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Preface

This book is designed to develop the fundamental concepts of general topology
which are the basic tools of working mathematicians in a variety of fields. The
material here is sufficient for a variety of one- or two-semester courses, and pre-
supposes a student who has successfully mastered the material of a rigorous
course in advanced calculus or real analysis. Thus it is addressed primarily to
the beginning graduate student and the good undergraduate.

A principal goal here has been to seek some sort of balance, in the treatment,
between two broad areas into which general topology might (rather arbitrarily
and, of course, inaccurately) be divided. The first, which could be called “‘con-
tinuous topology”’, centers on the results about compactness and metrization which
are the indispensable tools of the modern analyst. This is what Kelley has labeled
“what every young analyst should know’’, and is represented here by sections on
convergence, compactness, metrization and complete metric spaces, uniform
spaces and function spaces. The second area, which might be called “geometric
topology”’, is primarily concerned with the connectivity properties of topological
spaces and provides the cores of results from general topology which are necessary
preparation for later courses in geometry and algebraic topology. This core is
formed here by a series of nine sections on connectivity properties, topological
characterization theorems and homotopy theory. By suitable surgical interven-
tion, mixed audiences can be taught a mixture of the two approaches, using
whatever recipe the instructor likes best. To aid in the concoction of such recipes
this preface is followed by a table of some of the important topics in the book
together with a list of the material which is prerequisite for each.

While trying to maintain the balance just described, I have also tried to keep in
mind the potential uses of such a book both as a text and as a reference source.
Thus, in a concession to pedagogy, I have paced the book rather more slowly at
the beginning than at the end and have concentrated motivational comments at
the beginning. I have also attempted to keep the pedagogical lines of force
transparent by paring the material of each section down to what I believe is
fundamental. At the same time, I have included a large selection of exercises (over
340, each containing several parts), which provide drill in the techniques developed
in the text, develop limiting counterexamples and provide extensions of, and
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vi Preface

parallels to, the theory presented in the text. Some of the “‘theoretical” exercises
are suitable for extended development and discussion in the classroom, and all
should enhance the value of the book as a reference source. Worth particular
mention are the exercises on normed linear spaces and topological groups, and
many of the exercises in the sections on compactness, compactification, metrization
and the Stone-Weierstrass theorem. To facilitate its use as a reference source, |
have included at the end of the book a collection of background notes for each
section, a large (but certainly not exhaustive) bibliography and an index as
comprehensive as my patience would allow.

The primary organization of the book is into forty-four sections; chapter
headings are provided, but not as a referencing device; they serve only to collect
the sections into coherent groups. Within each section, the definitions, examples
and theorems are further numbered consecutively so that Theorem 25.3 appears
as the third item (not necessarily the third theorem) in Section 25. The one excep-
tion to this rule is Section 1, on set theory, where the material is somewhat con-
densed and the numbers 1.1, 1.2, . .. serve to designate subsections rather than
specific results. One note of caution seems advisable. A reference to a theorem
number only, omitting the word “theorem”, should serve as a warning that the
relevant observation may be made in the remarks following the proof of the
theorem, rather than in the statement of the theorem itself. (This happens
infrequently, however, and most references, even of this type, are to the numbered
theorem itself.) Each section ends with a set of exercises, lettered consecutively;
most exercises consist of several parts. A reference to 3E is a reference to the
fifth exercise in Section 3; where more precision is needed, 3E.3 is used to designate
the third part of this exercise.

A few notational and terminological conventions deserve special mention.
Following the lead of Halmos and Kelley, we replace the cumbersome ““if and
only if” by “iff” and denote the end of a proof by . When discussing statements
of the form “P iff Q”, we occasionally use “necessity” to mean “if P then Q”
and “sufficiency™ to mean ‘P if Q. Square brackets are used nonmathematically
in two contexts in this book. At the end of an exercise, they enclose hints to the
solution of that exercise, and placed at the end of an item in the bibliography,
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they enclose a reference to the review of that item in the Mathematical Reviews
or (for items written between 1930 and 1940) the Zentralblat:.

Anyone who writes a book of this sort accumulates a sea of outstanding
debts. My own personal sea has been fed by more rivers of kindness than I can
count; many have no doubt achieved the status of underground streams and been
forgotten. The one I cannot forget created the sea long before this project was
conceived, and I here acknowledge my greatest debt to A. H. Stone. Jen suis pas
digne.

The presentation here has been affected by countless conversations with
friends and colleagues, who were not always aware they were speaking for
posterity. I apologize, mentioning particularly Donald Plank, Melvin Henriksen,
W. W. Comfort, Don Johnson, Ta Sun Wu, John Isbell, Anthony Hager and
Phillip Nanzetta. A great many students deserve my thanks for stoically suffering
through earlier versions of the manuscript: These include my own at Lehigh,
Case Western Reserve and the University of Alberta, as well as those of Professor
Johnson at New Mexico State University and Professor Comfort at Wesleyan
University. Especially, parts of the manuscript were assiduously edited by Robert
Shurtleff, and critically reviewed by the students in Professor Comfort’s class.
They will, T think, recognize their influence in the ultimate presentation.

If I mention the students who have suffered through one or another of the
early versions of this manuscript, I cannot neglect my wife, Mary, who has
suffered through every version, both as wife and as proof reader.

The typing was done by Elizabeth Roach and Rosemary Pappano. Virtually
every mistake that survived their typing was my own and I am shaken to report
that they caught several of my best and most subtle errors, mathematical and
otherwise.

Case Western Reserve University deserves my thanks for making it possible
for me to avoid dividing my time and myself between the classroom and prepara-
tion of this manuscript in the fall of 1968. Parts of the manuscript were prepared
during my tenures on several grants from the National Science Foundation.

Edmonton, Alberta S.W.
April 1970
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Chapter 1

Set Theory and Metric Spaces

1 Set theory

The material of this section is introduced primarily to serve as a review for those
with some background in set theory and as an introduction to our notational
conventions and terminology. The reader entirely unfamiliar with any aspect
of set theory should not be content with the intuitive discussion given here, but
should consult one of the standard references on the subject (see the notes).

Most of the material in this book is accessible to anyone who understands 1.1
through 1.8 below. Itisrecommended that the remainder of this section be skipped
on first reading and referred to later as needed.

1.1 Sets. A set, family or collection is an aggregate of things (for example, numbers
or functions or desks or people), called the elements or points of the set. If a is an
element of the set A we write a € A and if this is false we write a ¢ A.

If A is a set and S is a statement which applies to some of the elements of A,
the set of elements a of 4 for which S(a) is true is denoted {a € 4 | S(a)}. Thus if
N s the set of positive integers, the positive divisors of 6 form the set {ae N | ab = 6
for some b e N}. In the case of small sets, such as this one, it is easy to describe
the set by listing its elements in brackets. Thus the set just givenis the set {1, 2, 3, 6}.

This discussion is rather naive and leads to certain difficulties. Thus if P is
the set of all sets, we can apparently form the set Q = {4 e P | A ¢ A}, leading to
the contradictory Q € Q iff Q ¢ Q. This is Russell’s paradox (see Exercise 1A)
and can be avoided (in our naive discussion) by agreeing that no aggregate shall
be a set which would be an element of itself.

1.2 Elementary set calculus. If 4 and B are sets and every element of 4 is an element
of B, we write A < B or B > A and say A is a subset of B or B contains A. The
collection P(A4) of all subsets of a given set A is itself a set, called the power set of A.

We say sets A and B are equal, A = B, when both A < B and B < A.
Evidently, 4 and B are equal iff they have the same elements.

We write A — B to denote the set {a € A | a ¢ B} and (unlike some writers)
use this notation even when B is not a subset of 4, i.e., even when B ¢ A. When
we do have B < A, A — Bis called the complement of B in A.

The empty set, o, is the set having no elements. By the criterion for equality
of sets, there is only one empty set and, by the criterion for containment, it is a
subset of every other set.
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Note that element and subset are different ideas. Thus, for example, x € A
iff {x} = A.

A few sets will keep recurring and we will establish now a conventional
notation for them.

R: the set of real numbers,
R": Euclidean n-space,
N: the set of positive integers,
I: the closed interval [0, 1] in R,
Q: the set of rational numbers in R,
P: the set of irrational numbers in R,
S": the n-sphere, {x e R"*! | |x| = 1}.

Eventually, each of these sets will be assumed to carry some “usual” structure (a
metric, topology, uniformity or proximity) unless the contrary is noted. Additional
less often used conventional notations will be introduced in the text. All can be
found in the index.

1.3 Union and intersection. If A is a set and, for each 1€ A, A4, is a set, the union of
the sets A, is the set | ),.5 A, of all elements which belong to at least one A4,.
When no confusion about the indexing can result, we will write the union of the
sets A, as simply | ) 4,. The intersection of the sets A, is the set () ,ca A;, Or simply
() A;, of all elements which belong to every 4,. In case &/ is the collection
{4, | 2€ A}, the union and intersection of the sets A, are sometimes denoted
(J o/ and () o, respectively.

When only finitely many sets 4, . . ., 4, are involved, the alternative notations
Ay vu---U A, or U;=1 A, are sometimes used for the union of the A,, while
Ay N n A, or ()izy A, sometimes denotes their intersection. When de-

numerably many sets A,, 4,,... are involved, their union will sometimes be
denoted by 4; U A, U or (J&, 4, their intersection by A; N A, N -~ -
or (&y Ay

We say A meets Biff A n B # o. Otherwise, 4 and B are disjoint. In general,
a family < of sets is pairwise disjoint iff whenever A, Be &/, A N B = o.

For those who wish to test themselves on the concepts just introduced, here
are a few easily proved facts:

a) Ac Bif Au B = B,

b) A = Biff An B = 4,

¢) If o/ is the empty collection of subsets of 4, then | ) o = oand () & = A.

d AuB=A4u (B — A.

e) An(BuCO) =AnBuCIfCc A
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1.4 Theorem. If A is a set, B, = A for each A€ A and B = A, then

a) A — (UleA B;) = ﬂ/IEA (A4 - BA),} De Morgan’s laws
b) 4 - (ﬂza\ B;) = UAeA (A4 — By),

©) B (User Bi) = Usea (B 0 By), } distributive laws
d) Bu (mlel\ B;) = ﬂleA (B U B)).

Proof. a) If xe A — (U B;), then xe A and x¢ B, for any 4, so xe A — B,
for each A; hence x e () (4 — B,). Conversely if x € () (4 — B,), then for each
A, xeA and x¢B;; hence xeA — (|JB;). Thus xed — ({J B, iff
x € () (4 — B,), so that

A - (UB}.)= ﬂ(A _Bl)-
b) Similar to (a). See Exercise 1B.

o) If xe BN (|J B,), then x € B and x e () B,; thus x € B and x € B, for
some A, Hence x € U (B n B,). Conversely, ifx € U (BN B,),thenxe B N B,
for some A, € A; thus xe B and x € B,,, so that xe B and xe U B,. Hence
xe€ Bn (| B;). We have shown xe Bn (| B,) iff xe (] (B n B,); it follows
that B () B;) = {J (B B)).

d) Similar to (c). See Exercise 1B. l

1.5 Small Cartesian products. If x and y are distinct elements of some set, the two-
element sets {x,, x,} and {x,, x,} are, by the criterion for set equality, the same.
It is useful to have a device for reflecting priority as well as membership in this
case, and it is provided by the notion of the ordered pair (x,, x,). By definition,
ordered pairs (x,, x,) and (y,, y,) are equal iff x;, = y; and x, = y,. For a
somewhat more formal approach to ordered pairs, see Exercise 1C.

Now if X; and X, are sets, the Cartesian product X; x X, of X; and X, is
defined to be the set of all ordered pairs (x;, x,) such that x; € X, and x, € X,.
This definition, for example, gives the plane as the set of all ordered pairs of real
numbers. Other examples: S' x I is a cylinder, S' x S! is a torus,
R x R" = R"*1,

Once defined for two sets, Cartesian products of any finite number of sets
can be defined by induction; thus, the last example in the previous paragraph
could be taken as the definition of R"*!,

For more about finite Cartesian products, and for a bridge between the
definition given here and the definition provided in Section 8 for products of
infinitely many sets, see Exercise 1D.

1.6 Functions. A function (or map) f from a set A to a set B, written f: A — B, is
a subset of A x B with the properties:

a) For each a € A, there is some b € B such that (g, b) € f.
b) If (a, b)e f and (a, ¢) € f, then b = c.
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More informally, we are requiring that each a e A be paired with exactly
one b € B. The relationship (a, b) € f is customarily written b = f(a) and functions
are usually described by giving a rule for finding f(a) if a is known (rather than,
for example, by giving some geometric or other description of the subset f of
A x B). This reflects the common point of view, which is prone to regard a
function not so much as a static subset of A x B as a “black box” which takes in
elements of A and spits out elements of B.

When regarded as a set in its own right, the collection of functions from A4 to
B is denoted B4.

If f: A > Band C c A, we define f(C) = {beB|b = f(a) for some a € A}.
If D = B, we define (D) = {ae A| f(a) e D}. Hence every function f/: 4 —» B
induces functions f: P(4) - P(B) and f~': P(B) - P(4) (and here we are
following the unfortunate, but common, practice of denoting the elevation of f
from A to P(A) by f also). The properties of these induced functions are investigated
in Exercise 1H, which should be mandatory for anyone who cannot provide easily
the answers to the questions it poses.

Note thatif f: A — B, then f "1(B) = A4 but it need not be true that f(4) = B.
We call f(A) the image of f (or the image of A under f), calling B the range of f
and A the domain of f. When f(A) = B, we say f is onto B. Note also that, for
be B, f~'({b}) [which is always abbreviated f~'(b)] may consist of more than
one point; in extreme cases, we may have f ~'(b) = A. When such behavior is
proscribed, f is called a one—one function. In addition to the usual requirements
for a function, then, a one—one function f: 4 — B must evidently obey the rule:
a, # a, = f(a,) # f(a,). In words, such a function takes distinct elements of
A to distinct elements of B.

Iff: A—> Bandg: B — C, then f and g determine together a natural function,
their composition g o f: A — C, defined by

(g o Na) = gLf(a)], for aeA.

More formally, (a,c)ego f iff for some be B, (a, b)e f and (b,c)eg. Less
formally, put two black boxes end to end.

1.7 Special functions. A function f: N — A is called a sequence in A. It can be
described by giving an indexed list x,, x,, ... of its values at 1, 2, ... and this is
often abbreviated (x,),.n Or even simply (x,). Thus f(n) = 1/n, (1/n),.n and
1,1/2,..., 1/n, ... describe the same sequence in R.

A real-valued function on A is a function on 4 whose range is R. The collection
R* of all real-valued functions on A inherits an algebraic structure from R since
we can define addition, multiplication and scalar multiplication in R* as follows :

givenae Aand reR,
(f + 9)a@ = f(a) + g(a),
(f9)a) = f(a)g(a),
(r/)a) = r[f(a)].
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For this and other reasons, the real-valued functions merit special attention in
any branch of mathematics, and topology is no exception.

The identity function on any set A is the function i: 4 — A defined by i(a) = a
for each a e A. More generally, if B = A, the inclusion j: B — A is the function
j(b) = b for each b € B.

1.8 Relations. A relation R on a set A is any subset of 4 x A. (Thus every function
from A to A is a relation on A, but not all relations on 4 have the properties
required of functions.) If R is a relation on A, we usually denote the relationship
(a, b) € R by aRb. For example, {(n;, n,)e N x N|n; < n,} is a relation on N
and it would be typical to denote this relation by <, so that (ny, n,) € < iff n; < n,.

A relation R on A is called reflexive iff aRa for each a € A, symmetric iff aRb
implies bRa for all a, b € A, antisymmetric iff aRb and bRa implies a = b for all
a, b € A and transitive iff aRb and bRc implies aRc for all a, b, c € A. For example,
< is a transitive relation on R, < is a reflexive, antisymmetric, transitive relation
on R, # is a symmetric relation on R.

An equivalence relation on A is a reflexive, symmetric and transitive relation
on A. As an example, let f be any function from A4 to B and define a relation R
on A by xRy iff f(x) = f(y). For other examples, see Exercise 1E.

If R is an equivalence relation on A, the equivalence class (or R-equivalence
class where confusion is possible) of ae 4 is the set [a] = {a'€ 4| a'Ra}. If
a, b € A, note that either [a] = [b] (and this happens precisely when aRb) or
else [a] N [b] = @. Since a € [a] for each a € 4, the sets [a], for a € 4, evidently
form a partition of 4, i.e, they are disjoint sets whose union is A. For example, if
R is the equivalence relation introduced in the preceding paragraph, the equiva-
lence class of a € A is the set f ~'[f(a)]. Other examples can be found in 1E.

1.9 Order relations. A relation R on A is a partial order provided R is reflexive,
antisymmetric and transitive. Thus < is a partial order on R. It is the model
partial order and thus it is customary to denote any partial order on any set by
<. In this context, > is defined by a > biff b < a.

Associated with any partial order < on 4 is a relation < defined by a < b iff
a < band a # b. Note that < is not reflexive or symmetric, but it is transitive
and has the property that for any a and b in 4, if a < b, then b « a. A transitive
relation with this property will be called a strict order. Thus every partial order
determines a strict order. Conversely, any strict order < determines a partial
order < defined by a < b iff a < b or a = b. Moreover the passage from a
partial order < to its associated strict order < to the partial order determined
by < returns us to <, and the assertion remains true with “strict order” and
“partial order” interchanged. Thus, in dealing with a partially ordered set, the
symbol “<” has a well-defined meaning.

A set A is linearly ordered by a partial order < provided that for any a, be 4
exactly one of a < b, b < aor a = b holds. Then < is called a linear order.
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If < is a partial order on A, the smallest element of A, if it exists, is the element
a, such that a, < a for each a € 4, and the largest element of A, if it exists, is the
element a, such that a < a, for each a € A. Smallest (largest) elements are unique,
when they exist, by antisymmetry. They may not exist: R with the order < has
no smallest or largest element.

A set A is well-ordered if it has a linear order < such that every subset of A
has a smallest element (in the linear order induced on that subset by the linear
order on A). The set N of positive integers is well-ordered by its usual order, the
real line R is not.

1.10 Minimal and maximal elements. If 4 is partially ordered by <, an element b,
of A is a minimal element of A provided b < b, implies b = b, for each b € 4, and
b, is a maximal element of A provided b, < b implies b; = b for each be 4. If
a smallest (largest) element exists in A, then it is the unique minimal (maximal)
element of 4. In Fig. 1.1, where x < y is represented by a rising line connecting
x to y, we find an example of a set with a unique maximal element b which is
not a largest element, so the converse fails.

s
as / b
as
a3

a

a, Figure 1.1

The reader is invited to draw a diagram illustrating that maximal elements
need not be unique.

The least upper bound (lub) of a subset B of a partially ordered set A is the
smallest element of the set {ae A | b < a for each be B}. It may or may not
exist and, when it does, it may or may not belong to B. When it exists, it is unique.
The greatest lower bound (glb) of B is similarly defined.

1.11 Lattices. A partially ordered set L is a lattice iff each two-element set {a, b}
in L has a least upper bound a v b and a greatest lower bound a A b. If every
nonempty subset of L has a least upper bound and a greatest lower bound, L is
a complete lattice. Lattices having a least element 0 and a greatest element 1
are called complemented iff for each a € L, there is some a’ € Lsuch thata v a’ = 1,
a A a = 0. Alattice is distributive iff for all a, b, c € L,

avbarc=(@vbAa@vo
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and
anbve=(@anb)vi(an o)

These rules are redundant since either can be deduced from the other.

A Boolean lattice is a lattice with 0 and 1 which is complemented and
distributive.

The model lattice for most purposes is the set P(4) of all subsets of a fixed
set A. This becomes a complete Boolean lattice when partially ordered by the
relation B < Ciff B = C. (See Exercise 1K.)

1.12 Cardinality. If A and B are sets, we say A is equipotent with B iff there is a
one—one function f from A onto B. Intuitively, equipotent sets have the same
number of elements. We now postulate the existence of sets, called cardinal
numbers, so chosen that every set A is equipotent with precisely one cardinal
number, called the cardinal number of A and denoted | A|.

If C and D are cardinal numbers, we say C < D iff there is a one—one function
f: C — D. The result is a partial order on any family of cardinal numbers. Let
us see what this says:

a) < is reflexive: given a cardinal number C, there is a one—one function
f: C - C. The identity function will do nicely.

b) < isantisymmetric: given cardinal numbers C and D, if one—one functions
f:C > Dandg: D - C can be found, then C = D. This is the Cantor—Bernstein
theorem, which in more general form says that if one—one functions f: A — B
and g: B — A can be found, then there is a one—one function carrying 4 onto B.
(Existence of a one—one, onto function between cardinal numbers C and D
ensures that C = D. Why?) A proof of the Cantor—Bernstein theorem is given
in Exercise 1J.

c) < is transitive: given cardinal numbers C, D and E and one-one
functions f: C - D and g: D — E, there is a one—one function h: C — E. Here,
the composition g o f: C — E will serve.

In fact, any set of cardinal numbers is well-ordered by the relation <, although
we will not prove this, deferring to any of the standard references on set theory
(see the notes).

Recalling that | 4] denotes the cardinal number of A, evidently

i) |A| = |B| iff A and B are equipotent,
i) |A] < |B| iff 4 is equipotent with some subset of B.

1.13 Special cardinals. We will distinguish notation for certain cardinal numbers.
The empty set is the cardinal 0, and the cardinal number n is the set {0,...,n — 1}.
A set A is denumerable iff A is equipotent with N and, in this case, we write
|[Al = N,. A set A4 is said to have the cardinal of the continuum, iff A is equipotent
with R, and then we write |4] = ¢. A set A is countable iff it is denumerable or
has cardinal number n for some n = 0, 1, 2,...; otherwise, A is uncountable.
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The elements of a countable set A can be listed in a (finite or infinite) sequence
a,, a,, . . . and such a listing is called an enumeration of the elements of A.

1.14 Facts about countability. a) n < X, < ¢,
b) The union of countably many countable sets is countable,
¢) The product of two countable sets is countable,
d) The set Q of rational numbers is countable.

Proof. a) It is clear that n < N, and, since N is equipotent with the subset
{I/n|n=1,2,...} of R that X, < ¢. Toshow N, # ¢ it is enough to show that
there is no one—one function from N onto I. If such a function f: N — I exists,
let the decimal expansion of f(n) be a, a,,a,, - --. Define .b;b, - - - by taking b, to
be 5if a,, # 5, b, to be 7 if a,, = 5. Then .b;b, - - - is an element of I which can
appear nowhere among the values of f, since it differs from f(n) in the nth place,
for each n = 1, 2,... . This contradicts the assumption that f is onto, showing

no such function can exist, and completes the proof of (a).

b) Let {4, A4,, ...} be a countable collection of countable sets. Set B; = A,
and, forn > 1, B, = A, — (Ji<, 4. Then each B, is countable and

o ©
UB,, = UA,,.
n=1

n=1

Enumerate the elements of each B, as follows:

}
{bd1, b bz baas -}

and define f: N - | J;2; B, by f(1) = by, f(2) = byy, f(3) = byy f(4) = by3,
f(5) = by, f(6) = by, ... and so on, following the scheme indicated by the

arrows. The result is a one—one function f from N onto ()2, B, = ()2, 4,,
and the proof is complete.

c) If A and B are countable, enumerate the elements of B as b, b,, ... and
let A, = A x {b,} = {(a b,)|ae A}. Then 4, is countable for eachn = 1,2, ...
and 4 x B ={ )2, A,; thus 4 x B is countable by part (b).

n=1
d) Write each element of Q in the form m/n, where m and n are integers in
lowest terms. Then the function defined by f(m/n) = (m, n) maps Q in one—one
fashion onto a subset of N x N. Since N x N is countable by part c), Q is
countable. W

1.15 Cardinality and the power set. It is possible to develop an arithmetic of cardinal
numbers. We limit ourselves here to the definition of exponentiation. If 4 and
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B are sets, |A|'®! is defined to be |A?| (recall A® denotes the set of all functions
f: B — A). The reader will verify in Exercise 1I that this definition gives the
right answer if |4| = n and |B| = m, where n and m are integers.

Let us pay particular attention to the cardinal number 24! where A4 is a set.
Now 2 = {0, 1} and hence 24l = |24 = |{0, 1}] is the cardinal number of the
set of functions f: A — {0, 1}. Such a function f determines and is completely
determined by the subset B = {a € 4 | f(a) = 1} of A (f is called the characteristic
function of B) and hence 2/l = | P(A)|.

By writing elements of I in binary form, it is not difficult to show that 2% = ¢
(Exercise 1I). Hence, from 1.14(a), 8, < 2% < 2% It is generally true for any
cardinal number o that o < 2*; put another way, for any set 4, |A] < |P(4).
This is Cantor s theorem (Exercise 11).

1.16 The continuum hypothesis. The continuum hypothesis states that there are no
sets A for which ¥, < |A| < 2®. It has been proved independent of the other
axioms needed to develop set theory (see notes); that is, either it or its negation
can consistently be added to the other axioms. At present, intuition has provided
us with little basis for preferring one assumption over the other (although in
most contexts in which it arises, it, rather than its negation, is assumed) and it is
definitely in order to attempt to eliminate from any proof any use of the continuum
hypothesis. It follows, in the same vein, that whenever it or its negation is assumed,
this should be explicitly pointed out.

1.17 The axiom of choice. The following axiom is assumed by most mathematicians
when they need it, to the unremitting disgust of a few. We give it in two equivalent
forms:

Axiom of choice

a) If {4, |Ae A} is a family of nonempty pairwise-disjoint sets, there is a
set B < | ) A4, such that B n A4, has exactly one element, for each 1 € A.

b) If {4, ] A€ A} is an indexed family of nonempty pairwise-disjoint sets,
there is a function f: A — () 4; such that f(1)e A;, for each 1e A
(f is called a choice function).

It is left to the reader to decide that these two statements both say the same thing.
What they say is: given any collection of sets, however large, we can pick one
element from each set in the collection. It bothers some people because it asserts
the existence of a set (i.e., B in part (a)) without giving enough information to
determine that set uniquely (by applying a finite number of rules), and it is the
only formal set-theoretic axiom which does this. For this reason it is customary
to mention the axiom of choice whenever it is used. It need not be used if the
number of sets is finite. In particular, if 4 is a nonempty set, the statement “choose
a € A” need not be supported by an appeal to the axiom of choice.

The status of the axiom of choice bears some resemblance to that of the
continuum hypothesis, with some differences. It, too, is known to be independent
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of the other axioms of set theory (that is, it or its negation can be consistently
assumed), but it enjoys the status of an accepted part of the theory of sets in the
minds of most modern mathematicians; that is, the intuition of almost all mathe-
maticians now is that the axiom of choice should be assumed where needed without
hesitation. Moreover, it is usually much clearer that, where it is used, it is needed,
so that its presence does not usually provoke the same frenzy of attempt to eliminate
it.

1.18 Alternative forms of the axiom of choice. We now provide some alternative, often-
used forms of the axiom of choice. We say a family of sets is of finite character
iff each finite subset of a member of the family is also a member, and each set
belongs if each of its finite subsets belong.

Theorem. The following statements are all equivalent.

a) (Axiom of choice): If {A;| A € A} is an indexed family of nonempty pairwise
disjoint sets, there is a set B = | ) A, such that B n A, is exactly one element
for each 1 € A.

b) (Zorn’s Lemma): If each chain (linearly ordered set) in a nonempty partially
ordered set A has an upper bound, then A has a maximal element.

c) (Zermelo’s Theorem). Every set can be well-ordered.

d) (Tukey’s Lemma): Each nonempty family of sets of finite character has a
maximal element.

As with the axiom of choice, it is customary to mention any one of these wherever
it is used. The proof of equivalence will not be given here; it can be found in any
standard reference.

1.19 Ordinals. For our purposes, it will be sufficient to postulate the existence
of an uncountable well-ordered set £ with a largest element w,, having the property
that if o € @ with « < w,, then {f € Q| B < o} is countable. Such a set € exists
if there exists any uncountable well-ordered set; see Exercise 1L. The elements
of Q are ordinals with w, being the first uncountable ordinal and Q, = Q — {w,}
being the set of countable ordinals.

If « and B are ordinals with o < f, we say « is a predecessor of f and f is a
successor of a. We call o an immediate predecessor of B, and B an immediate
successor of o, if B is the smallest ordinal larger than «. Every ordinal « has an
immediate successor, often denoted o + 1; some ordinals, called the limit
ordinals have predecessors without having an immediate predecessor (w;, for
example). The others are nonlimit ordinals.

To build a picture of £, observe that it has a least element, which we denote
1 for now. The immediate successor of 1 will be denoted 2, the immediate suc-
cessor of 2 will be denoted 3, and so on, so that we can regard the first few elements
of Q as being the positive integers 1, 2, 3,... . Since Q, is well-ordered, there is
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a smallest ordinal larger than all of 1, 2, 3, ... . It is called the first infinite ordinal
w,. It is still only a countable ordinal; it and its first few successors w, + 1,
wo + 2, ... evidently form another “copy” of N tacked on behind the first. The
smallest ordinal larger than these is denoted 2w,, and we can apparently continue
in this fashion through 3w, 4w,, ... by adding denumerably many copies of
N one after the other.

1,2,3,..., 00 wo + Lwg +2,...,200 2wy + 1,205 +2,...,....

The smallest ordinal larger than these is denoted w} and it is still only countable.
Repeating the process obtained to reach w3 denumerably many times leads us
to w3 and, repeating this over and over, we pass wg, @3, . .. . The smallest ordinal
larger than all these is still countable however, so the process continues. In fact,
), is unreachable by countable operations such as this, by the next theorem.

1.20 Theorem. If A isa countable subset of Q not containing w,, thenlub A < w,.

Proof. For each o€ A, {fe Q| B < «} is countable. Since 4 is countable, the
union of these sets, namely B = {f € Q| < o for some « € A}, is also countable.
Let y be the smallest element of © not contained in B. Then fe Biff f < y, so
y has a countable number of predecessors, and hence y < w,. But y is an upper
bound for 4, solub 4 < w,. A

1.21 Induction. The following theorem is a statement of the principle of mathe-
matical induction. To prove it, we accept as obvious the fact that the positive
integers N form a well-ordered set.

Theorem. Let S(n) be a statement which is true or false, forn = 1,2,... . If
a) S(1) is true,

b) S(n) is true implies S(n + 1) is true, forn = 1,2,...,

then S(n) is true for all n.

Proof. If the set F of all integers n for which S(n) is false is nonempty, then it has
a least element n, and n % 1 by (a). Sincen > 1, n — 1eN,and n — 1 ¢ F, so
S(n — 1) is true. But then S(n) is true, by (b); this contradiction establishes that
F=01

As an example, we provethat 1 + 2 + -+ + n = n(n + 1)/2 for any positive
integer n. The formula certainly works for n = 1. Suppose it works for n. Then

l+2+-+m+D=01+2+-+n+0m+1

="(—"7+3+(n+1)=

which is the form the formula should take for n + 1. The “inductive step” is now

nn+1)+2m+1) (n+Dn+2)
2 - 2 ’
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established, so by the principle of mathematical induction, the formula applies
to any n.

It is also instructive to point out an often used incorrect form of application
of the principle of mathematical induction. A typical (wrong) argument would
sound like this: “{1} is a finite set, and, if {1,...,n} is a finite set, so is
{1,...,n + 1}. Therefore the positive integers form a finite set.” This argument
looks as absurd as it is, but uses of the principle of mathematical induction just
as ridiculous logically are often submitted by those new to it.

1.22 Transfinite induction. A second method of induction, the principle of transfinite
induction, can be applied to statements indexed by a well-ordered set of any sort.
We will not need it in any form other than as stated here, however:

Theorem. For each ordinal o€ Q,, let S(x) be a statement which is true or

false. If
a) S(1) is true,
b) S(B) is true for all B < o implies S(o) is true,

then S() is true for each o € Q.

The proof is in no essential way different from the proof of the principle of
mathematical induction: one makes the same use of the well-ordering.

Both induction principles can be used as the basis for defining things. For
example

f) =1,
fin + 1) = (n+ Df(n)

is an inductive definition of the factorial function on N. For an example of
definition by transfinite induction, see 31.

1.23 Remarks. The process which topology evolves from, outlined in the next
section and the notes, is basic to any pure mathematical discipline. We wish to
study a particular property enjoyed by some objects of interest (in this case,
continuity of functions on some space) and the efficient way to proceed is to first
clean the structure on the space down to the bare bones needed for introducing
and developing the property we want. The passage to such abstraction has several
well-documented advantages. Among them:

1. Since we have only what is essential, our proofs use only what is essential
and thus clarify the nature of the object of study, and the logical dependence of
the theorem in question.

2. Proofs become easier. Actually, this is a popular professional myth, with
an element of truth. Occasionally, a proof really does get easier as a theorem gets
more abstract, but this is offset by the need for more and more interpretive skill
on the part of those who would use the theorem. What people really mean when
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they say “proofs become easier” is something like this: “by establishing some
notation and introducing the right definitions and conventions, we can draw
together all the theorems about this subject and find common characteristics and
even repetitions in their proofs, then prove lemmas which enable us to write large
numbers of proofs more succinctly.” If the subject matter is carefully chosen, the
work done in abstracting the properties needed, establishing notation and proving
those lemmas will be more than paid for by the gain in succinctness and clarity
of the proofs later on, and by the acquisition of powerful methods for continued
investigation of the original objects of study.

Such is the case with topology.

Problems

J1A. Russell’s Paradox

The phenomenon to be presented here was first exhibited by Russell in 1901, and consequently
is known as Russell’s Paradox.

Suppose we allow as sets things A for which A € A. Let P be the set of all sets. Then P
can be divided into two nonempty subsets, P, = {4 P|A¢ A} and P, = {Ae P| A€ A}.
Show that this results in the contradiction: P, € P; < P, ¢ P,. Does our (naive) restriction
on sets given in 1.1 eliminate the contradiction?

1B. De Morgan’s laws and the distributive laws
1A= (NieaB) = Uzea (4 — By)  [see 1.4a), b)].
2. BU(Naea Bi) = ) ea (BU B)) [see 1.4c), d)].
3. IfA4,,isasubsetof Aforn =1,2,...andm = 1, 2, ... is it necessarily true that

O[A]-A[0]

1C. Ordered pairs
Show that, if (x,, x,) is defined to be {{x}, {x, y}}, then (x;, x;) = (y;, y,) iff x; = x, and
Y1 = Y2

1D. Cartesian products

1. Provide an inductive definition of “the ordered n-tuple (x,,..., x,) of elements
Xy, ..., X, of a set” so that (x, ..., x,) and (y,, ..., y,) are equal iff their coordinates are
equal in order, ie, iff x; = y,..., X, = Y,
2. Given sets X, . .., X, define the Cartesian product X; x -+ x X,
a) by using the definition of ordered n-tuple you gave in part 1,
b) inductively from the definition of the Cartesian product of two sets,

and show that the two approaches are the same.



14 Set theory and metric spaces [

3. Given sets Xy,..., X, let X = X, x --- x X, and let X* be the set of all functions
f from {1,...,n} into (J§- X, having the property that f(k)e X, for each k = 1,...,n.
Show that X* is the “same” set as X, in the sense that there is a natural one—one mapping
F of X* onto X. [F will take some value F(f) in X for each f € X*. What must such a value
look like? Find a natural one.]

4. Use what you learned in part three to define the Cartesian product X; x X, x ---of
denumerably many sets as a collection of certain functions with domain N.

If you have completed part 4 successfully, the definition of Cartesian product given in
Section 8 for infinitely many sets will give you little trouble.

1E. Examples on equivalence relations

Which of the following are equivalence relations on R? For each that is, describe the
equivalence class [x] of x € R.

1. aRb iff a — b is rational.
2. aRbiff a — b is irrational.
3. aRbiff a — b is an integer.
4. aRbiffla — b < 1.

IF. Cardinality

1. 1P =c
2.1 =c
See also 11.

1G. Well-ordering

Assuming the axiom of choice, each of the following sets can be well-ordered. Try to think
of a well-ordering for each (you may not be able to use the usual order).

1. N,
2. the rationals,
3. R
When you have trouble, ask somebody who should know. Then think about the axiom of
choice.
1H. Inverses of functions are nice

Let f: A - B. Prove each of the following. For some, you will need to assume that f is
one—one; for others, that it is onto; some need neither. Precede your proof of each by a
correct statement of what you are proving.

L f(UleA Ay) = stA f(4,),

- f(mleA Ay) = ﬂlel\ f(4y),

- J(A — Ao) = B — f(Ao),

. f_l(UleA B;) = U).EA 71 (By),
. f_l(ﬂ),eA B;) = mleA f7Y By,
. f7NB — Bg) = 4 — f7I(By).

A L AW N
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11. Cardinality revisited

1. |4 < |2(A). [This is proved by contradiction, in essentially the same way that
Russell’s paradox is established. First show |A4| < |2(4). Now if |A] = |2(A)|, then there
is a one—one mapping f of A onto 2(A). For each x € X, let A, be the image of x under f.
Then P(4) = {A,|xe X}. Let A = {xe X |x¢ A,}. Then A = A, for some y € X. Show
that this leads to the contradiction: ye A, < y ¢ A,.] This is Cantor’s theorem.

2. If|A| = nand |B| = m, where n and m are integers, then |4 = n™

3. 2% =

1J. The Cantor—Bernstein theorem
Let A, B be sets.

1. Suppose that with each subset C of A there is associated a subset C’ of 4 in such a way
that C = DimpliesC' = D'. Then E = E'forsome E = A. [LetE = () {Ce P(4)|C = C'}]

2. If f: A - Band g: B — A are one—one functions, there is a one—one function h of A
onto B. [For C < A, define C' = A — g(B — f(C)). Show that part 1 applies and, if E is
the resulting set, define h to be f on E and g ™! on A — E. Show that h is one—one and onto
from A to B.]

1K. Lattices
1. Show that the power set P(A) of a fixed set 4, when partially ordered by B < C iff
B < C, becomes a complete Boolean lattice. Describe the largest and smallest elements of
P(A), the least upper bound and greatest lower bound operations in P(4) and the lattice
complement of B € P(A).
2. Exhibit a complemented lattice with an element a having two distinct complements
bandc.

3. Show that in a complemented distributive lattice, complements are unique.

1L. The ordinals

We postulated the existence of the set  (1.15). Show that such a set exists if there exists an
uncountable well-ordered set. [There are two cases. ]

2 Metric spaces

The concept of continuous function is central to the study of analysis and, as the
functions in question are defined on more and more complicated spaces, the
need for a notion of continuity which is as generally applicable as possible becomes
acute. There were two steps in the development of general machinery for the
definition of continuity for functions other than those defined on Euclidean
spaces. Both came with (what was then) lightning speed on the heels of the develop-
ment of a general theory of sets by Cantor, in the 1880’s. The first step was taken
by Frechet, in 1906, with the introduction of metric spaces, the second and con-
clusive step by Hausdorff, in 1914, with the introduction of topological spaces.
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It is impossible now to give a faithful historical development of topology, but
we can properly begin a book on topology with a brief motivational introduction
to metric spaces. Thus, here we will define metric spaces, show that the abstract
distance they provide is sufficient to define continuity, then conduct a brief and
successful search for a way to define continuity for functions between metric
spaces without mentioning the metrics. This will lead us naturally to the definition
of topology in the next section.

2.1 Definition. A metric space is an ordered pair (M, p) consisting of a set M
together with a function p: M x M — R satisfying, for x, y, ze M :

M-a) p(x, y) = 0,
M-b) p(x,x) = 0;  p(x,y) = 0implies x = y,

M-C) p(xa y) = p(y9 X),
M-d) p(x, y) + p(y, z) = p(x, z) (triangle inequality).

The function p is called the metric on M. If all axioms but the second part of M-b
are satisfied, we call (M, p) a pseudometric space and p is then a pseudometric.
Functions p: M x M — R (which are potentially metrics or pseudometrics but
which have not yet been tested) are called distance functions. If a metric p is
fixed for a particular discussion, we may drop the ordered-pair notation and simply
speak of “the metric space M.”

Although all the material of this section will be developed for metric spaces,
the basic results remain true for pseudometric spaces as well. In particular, the
definitions of open set, closed set and continuous function given below for metric
spaces can be applied to pseudometric spaces also (and now and then we will
act as though they had).

2.2 Examples. a) The real line R with the distance function p(x, y) = |x — )
is a metric space. More generally, R" is a metric space when provided with the
distance function

p((xlﬁ ] xn)7 (yla MR yn)) = [kzl(xk - yk)za

called the usual metric on R". The reader will verify that it is a metric in Exercise 2A.
b) The plane R? with the distance function

pi(X, y) = Ixy — y4l + |x2 — pal
is a metric space; p, is called the taxi-cab metric.

c) The plane R? with the distance function

pa(x, y) = max {|x; — yl, |x; — y,l}
is a metric space.

d) If (M, p) is a metric space and A is a subset of M, then A inherits a metric
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structure from M in an obvious way, making 4 a metric space. For example,
I, N and Q all have “usual metrics,” obtained by viewing them as subsets of R
with its usual metric.

e) Let X be any set and define p on X x X by p(x, x) = 0 and p(x, y) = 1
if x # y. Then p is a metric on X, called the discrete metric.

f) Let X be any set and define p on X x X by p(x, y) = O for all x and y in
X. This is a pseudometric on X, called the trivial pseudometric. When is it a
metric?

The distance functions available in metric spaces are precisely what we need
to develop the notion of continuity in a more abstract setting, by mimicking the
familiar definition for real-valued functions of a real variable. In fact, the following
definition should look quite familiar when stated for R with its usual metric.

2.3 Definition. If (M, p) and (N, o) are metric spaces, a function f: M — N is
continuous at x in M iff for each ¢ > 0, there is some 6 > 0 such that

o(f(x), f(y)) < € whenever p(x, y) < 6.

We turn now to the question: can we eliminate the dependence, in the
previous definition, on the presence of distance functions? The answer is affirma-
tive and depends on the development of the notion of an open set in a metric
space.

2.4 Definition. Let (M, p) be a metric space, x a point of M. For ¢ > 0, we define
Uyx, ) = {ye M| p(x, y) <€},

called the e-disk about x. If only one interpretation is possible, we will abbreviate
U, (x, €) to U(x, €).

If E and F are subsets of M, we define the distance between E and F to be
p(E, F) = inf {p(x, y)| x € E, y € F}.

If E has only one point, we usually write p(x, F) rather than p({x}, F). Now we
can extend the notation for e-disks to sets:

UE, &) = {ye M| p(E, y) < }.

Using e-disks, we can reformulate the definition of continuity as follows:
f: (M, p) > (N, o) is continuous at x in M iff for each ¢ > 0, there is some 6 > 0
such that f(U,(x, §)) = U,(f(x), €). This observation, together with the next
definition, will make it possible to define continuity without mentioning the
metrics involved at all.

2.5 Definition. A set E in a metric space (M, p) is open iff for each x € E, there is
an e-disk U(x, €) about x contained in E. A set is closed iff it is the complement
of an open set. Evidently, a set F is closed iff whenever every disk about x meets
F, then x e F.
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2.6 Theorem. The open sets in a metric space (M, p) have the following
properties:

a) Any union of open sets is open.
b) Any finite intersection of open sets is open.

c) @ and M are both open.

Proof. a) If A, is an open set for each A in A, and if x is a point in | ) A4;, then
x € A, for some Ao, s0 A,, contains some e-disk about x. Then { ) 4, will contain
this same e-disk about x. It follows that | ] A; is open. Arguments this simple
will rarely be written out in such detail hereafter.

b) If A, ..., A4, are open sets and x € () 4,, then for each i, x € 4;, so there
is some disk U(x, ¢;) contained in A4;. Clearly, if € is the minimum of €, . . ., €,
then the e-disk U(x, €) is contained in () 4;.

c) @ contains a disk about each of its points since there are no points to
worry about and M contains a disk about each of its points because all disks
are contained in M. Hence, # and M are open. B

2.7 Examples. a) Open sets in R. In the usual metric on R, the e-disk about a
point ¢ is just the interval (c — ¢, ¢ + ¢). This makes it clear that each “open
interval” in R, of the form (g, b), is an open set. Hence every countable union of
disjoint open intervals is an open set. We will prove the converse now; ie.,
every open set in R is a countable union of disjoint open intervals. If 4 is an open
set in R, the relation x ~ y iff there is some open interval (a, b) with
{x, y} = (a, b) = A is an equivalence relation on A and the resulting equivalence
classes are disjoint open intervals whose union is A. The fact that there can be
only countably many follows since each must contain a distinct rational.

b) Infinite intersections of open sets need not be open. In fact, the sets
A, = (—1/n,1/n) for n = 1,2...., are open in R with the usual metric, but

= , A, = {0} is not an open subset of R.

c) Disks are open. That is, in a metric space X, if x € X and 6 > 0, then
U(x, 6) is an open set. This is left as a useful exercise on the triangle inequality,
see Exercise 2D.

d) If X is given the discrete metric, then for any point x € X, the disk U(x, 1)
about x is just the set {x}. Thus each one-point set in X is open. But then, since
any set is the union of its points, every set in X is open.

e) One-point sets are always closed.

We can now rephrase the notion of a continuous function between metric
spaces in terms of the open sets in these spaces, thus avoiding explicit mention of
the metrics involved.
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2.8 Theorem. If (M, p) and (N, o) are metric spaces, a function f: M — N
is continuous at xo € M iff for each open set V in N containing f(x,), there is
an open set U in M containing x, such that f(U) < V.

Proof. If f is continuous at x, and V is an open set in N containing f(x), then
U,(f(x), ¢) = V for some ¢ > 0, by the definition of open set. But, by continuity
of f, there is a 6 > 0 such that f(U,(x, 6)) = U,(f(x),€). Then U = U,(x, ) is
an open set containing x and f(U) < V.

Conversely, suppose for each open V containing f(x) there is an open U
containing x such that f(U) < V. If € > 0 is given, then U (f(x),€) = V is an
open set containing f(x). Hence, there is an open U containing x such that
f(U) = V. But since x e U and U is open, U,(x, §) = U for some 6 > 0. Then
f(U,(x, 8)) = U,(f(x), €), so f is continuous at x. B

Having Theorem 2.8, it is apparent that we can carry the notion of continuous
function anywhere we can carry a reasonable notion of open set. “Reasonable”
will simply be taken to mean “satisfying the properties (a), (b), and (c) of 2.6,” and
this, then, will be the basis of the definition of topological space, given in the next

section.

Having given this brief motivational introduction, we will abandon the
motivational approach now and develop topological spaces axiomatically. Thus,
although topologies are introduced in the next section, continuous functions are
not defined on general topological spaces until Section 7. However, the astute
reader will see, in that definition, just a restatement of Theorem 2.8 (used there as
the definition).

Problems
2A. Metrics on R"
Verify that each of the following is a metric on R":

L p(x, y) = Z?=1 (i — y)?
2. py(x, y) = Z?:l [x; — vl
3‘ pl('x’ y) = max {'xl - yl|> sy |xn - yn|}'

[For the first, make use of Minkowski’s inequality: /Y. (a, + b,)* < /Y, a2 + /). b?

for real numbers a,, b, and c,. The inequality is good for both finite and infinite sums.]

2B. Metrics on C(I)

Let C(I) denote the set of all continuous real-valued functions on the unit interval I and let
X, be a fixed point of I.

1. p(f; 9) = sup. | f(x) — g(x) is a metric on C(I).
2. a(f, 9) = [31f(x) — g(x)| dx is a metric on C(I).
3. n(f; 9) = |f(xo) — g(x0)| is a pseudometric on C(I).
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These examples indicate that interesting and useful metrics can be defined on spaces other
than the classical Euclidean spaces.

2C. Pseudometrics

1. Let (M, p) be a pseudometric space. Define a relation ~ on M by x ~ yiff p(x, y) = 0.
Then ~ is an equivalence relation.

2. If M* is the set of equivalence classes in M under the equivalence relation ~ and if
p* is defined on M* by p*([x], [y]) = p(x, y), then p* is a well-defined metric on M*. The
metric space (M*, p*) is called the metric identification of (M, p).

3. If h: M — M* is the mapping h(x) = [x], then a set A in M is closed (open) iff h(A)
is closed (open) in M*.
4. If f is any real-valued function on a set M, then the distance function
pyx, y) = 1f(x) = fO)
is a pseudometric on M.

5. If (M, p) is any pseudometric space, then a function f: M — R is continuous iff each
set open in (M, p,) is open in (M, p).

2D. Disks are open

For any subset 4 of a metric space M and any € > 0, the set U(4, ¢) is open. (In particular,
U(x, ¢) is open for each x € M.)

2E. Bounded metrics
A metric p on M is bounded iff for some constant 4, p(x, y) < A for all x and y in M.
1. If p is any metric on M, the distance function p*(x, y) = min {p(x, y), 1} is a metric
also and is bounded.

2. A function f is continuous on (M, p) iff it is continuous on (M, p*). [It suffices to show
that both p and p* generate the same collection of open sets in M. ]

2F. The Hausdorff metric
Let p be a bounded metric on M ; that is, for some constant 4, p(x, y) < A4 for all x and y
in M.

1. Show that the elevation of p to the power set P(M) as defined in 2.4 is not necessarily
a pseudometric on P(M). (Take M to be the unit disk {(x,, x,) | x} + x < 1} in the plane
with the usual metric.)

2. Let #(M) be all nonempty closed subsets of M and for A, B € # (M) define
d(B) = sup {p(4, x) | x € B}
d(A, B) = max {d,(B), dg(4)}.
Then d is a metric on % (M) with the property that d({x}, {y}) = p(x, y). It is called the
Hausdorff metric on #(M).

3. Prove that closed sets A and B are “close” in the Hausdorff metric iff they are “uniformly
close”; thatis, d(4, B) < ¢iff 4 = U,(4, ¢)and B = U,(4, ¢).
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The restriction in this problem to bounded metrics is, to a topologist, no problem at all,
see 2E and 22.2. It is there so that d ,(B), and hence d(A4, B), can never take the value co.
The Hausdorff metric is related to uniformities on the power set in Exercise 36E.

2G. Isometry

Metric spaces (M, p) and (N, o) are isometric iff there is a one—one function f from M onto N
such that p(x, y) = o(f(x), f()) for all x and y in M; f is called an isometry.

1. If f is an isometry from M to N, then both f and f~ are continuous functions.
2. R is not isometric to R? (each with its usual metric).
3. Iis isometric to any other closed interval in R of the same length.

4. Consider the pseudometric # defined on C(I) in 2B.3. What familiar space is the
metric identification (2C.2) isometric to?

Isometric spaces are “metrically identical”; that is, there is nothing about their respective
metrics which will serve to distinguish them.

2H. Sequence spaces

Let m denote the set of all bounded sequences (x,),.n Of real numbers, ¢ the set of all convergent
sequences from m, ¢, the set of all sequences from ¢ which converge to 0.

1. The distance function

P((x,,), (yn)) = sup {lxn - yn| | n= 1’ 2) .- }

is a metric on m (and hence on each of the subspaces ¢ and ¢,). On which of the three spaces
is it bounded?

2. The distance function
0((xn)’ (yn)) = nlingjlxn - yn|
is a pseudometric on ¢. The metric identification (2C) of (¢, o) is isometric to the real line.

21. [P-space

For each p > 0, we denote by I” the set of all real sequences (x,) for which Z L1 1x,]P < c0.

1. For p > 1, define a distance function p on * by

) 1/p
p((xn)’ (yn)) = Z |xn - ynlp .
n=1
This is a metric on [?. [Use the generalized Minkowski inequality :
O la, + bD)MP < (3 la PP + (3 1),

for real sequences (a,), (b,) and (c,) and for p > 1.]
2. For 0 < p < 1, define a distance function p on I” as follows:

p((xa), (v) = Zx — yl”.
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Verify that this is a metric, using the inequality: |a + b|? < |a|? + |b|?, for real numbers a
andband for0 < p < 1.

For p = 2, [? consists of all square-summable sequences, and as such, will be given its
usual name and notation, (real) Hilbert space H.

2J. Normed linear spaces
A normed linear space is a real linear space X such that a number || x|, the norm of x, is as-
sociated with each x € X, satisfying:
NL-a) |x|| > Oand |x] =0iff x = 0.
NL-b) |lax|| = |of - | x]l, for € R,
NL-c) |Ix + yl < lIx] + lyl.
If (NL-a) is replaced by the weaker condition
NL-a) ||x| > Oand ||O] =0,

then X is a pseudonormed linear space.

1. If X is a pseudonormed linear space, the distance function p(x, y) = [|x — y|l is a
pseudometric on X. It is a metric iff ||| is a norm. We will call p the norm metric, in case
Il |l is a norin.

2. If |||, and |- ||, are pseudonorms on the same linear space X, they give the same
open sets (i.e., are equivalent) iff there are constants C and C’ such that ||x|; < C- | x|, and
Ixll, < C' - |Ix]l;, for all x € X.

3. If (X, ||-]) is a pseudonormed linear space and the metric identification procedure
(20) is applied to X with its induced pseudometric p, producing a metric space (X*, p*), then
X* is a normed space with operations [x] + [y] = [x + y] and o[x] = [ax] and norm
I[x]I* = lxll, and furthermore the norm metric induced by || - |* is p*.

4. Let X be any topological space, C*(X) the set of all bounded continuous functions from
X to R. Then C*(X) is a normed linear space with the norm | f|| = sup {|f(x)| | x € X} and
pointwise addition and scalar multiplication. This is the sup norm on C*(X). The associated
metric was first introduced in 2B.1.

5. The collection .# of all Riemann- (or, if you want, Lebesgue- ) integrable functions f
on I is a pseudonormed linear space with the pseudonorm | f| = j{, |f(x)] dx and pointwise
addition and scalar multiplication. But ||-| is not a norm. (In fact, the set of all functions f
on I such that |f|? is Lebesgue integrable is a pseudonormed space, with | f]| = [{&1/17]'",
for any p with 1 < p < co. It is called #?(I) and the normed space resulting from part 3
above is I”(I). Verification of the axiom NL-c for the cases p > 1 requires the Holder and
Minkowski inequalities; see any reference on real analysis, e.g., Royden.)

6. On R”", with coordinatewise addition and scalar multiplication, each of the following
is a norm:

a) [l(xg, ..o x )l = Uiy x)H?
b) ¢y, - Xa)lly = Yk=1 Il
C) ||(X1,~~,xn)||2 max {lel""’lxm|}'

d) The norms |||, |I']l, and |- |, have for their norm metrics the metrics p, p, and p,
of 2A, respectively.



Chapter 2

Topological Spaces

3 Fundamental concepts

As we pointed out in the previous section, open sets in metric spaces provide us
with a way of phrasing the definition of continuous function without mentioning
distance. Thus wherever we can carry a reasonable abstract notion of “open
set,” we can define continuous functions. The problem of what properties one
should postulate as reasonable for our abstract open sets is, of course, a difficult
one and any solution must ultimately live or die on the merits of the theory it
produces. The “reasonableness” of the following definition, which is based on
the observations made in Theorem 2.6, can thus be justified only by reading the
forty-two sections which follow it.

3.1 Definition. A topology on a set X is a collection t of subsets of X, called the
open sets, satisfying:

G-1) Any union of elements of t belongs to ,
G-2) any finite intersection of elements of t belongs to 7,
G-3) @ and X belong to 7.

We say (X, 1) is a topological space, sometimes abbreviated “X is a topological
space” when no confusion can result about 7.

Given two topologies 7, and 7, on the same set X, we say 1, is weaker (smaller,
coarser) than 1,, or 1, is stronger (larger, finer) than 1, iff 1, < 7,.

3.2 Examples. a) Let (M, p) be a metric space. Then, by Theorem 2.6, the open
sets in M defined by 2.5 form a topology on M, called the metric topology t,.
Whenever (X, 1) is a topological space whose topology 7 is the metric topology
7, for some metric p on X, we call (X, 1) a metrizable topological space. Note
the distinction: a “metrizable space” is a space with a topology which happens
to have come from some metric, a “metric space” is a space with a metric. Every
metric space (X, p) determines a metrizable space (X, 7,) and given a metrizable
space (X, ), one can always find many metrics p on X such thatt, = t(for example,
if 1, = t then 1,, = 7 also). The obvious modifications to the discussion above
will define pseudometrizable topologies.

b) The metric topology generated by the usual metric on any subset of R”

23
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will be called the usual topology. Hereafter, when a topology is used on a subset
of R" without mention it is assumed to be the usual topology.

¢) Let X be any set and let t be the collection of all subsets of X. Then t
is clearly a topology for X; it is called the discrete topology. Moreover, it is
metrizable, being the topology produced by the discrete metric on X, by part (d)
of Example 2.7. It is finer than any other topology on X.

d) Let X be any set and let T = {@, X}. Then t is a topology for X, called the
trivial (indiscrete) topology for X. It is pseudometrizable since it is the topology
generated by the trivial pseudometric on X, by part (¢) of Example 2.7. It is
coarser than any other topology on X.

e) Let X = {a, b} and let t = {g, {a}, X}. Then 7 is a topology for X, and
it is not even pseudometrizable. For suppose p is a pseudometric on X which
produces 7. Since {a} is an open set, and a € {a}, there must be an ¢ > 0 such that
U(a, €) < {a}; that is, p(a, y) < € implies y = a. Hence, evidently p(a, b) > .
But then U(b, €) = {b}, so {b} is an open set, contrary to the definition of z. Hence,
no pseudometric p can produce this topology on X. With this topology, X is
sometimes called the Sierpinski space.

The remainder of this section will be devoted to developing descriptive
terminology which can be applied to subsets of a topological space. The notions
of a closed set and of the closure, interior and frontier operations will be introduced
and it will be observed that each of the first three completely describes the topology
(the frontier operation does also, but this is not important).

3.3 Definition. If X is a topological space and E = X, we say E is closed iff X — E
is open.

The proof of the following theorem is an obvious application of De Morgan’s
laws in conjunction with the definition of a topology on X, and can be omitted.

3.4 Theorem. If & is the collection of closed sets in a topological space X,
then

F-a) Any intersection of members of & belongs to F,

F-b) Any finite union of members of & belongs to F,

F-c) X and @ both belong to & .

Conversely, given a set X and any family & of subsets of X satisfying F-a,

F-b and F-c, the collection of complements of members of % is a topology on
X in which the family of closed sets is just F.

This theorem is a result of, and illustrates, the obvious duality between the
notions of open set and closed set. More formally, any result about the open sets
in a topological space becomes a result about the closed sets upon replacing “open”
by “closed” and interchanging \J and ).
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3.5 Definition. If X is a topological space and E < X, the closure of E in X is

the set
E=CI(E) = (){K = X|Kisclosed and E = K}.

Where confusion is possible as to what space the closure is to be taken in, we will
write Cly (E). By property F-a for closed sets, E is closed. It is the smallest closed
set containing E, in the sense that it is contained in every closed set containing
E (this is the precise meaning of “smallest” in 1.9 if the closed sets containing E
are ordered by K; < K, iff K; = K,).

3.6 Lemma. If A = B, then A c B.

Proof. Since B c B, if A is contained in B, we have A < B; since B is closed, we
must then have 4 < B. B

3.7 Theorem. The operation A — A in a topological space X has the following
properties:

K-a) E c E,

K-b) (E) = E,

K-c) AUB= AUB,

K-d) o = o,

K-e) E is closed in X iff E = E.

Moreover, given a set X and a mapping A — A of P(X) into P(X) satisfying

K-a through K-d, if we define closed sets in X using K-e, the result is a topology
on X whose closure operation is just the operation A — A we began with.

Proof. First suppose X is a topological space. We will show K-c holds, leaving
the rest of K-a through K-¢ as an easy exercise. Since 4 U Bis closed and contains
A U B, it contains 4 U B. On the other hand, since A « Au Band B< Au B
we have A « A U Band B = A U B, by Lemma 3.6, and thus 4 U B = 4 U B.
This establishes K-c.

We proceed to the second part of the theorem. Let X be any set and 4 — 4
a mapping of 2(X) into 2(X) satisfying K-a through K-d. Let & be the collection
of all sets 4 such that A = 4. The assertion is that & satisfies F-a through F-c
of Theorem 3.4.

First note that if A = B, then by K-c, B= A4 U (B — A) so that 4 < B
(why couldn’t we just refer to Lemma 3.67).

Now suppose F, € # for each 1€ A. Then since (| F, is contained in F,,
() F; is contained in F,, for each 4, and hence (| F, = () F, = () F,. But the
reverse inclusion is given by K-a, so () F, = [ F,, that is, (| F,€ #. Thus
F-a of Theorem 3.4 holds.
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Next suppose Fy, ..., F,€ %. Then by K-c and induction,
F,u---UF,=F,u---UF,=F,u---UF, so Fiu---uUF,e#.

This establishes F-b of Theorem 3.4.

By K-d and K-a, it is clear that ¢ and X, respectively, belong to %, so F-c
of Theorem 3.4 is established.

Thus & is a collection of closed sets for X. It remains to show the resulting
closure operation in X is just the operation A — A we began with; that is, that
A is the smallest element of # containing A, for each 4 = X. Since (4) = 4
by K-c, we know that 4 € #, and from K-a, we know that 4 = 4. If K is any
element of & containing 4, then 4 < K = K. Thus A4 is indeed the smallest
element of & containing A. R

An operation 4 — A in a set X which satisfies K-a through K-d is called a
Kuratowski closure operation (which, incidentally, is the reason for the letter K
in the numeration). Thus every Kuratowski closure operation determines and is
determined by some topology.

3.8 Examples. a) Let X be an infinite set and for each 4 — X, define 4 as
follows:

A=4, if A is finite,

A=X, if A is infinite.

The properties K-a through K-d can be verified for the resulting operation
A — A, so we have a Kuratowski closure operation in X. The resulting topology
on X, the cofinite topology, has for closed sets those sets A4 for which 4 = A.
Apparently, then, the only closed sets are X, @ and all finite sets in X.

b) We always have 4 U B = A4 u B. The corresponding statement for
intersections is not true. Let X be R, A4 the rationals in R, B the irrationals in R, and
give X the usual topology. Check that A = R and B =R. But4 n B =g, s0
ANnB=g0. Thus, An B # A B. Itisalwaystruethat An B < 4 n B.

c) As an exercise, you are asked to verify that if (M, p) is a (pseudo)metric
space, and A = M, then in the resulting (pseudo)metric topology on M,

A ={yeM|p(y, A) = 0}.

This provides a clue to the way the closure of a set is regarded in general. 4 is
the set of points either in A or sitting right next to 4. (Further elucidation of this
point of view will be found in Theorem 4.3.)

d) The closed disk U(x, €) = {y e M | p(x, y) < €} in a metric space (M, p)
is a closed set in the metric topology but it need not be the closure of the disk
U(x, €). In Exercise 3E, you will verify that a counterexample exists. In R" with
the usual metric, the closure of U(x, €) is U(x, &).
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e) The closure of a subset A of a discrete space X is 4 itself.

f) The closure of any nonempty subset of a set X with the trivial topology
is X (and, of course, the closure of @ is o).

3.9 Definition. If X is a topological space and E < X, the interior of E in X is
the set
E° =Int(E)=(){G < X|Gisopenand G < E}.

Where confusion might otherwise result, we will write Int, (E). Evidently, by
property G-1 of open sets, E° is open. It is the largest open set contained in E,
in the sense that it contains any other open set contained in E.

The notions of interior and closure are dual to each other, in much the same
way that “open” and “closed” are. The strictly formal nature of this duality can
be brought out in observing that

X —-FE =X—-E

X - E=(X - Ey.
Thus any theorem about closures in a topological space can be translated to a
theorem about interiors. The next two results are, for example, the dual results
to 3.6 and 3.7 about closures.

