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Preface to the Third Edition

The first edition of this text was based on lecture notes prepared for a
one-semester undergraduate course given at Smith College. The aim was
to present a simple, thorough survey of elementary topics to students
whose preparation included a calculus sequence in which some attention
had been paid to definitions and proofs of theorems. With this in mind,
I have attempted to resist the temptation to include more topics. There
are many excellent introductory topology texts which are first-year
graduate school level texts and it was not my original intention, nor is
it now, to write at that level.

The main outlines of the text have not been changed. The first
chapter is an informal discussion of set theory. The concept of counta-
bility has been postponed until Chapter 5, where it appears in the con-
text of compactness.

The second chapter is a discussion of metric spaces. The topological
terms “open set,” “neighborhood,” etc., are introduced. Particular at-
tention is paid to various distance functions which may be defined on
Euclidean n-space and which lead to the ordinary topology.

In taking up topological spaces in Chapter 3, the transition from the
particular to the general has been maintained, so that the concept of
topological space is viewed as a generalization of the concept of metric
space. Thus there is a similarity or, perhaps, a redundancy in the presen-
tation of these two topics. A great deal of attention has been paid to
alternate procedures for the creation of a topological space, using
neighborhoods, etc., in the hope that this seemingly trivial, but subtle,
point would be clarified.

Chapters 4 and 5 are devoted to a discussion of the two most
important topological properties: connectedness and compactness. Some
of this material could lead to further discussion of topics related to
analysis, function spaces, separation axioms, metrization theorems, to
name a few. On the other hand, material such as homotopy and two-
dimensional closed surfaces could lead to further discussion of topics
related to algebraic topology.

In conclusion, it is a pleasure to express in print my gratitude to
those mathematicians under whom I studied and who helped make this
book possible. In particular I should like to mention Professors C.
Chevalley, S. Eilenberg, I. James, H. Riberio, P. Smith, and E. Thomas.

B. M.
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Theory of Sets

1 INTRODUCTION

As in any other branch of mathematics today, topology consists
of the study of collections of objects that possess a mathematical
structure. This remark should not be construed as an attempt to
define mathematics, especially since the phrase ‘‘mathematical
structure” is itself a vague term. We may, however, illustrate
this point by an example.

The set of positive integers or natural numbers is a collection
of objects N on which there is defined a function s, called the
successor function, satisfying the conditions:

1. For each object z in N, there is one and only one object y in N such
that y = s(z);
2. Given objects z and y in 8 such that s(z) = s(y), then z = y;

3. There is one and only one object in N, denoted by 1, which is not the
successor of an object in N, i.e., 1 # s(z) for each z in N;

4. Given a collection T of objects in N such that 1 is in T and for each
zin T, s(z) is also in T, then T = N.

1



Ch. 1 Theory of Sets

The four conditions enumerated above are referred to as Peano’s
azioms for the natural numbers. The fourth condition is called the
principle of mathematical tnduction. One defines addition of natural
numbers in such a manner that s(x) = ¢ + 1, for each z in N,
which explains the use of the word ‘‘successor’’ for the function s.
What is significant at the moment is the conception of the natural
numbers as constituting a certain collection of objects N with an
additional mathematical structure, namely the function s.

We shall describe a topological space in the same terms, that
is, a collection of objects together with a specified structure. A
topological space is a collection of objects (these objects usually
being referred to as points), and a structure that endows this
collection of points with some coherence, in the sense that we
may speak of nearby points or points that in some sense are close
together. This structure can be prescribed by means of a collec-
tion of subcollections of points called open sets. As we shall see,
the major use of the concept of a topological space is that it
provides us with an exact, yet exceedingly general setting for
discussions that involve the concept of continuity.

By now the point should have been made that topology, as
well as other branches of mathematics, is concerned with the
study of collections of objects with certain prescribed structures.
We therefore begin the study of topology by first studying col-
lections of objects, or, as we shall call them, sets.

2 SETS AND SUBSETS

We shall assume that the terms “object,” ‘“‘set,” and the relation
“is a member of”’ are familiar concepts. We shall be concerned
with using these concepts in a manner that is in agreement with
the ordinary usage of these terms.

If an object A belongs to a set S we shall write A € S (read,
“A in S”). If an object A does not belong to a set S we shall
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write A & S (read, “A not in §’). If A,,..., A, are objects,
the set consisting of precisely these objects will be written
{A,, ..., A.}. For purposes of logical precision it is often neces-
sary to distinguish the set {4}, consisting of precisely one ob-
ject A,from the object A itself. Thus A € {A} is a true statement,
whereas A = {A} is a false statement. It is also necessary that
there be a set that has no members, the so-called null or empty
set. The symbol for this set is @.

Let A and B be sets. If for each object x € A4, it is true that
z € B, we say that A is a subset of B. In this event, we shall also
say that A s contained in B, which we write A C B, or that
B contains A, which we write B D A.

In accordance with the definition of subset, a set A is always
a subset of itself. It is also true that the empty set is a subset
of A. These two subsets, A and @, of A are called vmproper
subsets, whereas any other subset is called a proper subset.

There are certain subsets of the real numbers that are fre-
quently considered in calculus. For each pair of real numbers a, b
with a < b, the set of all real numbers x such that a < 2 S b is
called the closed interval from a to b and is denoted by [a, b].
Similarly, the set of all real numbers x such that a < z < b is
called the open interval from a to b and is denoted by (a, b). We
thus have (a, b) C [a, b] C R, where R is the set of real numbers.

Two sets are identical if they have precisely the same mem-
bers. Thus, if A and B are sets, A = B if and only if both
A C Band B C A. Frequent use is made of this fact in proving
the equality of two sets.

Sets may themselves be objects belonging to other sets. For
example, {{1,3,5,7}, {2,4,6}} is a set to which there belong
two objects, these two objects being the set of odd positive inte-
gers less than 8 and the set of even positive integers less than 8.
If 4 is any set, there is available as objects with which to consti-
tute a new set, the collection of subsets of 4. In particular, for
each set A, there is a set we denote by 24 whose members are
the subsets of A. Thus, for each set A, we have B € 24 if and
only if B C A.
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EXERCISES

1. Determine whether each of the following statements is true or false:

(a) For each set A, A € 24.

(b) For each set A, A C 24.

(¢) For each set A, {A} C 24.

(d) For each set A, @ € 24.

(e) For each set 4, ©® C 24,

(f) There are no members of the set {@}.

(g) Let A and B be sets. If A C B, then 24 C 28,

(h) There are two distinct objects that belong to the set {@, {@}}.
2. Let A, B, C be sets. Prove that if A C Band B C C, then A C C.
3. Let A,, ..., A, be sets. Prove that if 4, C A;, 4: C A4,, ...,

A,y CAsand A, C Ay then 4, = 4, = ... = A..

3 SET OPERATIONS: UNION, INTERSECTION,
AND COMPLEMENT

If z is an object, A a set, and z € A, we shall say that z is an
element, member, or point of A. Let A and B be sets. The inter-
section of the sets A and B is the set whose members are those
objects z such that x € A and ¢ € B. The intersection of A and
B is denoted by A N B (read, “A intersect B”’). The union of
the sets A and B is the set whose members are those objects
such that z belongs to at least one of the two sets 4, B; that is,
either x € A or £ € B.* The union of A and B is denoted by
A U B (read, ‘“A union B”’).

The operations of set union and set intersection may be rep-

* The logical connective “or’’ is used in mathematics (and also in logic) in the
inclusive sense. Thus, a compound statement “P or Q"' is true in each of the three
cases: (1) P true, Q false; (2) P false, @ true; (3) P true, Q true, whereas “P or Q"' is
false only if both P and Q are false.
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resented pictorially (by Venn diagrams). In Figure 1, let the
elements of the set 4 be the points in the region shaded by lines
running from the lower left-hand part of the page to the upper
right-hand part of the page, and let the elements of the set B be
the points in the region shaded by lines sloping in the opposite
direction. Then the elements of A U B are the points in either
shaded region and the elements of A M B are the points in the
cross-hatched region.

Figure 1

Let A C 8. The complement of A in S is the set of elements
that belong to S but not to A. The complement of A in S is
denoted by Cs(A4), S/A, or by S — A. The set S may be fixed
throughout a given discussion, in which case the complement of
A in S may simply be called the complement of 4 and be denoted
by C(A). C(A) is again a subset of S and one may take its comple-
ment. The complement of the complement of A is 4; that is,
c(C(4)) = A.

There are many formulas relating the set operations of inter-
section, union, and complementation. Frequent use is made of
the following two formulas.

THEOREM (DeMorgan’s Laws). Let A C S, B C S. Then
(3.1) C(4 U B) = C(4) N C(B),
(3.2) C(A N B) = C(4) U C(B).

5
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1.

Proof. Suppose £ € C(A \U B). Then z € S and
t& AUB. Thus, cZ A and z & B, or z € C(A) and
z € C(B). Therefore z € C(4) N C(B) and, consequently,

C(4 U B) CC(4) N C(B).

Conversely, suppose z € C(4) N C(B). Then z € S and
z &€ C(A) and z € C(B). Thus, z& A and z & B, and
therefore = &€ 4 U B. It follows that z € C(4 U B) and,
consequently,

C(4) N C(B) C C(A U B).
We have thus shown that
C(A)NC(B) = C(A U B).

One may prove Formula 3.2 in much the same manner
as 3.1 was proved. A shorter proof is obtained if we apply
3.1 to the two subsets C(4) and C(B) of S, thus

C(C(4) U C(B)) = C(C(4)) N C(C(B)) = AN B.
Taking complements again, we have

C(4) U C(B) = C(C(C(4) U C(B))) = C(4 N B).

EXERCISES

Let A C S, B C 8. Prove the following:
(a) ACBifandonlyif A\U B = B.
(b) ACBifandonlyif A N B = 4.
() ACCB)ifandonlyif A N B = Q.
(d) C(4) CBifandonlyif 4 UB = 8.
(e) A C B if and only if C(B) C C(A).
(f) A CC(B) if and only if B C C(4).
Let X C Y C Z. Prove the following:
(a) Cy(X) C Cz(X).
b)Z-(Y-X)=XU(@Z-7Y).
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4 INDEXED FAMILIES OF SETS

Let I be a set. For each a € I, let A, be a subset of a given set S.
We call I an indexing set and the collection of subsets of S in-
dexed by the elements of I is called an indexed family of subsets
of 8. We denote this indexed family of subsets of S by {A.}ecr
(read, “4 sub-alpha, alpha in 1”).

Let {A.}qcr be an indexed family of subsets of a set S. The
union of this indexed family, written, Uacr Aa, (read ‘“union over
ain I of 4,”) is the set of all elements x € S such that z € Ag
for at least one index B &€ I. The intersection of this indexed
family, written Neer A« (read “intersection over a in I of A,.”)
is the set of all elements x € S such that z € A for each B € I.
[Note that Uuer Ax = U,er 44, for which reason the two occur-
rences of “‘a’’ in the expression Uacr 4, are referred to as dummy
indices.]

As an example, let A,, A;, A3, A4 be respectively the set of
freshmen, sophomores, juniors, and seniors in some specified col-
lege. Here we have I = {1,2,3,4} as an indexing set, and
Uaer Aa is the set of undergraduates while Nacr 4o = 0.

If the indexing set I contains precisely two distinet indices,
then the union over a in I of A, is the same as the union of two
sets as defined in the previous section; that is,

Uagps) 4o = 4: U 4.
Similarly,
Naciig) Aa = 4: N 4.

We have allowed for the possibility that the indexing set I
is the empty set in which case a careful reading of the definition
shows that

Uae;a Aa = @-
maEﬁA" = S'
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DeMorgan’s laws are applicable to unions and intersections
of indexed families of subsets of a set S.

THEOREM Let {A.}.cr be an indexed family of subsets of a set S. Then
4.1) C(Ueer 4a) = Naer C(4a),
4.2) ClNaer 4a) = Uaer C(44).

Proof. Suppose £ € C(Uacr 4a). Then 2 & Uacr 4a;

that is, z & A4 for each index 8 € I. Thus z € C(As) for
each index 8 € I and z € Nacr C(A.). Therefore,

C(Uder 4a) C Naer C(Ad).
Conversely, suppose that £ € Nacr C(4a). Then z € C(4p)

for each index 8 € I. Thus x & A; for each index 8 € I;
that is, @ Uaer Ao Therefore, 1 € C(Uacr 4a) and

Naer C(4a) T C(Uaer Aa).
This proves 4.1. The proof of 4.2 is left as an exercise.

Given any collection of subsets of a set S, the concept of
indexed family of subsets allows us to define the union or inter-
section of the aforementioned subsets. We need only construct
some convenient indexing set. In the event that the collection of
subsets is finite, the finite set {1,2,...,n} of integers is a con-
venient indexing set. Given subsets A,, 4., . . ., 4. of S, we shall
often write 4, U 4. U ...U 4, or CJ A; for U.ena,....n) 4a

t=1

and, similarly, 4, N 4> N ... N Anor ( Aifor Nugpa,....n) A
=1

EXERCISES

1. Let {A.}acr, {Ba}acr be two indexed families of subsets of a set S.
Prove the following:
(a) ForeachB € I, Ag C Udaer Aa-
(b) For each 8 € I, Naer Aa C A3
(€) Uaer (Aa U Ba) = (Uaer 4a) U (Uaer Ba).
(d) Naer (Aa N Ba) = (Naer 4a) N (Naer Ba).

8 .
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(e) If for each 8 € I, A5 C Bg then
Ueer Aa C Uaer Ba,
Necr Aa C Naer Ba.
(f) Let D C S. Then
Uaer (Aa N D) = (Uaer 42) N D,
Neet (4a U D) = (Naer 4a) U D.
2. Let A, B, D C 8. Then
ANBUD)=(ANBUMAND),
AUBND)=(AUB)NAUD).
3. Let {A.}.cr be an indexed family of subsets of a set S. Let J C I.
Prove that
() Naecs 4a D Nacr Aa
(b) Ueer 4a C Ueder Aa.

4. Let {A.}ecr be an indexed family of subsets of a set S. Let B C S.
Prove that
(8) B C Neer Aa if and only if for each 8 € I, B C As.

(b) Ueaer A« C B if and only if for each 8 € I, A3 C B.

5. Let I be the set of real numbers that are greater than 0. For each
z € I, let A, be the open interval (0, ). Prove that N.cr 4. = 9,
User A; = 1. For each z € I, let B, be the closed interval [0, z].
Prove that Neer B, = {0}, U.er B. = I U {0}.

5 PRODUCTS OF SETS

Let z and y be objects. The ordered pair (x, y)* is a sequence of
two objects, the first object of the sequence being z and the second
object of the sequence being y. Let 4 and B be sets. The Cartestan
product of A and B, written A X B, (read “A cross B”’) is the set

*If z and y are real numbers, the symbol (z, y) is ambiguous, for it may stand for
either the ordered pair whose first element is z and the second y, or for the open
interval (z, y). It is hoped that this ambiguity will be resolved by the context in
which the symbol occurs.
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whose elements are all the ordered pairs (x, y) such that z € 4
and y € B.

The Cartesian product of two sets is a familiar notion. The
coordinate plane of analytic geometry is the Cartesian product
of two lines. The possible outcomes of the throw of a pair of dice
is the Cartesian product of two sets, A and B, where A = B =
{1, 2, 3, 4, 5, 6}. Unless A = B, the two Cartesian products
A X Band B X A are distinct.

A generalization of the Cartesian product of two sets is the
direct product of a sequence of sets. Let A;, 4;,..., A, be a
finite sequence of sets, indexed by {1, 2, ..., n}. The direct prod-
uct of Ay, A, . . ., A,, written

(read “product 7 equals one to n of 4;’) is the set consisting of
all sequences (a;, @y, . . ., a,) such that a; € 4;,a, € 4, ...,
a, € A,. In particular,

2

II A4; = A; X A,.

i=1

For this reason we shall often write

AIXA2><-..XA1|
forI'iA,-.

i=1
The concept of direct product may be extended to an infinite
sequence A, As, ..., An ... of sets, indexed by the positive
integers. The direct product of A, A, ..., A,, ..., written
1 4,
i=1
or
Ay XA X ... XA, X ...

is the set whose elements are all infinite sequences (a;, as, . . .,
@, . . .) such that a; € A; for each positive integer <.

10
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The set of points of Euclidean n-space yields an example of a
direct product of sets. If for + = 1,2,...,n we have 4; = R,
where R is the set of real numbers, then

R» = ﬁ A;
i=1
is the set of points of a Euclidean n-space. An element x € R" is
a sequence ¥ = (x;, Zs, . . . , ) of real numbers. In general, if the
sets A, As, ..., A, are all equal to the same set A, we write
A* = 1 A,
i=1
and call an element a = (a,, a, . . ., a,) € A™ an n-tuple.
EXERCISES

1. Let X C 4, Y C B. Prove that
CXXY)=4AXCY)UCKX) XB.

2. Prove that if 4 has precisely » distinct elements and B has precisely
m distinet elements, where m and n are positive integers, then 4 X B
has precisely mn distinct elements.

3. Let A and B be sets, both of which have at least two distinct mem-
bers. Prove that there is a subset W C A X B that is not the
Cartesian product of a subset of A with a subset of B. [Thus, not
every subset of a Cartesian product is the Cartesian product of a
pair of subsets.]

6 FUNCTIONS

The most familiar example of a function in mathematics is a
correspondence that associates with each real number z a real
number f(z). The purpose of marking an examination may be
described as the construction of a marking function that makes
correspond to each student taking the examination some integer

11



Ch.1 Theory of Sets

between zero and one hundred. Integration of a continuous func-
tion defined on some closed interval [a, b] is another example of
a function, namely the correspondence that associates with each
object f in this given set of objects the real number

L *f(2) da.

The concept of function or correspondence need not be restricted
to the realm of numerical quantities. The correspondence that
associates with each undergraduate in college one of the four
adjectives freshman, sophomore, junior, or senior is also an exam-
ple of a function using correspondence as an undefined concept.

DeriniTioN Let A and B be sets. A correspondence that associates
with each element z € A a unique element f(z) € B is
called a function from A to B, which we shall write

fiA — B,
or

AL B.

DerinrrioN  Let f: 4 — B. The subset Iy C A X B, which consists of
all orderéd pairs of the form (a, f(a)) is called the graph
of f:A — B.

The graph I'; of a function f: X — Y is the subset of X X Y
consisting of precisely those points (z, y) for which the statement
f(x) = y is true. This set is sometimes written

{@y @y €EXXY and y=f(2)}

This notation, called the set builder notation, is of the general
form {z | P(2)}, where P(z) is some statement which may or may
not be true of z. The resulting set is the set of all 2, in an appropri-
ate universe, for which P(z) is true.

Let A and B be sets. Given a subset I" of A X B there is a
function f: A — B such that T is the graph of f: 4 — B if, for each
z € A, there is one and only one element of the form (z, y) € T.

(Thus the equivalent definition of a function as a subset
I' C A X B with the aforesaid property is frequently employed,

12
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in which case for each z € A, the function I" makes correspond
to z the element y € B such that (z,y) € T'.)

DEerFiniTiON Let f: A — B be given. For each subset X of A, the subset
of B whose elements are the points f(z) such that x € X
is denoted by f(X). f(X) is called the émage of X. For each
subset Y of B, the subset of A whose elements are the
points * € A such that f(x) € Y is denoted by f-1(Y).
FU(Y) is called the inverse image of Y, counter tmage of Y,
or f inverse of Y.

DerFiniTioN - Let f:4A — B be given. A4 is called the domain of f. B is
called the range of f.

ExampLE Letf:R — R, R the set of real numbers, be the function such
that for each z € R, f(z) = 22 — z — 2. If X is the closed
interval [1, 2], then f(X) = [—2, 0]. If Z is the open interval
(—1, 1), then f(Z) = (—9/4,0) U {—9/4}° f—l([—zi 0]) =
[1,21 U [—1,0]. f~1({0}) = {2, —1} is the set of roots of
the polynomial 22 — z — 2. f~Y([-5, —4]) = Q.

A function f:A — B is also called a mapping or transforma-
tion of A into B. We may think of such a function as carrying each
point £ € A into its corresponding point f(x) € B.

DEerFINITION A function f:4 — B is called one-one if whenever f(a) =
f(@') fora,a’ € A, thena = a'.

Thus, f: A — B is one-one if for each b € f(A) there is only
one a € A such that f(a) = b.

DeriniTiON A function f:4 — B is called onto if B = f(4).

A one-one function is sometimes called injective and an onto
function is sometimes called surjective. A function which is both
one-one and onto is sometimes called bijective.

13
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DeriNiTION A function f:4 — B is called a constant function if there
is a point b € B such that f(z) = b for each z € A.

DEeFINITION A function f:A — A is called the 7dentity function (on 4)
if f(x) = z for each z € A.

EXERCISES

1. Let f:A — B be given. Prove the following:
(a) For each subset X C 4, X C f-(f(X)).
(b) For each subset Y C B, Y D f(f~Y(Y)).
(¢) If f:A — B is one-one, then for each subset X C 4,

FUX) = X.
(d) If f:A — B is onto, then for each subset Y C B,
fU(y)) =Y.

2. Let A = {ai, a;} and B = {b,, bs} be two sets, each having precisely
two distinct elements. Let f:A — B be the constant function such
that f(a) = b, for each a € A.

(a) Prove that f~*(f({ai})) # {ai}. [Thus it is usually the case that
FY(f(X)) and X are not equal.]

(b) Prove that f(f7'(B)) # B. [Thus it is usually the case that
f(f7Y(B)) and B are not equal.]

(¢) Prove that f({a} N {az}) #= f({a}) N f({az}). [Thus it is usu-
ally the case that f(X N X’) and f(X) N f(X’) are not equal.]

3. Let f:4 — B be given and let {X.}.cr be an indexed family of sub-
sets of A. Prove:
(@) f(Ueer Xa) = Uaer f(Xa).
(b) f(Naer Xa) C Naer f(Xa).
(¢) If f:A — B is one-one, then f(Naer Xa) = Naer [(Xa).

4. Let f:A — B be given and let {V,}acr be an indexed family of sub-
sets of B. Prove:
(a') f_l(Ucel Ya) = UdEIf—l(Ya)'
(b) " Naer Ya) = Naer f71(Ya).
(e) If X is a subset of B then f-1(C(X)) = C(f~1(X)).
(d) If X is a subset of A, and Y is a subset of B, then
XNY) =fX)NY.

14
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Let A and B be sets. The correspondence that associates with each
element (a, b)) € A X B the element p;(a, b) = a is a function called
the first projection. The correspondence that associates with each
element (a, b)) € A X B the element py(a, b) = b is a function called
the second projection. Prove that if B 5 @, then p;:4 X B— A is
onto and if 4 # @, then p.:A X B — B is onto. Under what cir-
cumstances is p, or p. one-one? What is p;~*({a}) for an element
aE€ A?

Let A and B be sets, with B # @. For each b € B the correspond-
ence that associates with each element a € A the element ji(a) =
(a,b) € A X B is a function. Prove that for each b € B, jy:4 —
A X B is one-one. What is j; (W) for a subset W C 4 X B?

Let A be a set and E C A. The function xz:4 — {0, 1} defined by
xe(z) = 1ifz € E and xg(z) = 0if x & E is called the characteristic
function of E. Let E and F be subsets of 4, show:

(a) xenr = xz-xr, Where xg-xr(z) = xe(x)xr(z);
(b) xeur = xg + xr — xenr and find a similar expression for

XEUFU G-

Let A be a set to which there belong precisely n distinet objects.
Prove that there are precisely 2» distinct objects that belong to 24,

7 RELATIONS

A function may be viewed as a special case of what is called a
relation. We are accustomed to thinking of one object being in a
given relation to another; for example, Jeanne is the sister of Sam
or silk purses are more expensive than sows’ ears. To say that the
number 2 is less than the number 3, or 2 < 3, is thus to say that
(2, 3) is one of the number pairs (z, y) for which the relation ‘“less
than” is true.

DEFINITION A relation R from the elements of a set A to the elements

of a set B is a subset of A X B. A relation R on a set E
is a subset of E X E.

15



Ch. 1 Theory of Sets

If (z,y) € R C A X B, one frequently writes aRb. We wish
to distinguish certain properties that a relation on a set E may
or may not have.

DEeFINITION A relation R on a set E is called reflexive if aRa is true for
all e € E. Itis called symmetric if, whenever aRb, also bRa.
It is called transitive if, whenever aRb and bRc, then aRc.

Let < be the pairs of real numbers (z, y) such that z < v.
Then < is a transitive relation on the set E of real numbers, but
< is not reflexive and not symmetric. Let R be the pairs of real
numbers (z, y) such that |z — y| < 1. Then R is reflexive and
symmetric, but not transitive. Let A be the pairs of real numbers
(x, y) such that z — y is an integer. Then A is reflexive, symmetric,
and transitive.

DEFINITION A relation R on a set E which is reflexive, symmetrie, and
transitive is called an equivalence relation.

DeriniTiIoON Let R be an equivalence relation on a set E. For each
a € E, the equivalence class of a, denoted by =(a), is the
subset of E consisting of all x such that aRz.

Two equivalence classes are either disjoint or identical.

Lemma Let R be an equivalence relation on a set £ and let
w(a) N w(b) # & for a, b € E. Then 7(a) = =(b).

Proof. Let ¢ € n(a), ¢ € w(b). Then aRc and bRc. Sup-
pose z € w(a) so that aRz. cRa by symmetry, so cRz by transi-
tivity. Another application of transitivity yields bRz, so
z € w(b). Thus w(a) C = (b). Similarly =(b) C =(a).

By the reflexive property a € w(a) is always true, so the
equivalence classes are non-empty and disjoint. Let E/R be the
set of equivalence classes, then m:E — E/R is an onto function.
E/R is sometimes called the quotzent of E by the relation R, and
= is called the projection.

16



Composition of Functions and Diagrams Sec. 8

EXERCISES

1. Let P be a subset of the real numbers R such that (i) 1 € P, (i) if
a,b € P then a + b € P, and (iii) for each z € R, one and only
one of the three statements, x € P, =0, or —z € P is true.
Define @ = {(a,b) | (a,b) ER X R and a — b € P}. Prove that
Q is a transitive relation.

2. Let f:X — Y be a function from a set X onto a set Y. Let R be the
subset of X X X consisting of those pairs (z, 2’) such that
f(x) = f(x'). Prove that R is an equivalence relation. Let
7:X — X/R be the projection. Verify that, if « & X/R is an equiva-
lence class, to define F(a) = f(a), whenever a = w(a), establishes a
well-defined function F:X/R — Y which is one-one and onto.

3. Let f:X — X be a one-one function of a set X into itself. Define a
sequence of functions f°, f1, f2, -- -, f», ---:X — X by letting f° be
the identity, f! = f, and inductively f~(x) = f(f*'(z)). Prove that
each of these functions is one-one. Let R be the subset of X X X
consisting of those pairs (a, b) such that b = f*(a) for some integer k
or a = fi(b) for some integer j. Prove that R is an equivalence
relation.

4. Let X be the set of functions from the real numbers into the real
numbers possessing continuous derivatives. Let R be the subset of
X X X consisting of those pairs (f, g) such that Df = Dg where D
maps a function into its derivative. Prove that R is an equivalence
relation and describe an equivalence set =(f).

5. Let E be the set of all functions from a set X intoaset Y. Letb € X
and let R be the subset of E X E consisting of those pairs (f, g)
such that f(b) = g(b). Prove that R is an equivalence relation.
Define a one-one onto function ¢,:E/R — Y.

'8 COMPOSITION OF FUNCTIONS
AND DIAGRAMS

DeFiNiTION Let f:4 — B and g:B — C be given. The composition of
fiA — B and ¢g:B — C is the correspondence that associ-
ates with each element ¢ € A, the element g(f(a)) € C.

This function is written gf:4A — C, or A LA C.

17



Ch. 1 Theory of Sets

A function h: A — C'is, therefore, the composition of f:A — B
and g:B — C (often abbreviated by writing h = gf) if for each
a € A, h(a) = g(f(a)). In a pictorial representation of these func-
tions, we have h = gf when these functions behave in the manner
indicated in Figure 2.

Figure 2

The concept of the composition of functions can be extended
to the composition of a finite number of functions.

DEeFINITION Let fi:A; — 4y, foiAe — As, . . ., foiAdn — Anp be given.
The composition of fi:A,— A, fr:A;— A; ..., and
fatA, — A, is the correspondence that associates with
each element z € A, the element f,.(. .. f(fi(x))...) €
Anqi. This function is written

oo fohitAL > Aup,
or

faeo fih
—_—

4, Anpr.

Let three functions f:A — B, g:B—C, and h:C — D be
given. We may form hgf:4A — D. We may also form gf:4 — C
and compose this function with A:C — D to obtain h(gf):4 — D.
Similarly, we may form (hg)f:A — D. We thus have three func-
tions hgf, h(gf), (hg)f:A — D. But

(hgf)(x) = h(g(f(2)));
(h(g) () = h((gf)(x)) = h(g(f(x)));
((hg)f) (=) = (hg)(f(z)) = h(g(f(2))).

