to prove, for example, that an interval in R is connected, and this we shall 

do in this section. Subsequently the reader will be given exercises in which he will 

be asked to prove that certain other sets that we would want to call connected are 

indeed connected. 

55.4. Theorem. Let [a, b] be a closed interval in R. Then [a, b] is connected. 

Proof. Suppose [a, 6] is not connected. Then there is a separation {A, B} 

of [a, b]. Note that [a, A] = A U B and [a, b] is closed. Then since B has no 
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limit points of A, A must be closed. Similarly B is closed. We may assume that 

a e A. Let a = l.u.b. (A) and since A is closed a e A. Suppose a < b. Then a 
would be a limit point of B and since B is closed we have a contradiction. So we 

have that a = b. Then B <=■ [a, b] — {a, b}. Now let ft = g.l.b. (B). Then since 

B is closed ft e B and a < ft < b. However, since a < ft, ft is a limit point of A 
and we have arrived at a contradiction. Summarizing, assuming that [a, b] had a 

separation {A, B) with a e A, we found that each of the statements l.u.b. (A) < b 

and l.u.b. (A) b led to a contradiction. We therefore are forced to conclude 
that [a, b] has no separation and consequently [a, b] is connected. 

The following two propositions will prove to be quite helpful in our dealing 
with the concept of connectedness. 

55.5. Theorem. Suppose {A, B) is a separation of a set S (note that S is not 
connected). Let C be a connected subset of S. Then C ^ A or C ^ B. 

Proof. Suppose that the conclusion is false. Then C n A 0 and 

C n B -=f 0. Further, {Cn^,Cn5)isa separation of C. To see this, note 
that C = (C n A) U (C n B). Moreover, if p e (C r\ A)' and p is a limit point 
of C n B, then it is also a limit point of B. But this would give a contradiction 
since we are assuming that {A, B} is a separation of S. Similarly we would get a 

contradiction if a point of C n B were a limit point of C n A. Thus, we have 

found a separation of C and, since C is connected, we have arrived at a contradic¬ 

tion. 

55.6. Theorem. Suppose -Td is a collection of connected subsets of a space 

such that if Cx e and C2 E Ctif, then Cx n C2 0. Then |J is connected. 

Proof. Suppose |J XT is not connected. Let {A, B} be a separation for U Jf'. 

Let a e A and b e B. There is a Ca e and Cb e such that a e Ca and b e Cb. 

But from the hypothesis, Ca n Cb=f 0. Let zeQn Cb. By Theorem 55.5, 

C.a <= A since a point of Ca is in A. Similarly Cb c B. However, since z e Ca n Cb, 
z e A n B. But this is a contradiction. Hence, (J Jf is connected. 

We next make use of the previous theorem in proving that the real line is 

connected. 

55.7. Theorem. The real line is connected. 

Proof. For each «eP, by 55.4, the closed interval [ — n, n] is connected. 
Observe that R = U {[—n, n]: n e P} and that 0 e [—/;] for each n 6 P. Hence, 

by 55.6, R is connected. 

EXERCISES: CONNECTEDNESS IN METRIC SPACES 

1. Prove 55.2. 

2. Suppose (X, d) is a metric space. 
(a) Is 0 a connected subset of (X. d)1 

(b) Let .v G X. Is {*} connected? 
(c) Suppose {.Yj, .r2, . . . , .y„} is a finite subset of X, n > 1. 

Is this set disconnected? 

(d) Suppose S is a countably infinite subset of X. Is S necessar¬ 

ily disconnected? 
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3. Recall the definition of an interval in R. Prove that each interval 

(not necessarily closed) in R is connected. Prove that if S is a 

connected subset of R then S’ is an interval (possibly empty). 

4. Prove the following important proposition: If S is a connected 

subset of a metric space and C is a subset of the space such that 

5 c C c cl (S), then C is connected. 

5. Suppose m is the metric for R given by m(x, y) = 0 if x — y and 

m(xr,y) = 1, otherwise. Is the space (R, m) a connected space? 

6. Does there exist in R2 a decreasing sequence of connected sets 

(C,) such that fj {C,-:/ e P} is not connected? If the answer is 
yes, give an example. If the answer is no, justify with a proof as 
to why no such example exists. 

7. If your answer to the previous question was yes, add to the 

requirement on the collection {Cp.i e P} that each C, is a closed 
and bounded subset of R" and repeat the question. 

56. THE INVARIANCE OF CONNECTEDNESS UNDER 

CONTINUOUS MAPPINGS 

The fact that certain properties are invariant under various kinds of mappings 

is of fundamental interest in topology and the application of topology to various 

branches of analysis. In the case of invariance of connectedness that we consider 

here, classic forms of the intermediate value theorem will be recognized as im¬ 

mediate corollaries. 

56.1. Theorem. Suppose that (X, d) is a connected metric space and 
f: (X, d) -> (Y, p) is a continuous surjection. Then ( Y, p) is connected. 

Proof. Suppose that Y is not connected. Let {A, B} be a separation of Y. 

Then A and B are nonempty open subsets of Y with an empty intersection. We 

shall show that {/^[T],/-1^]} is a separation of X, thus arriving at a contradic¬ 

tion. Note first that X = fx[A] Uf~l[B], Since A and B are disjoint, f~l[A\ 
and f~x[B\ are also disjoint. Because A and B are open and / is continuous, it 
follows that J'~X[A] and f~l[B] are open in X. Since / is a surjection,/_1[T] and 

f~l[B] are nonempty. Hence, {f x[A], /_1[t5]} is a separation of X and the proof is 

complete. 

56.2. Corollary. Intermediate value theorem. Let f : X —► R be a real-valued 

continuous function defined on a metric space X. Suppose S is a connected subset of 
X. Then if a and b are elements of S and f (a) < c < f(b), there is an .r0 e S such 

that f (Xq) = c. 

56.3. Classic intermediate value theorem. Suppose y": [rz, /?] —► R is a 

continuous real-valued mapping from a closed real interval [a,b]. Iff{a) f{b) 
and c is a number between f(a) andf(b), then there is a number x0 e (a, b) such that 

fix 0) = c. 
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EXERCISES: THE INVARIANCE OF CONNECTEDNESS UNDER 
CONTINUOUS MAPPINGS 

1. Review the definition of line and line segment in R". Prove that 

lines and line segments are connected subsets of R". 

2. (a) Show that R" is connected. 
(b) Show that if n > 1 and S is a countable subset of R", then 

R" — S is connected. 
(c) Show that in R" open spheres N(p; e) and closed balls 

B(p\ e) are connected subsets of R". 
(d) Suppose S is an open subset of R'' and C is a connected 

subset of S which has the property that no other connec¬ 

ted subset of S contains it (hence, it is a maximal connec¬ 

ted subset of S). Prove that C is an open subset of R". 

3. Let /:R2->R be continuous. Suppose for asR2 and be R2, 

f(a) < 0 and f(b) > 0. Show that there is an uncountable 
collection of points ~ e R2 such that/(z) = 0. 

4. Let (X, ci) be a space. Suppose it is known that there exists no 

continuous mapping f:(X,d)-> R such that f[X] — (0, 1}. 

Does this condition imply that X is connected? 

5. Let /: [a, 6]-> R be a real-valued continuous nonconstant 
mapping defined on a closed real interval [a, b]. The range is a 

closed interval [a, /3]. (Why?) Suppose c e (a, /)). Show that 

there exists a 6 > 0 such that if g: [a, b\ —*■ R is continuous and 

IgM -/Ml < <5 
on [a, b], then the equation g(x) = c has at least one solution in 
[u, 6]. Also show by an example that the conclusion is not true 
for c = a or c — /?. 

6. Let/:[a,/i] —>R be a continuous real-valued mapping defined 

on a real closed interval [a, b]. Prove that the graph 

{(x,/(*)):* e [a,b\] 

is a bounded closed and connected subset of R2 that is topologi¬ 
cally equivalent to [a, />]. 

7. Let A and B be the following subsets of R2: 

A — {(a, j):x = 0, 0 ^ y ^ 1}, 

B — {(.r,y):y — sin - for a > 0}. 
A 

Sketch A U B. Is A U B connected? 

57. POLYGONAL CONNECTEDNESS 

A subset S of R" is said to be a polygon if there exist points a0, a,, a2.aa., 

not necessarily distinct, such that .S’ = (J {L(.y, a,):/e PA.}, where L(.y,_1, a,) 

is the closed line segment joining xt_! to a,. 



Metric Spaces: Special Properties and Mappings on Metric Spaces 115 

*4 

Figure 15 

57.1. Definition. Polygonal connectedness. A subset S of R" is said to be 

polygonally connected provided that each two points in the set can be joined by a 
polygon that is contained in the set. 

As we shall see, this type of connectedness is stronger than the concept of 

connectedness that was introduced earlier. In an exercise the reader will be asked 

to show that polygonal connectedness implies connectedness. However, note that 
the graph of the sine function is connected but not polygonally connected. It is 

natural to ask under what conditions these concepts are the same. Open subsets of 
R" are,connected if and only if they are polygonally connected, a fact that the 

reader will be asked to verify in the next set of exercises. 

EXERCISES: POLYGONAL CONNECTEDNESS 

1. Prove that a polygon in R" is connected. 

2. Suppose S' is a subset of R" such that S is polygonally connected. 

Prove that S is connected. 

3. Let A be an open subset of R". Let a e A and let U = {x:x e A 
and x can be connected to a by a polygon contained in A}. 

Show that U is an open subset of R". Show that A — U is an 

open subset of R". 
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4. Prove that an open subset of R" is polygonally connected if 

and only if it is connected (see Exercise 3). 

5. A subset S of R" is said to be convex provided that, if x0 and 

Xj are points in S, the closed line segment joining x0 to xx is 
contained in S. Note that every convex set is polygonally con¬ 
nected but not every polygonally connected set is convex. Prove 

that the intersection of a collection of convex subsets of R'1 is a 
(possibly empty) convex subset of R". 

58. SEPARABLE METRIC SPACES 

58.1. Definition. Dense subset of a space. Suppose X is a metric space and 

D is a subset of X such that cl (D) = X. Then D is called a dense subset of X. 

The following characterization of denseness is easy to prove and its proof is 

left as an exercise. 

58.2. Theorem. Suppose D is a subset of a metric space X. Then D is dense 

in X if and only if every nonempty open subset of X intersects D. 

58.3. Examples 

(a) The set Q of rational numbers is a dense subset of R. 

(b) The set {(x,y):x^0,y^0} c R2 is a dense subset of R-. 

(c) The space (3f, m) in Example 45.4 has the peculiar property that no proper 

subset of A is a dense subset of X, since each subset of X is closed. 
Recall from Theorem 43.1 that there is a countable set D c= R" that is dense 

in Rn. Not all spaces have this property. However, spaces with this property occur 
with sufficient frequency to warrant their study. 

58.4. Definition. Separable metric space. Let X be a metric space. If there 

is a countable set in X that is dense in X, then X is said to be separable. 

It turns out that separability is invariant under continuous mappings. We 

may prove this by first proving the following stronger result. 

58.5. Theorem. Let X and Y be metric spaces and suppose f:X-+ Y is a 

continuous surjection. If D is dense in X, then f[D] is dense in Y. 

58.6. Theorem. Suppose f\X~* Y is a continuous surjection. Then if X 

is separable, so is Y. 

The reader will be asked to prove the previous two theorems in the next set 
of exercises. 

The next theorem gives an important property that is equivalent to separability 
for metric spaces. 

58.7. Theorem. Suppose X is a metric space. Then the following property 

is equivalent to separability. 

58.7(a). There exists a countable collection Jf of open subsets of X such that 
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each open subset of X can be expressed as the union of a subcollection of CX (see 

43.2). (Such a collection is called a countable base for the topology of (X, d).) 

Proof. First suppose that X is separable. Then there is a countable dense 

subset {cp.i e Pj in X. Let {rp.i 6 P} be the collection of positive rational numbers, 
also indexed by the set P. Let CX~ = {N(cp rf: (i,j) e P X P}. We claim that CX~ 

satisfies the conditions imposed on CX in 58.7(a). To show this it will suffice to 
show that if W is open and x e W, then there is a U e XT such that x e U cz w. 
We show this next. 

Suppose W is open and xe If, Then there is an e > 0 such that N(x; e) c: W. 

Since {cg.i e P} is dense in X, there is a ci such that d(cu x) < Je. Next, note that 

N(c{; §e) W. Now, let r3- be a positive rational such that \e < r} < fe. We 
complete the proof of this part by noting that xeN(cp,\e) c: N(cp, rf <= 

N(cp, |e) cr W. Thus, separability implies 58.7(a). 

To show that 58.7(a) implies separability, let {Up.i e P} be a countable collec¬ 

tion of open subsets with the property stated in 58.7(a). We may assume that each 
of the U, is nonempty. For each i e P, select ci e U{. To see that D — [cp.i e P} 
is dense, let W be a nonempty open subset of X. Let x e W. There is a t/f such that 

xel/jC W. But then ct e W so W n D f=- 0. Hence, by 58.2, D is dense in X. 

58.8. Definition. Covering. Suppose S is a subset of X. If XX is a collection of 

subsets of X such that S c (J C/X, then C/f is said to be a covering of S. (C/X is also 

said to cover S.) If each element of "X is an open set in X, then Jf is called an 

open covering of S. 

If CX is a covering of S and Jf is a subcollection of Jf, thenJf is sometimes 

referred to as a subcovering. 

We next use the previous theorem to generalize the classic Lindelof theorem 

for R" to the setting of a separable metric space. The reader who proved 43.3 

should have a proof that essentially carries over to this case. We include a proof 

at this point. 

58.9. Theorem (Lindelof). Let X be a separable metric space. Suppose CX 

is an open covering of a subset S of X. Then there exists a countable subcollection 

of Jf that also covers S. 

Proof. Suppose CX is an open covering of S'. By 58.7(a), there exists a count¬ 

able collection °ll = {Up. is P} of open subsets of X such that each open subset of 

X is the union of a subcollection of Let J — {/':?' 6 P and U{ cz W for at least 
one We Jf}. First we shall show that S <= (J {Up.i eJ}. Suppose xeS; then 

there is a W £ CX such that x e W. Since W is the union of a subcollection of 

there is a k e P such that x £ Uk c W. Hence, k e J and x e |J {Ui: i eJ}. Next, 

for each j eJ, choose one W e JiT such that U} <= W and call it W}-. It should now 
be clear that S (J {Up.i ei} c \J {Wp.ieJ}. Observe that {Wp.ieJ} is a 

countable subcollection of Jf. 

The next theorem is easy to prove by making use of Theorem 58.7. The proof 

is left as an exercise. 

58.10. Theorem. Let (X, d) be a separable metric space. Suppose (S, d) 

is a subspace of (X, d). Then (S, d) is separable also. 
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EXERCISES: SEPARABLE METRIC SPACES 

1. Prove 58.2. 

2. Let (X, d) be a metric space. Then D is dense in X if and only 

if the following condition holds: If x e X and s > 0, there is a 

z e D such that d(z, x) < e. 

3. Prove Theorems 58.5 and 58.6. 

4. Consider the metric space (X, m) of Example 45.4, with X 

taken to be an uncountable set. Show that this space is not 

separable. Also show that this space does not satisfy the 
conclusion of the Lindelof theorem. 

5. Prove Theorem 58.10. 

6. Prove that if (X, d) is a metric space, then separability is 
equivalent to the following property: 

For each e > 0 there is a countable subset C c X such 

that X = |J{ A(c; e):c e C} (or equivalently for each e > 0, 
each point of X is within e distance of some point in C). 

7. Let (X, d) be a metric space. Suppose X satisfies the conclusion 
of the Lindelof theorem 58.9. Prove that (X, d) is separable. 

8. A point p is a condensation point of a set S in a metric space 
if each open subset containing p contains an uncountable sub¬ 

set of S. Prove that if (X, d) is a separable metric space and 
M is the set of condensation points of X, then X — M is 
countable. (Notice that there exist countably infinite subsets of 

R" that have no limit points. But, in view of the above prop¬ 
osition, if S is an uncountable subset of R'1, then in most 

places the points must be so “crowded” that there is an un¬ 

countable collection of condensation points of 5 in S. 

9. Suppose (A", d) is a metric space and (Y, d) is a subspace of 

(X, d). Suppose that ( Y, d) is separable. Is (cl Y( Y), d) also 
separable? 

10. Prove the following proposition: Suppose that f\{X,d)~* 

( Y, p) and g:(X, d) -*■ (Y, p) are continuous and there exists 

a dense subset D cz X such that the restrictions / | D and 
g | D are equal. Then/ = g. 

11. In the proof of Theorem 58.9, is (J {Wp.ieJ} = |J Jf ? 

59. TOTALLY BOUNDED METRIC SPACES 

In Exercise 6, this page ,we saw that a metric space 5 is separable if for each 
e > 0, there is a countable set Dc such that S = (J {N(z; e):z e Dc}. If we alter 

this property so that the words “countable set Dc" are replaced by “finite set De," 
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we obtain a stronger property. This stronger property is of considerable importance 

in the study of certain metric spaces and applications. 

In a sense, it is precisely because of this property that bounded subsets of R" 

enjoy the nice properties that they do. 

59.1. Definition. Totally bounded spaces. A metric space (X, cl) is said to 

be totally bounded provided the following condition is satisfied. For each e > 0, 

there is a finite set F (called an e-net) contained in X such that 

X=\J {N(z; e):z e FJ 

(or equivalently each x e X is within e distance from at least one point in Fc). 

Based on Exercise 6, page 118, if a space is totally bounded it is separable. 

However, we include a proof of this fact. 

59.2. Theorem. If (X, d) is totally bounded, then it is separable. 

Proof. Suppose X is totally bounded. For each positive integer /, let D, be 

a \ -net for X. Then D = (J [Dpi e P] is a countable subset of X. (Note that in 

proving the statement in Exercise 6, page 118, we could take Dt as countable but 

not necessarily finite.) We complete the proof by showing that D is dense in X. 

To see this, let x e X and e > 0 (see Exercise 2, page 118). Let i be an integer such 
1 1 

that 0 < - < e. Then there isazs Di such that d(z, x) < - < e and the proof 
i i 

that D is dense in X is complete. 

In Theorem 58.10 it is stated that a subspace of a separable metric space is 

separable. Because of the similarity of the concepts of separability and total 
boundedness, one might guess that a subset of a totally bounded space is totally 

bounded. We shall prove that such is the case. 

59.3. Theorem. Suppose that S is a subset of a totally bounded metric space. 

Then S is totally bounded. 

Proof. Let e > 0. We wish to find a finite set H <=■ S that is an e-net for 5. 

Since X is totally bounded, there is a finite subset Fof X that is an --net f°r Let 

F* = x:x G Tand d(x, S) < - . For each z G F*, choose a point as e S such that 
e 2 

d(z, az) < -. Let H be the finite set of all az chosen as in the previous sentence. 

We claim that H is an e-net for S. To see this, let y e S. Then there is an x e Tsuch 
£ 

that d(x,y) < But then x g F*. Now the point ax in H, chosen to correspond 
2 e 

to x, satisfies d(ax, x) < -. Thus, d(ax, y) < e and we have shown that H is an 

e -net for 5. 2 

59.4. Theorem. Let (X, d) be a metric space. Suppose S is a subset of X. 

Then S is totally bounded if and only if cl (S) is totally bounded. 

Proof. Suppose first that S is totally bounded. Let e > 0. We find an 
£ 

e-net for cl (S) as follows: Let F be an - -net for S. Then F is an e-net for cl (S). 
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To verify this, we show that if z e cl (S), then there is a p e Tsuch that d{p, z) < e. 
Proceeding with the verification, let z e cl (5). Then there exists a q e S such that 

e e 
d(q, z) < -. But since F is an --net f°r ^ and <7 e *S, there is a p e F such that 

d(q, p) < -. Thus, d(z, p) < e and we have shown that cl (S) is totally bounded. 

Next, suppose that cl (5) is totally bounded. Then the fact that S is totally 

bounded follows from Theorem 59.3. 

59.5. Definitions. Diameter of a set, bounded subsets of a metric space, and 

bounded functions. Suppose that S is a subset of a metric space (X, d). Then S 

is said to be a bounded set provided that there exists a positive number M such that 

d(x,y) Ss M for all x and y in S. The diameter of S (diam(S)) is defined as follow s: 

diam (0) = 0; 

diam (5) = l.u.b. {d(x,y):x e S,y e S}, if S is a nonempty bounded set; 
diam (S) = oo, if S is an unbounded set. 

Iff: (X, d) -* (Y, p) is such that f[X] is a bounded set, then we say that f is a bounded 

function. 

We shall show in the next theorem that every totally bounded subset of a metric 
space is bounded. On the other hand, not all bounded subsets of a metric space 

are totally bounded. For example, consider the space (R, m) of Exercise 5, page 

113. R is a bounded set in (R, m) but it is easy to see that there is no J-net for R in 
(R, m). We shall show, however, that every bounded subset of R" is totally bounded 
with respect to the Euclidean metric. 

59.6. Theorem. If S is a totally bounded subset of a metric space (X, d) then 

S is bounded. Moreover, if S is a subset of R", then S is bounded if and only if it is 

totally bounded. 

Proof. First suppose S is a totally bounded subset of a metric space (25, d). 

Let F = {xl5 x2, , xn} be a 1-net for S. Let M — max. {d(xu x3):x, and x3 
in F) + 2. We show that diam (S) ^ M. To see this, let x and z be-points in S. 
Then there is an xteF and an x3- e F such that d(x, x,) < 1 and d(z, x3) < 1. 

But then d(x, z) ^ d{x, xt) + d(x{, x3) + d(xjt z) < 2 + d(x{, x3) ^ M. 
Next, let S be a bounded subset of R". Recall that we proved in 41.4 that if 

(a,-) is a bounded sequence in R", then (at) has a convergent subsequence. We next 

assume that S is not totally bounded and show that we can find a sequence in S 
which has no convergent subsequence. This will be a contradiction. If 5 is not 

totally bounded, then for some e > 0 there is no £-net for 5. Let Xj e S. Since 
there is no e-net there must be an x2 e S such that d(x1, x2) 2s e. Assume now 

xls x2, . . . , x„ have been chosen so that if / j, d(x{, x3) ^ e. Since {xl5 x2, . . . , 
xn} is not an e-net for S there is an xn+1 6 S such that d(xn+l, x,) ^ e for i e P„. 

We may thus inductively define a sequence (x,) such that d(x,, x3) 2? e for i ^ j. 
Obviously no subsequence of (x,) can converge so we have a contradiction and S 
is totally bounded. 

That total boundedness is not a topological property is shown in the example 
that follows. 
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59.7. Example. Let A = {x:0 < x < l}and Y = {y.\ < y}, both endowed 

with the Euclidean metric. The bijection f\X-*Y given by /(x) = - for all 

x e X is a homeomorphism. Now it follows from 59.6 that X is totally bounded 
and Y is not. 

In the next section we shall discuss a concept, sequential compactness, which, 
as we shall see, is somewhat stronger than total boundedness. In this connection 

it is of interest to note that total boundedness is sometimes called precompactness. 

EXERCISES: TOTALLY BOUNDED METRIC SPACES 

1. Let f:(X,d) -* (Y, p) be a uniformly continuous surjection. 

Prove that if (X, d) is totally bounded, so is (Y, p). 

2. Give an example of a metric d* for R2 that is equivalent to the 

Euclidean metric d and which is such that (R2, d*) is totally 
bounded. 

3. Prove that if (X, d) is not separable, then for no metric d* 

equivalent to d is it true that (X, d*) is totally bounded. 

60. SEQUENTIAL COMPACTNESS FOR METRIC SPACES 

Sets in R” that are both bounded and closed have some very strong and useful 

properties. However, the property of being both bounded and closed is not a 

topological property. To see this, let d* be a metric for R" that is bounded and 
equivalent to the Euclidean metric d (see Exercise 3, page 8 7). Then R" is a closed 

and bounded set in (R", d*) but in (Rn, d), although it is closed, it is not bounded. 

Recall that we characterized the property of a set being a closed and bounded 
subset of R'! (with respect to the Euclidean metric!) by the property that every 

sequence in the set has a convergent subsequence that converges to a point in the 
set (see Exercise 5, page 77 ). As we shall show, this latter property, which is called 

sequential compactness, is a topological property. In this and in the next several 

sections we shall study this concept in the setting of metric spaces. In the course of 
our study we shall show that, for metric spaces, sequential compactness is equiva¬ 

lent to several other useful properties. When we study more general spaces, we 

shall see that some of the properties which are equivalent to sequential compactness 
in metric spaces are not equivalent in general and each will merit study on its own 

60.1. Definition. Sequentially compact space. If X is a metric space, then 

X is said to he sequentially compact provided every sequence in X has a subsequence 

that converges in X. 

It is useful to know what kind of subsets of a sequentially compact space are 
sequentially compact. The reader should think about this before reading the 

answer in the next theorem, the proof of which is left as an exercise. 

60.2. Theorem. Suppose X is a sequentially compact metric space and S is a 

subset of X. Then S is sequentially compact if and only if S is a closed subset of X. 
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We next give an example and a theorem which point out one of the ways in 

which sequential compactness affects the action of a continuous mapping. 

60.3. Example. Consider the mapping / defined on the nonsequentially 

compact set of real numbers S = {x:05Sx<l} and given by f(x) = (cos 2v x, 

sin 2-n x). / takes the half open interval 5 onto a unit circle and is one-to-one. 

However, /_1 is not continuous. Notice that if 

sin 277( 1 — - ) ), then lim (an) = (1,0). If f~x were continuous, lim (f~x(an)) = 
\ n) 1 i js 

/-1(1,0). However, (/-1(cr„)) = ll-1 and so lim (f~l(an)) = 1, whereas 

actually/-1( 1,0) = 0. n 

This previous example points out the importance of the sequential compactness 

of the domain in the following theorem. 

60.4. Theorem. Suppose X and Y are metric spaces, X is sequentially com¬ 

pact, andf:X —>• Y is a continuous bijection. Then/_1: Y —* X is continuous. 

Proof. Suppose (yt) is a sequence in Y and (yf) converges to y. Consider 

the sequence (xt), x, = f~x(yl)- We need to show that lim (xf) = f~x(y). If the 
opposite is true, then there is an e > 0 and a subsequence (x„) such that x„. e 

X — N(f~x(y); e). However, X — N(f~x(y)', e) is a closed subset of a sequentially 
compact space and is therefore sequentially compact. Hence, a subsequence 

(zj of (x^) converges to a point z e X — N(f~1(y)\ e). Since f is continuous 

(/(z,)) converges to/(z). But (/(z;)) is a subsequence of (/(x„ )) and, hence, of 

{yt). So (/(Zj)) converges to y. Sof (z) = y. Note that z ^ f~l(y) and/(/_1(j)) = 
y. Thus, two different points map onto and we have a contradiction to the one- 

to-oneness of /. 
The next proposition is easy to prove using Theorem 51.5 and the reader will 

be asked to prove it in the next set of exercises. It is a special case of a more general 

theorem which we shall prove later. 

60.5. Theorem. Let dt):/ e Pn} be a collection of metric spaces and 

let (X, d) be the product space for that collection. Then (X, d) is sequentially com¬ 

pact if and only if each ( X,, d{) is sequentially compact. 

we set a, (cos 2jt(| - I), 

EXERCISES: SEQUENTIAL COMPACTNESS FOR METRIC SPACES 

1. (a) Let (x,) be a convergent sequence in a metric space. Let 
x be its limit and let R be the range of (x,). Is R U {x} 
sequentially compact? 

(b) Show that every finite subset of a metric space is sequen¬ 

tially compact. 

2. Prove Theorem 60.2. 

3. Let (x,) be a sequence in a sequentially compact metric space 
(X, d). Suppose the sequence satisfies the following condition 

called the Cauchy condition. For each e > 0, there is an 

integer A/ such that for m ^ M and n A/, d(xm, x„) < e. 

Show that (x,) converges. Show by an example that this 
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condition is not sufficient for convergence in all metric spaces 

but recall that it is sufficient in R" (see 42.1). 

4. Prove that if (X, d) is sequentially compact, then it is totally 
bounded and, hence, separable. 

5. Suppose that (S,) is a sequence of nonempty sequentially 

compact subsets of a metric space and Si+l <= S, for i e P. 

Prove that f) {Si: / g P} is a nonempty subset of the space. 
Prove also that if lim (diam (S;)) = 0, then the intersection 
has exactly one point. 

6. In Exercise 5 add to the hypothesis that each S, is connected 

and show that the intersection is connected. Show by an 

example in R2 that if the sequential compactness hypothesis 
is removed then the intersection need not be connected. 

7. Suppose f is a continuous mapping from a sequentially compact 
metric space X onto a metric space Y. Prove that Y is sequenti¬ 

ally compact. 

8. Let f:(X,d)-+ (Y, p) be a continuous bijection. Suppose / 

has the property that for each sequentially compact subset, 

Z c Y, /-1[Z] is sequentially compact. Show that f is a 
homeomorphism. 

9. Let (X, d) be a metric space. Prove each of the following: 
(a) If H and K are nonempty sequentially compact subsets of 

X, then there are points x e H andy e K such that d(x,y) 

= d(H, K). 

(b) If H is a nonempty sequentially compact subset of Xand 

x G X, then there is at least one point z G H which is 

closest to x. 
(c) If H is a nonempty sequentially compact set, then there 

exist points x and y in H such that d(x,y) = diam (//). 

10. Prove Theorem 60.5. 

61. THE BOLZANO-WEIERSTRASS PROPERTY 

The Bolzano-Weierstrass theorem, 40.4, states that every bounded infinite 

subset of R" has at least one limit point. Thus, a closed bounded infinite subset 5 

in R" has at least one limit point in S. A sequentially compact set in a metric space 
has this attribute, which we shall refer to as the Bolzano-Weierstrass property. 

61.1. Theorem. Suppose S is sequentially compact. Then every infinite 

subset of S has at least one limit point in S. 

Proof. Suppose S is sequentially compact and Q is an infinite subset of S. 

Then there exists an infinite sequence (a,) in Q such that a, f ai if /' ^ j. Since A 
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is sequentially compact, there is a subsequence (an) of (a,) that converges to a 
point a0 e 5. It is easy to see that a0 is a limit point of the range of (a,) and, hence, 

is a limit point of Q. Thus, S has the Bolzano-Weierstrass property. 

Now if the reader will refer back to 41.4, he will recall that if (a,) is a 

bounded sequence in R", then there is a subsequence of (a,) that converges. A 
review of 41.4 shows that the proof depended upon the fact that each bounded 

infinite subset of R" has at least one limit point. This observation suggests the 
theorem that follows. 

61.2. Theorem. Suppose S has the Bolzano-Weierstrass property (i.e., 

every infinite subset of S has a limit point in S). Then S is sequentially compact. 

The proof is left to the next set of exercises. 

Note that the equivalence of sequential compactness and the Bolzano- 
Weierstrass properties for metric spaces follows from the previous two theorems. 

EXERCISES: THE BOLZANO-WEIERSTRASS PROPERTY 

1. Prove that if a subset of a metric space has the Bolzano-Weier¬ 

strass property, then it is a closed subset of the space. Do this 
without using the equivalence of the property to sequential 

compactness. 

2. Prove Theorem 61.2. 
3. Point out why it is that sequentially compact metric spaces 

satisfy the conclusion of the Lindelof theorem. 

62. COMPACTNESS OR FINITE SUBCOVERING PROPERTY 

Recall that one version of the Lindelof theorem asserts that for a separable 
metric space X, if XT is an open covering of X, then some countable subcollection 

of Jf’ also covers X. A much stronger property, knowm as compactness, requires 
that if Jf is an open covering of X, then some finite subcollection of Jf also 

covers X. The Heine-Borel theorem in classic analysis asserts that closed bounded 
subsets of real numbers have this property (see Theorem 43.4). As the reader who 

proved Theorem 43.4 probably discovered, the proof of the Heine-Borel theorem 
can be made to depend on the Lindelof theorem for R" and on the fact that closed 

and bounded subsets of R" are sequentially compact (or perhaps the reader used 
the Bolzano-Weierstrass property). Recall that since a sequentially compact metric 

space is separable it possesses the Lindelof property. Thus, we should be able to 
extend the Heine-Borel theorem to sequentially compact metric spaces. We shall 

give a proof of this extension. 

62.1. Definition. Compact space. A metric space X is said to be compact 

provided it has the following property: If Jf is an open covering of X, then JT 

contains a finite subcollection that also covers X. 

62.2. Theorem. If X is a sequentially compact metric space, then every 

open covering of X contains a finite subcovering (i.e.r X is compact). 
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Proof. Suppose X is sequentially compact. Let Jf be an open covering of 

X. By Exercise 4, page 123, X is separable and, hence, by the Lindelof theorem for 
separable metric spaces (58.9), some countable subcollection {Ux, U2, U2, . . .} 

of Jf also covers X. The claim is made that for some n, {L/x, U2, , Un) also 
covers X. Otherwise, for each positive integer n, we may choose an 

Since X is sequentially compact, the sequence (xn) has a convergent subsequence 

(x.„ ) that converges to a point x0 e X. But [Up.i e P} is a covering of Xso for some 
j0, x0 e Uj . From the way in which the xjs were chosen, there are only a finite 

number of integers ni for which x„ e Uja. This is a contradiction. 

62.3. Theorem. If X is compact, then it has the Bolzano-Weierstrass prop¬ 

erty. 

Proof. Suppose X is compact and A" is a subset of X that does not have a 
limit point in X. We shall complete the proof by showing that K is finite. This will 

imply that every infinite subset does have a limit point. If K has no limit point in 

X, then for each x e X, ~x is in an open set Ux such that (Ux n K) — {x} — 0. 
Then since {Ux\x G X} is an open covering of X, some subcollection {Ux.:i e P„} 

also covers X. But each Ux has in it at most one point of K. Hence, K is a 

finite set. 
Reviewing the last two sections (61 and 62), we see that we have shown that 

for metric spaces sequential compactness, compactness, and the Bolzano-Weierstrass 

properties are equivalent. In proving propositions about sequentially compact 

metric spaces it may be that one of the other properties is easier to work with than 

sequential compactness. When we study spaces more general than metric spaces, 
we shall see that these properties are not equivalent in every setting. 

In Exercise 4, page 123 , the reader was asked to prove that sequentially com¬ 

pact metric spaces are totally bounded. Although this exercise was instructive, 

the total boundedness follows at once from the finite covering property of com¬ 

pactness as is shown in the next proof. 

62.4. Theorem. If (X, d) is compact, then it is totally hounded. 

Proof. Let e > 0. The collection = {N(x; e)\x e X} is an open covering 
for X. Since X is compact, there is a finite subcollection {N(x{; e):i ePJ that 

covers X. Then Fe = {xp.i G Pn} is obviously a finite e-net for X. 

The reader may recall from calculus that if a real-valued function is con¬ 
tinuous on a closed interval, then it is uniformly continuous. This fact follows 

from the following more general theorem. 

62.5. Theorem. Suppose f:(X, d) —>■ {Y, p) is continuous. If (X, d) is 

compact, then f is uniformly continuous. 

Proof. Let e > 0. For each x e X, choose a (5(x) > 0 such that if d(y, x) < 

e 
<5(x), then p{f(y),J (x)) < -. {N(x',ld(x)):x G X} is an open covering of X. Hence, 

there is a finite subcollection {N(xi; |<5(x,)):/ G Pn} that also covers X. Let 6 = 

min. {£<5(xf):/ G P„}. We complete the proof by showing that if a and b are elements 

of X such that d(a, b) < d, then d(f{a),f(b)) < e. For any two such points a 
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and b, aeN(xp,|(5(x,)) for some positive integer j. Then </(£,*,) ^ d(a,Xj) + 

d(a, b) < id(Xj) + b ^ b(xj). From the definition of (5(x3) it then follows that 

p(/(a),/(*j)) < \ and />(/(£),/(*,)) < so p(f(a),f(b)) < £. 

In Exercise 7, page 123, the reader was asked to prove that sequential com¬ 

pactness is invariant under continuous mappings. Since compactness and sequential 
compactness are equivalent for metric spaces, it follows that compactness is in¬ 

variant under continuous mappings. However, it is instructive to include a proof 

of the invariance of compactness that is independent of the corresponding result 

for sequential compactness. 

62.6. Theorem. Suppose X and Y are metric spaces, X is compact, and 

f\X —»• Y is a continuous surjection. Then Y is compact. 

Proof. Let °U = {Up.Xe A} be an open covering of Y. Then since / is 

continuous, XT = {/_1[f/J: 2 e A} is an open covering of X. Since X is compact, 
XT contains a finite subcollection {f~1[UXU)]:i e P„} that covers X. Since / is a 

surjection, for each A(i),/[/_1[t/A(f)]] = Uxu). Hence, 

f[\J{f-'[UMi)]:ie Pn}] 

= U{f[f-1[UMi)]]:iePn} 

= U {UMi):iePn}= Y. 

Thus, contains a finite subcollection {UXU)\i e Pn} that covers Y. The space Y 

is therefore compact. 

EXERCISES: COMPACTNESS OR FINITE SUBCOVERING PROPERTY 

1. Suppose (X, d) is a metric space and S is a subset of X. Prove 
that 5 is compact if and only if every covering of 5 (i.e., 
S <= |j jf) consisting of open subsets of X contains a finite 

subcovering of 5. 

2. Prove that R" can be expressed as the union of a countable 
collection {K, :ie P} of compact sets such that K, Ki+1 

for i e P. 

3. Let X' be an open covering for a compact metric space {X, d). 

Prove that there is an e > 0 such that if d(x,y) < e, then there 

is a U e XT such that x and y both belong to U. (Such an e 

is called a Lebesgue number for the covering Jf.) Lise this 
result to give an alternate proof of Theorem 62.5. 

4. Suppose A is a subset of R" that has the following property: 
There is an e > 0 such that if x and y are two distinct points 

in X, then |x — y\ eg e. Prove that X is finite or unbounded. 

5. Suppose f.X-+X is a continuous mapping from a compact 

metric space into itself. Let Xx = f[X] and for each /, A,+i = 
/[A,]. Define A to be fj {X, :i e Pf Prove that/[A] — A. 
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6. Suppose / is a continuous mapping from a compact metric 
space X into a metric space Y. Prove that if Fis a closed subset 
of X, then f[F] is a closed subset of Y. 

7. Suppose /is a one-to-one continuous mapping from the com¬ 

pact metric space X onto the metric space Y. Prove that if 17 
is an open subset of X, then/[!/] is an open subset of Y. 

Explain why this shows thatf~x is continuous. 

8. Let / be a continuous mapping from a compact metric 

space onto a metric space Y. Suppose it is known that for each 
y e T,/_1[y] is connected. Let K be a connected subset of Y. 

Show thatf~x[K] is connected. (See [33], (2.2) page 138.) 

9. Re-prove Theorem 62.5 by using the sequential compactness of 

X rather than the equivalent compactness property. 

10. Suppose /: Rm —> R" is continuous. Is/necessarily uniformly 

continuous on every bounded subset of Rm? 

63. COMPLETE METRIC SPACES 

63.1. Definition. Cauchy sequences. Let (X, cl) be a metric space. If (an) 

is a sequence in X that satisfies the following condition, then (a„) is said to be a 

Cauchy sequence (C.S.) in (X, d). 

For each e > 0, there is a positive integer N such that if m ^ N and n ^ N, 

then d(am, an) < e. 

Recall that in 42 we proved that a sequence in R'1 converges if and only if it 
is a Cauchy sequence. So, in R", the class of Cauchy sequences and the class of 

convergent sequences are the same. For metric spaces, every convergent sequence is 

a Cauchy sequence. (The first part of the proof of 42.1 (a) is a direct verification of 

this fact.) However, it is not true for every metric space that Cauchy sequences 

necessarily converge. To verify this fact, refer to Exercise 3, page 122. Those 
metric spaces for which every Cauchy sequence converges have many other useful 

properties because of this important property. 

63.2. Definition. Complete metric space. A metric space (X, d) is complete 

provided every Cauchy sequence in (X, d) converges. 

It should be clear to the reader that a closed subspace of a complete metric 

space is complete. Also suppose that (X, d) is a metric space and Y is a subset of 
X that is not closed. Then there is a sequence (y,) in Y that converges to a point 

x0 e X — Y. Thus, (yt) is a Cauchy sequence in Y that does not converge in 
(Y, d). Hence, (Y, d) is not complete. These remarks are summarized in the 

following statement. 

63.3. Theorem. Suppose that X is a metric space and S <=■ X. If S is a 

complete subset of X, then S is closed. Further, if X is complete and S is closed, 

then S is complete. 
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It is important to notice that completeness is not a topological property. Recall 
that the real line R is homeomorphic to the open interval (0, 1) c: R (Exercise 10, 

page 102). Although R is complete, it follows from Theorem 63.3 that the real 
open interval (0, 1) is not complete. 

The results of Exercise 3, page 122, in terms of completeness, together with 
Theorem 62.4, give us the following. 

63.4. Theorem. If (X, d) is a compact metric space, then it is complete and 

totally bounded. 

Note that R" is complete but not compact. Thus, for metric spaces the prop¬ 

erty of completeness is weaker than the property of compactness. Nevertheless, 
one might suspect that some of the theorems for compact metric spaces would 

suggest possible results for complete metric spaces. Also, because of 63.4, one 
might wonder if completeness taken together with total boundedness implies 
compactness. If it does, it is very interesting since taken as separate properties 

neither total boundedness nor completeness is a topological property, whereas 

compactness is a topological property. We shall pursue this matter further in the 
exercises and in a subsequent section. 

The proofs of the following two theorems involving uniform continuity are 

left to the reader in the next set of exercises. 

63.5. Theorem. If f:(X, d) —► ( Y, p) is uniformly continuous and (x,) is a 

Cauchy sequence in (X, d), then (/(xf) is a Cauchy sequence in ( Y, p). 

63.6. Theorem. Suppose (X, d) and (Y, p) are metric spaces and (Y. p) 

is complete. Let D be a dense subset of X. Iff:(D, d) -> (Y, p) is uniformly con¬ 

tinuous, then there is a unique continuous extension f*:(X, d) —( Y, p) of f (i.e., 

f* | D — f). Furthermore, f* is uniformly continuous on X. Moreover, if f is an 

isometry, so is/*. 

EXERCISES: COMPLETE METRIC SPACES 

1. Let A be a metric space. Suppose (x,) is a Cauchy sequence in 

X. 

(a) Prove that if the range of (x,) is not an infinite set, then 
for some N, xv = xx+h for each h e P. 

(b) Prove that the range of (xt) is a bounded set. 
(c) Prove that if a subsequence of (xt) converges, then (x,) 

also converges. 

2. Suppose (X, d) is a complete and totally bounded metric space. 

Is (X, d) necessarily compact? 

3. Prove Theorem 63.5. 

4. Prove Theorem 63.6. 

64. NESTED SEQUENCES OF SETS FOR COMPLETE SPACES 

In view of the fact that sequentially compact spaces are complete, the following 

is a generalization of the statement in Exercise 5, page 12 3. 
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64.1. Theorem. Let (X, d) be a complete metric space. Suppose (Ax) is 

a decreasing sequence of nonempty closed subsets of X such that lim (diam (A{)) = 0. 

Then there exists one and only one point x in D {Af. 

Proof. Let xi e At. We shall show that (x*) is a Cauchy sequence and that 

its limit is the point in H {A,}. 

Let e > 0. There is a positive integer N such that diam (Aa) < e. Since the 
sequence (Tt) is a decreasing sequence of sets, for m § N and n ^ N, xm and xn 

are elements of A y and we have d(xm, xn) < e. Thus, (x*) is a Cauchy sequence 
and has a limit x0. Now for each j e P, the sequence {xj+f°=l is a sequence in Aj 

such that lim Xj-+j-= x0. Since each At is closed, x0 e A}- and, thus, x0 e 
i—► co 

H {Ap.j e P}. It is clear that if there were another pointy in the intersection, then 
diam (Af ^ d(x0, y) > 0 and we would have a contradiction to the fact that 

lim (diam (Af) — 0. 

As an application of the previous theorem, we prove next a theorem that 

guarantees that, under certain conditions, the intersection of a collection of sets is 

not only nonempty but dense. 

64.2. Theorem (Baire). Let (X, d) be a complete metric space. Let 

{Di:i e P} be a countable collection of open subsets of X, each dense in X. Then 

Pi {Dpi e P} is dense in X. 

Proof. Let p e X and r > 0. To show that H {Dpi e P} is dense in X, 

it will be sufficient to show that N(p; r) n [H {Dpi e P}] f 0. We will show that 

we can find a nested sequence of balls (B(pp, rf) such that 

64.2(a). B{pprt) c N(j>; r) 

64.2(b). rt < 1 // 

64.2(c). B(pp rt) <= Dt. 

The fact that the sequence of closed sets (B(pp, rf) is a decreasing sequence 

and r, < - will allow us to use the previous theorem to conclude that there is a 
i 

zef) {B{p,; /-,)}. Then 64.2(a) and 64.2(c) will imply that ze [f| {£),•}] n N(p'> r)- 

We complete the proof by showing by induction that such a sequence of balls 

exists. 
Since Dx is dense and open, Dx n N{p; r) is a nonempty open subset. Hence, 

there is a px and rx < 1 such that 

B(pp rx) c N(p; r) n Dx 

so that 64.2(a) and 64.2(c) are satisfied by this ball. 
Next assume that for /' e P/(, B(pp r,) has been chosen to satisfy 64.2(b) and 

64.2(c) and so that B{pp, rx) => B(pp r2) • • • => B(ph; rh). Then, since Dh+1 is 

open and dense, Dh+1 n N(ph; rh) is a nonempty open subset. Thus, there is a 

ph+1 and an rh+1 < ^ -1— such that the closed ball B(ph+1; rh+1) c Dh+1 n N{ph; rh). 

Hence, 64.2(b) and 64.2(c) are satisfied for i — h + 1 and, further, B(pp, rx) 

B{pp r2) => • • • =3 B(ph+1; rh+1). By induction there is a nested sequence {B(pp, r,)) 



130 Chapter Four 

Figure 16 

satisfying 64.2(b) and 64.2(c); recall that 64.2(a) is also satisfied. The proof has 

thus been completed. 

EXERCISES: NESTED SEQUENCES OF SETS FOR COMPLETE SPACES 

1. Apply the Baire theorem to prove the following: Suppose X is 

a nonempty complete metric space and X = U {F,:/ e P}, 
where each Ft is closed. Then at least one of the F/s contains a 
nonempty open subset of X. 

2. Suppose A is a complete metric space and IT is a nonempty open 
subset of X. If {Ft:/eP} is a countable collection of closed 

subsets of X such that W = \J [F{: / e P}, then at least one of 
the F/s contains a nonempty open subset of X. (The proposition 

in this exercise is one form of a theorem known as the Baire 
Category theorem.) 

3. In 64.1 it was proved that a complete metric space had the 
following property: If (A,) is a decreasing sequence of nonempty 
closed subsets of the space such that lim (diam (/!,)) = 0, then 

f) {/!,:/ e P} 7^ 0. Prove that if a metric space has this prop¬ 
erty, then the space is complete. 
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65. ANOTHER CHARACTERIZATION OF COMPACT METRIC SPACES 

We have already seen that a compact metric space is complete and totally 

bounded (see 63.4). Thus, a necessary condition for compactness of a metric space 

is that it be both totally bounded and complete. We show next that this is also a 

sufficient condition. This gives an affirmative answer to the question raised in 
Exercise 2, page 12 8. 

65.1. Theorem. A necessary and sufficient condition that a metric space be 

compact is that it be complete and totally bounded. 

Proof. The necessity is given by Theorem 63.4. We shall prove the sufficiency 

by assuming that A is a totally bounded and complete metric space and by showing 

that it has the Bolzano-Weierstrass property. (Our proof will be based on the proof 

of the Bolzano-Weierstrass theorem for R'1 (40.3). Instead of using the nested 
interval theorem as in the proof of 40.3, we shall use the nested subset theorem 

(64.1) for complete metric spaces.) 
Let Z be an infinite subset of X. Since X is totally bounded, X is the union of a 

finite collection of (closed) balls each of whose radius is less than L For one of 

these balls, Bx, it must be true that Bx r\Z is an infinite set. Assume that closed 

sets Blt B2, . . . , Bh have been chosen so that B( => Bl+1, diam (B,) < - and B, n Z 

is an infinite set. Now a finite collection of balls each of whose diameter is less 

than —^— covers X. Since Bh n Z is infinite, one of these balls Bf,, must be such 
h + 1 

that B*+1 n Bh n Z is infinite. Let Bh+1 = B*+1 n Bh. Note that Bh+1 is closed, 

diam (Bh+1) < -—-—, Bh+l n Z is infinite, and Bh => Bh+1. Thus, by induction, 
h + 1 

we find an infinite sequence of closed sets (B,) such that B, Bi+1, diam (Bf) < 

1 // and Bt n Z is infinite. By Theorem 64.1, f) {B,: i e P} has in it a single element 

z. As in the proof of the Bolzano-Weierstrass theorem for R", it is now easy to 

show that z is a limit point of Z. We leave this detail to the reader. 

EXERCISE: ANOTHER CHARACTERIZATION OF COMPACT METRIC SPACES 

1. Recall that subsets of R" that are closed and bounded are com¬ 
pact. The property of closedness together with boundedness 

does not characterize compactness in general (see the intro¬ 

ductory paragraph in 60). 
(a) Give an example of a complete metric space for which there 

exists a closed and bounded subset that is not compact. 

(b) Prove that in a complete metric space, a set is compact 

if and only if it is closed and totally bounded. 

66. COMPLETION OF A METRIC SPACE 

In 53.9 we defined an isometry to be a surjection f:(X, d)-+ (Y, p) such that 

the distance between points is preserved under /, i.e., p(f(x), f{y)) = d(x, y) 
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for all .x and y in X. It should be clear that if /is an isometry from (X, cl) onto 
(Y, p), then f~1 is an isometry from ( Y, p) onto (X, cl). If (X, d) and ( F, p) are 

metric spaces for which there exists an isometry that maps (X, d) onto ( F, p), 

then we shall speak of (X. d) and ( Y, p) as being isometric. In such a case, we shall 

sometimes refer to one of the spaces as being an isometric copy of the other. If 

lF maps (Xu /) isometrically onto (X2, cU), then we may regard (A\, /) as essen¬ 
tially the same space as (X2, d2) with the name of a point x in X1 being changed to 
vF(.x). For example, the real line R can be mapped isometrically onto the x-axis of 
the plane with the mapping XF : R->RXR given by vF(x) = (x, 0). We can then 

think of the x-axis as the real line by identifying each point (x, 0) in the plane with 

the corresponding real number x. 

66.1. Definition. Isometric embedding. A mapping f\(X, cl) -> (F, p) is 

said to be an isometric embedding of (X, d) in ( F, p) providedf: (X, d) —> [f[X], p) 

is an isometry. 