3.10 Lemma. If A — B, then A° < B°.

Proof. Itisclear that A° < A,soif A = B, we have A° < B. Thus A° is an open
set contained in B, so A° < B°. 1

3.11 Theorem. The interior operation A — A° in a topological space X has the
following properties.

I-a) A° < A.

I-b) (4°)° = A°.

I-c) (A n B)° = A° n B°.

Id) X° = X.

I-e) G is open iff G° = G.

Conversely, given any map A — A° of P(X) into P(X) in a set X, satisfying

I-a through I-d, if open sets are defined in X using I-e, the result is a topology
on X in which the interior of a set A < X is just A°.

Proof. The proof can be done directly or by using the translation process on 3.7.
Either way, it is easy and we will omit it. B

3.12 Examples. a) In R, with the usual topology, the interior of a closed interval
[a, b] is (a, b). In R? with the usual topology, the interior of the disk

{Oc, x5) | xf + %3 < 1)

is the disk {(x;, x,) | x} + x} < 1}.
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b) In R, with the usual topology, if A is the set of rationals, B the set of
irrationals, then A° = B° = @. But (4 U B)° = R° = R. Hence,
(Au B) # A° U B
It is always true that 4° U B° < (4 U B)".

3.13 Definition. If X is a topological space and E < X, the frontier of E is the set

Fry (E) = En (X — E),

usually written Fr (E). Evidently, the frontier of E is a closed set.

It is possible, but unrewarding, to characterize a topology completely by
its frontier operation. We will be content to give the relationship between the
frontier, closure and interior operations.

3.14 Theorem. For any subset E of a topological space X :
a) E=E U Fr (E)
b) E° = E — Fr (E)
¢c) X =E°uFr(E)yvu (X — E).
Proof.
a) EUFr(E)=EU(EnX — E)
=(EUVENn(EuUX —E)
=EnX=E
b) E—Fr(E)=E - (EnX — E)
=(E —-E)U(E—-X —E)
=E—- (X —E) = E
c) Since Fr (E) U (X — E) = X — E (as is easily verified) and since
X -E° =X —E,
we have
X=EUX—-E=EUFr(E)u(X —E°. R

3.15 Examples. a) The frontier of the closed interval [a, b] in R is {a, b}, as is the
frontier of any interval with the same endpoints. If A denotes the set of rationals
in R, Frg (4) = R.

b) For any space X, Fry (X) = o.

¢) If D is the closed unit disk in the plane, and X = R? Fry (D) = S!, while
Frp (D) = 9. In combinatorial topology, the word “boundary” would be used
in such a way that the boundary of D would always be S*. This prompts our use
of the word “frontier.”
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Problems

3A. Examples of topologies

1. If # is the collection of all closed, bounded subsets of R (in its usual topology), to-
gether with R itself, then & is the family of closed sets for a topology on R strictly weaker than
the usual topology.

2. If A = X, show that the family of all subsets of X which contain A, together with the
empty set @, is a topology on X. Describe the closure and interior operations. What topology
results when 4 = ¢? when A = X?

3. Let B be a fixed subset of X and for each nonempty 4 = X, let A = A U B, with
@ = o. Verify that 4 — A4 is a closure operation. Describe the open sets in the resulting
topology. What topology results when B = ¢? when B = X?

4. Call a subset of R? radially open iff it contains an open line segment in each direction
about each of its points. Show that the collection of radially open sets is a topology for R
Compare this topology with the usual topology on R? (i.e,, is it weaker, stronger, the same
or none of these?). The plane with this topology will be called the radial plane.

5. If A = X and t is any topology for X, then {U u (V n A) | U, V et} is a topology
for X. It is called the simple extension of T over A.

3B. Frontiers in the plane

Any closed subset of the plane R? is the frontier of some set in R?.

3C. Complementation and closure

If A is any subset of a topological space, the largest possible number of different sets in the two
sequences
A, A A AT,
A A7, A7, A7, ..

(where ' denotes complementation and ~ denotes closure) is 14. There is a subset of R which
gives 14. [For any open set G, Cl (Int (Cl G)) = C1 G.]

3D. Regularly open and regularly closed sets
An open subset G in a topological space is regularly open iff G is the interior of its closure. A
closed subset is regularly closed iff it is the closure of its interior.
1. The complement of a regularly open set is regularly closed and vice versa.
2. There are open sets in R which are not regularly open.
3. If A is any subset of a topological space, then Int (Cl (4)) is regularly open.

4. The intersection, but not necessarily the union, of two regularly open sets is regularly
open. (Thus the same proposition, with “union” and “intersection” interchanged, holds for
regularly closed sets.)
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3E. Metrizable spaces

Let X be a metrizable space whose topology is generated by a metric p.

1. The metric 2p defined by 2p(x, y) = 2 - p(x, y) generates the same topology on X.

2. The closure of aset E = X is given by E = {y e X | p(E, y) = 0}.

3. The closed disk U(x, &) = {y | p(x, y) < €} is closed in X, but may not be the closure
of the open disk U(x, €). [Consider ¢ = 1 and the usual metric on

{, eR*|x* + y* =1} U {(x0eR?*|0 < x < 1}.]

3F. Unions of closed sets

1. Give an example of a sequence B, B,, . . . of closed sets in a topological space X whose
union is not closed.

2. If p generates the topology on a metrizable space X and, for each 1€ A, C, is a closed
set in X such that p(C,,, C;,) > efor all ; and 4,, where ¢ is some fixed positive number, then
(J C, is closed.

3G. The lattice of topologies

1. The intersection of any family of topologies on X is a topology on X. [Note: intersect
the topologies, not the sets which are elements of the topologies. ]

2. The union of two topologies on X need not be a topology on X. But for any family
of topologies on X, there is a smallest topology larger than all of them.

Thus, the topologies on a fixed set X, when partially ordered by inclusion, form a complete
lattice. The question of whether or not this lattice is complemented has only recently been
answered (see notes).

3H. G;and F, sets
A subset of a topological space X is a G; iff it is a countable intersection of open sets and an
F, iff it is a countable union of closed sets.
1. The complement of a G, is an F,, and vice versa.

2. An F, can be written as the union of an increasing sequence F; = F, < - - - of closed
sets. (Hence, a G; can be written as a decreasing intersection.)

3. A closed set in a metric space is a G, (hence, an open set is an F,). [If 4 is closed,
let A, = {y| p(4, y) < 1/n} and see 2D.]

4. The rationals are an F, in R. (Much later, see 24.12 and 25A.4, it will be apparent that
they cannot be a G;.)

31. Borel sets
The family of Borel sets in a topological space X is the smallest family of sets ¢ with the
following properties :
a) % contains the open sets,
b) countable intersections of elements of ¢ belong to 4.
c) complements of elements of 4 belong to .
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1. In (a), “open” can be replaced by “closed”; in (b), “intersection” can be replaced by
“union.”

In any space, define the class 4,, 0 < o < w,, by transfinite induction, as follows: the
class %, consists of the open sets, and for « > 0, the class %, consists of the sets which are
countable unions or countable intersections of sets of lower class. (Thus, for example, the
class ¢, will consist precisely of the G sets (see 3H).)

2. In a metric space, | ] {%,]0 < « < w,} is the family of Borel sets. [Show that (] %,
satisfies (a), (b) and (c). For (c), you will have to use transfinite induction and 3H.3.]

3. In a metric space, the family of Borel sets is the smallest family of sets satisfying:

a)’ % contains the open sets,
b)" countable intersections of elements of 4 belong to 4.
c) countable unions of elements of ¢ belong to 4.

“Open” can be replaced by “closed.”

4 Neighborhoods

The means we have at hand so far for describing topologies (open sets, the closure
operation, etc.) are not the most convenient, and for this reason are rarely used.
In this and the next section, we present the two most popular ways to describe
topologies.

Very often the topology we wish to present is quite “regular,” in the sense that
the open sets containing one point look no different from the open sets containing
any other (this is true, for example, in the Euclidean spaces). In such cases, one
can describe the topology by describing what it looks like “around” one point,
or a few points, and then retiring from the field with the observation that around
other points it is the same. Considerable saving of effort can result, and topologies
will often be presented this way here, so we will present now a detailed discussion
of the “local” description of topologies and topological concepts.

4.1 Definition. If X is a topological space and x € X, a neighborhood (hereafter
abbreviated nhood) of x is a set U which contains an open set V containing Xx.
Thus, evidently, U is a nhood of x iff x € U°. The collection %, of all nhoods
of x is the nhood system at x.

The next theorem is similar to Theorems 3.7 and 3.11 about closure and
interior: it lists properties of the nhood system %, at x in a topological space,
and provides a converse which says whenever nhoods have been assigned to each
point of a set, satisfying these properties, one has a topology.

4.2 Theorem. The nhood system %, at x in a topological space X has the
following properties:

N-a) IfUe¥,, thenx e U,

N-b) IfU,VeU,, thenUNVel,,

N-c) If U e U,, then thereisa V € U,, such that U € %, for each y € V,
N-d) IfUe%U,and U < V, then Ve U,,
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and furthermore,
N-e) G < X is open iff G contains a nhood of each of its points.

Conversely, if in a set X a collection U, of subsets of X is assigned to each
x € X so as to satisfy N-a through N-d, and if N-e is used to define “open,”
the result is a topology on X, in which the nhood system at each x € X is precisely
U,.

Proof. N-a is obvious. For N-b: if U, Ve,, then xe U° and xe V°, so
xeU°nV°e=(UnV) and hence U n Ve, For N-c: let Ue%, and
pick V = U°. Then for each yeV, ye U®, so Ue %, For N-d: if Ue,,
then xe U°. If U < V, then U° = V° so xe V°. Hence Ve %,. Finally, to
prove N-e, if G is open, then G = G° and G is a nhood of each of its points. On
the other hand, if each x € G has a nhood V, = G, then G = (] ¢ V3 is a union
of open sets and thus open.
The converse assertion is left to Exercise 4E. B

Neighborhoods provide us with an interesting description of what has hap-
pened in the passage from metric spaces to topological spaces. The linearly
ordered “distances from x” have been replaced by the partially ordered “nhoods
of x” (partially ordered by U, < U, iff U, o U,), in describing closeness to
x of points nearby. Not only have we lost the linear order in our notion of closeness,
we have lost the symmetry. If y is close to x in a metric space, then x is close to
y; but it can happen in a topological space that y is in every nhood of x while x
is in no nhood of y (a very extreme example; this doesn’t happen in useful topo-
logical spaces, although many useful spaces do lack symmetry in some degree).

Since supersets of nhoods are nhoods (N-d), it is not necessary to give all the
nhoods of x to describe the nhood system there. We can be content with a nhood
base.

4.3 Definition. A nhood base at x in the topological space X is a subcollection
%, taken from the nhood system %,, having the property that each U e %,
contains some V € #,. That is, %, must be determined by £, as follows:

U, ={U c X|V < Uforsome Ve,
Once a nhood base at x has been chosen (there are many to choose from, all
producing the same nhood system at x) its elements are called basic nhoods.
Obviously, the nhood system at x is itself always a nhood base at x. There
are more interesting examples.

4.4 Examples. a) In any topological space, the open nhoods of x form a nhood
base at x, since for any nhood U of x, U° is also a nhood of x. For this reason, it
is the custom of a great many writers to use “nhood of x” to mean “open nhood
of x” and to use the term “nhood” (without reference to a point x) to mean “non-
empty open set.” For us, nhoods will not necessarily be open, however, unless
so described.
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b) In any metrizable space, generated by a metric p say, each open set con-
taining x contains some disk U(x, §) about x; thus the disks U(x, ) about x
form a nhood base at x. In fact, we need consider only the disks of rational radius
to obtain a nhood base at x, so each point in a metric space has a countable nhood
base. In particular, these comments apply to the usual topologies (and the usual
metrics which generate them) on the spaces R", n = 1,2, ... . A topological
space in which every point has a countable nhood base is said to satisfy the first
axiom of countability or to be first countable. Thus every metric space is first
countable. We will meet the second axiom of countability in Exercise SF; both
axioms will be studied in greater detail in Section 16.

c) In R? with the usual topology (and the usual metric), the set of all squares
with sides parallel to the axes and centered at x € R? is a nhood base at x. Notice
that this base at x has no set in common with the nhood base described in (b),
although they both describe the same topology. Thus, before one uses the term
“basic nhood at x,” one must fix for the discussion what nhood base at x is being
used. Sometimes context or general usage make this clear. It is customary, for
example, to mean “disk about x” when one refers to a “basic nhood at x” in R?,
or for that matter, in any metric space.

d) If X is a discrete space, each point x € X has an acceptable nhood base
consisting of a single set, namely {x}.

e) If X is a trivial space, the only nhood base at x € X is the collection con-
sisting of the single set X.

We turn now to the problem of specifying a topology by giving a collection
of basic nhoods at each point of the space. Each of the properties V-a, V-b and
V-c corresponds to the respective property U-a, U-b, U-c in Theorem 4.2. Note
that U-d is dropped altogether.

The following theorem is used much more often than the corresponding
Theorem 4.2 about nhood systems.

4.5 Theorem. Let X be a topological space and for each x € X, let B, be a
nhood base at x. Then

V-a) if Ve B, thenxeV,
V-b) if Vi, V, € B,, then there is some V; € B, such that V3 < Vi N V,,

V-c) if V e B,, there is some V, € B, such that if y € V,, then there is some
We RB,with W <V,

and furthermore,

V-d) G < X is open iff G contains a basic nhood of each of its points.
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Conversely, in a set X, if a collection B, of subsets of X is assigned to each
x € X so as to satisfy V-a, V-b and V-c and if we define “open” using V-d, the
result is a topology on X in which %, is a nhood base at x, for each x € X.

Proof. The properties V-a, V-b and V-c are easily verified for basic nhoods, by
referring to the corresponding properties U-a, U-b, and U-c for nhoods. Similarly,
V-d follows from U-e. We will proceed to the converse.

Suppose a collection 4, satisfying V-a, V-b and V-c has been prescribed at
each x € X and define

U, ={U c X|B < U for some Be %, }

for each x € X. The assertion is that %, has the properties N-a through N-d of
a nhood system at x.

Certainly each U € %, contains x, since each B e %, does, so N-a is clear.
If U, U, e %,, then for some B,, B,, By € #, we have B, < U,, B, = U, and
(by V-b) By « By n B, <« U; n U,. Thus U, n U, € %,, establishing N-b. For
N-c, let Ue%,. Pick Be 4, such that B = U. By V-, there is some B, € %,
such that each y € B, has some B, € #, contained in B. Thus Be %, for each
y € B,. Hence Ue %, for each y e B, establishing N-c. Finally, the superset
property N-d is clear from the definition of %,.

Thus %, is a nhood system at x, for each x € X. Moreover, it is clear that, at
each x, 8, is a nhood base at x in the resulting topology on X. B

4.6 Example. There is a useful alternative to the usual topology on the real line
which is best described in terms of basic nhoods. The Sorgenfrey line, E, is the
real line with the topology in which basic nhoods of x are the sets [x, z) for z > x.
Some of its basic properties will be studied in Exercise 4A, and we will find frequent
occasion in later work to refer to it. It is named after the man who first produced
it, in 1947.

Since nhood bases are important descriptive devices in dealing with topologies,
it will be useful to have nhood characterizations of all the concepts so far introduced
for topological spaces.

4.7 Theorem. Let X be a topological space and suppose a nhood base has been
fixed at each x € X. Then

a) G c X is open iff G contains a basic nhood of each of its points,

b) F < X is closed iff each point x ¢ F has a basic nhood disjoint from F,

¢) E = {x e X | each basic nhood of x meets E},

d) E° = {x € X | some basic nhood of x is contained in E},

e) Fr (E) = {x € X | each basic nhood of x meets both E and X — E}.

Proof. a) This is part of Theorem 4.5 and is recorded here for reference.
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b) This follows directly from (a) together with the definition of a closed set
as the complement of an open set.

¢) Recall that E = () {K = X | K is closed and E = K}. If some nhood
U of x does not meet E, then x e U°and E =« X — U°. Since X — U° is closed,
E = X — U°. Hence x ¢ E. Conversely, if x ¢ E, then X — E is an open set
containing x, and hence containing a basic nhood of x, which does not meet E.

d) This follows from (c) by an application of De Morgan’s laws.
e) Follows directly from (c) and the definition of Fr (E)as En (X — E).

4.8 Theorem. (Hausdorff criterion) For each x € X, let B be a nhood base
at x for a topology 1, on X, and let %? be a nhood base at x for a topology 1,
on X. Then t, < 1, iff at each x € X, given B! € B, there is some B* € %2
such that B> < B

Proof. Suppose 1, = 1,. Let B' € .. Then, since B! is a nhood of x in (X, 1),
x is contained in some element B of 7, which is contained in B'. But if Be 1,
then Be 1, so B is a nhood of x in (X, 7,). It follows that B*> = B for some
B? € #2,s0 B> < B

Conversely, if B € 7, then B contains some B! € 4, for each x € B; hence
B contains a corresponding element B? € %2 for each x e B. Thus Be 1,. B

The theorem above could be paraphrased: “small nhoods make large
topologies.” This is intuitively reasonable; the smaller the nhoods in a space are,
the easier it is for a set to contain nhoods of all its points and the more open sets
there will be.

We close this section by introducing a concept which depends for its definition
on the use of nhoods.

4.9 Definition. An accumulation point (cluster point) of a set A in a topological
space X is a point x € X such that each nhood (basic nhood, if you prefer) of x
contains some point of 4, other than x. The set A’ of all cluster points of A is
called the derived set of A.

4.10 Theorem. A = AU A'.

Proof. From4.7, A’ = A, and since A = A, we have A U A’ = A. On the other
hand, if every nhood of x meets 4 (i.e., if x € A), then either x € 4 or every nhood
of x meets A in a point different from x,soxe A u 4.

Problems
4A. The Sorgenfrey line
The following material concerns the Sorgenfrey line, E, introduced in 4.6.

1. Verify that the sets [x, z), for z > x, do form a nhood base at x for a topology on the
real line.
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2. Which intervals on the real line are open sets in the Sorgenfrey topology?

3. Describe the closure of each of the following subsets of the Sorgenfrey line: the
rationals, the set {1/n|n = 1,2,.. .}, theset {—1/n|n < 1,2,...}, the integers.

4B. The Moore plane

Let I denote the closed upper half plane {(x, ) | y > 0} in R%. For each point in the open
upper half plane, basic nhoods will be the usual open disks (with the restriction, of course,
that they be taken small enough to lie in I'). At the points z on the x-axis, the basic nhoods will
be the sets {z} U A, where A is an open disk in the upper half plane, tangent to the x-axis at z.

1. Verify that this gives a topology on I.

2. Compare the topology thus obtained with the usual topology on the closed upper half
plane as a subspace of R2.

3. Describe the closure and interior operations in the space I'.

Herealfter, the symbol I' will be reserved for the closed upper half plane with the topology
described here. This space is often called the Moore plane. We will find consistent use for
it as a counterexample.

4C. The slotted plane

At each point z in the plane, the basic nhoods at z are to be the sets {z} U A, where 4 is a disk
about z with a finite number of straight lines through z removed.

1. Verify that this gives a topology on the plane.
2. Compare this topology with the usual topology on the plane.
3. Can we re-replace “finite” in the definition of this space with “countable?”

This space will be called the slotted plane, A.

4D. The looped line

At each point x of the real line other than the origin, the basic nhoods of x will be the usual
open intervals centered at x. Basic nhoods of the origin will be the sets

(—63 6) Y (—(D, _n) Y (n3 (D),
for all possible choices of e > 0 and ne N.

1. Verify that this gives a topology on the line.
2. Describe the closure operation in the resulting space.

This space is the looped line, L.

4E. Topologies from nhoods
1. Show that if each point x in a set X has assigned a collection %, of subsets of X
satisfying N-a through N-d of 4.2, then the collection

©={G c X|foreach xin G,xe U < G for some U € %, }

is a topology for X, in which the nhood system at each x is just %,.
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2. Show that, if £, is a nhood basc at x for each x in a topological space X, then V-a,
V-b, V-c and V-d of 4.5 hold for elements of 4,.

4F. Spaces of functions
Consider the set R! of all real-valued functions on the unit interval.

1. For each f e R, each finite subset F of I and each positive &, let
U(f, F, 8) = {ge R"||g(x) — f(x) < 4, for each x € F}.

Show that the sets U(f, F, §) form a nhood base at f, making R" a topological space.

2. For each f e R, the closure of the one-point set {f} is just {f}. (This is not unusual.
In fact, it is a situation to be desired; spaces without this property are difficult to deal with.
See the discussion in Sections 13—15.)

3. For feR"and € > 0, let
V(f, ) = {geR"|lg(x) — f(x) < ¢ foreach x e I}.

Verify that the sets V(f, €) form a nhood base at f, making R' a topological space.

4. Compare the topologies defined in 1 and 3.

5. If the definition in 3 is made to apply to continuous functions only, show that the
resulting topology on C(I) is the one induced by the metric defined in 2B.1.

We will return to the topology in 1, in a more general context, in Section 8 on product
spaces. Both the topologies on R!introduced here are treated in the chapter on function spaces.

4G. Nowhere dense sets

A set A in a topological space X is nowhere dense in X iff Cly A contains no nonempty open
set. A point p is isolated iff the set {p} is open and a set D is discrete in X (or, relatively discrete)
iff each d € D has a nhood U in X such that U n D = {d}.

1. In a metric space X without isolated points, the closure of a discrete set in X is nowhere
dense in X.

2. In any space X, the frontier of an open set is closed and nowhere dense.

3. Conversely, every closed nowhere dense set is the frontier of an open set.

4. In a metric space X, the frontier of an open set is the set of accumulation points of a
discrete set. [This requires the axiom of choice and is difficult.]

5 Bases and subbases

As we observed in the last section, we can specify the nhood system at a point x
of a topological space X by giving a somewhat smaller collection of sets, a nhood
base at x. In much the same way, the topology on all of X can be specified, without
describing each and every open set, by giving a base for the topology.
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5.1 Definition. If (X, 7) is a topological space, a base for T (sometimes we call it
a base for X when no confusion can result) is a collection 4 < 7 such that

Be%¥
That is, T can be recovered from 4 by taking all possible unions of subcollections
from 4. Evidently, 4 is a base for X iff whenever G is an open set in X and p € G,
there is some B € 4 such that pe B < G.
5.2 Examples. a) In R, the collection & of all open intervals is a base for the usual
topology. More generally, in any metric space M, the collection of all open disks
about points of M is a base for M.

b) The collection {{x} | x € X} is a base for the discrete topology on X.

The following theorem is similar to 3.7, 3.11, 4.2 and 4.5. That is, it lists a
few properties that bases enjoy and provides the converse assertion: any structure
on a set X with these properties provides a topology on X. Note that no mention
is made in this theorem of the topology. If you have a given topology 7 and want
to know whether a particular collection Z of sets is a base for 7, 5.3 can be used
to show 4 is a base for some topology, but you must return to the Definition 5.1
to show the topology generated by 4 is t (and here the form of the definition given
in the last sentence of 5.1 is particularly useful).

5.3 Theorem. 2 is a base for a topology on X iff

a) X = UBs@ B
b) whenever B,, B, € # with p € B; N B,, there is some By € # with
pe B; < B, n B,.

Proof. 1f % is a base for a topology on X, the two properties are clear. Suppose,
on the other hand, X isa set and 48 a collection of subsets of X with these properties.
Let 7 be all unions of subcollections from 2. Then any union of members of t
certainly belongs to 7, so 7 satisfies G-1 of 3.1. Moreover,if £, ¢ #and %, < %,
so that | ) e, B and | J g, C are elements of 7, then

<UB>n(UC)=U U Bn o),

Be#, CeRB> Be#, Ce%,

But by property (b), the intersection of two elements of £ is a union of elements

of 4, so
(U2~ (Lo)

is a union of elements of %, and hence belongs to t. Thus t satisfies G-2 of 3.1.
Finally, X € t by (a) and @ € 7 since @ is the union of the empty subcollection from
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2. Hence 7 satisfies G-3 of 3.1. This completes the proof that t is a topology
onX.

The reader might well suspect, especially after studying the examples given
in 5.2, that more than a casual similarity exists between the idea of a nhood base
at each point of X on the one hand and the notion of a base for the topology of
X on the other. Indeed, as the next theorem makes clear, the only real difference
between the two notions is that nhood bases need not consist of open sets.

5.4 Theorem. If % is a collection of open sets in X, % is a base for X iff for each
x € X, the collection B, = {Be€ % | x € B} is a nhood base at x.

Proof. Suppose first that & is a base for X, xe X, and #, = {Be # | x e B}.
The elements of 4, are clearly nhoods of x. Moreover, if U is any nhood of x,
then x e U° and, since U° is a union of elements of #, xe B =« U° for some
Be%. Thus Be #,and B < U, so 4, is a nhood base at x.

Conversely, if 8, is an open nhood base at x, for each x € X, and 8 = ) cx %,
then for any open set U in X, and each element p of U, there is an element B,
of % such that pe B, = U. Then U = () {B, | p e U} is a union of elements of
B, so A is a base for X.

We can go one step further in reducing the size of the collection we must
specify to describe a topology. The reduction from topology to base was ac-
complished essentially by dropping property G-1 of topologies. The further
reduction to subbase is accomplished by dropping G-2 (see 3.1).

5.5 Definition. If (X, 7) is a topological space, a subbase for 7 (or a subbase for X)
1s a collection € <= t such that the collection of all finite intersections of elements
from % forms a base for .

5.6 Theorem. Any collection of subsets of a set X is a subbase for some topology
on X.

Proof. Exercise SD. W

Problems
SA. Examples of subbases

1. The family of sets of the form (— oo, a) together with those of the form (b, 0) is a
subbase for the usual topology on the real line.
2. Describe the topology on the plane for which the family of all straight lines is a subbase.

3. Describe the topology on the line for which the sets (a, o0), a€ R, are a subbase.
Describe the closure and interior operations in this topology.

SB. Examples of bases

1. The collection of all open rectangles is a base for a topology on the plane. Describe
the topology in more familiar terms.
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2. For each positive integer n, let S, = {n,n + 1,...}. The collection of all subsets of
N which contain some S, is a base for a topology on N. Describe the closure operation in
this space.

3. The collection of all open intervals (a, b) together with the one-point sets {n} for all
positive and negative integers » is a base for a topology on the real line. Describe the interior
operation in the resulting space.

5C. The scattered line

We introduce a new topology on the line as follows: a set is open iff it is of the form U U V
where U is an open subset of the real line with its usual topology and V is any subset of the
irrationals. Call the resulting space S, the scattered line.

1. With the definition of “open set” given, S is a topological space.
2. Describe an efficient nhood base at

a) the rational points
b) the irrational points

in S. Put these together to describe a base for S.

5D. No axioms for subbase

Any family of subsets of a set X is a subbase for some topology on X and the topology which
results is the smallest topology containing the given collection of sets.

5E. Bases for the closed sets
A base for the closed sets in a topological space X is any family of closed sets in X such that
every closed set is an intersection of some subfamily.
1. & is a base for the closed sets in X iff the family of complements of members of & is
a base for the open sets.

2. & is a base for the closed sets for some topology on X iff (a) whenever F, and F,
belong to &, F; U F, is an intersection of elements of %, and (b) (s F = 0.

S5F. Second countable and separable spaces

A space X is second countable iff X has a countable base. X is separable iff a countable subset
D of X exists with Cly D = X. (Such a set D is said to be dense in X.)

1. A separable metric space is second countable. [The disks of rational radius about the
points of a countable dense set form a countable base.]

2. Every second countable space is separable and first countable. [For separability,
obtain a countable dense set by choosing one element from each member of a countable base.
Note that this requires the axiom of choice. ]

3. The Sorgenfrey line E (4.6) is first countable and separable; we will see later that it
cannot be second countable.

Material on separable and second countable spaces will be developed in the text in
Section 16.



Chapter 3

New Spaces from Old

6 Subspaces

A subset of a topological space inherits a topology of its own, in an obvious way.
This topology and some of its easily developed properties will be presented here.

6.1 Definition. If (X, 1) is a topological space and A < X, the collection
v = {G n A| Ger}is a topology for A, called the relative topology for A. The
fact that a subset of X is being given this topology is signified by referring to it
as a subspace of X.

Any time a topology is used on a subset of a topological space without ex-
plicitly being described, it is assumed to be the relative topology. This natural
and convenient convention has the result that any adjective which can be applied
to topological spaces (e.g., “separable,” see SF) can be applied automatically
to subsets of a topological space. We are not saying that if a space has a particular
property, then every subspace of that space has the same property; see 6B.

6.2 Examples. a) The real line, regarded as the x-axis in R? inherits its usual
topology from R2. The integers, as a subspace of R, inherit the discrete topology.
Each of these examples is a special case of the general rule: if X is metrizable
and A = X, then the relative topology on A is generated by the restriction of any
metric which generates the topology on X. The proof of this will be made easy by
the next theorem, so it is left to Exercise 6C.

b) By relativizing the usual topology on R", we have a usual topology on
any subset of R". By part (a), the usual topology on 4 is generated by the usual
metric on A.

c) Any subspace of a discrete space is discrete and any subspace of a trivial
space is trivial.

d) A subspace of a subspace is a subspace. That is, if 4, < A, < X, then
the relative topology induced on A4, by the relative topology of 4, in X is just
the relative topology of 4, in X. The proof is easy.

The open sets in a subspace 4 of X are the intersections with 4 of the open
sets in X. Most, but not all, of the related topological notions are introduced

1M
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into A in the same way, by intersection, as the following theorem and example
show.

6.3 Theorem. If A is a subspace of a topological space X, then:

a) Hco Aisopenin Aiff H = G n A, where G is open in X,

b) F < Aisclosed in Aiff F = K n A where K is closed in X,

¢c) ifE < A, thenCl, E = An Cly E,

d) if xe A, then V is a nhood of x in A iff V.= U n A, where U is a nhood
of x in X,

e) if xe A, and if B, is a nhood base at x in X, then {Bn A|Be B} is a
nhood base at x in A,

f) if B is a base for X, then {B " A | Be #} is a base for A.

Proof. a) is just the definition of the subspace topology on A, recorded here
for reference.

b) follows directly from (a).

c) follows from (b) and the definition of the closure of E as the intersection
of all closed sets containing E.

d) follows from (a) and the definition of a nhood of x as a set containing an
open set containing x.

e) Each B n A4 is a nhood of x in A4, by part (d). Further, if V is any nhooa
of xin 4,then V = U n Y where U is a nhood of x in X. Then U > B for some
Be#B,soV=UnA>Bn A Thus the sets Bn A form a nhood base at
x in A.

f) follows from (e) and the theorem (5.4) on translation between bases and
nhood bases. B

The reader will notice that two concepts are missing from the list above; no
mention is made of the interior operator or the frontier operator in subspaces.
The following examples indicate why this is so.

6.4 Examples. a) Let X be the plane with the usual topology while A = E = the
x-axis. Then Int, E = A while Inty E = g, so that the former cannot be obtained
by intersecting the latter with A. It is always true, however, that

Int, E > A n Inty E.

b) Using the same example, we have Fr, E = ¢ while Fry E = A, so that,
again, the former cannot be obtained by intersecting the latter with A. It is
always true, however, that Fry, E = A n Fry E.
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Problems

6A. Examples of subspaces
1. Recall that A denotes the slotted plane (4C). Any straight line in the plane has the
discrete topology as a subspace of A. The topology on any circle in the plane as a subspace
of A coincides with its usual topology.
2. We will let B denote the radial plane (3A). The relative topology induced on any
straight line as a subspace of B is its usual topology. The relative topology on any circle in
the plane as a subspace of B is the discrete topology.

3. Discuss the subspaces of the scattered line S (5C).
4. The rationals, as a subspace of R, do not have the discrete topology.

5. The topology on the nonnegative reals, regarded as the subspace {(0, y) | y = 0} of
the Moore plane I' (4B) is the usual topology. The x-axis in the Moore plane inherits the
discrete topology.

6. An open set in an open subspace of X is open in X. This need not be true if the sub-
space is not open. A similar result holds for closed sets in closed subspaces.

7. If 7 is the simple extension over A4 (3A.5) of a topology ' on X, then A is open in (X, 1)
and the topology A inherits from (X, 7) is the same topology it inherits from (X, 7').

6B. Subspaces of separable spaces

1. The Moore plane I' (4B) is separable (see SF).

2. The x-axis in the Moore plane has for its relative topology the discrete topology.
Thus, a subspace of a separable space need not be separable.

3. An open subset of a separable space is separable.

6C. Subspaces of metrizable spaces

If M is metrizable and N = M, then the subspace N is metrizable with the topology generated
by the restriction of any metric which generates the topology on M.

6D. Ordered spaces

Let X be linearly ordered by a relation <. Take as a subbase for a topology on X all sets of
the form {x|x < a} and {x|x > a}, for ae X. The resulting topology on X is the order
topology on X and whenever we use the phrase ordered space we mean a linearly ordered set
with its order topology. An interval in a linearly ordered space is any subset which contains

all points between x and y whenever it contains x and y.

1. If a < b in X, the interval {x € X |a < x < b} is an open set in the order topology;
but intervals of the form {x € X | a < x < b} may also be open.

2. The usual topology on the real line is the order topology given by the usual order.

3. In I x I, with the lexicographic order: (x, x,) < (y1, y,) iff either x; < x, or else
X; = X, and y; < y,, describe the nhoods of each of the following:

a) the points (x, 0), with particular attention to (0, 0),

b) the points (x, 1), with particular attention to (1, 1),

c) the points (x, »),0 < x < 1,0 <y < 1.
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4. A subset of an ordered space has a topology induced by the restricted order and a
topology inherited from the order topology on the larger space. Show by an example that
these two topologies on a subset need not be the same. [An example exists using for the large
space the real line with its usual topology and order.] Find conditions on the subspace which
will ensure that the two induced topologies agree.

7 Continuous functions

It is the purpose of this section to define continuous functions on a topological
space and establish their elementary properties. The basis for our definition is
Theorem 2.8, in which it was-demonstrated that the notion of distance could be
effectively suppressed in defining continuity of functions between metric spaces,
by introduction of the use of open sets. In fact, the reader who restudies Theorem
2.8 at this point will see in the following definition just a rewording of that theorem,
with the slight modification that here we use “nhood of x,” instead of “open set
containing x,”.

7.1 Definition. Let X and Y be topological spaces and let f: X — Y. Then f is
continuous at x, € X iff for each nhood V of f(x,) in Y, there is a nhood U of
Xo in X such that f(U) = V. We say f is continuous on X iff f is continuous at
each x, € X.

It is left to the reader to verify that the effect of the definition is not altered
if “nhood” is replaced by “basic nhood” throughout.

The next theorem provides an alternative, and somewhat surprising, set
of characterizations of functions f: X — Y which are continuous on all of X.
This theorem, in one or another of its forms, is more often used to check “global”
continuity than the alternative, that is, checking continuity at each point of X
individually. The fourth characterization, although not often used as a test for
continuity, is interesting. It provides us with a description of the continuous
functions f: X — Y as precisely those functions which take the points close to
a set E in X close to its image in Y.

7.2 Theorem. IfX andY aretopological spacesand f: X — Y, thenthe following
are all equivalent:

a) f is continuous,

b) for each open set H in Y, f “Y(H) is open in X,

c) for each closed set K in Y, f 1K) is closed in X,

d) for each E = X, f(ClyE) = Cl, f(E).

Proof. a)=-b): If H is open in Y, then for each x € f ~!(H), H is a nhood of
f(x). Hence, by continuity of f, there is a nhood V of x such that f(V) < H; that
is, V. < f~!(H). Thus f ~}(H) contains a nhood of each of its points and is therefore
open.
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b) = ¢): If Kisclosedin Y, then f~!(Y — K)isopen in X, by part (b). Hence,
since fTY(K) = X — 7YY — K), f~Y(K) is closed in X.

¢)=d): Let K be any closed set in Y containing f(E). By part (c), f~*(K)

is a closed set in X containing E. Hence, Cly E = f~}(K), and it follows that

f(Cly E) = K. Since this is true for any closed set K containing E, we have

f(Cly E) = Cly f(E).
d) = a): Let x € X and let V be an open nhood of f(x). SetE = X — f~(V)

and let U = X — Cly E. It is easy to verify that, since f(Cly E) = Cly f(E), we
have x € U. It is even clearer that f(U) = V. Hence, f is continuous at x. B

The following theorem is intuitive, easily proved and surpassingly important.

7.3 Theorem. If X, Y and Z are topological spacesand f: X — Yandg: Y - Z
are continuous, then g o f: X — Z is continuous.

Proof. If H is open in Z, then g ~"!(H) is open in Y, by continuity of g. Hence,
by continuity of f, f~'[g (H)] = (g f) *(H) is open in X. Thus gof is
continuous.

7.4 Definition. If /: X — Y and 4 = X, we will use /| A (the restriction of f to
A) to denote the map of A into Y defined by (f | A)(a) = f(a) for each a € A.

7.5 Theorem. If A = X and f: X — Y is continuous, then (f | A): A - Y is
CONtinuUoUs.

Proof. If H is open in Y, then (f | A)~'(H) = f~'(H) n A, and the latter is open
in the relative topology on 4. B

The theorem above has a sort of converse : if f is continuous on each of a few
properly fitting pieces of X, it is continuous on X. This is stated more precisely
by the following theorem, and its generalizations in Exercise 7D.

7.6 Theorem. If X = A U B, where A and B are both open (or both closed)
inX,and if f: X — Y is afunction such that both f | A and f | B are continuous,
then f is continuous.

Proof. Suppose A and B are open. If H is open in Y, then f~!(H) is open in X,
since f~(H) = (f| A)”'(H) v (f | B)”'(H) and each of the latter is open in an
open subspace of X and so open in X. The proofis similar if 4 and B are closed. B

If we write f: X — Y, we have specified the domain of f (as X), but the image
of f is not determined, except that it must be a subset of Y. The next theorem
says, essentially, that it is not necessary to modify this procedure when dealing
with continuous functions. The proof is left as Exercise 7E.

7.7 Theorem. Suppose Y < Z and f: X — Y. Then f is continuous as a map
Sfrom X to Y iff it is continuous as a map from X to Z.
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In the passage from X to the image Y of X under a continuous map f, we lose
information in two ways. The first is set-theoretical: Y will have fewer (or, at
least, no more) points than X. The second is topological : Y will have fewer (or,
at least, no more) open sets than X in the sense that each open set H in Y is the
image of an open set (for example, f ~'(H)) in X, but there may well be open sets
U in X such that f(U) is not open in Y.

The maps which preserve X set-theoretically and topologically are called
homeomorphisms.

7.8 Definition. If X and Y are topological spaces, a function f from X to Yisa
homeomorphism iff f is one—one, onto and continuous and f ! is also continuous.
In this case, we say X and Y are homeomorphic. If f is everything but onto, we
call it an embedding of X into Y, and say that X is embedded in Y by f. Thus, X
is embedded in Y by f iff f is a homeomorphism between X and some subspace
of Y.

Evidently, a continuous map f: X — Y is a homeomorphism iff there is a
continuous map g: Y — X such that the compositions g o f and f o g are the
identity maps on X and Y respectively. Various algebraic isomorphisms may be
defined in the same formal way. The attempt to unify and systematize such notions
has led to the development of categorical algebra.

The reader can easily verify the following theorem; it is a direct consequence
of Theorem 7.2.

7.9 Theorem. If X and Y are topological spaces and f: X — Y is one—one
and onto, the following are all equivalent:

a) f is a homeomorphism,

b) if G = X, then f(G)is open in Y iff G is open in X,
c) if F < X, then f(F) is closed in Y iff F is closed in X,
d) if E c X, then f(Cly E) = Cly f(E).

Homeomorphic topological spaces are, for the purposes of a topologist,
the same. That is, there is nothing about homeomorphic spaces X and Y having
to do only with their respective topologies which we can use to distinguish them.
Thus, for example, a “topological characterization” of the real line R would
consist of a list of properties possessed by the real line which, if possessed by any
other space X, ensure that X is homeomorphic with R.

If we denote “X is homeomorphic with Y” by X ~ Y, then the relationship
~ has the following properties:

a) X ~ X,
b) if X ~ Y, then Y ~ X,
c)if X ~Yand Y ~ Z then X ~ Z.
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Thus, the relation “is homeomorphic to” is an equivalence relation on any set
of topological spaces. The reader might profit from thinking, at this point, about
the question: is there a set of all topological spaces?

To prove two spaces are homeomorphic, one constructs a homeomorphism.
To establish that two spaces are not homeomorphic, one must find a topological
property possessed by one and not the other. The definition of “topological
property” makes it clear why this works. A topological property is a property
of topological spaces which, if possessed by X, is possessed by all spaces homeo-
morphic to X. First countability, second countability and separability are
examples of topological properties which have already been introduced. We will
introduce many more in sections to come.

7.10 Examples. a) The open interval (a, b) in R is homeomorphic to (0, 1), one
homeomorphism being f(x) = (x — a)/(b — a). Moreover, all intervals of the
form (a, o0) are obviously homeomorphic by translation, and (1, o) is homeo-
morphic to (0, 1) under the map f(x) = 1/x. Also, the interval (—oo0, —a) is
homeomorphic to (a, c0) under the map f(x) = —x. Finally, (—o0, o) is
homeomorphic to (—n/2, n/2) under the map f(x) = arctan x. The relations
above can be summarized, using transitivity of the homeomorphism relation, as
follows: allopen intervalsin R, including the unbounded intervals, are homeomorphic.
Verification of the details passed over here is left to Exercise 7G.

b) All bounded closed intervals in R which have more than one point are
homeomorphic. In fact, [a, b] is homeomorphic to [0, 1] under the same map
f(x) = (x — a)/(b — a) used above. In 7G, we will see that we cannot include the
unbounded intervals this time.

Problems

TA. Characterization of spaces using functions

The characteristic function of a subset A of a set X is the function from X to R which is 1
at points of 4 and 0 at other points of X.

1. The characteristic function of 4 is continuous iff 4 is both open and closed in X.

2. X has the discrete topology iff whenever Y is a topological space and f: X — Y,
then f is continuous.

3. X has the trivial topology iff whenever Y is a topological space and f: Y — X, then
f is continuous.

7B. No Cantor—Bernstein theorem for topological spaces

Recall that the Cantor—Bernstein theorem states that if 4 and B are sets and if one—one
functions f: A — B and g: B — A exist, then a one—one function of A onto B exists. The
analog for topological spaces would be: whenever X can be embedded in Y and Y can be
embedded in X, then X and Y are homeomorphic. Find a counterexample. [See 7G.3].
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7C. Functions agreeing on a dense subset

If f and g are continuous functions from X to R, the set of points x for which f(x) = g(x) is
a closed subset of X. Thus two continuous maps on X to R which agree on a dense subset
(one whose closure is X) must agree on all of X. Rephrased: a real-valued continuous
function is determined by its values on a dense set. [See also 13.14.]

7D. Sufficient conditions for continuity
There are useful extensions of Theorem 7.6. A family of subsets of a topological space is
called locally finite iff each point of the space has a nhood meeting only finitely many elements
of the family.
1. The union of any subfamily from a locally finite family of closed sets is closed.
2. If {4, | 2 € A} is a locally finite collection of closed subsets of X whose union is X,
a function on X is continuous iff its restriction to each A4, is continuous.

3. If {B, | 2 € A} is any collection of open subsets of X whose union is X, a function on
X is continuous iff its restriction to each B, is continuous.

7E. Range immaterial

If Y= Zand f: X - Y, then f is continuous as a map from X to Y iff f is continuous as a
map from X to Z.

7F. Functions to and from the plane

The facts presented here for the plane will be proved in more generality for product spaces in
Section 8.

If f is a function on any space X to the plane, associated with f we have the coordinate
functions f; and f,, each mapping X to R. For each x € X, f;(x) and f,(x) are the first and

second coordinates, respectively, of f(x).

On the other hand, if g is a function from the plane to any space Y, for each fixed x, € R
we can define a function g, from R to Y by g, (y) = g(xo, ). Similarly, if y, € R is fixed,
hy(x) = g(x, o) defines a function 4, from R to Y. We say g is continuous in x iff h,, is con-
tinuous for each y, € R and g is continuous in y iff g, is continuous for each x, € R.

1. A function f: X — R? is continuous iff both coordinate functions f; and f, are
continuous.

2. If g: R? - Y is continuous, then it is continuous in both x and y.

3. The converse to part 2 fails. [Let g(x, y) = xy/(x*> + y?), with g(0, 0) = 0.]

7G. Homeomorphisms within the line

1. Show that all open intervals in R are homeomorphic (see 7.10).
2. All bounded closed intervals in R are homeomorphic.

3. The property that every real-valued continuous function on X assumes its maximum
is a topological property. Thus I is not homeomorphic to R.
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TH. Disjoint homeomorphisms

Suppose X and Y are topological spaces such that X = U X,and Y = U Y, where (X,)
and (Y,) are sequences of disjoint open sets in X and Y respectively. If X, and Y, are homeo-
morphic for each n, then X and Y are homeomorphic.

71. Topological properties
Each of the following expresses a topological property of X :

X has cardinal number X,
the topology on X has cardinal number ¥,

1.
2.
3. the topology on X has a base whose cardinal number is N,
4. there is in X a set of cardinal X whose closure is X,

S.

X is metrizable.
Each of the following expresses a property of X which is not a topological property:

6. the topology on X is generated by the metric p,
7. X is a subset of R.

7). Retracts

A continuous function r from a space X onto a subspace 4 of X is called a retraction of X
onto A iff 7| A is the identity map on A. When such a retraction exists, 4 is called a retract
of X.

1. If A is a retract of X and B = X, A n B need not be a retract of B.
2. The unit disk is a retract of the plane.
3. If A is a retract of B and B is a retract of C, then A4 is a retract of C.

7K. Semicontinuous functions

A function f: X — R is lower semicontinuous iff for each ae R, f ~!(a, 00) is open in X. We
call f upper semicontinuous iff for each ae R, f ~}(— o0, a) is open in X. Note that lower and
upper semicontinuity bear no relation to continuity from the left or right for functions of a
real variable; we are using the ordering of the range of our functions, not the domain. Most
of the results below are stated for lower semicontinuous functions; they have obvious analogs
for upper semicontinuous functions.

1. If f, is a lower semicontinuous real-valued function on X for each o € A4, and if
sup, f,(x) exists at each x € X, then the function f(x) = sup, f,(x) is lower semicontinuous
on X.

2. Every continuous function from X to R is lower semicontinuous. Thus the supremum
of a family of continuous functions, if it exists, is lower semicontinuous. Show by an example
that “lower semicontinuous” cannot be replaced by “continuous” in the previous sentence.

3. The characteristic function (7A) of a set 4 in X is lower semicontinuous iff 4 is open,
upper semicontinuous iff 4 is closed.
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4. If X is metrizable and f is a lower semicontinuous function from X to L, then f is the
supremum of an increasing sequence of continuous functions on X to I. This provides a
partial converse to part 2. [Given f, first find a sequence h, with 0 < f(x) — h,(x) < 1/n,
where h,, is a finite linear combination of characteristic functions of open sets. Then show that
every characteristic function, hence each 4, is the supremum of an increasing sequence of
continuous functions. Finally, combine these two operations to obtain an increasing sequence
of continuous functions whose supremum is f.]

5. Let C}(I) be the family of continuously differentiable real-valued functions on I. For

each f'e C!(I), define
L(f) =j 1+ <g>dx.
0 dx

Prove that L is lower semicontinuous from C*(I) to R, if C!(I) is given the topology of 4F.3.

7L. Linear operators and linear functionals

If X and Y are normed linear spaces (2J), a linear operator from X to Yisa functionI': X —» Y
satisfying

a) I(x; + x3) = T'(x;) + [(x,),

b) I'(ax) = al'(x),
for all @ in R and x, x;, x, in X. A linear operator from X to R is called a linear functional.

Alinear operator I from X to Y is bounded iff a constant M exists such that [|[[(x)|| < M ||x||,
for all x e X. (Here we indulge in the common bad habit of failing to use a distinguishing
notation for the norms on X and Y.) In case I is a linear functional, the norm we use on R
is [lx|| = |x].

1. A linear operator is bounded iff sup {|T'(x) | x € X, [|x]| = 1} < oo.
2. For a linear operator I" from X to Y, the following are equivalent:

a) I is continuous at some x, € X,
b) I is uniformly continuous on X,
¢) I' is bounded.

3. Given normed linear spaces X and Y, the collection L(X, Y) of all bounded linear
operators from X to Y is a linear space under pointwise addition and scalar multiplication
Ty + T)(x) = Ty(x) + T'y(x), (@)(x) = a-I(x). It becomes a normed linear space if we
define |T'|| = sup {IT(x)| | x| = 1} (see part 1).

4. If Y = R, the space L(X, Y) given in part 3, consisting of all bounded linear functionals
on X, is called the dual space of X, denoted X*. Show that, in a natural way, X < (X*)*.
[For each x € X, define F, on X* by F(I') = I['(x). Show that the mapping x — F, is a norm-
preserving one—one map of X into (X*)*.]

The spaces X for which (X*)* = X (that is, for which the mapping x — F given in part 4
is onto (X*)*) are called reflexive. In problem 24J, we will see that the norm metric on any
dual space is complete, so that dual spaces are examples of “Banach spaces.” Thus, only
Banach spaces can be reflexive.

See Royden (Real Analysis) for a discussion of the representation of dual spaces of some
familiar spaces; for example, the dual of IP(I) is I4(I), where 1/p + 1/q = 1.
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TM. C(X)and C*(X)
For topological spaces X and Y, let C(X, Y) denote the collection of all continuous functions
from X to Y. We will distinguish two special collections: C(X) will be used to denote C(X, R)
and C*(X) will denote the set of all bounded functions from C(X). We can define addition,
multiplication and scalar multiplication of functions in C(X) pointwise :

(f + 9)x) = f(x) + g(x),
(f 9)x) = f(x) g(x),
(@ f)x) =a- f(x), for aeR.
1. If f and g belong to C(X), then so do f + ¢, f- g and a - f; for ae R. If, in addition,
fand g are bounded, thenso are f + g, f-ganda- f.
2. C(X) and C*(X) are algebras over the real numbers. (Consult any book on abstract
algebra for the definition of an algebra.)
3. C*X) is a normed linear space (2J) with the operations of addition and scalar
multiplication given above and the norm || f|] = sup,.x | f(x)I.
4. C(X) and C*(X) are lattices when given the partial order f < g iff f(x) < g(x) for
each x € X. [If £, g belong to C(X), so do

m(x) = min {f(x), (9} ~ and  M(x) = max {f(x), g(x)} ]

Study of the interaction between the algebraic and lattice properties of C(X) and C*(X)
and the topological properties of X is still actively being carried on. Some questions of
importance in this direction are:

i) for what class of spaces is it true that X and Y are homeomorphic iff C*(X) and C*(Y)
[or C(X) and C(Y)] are isomorphic?

ii) how are topological properties of X reflected in algebraic and lattice properties of
C*(X) and C(X)?

iii) what properties of a ring R (usually with a lattice structure) will ensure that R is
isomorphic with C(X) for some topological space X?

An excellent introduction to the study of questions of this sort can be found in the book
on rings of functions by Gillman and Jerison.

IN. The group of homeomorphisms
For any topological space X, let H(X) denote the group of homeomorphisms of X onto itself,
with composition as the group operation. A central and obvious question is: if ¢ is an iso-
morphism of H(X) onto H(Y), is there a homeomorphism T of X onto Y such that
o) = Toho T, for each h e H(X)?

1. H(X) is a group, with composition as the operation.

2. Let X =TI and Y = (0, 1) and define o(h) = h| Y for each he H(X). Then ¢ is an
isomorphism of H(X) with H(Y), but there is no homeomorphism of X onto Y. [7G].

Part 2 effectively disposes of the question asked in the introduction for general spaces
X and Y. Affirmative answers are available, however, for suitably restricted classes of spaces.
See the notes.
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8 Product spaces, weak topologies

Our objective now is to define a topology on the Cartesian product of topological
spaces, in some natural and useful way. First we extend the notion of Cartesian
product to infinite collections of sets. The key to understanding the definition
we are about to give is a careful study of Exercise 1D. There we show that the
product of a finite collection of sets is, in a natural way, a collection of functions
each defined on the indexing set.

8.1 Definition. Let X, be a set, for each « € 4. The Cartesian product of the sets
X, is the set

]_[Xa-——{x:A—»UXa
acA aeA

x(x) € X,, for each a € A},

which we denote simply by l_[ X, if no confusion can result about the indexing
set. Thus [] X, is a set of functions defined on the indexing set. In practice, the
value of x € [ | X, at « is usually denoted x,, rather than x(«), and x, is referred
to as the ath coordinate of x. The space X, is the ath factor space.

The map n,: ITx.- Xp, defined by my(x) = x;, is called the projection
map of [ | X, on Xy, or more simply, the Bth projection map.

We need the axiom of choice (1.17) to ensure that the Cartesian product of
a nonempty collection of nonempty sets is nonempty. This assertion is, in fact,
equivalent to the axiom of choice; see Exercise 8F. If each X, is nonempty and
the axiom of choice is assumed, then the Bth projection map carries [] X,
onto X .

8.2 Examples. a) If the index set A4 is finite, say A = {1, 2, ..., n}, it is customary
to prescribe the function x in [[j-; X, by listing its values as an ordered n-tuple,
x = (xy,..., %) Thus[[ic; Xo = {(xy, ..., %) | xxe X k= 1,...,n}

b) The notation in (a) is carried over to the case where 4 = N. Thus
[Ty X = {(x, X0 .. ) | X € X k= 1,2,.. .}

¢) If X, = X for each o € A4, then [ [,., X, is just the set X* of all functions
from A to X. (Finally, the reason for the notation X“ is clear.) For example, R®
is the set of all real-valued functions of a real variable.

d) If X, c Y, foreachae 4, then[[ X, = [] ¥,.

Now suppose X, is a topological space, for each « € A. We want to define
atopology on [ [,.4 X, which is at the same time natural enough that, for example,
the product topology on R x R will be the usual topology on R?, and tame enough
that a number of theorems of the form “if each X, has property P, then so does
[] X,” will remain true.

If naturality were the only requirement, the job would be easy. In fact, after
recalling that the open squares in R? form a base for the usual topology in R?,
an obvious candidate for a topology on || X, arises. Simply take as a base for
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such a topology all sets of the form [| U,, where U, is an open set in X, for each
o € A. In fact, this procedure gives a valid topology, called the box topology, on
[T X,. It satisfies our craving for naturality, but is not much used because it is
not tame enough, having an over-abundance of open sets. The definition, given
next, of the usual topology used on the product space rectifies this by sharply
reducing the number of basis elements.

8.3 Definition. The Tychonoff topology (or product topology) on [] X, is obtained
by taking as a base for the open sets, sets of the form [ | U,, where

P-a) U, is openin X, for each a € 4,
P-b) For all but finitely many coordinates, U, = X,.

The reader will easily verify that P-a could have been replaced by
P-a)y U, e %,, where for each a, 4, is a (fixed) base for the topology of X,,.

Also, notice that the set [ | U,, where U, = X, except for a = ay, ..., o, can be

written
l_.[ Ua = na_ll(Ual) NN na:l(Uan)'

Thus the product topology is precisely that topology which has for a subbase
the collection {n,"(U,)|x€ A4, U, open in X,}. Again, the sets U, can be re-
stricted to come from some fixed base (in fact, in this case, subbase) in X,.

In case only a finite number of spaces X, ..., X, is involved, the product
topology on [[;-; X, coincides with the box topology, so in those cases where
we have any intuition to begin with, the product topology will always seem
“natural”. In particular, R x R x -+ x R (n times) with the product topology
is homeomorphic to R".

Hereafter, || X, is always assumed to be endowed with the product
(Tychonoff) topology if each X, is a topological space.

8.4 Examples. a) Let X = RR Recall that X is the set of all real-valued functions
of a real variable. A basic nhood of f € X in the product topology is obtained by
picking a finite subset {x,, ..., x,} of the index set R and a corresponding set
{€4, ..., &} of positive numbers, and letting

U(fs Xg, oo Xn3 €1 - -5 6) = {geR®||g(x,) — f(x)] < & fork =1,...,n}.

We can obtain a somewhat simpler description of a base in R® by letting

F = {xy,...,x,}, € = min {¢,, ..., ¢,} and noting that the nhood
U(f, F,e) = {geR*||g(x) — f(x)| < efor x e F}
is contained in U(f; xy, ..., X,; €1, - - - , €,), SO that the sets U(f, F, ¢), as F ranges

through all finite subsets of R and ¢ ranges through all positive numbers, form a
nhood base at f (see Fig. 8.1).
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Fig. 8.1 U(f, F, ¢

b) For each « € 4, let X, be a discrete space. Then [ X, will be a discrete
space if and only if 4 is finite.

c) If St is the unit circle in R?, then S* x Iis a cylinder and S* x S'is a
torus (Fig. 8.2).

d) If ¥, « X, for each o € A, then the product topology on [] Y, coincides
with its topology as a subspace of [ | X,.

8.5 Definition. If X and Y are topological spaces and f: X — Y, we call f an open
(closed) map iff for each open (closed) set 4 in X, f(A4) is an open (closed) set in Y.
If f is one—one and onto, then f is open iff f is closed iff f~! is continuous.
Thus a one—one onto map f is a homeomorphism iff it is continuous and open
iff it is continuous and closed.
In general, an open map need not be closed and vice versa; see 8A, 9C.

8.6 Theorem. The Pth projection map ng: [ | X, — X is continuous and open,
but need not be closed.

Proof. Left as Exercise 8A. B

8.7 Theorem. The Tychonoff topology is the weakest topology on || X, for
which each projection m; is continuous.
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Figure 8.2

Proof. If T is any topology on the product in which each projection is continuous,
then for each B, if U, is open in X, n;'(Uy) € 7. Consequently, the members of
a subbase for the Tychonoff topology all belong to t, and hence the Tychonoff
topology is contained in 7. W

8.8 Theorem. A map f: X — [| X, is continuous iff n, o f is continuous for
eacho € A.

Proof. Necessity of the composition condition is clear since the composition of
continuous maps is continuous. Conversely, suppose 7, o f is continuous for
each « € A. The sets of the form n, *(U,), « € 4 and U, open in X, form a subbase
for the topology on || X,. But f~!(n;"(U,)) = (n, - f)~(U,). Thus the inverse
images by f of these subbasic open sets are open in X, by continuity of 7, o f.
This suffices to show f is continuous. B

The previous two theorems form the penultimate justification for our choice
of the Tychonoff topology on [ | X, over the box topology. Directly or indirectly,
these results lie at the heart of most useful investigations into the properties of
product spaces. As is often the case, a theorem (in this case, 8.7) with a desirable
conclusion becomes the basis for a definition.

8.9 Definition. Let X be a set and X, a topological space with f,: X — X, for
each a € 4. The weak topology induced on X by the collection {f, |« e A} of
functions is the smallest topology on X making each f, continuous. It evidently
is that topology on X for which the sets f,*(U,), for « € A and U, open in X,,
form a subbase.

By Theorem 8.7 the product topology on [],.4 X, is the weak topology
induced by the collection {m, | @ € A} of projections. Moreover, Theorem 8.8
carries over to any weak topology, without essential change in the mechanics of
the proof.
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8.10 Theorem. If X has the weak topology induced by a collection {f, |x € A}
of functions f,: X — X,, then f: Y — X is continuous iff f, - f is continuous
for each a € A.

Proof. Mimic the proof of 8.8. B

It is one of the remarkable and fruitful results in topology that, with a simple
extra condition on the generating collection of maps, any space with a weak
topology can be embedded as a subspace of the product of the range spaces.

8.11 Definition. If,foreacha € 4, f,: X — X,, thenthe evaluationmape: X - [] X,
induced by the collection {f,|o€ A} is defined as follows: for each x € X,
[e(x)], = fi(x). Thatis, for x € X, e(x) is the point in [ | X, whose ath coordinate
is f(x) for each a € A.

A collection {f, |« € A} of functions on X will be said to separate points in
X iff whenever x # y in X, then for some a € 4, f(x) # f.(y)

8.12 Theorem. For each o€ A, let f,: X — X,. Then the evaluation map
e: X > [] X, is an embedding iff X has the weak topology given by the functions
f, and the collection {f, | « € A} separates points in X.

Proof. The heart of the proof of this theorem lies in the observation that, for
eachae A, n,0e = f,.

Now suppose e is an embedding of X into [| X,. Then e(X) has the weak
topology induced by the restricted projections [see Exercise 8H]. Hence, since e
is a homeomorphism, it is clear that X has the weak topology induced by the
functions 7, . e = f,. Moreover, if x # y, in X, then e(x) # e(y) and hence
[e(x)]. # [e(»)],, that is, f(x) # f(y), for some ae A. Thus the collection
{f. | « € A} separates points.

Now suppose the topology on X is the weak topology induced by the functions
f. and that the collection {f,|x e A} separates points in X. For each o€ 4,
7, o e = f, is continuous. Thus, by Theorem 8.8, e is continuous. If x # y in
X, then for some o € 4, f(x) # f(y), i.e, [e( x)] # [e(y)]., and thus e(x) # e(y).
Hence e is one—one. Finally, we Wlll show e is an open map; ie., if U is open in
X, then e(U) is open in e(X). Since e is one—one, it suffices to show e(U) is open
whenever U is a subbasic open set. Hence we assume U is of the form f, (V)
for some « € A and some open set V in X,. But then

U = [(n, | e(X)) o €] ' (V) = e [(m, | eX)) "' (V)]
and hence e(U) = [x, ]e(X] (V) = n,7 (V) n e(X) which is an open set in
e(X), since 7, '(V) is open in || X,. (The last argument looks a lot nicer if you
just carry the fact that m, should be restricted to e(X) in your head instead of
writing it out.)

The following problem is, in various forms and with occasional modifications,
one of the most important and often investigated questions in topology and related
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areas: given a space X and a property £ of spaces, can X be embedded in a larger
space Y having property 2? The theorem just proved forms the essential core of
a great many constructions intended to deal with such questions. The best known
example, the Stone—Cech compactification X of a Tychonoff space X (see
Section 19) is typical of the use of 8.12 in this way.

In case X already has a topology and we wish to know whether or not this
topology is the weak topology given by a certain collection {f, |« € A} of con-
tinuous functions on X, there is often a pleasant alternative to verifying that the
sets f,7}(V), for « € A and V open in X, form a subbase for the existing topology.

8.13 Definition. A collection {f, | @ € A} of functions on a space X (to spaces X,)
is said to separate points from closed sets iff whenever B is closed in X and x ¢ B,
then for some o € A, f,(x) ¢ f,(B).

8.14 Theorem. A collection {f, | o € A} of continuous functions on a topological
space X separates points from closed sets in X iff the sets f,'(V), for € A
and V open in X ,, form a base for the topology on X.

Proof. Exercise 8B. B

8.15 Corollary. If {f,| o€ A} is a collection of continuous functions on a topo-
logical space X which separates points from closed sets, then the topology on
X is the weak topology induced by the maps f,.

Whenever one-point sets in X are closed, a collection of functions which
separates points from closed sets will separate points. A space is a T;-space
(see Section 13) iff one-point sets are closed.

8.16 Theorem. If X is a Ty-space and {f,| o€ A} is a collection of functions
on X (to spaces X,) which separates points from closed sets, then the evaluation
e: X - || X, is an embedding.

Proof. This is a direct consequence of 8.15, the remark preceding this theorem
and 8.12. W

Problems

8A. Projection maps

1. The fth projection map 7, is continuous and open. The projection m;: R* - R is
not closed.

2. Show that the projection of I x R onto R is a closed map.

8B. Separating points from closed sets

1. If £, is a map of X to X, for each o € 4, then {f, | « € A} separates points from closed
sets in X iff {f; (V)| a € 4, V open in X,} is a base for the topology on X.