18
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Thus, these three functions are the same. This observation pro-
vides a basis for the justification of the removal or replacement
of parentheses in expressions such as (f.f;)(f.f1), ete.

Suppose we are given three functions f:4 — B, g:B — C,
and k:4 — C. The existence of these three functions may be
indicated, as in Figure 3, by what we shall call a diagram. The
letters A, B, C stand for the various sets, and an arrow leading

Figure 3

from one set to another indicates a function from the first set to
the second, namely, the function that carries each element x of
the first set into the element ¢(x) of the second set, where ¢ stands
for the symbol closest to the middle of the arrow. The fact that
we may form the composition of two functions (such as gf:4 — C
in the above diagram) is represented by a path in the direction
of the arrows that goes from one set to a second and from the
second set to a third. (In the above diagram we say, “We may
go from A to B via f and from B to C via g¢.”)

We shall desire to diagram more complex situations than the
one indicated in Figure 3. Let us say that by a diagram we shall
mean a figure consisting of several symbols denoting sets and
arrows leading from one symbol to another, each arrow leading
from a set X to a set Y having an associated symbol ¢, the arrow
and its symbol representing a given function ¢: X — Y. For exam-
ple, diagram (8.1) indicates the existence of given functions
ftA—B,g:A > C, k:B— D, h:C — D. This diagram shows us

4 s >B
g [k (8.1)
C A oD

19



Ch. 1 Theory of Sets

that by composing functions we may obtain two functions from
A to D, namely, kf, hg:A — D. In any diagram, a path from X
to Y consisting of a sequence of arrows leading from X to Y
indicates the existence of a function from X to Y obtained by
composing the functions represented by these arrows in the order
of their occurrence, starting at X and terminating at Y.

In diagram (8.1) it may or may not be true that kf = hg. In
the event that kf = hg we will say that diagram (8.1) is commu-
tative. In general, a diagram is said to be commutative if for each
X and Y in the diagram that represent sets, and for any two
paths in the diagram beginning at X and ending at Y, the two
functions from X to Y so represented are equal. For example, the
statement that diagram (8.2) is commutative means that f = jh,
k = gj, and kh = gjh = gf (note that the first two equalities
imply the third).

D
3 N\ k
J (8.2)
A S B

A given set A may occur more than once in a diagram. For
example, let A be the set of positive real numbers and R the set
of real numbers. Let f:4 — R be defined by the correspondence
f(x) =log.x, x € A, and let g:R — A be defined by the corre-
spondence g(z) = €%, z € R. Let t:4 — A be the identity func-
tion. Then the diagram (8.3) is commutative, for (gf)(z) =
eleez = ¢ = {(z) for z € A.

\ / 83)
R

1. Using the functions defined by the correspondences g(z) = z? and
h(z) = \/:c_, z 2 0, construct an example of a commutative diagram

EXERCISES
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similar to diagram (8.3).

2. Let f:R X R — R be the function defined by the correspondence
f(z,y) = 22 + y? and let g:R X R — R be the function defined by
the correspondence g(z, y) = z + y. Let h:R — R be the function
defined by the correspondence h(z) = z2. Is the diagram

f

RXR——R

NS

R

commutative?
3. Leti:A — A be the identity function. Let the diagram

NA

be commutative. Prove that g:B — A is onto and that f:4 — B
is one-one.

4. Let f:A — B, g:B— C. Prove that for Z C C, (¢f)~"Y(2) =
g (2).

9 INVERSE FUNCTIONS, EXTENSIONS,
AND RESTRICTIONS

DeriniTION Let f:A — B and ¢g:B — A be given. The function
f:A — B is called the tnverse of g: B — A and the function
g:B — A is called the inverse of f:4 — B if g(f(a)) = a
for each a € A and f(g(b)) = b for each b € B.
In this event we shall also say that f:4 — B and
g:B — A are inverse functions and that each of them is
invertible.

21



Ch. 1 Theory of Sets

Let74:A — A and 15: B — B be identity functions. The state-
ment that f:A — B and g: B — A are inverse functions is equiv-
alent to the statement that the two diagrams

'iA -4 B iB -B
)\/ g /
A

are commutative.

THEOREM Let f:A — B and ¢:B — A be inverse functions, then both
functions are one-one and onto.

Proof. Suppose f(z) = f(y), z, yE A. Then z =
9(f(x)) = g(f(¥)) = y and therefore f is one-one. To show
that f is onto, let b € B. We have g(b) € A and f(g(b)) = b,
therefore if we set a = g(b), b = f(a) and f is onto. The
roles of the two functions may be interchanged, since the
definition of inverse functions imposes conditions symmetri-
cal with regard to the two functions. Therefore, g:B — A
is also one-one and onto.

We have shown that, given a function 2: X — Y, a necessary
condition that this function be invertible is that the function be
one-one and onto. This condition is also sufficient.

THEOREM Let f:A — B be one-one and onto. Then there exists a
function g: B — A such that these two functions are inverse
functions.

Proof. We shall first define g:B — A. Given b € B,
we may write b = f(a) for some a € A since f is onto.
Furthermore, f is one-one; hence there is only one element
a € A such that f(a) = b. We define g(b) = a. The corre-
spondence that associates with each b € B the element
g(b) € A, asdefined above,isafunctiong: B — A. f(g(b)) = b
for each b € B by the definition of g:B — A. Givena € 4,
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let o’ = g(f(a)). Then f(a’) = f(g9(f(a))) = f(a) by the re-
mark just made. Since f: A — B is one-one, a = a’ = g(f(a)).
Thus, f:A — B and ¢g:B — A are inverse functions.

The last two theorems may be combined in the statement:
given f: A — B, a necessary and sufficient condition that there be
a function g:B — A such that these two functions are inverse
functions is that f:A — B be one-one and onto. Furthermore, in
this event, the function g: B — A is uniquely determined.

TaEOoREM Letf:A — B, g:B — A beinverse functions and letf:4 — B
and ¢’:B— A be inverse functions. Then g:B — A and
¢':B — A are equal.

Proof. Wemust provethat g(b) = ¢’(b) for each b € B.

But b = f(g(b)) and therefore ¢'(b) = ¢'(f(g())) = g(b),
since ¢'(f(a)) = a for each a € A.

The proof of this last theorem may also be viewed as a direct
consequence of the commutativity of the diagram

B ‘2 .3B
9 )
" MM

which yields ¢'(b) = ¢'(25(b)) = ¢'(f(g(b))) = 74(g(d)) = g(b).

DErFINITION Let A C X. Let 14— Y and F:X — Y. If for each
z € A, f(x) = F(z), we say that F is an extension of f to
X or that f 7s a restriction of F to A. In this event we shall
write f = F | 4.

ExampLE Let A be the open interval (0, 7/2). For each § € A, let Aq
be a right triangle one of whose acute angles is 6 radians, and
let f() be the ratio of the length of the side of this triangle
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Ch. 1 Theory of Sets

opposite the angle of magnitude 6 to the length of the
hypotenuse of As, (more familiarly,
_ _opposite )

16) = hypot,enuse)
Thus f:A — R. Kor each § € R, let (a, b)s be the point of
the plane R? whose distance from the origin is 1 and such
that the rotation about the origin of the line segment whose
end points are the origin and (1, 0) to the position of the line
segment whose end points are the origin and (a, b)s repre-
sents an angle of magnitude 6 radians. Define F(§) = b. Then
F:R — R. F is an extension of f to R as is easily seen if one
recognizes f:A — R as the sine function defined for acute
angles by means of right triangles and F:R — R as the sine
function defined for angles of arbitrary magnitude by means
of the unit circle.

DerFiniTiION Let A C X. The function 7:4 — X, which is defined by
the correspondence Z(x) = z for each z € A is called an
inclusion mapping or function.

Let A CX,f:A—> Y and F:X — Y. Then F is an extension
of f if and only if the diagram

A I 9 4
X

is commutative, where 1:4 — X is an inclusion mapping.

Given F:X — Y, there are as many restrictions of F: X — Y
as there are subsets of X. Given a subset A C X, we may obtain
the restriction of F to A by forming the composition of the
inclusion mapping 7:4 — X and F:X — Y. Thus, we may write
F|A = Fi.




Arbitrary Products Sec. 10
EXERCISES

1. Let A be the set of all functions f: [a, b] — R that are continuous
on [a, b]. Let B be the subset of A consisting of all functions possess-
ing a continuous derivative on [a, b]. Let C' be the subset of B
consisting of all functions whose value at a is 0. Let d:B — A be
the correspondence that associates with each function in B its deriva-
tive. Is the function d:B — A invertible’

To each f € A, let h(f) be the function defined by

aM@ = [ 10 d,

for x € [a, b]. Verify that h:4 — C. Find the function g:C — 4
such that these two functions are inverse functions.

2. Let R be the real numbers and « an object not in B. Define a set
R* = R U {x}. Let a, b, ¢, d be real numbers. Let f:R* — R* be a
function defined by f(z) = (az + b)/(cz + d) when z = —d/c, «,
while f(—d/c) = © and f(x) = a/c. [In the event that ¢ = 0, f is
linear and f(z) = (az + b)/d when z £ © and f(o) = ».] Prove
that f has an inverse provided ad — bc < 0.

3. Let ACBCX. Let f:A—>Y, g:B—Y, and F:X — Y. Prove
that if g is an extension of f to B and F is an extension of g to X,
then F is an extension of f to X.

4. Let m, n be positive integers. Let X be a set with m distinct elements
and Y a set with n distinct elements. How many distinct functions
are there from X to Y? Let A be a subset of X with r distinct ele-
ments, 0 = r < m and f:A — Y. How many distinct extensions of
f to X are there?

10 ARBITRARY PRODUCTS

Let X, ..., X, be sets. We have defined a point
x=(2,...,%,) € .ﬁlXi

as an ordered sequence such that z; € X;. Given such a point,
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by setting z(7) = z; we obtain a function z which associates to
each integer 7, 1 < 7 < n, the element z(¢) € X.. Conversely,
given a function x which associates to each integer 7, 1 < 1 < n,
an element z(z) € X,, we obtain the point

@(1),...,z(m) € O X,

t=1
It is easily seen that this correspondence between points of fI X;
i=1

and functions of the above type is one-one and onto, so that a
point of fI X may also be defined as a function z which asso-
i=1

ciates to each integer ¢, 1 < ¢ < n, a point () € X,. The advan-
tage of this second approach is that it allows us to define the
product of an arbitrary family of sets.

DErFINITION Let {X.}aer be an indexed family of sets. The product of
the sets {Xa}acr, Written Il.cr X, consists of all functions
z with domain the indexing set I having the property that
for each a € I, z(a) € X,.

Given a point £ € Il.er X., one may refer to z(a) as the
a'* coordinate of x. However, unless the indexing set has been
ordered in some fashion (as is the case with finite products in our
earlier discussion), there is no first coordinate, second coordinate,
and so on.

DEFINITION Let € I, Xa The function pa:Il,er Xo — X, defined
by pa(z) = z(a) is called the a* projection.

Clearly two points z, ' € Il.er X. are identical if and only
if, for each a € I, p.(x) = p.(z’), that is, z(a) = 2'(a).

In dealing with product spaces use is frequently made of a
principle, called the axiom of choice, whereby we assume that if
for each @ € I we can choose a point z, € X,, then we may
construct a point or function £ € Il X, by setting z(a) = z,.
This is equivalent to the statement that the product of non-empty
sets is non-empty. Using the axiom of choice we may prove
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ProrosiTioN If for each a € I, X, is non-empty, then each of the
projection maps pa:l.cr Xo — X is onto.

Proof. Let z. € X, be given. Set z(a) = Z.. Sup-
pose 8 € I, B # . Since Xz is non-empty we may
choose a point z(8) € Xg. Then z € Hucr Xa and pa(z) =
z(a) = xa, hence p, is onto.

In the above proof we have obtained a point 2z € p.~!(x.),
that is, a point whose a* coordinate is z. and whose other coor-
dinates are unrestricted. If B C X, then to say that ¢ € p.~'(B)
is to restrict the a* coordinate of z to lie in B and leave all other
coordinates unrestricted.

EXERCISES

1. Let A be a set. For each a € I, let X, = A. Verify that I.er X, is
the set of all functions ffom the set I to the set A. This set of func-
tions is denoted by AZ. Suppose A = {0, 1}. If I is finite how many
elements are there in A’? Verify that A! in this case is the set of all
characteristic functions defined on 1.

2. Let {Xo}acr, {Yo}act be two indexed families of sets with the same
indexing set I. For each a € I let fa: Xo — Yo Prove that thereis a
unique function f:Iecr Xo — Hacr Y. such that p.f = fapa for each
a € I, where p, is the appropriate projection map. This function f
is denoted by Iecs fa. Given a third indexed family of sets {Z.}.cs
and functions ge: Yo — Z, for each a € I, show that s gullac: fa =
I.cr gafa Suppose that each f, has an inverse k.. Prove that Il.er fa
has the inverse ez ka.

3. Let {X.}ecr be an indexed family of sets and let I = I, U I,,
where I, N\ I = @. Show that there is a one-one mapping of
(Teen Xa) X (Haer Xa) onto Il.cr Xa. More generally, let {I.}.,cs
be a partition of I, that is I = U,es I, I,n I, = O for v1 5 7,
each I, # @.Show that thereisa one-one mapping of l,es (aer, Xa)
onto er X,.

4. Let N be the set of positive integers. In the notation of Problem 1,
an infinite sequence zi, Z», . . . of points of a set X may be viewed
as an element z € X¥. If j:N — N is a function such that
J(©) <jGE + 1) for ¢ € N, then the infinite sequence zj is a sub-
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sequence of the sequence z. Prove that a subsequence of zj is a
subsequence of z.

For further reading, the books by Halmos, Naive Set Theory,
and Kaplansky, Set Theory and Metric Spaces are both excellent
sources.
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CHAPTER 2

Metric Spaces

1 INTRODUCTION

A metric space is a set of points and a prescribed quantitative
measure of the degree of closeness of pairs of points in this space.
The real number system and the coordinate plane of analytic
geometry are familiar examples of metric spaces. Starting from
the vague characterization of a continuous function as one that
transforms nearby points into points that are themselves nearby,
we can, in a metric space, formulate a precise definition of con-
tinuity. Although this definition may be stated in the so-called
‘“‘g, 8"’ terminology, there are other, equivalent formulations avail-
able in a metric space. These include characterizations of con-
tinuity in terms of the behavior of a function with respect to
certain subsets called neighborhoods of a point, or with respect
to certain subsets called open sets.
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Ch. 2 Metric Spaces

2 METRIC SPACES

Given two real numbers a and b, there is determined a non-
negative real number, |a — b|, called the distance between a
and b. Since to each ordered pair (a, b) of real numbers there is
associated the real number |a — b|, we may write this corre-
spondence in functional notation by setting

d(a,b) = |la — b|.
Thus we have a function d:R X R — R, where R is the set of real

numbers. This function has four important properties, which the
reader should verify:

1. d(z,y) 2 0;

2. d(z,y) = 0if and only if z = y;

3. d(z,y) = d(y, 2);

4. d(z,2) = d(x, y) + d(y, 2);

for z,y, 2 € R. For the purposes of discussing ‘“‘continuity’’ of
functions, these four properties of ‘“‘distance’ are sufficient. This
fact suggests the possibility of examining ‘‘continuity’’ in a more
general setting; namely, in terms of any set of points for which

there is defined a ‘“‘distance function” such as the function
d:R X R — R above.

DerFINITION 2.1 A pair of objects (X, d) consisting of a non-empty
set X and a function d: X X X — R, where R is the
set of real numbers, is called a metric space provided
that:

L d@,y) 20, z,y€EX;

2. d(x,y) =0ifandonlyifz =y, =z, y € X,

3. dx,y) =dy,2), z,yEX;

4. d(z,2) S d(x,y) +d(y,2), =z, y2€EX.

The function d is called a distance function or metric
on X and the set X is called the underlying set.
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[A more precise notation for a metric space would be
(X,d:X X X — R) and for a distance function d:X X X — R.
We shall, however, frequently delete the sets and arrow in the
symbol for a function, when, in a given context, it is clear which
sets are involved.]

We may think of the distance function d as providing a quan-
titative measure of the degree of closeness of two points. In par-
ticular, the inequality d(z, 2) =< d(z, y) + d(y, z2) may be thought
of as asserting the transitivity of closeness; that is, if z is close
to y and y is close to z, then z is close to z.

Let a, b € R, where R is the set of real numbers. The veri-
fication that the function d(a,b) = |a — b| satisfies the four
properties enumerated in Definition 2.1 establishes:

TueoreM 2.2 (R, d) is a metric space, where d is the function defined
by the correspondence d(a, b) = |a — b|, for a, b € R.

Given a finite collection (X, d)), (X, do), ..., (X, d,) of

metric spaces, there is a standard procedure for converting the
set

into a metric space; that is, for defining a distance function on X.

THEOREM 2.3 Let metric spaces (X, di), (X2, ds), ..., (X, d,) be
given and set
n
X=1 X;
tm=]
For each pair of points z = (21, 23, ..., 2s), ¥ =

W, Y2y - - ., Yn) € X, let d: X X X — R be the function
defined by the correspondence

d(z, y) = maximum {d:(z;, ¥:)}.
18isn
Then (X, d) is a metric space.
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Proof. With z and y as above, d.(z;, y:) = 0 for
1 =7 = n, and therefore d(z,y) = 0. If d(z,y) = 0,
then di(z;, y;) = 0 for 1 £ ¢ < n and therefore z; = y;
for each <. Consequently, z. = y. Conversely, if z = y,
then di(zi, y;) = 0 for each ¢, and d(z, y) = 0. Since
di(xi, y:) = di(ys, x:) for 1 < 7 < n, d(z, y) = d(y, z).
Finally, let z = (21,2, ...,2,) € X. Let j and k be
integers such that d(z, y) = d;(z;, ¥,) and d(y, 2z) =
(Y, z). Thus, for 1 <4 =<, diz;, y:) < di(z;, y5),
di(ys, 2:) S delyx, 2:), and
di(xs, 2i) = di(xs, ys) + di(Ys, 22) < di(), y3) + dulys, 2)

= d(x; .1/) + d(y, z)-

Therefore d(z, z) = m?)ii;rsxum {di(zi, 2:)} = d(z, y) +
d(y, 2).

As an immediate application of this theorem, we have:

CoroLLARY 2.4 (R*, d) is a metric space, where d: B* X R* — R is the
function defined by the correspondence

d((xh 2 TR 13,.), (yh Y2y o - o,y yn))
= maximum {|z; — yi|}, (T, 22, . . ., Zn),

15:sn
(yl’ Y2y o o 0y yn) & R~

It is interesting to compare the metric space (R?, d) that we
obtain in the above manner with what might be considered a more
natural model of the coordinate plane. In (R?, d) as defined above,
the distance from the point (1, 2) to the point (3, 1) is 2, since
maximum {|1 — 3|, |2 — 1|} = 2. The distance function d’ used
in analytical geometry would yield

d((1,2),3,1)) = VI =3+ 2 - 1)* = V5,
If, for each pair of points (xi, z2), (1, ¥2) € R? we define

d'((x1, 22), (Y1, ¥2)) = V(i — y)? + (22 — y2)%,

then we are constructing a new metric space (R?, d’), (provided,
of course, that d’ is a distance function), which must be distin-
guished from the metric space (R?, d) where
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d((z1, x2), (Y1, ¥2)) = maximum {|z; — i, |22 — 1|}.

For example, in (R?, d) the set M of points z such that d(z, a) < 1
for a fixed point @ € R?is a square of width 2 whose center is at a
and whose sides are parallel to the coordinate axes, whereas in
(R?, d’) the set of points x such that d’(z, a) < 1 for a fixed point
a € R?is a circular disc whose center is a and whose radius is 1
(see Figure 4).

o

d(z,a)<1 d'(z,a)<1

Frigure 4

The formula used to define the function d’ may be generalized
to yield a distance function for R*, often referred to as the
Euclidean distance function.

TuroreM 2.5 (RBn, d') is a metric space, where d’ is the function defined
by the correspondence

20 = [ @

forz =@, 25 ...,%), 9= Wy, Y,...,Y:) €R™
The proof of this theorem will be found in Section 8.
The fact that we have metric spaces (R*, d) and (R*, d'),
with d and d’ defined as above, serves to emphasize the fact that
a metric space consists of two objects, a set and a distance func-

tion. Two metric spaces may be distinct even though the under-
lying sets of points of the two spaces are the same.
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EXERCISES

1. Let (X, d) be a metric space. Let k be a positive real number and
set di(z, y) = k-d(zx, y). Prove that (X, di) is a metric space.

2. Prove that (R*, d”’) is a metric space, where the function d’’ is de-
fined by the correspondence

n
d’(z,y) = Z lz: = wil,
1=

forz= @, 23...,2), ¥y = U Y2 - . ., Yn) € B~ In (R2 d"') de-
termine the shape and position of the set of points x such that
d’(x, a) = 1 for a point ¢ € R2
3. Let d be the distance function defined on R" by using Theorem 2.3,

let d’ be the Euclidean distance function, and let d”’ be the distance
function defined in Problem 2 above. Prove that for each pair of
points z, y € R»,

d(z,y) = d'(z,9) < Vndz,y),

d(z, y) £ d’(z,y) < n-d(z, y).

4. Let X be the set of all continuous functions f:[a, b] — R. For
f, 9 € X, define

a9 = ["17® — g at.

Using appropriate theorems from Calculus, prove that (X, d) is a
metric space.

5. Let S C R. A function f:S — R is called bounded if there is a
real number K such that |f(z)] < K, € S (or equivalently,
f(8) C[—K, K]). Let X’ be the set of all bounded functions
f:[a,b] = R. For f, g € X’ define

d'(f, 9) = Lub. U.epp {1f(2) — 9@},

(L.u.b. is an abbreviation of least upper bound, see Definition 5.5 of
this chapter). Prove that (X’, d’) is a metric space.

6. Let f, g:[a, b] — R be two functions that are both continuous and
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bounded. Compare d(f, g) and d'(f, g), where d and d’ are defined
as in Problems 4 and 5 respectively.

7. Let X be a set. For z, y € X define the function d by

d(x,z) = 0,
d(x: y) =1,

and

if z # y. Prove that (X, d) is a metric space.

8. Let Z be the set of integers. Let p be a positive prime integer. Given
distinct integers m, n there is a unique integer ¢ = t(m, n) such that
m — n = pt-k, where k is an integer not divisible by p. Define a
function d:Z X Z — R by the correspondence d(m,m) = 0 and

1
d(m, n) = 5‘;

for m # n. Prove that (Z, d) is a metric space. [Hint: for a,
b, ¢ € Z, t(a, ¢) = minimum {t(a, b), t(b, ¢)}]. Let p = 3. What is
the set of elements x € Z such that d(0, ) < 1? What is the set of
elements z € Z such that d(0, z) < 1?

3 CONTINUITY

In calculus, the first occurrence of the word ‘““‘continuity’ is with
reference to a function f:R — R, R the set of real numbers. To
decide which condition or conditions this function must satisfy
for us to say, ‘“the function f is continuous at a point a € R,”
we try to decide upon a precise formulation of the statement
“a number f(x) will be close to the number f(a) whenever the .
number z is close to a.”” Having defined a distance function for,
the real numbers R, we have a quantitative measure of the degree®
of closeness of two numbers. But how close must f(z) be to f(a)?
Instead of specifying some particular degree of closeness of f(x)
to f(a), let us think, rather, of requiring that no matter what
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choice is made for the degree of closeness of f(x) to f(a), it can be
so arranged that this degree of closeness is achieved. By the phrase
“arrange matters” we mean that we can find a corresponding
degree of closeness so that whenever x is within this corresponding
degree of closeness to a, then f(x) is within the prescribed degree
of closeness to f(a). We have now arrived at the following formu-
lation, ‘“‘the function f: R — R is continuous at the number a € R,
if given a prescribed degree of closeness, f(x) will be within this
prescribed degree of closeness to f(a), whenever z is within some
corresponding degree of closeness to a.”” To put this statement
in its final form, we shall substitute for ‘“‘a prescribed degree of
closeness’” the symbol ‘“‘g,”’ and for the phrase ‘‘some correspond-
ing degree of closeness” the symbol “4,” and use the distance
function to measure the degree of closeness.

DEerFINITION 3.1 Let f:R — R. The function f is said to be continuous
at the point @ € R, if given ¢ > 0, there is a § > 0,
such that

[f(@) — fl@)] <&

|t — a] < 8.

The function f is said to be continuous if it is continu-
ous at each point of R.

whenever

Because we initially formulated the definition of continuity
in terms of the phrase ‘“‘degree of closeness,” we may easily devise
a definition of “continuity’’ applicable to metric spaces in general,
since we need only use the distance functions of these metric
spaces to measure ‘‘degree of closeness.”

DeriniTioN 3.2 Let (X, d) and (Y, d’) be metric spaces, and let a € X.
A function f:X — Y is said to be continuous at the
pointa € X if given ¢ > 0, thereisa § > 0, such that

d'(f(x), fla)) < e
whenever z € X and
d(z, a) <.
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The function f: X — Y is said to be continuous if it is
continuous at each point of X.

Definitions, such as those given above, are created to serve
two purposes. First of all, they are abbreviations. Thus, the state-
ment that begins, “given € > 0, there is . . . ,” is replaced by
the shorter statement, “f:X — Y is continuous at the point
a € X.” Second, these definitions are attempts to formulate pre-
cise characterizations of what we feel are significant properties;
in this case, the property of being continuous at a point. We have
tried to indicate in the discussion preceding these definitions that
they do provide a precise characterization of our intuitive, and
perhaps vague, concept of continuity. There are, in a certain
sense, tests that we may apply to see whether or not they do so.
As an illustration, there are certain functions that we ‘“‘know’’
are ‘“‘continuous,” that is, we are sure that they possess this
property we are trying to characterize. If it should turn out that
a function we ‘“know” to be ‘“continuous’ is not continuous in
accordance with these definitions, then, although these definitions
may be precise, they would not furnish a precise characterization
of the property we have in mind when we say a function is ‘“con-
tinuous.” This type of testing of a definition thus takes the form
of proving theorems to the effect that certain functions are
continuous. For example:

THEOREM 3.3 Let (X, d) and (Y, d’) be metric spaces. Let f: X — Y
be a constant function, then f is continuous.

Proof. Let a point a € X and ¢ > 0 be given.
Choose any 6 > 0, say 6 = 1. Then wheneverd(z, a) < §,
we have d'(f(z), f(a)) = 0 < =

TrEoREM 3.4 Let (X, d) be a metric space. Then the identity function
2:X — X is continuous.

Proof. Supposea € X. Let ¢ > 0be given. Choose
8 = ¢, then whenever d(z, a) < 8 we have d(i(x), 7(a)) =
d(z, a) < e
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Note that in the above proof we could have equally well
chosen § to be any positive number, provided only that § < ¢,
and the proof would still be valid. The choice of § need not be a
very efficient choice; all that is required is that it “do the job.”

There is one situation we shall have to consider for which
the notation f: X — Y that we have adopted for a function from
a metric space (X, d) into a metric space (Y, d") is ambiguous.
Consider metric spaces (X, d) and (X, d’) with the same under-
lying set. If we simply write f: X — X for a function, it is impos-
sible to tell which metric space is denoted by the first occurrence
of X and which by the second. For this reason, when considering
one set X with two different distance functions, we shall write
f:(X,d) — (X, d) if we intend to think of f: X — X as a function
from the metric space (X, d) into the metric space (X, d’). As an
illustration, we shall prove:

THEOREM 3.5 Let i:R* — R" be the identity function. Then

i:(R", d) — (B~ d')
and

©: (R, d') — (B~ d)
are continuous, where the distance function d is the
maximum distance between corresponding coordinates
(as defined in Section 2) and d’ is the Euclidean distance.

Proof. Let a = (ay, s, ..., 0a,) € R*. We shall
first prove that 7:(R» d) — (R" d’') is continuous. Let
¢ >0 be given. Choose & = ¢/ Vn. Suppose z =
(x1, 22, . . ., x») is such that d(z,a) < §; that is,
mia,ximum {lai — x|} < 6. Then
<iEn

d'(z,0) = ,/‘"1 (@ —2)? < Vst = Vel = e

Therefore, given ¢ > 0, there is a & > 0 such that
d'(i(z), i(a)) < ¢ whenever d(z, a) < .

We now prove that ¢: (R, d') — (R", d) is continu-
ous. Let ¢ > 0 be given. Choose & = ¢ Suppose that
z = (21,2 ..., is such that d’(z, @) < 8. Then

n
2 (a0 —x)2 <&
=1
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and therefore for each ¢, (a; — 2:)? < 8, or |a; — z,| <
8 = e. Consequently, d(x, a) < e. Thus, given ¢ > 0,
there is a § > 0, such that d(i(z), i(a)) < ¢ whenever
d'(z,a) <.