We see from this definition that if/: (X, cl) -> ( F, p) is an isometric embedding, 

then F contains an isometric copy of X, namely, f[X). Isometric embeddings will 
be of special interest to us in the discussion of the completion process. 

We have seen examples of spaces that are not complete. For example, a sub¬ 
space of a metric space cannot be complete if it is not closed in the space that 

contains it. We shall show that although a metric space (X, d) may not be com¬ 

plete, there exists a complete metric space (A*, d*) which contains a dense iso¬ 
metric copy of (X. d). We shall do this by first defining an equivalence relation E 

for the c/-Cauchy sequences of X. A suitable metric d* will then be defined for the 

collection X* of all £-equivalence classes. Finally, we shall define an isometric 

embedding map xF:(Ar, d)~> [X*, d*) such that T[A] is dense in X*. Thus, we 
shall be able to think of a metric space (A, d) as being a dense subset of some 

complete metric space (A*, d*). 

66.2. Definition. Completion of a metric space. Suppose that ( F, p) is a 

complete metric space and VF : (X, d) —► ( F, p) is an isometric embedding of (X, cl) 

in ( F, p) such that VF[A] is a dense subset of Y. Then the pair (VF, ( F, p)) is called 

a completion of {X, d). 

66.3. Theorem. Let (X, d) be a metric space. Then there exists a completion 

(XF, (Xf d*)) of (X, d). 

The proof of Theorem 66.3 will be broken up into a number of parts. The 
verification of each part for which a proof is not given should be considered as an 

exercise to be done before going on to the next part. Some of the steps are designed 
more to help the reader to get a feel for the procedure than to provide a necessary 
part of the development. 

In the statements that follow (X, cl) is a metric space and C.S. is an abbrevia¬ 
tion for Cauchy sequence. The symbol Sf will be used to denote the collection of 

all ^-Cauchy sequences in X. The reader should notice the dependence of the 
completion of (X, cl) on the metric cl. 

66.4. If (a,) and 0.) are convergent sequences in X, then lim (a,) = lim (//) 
if and only if lim (</(a,, //)) = 0. 
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66.5. If (a,) is a C.S. (not necessarily convergent) and (/?,) is a sequence such 

that lim (c/(a,, /?,)) = 0, then (/?,•) is also a C.S. 

66.6. If (a,) is a C.S. in X and (a,i(0) is a subsequence of (a,-), then (a,i(0) 

is also a C.S. and lim (d(a,-, = 0. 

66.7. If (a,) and (/?,) are Cauchy sequences in X, then (d(a,-, /?,■)) is a C.S. of 

nonnegative real numbers and, hence, has a limit, and the limit is nonnegative. 

66.8. Define the relation £ in the set SE of all Cauchy sequences in X as 

follows: For (a,) e SE and (/St) e SE, (a,) E (/?,•) if and only if lim (d(ai, /?,-)) = 0. 

The relation E is an equivalence relation in SE, 

66.9. Let (a,) be a convergent sequence in X with the limit x. Let (/?,) be the 

sequence each of whose terms is x. Then (oq) E (fis). 

66.10. Suppose that (a,-), (a,), (/Sf), and (/?,) are in SE. If (oq.) E 

(a,) and (&) E (/£), then lim (d(a,-, &))= lim (d(a„ ft)). 

66.11. Let X* be the collection of all £-equivalence classes. For each 
a — (v.,)eSE, £[a] denotes the inequivalence class that has a as an element. 

On the basis of 66.10 and some of the previous remarks, we can now make the 
following definition: 

For E[a] and E[f3] in X*, let 

66.11(a). d*(E[a], £[/?]) = lim {d{a,-, /?,)). 

Then d* as defined in 66.11(a) is a metric for X*. 

66.12. For each xel, define y(x) £ EE as the C.S. in X given by y(x), = x 

for each i e P, i.e., y(x) is the sequence each of whose terms is x. Define XF: (X, d) -> 

(.X*, d*) by 
^■(x) = E[y(x)]. 

The mappingVF is an isometry; that is, d(x,y) = d*(E[y(x)\, E[y(y)}) forxandy 

in X. 

66.13. WithxF:(3f, d)-+ (X*, d*) as in 66.12, xF[3f] is dense in X*. 

Proof. Let £[/3] e X*. We shall prove the proposition by showing that there 

is a sequence inxF[W] that converges to £[/?]. This will show that £[/?] e cl (XF[W]). 

For each term /?, of p, let y(Pi) be the element in EE given, as in 66.12, by 
y(/3i)j = /5, for each j e P. We complete the proof by showing that 

lim (</*(m), nm = o. 
To see this, first note that d*('¥({3i), £[/3]) = d*(E[y(P,-)], £[/?]). 

Let e > 0. Since (/?,•) is a C.S. in X, there is a positive integer I such that for 

/ ^ /, and each h e P, 

d(Pt, Pi+n) < ~2 ■ 

Let / ^ I. Now i is fixed. From the definition of d*, there is an integer J such that 

for j J 

d*(E[y(Pi)i m) < m Pd + \ ■ 



134 Chapter Four 

Thus, if we choose j ^ max {/, J}, 

d*(E[ym, E[ft]) < %(&)„ &) + -2 

= dm, p,) +1 

Thus, we have shown that for /' 2s /, d*(E[y(^i)], £[/(]) < e and, consequently, 

we have shown that lim (c/*(£[y(/J;)], £[/3])) = 0. Hence, lim (r/*(vF(/9J), £[/3])) =. 0. 

66.14. The space (X*, d*) is complete. 

Proof. Let (Am) be a C.S. in X*. For each m s P we choose a representative 
xm e Am so that we may write Am = E[xm]. Notice that for each positive integer 

m, xm is a C.S. in X so that we may write xm — (xmi)°°=v We shall prove that 

(X*, d*) is complete by exhibiting aze^ such that lim (£[x„,]) = £[z], We shall 
choose z by a modified diagonal process as follows: 

For each m, (xm j)f=1 is a C.S. in X. Then there is an integer N(m) for each 

m e P such that for j ^ N(m), 

66.14(a). 

m 

Define zm = and set z = (zm)“=1. We shall show next that z is a C.S. in 
X and finally complete the proof by proving that lim (£[.y,J) = £[zj. 

To show that (zm)eSf, let e > 0. We may choose a positive integer N* 

such that 

66.14(b). 

1 e 
— < - 
N* 4 

and such that for m § N* and n 2^ N* 

66.14(c). 

d*(E[xJ, E[xJ) < 7 • 
4 

Next let m ^ TV* and n ^ A*. We show that d(zm, zn) < e so that (z,„) is a 
C.S. in X. With m and n now fixed, because of 66.14(c) and the definition of d* 

we may choose an i so large that 

d(xmti, xn>i) < | 

and we also choose the / to satisfy 

i ^ N(m) and i 2? N(n). 
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Then, from 66.14(a), 

dicin') Zff) ^(-^m,A'(m)’ ■>^n,N(n)') 

— d(XmtN(m)’ Xm,i) ~F d{xmj, Xn i) -j- d(xn>i, •W.A'fn)) 

<I+i+i 
m 2 n 

e , e , e 
< - H-b- = £. 

4 2 4 

Now that we have shown that (zm) is a C.S. in X, it follows that E[z] e X* 

and we show next that lim (£[xmj) = E[z]. To do this, let e > 0. Since z is a 
C.S. in X, there is a positive integer M such that 

66.14(d). 

d(zm, zn) < - for m ^ M, n ^ M. 

Next, let N be an integer such that 

66.14(e). 

N > max M, 

We complete the proof by showing that for m ^ N, d*(E[xm], E[z]) < e. 
Let m 2? N. From the definition of d*, there is an integer / such that for 

I, 

66.14(f). 

d*(E[x J, E[z]) < d(xmti, zt) + - . 
4 

Choose a positive integer i such that 

66.14(g). i ^ max {/, N(m), M}. 

Since i ^ /, from 66.14-(f), 

d*(E[x J, E[z]) < d(xmti, zt) + 7 

d(xm,ii . 
4 

- d(xm j,xm y(m)) ~F d(xmtp](m), , 

d{xm i, xm Af(m)) "I- d(zm, Zj) ~F 
4 

Then since / Si N(m), m ^ A/, and / S: Af from 66.14(a) and 66.14(d), it follows 

that we may write 

d\E[x J, £[z]) < 1 + ^ + ~A • 
m 2 4 
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Finally, since m ^ N, from 66.14(e) we get 

d\E[x J, £[z]) < 7 + 7 + 7 = 
4 2 4 

Hence, (X*, d*) is complete. 

Reviewing what we have done so far, we see that by 66.12 and 66.14, the 
mapping VF is an isometric embedding of (X, d) in the complete space (X*, d*). 

Furthermore, by 66.13,VF[X] is dense in X*. Hence, (XF, (X*, d*)) is a completion 
of {X, d) and the proof of Theorem 66.3 is complete. 

One might wonder if there are other completions of (X, d). In a certain sense, 

any other completion is essentially the same. If (TF1, (Xx, dfi) and (T^, (X2, d2)) 
are two completions of a space (X, d), it can be shown that there exists an isometry 
h from (A7, df onto (X2, d2) that relates to *F2 as indicated by the following 

commutative diagram: 

h (X, d) 

These remarks are summarized in the next statement, the proof of which is left 
as an exercise. 

66.15. Theorem. Suppose that (T\, (Xx, r/x)) and (4\2, (X2, d2)) are com¬ 

pletions of {X, d). Then there exists an isometry h from (Xx, dx) onto (X2, d2) such 

that h = *F2. 

Hint for the proof of 66.15: Before trying to prove the theorem, review the 

statement of Theorem 63.6. Define h first on'FJT] in a way that will force h q'Fj 
to equal T2. Then extend h by making use of 63.6. 

It is interesting to note that if {X, d) is itself complete, then (/, (X, d)) is a 
completion of (X,d), where i: (X, d) —> {X, d) is the identity mapping. Hence, 

by 66.15, the space (X*,d*), constructed in the proof of Theorem 66.3, is iso¬ 
metric to (X, d). 

EXERCISES: COMPLETION OF A METRIC SPACE 

1. Give proofs for items 66.4 through 66.12. 

2. Prove Theorem 66.15. 

3. Suppose that (X, d) is a metric space. Prove that (X, d) is 

complete if and only if (X, d) is a closed subset of every metric 
space in which it can be isometrically embedded (i.e., for every 

isometric embedding VF: (X, d) —► ( Y, p), T'fA'] is a closed 
subset of (Y, p)). 

67. SEQUENCES OF MAPPINGS INTO A METRIC SPACE 

* r_| yi ^211+1 

Recall from the study of calculus that for each x e R, sin x = 2 
-0 (2n + 1)! ' 

What this means is that the sine function is the limit of a sequence of polynomials 
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sequence 

(.S„) converges to the sine function uniformly on every closed and bounded interval. 

In this section we will deal with the notions of convergent and of uniformly con¬ 

vergent sequences of functions with values in a metric space. In doing this we will 
be able to generalize many familiar phenomena where the functions have their 

ranges in R. 

67.1. Definition. Let (fn:X—>{Y,d)) be a sequence of maps defined on a 

set X, with functional values in a metric space (Y, d). Suppose for some x e X, 

lim (f„(x)) exists. We then say that (/,) converges at x. If the sequence of maps 

(/„) converges for each x e X, and we let f{x) — lim if fix)) for each x e X, then 
fix) defines a map fi.X-> {Y, d). In that case we say that {fn:X->- (Y, dj) con¬ 

verges pointwise {or converges) to the map f:X —>• {Y, d). 

The reader should note that the ranges of the mappings f and / are contained 
in a common metric space. However, the common domain X need not be a metric 

space but only a set. 
Next suppose (/n:(X, d) —► (Y, p)) is a sequence of continuous maps that 

converges pointwise to a map f: {X, d) ( Y, p). A natural question is whether f 
inherits the continuity from the /„’s. The following example answers the question 

in the negative. 
67.2. Example. For each ;eP, let/:[0, 1 ] —R be given by f{x) = xi. 

Note that the limit exists and is given by/: [0, 1] —>R, where/(x) = 0 if x e [0, 1) 

and/(l) = 1. We see that f is not continuous. 
There is a stronger kind of convergence, uniform convergence, that is strong 

enough to guarantee that the continuity of/is inherited from that of the/’s. We 

define that concept next. (See Figure 17.) 

67.3. Definition. Uniform convergence. Let (fn: X —> (Y, p)) be a sequence 

of maps. Suppose (/,) converges pointwise to f and for each e > 0, there is an 

integer N such that for n 3; N, p(fn(x),f(x)) < e for all x e X. Then (/„) is said 

to converge uniformly to f on X. 

We see that pointwise convergence requires only that for each-x and e > 0 

a suitable N be determined such that for n ^ N, p(fn(x),f(x)) < e, whereas for 
uniform convergence the N can be chosen independent of the x e X. We should 

notice also that if (fn:X-> {Y, p)) converges uniformly to /:X —*• (7, p), then 

for each subset X* of X it is true that (fn | X*:X* —► ( Y, p)) converges uniformly 

to/ | X*:X* -* (7, p). 
In the next theorem convergence of a sequence of continuous functions is 

considered. Hence, the theorem is stated in a setting in which both the domain 

and range are metric spaces. 

($x-o>where = i 
(-l)A 2j+l 

=o (2y + l)! 
The reader may recall also that the 

67.4. Theorem. Let (/„:{X, d)-*-(Y, p)) be a sequence of continuous 

mappings that converges uniformly to f: {X, d)—+{Y, p). Thenf is continuous. 

Proof. Let x0 e Xand let e > 0. By uniform convergence, there is an integer 
£ 

n such that p(/(x),/n(x)) < - for all x e X. Then, by the continuity of fn there is 
^ e 

an open set U containing x0 such that p(fn{x),fn(x0)) < - for each x e U. 
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We complete the proof by showing that if x e U, then p(/(x), /(x0)) < e. 

To see this, notice that if x e U, then 

p(f(x),f(xo)) ^ p(/(x),/n(x)) + p(/„(x),/„(x0)) + p(/„(x0),/(x0)) 

_ £ , £ , £ 
< I-1-— £• 

3 3 3 

The following theorems, whose proofs are left to the reader in the next set of 

exercises, are quite useful in analysis. They furnish sufficient conditions that imply 

uniform convergence; the first also gives a necessary condition. Note that in the 
first theorem the domain need not be a space. 

67.5. Theorem. Cauchy criterion for uniform convergence. Suppose (Y, p) 

is a complete metric space and X is a set. Then the sequence (/,: X —► ( Y, p)) 
converges uniformly to some function if and only if the following condition is satisfied: 

For each e > 0, there is a positive integer M such that for m 3: M and n 2? M, 

p(fm(x),fn(x)) < efor all x e X. 

67.6. Theorem. Suppose (f:(X,d)—-(Y,p)) is a sequence of continuous 

mappings that converges pointwise to a continuous mapping f Suppose {X, d) is 
compact and the convergence is monotone in the following sense: For all x e X and 

i e P, p(/I+i(x),/(x)) p(/,(x),/(x))_ Then the convergence is uniform. 

The following important theorem is an easy corollary to the previous theorem. 
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67.7. Theorem. (Dini). Suppose (f: (X, d) —> R) is a sequence of continuous 
real-valued functions defined on a compact space {X, d). Suppose the sequence is 
monotonic increasing; i.e.,f(x) ^ fi+1(x) for each i e P. //"(/,) converges pointwise 

to a continuous function f then the convergence is uniform. 

EXERCISES: SEQUENCES OF MAPPINGS INTO A METRIC SPACE 

1. Suppose that (fi:(X,d)-+(Y,p)) converges uniformly to a 

function f:(X,d)-*(Y,p) and for sufficiently large i, f is 
uniformly continuous. Prove that f is uniformly continuous. 

2. Suppose that the sequence (fi:(X,d)->(Y,p)) converges 

pointwise to a map f: (X, d) —► (Y, p). Let x0 e X. Suppose that 

there exists an open subset U <= X that contains x0 such that for 

sufficiently large i, the restriction f | U is continuous. Prove 
that if (/,- | U) converges uniformly to / | U, then the function / 

is continuous at x0. 

3. For each positive integer n, let fn be given by fn(x) = - x2 

for.xeR. Show that lim (/„) is continuous. Is the convergence 

uniform on R? Does the situation fall under that covered in 

the previous exercise? 

4. Suppose (fi:{X,d)->-{Y,p)) converges uniformly to a con¬ 
tinuous mapping f:(X, d) —(T, p). Prove that for each 

sequence (x,) in Xand x e X, lim (x,) = x, implies lim (/,(x,)) = 

f{x). 
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5. Prove Theorem 67.5 and Theorem 67.6. A hint for the proof of 

67.6 is given here. 

Let e > 0. For each x e X, there exists a positive integer 
£ 

N(x) such that p(/n(X)(x), f(x)) < -. Choose an open set U(x) 

that contains x and has the property that for z e U(x), p(f\{X)(z), 
£ £ 

/n(x)(x)) < ^ an<^ The collection of open sets 

{U(x):x E X} is an open covering of X and, hence, has a finite 
subcovering. Use the finite subcovering to find an appropriate 

positive integer N needed to prove uniform convergence. The 
monotone convergence property will play a crucial role in 

showing that the appropriate N will work. (If one chooses to 

prove the theorem by an indirect proof, the sequential compact¬ 
ness property can be used to good advantage.) 

6. Show that Theorem 67.7 follows from 67.6. Show how 67.6 

can be obtained from 67.7 by considering the real-valued 

functions g, given by g,(x) = p(f,(x),f(x)). 

68. REVIEW EXERCISES 

The set of exercises below provides a review of the last two 

chapters. Some of the exercises will serve as motivation for several 
of the concepts to be taken up later. 

1. Define the term separability for metric spaces. Give two other 
properties that are equivalent to separability for metric spaces. 

2. Is total boundedness invariant under a continuous mapping? 

If the answer is no, is total boundedness invariant under uni¬ 
formly continuous mappings? 

3. Define the concepts of sequential compactness, compactness, 
and that of the Bolzano-Weierstrass property for metric 
spaces. Prove that they are equivalent for metric spaces. 

4. Suppose /:R"->R”‘ is continuous and S <= R" is bounded. 
Is/[S] necessarily bounded? 

5. Suppose f:S —> Rm is continuous where S is a bounded subset 
of R". Is/[S'] necessarily bounded? 

6. (a) Let S be an open subset of R”. Let {U^.xeA} be a 
collection of nonempty pairwise disjoint open subsets 

such that S = U {£/a:oc e A}. Show that the collection 
{Ua:a 6 A} is a countable collection. 

(b) Show by an example that the statement proved in part 

(a) is not true for metric spaces in general. 

(c) Is the result of part (a) true for separable metric spaces? 
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7. Suppose S is an open subset of R'. Let x e S and Cx U {Q :Q 
is connected and x e Q c S}. Show that Cx is an open con¬ 
nected subset of R". 

8. Let (X, d) be the subspace of R2, where 

X={(0,y):-l ^ y ^ 1} u x, sin -) :0 < x ^ lp 

(a) Is (A', d) connected? 

(b) Show that (X, d) does not have the property possessed by 

R" described in the previous exercise; i.e., show that 
there is a point x e X and an open subset S of X 

such that x e S and for which Cx = U{Q : Q is con¬ 
nected and x e Q <= S} is not open in X. 

9. Let (X, d) be the product metric space formed from the collec¬ 

tion {(Xi, dt):i e Pn}. Let ^t{:(X, d)-*■ (Xi9 dj be the pro¬ 

jection onto (Xi9 dt) for each i e Pn. As usual, for x e X, 
use Xj to denote 7xt (x). 

(a) Is 7t, uniformly continuous? 
(b) For each i e P„ and p e X, let X*(p) = {x:x e X and 

Xj = pj for j /}. Show that X*(p) is a closed subset 

of X containing p and that 77, | X*(p): X*(p) -> X, is an 

isometry so that X*(p) is an “isometric copy” of Xt. 

(c) For each of the following properties, show that (X, d) 
has the property if and only if each {Xu dt) has the 

property: (i) separable; (ii) compact; (iii) totally 

bounded; (iv) connected; (v) complete. 

10. Prove that in R" every open set is the union of a countable 

collection of pairwise disjoint open connected sets. Use an 

example to show that this property does not hold for metric 
spaces in general. 

11. Suppose (/„: (X, d)-+(Y, p)) is a sequence of bounded map¬ 
pings that converges uniformly to a mapping/ :(X,d)-+ (Y, p). 

(a) Is/necessarily a bounded mapping? 
(b) Show that there is a uniform bound for the sequence 

(i.e., show that there is a number M such that 

diam (f n[X]) ^ M for each n e P). 

12. Suppose (X, d) is a metric space. A nonempty connected 

subset 5 of X is said to be a component provided that it is not 

a proper subset of any other connected subset of X. 
(a) Show that in Exercise 7 the set Cx is a component of 

the subspace S. 
(b) Give an example of a space in which the components 

are not all open. 
(c) Are components of a space necessarily closed? 

(d) Suppose/: (X, d) —► (Y, p) is a continuous surjection and 

S' is a component of Y. Show that /-1[S] is the union 

of a collection of components of X. 
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13. Suppose (X, d) is a metric space and Y is a set that has the 
same cardinality as does X. Show that there is a metric p for 

Y and a mapping h:(X, d) —► (Y, p) that is an isometry of 
(X, d) onto (y, p). 

14. Let B(0; 1) be the unit ball in R" with center at the origin. 

Define f:R"—rB{0\\) as follows: For each xeR", let 

f{x) = x if |x| ^ 1 and f(x) — —1- for ]x| > i. 
|x| 

(a) Show that/is continuous. 

(b) Is/uniformly continuous on R"? 

15. (This exercise is intended for the reader who has some familiar¬ 
ity with the theory of functions of a complex variable. In parti¬ 

cular, recall that every complex polynomial is continuous. Also 

recall that from the fundamental theorem of algebra, it follows 
that if f is a nonconstant complex polynomial and Z is the 

complex plane, thenf[Z\ = Z.) Letf .Z —► Z be a nonconstant 
complex polynomial. Think of the complex plane Z as R2. 

(a) Show that f maps bounded subsets of Z onto bounded 

subsets of Z. 
(b) By making use of the algebraic form of complex poly¬ 

nomials and your knowledge of the complex number 

system show that f maps unbounded subsets of Z onto 
unbounded subsets of Z. 

(c) Show that for each compact subset K of Z, /-1[K] 

is compact. 
(d) Show that if F is a closed subset of Z, then f[F] is closed. 
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Metric Spaces: Some Examples 

In Chapter 2 we studied Rn in some detail. We learned thatR" had both an 

algebraic and a metric structure. Recall that an inner product (34.3) was defined for 
R", and the magnitude function was defined in terms of the inner product. The 

Euclidean distance between two points x and y was then defined as the magnitude 
of their vector difference. We proved that R", endowed with the Euclidean metric, 

is a complete separable metric space. The space R'1 is a special case of a larger class 
of vector spaces. Generally a nonempty set on which there is defined a vector 

addition and a scalar multiplication that satisfy the properties listed in 34.2 is called 

a real linear space. If a norm or magnitude is defined on a real linear space, then it is 
called a real normed linear space and a metric can be given for the space in terms 

of its norm. If the normed linear space is complete, it is called a Banach space. If 
the norm of a Banach space is induced by an inner product, the space is called a 

Hilbert space. Thus, we see that R'1, together with the appropriate vector addition, 

scalar multiplication and inner product, is a real Hilbert space. 
In this chapter we shall study two important examples of Banach spaces, one 

of which we shall prove is a Hilbert space. In one example, each point in the space 
is a real-valued sequence. In the other example, each point is a real-valued con¬ 

tinuous mapping defined on a closed interval. Like Rn, both spaces turn out to be 

separable and connected. In these two examples, however, closed and bounded 

subsets are not necessarily compact. 
In the last part of this chapter we shall consider contraction mappings on 

complete metric spaces and present a proof of the very important Banach fixed 
point theorem. This theorem will then be used to prove an existence theorem for a 

class of first order differential equations. 

143 
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69. LINEAR OR VECTOR SPACES 

Although we shall primarily be interested in the metric and topological prop¬ 

erties of the examples in this chapter, it is useful to consider first the algebraic 

structure of the spaces involved. 

69.1. Definition. Real linear or vector space. A real linear or vector space is a 
nonempty set of objects V on which there is defined a binary operation + called 

vector addition and a scalar multiplication (multiplitation of the element by a real 
number) that satisfies the following properties. 

69.1(a). Properties of vector addition. To each x and y in V, there corre¬ 

sponds a unique element x + y in V called the vector sum of x and y. Furthermore 
this operation + satisfies the following properties: 

(i) x + y = y + x for all x and y in V. 

(ii) x -j- (j + z) — (x + j) + z for all x, y, and z in V. 

(iii) There exists a unique element 0 e V (called the zero element) such that 
x + 0 = x for all x e V. 

(iv) To each x e V there corresponds a unique element —x e V (called the 

negative of x) such that x + (—x) = 6. 

69.1(b). Properties of scalar multiplication. To each x in V and real number 

a, there corresponds a unique ax in V. Furthermore, for all real numbers a and j and 

all x and y in V: 

(i) a(/Jx) = (a/3)x 

(ii) (a + (fix = ax + £x 

(iii) a(x + j) = ax + ay 

(iv) lx = x 
Suppose V is a real linear space and A is a nonempty subset such that S is 

closed under vector addition and scalar multiplication. That is, 

if x e S and y e S, then x + jeS 

and 
if xeS and aeR, then a xe5. 

We then say that 5 is a linear subspace of V. This name is appropriate since it is 

easy to see that these conditions make S a vector space with respect to the vector 
addition and scalar multiplication for V restricted to 5. For example, the set 
{(x, 0):x G R} is a subspace of R2. 

Suppose Vx and V2 are real linear spaces and/: V2 —*■ V2 is a mapping such that 

/(ax + fly) — a/(x) + flf(y) for all x and j in Vx and all a and fl in R. Then/is 
called a linear mapping. If, in addition,/is a bijection, / is said to be a vector 
isomorphism from Vx onto V2. If there exists a vector isomorphism that carries 

one space onto another, the spaces are said to be isomorphic. For example, the 

vector subspace 5 = {(x, 0):x e R} of R2 is isomorphic to R. To see this, simply 
examine the mapping /j:R2 -> R given by li((x, 0)) = x for each (x, 0) e 5. 

69.2. Definition. Norm. Let V be a real linear space. A real-valued function 

defined on V is called a norm for the space V provided it satisfies the following 
properties (||x|| will be the symbol for norm of x): 
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For all x and y in V and real a, 

(a) H* || > 0 if x ^ 0 and ||0|| =0 

(b) ||ax|| = |a| ||x|| 

(c) ||x+j|| ^ ||xr|| + lljll {triangle inequality) 

A real linear space V for which a norm is defined is said to be a real normed 
linear space. 

Just as in R'“, it follows from the triangle inequality that for all x, y, and z in 
V, ||x — y|| + ||_y — z|| ^ ||.V — z|| and ||x — y|| = \\y — x||. Hence, using this 
together with 69.2(a), we see that d: V X V —>- R given by 

d(x,y) = \\x-y\\ 

defines a metric for V. When we speak of a normed linear space as a metric space 

it will always be with reference to this metric. 

69.3. Definition. Inner product. Suppose V is a real linear space. A real¬ 
valued function defined on V X V that satisfies the following properties is called an 
inner product for V. We shall use the notation (x, y) for the inner product of x and y. 

For all x, y, and z in V and real numbers a and ft, 

(a) (x, y) = (y, x) 

(b) (x, a.y + jffz) = a(x, y) + /3(x, z) 
(c) (x, x) > 0 if x 0 and (0, 6) = 0 

If V is an inner product space and if for each xefwe let 

||x|| = [<x,x>]*, 

then this formula defines a norm for V. Properties (a) and (b) of 69.2 are easy to 

check by making use of the properties of the inner product. The details are left 
as an exercise. To prove the triangle inequality, recall that the proof of this in¬ 

equality for R" made use of the Cauchy-Schwarz inequality (35.1). It is left as an 

exercise to check that the proof of the Cauchy-Schwarz inequality given in 35.1 
(with appropriate change in notation) holds for a real inner product space. Thus, 

we have the following. 

69.4. Theorem. Cauchy-Schwarz inequality for a real inner product space. 

Let V be a real inner product space. Then for each x and y in V, the following holds. 

\{x,y)\ ^ ||x|| \\y\\. 

Because of the Cauchy-Schwarz inequality, the proof of the triangle in¬ 
equality as presented in 35.2 carries over to the present more general setting. 

The reader should check to see that this is so. 
Whenever we speak of the norm for an inner product space, it will be under¬ 

stood that reference is made to the norm just discussed. 

69.5. Definitions. Banach and Hilbert spaces. If a real normed linear space 

is complete, it is called a real Banach space. If a real inner product space is complete 

it is called a real Hilbert space. 

Recall that in R" a line segment with endpoints a and b is defined as the set 
{.y:x = (1 — t) a + tb, 0 t ^ 1}. Also, if a and b are distinct points in Rn, then 

the set {x:x = (1 — /) a + tb, — oo < t < oo} is a line in R". By making use of 
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the fact that lines in R'1 are connected, we were able to show that Rn is connected. 
Notice that these definitions are meaningful in a real linear space. It will be left 

as an exercise to show that line segments and lines in a normed linear space are 

connected and to use this information to prove that normed linear spaces are 

connected. 
In this section we have been dealing with linear spaces for which the scalars 

are allowed to range over the real field R. For this reason the spaces considered 

are called real linear spaces or linear spaces over the,real field. If the scalars are 
allowed to range over the complex field, the properties of the inner product have 

to be modified to give a satisfactory theory (See for example, [5], [21], or [30].). 
We will deal only with real linear spaces. 

EXERCISES: LINEAR OR VECTOR SPACES 

1. Give the details of the proof of Theorem 69.4. 

2. Prove that line segments and lines in a real normed linear space 

are connected. 

3. Let V be a real normed linear space. A subset 5 <= V is said to 
be convex if for every pair of points a and b in S the line segment 

with a and b as endpoints is contained in S. Prove that if 5 
is a convex subset of a real normed linear space, then S is con¬ 

nected. Prove that all real normed linear spaces are connected. 

Prove that all neighborhoods N(p;e) and balls B(p;e) in a 
real normed linear space are connected. 

4. Prove that if Vx and V2 are real linear spaces and h is a vector 
isomorphism from V1 onto K, then h 1 is a vector isomorphism 

from Vo onto Vx. 

5. Show that for each j e P„, R" contains a vector subspace that is 
isomorphic to RL Thus, for example, R3 contains isomorphic 

copies of R1, R2, and R3. 

70. THE HILBERT SPACE (- 

Let S be the set of all real-valued sequences. For all (.v,) e S, (r.) e S, and 
a e R, define 

(*t) + 0’,) = (*,• + V,) and a(.Yt) = (a.v,). 

Furthermore, let 0 be the element of S, each of whose elements is 0. Also define 

(.v,) = (—x,) for all (.y,) G S. Taking these definitions as vector addition and 
scalar multiplication, together with the 0 element and the negative of an element as 

just defined, we can easily verify that S' is a real linear space. This linear space S 
contains isomorphic copies of R" for each positive integer n. To see this, for each 
positive integer //. let 

R” = {(.y,): (.y,) G S and .y,• = 0 for i > n}. 
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The mapping that assigns (xl5 a'2, x3, . . . , xn) G R'! to the point (xl5 x2, x3, . . . , 
xn, 0, 0, 0, . . .) is clearly a vector isomorphism. The inner product that we have 

been using for R" suggests that an inner product for Rn is given by 

oo n 

(X, y) = 2 xji = 2 xji- 
t=l i=l 

It is easy to see that this formula does indeed give an inner product for Rn. If we 

try to extend this definition to all of S, we have an obvious convergence problem 
00 

since xiyl does not necessarily converge for all x and y in S. However, we can 
i=l oo 

find a subspace of S that is small enough so that 2 xi}\ converges for all (a,) and 
i=1 

(yt) in the space and yet large enough to contain an isomorphic copy of each Rn. 

We define such a subspace next. „ 

We define /2 as that subset of S, consisting of all (a:,) g 61 for which 2 x\ 

converges. i=1 

At this point a few preliminary observations concerning the set /2 will be help¬ 

ful. Suppose (Xj) G ft and (y*) G /2. Then for each n, (Ixyl, |a2|, . . . , |xn|) and 

djil’ IT2I. • • • , |T„|) are elements of R". Hence, from the Cauchy-Schwarz in¬ 
equality for R" (35.1), we obtain 

n r n nir « -|£ 
2 \Xi\ \yt\ ^ 2*! 2>>* 
»=i L*=i J L»=i 

Then, since (**) e t2 and (y{) g /2, we have 

“oo -]}rco “i i 

2x< 2^ 2 W \yt\ < 
i=l i=l 1=1 

“00 * ”00 

2*? 2y* 
_«=1 _i=l 

Thus, the finite sum on the left (which is increasing with n) is bounded above so 

that we have 
00 r 00 n ir °o 

2 W Ittl ^ 
i=1 

00 

Thus, 2 xty< converges absolutely and, hence, converges. Furthermore, 
i=l 

observe that 

statement. 
2 x&i 

<=1 

2 l Y'l We summarize our results in the following 
i=l 

70.1. Theorem. If (x{) G /2 and (j^) G /2, then 2 xiT,- converges and 
«=1 

i 00 ”00 ”] : 
T 00 

2 xi>’. 
i=l 

2*? 
_i=l _<=1 

By making use of the first part of the previous theorem, we can now prove the 

following important fact. 

70.2. Theorem, f2 is a subspace of the real linear space S of all real-valued 

sequences. 

Proof. It is sufficient to show that f2 is closed under vector addition and 
00 00 

scalar multiplication. It is clear that if 2 x\ converges, then so does 2 ^x2. 
«=i •=! 
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Consequently, x e P2 implies that a.v e f2. Next assume that .v e f2 and y e /2. 
GO CTJ GO 

Since 2-Yi converges and 2 y? converges, it follows from 70.1 that 2 x,y, 
j=l i=1 i=l 

converges. Next, notice that 

n n n n 

2 to + yd2 = IA + 2 i xji + 2 
i=l i=l i=l i=l 

Since the three sequences of partial sums on the right converge, so does the one on 
00 r 

the left. Hence, 2 CY; + >’,)2 converges and, consequently, x f y e /2. 
i=i 

70.3. Theorem. The real-valued function defined on (2 X P2 by the following 

formula is an inner product for P2. For each x = (.r,) e P2 and y — (y,) e /2, /e/ 

00 

<x, y) = 2 XM. 
i=1 

oo 

It follows from 70.1 that 2 x,y,- ’s defined for all „y and y in {2. The proof that 
i=1 

69.3(a), (b), and (c) are satisfied is left as an easy exercise for the reader. 

We now take as our norm for if2, 

Ml = [<x, x>]* = 2* 
,j=i 

It is interesting to note that if we write out the Cauchy-Schwarz inequality for /2in 

series form, we get the inequality in 70.1. To see this, observe that 

is equivalent for if2 to 
f(x, y)| II a- || ||y 

2 xJi 
2=1 

< 
2*5 

2 = 1 

i r 00 ~i i 
I-Vi 

2 = 1 

Notice next that the metric given by this norm takes the form 

oo n i 

d(x, y) Kxi-y,)2 
2=1 

We should notice further that P2 contains each Rn. Furthermore, the metric d 
i 

restricted to R’1 X Rn becomes d{x,y) = 2 (Xj — y,)2 . Thus, we may look 
_i=i 

at the metric given here for {2 as a generalization of the Euclidean metric. 

70.4. Theorem. P2 is complete. 

Proof. Let (qm) be a Cauchy sequence in /2, where for each m, 

m ' fim,li Hm,2» • • • • • •)• 

We prove the proposition by showing: (a) For each j, ^i is a Cauchy 
sequence in R. Call its limit z;-. (b) z = (zx, z2, . . .) G f2. (c) lim (qm) = z. 

Proof of (a). Fix j and let f > 0. There is a positive integer N such that for 
m > N and n > N, d(qm, q„) < e. But then for m P N and n > N, 

ni 
19m,* 9n,j'l — 1(qm.. - q„.if 

2=1 
= d(qm, qn) < e. 
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Hence, for each j e P, (^m j-)“=} is a C.S. of real numbers and there is a zi = 

lim (qmJ). We now set z = 
oo 

Proof of (b). We wish to show that ze/2 where z is defined as in part (a). 
We shall do this in the following way: Using the fact that (qm) is a C.S. in /2, 

we will exhibit a positive integer N such that (qx t — zff=l e /2. But this will be 

sufficient, for (z,) = iqs.i) ~ (<7am — zd ar|d the difference of two elements of (- 
is an element of f2. 

Let h > 0. Since (qm) is a C.S., there is a positive integer N such that for each 
CO 

peP, d(qN, qv+J>) < h. Then 2 (<7.v.» " 7.v+„.i)2 < ^ and, hence, for each 
n z=l 

positive integer n we have ^ iq.y.i — q.y+p.i)2 < h2. Then from the fact that 
lim q_\+pj = zt, we obtain i=1 

p—+cc 

lim ]i(qNli ~ qx+pf2 = 20?.v.i - ztf < If. 
J)-+00 2 = 1 2=1 

Then since I 2 (flsj ~ z/)2) is a monotonic increasing sequence of real numbers 
V t=l /n=1 

CO 

bounded above, 2 (<7,v.< ~~ zi)2 converges and (^A ji — zt)T=i e ^2- The result 
i=1 

now follows from the preliminary remarks at the beginning of the proof. 
Proof of (c). We prove that lim (qn) = z. (The proof is very similar to that 

for (b).) 

Let e > 0. Then there is a positive integer N such that for n ^ N, d{qn,qn+f) < 

£ for all p e P. Let n ^ N. Then 

1 (qn,i ~ qn+p,if < £2 
i=l 

and, hence for each k e P, 
k 

dn+p.if ^ • 

i= 1 

Therefore, since lim = z{, we get 
/>—► CO 

H(qn,i- Zif ^ £'2 
2=1 

and, thus, 

2(qn,i-z*)2 ^ £2- 
i=l 

From this we see that d(qn, z) sS £ for /; ^ zV. This completes the proof. 

Now that we have shown that (2 is a complete inner product space, we have 
verified that it is a Hilbert space. In the next theorem we shall show that /2is also 

separable. The idea behind the proof is that for each .y0 g f2 and £ > 0, there is a 

positive integer n such that the subset Dn = {x:x,- is rational for / G P„ and x, = 0 

for / 2? n + 1} is within £ distance from x0. 

70.5. Theorem. I2 is separable. 

Proof. We construct a countable dense subset for f2 as follows: For each 

n G P, let Dn — {(Xj): (x,) G f2, x, is rational for i G P„ and x2 = 0 for i ^ n + 1}. 
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Note that each D„ <= p and is countable. Let D — (J {Dn: n £ P) and note that D 

is countable. We next show that D is dense in P. Let p = (p,) e P and let e > 0. 
We shall complete the proof by showing that there is a r e D such that d(z. p) < e. 

CO 

Since p e /2, 2 p2 converges. Choose N such that 
»=i 

Next for / = 1,2, . . . , N choose a rational number r, such that 

Vi - Pi\ < 

Let z = (rl5 r2, . . . , rx, 0, 0, 0, . . .). Note that z e D and 

d(z, p) = 

< 

~ N oo -| I 

2(^-ft)2+ 2 v\ 
t'=l i=.\ +1 

h 
N(2N)~1e2 + - = e. 

Recall that the closed balls in R" are compact since closed and bounded sub¬ 

sets of Rn are compact. We shall show that this is not the case in P. We shall 
prove next that the unit ball 5(0; 1) in V2 is not compact. It then follows easily 

that no closed ball is compact in P. To see this consider the ball B(p\ r). The 

mapping/: P -* P given by f(x) = rx + p is a homeomorphism; furthermore, it 
is easy to verify that/[5(0; 1)] = B(p\r). Hence, if 5(0; 1) is not compact, 
neither is B(p; r). 

70.6. Theorem. For each r > 0 and p e P, the ball B{p\ r) is not compact. 

Proof. From the previous remarks it is sufficient to prove the theorem for the 
unit ball. We shall prove that 5(0; 1) is not compact by exhibiting a sequence in 

P with no convergent subsequence. For each /' e P, let be the real-valued sequence 
whose ?th term is 1 and all the other terms are 0. Thus, q1 — (1,0, 0, 0, . . .), 
q2 = (0, 1,0, 0,0,.. .), etc. It is clear that q( e P for each i e P. Now (q,) is a 

sequence in P such that for each / /= j, d{q,, qs) = 2*. Obviously no subsequence 
of (q,) could converge. Hence, 5(0; 1) is not compact. 

Some spaces possess the important property that for each point ,y in the space 

there exists an open set Ux and a compact set Kx such that x eUx^ Kx. (Such a 
set Kx is called a compact neighborhood of ,v.) A space with this property is called 

a locally compact space. Note that R" is locally compact. However, the fact that 
closed balls in P are not compact implies that P is not locally compact. 

EXERCISES: THE HILBERT SPACE f2 

1. Prove Theorem 70.3. 

2. In the discussion in this section it was remarked that the function 
/; P —► P given by f(x) = rx + p, where r > 0, is a homeo¬ 

morphism. Prove this. Also verify that for each p e P and 
r > O,/[5(0; 1)] = B{p\r). 



Metric Spaces: Some Examples and Applications 151 

3. For each ns P, let Rn be as defined in this section. Let A = 

U {^”:n6P}. Is A a connected subset of zf2? Does A contain 

any nonempty open subsets of /2? 

4. Verify the following statement which was made in this section: 

The fact that closed balls in zf2 are not compact implies that zf2 

is not locally compact. 

71. THE HILBERT CUBE 

In the last section we showed that the unit ball (x: ||x|| ^ 1} in zf2is not com¬ 

pact. Because of this, it is an interesting fact that the following subset of /2, called 
the Hilbert cube and denoted by 7®, is a compact subset of zf2: 

/” = [x:\xA ^ 11 

Not only shall we prove that the Hilbert cube is compact but, in a later chapter, 

this fact will be put to important use. ~ 

For each j s P, let us define 7t}:Ix —*■-, - as follows: For every x = 
L J J- 

(xx, x2, x3, . . . , Xi, . . .), let ttj(x) = Xj. Hence, 7t3- selects theyth coordinate of x. 
(This is an extension of what we have already done for finite-sequences in 51.4.) 

We can characterize convergence of sequences (xf) in /" in terms of the sequences 

1 n 
,yeP. 

j 
(See 41.2 and 51.5 for motivation for the characterization of convergence given 

next.) In reading the proof of the next theorem, it should be kept in mind that if 
(x,) is a sequence in /", then each term x{ is a sequence of real numbers such that 

i r 
the y'th coordinate, rrj(xi) s 

J J J 

71.1. Theorem. Let (xi) be a sequence in /” and let x0 e /“. Then lim x{ = x0 

if and only iffor each j s P, lim rrfxf = Ttfxf). i~*co 

Proof. First assume that for each j s P, lim trfxi) — 7r;(.v0). Let e > 0. 

Choose a positive integer N such that 

„2 y 1 e_ 

i=N+1 j2 < 8 

For each j e P v let N}- be chosen so that for i ^ N}, \ttj (x^ - 7Tj(x0) | < (2Nfh. 

Next let M — max. {Nf.j e P v}. Then for i ^ M, 

r .v 
d(Xi, x0) = 

_ j=1 j=N+l 

< N(2N)~V+ | ~ 

r 2 2n 

— + — 
J=N+1 J _ .2 2 _ 

£. 

Hence, (x,) converges to x0. 
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Suppose next that (x£) is a sequence in 7® and lim (x.) = x0 g7®. Then for 

each j e P and i e P, 

ki(xt) — 7T;(x0)| ^ d(Xi, x0). 

It is now clear that since lim (r/(xf, x0)) = 0, 

Hence, 

lim |7r3(xt) - 7r3.(x0)| = 0. 
i—►co 

lim (7r3.(Xi)) = tt^Xq). ' 
i—*-co 

Notice that the last paragraph of the previous proof holds also for However, 
a sequence (xf) in /2 does not necessarily converge just because (^(x,))® x con¬ 

verges for each j e P. To see this, refer back to the sequence (qt) in 70.6. It was 

pointed out in that proof that {qt) could not converge. However, notice that for 

each j e P, lim (7t3(x£)) = 0. 
i—►GO 

71.2. Remark. 7® is a closed subset of /2 and, hence, is complete. 

71.3. Theorem. The Hilbert cube T° is a compact subset of /2. 

Proof. Since 7® is complete, we will prove the theorem by showing that 
7® is totally bounded. To do this we let e > 0 and find an e-net for 7® as follows: 

® 1 e2 

Choose an N such that 2, — < —• Observe that for each positive integer i, 
i=A’+l * 2 

is totally bounded. For each / e P v, let T7, be a{2N)-s- the closed interval 

1 1 
net for 

i i. 

i i. 

Next, define 

F = {x:x£ e T7 for i e PiV and x£ = 0 for i ^ TV + 1}. 

We complete the proof by showing that F is an e-net for 7®. To verify this, let 

y e 7®. For each i e P,v, choose an x£ e T7- such that |x,- — j,| < (2N)~h. Let 
x£ = 0 for i + 1. Then x = (x,) G T7. Next we compute d(x,y). 

d(x, y) = 
oo n 1 

2 lx* - y,-|2 
i=l _ 

r A7 ® m! 

2\xt-yi\'+ I r2 
i=1 i=N+1 1 

< 

< 

oo < -i I 
TV 

2N .=x+i i2 
2 - •4- 2 

> + 
r 2 2—i i 

- + — 

2 2 
e. 

Hence, we have verified that T7 is an e-net for 7®. 

The notion of the Cartesian product of a finite number of metric spaces was 

defined in 51. In the last chapter of the text we shall extend the notion to include 
the Cartesian product of an infinite collection of spaces. The space /® will turn 
out to be the product space of an infinite collection of closed intervals. Hence, 
the symbol 7® is appropriate. 
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EXERCISES: THE HILBERT CUBE 

1. Carry out the details of the proof of the statement in 71.2 that 

/“ is a closed subset of /2. 

2. One might be tempted to guess that the set 

|x:x e /2 and |Xf| < -J 

is an open subset of t2. Show that this is false. Does /“ contain 

any nonempty open subset of /2? 

72. THE SPACE b]) OF CONTINUOUS REAL-VALUED 

MAPPINGS ON A CLOSED INTERVAL [a, b] 

An interesting and important question arises in connection with convergent 
sequences of mappings. Suppose F is a collection of mappings from one space 
into another. Suppose for sequences (/) in F we consider some mode Jt of 

convergence (e.g., pointwise, uniform). Can a metric p be introduced on F so 

that a sequence of mappings (/) converges in mode Jt to a mapping/if and only 

if (/) as a sequence of points in {F, p) converges to / ? Notice that in the previous 

question we are looking at (/) from two points of view. On one hand, we are 

looking at (/) as a sequence of mappings as we did in 67; on the other hand, we 
are looking at (/■) as a sequence of points in a metric space (F, p). In this section 

we shall give an example of the introduction of a metric that makes the two types 

of convergence equivalent. 
In the remainder of this section we shall be concerned with the collection 

rF([a, /?]) of all continuous functions defined on a fixed closed interval [a, b]. We 
introduce a vector addition and real scalar multiplication for ^([a, 6]) as follows: 

For each/andg in r€( [a, Z>]) and a e R, let/ + g and ctf be the elements of ^([a, 6]) 

given by 

(/ + #)(•*) =/(*)+ g(x) for a11 x 6 [a, b] 

(af)(x) = a(/(.v)) for all .y in [a, b], 

(Recall this was precisely what was meant by/ + g and a/ in calculus.) Let 0 
be the identically 0 function on [a, b]. 

The reader should verify that *^([a, b]) together with addition and scalar 
multiplication as defined here is a real linear space. We next introduce a norm for 

V([a, b]). 

72.1. Definition. Uniform norm for ^([a, 6]). For each f e a, b]), define 

||/|| = l.u.b. {|/(y)1 e [a, 6]}. 

(Notice that in the situation that we are considering each f e ^([a, b\) is continuous 

on [a, b] so that l.u.b. (1/(.y)|:.yg [a, 6]} — max. (|/(.y)|:a‘ e [a, 6]}.) 

It is left as an exercise to show that this is indeed a norm for ^{[a, />]). We 
take note that the metric p for /)]) induced by this norm is given by 

Pif, g) = l.u.b. (|f(x) - gO)| e [a, A]}. 
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It can be shown that fi£([a, b]), p) is a complete metric space and, hence, that 

#([a, 6]) is a Banach space. Like all real normed linear spaces, %([a,b]) is 

connected and furthermore e-neighborhoods and balls are connected. Also like 
fi2, balls in r€([a, 6]) are not compact. The next set of exercises will provide the 

reader with an opportunity to verify these facts. Also he will be asked to show 

that for fi e ^([a, b]) and f s ^{[a, b]), (/) converges uniformly to f on [a, b] if 

and only if (/•) converges to/in the metric space fi£([a, ft]), p). 
Mathematicians have long been interested in problems related to convergence 

of functions. The fact that metric spaces can include such examples as the one 
discussed in this section served as a motivation for the study of metric spaces. 
Not all convergence questions of interest to mathematicians can be placed in the 
setting of metric spaces. However, the study of spaces more general than metric 

spaces has also proved to be useful in connection with convergence problems. 

EXERCISES: THE SPACE V([a, b]) OF CONTINUOUS REAL-VALUED 

MAPPINGS ON A CLOSED INTERVAL [a, b] 

1. Verify that with the vector addition and scalar multiplication 

as given in this section, *^([a, 6]) is a real normed linear space. 

2. Verify that ([a, 6]) is complete and, hence, that it is a Banach 
space. 

3. Prove that a sequence (/) in *^([a, ft]) converges uniformly on 

[a, ft] to a mapping fe ^f([o, ft]) if and only if lim (/) = / 
in the space (ff([a, ft]), p). 

4. Let be the collection of all finite-sequences of rational 

numbers. For each fi e 88 we construct a continuous function 
whose graph is the union of a finite number of line segments 

as follows: Let n be the number of terms in 'fi so that we may 

write fi = (fiu fi2, . . • , fin). Choose n numbers a 1? a2, . . . , a„ 
in [a, ft] such that a = < a2 < a3 < ■ • • < a„ = ft and 

1 
ai+1 — ct-i = -- (ft — a) for i e P j. For each / e P„_,, let 

n — 1 
Lt be the line segment joining (a,, ji,) to (a, t,lt /?,+1). Next define 
L(/S) to be that continuous function whose graph is 

U {L, :ie P^}. 

Notice that for each fi e 36, L(fi) e ft (fa, ft]). 

(a) Prove that for each e > 0 and f e % ([a, ft]), there exists a 

fi e (48 such that \\f — L(fi)\\ < e. (Hint: Make use of 
the uniform continuity of/ on [a, ft].) 