2. If X has the weak topology induced by a collection of maps which separates points,
this collection of maps need not separate points from closed sets.
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8C. Products are associative and commutative

1. If {4; [ A€ A} is a partition of the set A4 (into disjoint subsets whose union is 4), and
X, is a topological space for each a € 4, then [ [;ea (] [sea, X.) is homeomorphic to [ [ees X,

2. If ¢ is a one—one map of 4 onto B and for each a € 4, X, is homeomorphic to Y,
then [ 4ex X, is homeomorphic to [ [ e Y5

8D. Closure and interior in products

Let X and Y be topological spaces containing subsets 4 and B, respectively. In the product
space X x Y:

1. (4 x B® = A° x B°.

2.(A x By=4 x B.

3. Part 2 can be extended to infinite products, while part 1 can be extended only to finite
products.

4. Fr(A x B) = [4 x Fr(B)] u [Fr(4) x B].

5. If X, is a nonempty topological space and 4, = X,, for each a € 4, then ]_[ A, is
dense (see 7C) in [] X, iff A, is dense in X, for each o.

8E. Miscellaneous facts about product spaces
Let X, be a nonempty topological space for each a € 4, and let X = [] X,.

1. If V is a nonempty open set in X, then 7 (V) = X, for all but finitely many « € A.
2. If b, is a fixed point in X,, for each a € 4, then X, = {xe X | x, = b, whenever
o # oo} is homeomorphic to X,

3. If b, is a fixed point in X,, for each a € 4, then A = {x € X | x, = b, except for finitely
many a € A} is a dense set in X ; ie,Cly 4 = X.

8F. Products and the axiom of choice
1. Show that the axiom of choice is equivalent to the assertion that the product of a
nonempty collection of nonempty sets is nonempty.
2. Assuming the axiom of choice, show that each projection map is onto if each factor
space is nonempty.

8G. The box topology
Let X, be a topological space for each a € A.

1. In[] X,, the sets of the form [ | U,, where U, is open in X, for each a € 4, form a base
for a topology.

2. What do nhoods of f € R® look like in the box topology? [see 8.4(1)]. Compare with
4F3.

3. Work out formulas for the closure and interior of sets in a box product, similar to those
given in 8D.
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8H. Weak topologies on subspaces
Let X have the weak topology induced by a collection of maps f,: X — X, for a € 4.

1. If each X, has the weak topology given by a collection of maps g,,: X, — Y,,, for
A€ A,, then X has the weak topology given by the maps g, f,: X = Y,;, for « € 4 and
AEA,.

2. Any B = X has the weak topology induced by the maps f, | B. [Any B = X has the
weak topology induced by the inclusion map j: B — X.]

8. Weak topologies and the lattice of topologies

Let {z, | o € A} be a family of topologies on a fixed set X and denote by X, the space consisting
of the set X with the topology z,. The identity function from the set X to the space X, will
be denoted i,.

1. The weak topology induced on X by the maps i, is the supremum 7 of the topologies
1, (see 3G).

2. (X, 7) is homeomorphic to the diagonal A in the product space [] X,. (Note:
A={xel] X,|x, = x;forallo, }.)

The corresponding theorems for the infimum of the topologies 7, are given in Exercise 91.

8J. Homeomorphic products

Exhibit spaces X, Y and Z such that X x Y is homeomorphic to X x Z, but Y is not
homeomorphic to Z.

It is also true that there are nonhomeomorphic spaces X and Y such that X x X and
Y x Y are homeomorphic (see notes).

See also 30F.

9 AQuotient spaces

Dual to the notion of the weak topology induced on X by a collection of maps
f.: X —» X,, which is the weakest topology making all these maps continuous,
we have the notion of the strong topology induced on Y by a collection of maps
g.: Y, = Y, which is the strongest topology on Y making all these maps continuous.
In the particular case when there is only one map g: X — Y, the resulting strong
topology on Y is called the quotient topology induced on Y by g. We will be solely
concerned in this section with investigating three distinct but equivalent ways of
viewing quotient spaces, leaving discussion of strong topologies to Exercise 9H
(where we show that quotient spaces play a role for strong topologies similar
to that played by product spaces relative to weak topologies).

9.1 Definition. If X is a topological space, Y is a set and g: X — Y is an onto
mapping, then the collection 7, of subsets of Y defined by

7, = {G = Y| g~(G)is open in X}
is a topology on Y, called the quotient topology induced on Y by g. When Y is
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given some such quotient topology, it is called a quotient space of X, and the in-
ducing map f is called a quotient map.

It is clear that the quotient topology induced on Y by g is the largest topology
on Y making g continuous. We should also note that the quotient topology can
be completely described as follows: F < Y is closed in the quotient topology
induced by g iff g ~!(F) is closed in X.

The first and obvious question we must deal with is: under what conditions
on g will a preassigned topology 7 on Y be identical to the quotient topology 1,
induced by g? It is obvious that continuity of g is necessary, to make © < t,.
Thus we search for additional conditions to force = 7,. In fact, the conditions
we need were given in Definition 8.5.

9.2 Theorem. If X and Y are topological spaces and f: X — Y is continuous
and either open or closed, then the topology t on Y is the quotient topology 1.

Proof. Suppose f is continuous and open. Since 7, is the largest topology
making f continuous, T = 7,. But if U € 1, then by definition of 7, f~HU)
is open in X. Now f is open as a map to (Y, 1), so f[f ~}(U)] = U belongs to t.
Thus 7, = 7 and this establishes equality.

The reader can verify the theorem if f is continuous and closed. B

9.3 Example. Let X = [0, 2] with its usual topology,
Y ={(x,y)eR*|x* +y* =1}

with its usual topology, and define f: X — Y by f(x) = (cos x, sin x). Then f
is continuous and closed, so the unit circle with its usual topology is a quotient
space of [0, 27].

Just as 8.10 was the central useful fact about weak topologies, the following
theorem states the fundamental result about quotient topologies.

9.4 Theorem. Let Y have the quotient topology induced by a map f of X onto
Y. Then an arbitrary map g: Y — Z is continuous iff gof: X - Z is

continuous.
x L5y
SNy
Z

Proof. Necessity is trivial, since the composition of continuous maps is
continuous.

To prove sufficiency, suppose g o f is continuous, and let U be open in Z.
Then (g o f)~'(U) = f~'[g ~*(U)] is open in X, so by definition of the quotient
topology on Y, g ~(U) is open in Y. Hence g is continuous. ll

There is another approach to quotient spaces which yields a great deal of
insight. Essentially, we can regard any quotient space of X as a certain collection
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of subsets of X with a naturally defined topology. The best approach is to view
the necessary construction abstractly, then show it can be used to describe quotient
spaces.

9.5 Definition. Let X be a topological space. A decomposition 9 of X is a collection
of disjoint subsets of X whose union is X. If a decomposition 2 is endowed with
the topology in which # < 2 is open iff | ) {F | Fe #} is open in X, then 9
is referred to as a decomposition space of X. You are asked to show that this does
give a topology on 2 in 9B.

Define a map P of X onto 2 by letting P(x), for x € X, be the element of &
containing x. P is called the natural map (or decomposition map) of X onto 2.

The next theorem says that every decomposition space is a quotient space;
the theorem following that says that every quotient space is (homeomorphic to)
a decomposition space.

9.6 Theorem. The topology on a decomposition space 9 of X is the quotient
topology induced by the natural map P: X — 9.

Proof. See Exercise 9B. B

9.7 Theorem. If Y has the quotient topology induced by f: X — Y, then Y
is homeomorphic to the decomposition space & whose elements are the sets
f~Xy), y € Y, under a homeomorphism h: Y — @ such that h o f is the natural
map P of X onto 9. (We might paraphrase the situation by saying f: X —» Y
is “isomorphic” to P: X — & under the isomorphism h.)

X
7N
Proof. With the hint that 4 is defined in the obvious way, that is, h(y) = f (),
we leave the details of this proof to Exercise 9B. B

The natural map P: X — 2 associated with a particular decomposition space
9 is, as noted in 9.6, a quotient map. It is often of interest, in investigations re-
volving around decomposition spaces, to know that P is, in fact, closed. To state
the basic result giving conditions on 2 which will make P closed, we introduce
the following definition.

9.8 Definition. An open set V in a topological space X is saturated relative to a
given decomposition 9 of X iff V is a union of elements of & (ie., iff V = P~1(W)
for some open set W in &). A decomposition @ is upper semicontinuous iff for
each F € 2 and each open set U in X containing F, there is some saturated open
set Vin X with F <« V < U.

9.9 Theorem. The natural map P associated with a decomposition space 9
of X is closed iff @ is upper semicontinuous.
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Proof. Suppose P is closed. Let F € 2 and let U be an open set in X containing
F. Then P(X — U)is a closed set in 9, so P~![P(X — U)] is a closed set in X
which is a union of elements of 2. Then clearly V = X — P7'[P(X — U)]
is a saturated open set in X and, without much effort, F =« V <= U.

Conversely, suppose 2 is upper semicontinuous, and let K be a closed subset
of X. To show P(K) is closed, let Fe 9 — P(K). Then F « X — K, so there is
a saturated open set V with F =« V < X — K, by upper semicontinuity. But
then P(V) is an open set and Fe P(V) « 9 — P(K), which establishes that
P(K)isclosedin 2. &

9.10 Corollary. A quotient map f: X — Y is closed iff {f~'(y)|ye€ Y} is an
upper semicontinuous decomposition of X.

Before moving on to some of the examples which typify the importance of
quotient constructions in topology, it is convenient to introduce one last way
of regarding quotient spaces. It requires nothing but a definition, but represents
probably the most popular way of presenting quotient spaces.

9.11 Definition. If ~ is an equivalence relation on the topological space X, then
the identification space X/~ is defined to be the decomposition space &2 whose
elements are the equivalence classes for ~.

9.12 Examples. a) In 9.3, we saw that the unit circle is a quotient space of [0, 2x].
Viewed as a decomposition space, the appropriate elements of the decomposition
are the one point sets {x} for which 0 < x < 2=n together with the set {0, 2x}.
As an identification space, it is obtained through the equivalence relation 0 ~ 27
and otherwise x ~ y iff x = y. Clearly, the last description is the neatest. We
can (and do) simply say “the unit circle is obtained from [0, 27] by identifying
endpoints.”

b) Consider the square [0, 2z] x [0, 2z]. If we identify each point (0, x)
with the point (27, x), the resulting identification space is homeomorphic to the
cylinder S* x [0, 2x] (Fig. 9.1).

0,2m) 2r,2mn)

0, 0) @2mn,0)

Figure 9.1
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0,2m) 2n,2m)

(0,0) (2n,0)

Figure 9.2

The corresponding quotient map of [0, 2n] x [0, 2n] which gives the
cylinder S* x [0, 2n] as a quotient space is f(x, y) = ((cos x, sin x), y).

c) Again consider the square [0, 2z] x [0, 2z]. This time, identify each
point (0, y) with the point (2%, y) and also identify each point (x, 0) with the point
(x, 2m). Intuitively, it is clear that the resulting identification space is what one
obtains by first rolling the square to obtain a cylinder, as we did in (b), then match-
ing the ends of the cylinder to obtain a torus (Fig. 9.2). More formally, the quotient
map f(x, y) = ((cos x, sin x), (cos y, sin y)) gives the torus S' x S' as a quotient
space of [0, 2] x [0, 2x].

We should mention here that it is clear that any square will produce a cylinder
with one pair of sides identified and will give a torus with two pairs of sides identi-
fied, as above. The reason we chose [0, 27] x [0, 27] is obvious.

d) If we again consider [0, 2z] x [0, 2x], but now identify points (x, 0) with
points (2 — x, 27) the result is a twisted strip, called the Moebius strip (Fig. 9.3).
It has several interesting properties most of which require combinatorial or
algebraic methods to elucidate.

0, 2n) 2m, 2m)

0, 0) 2n,0)

Figure 9.3
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Figure 9.4

e) Once more we consider [0, 2] x [0, 2z]. Again the points (0, y) are
identified with the points (27, y); now, however, we identify each point (x, 0)
with the point 2z — x, 2n). This can be conveniently represented by arrows, as
in Fig. 9.4(a). The result, shown in Fig. 9.4(c), cannot be faithfully represented in
3-dimensional space without self-intersection. It is the so-called Klein bottle.
It is a higher-dimensional relative of the Moebius strip.

f) Given any topological space X, we can describe two constructions. We
obtain the cone, AX, over X by identifying all the points (x, 1) in X x I with a
single point (Fig. 9.5). The suspension, ) X, of X is obtained by identifying all
the points (x, 1) in X x [—1, 1] to a single point, and all the points (x, —1) to
another point (Fig. 9.6).

We conclude this section by providing two more methods for generating new
spaces from old. The first is an obvious construction, based on the idea of “pulling
apart” a collection of spaces to provide a topology on their union.

AN

2 D

Figure 9.5
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2 D

AN

X x[-1,1] X

Figure 9.6

9.13 Definition. Let X, be a topological space, for each o € A4, and let
X¥={xo|xeX,}
with the topology being defined on X} in the obvious way, to make it homeo-
morphic to X,. The collection of spaces X} is different from the collection of
spaces X,, then, only in that X} n X} = e ifa # f.
Now define a topology on X = (J,., X¥ as follows: U = X is open iff
U n X¥ is open for each o € 4. The resulting space X is called the disjoint union
(or free union) of the spaces X, and is denoted ) ,.4 X,, or just ). X,. If only two
spaces X and Y are involved, we write X + Y for the disjoint union of X and Y.
In practice, we almost always drop the distinction between X, and X¥, and
treat X, itself as a subset of the disjoint union. This will never cause any trouble;
often, in fact, the spaces X, will be disjoint to begin with.

We can now employ the construction just accomplished to provide one of
the important and interesting ways of generating new spaces.

9.14 Definition. Let X and Y be disjoint topological spaces, with f a continuous
map of a closed subset A of X into Y. For each pe f(A4), consider the set
A, = {p} U f7!(p) and form the quotient of X + Y obtained by identifying the
points of 4, for each p € f(4). The resulting space is denoted by X + , Y and we
say X has been attached to Y by f. The decomposition map of X + Y onto
X +, Y will be denoted g. For examples of attachings, see Exercise 9L.

9.15 Theorem. 2) q | Y is a homeomorphism and 4(Y) is closed in X + ; Y,
b) g | (X — A)is a homeomorphism and (X — A)isopenin X +, Y.



66 New spaces from old [9

Proof. a) q| Y is certainly one—one and continuous. Let F be a closed subset
of Y. Then F is a closed subset of X + Yand F = q~![¢(F)]. Since g isa quotient
map, q(F) must thus be closed in X + ; Y and hence in ¢(Y). Hence q|Yisa
homeomorphism. Also, letting F = Y, this argument shows that g(Y) is closed
inX +,Y

b) q| (X — A)is certainly one—one and continuous. Let G be an open subset
of X — A. Then ¢ ![q(G)] = G. Since q is a quotient map, ¢(G) must then be
open in X + Y and hence in g(X — A), so g | (X — A) is a homeomorphism.
The argument also shows that g(X — 4)isopenin X +,Y. &

Problems

9A. Examples of quotient spaces
1. Let ~ be the equivalence relation (x;, x;) ~ (y;, ¥,) iff x, = y,, on R2. Then R%/~
is homeomorphic to R.

2. Let 9 be the decomposition of the plane into concentric circles about the origin. Prove
that 2 is homeomorphic to {x € R| x > 0}; show directly that 9 is upper semicontinuous.

3. Let ~ be the equivalence relation x ~ y iff x and y are diametrically opposite, on
S!. Then S'/~ is homeomorphic to S*. Is the corresponding result for S? true?

9B. Quotients versus decompositions
1. The process given in 9.5 for forming the topology on a decomposition space does
define a topology.

2. The topology on a decomposition space 2 of X is the quotient topology induced by
the natural map P: X — 2. (See 9.6.)

9C. Open and closed maps
1. An open continuous map need not be closed, even if it is onto. [Consider the map =,
of R? onto R defined by 7,(x;, x,) = x;.]

2. A closed continuous map need not be open, even if it is onto. [Consider the map of
[0, 27] onto the unit circle given in 9.3.]

3. State and prove an analog to 9.9 for open maps, by appropriately defining “lower
semicontinuous decomposition”.

9D. Quotients of subspaces and subspaces of quotients

If 9 is a decomposition of X, then 2 induces an obvious decomposition 2, on any subset
Aof X.

1. It is not, in general, true that 2, is homeomorphic to
D|A={yePD|Any+#oinX}.

[Let 2 be the set of vertical lines in R2. For A4 take the negative x-axis together with the point
(0, 1). Then 2, has an isolated point (4G), while 2 | 4 does not.]

2. If A is a union of elements of 9, then 2, and 2 ] A are homeomorphic.



9] Problems 67

9E. Finite decompositions
A decomposition 2 of a space X will be called finite iff only finitely many elements of 2 have
more than one point. (Typically, 2 will contain only one element with more than one point.)
Prove that a finite decomposition with closed elements is upper semicontinuous. Show that
the restriction that the elements of 2 be closed is necessary.

9F. Interpolation of quotient maps

Let f: X — Y be continuous. Then there is a quotient map g of X onto a space Z and a one—
one continuous map k of Z into Y such that f = ho q.

9G. Quotient maps and product spaces

The following conjecture is rather attractive : if & is a decomposition of X into homeomorphic
sets, say all homeomorphic to Y, then X is homeomorphicto 2 x Y. Find a counterexample.

9H. Strong topologies

Here we develop the theory for strong topologies analogous to the theory for weak topologies
given in 8.9 through 8.16.

Suppose X, is a topological space and f, is a map of X, to a set Y, for each « € 4. The
strong topology coinduced by the maps f, on Y consists of all sets U in Y such that f,}(U)
is open in X, for each a € A.

1. This is a topology on Y, the largest making each f, continuous.

2. If Y has the strong topology coinduced by the maps f,, forx € 4, thenamapg: Y —» Z
is continuous iff g - f, is continuous for each a € 4. (Compare with 8.10 and 9.4.)

The family of maps f, will be said to cover points of Y iff each y € Y is in the image of
some f,. For families which cover points, the strong topology is just a quotient topology,
according to what follows.

Let X be the disjoint union of the spaces X,. If x and y are points of X, then (somewhat
informally) x € X, and y € X, for some choice of indices a and f. We define x ~ y iff
S{x) = f3(y). This defines an equivalence relation on X, and we denote the resulting quotient
space by Z.

3. If the maps f, cover points of Y, then Y has the strong topology coinduced by them
iff X is homeomorphic to the quotient space Z constructed above, under the map h which is
defined as follows: for x € X, we have x € X, for some a € 4, and we define

h(x) = {ye X | f(y) = fix)}.

91. Strong topologies and the lattice of topologies

Let {z, | « € A} be a family of topologies on a fixed set X and denote by X, the space consisting
of the set X with the topology 7,. The identity function from the space X, to the set X will be
denoted j,.

1. The strong topology coinduced on X by the maps j, is the intersection (infimum) ¢
of the topologies 7,.
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2. (X, ) is homeomorphic to the quotient space obtained by identifying points x and y
in the disjoint union Y X, iff j,(x) = j,(y), where x € X, and y € X.

These results compare with the results in 81 on weak topologies and suprema in the
lattice of topologies.

9]. Disjoint unions and products

If X, is homeomorphic to X, for each o € 4, then the disjoint union Y X, is homeomorphic
to X x A, where A is given the discrete topology.

9K. Covering spaces

Let p be a continuous map of a space X onto a space X. Ifeach x in X hasa nhood U such that
p~X(U) is a disjoint union of open sets ¥ each of which is homeomorphic to U under the map
D | V, then p is called a covering projection. X is called the base space and X is the covering
space.

A local homeomorphism from a space X to a space Y is a continuous map f from X to Y
such that each point x in X has an open nhood which is mapped homeomorphically by f
onto an open subset of Y.

1. The map p(x) = (cos x, sin x) of R onto S! is a covering projection.

2. Every covering projection is a local homeomorphism. The converse fails.

3. A local homeomorphism is an open map. Thus, under a covering projection, the base
space is a quotient space of the covering space.

4. Give conditions under which X x Y'is a covering space of X, with the usual projection
map being the covering projection.

5.1 p: X - X and q: ¥ - Y are covering projections, then the map p x q defined
by (p x g)(x, y) = (p(x), q(»)) is a covering projection from ¥ x Yto X x Y.

9L. Attachings
1. If X is any space, 4 is a closed subset of X, and p ¢ X, the space X + , {p} resulting
from the function f which takes 4 to {p} is homeomorphic to the quotient space of X obtained
by identifying A to a single point.
2 LetX =LY =[23],a={01},andlet f: A — Y be defined by f(0) = 2, f(1) = 3.
Then X +, Y is homeomorphic to S*.

9M. Coherent topologies
Let .o/ be a collection of subsets of a topological space X. The topology on X is said to be
coherent with o/ provided a set G is open in X iff G n A4 is open in 4, for each A € .

1. The topology on X is coherent with o/ iff it is the strong topology (9H) coinduced by
the inclusion mapsi,: 4 - X, for A€ .

2. The topology on X is coherent with &/ provided a set F is closed in X iff F n 4 is
closed in A, for each A € o/.

3. If o/ is a collection of open sets whose union is X, then the topology on X is coherent
with .
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4. If o/ is a locally finite collection (7D) of closed sets whose union is X, then the topology
on X is coherent with o/.

There is only one topology on X coherent with any given collection & of subsets of X,
of course. It is sometimes called the weak topology generated by the sets in ./, a term which
we have already used to mean something quite different.

Coherent topologies are useful in the study of k-spaces; see Section 43.



Chapter 4

Convergence

10 Inadequacy of sequences

The reader should be familiar with the fact that a function f: R — R is continuous
at x, in R iff whenever (x,) is a sequence converging to x, in R, then the sequence
(f(x,)) converges to f(x,). Since we introduced topologies for the purpose of
providing a general setting for the study of continuous functions, this raises two
obvious questions:

a) can we define sequential convergence in a general topological space?

b) if so, does the resulting notion describe the topology (as do the closure and
interior operations, for example) and hence the continuous functions?

The answers (respectively, “yes” and “only for a limited class of spaces”) are
provided in this section. Succeeding sections constitute the successful search
for a generally applicable and descriptive notion of convergence.

10.1 Definition. A sequence (x,) in a topological space X is said to converge to
x € X, and we write x, — x, iff for each nhood U of x, there is some positive
integer n, such that n > n, implies x, € U. In this case, we say (x,) is eventually
in U.

It is clear that we can replace “nhood” with “basic nhood” in this definition
without altering its impact.

10.2 Examples. a) Let p be a pseudometric on X. Then x, — x in the topology
generated by p iff p(x,, x) = 0. This is clear, since x, — x iff (x,) is eventually
in each ¢-disk about x.

b) In the product space R® a sequence f, converges to f iff f,(x) — f(x) for
each x € R. This is clear once it is remembered that basic nhoods of f e RF
have the form

U(f, F,e) = {g e R*||g(x) — f(x)| < € for each x € F},
for F a finite subset of R and ¢ > 0. Thus f, — fiff f, approaches f on each finite
set, which happens iff f,(x) — f(x) for each x e R.

Sequential convergence will be able to describe only those topologies in
which the number of (basic) nhoods around each point is no greater than the
number of terms in the sequences.

70
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10.3 Definition. A topological space X is first countable (or satisfies the first axiom
of countability) iff each x € X has a countable nhood base.

Since the disks about x of rational radius form a nhood base at x in any
pseudometric space, the pseudometrizable spaces are all first countable. They
form the most important single class of first-countable spaces.

The first axiom of countability has been defined before, in 4.4(b), but you
may have missed it. The second axiom was introduced in SF. Both will be studied
in detail in Section 16.

10.4 Theorem. If X is a first-countable space and E = X, then x € E iff there is
a sequence (x,) contained in E which converges to x.

Proof. If x € E, pick a countable nhood base {U,|n =1,2,...} at x in X.
Replacing U, by ﬂzz 1 U, where necessary, we may assume that
U, >2U,>--

Now U, n E # o for each n, so we can pick x, € U, n E. The result is a sequence
(x,) contained in E which obviously converges to x.

Conversely, suppose (x,) is a sequence contained in E and x, — x. Then
each nhood of x contains a tail of the sequence (x,) and thus meets E, so xc E. B

10.5 Corollary. Let X and Y be first-countable spaces. Then

a) U < X is open iff whenever x, — x € U, then (x,) is eventually in U,
b) F = X is closed iff whenever (x,) < F and x, - x, then x€ F,
¢) f: X — Y is continuous iff whenever x, — x in X, then f(x,) — f(x)in Y.

Proof. This is left as Exercise 10C. B

Thus sequential convergence describes the topology of any first countable
space. A somewhat wider class of spaces can be described using sequences, in
fact (see the notes), but the following examples show that the basic Theorem 10.4
fails in the general setting.

10.6 Examples. a) Consider X = R® with the product topology. Let
= {feR®| f(x) = Oor1and f(x) = O only finitely often},

and let g € R®R be the function which is 0 everywhere. Then if U(g) is a basic
nhood of g, we have

U(g) = {heR*||h(y) — g(y)| < eif ye F}

for some finite set F < R and some ¢ > 0. But such a nhood U(g) meets E in the
function h which is 0 on elements of F and 1 elsewhere. Hence, g€ Cly E. On
the other hand, if (f) is a sequence in E, with each f, being 0 on the finite set 4,
then any function which is a limit of the sequence (f,) can be zero at most on the
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countable set | J°.; A4,. Since g does not meet this requirement, no sequence
in E can converge to g.

Since sequences cannot describe the topology of R¥, the criterion for con-
tinuity given in Theorem 10.5 for first-countable spaces probably fails here. In
Exercise 10B, you are asked to find a noncontinuous function F: R® —» R with
the property that whenever f, — f in R®, then F(f,) » F(f).

b) Recall that  denotes the set of ordinals < w,, the first uncountable
ordinal, and , = @ — {w,}. Put the order topology (6D) on £, for which a
subbase consists of all sets [1, @) = {y |1 <y < «}, for o € Q, together with all
sets (B, w,] = {y| B <y < w,}, for Be Q. Note that if « is a nonlimit ordinal,
{a} is a nhood of « in this topology, while if o is a limit ordinal, the nhoods
(B, «], B < a, form a nhood base at . Whenever £ is used as a topological space
hereafter, this topology is assumed.

Now note that w, € Q, in this topology. But if (a,) were a sequence in £,
with limit w,, we would have w, = sup («,), contradicting Theorem 1.20. Thus
sequences fail to describe the topology on Q.

Problems

10A. Sequential convergence in topological spaces
For each of the following spaces, answer these questions:

a) Which sequences converge to which points?
b) Is X first countable?
¢) Does the result of Theorem 10.4 hold true for X?
(One of your answers should show that first countability is not necessary in Theorem 10.4.)
1. X any uncountable set with the cofinite topology (in which the closed sets are X and
all finite subsets of X).

2. X any uncountable set with the cocountable topology, in which the closed sets are X
and all countable subsets of X.

3. X the real line with the topology in which the open sets are the sets of the form (a, ),
aeR.

4. X the Sorgenfrey line E (4.6).
5. X any discrete space.
6. X any trivial space.

10B. Sequential convergence and continuity

Find a function F: R® - R which is not continuous but which has the property that
F(f,) —» F(f) whenever f, - f in RX.
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10C. Topology of first-countable spaces
Let X and Y be first-countable spaces.

1. U < X is open iff whenever x, — x € U, then (x,) is eventually in U.

2. F < X is closed iff whenever (x,) is contained in F and x, — X, then x € F.

3. f: X - Y is continuous iff whenever x, — x in X, then f(x,) —» f(x)in Y.

4. Which of the properties above hold for an uncountable set Z with the cofinite topology?

11 Nets

Formally, a sequence in X is a mapping of N into X ; in more informal terms, we
are using the integers to order a collection of points in X. The key to successful
generalization of the notion of sequence, for use in topological spaces, lies in
retaining the idea of ordering a collection of points of X by mapping some ordered
set into X, while significantly relaxing the conditions on the ordered sets we will
allow.

The linearity of the order on the integers can be dispensed with, provided we
supply some other way of giving a definite “positive orientation” to our ordered
sets. The following definition has stood the test of time.

11.1 Definition. A set A is a directed set iff there is a relation < on A satisfying:

A-a) 1 < A foreach 1 e A,
A-b) ifA; < A,and 4, < A5then A, < A,
A-c) if 4, 1, € A then there is some A; € A with 1, < A5, 4, < 4;.

The relation < is sometimes referred to as a direction on A, or is said to direct A.

The first two properties, A-a and A-b, are familiar requirements for an order
relation . (Note, however, the lack of antisymmetry; a direction need not be a
partial order.) A-c provides the positive orientation we were seeking for A. In
fact, it models a property possessed by the set %, of all nhoods of a point x in a
space X, when ordered by “reverse inclusion”: U, < U, iff U, = U,. Although
directed sets were not first introduced (either historically or here) with this in
mind, it is precisely this which makes them useful in describing convergence in
general topological spaces.

The concept of a net, which generalizes the notion of a sequence, can now be
introduced, using an arbitrary directed set to replace the integers.

11.2 Definition. A net in a set X is a function P: A — X, where A is some directed
set. The point P(4) is usually denoted x,, and we often speak of “the net (x,);cA”
or “the net (x,)” if this can cause no confusion.

A subnet of a net P: A — X is the composition P o ¢, where ¢: M — A is an
increasing cofinal function from a directed set M to A. That is,

a) o(py) < o(u,) whenever p, < p, (@ is increasing),
b) for each A € A, there is some p € M such that 1 < ¢(u) (¢ is cofinal in A).
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For yue M, the point P o ¢(u) is often written x, , and we usually speak of “the
subnet (x,,) of (x;)”.

If (x,) is a net in X, a set of the form {x; | 1 > 1,}, for 4y € A, is called a tail
of (x,).

The definition of net convergence is modeled after the definition of sequential
convergence introduced in 10.1 and should provide no problems.

11.3 Definition. Let (x,) be a net in a space X. Then (x;) converges to xe X
(written x, — x) provided for each nhood U of x, there is some 1, € A such that
A = Ao implies x, € U. Thus x, — x iff each nhood of x contains a tail of (x,).
This is sometimes said : (x,) converges to x provided it is residually (or eventually)
in every nhood of x.

We say (x,) has x as a cluster point iff for each nhood U of x and for each
Ao € A there is some A > A, such that x, € U. This is sometimes said (x,) has x
as a cluster point iff (x,) is cofinally (or frequently) in each nhood of x.

Note that in both definitions above it is sufficient if we restrict attention to
the nhoods in some fixed nhood base at x.

11.4 Examples. a) Let X be a topological space, x € X and A any fixed nhood
base at x in X. Then the order relation U, < U, iff U, = U, directs A. Hence
if we pick xy € U for each U € A, the result is a net (xy) in X. Moreover, x; — x.
For given any nhood V of x, we have U, < V for some Uy, e A. Then U > U,
implies U < U, so that x; € U = V. This example should be studied carefully;
it is the model for most of the proofs, to be given later in this section, of the proper-
ties of nets in topological spaces.

b) The set N of positive integers is a directed set when given its usual order.
Thus every sequence (x,) is a net. It is clear that the two definitions of convergence
of (x,) (as a sequence in 10.1 and as a net in 11.3) coincide.

Note that every subsequence of a sequence (x,) is a subnet of (x,,). The converse
is not true; there is no guarantee that a subnet of (x,) is a subsequence, because
there is no way of being sure that it is a sequence! This illustrates the (at first,
strange) fact that a subnet can have a much richer index set than the original
net.

c) The collection 2 of all finite partitions of the closed interval [q, b] into
closed subintervals is a directed set, when ordered by the relation 4, < A4,
iff A, refines A,. Thus, if f is any real-valued function on [a, b], we can define
a net P;: # — R by letting P,;(4) be the lower Riemann sum of f over the
partition A4; likewise, we can define P,: 2 — R by letting P,(A4) be the upper
Riemann sum of f over A. Convergence of both of these nets to the number ¢
simply means [? f(x) dx = c. This example is historically important; it is what
first led Moore and Smith to the concept of a net. See the notes.

d) Let (M, p) be a metric space, with x, e M. Then M — {x,} becomes a
directed set when ordered by the relation x < y iff p(y, xo) < p(x, xo). Hence
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if f: M — N, where N is a metric space, the restriction of f to M — {x,} defines
a net in N. The reader can check that this net converges to z, in N iff
lim,_, f(x) = z, in the elementary calculus sense.

e) If (x,) converges to x, every subnet of (x,) converges to x.
f) If x, = x, for each A € A, then x, — x.

11.5 Theorem. A net has y as a cluster point iff it has a subnet which converges
to y.

Proof. Let y be a cluster point of (x,). Define M = {(4, U)| A€ A, U a nhood
of y such that x, € U}, and order M as follows: (4, U;) < (4,, Uy)iff 1, < 4,
and U, < U,. This is easily verified to be a direction on M. Define ¢p: M — A
by @(4, U) = A. Then ¢ is increasing and cofinal in A, so ¢ defines a subnet of
(x;). Let U, be any nhood of y and find 1,€ A such that x, € U,. Then
(4g» Up) € M, and moreover, (. U) = (g, Uy) implies U = U,, so that x,
U < U,. It follows that the subnet defined by ¢ converges to y.

Suppose ¢: M — A defines a subnet of (x;) which converges to y. Then for
each nhood U of y, there is some uy in M such that u > u; implies x,,, € U.
Suppose a nhood U of y and a point A, in A are given. Since (M) is cofinal in
A, there is some u, € M such that ¢(u,) > A,. But there is also some uy € M
such that u > u; implies x,, € U. Pick u*e M such that u* > u, and
u* > uy. Then u*) = A* > A, since p(u*) > @(up), and x;» = X, € U, since
u* > uy. Thus for any nhood U of y and any A, € A, there is some A* > 1, with
X,+ € U. It follows that y is a cluster point of (x,). B

11.6 Corollary. If a subnet of (x,) has y as a cluster point, so does (x,).
Proof. A subnet of a subnet of (x,) is a subnet of (x,). B

We turn now to the problem of showing that nets do indeed represent the
correct way of approaching convergence questions in topological spaces.

11.7 Theorem. If E < X, then x € E iff there is a net (x;) in E with x, — x.

Proof. If x € E, then each nhood U of x meets E in at least one point x;. Then
(xp) 1s a net contained in E which converges to y. (See Example 11.4(a).)

Conversely, if (x;) is a net contained in E which converges to y, then each
nhood of y meets E (in a tail of (x,)) and hence y € E. B

11.8 Theorem. Let f: X — Y. Then f is continuous at x,€ X iff whenever
X, = Xq in X, then f(x;) = f(x,)in Y.

Proof. Suppose f is continuous at x, and x, — x,. Given a nhood V of f(x,),
f~Y(V) is a nhood of x,, so for some 4, A > A, implies x, € f ~!(V). Thus
A = Ao implies f(x,) € V, showing that f(x;) = f(x,)-

On the other hand, if f is not continuous at x,, then for some nhood V of
f(xo), f(U) & V for any nhood U of x,. Thus for each nhood U of x,, we can
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pick x; € U such that f(x,) ¢ V. But then (xy) is a net in X and xy — x,, while
Sxy) > f(xo). W
11.9 Theorem. A net (x;) in a product X = [[,cq X, converges to x iff for
eacha € A, m,(x;) = n,(x)in X,,.

Proof. If x; — x in || X,, then since =, is continuous, 7,(x;) — m,(x), by the
previous theorem, for each a.
Suppose on the other hand that n,(x,) — m,(x) for each a € 4. Let

1, (U)o N(U,,)

be a basic nhood of x in the product space. Then for each i = 1, ..., n there is
a A; such that whenever A > 4, n,(x;) € U,,. Thus if 4, is picked greater than all
of Ay,...,4,, we have m,(x;) e U,,,i=1,...,n, for all A > A,. It follows that

for 2 > Ag, x; € () m;,'(U,,), and hence that x; — x in the product. B

In case all factor spaces are homeomorphic to X, the last theorem has a
a pleasant re-interpretation. In the product topology on the set X of all functions
from 4 to X, a net f, converges to f iff for each a € 4, fi(a) —» f(a). That is,
convergence of functions in X4 with this topology is just pointwise convergence.
For sequences of functions, this was pointed out in 10.2. Thus if functions on a
certain set 4 to a space X are to be studied with pointwise limits in mind, it is
appropriate to consider them as elements in the product space X* with the
Tychonoff topology. There are other kinds of functional convergence than point-
wise, e.g., uniform convergence, and we will mention here that X“ can be provided
with appropriate structures to deal with these also. This is a topic which is
deferred until the chapter on function spaces, where different convergence
structures on X4 and the interactions between them are studied.

11.10 Definition. A net (x,;) in a set X is an ultranet (universal net) iff for each
subset E of X, (x,) is either residually in E or residually in X — E.

It follows from this definition that if an ultranet is frequently in E then it is
residually in E. In particular, an ultranet in a topological space must converge
to each of its cluster points.

For any directed set A, the map P: A — X, defined by P(1) = x for all
A€ A, gives an ultranet on X, called the trivial ultranet. Nontrivial ultranets
can be proved to exist (relying on the axiom of choice; see 12D.5) but none has
ever been explicitly constructed. Most facts about ultranets are best developed
using filters and ultrafilters as a vehicle. We will do this in the next section.

11.11 Theorem. If (x,) is an ultranet in X and f: X — Y, then (f(x,)) is an
ultranet in Y.

Proof. If A = Y, then f~}(4) = X — f~Y — A), so (x,) is eventually in either
f7Y(A) or fT1(Y — A), from which it follows that (f(x,) is eventually in either 4
or Y — A. Thus, (f(x,)) is an ultranet. B
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Problems

11A. Examples of net convergence

1.In R let E = {feR®|f(x) = 0 or 1, and f(x) = O only finitely often} and let g
be the function in R® which is identically 0. Then, in the product topology on R®, ge E
(refer to Example 10.6). Find a net (f;) in E which converges to g.

2. In the ordinal space, recall that w, e Q, (see Example 10.6). Find a net (x;) in ,
which converges to w, in Q.

3. Let M be any metric space. A mapping P(a) = x, of Q, into M will be a net. Show
that x, — x in M iff x, is eventually equal to x.

4. Let x € R" and define < on R" by y > ziff|y — x| < |z — x|. Then, with this order,
A = R" — {x} is adirected set. Thus any function f: R" — R defines a net in R (by restricting
ftoR" — {x}). Show that this net converges to L iff lim,_,, f(y) = L.

11B. Subnets and cluster points

1. Every subnet of an ultranet is an ultranet.

2. Every net has a subnet which is an ultranet.

3. Exhibit a sequence (x,) on a set X and a subnet of (x,) which is not a sequence.

4. If (x,) is a net in a space X and for each Ay, T,, = {x;| A = Ao}, then y is a cluster
point of (x,) iff y e T, for each 1 € A.

S. If an ultranet has x as a cluster point, then it converges to x.

11C. Cluster points in products

If (x3)zea is @ net in [ | X, having x as a cluster point then for each a, (m,(x,))ca has m,(x) for
a cluster point. The converse fails, even in R x R.

11D. Nets describe topologies

1. Nets have the following four properties (some have already been mentioned in the
text):

a) if x, = x for each 4 € A, then x; — x,

b) if x;, — x, then every subnet of (x,) converges to x,

c) if every subnet of (x,) has a subnet converging to x, then (x,) converges to x,

d) [diagonal principal] if x, — x and, for each A€ A. a net (x}),.,,, converges to x;,,
then there is a diagonal net converging to X,; ie., the net (x2)ca uen,, ordered
lexicographically by A, then by M,, has a subnet which converges to x.

2. Conversely, suppose in a set X a notion of net convergence has been specified (telling
what nets converge to what points) satisfying a), b), c) and d) of part 1. If the closure of a
subset E of X is defined by E = {x € X | x, — x for some net (x,) contained in E}, the result
is a topological space in which the notion of net convergence is as originally specified.

12 Filters

We have just seen that a good (i.e., topologically descriptive) notion of convergence
can be obtained by simply using the nhoods of a single point as the model for
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an indexing set to replace the integers used for sequences. We now introduce a
second way of describing convergence in a topological space in which we say,
in effect, why not just treat the nhoods themselves as converging to the point?
The result is the theory of filter convergence.

12.1 Definition. A filter # on a set S is a nonempty collection of nonempty subsets
of S with the properties :

a) if F, F,e &# then F, n F, e &,
b) f FE% and F c F', then F' e &#.

A subcollection &, of & is a filter base for & iff each element of & contains some
element of &, that is, iff

F = {F c S| F, c F for some F,e #}.

Evidently, a nonempty collection € of nonempty subsets of S is a filter base for
some filter on S iff

a) if C;, C, e ¥ then C; < C, n C, for some C; € ¥,
in which case the filter generated by % consists of all supersets of elements of .

If #, and &, are filters on X, we say &, is finer than &, (or &, is coarser
than #,) iff #, > #,. A filter # on X is fixed iff (| # # o and free iff
NZ =oe.

12.2 Examples. a) Let X be any set, A = X. Then {F < X | A < F} is a filter
on X with a particularly simple filter base, the collection consisting of the single
set 4.

b) Let X be any topological space, A = X. Then {U < X |A < U°} is
a filter on X. In particular, the set %, of all nhoods of x € X is a filter on X, and
any nhood base at x is a filter base for %,. This filter will sometimes be called
the rhood filter at x.

c) Let € = {(a, 0) ] acR}. Then € is a filter base for a free filter on R,
which we will call the Frechet filter on R.

12.3 Definition. A filter & on a topological space X is said to converge to x
(written & — x) iff %, = &, that is, iff & is finer than the nhood filter at x. We
say & has x as a cluster point (or, & clusters at x) iff each F € # meets each
Ue%,. HenceZ has x as a cluster point iff xe () {F | Fe #}. Also, it is clear
that if # — x, then & clusters at x.

It will be convenient to have the notions of convergence and clustering
available for filter bases; they generalize easily and obviously. A filter base ¥
converges to x iff each U € %, contains some C € € (iff the filter generated by ¥
converges to x); € clusters at x iff each U € %, meets each C € € (iff the filter
generated by & clusters at x).
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12.4 Examples. a) Let X be a topological space, A < X. The cluster points of
the filter # = {U < X | A = U} include each point of A. Under what con-
ditions (on 4 or on the topology) will # converge to some point?

b) The Frechet filter on R has no cluster points.

¢) Let & be the filter on R generated by the filter base € = {(0, ¢) | ¢ > 0}.
Then & — 0 (although 0 does not belong to every element of %).

12.5 Theorem. & has x as a cluster point iff there is a filter 4 finer than &
which converges to x.

Proof. If # has x as a cluster point, the collection¥ = {Un F|Ue¥,, Fe #}
is a filter base for a filter ¢ which is finer than % and converges to x.

Conversely, if # « ¢ — x, then each F € # and each nhood U of x belong
to ¢ and hence meet, so # clusters at x. l

According to the next three theorems, filter convergence is adequate to the
task of describing topological concepts.

12.6 Theorem. If E c X, then x € E iff there is a filter % such that E€ &
and F — x.

Proof. If ye E, then ¥ = {U n E|U e %,} is a filter base. The resulting filter
contains E and converges to y.
Conversely, if Ee % — y, then y is a cluster point of % and hence yc E. W

12.7 Definition. If % is a filter on X and f: X — Y, then f(%) is the filter on Y
having for a base the sets f(F), F € &.

12.8 Theorem. Let f: X — Y. Then f is continuous at x, € X iff whenever
F = xoin X then f(F) - f(xo)in Y.

Proof. Suppose f is continuous at x, and & — x, Let V be any nhood of
f(xo) in Y. Then for some nhood U of x, in X, f(U) c V. Then since U € &,
Ve f(F).

Conversely, suppose whenever & — x, in X then f(#) — f(x,) in Y. Let
Z be the filter of all nhoods of x, in X. Then each nhood V of f(x,) belongs to
f(&), so for some nhood U of x,, f(U) = V. Thus f is continuous at x,. l

12.9 Theorem. A filter F converges to xo in || X, iff nF) = mx,) in X,,
for each a.

Proof. If # — x,in[] X,, then n,(F) — m,(x,) in X, because 7, is continuous.

Conversely, suppose 7, (#) — m,(x,), for each a. Let ﬂzzl 7, (U,) be a
basic nhood of x, in [] X,. Then U, is a nhood of =, (x,), for each k. So
U.en, (%), for each k, and hence =, (F,) = U, for some F,€%. Then
(Veci FeeF and (Vioy Fr © (Vicy g, (U, so (Vizy 7, (U e Z. Thus
F — x,. 1
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Many of the applications of filter convergence can be neatly done using only
the ultrafilters.

12.10 Definition. A filter % is an ultrafilter iff there is no strictly finer filter ¥
than &%. Thus the ultrafilters are the maximal filters.

The next theorem makes clear the analogy between ultrafilters and ultranets
(11.10). In particular, it can be used to show that an ultrafilter must converge to
each of its cluster points.

12. 11 Theorem. A filter % on X is an ultrafilter iff for each E c X, either
EeForX —Ec%

Proof. Suppose & is an ultrafilter and E < X. Every element F of % meets
either E or X — E and hence (since no two elements of & have empty intersection)
they must all meet one or the other, say F n E # ¢ for all F e . Then

{FNE|Fe#}

is a filter base for a filter 4 finer than % which contains E. Since ¢ cannot be
strictly finer than &, we have ¥ = % and hence E € &.

Conversely, suppose & contains E or X — EforeachE < X. If 9 is a strictly
finer filter than &, then for some A€ %, A¢ . But then X — A€ %, from the
condition, and since & < ¥ we have the impossible situation that both 4 and
X — Abelong to 9. Thus & must be maximal. l

12.12 Theorem. Every filter & is contained in some ultrafilter.

Proof. Let & be the collection of all filters finer than &, partially ordered by
F, < F,iff #, < #,. Then a chain {#,|xe A} from & has ) #, for an
upper bound (that (] #, is indeed a filter follows easily from the fact that if F,
and F, belong to | ) #,, then they both belong to some one &, by linearity of the
inclusion order on {Z, | a € A}). Thus, by Zorn’s lemma, & has an upper bound
% and, obviously, ¢ is an ultrafilter containing . B

The proof of the last theorem, it should be noted, depends on the axiom of
choice. Thus the following examples of free ultrafilters depend for the proof of
their existence on the (nonconstructive) choice axiom. Explicit constructions of
free ultrafilters have never been accomplished, although there are more free
ultrafilters than fixed ultrafilters (that is, for a discrete space X, |fX — X| > |X];
see 19J and 19.13(d).

12.13 Examples. a) A filter # on X is a fixed ultrafilter iff # = {F < X | x € F}
for some x € F. By the criterion given in Theorem 12.11, each filter of this form
is an ultrafilter. On the other hand, if & is a fixed ultrafilter, say ﬂ F = A # o,
then % must be the filter of all sets containing A4 (since this is a filter containing
&%) and A must be a single point (since the filter of all sets containing x € 4 is
finer than %).
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b) The Frechet filter # on R is, by Theorem 12.12, contained in some ultra-
filter 4. Since & is free, ¥ must be also be free.

c) The ultrafilter containing a given filter % need not be unique. For if
& is the filter of all sets containing A = X, then for each x € A4, the filter of all
sets containing x is an ultrafilter containing &%. In fact, if a filter is contained in
a unique ultrafilter, it is itself an ultrafilter; see Exercise 12C.

The following theorem is easily proved (using, for example, the criterion
given in Theorem 12.11) and will be useful later.

12.14 Theorem. If f maps X onto Y and & is an ultrafilter on X, then f(F)
is an ultrafilter on Y.

The similarities between net and filter convergence are manifest. Each
describes the topology on a topological space with equal facility, “finer filters”
provide a filter analog to “subnets” (by Theorem 12.5). In addition, there is more
than a casual relationship between the ideas behind the two approaches. Thus
the fact that a formal bridge can be built between the two notions should come
as no surprise.

12.15 Definition. If (x,) is a net in X, the filter generated by the filter base € con-
sisting of the sets B, = {x; | A > Ao}, 4o € A, is called the filter generated by

(x2)-

12.16 Definition. If & is a filter on X, let Ay = {(x, F)|xe Fe #}. Then A,
is directed by the relation (x,, F,) < (x,, F,)iff F, € F;,sothemap P: Az » X
defined by P(x, F) = x is a net in X. It is called the net based on .

12.17 Theorem. a) A filter & converges to x in X iff the net based on & con-
verges to x.

b) A net (x,) converges to x in X iff the filter generated by (x;) converges
to x.

Proof. a) Suppose # — x. If U is a nhood of x, then U € #. Pick pe U. Then
(p, U)e Ay and if (g, F) = (p, U), then pe F < U. Thus the net based on &
converges to x.

Conversely, suppose the net based on & converges to x. Let U be a nhood
of x. Then for some (po, Fy) € Az, we have (p, F) > (po, F,) implies p e U. But
then Fy < U; otherwise, there is some g € F, — U, and then (g, Fo) = (po, Fo)s
butg¢ U. Hence Ue £,s0 F — x.

b) The net (x;) converges to x iff each nhood of x contains a tail of (x,).
Since the tails of (x,) are a base for the filter generated by (x;,), the result follows. Il

Similar results are true of cluster points, the relationship between subnets
and finer filters and the relationship between ultranets and ultrafilters. We will
leave all these to Exercise 12D.



82 Convergence [12

Filters are preferred to nets in dealing with convergence questions in topo-
logical spaces. The reason for this involves the difference that nets are, and must
remain, essentially set-theoretic (or order-theoretic) in nature, and hence passive,
while filters can, with the addition of topological restrictions on their sets, become
intimately involved with the structure of the space itself. Examples of uses of
filters which could hardly be duplicated with nets can be found in Exercises 17K,
17M, 19J, 19K and 19L. See also Exercise 12E in this section.

Problems

12A. Examples of filter convergence

1. If the real line is given its topology as the looped line (4D), then the Frechet filter #
converges to 0.

2. Which filters & will converge to x in a discrete space X? In a trivial space X?

3. Let X be an infinite set, & the filter on X generated by the filter base consisting of all
complements of finite sets. To which points does & converge if X is given the cofinite
topology?

4. Show that if a filter in a metric space converges, it must converge to a unique point.

12B. Ultrafilters: lattices of filters

1. The intersection of any number of filters on X is a filter on X. But the set of all filters
on X, ordered by ¥, < &, iff &, < &,, is not a lattice because if # and ¢ are different
ultrafilters on X, then {&, ¢} has no supremum.

2. The collection of all filters on X contained in a given ultrafilter is a complete lattice
with 0 and 1. Conversely, if a family of filters has a supremum, then the filters of the family
are all contained in some single ultrafilter.

3. Under what condition is a filter the intersection of the ultrafilters containing it?

12C. Ultrafilters: uniqueness
If a filter & is contained in a unique ultrafilter ¥, then ¥ = .

12D. Nets and filters: the translation process

1. A net (x,) has x as a cluster point iff the filter generated by (x;) has x as a cluster point.

2. Afilter & has x as a cluster point iff the net based on & has x as a cluster point.

3. If(x;,)is a subnet of (x,), then the filter generated by (x,,) is finer than the filter generated
by (x;).

4. The net based on an ultrafilter is an ultranet and the filter generated by an ultranet
is an ultrafilter.

5. The net based on a free ultrafilter is a nontrivial ultranet. Hence, assuming the axiom
of choice, there are nontrivial ultranets.

12E. P-filters
Let 2 be a class of subsets of a topological space such that if P, and P, are sets from 2,
then P, n P, and P, U P, belong to . A P-filter on X is a collection & of nonempty
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elements of 2 with the properties :

a) P, P,e % implies P, N\ P,e %,
b) P,e #, P, c P,e P implies P, € &#.

A P-ultrafilter is a maximal 2-filter.

A P-filter & converges to p € X iff each nhood of p contains an element of &, and this
definition is applied even when the 2-filter is defined on a dense subset of X rather than on X
itself. A 2-filter & has p as a cluster point iff p belongs to the closure of each Pe &#. Then
if 2 consists of closed sets, a ?-filter & has a cluster point iff (| {P| P e #} # o.

The most important examples of 2-filters are obtained as follows:

a) # = all subsets of X ; then the 2-filters are the filters in X, as defined in 12.1, and the
theory we are about to outline reduces to the material of this section.

b) 2 = all open subsets of X ; then the 2-filters are called open filters.
c) ? = all closed subsets of X ; then the 2-filters are called closed filters.

d) 2 = all zero setsin X = all sets of the form f~(0) for f: X — I continuous; then the
P-filters are called z-filters.

Each of these collections 2, except the last, is known to satisfy the requirement set out at the
beginning of this problem. Part 1 below takes care of the zero sets also.

L. IfZ isazerosetin X, forn = 1,2,...,thensois (), Z,. [LetZ, = f,7'(0). Prove
g(x) = (l f,,(x)|/2”) is continuous from X to I and ¢ 71(0) = ﬂ 1 2, ] Also, if Z, and
Z, are zero sets, sois Z; U Z,.

2. Every 2-filter is contained in a Z-ultrafilter.

3. Suppose p € X has a base of nhoods with property 2. If a Z-ultrafilter has p as a cluster
point, then it converges to p.

4. For a Z-filter &, the following are equivalent :

a) & is a P-ultrafilter,
b) whenever Pe 2 and P n F # g for each F € &, then Pe &.

5. Every P-ultrafilter is prime; ie., if P, and P, belong to 2 and P, u P, € &, then
P eForP,e&

6. Every prime 2-filter is contained in a unique Z-ultrafilter (compare with 12C). Every
prime filter is an ultrafilter, but there are prime z-filters which are not z-ultrafilters. [In R
let J = {l/n|n=1,2,..}. Thesets J, = {l/n|n=mm+ 1,...} form a filter base for
a filter on J, and this filter is contained in some ultrafilter  on J. Define & to be the collec-
tion of all zero-sets Z in R such that Z n J € #. Then & is a prime z-filter, but & has 0 for
a cluster point while # + 0, so & is not a z-ultrafilter.]

12F. Mappings of P-filters
For each topological space X, let 24 be a collection of subsets of X such that if f: X —» Y
is continuous and Q € 2y, then f~}(Q) € Z4. (For example, each of the collections 2 des-

cribed in the previous problem has this property.)
Let f: X — Y be continuous, & a Py-filter (12E) on X.

L f5(F)={QePy| Q) e F}isa P filteron V.
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2. If & is a prime Py-filter on X, f*(&) is a prime Py-filter on Y. In particular, if &
is a Py-ultrafilter on X, f*(#) is contained in a unique Py-ultrafilter on Y.

This material is important for the following reason. Many times we start with a topological
space X and, desiring certain convergence properties, we create a larger space oX by adding
to X certain 2-ultrafilters as points. Then part 2 above provides us with a way of extending
amap f: X - Ytoamap F: aX — «Y, namely, by defining

F(p) = unique 2-ultrafilter containing *(p)
forpeaX — X.
Concrete examples of this procedure are given in 19J.6 and 19K.6.

12G. Open ultrafilters
An open filter in a space X is a 2-filter (12E) where £ is the collection of open subsets of X.
An open ultrafilter is a maximal open filter; by 12E.2, every open filter is contained in an open
ultrafilter.
Show that the following are equivalent, for an open filter # on a topological space X :
a) & is an open ultrafilter,
b) if G is any open set in X and G n H # ¢ for each H € &#, then Ge &,

c)ifGisopenand G¢ &, then X — Ge Z.
[If you did 12E, then in part 4 you showed (a) equivalent to (b).]



Chapter 5

Separation and Countability

13 The separation axioms

Our definition of a topology admits structures which are, for most purposes,
useless. The trivial topology on X, for example, makes X look not much different
from a single point, topologically. It would be much nicer if some of the set-
theoretic structure of X were reflected in its topology. What is needed, apparently,
is a requirement that the topology on X contain enough open sets to distinguish
between the points of X, in some way. Increasing amounts of the sort of point
separation needed can be introduced by requiring that X satisfy one of the separa-
tion axioms (or, in German, Trennungsaxiome) Ty, T, or T,.

13.1 Definition. A topological space X is a Ty-space (or, the topology on X is Ty)
iff whenever x and y are distinct points in X, there is an open set containing one
and not the other.

13.2 Examples. a) The trivial topology on a set X of more than one point is not
TO'

b) The difference between pseudometrics and metrics is purely topological.
In fact, a pseudometric p on X is a metric iff the topology it generates is T,. For if
the topology generated by p is T;, then whenever x # y in X, there is some open
set, and hence some ¢-disk, about one not containing the other. Then
p(x, y) = € > 0, showing p is a metric. Conversely, if p is a metric then any
two distinct points x and y are at some positive distance ¢ and hence the e-disk
about x is an open set containing x and not y.

¢) Let X be any topological space and define ~ on X by x ~ yiff {x} = {y].
Then ~ is an equivalence relation on X and the resulting quotient space X/~
is a Ty-space (the latter following easily from the observation that a space is T,
iff whenever x # y then {x] # {y}.) This procedure, and the space it produces,
are referred to as the Ty-identification of X. You will prove the statements made
here in Exercise 13C, as well as the additional fact that the T,-identification and
the metric identification are the same for any pseudometric space.

d) Subspaces and products of T spaces are T,; quotients need not be. See
Exercise 13B.
85
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13.3 Definition. A topological space X is a T;-space iff whenever x and y are distinct
points in X, there is a nhood of each not containing the other.

Evidently, every T;-space is T,. But the set X = {a, b} with the topology
consisting of the open sets ¢, {a} and X is a T,-space which is not Tj.

We can leave the proofs that subspaces and products of T;-spaces are T,
and the result on quotients of T;-spaces, to Exercise 13B. The following theorem
makes that exercise easy.

13.4 Theorem. The following are equivalent, for a topological space X :

a) Xis T,
b) each one-point set in X is closed,
c) each subset of X is the intersection of the open sets containing it.

Proof. a) =b): If X is T, and x € X, then each y # x has a nhood disjoint from
{x}, so X — {x} is an open set and thus {x} is closed.

b) =c): If A = X, then A is the intersection of all sets of the form X — {x},
for x ¢ A, and each of these is open, since one-point sets are closed.

©) = a): If (c) holds, then {x} is the intersection of its open nhoods and hence
for any y # x, there is an open set containing x and not y. B

The real importance of T;-spaces lies in the observation above: they are the
spaces in which points are closed. The more restricted Hausdorff spaces about
to be introduced will also have this property, however, and will have in addition
an all-important unique-limits property. Thus the following separation property
is the most important of those mentioned so far.

13.5 Definition. A space X is a T,-space (Hausdorff space) iff whenever x and y
are distinct points of X, there are disjoint open sets U and V in X with x e U
and ye V.

Evidently, every T,-space is T;.

13.6 Examples. a) Let X be any infinite set with the cofinite topology (in which
the closed sets are the finite sets and X). Since one-point sets are closed, X is a
T;-space. But no two nonempty open sets are disjoint, so X cannot be Hausdorff.

b) Every metric space is Hausdorff. If x and y are distinct points, then
p(x, y) = € > 0, so the disks U(x, ¢/2) and U(y, ¢/2) are disjoint open sets con-
taining x and y respectively.

13.7 Theorem. The following are equivalent for a topological space X :

a) X is Hausdorff,

b) limits in X are unique (i.e., no net or filter in X converges to more than one
point),
¢) the diagonal A = {(x, x) | x € X} is closed in X x X.
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Proof. First note that by the translation process between nets and filters, unique
net limits imply unique filter limits and vice versa.

a) = b): We will use filters. Suppose X is Hausdorff and & is a filter on X
with & — xand & — y. Then each nhood U of x and each nhood V of y belongs
to #,s0 U NV # o. But X is T,, so we must then have x = y.

b) = c¢): We will use nets. If A is not closed, then for some x # y, a net
((x; x;)) in A converges to (x, y). But then (x,) is a net in X converging to both
x and y, which is impossible.

c) = a): Suppose A isclosed. If x # yin X, then (x, y) ¢ A, and hence there
is a basic nhood U x V of (x, y) in X x X which does not meet A. But then
U and V are disjoint nhoods of x and y, respectively. Thus X is Hausdorff. B

Most of the literature in topology, including the monograph in which
Hausdorff first introduced topological spaces, deals exclusively with Hausdorff
spaces. The underlying reason for this is the existence of unique limits in
Hausdorff spaces, which has pleasant consequences (for example, continuous
functions with Hausdorff range are determined by their values on a dense set ; see
Theorem 13.14).

We will develop now the answers to some of the natural questions about
products, subspaces and continuous images of Hausdorff spaces, following a
pattern we will repeat with every important topological property we introduce.

13.8 Theorem. a) Every subspace of a T,-space is T,.
b) A nonempty product space is T, iff each factor space is T,.
¢) Quotients of T,-spaces need not be T,.

Proof. a) If X is T, and A is a subspace of X, distinct points a and b in 4 have
disjoint nhoods U and V in X and then U n A and V n A are disjoint nhoods
of aand b in A.

b) If X, is a T,-space, for each a € 4, and x # y in []| X,, then for some
coordinate a, x, # y,, so disjoint nhoods U, of x, and V, of y, can be found in
X,. Now =, }(U,) and =, !(V,) are disjoint nhoods of x and y, respectively, in
I X..

Conversely, if [] X, is a nonempty T,-space, pick a fixed point b, € X,
for each o € A. Then the subspace B, = {xe ][] X,|x; = b, unless § = o} is
T,, by part (a), and is homeomorphic to X, under the restriction to B, of the
projection map. Thus X, is T,, for each a.

¢) See the following examples. B

13.9 Examples. a) The continuous closed image of a Hausdorff space need not
be Hausdorff. Let X be the real line, with nhoods as usual except that basic
nhoods of 0 have the form (—¢ ¢) — A4, for € > 0, where 4 = {1/n|ne N}.
Then X is a Hausdorff space and A4 is a closed subset of X so the space X/A4
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obtained by identifying A with a single point is a closed continuous image of X
(the decomposition is clearly upper semicontinuous). But X/A is not Hausdorff,
for if p is the projection of X onto X/A then p(0) and p(A) are distinct points of
X/A which cannot be separated by open sets.

b) The continuous open image of a Hausdorff space need not be Hausdorff.
Let X be the union of the lines y = O and y = 1in R? and let Y be the quotient
of X obtained by identifying each point (x, 0), for x # 0, with the corresponding
point (x, 1). The resulting projection map p: X — Y is continuous and open,
but p(0, 0) and p(0, 1) are distinct points of ¥ which do not have disjoint nhoods.

The situation outlined in the examples above is quite unpleasant. Not only
do continuous images of Hausdorff spaces fail, in general, to be Hausdorff, but
even the best sorts of quotient maps may not preserve the T,-axiom. This provokes
the following series of results, giving various necessary conditions and sufficient
conditions for image spaces to be Hausdorff, culminating with a characterization
of the continuous open maps on any space X which have Hausdorff range (13.12).
The best available result on continuous closed images of Hausdorff spaces requires
the prior development of compactness and is given in Exercise 17N.

13.10 Theorem. If f: X — Y is continuous and Y is Hausdorff, then
{(xb X,) ’f(xl) = f(xz)}
is a closed subset of X x X.

Proof. Let A = {(x, x,) | f(x;) = f(x2)}. If (x;, x,) ¢ 4, then f(x;) and f(x,)
are distinct and hence have disjoint nhoods U and V in Y. Then since f is con-
tinuous, f~'(U) and f~!(V) are nhoods of x, and x, respectively, so
fS7YU) x f~4(V) is a nhood of (x;, x,). Obviously this nhood cannot meet A,
so A is closed. W

13.11 Theorem. If f is an open map of X onto Y and the set

{(xp X3) |f(x1) = f(xz)}
is closed in X x X, then Y is Hausdorff.
Proof. Suppose f(x;) and f(x,) are distinct points of Y. Then

(x, x2) ¢ A = {(xl’ X,) | flxy) = f(xz)},

so there are open nhoods U of x, and V of x, such that (U x V) n A = @. Then,
since f is open, f(U) and f(V) are nhoods of f(x,) and f(x,), respectively, and
SWU) N f(V) = o (otherwise (U x V)N A # o). R

13.12 Theorem. If f is a continuous open map of X onto Y, then Y is Hausdorff
iff {(x1, x5) | f(xy) = f(x,)} is a closed subset of X x X.