One of the most important elementary theorems about con-
tinuous functions is the statement that the composition of two
continuous functions is again a continuous function.

Tueorem 3.6 Let (X,d), (Y,d), (Z,d’) be metric spaces. Let
f:X — Y be continuous at the point ¢ € X and let
g:Y — Z be continuous at the point f(a) € Y. Then
gf: X — Z is continuous at the point ¢ € X.
Proof. Let ¢ > 0 be given. We must find a § > 0
such that whenever + € X and d(z,a) < 4, then
d’(g(f(x)), 9(f(a))) < e Since g is continuous at f(a),
there is an 5 > 0, such that whenever y € Y and

d'(y, f(a)) <=, then d"”(g9(y), 9(f(a))) < e. Using the
fact that f is continuous at a, we know that given 5 > 0,
there is a § > 0, such that z € X and d(z, a) < & imply

that d’(f(z), f(a)) < nandhenced”(9(f(z)), 9(f(a))) < e.

CoroLLarY 3.7 Let (X,d), (Y,d), (Z,d”) be metric spaces. Let
f:X — Yandg:Y — Z be continuous. Then gf: X — Z
is continuous.

EXERCISES

1. Let X be the set of continuous functions f:[a, b] — R. Let d* be
the distance function on X defined by

a*(f, ) = [*150) — g0}l dt,
for f, g € X. For each f € X, set

10 = [ 1o a.

Prove that the function I: (X, d*) — (R, d) is continuous.
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2. Let (X; dy), (Y, d),7=1,...,nbemetric spaces. Let f;i: X, — Y,
i =1, ..., n be continuous functions. Let

X=1TX; and Y= 17,

i=1 i=1

and convert X and Y into metric spaces in the standard manner.
Define the function F: X — Y by

F(xl; Xgy - - - ’xn) = (fl(l'l), f2(x2)’ LR r.fn(xn))~
Prove that F is continuous.

3. Define the function f: R? — R by f(x1, x2) = 21 + x.. Prove that f is
continuous, where the distance function on R? is either d or d'.

4. Define functions g, A, k, m as follows: g: R? — R? X R2by g(z, y) =
((z,y), (x,¥)); h:R* X R2— R X R by h((a, b), (c,d)) = (a + b,
¢c—d);k:RXR—RXRbyk(u,v) = (u?v?);m:R X R— Rby
m(z,y) = 3(x — y). Prove that all these functions are continuous
and that xy = mkhg(z, y).

4 OPEN BALLS AND NEIGHBORHOODS

In the definition of continuity of a function f at a point a in a
metric space (X, d), we are concerned with how f transforms
those points * € X such that d(z, a) < 8. If we give a name to
this particular collection of points in X we shall be able to cast
the definition of continuity in a more compact form.

DEFINITION 4.1 Let (X, d) be a metric space. Let a € X and § > 0
be given. The subset of X consisting of those points
z € X such that d(a, ) < § is called the open ball
about a of radius & and is denoted by

B(a; 8).
Thus, x € B(a; ) if and only if x € X and d(z, a) < 8. Sim-
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ilarly, if (Y, d’) is another metric space and f:X — Y, we have
y € B(f(a); ¢) if and only if y €Y and d'(y, f(a)) < e. Thus:

TaeoreM 4.2 A function f:(X, d) — (Y, d’) is continuous at a point
a € X if and only if given ¢ > 0 there is a § > 0 such
that

J(B(a; 8)) C B(f(a); ¢).

For a function f:X — Y we have f(U) C V if and only if
U C f(V), where U and V are subsets of X and Y respectively.
Therefore:

THEOREM 4.3 A function f:(X, d) — (Y, d') is continuous at a point
a € X if and only if given ¢ > 0 there is a § > 0 such
that

B(a; 0) C /1 (B(f(a); ¢).

Given a point a in a metric space (X, d), the subset B(a; d)
of X, for each & > 0, is an example of the type of subset of X
that is called a neighborhood of a.

DerFINITION 4.4 Let (X, d) be a metric space and a & X. A subset N
of X is called a neighborhood of a if there is a § > 0
such that

B(a;8) CN.

The collection 91, of all neighborhoods of a point
a € X is called a complete system of neighborhoods of
the point a.

A neighborhood of a point @ € X may be thought of as con-
taining all the points of X that are sufficiently close to a or as
“enclosing’”’ a by virtue of the fact that it contains some open
ball about a. In particular, for each 6 > 0, B(a; ) is a neighbor-
hood of a. These open balls have the property that they are
neighborhoods of each of their points.
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Lemma 4.5 Let (X, d) be a metric space and a € X. For each § > 0,
the open ball B(a; 8) is a neighborhood of each of its points.

Proof. Letb € B(a;é). In order to show that B(a; 8)
is a neighborhood of b we must show that thereisany > 0
such that B(b; 5) C B(a; d). Sinceb &€ B(a; 8), d(a, b) < 6.
Choose n < 6 — d(a, b). If x € B(b; 3) then

d(a, z) = d(a, b) + d(b, z) < d(a, b) + n < d(a, b)
‘ + 86 — d(a,b) =5,

and therefore z € B(a;8). Thus B(b;y) C B(a;8) and
B(a; 8) is a neighborhood of b.

We may describe this proof pictorially. We have started with
an open ball B(a;d) about a. We choose a point b € B(a; d).
Then the minimum distance from b to points not in B(a; d) is at
least 6 — d(a, b), as indicated in Figure 5, so that a ball about b

&

Figure 5

of radius n < & — d(a, b) is contained in B(a; ).
The complete system of neighborhoods of a point may be
used to characterize continuity of a function at a point.

TueoreM 4.6 Let f:(X, d) — (Y, d'). f is continuous at a point a € X
if and only if for each neighborhood M of f(a) there is a
corresponding neighborhood N of a, such that
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fIN) C M,
N Cf(M).

Proof. First suppose that f is continuous at the
point @ € X. We must show that, given a neighborhood
M of f(a), we can find a neighborhood N of a such that
f(N) C M. Since M is a neighborhood of f(a), there is
an ¢ > 0 such that B(f(a); ¢) C M. Since f is continuous
at a, there is a 6 > 0 such that f(B(a; d)) C B(f(a); ¢)-
But N = B(a; §) is a neighborhood of a, therefore

J(N) = f(B(a;9)) C B(f(a);e) C M.

Conversely, suppose that f satisfies the property
that for each neighborhood M of f(a), there is a corre-
sponding neighborhood N of a, such that f(N) C M.
Let ¢ > 0 be given. To prove that f is continuous at a
we must show that there is a § > 0 such that

f(B(a; 9)) C B(f(a); ¢).
But B(f(a); ) = M is a neighborhood of f(a) and there-
fore there is a neighborhood N of a such that f(N) C M.
Since N is a neighborhood of a, there is a § > 0 such
that B(a; 8) C N. Therefore

f(B(a; 8)) Cf(N) C M = B(f(a); ¢).

or equivalently,

The proof of the first part of the above theorem may be
represented pictorially by considering an arbitrary neighbor-
hood M of f(a) (as indicated in Figure 6). Since M is a neigh-

Figure 6
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borhood of f(a), it contains an open ball B(f(a); ) for some & > 0.
Since f is continuous at a, for some & > 0 the neighborhood
N = B(a; ) is carried into M by f. Similarly, the proof of the
second part of the theorem may be depicted by Figure 7. We
start with a neighborhood M = B(f(a); €) of f(a). The assumed

property of f allows us to assert that there is a neighborhood N
of a that is carried into M by f. Since N is a neighborhood of a
we have an open ball B(a; 8) contained in N, which must also be
carried into M.

If N is a neighborhood of a point a in a metric space (X, d)
and N’ is a subset of X that contains N, then N’ contains the
same open ball about a that N does and therefore N’ is also a
neighborhood of a. Thus, the previous theorem becomes:

TrEOREM 4.7 Let f:(X,d) — (Y, d'). f is continuous at a point a € X
if and only if for each neighborhood M of f(a), f~(M)
is a neighborhood of a.

The collections of neighborhoods of points in a metric space
possess five properties that will be of significance in the next
chapter.

THEOREM 4.8 Let (X, d) be a metric space.
N1. For each point a € X, there exists at least
one neighborhood of a.
N2. For each point a € X and each neighborhood
N ofa,a €EN.
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N3. For each point a € X, if N is a neighborhood
of @ and N’ D N, then N’ is a neighborhood of a.

N4. For each point a € X and each pair N, M of
neighborhoods of a, N N M is also a neighborhood of a.

N5. For each point ¢ € X and each neighborhood
N of a, there exists a neighborhood O of a such that
O C N and O is a neighborhood of each of its points.

Proof. Fora € X, X is a neighborhood of a, thus
N1 is true. N2 is trivial and N3 has already been dis-
cussed. To prove N4, let N and M be neighborhoods of
a. Then N and M contain open balls B(a; &) and B(a; &)
respectively and therefore N M M contains the open
ball B(a; 8), where § = minimum {8, 8}. To prove N5,
let N be a neighborhood of a. Then N contains an open
ball B(a; 5) and by Lemma 4.5, O = B(a; é) is a neigh-
borhood of each of its points.

For a given point a in a metric space X, the collection of
open balls with center a has been used to generate the complete
system of neighborhoods at a, in the sense that the neighborhoods
of a are precisely those subsets of X which contain one of these
open balls. ‘

DEerFINITION 4.9 Let a be a point in a metric space X. A collection ®,
of neighborhoods of a is called a basts for the neighbor-
hood system at a if every neighborhood N of a con-
tains some element B of ®,.

As an example, if a is a point on the real line R, a basis for
the neighborhood system at a is the collection of open intervals
containing a.

EXERCISES

1. Let (X, d) be a metric space such that d(x, y) = 1 whenever z 5 ¥.
Let @ € X. Prove that {a} is a neighborhood of @ and constitutes a
basis for the system of neighborhoods at a. Prove that every subset
of X is a neighborhood of each of its points.
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2.

Let a € R and f:R — R be defined by f(z) = Oforz < a, f(z) = 1
for x > a. Prove that f is not continuous at a, but is continuous
at all other points.

.. Let f:X — Y be a function from a metric space X into a metric

space Y. Let a € X and let ®;q be a basis for the neighborhood
system at f(a). Prove that f is continuous at a if and only if for each
N € ®s@), f~1(N) is a neighborhood of a.
Let a be a point on the real line R. Prove that each of the following
collections of subsets of R constitute a basis for the system of neigh-
borhoods at a:

i) All closed intervals of the form [a — ¢, a + ¢], ¢ > 0;

ii) All open balls B(a; ¢), ¢ a positive rational number;

iii) All open balls B (a ; %), n a positive integer;

iv) All open balls B (a; 71‘), n a positive integer larger than some
fixed integer k.
Show that no finite collection of subsets of R can be a basis for the

system of neighborhoods at a.

Let a be a point in a metric space X. Let N be the set of positive
integers. Prove that there is a collection {B.,}.enx of neighborhoods
of a which constitutes a basis for the system of neighborhoods at a.
Let a and b be distinct points of a metric space X. Prove that there
are neighborhoods N, and N, of a and b respectively such that
N.N N, = 0.

Let (Xy, dv), (X2, o), . . ., (Xa, ds) be metric spaces and convert
X =1 X;
i=1

into a metric space (X, d) in the standard manner. Prove that an
open ball in (X, d) is the product of open balls from X, X5, ..., X.
respectively. Let a; € X;, 2= 1,2, ..., n, and let ®,, be a basis
for the neighborhood system at a;. Let ®, be the collection of all sets
of the form B; X B, X ... X B,, B; € ®,.. Prove that ®, is a basis
for the neighborhood system at a = (a1, @, ..., a.) € X. Let
pi:X—> X, 1=1,2,...,n, be the projection that maps pi(a) = a..
Prove that each p; is continuous. Let Y be a metric space and
f:Y — X a function. Prove that f is continuous if and only if each
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of the n functions p.f is continuous.

8. Let R be the real numbers and f:R — R a continuous function.
Suppose that for some number a € R, f(a) > 0. Prove that there
is a positive number k and a closed interval F = [a — §, a + §] for
some & > 0 such that f(z) = k for x € F.

5 LIMITS

The concept of limit of a sequence of real numbers may be gener-
alized to an arbitrary metric space. First, let us recall the appro-
priate definition in the real line.

DerintTiON 5.1 Let ay, ay, . . . be a sequence of real numbers. A real
number a is said to be the limit of the sequence a,,
as, . . . if, given ¢ > 0, there is a positive integer N
such that, whenever n > N, |a — a.| < e. In this
event we shall also say that the sequence aj, as, . . .
converges to a and write lim, a, = a.

Interpreting € as an ‘“‘arbitrary degree of closeness” and N as
“sufficiently far out in the sequence,” we see that we have defined
lim, @, = a in the event that a, may be made arbltranly close
to a by requiring that a, be sufficiently far out in the sequence.
Now, suppose that we have a metric space (X,d) and a
sequence aj, s, . .. of points of X. Given a point ¢ € X we
measure the distance from a to the successive points of the se-
quence, by the sequence of real numbers d(a, a,), d(a, a,), . . ..
It is natural to say that the limit of the sequence a,, a,, . . . of
points of X is the point a if the limit of the sequence of real
numbers d(a, a,), d(a, a;), . . . is the real number 0.

DerFiniTION 5.2 Let (X, d) be a metric space. Let a;, az, ... be a
sequence of points of X. A point a € X is said to be
the limit of the sequence ay, as, . . . if lim, d(a, a,) = 0.
Again, in this event, we shall say that the sequence
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i, Gs, . . . converges to a and write lim, a, = a.

CoroLLARY 5.3 Let (X, d) be a metric space and a;, as, . . . be a se-
quence of points of X. Then lim, a, = a for a point
a € X if and only if for each neighborhood V of a
there is an integer N such that a, € V whenever
n > N.

Proof. Let V be a neighborhood of a. For some
e> 0,a € B(a; ) C V. Thus if lim, a, = a there is
an integer N such that whenever n > N, d(a, a.) < ¢
and hence a, € V. Conversely, given ¢ > 0, B(a;¢)
is a neighborhood of a. If there is an integer N such
that for n > N, a, € B(a; ¢), then d(a, a,) < ¢ and
lim, a, = a.

If S is a set of infinite points, and there is at most a finite
number of elements of S for which a certain statement is false,
then the statement is said to be true for almost all the elements
of S. Thus lim, a, = a if for each neighborhood V of a almost all
the points a, are in V.

Continuity may be characterized in terms of limits of se-
quences in accordance with the following theorem.

Treorem 5.4 Let (X, d), (Y, d’) be metric spaces. A functionf:X — Y
is continuous at a point ¢ € X if and only if, whenever
lim, a, = a for a sequence a;, @, . .. of points of X,

lim, f(a.) = f(a).

Proof. Supposefiscontinuousat a and lim, a, = a.
Let V be a neighborhood of f(a). Then f~1(V) is a neigh-
borhood of a, so by Corollary 5.3 there is an integer N
such that a, € f~1(V) whenever n > N. Consequently,
f(a,) € V whenever n > N. Thus, for each neighbor-
hood V of f(a) there is an integer N such that f(a.) € V
whenever n > N and again, applying Corollary 5.3,
lim, f(a.) = f(a).

To prove the “if”’ part of this theorem, we shall
prove that if f is not continuous at @, then there is at
least one sequence ai, @z, . . . of points of X, such that
lim, @, = a, but lim, f(a,) = f(a) is false. Since f is not
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continuous at @, there is a neighborhood V of f(a) such
that for each neighborhood U of a, f(U) V. In par-

ticular, for each neighborhood B <a ; %), n=12 ...
f (B (a; %)) @ V. Thus, for each positive integer n,
there is a point @, with a, € B (a; %) and f(a,) & V.

Now d(a, a.) < % and therefore lim, a, = a, whereas,

lim, f(a,) = f(a) is impossible, since f(a.) & V for all n.

If lim, a, = a, we can write lim, f(a,) = f(a) as lim, f(a,) =
f(lim, a,). We may therefore describe a continuous function as
one that commutes with the operation of taking limits. It is worth
noting that in proving f is continuous whenever f commutes with
the operation of taking limits we have used the fact that the

sequence of neighborhoods B (a ;%), n a positive integer, con-

stitutes a basis for the neighborhood system at a.
In order to introduce the concept of distance from a point to
a subset we shall recall some facts about the real number system.

DeriniTioN 5.5 Let A be a set of real numbers. A number b is called
an upper bound of A if x < b for each x € A. A num-
ber ¢ is called a lower bound of A if ¢ £ x for each
xz € A. If A has both an upper and lower bound A4 is
said to be bounded.

An upper bound b* of A is called a least upper
bound (abbreviated l.u.b.) of A4 if for each upper bound
b of A, b* = b. A lower bound c* of A is called a
greatest lower bound (abbreviated g.l.b.) of A if for
each lower bound ¢ of 4, ¢ < c*.

Not every set of real numbers has an upper bound. One of
the properties of the real number system, usually referred to as
the completeness postulate, is that a non-empty set A of real num-
bers which has an upper bound necessarily has a l.u.b. Given a
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non-empty set B of real numbers which has a lower bound, the
set of negatives of elements of B has an upper bound, hence a
L.u.b. whose negative is a g.L.b. of B. Thus it follows that every
non-empty set B of real numbers which has a lower bound has
a g.lb.

The greatest lower bound of a set A of real numbers may or
may not be an element of A. For example, 0 is a g.1.b. of [0, 1]
and 0 € [0, 1], whereas 0 is also a g.1.b. of (0, 1) but 0 & (0, 1).
In any event, the g.l.b. of a set of real numbers must be arbi-
trarily close to that set.

LemMma 5.6 Let b be a greatest lower bound of the non-empty subset
A. Then, for each ¢ > 0, there is an element x & A such
that

z—b<e

Proof. Suppose there were an ¢ > 0 such that
z—b=¢ for each tE A. Then b+ ¢ < z for each
2z € A and b 4 ¢ would be a lower bound of A. Since b
is a g.l.b. of A, we obtain the contradiction b + ¢ = b.

CoroLLARY 5.7 Let b be a greatest lower bound of the non-empty sub-
set A of real numbers. Then there is a sequence a,,
@, . . . of real numbers such that a, € A for each n
and lim, a, = b.

Proof. Fore = 71‘ we obtain an element a, € A

such that a, — b < ;1‘ Since b is a lower bound of A4,

0 = a, — b. Therefore lim, a, = b.

DerinNITION 5.8 Let (X, d) be a metric space. Let a € X and let A be
a non-empty subset of X. The greatest lower bound
of the set of numbers of the form d(a, z) for z € A is
called the distance between a and A and is denoted by
d(a, 4).

From Corollary 5.7 we obtain:
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CoroLLARY 5.9 Let (X, d) be a metric space, a € X, and 4 a non-
empty subset of X. Then there is a sequence a,, a2, . . .
of points of A such that lim, d(a, a.) = d(a, A).

EXERCISES

k
1. Let X;, X,, ..., X; be metric spaces and convert X = II X, into

1=1
a metric space in the standard manner. Each of the points ay, as, . . .
of a sequence of points of X has k coordinates; that is a, =
(at,a3,...,a0) €EX,n=1,2,....Letc= (cr, ¢, ..., ) € X.
Prove that lim, a, = ¢ if and only if lim, af =¢;,2=1,2,..., k.
2. In each of the three metric spaces (R*, d), (R*, d’), (R* d’) con-
sidered in Section 2, prove that limits of sequences are the same.

3. Prove that a subsequence of a convergent sequence is convergent
and converges to the same limit as the original sequence.

4. A sequence of real numbers a, az, . . . is called monotone non-decreas-
ing if a; = a;+1 for each 7 and called monotone non-increasing if
a; = a;41 for each ¢. A sequence which is either monotone non-
decreasing or monotone non-increasing is said to be monotone. The
sequence is said to be bounded above if there is a number K such that
a; £ K for each ¢ and bounded below if there is a number M such
that a; = M for each 7. A sequence which is both bounded above
and bounded below is called bounded. Prove that a convergent se-
quence of real numbers is bounded. Prove that a monotone non-
decreasing sequence of real numbers which is bounded above
converges to a limit a and that a is the L.u.b. of the set {a;, a, . . .}.
Similarly prove that a monotone non-increasing sequence which is
bounded below converges to a limit b and that b is the g.Lb. of the
set {ai, az, . . .}.

5. Let a;, as, . . . be a bounded sequence of real numbers. Since each
of the sets A, = {@n, @nyy, - - -} isbounded we may set v, = g.l.b. 4,
un, = Lu.b. 4,. Observe that v, < u,; v, v, . . . is monotone non-
decreasing and bounded above; and w,, us, . .. is monotone non-
increasing and bounded below. Let V = lim, v, and U = lim, %y.
Prove that there are subsequences of a,, a,, . . . which converge to
U and V respectively (thus a bounded sequence of real numbers has
a convergent subsequence). Prove that a,, a,, . . . converges if and
onlyif U=1V.
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6. Let (X, d) be a metric space and 4 a non-empty subset of X. For
z, y € X, prove that d(z, A) = d(z, y) + d(y, 4).

7. Let A be a non-empty subset of a metric space (X, d). Define the
function f: X — R by f(z) = d(z, A). Prove that f is continuous.

8. Let A be a non-empty subset of a metric space (X, d) and let z € X.
Prove that d(z, A) = 0 if and only if every neighborhood of z con-
tains a point of A.

9. Let (X, d) be a metric space. Define a distance function d* on
X X X by the method of Theorem 2.3. Prove that the function
d:(X X X, d*) — (R, d) is continuous.

6 OPEN SETS AND CLOSED SETS

In a metric space, the open ball B(a; §) is a neighborhood of each
of its points (Lemma 4.5). The collection of subsets possessing
this property plays a fundamental role in topology.

DEerFiNITION 6.1 A subset O of a metric space is said to be open if O is
a neighborhood of each of its points.

Open sets may be characterized directly in terms of open
balls.

THEOREM 6.2 A subset O of a metric space (X, d) is an open set if and
only if it is a union of open balls.

Proof. Suppose O is open. Then for each a € O,
there is an open ball B(a; d,) C O. Therefore O =
Uaeo B(a; ) is a union of open balls. Conversely, if 0
is a union of open balls, then using the centers of these
balls as the elements of an indexing set we can write
0 = Uyer B(a; 8,). If z € O, then z € B(a; d,) for some
a € I. B(a;d,) is a neighborhood of z and since
B(a; 8,) C O, by N3, O is a neighborhood of z. Thus O
is a neighborhood of each of its points, and by Definition
6.1, O is open.
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Most of the functions considered in topology are continuous.
Open sets provide a simple characterization of continuity.

Tueorem 6.3 Let f:(X, d) — (Y, d’). Then f is continuous if and only
if for each open set O of Y, the subset f~(0) is an open
subset of X.

Proof. First, suppose f is continuous. Let O C Y
be open. We must show that f~!(0) is open; that is,
f~1(0) is a neighborhood of each of its points. To this
end, let a € f~1(0), then f(a) € O and O is a neighbor-
hood of f(a). Since f is continuous at a, Theorem 4.7
may be applied, yielding f-1(0) is a neighborhood of a.

Conversely, suppose for each open set O C Y, f~1(0)
is open. Let a € X and let M be a neighborhood of f(a).
Then there is an ¢ > 0 such that B(f(a); ¢) C M. But
B(f(a); ¢) is open and therefore f~}(B(f(a); ¢)) is open.
Since a € f-1(B(f(a); ¢)), this subset is a neighborhood
of a. Therefore f~!(M) contains a neighborhood of a and
fis continuous at a. Since a was arbitrary, f is continuous.

Just as the collections of neighborhoods of points in a metric
space possess certain significant properties so do the collection
of open sets in a metric space.

THEOREM 6.4 Let (X, d) be a metric space.
01. The empty set is open.

02. X isopen.
03. If 0y, Oy ..., O, are open, then O; N 0: N
...MN 0, is open.

04. If for each « € I, O, is an open set, then
Ueer O, is open.

Proof. The empty set is open, for in order for it
not to be open there would have to be a point z € 9.
Given a point a € X, for any § > 0, B(a; 8) C X and
therefore X is a neighborhood of each of its points; that
is, X isopen. To prove03,leta €E0; N 0. N . .. N Oy,
where forz = 1,2, ..., n, O, is open. Then each O;is a
neighborhood of a. By N4, the intersection of two neigh-
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borhoods of a is again a neighborhood of a, and hence
by induction, the intersection of a finite number of
neighborhoods of a is again a neighborhood of a. There-
fore O, N O: N ... N O, is a neighborhood of each of
its points. Finally, to prove 04, let a € 0 = U,g1 O,
where for each a € I, O, is open. Then a € Op for some
B € I and Op is a neighborhood of a. Since O3 C O, by
N3, O is a neighborhood of a. Therefore O is a neighbor-
hood of each of its points.

DEFINITION 6.5 A subset F of a metric space is said to be closed if its
complement, C(F), is open.

In the real number system, a closed interval [a, b] is a closed
set, for its complement is the union of the two open sets O, and O,
where O, is the set of real numbers z such that £ < a and O, is
the set of real numbers z such that £ > b. A common mistake is
the assumption that a set cannot be both open and closed. In
any metric space (X, d), the two sets @ and X are open, and
therefore their complements X and @ are closed. Thus, X and
also @ are both open and both closed. Whether or not, in a given
metric space, there are other subsets that are simultaneously open
and closed, is a significant topological property, which we shall
subsequently describe by the adjective “‘connected.” In any event,
the adjectives open and closed are not mutually exclusive. Nor,
for that matter, are they all-inclusive, for we shall shortly give
an example of a subset of the real number system that is neither
open nor closed.

DEerFINITION 6.6 Let A be a subset of a metric space X. A point b € X
is called a limit point of A if every neighborhood of b
contains a point of A different from b.

If b is a limit point of A then each of the open balls B (b; %)

contains a point a. € 4 and lim, a, = b. Thus a limit point of
a set is the limit of a convergent sequence of points of A. The
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converse is false, for the point b may be a point of A while for
some &, B(b; §) contains no point of A other than b. Thus b is not
a limit point of A although the sequence b, b, . . . converges to b.
In this latter case b is called an tsolated point of A.

THEOREM 6.7 In a metric space X, a set F C X is closed if and only if
F contains all its limit points.

Proof. Let F’ denote the set of limit points of F.
First suppose F is closed and consequently C(F) is open.
Choose a point b & F. Since C(F) is open there is a
8 > 0 such that B(b;8) CC(F) or B(b;s) N F = &.
Hence b & F' and F’ C F.

Conversely, suppose F' C F, or equivalently,
C(F) CC(F"). If b€ C(F), then b& F'. 1t follows
that for some d > 0, B(b;8) N F = &, or B(b;8) C C(F).
Hence C(F) is open and F is closed.

THEOREM 6.8 In a metric space (X, d), a set F C X is closed if and
only if for each sequence ay, as, . . . of points of F that
converges to a point a & X we havea € F.

Proof. First, let F be closed. Suppose lim, a, = a
and a, €EF for n =1, 2, .... If the set of points
{a1, a2, ...} is infinite then every neighborhood of a
contains infinitely many points of F, a is a limit point
of F, and so by Theorem 6.7, ¢ € F. If this set of points
is finite, then for some integer N, a, = a. whenever
n, m > N. Since lim, a, = a, d(a,,a) = 0forn > N or
a, = a, whence a € F. Conversely, suppose that F is a
set such that for each sequence with lim, a, = a and
a, € F for all n, we have a € F. If b is a limit point of
F then b is the limit of a convergent sequence of points
of F and b € F. Thus by Theorem 6.7 F is closed.

Finally, we may characterize closed sets in terms of distance
from a point to a set.

THEOREM 6.9 A subset F of a metric space (X, d) is closed if and only
if for each point ¢ € X, d(z, F) = 0 implies z & F.

55



Ch. 2 Metric Spaces

Proof. First, suppose F is closed. Let z € X be
such that d(z, F) = 0. By Corollary 5.9 there is a se-
quence of points of F such that hm, d(z, a,) = 0. Thus,
every neighborhood of z contains points of F. If some
a, = z, z is in F. Otherwise each a, is different from z,
so that z is a limit point of the sequence and hence of F.
Thus, by Theorem 6.7, z € F. Conversely, suppose that
F is such that d(z, F) = 0 implies z € F. If x is a limit
point of F then d(z, F) = 0. Thus in this case F contains
all its limit points and is closed.

Continuity may be characterized by means of closed sets.

THEOREM 6.10 Let (X,d), (Y,d’) be metric spaces. A function
f:X — Y is continuous if and only if for each closed
subset A of Y, the set f~1(4) is a closed subset of X.

Proof. For A C Y, we have C(f~!(4)) =
f~Y(C(4)). But f is continuous if and only if the inverse
image of each open set is an open set, and this is true
if and only if the inverse image of each closed set is a

. closed set.

As a final result in this section we record the following facts
about closed sets.

THEOREM 6.11 Let (X, d) be a metric space.
Cl. X is closed.
C2. @ is closed.
C3. The union of a finite collection of closed sets
is closed.

C4. The intersection of a family of closed sets is
closed.