(b) Make use of (a) to prove that rf>([a, ft]) is separable. 

5. Find a sequence (/,) in Y>([a, ft]) such that j[/j- — 1 for each i 
and for i #/, ||/ -/|| = 1. 

6. Use the previous exercise or some other means to show that 
closed balls in ft]) are not compact. 
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7. A subset Sf <= ^([a, b]) is said to be uniformly equicontinuous 

provided that for each e > 0 there is a d > 0 such that if xx 

and x2 are in [fl> b] and |xx — x2| < b, then |/(xx) — f(x2)\ < e 
for all / e Sf. 

From Exercise 6, we see that in (&([a, 6]), p) subsets that 

are both bounded and closed need not be compact. However, if 

a subset Sf <=■ ^([a, 6]) is bounded, closed, and equicontinuous, 
then it is compact. This fact is one form of an important theorem 

in analysis known as Arzela’s (or Ascoli’s) theorem. The pur¬ 

pose of this exercise is to present an outline of a proof of this 

theorem and to have the reader fill in the details that are omitted. 

Let y be a bounded, closed, and equicontinuous set in 
*£([a, b]). Assuming the reader has already shown that ^([a, b]) 

is complete (Exercise 2), we need show only that every sequence 

(/•) in y has a Cauchy subsequence. Then, because y is 

closed, the subsequence will converge to an / ey and y is 

sequentially compact. 
(a) Let (/•) be a sequence in y. Then there is a real number 

M such that |/(x)| < M for each * e [a, b] and for i e P. 

(b) Let D = {Xi'.i e P} be a dense subset of [a, b]. Our plan 
is to extract a subsequence of/ that converges on D and 
to show, by making use of the equicontinuity of y, that 

the subsequence is a Cauchy sequence in y. 
(i) (/(a/)) is a sequence of real numbers and the 

range of the sequence is bounded from part (a). 
Hence, there exists a subsequence (ff) of (/) for 

which (/*(xx)) converges. Why? 

(ii) The sequence (f](x2)) has a convergent sub¬ 
sequence. Hence, there is a subsequence (ff) of 

(ff) for which (/^(x2)) converges. Note that 

(/?(xx)) also converges. 

Next assume that sequences if)), if]), . . . , 
(ff) have been chosen so that (ff1) is a sub¬ 

sequence of (ff) and such that (ff) converges on 

{Aq, x2, . . . , Xj}. Then we may choose a sub¬ 

sequence (ff1) of (ff) so that (/*+1) converges 
on {xx, x2, . . . , x/(+1}. Thus, by induction, there 

exists a sequence of sequences ((/}), (ff), . . . , 

(ff), • • •) such that each is a subsequence of the 
preceding and, hence, of (ff) and is such that for 

each n, (fi(xj))fLx converges for 1 5S j sS n. 
(iii) Define g{ — ff and show that (gf) is a subsequence 

of (/,•) and that (gf(x3))£Lx converges for each 

Xj e D. 
(iv) By making use of the facts that (g/x^))^ is a C.S. 

of real numbers for each x,- e D and that y is 
equicontinuous, show that (gf) is a C.S. in 

(V((a, b]|), p). 
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(c) We have been dealing in this exercise with the notion of 

uniform equicontinuitv. A family of real-valued functions 

F defined on a metric space (X, d) is said to be equi- 

continuous provided that for each „v0 £ X and e > 0, 

there is a A > 0 such that if d{x, .y0) < 6, then 

I fix) —f(x 0)| < e 

for all/£ F. Show that if (X, d) is compact and F is an 
equicontinuous family of real-valued functions on X, then 

F is a uniformly equicontinuous family. Hence, the word 

“uniformly” can be dropped from the statement of 
Arzela’s theorem as stated in this exercise. 

(d) Prove that if F is a compact subset of the space K([a, A]), 

then F is an equicontinuous family of functions. (Hint: 
Use the fact that a compact set is totally bounded.) 

Note: For an alternate proof of Arzela’s theorem that 

makes use of the fact that a set is compact if it is complete 
and totally bounded, see, for example, [15] or [21], 

8. Let (X, d) be a compact metric space and let (X) be the set of all 
real-valued continuous functions on X. Generalize the norm for 

%([a, b]) to X) and prove that the resulting space is a Banach 

space. Prove further that if X and Y are homeomorphic com¬ 

pact metric spaces, then the spaces &(X) and V(Y) are also 
homeomorphic. 

73. AN APPLICATION OF COMPLETENESS: 

CONTRACTION MAPPINGS 

We have been studying the notion of complete metric spaces and have seen 

several examples that come up in analysis (e.g., R'1, /2, *6[a, 6]). We have already 
had occasion to use the property of completeness in proving that certain sequences 

converged. In this section we shall again make use of this property in an interesting 
and important application. 

Our application is concerned with the solving of equations of the form 

f(x) — x, when f satisfies certain conditions and .v takes on values in a complete 
metric space. (Incidentally, suppose we are dealing with a Banach space. Then 

considering a solution of an equation of the form g(x) = 6,0 the zero element, is 

equivalent to considering a solution of an equation of the form f(x) = x, where 
g(x) = .y — f(.y).) In mapping terminology we shall be considering a mapping 

/:(X, d) —*■ (X, d), where (X, d) is complete and we shall be seeking a fixed point 

Xq £ X for/. A fixed point for/is a point .y0 such that/(.y„) = .y0. 

We treat here a situation for which we can give a constructive proof of the 
existence of a unique solution to the type of equation just discussed. 

73.1. Definition. Contraction mapping (or contractive mapping). A mapping 

/: (X, d) —*■ (X, d) is said to be a contraction mapping provided there exists a number 
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k such that 0 k < 1 and for all x and y in X, 

73.1(a). d(f(x),f(y)) 7 k d(x, y). 

Notice that if /is contractive, then it is uniformly continuous. 
Certain terminology is useful in considering contraction mappings. We 

set/(1) = /and define/(2) to be/°/. Assuming/1"-1’ has been defined, we define 

/(n) to be/°/("-1). /('° is called the/7th iterate off. Thus, if/:X—> 3fis defined, we 

can define inductively the sequence (/(n)) of iterates of/. If ,y0 g we speak of 

/(">(.Yo) as the /7th iterate of ,y0 under/. 

73.2. Theorem. (Banach Fixed Point). Let J':(X,d)-^(X,d) he a con¬ 

traction mapping from a complete metric space into itself. Let ,y0 g X. Then the 

sequence (/(n)(x0)) of the iterates of x0 under f converges to a point z0 e X and 

f(z0) — z0. Furthermore, z0 is the unique fixed point for f. 

Proof. (The proof consists of showing that (/('°(.y0)) is a C.S. in X and that 

its limit is the unique fixed point for/.) 
By definition there is a k. 0 - ' k < 1, such that 73.1(a) is satisfied. Let Ay — 

fH)(x0) for each / e P. Then 

d(x2, vy) = d{f{xf),f{x0)) 

^ k r/(xy, x0). 

Likewise, 

d(x3, x<2) ^ k d(x2, Ay) 

^ k2 d(Ay, A'0). 

Note that if we assume that 

d(xm, xm_i) ^ km~1 d(Ay, .y0), 

then, as in the above, we obtain 

d(Aw,+i,Am) d(f(.\ m),/ (-^ m—l)) 

— k d(xm, A m_i) 

^ km d(Ay, A-0). 

Thus, we have by induction that for each positive integer m 

73.2(a). d(xm+i, xj k>" d(xy, ,y0). 

By using first the triangle inequality and then 73.2(a), we get 

p 

d(Xm-i-A'm) 2 d(X)nXm_i_i—j) 
f=l 

^ i km+i-% d(Xlt x0) 
1=1 

1 — kv 
= --7 d(Xl, x0) 

km 
< --r d(*i, x0). 

1 — K 

Since lim (A:’") = 0, if e > 0 is given, then for m large enough 

d(xm+v, x„,) < f for all p G P. 

Hence, (.Ym) is a C.S. in X and there is a z0 g X such that lim (xm) — z0. 
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We next show that /(z0) = z0. Since /is contractive,/is continuous. Hence, 

lim (/(*«)) =/(lim (xj) = f(z0). 

Then since lim (/(.vm)) = lim (xm), 

z0 = lim (xj =f(z0). 

Furthermore, zu is the only fixed point for /. Suppose /(Zj) = :x and 

/(-o) = z0- Then d(zx, z0) = r/(/(z1),/(z0)) k d(zu z0) and 

(1 — k) d(zu z0) ^ 0. 

Hence, since (1 — k) > 0, d(zlf z0) g 0 and, thus, d(z1, z0) = 0 and zt = z0. 

There is a wide variety of applications of the contractive principle just proved. 
Some of the more elementary applications are concerned with the solution of equa¬ 

tions of the form /(x) = x, where / is real-valued and x takes on real values; 
other elementary applications have to do with the finding of solutions of systems of 
such equations. Some of the more sophisticated applications are in the field of 

differential and integral equations. Included in the next set of exercises will be 
some elementary applications. In the next section we shall discuss an application 

to the theory of first order differential equations. Nothing that will be discussed 
later in the book depends on that section and so the reader may omit or defer 

reading it without interfering with the continuity of study. 

EXERCISES: CONTRACTION MAPPINGS 

1. Prove that if f .[a, 6] —► [a, b] is differentiable and |/'(.v)| 
K < 1 for x e [a, b], then / is a contraction mapping on [a, b]. 

2. Prove that if /: (X, d) —► (X, d) is continuous, X is complete, and 
some iterate f(k) of/ is a contraction mapping, then / has a 

unique fixed point x0 and x0 is the limit of the sequence (fw(y)) 
of iterates of y under/, where y is an arbitrary point in X. 

3. Show that cos:R—>-R is not contractive but that one of the 

iterates of cos is a contraction. Illustrate the results of Exercise 
2 by finding an approximate solution to the equation cos x = x. 

4. Let B be a Banach space and consider the mapping 
(a) Show that if/is linear and contractive, then the zero vector 

is the only fixed point for/. 

(b) Show that if f.B—>B is linear and (/ + /):B —* B is 
contractive, where / is the identity map on B. then / is 
one-to-one. 

5. Suppose (X, d) is a complete metric space and (5, d) is a sub¬ 

space of {X, d). Let/be a mapping from 5 onto Xsuch that for 
an a > 1, 

d(f(x),f(y)) ' a <7(x, v) 

for all x and y in S. Show that/ has a unique fixed point in S. 
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6. Suppose that (X, d) is a compact metric space and f:X-+X 
satisfies cl(f (x),f (j)) < d(x, y) whenever x y. 

(a) Show by an example that the condition is not sufficient 
to force/ to be a contraction mapping. 

(b) Prove that the conclusion of the Banach fixed point 

theorem holds for /, thus giving a stronger version of that 

theorem for compact spaces. (Hint: See Exercise 5, 
page 126 ). 

7. Suppose that (X, d) is a compact metric space and (/) is a 
sequence of contraction mappings from X into X. Suppose 

that (/) converges uniformly to a mapping f'.X-*■ X. Show 
that/has a fixed point and show by an example that it need not 

be unique. 

74. FUNDAMENTAL EXISTENCE THEOREM FOR FIRST ORDER 
DIFFERENTIAL EQUATIONS—AN APPLICATION OF THE 

BANACH FIXED POINT THEOREM 

In this section we use the Banach contraction principle to prove a classic 

theorem concerning the existence of a unique solution for certain first order 

differential equations. In the more classic approach (see, for example, page 74 

in [17]), certain aspects of the proof of the Banach fixed point theorem can be seen, 
specialized however to the case under consideration. The content of the proof to 

be presented here depends on showing that the hypothesis of the Banach theorem 
holds. 

74.1. Theorem. (Fundamental Existence—Picard). Let f be a continuous 

real-valued function defined on an open subset U of R2. Suppose further that there 

exists a positive number M such that 

\f(x,y1) ~f(x,y2)| ^ M |yy -y21 

for all (.y, yy) and {x, yy) in U. If (x0, yy) e U, then there exists a real interval 

I — [,v0 — a, x0 + a] and a function y:I —> R such that 

74.1(a). y(x0)=y0 

and 
74.1(b). y'(x)=f(x,y(x)) for x e I. 

Further, y is the only function that satisfies 1A. 1 (a) and 74.1 (b) on the interval I. 

We make some preliminary observations before proceeding with the proof. 

In proving this theorem we shall consider the solution of the following integral 
equation fory>. 

74.1(c). y(x) = >’0 + f f(t, y(0) dt. 
J XQ 

It is easy to check the validity of the following remark. 
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74.1(d). A function y satisfies 74.1(a) and 74.1(b) if and only if it satisfies 

74.1(c). 
Our strategy will be to find a complete space ^ of functions and a contractive 

mapping x¥:c€ —*■ <€ that will have the following property: If there is a solution y 
to 74.1 (c), then and y is a solution if and only if lF(y) = y. To accomplish 

this, notice first that any possible solution y must be such that (x, y(x)) e U for 
any x in the domain of y so that f(x,y(x)) will be defined. Other considerations 
that lead to the choice of the space will become clear tp the reader only after the 

proof progresses. 

Proof of 74.1. Since (x0, y0) e U and U is open, there is a rectangle 

S' = [x0 — c, x0 + c] X [;>0 — b, y0 + b] <= U. 
Also define 

A = l.u.b. {|/(x, _y)|: (x, y) e S} + 1. 

Let a be a number chosen so that 

74.1(e). 0 < a < min (c, — , — j. 
| M K) 

Note that 
[x0 — a, x0 + a] X [y0 — b, + b\ <= U. 

Let V([x0 — a, x0 + a], p) be the metric space studied in 72. (This space just 
defined will not be exactly suitable for our purposes, but the following closed sub¬ 

set of it will be. The reader should check for himself that the set to be defined next 
is a closed subset of the previously defined space which is known to be complete.) 

Let be the closed subset of #([x0 — a, x0 + a], p) consisting of all elements y 

of that space such that j(x) e |j0 — b, _y0 + b] for all x e [x0 — a, x0 + a]. Since 
^ is a closed subset of a complete space it is complete. Notice that if y e <6, then 

for all x e [x„ — a, x0 + a], 

74.1(f). |v(x) — >’ol ^ b 
and 

(x,y(x))eU. 
We defineT* on ^ as follows: 

For each g e let xL(g) be the function given by 

74.1(g). 'F(gXx) = To + ( f(t, g(0) dt. 
Jxo 

We first show that if g e then ^(g) e *€ so that x¥((6) c <£T. From 74.1 (f), 

if g G #, then |g(x) — j0| ^ b for x e [x0 — a, x0 + a] and so/(x, g(x)) is defined 
for x e [x0 — a, x0 + a]. Then, for all x in [x0 — a, x0 + a]. 

l^'(g)(x) - y0| fit, g(0) dt 

If(t, g(f))| dt 
Xo 

fl.u.b. {|/(l, y)\:(/,>') 6 S}dt 
Jx o 

l.u.b. {|/(i, y)|:(i, y)eS}fl. 
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From 74.1(e) and the definition of K, it follows that 

I^C?) O) — y0\ <b for x in [x0 — a, x + a}. 

The last inequality and the definition of the set % places Y(g) in ^. Thus, we have 
shown that Yfif ] 

We next show that XF:& —> 'if is a contraction. Let / = [.v0 — a, x0 + a]. 
Let g, and g2 be elements of %. Then 

pC^igi), Y(ga)) = bu.b. {|Y(gx)(x) - %X*)|:x6/} 

— 1-u.b. | 

rg l.u.b. ‘ ‘ 

^ l.u.b. 

^ l.u.b. 

Jxo 

f I fit, gi(0) — fit, g2(f))| dt 
Jx 0 

'X 

:x g I 

:x e I 

M lgi(0 - g2(0l dt :x G I 

P J X 0 

Mpigi, go) dt :x G I) 
) 

^ l.u.b. {Mp(gu go) \x — x0\:xgI} 

= Mapigx, g2). 

From 74.1(e), Ma < 1 and, hence, from the last inequality we see that Y:'if -> # 
is a contraction. Hence, from the Banach fixed point theorem there is a unique y 

in # such that Y(j) = y. Now y is a solution for 74.1(b) subject to the condition 
74.1(a). If there were another solution y\ for 74.1(b) satisfying 74.1(a) and which 

is defined on the interval /, then 

But then 

yi(x) = y0 + fit, yi(0) dt for all xgI. 
Jx o 

iTiW - Lol ^ K dt 
TO 

Ka. 

for all x G 1 

But Ka < b follows from 74.1(e). The last inequality thus gives that yx G . 

Hence, yy = y. Thus, we have shown that there is an interval / = [,v0 — a, x0 + a] 
and a unique solution on I to 74.1(a) and 74.1(b). 

It is to be noted that in a situation covered by the previous theorem we can 
find an approximate solution by first determining a suitable space 'if and then choos¬ 

ing any g0 in ^ to generate the various Y-iterates of g0. 

In Chapter 5 of Reference [17], both a classic proof of the Picard theorem and 
the contraction mapping approach are given. Also included there are some exercises 

illustrating the method. The reader who wishes to pursue this topic further is 
referred to the reference just cited. For other references to this topic, see [5], [14], 
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General Topolog ical Spaces and 

Mappings on Topological Spaces 

We have seen that the notion from analytic geometry of distance can be 

generalized to distance between ^-tuples of real numbers or points in R" and also 
to the more general notion of a metric. Ultimately, all the concepts for metric 

spaces with which we have been dealing rest on the notion of distance between 
points. For a metric space (X, d) we used the phrase “topology generated by d" 
to refer to the collection .T(d) of all open subsets of (X, d). Most, but not all, of 

the concepts that we have studied thus far depend only on the open subsets of the 
space. Recall that we referred to these properties as topological properties. 

Notice that by means of the topology of a metric space (X, d} we can capture 
some of the qualitative aspects of “closeness.” For example, consider the property 

possessed by a point x e JTif x is “very close” to a set S in the sense that x e cl (S); 
this property can be characterized by requiring that every open subset U containing 
x intersect S'. Likewise, we may roughly think of lim (x,) = x as asserting that the 
x,-’s get and stay arbitrarily close to x; this w ill hold if and only if for every open 

set U containing x, x, e U for all but a finite number of Fs. Also we may think of 
f:(X, d)—*■ (Y, p) as being continuous at x0 provided that points “close to” x0 

map onto points “close to”/(x0); in terms of open sets,/is continuous at x0 pro¬ 
vided that for each open set V containing/(x0), there is an open set U containing 
x0 such that/[{/]<= V. 

The considerations in the previous paragraph give rise to the following: 
Suppose we are studying a collection M of mathematical objects and mappings 

dehned on this collection and we think it useful to consider such questions as 
continuity, connectedness, compactness, etc. Suppose on the other hand that we do 
not seem to be able to define a metric that appears to be useful or natural for the 
purpose at hand. Can we by-pass the defining of a metric and still define a collec¬ 
tion of subsets of X that in some useful way behaves like the collection of open 

162 
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subsets of a metric space? In so doing we would wish to retain some of the 
qualitative aspects of closeness. Often this can be done, and the notion suggested 

here leads to the concept of a general topological space. 

Our plan of attack will be as follows: Given a set X, we shall designate a 

certain collection LX of subsets of X as the open sets or topology for X provided the 
collection satisfies certain conditions (to be discussed later) and we shall then call 

(X, ST} a topological space. The more properties ST possesses that are similar to 

the properties enjoyed by the topology of a metric space, the more nearly will 

(.X, IX) behave like a metric space. 
Once we embark on the approach that we have outlined, another natural 

question arises. Suppose we have a topological space. Does there exist a metric d 

for X such that the collection X (d) of all open subsets of the metric space {X, d) 

is the same as the collection XI This cannot always be done and when there is 
such a metric d, in general it is not unique. As we shall see, however, if X satisfies 

enough conditions there does exist a metric d such that the d-open sets are precisely 
the elements of ST. In such a case we shall say tfiat the topological space is 

metrizable. On the other hand, if X fails to possess even one property possessed 

by the topologies of all metric spaces (for example, normality), then obviously 

(X, X) could not be metrizable. 
In this chapter we shall define the notion of topological space. We shall then 

be able to extend such notions as closed set, limit point, and closure of a set. 
Some of the special types of topological spaces to be studied in this chapter are 

7j, Hausdorff, regular, normal, separable, first countable, and second countable 

spaces. We shall also extend the notion of continuity and homeomorphism to 
mappings from one topological space onto another. 

75. TOPOLOGICAL SPACES 

We define next what is meant by a topology X for a set X. As remarked pre¬ 

viously, the definition is motivated by some of the properties possessed by the 

collection X(d) of open sets generated by a metric d for a set X. We also shall 

give other examples of topologies for various sets. 

75.1. Definition. Topology for a set. Let X be a set and let ST be a collection 

of subsets of X. The collection XT is called a topology for X provided X satisfies 

the following set of axioms: 

(a) 0 and X are elements of X, 

(b) if U1 £ ST and U2 £ ST, then L/x n U2 £ X, 

(c) if .XT is an arbitrary subcollection of X. then (J -X £ ST. 

It is clear from (b) that if Jf is any nonempty finite subcollection of X. then 

n iTeX- 

75.2. Definitions. Topological space; open set. If X is a topology for a set 

X, then (X, IX) is said to be a topological space. A subset U of X is said to be open 

in (X, ST) or an open subset of (X. IX) provided U £ IX. 
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Analogous to the language used for metric spaces, we often speak of a set as 
being open in X rather than open in (X, -T). The expression -T-open is also used for 

open in (X,-^~). We shall follow the same convention relative to other concepts to 
be introduced (e.g., closed set, closure of a set, limit point). Tn previous chapters 

we dealt with the notion of metric space. Suppose ST(d) is the collection of open 
sets in a metric space (X, d). From Theorem 47.1, it follows that-^X(d) is a topology 

for X. Recall that we referred to T(d) as the topology generated by d. We see then 
that, in accordance with Definition 75.2, (X,-T{d)) is an example of a topological 

space. Thus, given a metric space (X, d) there is associated with it a topological 

space (X, ^~(d)). Also we see that if dx and d2 are equivalent metrics for a set X. 

then (X, <r(4» = (X, .T(d2)). 

75.3. Example. Let X be a set. Let £^(X) be the collection of all subsets of 
X (i.e., the power set of X). Then 2P(X) is a topology for X and is referred to as the 
discrete topology for X. Let ST = (0, X}. The collection 3T is known as the 

trivial topology for X. 

75.4. Example. Let X be a nonempty set and let a e X. Further, let 
.T — {0, {a},X}. The collection -T is a topology for X and, thus, (X, 2X) is a 
topological space. 

75.5. Example. Let X be a set consisting of four objects a, b, c, and d. 

Let ,T — {{a}, {a, b}, {a, c}, {a. b, c}, X, 0}. The collection is a topology for X. 

75.6. Example. Let X be the set of all real numbers. Let ST = {0} U 

{X — X:Fis a finite subset of X}. The collection ,T is a topology for X. 

75.7. Example. Let X be the set of all real numbers. Let T = {0} U 
{X — C: C is a countable subset of X}. Then is a topology for X. 

For a topological space, as for a metric space, we shall call a property a 

topological property if it can be characterized by the open subsets or the topology 
of the space. In dealing with the topological properties of a metric space (X, </), 

we need be concerned only with the topology (d) generated by d and, hence, w ith 
the topological space (X, T(d)). Generally, in considering a metric space, we shall 

use the notation (X, d) for both the metric space (X, d) and for the topological 
space associated with it. 

75.8. Definition. Metrizable space. If (X, ST) is a topological space and 

there is a metric d for X such that the topology 2E(d) for X generated by d is the 

same as T, then the topological space (X, T) is called a metrizable space. 

In Example 75.3 (X, ^(X)) is a metrizable space since .^(X) can be generated 
by the metric given in Example 45.4. On the other hand, the space (X, -X) in 

Example 75.5 is not metrizable. Suppose that it were. We know that in a metric 
space if x and y are distinct points in the space, then there exist disjoint open sets 

U and V such that x e U and v e V. Clearly this cannot be done in this example. 

EXERCISES: TOPOLOGICAL SPACES 

1. In Examples 75.3 through 75.7. verify that the collection of 
subsets is a topology for the given set. 
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2. Show that the topological space (37, 3) of Example 75.6 is not 

metrizable. Do the same for the topological space of Example 

75.7. 

3. Let X = {1,2, 3}. 

(a) Find all the topologies there are for the set X. 

(b) Find a collection Jf of subsets of X such that 0 e Jf, 

Xe Jf, and which is such that Jf is not a topology for X. 

(c) Could one do (b), if X had fewer than three elements? 

4. Let P be the set of all positive integers. For each /; e P. let 
Pn denote the set consisting of the first n positive integers. Let 

Jf' — {0} U {P} U {P„\n e P}. Is Jf a topology for P? 

5. Let X be the set of all real numbers. Let Jf = {0}u{t/: 
U c x - {0} or U — X}. Is Jf a topology for XI 

6. Let X be the set of all real numbers. For each ael, let (Ja = 

{r:a < r}. Is the collection {0} U {X} U {Un‘.aeX} a topol¬ 
ogy for XI For each a in X, let Fa = {r:a f r}. Is {0} U 

{37} U {Fa:aeX} a topology for 37? 

7. Let be the set of all continuous real-valued functions defined 

on R. For every compact subset K of R,/in , and positive 
number e > 0, let 

U(f, K, f) = {g:g e % and 

I/O) — gO)l < £ for all x 6 K). 

Let Jf = {{/(/, 77, e): A' is a compact subset of R. fe , 

e > 0}. Further, let ST = {(J is a subcollection of Jf}. 
IsTf a topology for <61 (0 is in T since 0 is the union of the 

empty subcollection of Jf.) 

76. BASE FOR A TOPOLOGY 

Recall that we generated the open subsets of a metric space by means of the 

^neighborhoods. A subset U is open provided that for each x e U there is a 

neighborhood N(x; e) of x that is contained in U. This suggests the concept of a 

base for a topology, to be defined next. 

76.1. Definition. Base for a topology. Suppose that (37, 3T) is a topological 

space. Then a subcollection & ofT is said to be a base for FT provided the following 

condition holds: for each (/ ef and x e U, there is a Wr e S3 such that x e Wr c U. 

We see from the definition that each element of a base S8 is an open set and 
that 38 is a covering of the space. However, a base is not an arbitrary open cover¬ 

ing. A base Jf has the property that every open set in the space is the union of some 

subcollection of 38. The empty set, of course, is the union of the empty subcol¬ 
lection of 38. If U is a nonempty open subset of the space, then for each x e U, 
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we may choose a Wr G such that .v e WT <= (J and, hence, we may write U = 

JJ [Wx:xe U). It is also important to note that a topology may have different 

bases and that the topology is itself a base. For example, if dx and d., are two 
different but equivalent metrics for a set X, then the collections 

{Ndi(x; e):x e X, e > 0} 
and 

{vVd2(.v; r.) :xeX, e > 0} 

are two different bases for the same topology for X. Thus, the collection of all 
“circular" neighborhoods and the collection of all “square” neighborhoods are 

two different bases for the same topology. 
One of the reasons that makes the notion of a base useful is that the base can 

be given first and the topology subsequently generated. However, not every cover¬ 
ing of a set can generate a topology for which it is a base. The following theorem 

gives a necessary and sufficient condition for a collection of subsets of a set to be a 
base for some topology for that set. 

76.2. Theorem. Let X be a set and let 28 be a collection of subsets of X such 

that X — IJ 28. Then 28 is a base for a topology for X if and only if the follow ing 

condition holds: 

If U e 28, V e 28, and x £ U n V, then there is a W e 28 such that x e If c 

U n V. 

Proof. Suppose first that 28 is a base for a topology 2T for X. Assume that 

\J 6 28, V e 28, and x e U n V. From the definition of base, U and V are elements 
of JT. Hence, U C\ V Again from the definition of base, there is a W e 28 

such that x g W <= U n V. Therefore, the condition is satisfied. Conversely, 

suppose that the condition is satisfied. Let 2T(28) be the collection of all unions of 
subcollections of 28. That is, let 

■T(28) = {(J 2T-.2X c 28) 

Then .T(28) is a topology for X and 28 is a base for 2T(28). The explanation of 
this is left as an exercise for the reader. 

It is easy to verify that if 28 is a base for a topology then it is a base for onlv 

one topology. Hence, if a collection 28 of subsets of X satisfies the condition stated 
in the previous theorem, it is appropriate to speak of the topology 2T(,^8) for X 

generated by 28. 

It is convenient to have a test for determining whether two collections 28x 

and 282 which are bases for topologies X(28f) and .T(rl8.f) for X, respectively, 
are equivalent in the sense of generating the same topologies for X (i.e., T(28f) 

■9~(28f)). The answer is given by the following theorem which is an analog of 
Theorem 48.4. 

76.3. Theorem. Suppose that and are topologies for a set X. Suppose 

furthermore that 28x is a base for 2Xx and 282 is a base for .T2. Then Tx = -T2 if 

and only if the following condition is satisfied: For each Bx e 28 x and x e Bx, there 

is a B., e 28.2 such that x e B., <= Bx; and for each B., G .8., and x G B , there is a 

Bx G 28x such that x G Bx <= B.,. 
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The proof of this theorem is left as an exercise. It is suggested that the theorem 
be proved by first proving the next statement. Theorem 76.3 will then follow as an 

immediate corollary. 

76.3(a) Suppose that 3TX and 882 are topologies for X. Suppose further 

that 88^ is a base lox .9~x and 88 2 >s a base for -T2, then ^ ^ if and only if the 

following condition is satisfied: for each Bx e 88x and x e B1, there is a B2g 882 

such that x e B., Bx. 

Sometimes it is convenient to generate a base itself from what is called a 

subbase. 

76.4. Definition. Subbase. Let (X,H7~) be a topological space. A sub¬ 

collection 68 of 88 is said to be a subbase for 88 provided the family of inter¬ 

sections of nonempty finite subcollections of 88 is a base for 88. That is, 

(D &''■&' is a nonempty finite subcollection of ST} 

is a base for ST. 

From this definition we see that an open covering 68 of (X, 68) is a subbase for 
if and only if it has the following property: For each U e.8 and x e U, there is 

a subcollection {Ul, U2, . . . , Un) of 68 such that xe f) {Up.i e P„j <= U. 

76.5. Example. For each aeR, let (—oo,a) denote the infinite interval 

(x:x < a}. Similarly, (a, oo) will denote the infinite interval {x:a < x}. The 
collection 

68 — {(— oo, o):a e R} U {(a, oo):a e R} 

is a subbase for the Euclidean topology for R. 

Suppose that 68 is a nonempty collection of subsets of X such that (J 68 = X. 

68 need not be a base for a topology for X since 68 need not satisfy the conditions 
in Theorem 76.2. However, the situation is different with respect to a subbase, for 

if we let be the collection of finite intersections of SE, then 88 is the base for a 
topology ^(88) for X. This is seen at once by an application of Theorem 76.2. 

Suppose x e U n V where U and V are elements of 88. Since U and V are each 
the intersection of a finite subcollection of 68, so is U n V. Hence, x e W = 

U n V and the condition in 76.2 is satisfied. Thus, we can make the following 

definition. 

76.6. Definition. Topology generated by a nonempty collection of sets. Let 

X be a set and let 68 be a nonempty collection of subsets of X such that X = (J 68. 

Let 88 be the collection of intersections of finite nonempty subcollections of 68. 

That is, 

88 = {f\ 38.38 is a nonempty finite subcollection of 68). 

Then the topology -T (88) for X generated by 88 (see 76.2} is called the topology for 

X generated by 68 as a subbase. 

76.7. Example. Let X be the set consisting of four objects a, b, c, and d. 

Let 68 = {{a, b}, {«, c}, {a, b, c, d}}. Notice that 68 is not a base for a topology 

for X. For a e {a, b} n {a, c} but for no W £ 68 is it true that a e W c {a, b) n 
{a, c}. However, if we take 88 as in the previous definition, we can check directly 

that 88 is a base for a topology for X. For 88 = {{cr}, {a, b}, {a, c}, [a, b, c, d}}. 
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Notice that the collection of all arbitrary unions of subcollections (including the 
empty subcollection) of 88 is the collection of sets {0, {a}, {a, b}, {a, c), {a, b, c}, 

{a, b, c, d}}. This collection is the same topology given for X in Example 75.5. 

Let {(A',-, 8Tf: i e Pn} be a finite collection of topological spaces. Making use 

of the notion of a subbase is a convenient way of defining a useful topology for 

X {Xi'.i e P„j, called the product topology. In the special case that each is 
the topology generated by a metric d(, the product topology to be defined is the 
same as that generated by the product metric (see 51). In what follows, recall that if 

{X^.i e P„} is a finite collection of sets, then by the Cartesian set X {Xi'.i e P„} is 

meant the collection of all finite-sequences or ordered /2-tuples (xx, .r2, . . . , x„) 
such that Xi e Xt for each /' e Pn. Recall also that for each i e P„, the projection 

map 77-,: X {Xi'.i e P„} Xt is defined by -nfx) = ^((xj, x2, . . . , x„)) = xf. 

76.8. Definition. Product topology for finite collections. Let {{X,,.T,)\ 

i e Pn} be a finite collection of topological spaces. Then by the product topology 8T 

we shall mean the topology for X — X {Xp.i e P„} generated by 

ST = {U: U — TrpfUi] for an i e P„ and an open set Ui <= X,} 

as a subbase. The space (X, ST) is called the product space. 

It is useful to notice, for example, that tt”1 [L/x] = U1 X X2 X X5 X • • • X Xn. 

It is also useful to notice that the base 88 generated by Sf is the collection of all 
subsets of the form U1X t/2 X • • • X Un where each Ui is open in Xt. Thus, it 

follows from Theorem 51.2 that in the metric case the product topology is the 

same as that generated by the product metric. 

76.9. Example. Let X1 — {a, b, c} and let X2 = {1, 2, 3}. For topologies 
for Xi and X2, respectively, we take the collections = {0, {a}, {a. b), 

{a, b, c}} and -9~2 = [0, {1}, {1,2}, {1,2, 3}}. Then the collection ST as given 

next is a subbase for the product topology. ST = {{a} X {1,2,3}, {a, b) X 

{1,2,3}, {a,b,c} X {1,2,3}, {a, b, c} X {1}, {a,b,c} X {1,2}, {a, b, c} X 
{1, 2, 3}, 0}. The reader should write out the base that is generated by ST. 

In the last chapter of the text we shall generalize the notion of product spaces 

to include infinite products. At that juncture we shall discuss product spaces in 
more detail. However, it will be instructive to give some consideration to finite 

products in the next set of exercises and in some of the subsequent sections. Some 
of our work on finite products will serve later as motivation for the more general 
considerations in the last chapter. 

EXERCISES: BASE FOR A TOPOLOGY 

1. Complete the proof of Theorem 76.2. Prove Theorem 76.3. 

2. Show that the following collection ST of subsets of R2 is a 

subbase for the topology generated by the Euclidean metric. 
ST is the collection of all sets that have one of the follow¬ 

ing forms: 

{(x,y):y < a}, {(.v,^):^ > b}, {(x,;-):•* < c}, {(x,y):x > d). 
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3. Let 88 be the collection {N(p; r)\p e R2 and both coordinates 

of p are rational, r is rational}. Show that 88 is a base for the 

topology for R2 generated by the Euclidean metric. 

4. Let %> be the collection of all nondegenerate closed intervals 
in R. Is ^ a base for a topology for the set R ? 

5. Let ^ be the collection of all subsets of R of the form {x:a ^ 

x < /?}. Is ^ a base for a topology for the set R? 

6. Let Q consist of the points of R2 with nonnegative/ coordinates. 

Let 88 be the collection of all subsets S of Q such that 5 is 

either a Euclidean open neighborhood if the circular boundary 
of the neighborhood does not intersect the x-axis, or S' is a 

Euclidean open neighborhood, together with the point of 

tangency if its boundary is tangent to the x-axis. Show that 
88 is a base for a topology for Q. 

7. Let X be a set. Let 88 = {{x}:x e X}. Show that 88 is a base 
for the discrete topology for X. (See Example 75.3.) 

8. For each real number r, define the following subsets of the 

set R2. Fr = {(x,j):x + y ^ r) and Ur — {(x, y):x + y > r}. 

Let 8F = {FrreR} and let 8/ = {UT:r e R}. Is the collection 
S' a base for a topology for the set R2? Is ^ a base for a 

topology for the set R2? 

9. For each (a, b) e R2 and e > 0, define the following subset of 

R2: 

U(a, b, e) = {(x, y):a — e < x a e and 

b — e < y ^ b 8 e}. 

Let °U = {U(a, b, e): (a, b) e R2, e > 0}. Is °l/ a base for a 

topology for R2? 

10. Let (X, sS) be a totally ordered set, with X consisting of more 

than one point (see 22.1 and 22.5). We shall use the notation 
a < b to mean that a ^ b and a 7^ b. Thus, for each two differ¬ 

ent elements of X exactly one of the following holds: a < b or 
b < a. Let 68 be the collection of all subsets U <= X such that 

U has the form (x:x < a} or {x:a < x}. Show that 68 is a 

subbase for a topology for X. Describe the base 88 that is 
generated by 68. The topology generated in this manner is 

called the order topology for the totally ordered system (X, g). 
Notice that for the special case of the real number system with 
the usual ordering, the order topology is the same as the 

Euclidean topology for R (see 76.5). 

11. Let (X,S~) be the topological space in Example 75.4. Deter¬ 

mine the product topology for XXX. 
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12. Let Xx — {o, b, c} and X2 — {a, b, c}. Let 

&x = {0, {a},Xx} and let = {0»{«}» {a, b}, Xf). 

Determine the product topology for the collection 

{(Xi,dTi):i = 1,2}. 

77. SOME BASIC DEFINITIONS 

In dealing with metric spaces in previous sections the reader should have 
become thoroughly familiar with certain concepts completely dependent on the 

notion of openness. In this section we list a number of such definitions extended 
to the setting of general topological spaces. A few are introduced for the first time 

in the text here but, of course, would have applied equally well for metric spaces. 
In the next section we shall consider fundamental theorems involving these con¬ 

cepts. 
In each of the following definitions (A, &") is a topological space. 

77.1. Definition. Limit point. Suppose S c= X and p e X. Then p is a limit 

point of S (with respect to {X,-T)) provided that for each open set U containing p, 

U intersects S in at least one point distinct from p. 

(In general, we shall omit “with respect to {X,^f" in the previous and 
following terms unless there is a chance for confusion, as, for example, if two 
different topologies on X are competing for our attention.) 

77.2. Definition. Closed set. A set S <= X is said to be closed provided it 

contains all its limit points. 

77.3. Definition. Closure of a set. The union of a subset S of X and the set 

of all its limit points is called the closure of S and will be denoted by cl (S). 

11.4. Definition. Interior point and interior of a set. If S <= X, then x is 

said to be an interior point of S provided there exists an open subset U such that 

x e U cz S. The set of all interior points of a set S is called the interior of S and 

abbreviated int (S). 

It should be noted that a set U is open if and only if U — int (U). Also a set 

F is closed if and only if cl (F) = F. Furthermore, it is obvious from the definitions 
that int (A) A c cl (A) for all subsets A of X. 

77.5. Definition. Exterior of a set. The interior of the complement of a set 

S is called the exterior of S and is abbreviated ext (5). 

Observe that each point of the exterior of a set S is neither a point of 5 nor a 
limit point of A. Thus, if a set is closed, its exterior is simply its complement. 

77.6. Example. Let R- be endowed with the Euclidean topology and let 

5 = {(.y, _y): (x,y) £ R2 and 0 < .v2 + y2 < 1}. Then cl (5) — {(.v, y):.v2 + y2 
1}, int (S) = S, and ext (S) = {(jc,y)\x2 + r2 > 1}. 
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A point is in the closure of a set if and only if it is either a point of the set or a 

limit point of the set. Hence, one thinks of a point in the closure of a set as being 

“close” to the set. We next define the notion of boundary point of a set. We shall 
want to think of a boundary point of a set as being a point that is both “close” to 

the set and to the complement of the set. 

77.7. Definition. Boundary point; boundary of a set. If S <= X andp G X, 

then p is said to be a boundary or frontier point of S if every open set containing p 

intersects both S and the complement of S. The set of all boundary points of S is 

called the boundary or frontier of S and is abbreviated Fr (S). 

It is easy to see that Fr (S) = cl (S') n cl (X — S). For the ball B(0; r) and 
for the neighborhood N(Q; r) in R2, the boundary is the circle 

{(x,y):x2 + / = r2}. 
l 

The boundary of the set {(x, y): 1 < x2 + y2 < 4} is the union of the circles given 

by x2 + y2 = 1 and x2 + y2 = 4. However, boundaries of sets need not look like 

what we might ordinarily think of as “boundary curves.” For example, the 

boundary of the set {(x,yO:x and y are rational} <= R2 is R2 itself. 

77.8. Definition. Dense set. A subset D of a topological space X is said to 

be dense in X provided cl (D) = X. 

We saw that, for a metric space, D is dense in the space if and only if every 

nonempty open subset of the space has a nonempty intersection with D. It is easy 

to see that this characterization also holds for topological spaces in general. A 

point x in a space is called an isolated point provided {x} is an open subset of the 
space. Observe that if D is a dense subset of a space, then it must contain all the 

isolated points in the space. Thus, if a space has the discrete topology (Example 
75.3), no proper subset of the space can be a dense subset of the space. On the 

other hand, if a set has the trivial topology (75.3), every nonempty subset of the 

space is a dense subset. 
We next extend the definition of convergent sequence to topological spaces. 

Recall from 50.5 that in a metric space a subset S is closed if and only if every 
convergent sequence in S converges to a point in S. Thus, since open subsets can 

be characterized in terms of closed sets (a set is open if and only if its complement 
is closed), any notion in a metric space that can be characterized in terms of open 

sets can also be characterized in terms of convergent sequences. It is useful to do 
this in, for example, the cases of compactness and continuity (see 52.4 and 62). 

We shall give an example to show that for general topological spaces, convergent 
sequences are not adequate to characterize closedness. However, in subsequent 

sections we shall study a class of topological spaces for which convergent sequences 

are adequate for this purpose. 

77.9. Definition. Convergent sequence. A sequence (x,) in X is said to 

converge to a point x e X provided the following condition is satisfied: For each 

open subset U of X that contains x, there is a positive integer N such that x, e U for 

all i ^ N. 

Recall that if a sequence (x„) in a metric space converges, then the unique 
point x to which it converges is denoted by lim (xn). Thus, for metric spaces we 
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are justified in speaking of the limit of a convergent sequence. However, for 

general topological spaces a convergent sequence might converge to more than one 
point. We will reserve the notation lim (x„) = .v for cases in which the sequence 

converges to a unique point. 

77.10. Example. Let X be the set of all real numbers and let be the 
topology for X given in Example 75.6. Consider the sequence (x„) given by 

xn = n for each n G P. A nonempty set U is open if and only if it is the complement 
in X of a finite set. Now let x e X. Let U be an open subset of X that contains x. 

Then xn e U for all but a finite number of n's. Hence, the sequence (xn) converges 

to x. Thus, we see that (xn) converges to each point in the space. 

77.11. Example. Let X be the set of all reals and let ^ = {0} U {X — 

C.C is a countable subset of X} (see Example 75.7). Let a < b and consider the 

set S — {x:a < x < b). First observe that every point of A' is a limit point of 5. 
Hence, S is not a closed set. On the other hand, no sequence in S can converge to 

a point in X — S. Suppose that (x,) is a sequence in 5 and x e X — S. Consider 
the set X — (J {xp.i e P}. This set is open but does not intersect any xt. Hence, 
(xt) does not converge to x. Thus, no sequence in S can converge to a point in 

X — S. Yet S is not closed. We see, then, that the condition stated in 50.5(b) 
does not hold for all spaces. 

EXERCISES: SOME BASIC DEFINITIONS 

1. List all the closed sets for the space (X, 3") of Example 75.4. 

By reviewing some of the properties possessed by the topologies 
of all metric spaces, show that {X, is not metrizable if X has 

more than one point. 

2. Let R be endowed with the Euclidean topology. Let Q be the 

set of all rational numbers. Find each of the following: 
(a) cl (Q). 

(b) int (Q). 

(c) ext (Q). 
(d) Fr (Q). 

3. Let the set R be endowed with the topology given to it in 

Example 75.7. For the set Q of all rational numbers find each 
of the following: cl (Q), int (Q), ext (Q), Fr (Q). 

4. Repeat the previous exercise; this time, however, let R be 
endowed with the topology given to it in Example 75.6. Also 

let I — {x:0 ^ x 1} and find: cl (/), int (/), ext (/), Fr (/). 

5. Prove that if (Y, d) is a metric space and 5 is a subset of X, 

then the set of all limit points of S is closed. Show by an ex¬ 
ample that the result is not true for general topological spaces. 

6. (a) A subset S in a topological space is said to be nowhere dense 

provided int (cl (S)) — 0. Show that if 5 is an open set 
then the Fr (S) is a nowhere dense set. 
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(b) Is the statement in (a) still true if S is a closed set rather than 
an open set? 

(c) Show by an example that the statement in (a) is not valid for 
arbitrary subsets of a topological space. 

(d) Prove the following proposition or show with an example 

that it is not correct: A set S is nowhere dense if and only if 

the complement of its closure is dense. 

78. SOME BASIC THEOREMS FOR TOPOLOGICAL SPACES 

In this section we shall include elementary theorems for general topological 

spaces, some of which have been given previously for metric spaces. In each case 

the proof is left as an exercise for the reader. 

78.1. Theorem. A subset of a topological space is closed (open) if and only 

if its complement is open (closed). 

78.2. Theorem. Let X be a topological space. The empty set and X are 

closed subsets of X. The union of each finite collection of closed subsets is closed. 

Furthermore, if Jf is an arbitrary nonempty collection of closed subsets of X, then 

n JC is closed. 

78.3. Example. Let (X, XT) be the topological space given in Example 

75.5. Let LF be the collection of all closed subsets of X. Then = {{b, c, d}, 

{c, d}, {b,d}, {d}, 0,X}. 

78.4. Example. Let (X, XT) be the space given in Example 75.6. Note that 

a set U is closed if and only if U — 0, U = X, or U is a finite subset of X. 

78.5. Theorem. A subset S of a topological space is closed if and only if 

cl (S) = S. A subset S is open if and only if int (S) = S. Furthermore, the closure 

of each set is a closed set and the interior of each set is open. 

78.6. Theorem. The closure of a set S is the intersection of all closed subsets 

that contain S. The interior of a set S is the union of all open sets that are contained 

in S. 

Notice that the closed ball B(p: r) in R" contains its boundary {.y: |.v — p\ = r}, 

whereas an open neighborhood N(p\r) does not contain any of its boundary 

{.y:|x — p\ = r}. This suggests what happens in general as seen in the following 

theorem. 

78.7. Theorem. A set is closed if and only if it contains its boundary. A set 

is open if and only if it does not contain any of its boundary points. 

78.8. Theorem. A set S is dense in a topological space X if and only if every 

nonempty open subset of X intersects S. 

78.9. Example. Let X be the set of all real numbers. Let = {0, X, {0}} 

(see 75.4). Notice that each nonempty open subset of X contains the point 0. 
Hence, the set {0} is a dense subset of X. Furthermore, the set X — {0} is not 

dense since 0 is an isolated point of the space. 
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78.10. Let (X,-9~) be the topological space given in 75.6. A subset of this 

space is dense if and only if it is an infinite set. For the space in Example 75.7, 

a set is dense if and only if it is an uncountable set. 

78.11. Theorem. The closure operator cl possesses the follow ing properties. 

Let A and B he subsets of X. Then, 

78.11(a). cl(0)=0. 
t . 

78.11(b). A c cl (A). 

78.11(c). cl (cl (/!)) = cl (A). 

78.11(d). cl (A U B) = cl (A) U cl (B). 

78.12. Theorem. For each subset S c X, Fr (S') = cl (S) n cl (~5'). 

78.13. Theorem. The interior operator int possesses the following properties: 

Let A and B be subsets of X. Then 

78.13(a). int (X) = X. 

78.13(b). int {A) c A. 

78.13(c). int (int A) = int {A). 

78.13(d). int (A n B) — int {A) n int (B). 

EXERCISES: SOME BASIC THEOREMS FOR TOPOLOGICAL SPACES 

1. Prove each of the following theorems: 

(a) 78.1 (0 78.8 

(b) 78.2 (g) 78.11 

(c) 78.5 (h) 78.12 

(d) 78.6 (i) 78.13 

(e) 78.7 

2. Definitions 77.1, 77.7, and 77.9 are concerned with conditions 

that must be met by every open set containing a point. Prove 
that it would be equivalent to assume only that the requirements 

hold for elements of a base. More explicitly, prove the follow¬ 
ing: 

Let (X, ,T) be a topological space and let dB be a base 
for ST. Then each of the following holds: 

(a) A point p in X is a limit point of a set S c X if and only if 

for each U e dB that contains p, U intersects S in at least 

one point distinct from p. 

(b) Suppose S c X and p e X. Then p is a boundary point 

of 5 if and only if for every U e dS that contains/;, U inter¬ 
sects both S and the complement of S. 

(c) A sequence (.v,) in X converges to a point ,y e X provided 
that for each U e dB that contains .v. there is a positive 

integer N such that .v, e U for all / N. ( In connection 
with this exercise, recall that in the case of a metric space 
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we originally defined the concept of limit point in terms 

of the base of e-neighborhoods.) 

3. Give an example of a topological space for which it is not true 

that a set consisting of exactly one point is closed. 

4. Give an example of a topological space for which it is true that 
sets consisting of a single point are closed and for which there 

exist at least two points x and y for which there do not exist 

disjoint open sets Ux and Uv such that x e Ux and y e Uv. 

Note that such a space could not be metrizable. 

5. Are there sequences in Example 78.9 that converge to more than 
one point? 

6. Give an example of a space consisting of more than one point 

in which every sequence converges. 

7. The following properties show how closed sets can characterize 
the topology of a space: 

Let X be a set and suppose F is a collection of subsets of 
X that satisfies the following (see Theorem 78.2): 

(a) 0 e F and X e F. 
(b) The union of each finite subcollection of F is an element 

of F. 
(c) The intersection of each nonempty subcollection of F is 

an element of F. 
Let F = {U\U — X — W for some W e F}. 
Show that F is a topology for X and that K is closed in 

(3f, F) if and only if K e F. 

8. Let X be a set and let k : 0*(X) —► &{X) be a map where 3A(X) 

is the power set for X. Suppose k satisfies the following prop¬ 

erties (called the Kuratowski closure axioms): 

(a) k{0) = 0. 

(b) A <= k(A) for A e 0>(X). 

(c) k(k(A)) = k(A) for all A in 0>{X). 

(d) k(A U B) = k(A) U k(B) for all A and B in &{X). 