Proof. Simply combine 13.10 and 13.11. B
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We close this section with a result which implies that a continuous function
which takes values in a Hausdorff space is determined once its values on a dense
set are known. This result will have important ramifications later when we spend
a great deal of time extending functions on subsets of X to X itself, since it implies
that extensions of functions on dense subsets of X, when they exist, are unique.

13.13 Theorem. If f,g: X — Y are continuous and Y is Hausdorff, then
{x| f(x) = g(x)} is closed in X.
Proof. Let A = {x| f(x) = g(x)}. If (x;) is a net in 4 and x, — x, then by
continuity we have both f(x;) — f(x) and g(x;) — g(x) in Y. Since f(x;) = g(x;)
for each 4 and limits are unique in Y, we must have f(x) = g(x). Thus x € A and
A is closed. B

13.14 Covollary. If f, g: X — Y are continuous, Y is Hausdorff, and f and g
agree on a dense set D in X, then [ = g.

Problems

13A. Examples

1. Let B be a fixed subset of a set X and for each nonempty A = X, define 4 = 4 U B.
This defines a topology on X (according to 3A.3). Under what conditions on B is the resulting
space Ty? T,? T,?

2. If = is a Hausdorff topology on X, any finer topology is also Hausdorff. The radial
plane (3A.4), the Sorgenfrey line (4.6), the Moore plane (4B), the slotted plane (4C), the scattered
line S (5C), and any simple extension (3A.5) of a Hausdorff topology are thus all Hausdorff.

3. The looped line (4D) is Hausdorff.
4. Recall that the sets V(f; ¢) defined for f € R! by

V(f, e) = {geR"||g(x) — f(x) < ¢ for each x e I}

form a nhood base at f, making R' a topological space (see 4F.3). Discuss the separation
axioms for this space. (Note that the subspace of continuous functions on I is metrizable,
by 4F.5, and thus has all the separation properties we could ask for.)

13B. Ty- and T,-spaces
1. Any subspace of a T,- or T;-space is, respectively, T, or T;.
2. Any nonempty product space is T, or T, iff each factor space is, respectively, T, or T;.
3. Quotients of T,-spaces need not be Ty, but the closed image of a T;-space is T;.

4. A quotient space of X is T, iff each element of the corresponding decomposition is
closed in X.

13C. The T,-identification

For any topological space X, define ~ by x ~ yiff {x} = {y}.
1. ~ is an equivalence relation on X.
2. The resulting quotient space X/~ = X is T,
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3. The procedure above, when applied to a pseudometric space (S, p) yields the metric
identification S* of S described in 2C.

13D. The Zariski topology

For a polynomial P in n real variables, let Z(P) = {(x,,..., x,)eR"| P(xy, ..., x,) = O}.
Let £ be the collection of all such polynomials.
1. {Z(P)| Pe 2} is a base for the closed sets of a topology (the Zariski topology) on R™.
2. The Zariski topology on R" is T; but not T,.

3. On R, the Zariski topology coincides with the cofinite topology; in R" n > 1, they
are different.

13E. Accumulation points and condensation points

Recall that a is an accumulation point of a set 4 in a space X iff each nhood of a meets
A in some point other than a. We say a is a condensation point of A iff each nhood of a
meets A in uncountably many points. Let A’ denote the set of accumulation points of 4,
A° the set of condensation points of A.

1. In a T;-space, a is an accumulation point of A4 iff each nhood of a meets A4 in an infinite
set.

2. For any set 4, A" and A° are closed sets, with 4° = A4'.

3. Givenaset A4, let A = A, A> = (4'), A> = (4?>Y and so on. Then 4! > 4%2 > ---

4. For any positive integer , thereisa set A = Rsuchthat 4, 4%,..., 4"~! are nonempty,
and A" = . (The result can be extended to countable ordinals. Let 4* = (4* 'y if a is a
nonlimit ordinal, A* = (ﬂ,Ka APy if o is a limit ordinal, and show that for any « < w,, a
set A can be found such that 4* = g and 4% # o for f < w).

5. Can the results 3 and 4 be proved for condensation points?

13F. Hausdorffness and the lattice of topologies
Let 7, and 7, be Hausdorff topologies on the same set X.

1. If (X, Ty n 1,) is Hausdorff, then the diagonal is closed in (X, 7,) X (X, 7,).

2. There are Hausdorff topologies 7, and 7, on a set X such that the diagonal is closed
in (X, 77) x (X, 7,), but (X, 7, n 7,) is not Hausdorff. Thus the condition in 1 is necessary
but not sufficient.

3. If disjoint 7,-open sets can be separated by disjoint 7,-open sets and vice versa, then
(X, 7, N 1,) is Hausdorff.

4. The condition of 3 is not necessary.

The situation with suprema in the lattice of topologies is a bit more satisfactory. In fact,
if {7, | @ € A} is any family of topologies on the same set X, then (X, sup (z,)) is embedded in
1 (X, 7,), by 81.2, so that any property preserved by products and subspaces will be preserved
in passing to suprema. The T,-axiom (as well as any other separation axiom from T, up
through complete regularity) is thus inherited by suprema (by 13.8, 13B, 14.4 and 14.10).
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13G. Topological groups
A topological group G is a group with a Hausdorff topology satisfying the conditions:

a) multiplication is continuous; that is, the map m: G x G — G defined by m(x, y) = xy
is continuous.
1

b) inversion is continuous; that is, the map O: G —» G defined by O(x) = x " is

continuous.

The identity in G is denoted e.

If Ac G, B< G and xeG, the set {y-z|ye A, ze B} is denoted AB, and the sets
A~Y, xA, Ax are similarly defined. The set 42 = A4, in particular, is the set {a - a' | g, @’ € 4},
not the set of all squares a? for a € A.

1. The continuity conditions (a) and (b) can be expressed as follows:

a’) for each nhood W of xy there are nhoods U of x and V of y such that UV < W,
b") for each nhood W of x ! there is a nhood U of x such that U~ = W.
2. The conditions (a) and (b) can be replaced by the single condition that the map
¢: G x G — G defined by ¢(x, y) = x - y~* be continuous.
3. R, with the usual topology and addition, is a topological group. Any group with the
discrete topology is a topological group.
4. Let a, be G. Each of the maps
x — x !
X — ax
x — xb
x — axb
is a homeomorphism of G onto G.
5. If {U| U e %} is a nhood base at e, then for any x € G, {xU | U € %} is a nhood base
at x, and so is {Ux | U € %}.
6. Let % be a nhood base of open sets at e in G. Then
a) for each U € %, there exists V € % with V? < U,
b) for each U e %, there exists V e % with V! < U,
c) for each U € % and x € %, there exists V € % with xV < U,
d) for each U € % and x € G, there exists V e % with xVx ! < U,
e) for each U, V € %, there exists We % with W «c U NV,

i =N{U|Uen}

Conversely, given any collection of sets satisfying (a)—(f) and using 5 to obtain a nhood base
at each x € G, the result is a topology on G making G a topological group.

7. The open symmetric nhoods of e form a base. [If U is open and a nhood of e, so is U ™*
and thus sois U n U ~'].
13H. Open images of Hausdorff spaces

1. Given any set X, there is a Hausdorff space Y which is the union of a collection
{Y, | x € X} of disjoint subsets, each dense in Y.
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2. If X is any topological space and Y is the space formed in part 1, let
Z={xy)eX x Y|yeY).

Then the restriction to Z of the projection map from X x Y to X is a continuous open map
of Z onto X. Thus every topological space is the continuous open image of a Hausdorff space.

14 Regularity and complete regularity

The separation axioms introduced in the previous section are rather weak and
are added to the hypotheses of a theorem, if needed, without too much regret.
Some theorems are simply not true for the trivial topology!

The properties to be introduced in this and the next section are rather more
restrictive, although they are also defined in terms of separation. For one thing,
we pass from a simple relationship in which the topology separates points to a
more complex one in which the topology separates points from closed sets or
closed sets from each other. Some pretty decent topologies are eliminated in the
transition, so the concepts to be introduced now are not used in theorems without
some attempt to justify their presence.

14.1 Definition. A topological space X is a regular space iff whenever A is closed
in X and x ¢ A, then there are disjoint open sets U and V with xe U and 4 < V.

We have slipped backwards, in passing from Hausdorff to regular spaces,
in the sense that the topology on a regular space X may no longer reflect the set
theoretic character of X. For example, a trivial space is always regular and thus
a regular space need not be Hausdorff.

To remedy this deficiency, we note that separation of points from closed
sets would imply separation of points if points were closed. Thus we define a
T;-space to be a regular T;-space.

Clearly, then, every Ts-space is T,.

14.2 Example. Not every T,-space is T;. Let X be the real line with nhoods of
any nonzero point being as in the usual topology, while nhoods of 0 will have the
form U — A, where U is a nhood of 0 in the usual topology and

A={l/n|n=12..1}

Then X is HausdorfY since this topology on the line is finer than the usual topology
which is Hausdorff. But A is closed in X and cannot be separated from 0 by
disjoint open sets, so X is not T5.

14.3 Theorem. The following are equivalent for a topological space X :
a) X is regular

b) if U is open in x and x € U, then there is an open set V containing x such
that V. < U.

¢) each x € X has a nhood base consisting of closed sets.
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Proof. a) = b): Suppose X is regular, U is open in X and x e U. Then X — U
is a closed set in X not containing x, so disjoint open sets ¥ and W can be found
with xe V and X — U < W. Then X — W is a closed set contained in U and
containing V, so V < U.

b) = c): If (b) applies, then every open set U containing x contains a closed
nhood (namely V) of x, so the closed nhoods of x form a nhood base.

c) = a): Suppose (c) applies and A4 is a closed set in X not containing x.

Then X — A is a nhood of x, so there is a closed nhood B of x with B <« X — A.
Then B° and X — B are disjoint open sets containing x and A, respectively.
Thus X is regular. B

14.4 Theorem. a) Every subspace of a regular space (Ts-space) is regular (Ty).
b) A nonempty product space is regular (T3) iff each factor space is regular (T5).
¢) Quotients of Ts-spaces need not be regular.

Proof. 1t suffices to prove parts (a) and (b) for regular spaces; the assertions for
T;-spaces will then follow by combination with the corresponding results for
T,-spaces (13B).

a) If X is regular, Y < X, and A is a closed set in Y, then 4 = B n Y where
Bis closed in X. Now if y is a point of Y and y ¢ A, then y ¢ B, so there are dis-
joint open sets U and V'in X suchthatye Uand B < V. ThenU n Yand VNnY
are disjoint open sets in Y containing y and A, respectively.

b) If [] X, is regular and nonempty then each X,, since it is homeomorphic
to a subspace of [ | X,, is regular. Conversely, suppose that each X, is regular.
Pick x €[] X, and consider a basic nhood =, (U;) - nn, ' (U,) of x in
[T X.. Now U, is a nhood of x,, in X, fori = 1, ..., n, and hence U, contains a
closed nhood C; of x,,. But then =,,'(C,) n - n n, }(C,) is a closed nhood of
x contained in 7, '(U;) N -+ n 7w, (U,). Thus the closed nhoods of x form a
nhood base at x, showing that [ | X, is regular.

¢) See the following examples. B

14.5 Examples. a) A closed continuous image of a T3-space need not be T,; if
it is T,, it need not be regular. Let I' denote the closed upper half plane
{(x,y)| y = 0} in R? with the topology specified as follows: nhoods of points
(x, y) with y > 0 will be as in the usual topology while basic nhoods of points z
on the x-axis in I' will be sets of the form {z} U A4, where A4 is the interior of a
circle in the upper half plane tangent to the x-axis at z. This space is the Moore
plane. It was the object of study in Exercise 4B.

I' is certainly Hausdorff. Since a base of closed nhoods can easily be con-
structed at each point of I, it follows from 14.3 that I" is T5. Now let D and E
be the sets of points on the x-axis in I whose first coordinates are rational and
irrational, respectively. Then D and E are closed sets in I' and we will see later
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(25F) that D and E cannot be contained in disjoint open sets in I'. If Y is the
decomposition space of I' whose elements are D, E and the one-point sets in
I' — (D v E), then Y is the image of I by a closed continuous map (9E), but Y
is not T, since D and E cannot be separated by disjoint open sets in Y. If Z is
obtained from I' by identifying only the points of D, then Z is a closed continuous
image of I which is T, but not regular. (Z is T, by 14.7 below, not regular because
the point D and the closed set E cannot be separated by disjoint open sets.)

b) The open continuous image of a T3-space need not be regular. In fact,
in 13.9(b) we provided a space X which is T; and a non-Hausdorff T;-space Y
which is the image of X. under an open continuous map.

The following two theorems constitute a partial apology for the examples
just given.

14.6 Theorem. If X is Ty and f is a continuous, open and closed map of X
onto Y, then Y is T,.

Proof. By 13.11, it is sufficient to show that the set
A={(x,x)eX x X I fxy) = f(x2)}

is closed in X x X. If (x;, x,) ¢ 4, then x, ¢ f [ f(x,)] so that, since X is
regular, there are disjoint open sets U and V with xe U and f [ f(x,)] = V.
Since f is closed, we can find a saturated open set in X containing f [ f(x,)]
and contained in V; that is, f~'[f(x,)] = f~}(W) < V for some open set W
in Y. Then U x f~}(W) is a nhood of (x,, x,) which cannot meet A, since
Unf W) =01

14.7 Theorem. If X is Ty and Y is obtained from X by identifying a single
closed set A in X with a point, then Y is T,.

Proof. If y, and y, are distinct points of Y, then f~!(y,) and f ~!(y,) are a point
and a disjoint closed set (not necessarily in that order) in X and hence there are
disjoint open sets U and V in X containing f ~*(y,) and f ~*(y,). Now U and V
can be taken as saturated since f is closed (9.8, 9.10). Then U = f~(S) and
V = f~Y(T), where S and T are open sets in Y which must contain y, and y,,
respectively. Since U and V are disjoint, so are Sand T.

The next axiom of separation which would seem natural would involve
separating disjoint closed sets by disjoint open sets. We will set aside the study
of this property, normality, until the next section, however, and take up a separa-
tion property intermediate between regularity and normality which has assumed
a dominant role in the study of topology, primarily by virtue of Theorems 14.12
and 14.13.

14.8 Definition. A topological space X is completely regular iff whenever A4 is a
closed set in X and x ¢ A, there is a continuous function f: X — I such that
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f(x) =0 and f(4) = 1. It is clearly enough to find a continuous function
f: X — R such that f(x) = b and f(4) = a, where b # a. Any such function f
will be said to separate A and x. A completely regular T-space is called a
Tychonoff space.

Completely regular spaces are regular. For suppose 4 is closed, x ¢ A4, and
f: X -1 is a continuous function with f(x) = 0 and f(4) = 1. Then
£7Y[0, 3)) and f~*((, 1]) are disjoint open sets in X containing x and A, respec-
tively. But completely regular spaces need not be Hausdorff, as any trivial
space of more than one point illustrates, and this is the reason Tychonoff spaces
enjoy a separate identity. An early joke has somehow become semistandard,
with some writers referring to Tychonoff spaces as Tj,-spaces.

A counterexample exists showing that not every regular space is completely
regular. It is formidable and we have relegated it to Exercise 18G, where most
people won’t be bothered by it. There is an even more complicated example,
also noted in 18G, of a T;-space on which every continuous real-valued function
is constant!

14.9 Example. Every metric space is Tychonoff. In fact, every pseudometrizable
space is completely regular. For if p is a pseudometric which gives the topology
on X, A is a closed subset of X and x ¢ A, then f(y) = p(y, A) is a continuous
function on X to R such that f(4) = 0 and f(y) # 0.

We turn now to the basic questions about subspaces, products and quotients
of Tychonoff spaces.

14.10 Theorem. a) Every subspace of a completely regular (or Tychonoff)
space is completely regular (respectively, Tychonoff).

b) A nonempty product space is completely regular (or Tychonoff) iff each
factor space is completely regular (respectively, Tychonoff).

¢) Quotients of Tychonoff spaces need not be completely regular or T,.

Proof. a) Suppose X is completely regular and Y =« X. If A4 is closed in Y,
then A = B n Y where B is closed in X. Given any xe Y — A, x ¢ B so there is
a continuous f: X — R such that f(x) = 1, f(B) = 0. Then f | Y separates x
and A in Y, so Yis completely regular. The result for Tychonoff spaces now follows
from this together with the corresponding (easy) result for T;-spaces.

b) If [] X, is nonempty, each X, is homeomorphic to a subspace of [| X,
and thus is completely regular if [ | X, is.

Conversely, suppose X, is completely regular, for each «. Let xe[] X,
and let A be a closed set in || X, not containing x. Then some basic nhood
T, (Uy) 0 n o M(U,) of x does not meet 4, where U, is an open set in X,
For k = 1,..., n there is a continuous f,: X, — I such that f(x, )= 1 and
filX,, — Uy) = 0. Define g: [[ X, > I by

g(y) = min {fi(y,) |k = 1,..., n}.
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Then g is continuous (it is the infimum of the functions fyo7,,, k =1,...,n
and the infimum of finitely many continuous functions is continuous, by 7M.4)
and g(x) = 1,g(X — A) = 0. Thus [] X, is completely regular.

Again, the result for Tychonoff spaces is easily derived from the result just
given and the corresponding result for T;-spaces.

¢) See the following examples. B

14.11 Examples. a) The closed continuous image of a Tychonoff space need not be
T,; if it is T, it need not be Tychonoff. It is enough to show the Moore plane I'
is Tychonoff; the required closed continuous images are those constructed in
14.5(a). To show I' is Tychonoff, let p € I" and let V be a basic nhood of p (so that
V is either a disk centered at x or else x together with a disk tangent to x, depending
on the placement of x). Define f: I' - I by setting f(p) = 0, setting f(x) = 1
for each x ¢ V, and defining f linearly along the straight-line segments between
x and the points on the boundary of V. Then f is a continuous function on I
such that f(p) = 0 and f(X — V) = 1. Since any closed set in I' which does not
contain p is contained in X — V for some basic nhood V of p, it follows that
I' is Tychonoff.

b) In 13.9(b), we exhibited a space X which is Tychonoff and a non-Hausdorff
T;-space Y which is the image of X by an open continuous map.

We close this section with the two theorems which embody much of the
importance of completely regular and Tychonoff spaces.

The completely regular spaces are precisely the spaces having enough
bounded continuous real-valued functions to determine their topology completely,
according to the first of these results.

14.12 Theorem. A topological space X is completely regular iff it has the weak
topology induced by its family C*(X) of bounded real-valued continuous
Sfunctions.

Proof. If X is completely regular, then the functions in C*(X) separate points
from closed sets so, by 8.15, X has the weak topology induced by C*(X).

Conversely, suppose X has the weak topology induced by C*(X). Suppose
U is open in X and x € U. There are functions f, .. ., f, in C*(X) and subbasic
open sets V;, ..., V, in R such that

xefr' V)0 f7H(V,) = U
Each V; is of the form (g;, ©) or (— o0, g;). Butif ¥; = (— o0, a;), then
W) = (=f)H(~a;, o)

so that apparently, by occasionally replacing an f; by —f;, we can assume each
V; above has the form (a;, ). If we denote by g; the function defined by

gi(x) = sup {fi(x) — a;, 0},
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then evidently g; is nonnegative and g;7'(0, o0) = f;"*(a;, ©0). Hence, at this
point, we have
xeg; N0, 0)N g0, 00) = U.

Finally, let g =g,-9g, - - - g.. Then g(x) = g,(x) - --- - g,(x) is positive,
so x € g ~1(0, ). Moreover, if g(y) > 0, then each g,(y) # 0, so each g(y) > 0,
and hence y € g71(0, ©) N -+ - " g, 710, o0) = U. Thus

xeg 10, 0) = U.
It follows that g(x) # 0 while g(X — U) = 0, so X is completely regular. &

Any product of closed bounded intervals will be called a cube. Thus a cube
is (homeomorphic to) a product of copies of the unit interval I. We now can give
the following elegant and all-important corollary to the previous theorem.
(This result will be extended in the section on compactness; see 17.11.)

14.13 Theorem. A topological space X is a Tychonoff space iff it is homeo-
morphic to some subspace of some cube.

Proof. Every cube is a product of metric spaces and thus Tychonoff, and hence
every subspace of a cube is Tychonoff.

Conversely, suppose X is Tychonoff. Then X is T; and, by the previous
theorem, has the weak topology induced by the bounded continuous functions
f: X — R. Each such function f has a range contained in some closed bounded
interval I, and thus can be regarded as a map of X into I,. Then the evaluation
map e: X — [[ I, defined by [e(x)], = f(x) is a homeomorphism, by 8.16, so
X is homeomorphic to a subspace of the cube [ 1,. B

Problems

14A. Examples on regularity and complete regularity

1. The family of all subsets of X containing a fixed subset 4, together with the empty
set, is a topology for X according to 3A.2. Under what conditions is it regular? completely
regular?

2. Recall that if 7 is a topology on X and A is a fixed subset of X, then the simple ex-
tension of T over A is the topology 1, = {U U (V n A)| U, Vet} on X. Show that if 7 is
regular or completely regular, and A4 is closed in X, then 7, has the same property. Find
counterexamples if 4 is not closed.

3. The slotted plane (4C) is T, but not Tj.

4. The looped line (4D) is Tychonoff.

14B. The double of a topological space

Let X be any topological space and set X; = X x {1}, X, = X x {2}, D(X) = X, U X,.
Foreach 4 < X, let A; = A x {1} and A, = A x {2} be the corresponding subsets of X
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and X, in D(X) and, for each x € X, let x, and x, be the corresponding points (x, 1) and
(x,2)in D(X). Set B = {U; U (U, — {x,})| U openin X} U {{x,} | xe X}.

1. 4 is a base for a topology on D(X). With this topology, D(X) will be called the double
of X.

2. X is homeomorphic to the closed subset X, of D(X).

3. If X is Ty, T,, T, regular or completely regular, then so is D(X).

14C. Zero sets in completely regular spaces
A zero-set in a topological space X is a set of the form f ~*(0) for some continuous f: X — R.
1. If f is a real-valued continuous function on X, then {x | f(x) > a} and {x| f(x) < a}
are zero sets, for each a € R. [g(x) = max {f(x) — g, 0} is continuous.]
2. X is completely regular iff the zero-set nhoods of each point form a nhood base.
3. X is completely regular iff the zero sets form a base for the closed sets in X (i.e., iff
every closed set in X is an intersection of zero sets).

The last two assertions provide handy ways of deciding whether or not a given space is
completely regular.

14D. Subsets of regular spaces

If X is regular and A is an infinite subset of X, there is a sequence U, U,, ... of open
subsets of X such that U, n U,, = g ifn # mand U, n A # & for each n. [Use induction.]

14E. Semiregular spaces
A space is semiregular iff the regularly open sets (3D) form a base for the topology.

1. Every regular space is semiregular. Is the converse true?
2. A semiregular, T;-space need not be Hausdorff.
3. Every space X can be embedded in a semiregular space. [In the set X x I define a
topology as follows: nhoods of (x, y) for y # 0 will be usual interval nhoods
{x,2)|]y—e<z<y+e¢ in  I,={x}xI,

for small positive ¢; nhoods of (x, 0), x € X, will have the form {(x, z) | x' e U,0 < z < ¢}
where U is a nhood of x in X and for each x" € U, ¢, is picked small and positive. The re-
sulting space Z is semiregular and X is embedded in Z as the closed, nowhere-dense subspace
{x, 0| xe X}.]

Thus subspaces of semiregular spaces need not be semiregular.

14F. Urysohn spaces

A space X is a Urysohn space iff whenever x # y in X, there are nhoods of U of x and V
of ywithUnV = o.
1. Every regular, T;-space is Urysohn and every Urysohn space is Hausdorff.

2. Not every Urysohn space is semiregular (14E). Thus not every Urysohn space is
regular.
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3. Not every semiregular, Hausdorff space is Urysohn. [Give the real line the discrete
topology and add the following points:

a) +oo whose nhoods have the form {+ o0} U (a, ) for a e R,
b) —o0 whose nhoods have the form {— oo} U (— o0, a) for a € R,
) P1, Py, - - - Where the nhoods of p, have the form {p,} v all but finitely many points

of(—n — 1, —n) u (m,n + 1).
Verify that the resulting space X has the required properties.]

14G. Completely Hausdorff spaces

A space X is completely Hausdorff (functionally Hausdorff) iff whenever x # y in X, there is
a continuous f: X — I'with f(x) = 0, f(y) = 1.

1. Every completely Hausdorff space is Hausdorff. (The famous example of E. Hewitt
of a regular T;-space in which every continuous real-valued function is constant (see Exercise
18G) shows that not every regular T;-space is completely Hausdorff.)

2. Discuss products and subspaces of completely Hausdorft spaces.

14H. CX(X) for non-Tychonoff spaces
Given any topological space (X, ), there is a Tychonoff space Y such that the rings C*(X)
and C*(Y) of bounded continuous real-valued functions on X and Y are isomorphic. [Weaken
the topology on X to obtain a completely regular space with the same ring of functions. Then
identify points to get a Tychonoff space.]

Thus C*(X) is studied only for Tychonoff spaces X.

15 Normal spaces

Regularity and complete regularity, as we have seen, constitute nontrivial re-
strictions on a topological space. Nonetheless, spaces with these properties
behave decently with respect to the formation of products and subspaces. In the
next (and obvious) step to normal spaces, we find ourselves confronted with the
real bad boy among the separation axioms. So odd is the behavior of subspaces
and products of normal spaces that their study is a separate subject. This is
unfortunate, since as theorems late in this section will show, normal spaces possess
many properties of paramount interest to topologists.

15.1 Definition. A topological space X is normal iff whenever A and B are disjoint
closed sets in X, there are disjoint open sets U and V with A < U and B < V.
A normal T;-space will be called a T}-space.

Now is the time to introduce a note of caution. The terminology in the
literature with respect to the separation axioms beyond Hausdorff is more than
a little confused. Some writers interchange our usage, using T3, Tychonoff and
T, for those spaces which need not be T, (and regular, completely regular and
normal for those that are). Others use Ty and regular to mean the same thing,
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which sometimes means it includes T, and sometimes not (and likewise for
Tychonoff and completely regular, and T, and normal). Look before you leap.

The construction of examples of nonnormal spaces will be facilitated by the
following lemma, due to F. B. Jones.

15.2 Lemma. If X contains a dense set D and a closed, relatively discrete
subspace S with |S| > 2P|, then X is not normal.

Proof. If X were normal then for each T <« S, the sets T and S — T would be
disjoint and closed in X and hence would be contained in disjoint open sets
U(T) and V(T). Now if T, — T, # @, then clearly U(T;) n V(T,) is a nonempty
open set in X, so U(T;) n V(T,) n D is nonempty. But then U(T;) n V(T,) n D
is a subset of U(T;) n D and not a subset of U(T,) n D. Thus if T; and T, are
different subsets of S, then U(T;) n D and U(T,) n D are different subsets of D,
so |P(S)| < |P(D)|. This is impossible if |S| > 2/°|. A

15.3 Examples. a) A normal space need not be regular. If X is the real line with
the topology in which open sets are the sets (a, o) for a € X, then X is normal
since no two nonempty closed sets are disjoint, but X is not regular since the point
1 cannot be separated from the closed set (—oo, 0] by disjoint open sets. Of
course, every T,-space is Tychonoff, but we need Urysohn’s lemma (15.6) to
prove this.

b) A Tychonoff space need not be T,. As we have seen, the Moore plane
I' is Tychonoff. But I' is not normal, by the lemma above, for the x-axis T in
I is closed and relatively discrete, the set K = {(x, y) € I' | x and y are rational}
is dense in I, and |T| > 2'¥!. (Note that K is countable and | T| = c.)

c) Every metrizable space is T,. In fact, every pseudometrizable space is
normal. For suppose p is a pseudometric which gives the topology on X and let 4
and B be disjoint closed sets in X. For each x € 4, pick 6, > 0 such that U(x, J,)
does not meet B and for each y € B, pick ¢, > 0 such that U(y, ¢,) does not meet

A. Let
O, €
U= Ulx=), V= Uly2).
xeA 3 yeB 3

Then U and V are open sets in X containing A and B respectively. Suppose
ze Un V. Then p(x, z) < 6,/3 and p(z, y) < €,/3 50 p(x, y) < 6,/3 + €,/3 < J,,
assuming 6, = max {d,, €,}. But then ye U(x, ,), which is impossible. Thus
U and V must be disjoint, showing that X is normal.

15.4 Theorem. a) Closed subspaces of normal (or T,) spaces are normal
(respectively, Ty).
b) Products of normal spaces need not be normal.

c) The closed continuous image of a normal (or T,) space is normal (respectively,
T,).
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Proof. a) If Y is closed in X and 4 and B are disjoint closed sets in Y, then A
and B are disjoint closed sets in X, and hence are contained in disjoint open sets
Uand Vin X. Then U n Y and ¥V N Y are disjoint open subsets of Y containing
A and B. Thus Y is normal. The assertion for T,-spaces follows now from the
fact that every subspace of a T;-space is T;.

b) See Example 15.5(b).

¢) Suppose X is normal and f is a closed continuous map of X onto Y. If
A and B are disjoint closed sets in Y, then f ~!(4) and f ~(B) are disjoint closed
sets in X and hence we can find disjoint open sets U, and U, in X containing
f7'(A) and f~!(B). Since f is closed, the sets ¥, = Y — f(X — U,) and
V, =Y — f(X — U,) are open in Y. It is easily checked that V; and V, are dis-
joint and contain 4 and B, respectively. Thus Y is normal. The assertion for
T,-spaces follows, since the image of a T,-space under a closed continuous map
isT,. 8

15.5 Examples. a) Arbitrary subspaces of T,-spaces need not be T,. In fact,
the nonnormal Tychonoff space I' (15.3(b)) can be embedded in some cube, by
14.13. But in 17.10, we note that every cube is normal. If every subspace of a
space X is normal, X is said to be completely normal; see Exercise 15B.

b) Products of T,-spaces need not be T,. It is noted, in 16D, that the
Sorgenfrey line E is T, (in fact, that E has even stronger properties). But E x E
is not normal. (The proof makes an easy exercise in the use of Lemma 15.2; see
15A.2.) Normality in product spaces is studied in some detail in Section 21.

c) Arbitrary quotients of T,-spaces need not be T,. See 13.9(b), which provides
an open continuous map from a T,-space X onto a non-Hausdorff T;-space Y.

The remainder of this section will be devoted to giving some useful properties
of normal spaces. The theorems which follow deal, in order, with separation of
sets by continuous functions, with existence of extensions of continuous functions
and with existence of certain kinds of open coverings. Each of the properties thus
exhibited for normal spaces is, in fact, characteristic of normal spaces. Since
separation, extension and covering are among the most important topics in
topology, any one of them would be enough to overcome the stigma we originally
attach to normal spaces because of the trouble we get into when forming subspaces
and (especially) products. That all three should be true for the same kind of space
certainly ranks with other wonders of the world (e.g., the embedding of Tychonoff
spaces in cubes).

The first of these results has as an immediate consequence that every T,-space
is Tychonoff. Intrinsically, it ranks among the greatest theorems in topology,
since it provides, starting from scratch, a bare-hands construction of a continuous
function where none was assumed to exist.
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15.6 Urysohn’s Lemma. A space X is normal iff whenever A and B are disjoint
closed sets in X, there is a continuous function f: X — [0, 1] with f(4) = 0
and f(B) = 1.

Proof. Suppose X is normal and A, B are disjoint closed sets in X. By normality,
there is an open set U,,, such that A = U,;, and U,,, n B = @. But now 4
and X — U,,, are disjoint and closed and so are U,,, and B. Hence open sets
U,,4 and U, exist such that

Ac Uy Uyysg Uy Uyyp € Uszpe, Uy B =0

Now suppose sets Uy, k = 1,...,2" — 1 have been defined in such a way
that
A (e U1/2"? ey Uk—l/2" = Uk/Z"’ ey U(2n-1)/2n NB= g,

then the process can, by normality, be continued so as to provide sets Uy yn+1,
k=1,...,2""" — 1 with the same properties. By induction, then, we have for
each “dyadic rational” r (i.e., each rational of the form r = k/2" for some n > 0
andk = 1,...,2" — 1) an open set U, subject to the conditions:

a) A = U,and U, n B = ¢ for each dyadic r,

b) U, = U, wheneverr < s.

Now define f: X — [0, 1] as follows:

1 if x belongs to no U,,
f(x) =

inf{r|xeU,}  otherwise.

It is apparent that f(4) = 0 and f(B) = 1, so we have the function we want pro-
vided f is continuous. But continuity of f follows easily from facts like these:

a) if x ¢ U,, then f(x) > r (continuity at points x where f(x) = 1),

b) if x € U,, then f(x) < r (continuity at points where f(x) = 0),

c) if xeU, — U,, where s < r, then s < f(x) < r (continuity at all other
points).
This proves necessity in the theorem.

Conversely, suppose A and B are disjoint closed sets in X and f: X — [0, 1]
is a continuous function such that f(4) = 0, f(B) = 1. Then apparently f [0, %)
and f (3, 1] will be disjoint open sets in X containing A and B, respectively,
so the condition of the theorem is sufficient for normality. B

15.7 Corollary. Every T,-space is Tychonoff.

As a convenience for later use, we point out that 0 and 1 in the statement of
Urysohn’s Lemma can obviously be replaced by any pair of real numbers a and
b with a # b.
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If A and B are disjoint closed sets in a normal space, a function of the type
whose existence is guaranteed by Urysohn’s Lemma is called a Urysohn function
for A and B.

It is not in general true that, given disjoint closed sets 4 and B in a normal
space, there will be a Urysohn function such that 4 = f~1(0), B = f~!(1). The
spaces with this property are called perfectly normal; see Exercise 15C.

Now we turn to the next in our series of three characterizations of normal
spaces. Its importance cannot be overstated. It provides for the existence of
extensions of continuous functions and some of the best and hardest work being
done today in topology (in particular, by algebraic topologists) deals with varia-
tions on the extension question; if A = X, when can a continuous function
f: A — Y be extended to a continuous function F: X — Y?

15.8 Tietze’s extension theorem. X is normal iff whenever A is a closed subset
of X and f: A - R is continuous, there is an extension of f to all of X; i.e,
there is a continuous map F: X — R such that F | A = f.

Proof. =: First suppose f: 4 - [—1,1]. Let

— (xed|f)=3), B ={xed|f() <-4
Now A4, and B, are disjoint closed sets in A and therefore in X, so by Urysohn’s
Lemma, there is a continuous f;: X — [ —3 ]such that f,(4,) = 3, /i(B)) = —3%
Ev1dently, for each x in A, |f(x) — fl(x) < £, so0 that f — f, is a mapping of 4

into [ -3, §].
Now we repeat the process with f — f; = g,. That is, divide [ —3, %] into
thirds (at —% and 3) and let A, = {xe A | g,(x) = 3}, B, = {xe A|g,(x) < —3}.
Then there is a Urysohn function f,: X — [ —%, §] such that f,(4,) = 3, f,(B,) =
—3%. Evidently, [(f — f}) — fol < (3 on A.
Continuing the process, we obtain a sequence f3, f5, . . . of continuous functions
on A such that "
f —kZlfk

Define F(x) = ) 2, fi(x), for each x € X. Certainly F(x) = f(x) for each x & 4,
so it remains only to show F continuous.

Let x € X and € > 0 be given. Pick N > 0o that ) ™y, (3)" < €¢/2. Since
each f; is continuous fori = 1, ..., N, pick open U, containing x such that

ye U= |fi(x) — fly)l < €/2N.
Then U = U; n---n Uy is open in X, and

<@

N o
yeU=IF() = Fol < L 1f) = ) + 3. G

e+e
2N 2

A
>4

=€,
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so that F is continuous at x. This completes the proof in the case where f maps
Ainto [—1,1].

Since (—1, 1) is homeomorphic to R, we can prove the general case by con-
sideringa map f: A — (—1, 1). Since we can regard f as mapping A4 into [ —1, 1],
we can find an extension F': X — [—1, 1]. Let A, = {xe X | |F'(x) = 1}. Then
A and A, are disjoint closed sets in X, so there is a Urysohn functiong: X — [0, 1]
such that g(4,) = 0 and g(4) = 1. Define F: X — (—1, 1) by F(x) = g(x) - F'(x).
Then F is continuous, and if xe 4, F(x) = g(x)- F'(x) = 1- f(x) = f(x), so F
is the desired extension of f.

<: Suppose the condition holds. If 4 and B are disjoint closed sets in X,
then A U B is closed in X and the function f: A U B — [0, 1] defined by
f(A) = 0 and f(B) = 1 is continuous on 4 U B. The extension of f to all of X
will be a Urysohn function for 4 and B. Thus, by 15.6, X is normal. B

It is worth mentioning that implicit in the proof of the Tietze theorem is the
proof that if the function f carries 4 to [a, b], then the extension F can be made
to have the same property.

The last property characteristic of normal spaces will play an important role
in later work both on paracompactness and Dowker’s conjecture. The terminology
associated with this theorem is unusually descriptive.

15.9 Definition. A cover (or covering) of a space X is a collection ./ of subsets of
X whose union is all of X. A subcover of a cover &/ is a subcollection &/’ of o/
which is a cover. An open cover of X is a cover consisting of open sets, and other
adjectives applying to subsets of X apply similarly to covers.

An open cover % = {U, | a € A} of X is shrinkable provided an open cover
¥ = {V, | « € A} exists with the property that ¥, = U, for each « € A. Of course,
v is called a shrinking of %.

A covering % is point finite provided each x € X belongs to only finitely
many elements of %.

15.10 Theorem. X is normal iff every point-finite open cover is shrinkable.

Proof. Suppose X is normal and % = {U,|a € A} is a point-finite open cover
of X. Well-order the set A; for convenience, then, suppose 4 = {1,2,...,a, ...}
Now construct {V, | « € A} by transfinite induction as follows: let
F,=Xx - U,.
a>1

Then F, < U, so there is an open set V; such that F, = ¥, and V; = U, by
normality. Suppose V; has been defined for each f < a now, and let
F,=X — [(Up<a V) v (Uy>. U,)]. Then F, is closed and F, = U,, so we
let ¥, be any open set such that F, « ¥V, and ¥V, =« U,. Now ¥" = {V, |a € A} is
a shrinking of % provided it is a cover. But if x € X, then x belongs to only finitely
many elements of %, say U,,,..., U, . Let a = max (ay,...,a,). Now x ¢ U,
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for any y > « and hence, if x ¢ V; for any f < o, then xe F, = V,. Hence, in
any case, x € Vj for some f < a. This completes the proof that ¥~ is a shrinking
of %.

For the converse, let A and B be disjoint closed subsets of X. Then
{X — A, X — B} is a point-finite open cover of X. But any shrinking {U, V}
of {X — A, X — B} induces a separation X — U, X — Vof A and B. B

Problems

15A. Examples on normality

1. Let A4 be a fixed subset of X, 7 the topology for X consisting of @ and all supersets of
A. Discuss normality of (X, 7).

2. Recall that E denotes the Sorgenfrey line (4.6). Show that E x E is not normal.

3. The radial plane (3A.4) is not normal.

4. The scattered line (5C) is T,.

5. Suppose (X, ) is normal and 4 is closed in X. Show that (X, ) is normal iff X — 4
is a normal subspace of (X, t), where 7, denotes the simple extension (3A.5) of T over A.

15B. Completely normal spaces
A space X is completely normal iff every subspace of X is normal.

1. X iscompletely normal iff whenever 4 and Bare subsetsof X with4A " B= AN B = g,
then there are disjoint open sets U > A4 and ¥V = B. [To do necessity, consider the subspace
X — (A n B), which contains both 4 and B, and in which A and B have disjoint closures.
Sufficiency is easy. ]

2. Why can’t the method used to show every subspace of a regular space is regular be
carried over to give a proof that every subspace of a normal space is normal?

3. Every metric space is completely normal.

15C. Perfectly normal spaces

A Ti-space X is called perfectly normal iff for each pair of disjoint closed sets 4 and B in X,
there is a continuous function f: X — I such that A = f~!(0) and B = f~!(1). Recall that
a G,-set in a topological space is a countable intersection of open sets.

1. A space X is perfectly normal iff it is 7, and each closed set in X is a Gsset. [For
sufficiency, if A is a closed set and A = ) G, where each G, is open, then a Urysohn function
f, exists such that f(A4) = 0 and f(X — G,) = 1, for each n. Set f,(x) = Y (f(x)/2"). If
A and B are now disjoint closed sets, set

fax)
[l = —F——.
Salx) + fp(x)
Then f is continuous and f~1(0) = 4, f~'(1) = B.]
2. Every metric space is perfectly normal.
3. It is not sufficient for perfect normality that X be T, and every point in X be a G,-set.
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15D. Retraction and extension

A continuous function r from X onto a subspace A of X is a retraction iff r | A is the identity
on A. The subspace A of X is then called a retract of X. Questions about existence of ex-
tensions can be phrased in terms of existence of retractions, according to part 2 below. This
is the way algebraic topologists like to view extension questions.

1. A retract in a Hausdorff space is a closed set.
2. A subset A of X is a retract of X iff every continuous function f: 4 — Z has an ex-
tension to a continuous function F: X — Z. [Ifr is a retraction, consider f o r.]

Related to retracts are the absolute retracts. A space R is an absolute retract iff given any
T,-space X, any closed subset A of X, and a continuous f: 4 — R, then f has an extension
to all of X. The reason for the name is given in 3 below.

3. A T,-space is an absolute retract iff it is a retract of every T,-space in which it can be
embedded as a closed subset.

4. Ris an absolute retract; any closed interval in R is an absolute retract.

5. Any product of absolute retracts is an absolute retract.

Related to absolute retracts are the absolute nhood retracts. A space Y is an absolute

nhood retract (ANR) iff whenever A4 is a closed subset of a normal space X and f: 4 —» Y
is continuous, then f can be extended over some open set U containing A in X.

6. A normal space is an ANR iff whenever it is embedded as a closed subset of a normal
space, it is a retract of some open set in that space.

7. S' is an ANR, but not an absolute retract. [The second statement follows from the
no-retraction theorem: there is no retraction from the unit disk onto S!, which you may
assume for now. It is proved in the text in Section 34.]

8. The product of finitely many ANRs is an ANR.

15E. C*-embedding: Urysohn’s extension theorem

A subspace A of X is C-embedded (C*-embedded) in X iff every continuous function f: 4 - R
(f: A - I) can be extended to a continuous function F: X — R (F: X — I). Subsets B and
C of a topological space X are called completely separated iff there is a continuous g: X — I
such that g(B) = 0 and g(C) = 1. Show that a subspace 4 of X is C*-embedded in X iff
every pair of completely separated sets in A4 is completely separated in X (this is Urysohn’s
extension theorem).

15F. Order topologies
Every ordered space (6D) is T,.

15G. Extremally disconnected spaces
A topological space X is extremally disconnected iff the closure of every open set in X is open.

1. For any space X, the following are equivalent :

a) X is extremally disconnected,
b) every two disjoint open sets in X have disjoint closures,
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¢) every two disjoint open sets in X are completely separated (15E),

d) every open subspace of X is C*-embedded (15E),
[Prove that (a) = (c) = (b) = (a) and (c) = (d) = (b), using the Urysohn extension Theorem
15E for (c) = (d).]

2. Every dense subspace and every open subspace of an extremally disconnected space
is extremally disconnected. (Closed subspaces need not be; see the book by Gillman and
Jerison.) By Exercise 191, products of extremally disconnected spaces need not be extremally
disconnected.

3. The only convergent sequences in an extremally disconnected T,-space are those which
are ultimately constant. [Suppose x, — p, but (x,) is not ultimately constant. Construct
a sequence U,, U,, ... of disjoint open sets in X such that x, e U, for some subsequence
(%4,) Of (x,), and such that pe U,, for each k. Let G = U,‘:‘Ll U, Then G is an open set
containing p, but x,, ¢ G for any odd &.]

Part 3 shows that sequential convergence cannot be used to describe the topology of
any nondiscrete extremally disconnected space. In particular, such spaces cannot be first
countable.

Extremally disconnected spaces are important in studying the Stone—Cech compactifica-
tion of a product space (191.2) as well as, more generally, in the study of the Stone space of
any complete Boolean algebra. They also crop up in investigations of the reducibility of
mappings of compact spaces (17P), and the extremally disconnected compact spaces are
precisely the compact-projective spaces (17Q).

15H. Hahn—Banach theorem

In the presence of algebraic structure on a space X, e.g., if X is a normed linear space, one can
ask whether a function f on a subset A of X which is continuous and has certain algebraic
properties can be extended to all of X in such a way that continuity and these algebraic proper-
ties are preserved. The answer, if A is a subspace of X and f is a continuous linear functional
on X, is yes. This follows (see part 2) as an intermediate corollary to the Hahn—Banach
theorem (part 1) below. Prerequisite to the understanding of this material is a careful study
of Problems 2J and 7L.

1. (Hahn—Banach theorem) Let X be any linear space, p: X — R a function such that
p(x + y) < p(x) + p(y) and p(ax) = a - p(x) for o« > 0. If A is a linear subspace of X and f
is a linear functional on A such that f(x) < p(x) for all x € A, then f can be extended to a
linear functional F on X such that F(x) < p(x) for all x e X. [First note that if A" is a subspace
of X with 4 < A’ and F' is an extension of f to A’ which is less than or equal to p on A4,
then for any y ¢ 4’, a further extension of f to the subspace {x + Ay |x e A, 1€ R} can be
found which is less than or equal to p there. Next, use Zorn’s lemma to conclude that there
exists a maximal extension of f, when extensions of f are ordered by g, < g, iff

domg, = domg, and g, =g,|domg,,

which is less than or equal to p. Finally, combine these two results to conclude that the domain
of this maximal extension must be all of X.]

2. If X is a normed linear space and f is a bounded linear functional on a subspace A
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of X, then f can be extended to a bounded linear functional f on X with ||F|| = ||f]|. [Use
the Hahn—Banach theorem with p(x) = ||f]| - |xI|.]

3. If X is a normed linear space, A4 is a subspace of X and y ¢ A, then there is a bounded
linear functional F on X such that

a) F(4) = 0,
b) F(y) = the distance from A4 to y,
o) [|IFll = L.

[Define f on {a + 2-y|aeA, AeR} by f(a+ Ay) = A-6 and use the Hahn-Banach
theorem to conclude f can be extended to a functional F on all of X with |F(x)| < ||x|| at each
xeX.]

Part 3 can be regarded as giving a form of complete regularity on the space X, in which
subspaces can be separated from points by linear continuous maps. Part 2 could be called a
Tietze extension theorem for normed linear spaces.

151. Jones’ lemma

Prove Jones’ lemma (15.2) by comparing the number of continuous functions on D with the
number on X and using the Tietze extension theorem.

16 Countability properties

We will introduce three topological properties in this section and investigate the
relationships between them, as well as the basic combinatorial questions (about
subspaces, products and quotients) for each individually.

Recall that the first axiom of countability, providing for countable nhood
bases, was introduced in Section 4. We are ready now for the second axiom.

16.1 Definition. X is second countable (or, satisfies the second axiom of countability)
iff its topology has a countable base.

Every second-countable space is first countable. On the other hand, any
uncountable discrete space is first countable without being second countable.

16.2 Theorem. a) The continuous open image of a second countable space is
second countable.

b) Subspaces of second countable spaces are second countable.

c) A product of Hausdorff spaces is second countable iff each factor is second
countable and all but countably many factors are one-point spaces.

Proof. a) Let f be a continuous open map of X onto Y. It is sufficient to check
that if & is a base for X, then f(%#) = {f(B)| Be %} is a base for Y. For this
purpose, let ¥ be an open setin Y, pe V. Then f ~}(V)is open in X, and if we pick
qge f~'(p) = f~Y(V), then for some basic open set B, g€ B = f (V). It follows
that p e f(B) — V, and thus that the sets f(B) do form a base for Y (where did we
use openness of f7).

b) The restriction of a base for X to a subspace 4 of X is a base for A.
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¢) Suppose X = [] X, is second countable. By (a), each X, is second count-
able and by Exercise 16A, since [ | X, is first countable, there are at most countably
many nontrivial factors.

Conversely, suppose {B,,|n =1,2,...} is a base for X,, for each o€ A.
Then the sets of the form

By % 0 X By X []{Xa |t # 0y ooy}

any

form a base for the product space. It is easily verified that, since 4 is countable,
there are only countably many sets of this form. B

An example showing that the requirement that f be open in 16.2(a) is not
frivolous, is given to be worked out in 16B.1.

16.3 Definition. A topological space X is separable iff X has a countable dense
subset. (A set D is densein X iff Cly D = X\)

The real line is separable, since the rationals are dense. A discrete space is
separable iff it 1s countable.

16.4 Theorem. a) The continuous image of a separable space is separable.

b) Subspaces of separable spaces need not be separable. However, an open
subspace of a separable space is separable.

c) A product of Hausdorff spaces, each with at least two points, is separable
iff each factor is separable and there are < ¢ factors.

Proof. a) A continuous map of X onto Y carries a dense subset of X to a dense
subset of Y.

b) The Moore plane I' is separable, while the x-axis T in I" is not; see
Exercise 6B. The assertion for open subspaces is an easy exercise.

¢) =: Since projection is continuous, each X, is separable if [ | X, is, by
part (a). We proceed to show [4| < ¢. For each a € 4, let U, and ¥, be disjoint
nonempty open sets in X, (using the fact that each X, is Hausdorff and has at
least two points). Let D be a countable dense set in [ [,.4 X, and, for each o € 4,
let D, = D n,}(U,). Then D, # o for each o, and for distinct o« and f,
D, # D since points in (U, N ng '(V3) which belong to D will belong to D,
and not D;. Thus the map F: A —» P(D) defined by F(x) = D, is one-one and
therefore

|A] < |P(D)] = 2% = «¢.

<: In X, let{d,,, d,,, ...} = D, be acountable dense subset. If we suppose

|A| < ¢, then we can regard A as a subset of the unit interval I. For each sequence

Ji ..., J, of disjoint closed intervals with rational endpoints and each sequence

ny, ..., n of positive integers, define a point p(J,, ..., Jy; ny, . . ., 1) as follows:
Do = dop, if aeld,

P = dyy otherwise.
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The set D of points p so defined is countable. Moreover, it is dense. For a (basic)
open set in [ | X, has the form

=13 (Us) 0 07 (Uy)

where U, is open in X, , i = 1,...,m. Then U, contains a point d,,, of D,,
for each i, and there are disjoint closed rational intervals J, ..., J,, containing
the points o, . . ., a,, respectively. The point p(J,, ..., J,.; 1y, - . ., 1,,) belongs
to B since p,, = d,,,, i = 1,..., m. Hence, the set D is dense. B

16.5 Definition. X is Lindelof iff every open cover of X has a countable subcover.

16.6 Theorem. a) The continuous image of a Lindeldf space is Lindelof.

b) Closed subspaces of Lindelof spaces are Lindelof, arbitrary subspaces of
Lindelof spaces need not be Lindelif.

¢) Products of (even two) Lindelof spaces need not be Lindelof.

Proof. a) Suppose f: X — Y is continuous and onto and X is Lindelof. Let
{U, |« € A} be an open cover of Y. Then {f~'(U,) | a € A} is an open cover of

X from which we can choose a countable subcover {f~'(U,)|i=1,2,...}.
U, |i=1,2,...} will be the desired countable subcover from {U, | o« € 4}.

b) Suppose F is closed in X and X is Lindelof. If {U,|a € A} is an open
cover of F, find for each « an open set V, in X with V, n F = U,. Then X — F
and the sets V, form an open cover of X, for which there will be a countable sub-
cover, {X — F, V,y, V,5,...}. Then the corresponding U,, i = 1,2,..., cover
F,s0{U,| o€ A} hasa countable subcover.

For the remaining assertions of the theorem, see the examples below. B

16.7 Examples. a) Arbitrary subspaces of Lindelof spaces need not be Lindelof.
Recall Q denotes the set of ordinals which are less than or equal to the first un-
countable ordinal w, (as described in 1.19). Since Q is a totally ordered space,
it can be provided with its order topology; recall that a basic nhood of o €
is then of the form (a, o)) = {feQ|a; < B < a,}, where a; < a < ap, with
the modification that nhoods of w, have the form (y, w,] = {feQ |y < B < w,},
fory < w;,.

NowQ is a Lindeldf space. In fact, given any open coverof €, find one element
U which contains ;. Then U contains an interval (y, w,] for some y < w,.
But this leaves at most the set [1, y] to be covered, and this set is countable, so at
most countably many more elements of the cover will be needed to cover .

The subspace , = Q — {w,}, however, is not Lindelof. If for each a €€,
weset U, = [1, ), then {U, | « €Q,} is an open cover of ,which has no countable
subcover. For if {U,,, U,,, ...} covers Q,, then sup {ay, &, ...} = w,, which is
impossible, by Theorem 1.20.

b) The product of two Lindelof spaces need not be Lindel6f. Consider the
Sorgenfrey line E which is the real line with the topology in which basic open sets



16] Countability properties 111

have the form [a, b), a < b. In Exercise 16D you will prove this space is Lindelof.
Now E x E is not normal, as we pointed out in Example 15.2, but it is regular,
since E is. But a regular Lindeldf space is normal according to the next theorem,
so E x E cannot be Lindelof.

16.8 Theorem. A regular, Lindelof space is normal.

Proof. Let A and B be disjoint closed sets in a regular Lindel6f space X. For each
ac€ A, let U, be an open set containing a such that U, n B = ¢, by regularity.
Similarly, find a set V} for each b € B separating b from A. Since A and B are
Lindelof subspaces of X, apparently a countable number of the sets U, cover 4,
sayAc U, v U, uu---; similarly, Bc V; u ¥V, u---. Now construct open
sets S, and T, inductively as follows:

SI=U1 T1=V1_Sl
Sz=U2*T1 T,=V, —(5;V8,)

S3=U; - (T, v T =V, -(5;VUS8US,)

Then it is easily seen that S = U S, and T = () T, are disjoint open sets
containing A and B, respectively. B

16.9 Theorem. If X is second countable, then X is

a) Lindeldf,
b) Separable.

Proof. a) Let 4 be a countable base for X. Suppose % is any open cover of X.
For each U € % and x € U, there is some B, ; € # such that xe B, ; = U. Now
B ={B,y|xeU, Ue%} is really a countable set, since % < 4. Say
{B,v|xeU Ue¥} = {B,,y, By -} Then Uy, U, ... is a countable
subcover from %.

b) You did this as Exercise 5F.2. Simply pick one point from each element of
a countable base and verify that the resulting countable set is dense. B

The next examples show that, in general, no other implications between the
properties in Theorem 16.9 will hold.

16.10 Examples. a) A separable space not Lindelof. The space E is separable,
hence sois E2 = E x E. But E? is not Lindelof (otherwise it would be normal by
Theorem 16.8).

b) A Lindeldf space not separable. Let X be uncountable and discrete.
Adjoin an extra point x* to X and specify that its nhoods will be {x*} U A, where
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A is the complement of a finite set in X, while nhoods of points in X remain the
same. Then the resulting space X* is Lindelof (in fact, every open cover has a
finite subcover) but not separable, since there are uncountably many points x € X

and each is open in X*.
16.11 Theorem. For a (pseudo)metric space X, the following are equivalent:

a) X is second countable,

b) X is Lindelof,

c) X is separable.
Proof. By 16.9 it suffices to show (b) implies (a) and (c) implies (a) for a pseudo-
metric space. Thus, let (X, p) be a pseudometric space.

b) = a): Suppose X is Lindelof. Let %, = {U(x, 1/n)| x € X}. For each
n, %, is an open cover of x and hence has a countable subcover #}¥. Then
U =UTOU% - is a countable collection of open sets in S. Let W be a

nonempty open set in X, and x € W. Then U(x, 1/m) = W for some m. Now
since %%, covers X, there is some y € X such that x € U(y, 1/2m). Then

U(y, 1/2m)) = U(x, 1/m) = W,
ie., U(y, 1/2m) is an element of % containing x and contained in W. Thus % is a
countable base for X, so X is second countable.
c)=>a): Let {d,, d,, ...} be a countable dense subset of X and let
Upw = Udy, I/m)yn=12,... . m=12....
Then {U,,|n=1,2...,m=1,2,...} is countable. We claim it is a base.

Let x € W, W a nonempty open set in X. Then U(x, 1/m) = W for some m. But
some d, € U(x, 1/2m) and then U(d,, 1/2m) = U(x, 1/m) so

xeU,,, = Ud,, 12m) < W.
Thus, {U,,} is a base as advertised. B

16.12 Example. Experience indicates the necessity of pointing out that a separable,
first-countable space need not be second countable. E provides an easy counter-
example. It is separable since the rationals are dense, and first countable since
the sets [x, x + 1/n) form a nhood base at x, but not second countable. For if
E were second countable, then E x E would (in two easy steps) be normal, which
is not true.

Problems

16A. First countable spaces
1. Every subspace of a first-countable space is first countable.

2. A product [ ] X, of first-countable spaces is first countable iff each X, is first countable,
and all but countably many of the X, are trivial spaces.
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3. The continuous image of a first-countable space need not be first countable [discrete
spaces are first countable]; but the continuous open image of a first-countable space is
first countable. (See also part 5 below and 23K.)

4. For a space to be first countable, it is not sufficient that each point be a G;. [Construct
a space X by adjoining to the real line (whose topology is unchanged) a single point p whose
nhoods are all sets of the form (a, c0) — C, where C is a countable subset of (a, c0) with no
cluster points. Verify that p is a G; but has no countable nhood base. Why the condition that
C be “scattered?”]

The condition that each point be a G; is sufficient for first countability of a compact
space. (See 17F.7.)

5. For each neN, let X, be a copy of the subspace {0} U {1/m|m = 1,2,...} of R.
Let X be the disjoint union of the X,. Ts the quotient Y of X obtained by identifying all
accumulation points of X first countable?

16B. Second countable spaces

1. A quotient of a second-countable space need not be second countable. [For each
ne N, let I, be a copy of [0, 1] and let X be the disjoint union of the spaces I,. Now identify
the left-hand endpoints of all the intervals I,. The resulting space Z is not first countable at
the distinguished point, and hence is not second countable, although X is second countable.]

2. Any base for the open sets in a second countable space has a countable subfamily which
is a base.

3. Any increasing chain of real numbers which is well ordered by the usual order must
be countable.

16C. The countable chain condition
Let N be any cardinal number. A space X has caliber X iff whenever % is a family of open
subsets of X with |%| = N, a subfamily ¥~ of % exists with |[¥'| = Nand (| {V | Ve ¥} # 0.
We say X satisfies the countable chain condition iff every family of disjoint open subsets of
X is countable.

1. Every separable space has caliber ;.

2. Every product of separable spaces has caliber ;.

3. If X has caliber ¢, then X satisfies the countable chain condition.

4. Investigate the three properties mentioned in 1 and 2 for a space X with ¥, elements
and the “co-countable” topology, in which the open sets are  and all complements of countable
sets.

It is an open question whether the product of two spaces, each with the countable chain
condition, has the countable chain condition. Also, this condition plays a key role in the
enunciation of the Souslin hypothesis with which we will be concerned in Section 21.

16D. Lindeldf spaces
A subset 4 of a space X is G-closed in X iff each point p ¢ A4 is contained in a G; disjoint
from A.

1. The Sorgenfrey line E is Lindelof. Conclude that E is a T,-space.

2. If X is Lindeldf, every uncountable subset of X has an accumulation point.
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3. A regular space is Lindeldf iff each open cover has a countable subcollection whose
closures cover (i.e., has a countable dense subsystem).

4. Any space is Lindelof iff each closed filter & with the countable intersection property
(whenever Fy, F,, ...€ %, then () F, # o) has a nonempty intersection. [The complements
of the sets in an open cover with no countable subcover generate a base for a closed filter with
the countable intersection property.]

5. A regular space is Lindelof iff each open filter with the countable intersection property
has a cluster point [the complements of the closures of the sets in an open cover having no
countable dense subsystem form an open filter with the countable intersection property].

6. A regular space is Lindelof iff whenever it is embedded in a Hausdorff space, it is
Gs-closed. [A non-Lindel6fspace X has an open filter with the countable intersection property
but no cluster point. Add a point p to the space whose nhoods are {p} U U, where U is any
element of this filter. This provides a Hausdorff space in which X is not Gs-closed. The reverse
is easier. ]

16E. Hereditarily Lindelof spaces
A space X is hereditarily Lindelof iff every subspace of X is Lindelof.

1. Every second-countable space is hereditarily Lindelof.

2. Any space X can be embedded as a dense subset of a Lindelof space. [Adjoin a point
p to X whose nhoods are the sets {p) U E, where E is a Lindeldf subset of X. Then X U {p}
is Lindelof.] Thus not every Lindeldf space is hereditarily Lindelof.

3. If X is hereditarily Lindelof and E < X, the set E* of points of E which are not ac-
cumulation points of E is countable.

16F. Cardinality and the countability axioms

1. A separable first-countable space has cardinal < ¢ [¢ = R *°].

2. If X is separable and C(X) denotes all continuous functions f: X — R, then
|C(X)| < . [A continuous function is determined by its values on a dense set.]

3. If (X, 1) is second countable, then |1] < «¢.

16G. Separable spaces

1. Every subspace of a separable metric space is separable.
2. Prove the irrationals are separable directly by finding a countable dense subset.
3. The set £, of ordinals less than the first uncountable ordinal is not separable.

4. Give an example of a regular, separable space which is not normal. (Compare with
16.8.)

16H. Examples on countability properties
1. The plane with slotted disks (4C) is separable, but neither first countable nor Lindelof
(hence not second countable).

2. The plane with the topology given by radially open sets (3A.4) is separable, but neither
first countable nor Lindelof.
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3. The Moore plane I' is separable, but neither first countable nor Lindel6f.

4. The sequence space m (2H) is not separable. [An uncountable subset A of m can be
found such that p(a, b) = 1 whenever a, be A.]

5. The sequence spaces ¢ and ¢, (2H) are separable. [Consider sequences with rational
terms which are ultimately constant.]



Chapter 6

Compactness

17 Compact spaces

Many of the most important theorems in a course in classical analysis are proved
for closed bounded intervals (e.g., a continuous function on a closed bounded
interval assumes its maximum). The basis for the proof of such theorems is
almost without exception the Heine—Borel theorem, that a cover of a closed
bounded interval by open sets has a finite subcover. It is not surprising, then,
that the (topological) property of closed bounded intervals thus expressed has
been made the subject of a definition in topology, the definition of compactness.

This section is long, but falls naturally into three parts. In the first (17.1
through 17.4) we study compactness and equivalent conditions for compactness,
in the second (17.5 through 17.9) we give the basic theorems and examples about
subspaces, products and continuous images of compact spaces; in the third
(17.10 through 17.14) we study some of the properties of compact spaces which
are the reasons this section is so long.

17.1 Definition. A space X is compact iff each open cover of X has a finite subcover.
X is countably compact iff each countable open cover of X has a finite subcover.

Evidently, X is compact iff X is countably compact and Lindeldf. Countable
compactness played an important role in the early stages of topology, because for
the spaces then considered (usually metric spaces) it is equivalent to compactness
(see 17F.6). It is still important in certain restricted directions. Another variation
of compactness, sequential compactness, is introduced in Exercise 17G. It, too,
was once more important than it now is.