Proof. C1 and C2 have already been discussed.
C3 and C4 follow from the application of DeMorgan’s
formulas to the corresponding properties O3 and 04 of
open sets.

The union of closed sets need not, in general, be a closed set,
as may be seen by the following example. For each positive inte-
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ger n let F, be the closed interval [%, l]. Then U F, = (0, 1],
n=1

where (0, 1] is the set of real numbers z such that 0 < z < 1.
The set (0, 1] is not closed, for 0 is a limit point of the set but
is not in the set.

EXERCISES

1. Let (X, d),72=1,2,...,nbemetric spaces. Let X = ﬁ X and

i=1
let (X, d) be the metric space defined in the standard manner by
Theorem 2.3. Forz =1, 2, ..., n, let O; be an open subset of X;.
Prove that the subset O, X 0; X ... X O, of X is open and that
each open subset of X is a union of sets of this form. [A collection of
open sets of a metric space is called a basis for the open sets if each
open set is a union of sets in this collection. For example, the open
balls in a metric space form a basis for the open sets.]

2. Let X be a set and d the distance function on X defined by
d(z, z) = 0, d(z, y) = 1 for z = y. Prove that each subset of (X, d)
is open.

3. Let (X, d1), (Y, d;) be metric spaces. Let f: X — Y be continuous.
Define a distance function d on X X Y in the standard manner.
Prove that the graph I, of f is a closed subset of (X X Y, d).

4. Let f:R — R be defined by
f(z) = ;10, z >0,

fz) =0,z 0.
Prove that the graph I is a closed subset of (R?, d), but that f is
not continuous.

5. Let A be a closed, non-empty subset of the real numbers that has
a lower bound. Prove that A contains its greatest lower bound.

6. Let A be a subset of a metric space. Let A’ be the set of limit points
of A and A‘ the set of isolated points of A. Prove that A’ N A*= @
and A CA’'U A'. Theset A = A’ \U A‘is called the closure of A.
Prove that z € 4 if and only if there is a sequence of points of 4
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which converges to z. Prove that if F is a closed set such that A C F
then 4 C F. Prove that 4 is the intersection of all such closed sets
F and hence is closed.

7 SUBSPACES AND EQUIVALENCE
OF METRIC SPACES

Let (X, d) be a metric space. Given a non-empty subset Y of X
we may convert Y into a metric space by restricting the distance
function d to Y X Y. In this manner each non-empty subset ¥
of X gives rise to a new metric space (Y,d | Y X Y). On the other
hand, we may be given two metric spaces (X, d) and (Y, d'). If
Y C X, it makes sense to ask whether or not d’ is the restriction
of d.

DEerFINITION 7.1 Let (X, d) and (Y, d') be metric spaces. We say that
(Y, &) is a subspace of (X, d) if:

1. YCX;
2.d=d|YXY.

Let Y C X and 7:Y — X be an inclusion mapping. Denote
by © X4:Y XY - X X X the inclusion mapping defined by
(T X 1) (%, ¥2) = (1, ¥2). Then (Y, d’) is a subspace of (X, d) if
the diagram

YXY.

\d"
X1 R
/

XXX

is commutative. There are as many subspaces of a metric space
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(X, d) as there are non-empty subsets of X.

ExampLE 1

ExXAMPLE 2

ExampLE 3

ExamPLE 4

Let Q be the set of rational numbers. Definedg:Q X Q —» R
by de(a, b) = |a — b|. Then (Q, do) is a subspace of (R, d).

Let I (the unit n-cube) be the set of all n-tuples (zi, 2,

., Zn) of real numbers such that 0 < z; = 1, forz = 1,
2,...,n Defined.:I" X I"—> R by d.((z1, x2, . . ., Zu),
Wy ys - Ym) = m?:;i‘rgllm {lz: — y:}. Then (I, d.) is

a subspace of (R", d).

Let S* (the n-sphere) be the set of all (n + 1)-tuples
(%1, Z2, . . ., ZTay1) Of real numbers such that 2} + 23 +
...+ 2241 = 1. Define ds:S" X S* — R by

n+1
ds((xl; T2y« 0oy 23,.4.1), (yl; Yo, .., yﬂ+l)) = \/ii:l (xi - yi)2°
Then (S* ds) is a subspace of the Euclidean space
(R, d').

Let A be the set of all (n + 1)-tuples (z1, 23, - . . , Zns1) Of
real numbers such that z,,y = 0. Define d4:4 X 4 — R
by

da((@, 22y . .+, 20, 0), (Y1, Y2y -« -, Yn, 0))

= maximum {|z; — yi}.
1Sisn

Then (A4, d4) is a subspace of (R**, d).

TuaeorEM 7.2 Let (Y, d’) be a subspace of (X, d). Then the inclusion

mapping ¢: ¥ — X is continuous.

Proof. Given a € Y and ¢ > 0, choose 6 = ¢. If
d'(a, y) < 3, then d(i(a), i(y)) = d(a, y) = d'(a, y) <
d=¢

The metric space (4, d4) of Example 4 is in most respects a
copy of the metric space (R*, d). The only distinction between
(R*, d) and (4, d4) is that a point of R" is an n-tuple of real
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numbers, whereas a point of 4 is an (n 4+ 1)-tuple of real numbers
of which the last one is zero. The relationship between the metric
spaces (R", d) and (4, d,) is an example of the relationship called
“metric equivalence” or “isometry.”

DeriniTioN 7.3 Two metric spaces (4, d4) and (B, dg) are said to be
melrically equivalent or isometric if there are inverse
functions f:4 — B and g:B — A such that, for each
z, y € A, ds(f(x), f(y)) = da(z,y), and for each u,
v € B, da(g(u), g(v)) = dg(u, v). In this event we shall
say that the metric equivalence or isometry is defined by
fandg.

THEOREM 7.4 A necessary and sufficient condition that two metric
spaces (4, d4) and (B, dg) be metrically equivalent is
that there exist a function f:4 — B such that:

1. f is one-one;
2. f is onto;
3. for each z, y € A, ds(f(2), f(¥)) = da(z, y).

Proof. The stated conditions are necessary, for if
(4, d4) and (B, dg) are metrically equivalent, there are
inverse functions f:A — B and ¢g:B — A, and therefore
f is one-one and onto. Conversely, suppose a function
f:A — B with the stated properties exists. Then f is
invertible and the function g:B — A such that f and ¢
are inverse functions is determined by setting ¢(b) = a
if f(a) = b. For u, v € B, let z = g(u), y = ¢g(v). Then

da(9(u), 9(v)) = da(z, y) = ds(f(z), f(¥)) = ds(u, ).

Given metric spaces (A,d,) and (B,ds) and functions
fi:A—> Bandg:B— A, let us denote by f X f:4 X A—>B X B
the function defined by setting (f X f)(z,y) = (f(z), f(y)) for
z,y € A and, similarly, let g X g:B X B— A X A be defined
by setting (g X g)(u, v) = (g(u), g(v)) for u,v € B. The state-
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ment that ds(f(x), f(y)) = da(z, y) for z, y € A is equivalent to
the statement that the diagram

is commutative (one may also describe this relation by saying
that the function f: A — B is ‘“distance preserving’’). In terms of
diagrams, the statement that (4, d4) and (B, ds) are metrically
equivalent is the statement that there exist functions f:4 — B,
g:B — A such that the four diagrams

4 A .4 B B B
B g

BXB

/' e

AXA

are commutative (where i,:4 — 4 and i3:B — B are identity
mappings). The first two diagrams express the fact that f and ¢
are inverse functions and the last two diagrams express the fact
that f and g “preserve distances.” Since the distance between
z and y in A is the same as the distance between f(z) and f(y)
in B, f is continuous. Similarly, g is continuous. Thus:
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LEmma 7.5 Let a metric equivalence between (4, d4) and (B, dg) be
defined by inverse functions f:A — B and g: B — A. Then
both f and g are continuous.

From the point of view of considerations that relate only to
the concept of continuity, the relationship of metric equivalence
is too narrow. We are led to define a broader concept of equiv-
alence in which we drop the requirement of ‘“preservation of
distance’’; that is, the commutativity of the last pair of diagrams,
and merely require that the first two diagrams be commutative
and the functions in these diagrams be continuous.

DEFINITION 7.6 Two metric spaces (4, d4) and (B, dg) are said to be
topologically equivalent if there are inverse functions
f:A — B and g:B — A such that f and g are continu-
ous. In this event we say that the topological equiva-
lence 13 defined by f and g.

As a corollary to Lemma 7.5 we obtain:

CoroLLARY 7.7 Two metric spaces that are metrically equivalent are
topologically equivalent.

The converse of this corollary is false; that is, there are metric
spaces that are topologically equivalent, but are not metrically
equivalent. For example, a circle of radius 1 is topologically equiv-
alent to a circle of radius 2 (considered as subspaces of (R? d)),
but the two are not metrically equivalent.

The following two results furnish a sufficient condition for
the topological equivalence of two metric spaces with the same
underlying sets.

LEmmMa 7.8 Let (X,d;) and (X, d,) be two metric spaces. If there
exists a number K > 0 such that for each z, y € X,
do(z, y) < Kdi(z, y), then the identity mapping

1:(X, dy) = (X, dy)
is continuous.
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Proof. Given ¢> 0 and a € X, set § = ¢/K. If
di(z, a) < & then do(i(x), i(a)) = do(z, a) = K-di(z,a) <
Ké = e

CoroLLARY 7.9 Let (X, d) and (X, d’) be two metric spaces with the
same underlying set. If there exist positive numbers
K and K’ such that for each z, y € X,

d,(x’ y) § K'd(ﬁ, y)’
dz,y) S K'-d'(z, y),

then the identity mappings define a topological
equivalence between (X, d) and (X, d').

We have discussed the two metric spaces (R", d) and (R*, d'),
where the distance function d is determined by the maximum
distance between coordinates, and the distance function d’ is what
is called the Euclidean distance function. For each pair of points
2,y € R", the inequality d(z,y) S d'(z,%) S Vn d(z, y) holds.
It therefore follows from Corollary 7.9 that the metric spaces
(R, d) and (R", d’) are topologically equivalent.

TrEOREM 7.10 Let (X,d) and (Y,d’) be two metric spaces. Let
f:X — Y and ¢g: Y — X be inverse functions. Then the
following four statements are equivalent:

1. f and ¢ are continuous;

2. A subset O of X is open if and only if f(O) is an
open subset of V;

3. A subset F of X is closed if and only if f(F) is a
closed subset of V;

4. For each a € X and subset N of X, N is a
neighborhood of a if and only if f(N) is a neighborhood
of f(a).

Proof. 1= 2, Let O be an open subset of X. Then
f(0) = ¢g~1(0) is open since ¢ is continuous. Conversely,
if f(O) is an open subset of Y, then f~1(f(0)) = 0 is
open since f is continuous.

2=>4.Foreacha € X and N C X, N is a neigh-
borhood of a if and only if N contains an open set O
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containing ¢ if and only if f(N) contains an open set
0’ = f(0) containing f(a) if and only if f(N) is a neigh-
borhood of f(a).

4=1. Let a € X and let U be a neighborhood
of f(a). Then f~}(U) is a neighborhood of a, for
U = f(f~1(U)) is a neighborhood of f(a). Thus f is
continuous. Similarly, let bE Y and let V be a
neighborhood of g(b). Then g~*(V) = f(V) is a neigh-
borhood of f(g(b)) = b, and ¢ is continuous.

Thus, statements 1, 2, and 4 are equivalent. We
leave it to the reader to verify that statements 2 and
3 are equivalent.

Statement 1 in Theorem 7.10 is, of course, the statement that
the metric spaces (X, d) and (Y, d’) are topologically equivalent.
Consequently, Theorem 7.10 asserts that two metric spaces are
topologically equivalent if and only if there exist inverse functions
that establish either a one-one correspondence between the open
sets of the two spaces, a one-one correspondence between the
closed sets of the two spaces, or a one-one correspondence between
the complete systems of neighborhoods of the two spaces.

Both metrically equivalent and topologically equivalent are
equivalence relations defined on a collection of metric spaces. By
Corollary 7.7, each equivalence class of metrically equivalent
metric spaces is contained in an equivalence class of topologically
equivalent metric spaces. Distinguishing which topologically
equivalent equivalence class a metric space belongs to is a coarser,
but consequently more fundamental, distinction. By Theorem
7.10, this is determined by the collection of open sets, or the
“topology”’ of the space.

EXERCISES

1. For each pair of points a, b € R", prove that there is a topological
equivalence between (R", d) and itself defined by inverse func-
tions f:R*— R* and ¢:R" — R" such that f(a) = b. [Hint:
Ifa= (@, ay ..., a), b= (b, by, ..., ba), define f by setting
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@, 2s ..,z =@+ b —a,t2+be—as...,2,+ by — an).]
Prove that the open interval (—=/2, x/2), considered as a subspace
of the real number system, is topologically equivalent to the real
number system. Prove that any two open intervals, considered as
subspaces of the real number system, are topologically equivalent.
Prove that any open interval, considered as a subspace of the real
number system, is topologically equivalent to the real number
system.
Fort=1,2, ..., n, let the metric space (X, d;) be topologically
equivalent to the metric space (Y, di). Prove that if

X=H X ad Y=17
are converted into metric spaces in the standard manner, then these
two metric spaces are topologically equivalent.
The open n-cube is the set of all points x = (x1, 22, . . ., 2n) € R
such that 0 < z; <1 forz=1, 2, ..., n. Prove that the open
n-cube, considered as a subspace of (R", d), is topologically equiva-
lent to (R», d). [Hint: Use the results of Problems 2 and 3.]
Let XRY mean that the metric space X is isometric to the metric
space Y. Prove that: (i) XRX; (ii) if XRY then YRX; and (iii)
if XRY and YRZ then XRZ. Do the same if XRY means that the
metric space X is topologically equivalent to the metric space Y.
Let (Y, d') be a subspace of the metric space (X, d). Prove that a
subset O’ C Y is an open subset of (¥, d’) if and only if there is an
open subset O of (X, d) such that O’ = ¥ N O. Prove that a subset
F' C Y is a closed subset of (Y, d’) if and only if there is a closed
subset F of (X, d) such that 7/ = Y N F. For a peint a € Y, prove
that a subset N’ C Y is a neighborhood of a if and only if there is
a neighborhood N of a in (X, d) such that N' = Y N N.
Let (Y, d') be a subspace of (X, d). Let a,, a,, . . . be a sequence of
points of ¥ and let ¢ € Y. Prove that if lim, a, = ain (Y, d’), then
lim, a. = ain (X, d). [The converse is false unless one assumes that
all the points mentioned lie in Y'; see the next problem.]
Consider the subspace (@, dq¢) (the rational numbers) of (R, d). Let
ay, as, . . . be a sequence of rational numbers such that lim, a, = V.
Prove that, given ¢ > 0, there is a positive integer N such that for
n, m > N, |a. — an| < . Does the sequence a;, a, . . . converge
when considered to be a sequence of points of (Q, dg)?
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8 AN INFINITE DIMENSIONAL EUCLIDEAN SPACE

In this section we shall define a metric space H, sometimes called
Hilbert space, which contains as subspaces isometric copies of the
various Euclidean spaces (R*, d’). A point u of H is a sequence

Uy, Us, . . . Of real numbers such that the series 5 u? is convergent.
=1

Let v = (uy, %, ...) and » = (v, vy, .. .) be in H. Our intention

is to define a metric on H by setting

d(u, v) = [é‘ (u; — vi)z]m.

In order to do this we must first know that the series in brackets
converges. To accomplish this we shall make use of the following
result, which is frequently referred to as Schwarz’s lemma or
Cauchy’s inequality.

Lemma 8.1 Let (wy, uz, ..., un), (0, 0s...,v.) be n-tuples of real
numbers, then

n n 1/2 n 1/2
Euivgé[zu?] [Evf] .
i=1 i2h i=h

Proof. It suffices to prove that

n 2 n n
(2 uw;) é(z u?)(z vf)
i=1 t=1 1=1

To this end, we consider, for an arbitrary real number X,

the expression % (u; + ;)2 We have,
=1

n n n n
0= 2 (wi+M)*= 2 ul +2\ 2 uw; + A2 Z o}
i= i=1 i=1 i=1
Therefore, the quadratic equation in X,
= Z U+ T uvi+ 3o
i=1 i=1 i=1

can have at most one real solution. Consequently,
n 2 n n
(zu.-v,')—<2u3)<zvf)§o,
i=1 i=1 i=1
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n 2 n n
( z uivi) = ( z u?)( v?)-
i=1 i=1 i=1

CoroLLARY 8.2 Let u = (w1, ug, ...), v = (v, 0, . ..) be in H with

U= 2 u, V= 3 v Then the series = uw, Is
=1

t=1 i=1

or

1=

absolutely convergent and = |uwi| < UY2V12,
i=1

Proof. For each positive integer n
n n n 1/2 n 1/2
B fuod = B fudlod 5[ 3 tude [ 3 ]
i=1 i=1 i=1 i=1
§ Ul/2V1/2'

Thus the partial sums of this series of positive terms
are bounded and the series converges to a limit not
greater than UV2V1/72,

Furthermore, if @ and B are real numbers and we set
au + Bv = (au, + Bv, auz + Pv,, . ..) then au + Bv is also in
H for 5 (au; + Bv;)? is the sum of three absolutely convergent

i=1
series. In particular v + v € H and
il (ui +v)? = f:l [ui + 2up, + 2] < il u; +2 51 [uw| + f:l v

SU 42UV V2 4 V = (UY2 4 V22,

Taking square roots we obtain
© 1/2
COROLLARY 8.3 [ 2 (u; + v.~)2] < UVr 4 yire,
t=1

TrEOREM 8.4 (H, d) is a metric space, where d is defined by d(u, v) =
© 1/2
[_El (u; — v:’)z] :

Proof. 1t is readily apparent that d satisfies all the
properties of a distance function with the exception of
the property that d(a, b) < d(a, ¢c) + d(c, b) for a, b,
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cEH Leta=(a, az ...), b=(by, by, ...), ¢ =
(cy,c2,...).Setu =a —c,v = ¢ — bso that u; = a; — ¢,
v; = ¢; — bi. Then u; + v; = a; — b; and Corollary 8.3
yields the desired inequality.

Let E* be the collection of points 4 = (u;, us, . . .) € H such
that u; = 0 for j > n. To each point a = (a), a2, ..., a,) € R*
we can associate the point h(a) = (ay, as,...,a,,0,0,...) € E",
Clearly 4 is a one-one mapping of R* onto the subspace E* of H.

Using d'(a, b) = [Z:l (ai — b.~)2]”2 in B*, d'(a, b) = d(h(a), h(b)).

Since E™ is a metric space, (R", d’) is a metric space and A is an
isometry of (R", d’) with (E", d|E").

EXERCISES

1. Let V be a vector space with the real numbers R as scalars. A
function A:V X V — R is called a bilinear form if A(xa + b, ¢) =
adA(a,c) + BA(b,c) and A(a, Bb + vc) = BA(a, b) + vA(a, ¢) for
scalars o, 8, and ¥y € R and vectors a, b, and ¢ € V. A bilinear
form is called positive definite if A(x,z) > 0, unless z is the zero
vector. Define a vector space structure on Hilbert space H and show

that foru = (uy, ug,...)andv = (0, v,,...) € H, A(y,v) = 51 UDg

yields a positive definite bilinear form.

2. Let V be a vector space with the real numbers R as scalars. A norm
on V is a function N:V — R such that (i) N(») 2 0 forallvE V;
(1i) N(v) = 0if and only if v = 0; (iii) N(u + v) £ N(u) + N(v) for
allu, v € V; (iv) N(av) = ||N(v) foralla € R, v € V. Prove that
if A is a positive definite bilinear form on V, then N(v) = (A (v, v))V/?
defines a norm on V.

3. Let N be a norm on a vector space V as defined in the previous
problem. Set d(u, v) = N(u — v) foru,v» € V. Prove that (V, d) isa
metric space. Prove that the following functions are continuous:
(i) a:V X V — V defined by a(u, v) = u + v; (ii) b:V — V defined
by b(v) = —v; (iii) c:R X V — V defined by c(a, v) = av.

68



An Infinite Dimensional Euclidean Space Sec. 8

For further reading, Kaplansky, Set Theory and Metric
Spaces, Kolmogorov and Fomin, Elements of the Theory of Func-
tions and Functional Analysis, and Simmons, Iniroduction to

Topology and Modern Analysis all have excellent chapters on
metric spaces.

69



CHAPTER 3

Topological Spaces

1 INTRODUCTION

In the context of metric spaces, the various topological concepts
such as continuity, neighborhood, and so on, may be character-
ized by means of open sets. Discarding the distance function and
retaining the open sets of a metric space gives rise to a new
mathematical object, called a topological space. The topological
concepts that have been studied in Chapter 2 must be reintro-
duced in the context of topological spaces. The procedure for
formulating the appropriate definitions of these terms in a topo-
logical space is to find, in a metric space, the characterization of
the term by means of open sets, using in most cases what is a
theorem in a metric space as a definition in a topological space.
There are other ways of introducing topological spaces. For exam-
ple, if, upon disearding the distance function of a metric space,
we were to retain the systems of neighborhoods of the points of
the metric space, we obtain what we shall call a neighborhood
space. We shall indicate the equivalence between the concept of
a neighborhood space and the concept of a topological space.
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Certain new topological concepts are also introduced ; namely, the
closure, interior, and boundary of a set (these concepts could have
been introduced in metric spaces). In many respects the elemen-
tary material in this chapter is a repetition of material from
Chapter 2, but in a different context. The concept of a topo-
logical space is one of the most fruitful concepts of modern
mathematics. It is the proper setting for discussions based on
considerations of continuity.

2 TOPOLOGICAL SPACES

DEeriniTiON 2.1 Let X be a non-empty set and J a collection of subsets

of X such that:
0l. Xea.
02. 9€E3.

03. 1If0,0,...,0, €3 then
060N0:N...NO0E3.
04. Ifforeacha € 1,0, E 3, then Uuer 0. € 3.

The pair of objects (X, J) is called a topological space.
The set X is called the underlying set, the collection 3
is called the topology on the set X, and the members
of 3 are called open sets.

By virtue of Theorem 6.4, Chapter 2, if 3 is the collection of
open sets of a metric space (X, d), then (X, 3) is a topological
space, called the topological space associated with the metric space
(X, d), and the metric space (X, d) is said to give rise to the topo-
logical space (X, 3). We are therefore in a position to give many
examples of topological spaces; namely, for each metric space its
associated topological space. On the other hand, any set X and
collection 3 of subsets satisfying 01, 02, 03, 04 is an example of a
topological space, and we shall see that not every such example
arises from a metric space.
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ExAMPLES

1. The real line, that is, the topological space that arises from the
metric space consisting of the real number system and the distance
function d(a, b) = |a — b|.

2. The topological space that arises from the metric space (R", d). We
shall call this topological space Euclidean n-space with the usual
topology.

3. Let X be an arbitrary set. Let 3 = {@, X}. Then (X, 3) is a top-
ological space.

4. Let X be a set containing precisely two distinct elements a
and b. Let 5, = {ﬂ; X}’ Jo = {gr {a}’ X}: I = {Qy {b}) X}) W=
{9, {a}, {b}, X}. Then (X, 3.), ¢ = 1, 2, 3, 4, are four distinct top-
ological spaces with the same underlying set.

5. Let X be an arbitrary set. Let 3 be the collection of all subsets of X,
i.e.,, 3 = 2%, Then (X, 3) is a topological space. Of all the various
topologies that one may place on a set X, this one contains the
largest number of elements and is called the discrete topology.

6. Let X be an arbitrary set. Let 3 be the collection of all subsets of X
whose complements are either finite or all of X. Then (X, 3) is a
topological space.

7. Let Z be the set of positive integers. For each positive integer n, let
O.=f{n,n+1,n+2,...}. Let 3=1{@, Oy, Oy..., O,,...,}.
Then (Z, 3) is a topological space.

To verify that (X, 3) is a topological space, one verifies that
the specified collection of subsets, 3, is a topology; that is, that 3
satisfies conditions O1, 02, 03, 04. For example, let X and 3 be
as in Example 6. Then X € 3, for its complement @ = C(X) is
certainly finite. Also @ € 3, since C(@) = X. Thus, 3 satisfies
conditions 01 and 02. Next, let Oy, O, ..., O, be subsets
of X, each of whose complements is finite or all of X. To
show that O, N 0. N ... N0, €3 we must show that
COrNO:N...N O, is either finite or all of X. But
CONO0:N...N0, =CO)UCO) U ...UC@O,). Ei-
ther this set is a union of finite sets and hence finite, or for
some 2, C(0;) = X and the union is all of X. Finally, for each
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a &I, let 0, €3, so that C(0,) is either finite or X. Then
C(Uaer 0a) = Naer C(0,). Either each of the sets, C(0,) = X,
in which case the intersection is all of X, or at least one of them
is finite, in which case the intersection is a subset of a finite set
and hence finite. Thus (X, 3) is a topological space. The reader
should verify that the remaining examples do, in fact, constitute
examples of topological spaces.

The relationship between the totality of metric spaces and
the totality of topological spaces is indicated in Figure 8. We
shall see that two distinct metric spaces (X, d) and (X, d’) may
give rise to the same topological space (X, 3). Also there are
topological spaces (Y, 3'), such as Example 7 above, which could
not have arisen from a metric space. The subcollection of topo-
logical spaces that arise from metric spaces is called the collection
of metrizable topological spaces. In passing from a metric space

metric spaces

X, d) (X, d)

topological
spaces

metrizable
spaces

Figure 8

to its associated topological space, we may say that the “open”
sets have been ‘“preserved.”

Dermirion 2.2 Given a topological space (X, 3), a subset N of X is
called a neighborhood of a point a € X if N contains
an open set that contains a.
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This definition has been formulated so that a subset N of a
metric space (X, d) is a neighborhood of a point a € X if and
only if N is a neighborhood of a in the associated topological
space. Thus, in passing from a metric space to a topological space,
neighborhoods have also been ‘‘preserved.”

CoroLLARY 2.3 Let (X, 3) be a topological space. A subset O of X is
open if and only if O is a neighborhood of each of its
points.

Proof. First, suppose that O is open. Then, for
each € 0, O contains an open set containing z;
namely, O itself. Conversely, suppose O is a neighbor-
hood of each of its points. Then for each z € O, there
is an open set O, such that z € 0, C 0. Consequently,
O = U.eo O, is a union of open sets and hence open.

DerFiNiTION 2.4 Given a topological space (X, 3), a subset F of X is
called a closed set if the complement, C(F), is an open
set.

EXERCISES

1. Let (X, 3) be a topological space that is metrizable. Prove that for
each pair a, b of distinct points of X, there are open sets O, and O,
containing a and b respectively, such that O, N 0, = @. Prove that
the topological space of Example 7 is not metrizable.

2. Prove that for each set X, the topological space (X, 2%) is metrizable.
[Hint: See Exercise 2, Chapter 2, Section 6.]
3. Let (R* d) and (R" d’) be defined as in Chapter 2 so that for
r= (xlyzb- . -;xﬂ) fmdy = (yl,yzy- . -)yn) ER”;
d(z, y) = maximum {|z; — y},
1Sisn

260 = (3 - var)e
tm]
Prove that the two metric spaces (R", d) and (R*, d’) give rise to the
same topological space.
4. Let (X, 3) be a topological space. Prove that @, X are closed sets,

that a finite union of closed sets is a closed set, and that an arbitrary
intersection of closed sets is a closed set.
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5. Let (X, 3) be a topological space that is metrizable. Prove that each
neighborhood N of a point ¢ € X contains a neighborhood V of a
such that V is a closed set.

6. Prove that in a discrete topological space, each subset is simul-
taneously open and closed.

3 NEIGHBORHOODS AND NEIGHBORHOOD SPACES

Theorem 4.8, Chapter 2, in which are stated certain properties
of neighborhoods in a metric space, corresponds to a theorem in
topological spaces.

TuaeoreM 3.1 Let (X, 3) be a topological space.

N1. For each point £ € X, there is at least one
neighborhood N of z.

N2. For each point £ € X and each neighbor-
hood N of z, 2 € N.

N3. For each point z € X, if N is a neighbor-
hood of  and N’ D N, then N’ is a neighborhood of z.

N4. For each point 2 € X and each pair N, M of
neighborhoods of z, N N M is also a neighborhood of z.

N5. For each point £ € X and each neighbor-
hood N of z, there exists a neighborhood O of = such
that O C N and O is a neighborhood of each of its points.

Proof. For each point z € X, X is a neighborhood
of z, thus N1 is true. N2 and N3 follow easily from the
definition of neighborhood in a topological space. To
verify N4, let N, M be neighborhoods of z. Then there
are open sets O and O’ such that N D 0, M D O’ and
2 & 0, x € 0. Thus, NN\ M contains the open set
O N 0’, which contains z, and, consequently, N "\ M
is a neighborhood of z. Finally, for a point z € X, let
N be a neighborhood of . Then N contains an open
set O containing z. In particular, O is a neighborhood
of z and by Corollary 2.3, O is a neighborhood of each
of its points.