Let JF = {F: k(F) = F, F e £P(X)}. Show that «F satisfies 

the properties in Exercise 7 and, hence, determines a topological 

space (X, JF), where F is the collection of complements in X 

of elements of «F. Show further that in the space (X, F) 
cl (S) = k(S) for each S’ c X. 

9. Lfsing Theorem 78,13 as a guide, set up conditions for a mapping 

I:&(X)-+ &{X) 

which will guarantee that 

■T - {[/:/(U) = U, U e 3s(X)} 

is a topology for X and I(U) = int (U) for each U e 3P(X). 
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10. Let 5 be a subset of a topological space X. In each of the 

following, tell whether the statement is necessarily true. Justify 
your answer by a proof or a counterexample. 

(a) Fr (S) = cl (5) - (X - S). 

(b) Fr (S) is closed. 
(c) int (S) = S - Fr (5). 
(d) Fr (S) = 0 implies that 5 is both open and closed. 

11. Let X be the following subset of R2; 

*={(i o) : « e p) U{(0,1),(0, -1)}. 

For each n e P, let A+n — , Oj :j 2? n j U {(0, 1)} and An — 

| (- , 0)^ «] u {(0, — 1)}. Let 88 be the collection of all sub- 
J 1 + (11 \| 

sets of X that are of the form A„, An, or j y- , Oj j tor some j G P. 

(a) Show that 88 is a base for a topology 8/~(88) for X. 

(b) Show that convergent sequences in (X, 8T(88)) do not 

necessarily have unique limits. 
(c) Show that sets consisting of single points are closed sub¬ 

sets of this space. 
(d) Point out how you know that this space is not metrizable. 

12. Let Xx and X2 be topological spaces and let X1 X X.2 denote the 
product space. In each of the following, determine if the 

statement is true: 

(a) If Ax X1 and A2 c X2, then cl (Ax X A2) = cl (Ax) X 

cl (A2). 

(b) If Ax is a closed subset of Xx and A., is a closed subset of 
X2, then Ax X A2 is a closed subset of Xx X X2. 

(c) If Ax c Xx and A2 c X2, then int (Ax X A2) — int (Ax) X 

int (A2). 

(d) If 88j is a base for the topology for Xx and 882 is a base for 
the topology for X2, then 88 — {Ux X U2\Ux G 88x and 

U2 g 882) is a base for the product topology for Xx X X2. 

79. NEIGHBORHOODS AND NEIGHBORHOOD SYSTEMS 

We define next the notion of neighborhood of a point. For metric spaces it 

will turn out that the sets of the form N(p; e) and B(p\ f) will both be examples of 

a more general type of set called neighborhood of p. 

79.1. Definition. Neighborhood of a point. Let X be a topological space. 

By a neighborhood of a point x, we shall mean a set N for which there exists an open 

set U such that .v G U c= N. 

It is important to note that a neighborhood of a point p need not be an open 
set, but it is necessary that p e int (N) in order for jY to be a neighborhood of p. 
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Note also that an open set U is necessarily a neighborhood of each point x e U. 

Thus, if we wish to say that U is an open set such that jc e U, it is equivalent to say 
that U is an open neighborhood of the point x. 

79.2. Example. Let N — {(x,y)\x2 + y2 ^ 1 or x = 0 or y = 0}. As a 

subset in the space R2, A" is a neighborhood of each of the points in {(x,y):x2 + 

y2 < 1} but is not a neighborhood of any other point in N. 

The following statement, whose easy proof is left as an exercise, gives a char¬ 
acterization of open sets in terms of neighborhoods. 

79.3. Theorem. A set U in a topological space is open if and only if for each 

x e U, U contains a neighborhood of x. 

79.4. Definition. Neighborhood system of a point. If X is a topological 

space and x e X, then the collection jV x of all neighborhoods of x is called the 

neighborhood system of x. A base for the neighborhood system Arx of a point x is a 

subcollection Sdx of *VX such that for each Nx e ■.Arx, there is a Ux G 3SX such that 

xeUx^ Nx. 

The elements of a base for a neighborhood system need not be open but often 

are taken that way. 

Note that if SB is a base for the topology^ of a space (X,S~) and x e X, then 

{U: U e and x e U} is a base for the neighborhood system of x. 

EXERCISES: NEIGHBORHOODS AND NEIGHBORHOOD SYSTEMS 

1. Prove Theorem 79.3. 

2. Let A be a topological space. For each x let jVx be the neigh¬ 

borhood system of x. Prove: 

(a) If Ux g JTX and Vx e jV'x, then Ux n Vx e JT' 

(b) If Ux G J^x and Q => Um, then Q G JTX. 

(c) For each x e X, if U g jVx, there is a V G jEx such that 

for each y g V, U g 

3. Suppose that A is a set, and for each x g X there is a nonempty 

collection jVx of subsets of X such that x G U for each U e x. 

Suppose further that the ^Vfs satisfy properties (a), (b), and (c) 

of the previous exercise. 
Let ^ = {U:U cz X and U G JXx for each x G U}. 

Prove that ^ is a topology for X and that for each x, 
jV'x is the neighborhood system for x in the space (X, ST). 

4. Characterize the notion of limit point in terms of neighborhoods. 

80. SUBSPACES 

Suppose that Y is a subset of a metric space (X, d). Recall from Definition 

49.1 that if we let d* — d\ Y X Y, then ( Y, d*) is called a subspace of (X, d). On 

the basis of this definition, we were able to prove the following: 
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Let Y be a subspace of a metric space (X, d). Then S c= Y is open in Y if and 

only if there is an open subset U of X such that S = U n Y. 

This characterization-of open sets for subspaces of a metric space suggests a 
generalization of the notion of subspace. 

80.1. Definition. Subspace. Let {X, FT) be a topological space and suppose 

Y ci X. Let FT | Ybe the collection {(J n Y: U e^~}. It is easy to verify that T | Y 

is a topology for Y. This collection ST \ Y is called* the relative topology for Y 

induced by -T. Furthermore, (Y, FT | Y) is called a subspace of (X. FT). 

80.2. Theorem. Let (X, 3~) be a topological space and let (Y,3~ | Y) be 

a subspace of (X, FT). Then: 

80.2(a). A subset S of Y is closed in (Y, FT | Y) if and only if S = F n Y 

for some closed subset F of X. 

80.2(b). If 38 is a base (subbase) for FT, then 

38 | Y — {U n Y\Ue 38} is a base (subbase) for ST | Y. 

Proof of (a). Suppose first that S <= Y is closed in Y. Then Y — S is open 
in Y. Hence, from Definition 80.1, there is an open subset U of X such that 

Y - S = U n Y. Hence, S = Y - U n Y = Y n (X - U). Thus, as was to 
have been shown, 5 is the intersection of Y with a closed subset of X. Next suppose 

that S — F n Y, where F is a closed subset of X. Then Y — S = F-Fn Y — 

Y n (X — F). But since X — F is open in X, Y — S is open in Y. Hence, 5 is 

closed in Y. This completes the proof of (a). 

The proof of (b) is left as an exercise. 

80.3. Example. Let S be a circle and L a line in R2. The collection of all 
open arcs contained in 5 forms a base for the relative topology for S. Similarly, 
the collection of all open line intervals contained in L is a base for the relative 
topology for L. 

80.4. Theorem. Let X be a topological space and let Y be an open (a closed) 

subspace of X. Then W <= Y is open (closed) in Y if and only if W is open (closed) 
in X. 

The proof of this theorem is left as an exercise. 

EXERCISES: SUBSPACES 

1. Show that 3T | Y in Definition 80.1 is a topology for Y. 

2. Prove Theorem 80.2 (b). 

3. Prove Theorem 80.4. 

4. Let P be a plane and S'- a spherical surface in R:!. By making use 
of Theorem 80.2(b), give a base for the relative topology forP. 

Also give a base for the relative topology for S2. In each case 
answer the question by giving a description of the elements of 
the base. 
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81. CONTINUOUS AND TOPOLOGICAL MAPPINGS 

With the notion of topological spaces we can extend the definitions of con¬ 
tinuous and topological mappings from the framework of metric spaces to that of 

topological spaces. 

81.1. Definition. Continuous mapping. Let (X,T(X)) and {Y, T(Y)) be 

topological spaces and let f be a mapping from X into Y. Then f is said to be con¬ 

tinuous at x0e X provided that for each open neighborhood V of f (x0) in Y, there is 

an open neighborhood U of x0 in X such that f[U] c V. If f is continuous at each 

point in X, then f is said to be a continuous mapping from (X, XT (X)) into (Y,T( 7)). 

In previous chapters we have studied examples of continuous functions from 
one metric space into another. We next consider an example in the more general 

setting of topological spaces. Other examples will be considered in the next set of 

exercises. 

81.2. Example. Let X and Y each denote the set of real numbers. Let 

■T(X) be the topology for A generated by the Euclidean metric and let ^(7) be 

the topology for Y as in Example 75.6. Thus, U eXT(Y) if and only if U = 0 or 
U = Y — Ffor some finite set F <= Y. We consider that mapping/: X —y Y given by 

f(x) = x for all x e X and show that f is a continuous mapping from {X,-T(A)) into 

(7, XTlfY)). To see this let x0 e X and let V be an open neighborhood of /(x0). 
Then V — Y — F for some finite subset F of Y. Now /(x0) £ F so that x0 ^ F. 

There exists an open interval U <= X such that x0 e U <=■ X — F. But then f[U] <= 

Y — F = V. Upon noticing that U is an open subset of (A, XT (A)), we see that / 

is continuous at x0. 

If we wish to say that f is a continuous mapping from (X,XT (A)) into (Y,T( Y)), 

we shall abbreviate this by saying that /: (A, XT (Xf) —*■ (Y,XT(Y)) is continuous. 
Likewise, in other situations if we are considering a map f:X—*■ Y and the 

topologies XT (A) and XT (Y) on A and 7, respectively, are relevant to our discus¬ 
sion , we shall use the notation /: (A, XT (A)) -> (7, XT { 7)) for the map. Analogous 

with the metric situation, we shall feel free to revert to the notation/: A—> 7 if it 

is clear from the context which topologies are involved. 

81.3. Definition. Topological mapping. //'/:(A, T{A)) -> (7, T(Y)) is a 

bijection such that f andf 1 are continuous, then f is said to be a topological mapping 

or a homeomorphism. Two topological spaces are said to be homeomorphic or 

topologically equivalent provided there exists a homeomorphism that carries one 

of the spaces onto the other. 

EXERCISES: CONTINUOUS AND TOPOLOGICAL MAPPINGS 

1. Let A and 7 each be the set of all real numbers. Let XT (A) be 
the topology for A as given in Example 75.6 and let XT(7) be 
the topology as given in Example 75.7. Further, let f be given 

by f(x) = x for all x in A. 
(a) Is /: (A, XT (A)) —► (7, XT( 7)) continuous ? 

(b) Is /-1:(7, T(Y))-> (A, XT{X)) continuous? 
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2. Let (X, 3~) be the topological space as given in Example 75.5. 
Let be the following topology for X: 9~1 = {{cl}, {d, c}, 
{d, b}, {d, b, c}, X, 0}. Is the space (X, -T) homeomorphic to 
the space (X, i^)? 

3. Suppose that /: (X, ^(X)) —*■ ( Y, ( Y)) is a surjection. In 
each of the following determine whether the statement is neces¬ 
sarily true. 

(a) If Y) is the trivial topology for Y, then/is continuous. 
(b) If^~(A0 is the discrete topology for X, then/iscontinuous. 
(c) If/is continuous and-^"( Y) is the discrete topology for Y, 

then T(A") is the discrete topology for X. 

4. Suppose that /: (A^, .Tx) —► (A"2, ^”2) *s a mapping. Suppose also 
that | S) is a subspace of (X2,^~2) such that/[A^] c 5. 
Prove that f\(X1,^~1)-^ (X2,^~2) is continuous if and only if 
/: (A\, —*■ {S, 21 S) is continuous. 

5. Let (X, ^") be a topological space and let | S) be a sub¬ 
space of (X, ST). Let /: (S, \ S) —*■ (X, ZT) be the inclusion 
map given by i(x) — x for all x in S'. Show that / is continuous. 

6. Let ^(d) be the topology for R, generated by the Euclidean 
metric d. Let T be the topology for the set of real numbers R 
as given in Example 75.7. Hence, U &XF if and only if U — 0 
or if U = R — C, where C is a countable set. Let i be the identity 
function on R. 

(a) Show that i: (R,.T) —► (R, FT(d)) is not continuous at any 
point. 

(b) Describe the convergent sequences in (R,^T). 
(c) Show that for each sequence (x,) that converges to a point 

x0 in the space (R,^~), it is true that lim (/(.v,)) = /(.v0). 
Compare this with the situation for metric spaces as given 
in Theorem 52.4(b). 

82. SOME BASIC THEOREMS CONCERNING MAPPINGS 

In Exercise 6, above , an example was given to show that not all characteri¬ 
zations of continuity in metric spaces hold in the more general setting of topological 
spaces. Included among the following theorems are some useful characterizations 
that do hold. If a proof is not provided, it is left to the reader as an exercise. 

82.1. Theorem. Let f:(X,lT(X))—>-(Y,lT(Y)) be a mapping. Then f is 
continuous if and only if any one of the follow ing conditions holds. 

82.1(a). IfUe^(Y), thenf~l[U]e^(X). 

82.1(b). If F is a closed subset of Y. then f~l [E] is a closed subset of X. 

82.1(c). For each subset A <= X,/[cl (A)] <= cl (f[A\). 
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82.1(d). For each x e X, if V is a neighborhood of f (x) in the space (Y,-9~( Y)), 

then there is a neighborhood U of x in (X, FT(X)) such that f[U] c V. 

Proof that (b) implies (c): Let A c: X. Then, since f[A] c cl (f[A]), 

A c /-i[cl {f [A])]. By (b),/_1[cl {f[A])\ is a closed set. Then since cl (A) is a 

minimal closed set that contains A, we have A <=■ c 1 (A) <= /_1[cl {f[A])}. From 

this we then have/[cl (A)] c/[/-1[cl (/[^4])]] cl (/[>!]). 

Actually in applying 82.1(a) to verify the continuity of a function 

/:(A',^'(A0)-(y,^(T)), 

it is necessary only to check the condition for a subbase for^~(Y). Suppose that 

SF is a subbase for -T(Y) and f~x[S] is open for every S in FF. Let U eJ7~(Y). 

Then for each y e U, there exists a finite subcollection {Sp.is Pri} of FF such that 

yef){St: i e Pn} c U. Let Uv = f) {Si'-i e Pn}- Then because the inverse of a 
function preserves intersections, we have 

nm =/->[ n {s<-- = n {/-m/e pn>. 
Since each /^[S,] is open, so is /-1[(/J. Now we may choose one such for 

each y e U. Hence, U = [J 6 £/}. Thus, since the inverse of a function 

preserves unions,/-1[L] =/-1[[J 6 ^}] — U {/_1[^i/]:J G L/). Then since 
each 1 [L/v] is open, so is /-1[(/]. Thus, we have shown that / satisfies 82.1a. 

Conversely, if/ satisfies 82.1a, for each S e ^,/-1[.S] is open since each S \n Sf 

is open in Y. We therefore have the following alternate form of 82.1(a): 

82.1(e). Let f: (X, -T(X)) -> ( Y, -T(Y)) be a mapping and suppose that FF 

a subbase for T ( Y). Then f is continuous if and only if for each S 6 LX, f~l[S] is 

open in X. 

It should be clear that since each base for a topology is also a subbase, the 
proposition just stated remains valid if the word base is substituted for the word 

subbase. 

We next define two additional important types of mappings. 

82.2. Definitions. Open mappings; closed mappings. Let f:(X, f-(X)) -> 

(Y,&~(Y)) be a mapping. Then f is said to be an open mapping provided f[U] is 

open in Y if U is open in X. The mapping f is said to be a closed mapping provided 

f[F) is closed in Y if F is closed in X. 

Notice that if /: (X, -T(X)) ->- ( Y, .T{ Y)) is continuous, then the invariant 

action on open (closed) sets is “backward going,” i.e.,/-1 carries open (closed) 

sets in Y onto open (closed) sets in X. For open mappings, the action is “for¬ 
ward going,” i.e.,/ carries open sets in X onto open sets in Y. Similarly, the 

action of a closed mapping on closed sets is forward. We may picture these remarks 
schematically as follows: In the diagrams, X) will denote the collection of 

closed subsets of (X,.T(X)) and, similarly, <F(Y) will denote the collection of all 

closed subsets of ( Y, 2/ ( /)). 

f-L->.T(Y) f, open ' ' 

^ f-1 a? .T{Y) 

&{Y) 

f, continuous'' 

f. continuous 

JF(X) IXvZZt 'Fl 
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This diagram suggests the following important proposition that follows at 

once from 82.1(a) and (b). 

82.3. Theorem. Suppose that f:(X, l7~(X)) —*■ (Y, ZT( Y)) is a continuous 

bijection. Then f is a homeomorphism if and only if f is an open (closed) mapping. 

We shall call a property that is preserved under a homeomorphism a topolog¬ 

ical invariant. If / is a homeomorphism, then / is a bijection and both / and /-1 

preserve openness. Thus if a property can be characterized in terms of the topology 

of the space (i.e. a topological property), then it is a topological invariant. 

82.4. Theorem. Suppose X, Y, and Z are topological spaces and f\X^*-Y 

and g: Y —>Z are mappings. If f and g are continuous (open) ((closed)), so is the 

mapping g °f:X —*■ Z. Iff and g are homeomorphisms, then so is g °f 

The proof of the first part is the same as the proof given in 52.13. The re¬ 

mainder of the proof is left as an exercise. 
The following theorem, previously stated for sequences of mappings defined 

on metric spaces, holds in the more general setting indicated next. The proof of 

Theorem 67.4 carries over directly (see Definition 67.3). 

82.5. Theorem. Let (fn:(X,^)~*(Y,p)) be a sequence of continuous 

mappings that converges uniformly to /: (X, ZT) —► ( Y, p), where ( Y, p) is a metric 

space. Then f is continuous. 

In the next set of exercises, the reader will be asked to prove the following 

characterization of open mappings. 

82.6. Theorem. Suppose that f\(X,lT(X))-+(Y,^~(Y)) is a mapping and 

Zfl is a base for T (X). Then f is an open mapping if and only iff[U] is open for each 

U eZS. 

We shall use the theorem just stated in obtaining the following useful fact 

about projection mappings defined on product spaces. 

82.7. Theorem. Let {(Xi,^~i):ie PB} be a finite collection of topological 

spaces and let (X, -T) denote the product space X {(Xt, ZT j): / e P,,}. Then for each 

i e P„, the projection mapping irp. (X, ST) -> (X,, ^t) is an open continuous sur¬ 

jection. 

Proof. Let / e Pn. Since vjX) — X,, it follows that tt, is a surjection. 

Furthermore, it follows from the definition of the product topology that 7r“ *[(/,] 
is open for each open set Ut in Xt. Hence, v,- is a continuous mapping. That 

tti is an open mapping can be seen from the following argument: Let be the 
base for ZT generated by the subbase ZZ as defined in 76.6. Let B e Z8. Then 
B = U1 X (72 X • • • X Un where each Uj is open in X}. But then tt,[B] — U,. 

Hence, v,[#] is open in X, and from 82.6 it follows that tt, is an open mapping. 

EXERCISES: SOME BASIC THEOREMS CONCERNING MAPPINGS 

1. Complete the proof of 82.1. 

2. Complete the proof of 82.4. Prove Theorem 82.6. 
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3. Suppose that f:(X,&~(X))-*-(Y,&~(Y)) is an open (closed) 
mapping and S is an open (closed) subset of X. Prove that 
f\ S.S —*■ Y is an open (closed) mapping, where S is given the 
relative topology. 

4. Suppose f:X—> Y is an open (a closed) surjection. Suppose 

S X and/_1[/[5]] = S. Show that the mapping/] S\S->-f[S] 

is open (closed) where the relative topologies are put on S and 

/[£]. Give an example to show that the conclusions are not 
necessarily true if 5 is not an inverse set (an inverse set S for f 

is one such that= S). 

5. Prove the following form of the Weierstrass M test: 

Suppose for each / e P, gp.X —*■ R'* is a continuous mapping 
from a topological space X into Rn. Suppose furthermore 

CO 

|gj(.v)| sS Mi for x 6 X, where ^ Mt is a convergent sequence 
i=l In V=o 

of positive terms. Then the sequence of partial sums I ^ gt I 
\i—l /n=l 

converges uniformly to a continuous mapping/:X—► R". 

6. Let e Pn} be a collection of topological spaces and 

let (X, be the product space for this collection. Let i e Pn 
and c e X. In this exercise we shall define a subset X■ that con- 

l 

tains the point c. Show that X£ is a homeomorphic copy of the 

coordinate space A/ 

X- = {x: cj = x, for j =4 /}. 

(Note that we may write X° = {q} X {c2} X • • • X {c,-^} X 

Xi X {G+1} X • • • X {cn}.) 

83. SEPARATION PROPERTIES FOR TOPOLOGICAL SPACES 

In 54, we proved that metric spaces enjoyed certain separation properties. 

For example, the property called normality was one of the stronger properties 
studied. Some of the examples of topological spaces that we have considered in 

this chapter do not even satisfy some of the weakest of the separation properties. 
For example, in Example 75.5 there is no neighborhood of the point d that does 

not contain the point a. However, there are many spaces that do satisfy separa¬ 
tion properties of varying strengths, and it has been fruitful to study the effect on 

spaces of assuming various ones or combinations of them. We shall list these 
separation properties here and consider them in connection with other topics in 

subsequent sections. In each case the label attached to the space possessing the 
given property is given first and then the definition of the property is given. 

83.1. Definition. T^space or space satisfying the weak separation axiom. 

For each pair of distinct points x and y in the space, there is an open neighborhood 

U ofx that does not contain y and an open neighborhood V of y that does not contain x. 
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The Tx property is equivalent to the property that sets consisting of a single 

point are closed subsets of the space. The reader will be asked to prove this in the 
next set of exercises. 

83.2. Definition. Hausdorff (T2) space or space satisfying the strong separation 

axiom. For each pair of distinct points x and y in X, there exists a pair of disjoint 

open neighborhoods Ux and Uy of x and y, respectively. 

83.3. Definition. Regular space. If L is a closed set and x is a point not in L, 

then there exists a pa:r of disjoint open sets UL and Ux containing L and x, re¬ 

spectively. 

83.4. Definition. T3-space. A Tz-space is a space that is both Tl and regular. 

83.5. Definition. Normal space. If H and K are disjoint closed subsets, then 

there exists a pair of disjoint open sets UH and U K that contain H and K, respectively. 

83.6. Definition. T4-space. A space that is both Tl and normal is called a 

Tt space. 

83.7. Example. Let X be the set of all real numbers and let be the dis¬ 
crete topology. The space (X, 3Fj) is metrizable and, from our work in metric 

spaces, we know that this space possesses all the separation properties listed in this 
section. On the other hand, let^”2 be the trivial topology for X. It is easy to see 

Regular 
Normal 

Figure 19 

SEPA RA HON A XIQMS 
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that (X, ,E2) is not a T^-space. On the other hand, since (X, HE2) has no closed 
subsets other than the empty set and X itself, it follows that it is normal and 

regular in a vacuous way. 

83.8. Example. Let (X, HE) be the space in Example 75.6. It is easy to 

verify that this space is a T\-space. However, each pair of nonempty open subsets 

intersect. Hence, the space is not a Hausdorff space. 

It should be pointed out to the reader that in some books the terms regular 

and normal are used to designate the stronger properties T3 and respectively. 
In this text we will generally say “7\ and normal” rather than use the label Ti} and 

similarly for 7’3-spaces. With the numerical labeling as defined here, it follows 
immediately that if a space is a 7’i space then it is a 7’!_1 space for / e {2, 3, 4}. 

EXERCISES: SEPARATION PROPERTIES FOR TOPOLOGICAL SPACES 

1. In each of the following, list the separation properties possessed 
by the given space: 

(a) The space in Example 75.4. 

(b) The space in Example 75.5. 

(c) The space in Example 75.6. 

(d) The space in Example 75.7. 
(e) The space (X,HE), where X — {1, 2, 3, 4} and 

^■ = {0,(1}, {1,2}, {1,2, 3}, {1,2, 3,4}}. 

2. Does there exist a finite 7\-space that is not a 7Vspace? If 

there is no such example, prove why there is not. 

3. Suppose X is a Hausdorff space. Show that if a sequence in X 

converges, then it converges to only one point. Give an 

example to show that this property does not necessarily hold 

for 7’3-spaces. 
In Exercises 4 through 13, prove the proposition stated in 

the exercise. 

4. (a) (X, HE) is a 7\-space if and only if sets consisting of a single 

point are closed sets in (X, ST). 

(b) (X,HE) is a 7’3-space if and only if the following holds: 

If S <= X, then p e X is a limit point of S’ if and only if every 

open neighborhood of p contains an infinite subset of S. 

5. A topological space is regular if and only if the following 

condition is satisfied: For each point * in the space and open 
set U containing the point, there is an open set V such that 
refcclf^c u. 

6. A topological space is normal if and only if for each closed 

subset A and open set U containing the set A, there is an open 

set V such that A cr K c cl (V) c U. 

7. (X, -E) is a 7’3-space if and only if finite subsets of X are closed. 
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8. If (X,^~) is a Hausdorff space and xl5 x2, . . . , xn are distinct 
elements of X, then there exist pairwise disjoint open sets 

Ux, U2, . .. , Un such that x, e [/*. 

9. If a topological space X has the following property, then it is 

regular. If x 6 X and A is a nonempty closed subset that does 
not contain x, then there is a continuous mapping from X into 

the real closed interval [0, 1 ] such thatf(x) = 0 andf[A] = {1}. 

10. If a topological space X has the following property, then it is 
normal. If A and B are disjoint nonempty closed subsets, then 
there exists a continuous mapping/from X into the real closed 

interval [0, 1] such that f[A] = {0} and f[B] = {1}. 

11. Suppose X is normal and {Ax, A2,. . . , An} is a pairwise 

disjoint finite collection of nonempty closed subsets of X. 

Then there exists a collection of open subsets {Ux, U2, . . . , Un} 
such that Ai <= U{ and cl ((/,) n cl (U,) = 0 for i ^ j. 

12. Each of the following properties is inherited by every subspace 

of the space if the space has the property: 7j, T2, regular. 

13. Every closed subspace of a normal space is normal. 

14. In this exercise we define a separation property that is even 
weaker than the property referred to as the weak separation 

property defined in 83.1. A topological space is called a T0- 

space provided that for each pair of distinct points x and y in 
the space, there exists an open neighborhood Ux of x that does 
not contain y or an open neighborhood Uv of y that does not 

contain x. 

(a) Give an example of a 7’,,-space that is not a 7\-space. 
(b) Determine whether the following statement is true: A 

topological space is a T^-space if and only if for each 

pair of distinct points x and y in the space, x is not a limit 
point of {j} or y is not a limit point of {x}. 

(c) Determine whether the following statement is true: A 
topological space is a 7j-space if and only if for each pair 

of distinct points x and y in the space, x is not a limit 
point of {;’} and y is not a limit point of {.v}. 

(d) Suppose that f:X—> Y is a continuous bijection. If X 

is a 7’,-space, i — 0, 1, or 2, is Y necessarily a 7’,-space? 

If Y is a 7’,-space, / = 0, 1, or 2, is X necessarily a 7j- 
space ? 

15. Suppose that X is a topological space and Y is a Hausdorff 

space. Let f:X-* Y and g'.X—*■ Y be continuous. Show that 
{x:x e X and /(x) = g(x)} is a closed subset of X. Give an 
example to show that the conclusion does not necessarily 
hold if Y is not a Hausdorff space. 
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16. Suppose that f and g are continuous mappings from a topologi¬ 

cal space X into a Hausdorff space Y. Show that if/| D = 

g | D for some dense subset D of X, then f = g. 

17. Suppose that / is a continuous closed surjection from a 
normal space X onto a topological space Y. Show that Y 

is normal. 

18. Let {(Xi,^~i):ie P,J be a finite collection of topological 
spaces and let (X,^~) be the product space for this collection. 

Prove that X is a Hausdorff space if and only if each of the 
coordinate spaces Xt is a Hausdorff space. 

84. A CHARACTERIZATION OF NORMALITY 

Recall from Theorem 54.6 that each metric space X has the following prop¬ 

erty. 

84.1. PROPERTY. If A and B are two nonempty disjoint closed subsets 

of X, then there exists a continuous mapping f:X-> [0, 1] such that f[A] = {0} 

and f[B] = {1}. 

It was remarked in 54.7 that this property can be used to prove that metric 
spaces are normal. In fact, it is easy to show that any topological space possessing 

the property is normal (see Exercise 10, page 186). We shall show in this section 

that if A is a normal space, then it possesses the property stated in 84.1. Thus, the 
statement gives a characterization of normality. The statement that normality 

implies 84.1 is a key step in a theorem of Urysohn that characterizes separable 
metric spaces. 

84.2. Urysohn’s lemma. Suppose X is a normal space. For each pair of 

nonempty disjoint closed subsets A and B of X there exists a continuous mapping f 

from X into the closed real interval [0, 1] such that f[A] = {0} and f[B] = {1}. 

(The proof makes use of the fact that the set D of rationals of the form 
m 
—, n is a positive integer and 1 ss m 2n, is dense in [0, lj. The plan is to define a 
2n 
nested collection {Up.r e D} of open subsets containing A such that for rx and r2 in 

D, if rx < r2, then 
cl (Urf c Uft = Ut = X - B. 

The required function will be defined in terms of the indices, the functional value 

at each point in some sense denoting in which of the Ujs the point is located. With 

this much of a hint, it is suggested that the reader try to construct a proof before 

reading the proof below.) 
m 

Proof. Let D be the set of all diadics — in (0,1]. Let A and B be nonempty 

disjoint closed subsets. Let U1 be the open subset X — B. Since X is normal, by 
Exercise 6, page 185, there is an open subset such that 

A c Ui c cl (Uf) c= Uv 
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Figure 20 

Using normality again we .obtain an open subset Ui such that 

A <= Ui c cl (t/p c Ut 

Also since cl (Up is closed, we can find an open subset U| such that 

cl (Up cUfccl (Up <= Uv 

Notice that we now have a collection of open sets °U2 = (Ur:r = -j, f, ^}, it 

being understood that any equivalent representative of a diadic may be used once 

a subscript is chosen; e.g., U^ = Uz. Note that for r1 and r2 in f, t). if 

r1 < r2, then 
^U,c cl (Urp c Ura c cl (Ufi) <= Ux. 

Next assume that for n = 2, 3, a collection of open sets 

^n = (u„,:m= 1,2,..., 2"] 

(m \ 
has been chosen so that for r1 and r2 in — :m — 1,2, . . . , 2" — 1 and rx < r2. 

84.2(a). 

12"./ 

A c Ufl c cl (Urp «= Ur2 cr cl (Ur#) <= Ux. 

We next show that we can choose for n — h -f 1 so that the property in 

84.2(a) holds. 
For m even, U m = Umj2 e °Uh so that U m has already been chosen. 

oM-l i)/i 2*+1 

For m odd, we choose U m as follows: Choose U x so that 
2*+1 o*+1 
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For m odd and 1 < m ^ 2h+1 — 1, choose U m so that 
2*+i 

cl cz c cl U m \ C U m+1 
2*+!/ 2a+1' 

Then, by induction, for each positive integer n we can choose a collection of 

open sets that satisfies the conditions listed in 84.2(a). Let 

U {Wn-ne P}. 

Define /: X -> [0, 1 ] as follows: 

f(x)= 1 for x E B 

f(x) = g.l.b. {r-.xeUr and Ur e tf/} 

Note next that/[/4] = {0},/[fi] = {1} andf[X] c [0, 1], 

below by showing that/is continuous. 1 g 
Let rel and e > 0. Let n be chosen so that — < -. 

2" 2 

We complete the proof 

It is easy to see that 

X = U2 U U3 - cl t/j 

■- 2 

u t/4 - Cl U _2 

2"' - 
u • 

u t/o« - cl [/,«. £ 
*- 2 

' 2 -2 

2" 

u X - cl C/2«_1 

We consider several cases corresponding to the terms in this union. Suppose 

2 
x 6 f/2. Then for any y in the open set U2,0 ^ f (y) ^ — so that 

2" 2" ^ 

I/O) - /O')I = 21: < e- 

Next, if for 2 < m ^ 2n, x e [”Um — cl /Um-z\ 
L 9" V «n /- 

ye 

, then for any 

Um - cl It/ 
^7 I’ 2” 

and 

I/O) -/0)l ^ — < £• 

an x, Finally, consider the case x e X — cl For such 

and for any y in the open set X — cl ^,/(/) is also in 

2" 

2n 

2" - 1 

2" ’ 

£/0)£ 1 

1 . Hence, 

I/O) —f(y)\ ~^<2<e- 

Thus, we have shown that f is continuous on X. 

With Urysohn's lemma it is easy to prove the following useful variation of the 

lemma. 
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84.3. Urysohn's lemma (alternate form). Suppose X is a normal space, 

A and B are nonempty disjoint closed subsets of X, and [a, b] is a closed real interval. 

Then there is a continuous mapping/: X [a, b] such that f[A] = {a} and f[B] = 

{■b}• 

Suppose that A is a subset of a topological space X and f\A-*Y is a continuous 
mapping. A continuous mapping g:X~* Y is called a continuous extension of 

f\A -> Y provided g \ A = /(i.e., g(x) = /(x) for all. jc in A). We have already 
met the notion of continuous extension for metric spaces (See 63.6 and 66.15), and 

the notion is also important in the study of general topological spaces. It should be 
clear to the reader that not every continuous mapping has a continuous extension. 

For example, suppose that A = {x:x gR and x ^ 0}. The mapping f\A -*■ R 

given by f(x) = - for x e A has no continuous extension that takes R into R. 

In terms of extension, Urysohn’s lemma can be stated as follows: 
Suppose X is a normal space and A and B are disjoint closed nonempty 

subsets of X. Suppose / is the real-valued function defined on A U B such that 
f[A] — {0} and f[B] = {1}. Then there is a continuous extension g:X -* [0, 1] of 

f-A U B-+ [0, 1], 
In the next theorem, we shall use Urysohn's lemma to prove an important 

extension theorem that says that if A is a normal space and / is a continuous map¬ 

ping from a closed subset L of X into the real interval [--A/, A/], then there is a 
continuous extension g of/that takes all of X into [—A/, A/]. Notice that there 

are two aspects of the conclusion. First of all, /is extended to all of X so that the 
extension is continuous. Secondly, |/(x)| s? M for all x e L, and this bound is 

preserved for the extension. 

84.4. Tietze’s extension theorem. Suppose X is a normal space, L is a 

nonempty dosed subset of X, and [—A/, M] is a closed real interval. If f.L -> 

[— M, M] is continuous, then there exists a continuous extension of f that takes X into 

[-M, M]. 

Proof. The conclusion is obvious if A/ = 0. We assume M > 0 and let 

A = |x:x £ L and/(x) ^ 

B — [ x: x G L and /(x) S 

Ml 

3 J 

_ Ml 
‘ 3 * 

A and B are closed subsets of the closed subset L and, hence, are also closed in X. 

Suppose first that A and B are nonempty. Note that they are disjoint. By 84.3, 

there exists a continuous mapping gl:X~* 
M M~ 

T’ T_ such that 

and, thus. 
giM] = {iA/},g1[5] = {-JA/} 

I fix) — ^(x)| ^ § A/ for x G L. 

If A or B is empty an appropriate constant function gx can be chosen such that 
the last inequality holds. This detail is left to the reader. Next let fx = / — gx on 
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L and Ml = §M. By repeating the same argument with fY replacing the/and Ai, 
replacing the M, we obtain a continuous mapping 

such that for x e L, 

1/iW - g-M\ ■' i= 
or 

I/(*) - igiix) + gAx))\ ' (WM 
and 

\g*(x)\ ■' (i)M, = Ui)M- 

We next make the inductive hypothesis that a finite sequence gi, g2, . . . , gh of 
continuous mappings defined on X has been chosen so that 

\gM\ < m-'M 

and such that 

u 

fix) - 1 gi(x) 
l 1 

(|/‘M for x e L. 

h 
Again by letting fh{x) = fix) — 2 gfx) for x e L, Mh -= (|)W and letting Mh 

i= 1 
replace M and fh replace / in the argument of the first paragraph, we obtain a 

continuous mapping defined on X such that 

|g,1+1(x)| g 

fix) ~ 

/i+i 

2 gfx) H)h+lM for x e L. 

Thus, we have by induction a sequence glt g2, . . ■ , g„, ... of mappings satisfying 

84.4(a) 

84.4(b) 
|gn(x)| ^ (JXfr^M for xel 

n-fl 

fix) - 2 gi(x) 
i=1 

(§)n+1M for xeL 

CO 

From 84.4(b) we see that Fix) = 2 gfx) converges pointwise to / on L. 
i= 1 

From 84.4(a) and the Weierstrass A/-test (Exercise 5, page 183), we see that F 

is continuous on X and that 

Thus, F is a continuous extension of/to X and F[X] <= [ — M, A/]. 

It is easy to prove that if a space satisfies the conclusion of Tietze’s extension 

theorem, then it also satisfies the conclusion in Urysohn’s lemma. To see this 

suppose that X has the extension property as in 84.4. Let A and if be a pair of 
disjoint nonempty closed subsets of X. Let g be defined on A U B by gix) - 0 for 
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every x in A and g(x) — 1 for every x in B. We observe that g is continuous on 
A U B. By the condition assumed for X, there is a continuous extension g* :X —>■ 

[— 1, 1 ] of g. Then the mapping/given by /(x) = |g*(x)| for all x in X is also a 
continuousextension of g. Furthermore,/[T] c [0, 1 ] and/satisfies the properties 

in the conclusion of Urysohn's lemma. 
The equivalence of the statements in Urysohn’s lemma and in Tietze’s ex¬ 

tension theorem, together with Exercises 6 and 10, page 185 , give the following 
characterization of normality. * . 

84.5. Theorem. Let I be a topological space. Then the normality of X is 
equivalent to each of the following: 

(a) If A is a closed subset of X and U is an open subset of X such that A <= U, 

then there is an open subset V such that A cz V <= cl (V) c= U. 

(b) For each pair of disjoint nonempty closed subsets A and B of X, there 
is a continuous function f:X-> [0, 1] such that f[A] — {0} and f[B] = {1}. 

(c) If A is a closed subset of X and f:A —>■ [ M, XI] is continuous, then there 

is a continuous extension g: X —► [— M, M] of / 

Suppose that a topological space X has the following property: If A is a 

nonempty closed subset of X and x e X A, then there is a continuous mapping 

f\X-*- [0, 1] such that f(x) = 0 and f[A] = { 1}. It is easy to prove that this 
property implies that the space is regular (see Exercise 9, page 186). Because of 
84.5, one might be tempted to guess that this property is equivalent to regularity. 

However, this is not the case and we have the following definition. 

84.6. Definition. Completely regular space. A topological space X is said 

to be completely regular provided that for each nonempty closed subset A and 

xe X — A, there is a continuous mapping f:X —*■ [0, 1] such that f{x) = 0 and 

f[A] = {1}. A Tychonoff space is a space that is both 7j and completely regular. 

There exist examples of regular topological spaces that are not completely 

regular. An example of such a space is found in an article entitled A Regular 

Space, not Completely Regular, by John Thomas [31]. 

EXERCISES: A CHARACTERIZATION OF NORMALITY 

1. Prove 84.3. 

2. Prove that complete regularity is a topological invariant. Point 
out why the other separation properties are obviously topologi¬ 

cal invariants. 

3. Prove that every subspace of a completely regular space is com¬ 
pletely regular. 

4. Prove that every Tx normal space is a Tychonoff space. 

5. Let Y — R — {0} with the relative topology induced by R. 

Let A = [—1, — i] U* [|. 1] and f:A —>■ R — {0} be given by 
f(x) = x for x G A. Note that /'is continuous. Show' that there 
is no continuous extension of/to all of R that carries R into Y. 

(This simple example points out not only the importance of the 
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domain space of the contemplated extension but also the space 
into which we are seeking to map.) 

6. Let (X, .T) be the topological space in Exercise 6, page 169. 

This space (of Niemytzki—see page 88 in [ 9 ]) is an example of a 
Tychonoff space that is not normal. 

(a) Show that X is a Hausdorff and, hence, a T\-space. 

(b) Show that this space is a completely regular space. (See 

3K, page 50 in [12] for a hint if you cannot get this part 
and for further comments about this example.) 

(c) Show that (X,3T) is not normal. The following is an 

outline of one approach to this problem. Assume that X 

is normal. 
Let S = {(r, 0): r e R}. For A c S show that there exists 

a continuous function fA: (X, -T) —*■ [0, 1] such that 

fA(x) = 0 for .v in A a.n&fA(x) = 1 for x in S — A. For 
each A c: s, choose one such/., and let = {fA: A c S}. 
Point out why it is that JF has larger cardinality than does 

the set R (see Theorem 28.2). Let C — {(a, b):a is rational 

and b is positive and rational}. Note that C is a countable 
dense subset of (X, Observe that if fA \ C = fB \ C, 

where fA e dF and fB e !F, then fA — fB (see Exercise 16, 

page 187). Use a cardinality argument to get a contradic¬ 
tion by considering the cardinality of the collection of real¬ 

valued functions defined on C. (For further discussion of 

this space see page 49 in [ 12].) 

85. SEPARABILITY AXIOM 

We have been introduced to the separability property that holds for some 

metric spaces, for example, R", /2, and ^([a, h]), and not for certain others. The 

concept is also important in the study of more general topological spaces. 

85.1. Definition. Separable space. A topological space X is said to be 

separable provided there exists a countable set D that is dense in X. 

For metric spaces we showed that every subspace of a separable space is 

separable. This is not so for topological spaces in general, and this fact will be 
brought out in the exercises. However, it is easy to establish the following. 

85.2. Theorem. Every open subspace of a separable topological space is 

separable. 

Not only is separability a topological property but we have the following 
stronger result. 

85.3. Theorem. If f\X~* Y is a continuous surjection and X is separable, 

then so is Y. 
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EXERCISES: SEPARABILITY AXIOM 

1. Show that the topological space in Exercise 6, page 169, is 
separable but has a subspace that is not separable. 

2. Verify Theorems 85.2 and 85.3. 

3. Suppose (X,^~) has the discrete topology and is known to be 
separable. Does this imply anything about its cardinality? 

4. Consider a product space X {(I,-,^):/ePn}. Suppose that 
• this product space is separable. Is each coordinate space Xt 

necessarily separable? Suppose for each i e P„, Xi is separable. 

Is the product space necessarily separable? 

5. Suppose that X is the countable union of separable subspaces. 
Is X necessarily separable? 

86. SECOND COUNTABLE SPACES 

86.1. Definition. Second countable space. A topological space (X, .T) is 

said to be a second countable space or a perfectly separable space provided there 

exists a countable base 38 for the topology ST. 

Recall that we showed in Theorem 58.7 that, for metric spaces, the properties 
of separability and second countability are equivalent. This is not so for the general 
situation, second countability being the stronger of the two properties. The reader 

should verify the following. 

86.2. Theorem. If X is a second countable space, then it is a separable space. 

For metric spaces we found that a subspace of a separable metric space is 

separable (Theorem 58.10). This results from the fact that, for metric spaces, 
second countability and separability are equivalent. For topological spaces in 

general, we cannot prove that subspaces of separable spaces are necessarily 
separable. However, we do have the following theorem. The proof furnished is 

probably similar to the reader’s proof for Theorem 58.10. 

86.3. Theorem. Every subspace of a second countable space is second 

countable. 

Proof. Let S be a subspace of a second countable space X. Suppose 
{Upi e P} is a countable base for the topology for X. Define .3) = {Wp. = 

(7, n S}. The claim is made that tl8 is a base for the relative topology for 5. To 
see this let x e S and U be an open ^-neighborhood of x. Then there is a V, open 
in X, such that x e U — S O V. For some / e P, x e £7, c V. But then x e 

(/,. n 5 c V O S. Since (U, n S) G 38, the proof is complete. 
It is an interesting and useful fact that second countability together with 

regularity strengthens the separation property as seen in the next theorem. 
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86.4. Theorem. If (X, ST) is regular and second countable, then it is normal. 

Proof. Let A and B be two nonempty disjoint closed subsets of X. Since X 

is second countable there exists a countable base 2d for ST. Let 2dA be the sub¬ 

collection of all elements of 2d that intersect A and whose closures do not inter¬ 
sect B. Similarly, let 2dB be the subcollection of all elements of 2d that intersect 

B and have closures disjoint from A. From the fact that 2d is a base and that X 

is regular, it follows easily that [J 2dA => A, and (J 2dB => B. However, we have 

no assurance that these two open sets are disjoint so we modify them as follows: 

Index 2dA and 2dB with the positive integers and write 

tgA = {Ui:ieP} 

&B = {Vt:ieP}. 

Let Rx = U1 — cl (Vf), S1 = Vx — cl (Uf) and, in general, 

and 

Let 

and 

Un- U{cl(^):/eP„} 

Sn= Vn- U {cl(^):/ePJ 

R=\J{Rn:neF} 

s= U i-». {S-.ne P! 

It is clear that the open sets R and S contain A and B, respectively. We complete 
the proof by showing that R n S = 0. 

Suppose xeR ns. Then there exist positive integers m and n such that 
x e Rm n Sn and either m S n or n ^ m. We consider the case m 3: n, and the 

other case is analogous. Since x e Rm — Um — (J {cl (Vk): k e Pm)}, x f cl (Vk) 

for k ^ m. Thus, x ^ Vn and x ^ Sn and we have a contradiction. 
Once again, as for metric spaces, we have another extension of the Lindelof 

theorem. 

86.5. Lindelof theorem. Let X be a second countable space. If S is a subset 

of X and is a collection of open subsets of X such that \J Jf' S, then some 

countable subcollection of-X/f also covers S. 

The proof of Theorem 58.9 carries over without any change to prove Theorem 

86.5. 

86.6. Definition. Lindelof space. If every open covering of a space X has 

a countable subcovering, then X is called a Lindelof space. 

If A" is a metric space and is a Lindelof space, then for every e > 0, X can be 

covered by a countable collection of open e-spheres. By Exercise 6, page 118 , X 

is separable and, hence, since X is metric, X is second countable. Thus, a metric 
space X is second countable if and only if A is a Lindelof space. In the next set of 

exercises, the reader will be asked to verify that this is not correct for topological 
spaces. 

A slight modification of the first part of the proof of Theorem 86.4, gives the 

following. 

86.7. Theorem. If X is a regular Lindelof space, then it is normal. 
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EXERCISES: SECOND COUNTABLE SPACES 

1. Prove Theorem 86.2. 

2. Show that the topological space in Exercise 6, page,169, is not 
second countable. Recall that it is separable. 

3. Is the space in Example 75.6 second countable? Is it a Lindelof 

space? 

4. Give an example to show that second countability is not in¬ 
variant under continuous mappings. 

5. Show that second countability is invariant under open contin¬ 

uous surjections. 

6. Show that the space in Example 75.7 is not second countable 
but that it is Lindelof. 

7. Give an example of a Lindelof space that is not separable. 

8. Point out the modification in the proof of 86.4 that must be 

made in order to prove 86.7. 

87. FIRST COUNTABLE SPACES 

If (X, d) is a metric space, then for each point x e X, the collection of all 

--neighborhoods of x forms a countable base for the neighborhood system of x. 

As will be seen from the next set of exercises, there are spaces that do not have this 
property of having a countable base for the neighborhood system of each point. 

87.1. Definition. First countable space. If X is a topological space and for 

each x g X the neighborhood system of x has a countable base, then X is said to be a 

first countable space. 

Note that every second countable space is also first countable. 

87.2. Theorem. If X is a first countable space, then for each x e X the 

neighborhood system of x has a countable base 38 x — {B’/.i e P} such that each 

B\ is open and B* => Bfl. Furthermore, if X is 7\, then fj 38 x = {*}. 

Proof. Let x e X and suppose 38* is a countable base for the neighborhood 

system of x. For each C* g38*, choose an open set C, such that .re C, c: C*. 

Next, let B\ = Clt B" = fj {Ci:i e Pn}. Note that each B'x is open and B‘x ^ 

B'f1. Let 38 x — {Bf.i e P}. That 38x is a base for the neighborhood system of ,v 

is seen as follows: Let Q be a neighborhood of .v. Then there is a C* e such 
that x e C* <= Q. But then x G B^ <= C* <= Q. So 38x is a base for the neigh¬ 
borhood system of x. 

If, further, X is T,. fj x = {-v}. Suppose )’ # x. Then there is an open neigh¬ 
borhood V of x such that y $ V. But then there is a j E P such that v G B{ c v. 

Since y $ BJx,yf f| d#x. 



General Topological Spaces and Mappings on Topological Spaces 197 

Following are some generalizations of theorems previously given for metric 
spaces. 

87.3. Theorem. Let X be a first countable space. Then x is a limit point of 

a set S if and only if there is a sequence in S — {x} that converges to x. 

87.4. Theorem. Suppose that f is a mapping from a first countable space X 

into a topological space Y. Then f is continuous if and only if for each sequence 

(x*) in X and x e X, (xt) converges to x implies that (/(x{)) converges to f (x). 

EXERCISES: FIRST COUNTABLE SPACES 

1. Prove Theorem 87.3. 

2. Prove Theorem 87.4. 

3. Give an example of a Tj-space that is not first countable. 

4. Characterize closure in terms of sequences for first countable 
spaces. 

5. Suppose /: X —*■ Y is a continuous open surjection. If X is first 

countable, is Ynecessarily first countable ? If Tis first countable, 
is X necessarily first countable? 

6. Refer to the proof of Theorem 58.7(a). Note that the proof 
essentially made use of the first countability of metric spaces to 

show that separable metric spaces are second countable. Give 

an example of a separable first countable space that is not second 

countable. 

7. Is every subspace of a first countable space first countable? 

8. Prove the following proposition: 

Let X be a Tx first countable space. Then x is a limit point 

of a set 5 if and only if there is a sequence of distinct points in 

5 that converges to x. (Compare this to Theorem 87.3.) 

9. Prove that a first countable space is Hausdorff if and only if each 

convergent sequence has a unique limit. 

88. COMPARISON OF TOPOLOGIES 

Suppose H7~x and <^~2 are topologies for a set X such that SFX <= «^~2. We then 

say that 2TX is a smaller topology for X than and is a larger topology than 
STx. It should be emphasized that 3TX cr «^~2 means inclusion between these col¬ 

lections and not inclusion between members of the collections. In fact, the larger 

collection ^2 has smaller members in the following sense: For every Tx e^~x and 

To e^~2, Tx n To and Tx n T2 c Tx. (This observation is reflected in the 
following alternate terminology: The phrase ,To is finer than^G is sometimes used 

to indicate that >s larger than STx\ or the phrase .Tx is coarser than 2 may be 

used to express the same relationship.) 
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The collection of all topologies for a set X is partially ordered (see Definition 
22.1) by inclusion. However, the collection of topologies for X is not totally ordered 

by inclusion (Definition 22.5). Note that the discrete topology is the largest 
topology that a set can have and that the trivial topology is the smallest topology 

that a set can have. 