17.2 Examples. a) R isnot compact. In fact, the cover of R by the open sets (— n, n),
for n € N, can have no finite subcover.

b) Iis compact. Let % be any open cover of I and let K be the set of all points
c in I such that some finite subcollection from % covers [0, ¢]. Clearly 0 € K.
Also, if ce K and b < ¢, then b e K. Thus K is a subinterval of I containing 0.
Moreover, if ¢ € K, then any finite subcollection from % which covers [0, c]
alsocovers [0, ¢ + €] forsomee > 0(unless c = 1, in which case we have finished).
Thus K is an open set in I. Finally, if k is the right-hand endpoint of K, then
ke K. For pick U e % such that ke U. Then (k — ¢ k] = U for some € > 0
so that, by adding U to a finite subcollection from % which covers [0, k — €],

116
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we obtain a finite subcollection from % which covers [0, k]. Now K is a closed
subinterval of I which contains 0 and is an open set in I. Thus K = I. This
proves that I is compact.

c) The ordinal space  is compact. Let % be any open cover of Q. Let o, be
the least element of Q such that (a;, w,] is contained in some element U, of %.
If o, # 1, let o, be the least element of Q such that (a5, o, ] is contained in some
element U, of %. Continue this process. Then for some n, o, = 1, since otherwise
we would have a sequence o; > o, > - -+, which would contradict the well-
ordering of Q. Then {U,, ..., U,} is a subcollection from % which covers all of
Q except possibly 1, so an (n + 1)-element subcollection from % covers . Note
that each of the closed subspaces [1, o] of  is now compact, by 17.5.

Some of the properties of the subspace £, of Q will be of interest. First note
that Q is countably compact. For let % = {U,, U,,...} be a countable open
cover of Q, If no finite subcover of Q, exists, then for each n, pick
o, ¢ Uy u---u U, If o =sup{ay, 0y, ...}, then « €Q, and no finite subcol-
lection from % covers the compact set [ 1, o], which is impossible. Next note that
Q, is not compact, since the cover of Q, by the sets [1, a), for & € Q,, can have no
finite subcover. Also, letting Q(«) denote the set of all ordinals <a, , — Q(«)
is homeomorphic to Q, for each o € Q. The homeomorphism is easily constructed ;
it takes the least element of @, — Q(«) to 1, the next element to 2, and so on by
transfinite induction. Finally, every continuous real-valued function on Q is
constant on some tail. To see this, let f: €, — R be continuous. Then f(€2,)
is countably compact, by 17F.5, and Lindelof. Hence f(Q,) is compact. By the
next theorem, the net (f(«)),q, must then have a cluster point in f(&,). This
cluster point y is unique. For suppose z is another cluster point of the same net.
Then we can find an increasing sequence &, a,, . . . of countable ordinals such that
[f(z—1) — Yl < l/mnand |f(ay,) — 2 < l/n, for n = 1, 2, ... . Thus if
a = sup {ay, oy, ...}, we have f(a) = y and f(x) = z, so that y = z. Next we
claim the net (f(«)) converges to this unique cluster point y. If not, then for some
opennhood U of y, 2, — f~!(U) contains a cofinal subset of Q,. But Q, — f~'(U)
is a closed subset of , and thus countably compact (17F.5), and the argument
above can be re-applied to yield a cluster point of (f()) other than y. Since this
is impossible, (f(x)) must converge to y. Now for n = 1,2,..., pick a, €L,
such that o > o, implies |f(a) — y| < 1/n. Let ag = sup {ay, @, ...}. Then
a > o, implies f(a) = y, so f is constant on the tail {x €Q | & > ay} of Q.

This last property of Q, yields an extension theorem: every continuous real-
valued function on Q. can be extended to a continuous function on .

17.3 Definition. A family & of subsets of X has the finite intersection property iff
the intersection of any finite subcollection from & is nonempty.

Families with the finite intersection property are somewhat like filters; in
fact, if & is such a family and & is the collection of all possible finite intersections
from & then & is a filter base, so every family & with the finite intersection property
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generates a filter. Conversely, every filter is a family with the finite intersection
property. Some of the implications in the following theorem will now be clear.

17.4 Theorem. For a topological space X, the following are equivalent:

a) X is compact,
b) each family & of closed subsets of X with the finite intersection property has
nonempty intersection,

c) each filter in X has a cluster point,
d) each net in X has a cluster point,
e) each ultranet in X converges,

f) each ultrafilter in X converges.

Proof. a)=b): If {E,|ae A} is a family of closed sets in X having empty
intersection, then {X — E,|a€ A} is an open cover of X. By compactness,
there is a finite subcover {X — E,,..., X — E, } and then ()i-; E,, = @, s0O
{E, | a € A} does not have the finite intersection property.

b) = ¢): If # is a filter on X, then {F | F € # } is a family of closed sets with
the finite intersection property, so there is a point x in () {F | Fe #}. Then &#
has x for a cluster point.

¢) = d): This is an easy exercise in the use of the standard translation process
from filters to nets. See 12.15-12.17 and 12D.

d) = e): If an ultranet has a cluster point, it converges to that point.

e) = f): Let & be an ultrafilter on X. The net based on & is then an ultranet
(12D.4) and hence converges. Then & converges (12.17).

f) = a): Suppose % is an open cover of X with no finite subcover. Then
X —(U,u---uU,) # e for each finite collection {U,, ..., U,} from %. The
sets of the form X — (U, u ---u U,) then form a filter base (since the inter-
section of two such sets has again the same form), generating a filter . Now %
is contained in some ultrafilter & * and, by (f), & * converges, say to x. Now
x € U for some U € %. Since U is a nhood of x, U € & *. But, by construction,
X —Ue% < &* Since it is impossible for both U and X — U to belong to
Z * we have a contradiction. Thus % must have a finite subcover. B

The previous theorem gives a hint of one of the lines from topology to more
“applied” branches of mathematics. Compactness can be used by “existential”
(as opposed to “constructive”) analysts, in the following way. Given a differential
equation, it may be possible to topologize some set of functions (among which are
the solutions, if any, of that equation) in such a way that convergence of an ap-
propriate net or sequence of functions to the limit f implies that f is a solution of
the original differential equation. Thus the study of compactness (every net has
a convergent subnet), countable compactness (every sequence has a convergent
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subnet; see 17F) and sequential compactness (every sequence has a convergent
subsequence; see 17G) in spaces of functions is germane to the study of existence
of solutions to differential equations.

We turn now to investigation of the basic structural questions about subspaces,
continuous images and products of compact spaces. That the answers are as
pleasing as they are is one of the primary reasons for the importance of compactness.
In particular, we will have more to say about the Tychonoff Theorem (which is
about products).

We begin with subsets.

17.5 Theorem. a) Every closed subset of a compact space is compact.
b) A compact subset of a Hausdorff space is closed.

Proof. a) If A is closed in the compact space X and % is any open cover of 4,
then for each U € % we can find an openset V ;in X suchthat V;, n 4 = U. Now
{X — A} U {(V; | Ue%} is an open cover of X which, by compactness, has a
finite subcover. The intersections with A4 of this finite cover form a finite subcover
of A from %.

b) Suppose A4 is a compact subset of the Hausdorff space X. If a € 4, then
a net (x,) exists in A with x, — ain X. But since A4 is compact, (x,) has a cluster
point b in 4 and thus a subnet which converges to b. Since this subnet converges
to a also and limits in X are unique, we must have a = b. Thus a € A, showing
that A4 is closed. B

For non-Hausdorff spaces, the second part of the theorem above may fail;
see Exercise 17B.4. Before turning to continuous images and products, we note
that compact subsets of a topological space “behave like points” in a sense made
more precise by the following theorem. The proof is left to Exercise 17B.

17.6 Theorem. a) Disjoint compact subsets of a Hausdorff space can be separ-
ated by disjoint open sets.

b) A compact set and a disjoint closed set in a regular space can be separated
by disjoint open sets.

c) If A x B is a compact subset of a product X X Y contained in an open set

W in X x Y, then open sets U in X and V in Y can be found such that
AxBcUxVcW.

17.7 Theorem. The continuous image of a compact space is compact.

Proof. Suppose X is compact and f is a continuous map of X onto Y. If % is
an open cover of Y, then {f ~!(U) | U € %} is an open cover of X and, by compact-
ness, a finite subcover exists, say {f ~(U,), ..., f~'(U,)}. Then, since f is onto,
the sets Uy, ..., U, cover Y. Thus Y is compact. B

This theorem has a nice consequence. If f is a continuous mapping from a
compact space X to a Hausdorffspace Y, then each closed subset E of X is compact,
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so f(E) is compact and thus closed in Y. Hence every continuous map from a
compact space to a Hausdorff space is a closed map (and thus a quotient map). One
consequence of this is given in 17.14 at the end of this section.

For use in the next theorem, we recall that an onto mapping takes ultranets
to ultranets (11.11). A proof similar to the one given here can easily be constructed
using ultrafilters.

17.8 Theorem (Tychonoff). A nonempty product space is compact iff each factor
space is compact.

Proof. =: If the product space is nonempty, then the projection maps are all
continuous and onto, so the result here follows from 17.7.

<=: Let (x;),ca be an ultranet in [],.4 X,. Then for each fixed o, (7,(x;));ca
is an ultranet in X, and hence converges, since X, is compact. By 11.9 it follows
that (x,) converges. Thus the product space is compact. B

The theorem just proved can lay good claim to being the most important
theorem in general (nongeometric) topology. It plays a central role in the develop-
ment of a wealth of theorems within topology and applications of topology to
other fields. To mention but a few examples: the construction of the Stone—Cech
compactification fX of any Tychonoff space X is based on it (see 19.4), Ascoli’s
theorem on compactness of function spaces (see 43.15) relies on it (and Ascoli’s
theorem can, in turn, be used to provide existence theorems for various differential
equations), the proof of compactness of the maximal ideal space of a Banach
algebra requires it and hence it is central to the development of the Gelfand
representation theorem.

It is worth mentioning that the proof of 17.8, as we have given it, is deceptively
simple; it hides a good deal of muscle. Tychonoff did not have available for his
proof the powerful convergence theorems which roam around in ours. Some idea
of the strength of his theorem can be had by studying Exercise 170, in which you
show that 17.8 implies the axiom of choice. (Thus the axiom of choice must be
used somehow in our proof, since it cannot be derived from the other axioms of
set theory.)

We can use the Tychonoff theorem to provide a number of important examples
of compact spaces.

17.9 Examples. a) A subset of R" is compact iff it is closed and bounded. For if A
is compact, it is closed. Moreover the sets U(x, 1) for x € A form an open cover
of A which, by compactness, has a finite subcover. A routine calculation shows that
A is thus bounded.

Conversely, each closed interval [g, b] in R is homeomorphic to I and thus is
compact. But a closed, bounded subset of R” will be a closed subset of an n-fold
product [ —¢, c] x -+ x [—¢, c] of such intervals and thus will be compact.

b) Every cube is compact. This follows directly from Tychonoff’s theorem,
since a cube is just a product of closed bounded intervals. Of particular interest
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is the Hilbert cube, which is the product I¥° of countably many copies of I. To
us it makes no difference, but a metric geometer working with Hilbert space
H (18.7) would rather think of the Hilbert cube as the product

[0, 1] x [0, 2] x [0,3] x -

(since then it is isometric, rather than just homeomorphic, to a subspace of H).

¢) The Cantor set.. Beginning with the unit interval I, define closed subsets
A; > A, o ---in I as follows. We obtain 4; by removing the interval (3, %
from I. A, is then obtained by removing from A, the open intervals (§, 3) and
2, 8. In general, having A, _,, A, is obtained by removing the open middle
thirds from each of the 2" ! closed intervals that make up A4, _;. The Cantor
set is the subspace C = ﬂ A, of I It is a nonempty compact metric space.

We can develop an interesting alternative description of the Cantor set.
Each x € I has an expansion (x;, x,, . . .)in ternary form (that is, each x;is 0, 1 or 2)
obtained by writing x = ) x,/3. These expressions are unique, except that
any number but 1 expressible in a ternary expansion ending in a sequence of 2’s
can be re-expressed in an expansion ending in a sequence of 0’s (for example, §
can be written as (1, 0,0, .. ) or as (0, 2, 2, .. .)). Then the Cantor set C is precisely
the set of points in I having a ternary expansion without 1’s. For this reason, C is
sometimes referred to as the Cantor ternary set.

Using the ternary representation, it is possible to show that C is homeomorphic
to a product of denumerably many copies of the two-point discrete space. In fact,
by writing the discrete space as D = {0, 2}, the ternary correspondence
X — (x4, X5, . ..) becomes a homeomorphism. The proof is left as an exercise.
You should do it if you think you can’t, since it will teach you a lot about product
spaces. Later, in the section devoted to the Cantor set, we will see that the product
of denumerably many nontrivial finite discrete spaces is homeomorphic to the
Cantor set. For this reason, (possibly nondenumerable) products of finite discrete
spaces are called Cantor spaces. The Cantor spaces occupy a special place in
topology. Compactness and discreteness are, in a sense, dual properties, and only
the Cantor spaces carry the banners of both.

We close this section with a study of some of the (nonstructural) properties
of compact spaces which make them important. In particular, we will develop the
relationship between compact Hausdorff spaces, Tychonoff spaces and normal
spaces.

17.10 Theorem. A compact Hausdorff space X is a T,-space.

Proof. 1t suffices to prove regularity since a regular Lindelof space is normal.
Let A be closed in X, x ¢ A. For each a € A, pick disjoint open sets U, containing
x and V, containing 4. The sets V,, a € 4, cover A and, by compactness of A4,
some finite collection V,,...,V, is sufficient. Let V = U;'zl o, and
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U= ﬂ?=1 U,. Then U and V are disjoint open sets containing x and 4,
respectively.

One importance of this theorem can be brought into focus by recalling that
normal spaces enjoy very nice separation, extension and covering properties,
but that products of normal spaces need not be normal. By combining the above
theorem with Tychonoff’s theorem, we obtain the only result which asserts
normality for a large class of product spaces: every product of compact, Hausdorff
spaces is T,. One of the immediate consequences of this is a result we have already
mentioned without proof: every cube is T,. The search for theorems which assert
normality for various product spaces has occupied the time of some very good
mathematicians; we will return to this topic in Section 21.

Another (related) consequence of Theorem 17.10 provides the important
relationship between compact Hausdorff spaces, Tychonoff spaces and normal
spaces.

17.11 Corollary. The following are equivalent, for a topological space X :

a) X is Tychonoff,

b) X is homeomorphic to a subspace of some cube,

¢) X is homeomorphic to a subspace of some compact Hausdorff space,
d) X is homeomorphic to a subspace of some T,-space.

Proof. a) = b): We have already shown (a) equivalent to (b) in 14.13.
b) => c): Every cube is a compact Hausdorff space and thus is normal.
c) = d): Every compact Hausdorff space is a T,-space.
d) = a): Every subspace of a T,-space is a Tychonoff space. B

In studying the interplay between compactness and the strong-side separation
axioms (normality and the Tychonoff property) one example has become of
paramount importance.

17.12 Example. The Tychonoff plank. Our basic building blocks are the ordinal
spaces £, with which we are familiar, and Q(w) = N U {w}, where w is the first
infinite ordinal. When Q(w) is given its order topology, the points of N are isolated
(open) and the point w has for basic nhoods the sets {n,n + 1, ...} U {w}.

The product space 2 x Q(w) will be denoted T* and the corner point (w,, w)
in T* will be denoted t. The Tychonoff plank is the subspace T = T* — {¢} of
T*. Since T* is a compact Hausdorff space, T is a Tychonoff space.

But T is not normal. To develop this fact, some terminology will be useful.
For each ne N, let Q, = Q, x {n}, and for each x €Q,, let Q,(x) be the tail
{(B,n)| B = o} in Q,. Also, we will call the set A = {(n, ;) |ne N} the right
edge of T, and the set B = {(w, a) | a € Q,} the top edge of T. Now A and B are
closed sets in T, since they are the intersections with T of closed sets in T*. Hence
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if T were normal, there would be a continuous f: T — I with f(4) = 0 and
f(B) = 1. But for each n e N, f is constant on some tail Q,(a,) of Q, since Q, is
just a copy of Q, (see 17.2¢c). If we let o = sup {ay, oy, .. .}, then « < w, and f
takes some constant value on Q,(a) for each n. But since f(4) = 0, this constant
value must be O for each n. Thus f(x, n) = 0for each n € N, and hence f(«, ) = 0.
But (o, w) € B, contradicting the fact that f(B) = 1. Thus no continuous function
separates the right edge of T from the top edge, so T cannot be normal.

17.13 Theorem. A continuous real-valued function on a countably compact
space is bounded.

Proof. If f: X - R is continuous and X is countably compact, then the open
cover of X by the sets f ~}(—n, n) has a finite subcover. B

17.14 Theorem. A one—one continuous map from a compact space X onto a
Hausdorff space Y is a homeomorphism.

Proof. If f is such a map, then for each closed set E € X, E is compact, so f(E)
is compact, and thus closed, in Y. Thus f is a closed map, and hence a
homeomorphism. B

Neither of the properties above is characteristic of compact spaces and each
has been intensively investigated for noncompact spaces as well. The technique
is a familiar one. By making the property the subject of a definition, its study be-
comes the study of a class of topological spaces (somewhat wider than the class
of compact spaces). Exercises 17J, 17K, 17L and 17M are devoted to the develop-
ment of this line of thought.

Problems

17A. Examples on compactness
1. An infinite set X with the cofinite topology is compact.
2. Which subsets of the Sorgenfrey line E are compact?
3. Which subsets of the slotted plane (4C) are compact?
4. Which subsets of the Moore plane I'" are compact?

5. The sequence space m (2H) is not compact [an uncountable subset A of m exists any
two of whose points are at distance 1].

17B. Compact subsets

1. A subset E of X is compact iff every cover of E by open subsets of X has a finite sub-
cover. (But note that compactness is not a relative property; that is, if E is compact, it is
compact in whatever space it is embedded.)

2. The union of a finite collection of compact subsets of X is compact.

3. Theintersection of any collection of compact subsets of a Hausdorff space X is compact;;
“Hausdorff” is necessary, even for intersections of two compact sets.
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4. A compact subset of a non-Hausdorff space need not be closed (compare with 17.5).

5. In a Hausdorff space, disjoint compact sets can be separated by disjoint open sets.
(This is an illustration of the general rule, “compact sets behave like points.” The next two
parts of this exercise are examples of the same principle.)

6. In a regular space, a compact set and a disjoint closed set can be separated by disjoint
open sets.

7. If A x B is a compact subset of X x Y contained in an open set W in X x Y, then
there exist open sets U « X and V = Ysuchthat A x Bc U x V < W.

17C. Maximal compact spaces

A compact space X is maximal compact iff every strictly larger topology on X is noncompact.

1. A compact space X is maximal compact iff every compact subset is closed.

2. Every compact Hausdorff space is maximal compact and every maximal compact
space is T; (so maximal compactness acts like a separation axiom for compact spaces).

17D. z-filters in compact spaces
A variant of the convergence characterization of compactness (17.4) is important in studying
the interplay between compactness and the Tychonoff separation axiom. To give it, we must
review the language of z-filters.

A nonempty collection & of nonempty zero sets in a topological space X is a z-filter on
X iff

a)ifZ,Z,e#, thenZ, nZ,e &,

b) if Z e & and Z' is a zero set containing Z, then Z' € &.

Thus a z-filter is almost a filter, but the superset property has been altered to that only zero
sets will belong. Convergence for z-filters is easily defined, once we recall that the zero-set
nhoods of a point in a Tychonoff space form a nhood base (14C). We say a z-filter & in a
Tychonoff space X converges to a point x in X, written % — x, iff each zero-set nhood of
x belongs to . We say & has x as a cluster point iff x € F for each F € & (since & consists
of closed sets, we needn’t take closures here). Finally, a z-ultrafilter is a z-filter which is con-
tained in no strictly larger z-filter. Parts 1 and 3 below are repeats of parts of the Exercise 12E
on P-filters.

1. Every z-filter is contained in some z-ultrafilter.

2. For a Tychonoff space X, the following are equivalent :
a) X is compact,
b) every z-filter on X has a cluster point (i.e., has nonempty intersection),
c) every z-ultrafilter on X converges.
3. If Z, and Z, are zero sets, & is a z-ultrafilter and Z, U Z, € &, then one of Z, or
Z, belongs to #.

17E. Compact ordered spaces

Call an ordered space X lattice complete iff each nonempty subset has a supremum and an
infimum. Recall that X is Dedekind complete iff every subset of X having an upper bound has
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a least upper bound. Then the following are equivalent:

a) X is compact,
b) X is lattice complete,
¢) X is Dedekind complete and has a first and a last element.

17F. Countably compact spaces

1. A space is countably compact iff each sequence has a cluster point. (Hence, iff each
sequence has a convergent subnet. This does not necessarily mean each sequence has a con-
vergent subsequence, see 11B. Spaces in which each sequence has a convergent subsequence
are studied in 17G.)

2. A T,-space is countably compact iff every infinite subset has a cluster point.

3. The product of a compact space and a countably compact space is countably compact.
(The result fails for two countably compact factors; see the notes.)

4. If X, X,, ... are all first countable, then [] X, is countably compact iff each X, is
countably compact.

S. Continuous images and closed subspaces of countably compact spaces are countably
compact.

6. For metric spaces, compactness and countable compactness are equivalent.

7. Let X be a countably compact space, x € X. If U, U,, . .. is a sequence of open sets
in X such that (2, U, = {x}, then {Uy, U,, ...} is a nhood base at x. (Compare with
16A4.)

17G. Sequentially compact spaces

A space X is sequentially compact iff every sequence in X has a convergent subsequence.
(Compare with countable compactness; see 17F.)

1. Not every compact space is sequentially compact. [Consider an uncountable product
of copies of L]

2. Every sequentially compact space is countably compact, but not every sequentially
compact space is compact. Hence, together with part 1, sequential compactness is neither
stronger nor weaker than compactness; just different. [Use,.]

3. A first-countable space is sequentially compact iff it is countably compact. (Thus, for
metric spaces, sequential compactness is equivalent to compactness, by 17F.6.)

4. A second-countable T;-space is sequentially compact iff it is compact.

S. The countable product of sequentially compact spaces is sequentially compact. (It
is also true, but difficult to prove, that the product of <N; sequentially compact spaces is
countably compact. See the notes.)

6. Assuming the continuum hypothesis, the product of any uncountable family of T;-
spaces, each having more than one point, is never sequentially compact.

17H. Realcompact spaces
Every compact Hausdorff space is Tychonoff, and thus embeddable in some cube. This
makes it clear that a space X is a compact Hausdorff space iff it is embeddable as a closed
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subset of some product of copies of the unit interval I and leads to the following generalization
of compactness: X is realcompact iff it can be embedded as a closed subset of a product of
copies of the real line R.

1. Every compact Hausdorff space is realcompact.

2. Every intersection of realcompact subsets of X is realcompact.

3. Every product of realcompact spaces is realcompact.

171. o-Compact spaces

A space X is o-compact iff X can be written as the union of countably many compact subsets.
X is said to be hemicompact (or denumerable at infinity) iff there is a sequence K, K, ... of
compact subsets of X such that if K is any compact subset of X, then K < K, for some n.

1. Every hemicompact space is o-compact; the converse fails.
2. Every o-compact space is Lindelof.

3. The product of finitely many g-compact spaces is s-compact. This cannot be extended
to infinitely many factors. [Consider N*°.]

17). Pseudocompact spaces

A space X is pseudocompact iff every continuous real-valued function on X is bounded.

1. Every countably compact space is pseudocompact.
2. In a Tychonoff space X the following are all equivalent :

a) X is pseudocompact,

b) if U, o U, o -+ is a decreasing sequence of nonempty open sets in X, then
NU, # o

c) every countable open cover of X has a finite subcollection whose closures cover X.
(Compare with 17K.2.)

3. A pseudocompact T,-space is countably compact. [If X is not countably compact,
it has a denumerable closed discrete subset D. Use 15.8.]

17K. H-closed spaces

A Hausdorff space is H-closed (absolutely closed) iff it is closed in every Hausdorff space in
which it can be embedded. This generalizes a property of compact Hausdorff spaces.

An open filter in a topological space is a collection of open sets satisfying the axioms for
a filter, except that only open supersets of elements must belong. See Exercises 12E and 12G
for elementary facts about open filters.

For the duration of this problem, all spaces are Hausdorff.

1. A space X is H-closed iff every open filter has a cluster point. [If some open filter fails
to have a cluster point, a point can be added to X whose nhoods are the elements of the open
filter (together with the point itself), and the result is a Hausdorff extension of X in which X
is not closed. The reverse implication is also done by contradiction. ]

2. A space is H-closed iff every open cover has a finite subcollection whose closures
cover (ie, a finite dense subsystem). [If an open filter does not have a cluster point, the
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complements of closures of its elements form an open cover with no finite dense subsystem.]
(Compare with 17J.2.)

3. An H-closed space is compact iff it is regular. [One way is trivial. For the reverse, let
9 be an open cover and use regularity to prove the existence of a cover 7~ such that for each
V e, there is some U € % containing V. Then a finite dense subsystem of ¥~ induces a

finite subcover from %.]

4. Let N* be the subspace {0} U {1/n|neN} of R, and to the space N x N* adjoin a
point g whose nhoods have the form U, (q) = {(n, 1/m)e N x N* |n > n,}. Use part 2
above to prove that the resulting (Hausdorff) space X is H-closed and show that X is not
compact.

17L. More on H-closed spaces

1. A regularly closed subset of an H-closed space is H-closed.

2. A descending chain ./ of nonempty H-closed subsets of an H-closed space X has
nonempty intersection. [Let ¢ be the collection of all open sets G in X such that G = A for
some 4 € /. Show that ¢ has the finite intersection property and thus (17K.1) has a cluster
point p. Thenpe () .]

3. An H-closed space is compact iff each closed subset is H-closed. [If . is a closed filter,
well-order & and use this well-ordering to find a descending chain of closed sets with the same
intersection. Apply part 2.]

4. A continuous Hausdorff image of an H-closed space is H-closed. [Use 17K.2.]
5. A nonempty product is H-closed iff each factor is H-closed.

17M. Minimal Hausdorff spaces

A Hausdorff space X is minimal Hausdorff iff every one—one continuous map of X to a
Hausdorff space is a homeomorphism [i.e., iff there is no strictly weaker Hausdorff topology
on X|. This, again, generalizes a property of compact, Hausdorff spaces.

1. A Hausdorff space X is minimal HausdorfT iff every open filter with a unique cluster
point converges (necessarily to that point). [The key is the statement in brackets after the
definition of minimal Hausdorff space. Thus if a nonconvergent open filter with a unique
cluster point exists, construct a strictly weaker Hausdorff topology on the space (by enlarging
nhoods of the unique cluster point).]

2. Every minimal Hausdorff space is H-closed. [Construct a weaker Hausdorff topology
for a nonabsolutely closed space.] Thus a minimal Hausdorff space is compact iff it is regular.
Also, if every closed subset of a minimal Hausdorff space is minimal Hausdorff, the space is
compact. [See 17K.3 and 17L.3.]

3. Every H-closed space X has a unique weaker topology which is minimal Hausdorff.
[Use the complements of the regularly closed sets in X as a base for a new topology on X.]

4. A space is minimal Hausdorff iff it is semiregular and H-closed.
More is known. A product of minimal Hausdorff spaces is minimal Hausdorff. Every

Hausdorff space can be embedded (as a closed, nowhere dense subspace) in a minimal
Hausdorff space. See the notes.
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17N. Hausdorffness of closed images

1. If f is a closed map of X onto Y and f~!(y) is compact for each y € Y, then Y is
Hausdorff (or regular) if X is.

2. For a compact Hausdorff space X, if f is a quotient map of X onto Y, the following
are equivalent:

a) Y is Hausdorff,
b) fis closed,
) {(x;, x3)€ X x X | f(x;) = f(x,)} isclosed in X x X.
170. The Tychonoff theorem is equivalent to the axiom of choice
1. How does the Tychonoff theorem rely for its proof on the axiom of choice?

2. The Tychonoff theorem implies the axiom of choice [allowable reference: any paper
of Kelley written in 1950].

17P. Onto maps of compact spaces

The basic question we raise here is the following. Given a map f of a compact space X onto
a compact space Y, when is it possible to throw away part of the domain in such a way that
the restriction of f to what remains is a homeomorphism?

Let X and Y be compact Hausdorff spaces and let f be a continuous map of X onto Y.

1. There is a compact subset X, of X such that f(X,) = Y, but f maps no proper closed
subset of X, onto Y. [Use Zorn’s lemma. ]

2. If Y is extremally disconnected and no proper closed subset of X is mapped onto Y,
then f is a homeomorphism. [It suffices to show f is one—one. If x; # x,, pick disjoint open
G,, G, such that x, € G, x, € G,. Then A — f(X — G,) and 4 — f(X — G,) are disjoint
and open in Y and hence so are 4 — f(X — G,)and A — f(X — G,), by 15G.1. But

fG)= A - f(X -Gy,

for i = 1,2, and hence f(x;) # f(x,).]

17Q. Projective spaces

A compact space X is called projective in the category of compact spaces and continuous maps
provided whenever f: X — Z is continuous and g: Y — Z is continuous and onto, then there
is a continuous map 4: X — Y suchthat f = go A

Recall that a space is extremally disconnected (15G) iff the closure of every open set is
open. We will draw on parts of Problems 15G and 17P in the course of presenting the following
material.



18] Locally compact spaces 129

1. Every projective space is extremally disconnected. [Let G be an open set in the pro-
jective space X. Let Y be the disjoint union of X — G and G,and g: Y — X the obvious map
(essentially the identity) while f: X — X is the identity. By projectivity of X, there is a map
h: X — Y such that f = g o h. Conclude that G is open.]

2. Every extremally disconnected space is projective. [Let X be extremally disconnected,
and let f: X - Z and g: Y - Z be as in the introductory paragraph. Tn X x Y, let
D = {(x,y) | f(x) = g(y)}. Then D is compact and the projection 7, of X x Y onto X carries
D onto X. Apply 17P to get a homeomorphism =, | E of a closed subset E of D with X. Let
h=m,o0(my [ E)™', where n, is the projection of X x Y onto Y.]

17R. Compact subsets of R

There are uncountably many nonhomeomorphic compact subsets of R. [Use ordinals.]

17S. The Alexander subbase theorem

When describing compactness of X in terms of open covers, it is evident that it suffices to
restrict attention to a fixed base for X. That is, X is compact iff there is a base & for the
topology of X such that any cover of X by elements of # has a finite subcover. The corre-
sponding assertion for subbases remains true, if we assume the axiom of choice, but is much
less obvious. Tt is interesting, since it can be used to prove the Tychonoff theorem.

A family # of subsets of X will be called inadequate iff it fails to cover X, and finitely
inadequate iff no finite subfamily of 4 covers X.

1. Given any finitely inadequate family 4, there is a finitely inadequate family #* > %
which is maximal in the order #, < %, iff #, < %, on the set of all finitely inadequate
families.

2. A maximal finitely inadequate family #* has the following property: if C,,..., C,
are subsets of X and C, n---n C, belongs to #* then C, belongs to #* for some
k =1,...,n [The proof is by contradiction.]

3. The following are all equivalent, for a topological space X :

a) there is a subbase ¥ for X such that each cover of X by elements of ¢ has a finite
subcover,

b) there is a subbase ¥ for X such that each finitely inadequate subfamily of € is
inadequate,

c) every finitely inadequate family of open subsets of X is inadequate,

d) X is compact.

[The only hard part is (b) implies (c).]
4. Use part 3 to provide a proof of the Tychonoff theorem.

18 Locally compact spaces

Analysts who deal with abstract spaces often appreciate the presence of some form
of compactness. Quite often, it is enough that the spaces in question be locally
compact.

18.1 Definition. A space X is locally compact iff each point in X has a nhood base
consisting of compact sets.
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Recalling that a space is regular iff each point has a nhood base consisting
of closed sets, we see immediately that every locally compact Hausdorff space is
regular. (In the next section, we will see from a slightly better angle that every
locally compact Hausdorff space is, in fact, completely regular.)

Definition 18.1 provides many compact nhoods of each point in a locally
compact space, but for most spaces, we can stop as soon as one has been found,
according to the next theorem.

18.2 Theorem. A Hausdorff space X is locally compact iff each point in X
has a compact nhood.

Proof. Suppose x has a compact nhood K. Let U be any nhood of x, and let
V = Int (K n U). Then V is an open nhood of x. Now Cly V is compact and
Hausdorf, so Cly V is regular. Then, since V is a nhood of x in Cly V, thereis a
nhood W of x in Cly V with Clg,, W = V. Now W is open in V and hence in
X, and Clg,,, W is closed in Cly V and hence compact; this makes it a compact
nhood of x in X which is contained in U. Hence x has a base of compact nhoods
in X. The other implication is easy. B

Theorem 18.2 provides us with the usual path to proving local compactness,
or nonlocal compactness, of the familiar examples of topological spaces. For one
thing, it implies that every compact Hausdorff space is locally compact. Here
are some other examples.

18.3 Examples. a) The real line R is locally compact.

b) The space Q of rationals and the space P of irrationals are not locally
compact.

¢) Manifolds. A topological n-manifold is a Hausdorff space X such that for
each x € X there is a homeomorphism ¢, carrying an open set U in X which
contains x onto an open subset of R” (for X to be a C®-manifold, or a differentiable
manifold, it must also be true that whenever (domain ¢,) N (domain ¢,) # o,
then ¢, o' is a C*-function from R" to R"). Using Theorem 18.2, every
topological n-manifold is locally compact. Other properties of manifolds are
mentioned in 18H.

We turn now to the usual questions about subspaces, products and continuous
maps of locally compact spaces, beginning with subspaces.

18.4 Theorem. In a locally compact Hausdorff space, the intersection of an
open set with a closed set is locally compact. Conversely, a locally compact
subset of a Hausdorff space is the intersection of an open set and a closed
set.

Proof. Let X be locally compact and I,. If Aisopenin X and a € 4, thenahasa
compact nhood K in X contained in 4, and K is then a compact nhood of a in 4,
so A is locally compact. If Bisclosed in X and b € B, then b has a compact nhood
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K in X and K n B is a compact nhood of b in B, so B is locally compact. Hence,
open subsets and closed subsets of X are locally compact. But (easily) the inter-
section of two locally compact subsets of X is locally compact so, in particular,
the intersection of an open set with a closed set in X is locally compact.

Conversely, suppose Y is Hausdorff and X is a locally compact subset of Y.
It will suffice to show X is open in Cl, X (Why?). Let x € X and find a nhood
U of x in X such that Cl, U is compact, by local compactness. Say U = X n V
where V is open in Y. Then

Cl(XAnV)nX=ClLyUnX=ClL,U

and the latter is compact. Thus Cly (X n V) n X is closed in Y. But it contains
X nVand thus Cly (X n V); e, Cly (X nV)n X o Cl, (X n V). But then
Cly (X n V) = X, and hence (Cly X) n V < X. Thus (Cly X) n V is a nhood
of x in Cly, X which is contained in X, so X is open in Cl; X. B

There is one consequence of the previous theorem which crops up often. A4
dense subset of a compact Hausdorff space is locally compact iff it is open.

Quotients of locally compact spaces need not be locally compact. In fact,
the spaces which are quotients of locally compact spaces are studied for their
intrinsic interest. They are called “k-spaces,” or “compactly generated spaces,”
and are dealt with in some detail in Section 43.

Some quotient maps do preserve local compactness, as the next theorem
shows.

18.5 Theorem. If f is a continuous, open map of X onto Y and X is locally
compact, then so is Y.

Proof. Suppose y € Y and V is a nhood of y. Pick x € f~!(y) and, by continuity
and local compactness, find a compact nhood K of x such that f(K) = V. Now
x € Inty K, so y e f(Inty K) = f(K) and, since f is open, f(Inty K) is open. It
follows that f(K) is a compact nhood of y contained in V. B

Local compactness behaves well only with respect to finite products, es-
sentially, according to the next theorem.

18.6 Theorem. Suppose X, is nonempty for each o.€ A. Then || X, is locally
compact iff
a) each X, is locally compact,
b) all but finitely many X, are compact.
Proof. =: Projections are continuous and open, so part a) follows from 18.5.

Forb),let x € [ X, and let W be a compact nhood of x. Then W contains a basic
nhood of the form

T (Ug) 0 0 mg Y(U,,),

an
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and it follows that, if « # o«y,...,a, then n (W) = X,. Thus X, is compact
for all o except possibly oy, . . ., o,.

«: Let xe [] X,, and let U be a basic nhood of x; say
U=U, x - xU, x][]Xa

where we assume the set {a,,...,a,} = Sis expanded to include all « for which
X, is not compact. It suffices to find a compact nhood contained in U. But, for
each a;, i = 1,...,n, there is a compact nhood K, of x,, with K,, = U,,. Then,
since X, is compact for o ¢ S,

K=K, x x K, x[[{X,|¢S}
is a compact nhood of xand K <« U. B

18.7 Examples. a) R” is locally compact for each positive integer n, R¥° is not.

b) Hilbert space H is the collection of all real sequences x = (x;, X,,...)
such that ' x? < oo, with the metric

dix,y) = /Y (e — w)?

The proof that d is actually a metric requires the classical Schwarz inequality
and is left to Exercise 18B. Let 0 denote the sequence (0, 0,...) in H. We will
show now that the closed e-disk B, = {x e H| d(x, 0) < ¢} in H is not compact.
Forn =1,2,..., let X" be the sequence in H whose kth coordinate is 0 if k # n
and whose kth coordinate is € if k = n. Then x', x? ... is a sequence in B,,
having no cluster point since, if n # m, d(x", x™) = \/5 ¢. Thus B, is not compact.
It follows that H is not locally compact. For if K were a compact nhood of 0 in
H, then for sufficiently small ¢, B, would be a closed subset of K and thus compact.
Other properties of H are given in Exercise 18B.

Problems
18A. Examples on local compactness
1. Q is not locally compact.
2. The Moore plane T is not locally compact.
3. The Sorgenfrey line E is not locally compact.
4. The slotted plane (4C) is not locally compact.

5. Let A < X and let 7 be the topology for X consisting of @ together with all subsets of
X containing 4. Is (X, t) locally compact?

6. Discuss local compactness of the radial plane (3A.4).
18B. Hilbert space
Recall that H denotes all real sequences X = (xy, X,,...) with ) x2 < oo.
1. The distance function d(x,y) = /Y. (x, — y,)* is a metric for H. [Use the Schwarz

inequality: (3. x,y,)* < Y. x2 Y. yi.]
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2. If(x"),~is a sequence in H, then x" — x in H implies x! — x;in Rforeachi =1,2,... .
The converse fails.

3. H is separable.

4. The topology on H differs from the topology it would inherit as a subspace of R™.
[See part 2.]

5. R" is isometric to the subspace of H consisting of all sequences (x;, X5, . . .) such that
x, =0fork > n

6. H is isometric to a nowhere dense subset of itself.

Part 6 above shows that, for subsets of H, the property of being open in H is not a topo-
logical (or even a metric) invariant. The corresponding result for R” is true: if U and V are
homeomorphic subsets of R” and U is open, then V is open. This result, due originally to

Brouwer and called invariance of domain, is most elegantly proved using the machinery of
algebraic topology.

18C. Quotients of locally compact spaces

Compare with Theorem 18.5.

1. The closed continuous image of a locally compact space need not be locally compact.
[Let X be the plane, A the x-axis in X, and 2 the decomposition of X whose elements are 4
and the sets {x} for x e X — A. The projection P of X onto X/ is closed because & is upper
semicontinuous (see 9E).]

2. The closed continuous image of a locally compact space is locally compact provided
the pre-image of each point is compact (so noncompactness of 4 was needed in part 1).

3. The condition of 2 is not necessary. [Identify [1, o0) in R.]

18D. Subsets and subgroups of topological groups
Let G be a topological group. (13G.)

1. If U and V are open in G, so is UV. If A and B are closed in G, AB need not be closed.
[An example can be found in R with its usual topology and addition (caution: then AB
becomes A + B).] If one of 4 or B is compact, then AB is closed.

2. If F is compact and U open in G, with F < U, then for some nhood V of the identity
inG, FV < U.

3. If F is compact in G, then for each nhood U of e, there is a nhood V of e such that
xVx~! < U, for each x € F. (Compare with 13G.6(d).)

4. For x, ye G and 4, B = G we have

a) A-Bc AB

b) (A7) = (A)~!

¢) xAy = xAy

d) if ab = ba, for each a € A, b € B, then ab = ba for eachae 4, be B.
5. If H is a subgroup (Abelian subgroup, normal subgroup) of G, so is H.

6. A subgroup is discrete iff it has an isolated point.
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7. Every open subgroup is closed.
8. Every locally compact subgroup is closed. (This is difficult.)

18E. Quotients and products of topological groups

Let G be a topological group.

1. The product [] G, of topological groups is a topological group when given the product
topology and pointwise multiplication (m(x - y) = n(x)n(y)). The projection =, is a con-
tinuous open homomorphism.

2. Let H be a closed normal subgroup of G. Then G/H, the set of all left cosets xH of H,
is a topological group when given the quotient topology and factor group structure. The
natural map P: G — G/H, P(x) = xH, is continuous and open.

3. G/H is discrete iff H is open.

4. If G is locally compact and K = G/H is compact, a compact set F < G exists with
P(F) = K.

5. If Giscompact, so is G/H. Conversely, for locally compact G, if H and G/H are compact,
sois G. [See 4.] A similar theorem holds for local compactness (i.e., if H and G/H are locally
compact, so is G), but the proof (due to Gleason) is difficult. See the notes.

18F. Character groups

Let G be a locally compact, Abelian group. A character on G is a homomorphism y: G - T
where T is the circle group (the unit circle in R? with the usual topology and complex
multiplication).

1. The set G of all continuous characters on G is a topological group when given pointwise
multiplication and the topology for which the sets

P(F,¢) = {xe G|lxx) — 1] < ¢ forall xe F},

for compact F = G and € > 0, form a base at the identity 1 (1(x) = 1, for all x € G).
G is called the character group of G.

2. G is locally compact and Abelian.

3. If G is compact, G is discrete. If G is discrete, G is compact.

4 R=R N=T T=N

5.6=0. [Map G — G by x - &,, where &, is the character on G defined by
&.(x) = x(x). Assume the fact that if a # e in G, then for some y € G, y(a) # 1 (this is very
hard to prove!) and show x — &, is a topological isomorphism (a homeomorphism and an
isomorphism) of G onto G.] This is the Pontryagin duality theorem.

18G. A regular space not completely regular

Recall that T denotes the Tychonoff plank (17.12) (2 x N*) — {(wy, w,)}. Let Z be the set
of all integers, positive, negative and zero and form the product T x Z. Identify points in
T x Z as follows: if n is odd, the right edges of T x {n} and T x {n + 1} (which are copies
of T) are identified point for point and if » is even, the top edges of T x {n}and T x {n + 1}
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are identified point for point. The image T, of T x {n} under the resulting quotient map is
clearly a homeomorphic copy of T.
Now add points a and b to the quotient space obtained, the basic nhoods of a being of the

form U,(a) = {a} U n=. T,, and the basic nhoods of b being of the form

U,(b) = {b} v D T s

as n ranges over all integers. Let the space ()i _,, T, U {a, b} be denoted K.

1. Kisregular and T;.

2. Let f: K — R be continuous, let n be an even integer, and let p be a positive integer. If
f = 1/p at all but finitely many points on the right edge of T, then f > 1/(p + 1) at all but
finitely many points on the right edge of T, _,. [Otherwise, f < 1/(p + 1) at infinitely many
points on the right edge of T, _,, and hence on the right edge of T, _,, and then (see 17.12)
there is some f, < w, such that,in T,_,, f(f, w,) < 1/(p + 1) for all B > B,. Since the top
edge of T,_, coincides with the top edge of T,, we would have f(8, w,) < 1/(p + 1) for all
B > Boin T,. This is impossible, since f > 1/p on most of the right edge of T, entails f > 1/p
on most of the top edge of T, (again using 19F(1)).] Similarly, if f < —1/p at all but finitely
many points on the right edge of T,, then f < —1/(p + 1) at all but finitely many points on
the right edge of T, _,.

3. Any continuous real-valued function on K has the same value at a and b. [Tt is enough
to show every such function has the same sign at a and b (why?). But if f(a) > 0, then
f = 1/p at all but finitely many points on the right edge of T, for some even n. Use part 2 to
conclude f(b) > 0. Similarly, if f(a) < 0, then f(b) < 0.]

Thus K is a regular T;-space which is not completely regular (not even completely
Hausdorff).

By modifying this example, E. Hewitt manufactured a regular T,-space on which every
continuous real-valued function is constant! See the notes.

18H. Manifolds
Topological n-manifolds were introduced in 18.3(c). Let X be a compact n-manifold.

1. If U is an open subset of X which is homeomorphic to R", the quotient of X obtained
by collapsing X — U to a single point is homeomorphic to the n-sphere S™.

2. X can be embedded in a finite product of spheres (and hence in some Euclidean space
R™). [You need an evaluation map.]

19 Compactification

Since compact Hausdorff spaces behave nicely, it is of interest to study the process
of “compactification” that is, the process of embedding a given space as a dense
subset of some compact Hausdorff space.

19.1 Definition. A compactification of a space X is an ordered pair (K, ) where
K is a compact Hausdorff space and /4 is an embedding of X as a dense subset of K.
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In many cases 4 will be an inclusion map, so that X < K. In other cases, we
can agree to write X when we mean A(X) (referring to our earlier remarks that
homeomorphic spaces are, to a topologist, the same), so that we can again write
X = K. Whenever one of these situations occurs we say simply that K is a
compactification of X, and think of K as containing X as a dense subspace.

Many examples of compactifications lie at hand. To mention a few, [0, 1]
is a compactification of [0, 1), S* is a compactification of R (under stereographic
projection), the ordinal space Q is a compactification of Q,. These are all obtained
by adding one point to the space X to be compactified; this process can be
generalized to arbitrary locally compact Hausdorff spaces.

19.2 Definition. Let X be a locally compact, noncompact Hausdorff space, p a
point not in X (for example, p = X). Let X* = X U {p}, and let the basic nhoods
of p be the sets of the form {p} U (X — L), where L is a compact set in X. Nhoods
of points in X are unchanged in X*. In Exercise 19A, you will verify that this is
a valid assignment of nhoods in X*. Clearly X* is compact (since the element of
an open cover which contains p will cover all but a compact subset of X) and X
is open and dense in X*. Moreover, X* is Hausdorff (precisely because X is
locally compact and Hausdorff, see 19A). We call X* the one-point compactifica-
tion (Alexandroff compactification) of X.

This embedding of a locally compact Hausdorff space in a compact Hausdorff
space has the following consequence.

19.3 Theorem. Every locally compact Hausdorff space is a Tychonoff space.

Wehave just used the fact that ifa space has a compactification, it is a Tychonoff
space. To establish the converse, that every Tychonoff space has a compactifica-
tion, we recall the details of the embedding of any Tychonoff space in a cube.
The procedure we will outline here is a modification of that used in the original
embedding theorem (14.13) in that here we use the bounded continuous functions
from X to R while there we used the continuous functions from X to I. Since a
bounded continuous function from X to R can be regarded as a function from X
to some closed bounded interval, the difference is not great.

Let C*(X) denote the collection of all bounded continuous real-valued
functions on X ; the range of each f € C*(X) can be taken as a closed bounded
interval I, in R. Since X is Tychonoff, the collection C*(X) separates points from
closed sets in X and thus, by 8.16, the evaluation map e: X — [ {I, | f€ C*X)}
defined by

[e(x)]f = f(x)
is an embedding of X in []I r- Note that under the embedding e, the element
f of C*(X) is transformed into the restriction to e(X) of the fth projection map
ny; thatis, for f: X = I, f = n,0e (Fig 19.1.)
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X——-»e(X

\/

Figure 19.1

19.4 Definition. The Stone—Cech compactification of X is the closure BX of e(X)
in the product [ I,. (More formally, (X, e) is the Stone—Cech compactification
of X.)

The central useful fact about the Stone—Cech compactification is an extension
property, given by the following theorem.

19.5 Theorem. If K is a compact Hausdorff space and f: X — K is continu-
ous, there is a continuous F: X — K such that F o e = f.

Proof. K is a Tychonoff space and thus can be embedded by an evaluation map
¢ inacube [] {I,| g e C¥K)}. The situation is illustrated in Fig. 19.2.

l—IIf 1_[[9
V] U
e(X) e'(K)

Figure 19.2

We can define a map H:[[I, > [][I, as follows; for each te[]I,,
[H(?)], = tyo;. This map is continuous when followed by each projection
7y, in fact (m, o H)(t) = m,°(t), so H is continuous. Now H takes e(X) into ¢'(K),
for an element of ¢(X) has the form e(x) for some x € X and

Hle(x)], = [e(X)]yor = 9 o f(x) = [€(f)],
so that H[e(x)] = €/(f(x)). But e(X) is dense in X, so H[e(X)] is dense in H(BX)
and thus, since €'(K) is closed and contains H[e(X)], H(BX) < €'(K). Finally,
define F =¢ ! o(H | pX). Then F:pBX — K is continuous and Foe = f
since, for x € X,

Foe(x) = e '[He(x)] = ¢ '[e(f(x)] = f(x). B

Very often it is possible to deal with e(X) directly (as, for example, when
dealing with preservation of a topological property in the passage from X to
BX). Then X is often written for e(X), so that X — BX, and the above theorem
becomes: every continuous function from X to a compact space K can be extended
to BX.
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Theorem 19.5 actually characterizes the Stone—Cech compactification, up
to what is called a topological equivalence. We need some preliminary terminology
and lemmas.

19.6 Definition. If (K,, #;) and (K,, &,) are compactifications of X, we write
(Ky, hy) < (K5, h,) iff there exists a continuous F: K, — K, suchthat F o h, = h;
(Fig. 19.3). When emphasis on F is needed we write F: (K, ;) < (K,, h,). Note
that F is just an extension to K, of the canonical homeomorphism /4, o 45 of
h,(X) with A, (X).

K, £ K,

N
X

Figure 19.3

(In case A, and h, are inclusion maps, this says (K, ;) < (K, h,) iff there is
a continuous F: K, — K, such that F | X is the identity.) If both

(K1, hy) < (Ky, hy) and (K3, hy) < (Ky, hy),

we say (K, #,) and (K ,, h,) are topologically equivalent. Topologically equivalent
compactifications of X are regarded by any topologist as the same (for example,
any compactification of X topologically equivalent to (X, ) is called the Stone—
Cech compactification of X), because of the following result.

19.7 Lemma. (K, h,) and (K,, h,) are topologically equivalent compactifica-
tions of X iff there is a homeomorphism H of K, with K | such that H o h, = h;.

Proof. Exercise 19E. B
19.8 Lemma. IfF: (K, h;) < (K,, h,) then

a) F | hy(X) is a homeomorphism of h,(X) with h,(X),
b) F carries K, — h,(X) onto K, — h;(X).

Proof. a) Infact F | hy(X) = hy o hy .

b) From (a), F is onto. Thus we can prove (b) by proving, more generally,
that whenever S is Hausdorff and f: S — T is a continuous map whose restriction
to a dense subset A of S is a homeomorphism, then f(S — 4A) = T — f(A).
Suppose not. Then for some xe 4 and ye S — 4, f(x) = f(y). Pick disjoint
nhoods U of x and V of y. Now f(U n X) is a nhood of f(x) in f(A), since f is
a homeomorphism, so f(U n X) = W n f(A4) where W is a nhood of f(x) in T.
But any nhood ¥’ of y contained in V contains points of 4 not in U, so f(V') & W.
Thus f is not continuous at y, a contradiction. l
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The proofs of the following theorems are now easy exercises (19E).

19.9 Theorem. If (K., h,) and (K,, h,) are compactifications of X and (K, h,)
has the extension property of Theorem 19.5, then (K, h,) < (K, h,).

19.10 Corollary. (BX, e) is characterized up to topological equivalence by the
extension property.

Thus BX is (up to topological equivalence) the only compactification of X
with the extension property and, by 19.9, it is the largest element in the collection
of compactifications of X partially ordered by <. Note that, if X < fX and
X < K, 19.9 provides a continuous F: fX — K such that F | X is the identity
while 19.8 says F(fX — X) = K — X. We will use this fact later.

More light can be shed on the nature of the Stone—Cech compactification
using the following terminology.

19.11 Definition. A subset 4 of a space T is C*-embedded in T iff every bounded
continuous real-valued function on 4 can be extended to T.

Either regarded as a consequence of 19.5 or taken directly from the fact that
the bounded real-valued continuous functions on e(X) are just the restrictions to
e(X) of the projection maps, we see that e(X) is C*-embedded in fX. This property
also characterizes fX.

19.12 Theorem. If (K, h) is a compactification of X such that h(X) is C*-
embedded in K, then (K, h) is the Stone—Cech compactification of X.

Proof. It suffices to show the extension property 19.5 holds for (K, A). Let
f: X — L be a continuous map of X into a compact Hausdorff space L. Let
e: L > [],ec+a) 1, be the cube embedding of L (Fig. 19.4).

=

= 111,

e

>
—

)

- L
Figure 19.4

For each g: L — I, the map go f o h~': h(X) - I, has a continuous extension
h,: K > I,. Define G: K - [[ I, by
[G(O)], = hyl0)

Then G is continuous since for each projection n, of I1 I,, m, 0 G(t) = hy1), so
that m, - G is continuous. Moreover G carries 4(X) into e(L) since

G[h(x)], = hyh(x)) = (g o f o h~)h(x)) = g[f(¥)] = e[f(x)],-
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But G[A(X)] is dense in G(K) and e(L) is compact, so G(K) = e(L). Thus
F = ¢!, G carries K into L and, by the above computation, F o h = f. W

Theorem 19.12 is most useful in proving that one familiar space is or is not
the Stone—Cech compactification of another.

19.13 Examples. a) I is not the Stone—Cech compactification of (0, 1) since the
bounded continuous real-valued function sin (1/x) on (0, 1) cannot be extended
toL

b) From 17.2, every continuous real-valued function on the ordinal space
Q, can be extended to Q, so fQ, = Q.

¢) As an exercise (19F), you will show every continuous real-valued function
on the Tychonoff plank T can be extended to T* (see 17.12). Thus T = T*

d) |AN| = 2% From Theorem 16.4, the product I of ¢ copies of I has a count-
able dense set A. Any one—one map f of N onto A4 is continuous and hence has
an extension f?: BN — I° (by 19.5). Since f* is onto a dense subset of I, it is onto
I'. Thus |fN| > |I{ = ¢¢ = 2°. On the other hand, there are ¢ elements in
C*(N) so N < Ifand thus [fN] < 2°

Problems

19A. The one-point compactification: construction

The procedure used to obtain the one-point compactification X* of a locally compact, non-
compact Hausdorff space X can be applied to any space Y. That is, Y* = Y U {p} with
nhoods of y € Y unchanged in Y* while nhoods of p have the form {p} U (Y — L) where L
is a compact subset of Y. Y* is called the Alexandroff extension of Y.

1. This is a valid assignment of nhoods in Y*.

2. Y*is compact and Y is open in Y*.

3. Yis dense in Y* iff Y is noncompact.

4. Y* is Hausdorff iff Y is locally compact and Hausdorff.

19B. The one-point compactification: examples

1. The one-point compactification of R” is homeomorphic to S

2. The one-point compactification of N is homeomorphic to the subspace {0} U {1/n | n =
1,2,...} of R.
3. The one-point compactification of the Tychonoff plank T is T* (see 17.12).

19C. Compactification in the plane

The one-point compactification X* of X has the property that X* — X is a discrete space.
Find a nonlocally compact subset of the plane which has a compactification K such that
K — A isdiscrete.



19] Problems 141

19D. Compactification of ordered spaces
Every ordered space has an ordered compactification [use 17E].

19E. Exercise on topological equivalence
1. Compactifications (K, #;) and (K,, #,) of X are topologically equivalent iff there is
a homeomorphism H: K, — K, such that H o h, = h;. [For necessity, if
F:(Kphy) < (K, hy) and G: (K, hy) < (Ky, hy),
then F and G are inverses and hence homeomorphisms. ]
2. Prove 19.9 and 19.10.

19F. The Tychonoff plank
Show that the Tychonoff plank T is C*-embedded in T* [see 17.12].

19G. C*-embedding and BX
Let X and T be Tychonoff spaces.

1. If X is dense and C*-embedded in T, the embedding e: X — X can be extended to
an embedding E: T — BX.

2. If X is C*-embedded in T, then Clgr X = SX (up to topological equivalence).

19H. Cardinality of BX
1. |fN| = |BQ|. [Consider any one—one map of N onto Q and use 19.5.]
2. |fQ| = |BR|. [Consider the inclusion map of Q into R and use 19.5.]
3. |BN| = |BQ| = BR| = 2°. [N is C*-embedded in R. See 19G.]

191. B(X x X) # BX x X
Exercise 15G on extremally disconnected spaces is a necessary prerequisite to this problem.
1. BX isextremally disconnected iff X is extremally disconnected. [15G.1c for sufficiency. ]
In particular, if X is discrete, fX is extremally disconnected.
2. If D is any infinite discrete space, BD x D is not homeomorphic to f(D x D). [Show
BD x BD is not extremally disconnected by studying the closure of the open set
{(x,x)e BD x BD|xe D}.]

The Stone—Cech compactification of a product has been intensively studied. The identity
B(] X,) =[] BX, holds iff [] X, is pseudocompact; see the notes.

19]. Filter description of fX

In 17D we observed that a completely regular space is compact iff every z-ultrafilter converges
(i.e., is fixed). A compact space containing a copy of X can be obtained by “fixing” the free
z-ultrafilters on X.

Let BX be the space whose points are the z-ultrafilters in X. For each zero set Z < X,
define Z* = {F e BX | Ze #}.
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1. The sets Z* can be used as a base for closed sets to obtain a topology on BX. [Use
5E.2 and 17D.3.]

2. For x € X, let h(x) be the unique z-ultrafilter converging to x. Then 4 is an embedding
of X as a dense subset of BX. (Hereafter we identify X with A(X), so X < BX.)

3. For each zero set Z in X, Clgy Z = Z*.
4. For zerosets Z, and Z, in X, Clgy (Z, n Z,) = Clgx Z, n Clgyx Z,.

5. BX is a compact Hausdorff space. [Tt is enough to show each family of basic closed
sets with the finite intersection property has nonempty intersection. ]

6. Each continuous map f of X into a compact Hausdorff space K can be extended to
BX. (This should be compared with 19.5.) [If pe BX — X extend f to p as follows: pisa
unique z-ultrafilter in X and & = {Z < K| f~(Z) € p} is a z-filter in K. Show & is prime
(12E) and thus has a unique cluster point g (12E.6). Define f(p) = g. (This is essentially a
use of 12F.)]

7. BX = pX.

19K. Wallman compactification
Let X be a Hausdorff space, and let X be the collection of all closed ultrafilters on X. For
each closed set D = X, define D* < yX to be the set

D* ={FeyX|DeF}

Let ¢ = {D* | D is a closed subset of X}. It is somewhat surprising that the procedure used
in 19J can be applied here, with results which are not always identical.

1. % is a base for the closed sets of a topology on yX.

2. The mapping /#: X — yX which takes x € X to the (unique) ultrafilter in yX which
converges to x is an embedding of X in yX.

3. X is dense in yX (more accurately, A(x) is dense in yX). More generally, if D is closed
in X, then Cl,y D = D*.

4. If A and B are closed subsets of X, Cl,x (4 n B) = Cl,y A n Clx B.

5. yX is compact. [Any collection of basic closed sets with the finite intersection property
has nonempty intersection. ]

6. Every continuous function on X to a compact Hausdorff space K can be extended to
yX. [Mimic the proof of 19J.6.]

7. yX is Hausdorff iff X is normal. [Use part 4 for necessity.] Thus yX = X iff X is
normal (by 6).

19L. Wallman basis problem
The procedure used to obtain X in 19J and yX in 19K can be generalized. Let & be any
base for the closed sets of X satisfying the following conditions:

a) for each closed set F and x ¢ F, there is some A€ % such that xe Aand A N F = g,

b) finite unions and finite intersections of elements of % belong to 4,

c) if A, Be # are disjoint, then for some C and De #, A < X — C, B< X — D and
X-OnX-D) =0
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Then 4 is called a Wallman base for X ; a space X is seminormal iff it has a Wallman base.
Now let o7 be any base for the closed sets of X and call # < .of an -filter iff # consists
of nonempty sets and
i) F,n F, € % whenever F, F, e #,
ii) F € & whenever F > G € & and F belongs to <.

An o/ -ultrafilter is a maximal .o7-filter. See 12E for basic results on o7 -filters.
Let w_(X) be the set of all «7-ultrafilters on X and for each 4 € &, let

A* = {FewX)|Ae F}.
Lett, = {A*| Ae o).
1. t,, is a base for the closed sets of a topology on w (X). (w_(X) with this topology is
called the Wallman space of the Wallman base o7, whenever .«7 is a Wallman base.)

2. The mapping #: X — w,(X) which takes x € X to the (unique) «/-ultrafilter in w (X)
which converges to x is an embedding of X in w_(X).

3. X is dense in w(X). More generally, if A € o, then Cl, ) A = A*.

4. If 4, Be o, then Cl, x, (4 N B) = Cl,, x) A n Cl, x) B.

5. w(X) is HausdorfT iff .« is a Wallman base for X.

A great deal of Exercises 19J and 19K is now subsumed in the following two
propositions :

7. In a completely regular T;-space the zero sets form a Wallman base. (Thus a T;-space
is seminormal iff it is completely regular.)

8. The collection of all closed subsets of X form a Wallman base iff X is normal.

For an arbitrary normal space X, it is still an open question whether every Hausdorff
compactification of X can be obtained from some Wallman base for X. A limitation on the

search for a correct Wallman base in X to produce a particular compactification K is given in
the next problem.

19M. Wallman basis, continued

Let o7 be a Wallman base for X. A bounded function f: X — R is &Z-uniformly continuous
iff for each € > 0, a finite collection A, ..., A, € o exists such that /(X — A,) has diameter
<¢ foreachk =1,...,n

1. The continuous real-valued functions which extend from X to w(X) are precisely the
&/-uniformly continuous ones.

2. If K is a compactification of X, the zero sets of those bounded continuous functions
fon X to R which extend to K form a Wallman base .o for X.

3. The Wallman space resulting from the base in 2 need not be K [Consider K = R*.]

19N. H-closure

An H-closure of a Hausdorff space X is an H-closed space containing X as a dense subset.
The ultrafilter process introduced in 19J and 19K for describing compactifications of a
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topological space X can be used here, with some modification, to describe the “best” H-
closure of X. See 17K for the basic facts about H-closed spaces.

1. A Hausdorff space is H-closed iff every open ultrafilter converges.

Now let € be the collection of nonconvergent open ultrafilters on X and for each # € ¢,
let the nhoods of & in the space aX = X U & be the sets {#} U G, where G € #. Nhoods
of points in X are unchanged.

2. aX is a topological space, containing X as an open dense subset.

3. aX is H-closed.

4. aX is the largest H-closure of X ; ie., if T is any H-closure of X, T is the continuous
image of «X, under a map which is the identity on X.

190. Realcompactification

1. Construct a realcompactification for any Tychonoff space X, that is, a realcompact
space containing a dense subset homeomorphic to X, by following step for step the construction
of BX given in the text (but replacing C*(X) by C(X)). This is the Hewitt realcompactification
(Nachbin completion) of X, denoted vX.

2. Show that every real-valued continuous function f on X can be extended to vX (that
is, that X is C-embedded in vX). Conclude that X < vX < fX.

3. Describe the circumstances under which vX = BX.

That Greek letter, by the way, is upsilon, not nu, and vX is the standard notation for the
Hewitt realcompactification of X.