In a topological space, as in a metric space, we lay down the
definition:
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DEerFINITION 3.2 For each point x in a topological space (X, 3), the
collection 91, of all neighborhoods of z is called a com-
plete system of neighborhoods at the point x.

One may paraphrase the properties N1-N5 of neighbor-
hoods in terms of the complete system of neighborhoods 9, at
the points ¢ € X:

N1. Foreachze X, 3, = O;
N2, Foreachz€ Xand N € o,z € N;
N3. Foreachz& Xand N € 9., if N' D N then N’ € %,;
N4. Foreachz€ X and N, M € x,,
' NNMexn,;
N5. For each z € X and N € ¢,, there exists an O € :,
such that O C N and O € :, for each y € O.

The proof of Theorem 3.1 was, in most respects, similar to
the proof of the corresponding theorem in metric spaces, Theo-
rem 4.8, Chapter 2. However, it was necessary to supply a proof
of Theorem 3.1 above, for in the proof of 4.8, Chapter 2, use was
made of the concept of open balls, a concept which does not occur
in a topological space. Though a comparison of these two theo-
rems might lead one to believe that statements about neighbor-
hoods that are true in a metric space are also true in a topological
space, this is not always the case. Given two distinct points z
and y in a metric space (X, d) there are neighborhoods N and M
of z and y respectively, such that N N\ M = @. This statement
is false in many topological spaces. For example, let Y = {a, b},
a#b, and let 3 = {Q, {a}, Y}, so that (Y, 3) is a topological
space. Then the only neighborhood of b is Y. Thus, for each
neighborhood N of a and each neighborhood M of b N N\ M =
NNY =N=0.

DerFINITION 3.3 A topological space (X, J) is called a Hausdorff space
or is said to satisfy the Hausdorff aziom, if for each
pair a, b of distinct points of X, there are neighbor-
hoods N and M of a and b respectively, such that
NNM=0.
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Some authors use the term ‘‘separated space’’ instead of
Hausdorff space. Many of the significant topological spaces are
Hausdorff spaces. For this reason certain authors require a topo-
logical space to be a Hausdorff space and use the two terms
synonymously; that is, they add to the list 01-O4 of properties
of open sets in the definition of a topological space, the property,
for each pair z, y of distinct points there are open sets O: and O,
containing z and y respectively, such that 0. N O, = O.

Suppose we have a metric space (X, d) and we discard the
distance function, retaining only the neighborhoods of the points
in X. Then for each point z € X, we have a collection 3%, of
subsets of X ; namely the complete system of neighborhoods at z.
These neighborhoods satisfy certain properties. We may select
some of these properties and use them as a set of axioms for
what we might naturally call a “neighborhood space.”

DerFiNiTION 3.4 Let X be a set. For each z € X, let there be given a
collection 9, of subsets of X (called the neighborhoods
of z), satisfying the conditions N1-N5 of Theorem 3.1.
This object is called a neighborhood space.

In a neighborhood space, the appropriate definition of open
set is obtained from Corollary 2.3.

DEerFINITION 3.5 In a neighborhood space, a subset O is said to be open
if it is a neighborhood of each of its points.

Tt is important to realize that the mathematical object neigh-
borhood space, although closely connected with the concept of a
topological space, is a new object, and until we have defined the
term open set in a neighborhood space, that term in a neighbor-
hood space is meaningless.

LemMa 3.6 In a neighborhood space, the empty set and the whole
space are open, a finite intersection of open sets is open,
and an arbitrary union of open sets is open.
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Proof. [Since we are concerned with neighborhood
spaces, we may use only the properties N1-N5 of neighbor-
hoods and, of course, Definition 3.5 of open sets.] The
empty set is open, for in order for it not to be open it would
have to contain a point z of which it was not a neighbor-
hood. Given a point z, there is some neighborhood N of z,
so by N3, the whole space is a neighborhood of z. Thus,
the whole space is a neighborhood of each of its points and
hence open. If O and O’ are open, then O N O’ is also open,
for by N4, given z € O N 0’, O and O’ are neighborhoods
of z, hence so is O N O'. Thus the intersection of two open
sets is a neighborhood of each of its points, and, conse-
quently, by induction, any finite intersection of open sets
is open. Finally, suppose for each a € I, O, is open. If
Z € Uaer 04, then z € O for some S € I. But O; is a
neighborhood of  and O C Uaer Oa, thus by N3, Uacr Oc
is a neighborhood of z and is therefore open.

If we start with a topological space and define neighborhoods
by Definition 2.2, Theorem 3.1 tells us that the underlying set
and the complete systems of neighborhoods of the points of the
set yield a neighborhood space. On the other hand, if we start
with a neighborhood space and define open sets by Definition 3.5,
Lemma 3.6 tells us that we obtain a topological space. Suppose
then, we have a topological space (X, 3), use the neighborhoods
of (X, 3) to form a neighborhood space, and finally use the
open sets in this neighborhood space to create a topological
space (X, 3’). Do we end up with our original topological space
(X, 3)? The answer is yes. To prove this result we must show
that 3 = 3. Now, if O is an open set in our original topological
space, that is, O € 3, by Corollary 2.3, O is a neighborhood of
each of its points, from which it follows that O is an open subset
of the neighborhood space and hence O € 3’. Conversely, if
O € 9/, then in the neighborhood space, O is a neighborhood of
each of its points. But the neighborhoods of the neighborhood
space we have created are the neighborhoods of (X, 3), so that
again by Corollary 2.3, O is open in (X, 3) or O € 3. Thus 5 = 7.

Logically, it would still be possible for there to be neighbor-
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hood spaces that did not arise in this manner from topological
spaces. We shall now show that there are none. To do so, we need
a characterization, in a neighborhood space, of neighborhoods in
terms of open sets.

Lemma 3.7 In a neighborhood space, a subset N is a neighborhood of
a point z if and only if N contains an open set containing .

Proof. First, let N contain an open set O contain-
ing z. By Definition 3.5, O is a neighborhood of z, whence,
by N3, N is a neighborhood of z. Conversely, if N is a
neighborhood of 2, then by N5, N contains a neighbor-
hood O of z (and by N2, O contains z), such that O is a
neighborhood of each of its points.

To denote a neighborhood space, let us use the symbol (X, %),
where for each z € X, ,, is the collection of neighborhoods of z.
Now suppose that we start with a neighborhood space (X, %).
We define open set in (X, 9t) by Definition 3.5, thus obtaining a
topological space (X, 3). In the topological space (X, 3) we define
neighborhood by Definition 2.2 to obtain a neighborhood space
(X, ). Under these circumstances, if N € 9t;, by Lemma 3.7,
N contains an open set O containing z, so that by Definition 2.2,
N is a neighborhood of z in (X, 3), or N € %,. Conversely, if
N € %, then by Definition 2.2, N contains a set O € 3, and
z € 0. Since O € 3, O is open in the neighborhood space (X, :)
and so by Lemma 3.7, N is a neighborhood of z. Thus, for each
z € X, %, = N, and the two neighborhood spaces are the same.

Collecting together the results on the correspondence be-
tween topological spaces and neighborhood spaces, we have:

TrHEOREM 3.8 Let neighborhood in a topological space be defined by
Definition 2.2 and open set in a neighborhood space be
defined by Definition 3.5. Then the neighborhoods of a
topological space (X, 3) give rise to a neighborhood
space (X, %) = @(X, J) and the open sets of a neighbor-
hood space (Y, ') give rise to a topological space
(¥,3) = @'(Y, ?). Furthermore, for each topological
space (X, 3),
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(X, 9) = @'(a(X, 9)),
and for each neighborhood space (X, 9),
(X, ) = a(@'(X, n)),

thus establishing a one-one correspondence between the
collection of all topological spaces and the collection of
all neighborhood spaces.

Theorem 3.8 justifies the specification of a topological space
by defining for a given set X what subsets of X are to be the
neighborhoods of a point £ € X ; that is, by specifying the corre-
sponding neighborhood space. For example, let X be the set of
positive integers. Given a point n € X and a subset U of X, let
us call U a neighborhood of = if for each integer m =2 n, m € U.
We must then verify that these neighborhoods satisfy conditions
N1-N5 so that we have a neighborhood space and consequently
a topological space. The reader should verify that this correspond-
ing topological space is the one described in Example 7 of Sec-
tion 2.

EXERCISES

1. Given a real number z, call a subset N of R a neighborhood of z if
y 2 z implies y € N. Prove that this definition of neighborhood
yields a neighborhood space. Describe the corresponding topological
space.

2. Given a real number z, call a subset N of R a neighborhood of z if
N contains the closed interval [z, z + 1]. Prove that the neighbor-
hoods so defined satisfy N1-N4, but not N6. Use the Definition 3.5
of open set anyway, and determine which subsets of R will be open.

3. In a neighborhood space, a collection ®, of neighborhoods of a point
z € X is called a basis for the complete system of neighborhoods at z,
or simply a basis for the neighborhoods at z, if, for each neighbor-
hood N of z, there is a neighborhood U € ®, such that U C N.

Prove that if for each point 2 € X, ®, is a basis for the neigh-
borhoods at x, then:
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BN1. Foreachz € X, B, = 0;

BN2. Foreachz€ Xand U E ®,, z € U;

BN3. Foreachz & X and U,V E ®,, UN V contains an
element W € ®;;

BN4. For each z € X and U € ®,, there is an O C U such
that 2 € O and for each y € O, O contains an element V, € ®,.

Define a basic neighborhood space to be a set X, such that for each
z € X a collection ®, of subsets of X satisfies the conditions
BN1-BN4 of Problem 3. In a basic neighborhood space (X, ®)
define a subset N of X to be a neighborhood of a point z € X, if
N D U for some U € ®.. Prove that the neighborhoods of a basic
neighborhood space yield a neighborhood space. (Thus a topological
space may be constructed by specifying for each point z a basis @,
of the neighborhoods at « satisfying BN1-BN4.) The correspondence
between basic neighborhood spaces and neighborhood spaces is
many-one, since there are many different bases for the neighborhoods
at a point in a neighborhood space. However, prove that if (X, ®)
and (X, ®') are two basic neighborhood spaces, then they give rise
to the same neighborhood space if and only if for each point z € X
we have

(i) given U € ®,, thereisa U’ € ®; with U’ C U, and

(ii) given V' € ®;, thereisa V € ®, with V C V.
Also prove that starting from a given neighborhood space (X, %),
if for each z € X, ®, is a basis for the neighborhoods at z, then the

neighborhood space that arises from the basic neighborhood space
X, ®) is (X, 9).

4 CLOSURE, INTERIOR, BOUNDARY

In a metric space, given a point = and a subset A, we can say that
there are points of A arbitrarily close to z if d(z, A) = 0. In a
topological space, we can also find a characterization of ‘‘arbi-
trary closeness.” To indicate the proper translation from metric
spaces to topological spaces of this concept, let us first prove:

81



Ch. 8 Topological Spaces

LemMa 4.1 In a metric space (X, d), for a given point = and a given
subset 4, d(z, A) = 0 if and only if each neighborhood N
of z contains a point of A.

Proof. First, suppose that each neighborhood N of z
contains a point of A. In particular, for each ¢ > 0, there
is a point of 4 inB(z; ¢). Thus gle‘lz {d(z, a)} < efor each

e > 0 and consequently d(z, A) = g.éb. {d(z, a)} = 0.
acA

Conversely, suppose that there is a neighborhood N of z
that does not contain a point of A. Since N is a neighbor-
hood of z in a metric space, there is an ¢ > 0 such that
B(z;¢) C N. It follows that a € A implies thatd(z, @) = «.
Thus d(z, A) 2 «.

We shall, therefore, in a topological space, say that the points
of a subset A are arbitrarily close to a given point z, if each
neighborhood of z contains a point of A. Given a subset A4, the
collection of points that are arbitrarily close to A is called the
closure of A.

DeriniTiON 4.2 Let A be a subset of a topological space. A point z is
said to be in the closure of A if, for each neighbor-
hood N of z, N N A = @. The closure of A is denoted
by 4.

The purpose of the next two lemmas is to provide a descrip-
tion of the closure of a subset in terms of closed sets.

LemMa 4.3 Given a subset A of a topological space and a closed set F
containing A, 4 C F.
Proof. Supposez & F, then z is in the open set C(F).
Also, F D A implies C(F) C C(A). Thus, C(F) N A = Q.
Since C(F) is a neighborhood of z, z & A. We have thus
shown that C(F) C C(A) or 4 C F.

Lemma 4.4 Given a subset 4 of a topological space and a point z & 4,
then z & F for some closed set F containing 4.
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Proof. If z & A, then there is a neighborhood and
hence an open set O containing z such that 0 N A = Q.
Let F = C(0). Then F is closed and F = C(0) D A. But
z € O and therefore z & F.

Combining these two lemmas, we obtain:

THEOREM 4.5 Given a subset A of a topological space, A = Neacr Fo,
where {F.}acr is the family of all closed sets contain-
ing A.
Proof. By Lemma 4.3, A C Naer Fasinced C F,
for each « € I. By Lemma 4.4, x € F,for eacha € I
implies that z € 4, or Necr Foa C 4. Thus, 4 = Nect Fa.

Frequently, in introducing the concept of closure of a subset,
the characterization of closure given by Theorem 4.5 is used as
a definition and the statement embodied in our Definition, 4.2,
is then proved as a theorem. Another possible description of the
closure A of a subset A is the characterization of A as the smallest
closed set containing A. For A is contained in each closed set
containing 4, while 4, being the intersection of closed sets, is
itself a closed set.

Theorem 4.5 is the characterization of closure in terms of
closed sets. The next theorem characterizes closed sets in terms
of closure.

THEOREM 4.6 A is closed if and only if A = 4.

Proof. We have just seen that 4 is closed, so if
A =4, then A is closed. Conversely, suppose A is
closed. In this event A itself is a closed set containing A4,
so, therefore, A C A. On the other hand, for an arbitrary
subset A, we have A C 4, forif z € A, then each neigh-
borhood N of = contains a point of 4; namely r itself.
Thus, if A is closed, A = 4.

The act of taking the closure of a set associates to each sub-

set A of a topological space a new subset A. This correspondence
or operation on the subsets satisfies the following five properties:
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TueoreM 4.7 In a topological space (X, 3),

CL1. O =0,

cL2. X =X;

CL3. For each subset A of X, A C 4;

CL4. For each pair of subsets 4, B of X,
AUB=4UB; _

CL5. For each subset 4 of X, A = 4.

Proof. The property CL3 has been established
during the proof of Theorem 4.6. Note that CL2 fol-
lows from CL3. CL1 is true, for given a point z € X
and a neighborhood N of z, N N\ @ = ©; thus there
are no points in @. To prove CL5 we note that 4 is
closed, so, applying Theorem 4.6 to 4 we have 4 = 4.
It remains for us to prove CL4. Suppose x € 4, then
each neighborhood N of z contains points of A and
hence points of A U B. Thus 4 C A U B. Similarly,
B C AU B, and, consequently, 4 UB C 4 U B. On
the otherhand, A C Aand BC B,soA UB C 4 U B.
Thus, 4 U B is a closed set containing A \U B, whence
AUBCA4AUB

One may use the properties CL1-CL5 as a set of axioms for
what we will call a closure space and then prove that there is a
“natural’”’ one-one correspondence between the collection of topo-
logical spaces and the collection of closure spaces. An outline of
how this might be done is given in Problem 11 at the end of
this section.

In a topological space, we have seen that the closure of a
subset A is the smallest closed set containing A. Another signifi-
cant subset associated with A is the “interior’’ of A, which, as
we shall see, is the largest open set contained in A.

DerFiNiTION 4.8  Given a subset A of a topological space, a point z is
said to be in the interior of A if A is a neighborhood
of z. The interior of A is denoted by Int (4).

Lemma 4.9  Given a subset A of a topological space and an open set O
contained in A, O C Int (4).
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Proof. If z € O, then A is a neighborhood of z,
since O is open and O C A. Thus z € Int (4) and
O C Int (4).

LeEmma 4.10 Given a subset A of a topological space, if x € Int (4),
then z € O for some open set O C A.

Proof. If z € Int (A), then A is a neighborhood
of z, whence A contains an open set O containing r.

In much the same manner in which Lemmas 4.3 and 4.4
combine to yield Theorem 4.5, Lemmas 4.9 and 4.10 combine to
yield:

THeoREM 4.11 Given a subset A of a topological space,
Int (A) = Uaer Oa,

where {0.}.cr is the family of all open sets contained
in A.

Thus, Int (4), being the union of open sets, is itself open,
and is the largest open set contained in A. Furthermore, if {0.} .1
is the family of open sets contained in a given set A, then
{C(0.)}acr is the family of closed sets containing C(A). Thus:

TrEOREM 4.12 C(Int (A)) = C(4).
CoroLrArY 4.13 Int (4) = C(C(A)), C(A) = Int (C(A)).

For a given subset 4, the set of points that are arbitrarily
close to both A and C(4) is called the “boundary” of A.

DzriniTioN 4.14 Given a subset 4 of a topological space, a point z is
said to be in the boundary of A if x is in both the
closure of 4 and the closure of the complement of 4.
The boundary of A is denoted by Bdry (4).

Thus, Bdry (4) = A N C(A). It follows that A and C(4)
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have the same boundary, for Bdry C(4) = C(4) N C(C(4)) =
C(4) N A. In terms of the definition of the closure of a set, we
have the statement that a point z is in the boundary of a set 4
if and only if each neighborhood N of z contains both points of A
and points of the complement of 4, Since the boundary of A4 is
the intersection of two closed sets:

CoroLLaRY 4.15 For each subset A, Bdry (4) is closed.

EXERCISES

1. A family {A.}a.cr of subsets is said to be mutually disjoint if for
each distinct pair 8, v of indices Ag M A, = @. Prove that for
each subset A of a topological space (X,3), the three sets
Int (4), Bdry (4), and Int (C(4)) are mutually disjoint and that
X = Int (4) U Bdry (4) U Int (C(4)).

2. In a metric space (X, d), prove that for each subset 4:

(@) z € 4 if and only if d(x, A) = 0;
() =z € Int (4) if and only if d(z, C(4)) > 0;
(¢) z € Bdry (4) if and only if

d(z,A) =0 and d(z,C(4)) = 0.

3. In the real line, prove that the boundary of the open interval (a, b)
and the boundary of the closed interval [a, b] is {a, b}.

4. In R* with the usual topology, let A be the set of points
z= (21,2, ...,%,) such that z3 + 25+ ...+ 22 < 1. Prove
that Bdry (A) is the (n — 1)-dimensional sphere S, i.e.,
zEBdry (A) ifandonly if 2} + 23+ ...+ 22 = L

5. In R+ with the usual topology, let A be the set of points
Z = (1, X2 . . ., Toy1) sSuch that z,,1 = 0. Prove that Int (4) = 9,
Bdry (4) = 4,4 = A.

6. In a topological space, each of the terms open set, closed set, neigh-
borhood, closure of a set, interior of a set, boundary of a set, may be
characterized by any other one of these terms. Construct a table
containing the thirty such possible definitions or theorems in which,
for example, the entry in the row labelled interior and the column
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labelled open set is the characterization of interior in terms of open
sets (Theorem 4.17), ete.

7. Let A be a subset of a topological space. Prove that Bdry (4) = @
if and only if A is open and closed.

8. A subset A of a topological space (X, J) is said to be dense in X if
A = X. Prove that if for each open set O we have A N 0 = @,
then A is dense in X.

9. The “rational density theorem” for the real line states that between
any two real numbers there lies a rational number. Use the rational
density theorem to prove that the rational numbers are dense in
the real line.

10. The ‘“Archimedean principle’’ for the real line states thatif ¢, d > 0
then there is a positive integer N such that N¢ > d. Prove the
Archimedean principle for the real line and use this principle to
prove the rational density theorem for the real line.

11. Let a closure space be defined as a set X together with a corre-
spondence which associates to each subset A of X a subset 4 of X
satisfying the five conditions CL1-CL5 of Theorem 4.7. Prove that
in a closure space, A C B implies A C B. Define A to be closed if
A = 4. Prove that the empty set and the whole space are closed.
Also that a finite union of closed sets is closed and an arbitrary
intersection of closed sets is closed. Prove that for each subset A
of X, A = Naer F., where {F.}a.cr is the family of all closed sets
containing A. Now prove that there is a one-one correspondence
between the collection of topological spaces and the collection of
closure spaces.

12. Prove that 4 = A U Bdry (4).

13. Let A be a subset of a topological space. Prove that A4 is closed if
and only if Bdry (A) C 4, and that A is open if and only if
Bdry (4) C C(4).

5 FUNCTIONS, CONTINUITY, HOMEOMORPHISM

DerFmviTION 5.1 A function f from a topological space (X, 3) to a top-
ological space (Y, 3’) is a function f: X — Y.
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If f is a function from a topological space (X, 3) to a topo-
logical space (Y, 3’) we shall write f:(X, 3) — (¥, 3). In the
event that the topologies on X and Y need not be explicitly
mentioned, we may abbreviate this notation by f:X — Y or
simply f.

DEeFINITION 5.2 A function f: (X, 3) — (Y, 3') is said to be continuous
at a point a € X if for each neighborhood N of f(a),
f~UN) is a neighborhood of a. f is said to be continuous
if f is continuous at each point of X.

Let (X, d) and (Y, d’) be metric spaces and let their asso-
ciated topological spaces be (X, 3) and (Y, 3’) respectively. Given
a function f from the first metric space to the second, we also
have a function, which we still denote by f, from the first topo-
logical space to the second. Our definition of continuity has been
formulated so that for each point ¢ € X, the function f: (X, d) —
(Y, d’") is continuous at a if and only if f:(X, 3) — (¥, 3') is
continuous at a.

TreorEM 5.3 A function f:(X, 3) — (¥, 3') is continuous if and only
if for each open subset O of Y, f-'(0) is an open subset
of X.

Proof. First, suppose that f is continuous and that
O is an open subset of Y. For each a € f~}(0), O is a
neighborhood of f(a), therefore f~1(0) is a neighborhood
of a. Since f~1(0) is a neighborhood of each of its points,
f~1(0) is an open subset of X. Conversely, suppose that
for each open subset O of Y, f~1(0) is an open subset
of X. Let a € X and a neighborhood N of f(a) be given.
N contains an open set O containing f(a), so by our
hypothesis, f~1(N) contains the open set f~1(0) contain-
ing a. Thus, f~'(N) is a neighborhood of a and f is
continuous at a. Since a was arbitrary, f is continuous.

For any set X, given a collection E of subsets of X, let C'(E)
denote the collection of subsets of X which are complements of
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members of E. Also given f: X — Y and a collection E of subsets
of Y, let f~*(E) denote the collection of subsets of X of the form
f~Y(E) for some E € E. Theorem 5.3 states that f: (X, 3) — (¥, 3')
is continuous if and only if f~'(3') C 3. Let § = C'(3) and
g’ = (C’(3) be the closed subsets of X and Y respectively. For
Feg, f[7((CF) = C('(F)) so that f~(¢) = C"(f71(3).
Thus f~1(3") C 3 is equivalent to f~(§') C § and we obtain:

THEOREM 5.4 A function f:(X, 3) — (Y, 3’) is continuous if and only
if for each closed subset F of Y, f~1(F) is a closed subset
of X.

It is important to remember that Theorem 5.3 says that a
function f is continuous if and only if the tnverse image of each
open set is open. This characterization of continuity should not
be confused with another property that a function may or may
not possess, the property that the image of each open set is an
open set (such functions are called open mappings). There are
many situations in which a function f: (X, 3) — (Y, 3’) has the
property that for each open subset A of X, the set f(4) is an
open subset of Y, and yet f is not continuous. For example, let
Y be a set containing two distinct elements a and b and let each
subset of ¥ be an open set. Let R be the real line and define
fiR—Y by f(x) = a for x 2 0 and f(z) = b for x < 0. Every
subset of Y is open so in particular for each open subset U of R,
f(U) is an open subset of Y. On the other hand {a} is an open
subset of Y but f~'({a}), the set of non-negative real numbers, is
not an open subset of the reals.

TrEOREM 5.5 f:(X,3) — (¥, %) is continuous if and only if for each
subset 4 of X, f(4) C f(4).

Proof. First suppose that f is continuous. Given
a subset 4 of X, f(A) C f(A), whence A C f-1(f(4)) C
J(f(A)). The set f1(f(4)) is closed so 4 C f~(F(4)).
Thus f(4) C f(4). Conversely, suppose that for each
subset A of X, f(A) Cf(A). Let F be a closed subset
of Y. Then f(f/I(F)) CfG*(F))CF =F. Thus
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THEOREM 5.6

F'(F) C f\(F). Since it is always the case that
f~Y(F) CT-I(F) we have f~}(F) = f7i(F); consequently

Sf7U(F) is closed and f is continuous.

Let f: (X, 3) — (Y, 3’) be continuous at a point a € X
and let g: (Y, 3') — (Z, 3’) be continuous at f(a). Then
the composite function gf: (X, 3) — (Z, 3”) is continuous
at a.

Proof. Let N be a neighborhood of (gf)(a) =
g9(f(a)). Then (gf)~*(N) = f~'(g~'(N)). But g~'(N) is a
neighborhood of f(a), since ¢ is continuous at f(a), and
therefore f—(¢~'(N)) is a neighborhood of a, since f is
continuous at a.

The equivalence relation that is appropriate to topological
spaces is called homeomorphism.

DerinrrioN 5.7 Topological spaces (X, 3) and (Y, 3') are called homeo-

morphic if there exist inverse functions f: X — Y and
g:Y — X such that f and g are continuous. In this
event the functions f and ¢ are said to be homeomor-
phisms and we say that f and g define a homeomor-
phism between (X, 3) and (Y, 7).

The following easily verified corollary to this definition indi-
cates that homeomorphism is the translation from metric spaces
to topological spaces of the concept of topological equivalence.

CoroLLARY 5.8 Let (X, d) and (Y, d’) be metric spaces. Let (X, 3)

THEOREM 5.9

and (Y, 3') be the topological spaces associated with
(X, d) and (Y, d’) respectively. Then the metric spaces
(X, d) and (Y, d’) are topologically equivalent if and
only if the topological spaces (X, 3) and (Y, 3’) are
homeomorphie.

A necessary and sufficient condition that two topological
spaces (X, 3) and (Y, 3') be homeomorphic is that there
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exist a function f:X — Y such that:

1. f is one-one;
2. fis onto;
3. A subset O of X is open if and only if f(O) is open.

Proof. Suppose that (X, 3) and (Y, 3') are homeo-
morphic. Let the homeomorphism be defined by inverse
functions f:X — Y and g:Y — X. f is invertible and
consequently one-one and onto. Furthermore, given an
open set O in X, the set f(0) = g~'(0) is open in Y,
since g is continuous. On the other hand, if f(0) = O’
is an open subset of Y, then O = f~1(0’) is open in X.

Now, suppose that a function f:X — Y with the
prescribed properties exists. Then f is invertible and we
define g:Y — X by g(b) = aif f(a) = b, so that fand g
are inverse functions. If O is an open subset of X, then
f(0) = ¢g7(0) is open in Y, so that g is continuous. Also,
if O’ is an open subset of Y, then f~1(0’) = O is an open
subset of X and f is continuous.

EXERCISES

1. Let a function f: X — Y be given. Prove that f: (X, 2¥) — (Y, 3') is
always continuous, as is f:(X, 3) — (Y, {0, Y}), where 3’ is any
topology on Y and 3 is any topology on X.

2. Prove that a function f: (X, 3) — (Y, 3’) is a homeomorphism if and
only if

(i) f is one-one;
(ii) fis onto;
(iii) For each point z € X and each subset N of X, N is a
neighborhood of z if and only if f(¥) is a neighborhood of f(z).

3. Letf:(X,3) — (Y, 3) be a homeomorphism. Let a third topological
space (Z,3"”) and a function h:(Y, 3) — (Z, 3’) be given. Prove
that k is continuous if and only if Af is continuous. Let another
function k:(Z, 3"") — (X, 3) be given. Prove that k is continuous if
and only if fk is continuous.

4, Let R be the real line. Prove that the function fiR — R
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defined by f(zr) = sin z is continuous. [Hz’nt: [sina — sinz| =

.a—2 a4z a—z| _la— 2 .
<
2 |sin 5 cos — 7|52 |] Find an open

interval (a, b) such that f((a, b)) is not an open interval.

and [sin

6 SUBSPACES

DerFiNiTION 6.1 Let (X, 3) and (Y, 3') be topological spaces. The top-
ological space Y is called a subspace of the topological
space X if ¥ C X and if the open subsets of Y are
precisely the subsets O’ of the form

oO=0NY

for some open subset O of X.

In the event that Y is a subspace of X, we may say that each
open subset O’ of Y is the restriction to Y of an open subset O
of X. A subset O’ that is open in Y is often called relatively open
in Y or simply relatively open. A subset O of X that is open in X
and is contained in Y is necessarily relatively open in Y, but the
relatively open subsets of Y are in general not open in X.