88.1. Example. Let X = (1, 2, 3, 4}. Consider the topologies 

0},{1, 2}, {1,2, 3}, {‘1,2, 3, 4}} 

and 
•^2 = {0,{3},{2,3},{1,2, 3}, {1,2, 3, 4}}. 

It is interesting to note that .Tx n JTj is a topology for X but U 2 is not a 

topology. The fact that in this case n ST* is a topology raises an interesting 

question that will be pursued in the next set of exercises. 
In the following set of exercises, questions will be asked about various 

topologies for a set. In answering these questions the reader will also be reviewing 
various other concepts studied in this chapter. 

EXERCISES: COMPARISON OF TOPOLOGIES 

1. Suppose {STp.v. e A} is a collection of topologies for a set X. 

Is n {^~a'7 £ A) a topology for XI 

2. Suppose Tx and -T2 are topologies for X. Suppose -T x is smaller 

than -TWhich of the following properties possessed by 
(X, $~x) is necessarily possessed by (X, JF2)? 

(a) Tv (d) Normal. 

(b) 7V (e) Separable. 
(c) Regular. (f) Second countable. 

Repeat the question under the assumption that j^~2 c= .Tx. 

3. Assume that /: (X, 2E) —► (Y, is continuous. 

(a) Suppose^ is a topology for Ysuch that,^-., is larger than 
Is /: (X, 3~) -> (Y, STnecessarily continuous ? 

(b) Suppose <^3 is a topology for Y such that is smaller 
than.5^. Is/: (X, —> ( Y,^~3) necessarily continuous? 

(c) Suppose is a smaller topology for X than is 3T. Is 

/: (X, &“*) —► (Y, J^V) necessarily continuous? 
(d) Supposed** is a larger topology for X than is . Is 

/: (X, 3T**} —► (Y, £Ty) necessarily continuous? 

4. Suppose X is a set and and STt are topologies for X such 

that c 2. Suppose p e X and p is a limit point of a subset 

S in the space (A", ■X'x). Is p necessarily a limit point in the space 
(X, -^”2)? Repeat the question, this time under the assumption 
that dT2 c 

89. URYSOHN’S METRIZATION THEOREM 

It has been an important problem in topology to determine sufficient con¬ 
ditions for a topological space to be metrizable. In this section we state and prove a 
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classic theorem that gives a sufficient but by no means necessary condition for 
metrizability. 

One method of showing that a topological space X is metrizable is to show 

that there is a topological mapping from X onto a metric space. It will then follow 

that X is metrizable because of the following theorem. 

89.1. Theorem. If h: (A", T(X)) —*■ ( Y, -T( Y)) is a topological mapping 

from X onto Y, then (X, ST (X)) is metrizable if and only if (Y,J?~(Y)) is metrizable. 

(Thus, metrizability is a topological invariant. 

Proof. Let h be a homeomorphism from (X, -T(X)) onto ( Y, -T( Y)). Notice 

the symmetry of the hypothesis; that is, /r1 is also a homeomorphism. Therefore, 
it will be sufficient to show that if ( Y, -T( Y)) is metrizable so is (X, ST(A)). Let d 

be a metric that generates dT( Y). We define a metric d* for X as follows: 

d*(a, b) = d(h(a), h(b)). 

From the fact that h is one-to-one it follows easily that d*(a, b) — 0 if and only if 
a — b. It is likewise easy to show that d* inherits the triangle inequality and 
symmetric properties from d. We show next that d* generates &~(X). In order to 
do this let ^~(d*) be the topology generated by d*. We show first that -T(X) c 

&~(d*). Let Ue.T(X). We need consider only the case U 0. Let ref. 

We shall show that there is a ^-neighborhood of .v that is contained in U. Since 

x e U, h(x) 6 h[U]. Since h is a homeomorphism, it is an open mapping so that 

h[U] e dT(Y). Then there is an e > 0 such that Nd(h(x); e) c h[U\. But 

A-1 [#*(/)(*); e)] = Nd*(x; e) 

from the way in which d* was defined. Upon noticing that x e Nd*(x; e) c U, 

we see that x is an interior point of U in the space (X,.T(d*)). Thus, we have 
shown that Ue.‘T(d*). We next show that -9~(d*) c .YT(X). Let Ue.^~(d*). 

If x e U, then there is an e > 0 such that „v e Nd*(x; e) <= U. Since Nd(h(x)', e) e 

^(Y) and h\(X,.T(X)) -> ( Y, -T ( Y)) is continuous, h~l[Nd(h(x) \ e)] e.T (X). But 

since Nd,(x\ e) = h~l[Nd(h(x)', e)], it follows that Nd*(x; e) E^~(X). Thus, we 
have shown that U is open in (X, -T(X)) and U E^(X). We have now shown that 

i7~(d*) c dT(X) and, together with the first part of the proof, we have shown that 

iT(d*) = ^~(X). Hence, d* is a metric for X that generates (X) and, by defini¬ 
tion, (X,^~(X)) is metrizable. 

In the next theorem we shall prove that every T1 regular second countable 

space is metrizable. This will be done by showing that such a space can be mapped 
topologically onto a subset of the Hilbert cube 7® (see 71) and, hence, by the 

previous theorem is metrizable. The homeomorphism h to be defined will be 

defined coordinatewise. Each coordinate function hl will be defined by making use 

of Urysohn’s lemma (84.3). To apply Urysohn's lemma it will be necessary to 

keep in mind that regular second countable spaces are normal. 

89.2. Urysohn's metrization theorem. Let (X,.J~) be a Tx regular second 

countable space. Then X is homeomorphic to a subset of the Hilbert cube 7® and, 

hence, is metrizable. 

Proof. Let dS — {Bp.i e P} be a countable base for the topology L7'. Also 
let dA be the collection of all pairs (Bt, Bt) e dS X dti such that cl (Bt) c Br (Since 
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X is regular, there will be an adequate supply of such pairs for our purposes.) 

Index 2ft with the set P of all positive integers so that we may write 2ft - - {R, :/' e Pj. 

Let /' e P. Then /?, is a pair (Bn , B,„ ) such that cl (Bn) c B,„ . Since X is regular 

and second countable (by theorem 86.4), it is normal. Hence, by Urysohn’s 

lemma (84.3), there is a continuous mapping /;,: X 

(1 
= 17 

{0} and hi[X-B,l 

0, - such that /; [cl (B )] = 
i J 

. We find such an //, for each i e P and define 

h:X —► F as follows: For each x e X, let 

h{x) = (hfx), hfx), . . . , hn(x), . . .). 

Note that since |/q(x)| ^ ~, h(x) e F. We shall show that h is a homeomorphism 

in the following steps: (a) h is continuous; (b) h is one-to-one from X onto h[X]\ 

and (c) // maps open subsets of X onto subsets of FJ that are open relative to h[X). 

The proof will then have been completed. 
(a) Since by hypothesis X is second countable, we may use the sequential 

characterization of continuity (87.4). Let (xf) be a sequence in X that converges to 

a point x. For each je P, the sequence (/7i(xi))[l1 converges to hj(x) since hj is 
continuous. Then from 71.1, the sequence (//(xf)) converges to h(x) = (/q(x), 

h.,(x), . . . , hn(x), . . .). Thus, h is continuous. 

(b) To show that h is one-to-one, suppose „y and y are in X and .v ^ y. Since 
A' is a 7\-space, there is an open neighborhood U of .y that does not contain y. 

Then there is a B' in 2ft such that x e B' c U. By regularity we can find a B" 

in 2ft such that x e B" <= cl (B") c B'. For some / e P, R,■ = {B", B') e 2ft. But 

y e X — B' and x e cl (B") so that h{(x) = 0 and /7,(_y) = T. Thus, /?,(.y) ^ //,(j) 

and, consequently, /;(x) ^ h(y). 

(c) Let U be open in X. We wish to show that h[U] is open relative to the 

subspace h[X] of (F, d). Let z e h[U). We will show that h[U] is open relative 
to h[X] by showing that z is not a limit point of h[X] — h[U]. Let x = /rJ(z). 

Then there is a positive integer i such that Rt = (B„ , Bm ), x e B„ <= cl (£„) c 
1 1 

Bm, c U. Recall that //,(x) == 0 and ht{q) = — for q £ X — Bm.. Thus, ht{q) — r 
i i ‘ ‘ 

for q e X — U. Hence, for each q e X — U, d(h(x), h(q)) —. From this we see 

that z could not be a limit point o\' h[X] — //[(/], since any point of h[X] — h[U] 

is at a distance of at least - from z. 
i 

The following interesting proposition follows from the previous theorem and 

from the fact that all separable metric spaces are Tu regular, and second countable. 

89.3. Theorem. The Hilbert cube F contains a topological copy of each 

separable metric space. 

The conditions given in the hypothesis of Theorem 89.2 are not necessary for 

metrizability. However, they are necessary for a space to be metrizable and 
separable, as indicated by the next theorem. The proof is left as an exercise for the 
reader. 
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89.4. Theorem. A topological space is separable and metrizable if and only 

if it is a Tx regular second countable space. 

EXERCISES: LRYSOHN'S METRIZATION THEOREM 

1. Suppose that (X, d) is a separable metric space and f:(X, c/) —► 
( Y,.T) is a continuous surjection that is both open and closed. 

Prove that (Y, .9~) is metrizable. 

2. Prove Theorem 89.4. 

3. In Exercise 3, page 121, the reader was asked to prove that if a 
metric space (X, d) is not separable, then for no metric d* 

equivalent to d is it true that (X, d*) is totally bounded. Prove 

the converse of this statement; that is, prove that if (X, d) is a 
separable metric space, then there is a metric d* that is equiva¬ 

lent to d and which is such that (X, d*) is totally bounded. 

Hint: Use 89.2 and recall that 7°° is compact and, hence, totally 

bounded. 



Compactness and Related 

Properties 

In Sections 60, 61, and 62 we studied the concepts of compactness, sequential 

compactness, and Bolzano-Weierstrass properties for metric spaces. In this chapter 
we shall study these properties as well as an additional compactness property called 

countable compactness in the setting of topological spaces. Although all these 

compactness properties are equivalent for metric spaces, they are not equivalent 
in general; each merits study on its own. We shall show, for example, that for all 

spaces the Bolzano-Weierstrass property is implied by each of the other types of 
compactness and that they are all equivalent for Tx second countable spaces. 
Sequential compactness does not lend itself well to spaces that are not first count¬ 

able. It is, however, a valuable tool and is equivalent to the Bolzano-Weierstrass 
property for spaces that are both T1 and first countable. We shall also study the 

notion of local compactness in a general setting. 

As for metric spaces, compactness is preserved by continuous surjections. 
Moreover, if / is a continuous mapping from a compact space onto a Hausdorff 
space, / has some rather strong and useful properties. For example, such a 

mapping is closed and, furthermore,/ /A"] is compact for every compact subset 
K of the range space. Many of the other properties enjoyed by a continuous sur¬ 
jection /from a compact space onto a HausdoriT space result from the fact that such 

a mapping is closed and has the so-called compact point inverse property; that is, 

f~lly.1 >s compact for each y in the range of/. Continuous surjections with these 
two properties are called perfect mappings. The fact that perfect mappings are 
closed implies that normality is preserved under such mappings. We shall show 
further that the Hausdorff property, regularity, second countability, and metriza- 

bility are each preserved by perfect mappings. 

202 
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90. DEFINITIONS OF VARIOUS COMPACTNESS PROPERTIES 

In this section we list definitions of various compactness properties for general 
topological spaces. The reader is already familiar with most of these concepts 

from our previous work with metric spaces. By examining theorems and their 

proofs for metric spaces, we shall be able to see appropriate generalizations of 

some of the previous theorems. For example, for topological spaces, compactness 
and sequential compactness are not equivalent. However, a close examination of 

our previous work suggests that they are equivalent under conditions somewhat 

weaker than metrizability. 

90.1. Definition. Compact space. A topological space X is said to be com¬ 

pact provided every open covering of X contains a finite subcollection that covers X. 

A collection ^ of sets is said to have the finite intersection property provided 

^ is nonempty and for every nonempty finite subcollection F of D F is 
nonempty. By making use of De Morgan’s laws, we can characterize compactness 

in terms of the finite intersection property. 

90.2. Theorem. A topological space is compact if and only if every collection 

of closed subsets of X with the finite intersection property has a nonempty intersection. 

The details of the proof of this theorem are left as an exercise. 

90.3. Definition. Countably compact space. A topological space X is said to 

be countably compact provided every countable open covering of X contains a finite 

subcollection that covers X. 

90.4. Definition. Sequentially compact space. A topological space X is 

called sequentially compact provided every sequence in X has a subsequence that 

converges to a point in X. 

90.5. Definition. The Bolzano-Weierstrass property. A space X is said to 

have the Bolzano-Weierstrass property provided every infinite subset of X has a 

limit point in X. If X has this property, we shall say that it is B.W. compact (the 

“B. W.” for Bolzano-Weierstrass). 

90.6. Example. Let Z denote the set of all integers. It is easy to verify that 
dt = {{—n, n}:n is a nonnegative integer} is a base for a topology dF for Z. The 

space (Z,F) is not T1 and, hence, is not metrizable. The collection d3 is itself a 
countable open covering of Z that does not contain a finite subcovering of Z. 

Thus, (Z, F) is not countably compact (and, hence, not compact). Furthermore, 
if we let Zj = i for each i e P, we see that (Z,F) is not sequentially compact, 

because the sequence (zf) has no convergent subsequence. On the other hand, 

(Z, F) is B.W. compact. To see this, let S be an infinite subset of Z. Then there 
is a z e S such that z 0. The point — z is a limit point of the set {z} and, hence, 

also of S. Thus, we have shown that (Z,F) is B.W. compact. It is of interest to 
note that (Z,F) is second countable since dfl is countable. This example also 

points out that compact subsets of a space need not be closed. For example, the 
subset {1} is a compact subset of (Z ,F) but it is not a closed set. 
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EXERCISES: DEFINITIONS OF VARIOUS COMPACTNESS PROPERTIES 

1. Previously we proved that, for metric spaces, the concepts of 
B.W. compactness, compactness, and sequential compactness 
are equivalent. In this section we added the notion of countable 

compactness. Show that it is also equivalent to compactness 

for metric spaces. 

2. (a) Show that every finite subset of a topological space has 

each of the four types of compactness defined in this 
section. 

(b) In Theorem 60.2, we saw that sequentially compact sub¬ 

sets of a metric space are closed; hence, for metric spaces 
compact subsets are closed. Use part (a) of this exercise to 

construct an example that shows that in the setting of a 
general topological space, none of the types of compactness 

defined in this section implies closedness. 
(c) Is a compact subset of a Hausdorff space necessarily 

closed ? 

3. Which of the compactness properties does the topological 

space in Example 75.6 possess? 

4. Let Z be the set of all integers. For each n e Z, let Bn be the 

half-open real interval [n — 1, /?). Let^1 = {Bn:n e Z}. 
(a) Show that 38 is a base for a topology for the set of all real 

numbers R. Let-^"(^) be the topology generated by 38. 

(b) Which of the separation properties does (R, 

possess? 

(c) Is (R,37~(38)) second countable? 
(d) Which, if any, of the compactness properties does this 

space possess? 

5. Let 38 be the collection of all subsets of R of the form [a, b). 

Show that 38 is a base for a topology (3?) for the set R. 
Repeat questions (b), (c), and (d) of the previous exercise 

for this space. 

6. Suppose X is a nonempty set and is the trivial topology for 
X. Is (X, ST) necessarily a compact space? 

7. Suppose X is a nonempty set and 3T is the discrete topology 
for X. Suppose it is known that {X, 3T) is compact. Does this 

fact give you any information about the cardinality of U? 

8. Prove Theorem 90.2. 

9. Letg:R —R be given by g(x) — —x. Let T be the collection 
of all subsets of R of the form U U g[U] where U is open in R 

with the Euclidean metric. 
(a) Show that (R,.^~) is a topological space. 

(b) Show that there exist compact subsets of that 
are not closed. 
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(c) Is (R,<^~) a Jj-space? a T^-space? 
(d) Show that the intersection of compact subsets of (R, ,T) 

need not be compact. 

10. Suppose STX and are two topologies for X and cr XT^ 

Does the compactness of {X, ST j) imply the compactness of 

{X, -T Does the compactness of (X,^~2) imply the com¬ 
pactness of (X, 

91. SOME CONSEQUENCES OF COMPACTNESS 

Recall that a closed subset of a compact metric space is compact. This is true 
for topological spaces in general. 

91.1. Theorem. Suppose that X is a compact space and F is a closed subset 

of X. Then F is compact. 

The proof of this theorem is left as an exercise. 

In the previous section we saw that compact subsets of a topological space 

need not be closed (see Example 90.6). However, if the space is a Hausdorff space, 
such examples no longer exist. 

91.2. Theorem. Let K be a compact subset of a Hausdorff space X. Then 

K is a closed subset of X. 

We shall prove Theorem 91.2 by proving the following more general statement. 

91.3. Theorem. Let K be a compact subset of a Hausdorff space X and let 
x £ X — K. Then there exists a pair of disjoint open subsets U and V such that 

K c: U and x e V. (Since x £ V c X — K, this shows in particular that X — K 

is open and, hence, that K is closed.) 

Proof. We assume that A' / 0, for otherwise the conclusion is obvious. 

Suppose x £ X — K. For each y e K there exists a pair of disjoint open neighbor¬ 

hoods U{y) and Vx(y) of y and .y, respectively. The collection {U{y)\y £ K} is an 

open covering of K. Since K is compact, there is a finite subcovering 

{C/Oh), C/(.y2), . . . , U(yn)}. 

Let U = (J {U(yj):ie Pn) and V = fl {P(y,-):iePB}. U and V are a pair of 
disjoint open subsets. Moreover, K <= U and x £ V. 

By making use of Theorem 91.3, we can prove the following more general 

result. The proof is left as an exercise. 

91.4. Theorem. Suppose X is a Hausdorff space and H and K are a pair of 

disjoint compact subsets. Then there exists a pair of disjoint open subsets U and V 

such that H c U and K c: V. 

The previous theorem suggests the following important result that follows 

from it and Theorem 91.1. 
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91.5. Theorem. If a space is Hausdorff and compact, then it is normal. 

Recall that a compact metric space is second countable. This need not be the 
case for topological spaces. The space in Example 75.6 is compact but not second 

countable. However, if a compact Hausdorff space happens to be second count¬ 

able, then from Theorem 91.5 and Urysohn’s metrization theorem, we have the 
following. 

91.6. Theorem. A compact Hausdorff second countable space is metrizable. 

The following two important theorems are easy to prove and their proofs are 

left as exercises. 

91.7. Theorem. If f: X -> Y is continuous and S is a compact subset of X, 

then /[S] is a compact subset of Y. 

91.8. Theorem. Suppose X is compact and Y is Hausdorff. If f.X—> Y 

is a continuous surjection, then f is a dosed mapping. If, in addition, f is one-to-one, 

then f is a homeomorphism. 

Recall from Exercise 5, page 196, that second countability is invariant under 

continuous open surjections. The following theorem gives another condition under 
which second countability is invariant. 

91.9. Theorem. Suppose that X is compact, Y is Hausdorff and f : X Y 

is a continuous surjection. Then, if X is second countable, so is Y. 

Proof. Let 88 = {Bp.i e P} be a countable base for X. Let 88* be the 
collection of all finite unions of elements of 88. Since 88* is countable, we may 

write 88* — {B* :i e P}. (Note that the B*'s have the property that if K is compact 
and U is an open subset of X containing K, then for some j, K cr £* c (/.) From 

the previous theorem, / is a closed mapping. Hence, Uj — Y — f[X — B*} is 
open for each j e P. We will show that {Uj:j e P} is a base for Y. To see this let 

y e U, where U is open in Y. Then/-1[v] is closed and, hence, compact. Further¬ 
more,/-1^] <= f~l[U], Thus, there is a B* such that 

r*iy]<= Bf^f-'m 

By taking complements, we get from the last set of inclusions 

X -f~'[U] c X - Bfc: X — f~\y]. 
Thus, 

y- Uczf[X -B*]cz Y 

By taking complements again, we get 

Y-f[X-B*]d u 
so that 

U. 

By making use of the previous theorem, we can prove the following important 
result. 

91.10. Theorem. Suppose X is compact and metrizable and Y is Hausdorff. 

If there exists a continuous mapping from X onto Y, then Y is metrizable. 
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EXERCISES: SOME CONSEQUENCES OF COMPACTNESS 

1. Prove each of the following theorems 
(a) 91.1. 

(b) 91.4. 

(c) 91.5. 

(d) 91.6. 
(e) 91.7. 

(f) 91.8. 

2. Prove that if A and B are compact subsets of a Hausdorff space, 
then A n B is compact. 

3. Is the intersection of a closed subset of a topological space and 
a compact subset of the space necessarily compact? 

4. Suppose X and Y are compact Hausdorff spaces and f:X-+ Y 
is a mapping. Is the following statement true? 

/ is continuous if and only if f~l[K] is compact for each 
compact subset K <= Y. 

5. Prove that if (X,-T) is compact and STX is another topology 
for X such that.^- 3TX^ then {X,-9~x) is also compact. 

6. Give an example of a compact Hausdorff space that is not 

first countable and, hence, not metrizable. (If you cannot 

work this out, see page 79 in [29].) 

7. Prove that a compact Hausdorff space is metrizable if and only 
if it is second countable. 

8. Prove Theorem 91.10. 

9. Suppose that (A", ,9~) is a compact Hausdorff space. Prove that 

X -Tx is another topology for X that is properly contained in 
, then {X, .T\) is not Hausdorff. 

10. Prove that if a space is compact and regular then it is normal. 

11. Prove that if X is regular and K is a compact subset of X, 

then cl (K) is compact. Is this proposition true without any 

assumptions on XI 

92. RELATIONS BETWEEN VARIOUS TYPES OF COMPACTNESS 

In this section we shall study relations between various compactness properties. 

However, before doing so it will be useful to make some remarks about limit points. 

For a point p to be a limit point of a set S, we require only that every neighborhood 

of p contain at least one point of S' distinct from p. However, for 7\-spaces, limit 
points have a stronger property, as seen in the following theorem. 

92.1. Theorem. A topological space X is a Tx-space if and only if it has the 

following property. A point p e X is a limit point of a set S if and only if every open 

neighborhood of p contains an infinite subset of S. 

Proof. (The reader who did Exercise 4, page 185, has already proved this 
theorem.) Suppose X is a Tx space. Assume p is a limit point of a set S and for some 
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neighborhood U of p, the set (J n S is a finite set. Then since finite subsets of a 

jT[-space are closed, the set F — U n S — {p} is closed. Consequently, U — F is an 

open neighborhood of p. But since p is a limit point of S, (U — F) C\ S — {p} is 
nonempty and we have a contradiction. We have shown, therefore, that if X is 

a Tj-space and p is a limit point of a set S, then every open neighborhood of p 
contains an infinite subset of S. Suppose next that X is not a 7\-space. Then there 

must exist two points x and y such that every open neighborhood of x contains 
(j). Hence, x is a limit point of {_y}. Thus, we have found a limit point x that does 
not have the property in the statement of the theorem. 

Suppose S is a subset of a space X and p e X. Kelley in [26] uses the termi¬ 

nology p is an co-accumulation point of S to indicate that every neighborhood of p 
contains an infinite subset of S. Since we have been using the term limit point 

rather than its synonym accumulation point, we shall call this strong type of limit 

point an co-limit point. (In some texts, the name accumulation point is reserved for 

what we are calling co-limit point.) We see that if a space is a T^space, then a point 
is an co-limit point of a set if and only if it is a limit point of that set. Hence, for 
7\-spaces we need not have a different name for this stronger type of limit point. 
Another concept that we shall relate in an interesting way to co-limit point is the 
concept of a duster point of a sequence. A point p will be called a cluster point of a 

sequence (x,) provided each neighborhood of the point p intersects the set {xp.i e 

P} for an infinite number of /’s. Obviously, if a sequence (x,) converges to a point 
x, then x is a cluster point of the sequence. Furthermore, we have the following, 

the proof of which is left as an exercise. 

92.2. Remark. If (x,) is a sequence in a first countable space, then (x,) 
has a cluster point if and only if (x,) has a convergent subsequence. 

We saw' in Example 90.6 that a space can have the Bolzano-Weierstrass prop¬ 
erty without being countably compact. However, if we strengthen the Bolzano- 

Weierstrass property to assert that every infinite set has an co-limit point, this can 
no longer happen and we have the following theorem. 

92.3. Theorem. A topological space is countably compact if and only if 

either one of the following conditions holds: 

92.3(a). Every infinite set has an co-limit point. 

92.3(b). Every infinite sequence has a cluster point. 

Proof. We shall prove first that if X is countably compact, then it has 

property (a). Suppose that S is an infinite set of points that does not have an 
co-limit point. There will be no loss in generality if we assume that S is countably 

infinite so that we may write S = {xp.i e P}. Then for each x 6 X, we may choose 
an open set U(x) containing x such that U(x) O S' is a finite set. For each n e P, let 

= u {U{x):U(x) n S <= {xlf x„ . . . , x„}}. 

Observe that each X„ is open and that the collection {X,p.n e P} covers X. Since 
X is countably compact, some finite subcollection {X„x, X„t, . . . , Xn } also covers 
X. However, 

S = SHA' = Sn(U {Xn:i e P,}) = U {*„. n S:i e P;} 
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is a finite set and we have a contradiction. Thus, we have shown that if X is count¬ 

ably compact, then it has at least one co-limit point. 

Next suppose that every infinite subset has an co-limit point and that there 
exists a countably open covering {Ui:i e Pj of X that contains no finite subcovering 

of X. Then, for each n e P, there is a point xne X — |J {Up.i e P„}. It is easy to 

see that the set {xn\n e P} is an infinite set from the way in which the x„’s were 
chosen. Hence, this set must have at least one co-limit point p and it must be an 

element of some Uk. Hence, an infinite number of x^’s must also be in Uk, contrary 

to the way in which the xn’s were chosen. Thus, we have shown that some finite 

subcollection of {Un:n e Pf covers X. This completes the proof that property (a) 
is equivalent to countable compactness. It is left as an exercise to show that 

countable compactness is equivalent to property (b). 

92.4. Theorem. Every countably compact space is a B. W. compact space, 

and for Tx-spaces, countable compactness is equivalent to B.W. compactness. 

Proof. If X is countably compact then it has property (a) of Theorem 92.3. 
Hence, it is B.W. compact. Suppose next that X is B.W. compact and Tv Because 

of Theorem 92.1, it has property (a) of Theorem 92.3 and is therefore countably 

compact. 

By making use of 92.2 and 92.3, we can prove the following theorem. The 
details are left as an exercise for the reader. 

92.5. Theorem. If X is first countable and countably compact, then it is 

sequentially compact. 

The following theorem is easy to prove. The proof is left as an exercise. 

92.6. Theorem. If a Lindelof space is countably compact, then it is compact. 
In particular, if a second countable space is countably compact, then it is compact. 

Figure 21 summarizes the relations obtained between various types of com¬ 

pactness properties. Any special hypothesis that is needed is mentioned by the 
appropriate implication arrow. Also, reference numbers are given to relevant 

theorems except when implications follow directly from the definitions. 
Note that if a space is second countable, then it is also a Lindelof and first 

countable space. Hence, we see from the chart that for Tx second countable spaces 

all four compactness properties are equivalent. In Sections 61 and 62 we proved 

that for metric spaces, compactness, B.W. compactness, and sequential compactness 
are equivalent properties. All metric spaces are Tx and first countable. Hence, 

we see from the chart that for metric spaces, sequential compactness, B.W. com¬ 
pactness, and countable compactness are equivalent. However, metric spaces are 

not necessarily Lindelof, and in view of Figure 21 one might wonder why we are 

able to prove the equivalence of the four properties for metric spaces. Recall that 
we accomplished this in the following way: We proved that sequentially compact 

metric spaces are totally bounded and, hence, separable (Exercise 4, page 123). 

Then, since for metric spaces separability implies the Lindelof property, we were 

able to prove that sequentially compact metric spaces are compact (see proof of 
Theorem 62.2). 

In the next theorem we summarize implications concerning compactness 
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92.4 

COMPACTNESS 

92.6 

'Every infinite) -<-> 
set has an 92.3 
co-limit 
.point 

COUNTABLE COMPACTNESS 

B.W. COMPACTNESS 

(Every collection 
of closed subsets 
with finite inter 
section property 
has a nonempty 
intersection 

?] 

LindelQf , SEQUENTIAL 
COMPACTNESS 

first countable 92.5 

y (Every infinite ) 
92.3 J sequence has \ 

[a cluster point! 

Figure 21. Relations between various types of compactness. 

properties that hold for all spaces. We also include equivalences that hold under 

various conditions. 

92.7. Theorem 

92.7(a). For all spaces, either compactness or sequential compactness implies 
countable compactness. Also countable compactness implies B.W. compactness. 

92.7(b). For first countable spaces, countable compactness and sequential 
compactness are equivalent. 

92.7(c). For T^spaces, B. W. compactness and countable compactness are 

equivalent. Hence, by (b), for Tl first countable spaces, sequential compactness, 

countable compactness, and B. W. compactness are equivalent. 

92.7(d). For spaces that are T1 second countable spaces or metrizable spaces, 

compactness, countable compactness, sequential compactness, and B.W. compactness 
are equivalent. 

EXERCISES: RELATIONS BETWEEN VARIOUS TYPES OF COMPACTNESS 

1. (a) Prove Remark 92.2. 

(b) Complete the proof of Theorem 92.3. 
(c) Prove Theorem 92.5. 

(d) Prove Theorem 92.6. 

2. Show that the union of a finite collection of compact sets is 
compact. Is the same true for each of the other types of com¬ 
pactness? 

3. Let / be a continuous mapping defined on a compact space X 

onto a HausdorfT space Y. Suppose y e Y and U is an open 
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subset of X that contains f~x[y}- Show that there exists an open 
neighborhood K of y such that/-1[F] <= u. 

4. Let z be an object that is not in R and X — R U {z}. Define 

XT = {U: U is open in R} U {U: U — V u {z} for some subset 

V that is the complement of a compact subset of R}. Show that 
3T is a topology for X and that (X, 3~) is a compact space of 

which R is a dense subset. Show that (X,c7~) is homeomorphic 

to a circle in R2. 

93. LOCAL COMPACTNESS 

Recall that although R" is not compact, each point of R" has a compact neigh¬ 

borhood. There are metric spaces that do not have this property; for example, 

and &([a, 6]). As we shall see in this section, when a space does have the 
property, it also possesses certain other useful properties that hold for compact 

spaces but not necessarily for all topological spaces. 

93.1. Definition. Locally compact spaces. If X is a topological space and 

x e X has a compact neighborhood, then X is said to be locally compact at x. If X 
is locally compact at each of its points, then X is said to be a locally compact space. 

A subset S of a space is said to be locally compact when it is locally compact with 

respect to the relative topology. 

93.2. Remark. Suppose that (X,^) is a topological space and S <= X. 

Then S is locally compact at x e S if and only if there exists a ^-neighborhood N 

of x such that N n S is compact. 

It should be observed that subsets of locally compact spaces need not be 

locally compact. For example, the subset Q of rationals is not locally compact 

although R is locally compact. The following theorem gives some important 
special cases in which subsets inherit local compactness from the containing space. 

The proof is left as an exercise. 

93.3. Theorem. If X is a locally compact topological space and S is a closed 

subset of X, then S is locally compact. If X is locally compact and regular, then every 

open subspace of X is locally compact and regular. 

For Hausdorff spaces, it follows from 91.2 that compact neighborhoods are 

closed. Thus, if A is a compact neighborhood of a point in a Hausdorff space, 
then cl (int N) <= N. This observation suggests the following characterization of 

local compactness for r2-spaces. The proof is left as an exercise. 

93.4. Theorem. If X is a Hausdorff space, then X is locally compact if and 

only if each point has an open neighborhood whose closure is compact. 

It is easy to show that if (X, d) is a locally compact metric space, then for each 

£ > 0 and .v e X, there is a compact neighborhood K of x such that K <= A(.v; £). 

Thus, at each point there exist arbitrarily small compact neighborhoods. This 

observation suggests the following proposition. 
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93.5. Theorem. Suppose X is a locally compact Hausdorff space. Then for 

each x e X, the collection of all compact {and, hence, closed compact) neighborhoods 

of x is a base for the neighborhood system of x. 

Proof. Suppose x e X and N is a neighborhood of x. Since X is Hausdorff, 

there exists an open neighborhood W of x that has a compact closure. Hence, 
x e (int N) n W <= cl (W). Note that cl (BO is a compact Hausdorff space and is, 

therefore, regular by 91.5. We let cl (B/) = S and, accordingly, we shall use the 
notation cl^ to denote the closure with respect to the subspace S. Since S is 

regular and (int N) n W is open in S, there is a set V that is open in S and is such 
that x G V <= cls {V) c (int(Ar)) n W c N. Notice, however, that V is also open 

in X and that cls (V) = cl (V). Thus, cl {V) is a compact neighborhood of x 

that is contained in N, and the proof is complete. 

We get the following similar result for regular spaces, the proof of which is 

left as an exercise. 

93.6. Theorem. If X is a locally compact regular space, then for each 

x £ X, the collection of all closed compact neighborhoods of x is a base for the 

neighborhood system of x. 

Note that from Theorem 93.5 it follows immediately that locally compact 

Hausdorff spaces are regular. Actually there is a stronger result that can be ob¬ 

tained as seen in the statement of the following theorem, whose proof is left as an 

exercise. 

93.7. Theorem. If X is a locally compact Hausdorff space or if X is a locally 
compact regular space, then X is completely regular. 

EXERCISES: LOCAL COMPACTNESS 

1. Let 38 be the collection of all subsets of R of the form {0, a), 
a g R. Note that {0} G 38 and that 38 is a base for a topology 

for R. Let ,T be the topology generated by 38. Show that 
(R,^~) is locally compact. Show that there is no open neigh¬ 

borhood of 0 whose closure is compact. 

2. Prove the remark stated in 93.2. 

3. Prove each of the following: 

(a) Theorem 93.3. 
(b) Theorem 93.4. 
(c) Theorem 93.6. 

(d) Theorem 93.7. 

4. Prove that if A is a locally compact Hausdorff space and K is 
a compact subset of X, then there is an open subset U containing 

K such that cl (U) is compact. 

5. Prove that in a locally compact Hausdorff space, the inter¬ 

section of a countable collection of open dense sets is dense. 
(This is another version of a theorem of Baire. See Theorem 
64.2.) 
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6. Suppose/is a continuous mapping from a locally compact space 

X onto a space Y. Is Y necessarily locally compact? If the 

answer is no, answer the question assuming that/is a continuous 
open surjection. 

7. Prove that if X is a locally compact second countable Hausdorff 

space, then there exists an increasing sequence of compact sets 
(At) such that X = \J {int (.Xt):i e P}. 

94. THE ONE-POINT COMPACTIFICATION 

In Exercise 4, page 211, it was shown that R can be extended to a compact set 

by the addition of a single point. In this section we shall generalize the results of 
the example to which we just referred. In particular, we shall show that for any 

topological space (X, ?T), we can adjoin a single element z to X and define a 
topology .T z for / = IU {z} such that (Xz, ST is compact and (X, is a sub¬ 
space of (XZ,3TZ). 

Let {X, 3") be a topological space and let z be an object that is not in X. 
Let Xz = X U {z}. We define z as the collection {U: U is an open subset of 

(X,^~) or U is the union of {z} and the complement of a closed compact subset 

of (X,.^~)}. At this point the reader should verify the following facts. 

94.1. Theorem. The collection STz as defined in the previous paragraph 

is a topology for Xz and the space (Xz, .iX~ z) is compact. 

94.2. Definition. The one-point compactification. Let (A, -YT) and (Xz, ST f) 
be as in the previous theorem. The compact space (Xz, ST f) is called the one-point 

compactification of {X, YT). 

The one-point compactification of a space is sometimes called the Alexandroff 
compactification. If there is no chance of confusion, we shall write Xz instead of 
(Xz,3Tt). 

The next theorem lists a number of facts about the one-point compactification. 

The proof of each part is left as an exercise for the reader. Working through the 

proofs will provide a review of a number of concepts. 

94.3. Theorem. Let X, be the one-point compactification of the topological 

space X. 

94.3(a). X is compact if and only if the point z is an isolated point of Xz. 

94.3(b). X is not compact if and only if X is a dense subset of X,. 

94.3(c). X is a Ty-space if and only if Xz is a Tx-space. 

94.3(d). Xz is a Hausdorff space if and only if X is a locally compact Hausdorff 

space. 

94.3(e). If X is a locally compact Hausdorff space, then X, is second countable 

if and only if X is second countable. 
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94.3(f). If X is a locally compact separable metrizable space, then Xz is a 
separable metrizable space. 

As an example of how the one-point compactification can sometimes be a 
useful tool, we make use of it in giving a proof of the first part of Theorem 93.7. 

That is, we wish to show that if A" is a locally compact Hausdorff space, then it is 
completely regular. By 94.3(d), a one-point compactification of X is Hausdorff 

and, of course, it is compact. However, a compact Hausdorff space is normal 

and, hence, is completely regular. But Xis a subspace of Xz and, hence, it must also 
be completely regular. 

A more general concept of compactification is one that makes use of the 
notion of topological embeddings. We shall say that/: (X, -T(X)) —*■ ( Y, 3T{ Y)) is 

a topological embedding of (X, T(3Q) in (Y, ^”( T)) provided/is a homeomorphism 
of X onto / [X], We have already seen a special case of this when we dealt with 

the notion of isometric embedding in 66.1. 

94.4. Definition. Compactification. Suppose that X is a topological space 

and Y is a compact space. If h :X —► Y is a topological embedding such that h [X] 

is a dense subset of Y, then the pair (h, Y) is called a compactification of X. 

Suppose that A is a noncompact space and /' is the inclusion mapping from X 
into its one-point compactification Xz. Then the pair (/', Xz) is a compactification 
of X in the sense of Definition 94.4. 

EXERCISES: THE ONE-POINT COMPACTIFICATION 

1. Prove Theorem 94.1. 

2. Prove Theorem 94.3. 

3. By making use of Theorem 94.3(e) construct an example of a 

compact Hausdorff space that is not second countable (see 

Exercise 6, page 207 ). 

95. SOME GENERALIZATIONS OF MAPPINGS DEFINED ON 

COMPACT SPACES 

We have seen in previous sections that continuous mappings defined on com¬ 

pact spaces enjoy various useful properties, particularly when the domain and range 

spaces are Hausdorff. We review briefly some of the facts about such mappings 

that we have encountered in previous sections. 

95.1. Theorem. Assume that f\X~* Y is a continuous surjection, that X is 

a compact space, and that Y is Hausdorff. 

95.1(a). Under continuous mappings, compactness is preserved (Theorem 

91.7). Then since compact Hausdorff spaces are automatically regular and normal, 
these properties are inherited by a Hausdorff range space if the domain is Hausdorff. 

95.1(b). If X is second countable, so is Y (Theorem 91.9). 

95.1(c). If X is metrizable, then Y is metrizable (Theorem 91.10). 
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95.1(d). If y e Y and U is an open subset of X that contains f 1 [>’], then there 

is an open neighborhood V of y such that f~l [ V] (j (see Exercise 3, page 210). 

95.1(e). y 1 [AT] is compact for each compact subset K <= Y (see Exercise 4, 

page 207). 

95.1(f). f is a closed mapping and f~l[y\ is compact for each y £ Y. (This 

follows from Theorem 91.8 and 95.1(6’).) 

In the study of continuous mappings, much time has been devoted to in¬ 

vestigation of situations in which the domain space is compact with various ad¬ 

ditional restrictions. (For example, see G. T. Whyburn's Analytic Topology 

[33].) It was found that some of the results could be extended to continuous 
mappings that were closed and still others to continuous mappings that satisfied 

the properties stated in 95.1 (e) or (f) even though their domains were not compact. 

This observation led to investigations of continuous surjections of the types defined 
next. 

95.2. Definitions. Perfect mappings; compact mappings. A surjection 

f\X-*- Y is said to have the compact point inverse property provided that for each 

ye Y, f~l[y] is a compact set. A dosed continuous surjection with the compact 

point inverse property is called a perfect mapping. A surjection f\X-*■ Y such 

that /-1[/C] is compact for each compact set K ^ Y is called a compact mapping. 

It is useful that the property stated in 95.1(d) is equivalent to closedness for 

continuous surjections. This is the content of the next theorem. 

95.3. Theorem. Suppose f.X->-Y is a continuous surjection. Then the 

J'ollowing property is equivalent to the closedness of f. 

For each y e Y, if U is an open subset of X that contains/_1[y], then there is an 

open neighborhood W of y such that f ' [ IV] <= U. 

Proof. (We prove that the condition is implied by the closedness of f and 

leave the converse as an exercise.) 

Suppose / is closed, y e Y and U is an open set that contains /~1[y]. Then 
X — U is closed and, hence, so is f[X — U]. Now y e Y — f[X - U], and we 

complete the proof by showing that this open set has the property required in the 

statement of the theorem. To see this, notice that 

f-^Y -f[X - U]\ =f~1[Y] -f~'[f[X - U]] = X - (X - U) = U. 

This theorem can be used to prove the follow ing characterization of closedness 

for continuous surjections. (The proof is left as an exercise.) 

95.4. Theorem. If f.X —► Y is a continuous surjection, then the following 

property is equivalent to the closedness of f. 

For each subset A of Y, and open subset U containing f l[A], there is an open 

subset W containing A such that f~l[W] cz U. 

As an illustration of the usefulness of this theorem we prove the following 

important invariance theorem previously given as an exercise (Exercise 17, page 

187). 
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95.5. Theorem. Normality is invariant under closed continuous surjections. 

Proof. Suppose f\X~* Y is a continuous closed surjection and X is normal. 
We wish to show that Y is also normal. Let A and B be two disjoint nonempty 

closed subsets of Y. Then C = /-1[4] and D = f~x[B] are closed disjoint subsets 
of X. Since X is normal, there are disjoint open sets U and V such that C <= U 

and D c V. From 95.4, there are open subsets Q and R in Y containing A and B, 

respectively, such that C = f~x[A] <=■ f~x[Q] c UandD — f~x[B] <= /-1[R] c V- 

It now follows that Q and R are disjoint, for otherwise f~l[Q] and/-1[/?] would 
not be disjoint. Thus, we have found disjoint open sets Q and R that contain A 

and B, respectively, and we have shown that Y is normal. 

A somewhat similar proof can be used to prove each part of the next invariance 

theorem. The proof is left as an exercise. 

95.6. Theorem. Suppose f:X~* Y is a continuous closed surjection with 

the compact point inverse property (i.e., f is a perfect mapping). Then if X is 

Hausdorff, so is Y. If X is regular, Y is regular. 

95.7. Theorem. Suppose /: X —► Y is a perfect mapping. Then compactness 

is preserved under /-1; that is,f is a compact mapping. 

Proof. Suppose K is a compact subset of Y. We show that f~l[K] is com¬ 

pact. Let be an open covering of f~x[K]. For each e K a finite subcollection 

Fy of ^ covers f~x\y), since f~l[y] is compact. Let Uv = (J By Theorem 
95.4, there is an open neighborhood Wy ofy such that /-1 [ Wy] <= Uy. Now the col¬ 
lection iX~ of all Wy so chosen is an open covering of K. Some finite subcovering 

{WVi, WV2, . . . , WVn) also covers K. But then {f~l\Wy^ :i e P„} covers f~x[K]. 

Since each f~x[Wy] c Uv , the collection {Uy :i e P„} covers f~x[K\. Since each 

Uy. = (J = JrJ/] U U ■ • • U lFyn coversf~x[K\. Also, each con¬ 
sisted of only a finite number of elements of the original covering # and so IF 

itself is a finite subcollection of *€ that covers f~x[K). Hence,/-1 [A] is compact. 

It is known that compact mappings are not always closed. However, the 

following theorem gives one of the situations in which they are. 

95.8. Theorem. Suppose that X and Y are first countable Hausdorff spaces 

andf:X-+ Y is a continuous compact surjection. Then f is a closed mapping. 

The proof is left as an exercise. (Hint: Review 87.3 and 87.4. Note also that 
if a sequence (y,) converges to a point y, then the set {yp.i e P} U {jy} is a compact 
set.) 

By making use of this theorem and Theorem 95.7, we obtain the following. 

95.9. Theorem. Suppose that X and Y are Hausdorff first countable spaces 

and f: X —y Y is a continuous surjection. Then f is a perfect mapping if and only if 

it is a compact mapping. (See Theorem 8.2 in [36].) 

To the reader who is familiar with the theory of functions of a complex vari¬ 

able, it should be interesting to note that complex polynomials are compact 
mappings (see Exercise 15, page 142 1. As a matter of fact, it is known that a 

complex entire function is a polynomial if and only if it is compact. 

The following invariance theorem is a generalization of Theorem 91.9. The 
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proof for the generalization is the same as that of Theorem 91.9, except for a few 

minor details involving justification of certain steps. It is left as an exercise for the 
reader to adjust the proof to the new situation. 

95.10. Theorem. Let f: X —> Y be a perfect mapping. Then if X is second 

countable, so is Y. 

We now have the necessary machinery to prove the following easily. 

95.11. Theorem. Let X be a separable metric space and suppose f'.X—^Y 

is a perfect mapping. Then Y is a separable metric space. 

EXERCISES: SOME GENERALIZATIONS OF MAPPINGS 
DEFINED ON COMPACT SPACES 

1. Prove the part of Theorem 95.3 that was left for the reader. 

2. Suppose f:X—> Y is a continuous bijection where X and Y 

are first countable Hausdorff spaces. Show that / is a homeo- 

morphism if and only if/is a compact mapping. 

3. (a) Prove Theorem 95.4. 

(b) Prove Theorem 95.6. 

4. Point out which details in the proof of Theorem 91.9 need to be 

changed so that the proof becomes a proof of Theorem 95.10. 

5. Prove Theorem 95.11. 

6. Let/:W—► Y be an open continuous surjection where X and Y 

are metric spaces. Suppose there is a positive integer k such 

that f~x[y] consists of exactly k points for each y e Y. 

(a) Show that / is a local homeomorphism; that is, for each 

jc g X, there are open neighborhoods U <= X and V c Y 

of x and f(x), respectively, such that / | £/:£/-»- V is a 
topological mapping. 

(b) Show that / is a compact mapping. 

7. Suppose f'.X—y Y is a continuous surjection where X and Y 

are metric spaces. Suppose there exists a subset A X such 
that f[A] = Y and / | A :A —► Y is a compact mapping. Prove 

that A is a closed subset of X. 

8. Show that if f:X-*- Y is a closed (compact) continuous sur¬ 

jection and A is a closed subset or an inverse set (i.e., A = 

f~x[f[A]]), then / | A :A —*■ f[A] is a closed (compact) mapping. 
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Connectedness and Related 

Concepts 

We have already discussed the notion of connectedness in the setting of 
metric spaces. In this chapter, this important concept will be studied for more 

general spaces. Many of the basic theorems concerning connectedness in metric 
spaces carry over to general topological spaces. For example, if Jf is a collection 

of connected subsets of a topological space X and JC 7^ 0, then jj JC is 

connected. It is also true that the image of a connected topological space under a 
continuous mapping is connected. On the other hand, there are some facts about 

connectedness in metric spaces that depend on specialized properties possessed by 
the topologies of all metric spaces. For example, in a metric space a decreasing 

sequence of compact connected sets has a connected intersection. This prop¬ 
osition remains true for Hausdorff spaces but not for topological spaces in 
general. „ 

Some metric spaces have the important property which states that each point 
in the space has arbitrarily small connected open neighborhoods. Recall that 

Rn, /2, and &([a, /?]) are examples for which all e-neighborhoods are connected. 
In this chapter we shall study a property called local connectedness which gener¬ 

alizes the property possessed by a point having arbitrarily small open connected 
neighborhoods. Local connectedness, unlike connectedness, is not invariant 

under all continuous mappings. However, if /is an open or closed continuous 
surjection defined on a locally connected space, then the range of/is also locally 
connected. 

We shall also define the notions of limit superior and limit inferior of a 
sequence of subsets of a topological space. In particular, we shall prove a theorem 

giving conditions under which the limit superior of a sequence of connected sets is 
connected. 

218 
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96. CONNECTEDNESS. DEFINITIONS. 

This section contains definitions related to the concept of connectedness. In 

the next section we shall study some basic theorems concerning these concepts. 

96.1. Definition. Connected space. Let X be a topological space. Then X 

is connected provided X is not the union of two disjoint nonempty open subsets of X. 

As we have done with other topological properties, we shall say that if S is a 

subset of a space (X, ■<X), then S is a connected subset of (X, ST) if and only if 

(S, | S) is a connected space. 

We have already studied important examples of connected metric spaces, for 

example, R", d2, and ^([a, 6]). As we shall see, some of the examples of nonmetric 
spaces that we have considered are also connected. 

96.2. Example. Let X be the set of real numbers and let ST consist of 0 
and the collection of complements of countable subsets of X as in Example 75.7. 

Since each pair of nonempty open subsets of X has points in common, X cannot be 
the union of two nonempty open subsets of X with empty intersection. Hence, X 

is connected. 

Recall that the notion of separation of a set was useful in dealing with con¬ 

nectedness of subsets of a space. This notion, defined in 54.3 for metric spaces, is 

repeated here for topological spaces. 

96.3. Definition. Mutually separated sets; separation of a set. Suppose X 

is a topological space. Two subsets A and B of X are said to be mutually separated in 

X provided 

cl {A) n B = A n cl (B) = 0. 

If S ci X is the union of a pair of nonempty mutually separated sets A and B, then 

[A, B} is said to be a separation of S in X. 

As with metric spaces, it is easy to see that a subset S' of a topological space is 

connected if and only if there exists no separation of S in X. The proof given in 

55.3 is nonmetric in nature and carries over to this case. If a set is not connected, 

we shall say that it is disconnected. In other words, a set is disconnected if and only 

if there exists a separation for the set in the space. 
We shall see that much of what we have learned so far about the concept of 

connectedness for metric spaces carries over to general topological spaces. How¬ 
ever, as with other concepts, there are differences. Recall, for example, that in 

a metric space every countable subset containing more than one point is discon¬ 

nected (see Exercise 2(d), page 112). In a general topological space such sets can 
be connected. For example, suppose X = {0, 1} and ST is the trivial topology for 

X. Then, obviously, there can be no separation for {X,-T). 

96.4. Definition. Components of a space. Suppose that X is a topological 

space. A subset A of X is said to be a component of X provided A is a maximal 

connected subset of X; that is, A is a connected subset of X such that if B is any 

connected subset of X that contains A, then B = A. 