20 Paracompactness

Paracompact spaces were first introduced by Dieudonné in 1944 as a natural
generalization of compact spaces still retaining enough structure to enjoy many
of the properties of compact spaces, yet sufficiently general to include a much wider
class of spaces. The notion of paracompactness gained stature with the proof, by
A. H. Stone, that every metric space is paracompact and the subsequent use of
this result in the solutions of the general metrization problem by Bing, Nagata
and Smirnov. The central role played by paracompactness, or paracompact-like
properties, in some of the current areas of intensive investigation in topology
ensure it a permanent place alongside metrizability and compactness among the
most important concepts in general topology.
To proceed, we need a great deal of terminology applying to coverings.

20.1 Definition. If % and 7~ are covers of X, we say % refines ¥, and write % < ¥,
iff each U € % is contained in some V € ¥". Then we say % is a refinement of ¥".
If % is a cover of X and 4 < X, the star of A with respect to % is the set
St(A, %) =){Ueu|AnU # a}.

We say % star-refines ¥, or U is a star-refinement of ", written % * < ", iff for
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each U e %, there is some Ve ¥ such that St (U,%) < V. Finally, % is a
barycentric refinement of ¥, written % A ¥, provided the sets St (x, %), for
x € X, refine ¥". As an easy exercise, the reader should prove that a barycentric
refinement of a barycentric refinement is a star-refinement ; thatis,if % A v " A%,
then % * < # . (See Exercise 20B.)

20.2 Definition. A collection % of subsets of X is locally finite (or nhood finite) iff
each x € X has a nhood meeting only finitely many U € %. We call % point
finite iff each x € X belongs to only finitely many U € . (We have already met
point finite covers in Section 15 in connection with their shrinkability in normal
spaces.) Apparently every locally finite collection is point finite. A notion related
to local finiteness is that of a discrete collection of sets. A collection % of subsets
of X is discrete iff each x € X has a nhood meeting at most one element of %.
Clearly every discrete collection of sets is locally finite.

Finally, we point out that given any property of collections of sets in X,
there is a corresponding “o-property” which we illustrate with an example. A
collection ¥~ of subsets of X is g-locally finite iff ¥~ = )=, ¥", where each
¥, is a locally finite collection in X. The definition of a “o-discrete” collection
should now be clear. It is worth pointing out that if ¥~ is a o-locally finite cover
of X, the subcollections ¥, which are locally finite and make up ¥~ will not usually
be covers.

20.3 Examples. a) A point finite collection need not be locally finite. In fact, for
any space X, {{x} | x € X} is a point finite cover, which is locally finite only under
stringent conditions on X (what are they?).

b) The cover of R by the sets [n, n + 1], as n ranges through all integers, is
point finite.

To illustrate the properties of locally finite collections, we prove some simple
lemmas.

204 Lemma. If {A,

is {4, | Ae A}
Proof. Pick p € X and find an open nhood U of p such that U n 4, = & except
for finitely many 4. Butthen U n 4, = o except for these same 4. This establishes
the lemma. W

20.5 Lemma. If{A;| A€ A}isalocally finite systemof sets, then| ) A; = | ) A;.
In particular, the union of a locally finite collection of closed sets is closed.

Ae A} is a locally finite system of sets in X, then so

Proof. Easily | ) A, = (J 4;. On the other hand, suppose p € ( ) 4, Now some
nhood of p meets only finitely many of the sets A, say 4,,,..., 4,,. Since every
nhood of p meets ( ) 4;, every nhood of p must then meet A;, U U A4, .
Hence,pe A;, U -~ U A4, = A, U~ U A4, so that, for somek, pe A;. Thus

U 4, = | 4,, establishing the lemma. B
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20.6 Definition. A Hausdorff space X is paracompact iff each open cover of X has
an open locally finite refinement.

It should be pointed out that some writers do not require that a paracompact
space be Hausdorff.

20.7 Theorem. If X is a Ty-space, the following are equivalent:

a) X is paracompact,

b) each open cover of X has an open c-locally finite refinement,

¢) each open cover has a locally finite refinement (not necessarily open),
d) each open cover has a closed locally finite refinement.

Proof. a) = b): A locally finite cover is o-locally finite.

b) = ¢): Let % be an open cover of X. By (b), there is a refinement ¥~ of %
such that ¥~ = ()22, ¥7,, where each ¥, is a locally finite collection of open
sets, say # , = {V,5| Be B}. For each n, let W, = (f,, V.. Then {W;, W,, ...}
covers X. Define 4, = W, —  Ji<, W. Then {A4,|ne N} is a locally finite
refinement of {W,|ne N}. Now consider {4, N V,;|neN, e B}. This is a
locally finite refinement of ¥~ and hence of %.

c) = d): Let % be an open cover of X. For each x € X, pick some U, in %
such that x € U,, and, by regularity, find an open nhood V, of x such that V, = U,.
Now {V, | x € X} is an open cover of X and so, by (c), has a locally finite refinement
{A4,|yeT}. Then {4,]|yeT} is still locally finite, by Lemma 20.4, and for each
y, if A, = V,, then A, = V, = U for some U e %. It follows that {4,|yeT}
is a closed locally finite refinement of U.

d) = a): Let % be an open cover of X, ¥ a closed locally finite refinement.
For each x € X, let W, be a nhood of x meeting only finitely many V € ¥". Now
let o be a closed locally finite refinement of {W, | x € X}. For each Ve 7, let

V*=X - (J{AeAd |AnV = a}.

Then {V* | V € ¥°} is an open cover (the sets V* are open by Lemma 20.5) and is
furthermore locally finite. For consider x € X. There is a nhood U of x meeting
only 4,, ..., A, say, from &/. But whenever U n V* # g, we have A, n V* # o
for some k = 1,...,n which implies 4, N V # @. Since each A4, meets only
finitely many V, we must then have U n V* = g for all but finitely many of the V*.

Now for each Ve ¥, pick U € % such that V < U, and form the set U n V*.
The collection of sets which results, as V ranges through ¥, serves as an open
locally finite refinement of % ; the details are easily checked. B

20.8 Corollary. Every Lindelof T;-space is paracompact.

Proof. A countable subcover is a g-locally finite refinement. l
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Regarded either as a consequence of 20.8 or taken directly from the definition
(since a finite subcover is a locally finite refinement) we have the fundamental
result that a compact Hausdorff space is paracompact. The following theorem
establishes the importance of paracompact spaces as the smallest known class
of spaces including both the compact and the metrizable spaces.

20.9 Theorem. (A. H. Stone) Every metric space is paracompact.

Proof. Let % be an open cover of the metric space (X, p). Foreachn =1,2,...
and Ue %, let U, = {xe U|p(x, X — U) > 1/2"}. Then

pPUy X = Uyyy) > 1/2" = 1/27%1 = 12771,

Let < be a well-ordering of the elements of . Foreachn = 1,2,...and U e %,
let

Ut =U,—J{V,s:Vewu, V<U}
Foreach U, Ve%,andeachn = 1,2,..., we have

U e X — Vg
or
VicX = Upyy

(depending on which comes first in the well ordering). In either case,
p(U¥, V¥ > 1/2"*1,
Hence, defining an open set U, , for each U € % and n € N, by
U,y = {xe X |p(x, U¥) < 1/2"+3},

we have p(U;, V) > 1/2"*2 so ¥, = {U; |Ue%} is discrete for each n.
Hence, v~ = U ", is g-discrete, and thus o-locally finite. Moreover, ¥~ refines
% and covers X. (If x € X, find the first U € % to which x belongs, and then
x e U, for some n.) B

Note (and we will use this fact) that the above proof can be used without
change to conclude that any open cover of a pseudometrizable space has an open
locally finite refinement.

The normal spaces also form a class of spaces including both the compact
spaces and the metric spaces. The relationship between paracompactness and
normality is given next.

20.10 Theorem. Every paracompact space is normal.

Proof. We first establish regularity. Suppose A4 is a closed set in a paracompact
space X and x ¢ 4. For each y € 4, find open V, containing y such that x ¢ V.
Then the sets V), y € A4, together with the set X — A, form an open cover of X.
Let # be an open locally finite refinementandlet V = ( J {(We# | W n 4 # o}.
Then V is open, contains 4, and V = () {W| W n 4 # ¢}. But each such set
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W is contained in some V,, and hence W is contained in Vy and thus does not
contain x. Hence x ¢ V. Thus x and A are separated by open sets in X.

Now suppose A4 and B are disjoint closed sets in X. For each y € 4, by regu-
larity, find open ¥, such that ye ¥, and ¥, n B = @. Then proceeding exactly
as above, we can produce an open set V such that 4 = Vand V n B = @. Thus
X isnormal. B

Recall that Q, denotes the set of ordinals less than the first uncountable
ordinal w,. The next theorem gives us the easiest example of a normal space which
is not paracompact. Another example can be found in 20H.

20.11 Example. £ is not paracompact. Otherwise, the cover by sets

Uy={reQ|y < B}, B e,

has a locally finite refinement {V, | a € A}. For each a €Q,, a € V, for some a € A
and hence (f(«), «] = V, for some f(x) < o. We assert that some f, belongs to
(f(a), o] for a cofinal set of points a. It is sufficient to prove this since then f,
will necessarily belong to infinitely many V,.

If no such B, exists, then for each B, € Q,, the set {f | foralla > B, f(a) > B}
is nonempty. Hence, it has a least element a(f,). Consider the sequence of points
defined inductively by a, = «(0) and «, = a(a,_,) for n > 1. Note that for all
o> o, fla) = a,_;. Now let a* = sup {a,}. Then a* €eQ,, and since a* > a,
for each n, f(a*) > a,_, for each n, from which it follows that f(a*) > o*. But
this is impossible since for each o we chose f(x) < a.

By contradiction, then, some S, exists with the required property. B

Having established the position of paracompactness in the scheme of things,
we proceed to investigate the usual questions involving subspaces, products and
continuous images.

20.12 Theorem. a) An F,-subset of a paracompact space is paracompact (so
closed subsets of paracompact spaces are paracompact).

b) The continuous closed image of a paracompact space is paracompact if it
is Hausdorff.

¢) The product of a paracompact space with a compact T,-space is paracompact.
Proof. a) Suppose F = | /2., F, is an F,-subset of a paracompact space X,
where each F, is closed in X. Let {U,|ae€ A} be an open cover of F; say
U, = FnV, where V, is open in X. Foreachn, {X — F,} U {V,|a€ A} isan
open cover of X which has an open locally finite refinement w,. Let

A, ={WnF|Weaw,}.

Then 7, is a locally finite collection of open subsets of F and ( )%, «, clearly
refines {U, | « € A}. Thus {U, | « € A} has an open o-locally finite refinement, so
X is paracompact by 20.7.
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b) We will provide only a sketch of the proof of this result. The reader
interested in the complete details is referred to the original proof as given by
Michael (see the notes). Michael proves that a T;-space is paracompact if every
open cover % has a refinement ¥~ such that U ¥ is closed for each ¥ < 7.
(7 is called a closure-preserving closed refinement of %). The techniques used
to prove this are similar to those you will see in the proof of 20.14 below. Note
that a closed locally finite refinement of % would satisfy this requirement, so that
for T;-spaces the stated property is equivalent to paracompactness, by 20.7.

Now suppose X is paracompact and f is a closed continuous map of X onto
Y. Then Y is a T;-space, so it suffices to show every open cover % of Y has a
closure-preserving closed refinement. But {f~'(U)| U € %} is an open cover of
X and thus has a closed locally finite refinement #". Tt is easily checked that,
since | ) #” is closed for any #” = #', the cover ¥" = {f(W)|We# } is a
closure-preserving closed refinement of %. Thus Y is paracompact.

c¢) Let X be paracompact, Y compact, and let % be an open cover of X x Y.
For fixed x € X, a finite number of elements of %, say Uj,..., Uy , cover
{x} x Y. Pick an open nhood V, of x in X such that ¥, x Y < (Jiz, U,, (see
17.6¢c). The sets V,, as x ranges through X, form an open cover of X. Let ¥~ be an
open locally finite refinement. For each Ve ¥, V < V, for some x. Consider the
sets (V x Y)nU;,i=1,...,n,, formed as V ranges through ¥". This is a
refinement of % and an open cover #” of X x Y. Moreover, given (x, y) € X x Y,
there is a nhood U of x which meets only finitely many V € ¥~ and the nhood

U x Y of (x, y) can then meet only finitely many sets of %". B

20.13 Examples. a) €, is a nonparacompact open subspace of the paracompact
space Q. (But if every open subspace of X is paracompact every subspace is
paracompact; see Exercise 20E.)

b) The Sorgenfrey line E is regular Lindel6f and thus paracompact, while
E x E is not normal and thus not paracompact. So products of paracompact
spaces need not be paracompact. See also Exercise 20F.

¢) Every discrete space is paracompact and every topological space is the
continuous, one—one image of a discrete space. Thus continuous images of
paracompact spaces need not be paracompact. Another example is given in
13.9(b). Note there that X is paracompact and Y is the image of X under an open
continuous map, but Y is not T..

We close this section with a final property of paracompact spaces which will
prove useful later on, in the material on uniform spaces. The proof embodies the
actual approach used by A. H. Stone to prove every metric space is paracompact.

20.14 Theorem. A T,-space X is paracompact iff each open covering of X
has an open barycentric refinement.
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Proof. Suppose X is paracompact. % is any open cover of X. Let ¥" = {V,|a € A}
be an open locally finite refinement of %, and by 15.10, since X is normal, let

W = (W, | e 4)

be a shrinking of ¥". Now #  must be locally finite also. Pick x € X and let
A, = () {V,|xe W,}. Since each such V, contains x, this is really a finite
intersection, so A, is open. Let B, = | ) {W, | x ¢ W,}. Since # is locally finite,
B, is a closed set. Now set C, = A, — B,. We assert & = {C, | x€ X} is the
required open barycentric refinement.

Fix y € X and pick o such that ye W,. We claim St (y, &) <= V,. Suppose
yeC, (ie., C, is part of St(y, &)). But then since y e W,, we have x € W, also
(otherwise W, = B,, so y ¢ C,). But if xe W,, then A, = V, and hence C, < V,.
SoSt(y,8) < V,.

Thus & is a barycentric refinement of ¥~ and hence of %.

Suppose, conversely, that X is T, and each open cover has an open barycentric
refinement.

First we show X is regular. Let p € X and let 4 be a closed set in X not con-
taining p. Then {X — p, X — A} is an open cover of X. Let 7", be an open
barycentric refinement of {X — p, X — A} and ¥, an open barycentric refinement
of ¥°,. Then ¥, star-refines {X — p, X — A}. We claim St(p, ¥",) and
St (A, ¥~,) are the required disjoint nhoods of pand 4. Ifnot, forsome V, V' e v,
V contains p and V' meets A while V n V' # @. Then St (V, ¥°,) meets both 4
and p, which is impossible.

Next we show every open cover % = {U,|x e A} has an open o-locally
finite refinement. Construct open covers %, %,,... of X such that %, is a
barycentric refinement of % and, for each n = 1,2,...,%,,, 1s a barycentric
refinement of #,. For each a € A, define V, = {xe U,|St(x,%,) = U, for
some n}. Note that if St (x, #,) = U, then because %, is a barycentric re-
finement of %,, St(x,%,,,) consists of points of V, [precisely, for each
yeSt(x,Uy+1), St(V,Uny,) = U, so yeV,]. Moreover, for each xe€ X,
St (x, %,) < some U, so x € some V,. Thus the sets V, form an open refinement
of % with the property that, if x € V, then St (x, %,,) < V, for some m. We will
find a o-locally finite refinement of the cover {V, |x e A} = 7.

Well-order ¥ say as V;, V,,...,V,,... . Foreachfixedn = 1, 2,... define
a sequence of closed sets H,;, H,,,..., H,,, ... as follows (see Fig. 20.1):

Hy,y =X — St(X — V,%,)
and
H,=X— St((X —V)u Um,,,oz;,,), ifo > 1.
B<a
Note (as a mildly intricate exercise) that St (H,,, %,) is contained in V, and does

not meet H,; for any f # «. Now, the sets H,, for alln = 1,2,... and a € A4,
cover X. For if x € X, there is a first index a for which x € V,. Then, from above,
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St (x, %,,) < V, for some m. We claim x € H,,,. If not,

x € St ((X — V) ulJ Hyps J?lm),
f<a
and then St (x, %,,) meets (X — V,) U | Jp<y Hypp. Since St (x, %,,) is contained
in V,, it must then meet some H,; for < o. But then x € St (H,;, %,,) <= V},
which is impossible since a was the first index for which x € V,.
Finally, for each n = 1,2,... expand the sequence H,, of closed sets to a
sequence of open sets by defining

Gna = St (Hnan %n+ 2)'

Vy

Figure 20.1

Then G,, = V, for each « and n, and the G, for all « and n form an open cover of X.
It suffices, then, to show each subcollection {G,, | « € A} is locally finite. In fact,
it is discrete. Since %, ., is a cover of X, it is sufficient to show no Ue %, ,
meets both G,, and G,; for o # f. Otherwise, there exist Vy, V, € %, , such that
Vi meets both H,, and U, and V, meets both H,; and U. But St (U, %, ,) then
meets both H,, and H,; and hence, since %, ., * < #,, some W € %, meets both
H,,and H,;. Then St (H,,., %,) meets H,5. which is impossible.

Thus {G,, | o€ A} is discrete, so {G,,|xe A, n=1,2,...) is a g-locally
finite refinement of ¥, and thus of . R

20.15 Corollary. A Ti-space is paracompact iff every open cover has an open
star-refinement.

Proof. A barycentric refinement of a barycentric refinement is a star refinement. B

Problems

20A. Examples on paracompactness
1. The scattered line S (5C) is paracompact.
2. The Moore planeT, the slotted plane (4C) and the radial plane (3A) are not paracompact.
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3. Discuss paracompactness of the sequence spaces m, ¢ and ¢, (2H).

20B. Barycentric and star refinement

1. A barycentric refinement of a barycentric refinement of a cover % is a star-refinement
of %.

2. If %, is the cover of a metric space X by (1/3")-spheres about each of its points, then
Upir ¥< U,.

3. If % is an open cover of X, ¥ is an open barycentric refinement of %, and for each
U e we define Fy = X — St(X — U, ¥"), then {F, | U € %} is a closed cover of X.

20C. Partitions of unity

A partition of unity on a space X is a collection @ of continuous functions from X to R* (the
nonnegative reals) such that, at each x € X, ¢(x) # 0 for only finitely many ¢ € ®, and
Z(pe(b @(x) = 1. @ is called locally finite iff each x € X has a nhood on which all but finitely
many ¢ € @ vanish. ® is subordinated to a cover % of X iff each ¢ € @ vanishes outside some
Ueu.

For a T;-space X, the following are equivalent :

a) X is paracompact,

b) Every open cover % of X has a locally finite partition of unity subordinated to it,

c) Every open cover % of X has a partition of unity ® subordinated to it.
[For (a) = (b), use normality to find a shrinking of a locally finite refinement of %, then con-
struct (and modify) Urysohn functions. For (c) = (a), first show X is completely regular.

Then, let #7; be the collection of sets of the form {x € X | ¢(x) > 1/i} for ¢ € ®. Show ¥, is
locally finite and ) #7; is a refinement of %. Apply Theorem 20.7.]

20D. Metacompact spaces

A space is metacompact iff each open cover has an open point finite refinement.
1. If% is any point finite cover of X, then % has an irreducible subcover ¥ ; i.e., no proper
subcollection of ¥~ covers X.

2. A countably compact metacompact space is compact. [An irreducible open subcover
of an open point finite cover of a countably compact space must be finite; use 17F.2.]

20E. Subspaces of paracompact spaces
Let X be paracompact.

1. If every open subspace of X is paracompact, then every subspace of X is paracompact.

2. Every paracompact space with a dense Lindelof subspace is Lindeldf. In particular,
then, a separable paracompact space is Lindel6f. [Since a paracompact space is regular, to
show it is Lindel6f, it is enough to show every open cover has a countable dense subsystem,
by 16D.3.]

3. If X is Lindelof and F is a closed subset of X which is not a G; and which is con-
tained in BX — X, BX — F is not paracompact [use 2].
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20F. Products of paracompact spaces

The following result supplements the result (20.12) that the product of a paracompact space
with a compact space is paracompact.

The product of a paracompact space with a metric space need not be paracompact. [In
fact, if P denotes the space of irrationals and S is the scattered line, then S is paracompact
(20A.1) and P is metric, but S x P is not even normal. For the sets 4 = {(x,y)eS x P|x
is rational} and B = {(x, x) € S x P | x € P} are closed and cannot be separated by disjoint
opensetsinS x P.

20G. Continuous images of paracompact spaces

If f is a perfect mapping of X onto Y (ie., if f is continuous, closed, and f~*(y) is compact
for each y € Y) then X is paracompact iff Y is paracompact.

20H. A separable, normal nonparacompact space

Recall that , denotes the set of all ordinals <w,, the first uncountable ordinal.

1. To each « €Q,, we can assign a function f,: N — N such that whenever o < f, then
eventually (e, for n > N,4) f(n) < fy(n).

We will use the functions f, to describe a topology on X = (N x N) uQ,. For each
x €€, and integer ne N, let U (a) = {o} U {(k, f,(k) |k > n}; thus U,(«) is {o} together
with a portion of the graph of f,. Now we assign nhoods to points in X as follows:
a) points of N x N are to be isolated,
b) if o is a nonlimit ordinal, nhoods of « will be the sets U, («), forn = 1,2,...,
c) if « is a limit ordinal, nhoods of « will be obtained by choosing f < «, choosing
an integer n(y) for each ordinal y with f < y < o and letting ( Jp<, < Uney(y) be a
nhood of a.

2. The above is a valid assignment of a nhood base to each point in X, making X a
Hausdorff, separable topological space.

3. X is normal. [Of two disjoint closed sets H and K in X, one must be countable
(consider their intersections with Q). For this set, say H, find o, € 2, such that no ordinal
beyond o, lies in H. For each a € Q,, pick an integer n, as follows:

a) n, > N, if o > o, (see 1 for the definition of N,),
b) arrange the countably many ordinals <u, in a sequence (beginning with «ay),
0, oy, . . . and define n,, to be 1, n,, to be any integer larger than

max (Naoak’ Na‘ak, DR Nak—xak)'

Using the integers n, thus defined, a nhood U(«) of « of the form U, («) or Uﬂ<y$a U,
can be contructed using the scheme in either (b) or (c) above, as is appropriate. If(c) is needed,
p is taken to be the largest ordinal <o« which is not in H (or § = | if H contains all ordinals
<a).

Let U =[Hn (N x N)]JU ey U(@). Then U is an open set containing H whose
closure does not meet K.]

4. X is not paracompact. [The cover of X by the basic nhoods defined in (a), (b) and (c)
can have no locally finite refinement. ]
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21 Products of normal spaces

In this section, all spaces are assumed to be Hausdorff (so that normality and the
T,-axiom are equivalent here). Sorgenfrey’s example of a pair of normal spaces
whose product is not normal is well known. We will discuss here subsequent
work on the problem of suitably restricting spaces X and Y to make X x Y
normal. Specifically, we will require that X be normal and ask: under what
conditions on Y will X x Y be normal? The results are largely disappointing,
although attempts to find positive theorems have led to a number of interesting
insights and one pretty strange result. Our program will take us through three
conditions on Y:

a) Y metric,
b) Y compact,
c) Y compact metric.

The first condition is easily disposed of. In Exercise 20F, we provided an
example, due to Michael, of a normal space X and a metric space Y such that the
product X x Y was not normal. Alternatively, a study of Michael’s paper would
do no harm. He provides several examples of nonnormal products X x Y
with conditions of varying strength on X and Y. Among them: X can be
hereditarily paracompact and Y can be separable metric.

The second condition on Y, compactness, is disposed of by a theorem of
Tamano based on work of Corson. We will take the time now to present this
theorem ; it is interesting for other reasons also.

21.1 Theorem. The following are equivalent, for a Tychonoff space X :

a) X x BX is normal,

b) for each compact F < fX — X, there is a locally finite open cover
{Ux| A€ A} of X such that (Clgy U;) N F = o, for each A € A,

c) X is paracompact.

Proof. a) = b): Suppose X x BX is normal and let F be a compact subset of
BX — X. Then Ay = {(x,x)e X x BX |xe X} and X x F are disjoint closed
subsets of X x fX, sothereisa Urysohn function f: X x X — Iwith f(Ay) =0
and f(X x F) = 1. Let f, be the restriction of f to {x} x BX, for each x € X,
and defined on X x X by

d(x, y) = sup |f(p) — f,(p)-

pefX

Then d is a pseudometric on X, which induces a topology T on X weaker than the
original topology. Now the cover of (X, t) by spheres U,(x, 1) = U, has locally
finite refinement {U, | 1 € A} by elements of 7 (and each U, is an open set in X
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with its original topology). If y € U,, then d(x, y) < %, so

L) = 1£0) = L0 < %

Hence f,(p) < 3 for each pe Clyy U,. But f(p) = f(x,p) = 1 for each pe F
so (Clyxy U,) n F = o for each x € X. Hence (Clyy U;) n F = o for each 1e A.

b) =c): Let {U, |« € A} be any open covering of X. For each o fix an open
set U¥ in BX such that U n X = U,. Let F, = X — U7 for each o and set
F = ﬂ F,. Then F is a compact subset of X — X so, by part b), there is a locally
finite open cover {V; | A € A} of X such that (Clzx V;) N F = o for each A. Then
Clyx V;, = |J U for each 4 and, since Clx V; is compact, it is contained in the
union of a finite subcollection {UZ,..., U* }. It follows that V, = ( Jix, U,,.
If we now let H,, = V, n U, for each A€A and k = 1,...,n,, then {H, .}
is a locally finite refinement of {U, | « € A}. Thus X is paracompact.

¢) = a): If X is paracompact, then X x X is paracompact (by 20.12) and
thus normal. B

As we have mentioned, the last theorem provides the answer to the question:
is the product of a normal space and a compact space always normal? The answer,
since there are nonparacompact normal spaces (e.g., ©,), is no.

The last theorem also provides what will probably be the conclusive result in
a string of attempts to provide a global characterization of paracompactness.
These attempts began with a conjecture by Kelley to the effect that the para-
compact spaces were those which were completely uniformizable by the family
of all nhoods of the diagonal. This conjecture was proved false by Corson,T who
showed that paracompactness of X was equivalent to the imposition of two global
conditions :

1. the family of all nhoods of the diagonal is a uniformity for X, and
2. X x BX is normal

Tamano’s theorem eliminates any reference to uniformities for X, providing a
completely topological characterization.

Returning to the main line of development in this section, we ask whether
the product of a normal space X with a compact metric space Y is normal. To
handle this case, the work of Dowker is significant; it requires a definition.

21.2 Definition. A space X is countably paracompact iff every countable open
covering has a locally finite refinement. A countably paracompact normal space
is called a binormal space.

1 The example referred to by Kelley in a footnote does not work.
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21.3 Theorem. Let X be normal. The following are then equivalent:

a) X is countably paracompact,
b) each countable open covering of X has an open point-finite refinement,

¢) each countable open covering {U,|n = 1,2,...} of X is shrinkable; i.e.,
has an open refinement {V, |n = 1,2,.. .} withV, = U, forn=1,2,...,

d) each sequence F, > F, > - of closed sets with empty intersection has
an “expansion” to open sets G; > F; with (| G; = o.
Proof. a) = b): A locally finite refinement is point finite.

b)=c¢): Let {U,|n = 1,2,...} be a countable open cover of X, {V,|xe A}
a point finite refinement. Forn = 1,2,... let

Vo=U V| Ve e U, V, & Ujifj < n}.

Then V; < U;fori =1,2,...and {V, | n = 1,2,...}is still point finite. But any

14

point finite cover in a normal space is shrinkable (15.10).

¢)=d): If {F,|n=1,2,...} is a decreasing sequence of closed sets with
empty intersection, then {X — F,|n =1,2,...} is an open cover of X. If
{V,|n=1,2,...} is a shrinking of this open cover, then {X — V,|n =1,2,...}
will be an expansion of {F, | n = 1, 2,...} with empty intersection.

d) = a): Let {U, | n =1,2,...} be an open covering of X and, for each n,
let F,=X - (U,u---uU,). Let {G,|n=1,2,...} be an expansion of
{F,|n =1,2,...} with empty intersection (given by d)). Now pick W, W,,...
as follows:

W, is any open set with X — G, =« W,, W, " F, = o,

W, is any open set with W, U (X — G,) =« W,, W, n F, = o,
and so on. Then {W,|n = 1,2,...} is an open cover of X, since

(X =G, |n=1,2..)
covers X, and moreover
i) W, c Wt 1

i) X — G, = W,

ii) W, =« (Ji=, U.

Now let S, = W,,, — W,_, forn > 2 (and S, = W,). Then since W,_, = W,,
Sy > Wiy — W,, foreachn,so {S,|n =1,2,...} is an open cover of X. More-
over, S; N §; # @ iff |i — j| < 1. Finally, consider the sets

S nU,, S;nU,

S,nU,, S, nU,, S, U,

S;n Uy, S;n U, SN U, S;nU,
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and so on. These are all open, they cover X (since the S, cover X and the union
across the nth row above is S,), and they form a refinement of {U, |n = 1,2,...}.
Moreover, S; N U; can meet at most the other sets on the same row and the rows
one above and one below (in the scheme above). Thus if xe X and S, n U,
contains x, then S, N U, is a nhood of x meeting only finitely many sets of the form
S;n U, Thus{S;nU;|ieN,j=1,...,i+ 1} is a locally finite refinement of
{Uyn=12..}.1

With the last result, we are now ready for the fundamental result on products
of normal spaces and compact metric spaces. One interesting aspect of the
following theorem: it ties normality of such products to normality of the more
special class of products X x I where X is normal; these products are of interest
to those who do homotopy theory.

21.4 Theorem. The following are equivalent for any (Hausdorff) space X :

a) X x ILis normal,
b) X x Y is normal whenever Y is compact metric,
¢) X is binormal.
Proof. a)=c): Suppose X x Iis normal. Clearly X will be normal. To show
countable paracompactness, let F;, o F, o - - - be a sequence of closed sets with
(VF,=9. Let W, = X — F,. Let A be the complement in X x I of
(W x [0, D] [W; x [0, D] u---

(Fig. 21.1) and let B = X x {0}. Then A and B are disjoint closed sets in X x L
Let U be an open set in X x I containing 4 such that Un B = @. Let
G, = {xe X |(x, 1/n)e U}. Then G, is open, G, > F, and (| G, = @. Thus X
is countably paracompact, by 21.3.

=

W=

Figure 21.1
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c) = b): Let 4 and B be disjoint closed setsin X x Y. Let{B,|n = 1,2,...}
be a base for Y and for each finite subset y of N let H, = (J,., B,. Let

A, ={yeY|(x,y)e A} and B, = {y e Y | (x, y) € B}. Foreachy, let
U ={xeX|A,cH}n{xeX|B, oY~ H}

Then each U, is open. To show this, suppose 4, < H,. Then if y ¢ H,,
(x0, ¥) ¢ A. Since A is closed, there is then a basic open nhood N, x M, of (x,, y)
in X x Y which does not meet A. The sets M, thus obtained as y ranges through
Y — H, form an open cover of Y — H,. Since Y — H, is compact, we can find
a finite subcover {M,,..., M, }. Let N = ()'-; N,. Then N is a nhood of
xo, and x € N implies A, < H,. Thus {xe X | A, = H,} is an open set in X.
Similarly, {xe X | B, = Y — H,} is open in X. It follows that U, is open in X.

Furthermore, the sets U, cover X. For if x € X, then for each y € A, there is
some B, such that y € B, and B, n B, = o. The sets B, thus obtained as y ranges
through A4, form a cover of 4., so a finite subcover can be extracted. Thus A, = H,
and H, n B, = o for some finite subset y of N. Then x € U,

Now let ¥~ be any locally finite refinement of the cover formed by the sets U,
and for each y let W, = () {V' e ¥" |V = U,}. Then the sets W, form a locally
finite cover with the property that W, < U, for each y. Let {V, | y is a finite subset
of N} be a shrinking of {W, | y is a finite subset of N} ; that is, ¥, = W, for each y.
Define V' to be the union of the sets ¥, x H,, as y ranges through all finite subsets
of N. Then Vis open and A = V. Also

7=U(V},xH},)=U(I7yxI-_I},)cU(Wyxﬁy)cU(nyHy)

and this does not meet B. Thus X x Y is normal.

b) = a): This is obvious. I

The theorem above provides an answer to our fundamental question: that
is, the spaces which have normal product with every compact metric space are the
binormal spaces. But it also raises a question with an interesting history. Is every
normal space binormal? We will refer to the assertion that this is so as Dowker’s
conjecture. A counterexample to Dowker’s conjecture, that is, a normal space
which is not binormal, will be called a Dowker space. In this terminology, M. E.
Rudin has shown that Dowker’s conjecture cannot be proved with the existing
axioms of set theory (through the axiom of choice). In fact, from Dowker’s con-
jecture she deduces a result (the Souslin hypothesis, that every compact ordered
space with the countable chain condition is separable) which is known to be
independent of these axioms (a recent result of Jech, Tennenbaum and Solovay).
It is still unknown whether a Dowker space can be constructed using existing
set-theoretic axioms through the choice axiom.
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Problems

21A. Countable paracompactness

1. Every perfectly normal space is countably paracompact.
2. A closed subset of a countably paracompact space is countably paracompact.

3. The product of a compact space and a countably paracompact space is countably
paracompact. [Study the proof of 20.12(c).]

21B. Semicontinuity in countably paracompact spaces

1. Let X be countably paracompact and normal. If g is a real-valued lower semicontinu-
ous function on X and £ is a real-valued upper semicontinuous function on X with A(x) < g(x)
for each x € X, then there is a continuous real-valued function f on X with A(x) < f(x) < g(x)
for each x € X. [For each rational r, let G, = {x | h(x) < r < g(x)} and let {U, | r € Q} and
{V, | r € Q} be locally finite open coverings of X such that ¥, = U, = G,. Define f, to be
continuous from X to [—oo, o] such that f(x) = —o0 if x¢ U,, f(x) = r if xe V,. Let
f(x) = Lub. f(x). Show f has the required properties. |

2. If X has the property expressed above, then X is countably paracompact and normal.
[Show X is normal. Then let (F;) be a decreasing sequence of closed sets in X with empty
intersection. Set g(x) = 1/(n + 1) for xe F; — F;,,,i =0,1,2,... (where F, = X) and set
h(x) = 0 for all xe X.]

21C. Normality in infinite products

Let 4 be an uncountable set and, for each o € A, let N, be a copy of the positive integers.
Consider the space T = [],e4 N, A typical basic nhood U(¢; ay, ..., a,) of a point zin T
consists of all points ¢ for which 7, = ¢, fora e {a;, ..., o,}.

1. For each positive integer k, let A, be the set of all points ¢ in T such that each integer
other than k occurs at most once among the coordinates of z. Prove that the sets 4, are closed
and pairwise disjoint.

2. T is not normal. [Suppose A4, is contained in an open set U. Define a sequence
Xy, X4, ... of points of 4, as follows: let x; be the point all of whose coordinates are 1, and let

U(x,; ay,. . ., a,)beanhood of x, contained in U. Let x, be the point all of whose coordinates
are 1, except that the o;th coordinate of x, is i, fori = 1,..., n, and let
U(xZ;ab R anw an1+1, R anz)

be a nhood of x, contained in U. Continue, obtaining a sequence x,, x,, . . . of points of 4,
and a related sequence «,, a,, . . . of coordinate indices. Now let x be the point of A, whose
coordinates are 2 except that x,, = ifori = 1,2,... . Prove A, and A4, cannot be separated
by showing x € Cl; U.]

3. Every countably compact, T;-space contains a closed copy of the integers (ie., a
countable, closed, relatively discrete set).
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4. If a product of nonempty T,-spaces is normal, all but countably many of the factor spaces
are countably compact.
5. If X is any product of metric spaces, the following are all equivalent:
a) X is normal,
b) X is paracompact,
c) all but countably many of the factor spaces are compact.



Chapter 7

Metrizable Spaces

22 Metric spaces and metrizable spaces

Our purpose in this section is twofold: we seek to establish the notational and
conventional groundwork for the material to follow and to prove a few basic facts
about metric and metrizable spaces. We will begin by investigating products and
continuous images of metrizable spaces.

22.1 Definition. Two metrics p, and p, on the same set M are said to be equivalent
if they generate the same topology on M.

A topologist, then, is always willing to replace a given metric with an equiva-
lent metric if it serves some purpose. One useful result in this direction is the
following theorem.

22.2 Theorem. Every metric p on M is equivalent to a bounded metric.

Proof. 1In fact, there are two standard ways of replacing p by a metric with a
bound: define new functions p, and p, on M x M by

pi(x, y) = min {1, p(x, y)},
plx, y)
1+ p(x,y)
The reader will verify (22F) that these are indeed metrics on M, giving the same
topology as p does. B

pz(X, J’) =

We are prepared to use 22.2 immediately.

22.3 Theorem A nonempty product space [|,.q M, is metrizable iff eack M,
is metrizable and M, is a single point for all but a countable set of indices.

Proof. =: Each M, is homeomorphic to a subspace of the product and hence
metrizable. Moreover, the product is first countable, if metrizable, and thus can
be at most a countable product (see 16A.2).

<: Let M, M,, ... be metrizable spaces. Using 22.2, let p; be a metric on
M;, bounded by 1, which gives the topology on M, for i = 1,2,... . Define p
on[], M;asfollows: for x = (x, x5,...)and y = (yy, s, .. ),

S pilXis ¥i)
plx, y) =} %

i=1
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This is easily verified to be a metric. We will show that it gives the product topology
on[[2, M.

Let x = (x;, X5,...) be a point in [[2; M;. A basic nhood U of x in the
Tychonoff product topology restricts only finitely many coordinates and thus
can be written

U = Upl(xl’ 81) X Upz(x2a 82) X oo
x U, (X&) X [[{M|k=n+1Ln+2..}

— min(& &2 én

e—mm<2 ,22,...,2n>.

Now a routine calculation shows that if p(x, y) < ¢, then p(x;, y;) < ¢; for each
i=1,...,n, so that apparently U,(x,¢) = U. Thus the product topology on
[ M, is weaker than the topology induced by p. On the other hand, given ¢ > 0,
we can choose N large enough that Y 2 v, 1/2° < ¢/2. Then it is easily verified
that

& &
Up1<xl,m> X UPZ('XZ’ ﬁ) X v

x Upn<x,,,%> x [T{Mc|k =N+ 1N +2,...} c Uyx,¢)

Let ¢ be chosen so that

so that the topology induced by p is weaker than the product topology. B

22.4 Example. Among the spaces admitted to metrizability by the last theorem
the most important are R®°, also called Frechet space, and its subspace I*°, the
Hilbert cube (which we studied in 17.9). These two spaces, together with Hilbert
space H (18.7), form the backbone of the theory of separable metric spaces. One
easy result that is of particular interest: any one of these spaces can be homeo-
morphically embedded as a subspace of any other. This embedding property
takes on additional significance once the Urysohn metrization theorem (23.1)
is proved, since a part of that theorem asserts that every separable metric space
is homeomorphic to a subset of IN°. Thus any one of I¥°, R®, or H can be used
asauniversal space for separable metric spaces. Still dealing with homeomorphisms
between these three spaces, it is immediately clear that IN° cannot be homeomorphic
to either R®° or H, since it is compact and the others are not even locally compact.
The question of whether R¥° is homeomorphic to H has been only recently
settled (in a very general context) in the affirmative; in fact, R. D. Anderson has
proved that all separable infinite-dimensional Banach spaces are homeomorphic.
(See 24]J for the definition of a Banach space.)

Turning to continuous maps of metric spaces, we limit ourselves to quoting
results which will be proved later when better machinery is available.



22] Problems 163

Quotients of metrizable spaces need not be metrizable; they are studied in
Exercise 23K. In Section 23, as a corollary to the Urysohn metrization theorem,
we will prove that the continuous image of a compact metric space is a compact
metric space if it is Hausdorff.

We close this section with one of the fundamental results about compact
metric spaces. It is used both in dimension theory (an application we will not see)
and in building the theory of uniform spaces (which we get to in Sections 35
through 41).

22.5 Theorem (Lebesgue covering lemma). If {U,,..., U,} is a finite open
cover of a compact metric space X, there is some & > O such that if A is any
subset of X of diameter <0, then A < U, for some i.

Proof. Suppose not. Then for each n e N, let 4, be a set of diameter < 1/n such
that A, ¢ U, for any i. Pick x, € A, for each », and let x be a cluster point of the
resulting sequence. Now x € U,, for some i, so for some é > 0, U(x, §) = U,.
Pick n large enough that 1/n < 6/2, and find m > n such that x, € U(x, 6/2).
Now x,, € 4,,, so A,, " U(x, 6/2) # @, while the diameter of A,, is less than §/2.
Tt follows that 4,, = U(x, §) = U,, a contradiction. l

Any number & which works in the previous lemma is called a Lebesgue
number for the cover {U, ..., U,}.

Problems

22A. Results on metric spaces

1. The collection of all metrics on a fixed set M has cardinal number 2/M!,

2. Every 2-element metric space can be embedded isometrically in the real line R. Every
3-element metric space can be embedded isometrically in R% There are 4-element metric
spaces which cannot be isometrically embedded in Hilbert space H and hence cannot be
embedded in any R” (since each R” is isometric to a subspace of H, by 18B.5).

22B. Perfect normality

1. Show that a compact Hausdorff space is metrizable iff the diagonal A in X x X is
a zero set. [If A is a zero set, it is the zero set of a nonnegative function. ]

2. Find a perfectly normal compact space X which is not metrizable.

3. Conclude that the product of two perfectly normal compact spaces need not be per-
fectly normal.

22C. Linear topological spaces
A (real) linear topological space is a real linear space (vector space) E with a Hausdorff topology
such that:

TL-a) vector addition is continuous; that is, the map a: E x E —» E defined by
a(x, y) = x + y is continuous,
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TL-b) scalar multiplication is continuous; that is, the map s: R x E — E defined by
s(4, x) = Ax is continuous.

For x and y in E, denote by L(x, y) the set of all points z such that z = A;x + 4,y with
0< i <land A, + 1, = 1. A subset 4 of E is convex iff whenever x and y belong to 4,
L(x, y) = A. A linear topological space is locally convex iff each point p of E has a base of
convex nhoods.

1. Every normed linear space (2J) is a locally convex linear topological space.
2. If Aisconvex and x € A°, y € 4, then L(x, y) — {y} = A.
3. If A and B are convex, so are 4°, 4, A + B, A n Band, for L€ R, 14.

4. A convex open set 4 in L is regularly open (3D). So a locally convex linear topological
space is semiregular (14E).

5. A linear topological space is a topological group (13G).

22D. Metric-absolute retracts
A space Y is a metric-absolute retract iff whenever A is a closed subset of a metric space X
and f: A — Y is continuous, then f can be extended to all of X (compare with 15D).

Let (X, d) be a metric space, 4 a closed subset of X. Let L be a locally convex linear
topological space (22C).

1. An open, locally finite cover % of X — A can be found with the properties:

a) if a € Fr (A4), each nhood of a meets infinitely many sets from %,
b) ifa € A and W is any nhood of g, there is a nhood W’ = W of a such that, for U € %,
UnW #e=UcW.
[To get %, consider an open locally finite refinement of a set of disks in X — 4 which get
smaller as they get closer to A.] Such a cover % of X — A will be called a canonical cover
of X — A

2. If % is a canonical cover of X — A4, for each U, € %, define

_dx, X = Uy)

B Zerk dix, X — U).

Then Ay, is continuous on X — 4, and if oy is a real constant for each U €%, then
Y vea, % * Ay(x) is continuous on X — A.

3. Let % be a canonical cover of X — A. For each U € %, pick xy € U and then find
ay € A such that d(xy, ay) < 2-d(xy, A). If f: A > L is any continuous function, define
F:X - Lby

iuu(x)

F(x) =) Ay(x)- flay), for xeX — A,

Ueu

F(x) = f(x), for xe A.

Then F is continuous. [Check continuity at points a € A as follows. Let V be any convex
nhood of F(a) and, by continuity of f, find 6 > 0 such that f maps the J-sphere about a into
V. Let W be the (d/3)-sphere about a in X. Apply (b) of part 1, to find W’ = W such that,
forUed, Un W # o= U c W. Verify that x, € W' = F(xy) = flay) € V. Then apply
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part 1 again, finding W” < W’ such that U n W” # @ = U < W'. The claim is that
FW") < V. (For xe W' n (X — A), F(x) will belong to the convex hull of a finite set of the
f(ay), and hence to V. For x € W” n A4, F(x) € V because W” < W.)]

4. Thus every locally convex linear topological space is a metric-absolute retract.

22E. Extending metrics

Let (X, d) be a metric space, A a closed subset of X. For ae A, define r,: A > R by
r{x) = d(a, x). Now fixa point a € 4 and define ¢ on A by ¢(x) = r, — r,(so ¢(x)is a function
on 4, for each x € 4). Provide C*(4) and C*(X) with their sup norms (2J.4).

1. ¢ maps A continuously into C*(4). Now by 22C.1 and 22D.4, there is a continuous
extension ®: X — C*(A4) of ¢. Let L be the linear topological space C*(4) x R x C*(X)
with norm defined by

I(f p, @Il = max (|11, Ipl; llgll)-
Map X onto L as follows: for x € X, let a,(y) = d(x, y) and let

F(x) = (D(x), d(x, A), d(x, 4) - o).

Clearly F: X — L and F is continuous.
2. F is an isometry on A.
3. F is a homeomorphism on X.

4. If X is any metrizable space, A is a closed subset of X, and p is a compatible metric on
A, then p can be extended to a compatible metric on X.

22F. Bounded metrics
1. If p is a metric on X, then both

pi(x, y) = min {1, p(x, )}  and  p,(x, y) = px, y)/[1 + p(x, y)]

are metrics equivalent to p on X.
2. Every metric generating the topology of a compact metrizable space is bounded.
3. Conversely, if every metric generating the topology of a metrizable space X is bounded,

then X is compact. [Otherwise, a sequence (x,) exists in X with no cluster point. Define p
on (x,) by p(x,, x,,) = |n — m| and apply 22E.4.]

23 Metrization

A natural question follows the statement that metrics generate topologies,
namely, “which topologies?”” More precisely, can a condition be found which is
equivalent to metrizability but which deals only with open sets? The search for
such conditions was long and was not satisfactorily concluded until the early
1950’s when Bing, Nagata and Smirnov independently provided similar char-
acterizations. Our general metrization theorem (23.9) is given in the form proved
by Nagata and Smirnov.
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Before giving the main metrization theorem, we will provide some other
useful results on metrization. The first is the classical theorem of Urysohn,
characterizing the separable metric spaces.

23.1 Urysohn’s metrization theorem. The following are equivalent for a Ty-space
X:

a) X is regular and second countable,

b) X is separable and metrizable,
¢) X can be embedded as a subspace of the Hilbert cube I™°.

Proof. a)=>c): Let & be a countable base for X, and let &/ = {(U, V)| U, Ve &
and U = V}. # is countable and, since X is a regular Lindel6f space and thus
normal, for each pair (U, V) in &, there is a function fy,: X — I such that
fO)=0,fX —V)=1 IfF = {fyy | (U, V)e &}, then & is countable, and
certainly & separates points from closed sets in X. Tt follows, by 8.16, that if I,
is a copy of I for each f e #, the evaluation map e: X — [[,.s I, defined by
giving coordinates:

[ex)], = f(x),

is an embedding. Since & is countable, [ [ .5 I, = I, and we have established
(c).

c) = b): I®°is separable and metric and thus so is every subspace of I,
b) = a): This is obvious. B

Apparently second countability is a strong axiom, differing from metrizability
only by a separation axiom.

23.2 Corollary. The continuous image of a compact metric space in a Hausdorff
space is metrizable.

Proof. Let f be a continuous map of a compact space X onto a Hausdorff space
Y. Then Y is compact and thus regular so, by Urysohn’s theorem, it suffices to
show Y is second countable. Let & be a countable base for X and let € be the
collection of all finite unions of sets from #. Then 2 = {Y — f(X — C)| Ce ¥}
is a countable collection of open sets in Y; we claim it is a base for Y. Let U be
open in Y and suppose pe U. Then f~(p) = f~}(U) and f~*(p) is compact.
Now a simple argument shows that there are sets B,,..., B, in 4 such that
fMp)=B,u---UB,c f7}(U). Let C=B,u---UB, Then Ce¥ and
(easily)pe Y — f(X — C) = U. Thus D is a base for Y. B

The next metrization theorem will be useful later in our work with uniform
spaces. We need some terminology.

23.3 Definition. A normal sequence in a space X is a sequence %,, %,, . . . of open
covers of X such that %,, , star-refines %, for n = 1,2,... . It will be called
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a compatible normal sequence in X iff {St (x, %,)|n = 1,2,...} is a nhood base
at x, for each x € X. Any open cover of X which is %, in some normal sequence
in X will be called a normal cover. (Thus, every cover in a normal sequence is
a normal cover.)

23.4 Theorem. A topological space X is pseudometrizable iff it has a compat-
ible normal sequence. (Hence, a Ty-space is metrizable iff it has a compatible
normal sequence.)

Proof. If X is pseudometrizable, its topology generated by the pseudometric
p, define %, = {U (x, 1/3") | x € X}. Then the sequence %, %,, . . . is a compat-
ible normal sequence in X. (Certainly the sets St (x, %,) form a nhood base at x,
for each x in X. It is also pretty clear that St (U,(x, 1/3"), %,) = U,(x, 1/3"71),
sothat... U *< U, ¥*< U,.)

Conversely, suppose we have a compatible normal sequence (%,) for X.
Define t on X x X as follows:

tx,y) =0 if yeSt(x,%,),for all n,
t(xa y) = 1 lf y ¢ St (x5 02{1)>
t(xa Y) =2 lf YE St (Xa %1)’ y ¢ St (x> 02[2);

-

[ =~

Hx, y) = if yeSt(x,%,),y¢St(x,%,1)

n

N

Now for x, y € X, let #(x, y) be all finite sequences s = {x,,..., x,} of points
of X such that x; = x, x, = yor x; =y, x, = x. Define

{x1,...,x,} € L(x, y)}.

p(x, y) = inf {Zzt(xi—b x;)

The reader will have no trouble verifying that p(x, y) is a pseudometric. It remains
to show that p is compatible with the topology on X.

Let ¥, be the cover of X by the spheres U (x, 1/2"). It will suffice to show that,
for any n,

a) U, <V ,_1

b) ¥, < Un-1
since it will then be clear that the topologies generated by the two sequences are
the same. (Compare the nhood bases at any point.)

a) Suppose U € %,. Pickxe U. If ye U, then y € St (x, %,) so #(x, y) < 1/2"
and hence p(x, y) < 1/2" < 1/2*~'. Thusy e U (x, 1/2"""),s0 U = U (x, 1/2"7").
Thus %, < v, _;.

b) To show ¥, < %, _,, it is enough to prove that whenever p(x, y) < 1/2",
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then x and y lie together in some element of %, since then
Uy(x,1/2") = St (x, %,) = U

for some U e %, _.
Hence, suppose p(x, y) < 1/2". Then

K
inf ) #(x;_y, x;) < 1/2"

sef(x,y) i=2

and consequently, for some sequence {x,, ..., x,} from L(x, y),
k 1
YoHx; g, %) < =
i=1 2

We proceed now by induction on the length k of this sequence. If kK = 2, then
t(x, y) < 1/2" so that ye St (x, %,,), y ¢ St (x, %, ;) for some m > n. Hence, in
particular, y € St (x, %, 1), from which it follows that x, y € U for some U € %, ,
in fact, so that certainly x, y lie together in some U’ € %,. (Recall, then, that if
tx, y) < 1/2", we have x and y together in some element of %,,, , ; we will use this
again.)

Suppose the result is true for sequences of length <k, and suppose
Yk t(x;_y, x;) < 1/2" Let j be the last number, 2 < j < k, such that

J 1
sz(xi—l, x;) < TGk
Then

jt1 1
Z t(xi—h xi) 2 2n+1 5
i=2

so that
k

1
Yty x) < nFlc
i=j+2
Now by the inductive hypothesis x;, x; lie in some U, € %, while the argument
above shows, since #(x;, x;, ;) < 1/2", that x;, x;,, lie in some U, € %, ,, and
finally, using the inductive hypothesis again, x;, ;, X; lie in some U; € %, ;. Then
x, and x, lie in St (U,, %,.,) = U for some U € %,. This establishes our claim,
by induction. W

The above construction should be studied carefully. It and the theorem it
proves are fundamental building blocks in the theory of uniform spaces, which
we will develop in Sections 35 through 41.

We exhibit a use of the above theorem by proving the following elegant
neighborhood characterization of metrizable spaces, a slight alteration of a result
of Nagata.

23.5 Theorem. A Ty-space X is metrizable iff each x € X possesses a countable
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nhood base {U,, | n € N} with the following properties:

a) yE an = Uyn < an—l
b) y¢ an—l = Uyn N an = 0.

Proof. =: This part is easy, since the properties (a) and (b) are obviously satisfied
if U,, is the disk of radius 1/2" about x.

«: Let#, = {U,,| xe X}. Weclaim St (U,,, %,) < U,,_,,foranyn > 2.
Suppose U,, n U,, # @. Then, by property (b),z € U,,_,. Hence, by property (a),
U,, = U,,_, and thus St (U,,, %, = U,,_, as asserted. It now follows that
U, star-refines %, _, for any n > 2, so that %,, %, ... is a normal sequence.
It also follows that St (x, %,) < U,,_, for any n > 2, so that %,, U5,... is
compatible with X. Thus, by 23.4, X is metrizable. B

We introduce now an idea which is obviously related to the notion of a
compatible normal sequence; it will subsequently be used in Theorem 23.7.

23.6 Definition. A development for a space X is a sequence %, %,, ... of open
covers of X such that %, refines %, _,, and, at each x € X, {St (x, %,,) | n=12...}
is a nhood base. A space having a development is called developable. A Moore
space is a regular, Hausdorff space having a development.

The requirement that %, refine %, _, is not crucial. An otherwise satisfactory
sequence without this property can easily be made (the reader should do it!) to
give rise to a development.

The normal Moore space conjecture states that every normal Moore space is
metrizable. Whether or not this is true is an unsolved question; it may, in fact,
be unsolvable. See the notes. A related theorem on metrizability of developable
spaces can easily be given here. It is the first recorded metrization theorem, due
to Alexandroff and Urysohn in 1923.

23.7 Theovem. A Ty-space X is metrizable iff it has a development U, U, . . .
with the additional property that whenever U, Ve ¥, and U NV # o, then
UuV c W for some We ¥, _,.

Proof. Necessity is easy. If X is metrizable, take for %, the collection of 1/4"
spheres in X.

To prove sufficiency, we employ the nhood metrization theorem, 23.5. Let
Uy, Uy, ... be a development for X with the required property. Then easily,
for each n > 1, we find that if U € %, and x € U, then St (U, %,) < St (x, %, _,)-
Now for n = 1,2,... and x € X, define U,, = St (x, %,). Then we need only
verify properties a) and b) of Theorem 23.5.

a) If ye U,,, then for some Ve %,, xe Vand y e V. But then
Uyn = St (y’ %n) < St (Va L%n) < St (X, %n—l) = an—l)

using the comment above for the next-to-the-last step.
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b) If U,nU,, # o, then for some U, Ve, UnV # o But then
UuV < W for some Wed,_,, and hence y € St (x, %,_;) = U,,_;. Thus, if
y¢U, _,thenU,nU,, =0 B

Each of the metrization theorems so far given possesses unique advantages.
The Urysohn theorem is an indispensable part of the theory of separable metric
spaces; 23.4 (which is a variant of the “uniform metrization theorem”) will play
a key role in building a theory of uniform spaces in Chapter 8 ; the nhood metriza-
tion theorem, in addition to having a unique visual appeal, is clearly well suited
to dealing with spaces whose primary description is a nhood description; the
Alexandroff-Urysohn theorem is historically important and takes on additional
significance in investigation of questions involving metrization of Moore spaces.

The last three named theorems are general, in the sense that they apply,
unlike the Urysohn theorem, to any topological space. The next theorem, which
also possesses this advantage, is usually called the “general metrization theorem,”
however, because it alone provides the Urysohn theorem as an easy corollary.
It was discovered and proved in the early 1950’s by Nagata, Smirnov and in a
slightly different form, Bing. Our treatment is essentially Smirnov’s. Note the
key role played by A. H. Stone’s theorem that every metric space is paracompact.

The vehicle for proving the general metrization theorem is, as with the Urysohn
theorem, an embedding. This time the “universal space” is a generalization of
Hilbert space.

23.8 Definition. Let 7 be an infinite cardinal number. The generalized Hilbert
space of weight 7, H', is described as follows (compare with 18.7b):

Let A be an index set of cardinal . Then H” consists of all functions x: 4 - R
such that

a) x, # 0 for at most countably many a € 4,
b) ) 4eq X2 converges,

where we are writing x, instead of x(a). Note that the sum in (b) makes sense, since
itis really a countable sum. The distance function in H" is defined, just as it was in
Hilbert space H, by

d(x’ y) = WV Z (xa - ya)z'

Recall that a collection % of sets in X is g-locally finite provided % = | )2 %,
where each %, is a locally finite collection.

23.9 Theorem. A topological space is metrizable iff it is Ty and has a o-locally
finite base.

Proof. Necessity follows from the fact that every metric space is paracompact.
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Thus, let %, be the cover of X by 1/2" spheres, and let ¥°, be a locally finite re-
finement of %,. Then () ¥, is a o-locally finite base for X. Since every metric
space is Tj, necessity is proved.

We now prove sufficiency. Let X be a space with a ¢-locally finite base
B = U %,. It is apparent that X is paracompact, since every open cover has a
o-locally finite refinement consisting of basis elements, and hence X is normal.

Next, we show X is perfectly normal. Let G be open in X. By regularity, for
each x € G, there is a basis element B, such that B, = G. Let

B, = ) {B.| B, € %,}.

Then B, is the union of a locally finite collection of closed sets and hence closed,
and G = Ji2, B,. Thus every open set in X is an F,, so X is perfectly normal.
(See 15C.1.)

Now each basis element B,, has the property that for some continuous
fiu: X > LB, = {x € X | f,,(x) # 0}, by perfect normality. Let t be the cardinal
number of the base %, and let H® be the generalized Hilbert space of weight 7;
we can use the pairs n, a as the index set 4 in the definition of H*. Define F: X — H*
by giving coordinate functions F,,(x) = [F(x)],, as follows:

1 JalX)
(\/2_)" V1 + D [

The denominator here makes sense because for any x in X, x € B,, for only
finitely many B,, € %,, so that f,,(x) # O for only finitely many «, if 7 is fixed.
This also shows that F,,(x) # 0 for only countably many pairs », o. Since

Foox) =

1
S FL < 55
we find that
1
ZF,fa(x) < Zi =1

so that F(x) is indeed an element of H*. We claim F is a homeomorphism of X
with a subset of H".

First, if x # y in X, then for some B,, €%, xeB,, and y¢ B,,. Then
fu(%) # 0 and f,(y) = 0, from which it follows that F,,(x) # F,(y), and hence
F(x) # F(y). Thus, F is one—one.

Continuity is harder. First, note that each F,, is continuous as a map of X
into R. Now let x, € X and ¢ > 0 be given. Choose N so large that

o 1 62
E: 2n‘< 4'

n=N+1

Now let U be a nhood of x, meeting only finitely many B,, for n < N; say, U
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meets B, ., B Let V = U be a nhood of x, such that for x e V,

njayd * * nEaK”

1Fp (%) — Fr60)] < ——

</ 2k
fori = 1,...,k Now for x € V and any pair n, « other than n,, «; fori = 1,...,k,
we have F, (x) = F,(x,) = 0. Hence, for xe V,
k 2

S SIFw) = Frlo) = ¥ 1Fua¥) = Frafoll® < 5
n<N a

i=1
But we also have

2 X NFw(X) = Flxo)? < 3 ¥ (Fra(x) + Fr(xo))

n>N a n>N a

by choice of N. It now follows that, for x € V,
Z |Fna(x) - Fna(xo)lz < 62~

Hence, for x € V, d(F(x), F(x,)) < €, proving continuity of F.

Finally, we show F is closed. If A4 is closed in X, we assert F(4) = F(A).
Suppose F(x) ¢ F(A); ie., x¢ A. Then for some na, x€ B,, and B,, " 4 = o.
Hence f,,(x) # 0 and f,,(4) = 0. It follows that F,(x) # 0 and F,(A4) =0

and then, obviously, d(F(x), F(4)) > 0 so that F(x) ¢ F(A). Thus F(A4) = F(A),
so F(A) is closed. B

The proof of the general metrization theorem just given is that of Smirnov.
Nagata’s proof of the same theorem is accomplished by converting a g-locally
finite base for X to a countable collection of locally finite covers (using perfect
normality), proving that a locally finite cover of a normal space is a normal cover,
and then applying the uniform metrization theorem (23.4).

Problems

23A. Examples on metrizability

1. The looped line (4D) is metrizable.
2. The scattered line S (5C) is not metrizable.
3. The disjoint union of metrizable spaces is metrizable.

4. Let A be any infinite set and for each a € 4, let I, be a copy of I Let Z be the
disjoint union of the spaces I, and let X be the quotient of Z obtained by identifying all the
left-hand endpoints. Let a denote the common left-hand endpoint of the spaces I, in X. Does
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the following metric:
p(x,y)=1x —a + la—y if xel,yelsa#p,
plx, y) = 1x — yl if x,yel,
generate the topology of X? The set X with the metric p is the hedgehog space (of spininess

|A]), and p is the hedgehog metric. Metrizability of quotient spaces in general is discussed in
Exercise 23K.

5. Find a countable Hausdorff space which is not metrizable.

23B. Exercise on normal sequences and covers

1. Let % be an open cover of X. If there is a normal open cover {U, | A€ A} of X such
that, for each 4, {G n U, | G € %} is a normal cover of U, then % is a normal cover of X.

2. If 4 is a normal cover of X, then {G x Y |G e %} is a normal cover of X x Y.

3. Every locally finite open cover of a T,-space is a normal cover.

4. If a normal sequence %, %,, . .. is compatible with X, then () %, is a base for X.
The converse fails.
23C. Metrizability of X'*
The following are all equivalent, for a locally compact metric space X :

a) X is separable.
b) X = (J=, K,, where K, is compact and K,, < Int K, ;.
¢) X* is metrizable.

(Recall that X* is the one-point compactification of X.)

23D. Metrizability of BX
1. If p e X has a countable base of nhoods in X, it has a countable base of nhoods in fX.
2. No point in X — X can be a G, in fX. [Otherwise {p} is a zero set in fX. Use the

resulting function f to construct disjoint zero sets in X whose closures in fX are not disjoint.
Then refer to 19J.4.]

23E. Urysohn’s theorem

1. Prove that X is T; and second countable iff X is a separable metric space by appealing
to the general metrization theorem (23.9). (Compare with 23.1.)

2. Give an example of a second countable Hausdorff space which is not metrizable
(thus showing regularity is needed in 23.1).

3. Show that a regular Lindelof space need not be metrizable (so that second countability
cannot be weakened in 23.1). Recall that a regular separable space need not even be normal
(16G) so that improvement of 23.1 in this direction is not possible either.

23F. Semimetrization
A semimetric on a set X is a function d: X x X — R satisfying the requirements: for all
xand yin X,

a) d(x,y) = 0iff x = y,and

b) d(x> y) = d(y> x)'
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One can define open sets in a semimetric space just as if d were a metric, and the result is a
topology on X. The question then arises: which topological spaces are semimetrizable?