We shall now prove that there are as many subspaces of a
topological space X as there are non-empty subsets Y of X.

ProrosrTioN 6.2 Let (X, 3) be a topological space and let Y be a sub-
set of X. Define the collection 3’ of subsets of Y as
the collection of ‘subsets O’ of Y of the form

0O=0NY,
where O € 3. Then (Y, 3') is a topological space and
therefore a subspace of (X, 3) provided Y = Q.

Proof. We must prove that 3’ is a topology.
O=0NY and Y =X NY are in 3. Suppose
01,05 ...,0, €9, so that for 1 =1,2,...,n,
0{ = 0; N Y for some O; € 3. Then
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oOiNo:N...N0L=0N0:N...N0)NY
is in ¥/, since O, N0, N...N O, is open in X.
Finally, suppose that for each « € I, O] € ¥'. Thus,
foreacha € I, O, = 0, N Y for some O, € 3. But
Ueer Oa = Uaer (0N Y) = (Uaer 0) N Y is in
3’, since Uaer O, is open in X.

Given a subset Y of a topological space (X, 3), the topology 3’
of Y described in the above proposition is said to be induced by
the topology 3 on X and is called the relative topology on Y. The
neighborhoods in this relative topology on Y are called neighbor-
hoods in Y or relative netghborhoods. The following result states
that the neighborhoods in Y are the restrictions of the neighbor-
hoods in X.

TueoreM 6.3 Let Y be a subspace of a topological space X and let
a € Y. Then a subset N’ of Y is a relative neighborhood
of a if and only if

N =NNY,
where N is a neighborhood of @ in X.

Proof. First suppose N’ is a relative neighborhood
of a. Then N’ contains a relatively open set O’, which
contains a. Let O’ = O N Y, where O is an open subset
of X. Then N = N’ U O is a neighborhood of @ in X and
NNY=N'U0ONY=NUONY)=N'" Con-
versely, suppose N’ = N N Y, where N is a neighbor-
hood of @ in X. Then N contains an open set O
containing a and hence N’ contains the relatively open
set O’ = 0N Y containing a. Thus N’ is a relative
neighborhood of a.

ExampLE 1 The closed interval [a, b] of the real line with induced
topology is a subspace of the real line. A relative neighbor-
hood of the point a is any subset N of [a, b] that contains
a half-open interval [a, ¢), where a < ¢ and [a, ¢) is the
set of all real numbers z such that a < z < ¢. Similarly,
a relative neighborhood of the point b is any subset M of
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ExamMpPLE 2

LemMma 6.4

[a, b] that contains a half-open interval (¢, b], wherec < b
and (c, b] is the set of all real numbers r such that
c <z =b If dis such that a < d < b, then a relative
neighborhood of d is any subset U of [a, b] that is a
neighborhood of d in the real line R.

Let A be the subset of R"t! consisting of all points
z = (21, %y, ..., Tasn) such that z,,; = 0. Let R**! have
the usual topology and let A have the induced topology
so that A is a subspace of R**!. The topological space 4
is homeomorphic to RB*. To prove this fact we shall use
the result that the relationship of subspace is ‘“‘preserved”’
in passing from metric spaces to topological spaces.

Let (X, d) be a metric space and let (Y, d’) be a subspace
of (X, d). If (X, 3) is the topological space associated with
(X, d) and (Y, %) is the topological space associated with
(Y, d’), then (Y, 3') is a subspace of (X, J).

Proof. Since d’ is the restriction of d, an open ball in
(Y, d') is the restriction of an open ball in (X, d) to Y.
Consequently a subset O’ of Y is open in Y if and only if,
for each y € O’, there is an ¢, > 0 such that B(y;e,) N
Y CO'. Let O = U,eor B(y; &,). Then O is open in X and
O =0NY. Thus 0’ € ¥. Conversely, if 0’ € ¥, then
0O =0NY for some O € 3. For each y € 0’ we have
y € 0, and O is open, so there is an g such that
B(y;e) CO. It follows that B(y;e,) NY C 0/, and
hence O’ is open in (Y, d').

Returning to our example, we define f:R* — A by
setting f(z1, 2o, . . ., Za) = (X1, Xy . . ., X0y 0). It is easily
verified that f is one-one, onto, and that the inverse of f
is the function g: A — R" defined by g(zy, 23, . . ., Z., 0) =
(@1, g, . . ., x,). If we first consider f and ¢ as functions
defined on the metric spaces (R", d) and (4, d’), where
(4, d’) is a subspace of (R**, d), then clearly f and g are
continuous. It follows that f and g are continuous func-
tions defined on the topological spaces B* and A, where
A is considered as a subspace of R**!, and that they there-
fore define a homeomorphism.
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Given a subspace (Y, 3°) of a topological space (X, 3), the
closed subsets of the topological space (Y, 3’) are called relatively
closed in Y or simply relatively closed. Again, the relatively closed
subsets are the restriction to Y of the closed subsets of X.

TueorEM 6.5 Let (Y, 3’) be a subspace of the topological space (X, J).
A subset F’' of Y is relatively closed in Y if and only if

FF=FNY,
for some closed subset F of X.

Proof. First, suppose F’ is relatively closed. Then
Cy(F') is relatively open. Thus, Cy(F’) = O N Y, where
0 is open in X. But then F/ = Cy(ON Y) = Cy(0) =
Cx(0) N Y, where Cx(0) is a closed subset of X. Con-
versely, suppose F’ = F N Y, where F is a closed subset
of X. Then, Cy(F’') = Cx(F) N Y;hence Cy(F’) is rela-
tively open in Y and therefore F’ is relatively closed.

ExampLE 3 Leta < b <c¢ <d.LetY = [a,b] U (c, d) be considered
as a subspace of the real line. Then the subset [a, b] of ¥
is both relatively open and relatively closed. To prove
this fact we note that [a, b] = [a, b] N Y so that [a, b]
is relatively closed, whereas for 0 < e < ¢ — b, [a,b] =
(@ — ¢, b+ ¢) N Y so that [a, b] is relatively open. Since
(c, d) is the complement in ¥ of a relatively open and
relatively closed subset of Y, (¢, d) is also relatively open
and relatively closed in Y.

TueorEM 6.6 Let the topological space ¥ be a subspace of the top-
ological space X. Then the inclusion mapping :Y — X
is continuous.

Proof. For each subset 4 of X, 73 (4) =4NY.
Thus, if O is an open subset of X, +1(0) = 0N Yisa
relatively open subset of Y.

DerFInITION 6.7 Let 3; and 3, be two topologies on a set Y. The topol-
ogy 3, is said to be weaker than 3, if 3; C Js.
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If Y is a subset of a topological space (X, 3) then the relative
topology 3’ on Y is the weakest topology such that the inclusion
map 1:Y — X is continuous, for if 3, is another topology on Y
such that 2:(Y, 3;) — (X, 3) is continuous then given O’ € ¥,
0’ = 11(0) with O € 3. Thus O’ € 5, and 3’ C 3;.

Let X and Y be topological spaces and f: Y — X be a func-
tion which is not necessarily continuous. The function f induces
a function f':Y — f(Y) which agrees with f and is onto. Viewing
f(Y) as a subspace of X we have:

Lemma 6.8 f:Y — X is continuous if and only if f: Y —7(Y) is
continuous.

Proof. Since the inclusion map 7:f(Y) — X is con-
tinuous, the continuity of f’ yields the continuity of
f = if’. Conversely, if O’ is a relatively open set in f(Y),
then O’ = O N f(Y), where O is open in X. If f is contin-
uous f~1(0) = f'~1(0’) is open in Y and f’ is continuous.

EXERCISES

1. If Y is a subspace of X and Z is a subspace of Y, then Z is a subspace
of X.

2. Let O be an open subset of a topological space X. Prove that a
subset A of O is relatively open in O if and only if it is an open
subset of X.

3. Let F be a closed subset of a topological space X. Prove that a
subset A of F is relatively closed in F if and only if it is a closed
subset of X.

4, Prove that a subspace of a Hausdorff space is a Hausdorff space.

5. Prove that a subspace of a metrizable space is a metrizable space.

6. Prove that an open interval (a, b) considered as a subspace of the
real line is homeomorphic to the real line.

7. Let Y be a subspace of X and let A be a subset of Y. Denote
by Intx (A) the interior of A in the topological space X and by
Inty (A) the interior of A in the topological space Y. Prove that
Intx (A) C Inty (A). Illustrate by an example the fact that in
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general Intx (A) = Inty (4).

8. Let Y be a subspace of X and let A be a subset of Y. Denote by A%
the closure of 4 in the topological space X and by AY the closure
of A in the topological space Y. Prove that AY C AX. Show that in
general 4 ¥ = A%,

7 PRODUCTS

Throughout this section let (X, 3;), (X3, 32), . . . , (X4, 3.) be top-
ological spaces and let X = 11806 ;- We wish to define a topology

i=1
on X that may be regarded as the product of the topologies on
the factors of X. Again our guide is the corresponding situation
in metric spaces. If these topological spaces were metrizable, then
there is a standard procedure for converting the product of the
corresponding metric spaces into a metric space. In this resulting
metric space, the open subsets of X are the unions of sets of the
form O, X 0, X ... X O,, where each O; is an open subset of X.
In the general situation, where (X, 3;) may not be metrizable,
one can show that the unions of the products of open sets will
constitute a topology. This result is based on the following lemma.

Lemma 7.1 Let ® be a collection of subsets of a set X with the property
that @ € ®, X € @, and a finite intersection of elements
of ® is again in ®. Then the collection 3 of all subsets of X
which are unions of elements of ® is a topology.

Proof. Clearly @ and X are in 3. Suppose O and O’
arein 3. Then O = Uugr Bay O’ = Upes Bs, where B, € ®
fora € I'and Bs € @ for3 € J. Thusfor (o, 8) €EI X J,
B. N Bs € ® and hence

0N O = Uperxs (B« N Bp)

is in 3. Finally a union of sets each of which is a union of
sets of ® is again a union of sets of @ so that 3 is a topology.

Since in the product set X the collection ® of subsets of X
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that are unions of sets of the form O, X 0, X ... X O,, each O;
an open subset of X, satisfies the conditions of this lemma we
may state:

DerintrioN 7.2 The topological space (X, 3), where 3 is the collection
of subsets of X that are unions of sets of the form

0 X0: X...XO0,,

each O; an open subset of X, is called the product of
the topological spaces (X;,3,),1=1,2,...,n.

In the future we shall often denote a topological space (X, 3)
simply by X. Thus, if we say, let X,, X,, ..., X, be topological
spaces and X = fI X;, we shall mean that X is to be considered

i=1
as the product of the topological spaces.

As was the case with metric spaces, the sets of the form
0, X 0y X -++ X Oy, O; open in X;, have been used as a “basis”
for the open sets of X.

Derinmrion 7.3  Let X be a topological space and {O.} «cr & collection
of open sets in X. {O,} «cr is called a basis for the open
sets of X if each open set is a union of members of
{04} ecr.

The next proposition characterizes the neighborhoods in the
product space.

ProrosiTiON 7.4 In a topological space X = .l"lll X,, a subset N is a

neighborhood of a point @ = (a1, as,...,a,) EN
if and only if N contains a subset of the form
N1 X Nz X ... X N,, where each N; is a neighbor-
hood of a..

Proof. First suppose that Ny X Ny X ... X
N, C N where each N; is a neighborhood of a;. By
the definition of neighborhood in a topological space,
each N, contains an open set O; containing a;, hence
N contains the open set O, X 0: X ... X O, con-
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taining a, and therefore N is a neighborhood of a.
Conversely, suppose N is a neighborhood of a. Then
N contains an open set O containing a. Since O is an
open subset of the product space X = ﬁ X, we

i=1

may write O = Uacr Oan X Oaz X ... X Oqa,n,
where for each 7 and each a € I, O.,; is an open
subset of X; Since a € 0, a € O, X O X
... X Og,,, for some B € I, hence a; € 0g,; for
1=1,2,...,n But O, is open. Thus, if we set
N;,=0g; 1=1,2,...,n, N; is a neighborhood
of a;and Ny X N X ... XN, COCN.

DeriniTiON 7.5 Let X be a topological space and a € X. A collection
N, of neighborhoods of a is called a basis for the
netghborhoods at a if each neighborhood N of a con-
tains a member of Ja.

Thus, if a = (a, a3, ...,a,) €EX = i X, a basis for the
i=1

neighborhoods at a is the collection consisting of all subsets of
the form N; X N, X ... X N,, where each N, is a neighborhood
of a;.

Recall that in a product space the 7*® projection p;: X — X,
is the function such that p.(a) = a.. If O; € 3;, then

pit0) =Xi X... XX 1 X0; XXipan X...X X,

Since this set is an open subset of X the projection maps are
continuous.

A subset O, X 0; X ... X 0, of X can be written as
2 (0) N ... N p~Y(0,) so that we have a guide to the appro-
priate topology on an arbitrary product of topological spaces.

DeFiNiTION 7.6 Let {(Xa 3a)}aca be an indexed family of topological
spaces. The topological product of this family is the
set X = Ilcq X. with the topology 3 consisting of
all unions of sets of the form p.”'(0.) N ...N
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Doz (Oas), Where On, € 30, i =1, .. .4 k.

We have used as a basis for the topology 3 the collection ®
of sets of the form p.'(0,) N . .. N Pu'(On), Oui € Jai. That 3
is a topology follows from the fact that ® € &, X € @, and a
finite intersection of elements of ® is again in ®. Clearly this
topology makes the projection maps continuous. Since any topol-
ogy on X which makes the projection maps continuous must
contain the sets of this form, the product topology is the weakest
topology consistent with the continuity of the projection maps.

It is easily seen that, analogous to Proposition 7.4, a basis
for the neighborhoods at a point z is the collection of sets of the
form pi(Na) N ... N pa(N,), where N,, is a neighborhood of
Pal®) = z(as) € X, fori = 1,. .., k. Ineffect then, in the prod-
uct space X we are saying that a point y is in a given neighbor-
hood of z or is close to = if there is a finite set of indices
{ay, . .., ax} such that y(a.) is close to z(a).

EXERCISES

1. Prove that a subset F of X = _ﬁl X is closed if and only if F is an

intersection of sets, each of which is a finite union of sets of the form
Fy X F; X ... X F,, where each F; is a closed subset of X;. For-
mulate the corresponding statement in an arbitrary product of
topological spaces.

2. Let X = Il.er X. be the topological product of the family of spaces
{X 4} ecr. Prove that a function f:¥ — X from a space Y into the
product X is continuous if and only if for each a € I the function
fa = paf:Y — X, is continuous.

3. Let {Xa}acr beafamily of spacesand let I = J U K, whereJ and K
are disjoint and non-empty. Let z € Il.cs X. be given. Define a
function ¢,:IMeckx Xa — Hacr X by setting for each y € Hack Xa
(e:(¥))(@) = y(a) if « € K and (¢:(y))(a) = z(a) if « € J. Prove
that ¢, is continuous.

4. Let {Xa}ecr and {Ya}acr be two families of spaces indexed by the
same indexing set I. For each a € I, let f: X4 — Y, be a continuous
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function. Define f:llacr Xo — Haer Yo by (f(@))(a) = fo(z(a)).
Prove that f is continuous.

5. Let N be the set of positive integers. Foreachn € N let X, = {0, 2}
with the discrete topology. Let X = I,cn X,. Define a function

f:X — [0, 1] by setting f(z) = ;.‘ :%?—) Prove that f is one-one
n=1

and continuous. The image f(X) is called the Cantor set D and
consists of all real numbers @ € [0, 1] which can be represented as

triadic decimals a = ;, g—: such that a, € {0, 2} for all n. Given
n=1

a € D define (g(a))(n) = a, so that g(a) € X. Prove that g is a
homeomorphism of D with X.

6. Prove that the family of open intervals with rational end points is a
basis for the topology of the real line.

8 IDENTIFICATION TOPOLOGIES

Let R be the real line and S the unit circle defined by
S = {(z,y) | (x,y) € R? 2> + y*> = 1}. The function p:R — S
defined by p(t) = (cos 2¢, sin 27t) maps R continuously onto S
so that p(t) = p(t'), provided ¢ — t’ is an integer. One may think
of p as wrapping the real line around the circle so that the points
which differ by an integer are identified or superimposed on each
other. Furthermore, we shall see that the topology of S may be
obtained from the topology of R in such a way as to make the
mapping p an identification.

Derinirion 8.1 Let p:E — B be a continuous function mapping the
topological space E onto the topological space B. p is
called an identification if for each subset U of B,
p~Y(U) open in E implies that U is open in B.

If p:E — B is an identification and g: B — Y is a continuous
function defined on B, then g induces a continuous function

gp:E — Y. It turns out that frequently the reverse is true, that
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is, a continuous function G:E — Y will induce a continuous
function g:B—Y.

THEOREM 8.2 Let p:E — B be an identification and let G:E — Y be
a continuous function such that for each z, 2’ € E
with p(z) = p(z’), we also have G(z) = G(z’). Then
for each b & B we may choose any x € p~({b}), define
g(b) = G(z), and the resulting function g is continuous.

Proof. First the definition of g(b) does not depend
on the choice of z € p~1({b}), for if ' € p~1({b}) then
p(x) = p(z’) and G(z) = G(x’). Note that g is defined
so that gp = G. Hence G™' = p~'g™.. If O is an open
subset of Y, then G™1(0) is open in E. But G71(0) =
p~ (g7 (0)). Since p is an identification, g*(0) is open
in B and therefore ¢ is continuous.

The hypothesis on the function G is that Gp~ be well-defined
or single-valued. The conclusion is then that the function g may

be inserted in the diagram of Figure 9 and that commutativity
will hold.

Figure 9

One may use an onto function p:X — Y from a topological
space X to a set Y (without a topology) to construct a topology
for Y so that p becomes an identification.

DeriNiTioN 8.3 Let p:X — Y be a function from a topological space
X onto a set Y. The identification topology on Y deter-
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mined by p consists of those sets U such that p™*(U)
is open in X.

Verification of the fact that this collection of sets is a topology
depends on the behavior of p~ with respect to unions and inter-
sections. Once Y has been given the identification topology deter-
mined by p, p is an identification.

Let f:X — Y be a function from a set X to a set Y. Let ~;
be the relation defined on X by z ~, 2’ if f(x) = f(z’). ~,is an
equivalence relation. Let X/~ be the collection of equivalence
sets under this relation and let m,: X — X/~ be the function
which maps each z € X into its equivalence class. =, is an onto
function. Now suppose that X is a topological space and give
X/~ the identification topology determined by =,. Let Y also be
a topological space. Since 7;(x) = m,(z’) if and only if f(z) = f(z'),
f induces a continuous function f*: X /~, — Y such that f = f*x,.
Furthermore f* is one-one, for if f*(u) = f*(u’), with wu,
w' € X/~y, then for z € m;'({u}), 2’ € 77 {u'}, f(z) = f(=').
Thus z ~; 2’ or u = m(x) = w(z') = w'.

Consider the diagram

X
Ty f
f*
X/Nf ’ Y

Let 5 be the topology on X/~; and let 8§ be the topology on Y.
Since f* is continuous, f*7'(s) C 3, or equivalently, since f* is
one-one, § C f*(3). If 8’ were some other topology on Y so that f
were continuous we would again have 8’ C f*(3). Thus the
topology 3 carried over to Y by f* is the weakest or smallest
topology such that f is continuous. Introducing the topologies
into the diagram we obtain Figure 10, in which the inclusion
map ¢: (Y, f*(3)) — (¥, 8) is continuous.
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Figure 10

X
N\
f
(Y, f*(3))
f*
X/N/ 7

%(Y, 8)

We shall conclude this section by considering some examples.

ExampLE 1

ExAMPLE 2

(The covering of the circle by the real line.) Let p(t) =
(cos 2rt, sin 2t) so that p:R — S is a continuous mapping
of the real line onto the circle. To show that p is an identi-
fication mapping, we must show that if U C S is such
that p~'(U) is open, then U is open. Let z € p~}(U) and
s = p(x). z is the center of an open interval 0 C p~(U)
of length 2¢ < 1, which under p is mapped into an arc of
S centered at s of length 47 and contained in U. This arc
is an open ball in S with center s; hence U is open.

The function defined by g(f) = (cos 2wt, sin 2wt, t) is
a homeomorphism of the real line with a helix H in R3.
Let S be taken to be the set of points (z, y, 2) € R? de-
fined by 22 4 y2 = 1, z = 0. Then the projection of H
onto S defined by (cos 2=, sin 2xt, ) — (cos 2xt, sin 2xt, 0)
is also an identification. This projection accounts for the
literal sense in which the real line may be thought of as
covering the circle.

Let f be any function defined and continuous on R.
f is called periodic of period 1 if f(t + 1) = f(£) for all
t € R. It follows that f(t) = f('), provided ¢ — ¢’ is an
integer, so that finduces a continuous function f*, defined
on the circle S such that f*(p(t)) = f(¢).

(Shrinking a subset to a point.) Let X be a topological
space and A a non-empty subset of X. Define a new
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untopologized set X/A as the union of X — A and a new
point a*. Define a function f:X — X/A by f(z) = z for
2E X — A, f(x) = a* for € A. Now give X/A the
identification topology determined by f. This space is the

~ space obtained by shrinking 4 to a point.

Let [ = {0, 1} be the boundary of the unit interval
I = [0, 1]. Then I/I is homeomorphic to a circle. In fact,
by Theorem 8.2, the function p(f) = (cos 2xt, sin 2axt),
defined now for { € I, must induce a continuous function
p*:I /I° — §. p* is one-one and a basis for the open sets
containing a* is the totality of images of sets of the form
[0,e) U (1 —¢l]

Shrinking the boundary of I to a point amounts to
pasting the two end points together to make the single
point a* out of the boundary. If the boundary of a square
is shrunk to a point, the resulting space turns out to be
homeomorphic to the surface of a globe or a 2-sphere. One
can even visualize this shrinking as a process in which an
elastic sheet having a string in its boundary is deformed
into a 2-sphere by gathering the string to a point.

(Attaching a space X to a space Y.) Let X and Y be topo-
logical spaces and let A be a non-empty closed subset of X.
Assume that X and Y are disjoint and that a continuous
function f:4 — Y is given. Form the set X —A) U Y
and define a function ¢: X U Y > (X — A) UY by
o(x) = f(x) for z € A, ¢o(x) =z for z&€ X — A, and
e(y) =y fory € Y. Give X U Y the topology in which
a set is open (or closed) if and only if its intersections with
both X and Y are open (or closed). ¢ isonto. Let X {U, Y
be the set (X — A) \U Y with the identification topology
determined by .

If Y is a single point a*, then attaching X to a* by a
function f: A — a* is the same as shrinking 4 to a point.
Let I? be the unit square in R? and let A be the union of
its two vertical edges so that A = {(z,y) | (z,y) € R?
and either 2 =0,0<y=<lorz=10=y =< 1}. Let
Y =[0,1] be the unit interval. Define f:I*— Y by
f(x,y) = y. Then I? U, Y is a cylinder formed by identi-
fying the two vertical edges of I2
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EXERCISES

1. Let n be an integer. Let ¢,: R — R be the function from the real line
into itself defined by ¢.(z) = nz. Let p(t) = (cos 2, sin 2xt) as
before. Show that ¢, induces a function ®,:8 — 8 of the circle into
itself so that ®,p = pen. [®, is said to wrap the circle around itself
n times for positive n.]

2. A torus is the surface of a donut or an inflatable inner tube. It can
be thought of as being generated by rotating a circle about a line in
the plane of the circle, provided the circle and the plane do. not
intersect. Prove that if C is a circular cylinder with S; and S; as its
boundary circles and S, and S, are identified by mapping them
both homeomorphically onto some third circle S, giving a map
81U 8S;— 8, then C U, S is a torus.

Define a relation in the plane R? by (z, y) ~ (2, ') provided
z — 2’ and y — ¥’ are integers. Prove that ~ is an equivalence
relation. Let T be the collection of equivalence sets and ¢:R2— T
the mapping carrying each point into its equivalence set. Give T
the identification topology determined by ¢. Show that T is homeo-
morphic to a torus.

3. The unit disc is the set of points in R? given by D =
{(z,y) | (x,y) € R? and 2?2 4 y? < 1}. Its boundary in R? is the
unit circle S. Let A be the subset of the circular cylinder S X [0, 1]
given by S X {1}. Prove that S X [0, 1]/4 is hoineomorphie to the
dise D. (S X [0, 1]/A is the cone over S, see the next problem.)

4. Let X be a topological space and A the subset of X X [0, 1] given
by X X {1}. The space X X [0, 1]/A is called the cone over X.
Denote this space by TX. Prove that if X and X’ are homeomorphic,
then so are TX and TX'.

5. Let X be a topological space and let po and p; be two points not in
X X [—1, 1]. Let f(z, —1) = po and f(z, 1) = p, for 2 € X define
amappingof A = X X ({—1} U {1}) — {po, m}. Let ¥ = {po, p1}
have the discrete topology so that f is continuous. X X [—1,1] U, ¥
is called the suspension of X, and is denoted by SX. The equator is
the image of X X {0} in SX. Prove that this subject of SX is homeo-
morphic to X. Prove that the image of X X [0, 1] in SX is homeo-
morphie to the cone over X, and that therefore the suspension of X
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is two cones over X identified along the equator. Prove that the
suspension of a circle is homeomorphic to the 2-sphere S2.

9 CATEGORIES AND FUNCTORS

A great deal of the more recent work in topological spaces has
involved the consideration of a collection of topological spaces
and collections of continuous mappings between these spaces. It
has proven to be extremely fruitful to formulate an abstract defi-
nition of the structure involved.

DEFINITION 9.1 A category C is a collection of objects A whose mem-
bers are called the objects of the category and for each
ordered pair (X, Y) of objects of the category a set
H(X,Y) called the maps of X into Y together with
a rule of composition which associates to each
FEHX,Y)and g € H(Y, Z) a map gf € H(X, Z).
This composition is associative, thatis, if f € H(X, Y),
g€ H(Y,Z), h€ H(Z, W), then h(gf) = (hg)f and
identities exist, that is, for each object X € A there
is an element 1y € H(X, X) such that for all
gEHX,Y) glx =g and for all h € HW, X)
1xh = h.

In Chapter 1 we were concerned with the category C's of sets
and functions. That is, As is the class of all sets and for
X,Y € As, H(X,Y) is the set of all functions from X to Y.
For X € Ag, 1x is the identity mapping of X onto itself. In an
obvious fashion one may obtain what we would call subcate-
gories C’ of Cs by taking as objects A’ some specified collection
of sets and for X,Y € A’, H'(X, Y) to be some specified set of
functions from X to Y provided that we always include the iden-
tity mapping 1x in H(X, X) for each X € A’ and for each ordered
pair (X, Y) of A’ include in H'(X, Y) all functions f which can
be written in the form hg for h € H'(W,Y), g € H' (X, W). For
example A’ might be all finite sets and H’(X, Y) all functions
from X to Y. In particular A’ could contain a single set X and
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H’(X, X) could be all invertible functions.

In Chapter 2 the appropriate category was the category Cy
of all metric spaces and continuous functions. Chapter 3 furnished
us with our main example, namely the category Cr of all top-
ological spaces and continuous mappings.

We shall include in some detail one more example of a cate-
gory of algebraic objects.

DerFINITION 9.2 A group G is a set G together with a function which
associates to each ordered pair g1, g; of elements of G
an element ¢,g; € G such that:

(1) 91(g:95) = (9192)9s for gy, 9, 9s € G;

(ii) there is an element ¢ € G, called the <den-
tity such that for all ¢ € G, eg = ge = g;

(iii) for each g € G there is an element ¢! € G
called the inverse of g, such that g¢g* = g7'g = e.

A homomorphism f from a group G to a group K
is a function f:G — K such that f(e) = ¢’ if e and ¢’
are identities in G and K respectively and for all

9,9' € G,f(gg") = f(g)f(g").

Let g be a collection of groups and for G, K € glet H(G, K)
be the set of all homomorphisms of G into K. If we use the
ordinary composition of functions to define for f € H(G, K) and
g € H(K, L) an element gf € H(G, L), it is easily verified that
we have constructed a category Cg of groups ¢ and homo-
morphisms.

In Chapter 4 we shall associate to certain topological spaces
a group called the fundamental group of the space.

A transformation from one category to another which pre-
serves the structure of a category is called a “functor.”