It should be observed that a topological space X is connected if and only if it 

has exactly one component, X itself. Furthermore, for each x e X, x is a member of 
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exactly one component and, thus, the collection of all components of A' is a de¬ 

composition of X (see 20.1). Some sets are so badly disconnected that every point 
in the space is a component. For example, any space with the discrete topology has 

this property. 

96.5. Definition. Totally disconnected space. A topological space S is totally 

disconnected provided every subset of S consisting of a single point is a component 

of S. 

It is easy to show that if S is a countable subset of a metric space, then S is 

totally disconnected. Notice also that the collection of all irrational numbers is 

a totally disconnected subset of the space R. 

96.6. Definition. Sets that separate. If X is a connected space and S is a 

subset of X such that X — S is disconnected, then S is said to separate X. IfxeX 

and {*} separates X, then x is called a cut point of X. 

96.7. Example. Every point of R is a cut point of the space R. On the other 
hand, if S is a circle in R2, S has no cut points. 

In subsequent chapters we shall have frequent occasion to hypothesize that a 

space is both compact and connected. For example, closed balls in R" have this 
property. 

96.8. Definition. Continuum. A space that is both compact and connected 

is called a continuum. 

Recall that every e-neighborhood in a normed linear space is connected, 
(see Exercise 3, page 146). This notion generalizes to the setting of a topological 
space as follows. 

96.9. Definition. Locally connected space. A space X is said to be locally 

connected at a point x in X provided that for each open neighborhood U of x there 
is an open connected neighborhood V of x that is contained in U. If X is locally 
connected at each of its points, then X is called a locally connected space. 

We have already seen examples of locally connected metric spaces, for ex¬ 
ample, Rn, /2, and ^([a, b]). On the other hand, the example in Exercise 7, page 
114, is connected but is not locally connected at any point of A. It is locally 
connected at each point in B. 

Because of the definition of the relative topology, it should be clear that if S’ 
is a subset of a space (X, .9~), then S is locally connected at .v in S if and only if for 
each-i^-open neighborhood U of x, there isa.^-open neighborhoodFof.vcontained 

in U such that V n S is connected. It is also useful to notice that a space X is 

locally connected at x e X if and only if the neighborhood system of x has a base, 
each of whose elements is an open connected neighborhood of ,v. 

EXERCISES: CONNECTEDNESS. DEFINITIONS 

1. Suppose that X is a topological space with the trivial topology. 
Is X necessarily connected? Is X locally connected? 
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2. Suppose that .Tx and are topologies for a set X and 2TX <= 

^"2- ^ ^1) is connected, is (W, ^2) necessarily connected? 
If (X, ■^'2) is connected, is (X, necessarily connected? 

3. Suppose that Y is a subset of a space X. Let A and B be sub¬ 

sets of Y. Show that A and B are mutually separated sets in 
Y if and only if they are mutually separated sets in X. 

4. In each of the following determine if the space is connected; 

also determine if the space is locally connected. 

(a) The space in Example 75.4. 

(b) The space in Example 75.5. 
(c) The space in Example 75.6. 

5. In Exercise 4, page 165 , the collection is a topology for P. 

Is (P, Jf) a connected space? Is this space locally connected? 
I 

6. In Exercise 5, page 165, the collection is a topology for the 

set X of all real numbers. Is (X, Jf) a connected space? 
Is this space locally connected? 

7. Suppose 5* is a connected subset of a space X. Show that if A 

is a set such that S <= A <= cl (S'), then A is a connected subset 
of X. 

8. Are components of a space necessarily closed? 

9. Give an example of a space that has a component that is not 
open. 

10. Suppose that a nonempty proper subset of a space is both open 

and closed. What conclusions can you draw about that space? 

97. SOME BASIC THEOREMS CONCERNING CONNECTEDNESS 

Some of the theorems given in this section are direct generalizations of 

theorems verified for metric spaces, and the proofs previously given can be carried 
over word for word. In such cases reference will be made to the previous proof. 

97.1. Theorem. Suppose {A, B} is a separation for a subset S of a topological 

space. If C is a connected subset of S, then C <= A or C <= B. (See the proof of 

Theorem 55.5.) 

The following theorem is a more general form of Theorem 55.6. The proof 
is left as an exercise. 

97.2. Theorem. Suppose XT is a collection of connected subsets of X such 

that no two are mutually separated. Then (J Jf is connected. 

The following two useful facts can be proved easily by making use of the 
previous theorem. The proofs are left as exercises. 
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97.3. Theorem. Suppose X is a topological space and Z is a connected 

subset of X. Suppose further that Jf is a collection of connected subsets of X each 

of which intersects Z. Then [(J Jf ] U Z is connected. 

97.4. Theorem. Suppose {Ap.ieP} is a countable collection of connected 

subsets such that Ai D Ai+1 0 for each i e P. Then (J {Ap.i e P} is connected. 

97.5. Theorem.. Suppose f:X-+Y is a continuous surjection and X is 

connected. Then Y is also connected. 

Proof. The proof given in 56.1 for a metric space carries over without change. 

The following theorem gives a useful characterization of local connectedness. 
The proof is left to the next set of exercises. 

97.6. Theorem. A space X is locally connected if and only if for each open 

subset U of X, the components of U are open. 

In Section 57 we defined the notion of polygonal connectedness for subsets of 

Rn; that notion is also meaningful for subsets of normed linear spaces. The reader 

was asked to show in Exercise 4, page 116, that an open subset of R" is connected 
if and only if it is polygonally connected. This fact is also true in any normed linear 

space. We next define the notion of path connectedness, which is a generalization of 

polygonal connectedness. 

97.7. Definition. Path-connectedness. A path in a subset S of a topological 

space is a continuous mapping f\ [0, 1 ] —► S. If a and b are points in S and f: [0, 1 ] —► 
S is a path such that/(0) = a and f( 1) = b, we then say that the path joins a to b 

in S. If for each a and b in S there is a path that joins a to b in S, then S is said to 

be path-connected. 

Since the image of a real interval under a continuous mapping is connected, 
each two points in a path-connected space X can be joined by a connected set 

contained in the space. Hence, by using 97.2, it is easy to show that every path- 
connected space is also connected. 

The following theorem is easy to prove and is left as an exercise. 

97.8. Theorem. Suppose that f is a continuous mapping from a path-connected 

space X onto a topological space Y. Then Y is also path connected. 

97.9. Theorem. Suppose that f is a continuous open or a continuous closed 

mapping from a locally connected space X onto a topological space Y. Then Y is 

locally connected. 

Proof. We shall prove the part of the theorem for open mappings and leave 

the part for closed mappings as an exercise. 

Supposef.X-+ Y is a continuous open surjection and X is locally connected. 
Let U be an open subset of Y, and C be a component of U. In the context of 

theorem 97.6, the proof will be complete if we show that C is open. Let W = 

f 1 [L7] and note that W is open in X; since X is locally connected, each component 

of W is open. Because of the invariance of connectedness under continuous 
mappings, f[R] is connected for each component R of W. Hence, for each com¬ 

ponent R of W, if f[R] n C# 0, then f[R] c C. (Why?) Let 9t = {R:R is 
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a component of W and /'[/{] OC^0}. Since A# is a collection of open subsets 

of X, |J 3# is open. Also note thaty 1 [<T] — (J A# so that f[[J Atf] C. Then, 

since /is an open mapping, C is open and the proof of the part of the theorem for 

open mappings is complete. 

EXERCISES: SOME BASIC THEOREMS CONCERNING CONNECTEDNESS 

1. Prove each of the following theorems: 

(a) 97.2. (d) 97.6. 

(b) 97.3. (e) 97.8. 

(c) 97.4. (f) Complete the proof of 97.9. 

2. Suppose C is a connected space and S is a connected subset 

of C. Prove that if {A,B} is a separation for C — S, then 

A U S and BUS are connected sets. 

3. Prove that if A is a HausdorfT space and is the range of a 

continuous mapping whose domain is the closed unit interval, 

then T is a locally connected continuum that is metrizable. 

Also prove that X is path connected. 

Note. A HausdorfT space that is the image under a 
continuous mapping of the real interval [0, 1] is called a 

Peano space or a continuous curve. There is a remarkable 

theorem known as the Hahn-Mazurkiewicz theorem that 
asserts that any nonempty, locally connected, metrizable con¬ 

tinuum is the image under a continuous mapping of the real 

interval [0, 1], See, for example, [6], [19], or [38]. 

4. Exercise on arcs. If a space X is topologically equivalent to the 

real interval [0, 1], then it is called a topological arc. From the 

previous exercise, A is a locally connected metrizable contin¬ 
uum. Show that if X is a topological arc, then it has the follow¬ 

ing additional property. 

* There exist two points a and b of X that are not cut 

points of X. For all other points c of X, X — {c} is the 

union of two mutually separated sets A and B con¬ 

taining a and b, respectively. 

There is an interesting theorem which asserts that any metric 

continuum that satisfies the conditions in the previous para¬ 

graph is a topological arc. This accounts for the fact that 

sometimes a simple continuous arc is defined as a metric con¬ 

tinuum that satisfies the property given in *. Background 
material leading up to a proof of this theorem and a proof of 

this characterization of a topological arc is given, for example, 

in [38]. 

5. The image under a homeomorphism of a circle is called a 
simple dosed curve. Prove that if 5 is a simple closed curve, 

then 5 is a locally connected, metrizable continuum such that 

each subset consisting of exactly two points separates 5. 
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6. Let X be a topological space. Suppose H and K are closed 
subsets of X such that H U K and H n K are connected. Prove 
that H and K are connected. 

7. Show that if F is a nonempty proper closed subset of a con¬ 

nected locally connected space X, then every component of 
X — F has a limit point in F. Is the conclusion still true if X 

is not locally connected? 

8. Exercise on e-chainable sets. Suppose (X, d) is a metric space. 

If a and b are elements of X, and e > 0, an e-chain joining a to 
b is a finite sequence (xX) x2, . . . , xn) of points in X such that 

a = xq, b = xn and d{xt, xt_. j) < e for i e P„_!. If for each a 

and b in X there is an e-chain joining a to b, we say that X 

is e-chainable. 
(a) Show that if {X, d) is connected, then it is e- 

chainable for each positive e. 

(b) Show that if (X, d) is e-chainable for each positive e, 
it need not be connected. 

(c) Show that if (X, d) is compact and is e-chainable for 
each positive e, then it is connected. 

9. Suppose A" is a Hausdorff space and {C y.i e P} is a collection of 

nonempty continua in X such that Ci+1 <= C,. Is 

fl {C,:ieP} 

necessarily a continuum ? 

10. Suppose X and Y are Hausdorff spaces and f:X~* Y is a 
compact continuous surjection such that for each y e Y, 

/-1[y] is a continuum. Show that for each continuum C <= Y, 

/-1[C] is a continuum in X. 

11. Suppose the metric space (X,d) is compact. Show that X is 
locally connected if and only if for each e > 0, X is the union 

of a finite collection of continua such that each continuum 
in the collection has a diameter less than e. 

12. Prove the following propositions: 

Suppose the metric space {X, d) is a locally connected contin¬ 
uum. If a and b are two points in X and e > 0, then there 

exist continua M1, Af>, . . . , Mn in X such that a e A/t, 
b e Mn, diam (A/,) < e for i e P„, and Af, n M,0 if 

and only if |/ — j\ ^ 1. Thus, a and b can be joined by a 
“connected chain with small links.” 

Note: Actually every two points of a locally connected 
metric continuum can be joined by an arc. The proof of this 
interesting fact is rather difficult. A development leading up 

to a proof and a proof can be found in [19]. 
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13. Prove that if X is a locally connected compact space, then X 

has only a finite number of components. 

14. Let X and Y be topological spaces. Prove that the product 

space X X Y is connected if and only if X and Y are each con¬ 

nected. Prove that the product space X X Y is locally connected 
if and only if X and Y are each locally connected. 

98. LIMIT SUPERIOR AND LIMIT INFERIOR OF SEQUENCES 

OF SUBSETS OF A SPACE 

At this point we shall define certain limit processes for sequences of subsets of 

a topological space. The notions presented here of limit superior, limit inferior, 

and limit of a sequence of subsets of a topological space are as defined, for 

example, in [33], There is a purely set theoretic concept that goes by the same 
name. See, for example, [16], In Exercise 1 of the next set of exercises a relation 

between these two types of limit superior and limit inferior will be pointed out. 

In this section, we shall be particularly interested in the situation in which the 

elements of the sequence of sets are connected sets. 

98.1. Definitions. Limit superior; limit inferior. Suppose (X,f7~) is a 

topological space and (Af) is a sequence of subsets of X. The limit superior of (Af), 

abbreviated lim sup (Af), is defined to be the set of all x e X such that each neighbor¬ 

hood of x intersects A, for an infinite subset of positive integers i. The limit inferior 

of (Af), abbreviated lim inf (Af), is the set of all x e X such that each neighborhood 

of x intersects A,. for all but a finite collection of integers i. If lim sup (Af) = 

lim inf (Af) = L (possibly the empty set), we say that the sequence (Af) converges 

to L. 

The proof of the next theorem follows easily from the definition and is left 
as an exercise. 

98.2. Theorem. Let (Af) be a sequence of subsets of a topological space 

(X,^~). Then lim inf (Af) <= lim sup (Af) and both are closed subsets of X. 

The following theorem is easy to prove by making use of the previously proved 

fact that a Tx space that is B.W. compact has the property that every infinite 

sequence has a cluster point. The proof is left as an exercise. 

98.3. Theorem. Suppose (X,XT) is a Tx-space. Let (Af) be a sequence of 

nonempty sets in X and let C — lim sup {Af). Suppose, further, cl ((J {Ap.i e P}) 

is B. W. compact. Then C is a nonempty set, and if U is an open set that contains C, 

there is an integer N such that for i ^ N, At <= U. 

98.4. Theorem. Suppose (X, ^) is a Hausdorff space. Suppose further {Af) 

is a sequence of nonempty connected subsets of X such that cl ((J {Ap.i e P}) is 

compact. If lim inf (/t,) is nonempty, then lim sup (Af is a nonempty continuum. 

Proof. Let C = lim sup (Af. Note that C 0. Also, since C is closed 

and is contained in the compact Hausdorff subspace cl (U {Ap.i e P}), C is com¬ 

pact. To prove it is connected, suppose {A, B} is a separation of C. Then A and B 
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are disjoint nonempty compact subsets of C. Then, since X is Hausdorff, there 

exist disjoint open subsets U and V that contain A and B, respectively. On the 
basis of Theorem 98.3, there is an N eP such that if / ^ N, then At <= U U V. 

Let a be an element (guaranteed by hypothesis) in lim inf (A,). We suppose a e A. 

Since U is a neighborhood of a, there is a positive integer M such that U n Ai 

is nonempty for i ^ M. Now, there is a b e B and V is an open neighborhood of b. 

Since b e lim sup (A{), there is an integer k max (N, M) such that Ak n V is 
nonempty. Since A: 2s TV, Ak <= U u V. Hence, Ak = (Ak n U) U (Ak n V). 

Since k M, Ak n U 0 ; recall that k was chosen so that Ak n V =£ 0. 
Thus, the two disjoint sets Ak n V and Ak n U, both open relative to Ak, form a 

separation of Ak. Since Ak is connected, we have a contradiction. 
Note. For other interesting facts about the notions of limit superior and 

limit inferior of sequences of subsets of a space, see [22], [33], or [39]. 

EXERCISES: LIMIT SUPERIOR AND LIMIT INFERIOR OF SEQUENCES 

OF SUBSETS OF A SPACE 

1. Let (X, 3") be a space where ^ is the discrete topology for 
X and let (Af) be a sequence of subsets of X. Show that 
lim sup (/4,) = {x:xeAi for an infinite collection of positive 

integers /} and that lim inf (At) = {x:x e A{ for all but a finite 
collection of positive integers /}. The expressions for lim sup (/!,) 

and lim inf (A{) given here for the discrete case coincide with the 
set theoretic definitions for these terms when there are no topolo¬ 

gies involved. See, for example, [16]. 

2. Suppose (X, d) is a metric space and (A{) is a sequence of 
subsets of X such that cl ([J {Af.i eP}) is compact. Let C = 

lim sup (At). Prove that lim (d(At, C)) = 0. 

3. Suppose that (A{) is a sequence of continua in a compact 
metric space X. 

(a) Based on Theorem 98.4, if lim inf (/!,■) ^ 0, then 

lim sup (Aj) is a continuum. Give an example to show 
that if lim inf (A{) = 0, then lim sup (A{) need not be 
a continuum. 

(b) Suppose F is a closed subset of X such that At n F ^ 0 

for each i e P. Show that for each component K of 
lim sup (A^, K n F 9^ 0. (For a more general version of 
this proposition, see Theorem 1.14 in Chapter IV of [39].) 

99. REVIEW EXERCISES 

In subsequent chapters we shall be dealing with topological 

spaces formed from other topological spaces. For example, if 
(X, -T(X)) is a topological space and R is an equivalence rela¬ 
tion in X, then 3~(X) can be used to induce a useful topology 

called the quotient topology on the set of all R-equivalence 
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EXERCISES: 

classes. We shall apply the notion of quotient topology to a 

further study of continuous mappings. We shall also extend the 
definition of product topology to include the product of an 

infinite collection of topological spaces. In order to deal better 

with some of the more difficult questions that will arise, we shall 

study some types of convergence that are more general than 

sequential convergence. In all these discussions frequent use 
will be made of most of the topics treated so far. As a summary 

of our previous work we include next a set of exercises, some 

of which will be a review. 

REVIEW 

1. If A" is a second countable space, is X necessarily separable? 

2. If A" is a separable first countable space, is X necessarily 

second countable? 

3. Suppose that X is a topological space. Which of the following 

properties are possessed by each subspace of X provided X 

has the property? 

(a) 7V 

(b) To. 

(c) Regular. 
(d) Completely regular. 

(e) Normal. 

(f) Separable. 

(g) First countable. 
(h) Second countable. 

(i) Lindelof. 

(j) Local compactness. 

(k) Local connectedness. 

4. Among the properties listed in the previous question are some 

that are inherited by all subsets and some that are not. Of 

those which are not, which are inherited by all open subsets? 
Which are inherited by all closed subsets? 

5. Sometimes the concept of local compactness is defined as 

follows: 
A topological space X is locally compact provided 

that for each x in X there is an open neighborhood U 

of x such that cl (U) is compact. 

Show that this property implies the definition given in this text 

but that it is not equivalent to it. Are the two definitions 

equivalent for Hausdorff spaces? 

6. Suppose that f\X-> Y is a continuous surjection. Which of 

the following topological properties are possessed by Y if X 

has the property? 

(a) TV 

(b) TV 
(c) Regular. 

(d) First countable. 

(e) Second countable. 

(f) Separable. 

(g) Sequentially compact. 
(h) B.W. compact. 

(i) Compact. 

(j) Locally connected. 

(k) Locally connected metric 
continuum. 
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7. Some of the properties listed in question 6 are not necessarily 
possessed by Y. Which are necessarily possessed by Y if the 

continuous surjection/: X —*■ Y is also open ? 

8. Is the intersection of two compact subsets necessarily compact? 
Is the intersection of a closed set and a compact set necessarily 

compact? 

9. State a condition weaker than metrizability for which B.W. 

compactness implies sequential compactness, but too weak for 
B.W. compactness to imply compactness. 

10. Suppose that X is a Hausdorff space, and let Xz be a one-point 
compactification of X. Give an example to show that X2 is not 

necessarily Hausdorff. Is Xz necessarily a Tt space? 

11. Suppose that X and Y are homeomorphic spaces and Xz and 
Yw are one-point compactifications of X and Y, respectively. 
Are Xz and Yw necessarily homeomorphic? 

12. Suppose that A is a connected space and Xz is a one-point 
compactification of X. Is Xz necessarily a continuum? If the 

answer is no, state a condition under which it is not a con¬ 
tinuum. 

13. Let f:X-+R be a continuous surjection and assume that R is 
endowed with the Euclidean topology. In each of the follow¬ 

ing, determine if the statement is necessarily true. 
(a) X is not compact. 

(b) X is connected. 

(c) For each y in R, X — /-1[y] is not connected. 
(d) If/is a closed mapping and X is not metrizable, then/ 

is not one-to-one. 

14. Let A be a circle in R2 and let Y be a “figure 8’’ in R2, both with 
the relative topology. Prove that there can exist no topological 

map from X onto Y. 

15. Suppose that A is a connected space and c is a cut point of X. 

Prove that for any separation {A, B) of X — {r}, A U {c} and 
B U {<?} are connected sets. 

16. Let (X, d) be a bounded metric space and let .XT be the col¬ 
lection of all nonempty closed subsets of X. For each nonempty 

subset A of X and positive s, we shall use the notation 
N(A: e) to denote the set of all points in X that are within e 
distance from A; that is, 

N(A; e) = {x:d(A, „v) < e}. 

We next define the mapping dn:Jf X .XT -» R as follows: 

dn(A, B) = g.l.b. {e:A «= N(B\ e) and B <= N(A; e)} 
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(a) Show that dH is a metric for This metric is known 
as the Hausdorff metric. 

(b) Show that for all x andy in (X, d), d(x, y) = {y}). 

(c) Suppose that (Kt) is a sequence in Jf that converges to 
a point K in the space (Jf, dH). Does (K£) converge to 

K in the sense that lim sup (Ki) = lim inf (Kt) — Kl 

(d) Suppose that (X£) is a sequence of closed subsets of 
X and that K is a nonempty subset of X such that 

lim sup (A',) = lim inf (K{) = K. Does the sequence (K{) 

converge to K in the space (Jf, dH)^ 



9 

Quotient Spaces 

Recall that if R is an equivalence relation in a set X, then the collection 
{R[x]:x G X} of all ^-equivalence classes is a decomposition of X (see Section 21). 

This collection is referred to as the quotient set X over R and is denoted by XjR. 
Conversely, suppose that 3/t is a decomposition of X and we define the relation R 
in X by setting 

a R b if and only if a and b belong to the same element of 01. 

Then R is an equivalence relation in X such that 0? = {/?[.y]:.y g X). Thus, if we 

deal with a decomposition of a set, we can think of it as being generated by an 

equivalence relation associated with it. Equivalence relations and decompositions 
come up in many mathematical investigations. In such cases, it is often useful to 
introduce the quotient or natural mapping T: X —► XjR. This mapping carries 

each x in X into the R-equivalence class R[y] g XjR. 
In this chapter we shall be interested in the situation in which (A', 0~) is a 

topological space and 0# is a decomposition of X, or R is an equivalence relation 

in X. We shall look at a decomposition of a space {X, ST) from two points of view. 

On one hand, the elements of 01 are subsets of X and this collection 0 of subsets 
may have a useful property relative to the topology 0~. For example, a decom¬ 
position ^ of a space X is said to be upper semicontinuous provided that for each 

closed subset Fof X the union of all elements of 0 that intersect F is closed in X. 
On the other hand, we can look at the decomposition or quotient set as a set on 
which we wish to define a useful topology. We shall define such a topology 0~/R 

for XIR and refer to it as the quotient topology. As we shall see, there are strong 
relations between the two points of view mentioned. For example, it turns out 

that a decomposition of a space is upper semicontinuous if and only if the associ¬ 
ated quotient mapping is a closed mapping. 

We shall apply the information that we obtain about the quotient space to a 

further study of open, closed, and compact mappings. We shall end the chapter 

230 
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with a proof of one form of the well known Eilenberg-Whyburn factorization 
theorem for compact mappings. This theorem provides a technique which allows 
one to express a certain type of mapping as a composition of two mappings, each 
of which has particularly nice properties. The first factor guaranteed by the theorem 
has the property that the inverse of each point is a continuum. The second factor 
has totally disconnected point inverses. The technique of factoring a mapping in 
this manner has been a valuable tool in mapping theory. 

100. DECOMPOSITION OF A TOPOLOGICAL SPACE 

If (X, XT) is a topological space and 8ft is a decomposition of A (see Section 20), 
then it is natural to consider the properties of 8ft that are related to ST. In this 
section we shall consider two types of decompositions that have been especially 
important in the study of open and closed mappings. 

100.1. Definitions. Upper and lower semicontinuous decompositions of a 

space. Suppose that (A, is a topological space and 8ft is a decomposition of X. 

100.1(a). 8ft is called an upper semicontinuous (u.s.c.) decomposition of 

(A, ST) provided that for each closed subset F in (A, ST) the union of the collection 

of all elements of 8ft that intersect F is closed in (A, ST); that is, (J {A :A e 8ft, and 

A n F f 0} is closed if F is closed. 

100.1(b). 8ft is called a lower semicontinuous (l.s.c.) decomposition of (X, XT') 

provided that for each open set U in {X, XT) the union of the collection of all elements 

in 8ft that intersect U is open in (X, XT); that is, (J {A: A e 8ft and A C\ U 0} 

is open if U is open. 

Recall from Definition 11.3 that if R is a relation in X and U c= X, then 
/?[£/] = {v: u Ry for at least one u e U). Also, /?[C] (J {/?[«] :ue U). Furthermore, 
if R is an equivalence relation in X, then {H[.v]:xel( is precisely the collection 
of all /^-equivalence classes and is, hence, a decomposition of X. (See sections 20 and 
21.) Conversely, if 8ft is any decomposition of X, then 8ft generates an equivalence 
relation R in X given by 

.Y Ry if and only if x and j; are in the same element of 8ft. 

These remarks suggest the following useful connection between a decomposition 
of a space and the equivalence relation associated with it. 

100.2. Theorem. Let (X, be a topological space. Suppose that R is an 

equivalence relation in X and 8ft is the decomposition of X consisting of alt R-equiva- 

lence classes. Then, 

100.2(a). 8ft is an u.s.c. decomposition of X if and only if /?[/*"] is closed for 

each closed subset F of X. 

100.2(b). 8ft is a l.s.c. decomposition of X if and only if /?[C] is open for each 

open subset U of X. 



232 Chapter Nine 

The proof of 100.2 is left as an exercise for the reader. The reader should also 
verify that the following characterization of upper semicontinuity is correct. 

100.3. Theorem. Suppose that (X, SF) is a topological space and St is a 

decomposition of X. Then St is an u.s.c. decomposition if and only if for each open 

set U c X, the union of the collection of all elements of St contained in U (i.e., 

\J {A: A e St and A c: U}) is open. 
t 

Suppose that/: X —*■ Y is a mapping. It follows easily from the single-valued- 
ness of a function that St = {/ 1[y]:_y ef[X]} is a decomposition of X. We 

speak of each f~l[y\ as a point inverse of f and, accordingly, we call St the 
decomposition of X into point inverses of f. Note that the equivalence relation 

R associated with St is given by Ay R x2 if and only if /(Ay) = /(.v2). Suppose 
next that f:(X, ST(X))-^ ( Y, ST (T)) is a continuous mapping. As indicated 
by the next theorem, the decomposition of X into point inverses of /is intimately 

related to the action of / on the open and closed subsets of X. This fact 

motivated much of the interest in the study of upper and lower semicontinuous 

decompositions. 

100.4. Theorem. Let f.X—+ Y be a closed (an open) continuous surjection and 

let St — {f~x[y]:y e Y}. Then St is an upper (a lower) semicontinuous decomposi¬ 

tion of X. 

Proof. We assume that/is a closed (an open) continuous mapping. Let A 

be a closed (an open) subset of X and let A* be the union of the collection of all 

elements of St that intersect A. Note that A* = / 1 [/[^4]]. Since A is closed 
(open) and / is a closed (an open) mapping, then f[A] is closed (open) in Y. 

Because/is continuous,/-1 [f[A]\ is closed (open) in X and, thus, St is an u.s.c. 
(a l.s.c.) decomposition of X. 

Suppose thatf:X -> Y is a continuous surjection and St is the decomposition 
of X into point inverses of/. On the basis of the previous theorem one might wonder 
whether/is closed (open) if St is an upper (a lower) semicontinuous decomposition. 

The following example gives a negative answer. However, in the next section we 
shall study a useful class of mappings for which the answer is affirmative. 

100.5. Example. Let X be the set of all real numbers and let f(x) — x for 
each a* in X. Consider the mapping/: (X, STf —> (X, .TS) where ST" x is the discrete 

topology for X and ST 2 is the trivial topology for X. It is easy to verify that / is 
continuous and that the decomposition St of X into point inverses of/is both upper 

and lower semicontinuous. However, f \(X, ,9~S)(X,-T2) is neither an open 
nor a closed mapping. 

EXERCISES: DECOMPOSITION OF A TOPOLOGICAL SPACE 

1. Verify Theorem 100.2. 

2. Verify Theorem 100.3. 

3. Let [0, 1] be given the relative topology from R. Define the 

relation R in [0, 1] as follows: x Ry if and only if (,v = v) or 
(.v = 1 and y = 0) or (,v = 0 and y = 1). Let St be the set of 
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all /^-equivalence classes. Is Si an u.s.c. decomposition of 

[0, 1]? a l.s.c. decomposition of [0, 1]? 

4. Let R be the equivalence relation in R2 given by a R b if \a\ ^ 1 

and |6| 5S 1; otherwise, a R b if and only if a = b. Let Si be 

the collection of all R-equivalence classes. Is Si an u.s.c. de¬ 

composition of R2? Is Si a l.s.c. decomposition ofR2? 

5. Suppose f:X—yY is an open continuous mapping from a 

compact space X onto a HausdorfT space Y. Let 

^ = {f~l[}’]'■ y e n 
By Theorem 100.4, Si is a l.s.c. decomposition of X. Is Si also 

an u.s.c. decomposition of XI 

101. QUASI-COMPACT MAPPINGS 

Suppose f:X-+ Y is a mapping. If A is a subset of X such that A = /-1[C] 

for some subset C c: f[X], then we shall refer to A as an f-inverse set (or simply 

an inverse set, when omitting the reference to/ is not likely to cause any confusion). 

The following remarks about inverse sets will be useful. In each case, the verifica¬ 

tion of the remark is left as an exercise. 

101.1. Remark. If/: X —> T is a mapping then a subset A of X is an /-inverse 

set if and only iff~l[f [A]] — A. 

101.2. Remark. Suppose that X and Y are topological spaces and that 

/: X -+■ Y is a surjection. Then the image of every open inverse set is open if and 

only if the image of every closed inverse set is closed. 

Mappings for which the image of closed inverse sets are closed have been 

studied under the name of quasi-compact mappings (for example, see [34] and 

[35]). 

101.3. Definition. Quasi-compact mapping. Let f:X-+ Y be a surjection 

such that for each dosed inverse set F,f[F] is closed {or, equivalently, for each open 

inverse set U,f[U] is open). Then f is said to be a quasi-compact mapping. 

Because of Remark 101.2, we have the following. 

101.4. Remark. Surjections that are open or closed are quasi-compact. 

In Theorem 97.9 it is pointed out that local connectedness is invariant under 

continuous surjections that are either open or closed. The proof shows it is 

necessary to know only that the image of each open inverse set is open. It is in¬ 

structive to note that in the proof of Theorem 97.9 the only place that the openness 

of / is used is to show that/[[J Si\ is open. Notice, however, that [J Si is an 

inverse set. Thus, the proof carries over for continuous quasi-compact mappings. 

This fact as well as some other information about quasi-compact mappings is 

contained in the statement of the following theorem, whose proof is left as an 

exercise. 
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101.5. Theorem. Let f:(X, L7~) —*■ ( Y, ST') be a continuous quasi-compact 

surjection. 

101.5(a). If A cz X is an open or closed inverse set, then f | A: A -*-/[/!] is 

quasi-compact (continuity off not needed for this part). 

101.5(b). If {X, 8T) is locally connected, then so is ( Y, ). 

101.5(c). ( Y, ST') is a Tx-space if and only if [y] is closed for each y e Y. 

101.5(d). If for each y e Y,f~l[y\ is connected, and if U is a connected open 

or closed subset of Y, then fl[U] is a connected subset of X. 

101.6. Theorem. Suppose that X and Y are topological spaces and f:X —*■ Y 

is a quasi-compact surjection. Let & = {f~l[y]'.y £ Y). If 8# is an u.s.c. (a 

l.s.c.) decomposition of X, then f is a closed (an open) mapping. 

Proof. Keeping in mind that f:X-+ Y is quasi-compact and that & is 

upper (lower) semicontinuous, we wish to show that/ is a closed (an open) map¬ 
ping. To do this, let S be a closed (an open) subset of X. Notice that /[S] = 

/[/ '[/ [5]]]. From the definition of ^,/_1[/[5]] is the union of the collection of 
all elements of 8% that intersect S. Then, since is an u.s.c. (a l.s.c.) decomposi¬ 

tion,/-1 [/[S]] is a closed (an open) subset of X. Notice, however, that/-1[/[S]] 
is an /-inverse set; since it is closed (open) and/is quasi-compact, then 

/[f-'ifiS}]] =f[S) 

is closed (open) in Y. Thus, we have shown that/is a closed (an open) mapping. 
From 100.4, 101.4, and 101.6, we obtain the following. 

101.7. Theorem. Suppose that f: X —> Y is a continuous surjection. Let 

& = {/-1 [>’]:>’ e Y). Then f:X -> Y is a closed (open) mapping if and only if 

f is quasi-compact and 9t is an u.s.c. (a l.s.c.) decomposition of X. 

EXERCISES: QUASI-COMPACT MAPPINGS 

1. Prove Remarks 101.1 and 101.2. 

2. Prove parts (a), (c), and (d) of Theorem 101.5. 

3. Show that if a continuous surjection is one-to-one, then it is a 
homeomorphism if and only if it is quasi-compact. 

4. If / is a continuous compact mapping from one metric space 
onto another, is it necessarily a quasi-compact mapping? 

5. Prove the following proposition: 

Iff:X-> Y is a continuous quasi-compact surjection, then 
g: Y —> Z is continuous if and only if g °/; X —*■ Z is continuous. 

6. Prove that the composition of two continuous quasi-compact 

surjections is a continuous quasi-compact surjection. 

7. We have previously proved that normality is preserved under a 
closed continuous surjection (see 95.5). Give an alternate proof 
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of this fact by making use of 100.3 and 100.4. (See [35] for a 
proof of this proposition and for other theorems about open, 

closed, and quasi-compact mappings.) 

102. THE QUOTIENT TOPOLOGY 

Suppose that X is a set and R is an equivalence relation in X. Then the set 

{y?[.v]:x e X} of all ^-equivalence classes is called the quotient set X by R and is 

denoted by X/R. 

102.1. Definition. The quotient or natural mapping. Let X be a set and R 

an equivalence relation in X. The mapping XF: X —>■ X/ R given by 'F(v) — R [,v] is 

called the quotient mapping or the natural mapping of X onto XjR. 

We make the following observation about T. 

102.2. Remark. For each subset U <= X, 

vF-1[xF[t/]] = /?[£/] = {x:x e X and u R x for some u g U). 

Suppose that {X, XT) is a topological space and R is an equivalence relation in 

X. We shall be able to define a useful topology for X/R that inherits various 
properties from (X, ST). Our study of this problem will make use of the quotient 

mapping T: X —X\R. To do this we can put the problem in a more general 

setting as follows: 

Suppose that (X,.T) is a topological space, Y is a set and f\X~* Y is a 
surjection. Can we define a useful topology XTf for Y such that f: (X, IT) —> 

(Y,XTf) is continuous? Now suppose that XT x is any topology for Y for which 
/: (X, XT) —*■ ( Y, Tx) is continuous. Since ( Y, XT j) is the image of (X, XT) under 

a continuous mapping, ( Y, XT j) will possess certain properties if (X, XT) possesses 

those properties. Connectedness and compactness are examples of such properties. 
Furthermore, if /: (X, XT) —► ( Y, XT j) is continuous and if XT % is smaller than XTx, 

then f: (X, XT) —► ( Y, XT j) is also continuous. Our strategy will be to choose a 

topology XT f for Y that will turn out to be the largest topology for Y with respect 
to which / is continuous on (X, XT). The name “quotient topology” in what 

follows is motivated by the application of that topology to the quotient set X/R. 

102.3. Theorem. Let (X, XT) be a topological space, Y a set, and f: X —> Y a 

surjection. Let ,Tf — {U: U <= Y and/_1[U] is open}. Then, 

102.3(a). XTf is a topology for Y. 

102.3(b). /: }X, XT) -> ( Y, XTf) is continuous. 

102.3(c). If XTx is any topology for Y for which f\ (X, XX) —> ( Y, .Tx) is 

continuous, then XTx c XT't. 

The proof of Theorem 102.3 is left as an exercise. On the basis of part (a), 

we make the following definition. 

102.4. Definition. Quotient topology. Let (X,X7~) be a topological space, 

Y a set andf:X->- Y a surjection. Then the topology XTf for Y as defined in 102.3 

is called the quotient topology for Y determined by f and (X, XT). 
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The next theorem gives a connection between the quotient topology and quasi- 
compact mappings. 

102.5. Theorem. Let f:(X,i3~(X)) -+ (Y,.9~(Y)) be a surjection. Then^(Y) 

is the quotient topology for Y determined by f: X —> Y and (X, .T (X)) if and only if 

f: (X, (X)) —► (Y, .T ( Y)) is continuous and quasi-compact. 

Proof. Suppose first that,^~(F) is the quotient topology for Y determined 

by f:X^ Y and (X, ^(X)). We know from 102.3 that/: (X,.T(X)) -> ( Y, .T( Y)) 

is continuous and we shall show further that it is quasi-compact. Let U be an open 
/-inverse set. We shall show that f[U) is open in ( Y, XT ( Y)). Since U is an inverse 

set, /_1 [/[t/]] = V. Thus, since U is open so is /-1 [/[£/]]. From the fact that 
Y) is the quotient topology we can conclude that f[U] is open. Hence, we have 

shown that f is a quasi-compact mapping. We assume next that f(X,^~(X))-+ 

(Y, ST ( Y)) is a continuous quasi-compact surjection and show that &~(Y) is the 

quotient topology. Let STs be the quotient topology for Y determined by f:X —>■ Y 

and (X, (X)). Then 3Tf = {f:fc Y and f~x[V] is open}. We need to show 

that ,T(Y) = 3~f. To see this, let W e XT( Y); then, since 

f.(X, ,T(X))^(Y,Sr(Y)) 

is continuous, f~x[W] is open and so W e .T f. Next let We.Tf. Then f~x[W] 

is open in X and, hence, is an open inverse set. Consequently, since we are 

assuming that /: (X, l?~(X))—>- ( Y, Y)) is quasi-compact, f[f~l[W]\ = W is 
open in (( F)); that is, W e ,c7~( Y). Thus, we have shown that XT( Y) — XTf. 

We now apply our results concerning the quotient topology to the quotient 
set X\R. Suppose (X, ST) is a topological space and R is an equivalence relation 

in X. Let'TLA' -> X/R be the quotient mapping as defined in 102.1. We shall use 
the notation 3~jR to denote the quotient topology for X/R determined by 4‘ and 

(x, r). 

102.6. Definition. Quotient space. Let (X, .T), R, and ^jR be as in the 

previous paragraph. The space (Xj R..y~j R) is called the quotient space determined by 

(X, XT) and R. When there is no chance for confusion, we shall use X/R to denote 

the quotient space. 

Observe that with R an equivalence relation in X and J? the corresponding 
decomposition, the set X/R is the same as 3%. Often the space that we are referring 

to as a quotient space is referred to as a decomposition space, especially when the 
point of view involves the decomposition rather than the corresponding 
equivalence relation R. 

If the decomposition of a space is upper or lower semicontinuous, the decom¬ 
position space inherits from X various other properties in addition to those it 

inherits because XF is continuous and quasi-compact. The following theorem is a 
useful tool for the investigation of such properties. 

102.7. Theorem. Suppose is a decomposition of (X,3~). Then the 

quotient mappingx L is closed (open) if and only if J# is an u.s.c. (a l.s.c.) decomposi¬ 

tion of X. 
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Proof. Let 8A be a decomposition of (X, ST) and let R be the corresponding 
equivalence relation in X. Consider the quotient mapping T’: (X, .T~) —► 
(X/R, ^/R). Note that 8% is precisely the decomposition of X into point inverses 
ofT. Since XF is quasi-compact and continuous, the theorem follows from 101.7. 

The following useful fact is also helpful in the study of decomposition of spaces. 

It follows at once from the previous theorem and Theorem 95.7. 

102.8. Theorem. Suppose 8$ is an u.s.c. decomposition of a space (X,lT). 

Let R be the equivalence relation corresponding to 8%. If each element of 8# is a 

compact subset of X, then T: (X, 8/~) —(X\R, ^~/R) is a compact mapping. 

Now that we know certain relationships between types of decompositions and 
the natural mapping, we can deduce information about the decomposition space. 

We do so by making use of the various theorems that we have proved. Some of the 
information about the decomposition or quotient space that we can deduce is 

tabulated in 102.9. The reader should verify the information contained there. 

102.9. Properties inherited by quotient spacer 

Assumptions Assumptions Properties inherited 

on on by 

(X, ,T) decomposition (XIR, STIR) 

compact compact 

connected connected 
Lindelof Lindelof 

separable separable 

locally connected locally connected 

normal u.s.c. normal 

Hausdorff u.s.c.; each element compact Hausdorff 

regular u.s.c.; each element compact regular 

locally compact u.s.c.; each element compact locally compact 

second countable u.s.c.; each element compact second countable 

separable metric u.s.c.; each element compact separable metric 

first countable l.s.c. first countable 

second countable l.s.c. second countable 

locally compact l.s.c. locally compact 

EXERCISES: THE QUOTIENT TOPOLOGY 

1. Prove Theorem 102.3. 

2. Verify the information contained in 102.9. 

3. Exercise on pseudometric spaces: 

Let X be a set. A mapping d: X X X —>- R is called a pseudo¬ 

metric for X provided it satisfies the following conditions: 

(i) d(x, x) = 0 for all x in X. 

(ii) d(x, y) = d(y, x) for all x and y in X. 

(iii) d(x, y) + d(y, z) ^ d(x, z) for all x, y, and z in X. 
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Observe that pseudometrics like metrics are nonnegative 
functions. For each x in X and positive number e, the e- 

neighborhood N(x\ e) of .y is defined to be the set {y:y e X 

and d(y, x) < e}. 

(a) Let 2d = {?V(.y; e): x e X, e > 0}. Show that 26 is a 

base for a topology .T(cl) for X. 

(X, d) is called a pseudametric space, and .T(d) as 
defined in (a) is called the topology for (X, cl) generated 
by d. When we speak of (X, d) as having a topological 

property, we shall mean that the corresponding space 
(X,2X(d)) has that property. Furthermore, if (X,2X) 

is a topological space for which there exists a pseudo¬ 
metric cl for which 2T is the same as the topology (cl) 

that is generated by d, then (X, .T) is said to be a pseudo- 

metrizable space. 

(b) Prove that pseudometrizability is a topological property. 
(c) Give an example of a psuedometric space that is not a Tx 

space. 
(d) Prove that a pseudometric space is a metric space if and 

only if it is Tv 

(e) Prove that every pseudometric space is a first countable 

normal space. Prove further that a pseudometric space is 
second countable if and only if it is separable. 

(f) Give an example of a B.W. compact pseudometric space 

that is not compact. 
(g) Prove that for pseudometric spaces the properties of 

compactness, countable compactness, and sequential 
compactness are equivalent. 

(h) Let (X, d) be a pseudometric space. Show that for each 

x e X, y e cl ({.y}) if and only if d(y, x) = 0. Is cl ({.v}) 

a compact set? 
(i) Let (X, d) be a pseudometric space and let R be the rela¬ 

tion defined in X as follows: 

.y Ry if and only if d(x,y) = 0. 

Show that R is an equivalence relation in X. Show also 

that for each ,v e X, /?[.y] = cl ({.y}). Prove, furthermore, 
that the quotient mapping T:X —► XjR is both open 
and closed. 

(j) Let (X, cl) be a pseudometric space. Let R and VF be as in 

part (i). Prove that (X R, 2X(cl) R) is metrizable. Further¬ 
more, show that there is a metric d* for (X'R, 2X (d) R) 

such that for all .y and y in X, d(x, y) — d*(x¥(x), 

'F(jk)). 

Note: It should be clear to the reader that there are many 

metric concepts that can be extended directly to pseudometric 
spaces. For example, total boundedness, completeness, uni¬ 

form continuity, and uniform convergence can all be extended 
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to the setting of a pseudometric space and to an even more 

general type of space known as a uniform space. For more 

information about pseudometric and uniform spaces see 

[7], [26], or [32], 

103. DECOMPOSITION OF A DOMAIN SPACE INTO POINT INVERSES 

In this section we shall give further consideration to the decomposition of a 
domain space into point inverses off. In particular we shall show that if/: X-* Y 

is a continuous quasi-compact surjection and 3# is the decomposition of X into the 

point inverses of/, then the associated decomposition or quotient space is homeo- 

morphic to Y. 

Suppose that X and Y are topological spaces and dA = {/_1[y]:.v e Y). 

Then the corresponding equivalence relation R in X is given by 

.yx R ,y2 if and only if /(.Yj) = /(.y2). 

In what follows it is important to keep in mind that if ^[.yJ = /?[.y2], then 

./(AT) /(.Y2). 

Next letH’: X —► XfR be the quotient mapping. By making use ofxF, we define 

the mapping Ir.XjR -> Y as follows: For each p e XjR, VF J[p] — /?[*] <= x for 

some .y e X. Notice that/[/?[.v]] = {/(.y)}. We then define h(p) — f (.y). 

It should be clear from the previous remarks that h is well defined; that is, 

the value of h(p) is independent of the particular representation of /?[*]. In 

other words, if T_1[/)] = R[x] = flfy], then/[/?[.y]] = /[/?[>’]] = {/(*)} = {/(>’)}• 
The following remarks will also be useful. 

103.1. Remarks. Let f'.X —*■ Y, T:X—► XjR, and h:XjR-+ Y be as in the 
previous discussion. Then 

103.1(a). h:X!R —► Y is a bijection. 

103.1(b). hQ¥(x)) = /(.y) for each .y e X. Hence,/ = h °VF. 

103.1(c). Because of (b), we have the following commutative diagram: 

XIR 

103.1(d). h[U] — /[XF‘ 1 [T/]] for each subset V c XjR. 

103.1(e). If A is a subset of X, then A is an /-inverse set if and only if A is a 
T-inverse set. 

We leave the proofs of parts (a) through (d) as exercises for the reader and 

prove part (e). 

Proof. Let A be a subset of X. Then 

f^iflA]) = (hoV)-i[h oT[/] ='F-HA-1[/il'FM]]]]. 



240 Chapter Nine 

From (a), /; is a bijeetion. Hence, the previous set identity becomes 

From this and 101.1 we see that A is an /-inverse set if and only if A is a xF-in verse 

set. 

103.2. Theorem. Lei f.X-> Y he a continuous surjection. Let hfl be the 

decomposition of X into point inverses. Then the bijeclion Ir.X/R —> Y in 103.1 is a 

homeomorphism if and only if f is quasi-compact. 

Proof. Let XF and h be as in the previous discussion and in the diagram in 

103.1(c). We first assume that f is quasi-compact and show that h is a homeo¬ 
morphism. Toward that end, let U be an open subset of X/R. Then xF~'[fy] is 

open in X. Notice that by 103.1(e)xF ’[(/] is also an /-inverse set. Hence, since/ 
is quasi-compact,/[VF 1 [L/j] is open in Y. But li[U] /[XF '[£/]]. Hence, h[U] 

is open in Land h is an open mapping. We complete the proof that h is a homeo¬ 
morphism by proving that h is continuous. To do this, let U be open in Y. Then, 

since/ is continuous, / ’[£/] is open. But/ 1 [f7] is also a xF-inverse set. Hence, 
since XF is quasi-compact, XF[/ 1 [L/]] is open in X/R. But XF[/~1 [(/]] = lrl[U] 

and, hence, h ’[(7] is open. We may thus conclude that h is continuous and, 
because it is also open and a bijeetion, li is a homeomorphism. 

Next we assume that h is a homeomorphism and show that/is quasi-compact. 

To do this, let U be an open /-inverse set. We show that f[U] is open in Y. We 
note first that U also is an open xF-inverse set and, since XF is quasi-compact, 

xF[t/] is open in X/R. Since h is a homeomorphism, /;[xF[i/]] is open in Y. Then 
because f — h ° x¥, f[U] = /?[xF[t/]j and, hence, is open in Y. Thus,/ is quasi¬ 

compact. 

103.3. Example. Let S be the unit circle in R2 and let/: [0, 1] —> 5 be given 
by /(.y) = (cos (2ttx), sin (27t.y)). Since / is a continuous mapping defined on a 

compact space and S' is HausdorfT,/is a closed mapping. The mapping/is there¬ 
fore quasi-compact. Let R be the equivalence relation in [0, 1] given by .y, R.y.> 

if and only if (,yx = x2) or (xt = 1 and ,y2 = 0) or (xq = 0 and ,y2 =1). By 103.2, 
X/R is homeomorphic to S; that is, XjR is a simple closed curve. 

103.4. Example. Let / be the closed real interval [0, 1] and let R be the 
equivalence relation in / X / defined by: (uq, a2) R (bx, b2) if and only if 

(i) [ax, a2) = (/?!, b2) or 
(ii) a2 = b2 and ax = 1, bx = 0 or 

(iii) a2 — b2 and uq = 0, bx = 1. 

We can think of forming the quotient space by ‘‘pasting together” the two 
vertical edges of the rectangle shown in the accompanying diagram. By making 

use of Theorem 103.2, we shall show that the quotient space is topologically 
equivalent to a cylinder. In order to do this let 

B = {(,y!, .y2, ,y3):.y2 4- .Y2 = 1 and 0 : ' ,y3 ^ 1} c R3 

and note that B is a cylinder. Next let /: / X / -> B be the continuous surjection 
given by: 

/(fj, t2) (cos (2TTtj), sin (2ntl), t2) for every (tlf t2) in / X I. 
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A A' 

B' 

i 
> 

Figure 22. 

f(A) = f(A') 

f(B) = f(B') 

Observe that the decomposition S# of X into /^-equivalence classes is the same as 

the decomposition of X into point inverses of /. The mapping/is a continuous 

closed surjection and, hence, is quasi-compact. By Theorem 103.2, X/R is 

topologically equivalent to B and is, therefore, topologically equivalent to a 
cylinder. 

A quotient space X\R can be thought of as the space obtained by identifying 
the points that are to go into the same /^-equivalence class. For example, in 103.3 

we identified 0 and 1 as belonging to one equivalence class and any other point x 

as belonging to an equivalence class with x as its only member. Furthermore, what 

we have been calling the quotient topology is often called the identification 
topology. Moreover, if /: (X, ST (A')) —> ( Y, { Y)) is a continuous surjection such 

that .T( Y) is the same as the quotient or identification topology for Y determined 

by/and dT(X), then/is called an identification mapping. From 102.5 we see that 
a mapping is an identification mapping if and only if it is a continuous quasi¬ 

compact surjection. 