1. X is semimetrizable iff at each x € X, a countable nhood base {U,, | n=12..1}
can be found such that ye U,, < xe U,,.

2. Not every first countable space is semimetrizable.

23G. Piecewise metrizability

1. If a Tychonoff space X is the union of a locally finite collection of closed, metrizable
subspaces, then X is metrizable.

2. If a T,-space X is the union of any locally finite collection of metrizable subspaces,
then X is metrizable. [Use 15.10.]

3. A locally metrizable, Hausdorff space is metrizable iff it is paracompact. (Thus, every
paracompact n-manifold is metrizable.)

4. A space can be the union of two metrizable subsets without being metrizable. [Let X
be the one-point compactification of an uncountable discrete space.] For further results, see
the notes.

5. If X is T, and the union of two compact metrizable subsets, then X is metrizable. (This
is the addition theorem for compacta. It is also true for countable unions; see the notes.)

23H. The nhood metrization theorem
Provide examples to show that neither one of the conditions of 23.5 is by itself sufficient to
ensure metrizability.

231. The general metrization theorem

1. Exhibit a specific g-locally finite base for R.

2. Show that regularity is needed in the general metrization theorem; that is, that T,
cannot be replaced by T, in 23.9. [See 23E.2.]

23]. Frink’s metrization theorem
Use the uniform metrization theorem (23.4) to prove the following metrization theorem, due
to A. H. Frink.
A T,-space X is metrizable iff there is a nhood base {U,,|ne N} at each x € X such
that:

3.) le = UxZ =200,
b) for each n € N, there is some m > nsuch that U, " U,, # 0 = U, = U,,.

23K. Metrizability of quotient spaces
Let f be a closed continuous map of a metric space M onto a space Y.

1. If peY has a countable nhood base, then f~!(p) has compact frontier. [Let
{V,|n=1,2,...} be a countable nhood base at p. If Fr(f~!(p)) is not compact, let (x,)
be a sequence in Fr (f ~!(p)) with no cluster point. For each n, find y, e f ~(V;) — Fr (f~'(p))
within 1/n of x,. Then E = {y,|n = 1,2,...} is closed and hence f(E) is closed in Y. But

ye f(E) — f(E)]
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2. Suppose for each p e Y, f~!(p) has compact frontier. Let F, = [f~!(p)] and define
sets U, as follows:

W,, = {xe X |dx, Fr F,) < 1/n}
Von = Wp, 0 Int F,
Upn = f(Vpn) =Y - f(X - an)'

Verify that {U,,, |n = 1,2,...} is a nhood base at p € Y satisfying the conditions of 23J.
3. The following are equivalent :
a) Y is metrizable,

b) Y is first countable,
¢) For each p € Y, f~!(p) has compact frontier.

23L. Metrizability of continuous images

According to 23.2, the Hausdorff continuous image of a compact metric space is metrizable.
This result cannot be improved by weakening the conditions on the space, according to part 2
below.

1. Every closed continuous image of a metric space X in a Hausdorff space is metrizable
iff the set of accumulation points of X is compact. [Use 23K.3.]

2. Every continuous image of a metric space X in a Hausdorff space is metrizable iff
X is compact. [Use part 1.]

24 Complete metric spaces

Compact spaces enjoy nice properties, but compactness is itself a strong property,
tailored to overcome the weak structure available in a topological space. When
a metric is present, it is possible to gain many of the advantages of compactness
with a weaker property, tailored to the metric structure. As with compactness,
it provides for the existence of certain limits and, as with compactness, this makes
it interesting to “existential” analysts.

24.1 Definition. A sequence (x,) in a metric space (M, p) is Cauchy (or, where
confusion is possible, p-Cauchy) iff for each ¢ > 0, there is some positive integer
N such that p(x,, x,,) < € whenever m,n > N.

It is apparent that every convergent sequence in (M, p) is Cauchy. For if
€ > 0 1is given, as soon as the terms of the sequence pass the point beyond which
they are within ¢/2 of their limit, they will all be within ¢ of each other, by the
triangle inequality.

A Cauchy sequence need not converge, however. For example, the sequence
(1/n) is Cauchy in the open interval (0, 1) with its usual metric, but fails to converge
(in that space). In some metric spaces, every Cauchy sequence converges. This is
true of R with its usual metric, for example, by the classical Cauchy criterion for
convergence.

24.2 Definition. A metric space (M, p) is complete iff every Cauchy sequence in
M converges. We also say p is a complete metric for M. A topological space X
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is completely metrizable iff there is a complete metric for X which generates its
topology. Thus X is completely metrizable iff it is homeomorphic to some complete
metric space.

Completeness is a property of metric spaces, complete metrizability is a
property of topological spaces. For example, (0, 1) with its usual metric is not a
complete metric space, but it is completely metrizable since it is homeomorphic
to the complete space R. Some metrizable spaces are not completely metrizable;
one example is the space Q of rationals, as we will see in 25A.4.

In showing (0, 1) was not complete, we produced a nonconvergent sequence
which was Cauchy because it did converge in a larger space. The next theorem
shows that all examples of noncomplete spaces have the same property, by
providing the fundamental result that every metric space has a completion; that
is, a complete space containing it as a dense subspace. We require a definition.

24.3 Definition. Metric spaces (M, p) and (N, o) are isometric iff there is a one—one
function f of M onto N such that o(f(x), f(y)) = p(x, y), for all x and y in M.
The mapping f is called an isometry.

24.4 Theorem. Every metric space M can be isometrically embedded as a
dense subset of a complete space. The resulting completion is unique up to an
isometry which leaves M pointwise fixed.

Proof. The details of the following proof should be familiar. The process used
is entirely analogous to the construction of the real line as a set of equivalence
classes of Cauchy sequences of rational numbers.

Let (M, p) be a metric space, .# the set of all Cauchy sequences in M. Note
that if (x,), (y,) € .4, then (p(x,, y,)) forms a Cauchy sequence in R and hence
converges. Thus we can define

d((xy), (ya)) = lim p(x,, y,).

Moreover, d turns out to be a pseudometric. Let (.#*, d*) be the associated
metric space (see 2C.2). For reference, .#* has for points the equivalence classes
[(x,)] consisting of all (y,) such that lim,_, , p(x,, y,) = 0, and d* is defined on
M* by

a*([(e)], [(va)]) = lim p(x,, y,)-

Now the map g(x) = [(x, x, ...)] is an isometry of M onto a dense subspace
of #*. Moreover, ./ * is complete (an easy diagonal process shows every Cauchy
sequence converges), so .# * is the desired completion of M.

Uniqueness of .#* is easy. If .4’ is any complete space containing M as a
dense subspace, then each point x in .#’ is reached by a sequence (x,) in M.
Define f: #' — M* by f(x) = [(x,)], where (x,) is a sequence in M (necessarily
Cauchy!) converging to x. Then f is well defined and preserves distances, and if
xeM, f(x) = [(x, x,...)], so f leaves M pointwise fixed. B
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Perusing the proof of 24.4, we obtain the following corollary.

24.5 Corollary. Every pseudometric space has a pseudometric completion, that
is, can be isometrically embedded as a dense subset of a complete pseudometric
space.

24.6 Examples. a) The completion of (0, 1) is [0, 1].

b) The completion of the space of rationals Q is the real line.

c) Let X be any topological space, Co(X) the space consisting of all bounded
continuous real-valued functions f: X — R which are 0 except on some compact
subset of X; ie., Cyo(X) is all real-valued continuous functions with compact
support. Define

p(f,9) = sup | f(x) — g(x)l.

Then C,, with this distance function is a metric space, but is not complete. Its
completion is the set of functions Cy(X) which are small off compact sets; ie.,
CoX)={fX > R]f continuous and for each ¢ > 0 there is a compact
K, < X such that |f(x)] < eforall x ¢ K }.

Next on our program is the development of Lavrentieff’s theorem (24.9),
one of the more important embedding theorems useful in dealing with complete
metric spaces.

24.7 Definition. Suppose f: 4 — M, where M is a metric space and A4 is a subset
of X. We define osc (f, U), the oscillation of f on U, for any U < X, as follows:

osc (f, U) = sup {p(f(x), () | x, ye U n A},

and we accept the convention that osc (f, U) = oo if U n A4 is empty.
If X is a topological space and x € A4, we define the oscillation of f at x to be

osc (f, x) = inf {osc (f; U) | U nhood of x}.

24.8 Lemma. Let X be a metric space, Y a complete metric space and A < X.
If 1 A > Y is continuous, then f can be extended to a continuous function
f*: A* - Y, where A* isa Gs-setin X and A = A* < A.

Proof. Let A* = {xe A|osc(f, x) = 0}. For xe A* let (x,) be any sequence
in A converging to x. Given ¢ > 0, since osc (f, x) = 0, there is some nhood U
of x such that osc(f, U) < e Since x, — x, there is some N such that
mn > N = x,, x,, € U= p(f(x,), f(x,,)) < e Thus, (f(x,))is a Cauchy sequence
in Y and since Y is complete, f(x,) — y for some y. Now define f*(x) = y. The
reader should check that this definition of f*: 4* — Y is independent of the
choice of the sequence (x,) converging to x, and that f* as defined is continuous.
It remains, then, to show that A* is a G4-set in X. But if we let

A, = {xe A|osc(f, x) < 1/n},
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then A, is open in A. For if y € 4,, then there is some open nhood U of y such
that osc (f, U) < 1/n, and it is clear that U n A = A4,. Since A* = (<, 4,
A*is a Gz-set in A and thus in X. B

24.9 Theorem. (Lavrentieff) If X and Y are complete metric spaces and h
is a homeomorphism of A = X onto B < Y, then h can be extended to a homeo-
morphism h* of A* onto B* where A* and B* are G-sets in X and Y, respectively,
and A « A* < 4,B c B* c B.

Proof. Since h: A — Y is continuous, it can be extended to a continuous map
h*: A, - Y, where A; = Aand A, is a Gzset in X.

Since 4~': B —» X is continuous, it can be extended to a continuous map
g*: B; - X, where B; = B,and B, isa G4-setin Y.

Let A* = {x e A, | h*(x) € B,}. This s the inverse image of a G,-set, and thus
a G,-set, in 4; and hence in X. We claim h* | 4* is a homeomorphism of A4* onto
the G,-set B¥* = {x € B, | g*(x) € A,} in Y. We can prove this by showing

a) h*(4*) = B*.

b) ()~ = g*.
If x € A*,then h*(x) € By and g*(h*(x)) = x € Ay,s0 h*(x) € B*. Thush*(4*) < B*.
If y e B*, then g*(y) € A, and A*[g*(y)] = y, so y € h*(4*). Thus h*(4*) = B*.

Moreover, since h*[g*(y)] = y, for each y e B*, and g*[h*(x)] = x, for each
x € A*, h* and g* are inverses. Thus A* is a homeomorphism of A* onto B*. B

Making good use of Lavrentieff’s theorem, we turn to the question of manu-
facturing new complete spaces from old. The product theorem is not difficult,
but the full force of Lavrentieff’s theorem will be needed to obtain a pleasant
subspace theorem. We can easily prove a weak subspace theorem now.

24.10 Theorem. A closed subset A of a complete metric space (M, p) is complete.

Proof. 1If (a,) is a p-Cauchy sequence in 4, it is also Cauchy in M and hence
converges, say to a. But A is closed, so a € 4. Thus every Cauchy sequence in 4
converges (to a point in A4). B

24.11 Theorem. Suppose X, is a nonempty metric space for n = 1,2, .. .
Then || X, is completely metrizable iff each X, is completely metrizable.

Proof. =: Pick g;e X, i=1,2,.... Then X, is isometric to the closed
subset

X¥ = {(xy, x5, .. ) €[] X, | x; = a; except for i = n}
of [] X, and it follows that X, is completely metrizable.

<: Suppose p, is the complete metric for X,, n = 1,2,... . The bounded
metric
py = min (p,, 1)
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already introduced in 22.2 as equivalent to p, is easily verified to be complete
(24A.3). Define p on [ ] X, by

o Pr(Xns V)
p(x, y) = Z T
n=1
We know that this gives a compatible metric on [] X,, so only completeness
remains to be checked. Suppose x', x%,... is a p-Cauchy sequence in [] X,.
Then for each i, x!, x?,... is a p*¥-Cauchy sequence in X;, and hence converges,

say to y;. We assert x*, x%, ... converges to y = (y;, y,,...). Lete > 0 be given.
Choose N so large that Z,°,°=N+1 (1/2") < €/2. Then pick N, so large that when

n> N, ,
€2

*x" oy) < ——
pF(xt, vi) N

fori =1,...,N. Then forn > N, we find
& P, vi)
21‘
p;k(x?’ yl) €
2 + 2
€2
L 2N - 2

p(x", y) =

—

[

A
z Iz i

A

- -
= — = €
2

N~

€
2

so that (x") converges to y, as claimed. Il

We are now ready for the subspace theorem. The first part is due to
Alexandroff, the second to Mazurkiewicz. Both are classical results from the
1920’s.

24.12 Theorem. A Gg-set in a complete space is completely metrizable. Con-
versely, if a subset A of a metric space M is completely metrizable, it is a
Gs-set.

Proof. First, suppose G is open in the complete space (M, p). Define
f(x) = 1/[p(x, M — G)] for each xe G. Then f is continuous on G (24E).
Now define

p*(x, y) = p(x, y) + [f(x) — fy)

for x, y e G. Then p* is a metric on G, and if a sequence (x,) in G is p*-Cauchy,
then it is p-Cauchy. Also, for any ¢ > 0 there is some integer N such that
1 1

nz=N=|f(xy) = flx)] < e= P M—G) semM—0)| ¢

An easy computation with this last inequality shows that p(x,, M — G) must
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be bounded away from 0; thus, for some 6 > O,
(x,) € My = {xeM|p(x, M — G) > 6}.

But M is closed in M and thus complete. and (x,) is p-Cauchy. so (x,) converges
in M; and hence in G. Thus, every p*-Cauchy sequence converges and we have
established that G is completely metrizable, provided p* gives the same topology
as does p on G. This is left as an exercise (24E).

Now suppose H is a Gg-set in M, say H = ﬂff; . H,, where each H, is open.
From the above, H, is completely metrizable, for each n, and hence [[ H,, is
completely metrizable. But the set

A = {(Xl,xz,...)eanlxl =X, = }
is closed in H H, and thus completely metrizable, and by Exercise 241, the map
fx) = (x,x,...)

is @ homeomorphism of H with A. Thus H is completely metrizable.

Conversely, suppose 4 is a completely metrizable subspace of a metric space
M, and let M denote the completion of M. The inclusion i: 4 — M is a homeo-
morphism, and thus, by Lavrentieff’s theorem, has an extension to a homeomor-
phism of Gs-sets. But i can have only itself for an extension so evidently i(4) =
must itself be a G in M. Since the intersection with M of a G5 in M is a G;, 4
isaG;in M. B

Thus, the completely metrizable spaces are precisely those metric spaces
which are G4-sets in whatever metric space they are embedded (“absolute G4-sets”).
Next we see that they retain this property, to a certain extent, in nonmetric
embeddings.

24.13 Theorem. For a metric space X the following are all equivalent:

a) X is completely metrizable,

b) X is a Gy in its completion X,

c) X is a G; in every metric embedding,

d) XisaG;,in X,

e) X is a G whenever densely embedded in a Tychonoff space.

Proof. The equivalence of (a), (b), and (c) has already been established in Theorem
24.12.
c)=d): Let p be a bounded metric on X compatible with the topology.

For each x € X, let ¢,: X — R be the function
@) = p(x, y).

This is a bounded continuous real-valued function on X so by the mapping
property for fX, there is an extension ¢, of ¢, to all of fX. Define p* on fX by
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p*(a, b) = inf,y {|@(a) — @.(b)}. Then p* is a pseudometric on X, for
i) p*(a,a) =0
i) p*(a, b) = p*(b, a)
ii1) if a, b, ¢ € fX, then

p*(a, C) = ig;'@x(a) - (Z)x(c)|

IA

infG,(@) — G,(b) + inf[5.0) — @.(0)

= p*(a, b) + p*(b, ).

Moreover, the restriction of p* to X is p, and p* is a “continuous pseudometric”
on X ; that is, the topology it induces is weaker than the usual topology on fX.

Now perform the usual metric identification on (8X, p*). The result is a
metric space K which contains X (X < fX is not affected by the identification
since p* is already a metric there). Let A: fX — K be the identification map.
Now X is a G; in K, and hence 2 ~!(X) is a G, in (BX, p*) and hence in fX. But
A Y(X) = X.

d) =e): Suppose X = ()G,, each G, open in BX, and let f: X > Y
be an embedding of X as a dense subset of a Tychonoff space Y. Then f has
an extension f?: BX — BY. Consider the sets Y — f#(BX — G,) = H,, for
n=1,2.... They are open, since each f#(X — G,) is compact and, more-
over, for each n, X < (f#)"*(H,) = G, so that

X =NUH"H,) = ()N H.

Thus f4(X) = f°[(f5)" (Y H.,)] = () H,, so X is a G, in Y and hence in Y.
Note that we did make use of the fact that X was dense in Y in our tacit use of the
assumption that fY was a compactification of X, so that f# was onto.

e) = ¢): If X is embedded in a metric space M, then by (¢) X is a G;in X and
X is, of course, a G; in M. It follows that X isa G;in M. B

We conclude this section with an important fixed point theorem for complete
spaces.

24.14 Definition. If f: X — X, a fixed point of f is a point x € X such that f(x) = x.

24.15 Definition. A map f: X — X, where (X, p) is a metric space, is p-contractive
provided d(fx, fy) < o - p(x, y) for some « < 1 and all pairs (x, y) in X x X.

24.16 Theorem. (Banach) If X is complete in the metric p and f: X — X
is p-contractive, then f is continuous and has precisely one fixed point.

Proof. That f is continuous is clear (any distance decreasing map is continuous).
If x, y are both fixed points of fin X, then f(x) = x, f(y) = y so

d(x, y) = d(fx, fy) < a-d(x, y),
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but since a < 1, this can be so only if d(x, y) = 0; ie, if x = y. Hence f has at
most one fixed point.

Choose x e X. Consider the sequence xi, X,,... defined as follows:
Xy =X, X5 = f(Xq),.-., %, = f(x,_1) Then x, x,,... is a Cauchy sequence
and hence converges, say to x,. We claim x, is the required fixed point. In fact,
since x, — x, and f is continuous, we have f(x,) — f(x,). But the sequence
S(xq), f(x,), ... 1s just x,, x5, ... so that x, —» f(x,). It follows that f(x,) = x,,
as claimed. B

Fixed-point theorems, such as the one just given, are useful in proving certain
existence theorems in differential and integral equations. One example is given
in 24L.

Problems

24A. Examples on completeness and completion
1. Hilbert space H (18.7) is complete.
2. The completion of Cy(X) is Co(X) (see 24.6c¢).
3. If p is a complete metric on X, so is the metric p* defined by
p*(x, y) = min {1, p(x, y)}.
4. If I is any closed interval in R, the space C*(I) of bounded continuous functions on I,

with the sup metric p(f}, f,) = sup, | fi(x) — f>(x)|, is complete.
5. The space P of irrationals is completely metrizable.

24B. Totally bounded metric spaces
A metric space M is totally bounded iff for each ¢ > 0, a finite number of e-disks will cover
M.
1. Every totally bounded metric space is bounded. The converse fails.
2. A metric space is separable iff it is homeomorphic to a totally bounded metric space.
3. A metric space is totally bounded iff each sequence has a Cauchy subsequence.
4. A metric space is compact iff it is complete and totally bounded.

The results of this exercise, particularly 3 and 4, have generalizations to uniform spaces.
See Section 39.

24C. Equivalent conditions for completeness
In a metric space (X, d), define the diameter of A = X to be 8(4) = sup {d(x, y) | x, y € A}.

1. The following are equivalent :
a) X is complete.
b) each decreasing sequence C; > C, > -- - of closed sets with §(C,) — 0 has non-
empty intersection.
c) each infinite totally bounded (24B) subset has an accumulation point.
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2. The condition that §(C,) — 0 in b) above is necessary.

3. A metrizable space is compact iff it is complete in every compatible metric. [Use
22E.4 for sufficiency.]

24D. Completion
Check the details in the proof of 24.4. Specifically :

1. d, as defined on .#, is a pseudometric.
2. The map g(x) = [(x, x, . . .)] is an isometry of M with a subspace of .#*.

3. If /' is a complete space containing M as a dense subspace, for each x e .4, let
(x,) = M be a sequence converging to x and define f(x) = [(x,)]. Verify that f is an isometry
of {?Z " with ./ *, such that f(z) = z for each z € M (i.e, f(z) = g(z), see part 2).

24E. Equivalent metrics on open subsets
Let G be an open subset of a metric space (M, p). Define f(x) = 1/[p(x, M — G)], for x € G.
Then for x and y in G, define p*(x, y) = p(x, y) + |f(x) — f(Y).

1. fis continuous.

2. p* is a metric on G.

3. p* is equivalent to p on G.

24F. Topologically complete spaces

Certain of the assertions in 24.13 do not require metrizability of X. Tn particular: a completely
regular space X is a G; in fX iff X is a G, in every completely regular space in which it
is densely embedded.

A space which is a G, in its Stone—Cech compactification is called topologically complete.

24G. Pseudometric completion

Given a pseudometric space (X, p), we can form the metric identification of the completion
of X, ie., (X)* or the completion of the metric identification of X, ie., X*.

1. The metric identification of a complete pseudometric space is a complete metric
space.

2. (X)* is isometric to X*.

24H. Extending maps

Give an example of a subset 4 of a metric space X and a continuous map f of 4 into a complete
space Y which cannot be extended to all of 4 (compare with 24.8).

241. Embedding an intersection in a product

If X is a topological space and X, = X for each n = 1, 2,... then () X, is homeomorphic
to {(xy, x5, .. e[ Xp| %, = xon =2,3,...}.

24]). Banach spaces

A normed linear space (2J) is called a Banach space iff its norm metric is complete.
A sequence x;, x,, ... of points in a normed linear space is summable iff the associated
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sequence X;, X; + X,,... of partial sums converges (in the norm metric) and absolutely
summable if )" ||x,|| < oo.

1. A normed linear space is a Banach space iff every absolutely summable sequence is
summable.

2. If Y is any Banach space, the space L(X, Y) of all bounded linear operators (7L) from a
normed linear space X to Y is a Banach space. In particular, the dual space X* of any normed
linear space X is a Banach space.

3. R”, with any of the norms given in 2J.6, is a Banach space. [(a) gives the usual metric,
which we already know is complete.]

4. The space I, of all real sequences (x,) such that ) |x,|* < co, with the norm
eIl = [ 1x,1*]*/? is a Banach space. Compare with 18.7(b).
5. The space s of all sequences of real numbers, with the norm

L x|

Gl = 25771 .y

is a Banach space.

6. For any topological space X, the space C*(X) of bounded real-valued functions on X,
with the sup norm || f]| = sup [f(x)|, is a Banach space.

The dimension of a Banach space is the least cardinal of a base for the underlying vector
space.

7. If a Banach space is & ,-dimensional, it is separable. The spaces described in (3), (4)
and (5) above are separable, while (6) need not be.

24K. The irrationals as a product

The space P of irrational numbers (with the relative topology in R) is homeomorphic to the
product of denumerably many copies of N. [Enumerate the rationals in R as r;, 7y, ... .
Now partition P into countably many intervals I,, I,, . . . each having rational endpoints and
length <3. Also, so determine I,, I,,. .. that one of the endpoints of one of the intervals is
ry. Next partition each I, into countably many intervals I, I,,, ... each having rational
endpoints and length <. Also, we may so determine these intervals that r, is an endpoint
of some interval of the form I, ,,, while r; is not. Continue, at the kth stage using intervals
of length <(1/2% with rational endpoints and requiring that r, be an endpoint of some interval
I, n,..n, While none of r,...,r,_; are. For an irrational number p, consider the sequence
I,I . of intervals containing p. Using 24C to prove that it is onto, show that the map

np fnyny - -

f(p) = (ny, ny, . . .) is a homeomorphism of P onto the product N¥°.]

24L. Picard’s theorem

Let f(x, y) be a continuous real-valued function defined on an open set A in the plane con-
taining (x,, y,) and suppose f satisfies a Lipschitz condition with respect to y:

[fCe, y1) — flx, y2)l < My, — pal.

We assert that the integral equation

x

P(x) = yo +j St o)) dt, (1)

X0
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which is equivalent to the differential equation

dy
Ix = f(x9 y)
W(xo) = Yo

has a unique solution defined on some closed interval [x, — K, x, + K]
Let B be an open set such that (x,, yo) € B = A and such that |f(x, y) — f(X, Yo)| < L,
for some constant L, on B. Let K be a positive constant < 1/M such that

{ M [Ix — xol < K, |y ~ yol < KL} = B.
For each ¢ € C*[x, — K, xo + K], define Ag by

x

Ap(x) =y, +j f(t, () dt.
1. A maps a closed subspace of C*[x, — K, x, + K] into itself.
2. A is a contraction mapping, if C*[x, — K, x, + K] is endowed with the sup metric:
p(@1, @2) = sup {|o(x) — @,(x)| |xe [xo — K, xo + K]}
3. Conclude that the integral equation (1) has a unique solution defined on
[xo — K, xo + K].

24M. Lavrentieff’s theorem

Show that Lavrentieff’s theorem (24.9) is equivalent to the following complement to 22E.4:
if A is a subset of a metrizable space X and p is a compatible metric on 4, then p can
be extended to a compatible metric on a G;-set in X which contains A.

25 The Baire theorem

The applications of topology to analysis are usually manifested in the form of an
“existence theorem” of some sort and the major share of the work in this direction
is borne, directly or indirectly, by two theorems: the Tychonoff theorem and the
Bfiire category theorem. We turn now to the development necessary to introduce
the latter.

25.1 Definition. X is a Baire space iff the intersection of each countable family of

dense open setsin X isdense. Aset A = X isnowheredensein X iffInt, Cly 4 = o.

Aset A = X is first category in X iff A = | J2.{ A,, where each A, is nowhere

dense in X. All other subsets of X are called second category in X. You can visu-

alize first category sets as being “thin”, second category sets as being “thick”.
Every Baire space is second category in itself. In fact:

25.2 Theorem. X is 2nd category in itself iff the intersection of every countable
family of dense open sets in X is nonempty.
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Proof. =: Let G, G,,... be dense open sets. Then X — G, X — G,,...
are nowhere dense closed sets, so U(X — G;) is first category. Hence
X-JX-6G)=G; #e.

<: IfX = U A,, each A4, closed and nowhere dense, then

is an intersection of open dense sets and hence # @, a contradiction. Thus
X # | A, for any sequence of closed nowhere dense sets 4,,. B

25.3 Theorem. (Baire) A Gg-set in a compact Hausdorff space is a Baire
space.

Proof. We begin by proving that a compact T,-space is Baire. Let J,, J,, ..
be dense open sets in the compact space K, and let U be any open set in K. Now
U n J, # o so there is a nonempty open set ¥; with ¥V, = U n J, (using regu-
larity). Similarly, a nonempty open set ¥, can be found, » = 2, 3,... such that
V.cV,_inJ, Now ¥V, V,...is a decreasing sequence of compact sets, so
(\V,# e But(\V, < Un()J,). Thusevery open set U meets (] J,, estab-
lishing that () J, is dense in K. Hence, K is a Baire space.

Now suppose X = ﬂ H, where each H, is open in a compact Hausdorff
space K. We can assume X is dense in K (otherwise replace K by Clg X). Now
if G4, G,, ... is a sequence of dense open sets in X, then for each i, G; = J; n X,
where J; is dense and open in K. But now J;, H,, J,, H,,... is a sequence of
dense open sets in K, and hence

m(‘]imHi)=(mji)m(ﬂHi)=(ﬂji)ﬁX=mGi

is dense in K and therefore in X. Hence X is a Baire space. B
25.4 Corollary. 2) Every locally compact Hausdorff space is Baire.

b) Every completely metrizable space is Baire.

Proof. Alocally compact space X is open in $X (18.4) and a completely metrizable
space X is a G, in fX (24.13). &

The corollary above, rather than 25.3, is often referred to as the Baire theorem
since it deals with the spaces of most interest to analysts. Its importance is well
documented. Two of the most powerful theorems in functional analysis, the open
mapping principle and the uniform boundedness principle (25D) are direct
consequences of application of the Baire theorem. The example we give next
is typical of an existence theorem based on the Baire theorem; we show that some
element of a space must have a given property by showing that the space is second
category while the elements which do not have the property form a set of first
category.

25.5 Theorem. There is a continuous real-valued function f on 1 having a
derivative at no point.
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Proof. We will show that

a) C(I) = all real continuous functions on [0, 1] is complete in the uniform
metric d, and

b) the set & of functions in C(I) which have a derivative somewhere is first
category in C(I).

It will follow that C(I) — & is nonempty; in fact, it must then be second category.

a) Let f}, f5, ... be a Cauchy sequence of functions from C(I) in the uniform
metric. Then, for each x € L, fi(x), f5(x), . . . is a Cauchy sequence of real numbers
and hence converges, say to f(x). The resulting function f defined on I is easily
verified to be the uniform limit of the continuous functions f;, f, ... and thus
continuous. Since every Cauchy sequence thus converges, C(I) is complete.

b) Define &, forn = 1,2,... by

for some x € [0,1 — 1/n],

£n={fecw

whenever 4 € (0, 1/n], }_f(_xw < n}.

If a function f € C(I) has a derivative at some point, then for some n large enough,
feé&,; hence & = | )i, &,. Thus we can establish (b) by showing each &, is
closed and has no interior.

1. &, has no interior. Given fe &, and ¢ > 0, we will find a continuous
function g such that d(f, g) < eand g ¢ &,; thatis, for all x e [0, 1 — 1/n], there
is some 4 € (0, 1/n] with

> n.

}mx+m-mm
h

We sketch the construction of g. Find a polynomial function P(x) on [0, 1] such
that d(f, P) < ¢/2. Let M be the maximum slope of P(x) in [0, 1], and let Q(x)
be a continuous function consisting of straight-line segments of slope +
(M + n + 1) constrained so that |Q(x) < €/2.

Define g(x) = P(x) + Q(x). Thend(f, g) < d(f, P) + d(P, g) < ¢/2 + ¢/2 = eand
_‘ P(x + h) + Q(x + h) — P(x) — Q(x)
B h

- Ox + h) — O(x)| | Plx + h) — Px)
> ) ) .

But for x e [0,1 — 1/n], an h € (0, 1/n] can be found for which the right-hand
sideis>(M +n+1)— M =n+ 1 Thusg¢é&,.

glx + h) — g(x)
h
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2. &,isclosed. The (evaluation)mape: C(I) x I — Rdefined bye(f, x) = f(x)
is continuous. It follows easily that, if h, is a fixed element of (0, 1/n], the map
Euo: C(I) x [0,1 — 1/n] — R defined by

_ S+ ko) — f(%)
= ™

Eho(f» x)

is continuous. Thus E,_'[0, n] is closed in C(I) x [0, 1 — 1/n]. Let
D,, = {fe CO) | (f, x) € E,'[0, n),

for some x € [0, 1 — 1/n]}.

Then D, is closed in C(I). For if f,, € D, form = 1,2,...and f, — f, then
the sequence (x,,)in [0, 1 — 1/n] such that (f,, x,,) € E,_'[0, n] has a cluster point
x; easily, (f. x) € E; '[0. n]. so that f € D,,. Moreover.

< n}

x + ho) — f(x)
ho

D,, = {fe C(I) | for some x € [0, 1 — 1/n], il

so that &, = () {D,, | ho € (0, 1/n]}, establishing that &, is closed. B

Problems

25A  Exercise on category
1. The union of finitely many nowhere dense subsets of X is nowhere dense.
2. The frontier of any open subset of X is nowhere dense.

3. Every open subset of a Baire space is a Baire space. The result fails for second category
spaces.

4. The space Q of rationals is not completely metrizable.
5. The space P of irrationals is a Baire space.

25B. Category in o-compact spaces

A topological space X is o-compact iff X is a countable union of compact subsets. For o-
compact spaces, there is a partial converse to the Baire theorem. To state it succinctly, we
will define X to be locally compact at one of its points x iff x has a compact nhood in X.
Note that the set of points at which X is locally compact is always open.

A g-compact space is second category (Baire) iff the set of points at which X is locally
compact is nonempty (dense) in X.
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25C. Continuous functions on Baire spaces

Let X be a Baire space and f: X — R a real-valued continuous function on X. Then every
nonempty open subset of X contains a nonempty open set on which f is bounded. (If you
have done Exercise 7K on semicontinuous functions, you can prove similar results for (1) lower
semicontinuous functions and upper bounds, and (2) upper semicontinuous functions and
lower bounds, which together imply the result for continuous functions.)

25D. Category in Banach spaces

The Baire category theorem plays an integral role in the proof of 1 below, and thus indirectly
in the proofs of three important theorems in analysis: the open mapping theorem, the closed
graph theorem and the uniform boundedness principle.

The definitions and elementary facts about Banach spaces needed here are found in
Problems 2J, 7L and 241J.

1. Let X and Y be Banach spaces and I" a bounded linear operator from X onto Y. For
some € > 0, the image under I' of {xe X |||x]| < 1} covers {ye Y |||yl| < ¢}. [Let
B, = {xeX|||x]| < 1/2"} for n = 1,2,... . Use the Baire category theorem to conclude
some n - I'(B,), and hence I'(B,), is not nowhere dense in Y. Then for some ye Y and § > 0,
{ze Y|llz — yll < 8} = T(B,) and hence, {zeY||lzl] < 8} = I'(By). Conclude, using
completeness of X, that {ze Y ||lz]| < 6/2} = I'(Bo).]

2. Open mapping theorem. If X and Y are Banach spaces and I is a bounded linear
operator of X onto Y, then I' is open. [Use part 1.] Hence, if I' is a one—one bounded operator
of X onto Y, it is a homeomorphism.

3. If X is a vector space with norms ||-|[; and ||-||,, each of which makes X a Banach
space, and if a constant C exists such that ||x,|| < C||x,]|, for all x € X, then ||-||; and |||,
are equivalent ; that is, they generate the same topology on X.

4. Conclude that the norms [|-||, ||-||; and ||-|| given in 2J.6 for R" are all equivalent.
[In 24].3 you showed each of these is complete.]

5. Uniform boundedness principle (version 1). Let & be any family of continuous, real-
valued functions on a complete metric space X such that for each x € X, there is some constant
M, such that |f(x)] < M, for all fe€ . Then there is some constant M and a nonempty
open set U in X such that |f(x)] < M for each x € U and each f e &#. [Let

E,= {xe X||f(x)| < nforeach fe #}.

Show E, is closed and apply the Baire category theorem to conclude some E, contains a non-
empty open set U.]

6. Uniform boundedness principle (version 2). Let & be any family of bounded linear
operators from a Banach space X into a normed linear space Y such that at each x € X, there
is a constant M, such that [|[I'(x)]] < M, for each I'e #. Then for some constant M,
[IT]| < M forallT e #. [Use part 4. Note that what you want to show is that ||[(x)|| < M
for each x with ||x|| < 1.]

25E. Hilbert space
A linear space X becomes an inner product space when to every pair x, y of elements of X a
real number (or, for a complex inner product space, a complex number) {x, y) is assigned,
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subject to the following rules:
(IP1) <x,x> = 0; {x,x) =0iff x =0,
(IP2) {x, y> = {y, x> (or, in the complex case <{x, y> = (¥, x),
(IP3) <ax + By, z) = alx, ) + By, 2).

The number (x, y) is called the inner product of x and y.

1. Every inner product space is a normed linear space, (2J), when the norm is defined by
[Ix]] = {x, x)'%. When the resulting normed linear space is a Banach space, we call the inner

product space a Hilbert space.

2. Cauchy-Schwarz inequality. In any inner product space, {x, y) < ||x|| - ||yl [Set
2 = ||x||/llyl| and work with the inequality 0 < ||x — Ay||%]

Elements x and y in an inner product space X are orthogonal iff (x, y> = 0. A subset
A of X is an orthonormal system iff any two elements of X are orthogonal and ||x|| = 1 for
each x € A. An orthonormal system which is maximal (with respect to inclusion) is called
complete.

3. An orthonormal system A is complete iff whenever {x, a) = 0 for each a € 4, then
x = 0. Every inner product space has a complete orthonormal system.

4. If A is a complete orthonormal system in a Hilbert space H, and x € H, then x has a
unique representation of the form

@
X = o,x,
=1

for some sequence x, x,, . . . of elements of A. [Show that if x,, x,, . . . is any sequence from
A, then Y (x, x,>* < ||x]|>. Use this to conclude that only countably many of the inner
products {x, z), for z € 4, are nonzero. Let x;, x,, ... be the resulting sequence of elements
of A and set a, = {x, x,».]

25F. An application of the Baire theorem

1. Suppose that for each irrational p, an equilateral triangle 4, (with interior) is constructed
with a vertex at (p, 0) and the opposite side parallel to and above the x-axis. Use the Baire
category theorem and 25A.5 to show that () A, contains a rectangle of the form
{x,»)eR*|a< x < b0<y< 1/n} for some a < b and some positive integer n. [It is
enough to show that, for some n, {peP| A4, has height >1/n} is dense in some interval
[a, b] witha < b.]

2. Let D = {(x, 0) | x is rational} and E = {(x, 0) | x is irrational}. Then D and E are
disjoint closed sets in the Moore plane I. Apply part 1 to show that D and E cannot be con-
tained in disjoint open sets in I.



Chapter 8

Connectedness

26 Connected spaces

The topological study of connectedness is heavily geometric (or visual). Thus
connectedness-like properties play an important role in most topological char-
acterization theorems, as well as in the study of obstructions to the extension of
functions. The use of connectedness in characterization theorems is exemplified
in later sections of this chapter ; its use in obstruction theory is appropriate subject
matter for a book on algebraic topology.

26.1 Definition. A space X is disconnected iff there are disjoint nonempty open sets
H and K in X such that X = H u K. We then say that X is disconnected by
H and K. When no such disconnection exists, X is connected.

Note that we can replace “open” in this definition by “closed”. It is apparent,
then, that X is connected iff there are no open—closed subsets of X other than o
and X or, equivalently, iff @ and X are the only subsets of X with empty frontier.

26.2 Examples. a) The Sorgenfrey line E is disconnected.

b) Any discrete space of more than one point is disconnected. In fact, any
T,-space having an isolated (open) point is disconnected. In particular, the ordinal
spaces Q, and £ are disconnected.

¢) Iis connected. For if I is disconnected by H and K, with 1 € H, then H
contains some nhood of 1, so ¢ = sup K cannot be 1. Now ¢ belongs to either
H or K and hence some nhood of ¢ is contained in H or K. But any nhood of ¢
contains points of H (to the right of ¢) and points of K (to the left of ¢), a
contradiction.

d) The long line. The ordinal space €2, as we have mentioned, is not connected.
A connected space can be obtained from € by inserting between each pair of
consecutive ordinals a copy of (0, 1) and giving the resulting ordered set the order
topology. This space is called the long line, W. W is connected, since a discon-
nection of W would either disconnect a copy of [0, 1] or isolate a limit ordinal,
neither of which is acceptable. W is also compact (this can be proved in the same
way we proved € is compact, or else use the criterion for compactness of ordered
spaces given in 17E).

191
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We turn now to the usual questions, involving continuous maps, subspaces
and products of connected spaces.

26.3 Theorem. The continuous image of a connected space is connected.

Proof- Suppose X is connected and f is a continuous map of X onto Y. If Y
were disconnected by H and K, then X would be disconnected by f~!(H) and
f~Y(K), so Y must be connected. B

Subspaces of connected spaces are not usually connected; examples abound
in I In fact, the only subspace theorem available dealing with connectedness is
just a useful way of rephrasing the definition so that it can be applied to a subspace
without passing to the relative topology. Note that connectedness of X is not a
part of 26.5.

26.4 Definition. Sets H and K in X are mutually separated in X iff
HNnK=HnK=g¢

26.5 Theorem. A subspace E of X is connected iff there are no nonempty,
mutually separated sets H and K in X with E = H U K.

Proof. If E is disconnected by H and K, then H and K are mutually separated
in any X containing E, since
HnCly K=(HnNE)nCly K
= H n (E n Cly K)
=HnClK=g¢

and similarly for (Cly H) n K.
Conversely, if H and K are mutually separated in X and E = H U K, then

ClH=EnClyH=HuUK)nCly H
= (H n Cly H)u (K n Cly H)
=H
and hence H is closed in E. Similarly K is closed in E. B

26.6 Corollary. If H and K are mutually separated in X and E is a connected
subset of H U K, then E = H or E = K.

Proof. 1f H and K are mutually separated in X,soare En Hand En K. B

The last theorem and its corollary provide us with some neat ways of proving
a given space X is connected.

26.7 Theorem. a) If X = | ) X,, where each X, is connected and (| X, # o,
then X is connected.
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b) If each pair of x, y of points of X lies in some connected subset E,, of X,
then X is connected.

o) If X =J&, X, where each X, is connected and X,_; n X, # o for
each n > 2, then X is connected.

Proof. a) Suppose X = H U K where H and K are mutually separated in X.
Then, since X, is a connected subset of H U K for each o, we have X, « H or
X, © K. Since the X, are not disjoint, while H and K are, we must have X, « H
for all « or X, < K for all «; say the former. Then X < H,so K = @. Thus X
can never be the union of two nonempty mutually separated sets in X, so X is
connected.

b) Fixae X. Then X = | J,x E..and the latter union satisfies the conditions
of part (a).

c) X,isconnected,and if X, U --- U X, _; isconnected,sois X; U - U X,
by part (a). Thus 4, = X, u---uU X, is connected, for n = 1,2,... . Since
() 4, = X, is nonempty, ( ] 4, = X is connected by part (a). B

26.8 Theorem. If E is a connected subset of X and E = A < E, then A is
connected.

Proof. 1t is enough to show E is connected (since if E = A = E then 4 = Cl, E
and we can replace X by A). Suppose E = H U K where H and K are disjoint,
nonempty open sets in E. Then E = (H n E) u (K n E), and the latter are
disjoint, nonempty open sets in E. Thus if E is disconnected, so is E. B

The two theorems just proved give nice ways of leap-frogging from con-
nectedness of some familiar spaces (we already know I is connected) to connected-
ness of others.

26.9 Examples. a) R is connected. For R = { J;2, [ —n, n] and each set [ —n, n]
is homeomorphic to I and hence connected, while their intersection is nonempty,
so connectedness of R is a simple application of 26.7(a).

b) R" is connected. We can use the same theorem. R” is the union of the
family of all straight lines through its origin; each such line is homeomorphic to
R and thus connected, so R” is connected.

We turn now to the problem of deciding connectedness for product spaces.
The last theorem will be useful here.

26.10 Theorem. A nonempty product space is connected iff each factor space
is connected.

Proof. If the product is connected and no factor space is empty, then the pro-

jections are continuous and onto and hence each factor space is connected.
Conversely, suppose each factor space X,, o € A4, is connected. Pickae [ X,

and denote by E the set of all points in the product which lie together with a in
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some connected subset of the product. Then E is connected, so it suffices by the
previous theorem to show E is dense in the product.

Let U = = '(U,,)n - nn,'(U,) be a basic open set in the product.
Pick b,, e U, fori =1,...,nand deﬁne sets E,, ..., E, as follows:

= {ce[] X, | c,, arbitrary, ¢, = a, otherwise},
= {ce[] X.|c., = b,,, c,, arbitrary, ¢, = a, otherwise},

= {ce[] X.|c, = b, fori=1,...,n — 1,¢,, arbitrary,
¢, = a, otherwise}.

Then E, is homeomorphic to X, and thus connected. Moreover, E, N E,,, = o
fork =1,...,n — 1so (Ji=; E, = F is connected. But a e F and F meets U.
Thus every basic open set U contains points of E. B

The importance of connectedness for us lies almost wholly with its use in
characterization theorems. In particular, it is not usually possible to deduce the
presence of other topological properties in a space from the fact that the space is
connected, or vice versa. In fact, if one needs connectedness of X, and X is not
itself connected, we can usually just look at the individual “components” (maxi-
mal connected pieces) of X, as described now.

26.11 Definition. If x € X, the largest connected subset C, of X containing x is
called the component of x. It exists, being just the union of all connected subsets
of X containing x.

If x # y in X, then either C, = C, or C, n C, = @; otherwise C, U C,
would be a connected set containing x and y and larger than C, or C,, which is
impossible. Thus the components of points in X form a partition of X mto maximal
connected subsets. This justifies referring to them as components of X.

26.12 Theorem. The components of X are closed sets.

Proof. If C is the component of x in X, then C is a connected set containing x
and thus C = C, showing that C is closed. B

26.13 Examples. a) In the space Q of rational numbers, the component of each
point g is {g}. We would say, somewhat imprecisely, “the components in Q are
the points.” This example shows, incidentally, that components need not be
open.

b) Recall (17.9¢) the construction of the Cantor set C: we define
C,=1- 3’ 3)
CZ = Cl - [(5? %) Y (%’ g)]
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and so on, with C, being obtained by removing the open middle thirds of the 2" ~!
closed intervals which comprise C, _;. Then C = () 2, C,.

It is easy to see that the components of C are the points, for if x € C, then
among the intervals removed from I in the process of constructing C there are
intervals arbitrarily close to x on either side, and each such interval induces
a disconnection of C.

We give now an important theorem, asserting that connectedness of a space
implies “chain-connectedness” with respect to any open cover. This result will
be useful later in theorems asserting existence of “paths” between points of certain
connected spaces.

26.14 Definition. A simple chain connecting two points a and b of a space X is a
sequence Uy, ..., U, of open sets of X such that ae U; only, b e U, only, and
UnU;#eiffli —jl < L

26.15 Theorem. If X is connected and % is any open cover of X, then any two
points a and b of X can be connected by a simple chain consisting of elements
of U.

Proof. Let Z be the set of all points of X which are connected to a by a simple
chain of elements of %. Then Z is obviously an open set and, since ae Z, Z is
nonempty. We can prove the theorem by showing Z is closed.

Let ze Z. Then z € U for some U € % and, since U is open, U N Z contains
some point b. Now a is connected to b by a simple chain Uy, ..., U, of elements
of %. 1If ze U, for some k, then the smallest such k produces a simple chain
Uy,,..., U, from a to z. If z¢ U, for any k, pick the smallest | such that
UnU# o (eg,nissuch an l). Then U,,..., U, U is a simple chain from a
to z. Either way,ze Z. B

Problems

26A. Examples on connectedness
1. The Sorgenfrey line E is not connected.
2. The slotted plane (4C) and the radial plane (3A.4) are connected. [See 6A.]
3. Any infinite set with the cofinite topology is connected.
4. No countable subset of R is connected.

26B. Quasicomponents

Define ~ in any space X by x ~ y iff x and y lie together in some connected subset of X.
Define ~ in X by x = y iff there is no decomposition X = U v V into disjoint open sets, one
containing x, the other containing y.

1. ~ isan equivalence relation on X. The equivalence class [x] of x is just the component
C,of xin X.
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2. = is an equivalence relation on X. We call the equivalence class of x the quasi-
component of x in X. The quasicomponent of x in X is the intersection of all open—closed
subsets of X which contain x.

3. The component of x is contained in the quasicomponent of x.

4. In the space X in Fig. 26.1, the quasicomponent of the point x shown is strictly larger
than the component of x.

Figure 26.1
26C. Cardinality of connected spaces

1. A connected, Tychonoff space having more than one point has > ¢ points.
2. A connected, separable, metric space has either one point or ¢ points.

3. Let X be the set of all points in the closed upper half plane both of whose coordinates
are rational. Describe a topology for X as follows: for each point p (rational or irrational) on
the x-axis, let V,, denote the set of all rational points in the interval (p — ¢, p + €) on the
x-axis. Now for p e X, if p lies on the x-axis, the nhoods of p will be the sets V,,, ¢ > 0; if
p lies above the x-axis, let p, and p, be the uniquely determined points on the x-axis such that
D, p; and p, are the vertices of an equilateral triangle (note that p, and p, will have irrational
first coordinate, since the slopes of the lines joining them to p are irrational). The nhoods of p
will be the sets {p} U V,, U V,, for € > 0. Then X is a countable, connected Hausdorff
space. [To prove connectedness, show any nonempty open—closed subset H of X must be all
of X.]

4. The space X described in part 3 is not regular.

26D. Subspaces

Among the criteria for a subspace E of a space X to be connected, the following was absent :
E < X is disconnected iff there are disjoint open subsets H and K in X, each meeting E, such
that E < H U K. Find a counterexample. (Thus 26.5 represents the best we can do along
the lines of expressing connectedness of E in terms of the topology on X.)

26E. Nonhomeomorphism
Some use of connectedness lies at the heart of most proofs that two spaces are not homeo-
morphic. Use connectedness to show that X is not homeomorphic to Y when:

1. X =R, Y =R"forn > 1, (compare with 28C);

2. X =[0,0), Y =R;

3. X=LY=S!

4. X =S, Y=S"forn> 1.
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Note that in none of the above cases can we distinguish between X and Y using any of the
forms of compactness available to us.

26F. The Cantor set
Every closed subset 4 of C is a retract (7J) of C.

26G. Connectedness in ordered spaces

1. An ordered space X (6D) is connected iff it is Dedekind complete and whenever
x < yin X, then x < z < y for some z in X.

2. Every ordered space can be embedded in a connected ordered space. [First, embed
in a Dedekind complete ordered space. Then whenever x < y in this space, and no z exists
with x < z < y, put a copy of (0, 1) between x and y.]

3. LetI'and {0, 1} have their usual orders, and let X = I x {0, 1} have the lexicographic
order. Then X is Dedekind complete. What space results from applying the process in part 2
to X?

26H. Uses of connectedness

1. Any continuous f: I — I has a fixed point (i.e., a point x such that f(x) = x).

2. If P(x) is a polynomial of odd degree, then the equation P(x) = 0 has at least one real
root.

27 Pathwise and local connectedness

The definition of connectedness is negative in nature; it provides for the non-
existence of a certain kind of splitting of the space. A more positive approach
to the same sort of problem is provided by pathwise (or arcwise) connectedness,
in which it is required that it be possible to reach any point in the space from any
other point along a connected path. This approach is especially useful in studying
connectivity properties from an algebraic point of view, e.g., via homotopy
theory.

27.1 Definition. A space X is pathwise connected iff for any two points x and y
in X, there is a continuous function f: I — X such that f(0) = x, f(1) = y. Such
a function f (as well as its range f(I), when confusion is not possible) is called a
path from x to y.

We call X arcwise connected iff for any two points x and y in X, there is a
homeomorphism f: I — X such that f(0) = x, f(1) = y. The function f (as well
as its range) is called an arc from x to y.

We will observe in 31.6 that every Hausdorff path from x to y contains an
arc from x to y. Thus a T,-space is pathwise connected iff it is arcwise connected!

27.2 Theorem. Every pathwise connected space is connected.

Proof. If H and K disconnect the pathwise connected space X, let f: I — X be
any path between points x € H and y € K. Then f~!(H) and f ~!(K) disconnect
I, which is impossible. B
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Figure 27.1

27.3 Examples. a) The topologist’s sine curve (Fig. 27.1)

V={x0)]|x<0}u {<x,sin§> x>0}

is a connected space, but no path can be found from (0, 0) to any point (x, sin (1/x))
with x > 0. Verification is left to 27A.

b) Closed line segments are arcs, so R" is pathwise connected.

c) If E is any countable subset of R?, then the space R? — E is pathwise
connected. In fact, if a and b are points in R*> — E, then R? — E contains un-
countably many straight lines through each point and two of these will intersect,
giving an arc from a to b.

Paths can be “added,” in the following sense. If a,b,ce X, and f;: 1 > X
is a path from a to b, while f,: I - X is a path from b to ¢, then the function
f:1 - X defined by

f120) if 0
t) = .
) {f2(2t—1) if 4
is a path from a to ¢, obtained by “putting the paths f; and f, end-to-end”. (For

4
t

IAIA
IAIA
p— N

>
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example, f is continuous because it is continuous on each of the closed sets
[0, 3] and [3, 1].)

This path addition provides a way to associate with each pathwise connected
space X a group 7,(X) in such a way that homeomorphic spaces have isomorphic
groups. The branch ofalgebraic topology which is concerned with the relationships
between X and 7,(X) is homotopy theory (a piece of which is developed in Sections
32 through 34). Other branches of algebraic topology study connectivity proper-
ties of a topological space X by associating algebraic structures with X in other
ways. In particular, the ordinary covering notion of connectedness is studied
using Cech homology theory, while singular homology theory (and homotopy
theory) are suited to the study of pathwise connectedness.

For the time being, we will use the addition of paths defined above only to
provide a partial converse to Theorem 27.2. We require a definition.

27.4 Definition. A space X is locally pathwise connected iff each point has a nhood
base consisting of pathwise connected sets. (We should point out here that a
subset A of X is pathwise connected iff any two points in 4 can be joined by a
path lying in A.)

27.5 Theorem. A connected, locally pathwise connected space X is pathwise
connected.

Proof. Let ae X and let H be the set of all points of X which can be joined to a
by a path. Now H is nonempty since a € H, so if H is open—closed it must be
all of X.

But H is open. For if be H, let U be any pathwise connected nhood of b.
Then any point z € U can be joined to b by a path and hence can be joined to a
by adding the path from b to a.

Also, H is closed. For if be H, let U be any pathwise connected nhood of b.
Then U " H # o; say ze U n H. Now b can be joined to z by a path and z
can be joined to a by a path so, by addition of paths again, be H. B

27.6 Corollary. An open connected subset of R" is pathwise connected.

We turn now to the study of locally connected spaces. Unlike most other
localized properties, there is no generally discernible relationship between con-
nectedness and local connectedness.

27.7 Definition. A space X is locally connected iff each x € X has a nhood base of
open connected sets.

27.8 Examples. a) The space [0, 1) U (1, 2] is locally connected but not connected.

b) Consider the space X consisting of the vertical lines x = 0 and x = 1
in the plane, together with the horizontal line segments {(x, 1/n) |0 < x < 1}
forn = +1, +2,... and the unit interval I on the x-axis (Fig. 27.2). This space
is typical of connected spaces which are not locally connected. X is, in fact,
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Figure 27.2

arcwise connected, but no point in I other than the endpoints will have a base of
connected nhoods.

27.9 Theorem. X is locally connected iff each component of each open set
is open.

Proof. Suppose X is locally connected and x € C, where C is a component of the
open set U in X. There is, by local connectedness, an open connected set V with
xeV < U. Now we must have V < C, so C is open.

Conversely, suppose each component of each open set in X is open. If U
is any open nhood of x in X, then the component of U containing x is an open
connected nhood of x contained in U. Thus X is locally connected. Il

27.10 Corollary. The components of a locally connected space are open—closed.

27.11 Corollary. A compact locally connected space has a finite number of
components.

27.12 Theorem. Every quotient of a locally connected space is locally connected.

Proof. Let f be a quotient map of X onto Y. Suppose U is an open set in Y,
C a component of U. For x € f~}(C), let C, be the component of x in the open
set f~(U). Now f(C,) is connected and contains f(x) € C, so f(C,) = C. Thus
xeC, = f7YC). Since C, is open, f~!(C) is open and thus, since Y has the
quotient topology, C is open in Y. B

The theorem above is one of the nicest dealing with preservation of a local
property by continuous maps. For example, it follows that both continuous open
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images and continuous closed images of locally connected spaces are locally
connected.

27.13 Theorem. A nonempty product space is locally connected iff

a) each factor is locally connected,
b) all but finitely many factors are connected.

Proof. The proof is obtained by substituting “connected” for “compact” in the
proof of 18.6, the corresponding theorem for local compactness. See 27F. B

27.14 Definition. X is connected im kleinen at x iff each open nhood U of x contains
an open nhood V of x such that any pair of points in V' lie in some connected

subset of U.

Certainly every locally connected space is connected im kleinen. At first
it is easy to believe the converse, but the following example shows that the two
notions are different. The theorem after that shows that they are not much

different.

27.15 Example. At the point x, the space shown in Fig. 27.3 is connected im
kleinen, but has no base of open connected nhoods.

27.16 Theorem. If X is connected im kleinen at each point, then X is locally
connected.

Figure 27.3

Proof. Let U be an open set in X, C a component of U. If x € C, then there is an
open set V, containing x and lying in U such that each two points in V, lie in a
connected subset of U. It follows that V, = C. Thus C is open and X is locally
connected.

Problems

27A. The topologist’s sine curve

Let V = {(x,0)| x < 0} u {(x, sin (1/x)) | x > 0} with the relative topology in R? and let
T be the subspace {(x, sin (1/x)) | x > 0} of V.

1. Vis connected. [Use 26.7 and 26.8.]
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2. V is not pathwise connected. [If f is a path from (0, 0) to (x, sin (1/x)), then f(I) is
compact and connected. ]
3. T is pathwise connected, but the closure of T in V is not. (Compare with 26.8.)

27B. Combinations of pathwise connected spaces
1. The continuous image of a pathwise connected space is pathwise connected.

2. A nonempty product of finitely many spaces is pathwise connected iff each factor space
is pathwise connected.

27C. Pathwise connectification

Let X be any space and define a topology on Y = X x I as follows: basic nhoods of points
(x, o) for a # 0 will be the sets of the form {(x, f) |« — ¢ < f < a + €} for € > 0 (that is,
usual linear nhoods of (x, a) in the appropriate copy of I), and basic nhoods of (x, 0) will have
the form (U x {0}) v U,eu J.., where U is a nhood of x in X and for each ze U, ¢, > 0
and J,,, = {(z,®)|0 < « < ¢,}. Let X* be the quotient of Y obtained by identifying all
the points (x, 1), x € X.

1. X is embedded in X* as the closed nowhere dense set {(x, 0) | x € X}.

2. X* is pathwise connected.

3. If f: X - Z is continuous, where Z is pathwise connected, then f can be extended to
a continuous function F: X* - Z.

27D. Path components

The path components of a space X are the equivalence classes in X under the equivalence
relation x ~ y iff there is a path joining x to y.

1. The path component containing x € X is pathwise connected and contained in the
component of x.

2. X is locally pathwise connected iff each path component of each open set is open.

3. A path component of X need not be closed. But if X is locally pathwise connected,
the path components of X are both open and closed.

27E. Examples on local connectedness

1. The Sorgenfrey line E is not locally connected.
2. The topologist’s sine curve V is not locally connected.
3. The space of Example 27.15 is not locally connected.

27F. Combinations of locally connected spaces

1. The continuous image of a locally connected space need not be locally connected.
2. A nonempty product space is iff locally connected
a) each factor space is locally connected,

b) all but finitely many factor spaces are connected.
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27G. Property S

A topological space X has property S iff every open cover of X can be refined by a cover con-
sisting of a finite number of connected sets. The property was introduced by Sierpinski in 1920.

1. If X has property S, then X is connected im kleinen at each point, and thus locally
connected.

2. A compact, Hausdorff space is locally connected iff it has property S.
3. Not every locally connected Hausdorff space has property S.

4. The continuous Hausdorff image of a compact locally connected space is compact
and locally connected. Is property S preserved by all continuous maps?

Property S assumes special importance in deciding questions about local connectivity
of certain subsets of R% In particular (see Whyburn: Analytic Topology, p. 112), if 4 is a
connected open subset of R? such that Fr (4) is a continuum, then A4 has property S iff Fr (4)
is locally connected. As a corollary, Fr (4) locally connected = A locally connected.

28 Continua

Compactness and connectedness are powerful, but dissimilar, properties. When
they are combined to generate the notion of a continuum, the result is an extensive
collection of interesting theorems (not all of which we will be able to give here).

28.1 Definition. A continuum is a compact, connected Hausdorff space. Among
the continua we find many familiar spaces. Thus the unit interval I, the circle
S!, the torus S! x S! (and, in fact, any product of continua) are all continua.
Our main goal is to find topological criteria which will enable us to characterize
the unit interval and the unit circle as continua.

28.2 Theorem. Let {K,|a e A} be a collection of continua in X directed by
inclusion. Then (| K, is a continuum.

Proof. The intersection is a closed subset of each K, and thus is compact. Suppose
disjoint closed sets H and K can be found with ﬂ K,=HuUK, and xe H,
ye K. For any fixed oy, X can be replaced by K, , and each K, by K,, n K,
without affecting the intersection, so we may assume X is compact and Hausdorff.
Then H and K are closed in X and can be separated by open sets U and V in X.
Foreach K,, K, ¢ U u V since otherwise U N K, and V n K, would disconnect
K,. Thus we can pick x,€ K, — (U u V). The result is a net (x,) which has a
cluster point z in X, by compactness. Now if W is any nhood of z and K|, is given,
then for some K; = K,, x;€ W. Thus W n K, # & for each nhood W of z, so
zeK, = K,, foreacha. Thenze () K, < Uu V. But U u V is then a nhood
of z inside which (x,) never gets, by choice of the x,. We have a contradiction.
Thus (") K, must be connected. B

28.3 Definition. A continuum K in X is irreducible about a subset A of X provided
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A = K and no proper subcontinuum of K contains 4. If 4 = {a, b}, we say K
1s irreducible between a and b.

28.4 Theorem. If K is any continuum, any subset A of K lies in a subcontinuum
irreducible about A.

Proof. The set A of all subcontinua of K containing A is partially ordered by
inclusion; ie., K; < K, iff K, « K,. By 28.2, each chain in this partially
ordered set has an upper bound (the intersection of its elements) and hence, by
Zorn’s lemma, J£ has a maximal element K’'. Clearly K’ is a subcontinuum of K
irreducible about 4. B

In particular, K will contain subcontinua irreducible between any two of its
points. In the plane, for example, any arc joining a and b is a continuum which is
irreducible between a and b (and so, in general, a continuum irreducible about a
set A will not be unique).

28.5 Definition. Let X be a connected T;-space. A cut point of X is a point p e X
such that X — {p} is not connected. If p is not a cut point of X, we call it a noncut
point of X. A cutting of X is a set {p, U, V} where p is a cut point of X and U
and V disconnect X — {p} (i.e., where U and V are disjoint nonempty open subsets
of X whose union is X — {p}).

The property of being a cut point (in fact, of being a cutting), is preserved under
homeomorphism; but continuous maps can destroy cut points. Consider the
map f(x) = (cos x, sin x) of [0, 2x] onto the unit circle in R

Cut points are critical in the characterizations of the interval and circle as
continua having certain additional properties. One property relating to cut points
is shared by all continua, however; they all have at least two noncut points.
This follows easily from the second of the following lemmas.

28.6 Lemma. If K is a continuum and {p, U, V} is a cutting of K, then U L {p}
and V L {p} are connected (and thus are continua).

Proof. 1t suffices to prove the lemma for U U {p}. But the map f defined on
K by
X if xeU v {p}
69 = {p if xeV
carries K onto U U {p}, and f is continuous on each of the closed sets U u {p}
and V u {p}, so f is continuous. Thus U u {p} is the continuous image of a
connected space and therefore connected. (Since U u {p} = K — V, U u {p}
isclosed in K and thus compact. The part of the theorem in parentheses follows.) l

28.7 Lemma. If K is a continuum and {p, U, V'} is a cutting of K, then each
of U and V contains a noncut point of K.

Proof. Suppose each point x in U is a cut point, inducing a cutting {x, U,, V,}
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of K. Ifboth U, and V, meet V U {p}, they disconnect ¥V U {p} which is impossible
by the previous lemma. So one, say U,, is contained in U. Now U, U {x} is a
continuum for each x € U, by the previous lemma. Since {U, U {x} | x e U}
is directed by inclusion, (), [U, U {x}] is a nonempty continuum contained
in U, by 28.2.

Pick g € ),y [Ux U {x}]. Then U, = U (as above), and if r € U,, then U,
does not contain g (otherwise U, and V, both meet ¥, U {g} and disconnect it).
Then U, u {r} does not contain g. But this contradicts the fact that

ge() (U, {x}). W
xeU

28.8 Theorem. Every continuum K of more than one point has at least two

noncut points.