DerinitioN 9.3 Let C and C’ be categories with objects A and A’

respectively. A functor* F:C — C' is a pair of func-

* Definition 9.3 defines a covariant functor. In further work one also needs to con-
sider contravariant functors in which Fe: H(X, Y) — H'(F\(Y), Fi(X)) and Fu(gf) =
Fo(f)Fy(g).
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tions F; and F; such that Fy:4 — A’ and for each
ordered pair X, Y of objects of 4,

Fy:H(X, Y) — H'(Fy(X), F\(Y))
so that Fo(1x) = 1px) and Fo(gf) = Fa(g)Fo(f) for
fEHX,Y), g€ H(Y, 2).
In keeping with the notation of the examples let us denote

an element f € H(X,Y) by XLY. If F:C— (' is a functor
we have
Fy(X) =2 Fy(Y),

F, preserves identities, and if

is commutative, then so is

Fy(X) k-l Fy(Y)
)| pyg)
Fi(2Z)

that is, F' carries commutative diagrams into commutative dia-
grams,

The passage from a metric space (X, d) to its associated
topological space (X, 3) is an example of a functor from Cy
to Cr. As another example of a functor, this time from Cr to
itself, let Z be a fixed topological space. To each topological space
X € Cr associate the topological space Fi(X) = X X Z and to
each continuous function f € H(X, Y) associate the function
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Fy(f) defined by (Fa(f))(z, 2) = (f(x), 2) for (z, 2) € Fi(X). Then
Fy(f):Fi(X) — F:i(Y) is continuous and it is easily verified that
F = (F,, F,) is a functor.

EXERCISES

1. Let {Ca}acs be an indexed family of categories with objects {4} acs
and maps {Ha(X, Y)}aer. Let A = laer Aa. For U,V E A let
H(U, V) = Haer (Ha(U(e), V(a))). Forf € H(U, V),g € H(V, W)
define gf by gf(a) = g(a)f(e). Prove that this yields a category
C = Il.gr Ca with objects A and maps H(U, V).

2. Let C be a category with objects A. Let ¢, f € H(X, X) be such
that ge = g, gf = g forall g € H(X, Y) and eh = h, fh = h for all
h € HW, X). Prove that e = f and that therefore the identities
are unique. Let f & H(X,Y) be such that there are maps
g,9' € H(Y, X) with gf = 1x and f¢’ = 1y. Prove that ¢ = ¢’ and
that therefore f has a two-sided inverse f~! = g. Such an f is called
an equivalence. Prove that 1x is an equivalence forall X € A4, if f is
an equivalence so is f~, and if f € H(X, Y) and f' € H(Y, Z) are
equivalences so is f’f. Verify that in the category Cr of topological
spaces and continuous mappings the equivalences are the homeo-
morphisms. Prove that a functor carries equivalences into equiv-
alences.

3. Let Cs be the category of sets and functions. Verify that the set of
equivalences in H (X, X) with the same rule of composition as in Cg
is the group of one-one mappings of X onto itself. In general, verify
that in any category C for each object X, the set of equivalences
in H(X, X) with the same rule of composition is a group.

4. Let A be a collection of pairs (X, Y) such that X is a topological
space and Y is a subspace of X. Given (X, ¥) and (X', Y’) € 4 let
H((X,Y), (X', Y)) be the set of all continuous functions f: X — X’
such that f(Y) C Y’. Construct a category with objects A and these
maps. Verify that if for (X, V) € 4 we set F1(X, Y) = Y and for
FEH(X,Y), (X', Y") we set Fo(f) =f|Y then (F, F,) is a
functor.

5. Let C be a category whose objects are pairs (X, A) where X is a
topological space and A is a non-empty closed subset of X, and
whose maps H((X, A4), (Y, B)) are continuous functions f: X — Y
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with f(4) C B. Define Fi(X, A) = X/A. Let pix, 4): X — X/A be
the identification map. Prove that if f € H((X, 4), (Y, B)) then
there is a continuous function f*: X/A — Y/B such that the diagram

f

X — 7Y

P, 4) P, B)
f*

X/A—Y/B

is commutative. Define Fo(f) = f* and prove that F = (Fy, F;) is a
functor from the category C to the category Cr of topological spaces
and continuous functions.

For further reading there are many excellent general texts
including Kelley, General Topology, Dugundji, Topology, and
Pervin, Foundations of General Topology.
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CHAPTER 4

Connectedness

1 INTRODUCTION

A subspace of a topological space is ‘“connected’ if it is all “of
one piece’’; that is, if it is impossible to decompose the subspace
into two disjoint non-empty open sets. The non-empty connected
subsets of the real line are single points and intervals. The con-
tinuous image of a connected set is necessarily a connected set.
A consequence of these two facts is the intermediate value theo-
rem; that is, a continuous function f:[a, b] — R must assume all
values between f(a) and f(b). A second type of connectedness is
called ‘‘path-connectedness,” by which it is meant that each
pair of points may be ‘“connected” by a “path” or “arc.” Path-
connectedness is a stronger condition than connectedness, since
each path-connected topological space is connected, whereas
the converse is false. A third type of connectedness that we shall
consider is ‘“‘simple connectedness.” A topological space is simply
connected if there are no holes in it to prevent the continuous
shrinking of each closed arc to a point. The degree to which a
given topological space fails to be simply connected may be meas-
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ured by an algebraic topological invariant called the fundamental
group of the space.

2 CONNECTEDNESS

DerFINITION 2.1 A topological space X is said to be connected if the
only two subsets of X that are simultaneously open
and closed are X itself and the empty set @. A top-
ological space which is not connected is said to be
disconnected.

Thus, a topological space X is disconnected if and only if
there are two non-empty open subsets P and @ whose union is X
and whose intersection is empty, for in this event P is the comple-
ment of @ and therefore both open and closed, whereas P is
neither X nor @. Similarly, a topological space X is disconnected
if and only if there are two non-empty closed subsets F and G
whose union is X and whose intersection is empty.

Every subset A of a topological space X is itself a topological
space in the relative topology. We say that the subset A is con-
nected if the topological space A with the relative topology is
connected, or what amounts to the same thing,

DerinITION 2.2 A subset 4 of a topological space X is said to be con-
nected if the only two subsets of A that are simul-
taneously relatively open and relatively closed in 4
are A and Q.

Thus, the statement, A is connected, has the same meaning
whether the reference is to A as a topological space or as a sub-
space of some larger topological space.

We shall shortly see that intervals such as [a, b] and (a, b)
are connected subsets of the real line R. As an example of a
subset of the real line that is disconnected, let A = [0, 1] U (2, 3).
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[0, 1] is a relatively closed subset of A since [0, 1] is closed in R.
At the same time [0, 1] is a relatively open subset of A, since
[0,1] = (—4%,3) N A. Finally, [0, 1] > © and [0, 1] ¢ A, hence
A is disconnected. By the same token, the ‘“open interval” (2, 3)
is also both relatively open and relatively closed in A.

It will be useful to have the following formulation of con-
nectedness, or more precisely, disconnectedness.

Lemma 2.3 Let A be a subspace of a topological space X. Then A4 is
disconnected if and only if there exist two open subsets
P and Q of X such that

ACPUQ,
PNQCCMA,
andPNA=0 QNA=Q.

Proof. First, suppose that A is disconnected. Then
there is a subset P’ of A that is different from @ and
from A and is both relatively open and relatively closed.
This implies that the complement of P’ in A, C4(P’), is
also different from @ and from A and relatively open. Thus
P =PNA and C4(P) = QN A, where P and @
are open subsets of X. We therefore have that A = P’ U
Ca(P) CPUQ, for PP C P and C4(P’) C Q, and also
PNRQNA=FPNAN@QNA) =P NCiP)=9
so that PN Q C C(A). Finally, PP =P N A and
C4(P’) = @ N A are non-empty.

Conversely, given open sets P and @ satisfying the
stated conditions, set P’ = PN Aand @ = Q@ N A. Then
A=ANPURY=ANPIUMANQ) =P UQ and
PPNQ =ANPINMANQ) =0 Thus P' = C4(Q"),
and P’ is both relatively open and relatively closed in A.
Since P’ # @ and P’ = A (for Q' is non-empty), A is dis-
connected.

A corresponding result also holds, using closed sets.

LEmma 2.4 Let A be a subspace of a topological space X. Then A is
disconnected if and only if there exist two closed subsets
F and G of X such that
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A CFUG,
FNGCCA),

and FNA#0,GNA=Q.

The next

theorem asserts that connectedness is preserved

under continuous mappings.

THEOREM 2.5

COROLLARY 2.6

COROLLARY 2.7

Let X and Y be topological spaces and let f: X — Y be
continuous. If A is a connected subset of X, then f(A4)
is a connected subset of Y.

Proof. Suppose f(A) is not connected. Then there
are open subsets P’ and Q' of Y such that f(4) C
PUQ, PPN Q CC(f(4)), and P'N f(4) = O,
Q' N f(4) = Q. Since f is continuous, P = f~(P’) and
Q = f~1(Q’) are open subsets of X. But A C f~1(f(4)) C
JHP'UQ)=PUQAlso PNQ = P NQ)C
f7H(Cf(4)) = C(f'(f(4))) CC(A). Finally, PN 4 = 0,
Q@ N A = Q. Thus, A is not connected. It follows that
if A is connected then f(A) must also be connected.

Let X and Y be topological spaces, let f: X — Y be a
continuous mapping of X onto Y, and let X be con-
nected; then Y is connected.

Let X and Y be homeomorphic topological spaces,
then X is connected if and only if ¥ is connected.

A property of a topological space is said to be a topological
property if each topological space homeomorphic to the given
space must also possess this property. Thus, Corollary 2.7 states
that connectedness is a topological property.

Lemma 2.8 supplies an interesting characterization of con-
nectedness, which will facilitate our proving that the produet of
two connected spaces is itself connected.
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LemMa 2.8 Let Y = {0, 1}. A topological space X is connected if and
only if the only continuous mappings f:X — Y are the
constant mappings.

Proof. Let f:X — Y be a continuous non-constant
mapping. Then P = f1({0}) and Q = f~'({1}) are both
non-empty. Thus, P @ and P = X. {0} and {1} are
open subsets of Y and f is continuous, therefore P and Q
are open subsets of X. But P = C(Q), so P is both open
and closed and consequently X is disconnected. Thus, if X
is connected, the only continuous mappings f: X — Y are
constant mappings.

Conversely, suppose X is disconnected. Then there
are non-empty open subsets P, @ of X such that
PNQ=@and P Q = X. Define a mapping f: X — Y
as follows: If x € P, set f(z) = 0; if x € Q, set f(z) = 1.
f is continuous, for there are four open subsets, @, {0}, {1},
and Y of Y and /(9) = 9@, /7'({0}) = P, f~'({1}) = @,
and f~1(Y) = X, so that the inverse image of an open set
is open.

Clearly, the role of the space Y = {0, 1} in the above result
could be played by any other topological space Z consisting of
two points in which all subsets are open.

TueoreM 2.9 Let X and Y be connected topological spaces. Then
X X Y is connected.

Proof. We shall show that the only continuous
mappings f:X X ¥ — {0, 1} are constant mappings.
Suppose, on the contrary, that there is a continuous
mapping f: X X ¥ — {0, 1} that is not constant. Then
there are points (xo, %o), (1, 1) € X X Y such that
f(xo, o) = 0, f(z1, y1) = 1. If we picture f(z,y) as a
number attached to the point (z, y), then we have the
situation depicted in Figure 11. Suppose f(z1, %) = 0.
We then define an “imbedding” 7,:Y - X XY by
1z, (y) = (21, ). i, is continuous, hence the composite
mapping fi,:Y — {0, 1} is continuous (fi,, may be
thought of as essentially f restricted to the points of
the form (zj, y); that is, the points lying above z; in
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Y
1
» (1?1, yx)
0
¥ @or 90)
t + X
Xy x
Figure 11

Figure 11.) But (fi;,) () = (21, %) = 0 and (fi;)(1) =
f(z1, y1) = 1. Thus, in this case, there is a non-constant
mapping of Y into {0, 1}, contradicting the connected-
ness of Y. Similarly, if f(z, %) = 1, we define an
imbedding 4, :X — X X Y by setting ¢,(z) = (2, %)
and obtain a non-constant mapping fi,:X — {0, 1},
contradicting the connectedness of X. It follows that
there are no non-constant mappings of X X Y into
{0, 1} and that therefore X X Y is connected.

CoroLLaRY 2.10 If X, Xo, ..., X, are connected topological spaces,
then ﬁ X, is a connected topological space.

i=1

The main idea in the proof of Theorem 2.9 is that
f:X X Y — {0, 1} must remain constant on each of the connected
subsets {x,} X Y and X X {y}. The same procedure allows
us to show that in an arbitrary product X = Il.er X. of con-
nected spaces, altering a finite set of coordinates can not change
the value of a continuous function f: X — {0, 1}.

LemMma 2.11 Let {X,}.cr be an indexed family of topological spaces
each of which is connected. Let x and x’ be two points
of X = Hagr Xasuch that x(a) = z’(a) except on a finite
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set of indices I’ C I and let f: X — {0, 1} be continuous.
Then f(z) = f(z').

Proof. We shall define an “imbedding” of Hacr Xa
into X. Let J = I — I’ so that z(a) = 2'(a) for a € J.
Given z € s Xa, set (§(2))(a) = 2(a) for « € I' and
(J@))(a) = z(a) for « € J. Then jill.err Xo — X and
J is continuous, for each of the functions p.j is continuous
(in fact, paj = pa for a« € I', p,j is a constant function
for « € J). Both  and z’ are in the image of the con-
nected set II.cr X, so that f(zx) = f(2).

THEOREM 2.12 X = Il.er X, is connected if each X, is connected.

Proof. Again let f: X — {0, 1} be continuous and
let w, € X be such that f(w) = 0. We will show that
f(z) = 0. {0} is a neighborhood of 0, hence there is a
neighborhood N of w such that f(N) = 0. It follows
that there is a finite set of indices I’ = {ay, . . ., o}
and neighborhoods N, of w(e;) in X,., 1 = 1,...,k,
such that p.'(No) N ... N P (Na) C N. Define a
point ' € X by setting z’(e;) = wlau), vt =1,...,k,
z'(a) = z(a) for all other « € I. Then 2’ € N so
f@') = 0. Since z(a) = z’(a) except for « € I,
f(x) = 0.

EXERCISES

1. On the real line, prove that the set of non-zero numbers is not a
connected set.

2. Let A and B be subsets of a topological space X. If 4 is connected,
B is open and closed, and A N B = @, prove that A C B. [Hint:
Assume A Z Band usethesets P = A N BandQ = A N C(B) to
prove that A is not connected.]

3. Let A and B be connected subsets of a topological space X. If
A N B = @, prove that A \U B is connected. [Hint: in the top-
ological space A U B, show by using the result of Problem 2 that
the only non-empty open and closed subset is A U B.]

4. Let A and B be non-empty subsets of a space X. Prove that A U B
is disconnected if (A N B) U (4 N B) = @. Prove that X is con-
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nected if and only if for every pair of non-empty subsets A and B
of X such that X = A\U B we have (AN B)U (AN B) = 0.

5. Prove that a space X is connected if and only if for every non-empty
subset A of X different from X we have Bdry (4) = 9.

3 CONNECTEDNESS ON THE REAL LINE

In this section we shall define the term “interval” and prove that
a non-empty subset of the real line is connected if and only if it
is either a single point or an interval.

DeFINITION 3.1 A subset A of the real line is called an interval if
A contains at least two distinct points, and if given
points a,b & A with @ < b, then for each point z
such that ¢ < z < b, it follows that z € A.

Thus, an interval contains all points between any two of its
points. It is a simple matter to verify that a closed interval [a, b]
or an open interval (a, b) is an interval in the sense of Defini-
tion 3.1. Other subsets of the real line that are intervals are
defined in Definition 3.2.

DErFiNITION 3.2 Let a be a real number. The subset of R consisting of all
real numbers z such that a < z is denoted by (a, +).
The subset of R consisting of all real numbers z such
that @ < z is denoted by [a, +=). The subset of R
consisting of all real numbers z such that z < a is
denoted by (—o, a). The subset of R consisting of
all real numbers z such that = < a is denoted by
(—w; a’]'

Let b be a second real number with ¢ < b. The
subset of B consisting of all real numbers z such that
a < z < b is denoted by (a, b]. The subset of R con-
sisting of all real numbers = such that a < z < b is
denoted by [a, b).

We shall also denote R itself by (—w, +).
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The subsets of R that have been mentioned in this section
exhaust the collection of intervals.

THEOREM 3.3 A subset A of the real numbers is an interval if and only
if it is of one of the following forms: (a,b); [a, b);
(a,b]; [a,b]; (—,a); (—=,a]; (a8 +=); [a, +);
(_°°" +°°)-

Proof. We leave it to the reader to verify that
each of these nine types of sets is an interval and shall
prove the “only if”’ part of the theorem. Suppose A is
an interval. We first note that if a point z & 4, then
either z is a lower bound of A or an upper bound of 4,
for otherwise there would be points a,b € A with
a<z<b and we would obtain the contradiction
z € A. We shall, consequently, distinguish four cases.

Case 1. A has neither an upper bound nor a lower
bound. In this case C(4) must be empty so that
A= (_oo) +e )‘

Case 2. A has an upper bound but no lower bound.
Since an interval is non-empty, A has a least upper
bound a. We claim that if z < a, then z & A. For,
suppose z < a, then there is a point ¢’ € A with
z < @’ = a (for otherwise a would not be a least upper
bound). Since z cannot be a lower bound of A there is
a point b€ A with b <z. But b <z <a' and
a’,b € A imply that £ € A. We have thus shown that
(—w, a) C A. On the other hand, for z > a, z & A.
It follows that A is either of the form (—«,a] or
(—w, a), depending on whether a € A ora & A.

Case 3. A has a lower bound but no upper bound.
By reasoning similar to that of Case 2, one shows that
A is éither of the form [a, +%) or (a, +=), where a is
the greatest lower bound of A.

Case 4. A has a lower bound and an upper bound.
Let a be the greatest lower bound of A and let b be the
least upper bound of A. Since A contains at least two
distinct points, @ < b. A point z, if it is to lie in A, must
therefore lie in [a, b], so that A C [a, b]. We claim that
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a < r < bimplies that £ € A. This implication follows
from the fact that for any such point z, there must be
points a’ and b’ witha', b’ € Aandae S o’ <z < b’ =<b.
Hence (a, b) C A C [a, b]. Consequently, 4 must be
of one of the four forms (a, b), [a, b), (a, b], or [a, b],
depending on which, if any, of the two points a, b
belong to A.

We shall now prove that apart from the empty set and single
points, the only connected subsets of the real line are intervals.

THEOREM 3.4 A subset A of the real line that contains at least two
distinct points is connected if and only if it is an interval.

Proof. We shall first show that if 4 is not an
interval then it is not connected. If A is not an
interval, then there are points a, b, ¢ with a < ¢ < b
and a,bE A, whereas cZ A. Let P = (—x,c),
Q = (¢, +=). P and @ are open subsets of the real line
that satisfy the conditions of Lemma 2.3; hence 4 is
not connected.

Conversely, we shall show that if A is not connected
then A is not an interval. If A is not connected, by
Lemma 2.4, there are closed subsets F and G of the real
line such that A CF UG, FNG C C(A) and both
F and G contain a point of A. Assume that the notation
is such that there is a point a € A N F and a point
b€ A NG with a < b. We shall find a point between
a and b that is not in A. Let & = G N [a, b]. Then
G’ is a closed non-empty subset of the real line and,
consequently, contains its greatest lower bound ¢. We
cannot have a = ¢, for then A N\ F N G # O, contra-
dicting F N G C C(A). Thus, a <c. Next, let
F' = F N [a,c). F' is also a closed non-empty subset
of the real line and therefore contains its least upper
bound d. In the event that ¢ = d we have c € F N G,
hence ¢ &€ A4 and 4 is not an interval. Otherwise d < ¢
and (d,c) N (FUG) = D,sothat (d,c) N A = @, and
again A does not contain a point between a and b and
is therefore not an interval.
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EXERCISES

1. Let f:R — R be continuous. Prove that the image under f of each
interval is either a single point or an interval.
2. Prove that a homeomorphism f:[a, b] — [a, b] carries end points
into end points.
3. Let A and B be subsets of R. A function f:A — B is called monotone
increasing if z,y € A and z < y imply f(z) < f(y).
(a) Let f:A — B be monotone increasing. Prove that f:A — B is
one-one.
(b) Let f:[a, b] — [f(a), f(b)] be monotone increasing and contin-
uous. Prove that f is a homeomorphism.

4 SOME APPLICATIONS OF CONNECTEDNESS

TueorEM 4.1 (Intermediate-Value Theorem). Let f:[a, b] — R be con-
tinuous and let f(a) # f(b). Then for each number V
between f(a) and f(b) there is a point » € [a, b] such
that f(v) = V.

Proof. [a, b] is connected, hence f([a, b]) is con-
nected and is therefore an interval. Now, f(a), f(b) €
f([a, b]). Thus if V is between f(a) and f(b), since
f([a, b]) is an interval, V € f([a, b]); that is, there is a
v € [a, b] such that f(v) = V.

Theorem 4.1 states that for each V between f(a) and f(b),
the horizontal line y = V intersects the graph of y = f(z) at some
point (v, V) with a < v < b, as indicated in Figure 12.

If the domain of a continuous real-valued function contains
an interval [a, b], then its restriction to [a, b] is continuous and
we can assert that f must assume at least once each value between
f(a) and f(b) over the interval [a, b].
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1)
V
fl@

Figure 12

As a special case of the intermediate-value theorem, namely
V = 0, we have

CoroLLARY 4.2 Let f:[a, b] — R be continuous. If f(a)f(b) < 0, then
there is an x € [a, b] such that f(z) = 0.

CoroLLARY 4.3 (Fixed-Point Theorem). Let f:[0, 1] — [0, 1] be con-
tinuous. Then there is a z € [0, 1] such that f(z) = 2.
Proof. In the event that f(0) = 0 or f(1) = 1,
the theorem is certainly true. Thus, it suffices to con-
sider the case in which f(0) > 0 and f(1) < 1. Let
¢:[0, 1] — R be defined by
g(x) = z — f(z),
(therefore, if g(z) = 0, f(z) = z). g is continuous and
g(0) = —f(0) < 0, whereas g(1) = 1 — f(1) > 0.
Consequently, by Corollary 4.2, there is a z € [0, 1]
such that g(z) = 0, whence f(z) = 2.

We may interpret this theorem geometrically. Since
f:[0,1] — [0, 1], the graph of y = f(z) is contained in the unit
square defined by 0 =2 <1, 0 <y =< 1. The point (z, f(2))
given by the theorem lies on both the graph of y = f(z) and the
line y = z. Hence the theorem asserts that the graph of y = f(z)
intersects the line ¥ = z in this square (see Figure 13), or equiv-
alently, that in order for the curve which constitutes the graph
to connect a point on the left-hand edge of the square with a
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point on the right-hand edge of the square, the curve must inter-
sect the diagonal of the square pictured in Figure 13.

Y

1

Figure 13

The reason for calling Theorem 4.3 a fixed-point theorem is
that, if we think of f:[0, 1] — [0, 1] as a transformation that
carries each point z of [0, 1] into the point f(z) of [0, 1], then to
say that f(z2) = z is to say that the transformation f leaves z
“ﬁxed.’)

There are many so-called ‘‘fixed-point”’ theorems, of which
Corollary 4.3 is undoubtedly the simplest. In general, a fixed-
point theorem is one that states that for a specified topological
space X each continuous function f:X — X possesses a fixed
point; that is, there is necessarily a z € X such that f(z) = 2.
One of the convenient facts about a fixed-point theorem is that
if X and Y are homeomorphic topological spaces and a fixed-point
theorem is true for X, then it is also true for Y.

THEOREM 4.4 Let X and Y be homeomorphic topological spaces. Then
each continuous function A:X — X possesses a fixed
point if and only if each continuous function k:Y — Y
possesses a fixed point.

Proof. Let f:X —Y and ¢g:Y — X be a pair of
continuous inverse functions. Let k:Y — Y be a con-
tinuous function so that we have the diagram
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and suppose that each continuous function 2: X — X pos-
sesses a fixed point. Then the function A = gkf: X — X
is continuous and there is a z € X such that h(z) = 2.
Let w = f(z). We have

k(w) = k(f(2)) = fg(k(f(2))) = f(h(2)) = f(2) = w.
Thus, w is a fixed point of k. Since the hypotheses are
symmetric with regard to X and Y, it also follows that
if each continuous function k:Y — Y has a fixed point
then so does each continuous function A: X — X.

Any two closed intervals [a, b] and [c, d] are homeomorphic
Since a fixed-point theorem holds for [0, 1], we obtain

CoroLLARY 4.5 Let f:[a, b] — [a, b] be continuous. Then there is a
2 € [a, b] such that f(2) = 2.

Theorem 4.3 is a special case of the ‘“Brouwer Fixed-Point
Theorem,” which we shall now state. Recall that in R*, the unit
n-cube I™ is defined as the set of points (x1, 3, . . ., Z,) Whose
coordinates satisfy the inequalities0 < z; < 1,for1 =1,2,...,n.

TuEOREM 4.6 (Brouwer Fixed-Point Theorem). Let f:I* — I be con-
tinuous. Then there is a point z € I such that f(2) = 2.

We shall not prove this theorem. However, one can supply a
very suggestive argument for the truth of the theocrem in the
case n = 2. To this end we may, on the basis of Theorem 4.5,
work with a topological space homeomorphic to I% If we think
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of I? as being a surface constructed of elastic material, we may
conceive of a deformation or stretching by which we obtain a
surface that is a disc; that is, the set of points (x,, z;) in the plane
whose coordinates satisfy the inequality 2? + 22 < 1. Thus, the
disc is homeomorphic with 7% and we may argue the validity of
the fixed-point theorem with regard to the disc.

Let g be a continuous transformation of this disc into itself.
Suppose that it were possible that for each point z of the disc,
we had g(x) # z. Then for each point z in the disc, there would
be a unique half-line L. emanating from g¢(xr) and passing
through = (see Figure 14). The half-line L, will contaim a point

Figure 1}

on the boundary of the disc other than g(x). Let us call this
point h(z). In particular, if y is a boundary point of the disc, then
h(y) = y. This is true even if g(y) itself is a boundary point, as
may be seen by examining the various cases depicted in Figure 14.
Using the given transformation g we have thus constructed a new
transformation A, which has the property that it carries each point
of the disc into a boundary point and leaves each boundary point
fixed (h is called a “retraction’ since it retracts or pulls the interior
of the disc onto its boundary while leaving the boundary fixed).
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We next argue that the transformation % is continuous, for
the image h(z) will vary by a small amount if we suitably restrict
the variation of z. Though it is by no means simple to prove that
no continuous transformation such as k& can exist, our intuition
should tell us that none can. For if there were a function such
as h we should be able to retract the head of a drum onto the rim,
although intuitively we know that we can do so only by ripping
the drum head someplace; that is, by introducing a discontinuity.
Since there is no function such as the retraction h, we have
obtained a contradiction, and therefore our supposition that g did
not have a fixed point is untenable.

Another application of the intermediate-value theorem re-
lates to the concept of antipodal points on spheres. Let us recall
that the n-sphere, S*, is the set of points (), 23, . . . , ZTay1) in R*H!
satisfying the equation z} + 2 + ... 22,, = 1, the topology of
S being the relative topology. If (z), 23, . . ., Zny1) is in S*, the

pair of points (21, 22, . . ., Zay1) and (=&, ~25, . .., —Z,y) are
called a pair of antipodal points. Given z = (2, s, . . ., Tny1) € S?,
it is convenient to denote (—x;, —%;, ..., —Zsy1) by —2z and

call —z the antipodal point of x. A pair z, —z of antipodal points
is the pair of end points of a diameter of the sphere. We shall be
particularly interested in the 1-sphere, 8!, which is a circle.
Consider a continuous function f:S'— R. If we define
F:8'— R by F(z) = f(x) — f(—z) for z € 8!, we can show

=0 ==
(@ (O) (©

Figure 156
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that F(z) = 0 for some z € S*; that is, f(2) = f(—2), or f has
the same value at one or more pairs of antipodal points. The
proof of this fact is motivated by the consideration that a value
of F is determined by a diameter of the circle and a designation
of one of its extremities as z and the other as —z. If we rotate
this diameter through = radians, as indicated in Figure 15, then
the initial value of F corresponding to Figure 15a is opposite in
sign to the final value of F corresponding to Figure 15¢. But F is
continuous, so its value must be zero for some position of the
diameter corresponding to a value of 6 with 0 < 8 < w, where
0 is the angle through which the diameter has been rotated. Thus
F(z) = 0 and

THEOREM 4.7 Let f:8' — R be continuous, then there exists a pair of
antipodal points 2z, —z € S' such that f(z) = f(—=2).

Theorem 4.7 is the case n = 1 of the Borsuk-Ulam Theorem.

TrEOREM 4.8 Let f:8* — R* be continuous. Then there exists a pair
of antipodal points 2z, —z &€ S such that f(z) = f(—2).

We shall not prove this theorem. The case n = 2 answers a
question about map making. The 2-sphere S? may be thought of
as the surface of a globe. In this case the Borsuk-Ulam Theorem
gives a negative answer to the question, ““Is it possible to draw a
map of the surface of the earth on a flat sheet of paper so that
distinct points on the surface of the earth correspond to distinet
points on the map, and nearby points on the surface of the earth
correspond to nearby points on the map?”’ The reason the answer
to this question is “‘no”’ is that otherwise the existence of such a
correspondence would imply the existence of a continuous func-
tion f:8%2 — R? that was one-one, and this possibility is ruled out
by the Borsuk-Ulam Theorem.
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EXERCISES

Prove that a polynomial of odd degree considered as a function from
the reals to the reals has at least one real root.