EXERCISES: DECOMPOSITION OF A DOMAIN SPACE INTO POINT INVERSES 

1. Complete the proof of 103.1. 

2. Let R be the equivalence relation for R2 as given in Exercise 4, 

page 233 . We can visualize the quotient space as being obtained 
by collapsing the unit closed ball into one point. We might, 

therefore, guess that R2/R is topological plane. Prove that this 

is correct. 

3. (Torus). Let / be the closed real interval [0, 1], We define an 
equivalence relation R for / X / by listing the /^-equivalence 

classes as follows: 

For 0<a1< 1, 0 < o2 < 1 > 

R[(tfi, fl2)] = {(flj, a2)}. 

For ax = 0 or av = 1, 0 < a2 < 1, 

*[(fli, 0a)] = {(0i, «2), (1 - «i, a2)}. 

For 0 < ax < 1, a2 = 0 or a2 — 1, 

rt[(0i, 02)] = {(«i, a2), (au 1 - o2)}. 

For <3! = 0 or ax = 1, a2 = 0 or a2 — 1, 

*[(0i, 02)1 = {(0, 0), (0,1), (1,0), (1,1)}. 
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One can visualize the quotient space (I X 1)1 R as being 
obtained by first pasting together two opposite edges of / X / 

to form a cylinder and then pasting together the top and bottom 

of the cylinder to form a torus. 
Show that (/ X /)//? is topologically equivalent to 5 X S 

where S is the unit circle in R2. 
Note: For other examples of this type the reader is referred to 

[6] and [28]. 

104. TOPOLOGICALLY EQUIVALENT MAPPINGS 

Refer to the diagram in 103.1(c) and recall from Theorem 103.2 that if/is 

continuous and quasi-compact, then Y and X/R are topologically equivalent 

spaces. Because h is a homeomorphism and / = h °T, it appears that / and 'F 
should act very much alike from a topological point of view. The sense in which / 
andT act alike is termed “topologically equivalent” and is defined next. 

104.1. Definition. Topologically equivalent mappings. Suppose Xx is 

topologically equivalent to X2,and Yxis topologically equivalent to Y2. The mappings 

: Xx —> Yl and f/. X2 -*■ Y2 are said to be topologically equivalent mappings if there 

exist topological mappings h1:X1 —► X2 and h2: Yx —y Y2 such that 

fi = Kl °A ° hi- 
We see from the definition that if'fi'.X1-+ Yx and/2:T2-+ Y2 are topologically 

equivalent mappings, then Xx and X2 are topologically equivalent spaces and the 
spaces Yx and Y2 are also topologically equivalent. Furthermore, there are 
topological mappings h1:X1 —> X2 and h2: Y1 -* Y2 for which we have the following 

commutative diagram: 

fi 

X1 -> Y, 

The commutativity of the diagram should make it apparent that a topological 

property is invariant under fx or f~x if and only if it is invariant under /, or f~x, 

respectively. It is not hard to verify the fact that the relation topologically equivalent 

for mappings, is an equivalence relation. Thus, the name “topologically equiva¬ 
lent mappings” is an appropriate one for the concept under discussion. 

EXERCISES: TOPOLOGICALLY EQUIVALENT MAPPINGS 

1. Verify that “topologically equivalent” is an equivalence relation. 

2. Show that if /, and /> are topologically equivalent mappings, 
then /, is continuous, open, closed, or compact, if and only if 
f2 has that property. 

h 2 

v 
X. 

12 
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3. Verify that with / and h as in 103.1, if/is quasi-compact, then 

/ and XF are topologically equivalent. 

105. DECOMPOSITION OF A DOMAIN SPACE INTO 

COMPONENTS OF POINT INVERSES 

So far we have considered the decomposition of the domain space of a mapping 

into point inverses. Sometimes this is referred to as the “natural decomposition’’ 
induced by the mapping. Consideration of the decomposition of the domain space 

of certain mappings into components of point inverses has been of considerable 

importance in the study of continuous mappings. 

105.1. Theorem. Suppose X and Y are Hausdorfffirst countable spaces and 

f:X —> Y is a compact continuous surjection. Let 8ft be the decomposition of X into 

components of point inverses off{i.e., 8ft = {F:F is a component off~l[y]for some 

y G F}). Then 8ft is an u.s.c. decomposition of X. 

Proof. (The proof will make use of the fact that, by Theorem 95.8,/is a 
closed mapping.) Let A be a closed subset of X and let A* be the union of those 

elements of 8ft that intersect A. We complete the proof by showing that A* is a 

closed subset of X. To prove this, let p G cl (/!*). We shall show that pe A*. 

There is a sequence (x,) in A* that converges top. For each i e P, there is a Kt£ 8ft 

such that x( G AT, and n A 0 . Note that each K, is a continuum. Since/ is 

continuous, (/(x,)) converges to f(p). The set Z = {f(xi):i e P} U {/(/?)} is 
compact. Then, because/ is a compact mapping, /-1 [Z] is compact and closed. 

Since (J {Kp.i gP}c /-1[Z], cl ((J{A//g P}) is contained in /-1 [Z] and is 
compact. Further, since p G lim inf (A)), we may use Theorem 98.4 to conclude 

that lim sup (AT,) is a continuum. 

We show next that lim sup (A/ <= /—1 [/(/?)]. To see this let z g lim sup (A/). 

Then there is a subsequence (A/) of (A)) and a sequence (zt), with zf e A/, such 

that z{ converges to z. But/(zt) = /(xjV.) so that (/(zj) converges to f(p). Flence, 

/(z) = f(p) and, consequently, z e/ x[/(/?)]. We have thus shown that lim sup 

(Kt) c/-1 

Next choose e Kt n A for each i g P. Some subsequence (ynj of (jq) 

converges to a point y e lim sup (K,). Since A is a closed subset, y e A. Also, 

recall that /[lim sup (A,)] = {/(/?)}. We now have y and p as elements of lim 

sup (A',), which is a connected subset of/ 1[f(p)]. Thus, y and p are elements of 
the same component off~f[p]- Then, since y G A, p G A*. Flence, A* is closed. 

106. FACTORIZATION OF COMPACT MAPPINGS 

It is often easier to study a mapping / by writing/as a composition f2°f 

where the behavior of the factors fi and/, is known or easier to determine than 

that of /. (See comments in section 14.) A w'ell known and now widely used 
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factorization theorem was discovered independently by S. Eilenberg [ 8 ] and 

G. T. Whyburn [33]. The theorem asserts that if/is a continuous mapping from 
one compact metric space onto another, then f can be factored into the form 
y2 o f in which fx and /2 are continuous, each of the point inverses of fx is a con¬ 

tinuum (monotone mapping), and each of the point inverses of f2 is totally dis¬ 
connected (light mapping). Later the theorem was generalized from the setting of 

mappings on compact spaces to that of compact mappings ([36]). 

106.1. Definitions. Monotone mappings, light mappings. Suppose X and Y 

are topological spaces. A mapping f: X —► Y is said to be monotone if for each 

y e/[X],/_1 [>’] is a continuum. Tl\e mapping f:X -*■ Y is said to be light provided 

that for each y e f[X],f~x[y] is a totally disconnected set. 

Before proving that certain compact mappings have monotone and light 
factors, we list a few preliminary results which will be useful. Since the first factor 
in the factorization will be a natural mapping into a decomposition space, we 

include some results for factorizations in which the first factor is continuous and 
quasi-compact. 

106.2. Theorem. Suppose X, Y, and Z are topological spaces and/: Z —► Y, 

fx'.X->Z, and fp.Z -> Y are surjections such that f — f2 °fx. The following con¬ 

clusions hold: 

106.2(a). Suppose f is continuous and quasi-compact. Then f is continuous 

if and only if f2 is continuous. (See Exercise 5, page 2 3 4.) 

106.2(b). Suppose fx and f2 are compact mappings. Then f is a compact 

mapping. 

106.2(c). Suppose fx and f2 are continuous and f is compact. Then f> is com¬ 

pact. IfZ is Hausdorjf, f is also compact. 

The proofs of (a) and (b) are left as exercises. We prove (c). 

Proof. We first prove that f2 is compact under the given assumptions. Let 
K be a compact subset of Y. We wish to show that is compact. Now/is 

compact, so f~x[K] is compact; hence, ff[fjx [A']] is compact. Since fx is 
continuous, the image of ff[fjx[K]\ under fx is compact. Hence, 

=/2x[ K\ 

is compact. 
We next assume that Z is Hausdorff in addition to the other assumptions 

stated in (c). Let H be a compact subset of Z. We complete the proof by showing 
that ff[H] is compact. Notice first that, since Z is Hausdorff, H is closed and, 
hence, so is ff[H]. Also note that 

and, thus, 

c: f?[f?[fx[//]]] =f-1[ft[H]]. 

Since /2 is continuous, /,[//] is compact, and since / is a compact mapping, 
/_1[/2[//]] is compact. Thus,/“*[//] is compact since it is a closed subset of the 

compact set/ '[/2[//]]. 
We next state a form of the monotone light factorization theorem for com¬ 

pact mappings [36], 
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106.3. Theorem. Suppose X and Y are Hausdorjf first countable spaces and 

Y is a compact continuous surjection (and by 95.8, dosed). Then there is 

a space Z and there are compact closed continuous surjections fp.X^-Z andfp.Z —>■ Y 

such that fx is monotone, f2 is light, andf — f2° fx. 

Proof. The proof of Theorem 106.3 will be broken down into a series of 
steps. In each of the parts listed the reader should provide a proof if no proof is 

given in the text. 

Let f'.X ^ Y be as in the statement of Theorem 106.3. Let 3% be the de¬ 

composition of X into the components of point inverses of/ and let fx:X —► XjR 

be the corresponding natural mapping. For each zeXjR, note that j ij j1 [z]\ 

is a set with exactly one element. Call that uniquely determined element /2(z). 

Thus, there is defined a mappingfp.XjR —> Y. Each of the following then holds: 

106.3(a). f — fz °/i- 

106.3(b). 3# is an u.s.c. decomposition of X. 

106.3(c). fx and /> are continuous closed mappings. 

106.3(d). fx and/2 are compact mappings. 

106.3(e) fx is a monotone mapping. 

106.3(f). /> is a light mapping. 

Proof of (c). The mapping/! is continuous because it is the natural mapping 
and, by Theorem 102.7, it is closed, because 3% is an u.s.c. decomposition of X. 
Moreover, it follows from 106.2 (a) that/2 is continuous. We complete the proof 

of this part by showing that /2 is closed. To see this, let I be a closed subset of 

X[R. Since f2[L] = f[fjl[L]\, it follows from the continuity offx and the closed¬ 

ness of/that fo[L] is a closed subset of Y. 

X/R 

Figure 23. 
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Proof of (f). Let y e Y, and suppose K is a component off~’[y]. We need to 
show that there is exactly one point in K. Since /, is monotone, by 101.5(d), 

f~l[K) is connected. Notice also that f[f~l[K]\ — /2[A'] = {>’}. Thus, the con¬ 
nected set f~l[K] is contained in a single component Q of/_1[y], Hence, A' 
fx[f^[K]\ c: fx[Q\. But since there is exactly one point in /,[(?], there is exactly 

one point in A". Hence,/2 is light. 
The proof is complete if note is taken of the fact that /, and /2 satisfy the 

requirements for fx and/2 in the statement of the theorem. 

EXERCISES: FACTORIZATION OF COMPACT MAPPINGS 

1. Verify parts (a), (b), (d), and (e) of 106.3. 

2. Let Y be a continuous surjection where X and Y are 
simple closed curves. Let D be the set of points y e Y for w hich 

/_1[y] consists of a single point. Prove that f is monotone if 
and only if D is a dense subset of Y. Show that Y — D is 
countable if f is monotone. 

3. Suppose f'.X—► Y is as in Theorem 106.3. Prove that if f is 
open, then the second factor obtained in the conclusion is open. 

4. Suppose f:X—> Y is a continuous surjection and /2 °/, and 
/* of* are two factorizations off Whyburn, in [36], calls the 

two factorizations strictly topologically equivalent provided 
there is a homeomorphism ft from the range space off onto the 

range space of/* such that /;»/,= /* and/2 = f* ° /;. 

7 

Y 

Z. 

Let /: X —>■ Y be as in Theorem 106.3. Suppose/2 °and 

ft °ft are tw0 factorizations of /, each of which satisfies the 
properties of the factorizations guaranteed by Theorem 106.3. 
Prove that the factorization f2 o fx is strictly topologically 

equivalent to the factorizationf* °f*. 

Hint: Use the monotone property offx and the continuity 

property of /,* to show that for each r in the range of /j, 
/*[/“'[z]] is connected. Then use not only the fact that/* is 

light but whatever else is necessary to show that there is exactly 
one element in/*[/"'[z]]. This should now suggest a suitable 

candidate for a homeomorphism It that satisfies the required 
properties. The various given properties of the factors /l5/2, 

Jt 'ft nee(fad to show that It is indeed a homeomorphism. 
(See page 142 in [33].) 
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5. Give as many properties as you can that must be possessed by 

Z in Theorem 106.3. Then determine what additional properties, 

if any, must be possessed by Z in each of the following situa¬ 

tions: 

(a) X is compact. 

(b) X is a separable metric space. 

(c) X is normal. 
(d) X is second countable. 
(e) X is locally connected. 
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Net and Filter Convergence 
O 

The notion of convergent sequence plays an important role in the investigation 

of first countable spaces and mappings on first countable spaces. Recall, for 

example, that if X is a first countable space, then x is a limit point of a subset S of 
X if and only if there is a sequence in S — {x} that converges to x. Of course, 

since limit points can be characterized in terms of sequences, so can closed sets. 
We showed that for the class of first countable spaces, a space is Hausdorff if 
and only if each convergent sequence has a unique limit. If in addition to being 

first countable a space is Lindelof, then compactness is equivalent to sequential 
compactness. Recall, finally, that if a mapping is defined on a first countable space, 

then it is continuous if and only if it preserves convergent sequences and their 
limits. That is, if/is a mapping from a first countable space X into a space Y, then 

f is continuous at x in X if and only if f satisfies the following condition: if a 
sequence (x,) in X converges to x, then (/(xt)) converges to/(x) in Y. 

The characterization theorems that we have just reviewed do not hold for 
general topological spaces. However, there are two types of convergence, net and 

filter convergence, with respect to which we can obtain analogous characterization 
theorems. In this chapter we shall make a study of these two types of convergence. 

107. NETS AND SUBNETS 

Recall that a sequence in a set X is a function from the set F of all positive 

integers into a set X. It is obvious that the relation > in P plays a critical role in 
proofs involving convergence of sequences in a topological space. However, in 

many such proofs involving convergence of sequences in topological spaces it is 
not the fact that P is totally ordered (see 22.5) that is essential, rather it is that P 
satisfies the somewhat weakened ordering properties stated in the next definition 

248 
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107.1. Definition. Directed set. Suppose that D is a nonempty set and 

y is a relation in D. Then (D, y) is called a directed set or a directed system pro¬ 

vided that y satisfies the following properties: 

107.1(a). ^ is transitive in D (see 19.2). 

107.1(b). 2? is reflexive in D (see 19.2). 

107.1(c). If a e D and b e D, then there is a c e D such that c y a and c y b. 

If (D, y) is a directed set and a y b, then we say that a follows b or b precedes 

a. Also, we say that 22 is a direction for D. 

Following are a number of examples of directed sets. The verifications that 

they are indeed directed sets are left as exercises. 

107.2. Example. Let X be a set. Recall that the power set 2P(X) is the 

collection of all subsets of X. The relations => and <= direct SP(X). Thus, 
(&(X), =3) and (8P(X), <=) are directed sets. 

107.3. Example. Let (X, F) be a topological space. Let IF be the collection 
of all closed subsets of (X, ST). Then (F, <=), (F, =>), (F, <=), and (F, =>) are 

directed sets. 

107.4. Example. Let (X, F) be a topological space. Let x e X and suppose 

Arx is the neighborhood system of x. Then (•Fx, c:) and (Af., 1=1) are directed 

sets. 

107.5. Example. Let [a, b] be a closed interval in R. By a partition of 

[a, b], we mean a finite set of points {x0, xx, x2, . . . , x„} such that a = x0 < xx < 
x2 • • • < x„ = b. Let 8A\a, b] be the collection of all partitions of [a, b\. 

(d?[a, b], =>) is a directed set. 

107.6. Example. (Filter.) Suppose X is a nonempty set and F is a nonempty 

collection of nonempty subsets of X such that 

107.6(a). if Re F and S e F, then R n S e F and 

107.6(b). if R e F, then each subset of X that contains R is also an element 

of F. 

F is then called a filter in X. 

If F is a filter in X, then (F, c) and (F, =>) are directed sets. 

107.7. Example. Let X be a set and ^ be a nonempty nested collection 
(see 22.6) of subsets of X. Then (f?, =>) and (f$, <=) are directed sets. 

107.8. Example. Let (Au y) and (A2, y *) be directed sets. The following 

defines a relation which directs Ax X A2: 

(au a2) (bu b2) if and only if ax y bx and a2 y *b2 

Since the set P of all positive integers is directed by the relation y (given the 

usual meaning), (P, y) is a directed set. Thus, we may regard a sequence as a 
function defined on a certain directed set. The notion of a sequence is generalized 

to that of a net by allowing the domain to be an arbitrary directed set. 
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107.9. Definition. Net. Let Xbe a set. A net s in X is a map s:(D. It) —> X 

where (D, 22) is a directed set. Nets are also called generalized sequences. 

Analogous to the notation used for sequences, if s:(D, t) -> X is a net, then 
for cl e D we shall sometimes write sa for s(cl). The notation (5(a), aG D, S) or 

the even more simple notation (s(a)) will be used to designate a net defined on the 

directed set (D, ^). Even though there are more than one directed set involved in 

a discussion, it usually will cause no confusion if the same symbol (e.g , t) is used 
for the various relations involved. Of course, a very specific relation with meaning 

of its own is sometimes used. In that case a standard notation for that relation 

should be used. 

107.10. Example. Let A be a set and let be a filter in X (see 107.6). 
Let s be a choice function for guaranteed by the axiom of choice (24.1). Thus, 
s(U) e U for each U e SE. The map s:(SE, c:) —> X is a net in X. 

107.11. Example. Let f be a bounded real-valued function defined on a 
closed interval [a, b]. Let 3?[a, b] be the collection of all partitions of [a, b] 

(see Example 107.5) and let U\{3P[a, b], ^)—>-R and L\{3A\a. b), =>)->R be 

given by 

U(P) = id.u.b. (/[[*,_,, xf]]))(xt - x,._j) 
2=1 

and 

L(P) = i(g-l.b. (/[[xt._l5 xi]]))(x! - xt—x) 
2=1 

for each partition P = {x0, xl9 ... , x„} 6 £^[<7, b], U and L are nets in R. They are 
the familiar upper and lower sums from Riemann integration theory. 

Recall that if 5:P —► X is a sequence in X, then s*:P —► X is a subsequence of s 

provided there exists a strictly increasing map N:P —> P such that s* = s ° N. 

An analogous notion for nets is that of a subnet as defined next. 

107.12. Definition. Subnet of a net. Let s\(D, ^)—>X be a net in X. 

Suppose N:(D*, ^ *) —»- D is a net such that for each p e D there is a p* e D* 

such that 

d* it* p* implies N(d*) it p. 

Then the net s ° N:(D*, 22) —> X is called a subnet of s. 

As with sequences, the notation is sometimes used instead of s{N{cl)) 

for a term in the subnet. 
Note that the “strictly increasing” feature of the function N in the definition 

of subsequence does not appear in the definition of subnet. Thus, each subsequence 
of a sequence is a subnet but not every subnet of a sequence is necessarily a sub¬ 
sequence. 

EXERCISES: NETS AND SUBNETS 

1. Verify that the examples in 107.2 through 107.8 are directed sets. 

2. Let s* be the sequence (1, 2, 3, 3, 4. 5, 6, 6, 7, 8. 9, 9, . . .) 
formed from the sequence s ■ (/') by repeating every third term 
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of the original sequence. Is s* a subsequence of 5? Is 5* a subnet 

of si 

3. Suppose s* is a subnet of s and s** is a subnet of 5*. Show that 

s** is a subnet of s. 

108. CONVERGENCE OF NETS 

The notion of convergent sequences in topological spaces can be generalized to 

convergent nets. As with sequences, unless the space is Hausdorff, the convergence 

need not be unique. 

108.1. Definition. Let X be a topological space. Let (xa, oce D. 22) be a 

net in X andp e X. Then (xa) converges to p provided that for each open neighborhood 

U of p there exists an a0 £ D, such that for a 22 a0, xa £ U. 

108.2. .Example. Let Abe a topological space, x e X, and A"x the neighbor¬ 

hood system of .v. For each U £ jVx, let x(U) £ U. Then the net (x(U), U £ JEX, <=) 

converges to x. 

108.3. Example. In Example 107.11, (U(P), P£ SA[a, b], ) converges to 

fnf(x)dx, the upper Riemann integral of f on [a, b], (L(P), P e 3P[a, b], =>) 

converges to P/(x) dx, the lower Riemann integral off on [a. b], where 

and 
b 

f(x) dx = l.u.b. {L(P): P £ !P[a, 6]}. 
a 

108.4. Definition. Cofinal subset. Suppose that (D, 2s) is a directed set. 

A subset D* of D is said to be a cofnal subset of D provided that for each d £ D 

there is a d* £ D* such that d* 22 d. 

108.5. Remark. Let (D, 22) be a directed set. If D* is a cofinal subset of 
/), then 2g restricted to D* is a direction for D* and, thus, (D*, 22) is a directed 

set. 

Proof. Suppose that a* and b* are elements of D*. Then there is an 

element c in D such that c follows both a* and b*. Then, since D* is a cofinal sub¬ 
set of D, there is a c* that follows c. From the transitivity of 22, c* follows both 

a* and b*. 

The following theorem gives some useful properties of nets. Some of the 

properties are suggested by analogous ones for sequences. The proofs are left as 

exercises. 

108.6. Theorem. Suppose that X is a topological space and (.va, a £ D, =2) 

is a net in X. Then 

108.6(a). If xx = x for each a e D, then the net (xa) converges to x. 
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108.6(b). If D* is a cofinal subset of D, then (xa, a e D*, 22) is a subnet of 

Oa, aeO,^), 

108.6(c) If the net (xa) converges to a point p, then every subnet of (xa) also 

converges to p. 

108.6(d). Let a e D and Da = {a:a e D and a 2: a}. Then the relation 22 , 

restricted to Da, directs Da, and (xa, a e Z)5, 2;) is a subnet of (xa). 

Recall that in first countable spaces we were able to characterize limit points 
and points in the closure of a set in terms of convergent sequences. (See 87.3 and 
Exercise 4, page 19 7.) The next theorem is an analogous characterization in terms 

of nets for general topological spaces. 

108.7. Theorem. Let X be a topological space. Then p is a limit point of a 

subset S if and only if there exists a net (xfi in S — {p} that converges to p. Also, 

p is in the closure of S if and only if there is a net (jta) in S that converges to p. 

Theorem 108.7 is easy to prove by making use of 108.2. The proof is left as 

an exercise. 
Every convergent sequence in a Hausdorff space has a unique limit. Among 

first countable spaces those that are Hausdorff can be characterized by this prop¬ 
erty, although general Hausdorff spaces cannot be. However, we are able to 

characterize all Hausdorff spaces as those for which convergent nets have unique 
limits. This fact is the content of the next theorem. 

108.8. Theorem. A topological space is Hausdorff if and only if each net 

converges to at most one point. 

Proof. Let X be a Hausdorff space. Suppose a net (.va, a eD, ^) in X 

converges to p and q. If/? =£ q. then there are disjoint neighborhoods Nv and Na 

ofp and q, respectively. There are elements a(p) and a{q) in D such that if a ' a(p) 
and /? 22 a(</), then xx e Aj and xfi e Nq. Since D is a directed set. there is a y e D 

such that y ^ a(p) and y 22 a(q). But now x(y) e Np n NQ, a contradiction to the 

fact that Np and NQ are disjoint. 

Next assume that X is not Hausdorff. Then there exist two points x and y 

in X such that the neighborhood systems . I x and . (j of x and y, respectively, 
satisfy 

U n V # 0 for each U e Jf'x and V e y. 

Hence, for each (U, V) e jVx X Ay, we may choose a z(U, V) e U n V. Define 
the relation 22 on A 'x X Arv by 

(tfi, VJ ^ (l/t, V2) 

if and only if Ux <= U2 and Vx c: V2. The relation 2: directs .4 j. X . I v. We finish 

the proof by showing that the net (z(U, V), (U, V) 6.4 j. X. I ^) converges to 

x and toj. Let U0 be a neighborhood of x. Choose V0 6 . ( \. Then consider any 
(£/, V) 6 JTx X such that (U, V) ^ (C0, V0). Then z(U, V) e U n V c U0. 

Hence, the net {z(U, V)) converges to ,v. By a completely analogous argument, 
(z(U, V)) converges to y also. 

Since the previous theorem shows that a net (.va) in a Hausdorff space has at 
most one limit, we may make the following definition. 
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108.9. Definition. Limit of a net. Suppose X is a Hausdorjf space and 

(xa, a G D, Sg) is a net that converges to a point p in X. We then call p the limit of 

the net (xj and we write 

lim (xa)=p or lim (xa, a e D, = p. 

Recall that for second countable spaces we were able to characterize 
compactness by sequential compactness. All topological spaces can be character¬ 

ized by an analogous “net-type” compactness. 

108.10. Theorem. Let X be a topological space. Then X is compact if and 

only if each net (xa) in X has a convergent subnet. 

Proof. Suppose first that each net in X has a convergent subnet. We will 
show that X is compact by showing that every collection of closed subsets of X with 

the finite intersection property has a nonempty intersection (see 90.2). 

Let jF be a collection of closed subsets of X, every finite subcollection of which 

has a nonempty intersection. We wish to show that is nonempty. Let 

be the collection of all finite intersections of elements of JF. Notice that the rela¬ 
tion ci directs jF*. For each F e <jF*, choose an x(F) e F. Then (x(F), F e JF*, 

<=) is a net in X. Thus, some subnet (x(/V(/?)), ft G D, Sg) converges to a point 

x g X. We complete the proof by showing that x e £\3F. Suppose x $ F0 for some 
F0 GSF. Now F0 g SF*. Since (x(./V(/?)), /S G D, 2g) is a subnet of (x(F), F G JF*, 

<=), there is a /?0 e D such that if (3 ^ /30, then N(/3) F0. Notice that X — F0 is 

a neighborhood of x. Since (x(A(/3))) converges to x, there is a 22 /30 such that 

x(A(/S)) e (X — F0). But N((i) <= F0 so that x(N((3)) G X — contrary to the 
way in which x(Ar(/S)) was chosen. Thus, p) SF ^ 0 and X is compact. 

Next suppose that X is compact. We assume (xa, a G D, 2i) is a net in X and 

proceed to find a convergent subnet. To do this, for each a e D let 

= {x(a):a e D and a ^ a}. 

Let 
SF = {cl (Dtt):a e D}. 

Because D is a directed set and because of the definition of the Da, it is easy to 
show that every finite subcollection of 2F has a nonempty intersection. Then since 

X is compact by 90.2, f\3F F 0. Let p G DF- We shall complete the proof by 

showing that some subnet of (xj converges to p. We form a subnet as follows: 
Let be the neighborhood system for p. For every {U1, oq) and (t/2, a2) in 

JF X D, let (U2, a2) (f/j, ax) if and only if U2 c {7X and a2 ^ ax. This relation 
directs Jrv X D. Next, for each (U, a) e Jrp X D we may choose an element 

N(U, a) G D such that N(U, a) 22 a and x(N(U, a)) G U n Dx. This is possible 

since p 6 cl (Df) and U e/}. If we note that N{U, a) 22 a, it is easy to verify that 

(x(N(U, a)),((/, a)£/,XD, » 

is a subnet of (x(a)). We complete the proof by showing that (x(N(U, a))) con¬ 

verges to /?. To see this let £/0 e^l Choose an a0 e D. Next, suppose (U, a) 
(t/0, a0). Then x(N((J, a)) G U C\ Dx ^ u0. Hence, we have shown that the net 

(x(A((7, a))) converges to p. 

We have seen that arguments in which sequences play a part lend themselves 

quite well to first countable spaces and especially to Hausdorff first countable 
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spaces. In this section we have studied theorems that characterize several properties 

in terms of nets. By means of these theorems, techniques very similar to those 
used in sequential arguments can often be employed. We illustrate this fact in the 

proof of the following theorem. 

108.11. Theorem. Suppose *€ is a nonempty nested collection of nonempty 

continua in a Hausdorff space X. Then is a nonempty continuum. 
i i 

Proof. We first show that f\(€ is a nonempty compact set. To see this let 

F0 eft and let = {F:Fe^ and F cz A0}. We first observe that p\T> — ff\r€0. 

Because X is a Hausdorff space, each Fe^0 is closed, and because £<, is nested, 
each finite subcollection of has a nonempty intersection. Hence, it follows 

from the compactness of F0 that D^o F 0. Since each of the elements in fT> is 
closed, is closed, and since (~)tf is a subset of the compact Hausdorff subspace 

F0, is compact. 

We complete the proof by showing that is connected. If C\F is not con¬ 

nected, then there is a separation {A, B} of f\6 where A and B are nonempty 
compact sets. Since X is Hausdorff, there exist disjoint open sets U and V such 

that A c U and B c V. With ^0, as in the previous paragraph, we note that 
(*f0, c) is a directed set. For each f6^0, fnt/^0,fnK^0, Hence, 

because of the connectedness of each element of &0, each element in 0 must 
intersect X — (U U V). Then for each F e we may choose an element 

x(F) e [X - (U u V)] n F. 

Notice that (x(F), Fg^0, <=) is a net in [X — (U U V)] n F0. Since 

[X-(UU V)} n F0 

is compact, by 108.10, there is a subnet (x(/V(a))) of (x(F)) that converges to a 

point z e [X — (U U V)] n F0. We shall show that this leads to a contradiction 
by showing that zefI ^ c f U K. To see this suppose z $ Fx for some F1 e %. 

There is no loss in generality in supposing that Fx cz F0. Then z is in the open set 
X — Fv Since (x(N(v.))) converges to z, there is an oq such that for a ^ ax, 
x(/V(a)) e X — Fv Since (x(fV(a))) is a subnet of (x(F), Fe^0, <=) and Fx 6^ 0, 

there is an a2 6 D such that for a ^ a2, jV(a) cz fv Let a ^ ax and a ^ x2. 
Then x(/V(a)) e 7V(a) cz fj and x(/V(a)) e X — Fv We have thus reached a 
contradiction and the proof is complete. 

We shall use the last theorem together with Zorn's lemma (see 24.3 and the 
remaining part of Section 24) to obtain the following interesting result. 

108.12. Theorem. Let (X,,F) he a Hausdorff space. Suppose that A is a 

subset (possibly empty) of X and that C is a nonempty continuum in X that contains 

A. Then there is a minimal nonempty subcontinuum K of C that contains A (/>., 
K is a nonempty subcontinuum of C that contains A and if K* is any other nonempty 

subcontinuum of C that contains A, then K cz A'*). 

Proof. Let SF be the family of all nonempty subcontinua of C that contain 
A. Order .F by inclusion (<=) and consider the partially ordered set (.F, cz). 

Let (F*, <=) be a linearly ordered subset oFF. Note that fj F* is a nonempty 
subcontinuum of C by the previous theorem. Also note that C\F* A so that 
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n-^* e.>\ Thus, every linearly ordered subset ofhas a lower bound. Hence, 
by Zorn’s lemma, (.iA, c) has a minimal element A". It is easy to see that A' satis¬ 

fies the K in the conclusion of the statement of the theorem that we are proving. 

EXERCISES: CONVERGENCE OF NETS 

1. Prove Theorems 108.6 and 108.7. 

2. Recall that in a topological space if (*(/)) converges to /;, then 

{x(i):i e P} U {p} is a compact set. Show by an example that 
the analogous statement for nets does not necessarily hold. 

3. Suppose (/(a), a e D 2;) and (g(oc), a e D 2?) are two real¬ 

valued nets defined on a directed set D. For each a e D, let 

/(a) 
.v(a) =/(a) + g(a),/?(a) = /(a)g(a), and <7 (a) = —— provided 
g(a) ^ 0. Prove each of the following: * a 

(a) If lim (/(a)) = A and lim (g(a)) - - G, then lim (p(a)) = 

AG and lim (s(a)) = A + G. 

(b) If g(a) ^ 0 for each a e D, lim (A(a)) = A, and 

lim (g(a)) = G # 0, then lim (^(a)) = - . 
G 

4. Let (/a:(3f, -> (T, r/)) be a net of mappings from a topologi¬ 
cal space into a metric space. 

(a) Extend the notion of pointwise convergence and uniform 

convergence of sequences of mappings to nets of mappings. 
Then try out your definition on the following proposition. 

(b) Suppose (/„: (X, 3~) -> (Y, d)) is a net of continuous 

mappings where ( Y, d) is metric. If the net (/a) converges 

uniformly to a mapping f:{X, .T) —► ( Y, d), then f is 

continuous. 

5. A continuous surjection f: X Y is said to be strongly irreduc¬ 
ible provided that for no closed proper subset X* of X is it true 

thatf[X*\ = Y. Prove the following proposition: Let X and 

Y be HausdorfT spaces and assume that X is compact. Iff‘.X-> 
Y is a continuous surjection, then there is a closed subset X* 

of X such that f[X*] — Y and the restriction / | X*:X* —► Y is 
a strongly irreducible mapping. (See [33] for other theorems 

about irreducible mappings.) 

109. FILTERS 

Recall that in Example 107.6, a filter was defined in connection with our con¬ 

siderations of directed sets. A theory of convergence has been developed in terms 

of filters that is analogous to the theory of convergence in terms of nets. In this 
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section we shall make a brief study of filter convergence theory. In the next 
chapter we shall have occasion to apply results from the theory of nets and filters 
in the discussion of product spaces. 

109.1. Definition. Filter on a set. Let X he a set. A nonempty collection 

of nonempty subsets of X is called a filter on X provided that 

and 

if A e ,<F and B e 3F, then A n B e & 

if A e 3F and A <= B, then Be^. 

We emphasize the fact that in the previous definition ^ is a nonempty collec¬ 
tion of subsets of X and that each element of is a nonempty subset of X. 

109.2. Example. Let X be a topological space and let x e X. Then the 

neighborhood system./f'x of x is a filter on X. 

The fact that the neighborhood system of each point is a filter will play an 

important role in our study of filter convergence. 

109.3. Definition. Neighborhood filter of a point. Let X be a topological 

space. For each x e X, the neighborhood system xl x of x is called the neighborhood 

filter of x. 

109.4. Definitions. Filter base and filter subbase. Let 38 and Sf be nonempty 

collections of nonempty subsets of X. 

38 is said to be a filter base on X provided that if A e 38 and B e 38, then there 

is a C e 38 such that C c A n B. 

3E is said to be a filter subbase on X provided for every nonempty finite sub¬ 

collection Sf* of SS, ^ 0- 

The terms base and subbase with reference to filters can be justified on the 

basis of the following theorem, the proof of which is left as an exercise. 

109.5. Theorem. Suppose that X is a set. 

109.5(a). If 38 is a filter base on X, then the collection 

{U:U <= X and B c U for some Be 38} 

is a filler on X. 

109.5(b). If 6E is a filler subbase on X, then the collection 

[U\U = n Sf* for some finite subcollection Sf* of 3E) 

is a filter base on X. 

In what follows the filter defined in 109.5(a) will be called the filter on X 

generated by 38 and the filter generated by the base defined in 109.5(b) will be 

called the filter on X generated by Sf. 

109.6. Example. Suppose that A" is a topological space and x e X. Let .'A 

be the collection of all open neighborhoods of the point x. 1 hen 38 is a filter base 

on X, and 38 generates the neighborhood filter . I j. of x. 
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109.7. Definition. Convergent filters. Lei (X,F) be a topological space, 

let x e X, and tel F be a filter on X. Then F is said to converge to x provided 

XT contains the neighborhood filler of x. In particular, the neighborhood filter 

of x converges to x. 

The next theorem follows immediately from the previous definition. 

109.8. Theorem. If in a topological space X a filter F converges to x, 

then any filter F* on X that contains IF also converges to x. 

The previous theorem suggests that if F and F* are filters in a space and 

s and s* are nets, then “F* => F” is a statement for filter convergence theory 
that is analogous to “s* is a subnet of s” in net convergence theory. 

The next theorem is the analogue for filters of Theorem 108.8. 

109.9. Theorem. A topological space X is Hausdorff if and only if each 

filter on X converges to at most one point in X. 

Proof. Suppose that X is Hausdorff and a filter F on X converges to a 

point x in X. Suppose that y e X and y F x. Then there exist neighborhoods Nx 

and Nv of x and y, respectively, such that Nx n Ny = 0. Since F converges to 

x, Nx G F, and since Nx C\ Ny = 0 , Nv f F. But then F cannot converge to y. 

Next suppose that X is not Hausdorff. Then there exist points p and q in 

X, p F q, such that if we let Jt'v and JNq be the neighborhood systems for p and q, 

respectively, then 

(*) Np n NqF 0 for each Np in jVv and N q in jVq. 

Next let 

dd — {U: U = Nv n Nq for some Np e JTV and Nq e jVq}. 

Notice that for all Bx and B2 in dd, Bx n B2 e Sd. Then because of (*), Sd is a 
filter base. Let F be the filter generated by Sd. We prove next that F => Fv 

and F ^ ArQ. To see this notice that if NP e jVv and Nu e Frq, then Nv ^ 

Nv n Nq and Nq ^ Nv n Nq. From this it follows that Np and Nq are elements of 
the filter F. We have shown that the filter F converges to both p and q and the 

proof is complete. 

A useful tool in connection with filters is the notion of a maximal filter. 

We shall make use of it in some of our considerations of compactness in the next 

chapter. 

109.10. Definition. Maximal filter or ultrafilter. Let F be a filter on a set X. 

F is said to be a maximal filter or an ultrafilter provided that no other filter on X 

property contains F. 

109.11. Theorem. If X is a set and F0 is a filter on X, then there exists a 

maximal filter Ft on X that contains F0. 

Proof. (The proof will make use of Zorn’s lemma.) 
Let Fa be a filter on a set X. Let c€* be the collection of all filters on X that 

contain F0. Consider the partially ordered set (fa*, c). Suppose Ff* is a linearly 

ordered subset of *€*. Let F = \JF *. We shall show that F is a filter on X 
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and that Jf is an upper bound for 38F*. Since for each A e A e F for some 

FeJif*, A must be nonempty. Also if A e Jt and fie Jf, then Ae 

B G for some Fx and F?, in FtF*. Since Jt* is linearly ordered, A and B must 
be in Fx or A and B must be in Hence, A n B e &~x or A n fie JF2. Thus, 

/l nfie Jf7. Finally, suppose A G JF and A ^ B. Then, since A e Fx for some 

LFX G JF*, B G !FX also. Hence, fl G We have thus shown that 3tF is a filter on 
A. Furthermore, <= jF c: jf for each G ^f7*. Thus, JF G and JF is an 

upper bound in for JtHence, by Zorn's lemma,<^7* has a maximal element 

and any such maximal element is an ultrafilter on X that contains J%. 

In the next theorem, we characterize maximal filters in an interesting and 
useful way. This theorem will play an important role in the applications of filters 
to compactness. 

109.12. Theorem. Let Jt be a filter on a set X. Then Jt is a maximal filter 

on X if and only if it has the following property: For each subset A of X, either 

AeJt or X—AeJt. 

Proof. We first suppose that ,Jt is a maximal filter on X. Let A be a subset 
of X and assume that X — A £ Jt. We shall show that in that case A G ^Ft. 

Since we are assuming that X — A $ Jt, it follows that for each F e Jt, F could 
not be contained in X — A. For, otherwise, X — A e Jt. Hence, F n A J 0 

for each F e Jt. (Using this fact, we shall construct a filter F that has A as an ele¬ 

ment. We shall then show that jF contains the maximal filter Jt and, hence, is the 

same as Jt.) Let 
F8 = {B:B = F n A for some F e Jt). 

Notice that each element in 38 is nonempty. Furthermore, the intersection of each 

two elements of 38 is itself an element of £8. Hence, 38 is a filter base on X. Let 
jF be the filter on X generated by 38. We shall show Jt <= SF. Suppose that 

F G Jt. Then F n A c: F. Hence, since A n F e 3F, FeF. However, since 
is a maximal filter, Jt = tF. We show finally that A G Jt. Let Fg.//. 

Then F C\ A e F and, hence, F n A G ^Ft. Moreover, since F n A <= A, A e Jt. 

This completes this part of the proof since we have shown that if X — A $ Jt, 
then A e Jt. 

Next, assume that Jt is a filter that satisfies the following property: 

For each subset A of X, A e Jt or (X — A) e Jt. 

We shall show that is an ultrafilter. Suppose that tF is a filter on X such that 

Jt c 3F. We complete the proof by showing that SF c Jt. Let FeF. We 
wish to show that F e Jt. To see this, assume that F $ Jt. Then from the prop¬ 

erty assumed for Jt, X — F e . Ft, and since Jt c tF, X — FsF. From this it 
follows that F$F, a contradiction. 

109.13. Theorem. A topological space X is compact if and only if every 
maximal filter on X converges. 

Proof. Suppose first that X is compact. Let Jt be a maximal filter on X 

and let us suppose .Ft does not converge. Then for each x e X, since Jt 
does not converge to x, we can find a neighborhood Nx of x such that Nx$ Jt 
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and we may assume that Nx is open. By the previous theorem, since is maximal 

and Nx $ , X—Nx£Jt. The collection {Nx:x e X} of neighborhoods is 

chosen so that Nx $ .yffl is an open covering of X. Since X is compact, some finite 

subcovering {Nx:ieJ*n} also covers X. But each X — NXieJL. Hence, 
D {X — NX(: i sPn} 0 since yft is a filter. But 

r\{X-NXi:iePn} = X- \J{NX(:i ePn} = X - X = 0. 

Thus, we have arrived at a contradiction and Jt converges. 

Assume next that every maximal filter on X converges. Let jF be a collection 
of closed subsets of X such that the intersection of each finite subcollection of ZF 

has a nonempty intersection. We wish to show that ^ 0. Note that 

is a filter subbase. Let JF* be the filter generated by 3F. By Theorem 109.11 

there is an ultrafilter J on I that contains Jr*. Then yfl converges to some 
point p e X. We complete the proof by showing that p e D 3F. If not, then there 

is an S £ 3F such that p £ X — S. Now (X — S) £ M since JL converges to p and 

X — S is a neighborhood ofp. But S £ JF and so S £ . Since S' and X — S are 

both elements of , S n (X — S) 0 and we have arrived at an obvious con¬ 
tradiction. 

Since each filter on a set is contained in a maximal filter and since compactness 

on a topological space is equivalent to the property stated in the last theorem, 

we have for filters the following analogue of Theorem 108.10. 

109.14. Theorem. A topological space is compact if and only if each filter 

on X is contained in a filter that converges. 

Note: The type of net convergence that we have been studying is known as 

Moore-Smith convergence. The reader is referred to pages 72 and 78 in [32] for 

some interesting historical remarks on the development of nets and filters. The 
reader is also referred to [27] for an interesting expository account of Moore- 

Smith convergence. 
The next theorem will be useful to us in our consideration of product spaces in 

the next chapter. 

109.15. Theorem. Let f:X->-Ybea surjection and letXF be a filter on X. 

Then {f[F]:Fe J^} is a filter on Y. 

Proof. Let % = {f[F]:Fe J^}. It is clear that each element of ^ is non¬ 

empty. Suppose first that G £ & and G c H. We shall show that Ft£(&. 
Since G £<&, there is an F £ such that f[F] = G. Then F c f~l[H] and, hence 

f~l[H]£^F. Consequently f[f~1[H]] = H£@. Next suppose that G1 and G2 are 

elements of . Then there are elements F1 and F2 of 3F such that/[iq] = Gl and 
J[F2] = G2. Since /q r> F2 £ it follows that /[iq n iq] £ <§. Further, since 

f[F\ F\ iq] c /[iq] n /[iq], it follows from the first part of the proof that 

f[FJ n /[iq] £ $. This completes the proof. 

Iff\X~* Y is a map that is not surjective and is a filter on X, then we can 

no longer conclude that = {f[F]:F £ is a filter. However, is a filter base. 

The verification of this fact is left as an exercise for the reader. 
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EXERCISES: FILTERS 

1. Prove Theorem 109.5. 

2. Suppose X is a topological space and A is a nonempty subset 

of X. Show that p e X is a limit point of A if and only if A — {/?} 
is an element of a filter on X that converges to p. 

3. Suppose f:X —>■ Y is a map and & is a filter on X. Show that 

F6 is a filter base on Y where 

SS = {f[F]:Fe^}. 

4. Prove that a mapping f:(X, 3~) -* (Y, is continuous at 
x e X if and only if the following condition holds: 

For each filter on X, if 3F converges to x, then the filter 
jF* on Y, generated by the filter base {f[F]:F e J^}, con¬ 
verges to/(x). 

5. Suppose X = A U B and M is an ultrafilter on X. Prove that 
either A e Jt or B e Jt. 

6. Let f:X —► Y be a map. Suppose Jt is a maximal filter on X. 

Then the filter Jlf on Y generated by the filter base 

{f[F\:Fejn 

is a maximal filter on Y. 

7. The proposition in Exercise 4 states a characterization of con¬ 

tinuity at a point in terms of filters. State and prove an anal¬ 

ogous proposition that uses nets instead of filters. 
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Product Spaces 

In this chapter the notion of product space will be extended to include the 
product of infinite collections of spaces. As in the finite case, the projection 

mappings play an essential role both in the definition and in the investigation of 

infinite product spaces. We shall show that the projection mapping 7ra from a 

nonempty product space into the coordinate space is an open continuous sur¬ 
jection. Furthermore, each coordinate space has a homeomorphic copy of itself 

in the product space. Thus, each coordinate space inherits from the product space 
every property that is invariant under a continuous open map and every property 

that is inherited by each subspace of a topological space. There are also properties 

that are inherited by the product space provided each coordinate space has that 
property. For example, the well known and important Tychonoff theorem states 

that the product space for a collection of compact spaces is compact. The Hausdorff 

property is another property that is inherited by the product space from the co¬ 
ordinate spaces. Some properties are inherited by countable product spaces but 

not by arbitrary products. For example, the product of a countable collection 
of metric spaces is metrizable. However, the product space for an uncountable 

collection of metric spaces cannot be metrizable unless all but a countable number 

of the coordinate spaces are trivial metric spaces (contain no more than one point). 

110. CARTESIAN PRODUCTS 

Suppose that {Xp.i e P„} is a collection of sets indexed by P„ for some positive 

integer /;. In 15.5 the Cartesian product X {A\:i e Pn} is defined as the set of all 
finite-sequences (xx, x2, x3, . . . , xn) such that xt e Aj for / e P„. Similarly, if 

{Xp.i e P} is a collection of sets indexed by P, then X {Ae P} is defined as the 
collection of all infinite sequences (x,) such that xt- e X{. Now recall from 15.1 

and 15.2 that a finite-sequence (xy, x2, x3, . . . , x„) is a function defined on P„, 
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whereas an infinite sequence (x,) is a function defined on P. We see, therefore, 
that if P* is the set P„ or P, then X {Xp.i e P*} is the set of all functions x defined 

on P* such that x(i) e X{ for each / e P*. This formulation suggests the extension 
of the notion of Cartesian products to include products of arbitrary indexed 

collections of sets. 

110.1. Definition. Cartesian product. Suppose {Xx:x e A} is an indexed 

collection of sets. Then by the Cartesian product X. {Xa :a ed} of the collection 

{X^.x G A}, we shall mean the collection of all functions x defined on A such that 

x(a) G Xx. For each xeA, Xx is called the x-coordinate space, and for each 

x 6 X {Xa: a e A}, x(a), also written as xa, is called the y-coordinate of x. 

It is to be noted that if A 0 and each Xa e {Xa:x e A} is nonempty, then 
X {Xp.xeA} is nonempty by the axiom of choice. As a matter of fact, each 

x e X {Xa: y e A} is what we have previously referred to in 24.1 as a choice function 
for the collection {X*: x E A}. 

110.2. Definition. The projection mappings. Let X {Xx.x e A} be a Cartesian 

product. For each x e A, let 7ra: X {Xa: x e A} —► Xx be defined by 

■nfx) = xa. 

The mapping is called the projection mapping of X {Xx:x e A} into the x- 

coordinate space Xx. 

EXERCISES: CARTESIAN PRODUCTS 

1. Let X = X {X^'.x e A} be a nonempty Cartesian product and 
suppose 77-p is the projection mapping into Xfi. Let 

x G X {Xa'. a G A} 
and let 

Xp — {x:x G X and xa = xa for a # p}. 

Show that 

tTp | Xp: Xp —► Xp 

is a bijection. 

2. (a) Let X be the closed real interval [0, 1] and the collec¬ 
tion of all real-valued functions defined on X. For each 

t G X, let Yt be the set R of all real numbers. Show that 

JF = X {Y,:t G A}. 
(b) LelSF be the collection of all real-valued infinite sequences. 

Express y as a Cartesian product. 

111. THE PRODUCT TOPOLOGY 

Suppose that {(T,, Tj)\x e A} is an indexed collection of topological spaces. 
In this section we shall define a topology uT for the set X {Xx:x e A}. The topology 
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to be introduced is a straightforward generalization of the one introduced in 76.8 
for finite collections of topological spaces. 

111.1. Definition. Product space. Let {{Xx, XT f): a £ A} be an indexed 
collection of topological spaces. Let Lf be the follow ing collection of subsets of 

X {X,:*eA}: 

Lf = {U:U = ttx 1 [Ux\for an a e A and open set Ux cz Xx} 

The topology /7~ for X — X {Xx :a e A} /jos LX as a subbase is called the product 
topology and the space (X, is known as the product space. 

If {{Xx, .Tf): a e A} is a collection of topological spaces, we shall usually 

denote the corresponding product space by X {Xp.y. £ A) with no specific reference 
to the topology. 

111.2. Remark. A base dd for the product topology defined in 111.1 is the 
collection of all sets of the form 

fl {7r-'[Ua]:xeF} 

where F is a finite subset of the indexing set A and, for each a in F, Ux is open in 

Xa. Furthermore, fl e F} — X {Wp.a. e A), where Wa — Ux for 
each a e F and Wx — Xx for a e A — F. 