Proof. If p is a cut point of K, then a cutting {p, U, V} of K exists, and each of
U and V contains a noncut point of K, by the previous lemma. On the other hand,
if no cut point of K exists, certainly there are two noncut points. Bl

As we will see shortly, the property of continua expressed by Theorem 28.8
is the key to the characterization of the unit interval ; it is the only metric continuum
blessed with exactly two noncut points. For this, we need a series of results, the
first of which says that you cannot get a new continuum from an old one by
excision without excising some noncut points.

28.9 Theorem. A continuum K is irreducible about the set of its noncut points.

Proof. Let N be the set of noncut points of K and suppose a proper subcontinuum
L of K contains N. If xe K — L, then a cutting {x, U, V} of K exists, and L
must lie in one or the other of U and V,say L < U. Then V U {x}, being a con-
tinuum itself, has two noncut points and thus has a noncut point y # x. Then
[V U {x}] — {y} is connected, and U u {x} is connected and these sets meet,
so their union is connected. But their union is K — {y}, while y lies in V, hence
not in U, hence not in L; this is a contradiction since L contains all the noncut
points of K. I

An order relation can be introduced on certain subspaces of a continuum. It
is the last tool we need to reach our characterization theorems.

28.10 Definition. A cut point p in a connected space X separates a from b iff a
cutting {p, U, V} exists with a € U, b € V. The set consisting of a, b and all points
p which separate a from b is denoted E(a, b). The separation order on E(a, b) is
defined by: p, < p, iff p; = p, or p, separates a from p,. This is easily seen to
be a partial order on E(a, b).

The basis for our proofs of the continuum characterization theorems
(28.13, 28.14) will be the fact that the set E(a, b) is linearly ordered by the separation
order.
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28.11 Theorem. The separation order on E(a, b) is a linear order.

Proof. For each p € E(a, b), let {p, U,, V,} be a cutting of X such that ae U,
and be V.

If r and s are distinct points of E(a, ¢) — {a, b}, then either se U, or se V,.
If the latter, then r separates a from s, so r < s. Hence, suppose s € U,. Now
V, u {r} is connected (28.6) and contained in the union of U and V, so it must
be contained in one of these. Since b e V, U {r}, we must then have V, U {r} < V..
Now r € V, so that s separates a from r; ie.,s < r.

This completes the proof that < is a total order on E(a, b). B

It is natural to ask, at this point, whether any connection exists between the
order topology on E(a, b) and its subspace topology relative to X.

28.12 Theorem. a) If E(a, b) has more than two points, its order topology is
weaker than its subspace topology.

b) If K is a continuum with exactly two noncut points a and b, then E(a, b) = K,
and the topology on K is the order topology.

Proof. a) It suffices to note that, for pe E(a, b), the sets U, n E(a, b) and
V, N E(a, b) (in the notation of the previous proof) are open in E(a, b) and

U, E(@a,b) = {geE@,b)|q < p}
V, N E(a, b) = {ge E(a, b)| q < p}.

b) If p e K and p is not one of a or b, then given any cutting {p, U, V} of K,
by Lemma 28.7, U and V each contain one of a and b. Thus p € E(a, b), so
E(a. b) = K.

From (a), the order topology is weaker than the given topology on K. Suppose,
conversely, that U is openin K and p € U. Firstassuming that pisnotoneofaorb,
we will show that U contains some interval (r, s) = {ge K |r < q < s} containing
p. Tf not, then whenever p € (r, s), the closed interval [r,s] = {ge K |r < q < s}
meets K — U. But the sets [r, s] n (K — U) then form a family of closed subsets
of K with the finite intersection property (each [r, s] is closed in K by part a)).

Thus their intersection (in the compact space K) is nonempty. But p € U and

N A{[r.s]|pe( )} = {p}

which leads to a contradiction. If p is one of a or b, the argument is similar. W

Now every continuum with exactly two noncut points is a totally ordered
set with the order topology induced by its separation order. Using the order, we
are ready to characterize the metric continua with two noncut points as homeo-
morphs of the unit interval.

28.13 Theorem. If K is a metric continuum with exactly two noncut points,
then K is homeomorphic to the unit interval L
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Proof. Let D be a countable dense subset of K not containing the noncut points
a and b. Note that:

a) D has no smallest or largest element,
b) given p and q in D with p < g, there is an element r of D with p < r < g.

In Exercise 28B we show that every countable totally ordered set D with these
properties is order isomorphic, and thus homeomorphic, to the dyadic rationals
P in the interval (0, 1). Let f be an order isomorphism of D onto P.

But each point p of K other than a or b is a cut point, dividing K into sets
A, and B, with 4, < B, (e, x < y whenever x€ 4, and y € B,). It follows that
f(A, n D) and f(B, n D) form a Dedekind cut of the dyadic rationals, and thus
uniquely determine an element F(p) of (0, 1). Defining F(a) = 0 and F(b) = 1,
we have completed the job of extending f to what is obviously an order iso-
morphism, and thus a homeomorphism, of K onto I. B

With the notation and methods we have available now, the characterization
of the circle comes fairly easily.

28.14 Theorem. If K is a metric continuum such that for any two points a and
b, K — {a, b} is not connected, then K is homeomorphic to the unit circle.

Proof. First we show K has no cut points. For if {p, U,, V,} is a cutting, then
since U, U {p} and V, U {p} are continua, each has noncut points; say y is a
noncut point of U, U {p} and z is a noncut point of ¥, U {p}. But now the con-
nected sets (U, U {p}) — {y} and (V, u {p}) — {z} intersect, and their union,
K — {y, z}, is thus connected, contrary to the hypotheses of the theorem. Hence
K has no cut points.

Now let a and b be distinct points of K. Then K — {a, b} = U u V where U
and V are disjoint nonempty open subsets of K. We set U* = U v {aq, b},
V* = V U {a, b} and assert that U* and V* are arcs, each having a and b for
endpointsand that U* n V* = {q, b}. Thiswill obviouslyestablishK = U* u V'*
as a homeomorphic image of a circle.

First, U* and V* are connected. For suppose U* = S U T where S and T
are disjoint, nonempty and open in U*. If S contains both a and b, then T is open
in U and hence in K. This is impossible, since T is already closed in K (being closed
in the closed set U*). Thus we can suppose a€ S, b€ T. But now using the same
argument, S — {a} is open and closed in the connected set K — {a}, which is
impossible. Thus U* and V* are connected.

Second, a and b are both noncut points of U* (and similarly V*). For if S
and T disconnect U* — {a}, and if b € S say, then (by arguments similar to those
above) T is both open and closed in K — {a}, which is impossible.

Finally, to show each of U* and V* has precisely two noncut points (namely,
a and b), we proceed in two stages: (1) Suppose each has a third; say p is a non-
cut point of U* and q is a noncut point of V*, each different from a or b. Then the
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sets U* — {pland V* — {q} are connected, intersect, and their unionis K — {p, g},
a nonconnected set. With this contradiction, we have dispensed with case 1.
(2) Suppose one, say U*, has a third noncut point p. Then if g is any point in V,
we have a cutting {q, 4, B} of V*, where 4 and B are connected and, say, a € 4,
be B. (Easily a and b cannot both belong to one.) Now U* — {p}, 4 and B
form a chain of connected sets whose union is K — {x, y}, a contradiction.

Thus each of U* and V* is a metric continuum with precisely two noncut
points, a and b, and U* n V* = {a, b}. It follows that K = U* U V* is homeo-
morphic to the unit circle. I

Problems

28A. Indecomposable continua

A continuum K is decomposable iff it is the union of two proper subcontinua; otherwise K
is indecomposable. For p € K, consider the set C, of all points x of K such that a proper sub-
continuum of K contains both p and x (i.e., such that K is not irreducible between p and x).
We call C,, the composant of p (or, the composant of K containing p).

1. Describe the composants of the unit interval.
2. Every decomposable continuum is a composant for some one of its points.

3. A continuum K is decomposable iff K contains a proper subcontinuum L with
Inty L # o.

4. Let a, b, c be three points in R2 Construct simple chains €, €5, ... of connected
open sets such that the sets in %, have diameter less than 1/n and have closures contained in
sets of C, _,, with the following properties: %, is a simple chain from a to ¢ through b, ¢, isa
simple chain from a to b through ¢, €5 is a simple chain from b to ¢ through a. Then repeat
the process (Fig. 28.1). Let C, = () {C|Ce®,}, and let C = () C,. Then C is an inde-
composable continuum.

Figure 28.1
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28B. Order isomorphism

Let X and Y be ordered spaces. A map f of X onto Y is an order isomorphism iff f is
one-one and x < y <> f(x) < f(y).

1. Every order isomorphism is a homeomorphism relative to the order topologies on
X and Y.
2. Let P denote the set of dyadic rationals in (0, 1); i.e., P consists of all numbers of the
form k/2" forn = 1,2,...andk = 1,...,2" — 1. Then
a) P has no largest or smallest element,
b) if p,ge P with p < g, then for somere P,p < r < gq.
3. Any countable linearly ordered set D with the properties (a) and (b) given in 2 is order
isomorphic to P. (Thus P is order isomorphic, and homeomorphic, to the set Q of all rationals
in R)

28C. R as a product

The real line R can easily be written as a product space X x Y, by taking X to be a one-point
space. Is R homeomorphic to any product X x Y with X and Y each having more than one
point?

28D. Continua of convergence

Let A, A,, ... be a sequence of subsets of a space X. We define

lim sup 4, = {x € X | each nhood of x meets infinitely many 4, }

lim inf 4, = {x € X | each nhood of x meets all but finitely many 4,}

so that always liminf 4, < lim sup 4,. When lim inf 4, = lim sup 4,, we denote their
common value by lim A4,.

1. lim inf 4, and lim sup A, are closed sets.
2. If X is compact and each A; is connected, and lim A; exists, then lim A, is connected.

3. If X is a metric continuum which is not locally connected at one of its points p, there
is a nhood U of p such that a sequence K, K, . .. of distinct components of U converges to
a continuum K containing p and disjoint from the K;. (Briefly, non-local connectedness of
a metric continuum implies the existence of a “continuum of convergence,” a result which
is supported by reference to examples of non-locally connected spaces.)

28E. Structure of continua

1. Let K be a continuum contained in X and let U be an open set in X which meets both
K and X — K. Then every component of U n K meets Fr (U).

2. No continuum can be written as the union of countably many disjoint closed sets.
[Suppose L = K, U K, U - . Let G, be an open set containing K , such that G, n K, = g,
and let L, be a component of G meeting K,. Then L; n K| = @, but L, meets some K,
with n, > 2. Let G, be an open set containing K,, such that G, " K, = ¢ and let L, be a
component of L, n G, meeting L,,. Continue. Show that L, > L, > ---but ()L, = @,
obtaining a contradiction. ]
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29 Totally disconnected spaces

A connected space has one component. At the opposite extreme we have an im-
portant class of spaces, typified by the Cantor set.

29.1 Definition. A space X is totally disconnected iff the components in X are the
points. Equivalently then, X is totally disconnected iff the only nonempty con-
nected subsets of X are the one-point sets.

The Cantor set, the space Q of rationals, the space P of irrationals and any
discrete space are all totally disconnected. We give an outline now of a famous
example, due to Knaster and Kuratowski, of a connected space K and a point
p in K such that K — {p} is totally disconnected!

29.2 Example. Recall that the Cantor set C is obtained by deleting a countable
collection of open intervals from I. Let Q be the set of endpoints of these intervals
(so @ = C) and set P = C — Q. Let pe R? be the point (3,4) and for each
x € C, denote by L, the straight-line segment joining p and x. Define

L} = {(x;, x,) € L, | x, rational}, if xeQ,
L} = {(x,, x,) € L, | x, irrational}, if xeP.

Then the subspace K = | J,.c L¥ of R? is connected, while K — {p} is totally
disconnected. See Exercise 29B.

29.3 Theorem. a) Every product of totally disconnected spaces is totally
disconnected.

b) Every subspace of a totally disconnected space is totally disconnected.

Proof. a) Suppose C is a nonempty connected subset of a product [] X, of
totally disconnected spaces. Then, for each a, 7,(C) is connected and hence must
be a one-point set. It follows that C is a one-point set.

b) is even easier. B

Continuous images of totally disconnected spaces need not be totally dis-
connected. In fact, one of the amazing results in topology is given in Section 30:
every compact metric space is a continuous image of the Cantor set.

We now introduce a concept obviously related to total disconnectedness,
but slightly stronger in the general case as examples and theorems will show.

29.4 Definition. A space X is 0-dimensional iff each point of X has a nhood base
consisting of open—closed sets. Equivalently, X is 0-dimensional iff for each point
x in X and closed set A not containing x, there is an open—closed set containing
x and not meeting A.

The reformulation of the definition makes the following theorem clear.

29.5 Theorem. Every 0-dimensional T,-space is totally disconnected.

To formulate a partial converse to this theorem we need a lemma.
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29.6 Lemma. A compact T,-space X is totally disconnected iff whenever x # y
in X, there is an open—closed set in X containing x and not y.

Proof. This is left to Exercise 29D. B

29.7 Theorem. A rim-compact T,-space is 0-dimensional iff it is toially
disconnected.

Proof. Tt suffices to prove a locally compact, totally disconnected T,-space X is
0-dimensional. Let A4 be a closed set in X, x ¢ 4. Let U be an open nhood of x
with compact closure disjoint from A. For each p € Fr (U), let V, be an open—
closed subset of U containing x but not p. The sets X — V, form an open cover
of Fr (U) so a finite subcover exists, say corresponding to the points py, . .., p,.
Let V.=V, n--- nV,. Then V is an open—closed set in U containing y and
disjoint from Fr (U). But then V « U and hence is an open—closed set in X
containing x and not meeting 4. Thus X is O-dimensional. B

29.8 Examples. a) The set Q of rationals is O-dimensional.

b) The Cantor set C is 0-dimensional.

¢) If K is the example of Knaster and Kuratowski, then K — {p} is a totally
disconnected metric space which is not O-dimensional. See Exercise 29B. Thus
Theorem 29.7 cannot be much improved.

An infinite product of nontrivial discrete spaces is never discrete. According
to Theorem 29.3, such products (and their subspaces) are, however, totally dis-
connected. We close this section with the important theorem providing a converse
to this for an important class of totally disconnected spaces: that is, every totally
disconnected compact metric space is homeomorphic to a subset of a countable
product of discrete spaces.

The development requires the following notion.

29.9 Definition. Let X, X, ... be topological spaces and, for eachn = 1,2,...,
let f, be a continuous map of X, into X, _,. The sequence
XOAX1‘&X2‘-"',

which we abbreviate {X,, f,>, is called an inverse limit sequence. The inverse
limit space of this sequence is the following subset of [ | X, :

Xy = {(x0» X15- ) | fi(x,) = x, _, for each n}.

29.10 Example. Suppose X, » X, o --- and f,: X, —» X, _, is the injection
mapping. Then X is homeomorphic to ()2, X,. The map is a natural one
since, as a set,

X, = {(x0, Xy, ...) | x, = x,,_; for each n}

= {(x¢» X5 - - ) | X0 € [) X,u}-
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That the map f(x) = (x, x,...) is actually a homeomorphism of ﬂ X, onto
X, is left as an easy exercise.

This example is the model for inverse limit sequences. Thus it is clear, e.g,,
that many inverse limit spaces will be empty. This does not suit our purposes and
hence provokes the following theorem, generalizing the result that a decreasing
intersection of nonempty compact Hausdorff spaces is nonempty.

29.11 Theorem. If (X,, f,> is an inverse limit sequence of nonempty compact
Hausdorff spaces, then the inverse limit space X . is a nonempty compact
Hausdorff space.

Proof. X, is obviously HausdorfT, since it is a subspace of [ | X,. Moreover,
if we let ¥, = {(xo, X;,...) €[] X, | f(x,) = x,_}, then X = ()=, ¥, and each
Y; n -+ n Y, is nonempty, so it suffices to show Y; n--- N Y, is compact, for
which it is enough to show each Y, is closed in the compact space [ [ X,

If z = (zy, z;,...) is not in Y,, then f(z,) # z,_, so there are disjoint nhoods
Uoff(z,)and Vofz, _;in X, _;. Let Wbeanhood of z,in X, such that f,(W) < U.
Then W x V x [[{X,|k # n — 1,n} is a nhood of (zy, z;,...) not meeting
Y,. Thus Y, is closed in [ | X,, as desired. W

Iln 4 <
- - < Xn——l < ){n - -
J(/)n-l Jv(von
R T = A

Figure 29.1

29.12 Definition. Let (X, f,> and (Y,, g,> be inverse limit sequences. A mapping
® of (X,, f,> to (Y, g,> is a sequence (¢,) of mappings ¢,: X, — Y, such that
Pu_10fn=0gno @, forn =12 ...(Fig 29.1). We call ® continuous iff each ¢, is
continuous, onto iff each ¢, is onto, and so on. The induced mapping ¢: X, — Y,
is defined by

P(xg, Xy, --.) = (‘Po(xo)s ®1(xy), - - )

We know (@o(xo), @4(x,), . ..) belongs to Y, if (xo, xy,...) belongs to X, by
virtue of the requirement ¢, _; o f, = ¢, o @,

29.13 Theorem. a) If @ is continuous, so is the induced mapping ¢.

b) If @ is onto, so is the induced mapping ¢, provided the X, and Y, are all
compact Hausdorff spaces.

Proof. a) Suppose ® is continuous. Then denoting the nth projection in [] X,
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by 7, and the nth projection in [ | ¥, by

n;l ° Q)(XO! X15 .- ) = q)n(xn) = @uo ”n(xo, X5 - ')‘

Thus ¢ is continuous when followed by each projection 7, and hence ¢ is
continuous.

b) Let (yo, ¥1,...) € Y, and for each n, let A, = ¢, !(y,). Then 4, is a non-
empty compact subset of X,. If 4, = f, | A, the sequence

Ag & A, &2 4, — — -

is an inverse limit sequence of nonempty compact spaces (stop to check that 4,
takes A, into 4, _ ;) and hence has nonempty limit space 4,,. Butif(x,, x;,...)€ 4,
then ¢(xq, x1,...) = (Yo, V1> - --)- Thus ¢ is onto. B

29.14 Definition. A partition of a set X is a collection of disjoint sets in X which
cover X. If %, U,,... is a sequence of partitions of X such that %, refines
U, for each n > 0, then the derived sequence obtained from %, %,, ... is the
inverse limit sequence Yo Ly, L2
where Y, is the discrete space having the sets of %, as elements and f, takes each
set in %, to the unique set in %, _; which contains it.

29.15 Theorem. Let X be a totally disconnected compact metric space. Then

a) For each n = 0,1,2,... there is a finite open cover %, of X by disjoint
open sets of diameter <1/2" such that U,,, < U, for each n > 0.

b) If Y, <L Y, « - - - is the derived sequence of any such sequence Uy, U, . . .
of covers, then X is homeomorphic to the resulting inverse limit space Y.

Proof. a) Since X is compact and totally disconnected, it is 0-dimensional, so
a cover % of X by open—closed sets of diameter <1 certainly exists. By compact-
ness, % can be taken finite, = {U, ..., U,}. Define

v,=U,, Uy=U,-U{ ..., U,=U,—U;u---0U,_)).
Then %, = {U4, ..., U,} is a finite cover by disjoint open sets of diameter <1.

Having obtained %, . .., %, _;, we can refine %, _, by a finite cover of open—
closed sets # = {Uy, ..., U} of diameter <1/2" and then

%n={U1?UZ_Ul""’Uk_UUj}

j<k
is the desired nth cover.

b) Since the spaces Y, are nonempty, compact, Hausdorff spaces, Y, is
compact and nonempty by 29.11. For each n, define ¢,: X — Y, by letting
@,(x) be the set in %, (i.e., element of Y,) containing x. Then (¢,) is a mapping of
the sequence X < X <& X « - - -(whereiis the identity)to Y, <2 ¥, <2 Y, -,



214 Connectedness [29

because if x € X, then
@ _1 0 i(X) = @, _1(x) = element of %, _, containing Xx,
Jr o ©,(x) = f, (element of %, containing x)

= element of %, _, containing Xx,

so that the desired commutativity relation holds. Moreover, each ¢, is continuous
and onto and hence so is the induced map ¢: X — Y_ (it is obvious that the in-
verse limit space of X <& X «L ---is X). Since X is compact, and Y, is Hausdorff,
¢ is also a closed map. Hence we need only show ¢ is one—one.

But if x # y in X, then say p(x, y) = e. Pick »n large enough that 1/2" < ¢/2.
Then since each element of %, has diameter <1/2", x and y cannot belong to the
same element of %, ; ie., @, (x) # @, (). Thus, easily, p(x) # ¢(y). B

Problems

29A. Examples on totally disconnected and 0-dimensional spaces
1. The Sorgenfrey line E is 0-dimensional.
2. The set P of irrationals is O-dimensional.
3. BN and BQ are totally disconnected [allowable reference: Gillman and Jerison].

29B. The example of Knaster and Kuratowski

Recall the construction of the space K (29.2). K consists of the “rational points” on the lines
joining endpoints of C to p = (4, ) and the “irrational points” on the lines joining other
points of C to p.

1. K is connected. [If U is an open—closed subset of K containing p, U has open—closed
intersection with each line L¥. Deduce that U = K.]

2. K — {p} is totally disconnected.

3. K — {p} is not O-dimensional. [The open set {(x, y)|y < i} of K — {p} cannot
contain any open—closed set (otherwise, this set would be a proper open—closed subset of

K).]

29C. Inverse limit spectra

Inverse limit sequences and their limit spaces have a natural generalization, obtained by
replacing the integers as index set with any directed set. Specifically, let A be any directed
set and suppose X, is a topological space for each « € A. For each « and f with a < f3, let
Jpa: X = X, be a continuous map. The collection of spaces X, and maps f, will be called
an inverse limit spectrum, denoted {X,; f;,», provided the following condition is satisfied: if
a < B <y then f, = fo,0 fip-

The inverse limit space of an inverse limit spectrum (X,; fj,» is the set

X, = {xe[] X, | whenever o < B, x, = fz(x;)}-
1. If each X, is Ty, then X, is closed in [ ] X,.
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2. Ifeach X, is a (nonempty) compact Hausdorff space, then X, is a (nonempty) compact
Hausdorff space.

3. The projection 7, restricted to X, still maps X ,, onto X,, and the sets n; }(U) fora € 4
and U open in X, form a base (rather than just a subbase!) for X .

4. Suppose {X,; fp» and (Y,; g,,»> are two inverse limit spectra with the same index
set A, and for each a € A4, let h,: X, — Y, be continuous. If the h, satisfy the appropriate
composition condition, then a unique map h,: X, — Y, is induced such that the diagram in
Fig. 29.2 commutes (i.e., such that h, - T, = 7, o h,) for each a € A4.

X — X

[e9) g

7[1
Yoo - Yz Figure 29.2

5. If each A, is a homeomorphism of X, with Y,, then A, is a homeomorphism of X
onto Y.

Inverse limit spectra and their limit spaces are important in the extension of homology
and cohomology theory from simplicial objects to the more general Cech theory, applicable
to a wide class of spaces. See the book by Spanier on algebraic topology.

29D. Totally disconnected compact Hausdorff spaces

In a compact Hausdorff space, the quasicomponents (26B) are the components. Conclude
that a compact Hausdorff space is totally disconnected iff distinct points can be separated
by an open—closed set containing one and not the other.

29E. Connectedness in topological groups

Let G be a topological group.

1. The component C of the identity in G is a closed normal subgroup.
2. G/C is totally disconnected (so if G is locally compact, G/C is 0-dimensional).
3. An open—closed compact nhood U of e in G contains an open—closed subgroup

H. [Use18D.2 to find a (symmetric) nhood V of e such that UV < U. It follows that V" < U
for any n. Then | )2, V" is an open (hence closed by 18D.7) subgroup contained in U.]

4. If G is compact, an open—closed compact nhood U of e in G contains an open—closed
normal subgroup N. [Let H be the subgroup given by 3 and let N = (),.¢ xHx ']

5. If G is locally compact and totally disconnected, the open—closed subgroups of G
form a base at e. [The open—closed nhoods of e are a base. See part 3.]

6. If G is locally compact, C is the intersection of all open—closed subgroups. [G/C is
locally compact and totally disconnected.]

7. In a locally compact group, the following are equivalent :

a) G is connected,

b) G has no proper open—closed subgroups,
¢) G = |J&, V" for any open nhood V of e.
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29F. Cantor spaces

As a corollary to Theorem 29.15, every totally disconnected compact metric space can be
embedded in a product of countably many finite discrete spaces. The corollary can be
strengthened. Show that every O-dimensional T;-space (hence, every locally compact totally
disconnected T;-space) which has a base 4 of cardinal ¥ can be embedded in the product of %
copies of the discrete space with two points. (Recall that a product of two-point discrete spaces
is called a Cantor space.) [The base & can be taken to consist of open—closed sets, by an ex-
tension of 16B.2. For each B € 4, consider the characteristic function of B. Apply 8.16.]

30 The Cantor set

The Cantor set C is a totally disconnected compact metric space. By adding one
more property to this list, we can completely characterize C. Our goal in this
section is the proof of this useful fact, and one of its startling corollaries: every
compact metric space is a continuous image of C.

30.1 Definition. A set A in a space X is perfect in X iff A is closed and dense in
itself; ie., each point of 4 is an accumulation point of A4.

The whole space X, then, is perfect iff it is dense in itself. In particular, the
Cantor set C is perfect.

30.2 Lemma. If U is any nonempty open set in a compact totally disconnected,
perfect T,-space and n is any positive integer, then U = U, U --- U U, for
some choice of nonempty disjoint open sets U, ..., U,.

Proof. It suffices to check the case n = 2, since all others will follow by induction.
But if U is any nonempty open set in X, then U cannot be a single point since X is
perfect. Now if p and g are different points of U, then there is an open—closed
set ¥V in X which contains p but not g, by 29.6. Setting U; = U n V and
U, = U — V gives the desired separation of U. B

Now, given two totally disconnected, perfect, compact metric spaces, we can
approximate them by inverse limit sequences of discrete spaces by using Theorem
29.15 and we can keep the discrete spaces in the two sequences the same size at
each stage, using 30.2. The result is the following theorem.

30.3 Theorem. Any two totally disconnected, perfect compact metric spaces are
homeomorphic.

Proof. Let X, Y be such spaces. Let (%,), (¥",) be sequences of finite covers of
X and Y, respectively, by disjoint open sets, the sets of the nth covers having diam-
eter <1/2". The existence of these is guaranteed by the Theorem 29.15. By using
Lemma 30.2 in order to split sets where necessary, we may assume %, and ¥~
have the same number of elements for each n.

Now if %, = {U,y,...,U,,} and ¥"; = {V,,..., V},}, then each U, is
a union of elements of % ,, and each V;; is a union of elements of ¥*,. Again, using



30] The Cantor set 217

Lemma 30.2 we can assume U,; and V,; are the union of the same number of
elements of %,, ¥,, respectively, in such a way that U,, = U,; iff V,, = V;.
Continue in this fashion, matching the covers of %, and ¥, for all n.

Now let X, <t X, «---and Y, < Y, « --- be the derived sequences of
(%,) and (7,), respectively. Define ¢,: X, —» Y, by ¢,(U,;) = V,;. Then o,
is a homeomorphism from X, to Y,, and it is easily verified that ¢: X — Y,
is also then a homeomorphism. But X, is homeomorphic to X, and Y, is homeo-
morphicto Y. W

30.4 Corollary. The Cantor set is the only totally disconnected, perfect compact
metric space (up to homeomorphism).

The previous result provides us with some interesting and easily proved
results (some of which we already know). Recall that 2%° denotes the product of
N, copies of the two-point discrete space.

30.5 Corollary. The Cantor set C is homeomorphic to 2%°.
30.6 Corollary. The Cantor set C is homeomorphic to C*°.

The next result is a much deeper (and more startling) application of the
characterization theorem.

30.7 Theorem. Every compact metric space X is a continuous image of the
Cantor set.

Proof. Let%,, U,, ... be a sequence of finite covers of X by the closures of open
sets, the sets of %, being of diameter < 1/2" such that %, < %, _,forn =2,3,... .
Say %, = {U,y,..., Uy, }. Foreach U;e%,, define V;; = {(u,i)|ue U,;} so
that V; = ¥V}, U -+ U V,,, is the disjoint union of the U,;. Now each U,;e %,
is contained in some U, e%, Define V,; = {(ui, j)|ueU,;} whenever
U,; = Uy, and let V, = ()%, Uu,,50,, Vaij Then V,, it is worth pointing out,
is somewhat more than the disjoint union of the U,;. Each U,; occurs in the dis-
joint union once for each Uy; such that U,; = U,;. Now define f,: V;, — V; by
fo((u, i, j)) = (u, i). Then f, is continuous on each piece V;; and thus continuous
on V,. Also, there is a map ¢,: V; - X defined by ¢,(, i) = u and a map
@, V, - X defined by ¢,(u, i, j) = u.

Continue the process. The result is a pair of inverse sequences and a mapping
between them (Fig. 30.1), where i is the identity map on X. The reader should

S /2
3 o V, Vi

b b

X 45 X L, X

3y

Figure 30.1
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check that (p,) satisfies the composition condition necessary to be a map of
inverse limit sequences. The result is a map ¢: V, — X of the inverse limit
spaces, which is continuous and onto because X and each V,isa compact Hausdorff
space and each ¢, is continuous and onto.

It is worth pointing out, at this stage, that each V, is a compact metric space,
being a disjoint union of a finite number of compact metric spaces. Let d, be the
metric on V, induced by the metrics on the U,;. We also need the obvious fact
that if (x, x,,...) € V,, then we must have ¢(x;) = ¢,(x,) =, and, if z,
denotes this common value, then for any (yy, y,,...) €V, d,(x,, y,) = d(z,, z,).

We would like to show ¥V, is the Cantor set. It is compact because each V,
is compact, and metric because it is a subset of the metric space [[;2, V,. If
x = (xg, Xy,...) and y = (yo, y1, - - .) are distinct points of V_, then for some
n, x, # y,. Now x, and y, must correspond to distinct points of X (under
¢,: V, > X), say to z, and z,, Now if d, is the metric on V,, then clearly
Ap(Xps V) = d(z,, z,) for all m > n. Since the diameters of the sets V,,;,. .., V.
which compose V,, approach 0 as m — oo, it follows that beyond some point
N, x,, and y,, belong to different sets of V,,; say, x,, € V.1, Yu & Voo But V,q is
open—closed in V,,, and hence {(zy, zy,...)€ V,, | z € V,,y} is an open—closed
nhood of x in ¥V, not containing y. Thus V_ is totally disconnected.

But V,, need not, in general, be perfect. However, if C is the Cantor set,
V, x C is a perfect, totally disconnected compact metric space which has V,,
and hence X, for a continuous image. B

Problems

30A. Properties of C

1. Cis nowhere dense in L

2. Cis homogeneous (i.e., given x and y in C, a homeomorphism of C onto itself can be
found which carries x to y). Thus, the property of being an endpoint in C is not topological,
but merely reflects a peculiarity of the embedding of C in L

3. Any totally disconnected, compact metric space is homeomorphic to a subset of C.
[See 29.15(b).]

30B. Perfect sets
1. Every perfect set in a complete metric space contains a compact perfect set.

2. A compact Hausdorff space which is countable is not perfect. “compact Hausdorff”
can be replaced by “complete metric.”

3. If A c X has no isolated points, then 4 is perfect in X.

30C. Open subsets of C

1. Every open subset of C can be written as the union of a finite or infinite sequence of
disjoint open—closed subsets of C.
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2. Every open subset of C is homeomorphic either to C or to C — {0}. [If G is a finite
union as in (1), then G is a 0-dimensional, perfect, compact metric space and is thus homeo-
morphic to C. If G = ) G, as in (1), then we can write C — {0} as | ) C, where the C, are
disjoint nonempty open—closed subsets of C and for each n, C, and G, are homeomorphic, so
C — {0} and G are homeomorphic (see 7H).]

30D. BN versus C
1. Every compact metric space is the continuous image of SN.
2. Is SN a continuous image of C?
3. Why is C preferable to SN as a universal mapping space for compact metric spaces?

30E. Scattered sets, the perfect kernel
A topological space X is scattered iff it contains no nonempty dense-in-itself subset.

1. Every discrete space is scattered. Exhibit a nondiscrete scattered space. [There are
infinite compact subsets of R which are scattered. ]

2. Every topological space X can be written as the union of two disjoint sets, one perfect,
the other scattered. (The perfect set in this union is called the perfect kernel of X.)

30F. Homeomorphism and product spaces

Let X be a compact space such that X x X is homeomorphic to X. Must X™° be homeo-
morphic to X? [Add an isolated point to C.] Note that noncompact spaces X with this
property are easy to find. These results complement the observations made in Exercise 8J.

30G. Convex sets in R"

A subset E of R" is convex iff whenever x and y belong to E, then E contains the closed line
segment joining x to y. Show that every closed bounded convex set in R” is the continuous
image of I [There is a continuous map f of C onto E, by 30.7. How can f be extended to
all of I?7]

31 Peano spaces

Here we give a topological characterization of those spaces which are continuous
images of the unit interval L.

31.1 Definition. A Peano space is a compact, connected, locally connected metric
space.

The next three results are directed specifically at the proof of the Hahn—
Mazurkiewicz theorem, which characterizes the continuous images of I as pre-
cisely the Peano spaces.

31.2 Theorem. Every Peano space is arcwise connected.

Proof. Suppose a and b are points in a Peano space X. Using Theorem 26.15,
there is a simple chain U, , ..., U,, of open connected sets of diameter <1 from
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a to b. About each point p of U,; there is an open connected set V of diameter
<% whose closure is contained in U,;, and if pe Uy;,; we can arrange that
V < U,;,; also. Do thisforeachi = 1,...,n We wish now to obtain a simple
chain of such sets V from a to b.

Pick x;,e U;;nUy;y; fori=1,...,n— 1 and foreach i =0,...,n — 1
(with a = x, and b = x,) find a simple chain of the sets V from x; to x;,, in
U,;+1. We cannot simply join these together to get a simple chain from a to b,
because of doubling back (Fig. 31.1), but we can obtain the desired simple chain
as follows: take all elements of the first chain (from a to x,) up to and including
the first one U meeting some element V of the second chain (from x; to x,), then
omit all elements of the first chain after U and all elements of the second chain
before V. Repeat this at all other intersections.

Figure 31.1

The result, then, is a chain U,, ..., U,,, of open connected sets of diameter
<% such that for each i, U, U,; for some j. Now continue this process, ob-
taining a simple chain of open connected sets of diameter < 1/2" whose closures
lie in elements of the previous chain for each n > 1.

For each n, let C, be the union of the closures of the elements of the nth chain.
Then C = () C, is a compact, connected metric space containing a and b. We
have finished if we show that no points other than a and b are noncut points, since
then C is an arc by 28.13.

Let x e C — {a, b}. For given n, at most one or two links of the nth chain
contain x. Let 4, be the union of all the links preceding these, B, the union of all
the links following these. Then

A=D(A,,mC) and B=®(B,,mC)
= 1

n=1 n=

form a separation of C — {x} into disjoint, nonempty open sets. Thus x is a cut
point of C. B
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The proof just given can easily be modified to show that every open connected
subset of a Peano space is arcwise connected (see 31C.1). We will use this fact a
little later, in the proof of Lemma 31.4.

31.3 Lemma. A compact locally connected metric space is “uniformly locally
connected”; that is, for any € > 0, there is some 6 > 0 such that whenever
p(x, y) < 0, then x and y both lie in some connected subset of X of diameter
<e

Proof. Given ¢ > 0, cover X by open connected nhoods of diameter <e. Reduce
this to a finite subcover {V,,, ... ,V, } and let 6 be a Lebesgue number (22.5) for
this cover. Then if p(x, y) < J, both x and y belong to some V, . B

31.4 Theorem. A Peano space X is uniformly locally arcwise connected, i.e.,
for each € > 0, there is a 6 > 0 such that whenever p(x, y) < 0, then x and y
are joined by an arc of diameter <e.

Proof. First, X is uniformly locally connected, by 31.3. Thus if ¢ > 0 is given,
there is a 6 > 0 such that if p(x, y) < 6, then x and y lie together in a connected
set B of diameter <¢/2. Each x € B has an open connected nhood U, of diameter
<¢/4. Then U = UxeB U, is an open connected subset of X, and hence, (see
Exercise 31C.1), U is arcwise connected. Thus, if p(x, y) < 6, then x and y lie in
an arcwise connected subset U of diameter <¢. l

We are now ready to prove the Hahn—Mazurkiewicz theorem, classifying the
continuous images of the unit interval as the Peano spaces. Proving that con-
tinuous images of I have the properties of a Peano space is no trouble; all the
necessary theorems are already at hand. But to prove the converse is significantly
more difficult. The basic idea is that given any Peano space X, there is a continuous
map of the Cantor set onto X by 30.7 and, using the small arcs in X provided by
the previous theorem, we can extend this map to the whole unit interval. The
details, of course, are painful.

31.5 Theorem. (Hahn and Mazurkiewicz) A Hausdorff space X is a continuous
image of the unit interval L iff it is a Peano space.

Proof. Let fbe a continuous map of I onto X. By 23.2, X must be compact and
metric. Moreover, X is the continuous image of a connected space and a quotient
(in fact, a closed, continuous image) of a locally connected space, so X has these
properties itself. Thus, X is a Peano space.

Now suppose X is any Peano space. Recall C is the Cantor set in I, with
I,,1,,... being the intervals in I — C ordered by size, and for intervals of the
same size, from left to right. Let f be a continuous map of C onto X. Our problem
is to extend f continuously over each I, = (p,, q,)- Now f(p,) and f(q,) are already
defined. If f(p,) = f(q,), define f*(p) = f(p,) for each peI,. Now for each
n=1,2,...1ind §, > O such that p(x, y) < J, in X = x and y are joined by an
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arc of diameter <1/2". But, for each n, find #, > 0 such that |p — ¢q| < 7, in

C = p(f(p), f(q) < 6,

Only finitely many intervals I,,..., I, have length >#, and for each such
I; extend f to (p;, q;) by letting its values run over any arc from f(p;) to f(q;)
in X. Then intervals I, ,,,...,I,, will have length , < |I}| < #,. For these
intervals I; we have |p; — g;| < n, so that p(f(p;), f(g;)) < é,. Extend f to
(p;» q;) by letting its values run over any arc of diameter <1 between f(p;) and
f(g;)- Tn general, for the intervals I; such that #,,, < |I;| < #,, we can let the
values of f on (p;, q;) run over an arc of diameter <1/k between f(p;) and f(q;).

The result is a function from I onto C whose continuity can be easily checked,
once you see what is going on. i

31.6 Corollary. A T,-space is pathwise connected iff it is arcwise connected.

Proof. By the previous theorem and Theorem 31.2, every path is arcwise
connected. B

Problems

31A. Peano spaces

1. If X is a Peano space of more than one point and Y is any Peano space, there is a con-
tinuous map of X onto Y.

2. If a and b are distinct points in X above, and ¢ and d are distinct points in Y, the map
S can be so constructed that f(a) = ¢ and f(b) = d.

31B. Uniform local connectedness

1. Every uniformly locally connected space is locally connected. [By 27.16, it is enough
to show such a space is connected im kleinem at each point. ]

2. The converse fails. [Consider the graph of sin (1/x) for x > 0.]

31C. Subsets of Peano spaces
1. An open connected subset of a Peano space is arcwise connected.

2. Is a compact, connected subset of a Peano space always a Peano space?

31D. Mapping the Cantor set

Show that the extension F of the map f of the Cantor set onto X given in the proof of 32.5
is continuous.

32 The homotopy relation

In the next three sections, we will provide a brief introduction to homotopy
theory, one of the branches of algebraic topology. Our limited aim is the develop-
ment of sufficient machinery to prove the Brouwer fixed-point theorem (34.6).
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In this first section, we will build the framework of basic definitions and theorems
which will enable us to introduce the appropriate algebraic techniques in Section
33. The Brouwer theorem will follow easily after we have applied these techniques
to study the unit circle in Section 34.

32.1 Definition. Let f and g be continuous functions from X to Y. We say f
is homotopic to g, written f ~ g, iff there is a continuous function H: X x I - Y
such that H(x, 0) = f(x) and H(x, 1) = g(x) for all x e X. The map H is called
a homotopy between f and g. For clarity, we will sometimes write H: f ~ g
when H is a homotopy between f and g.

Setting f(x) = H(x, ) for x € X and ¢ € I, the homotopy H is seen to represent
a family {f, | €I} of maps from X to Y, varying continuously with ¢, such that
fo = fand f; = g. Thus H gives a continuous deformation of the map f into the
map g.

32.2 Examples. a) In R”, define f(x) = x for all x and g(x) = O for all x. Then
f =~ g, the homotopy being given by

H(x,n) = (1 — x.

b) Let X be any space, Y a convex subset of R”. Then any two maps
f.g: X — Y are homotopic, the homotopy being given by

Hix, ) = 1-g(x) + (1 = 1) f(x)

Note the importance of the range in questions of homotopy. For example,
if D is the disk {(x;, y,)|x} + y3 < 1} in the plane, we can conclude from
example b) above that any two maps from S! to D are homotopic; for instance,
the map f(x) = x and the constant map g(x) = (1, 0). But regarded as maps from

S? to S!, f and g are no longer homotopic (34.4).

32.3 Theorem. = is an equivalence relation in the set C(X, Y) of all continuous

maps from X to Y.
Proof. If fe C(X, Y), then H: f ~ f, where H is defined by H(x, t) = f(x) for
allxe X and te I.

If ,ge C(X,Y)and H: f ~ g, then H': g ~ f where H'(x, ) = H(x, 1 — 1)
forallxe X and te L.

Iff,9, he C(X,Y)and H,: f ~ g while H,: g ~ h,then H: f ~ g, where

_ [Hy(x,21) 0<
Hex, 1) = {Hz(x, %u—1) i<

H is continuous on X x I since it is continuous on each of the closed subsets
X x [0,4]and X x [§,1]. W

32.4 Definition. The equivalence classes in C(X, Y) under the relation =~ are
called the homotopy classes in C(X, Y).

—_ N

r <
t <
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32.5 Theorem. Composites of homotopic maps are homotopic.

Proof. Suppose f; and g, are homotopic maps from X to Y and f, and g, are
homotopic maps from Y to Z; say H,: f; ~ g, and H,: f, ~ g,.

Then f,0 H,: f,0f1 =~ f,0g;. By transitivity of the homotopy relation, it
remains to construct a homotopy between f, - g, and g, o g,. Define

H: X xI1->Z

by H(x, 1) = H,(g,(x), 7). Then H is a composite of continuous functions and
hence continuous, and H: f, 0 g; ~ g, 09,. B

32.6 Definition. A space X is contractible iff the identity map i: X — X is homo-
topic to some constant map ¢(x) = x,, from X to a point x, € X.

It follows from Example 32.2(b) that any convex subset of a Euclidean space
is contractible.

32.7 Theorem. X is contractible iff for any space T, any two continuous maps
f,g: T — X are homotopic.

Proof. Sufficiency is obtained by setting T = X and letting f and g be, respectively,
the identity and a constant map.

For necessity, suppose X is contractible; sayi ~ ¢, where c is a constant map
from X to itself. Let f, g: T — X be any two continuous maps. By the previous
theorem, f = iof ~cofandg =iog ~ cog. Butcof = c¢og,soapparently
f~g N
32.8 Definition. Two spaces X and Y are said to be homotopically equivalent iff
there are continuous functions f: X — Y and ¢g: Y —» X such that fog ~ iy
and go f >~ iy. The maps f and g are called homotopy equivalences and g is
called a homotopy inverse of f (and vice versa).

Homotopy equivalence is an equivalence relation on any set of topological
spaces, and homeomorphic spaces are always homotopically equivalent. The
converse to the last statement fails, as the following theorem shows.

32.9 Theorem. X is contractible iff it is homotopically equivalent to a one-
point space.

Proof. Suppose X is contractible, say the identity i: X — X is homotopic to
the constant function ¢(x) = x,. Let Y = {x,},and let j: Y — X be the inclusion
map. Then c . j is the identity on Y and j o ¢ = ¢ is homotopic to the identity
on X. Thus jis a homotopy equivalence from Y to X.

Conversely, suppose f: X — Y is a homotopy equivalence between X and
a one-point space Y, and let g: Y — X be a homotopy inverse. Then go fis a
constant map from X to X which is homotopic to the identity on X, so X is
contractible. l

32.10 Definition. A subset 4 of X is a retract of X iff there is a continuous map
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r: X — A, called a retraction, such that r(a) = a for each ae A. We call 4 a
deformation retract of X iff there is a retraction r: X — 4 which is homotopic
(asa map into X) to the identity functionion X. If H: r ~ i, H is called a deforma-
tion retraction.

32.11 Example. A retract need not be a deformation retract. In fact, the one-point
subsets of any space are retracts, but no one-point subspace of S! is a deformation
retract (34.4).

32.12 Theorem. If A is a deformation retract of X, then A is homotopically
equivalent to X.

Proof. Let j: A - X be inclusion and r: X — A be the retraction. Then jor
is homotopic to the identity on X and r o j is the identity on A4, so r is a homotopy
equivalence. B

We conclude this section by introducing a generalization of the homotopy
relation which will be useful in the next section.

32.13 Definition. A fopological pair is an ordered pair (X, 4) where A4 is a topological
space and 4 < X. A mapping f: (X, A) — (Y, B) of topological pairs is a mapping
f:X — Y such that f(4) = B; it is continuous if it is continuous in the usual
sense from X to Y.

Two continuous mappings f, g: (X, A) — (Y, B) are homotopic iff there is a
continuous function H: X x I — Y such that H(x, 0) = f(x) and H(x, 1) = g(x)
for all x € X and such that H(a, t) = f(a) = g(a) for all a€ A. Thus for f and g
to be homotopic mappings of the pair (X, A) it is necessary that f |4 = g | A.
If f and g are homotopic mappings of (X, A) we say “f is homotopic to g relative
to A” and write f ~ g[A4].

Two pairs (X, A) and (Y, B) are homotopically equivalent iff there are pair
mappings f: (X, A) - (Y, B) and g: (Y, B) > (X, A) such that fog ~ iy[B]
and g o f ~ iy[A]. Apparently f | A must in this case be a homeomorphism of 4
onto B and g | B must be its inverse.

Clearly, if f ~ g[A], then f and g are homotopic as mappings of X to Y.
The converse may fail, even when f and g agree on A, as the following example
shows.

32.14 Example. Let X be the subspace of R? consisting of the segment
{x|0 < x < 1} of the x-axis, the segment {y |0 < y < 1} of the y-axis and each
of the line segments {(1/n, y)|0 < y < 1} forn =1,2,... . Let A be the one-
point subspace {(0, 1)}. X is easily seen to be contractible so, by 32.7, the identity
i on X and the constant map g(x) = (0, 1) are homotopic. Moreover, these two
maps agree on 4. But no homotopy H between i and g can have 4 pointwise
fixed, as required for relative homotopy.
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Some of the other relationships between homotopy and relative homotopy
will be explored in the exercises. In particular, homotopy relative to A is an
equivalence relation in the set of all maps from X to Y (see 32B).

We should introduce a note of caution here. The literature contains references
to several notions of relative homotopy, no two of which are exactly alike. It
would be wise to check definitions whenever such a notion is encountered.

Problems

32A. Contractible spaces
1. Every contractible space is pathwise connected.
2. Every retract in a contractible space is contractible.

32B. Relative homotopy
Let (X, A) and (Y, B) be topological pairs.

1. The relation f ~ g[A] is an equivalence relation on the set of all mappings
/1 (X, 4) - (Y, B).

2. If (X, A) and (Y, B) are homotopically equivalent as pairs, then X and Y are homo-
topically equivalent spaces. Is the converse true? That is, if f is a homotopy equivalence

from X to Y such that f | A is a homeomorphism of 4 onto B, is f a homotopy equivalence
between (X, 4) and (Y, B)?

32C. Homotopy in subspaces and products
L If fo, fi: X > Y are homotopic and A = X, then f, | A and f; | A are homotopic.

2. Maps f, and f; of X into a product space are homotopic iff they are homotopic when
followed by each projection.

32D. Weak deformation retracts

IfA = X,amapr: X — Aisaweak retraction of X onto A iff r o j is homotopic to the identity
on A, where j is the inclusion map of 4 in X. Then A is a weak retract of X. A subset B of X
is deformable into A in X iff there is a continuous map D: B x I - X, called a deformation,
such that D(b,0) = b for all be B and D(B x 1) = A. Finally, 4 is a weak deformation
retract of X iff there is a map D: X x I — X such that D(x, 0) = x, for all xe X, and
r(x) = D(x, 1) is a weak retraction of X onto A.

1. Note that r is a weak retraction of X onto A iff it is a left homotopy inverse to the in-
clusion map j. Show X is deformable into A4 (in X) iff j has a right homotopy inverse.

2. Every retract is a weak retract. The converse fails. (But see 32F.)

3. The following are equivalent, for 4 < X:

a) A is homotopically equivalent to X,
b) A is a weak deformation retract of X,
c) Ais a weak retract of X and X is deformable into A.

(Compare with 32.12.)
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32E. Deformation and retraction
1. Any compact, convex subset of R" is a deformation retract of R".

2. If A is a retract of X, then A x Y is a retract of X x Y.
3. Not every weak deformation retract of X is a deformation retract.
4. Ais a deformation retract of X iff A is a retract of X and X is deformable into 4 (32D).

32F. The homotopy extension property

Let X be a topological space, A a subspace of X. We say the pair (X, A) has the homotopy
extension property with respect to a space Y iff each continuous F’ defined on (X x 0) U (4 x I)
to Y has an extension to a continuous F: X x I - Y.

1. If (X, A) has the homotopy extension property with respect to Y, 4 is a weak retract
of X iff A is a retract of X.

2. (X, A) has the homotopy extension property with respect to every space Y iff
(X x0u( x Iisaretractin X x L

32G. Null-homotopic maps
A map f: X — Y is null homotopic iff f is homotopic to some constant map of X into Y.
Recall that AX denotes the cone cover X (9.12(f)).

1. Two null-homotopic maps f and g of X to Y need not be homotopic to one another.

2. A map f: X — Y is null homotopic iff f can be extended to a continuous map
F:AX > Y.

33 The fundamental group

We are now in a position to use the “addition” of paths defined in Section 27 to
associate with any topological space a group (actually, several groups). The basic
idea, of course, is to regard the paths in X as elements of the group, with path
addition as the group operation. The first obstacle we encounter is that it is not
possible to add any two paths in X'; the first must end at the point where the
second begins. This is taken care of (in Definition 33.1) by restricting attention
to the paths which begin and end at some fixed point of X. The second obstacle
is that, even for this restricted family of paths, the requirements of a group opera-
tion are not satisfied by path addition. This we overcome, with the help of the
material of the previous section, by considering homotopy equivalence classes
of paths, rather than individual paths.

The result will be a group assigned to each fixed x, € X which, intuitively,
measures the number of two-dimensional holes in the path component of x,,.

33.1 Definition. Let X be a topological space, x, a fixed point in X. A continuous
function f: I - X will be called a loop based at x, iff f(0) = f(1) = x,. Two loops
fand g based at x, will be called loop homotopic (or, where no confusion can result,
simply homotopic) iff f ~ g[{0, 1}]. Thus a loop homotopy between two loops
based at x, must be a relative homotopy which at any stage carries the endpoints
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of I into x,. We will signify this relation of homotopy between two loops by
f =9

The relation ~, between loops based at x, is an equivalence relation and
hence partitions the set Q(X, x,) of loops based at x, into equivalence classes.
The equivalence class containing f will be denoted [ f], and the set of all such
equivalence classes of loops based at x, will be denoted IT,(X, x,).

We can “add” loops just as we “added” paths in Section 27. If f; and f, are
loops based at x,, we define a new loop f; * f, as follows:

_fA@y if 0<1t
(f1 * f2)1) = {f2(2t —) it 1<y

1
=2
<1

Then we can elevate the operation * to the set IT;(X, x,) of equivalence classes

of loops by defining
[A]*[fa] = [f1+ f2)

It is left as Exercise 33A for the reader to show that = is then well defined in

IT,(X, xo). Thatis,if f; ~, g, and f, ~, g, then f; * f, ~, g, * g,.
Thus = is a binary operation on IT,(X, x,).

33.2 Theorem. I1,(X, x,), with the operation x, is a group.

Proof. We check associativity first. For this, it suffices to show that

(fxg)xh =y fx(g+h)

for loops f, g and 4 based at x,. A pictorial approach will make the idea behind
the necessary homotopy easy. Interms ofitsactionon L, (f * g) * his accomplished
by completing the action of f in the interval [0, ], the action of g in the interval

+ 31 and the action of 4 in the interval [, 1]. This is represented on the top
line of Fig. 33.1. The bottom line represents f * (g * ). A homotopy between
f#*(g=*h) and (f xg) = h can then be constructed by allowing the action of
f, g and A to be divided at time ¢ as shown. The details are left to the reader.

Figure 33.1
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f =
Figure 33.2

Now let e denote the constant map e(r) = x, for all € . We claim [e] serves

as an identity in IT,(X, x,). It suffices to show fxe ~, fand ex f ~_ f for
all e Q(Y, yo). To exhibit a homotopy for the first, define for each t € I,

f<22x> Osxgzgt

H(x, 1) =

(A picture like the one in Fig. 33.1 will help in understanding where this came
from.) H is continuous on I x I since it is continuous on each of the closed sets
{(x,t)| x < (2 — 1)/2} and {(x, )| x = (2 — #)/2} and it is easily checked that
H(x,0) = f(x) and H(x, 1) = (f * e)(x) for all xe L The relation e* f ~_ f
is done in similar fashion.

Finally we must show existence of inverses. For each loop f at x,, define f
to be the loop

fx) = f(1 — x), 0<x<l,

1 =01
The reader can check that this is well defined. To show [ /] is an inverse for
/. it suffices to check that '+ f~ ~_  eand f* » f ~, e First (Fig. 33.2), let

and let

1) 0<x<——
= 1—1¢
Hex, 1) et —me<x<l-i

The function H is continuous on each of three closed sets which cover the square
and thus continuous, and clearly H(x,0) = (f * f7)(x) and H(x, 1) = e(x) for
all x e I. The homotopy showing f“ * f ~_ e is similarly constructed. l
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h

——0
X0 h Xy Figure 33.3

The dependence of I1,(X, x,), called the fundamental group of X based at
X, 0n the base point x, is not illusory in the general case (33B), but for an important
special class of spaces it can be ignored.

33.3 Theorem. If X is an arcwise connected space, then for any pair of points
Xo and x, in X, I1,(X, x,) and I1,(X, x,) are isomorphic.

Proof. Leth:1 — X beanarcfrom x, to x,, 2" thearc A traversed in the opposite
direction. For each loop f based at x,, define a(f) to be the following loop based
at x, (Fig. 33.3):

a(f) = h" = f=h.

This induces a mapping A[f] = [A~ * f = h] of II,(X, x,) to II(X, x;). We
will show this is the desired isomorphism.

First, A is single valued. That is, if f ~, g, then A" % f+ h ~_ h" xg=xh.
Forif H:f n,, g, then the function G defined by

h*(x) 0<t<i
G(x,1) =<H(x,3t — 1) i<t<2
h(x) 2<t<1

is a homotopy between 4~ * f* hand h™ % g * h.
Second, A4 is a homomorphism; that is A([f] = [g]) = A[f] * A[g]. But

ALS] = Alg] = [h" = f* h] = [h" * g = h]
=[h"xfxhxhxgxh] =[h"xfxgxh)]
= A(Lf * 9] = A[S] * [9])

Finally, it is necessary to show A is one—one and onto. This is left as
Exercise 33B. B

Thus for an arcwise connected space X, we can speak of the fundamental
group I1,(X) of X. This will cause us no difficulty here, but would be an annoying
oversimplification in a deeper study of the fundamental group. In point of fact,
IT,(X)is a set of groups indexed by the points of X, any two of which are isomorphic
under any one of a set of isomorphisms indexed by the paths between the two
points in question. See Exercise 33B.

Later on, we will compute some simple homotopy groups (with the help of
some by no means simple tools). Now we turn to the question of their homotopy
(and thus topological) invariance.
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33.4 Definition. A pair (X, x,) where X is a topological space and x, € X will be
called a pointed space (space with base point). A mapping f: (X, xo) = (Y, yo)
of pointed spaces is a continuous function from X to Y such that f(x,) = yo.

We have associated with each pointed space (X, x,) an algebraic object
IT,(X, x,). The power of the homotopy method in topology is largely traceable
to the fact that mappings of pointed spaces induce homomorphisms of the as-
sociated algebraic structures.

33.5 Theorem. Every continuous mapping f: (X, xo) = (Y, y,) induces a homo-
morphism f* : T1,(X, xo) = I1,(Y, yo).

Proof. For each loop g at x, in X, let f'(g) be the loop at y, in Y defined by
f'@)®) = flg(r)]. This defines a mapping f’ from Q(X, x,) to (Y, y,) which in
turn induces a mapping f*: I1,(X, x,) — IT,(Y, y,) as follows:

f*g) = Lf @]

To see that f* is well defined, note that if H is a homotopy between g, and g,
in Q(X, x,), then f o H is a homotopy between f'(g;) and f'(g,) in (Y, y,).

It remains to show that f* is a homomorphism, for which it suffices to establish
the necessary algebraic property for f'. But

flg(2%)] = f'(9)2x)
2 * h —
J1g=h {f[h(zx — 0] = fex - 1)
= f'(g) = f'(h). A

33.6 Theorem. a) If f is the identity on X, f* is the identity on I1,(X, x,).

b) If f and g are continuous mappings from (X, x,) to (Y, yo) such that

f ~g[xo), then f* = g*.

C) Iff (Xa xO) - (Ya J’o) andg: (Ya yO) - (Za ZO): then (g of)# = g# Of#'

d) If r: (X, xo) = (4, xo) is a retraction and i: (4, xy) — (X, X,) is the in-

clusion map, then i* is a monomorphism and r* is an epimorphism.
Proof. a) Obvious.

b) It suffices to show that if / is a loop based at x, in X, then f*(h) =~ g*(h).
But if f and g are homotopic relative to x,, then f o 4 and g - & are homotopic;
that is, f*(4) and g*(h) are homotopic.

c) If h is any loop based at x, in X, then for t e I,

[(g - N*W]@) = g - f(h0) = g[f(H(2))]
= g*[f(h())]
= g% o f*(h(2)).

d) 7. i is the identity map on (4, x,), so r* o i* = (r o i)* is the identity on

IT1,(A4, x,). Both results follow. l

(=]

Nl
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=
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33.7 Theorem. If (X, x,) and (Y, y,) are homotopically equivalent, then
I1,(X, x,) and I1,(Y, y,) are isomorphic.

Proof. There are mappings f: (X, xo) — (Y, yo) and g: (Y, y,) = (X, x,) such
that f o g is homotopic to the identity on Y and g - f is homotopic to the identity
on X. Then, from 33.6, g* o f* = (g0 f)* is the identity on II,(Y, y,) and
f*og® = (fog)* is the identity on I1,(X, x,). Since f* and g* are homo-
morphisms, they are thus isomorphisms and the theorem is proved. ll

Note that the above theorem (and 33.6b) require relative homotopies as
stated; this is a severe and unnecessary restriction, although the weak result
obtained is sufficient for our purposes. One stronger result is stated in 33C.
Even stronger results can be obtained; see the book by Massey, p. 82.

Problems

33A. The operation

1. Show that [f]=* [f,] = [f; * f2] is a well-defined operation in IT,(X, x,). (Refer
to 33.1.)

33B. I1,(X) for arcwise connected spaces

1. Construct a space X with points x, and y, such that IT,(X, x,) and IT,(X, y,) are not
isomorphic.

Now let X be an arcwise connected space and, for each x € X, let G, = I1;(X, x). For
each path 4 from x to y in X, let a,, be the isomorphism a,([f]) = [~ * f = k] of G, with
G,. Ifhis a path from x to y and k is a path from y to z, let 4  k be the path from x to z defined

by .
h(2t), if 0<r<i
(h * kY1) = 1
k2t — 1), if 7<t< 1.
(This just extends the definition of = to paths which are not loops.)
2. If fis a loop at x, then «; is an inner automorphism of G,.
3. If his a path from x to y and k is a path from y to z, then a,,, = o o %,
This is intended to develop the categorical point of view of IT;(X) as an object in the
category of groups and conjugacy classes of homomorphisms. A better understanding of

this point of view can be gained by reading the relevant portions of Spanier’s book, Algebraic
Topology.

33C. Homotopy equivalence
Show that if X and Y are arcwise connected and homotopically equivalent, then IT,(X) and

I1,(Y) are isomorphic. (This is difficult.)

33D. The higher homotopy groups

Let X be a topological space. Let JI" denote the boundary of the n-cube I"; that is,
oI" = {(xy,...,x,)€I"| some x; is O or 1}. An n-dimensional hyperloop based at y, in Y
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is a continuous function f: I" —» Y such that f(6I") = {y,}. Define f * g for hyperloops f
and g by

o
IN

(f*g)(xla"'7xn) =.f(2x1’x2a'--axn) lf
=g2x; — 1, x5,...,X,) if

X1

A
= e

[N
IA

x; <

Let Q,(Y, y,) denote the set of n-dimensional hyperloops based at y, in Y and let I1,(Y, y,)
denote the set of equivalence classes in Q,(Y, y,) under the relation of homotopy relative to
oI". The equivalence class of f will be denoted [ f].

L. [f] = [g] = [Sf * g] is a well-defined operation in I1,(Y, y,), making I1,(Y, y,) a group,
called the nth homotopy group of (Y, y,).
2. 1If f: (X, xo) = (Y, y,) is continuous, the induced map f,([#]) = [f - 4] is a homo-
morphism of I1,(X, x,) into IT,(Y, y,).
3. a) If i: (X, xo) = (Y, yo) is the identity, then i, : I1,(X, xo) — I1,(Y, y,) is the identity.
b) Iff (X> xO) - (Ya yO) and g: (Ya YO) - (Z9 ZO)’ then (g °f)* = g* °f*'
) If f,g: (X, xo) = (Y, y,) are homotopic relative to x,, then f, = g,.
4. If (X, x,) and (Y, y,) are homotopically equivalent, then IT,(X, x,) and I1(Y, yo)
are isomorphic.

For more on the higher homotopy groups, see Exercise 43K.

34 TII,(S')

Let f be a loop based at (1, 0) in S!. We will, with some difficulty, assign a number
D(f) to f which, intuitively, measures the number of times f winds positively
(counterclockwise) around S! and which is an invariant of homotopy type. This
will enable us to compute IT,(S?).

34.1 Definition. Let the loop f be fixed; we will assume f is nonconstant. A proper
partition of I relative to fis a partition0 = a4 < a; < - -+ < a, = 1 ofI'such thatif
x € [a;, a;4 1], then [ f(x) — f(a;)] < 1and such that a; # a; = f(a;) # f(a)), except
that f(ao) = f(a,).

Uniform continuity of f on I insures that proper partitions can be found.
(Although we have neither defined nor studied uniform continuity as yet, we need
here only the fact that a continuous function defined on a closed bounded interval
with range in some metric space is uniformly continuous. Any course in real
analysis should include a proof of this fact for real-valued functions and almost
any proof for real-valued functions carries over without change to functions which
take values in an arbitrary metric space. Alternatively, see Theorem 36.20.)

Given a proper partition P = {a,, . . ., a,} of I relative to f, the P-approxima-
tion to f is the function f, which in each subinterval [a;, a,,,] traverses from
f(a;) to f(a;4,) the shorter of the two subarcs of S! determined by f(a;) and
f(a;+ ). Each of the subarcs 4, thus tr