It is interesting to note that for each nonempty open set W in X {Xx:<x £ A}, 
7ra[W] = Xx for all but a finite number of a e A. This is easily seen as follows: 
Let x e W; then there is a base element U, as given in 111.2, such that .rel/c \y_ 

But U = X {Up. a. e A) where Ua = Xa for a G A — F for some finite subset F 
of A. Now let fl e A - F. Then ttfiU] c ttp[W J. Hence, Up — Xp c= vfW] and, 

consequently, itp[W] = Xp. 

111.3. Theorem. Let X {Xa: a £ A} be a nonempty product space. Then for 

each fl £ A, the projection mapping 

77p: X {Xa:x £ A} —y Xp 

is an open continuous surjection. 

Proof. It follows at once from the definition of the product that is 
a surjection. That np is continuous follows from the fact that for each Up open 

in Xp, Trjl[Up] is an element of the defining subbase for the product topology. 

To show that v-p is open it is sufficient to show that ttp[W] is open where W is a 

base element as in 111.2. Let W = p| {Tr^fC/Jia e F), where F is finite and Ua 

is open in Xx. But then irp[W] = Up if fl £ F or ttp[W] = Xp if fl £ A — F. In 
either case vp[lV] is open in Xp. 

Suppose that {(T(, dj):i £ P„} is a finite collection of metric spaces and (X, d) 

is the corresponding product metric space. In 51.5 we proved that a sequence 
(xfl in X converges to a point x in X if and only if for each fixed j £ P„, (7rfixjj) 

converges to vfix). This theorem suggests the following analogous statements for 

nets and filters, the proofs of which are left as exercises. 

111.4. Theorem. 
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111.4(a). Suppose that (x(fi)) is a net in a nonempty product space 

X {X\: a £ A}. 

Then (x(f)) converges to a point x e X {Xa:x£A} if and only if for each fixed 

ere A, the net (7ra(x(/9))) converges to rra(x). 

111.4(b). Suppose LF is a filter on the product space X {Xa: a e A}. For each 

oc e A, let F~ x be the filer {77ra[F]:F£lF} (See Theorem 109.15.). Then -F 

converges to x £ X {Xa:x e A} if and only if F a converges to xxfor each a e A. 

The next theorem is a useful tool in dealing with product spaces. It will be 

reminiscent of a well known situation in R". 

111.5. Theorem. Let XfA^iaS A} be a nonempty> product space. Then 

if c e X {Xy.cr. £ A} and ft £ A, there is a subspace Xp such that cel'' and Xp is 

homeomorphic to Xp. 

Proof. Let A' ^ X {Xy.v. £ A}, c £ X, and f £ A. Let Xp be the following 
subset of X {xa:cc £ A}: 

x! = {x:xx = cx if a ^ j8}. 

Consider the mapping ttp | Xp:Xp —Xp. This mapping is a continuous bijection. 

We complete the proof by showing that np | Xp is an open mapping. Let XA be a 
base for the product topology as given in 111.1. Then {(V n Xp:W £ X6) is a 

base X3p for the relative topology for Xp. Note that if Wp £ 2flcp, then Wp = 

X {Wp.x £ A}, where Wx contains only ca if a ^ f and Wa is an open subset 

(possibly Xf) if a. = fi. Hence, Trp[Wcp] is open in X. Since we have shown that 
elements of the base are carried onto open subsets of Xp by the mapping 

TTp | Xp, it follows that 7r/( | Xp:Xp —*■ Xp is an open mapping. This completes the 

proof. 

We can now deduce that each coordinate space inherits many properties from 
the product space. In this respect, the following observation is useful. 

111.6. Remark. Any property that is invariant under continuous open sur¬ 
jections is inherited by each coordinate space from the product space (111.3). 
Any property that is inherited by a subspace from a topological space that contains it 

is inherited by all coordinate spaces of a product space. (This follows from 111.5.) 
Thus, it is relatively easy to find properties that the product space induces 

upon the coordinate spaces. It is usually a more important and difficult problem 
to deduce information about the product space from the coordinate spaces. 

111.7. Theorem. Suppose X {Xa:x £ A} is a nonempty product space. 

Then X {Xx: a £ A} is Hausdorff if and only if each coordinate space Xx is Hausdorff. 

Proof. If the product space is Hausdorff, it follows from Remark 111.6 
that each coordinate space is Hausdorff. Next, suppose each X3 is Hausdorff. 
Suppose x and y are distinct elements in X {Xp.x £ A}. Then for some x £ A. 

xa 9^ yx. Since Xx is Hausdorff, there exists a pair of open disjoint neighborhoods 
Ux and Vx of xx and yx, respectively. Then ■n~1[Ua\ and tt~x[Vx\ are disjoint open 
neighborhoods of x and y. Hence, the product space is Hausdorff. 

The important Tychonoff product theorem states that the product space for a 
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collection of compact spaces is compact. The proof which we shall give for that 
theorem makes use of the fact that a space is compact if and only if every ultra¬ 

filter (maximal filter) on the space converges (109.13). Recall also that a filter IF 

on a set X is an ultrafilter if and only if for each subset A of X, either A e YF or 

X — A £ YF (109.12). In addition, we will need 109.15 and the following lemma. 

111.8. Lemma. Let f\X-> Y be a surjection. Suppose JY is an ultrafilter 
on X. Then {f[F]:F e JY) is an ultrafilter on Y. 

Proof. Let JYt = {f[F]\Fe JY). It follows from Theorem 109.15 that 

JYf is a filter on Y. We shall show that JYf is an ultrafilter by showing that 
for every subset A of Y either A e JYf or Y — A g JY f (109.12). To see this, let 

A c: Y. Suppose A $ JYf. Thenf~x[A] ^ JY because, otherwise, /[ /_1[T]] = 
A g JYf. Since JY is an ultrafilter and f~l[A] $ JY, it follows that X — f~l[A] 

g JY. Hence f[X — f~l[A]\ = Y — A e JY,. We have thus shown that for 

every A <= Y, A e JYf or Y — A e JYf. This shows that JYf is an ultra-filter. 

111.9. Theorem. The Tychonoff product theorem. If {Xa:cceA} is a 

collection of compact spaces, then X = X {Xa:cx G A} is compact. 

Proof. We shall prove the product space X is compact by showing that every 

ultrafilter on it converges (109.13). Let JY be an ultrafilter on X. For each a e A, 

let JYX be the filter {7tx[F]:F g JY}. By Lemma 111.8, each JY'a is an ultrafilter 

in Xa. Each Xa is compact; hence, by 109.13, JYX converges to a point xa g Xa. 

Hence, by 111.4( b), JY converges to the point x G X [Xp. a G A}, where 

77 a(x) = x, for each a in A. 

The proof of the Tychonoff theorem presented here uses a method as found, 

for example, in [3] and [6], In net convergence theory there is a notion of uni¬ 

versal net that is analogous to the notion of ultrafilter. The development of the 
notion of universal net and a proof of the Tychonoff product theorem that is 

analogous to the one in 111.9 can be found, for example, in [6], Still other 
proofs may be found in [24] and [26], 

111.10. Theorem. Let X — X {X7: ex. e A} be a nonempty product space. 

Then X is compact if and only if each coordinate space Xa is compact. 

Proof. The proof follows from Remark 111.6, and the Tychonoff 

theorem. 

The next theorem is a generalization of the proposition stated in Exercise 14, 

page 2 2 5. 

111.11. Theorem. Let X {Xp.cx G A) be a product space and suppose each 

coordinate space Xa is connected. Then the product space is connected. 

Proof. Suppose each Xa is connected and X = X {Xa:<x g A} is not con¬ 
nected. Then there is a separation {U, Vj for X. The sets U and V are nonempty 

open subsets of X. Let p g U and q g V. (We shall get a contradiction by showing 
that there is a point z e V such that z can be “chained” to p by a finite number of 

connected sets X*, X*,. . . , X* such that W* n X* # 0 for / = 1,2,.. ., 

n — 1.) Since q e V and V is open, there is an open set of the form 

fl 1,2,... ,n) 
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such that q £ W <= V and Wx is open in Xx. Let 

X* = {x:xa = px for a # aj. 

Notice that X* is a connected subset of X since it is a homeomorphic copy of Xa . 

This follows from the proof of 111.5. Next define 

X* = {x:xxi = qXl and xa = px for a G A - {oc„ a,}}. 

Observe that the a2-coordinate is the only “free” coordinate. The set X* is a 

homeomorphic copy of Xa and, hence, is a connected subset of X. Note that 
p £ X* and z1 e X n X where z\ — q and z1 = p„ for a G A — {a,}. More 

generally, define X* = {x:xx — qx for a G {a1; a2, . . . , a^} and xa = px for 
a £ A — {a1; a2, . . . , afc}}. Notice that a = is the only “free” index. For 

k — 1,2,...,«, X* is a homeomorphic copy of XXj and, hence, is connected. 

Next for k = 1, 2,. . . , n — 1, there is a point zk such that zk e X* n X* r 

To see this, for k £ {1,2, 3, . . . , n) consider the point zk given by 

and 
zx = qx for a £ {als a2, . . . , afc} 

Za = Pa f°r x £ A {al5 a2, . . . , afc}. 

Observe that zk £ X* n X* for k = 1, 2, 3, — 1 and that zn elf* c 

It follows from Theorem 97.4 that U {XI :i = 1, 2, . . . , n} is connected. But 
{/>, z"} c= |J {T'*:/ =1,2,..., /?}. This is a contradiction, since p £ U and 

z” e V. Thus, XR :x £ A} is connected. 
The next theorem is useful in considering subspaces and local properties of 

product spaces. The easy proof is left as an exercise. 

111.12. Theorem. Let XlT^ae/l} be a product space. Suppose that for 

each a E/I, Sa is a subset of Xx and is given the relative topology from Xx. Then the 

product topology for X {Sa: a e A} is the same as the relative topology induced on 

X {.Sa:a £ A} by the product space X {Xx\a £ A}. 

Suppose next that X. {Xx:<x £ A} is a product space and for each <x£A, 

Sx is a connected subspace of Xx. Then by 111.11, the product space X [Sx: x £ A} 

is a connected space. Hence, by the previous theorem, X is also a 
connected subspace of X {Xx:a. £ A}. We shall use this observation in the proof 

of the next theorem. 

111.13. Theorem. Let X = X {Xa: x £ A} be a nonempty product space. 

Then X is locally connected if and only if each coordinate space Xx is locally con¬ 

nected and, with only a finite number of exceptions, Xx is connected. 

Proof. Suppose first that the product space X is locally connected. Recall 

that for a £ A, the projection mapping v^.X -* Xx is an open continuous sur¬ 

jection. Hence, from 97.9, each Xx is locally connected. Next let x e X. Then 
since X is locally connected, we can find an open connected neighborhood U of x. 
This open set U contains an open neighborhood W of x of the form given in 111.2; 

that is, there is a finite subset F of A and open sets Wx of Xx such that if we let 
Wa = Xx for a e A — F, then 

x g W= X {Wx:a G A) <= U. 
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Since U is connected and for each a the projection mapping ttx is continuous, 
7tx[U] is connected. Next observe that for each a e A — F, 

Xa = 7Ta[W] C= TTjE/]. 

Hence, Aa is connected for each a G A — F; that is, with at most a finite number of 
exceptions, all the coordinate spaces are connected. 

We next assume that for each a e A, Xx is locally connected and that there is a 
finite set F A such that for a e A — F, Xx is connected. Let x e X and U be an 

open neighborhood of x. Then there is a finite set F* <= A and an open neigh¬ 

borhood W = X {Wa: a e A} of x such that each Wa is open in Xa and Wx = Xx 

for a in A — F*. For each a in F U F*, let Vx be a connected open neighborhood 
of 77a(x) such that Va c= Wx. For each a e A — (F U F*), let Va = Xa. Then the 

set V = X {Ka:a e A} is an open neighborhood of x that is contained in U. 

Furthermore, by 111.11 and 111.12, V is a connected subset of the product space 
X. Hence, X is locally connected. 

111.14. Theorem. Let X = X {Aj^a G A} be a nonempty product space. 

Then X is second (first) countable if and only if each Xx is second (first) countable, 

and with at most a countable number of exceptions all the Xfts have the trivial 

topology. 

Proof. (The proofs for the first countable and second countable cases are 
similar. We give the second countable case only.) Assume that X {Xa:cx G A} 

is second countable. Then it follows from 111.6 that each Xx is second countable. 

We show next that there exists a countable subset C of A such that for all a e A — 

C, Xx has the trivial topology. To show this suppose that 38 = {B“:n e P} is a 

countable base for the product topology. We may assume that all the elements of 
38 are nonempty. Then for each n e P, there is a finite subset Fn of A such that 

ttx[Bh] = Xx for all a e A — Fn. (See paragraph after 111.2.) Let C be the count¬ 

able set |J [Fn:n e P}. We shall show that for each a e A — C, Xx has the trivial 

topology. Let ex. G A — C and let Ux be a nonempty open subset of Xx. Choose an 
xx 6 Ux and a point x in X such that 77a(x) = xx and let U = 7r“1[C/a]. For some 

n G P, there is a B" such that x G Bn c: u. Now TrfB"] = Xp for all ft G A — 

Fn. Since oc G A — C A — Fn, Trx[Bn] — Xx. Then because Bn <= U, we have 

Xx = TTx[Bn] <= ttx[U] = Ux. Hence, Ux — Xx. Thus we have shown that there 
are no nonempty proper open subsets of Xx and, hence, Xx has the trivial topology. 

To prove the converse, assume that each Xx is second countable and that there 

is a countable subset C c A such that Xa has the trivial topology for each a e A — C. 

There is no loss in assuming that C # 0. Now for each a e C, let 3AX be a count¬ 
able base for Xx and let Ff x = {tt~1[B] \ B G 38f. Next let FF — (J [FFa\a 6 C}. 

Finally, let 38 be the base for X formed by taking all finite intersections of members 

of Ff. (See 111.1.) It is left as an exercise for the reader to show that 38 is a count¬ 

able base for the product topology. 
A metric space consisting of more than one point cannot have the trivial 

topology. Hence, from the previous theorem we see that the product of an un¬ 
countable collection of nontrivial metric spaces cannot be metrizable for, if it 

were, it would have to be first countable. It is true, however, that the product 

space for a countable collection of metrizable spaces is metrizable. We already 
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have this result for finite products (see 51.1 and 51.2) and we next obtain it for 
countably infinite products. 

111.15. Theorem. Let {{Xt, ST f: i e P} be a countably infinite collection of 

metrizable spaces. Then the product topology for X {X t: / e P} is metrizable. 

Proof. For each i e P, let be a metric for (T„ ^”i) such that df a*„ yf T 1 

for all {x{, yt) in Xt X X{. Let X be the product set X {X,: i £ P}. It is easy to show 
that the following formula defines a metric d for X: ‘ 

d(x, y) = 2 2~idi(xi, yf. 
i = 1 

We shall show that the topology .Tid) generated by d is the product topology. 
Let &(d) be the base for ^{d) consisting of all open (/-spheres. Let Tf be the usual 
subbase for the product topology . It will be sufficient to show that each element 

of Tf is open in (X,.T{d)) and that each element in 88{d) is open in the product 
space. Let U e Tf and x £ U. Then U — i[C/A.] for some open set Uk <= Xk. 

Since vfx) = xk e Uk, there is a positive e such that Nd lxk, e) uk. Now let 
6 = 2~ke. We shall show that Nd(x; 5) <= U. To do this, let y e Nd{x; b). Then 

d(x, y) = J, 2yf) < S. 
i=1 

But then 2~kdk(xk,yk) < b — 2~ke and, hence, dk(xk,yk) < e Thus, 

TfcG Ndfxk, E) 

and, consequently, e Uk, from which it follows that£ U. Thus we have shown 

that Nd(x; b) c U and, hence, that U is in ^~(d). We next let Nd{x\ e) be an 
open (/-sphere and we show that it is open in the product space. To do this let 

y £ Nd(x; e). Choose a positive b such that Nd(y, b) Nd(x; e); for example, 
b = e — d(y, x) will do. We shall finish the proof by finding a neighborhood W 

of y in the product space such that W <= Nd(y, b) and, hence, such that W 

Nd(x; e). This will imply that Nd(x; e) is open in the product space. To accomplish 

this let N be a positive integer sufficiently large so that 2~A < },b and', consequently, 
CO 

such that 2 2-i < Next let 

W= r\{7Ti1[Ndi(yi-,ib)]--iePx}- 

We shall complete the proof by showing W <= Nd(y, b). Let z £ W. Then 
di(Zi,yi) < |b for i £ Pv. To show that z £ Nd(y; b), we calculate an estimate for 

d(z,y) as follows: 

d(z,y) £ 2 2-’(/,(zi, >’,)+ | 2- 
i=l i=(V+1 

iV 

< 22-'a<5) + lb < \b + = 8. 
1 = 1 

This completes the proof. 

Suppose that {(T,, (/,): / £ P, is a countably infinite collection of metric spaces. 
Then for each / £ P, the function d* .Xi X X, —► R given by 

d*(x{, yf = d,(x„ >’,)[! + dfXf, y,)]_1 
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is a metric for X{ that is equivalent to dt and is bounded by 1. Hence, from the 
proof of the previous theorem, an example of an admissible metric for the product 

space is given by 

d(x, y) = 2 2M 1 + y,)]-1. 
i=l 

EXERCISES: THE PRODUCT TOPOLOGY 

1. Prove Theorem 111.4. 

2. In Theorem 111.5 show that XZ need not be closed. If we suppose 

that X {X„:ol e A} is Hausdorflf is Ajj closed in X {Xy.x g A)‘l 

3. Prove, without using the results of filters, that the Cartesian 

product space of two compact spaces is compact. 
4 

4. Prove that the product topology is the smallest topology for 
which each of the projection mappings is continuous. 

5. By making use of Remark 111.6, deduce as many properties as 
you can that each of the coordinate spaces inherits from the 

product space when the product space has the property. 

6. Prove Theorem 111.12. 

7. Complete the proof of 111.14. 

112. MAPPINGS INTO PRODUCT SPACES 

The notion of representing a function / into R" in terms of its coordinate 

functions (i.e., f = (/i,/2, . . . ,/„)) is probably already familiar to the reader 
from the calculus. The reader is probably also familiar with the fact that it is often 

useful to represent a complex-valued function /in terms of its real and imaginary 
parts u and v. These are special instances of the representation of a mapping into 

a product space in terms of its coordinate functions. In this section this notion will 

be extended to the setting of general product spaces. We shall prove, for example, 
that a continuous mapping into a product space is continuous if and only if each 

of its coordinate functions is continuous. 

112.1. Definition. Coordinates of a mapping. Suppose that f is a mapping 

from a set X into a product set X {Ya: a e A}. For each a G A, let 

TTa:X{Ya:xeA}-^ Ya 

be the <x-projection mapping and let /a = ttx ° f Then for each a in A, fy.X —► Ya 

is called the x-coordinate off 

112.2. Theorem. Suppose that f is a mapping from a topological space X 

into a product space X {f,:at A}. Then f is continuous if and only if for each 

x G A the coordinate mapping f: X —*■ Ya is continuous. 
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Proof. For each a e A, rr3 is continuous and fx = rr3 ° /. Hence, if we 

assume that / is continuous, then fa is continuous. Next assume that for each 
a EA,fx is continuous. To show that/is continuous, it is sufficient to show that 

f~l[U] is open for each element U of a subbase for the product space. (See 82.1(e).) 
To show this, we let Sf be the usual subbase for the product topology as given in 

111.1. Let UeSf. Then U — //[t/J for some a e A and open subset Ux <= Y„. 

Then f~x[U] = /-1[7ra_1[C/a]]. Next observe that since fa = tra°/ 

rtw j .]]•* 
Hence, 

r?w j =r\ui 
Then becausefa is continuous, f~x[Ua\ is open and, consequently, f~l[U] is open. 

This completes the proof that /is continuous if each fa is continuous. 
If for each cue A, Xa and Ya are topologically equivalent spaces, then one 

would expect that the product space X {A/.a e A} is topologically equivalent to 
the product space X { Yy. cl e A}. That such is indeed the case follows immediately 

from the next theorem. 

112.3. Theorem. Suppose that X — X {Xx:ct. e A} and Y = X {Ya:<x. e A) 

are product spaces and for each <x e A ,fa: Xa —>■ Ya is a mapping. If we let F:X —*• Y 

be the mapping whose y.-coordinate function Fx for each a in A is given by 

f'a(x) =fx(xa), 

then the following conclusions hold for F: 

112.3(a). If each fy. Xa —> Ya is continuous, then F.X —> Y is continuous. 

112.3(b). If each faXa -> Ya is a surjection, then F.X-+Y is a surjection. 

112.3(c). If each fa:Xa—> Ya is a topological mapping, then F:X—* Y is a 

topological mapping. 

Proof. We shall prove 112.3(a) and leave the other two parts as exercises. 
By the previous theorem, Fis continuous if, for each a in A, the coordinate function 

Fx is continuous. For each a in A let tt3 be the a-projection mapping defined on 

X {Afa: a e A}. Then for each x e X, 

F«(x) =/«(*«) =f*Mx)). 

From this we see that for each a in A, Fa = fx° va. Since each fa and tt* is contin¬ 
uous, it follows that each Fa is continuous. Since each Fa is continuous, it follows 
from the previous theorem that F is continuous. 

The reader has seen various instances in which information about a function 
can be obtained by representing the function as a composition of simpler functions. 

Often one of the previous two theorems can be used to good advantage to 
accomplish this. 

112.4. Example. Let £ be a real normed linear space. Suppose that 

/:£■->£ and/>:£ —► £ are continuous mappings. Let a and p be real numbers. 
Define the mappings G: E X £ -* £ and //:£->£ by: 

G((x, y)) = «/iW + PMy) for (v, y) in £ X £ 
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and 
H(x) = y.fiix) -j- jifiix) for x in E. 

We shall show that G and H are continuous. In order to do this, we first define the 
mappings s:E X E -* E, r:EXE-+EXE and q:E —► E X E as follows: 

s((x, y)) = x + y for (x, y) in EXE, 

r((x,y)) = (a/iO), ftf2{y)) for (x,y) in EX E, 

q(x) = (x, x) for x in E. 

It is easy to prove that s is continuous. That q is continuous follows from 112.2, 
since the identity mapping i:E —► E is continuous. It is easy to see that afx and 

f> are continuous. Hence, by 112.3(a), r is continuous. Observe that G s ° r. 

Hence, G is continuous since s and r are continuous. Next note that H — G ° q 

and H is continuous. The situation in this example is summarized in the following 

commutative mapping diagram: 

> EX E 

EXERCISES: MISCELLANEOUS 

I. 1. Prove 112.3(b) and 112.3(c). 

2. Suppose that F\XX {Yy. ot e A) is an open mapping. 
For each a in A, let Fa:X—> Ta be the a-coordinate of F. 

Prove that each coordinate Ea:X —*■ Ya of E is an open 
mapping. 

3. Let /:RnXR"->R be the inner product mapping for R" as 

given in Section 34. 

(a) By making use of the properties of the inner product, 

prove that / is continuous. 

(b) For each / e P„, assume that/):R—>-R and g^R-^R 

are continuous mappings. Let H: R —> R be the function 
given by 

H(x) = 2fi(x)gi(x) for x in R 
j=i 

Use the results of part (a) and appropriate theorems in 

§112 to show that H is continuous. 

4. Suppose that is a family of continuous mappings f\X->- Yf. 

Note that each f e iF is defined on the same topological space 

X, but that we are not assuming that the spaces Yf are the same. 

For each point x in X, let e(x) be the point in the product 

space X {Yf-.f whose /-coordinate is f(x). This defines 
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a mapping e : X —> X {Yf:f e F} which is known as the 
evaluation mapping for the family F. 

(a) Prove that the evaluation mapping is continuous. 

(b) If for each pair of distinct points x and y in X, there is 

an f e F such that /(x) 7^/(y), then the family is said 
to distinguish points. Prove that the evaluation mapping 

e is an injection if and only if the family F distinguishes 

points. 
(c) Suppose that A" is a compact space and for each /e F, 

Yf is a Hausdorff space. Suppose further that the family 
F distinguishes points. Prove that the evaluation map¬ 

ping e is a homeomorphism from X onto e[X], where 
e[X] is given the relative topology from the product 

space X {Yf\f e F). 

(For more information concerning the evaluation 

map, see, for example, [26] or [32].) 

II. We assume that R is given the usual topology and that R is the 

relation in R defined as follows: 

R = {(x, x):xeR} U {(w, n):?n £ Z and ne Z}. 

1. Is the quotient mapping p:R -* R/R an open mapping? Is it 

a closed mapping? Is it a compact mapping? 

2. Is the quotient space R/R metrizable? Is it locally connected ? 

3. Is the product space R X (R/R) a metric space? 

III. 1. Suppose that F is an ultrafilter on a set X. Can f]F contain 

more than one point? 

2. Suppose that F is a filter on a set X and f\F = 0. Prove 
that X is necessarily an infinite set. 

3. Let X be the set of all real numbers and let F be the topology 

for X as in Example 75.6. Is F a filter on XI Is it an ultra¬ 

filter? 

4. Let F be a filter on a set X. Prove that F is the intersection 
of all ultrafilters that contain it. 

IV. This set of exercises deals with the notion of composition of 
relations. The results will be needed in V. 

Let X be a set and let U and V be two relations in X. By 
the composition U ° V, we shall mean the relation defined as 

follows: 

U o V = {(v, u):(v, x) e V and (x, u) e U 

for some x e X}. 

1. Show that if the relations U and V happen to be functions from 
X into X, then the definition of composition as defined here is 
consistent with the definition for composition of functions. 
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2. Prove the associative law for composition of relations; that 
is, prove that if U, V, and Ware relations in X, then 

(U° V)o W= U° (Vo W) 

3. Recall from 11.4 the definition of R~x for a relation R. Prove 

that if U and V are relations in a set X, then (U ° K)-1 = 
V~l o u~\ 

Note; In view of the associativity of composition of 

relations, parentheses will not be used for (U ° V) ° W in the 

exercises in V. 

V. In this sequence of exercises we shall be dealing with the notion 

of uniform space. As the reader will see, such concepts as 
uniform continuity, uniform convergence, and other metric 

type properties can be extended to the setting of uniform spaces. 

In these exercises the reader will need to make use of the 
results in IV. Also, extensive use will be made of the nota¬ 
tions in Section 11, especially 11.2, 11.3 and 11.4. 

Let X be a nonempty set. In what follows we shall refer 

to the set {(x, x):x e X} as the diagonal of X X X and denote 
it by A. A uniformity for the set A is a nonempty collection 

°U of subsets of X X X (and, hence, nonempty relations in X) 

that satisfies each of the following properties: 

(i) A c: U for each U e6//. 

(ii) If U e °ll and U c W c X, then W e °U. 

(iii) If U and V are elements of °U, then U n V 

(iv) If U then 
(v) If U , then there is a V e °ll such that 

V o V c U. 

If X is a nonempty set and is a uniformity for X, then 

(X, °i/) is called a uniform space. 

In each of the following, we assume that (X, °U) is a 

uniform space. 

1. Prove that °U is a filter on X X X. 

2. Show that for each U U <= U ° U c= U ° U ° U. 

Hence, for example, if U , then U° U and U ° U ° U 

are also elements of °ll. 

3. Let U e6!/. Then there is a Kef such that V ° V ° V c U. 

4. Recall that a relation is symmetric if and only if U — C/_1. 

Prove that if U e°l/, then there is a symmetric Kef such 
that K»Kc U. 

Hint: Prove first that if then W n W~x is a 

symmetric element of °l/. 

Let (3f, d) be a metric space. For each e > 0, let 

U* = {0,T):4*>.}0 < e} c X X X. 

5. 
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Let °U be the following collection of subsets of XXX: 

— {U: Ut <= u for some e > 0}. 

Prove that the collection °U is a uniformity for X. 

6. Let be the collection of all continuous real-valued functions 

defined on the real line R. For each compact set K c: R and 

for each e > 0 let 

U(e, K) = {(/, g):fe V,ge V, |/(x) - g(x)| < e 

for all x g K). 

Next let °U be the collection of all subsets of this form; 

that is, 

= {U:U => U(e, K) for some e > 0 

and compact subset K of R}. 

Prove that °U is a uniformity for . 

7. Let (X, °ti) be a uniform space. Let y\°U) be the following 
collection of subsets of X: 

ST{°U) = {S: for each x e S, there is a 

Ue<& such that U[x] c s}. 

Show that ST(%) is a topology for X. This topology is 
known as the uniform topology. In what follows, a uniform 

space (X, °U) will be said to have a topological property pro¬ 
vided the topological space {X, ST(#)) has that property. 

Also, suppose that (X,^) and (Y,y) are uniform spaces. 
We shall say that a mapping/: (X, °U) —► (F, y) is continuous 

provided/:(X, y(ft/)) —*■ (7, 2T (pT)) is continuous. 

8. Suppose that (X, °U) is a uniform space. Let Uand 
x g X. Prove that the set U[x] is a neighborhood of x (relative 

to the uniform topology). 
Hint: Show that the set 

Nx — {y-V[y] c £/[x] for some V e y) 

is an open subset of U[x] that contains x. Property (v) for 
uniform spaces will play a critical role in the proof. 

9. A mapping/from a uniform space (X, °ll) into a uniform space 
(Y, y) is called uniformly continuous provided that for each 

V G y, there is a U e °U such that 

(x,y) e°t/ implies that (/(x),/(y)) e V. 

Prove that if /is uniformly continuous, then it is continuous. 

10. Let (X, cl) be a metric space, and let °l/ be the uniformity for 
X as given in Exercise 5. Show that the topology for X gener¬ 

ated by d and the uniform topology are the same. 
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11. Let /: (X, tf/) —*■ (Y, Y) be a mapping where and 

(Y, Y) are uniform spaces. Prove that if (X, °l/) is compact and 

f is continuous, then/is uniformly continuous. 
Hint: Imitate the proof of the metric case with property 

(v) for uniform spaces used very much like the triangle in¬ 
equality. 

12. Let (/„, a £ fl, be a net of mappings from a topological 
space (X, Y) into a uniform space (Y,Y). Then the net 

(/a) is said to converge uniformly to the mapping f:(X, Y)—> 

(Y, Y) provided that for every V e Y there is an N e D such 
that for all a ^ N, 

(/«(x) >/(*)) e ^ f°r x e X. 

Prove that if the net (/,) converges uniformly to f and if each 
of the fa's is continuous, then the mapping/is continuous also. 

(See Exercise 4, page 255 .)(It should be pointed out that the 

definition of uniform convergence is meaningful if the common 
domain for the fa’s is a set rather than a space. However, a 

space was needed for the proposition.) 

The notions of total boundedness, completeness and other 

metric-like properties can also be extended to the setting of 

uniform spaces. The reader who wishes to pursue this topic 
is referred, for example, to [6], [26], or [32]. 
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Alexandroff (Aleksandrov) 
one point compactification, 213-214, 228 

(Exercises 10, 11, 12) 
Algebraic structure 

for linear spaces, 144-146 
for R, 59-62 
for Rn, 65-67 

Antireflexive (irreflexive) relation, 39 
Antisymmetric relation, 39 
Arc (topological) 223 (Exercise 4) 
Archimedian property, 60 
Arzela-Ascoli theorem, 155-156 (Exercise 7) 
Associativity of composition, 28 
Axiom of choice, 46-47 

B. W. compact (Bolzano-Weierstrass prop¬ 
erty), 123-124, 203 

Baire (category) theorem, 129, 130 (Exercise 
2), 212 (Exercise 5) 

Ball. See under Closed ball. 
Banach fixed point theorem, 157 

application to differential equations, 159- 
161 

Banach space, 145 
Base 

countable for a neighborhood system, 196 
countable for a topology, 194 
countable for R", (43.2) 79 
for a filter, 256 
for a neighborhood system, 177, 196 
for a topology, 165-167 

Bijection (one-to-one and onto), 17 
Bijective map (bijection), 17 
Bolzano-Weierstrass 

property for topological spaces, 203 
property in metric spaces, 123-124 
theorem for R", 75 

Boundary 
of a set, 171 
point, 171 

Bounded 
function, 120 
metric, 87 (Exercise 3), 106 (Exercise 15) 
sequence in R", 76 
set in a metric space, 120 

Bounded (Continued) 
set in R'1, 73 
subset of a totally ordered set, 44 
totally, 118-121 

^T([a, b]), space of continuous functions, 
153-156 

Cardinality, 48-49 
Cartesian product. See Product (Cartesian). 
Cauchy criterion for convergence in R", 78 
Cauchy Schwarz inequality 

in an inner product space, 145 
in R", 67 

Cauchy sequence 
in a metric space, 127 
in R", 78 

Choice function, 46 
Closed balls 

in a metric space, 83 
in R", 69 

Closed interval 
in R, 13 
in Rn, 74 

Closed mapping, 181-182, 214-215 
characterization of, (95.4) 215 
relation to decomposition of a space, 231— 

232 
sufficient condition for, 234 

Closure of a set 
in a metric space, 84-85 
in a topological space, 170 

Cluster point of a sequence, 208 
Coarser topology, 197 
Cofinal set, 251 
Collections of sets, 12 
Commutative diagram, 28 
Compact 

countably compact, 203, 208, 210 
diagram showing relations to related prop¬ 

erties, 210 
locally, 211-213 
mappings, 214-217 
metric space, 124-127 
point inverse property (see 95.2), 215 
sequentially compact, 121, 203 
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Compact (Continued) 
space, 203-210 

Compactification, 214 
of the line, 211 (Exercise 4) 
one-point (Alexandroff), 213-214 

Compactness 
characterization in terms of completeness 

and total boundedness, 131 
filters, 258-259 
finite intersection property, 203 
nets, 253 

Comparison of topologies, 197-198 
Complement of a set, 8-9 
Complete metric space, 127-130 
Completely normal, 109 
Completely regular, 192 

sufficient condition for, 212 
Completeness of R", 78 
Completion of a metric space, 131-136 
Component, 219 
Composite function, 27 
Condensation point, 118 (Exercise 8) 
Connected 

metric space, 110-113 
pathwise, 222 
polygonally, 114-115 
space, 219-223 

Connectedness 
invariance under continuous mappings, 

113, 222 
of intervals in the line, 113-114 
of real normed linear spaces, 146 

Connectives, 3 
truth tables for. 3-5 

Continuity, equivalent forms of, 
for first countable spaces, 197 
for metric spaces, 96-98 
for topological spaces, 179 
in terms of filters and nets, 260 (Exer¬ 

cise 4), 260 (Exercise 7) 
Continuous curve, 223 (Exercise 3) 
Continuous extension, 190 
Continuous mapping 

defined on metric space, 94 
defined on topological space, 179 

Continuum, 220 
Contraction mapping, 156-159 

application to differential equations, 159— 
161 

Contrapositive, 5-6 
Convergent filters, 257 
Convergent nets, 251-254 
Convergent sequences 

in first countable space, 197 
in metric space, 89 
in R. 63-64 
in R", 75-76 
in topological space, 171 
of functions, 137 

Converse, 4 
Convex set, 116 (Exercise 5), 146 (Exercise 3) 
Coordinate 

of a mapping, 269 
of a point, 93, 262 
space. 93, 262 

Countable base 
for R\ (43.2) 79 
for separable metric space, (Theorem 58.7) 

116 
for topological spaces, 194 

Countable set, 50 
Countably compact space, 203 

equivalent formulations of, 208 
relations to other types of compactness, 

209-210 
Countably infinite set, 50 
Counterexample, 11 
Cut point, 220 (see Definition 96.6) 
Cylinder, 240-241 (Example 103.4) 

Decomposition 
of domain space into components of point 

inverses, 243-244 
into point inverses, 232, 239-240 

of set, 40 
of space, 231-233 
upper and lower semi-continuous, 231-233 

Decreasing sequences 
of numbers, 31 
of sets, 31 

DeMorgan's formulas, 13 (Exercise 5) 
Dense set, 116, 171 
Diameter of a set, 120 
Dini’s theorem, 139 
Directed set, 249 
Discrete topology, 164 
Disjoint sets, 8 
Distance 

between a point and a set, 104 
between two sets, 104 
formula for R, 63 
formula for R", 68-69 

Domain 
of a function, 15 
of a relation, 19 

e-chainable sets, 244 (Exercise 8) 
e-neighborhood of a point 

in a metric space, 83 
in R. 63 
in R", 69 

e-net, 119 
Eilenberg, S., 231, 244 
Element of a set, 1 
Embedding, 214 
Empty set, 2, 7 
Equicontinuity, 155 (Exercise 7) 
Equicontinuous collection, 155 (Exercise 7) 
Equivalence 

classes, 41 
relation, 39 

Equivalent 
metrics, 86 
sets with respect to cardinality, 49 
statements, 5 



Index 281 

Euclidean 
distance formula, 69 
metric, 69 
space, 58-80 

Evaluation mapping, 271-272 (Exercise 1,4) 
Existence theorem for first order differential 

equations, 159-161 
Extension of a continuous mapping, 128 (see 

63.6) 
Tietze’s theorem, 190-191 

Exterior of a set, 170 

Factorization of compact mappings, 243-246 
Field, 60 
Filter, 255-260 

base, 256 
generated by a base or subbase, 256 
subbase, 256 
ultra (maximal), 257 

Finer topology, 197 
Finite 

induction, 34 
intersection property, 203 
set, 48 

Finite-sequence (n-tuple), 30 
First countable space, 196 
Fixed point theorem (Banach), 156-158 
Frontier (boundary) 

of a set, 171 
point, 171 

Function, 15 (See also under Mapping.) 
composite, 27 
diagram, 28 
domain of, 15 
from one space into another, 16 
space ^([a, b]), 153-154 

Generalized sequence (net), 250-254 
Greatest 

element, 44 
lower bound, 44 

Group, 60 

Hausdorff maximality principle, 47 
Flausdorff metric, 228 (Exercise 16) 
Hausdorff (Ta-space), 184 

characterization with filters, 257 
characterization with nets, 252 

Heine-Borel theorem, 79 
Hilbert cube, 151-152 
Hilbert space, 145 

/2 space, 146-149 
Homeomorphic (topologically equivalent), 

99, 179 

Homeomorphism (topological map) 
on metric spaces, 99 
on topological spaces, 179 

Hypothesis, 4 

Identification 
mapping, 241 
topology, 241 

Identity map, 28 
Image, 17 
Image set, 17, 23 
Inclusion map, 28 
Indexed collection, 12 
Induction, finite, 34 
Inductive definition, 37 
Inequality 

Cauchy-Schwarz, 67, 145 
triangle, 67, 82, 145 

Infimum, 25 
Infinite 

sequence, 30 (see also under sequence) 
set, 48 

Injection (one-to-one mapping), 17 
Inner product, 66, 145 
Interior 

of a set, 170 
operator, 173-174 
point, 170 

Intermediate value theorem, 113 
Intersection, 7, 12 
Invariance, of Hausdorff property under per¬ 

fect mapping, 216 
of local connectedness 

under closed or open continuous surjec¬ 
tions, 222 

under continuous quasi-compact map¬ 
pings, (101.5(b)) 234 

of metrizability under homeomorphism, 
199 

of normality under continuous closed sur¬ 
jections, 216 

of regularity under perfect mappings, 216 
under continuous mappings of 

compactness, 206 
connectedness, 113, 222 
pathwise connectedness, 222 
separability, 193 

Invariant (preserved), 98 
Inverse set, 233 
Irreducible mapping, 255 (Exercise 5) 
Irreflexive (see antisymmetric) 
Isolated point, 171 
Isometric embedding, 132 
Isometry, 104, 132 
Isomorphism, vector, 144 
Iterate of a mapping, 157 

Kuratowski closure axioms, 175 (Exercise 8) 

/2, 146 
Larger (finer) topology, 197 
Largest element, 44 
Least element, 44 
Least upper bound (supremum) 

axiom, 61 
in a partially ordered set, 45 
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Lebesque number, 126 (Exercise 3) 
Lexicographical (dictionary) order, 46 (Ex¬ 

ercise 5) 
Light mappings, 244-245 
Limit inferior, 225 
Limit of a net, 253 
Limit of a sequence 

in a metric space, 89 
in a topological space, 171-172 
in R, 63 
in Rn, 75 

Limit point of a set 
in a metric space, 84 
in a topological space, 170 
in Rn, 71 

Limit superior, 225 
Lindelof space, 195 
Lindelof theorem 

for Rn, 79 
for second countable space, 195 

Linear 
mapping, 144 
subspace, 144 
(total) order, 43 
(vector) space, 144 

Local compactness, 150, 211 
in Hausdorff spaces, (93.4) 211 

Local connectedness, 220 
invariance of under various mappings, 222, 

234 (101.5(b)) 
Local homeomorphism, 217 (Exercise 6) 
Lower bound, 44 
Lower Riemann integral, 251 (Example 

108.3) 
Lower semicontinuous decomposition, 231, 

234,237 
Lower sum, 250 (Example 107.11) 

Mappings 
associativity of composition, 28 
bijection (one-to-one and onto), 17 
closed, 181, 181-182, 214-215 
compact, 214-217 
composition of, 27 
continuous, 96-98, 179 
contraction, 156-158 
factorization of compact, 243-245 
homeomorphism (topological) 99, 179 
identification (continuous and quasi-com¬ 

pact), 241 
identity, 28 
injective (one-to-one), 17 
into product spaces, 269-271 
irreducible (strongly), 255 (Exercise 5) 
light, 244-245 
monotone, 244-245 
onto (surjective), 16 
open, 181 
perfect, 214-217 
projection into coordinate spaces, 93, 262 
quasi-compact, 233-234, 240-241 
quotient (natural) mapping, 235 

Mappings (Continued) 
strongly irreducible, 255 (Exercise 5) 
surjection (onto), 16 
uniformly continuous, 103-105, 182 (82.5), 

183 (Exercise 5), 274 (Exercise 9) 
Maximal element, 45 
Maximal (ultra) filter, 257-258 
Membership, 1 
Metric, 81 

equivalent, $6 
Euclidean for Rn, 69 
Hausdorff, 228-229 (Exercise 16) 
product, 90, 268 

Metric space, 81-82 
complete, 127-128 
completion of, 131-136 
separable, 116-118 
sequentially compact, 121 
subspace of 87-88 
totally bounded, 118-121 

Metrizable space, 164 
Metrization theorem (Urysohn), 198-201 
Minimal element, 45 
Monotone mapping, 244-245 
Moore-Smith convergence, 259 (see Note) 
Multiplication by a scalar, 65 
Mutually separated sets, 109, 219 

n— 1 sphere in R", 69 
n-tuple, 30 
Natural (quotient) mapping, 235 
Negation, 4 
Neighborhood, 176 
Neighborhood system of a point, 176-177 

base for, 177 
Nested collection of sets, 43 
Nested interval theorem 

for R. 64-65 
for Rn, 74 

Net, 250 
convergence of, 251-255 

Nonequivalent sets, 53-54 
Norm, 144-145 
Normality, 108, 184 

characterization of, 187-190, 192 
complete, 109 
invariance under continuous closed sur¬ 

jections, 216 
Normed linear spaces, 145 
Notation for some important sets, 13 
Nowhere dense, 172-173 (Exercise 6) 

One-point (Alexandroff) compactification, 
213-214 

One-to-one correspondence, 17 
One-to-one mapping (injection), 17 
Onto mapping (surjection), 16 
Open covering, 117 
Open mapping, 181-182 

invariance of local connectedness under, 
222 

relation to decompositions, 231-232 
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Open set 
in a metric space, 83 
in a topological space, 163 
in R", 70 

Open spheres (e-neighborhood) 

in a metric space, 83 
in R", 69 

Openness of projection mapping on product 

spaces, 263 
Operator 

boundary, 170-171 
closure, 170, 174 
interior, 170, 174 

Order 
lexicographical, 46 (Exercise 5) 

partial, 42 
total (linear), 43 

Ordered topology, 169 (Exercise 10) 
Orthogonal vectors, 68 

Partial order, 42 
Partially ordered set (system), 42 
Partition (decomposition), 40 
Path-connected, 222 
Peano space, 223 (Exercise 3) 
Perfect mappings, 202, 215-217 
Picard theorem for first order differential 

equations, 159-161 
Point 

condensation, 118 (Exercise 8) 
limit, 71, 84, 170 
of a set, 1 

(o-limit, 208 
Point inverse property, 215 
Polygonal connectedness, 114-115 
Power set, 13 
Precedes, as used in a partially ordered set, 43 
Precompact (totally bounded), 119, 121 
Preserved, (invariant) 98 
Product (Cartesian) 

of arbitrary collections of sets, 261-262 
of arbitrary collections of topological 

spaces, 262 
of compact spaces, 265 
of connected spaces, 265 
of countable collection of metric spaces, 

268 
of countable collection of sets, 31 
of finite collection of metric spaces, 90 
of finite collection of topological spaces, 

168 
of first countable spaces, 267 
of Hausdorff spaces, 187 (Exercise 18), 

264 
of locally connected spaces, 266 
of second countable spaces, 267 
of two sets, 14 

Product topology, 168, 263-269 
relative topology induced by, 266 (1 1 1.12) 

Projection mapping on product space, 93, 
262 

Proper subset, 7 
Properties inherited by quotient spaces, 237 
Pseudo-metric spaces, 237-238 (Exercise 3) 

Quasi-compact mapping, 233-235, 240-241 

Quotient 
mapping (natural), 235 
set 235 
space, 235-237 
topology 235-237 

Range 
of a function, 15 
of a relation, 19 

Real 
linear (vector) space, 143-146 
number system, 58-65 

Reflexive relation, 38 
Regular space, 184 
Relation, 18 

antireflexive (irreflexive), 39 
antisymmetric, 39 
between sets, 19 
composition of, 272-273 (Exercise IV—1,2) 

domain of, 19 
equivalence, 38-39 
image sets under, 23-24 
in a set, 38 
inverse of, 20 

range of, 19 
symmetric, 39 
transitive, 38 

Relative topology, 178 (80.1) 
Restriction 

of a function, 26 
of a relation, 38 

Scalars, 144 
multiplication by, 144 

Second countable space, 194 
Separable 

metric space, 116-118 
space, 193-194 

Separation of a set, 109, 219 
Separation properties 

completely regular, 192 
for topological spaces, 183-193 
normal, 184, 187-192 

characterization of, 187-192 
possessed by metric spaces, 108-110 
regular, 184 
To, 186 (Exercise 14) 
Ti, 184 
T2 (Hausdorff), 184 
Ta (Ti and regular), 184 
T4 (Ti and normal), 184 
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Sequence (infinite), 30 
bounded in R", 76 
Cauchy criterion for convergence, 78 
convergent in a metric space, 89 
convergent in a topological space, 171 
convergent in R", 75-78 
decreasing or increasing, 3 1 
defined inductively, 35-38 
of mappings, 136-140, 182, 183 (Exercise 

5) 
Sequential compactness, 121, 203 

relation to other types of compactness, 210 
Set(s), 1 

collection of, 12 
complement of, 8-9 
countable, 49-51 
decomposition of, 40-42 
equivalent with respect to cardinality, 49 
finite, 48 
identities, 9-11 
inclusion (ci), 7 
indexed collection, 12 
infinite, 48 
intersection, 8, 12 
mutually separated, 109, 219 
nested collections of, 43 
nonequivalent with respect to cardinality, 

53 
power, 13, 53 

as a topology, (75.3), 164 
separated, 109, 219 
that separate, 220 
uncountable, 51 
union of, 8, 12 

Simple closed curve, 223 (Exercise 5) 
Simple continuous arc, 223 (Exercise 4) 
Smaller topology, 197 
Smallest (least, minimum), 47 
Space 

Banach, 145 
B.W. compact, 203 
<<f([a, b]), 153-156 
compact, 124-126,203-210 
complete, 127-130 
connected, 110-113, 219-229 
coordinate, 262 
countably compact, 203, 208, 210 
decomposition of, 231-232 
decomposition (quotient), 235-237 
discrete, 164 
Euclidean (Rn), 65-80 
first countable, 196-197 
Hausdorff (To), 184 
Hilbert, 145 
/2, 146-150 
Lindelof, 195 
linear, 144-146 
locally compact, 211-213 
metric, 81 

separable, 116-118 
sequentially compact, 121-123 
totally bounded, 118-121 

metrizable, 164 
normal, 184 

Space (Continued) 
regular, 184 
second countable, 194 
separable, 193-194 
sequentially compact, 121-123, 203, 210 
Tj, T2, T3, T4, 184 
topological (definition of), 163 
trivial, 164 
Tychonoff (Tihonov), 192 
uniform, 273-275 (Exercise V, 1-10) 

Spaces 
isometric, 132 
topologically equivalent (homeomorphic), 

99, 179 
Sphere, 69 
Spherical neighborhood (e-neighborhood, 

open sphere), 83 
Subbase 

for a filter, 256 
for a neighborhood system, 177 
for topology, 167 

Subset, 7 
bounded, 44, 73, 120 
proper, 7 

Subspace 
of a linear space, 144 
of a metric space, 87-88 
topological, 177-178 

Supremum (least upper bound), 45, 61 
Surjection (onto), 16 
Symmetric relation, 39 

To-space, 186 (Exercise 14) 
Ti, To, T3, T4, 184 
Tautology, 6 
Tietze extension theorem, 190-191 
Topological 

arc, 223 (Exercise 4) 
embedding, 214 

invariant (property invariant under a ho- 
meomorphism), 182 

mapping (homeomorphism), 99, 179 
property, 87, 182 
space (definition), 163 

Topologically equivalent mappings, 242 
Topology 

base for, 165 

comparison of topologies, 197-198 
discrete, 164 (Example 75.3) 
Euclidean for R", 70 
generated by a metric, 86 
order, 169 (Exercise 10) 

product, 168, 262-269 
quotient (decomposition), 235-237 
relative, 178 (80.1) 
subbase for, 167 
trivial 164 (Example 75.3) 

Torus, 241 (Exercise 3) 
Totally disconnected, 220 
Totally (linearly) ordered set, 43 
Transformation (function, map, mapping), 

15. See also under Mappings. 
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Transitive relation, 38 
Triangle inequality 

for metric space, 82 
for norm, 145 
for R, 63 
for R", 69 

Trivial topology, 164 
Truth values, 3-6 
Tychonoff (Tihonov) 

product theorem, 265 
space (Ti and completely regular), 192 

Ultra (maximal) filter, 257-259 
Uncountable set, 52 
Uniform 

continuity, 103-105 
convergence, 137-139, 182, 275 (Exercise 

12) 
equicontinuity, 156 (Exercise 7(c)) 
norm,153 
space, 273-275 (Exercise IV, 1-12) 

Union of sets, 8-12 

Upper bound, 44 
Upper Riemann integral, 251 (Example 

108.3) 
Urysohn’s lemma, 187-190 
Urysohn’s metrization theorem, 198-200 

Vector 
isomorphism, 144 
(linear) space, 144 

Weierstrass M-test, 183 (Exercise 5) 
Well-ordering 

for positive integers, 34 
principle, 47 

Whyburn, G. T., 215, 244, 246 (Exercise 4) 

Zero element, 144 
Zorn’s lemma, 47 
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