Let f:[a, b] = R be a continuous function from a closed interval
into the reals. Let U = f(u) and V = f(v) besuch that U £ f(z) = V
for all z € [a, b]. Prove that there is a w between » and v such that
Jw)- (b — a) = [41() dt.

Let F:R? — R be a real-valued function defined and continuous
on the plane. For each continuous function f:[a, b] — R we may
define a new continuous function Kf:[a,b] - R by setting

Kf(t) = [ "F(z, f()) dz, t € [a,b]. Thus, if S is the set of con-

tinuous real-valued functions defined on [a, b], K defines a trans-
formation of S into itself. Prove that an element g € § is a fixed
point of K if and only if g satisfies the differential equation
g'(x) = F(z, g(z)) with initial condition g(a) = 0.

Prove that the mapping p: R — S' defined by p(t) = (cos ¢, sin t) for
t € R is continuous and that therefore, for each continuous function
g:S8' — R, there is a continuous function ¢:R — R such that the
diagram

R
@

Y4

s 2 R

is commutative. Let f: 8! — R be continuous and define F:S! — R by
F(z) = f(z) — f(—z) for z € 8. Prove that (Fp)(t) = — (Fp)(t + ),
and that therefore there is a z € [0, 7] such that (Fp)(z) = 0. Then
show that if z = p(2), f(x) = f(—z), thereby proving Theorem 4.7.
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5 COMPONENTS AND LOCAL CONNECTEDNESS

In any topological space X, each point a € X belongs to a max-
imal connected subset of X called the “component of a.”

TaeorEM 5.1 Let X be a topological space. For each point ¢ € X
there is a non-empty subset Cmp(a), called the com-
ponent of a, with the property that Cmp(a) is connected
and if D is any connected subset of X containing a, then
D C Cmp(a).

Proof. There are connected subsets of X contain-
ing a for {a} is such a subset. Let I be an indexing set
for the family of connected subsets {D.} «z containing a.
We set Cmp(a) = Ueer De. Thus, if D is any connected
subset of X containing a, D = Dy for some g € I,
whence D C Cmp(a). It remains to prove that Cmp(a)
is connected. Suppose it is not. Then there are non-
empty relatively open subsets A and B of Cmp(a) such
that AN B =0 and A U B = Cmp(a). Assume the
notation is such that a € A and let b be a point of B.
Since b € Cmp(a), b € D, for some connected sub-
set D, of X containing a. Now D, C Cmp(a), hence
A'= AN D, and B’ = BN D, are non-empty rela-
tively open subsets of D,. Furthermore, A’ N\ B’ C
ANB=@ and A’ UB' =D, N (A UB) =D,.
Consequently, the supposition that Cmp(a) is not con-
nected yields the contradiction that D, is not connected.
Therefore Cmp(a) is connected.

LemMa 5.2 In a topological space X, let b € Cmp(a). Then Cmp(d) =
Cmp(a).
Proof. Since b € Cmp(a) and Cmp(a) is a connected
set containing b, by Theorem 5.1, Cmp(a) C Cmp(b). But
a € Cmp(a), hence a € Cmp(b), so, by the same reason-
ing it follows that Cmp(b) C Cmp(a) and therefore
Cmp(a) = Cmp(d).
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CoroLLARY 5.3 In a topological space X, define a ~ b if b € Cmp(a).
Then ~ is an equivalence relation.
Proof. Since {a} is connected, a € Cmp(a) so
a~a If a~b or b & Cmp(a), then by 5.2
Cmp(a) = Cmp(b). We have already seen that
a € Cmp(a), so a € Cmp(b) and b ~ a. Finally, if
a ~ band b ~ ¢, then as before, Cmp(a) = Cmp(b) =
Cmp(c), whence ¢ € Cmp(a) and a ~ ¢.

A subset of X that is a component of some point ¢ € X is
called a component of X. The components are the equivalence sets
under the relation b € Cmp(a). They constitute a partition of X
into maximal connected subsets in the sense of the following
definition.

DerFiniTION 5.4 Let X be a set and {P,}.cr an indexed family of non-
empty subsets of X. {P.}aer is called a partition of X
if:

(i) X = Uaer Pa;
(i) Ifa,BE I, a # B, then P, N\ Ps = .

TueoreM 5.5 Let A be a connected subset of a topological space X
and let A C B C 4. Then B is also connected.

Proof. We shall show that if B is not connected
then A is not connected. For suppose there are open
subsets P, Q of X such that P\ Q C C(B), BC P U Q,
PNB=® and Q N\ B = @. It would follow that
A C PUQ and since C(B) CC(4), PN Q C C(A).
To prove that A is not connected we must show that
PNA#Qand QNA=0.IfPNA=0, then A
would be contained in the closed set C(P), hence
A CCP)or PN A = Q. But this last relation would
imply that P N\ B = @. Thus, P N A # Q. Similarly,
QNA=9D.

CoroLLARY 5.6 The closure of a connected set is connected.

CoroLLARY 5.7 In a topological space, each component is a closed set.
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Proof. Let A be a component, say A = Cmp(a).
Then 4 is a connected set containing a and therefore
A C Cmp(a) = A. But 4 C 4, hence in this case
A = 4 and A is closed.

It might be thought that a component must also be an open
set, but it need not be as the following example will indicate. Let
X be the subspace of the real line consisting of the points 0 and

1 e
all numbers of the form na positive integer. The only con-

nected set containing 0 is {0}, thus Cmp(0) = {0}. On the other
hand {0} is not a neighborhood of 0 in X and hence {0} is not an
open subset of X.

A sufficient condition for the components in a space to be
open is that the space be “locally connected.”

DeriniTION 5.8 A topological space X is said to be locally connected at
a point a € X if each neighborhood N of a contains
a connected neighborhood U of a. A topological
space X is said to be locally connected if it is locally
connected at each of its points.

LemMa 5.9 Let X be a locally connected topological space and let @ be
a component. Then @ is an open set.

Proof. Let a € Q. Since X is locally connected there
is at least one connected neighborhood N of a. But
Q = Cmp(a), hence by Theorem 5.1, N C Q, which, in
turn, implies that @ is a neighborhood of a. Thus, @ is a
neighborhood of each of its points and therefore Q is open.

If X is locally connected at a then there are ‘“‘arbitrarily
small” connected neighborhoods of a, for, given any neighbor-
hood N of a, there is a connected neighborhood U C N that is
at least as “small”’ as N. An equivalent formulation of local con-
nectedness is obtained by utilizing the concept of basis for the
neighborhoods at a.
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Lemma 5.10 A topological space is locally connected at a point a € X
if and only if there is a basis for the neighborhoods at a
composed of connected subsets of X.

Proof. First, suppose that X is locally connected
at a and let U, be the collection of connected neighbor-
hoods of a. Since every neighborhood N of a contains an
element of U,, U, is a basis for the neighborhoods at a.
Conversely, if there is a basis U, for the neighborhoods
of a consisting of connected sets, each neighborhood N
must contain an element of U, and therefore X is locally
connected at a.

EXERCISES

1. Prove that a non-empty connected subset of a topological space
that is both open and closed is a component.

2. Let X be a topological space that has a finite number of components.
Prove that each component of X is both open and closed.

3. Verify that local connectedness is a topological property, but the
continuous image of a locally connected space need not be locally
connected.

4. Let X and Y be homeomorphic topological spaces. Prove that any
homeomorphism f: X — Y establishes a one-one correspondence be-
tween the components of X and the components of Y.

5. Prove that the product of two locally connected topological spaces
is locally connected.

6. Prove that Euclidean n-space R* and the standard n-cube I are
locally connected.

6 PATH-CONNECTED TOPOLOGICAL SPACES

In the three-dimensional geometry of the calculus, one often dis-
cusses a curve in terms of a parametric representation, usually
written z = f(t), y = g(t), z = h(t). If not stated explicitly, it is
generally understood that the three functions f, g, k are at least
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continuous, if not differentiable over some common interval [a, b]

as their domain, and therefore F(t) = (f(t), g(¢t), h(t)) defines a
continuous function F:[a, b] — R2. The curve in question is, from
this viewpoint, the image of [a, b] under F; that is, F([a, b]). We
may think of this curve as “connecting”’” the two points F(a) =

(f(a), 9(a), h(a)) and F(b) = (f(b), g(b), h(b)). Given two points
A, B € R?, the question of whether or not there is a curve ‘“‘con-
necting”’ A and B is therefore seen to be the same as the question
of whether or not there is a continuous function F:[a, b] — R?
such that F(a) = A and F(b) = B. Furthermore, the interval.
[a, b] may just as well be restricted to [0, 1], for using any
homeomorphism ¢:[0, 1] — [a, b], one may show that the re-
quired F:[a, b] —» R® exists if and only if a corresponding
G = F¢:[0, 1] — R? exists. These observations motivate the fol-
lowing two definitions:

DeriniTION 6.1 Let X be a topological space. A continuous function
f:[0,1] — X is called a path in X. The path f is said
to connect or join the point f(0) to the point f(1).
f(0) is called the snitial point and f(1) is called the
terminal point of the path f.
If fis a path in X, f([0, 1]) is called a curve in X.

DerFinITION 6.2 A topological space X is said to be path-connected if,
for each pair of points u,v € X, there is a path f
connecting u to v.
A non-empty subset A of a topological space X
is said to be path-connected if the topological space A
in the relative topology is path-connected.

The real line R is a path-connected space, for if a, b are two
real numbers, the path f:[0, 1] — R defined by
f) =a+ (b —a)t

for ¢t € [0, 1] connects f(0) = a@ and f(1) = b. R is also path-
connected. This may be seen by either joining a given pair z, y
of points of R* by a path, or by using the general result that if
X and Y are path-connected spaces, then so is X X Y (see Exer-
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cise 5 of this section). Another significant class of path-connected
spaces is the spheres, S*, n > 0.

A path f in a topological space X whose initial and terminal
points coincide is called a closed path or a loop in X. Though such
paths play a significant role in topology, we shall not be con-
cerned with them in this section.

If f is a path in a topological space X and g is a continuous
mapping of X into a second topological space Y, then the com-
posite function gf:[0,1] — Y is a pathin Y.

TureoreMm 6.3 Let Y be a topological space. If there exists a path-
connected topological space X and a continuous map-
ping g: X — Y, which is onto, then Y is path-connected.

Proof. Leta,b &€ Y.Sinceg:X — Y is onto, there
are points a’, b’ € X such that g(a’) = a, g(b') = b.
Since X is path-connected, there is a path f in X joining
a’ to b’ and, consequently, the path gf joins a to b.

Note the necessity of the requirement that g: X — Y be onto.
It follows that given homeomorphic topological spaces X and Y,
X is path-connected if and only if Y is path-connected. Thus,
path-connectedness is a topological property.

Path-connectedness is a stronger property than connected-
ness; that is, if a topological space X is path-connected then X is
connected.

THEOREM 6.4 Let X be a path-connected topological space, then X is
connected.

Proof. Suppose X were not connected. Then there
is a proper subset P of X which is both open and closed.
Since P is proper, there is a point ¢ €& P and a point
b € C(P). Let f:[0,1] > X be a path from a to b.
f~Y(P) is a proper subset of [0,1] for 0 E f-'(P),
1 & f~'(P). Since f is continuous, f~!(P) is both open
and closed. But this contradicts the fact that [0, 1] is
connected. Therefore X is connected.
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The converse of Theorem 6.4 is false. A counter-example to
the converse, that is, a topological space that is connected but
not path-connected, is the subspace of the plane consisting of the
set of points (z, y) such that either

z=0, —-1=5y=s1l,
or

0<z<1, y=-cos—
z
One may obtain some idea of this space by referring to Figure 15,

where we have tried to show the main characteristics of this space.
It is impossible to picture this space completely, for, as the values

ol 1
W=+
-t

Figure 16

of z approach 0, the oscillation of the graph y = cosg becomes

more and more rapid.
It is not difficult to prove that this space is connected. First
of all let us decompose this space into two subsets Z, and Z,,
where Z, is the set of points (0,y), —1 < y = 1, on the Y-axis,
and Z, is the complementary set consisting of those points (z, y),
™

0<z=1andy = cos g The function F(t) = (t, cos t) defines

a continuous mapping of the connected interval (0, 1] onto Z,,
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hence Z, is connected. To prove that the entire space Z = Z, U Z,
is connected, we shall prove that Z, = Z; that is, Z, C Z,. This
is so because there are points of Z, arbitrarily close to each point
of Z,. For, let (0,y) € Z, and let € > 0 be given. We may find

. 1
an even integer N sufficiently large so that <& Now

cos 1—;17 = 1and cosm = —1, hence by the intermediate-

value theorem there is a number ¢ € I:IV_-II-—I’ ]lV] such that

cos"—tr = y. The point (t, cos 1—;) is in Z, and its distance from

(0, y) is less than e. Thus Z, C Z, and Z, is the entire space Z.
By Corollary 5.6, Z is connected.

Now suppose there was a path F:[0,1] — Z with initial
point F(0) = (0, 1) € Z, and terminal point F(1) = (1, —1) € Z,.
Let us write F(t) = (F,(t), F5(t)). Then F, and F, are continuous
functions and F,(0) = 0, F,(1) = 1. The set U = F,"*({0}) is a
closed bounded subset of the real numbers and hence contains its
least upper bound ¢*. Since F,(1) = 0, t* < 1. We shall show that

. . ™
because of the oscillation of cos p for values of = close to zero,

the function F, cannot be continuous at t*. For each value of ¢
such that t* <t <1 we have F,(t) > 0, hence F(t) € Z, and

Fq(t) = cos E% We shall show that for each 6 > 0 with

t* + 8 < 1, there is a value of ¢ such that [t* — {| < 6 whereas

|Fe(t*) — Fo(t)| = 1. First Fi(t* + 6) > 0, hence there is an even
1 1

. . *) —_— —

integer N sufficiently large so that F,(t*) = 0 < N+1 <y <

F,(t* 4+ ). By the intermediate-value theorem we may find

u, v € [t¥, t* 4+ 8] such that F(u) = Fi(v) = N Since

N +1 + r
u,v > t*wehave Fo(u) = cosF( ) =cos(N+ )mr = —1, Fy(v) =

cos 7o~ = cos Nm = 1. Thus, if Fo(t*) 2 0, |Fo(t*) — Fa(w)| 2
Fy(v)
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1 = ¢, whereas if Fy(t*) < 0, |Fo(t*) — Fa(v)| =2 1 = ¢. This con-
tradicts the continuity of F, at ¢t*. Thus no path such as F exists
and therefore our space Z is not path-connected.

EXERCISES

1. Prove directly by constructing appropriate paths that the top-
ological spaces R», I" (the unit cube), and S*(n > 0) are path-
connected.

2. Verify that in a topological space X

(i) if there is a path with initial point A and terminal point B,
then there is a path with initial point B and terminal point 4, and
(ii) if there is a path connecting points A and B and a path connect-
ing points B and C, then there is a path connecting points A and C.

3. The path component of a point z in a topological space X is the set
of all points of X that may be connected to z by a path in X. Denote
this subset by PCmp(z). Verify:

(i) for each 2z € X, z € PCmp(z);

(ii) for each z, y € X, if y € PCmp(z), then £ € PCmp(y);
(iii) for each z,y, z € X, if y € PCmp(z) and 2 € PCmp(y), then
z € PCmp(z);
(iv) for each z € X, PCmp(z) is path-connected;

(v) if A is a path-connected subset of X, then A C PCmp(z) for
somer € X.
(vi) X is path-connected if and only if X = PCmp(z) for some
z € X.

4. If A and B are path-connected subsets of a topological space X and
A N B @, then A U B is path-connected.

5. Let {X,}aca be an indexed family of topological spaces and set
X = Nuea X, For each o € A let fo:] — X, be a path in X,. Set
(Fa@®)) (@) = fe(t) so that fo:I — X. Prove that f, is a path in X.
Prove that if each X, is path-connected, so is X.

6. Let X be a topological space, and let TX and SX be the cone over
X and the suspension of X respectively. Prove that TX and SX are
both path-connected.
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7 HOMOTOPIC PATHS
AND THE FUNDAMENTAL GROUP

The collection of points on and between the two concentric circles
224+ y? = 1 and 2% + y? = 2 is called an annulus. It is easy to
see that this annulus is path-connected. For example, given two
points po = (%o, ¥o) and p1 = (z1, 1), one may construct a path
from p, to p; by first traversing the radius on which p, lies until
we reach a point whose distance from the origin is the same as
that of p, and then traversing in a clockwise direction the circular
arc from this point to p, (see Figure 17). Let us call this path F,.
Alternately, one may construct a second path F, from p, to p,,

Figure 17

by first traversing in a clockwise direction a circular arc from
Do to the radius on which p, lies and then traversing this radius
until p, is reached. If, for the moment, we think of each of these
two paths Fy, and F, as being represented by elastic strings with
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initial point p, and terminal point p,, it is clear that in a given
unit of time it would be possible to smoothly deform the path F,
into the path F, (keeping p, and p, fixed throughout the deforma-
tion). This deformation might be carried out so that at time ¢ =

F

AN

"
Figure 18

the string lies over the curve F,; of Figure 18, at time ¢t = 1 the
string lies over F,j, and at time ¢ = 2 the string lies over Fj,.
We may thus conceive of the deformation of the path F, into the
path F, as being accomplished by constructing an entire family
of paths F, for 0 < ¢ = 1, such that if ¢t and ¢’ are close then the
paths F, and F, are “close.”

The concept of regarding two paths as being “close’” implies
the introduction of some sort of topology in this set of paths.
Although this topology might be introduced directly by defining
open set or neighborhood in the set of paths, an easier procedure
is first to regard the unit of time as a unit interval on a line.
Instead of viewing the two original paths F, and F; as being
defined on the same unit interval, let us view F, as temporarily
being defined on the homeomorphic image I, of the unit interval,
where I, is the set of points (z, 0) in the plane with 0 < z = 1
(see Figure 19). Similarly, let us view F, as being defined on I,
where I, is the set of points (x,1), 0 < z < 1. For each value
of t, 0 £ t < 1, we may view the path F, as being defined on the
homeomorphic image of the unit interval I,, where I, is the set
of points (z, t), 0 < = = 1. If we have such a situation, we may
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define a function H:1? — X, where I? is the unit square and X is
our annulus, by setting H(z,t) = F.(z,t), as depicted in Fig-
ure 19. Equivalently, if we insist on viewing each path F, as

F
Il /———\‘
Do
I,
¢ F,
| : o
I Fy

Figure 19

being defined on the same unit interval I, we may still obtain
the same function H by setting H(z,t) = F,(x). We now intro-
duce the concept of closeness amongst paths by requiring that
the function H:1? — X be continuous.

DEFINITION 7.1 Let Fy, F be two paths in a topological space X with
the same initial point po = Fo(0) = F1(0) and the
same terminal point p; = Fo(1) = Fy(1). F, is said to
be homotopic to F, if there is a continuous function
H:I? - X such that

HO, ) =p, O0<t=],
H(l,t)=p1, Oétél)
H($,0)=F0(Z), Oéx_s.l)
H(z,1) = Fy(z), 0=z =< 1.

The function H is called a homotopy connecting F,
to Fi.

In this event we say that the path F, is deformable into the
path F, with fixed end points. One may illustrate the fact that a
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path F, is homotopic to F; by indicating that I2 is the domain of

the homotopy H, where the boundary of I? is mapped in agree-
ment with the conditions of Definition 7.1 (see Figure 20).

F,

F,

Figure 20

The relation of homotopy between paths satisfies the follow-
ing three properties.

TueoreM 7.2 Let Fy, F,, F; be three paths in a topological space X
with the same initial point p, and the same terminal
point p;.
(i) F,is homotopic to itself.

(i) If F, is homotopic to F, then F, is homotopic
to F.

(iii) If Fo is homotopic to F; and F, is homotopic
te Fp then F, is homotopic to Fs.

Proof. To show that F, is homotopic to itself we
need only define H:I? —» X by H(z,t) = Fo(z). Next,
suppose that Fy is homotopic to F, so that there is a
homotopy H:I? — X from F, to F:. For each (z, t) € I?,
set H'(x,t) = H(z, 1 — t). Then H’ is easily seen to be
a homotopy from F; to Fo. To prove (iii), first let G be
a homotopy from F, to Fy and let H be a homotopy from
F, to F,. We may construct a homotopy from F, to Fe
in stages. First, we alter H to a function H' defined
for (z,t') with 1 £ ¢ < 2 so that G and H’ together
constitute a function K’ defined for (z, t) with0 £ ¢t < 2.
Finally, we compress K’ to a function K again defined
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B
41
1[— bx
& A %
0
1
G X 0

ok \/’

1
F

5

KI

X

Figure 21

00 \1/ F

)
F,
F,

on I%, The diagrams of Figure 21 depict this process.
To this end let H'(z,t') = H(z,¢' — 1), 0 <z < 1,
1 =¢ =2 We then have two functions G and H’,
G defined on the subset A = I? of the plane and H’
defined on the subset B consisting of the points (z, t)
such that 0 Sz <1 and 1S¢<2 Theset ANB
consists of the points (z, 1), 0 £ z < 1 and therefore we
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have G(z, 1) = Fi\(z), H'(z, 1) = H(z, 0) = Fi(z); that
is, G and H’ agree in their common domain of defini-
tion. We shall now prove a lemma that asserts that

together G and H’ define a continuous function
K':AUB—>X.

LEmMma 7.3 Let A, B be closed subsets of a topological space Z. Let
g:A — X and h:B — X be continuous functions with the
property that for 2 € A N B, g(z) = h(z). Then the
function k:A U B — X defined by k(z) = g(z), z € A4,
k(z) = h(z), z € B, is a continuous extension of g and .

Proof. Let U be a closed subset of X. Then g~'(U) is
a relatively closed subset of A and, since A is closed,
g}(U) is a closed subset of Z. Similarly, h~1(U) is a closed
subset of Z. But k-1(U) = g~«(U) U h1(U), hence k~1(U)
is closed and k is continuous.

Continuing now with the proof of Theorem 7.2, the
function K’:4A \U B — X defined by K'(z,t) = G(z, 1),
x,t) €A, K'(z,t) = H'(z,t), (z,t) € B is continuous.
We finally “compress” K’ to the function K:I? — X de-
fined by K(z,t) = K'(z, 2t), (z,t) € I®. To recapitulate,
for (z,t) € I* with 0 < ¢ < 3, we have

K(z,t) = K'(z, 2t) = G(z,2t), 0=t=34,
whereas for § <t < 1, we have
K(z,t) = K'(z,2t) = H'(z,2t) = H(z,2t — 1), $st=<1.

From these two equations it follows that K(0, t) is the
initial point of Fy and F,, K(1,¢) is the terminal point of
Fy and F,, and that K(z, 0) = G(z, 0) = Fo(z), whereas
K(z,1) = H(z, 1) = Fy(z). Therefore K is a homotopy
from F, to F,. This completes the proof of Theorem 7.2.

If F is a path that is homotopic to a path G we shall write
F =~ @. Theorem 7.2 then states: (i) Fo = Fy; (ii) if Fo = F, then
F, > F,; (iil) if Fo = F, and F, = F, then F, = F,. Thus = is an
equivalence relation. We shall denote the equivalence class of a
path F by [F}.
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DEeFINITION 7.4 An equivalence set of homotopic paths is called a
homotopy class of paths. At a point 2z in a topological
space Z the collection of homotopy classes of closed
paths at z is denoted by II(Z, z). Among these ho-
motopy classes there is the homotopy class {e,], where
e, is the constant path defined by e,(f) = 2,0 <t < 1.

The remainder of this section will be devoted to showing
that there is a natural procedure whereby II(Z, z) may be con-
verted into a group with {e.] as its identity.

DerintTioN 7.5 Let F,G:1 — Z be closed paths at z € Z. Define
F-G:I1>Zby
(F-G)(t) = F(2¢),
(F-G)(t) = G2t — 1),

A A
e

Since F(1) = G(0) = 2, by Lemma 7.3 F-G is a closed
path at z. F-G is called the product or concatenation of F and G
or F followed by G. We will now show that this product induces
a product in II(Z, 2).

Lemma 7.6 InII(Z,2) let [F]} = [F']} and {G]} = {G’], then {F-G] =
{F’'-G'1.

Proof. Wearegiven homotopies K, L: 12— Z connect-
ing F to F’ and G to G’ respectively. In effect, a concat-
enation of the homotopies K and L yields a homotopy
connecting F-Gto F’'-G'. Let H(t,s) = K(2t,5),0 <t <},
and H(t,s) = L(2t — 1,5), £ <t < 1. Since K(1,s) =
L(0, s) = z, Lemma 7.3 shows that H is continuous, while
H(,0) = (F-G)®), H, 1) = (F'-G')(¢t), and H(0,5) =
H(Q,s) =z

Derinrrion 7.7 In I(Z, 2) let {F]-[G] = [F-G].
Lemma 7.8 [F}-{e.} = {e.}-[F} = [F} for all {[F} € 1I(Z, 2).

Proof. We shall first show that {F}-[e.} = [F}. De-
fine H:1* — Z by
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2t
H(t,s) = F(m), s 2t — l,
H(, s) =z, s =2 -1
If t,s) € I? and s = 2t — 1, then s-2|-tl = 1. Thus, by

Lemma 7.3, H is continuous. If s = 1 then s = 2t — 1
and H(t,1) = F(¢). If s = O then for 0 < ¢t < 1 we have
8= 2t — 1 so that H(t,0) = F(2t) while for £ St =1
we have 2t — 1 = s so that H(t, 0) = e,(t) = z. There-
fore H(t,0) = (F-e.)(t) and H connects F-e, to F.

To show that {e,}-[F] = {F], we define H(t, s) = =
for s 2 2t and H(t,s) = F (22‘ —
similar fashion show that H connects F, to e, F.

) for s £ 2t and in

The apparent complexity of the expressions for the homo-
topies H in these two cases is explained by the use of the following
two Figures. In Figure 22 we have projected the point (¢, s) € I?
with s = 2¢ — 1 onto the point (¢, 1) € I*from the point (0, —1).
In this fashion as s goes from 0 to 1 the interval (£,0),0 = ¢t < 3
is gradually enlarged until it becomes the interval (¢, 1),

t .
0 =t = 1. By analytic geometry ¢ = %1 By setting

H(t,s) = F (s_it_l) we have arranged matters so that for a

s+1

fixed s the interval (¢,5),0 =t <

as to trace out the same path as F. Finally the interval

8 42- ! =< t < 1 is mapped into z. Thus we have started out along

is mapped in such a way

the interval (¢,0), 0 < ¢t < 1, mapping this horizontal interval
by F-e, and gradually, as s increases, increased the length of the
horizontal interval mapped using F and decreased to zero the
length of the horizontal interval mapped by e,.
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(t, 1) ,2)

[/ ]
e //‘ { s)

(t 0)

(01 - 1)

Figure 22 Figure 23

Similarly, using Figure 23, the projection of the point

(t, s) € I? with s < 2t onto the point (¢/,0) = (22t 3 ) from

the point (1, 2) results in gradually contracting the 1nterva1 (¢, 0),
0 =t = 1, into the interval (¢, 1), = ¢ = 1.

DEerFINITION 7.9 Let F:I — Z be a path. Define F-1:I — Z by F-1(t)
=F(1 —1t).

If F is a path from 2z to y then F~! is a path from y to z. In
particular if F is a closed path at z then F~! is also a closed path
at z which may be thought of as F traversed in the opposite sense.

Lemma 7.10 For each [F] € 1I(Z, 2), {F}-{F} = {F'}-[F} = {e.}.

Proof. We must show that F.F!'2¢ = F-1.F,
To show that F-F-1=2e, define H:12 — Z as follows:

H(t, s) = F(2t), s =2

H(, s) = F(s), s<2ands = —2t+ 2;

H(t,s) =F2 —2t), s= —2t+ 2.
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Since the various definitions of H agree when s = 2{ and
s = —2t+ 2, H is continuous. By setting s = 0 and
s = 1, H is easily seen to be a homotopy connecting e,
to F-F-'. Interchanging the roles of F and F-! yields a
homotopy connecting e, to F—1-F.

Figure 24 may be used to explain the construction of the
homotopy H. We have marked the upper and lower edges of I2

s=2t s=—2t42

Frgure 2/

with the symbols for paths to indicate how the mapping H behaves
along these edges. Let F,(t) = H(¢, s). The path F, starts out by
tracing the path of F at twice its normal rate until s = 2t where-
upon it remains stdtionary at F(s) until s = —2¢ + 2. The
path F, then returns to z backwards along this portion of the
path of F, again at twice the normal rate.

We have thus shown that every element of II(Z, z) has an
inverse. To complete the proof that II(Z, z) is a group we must
show that the product is associative.

Lemma 7.11 ([F}-{GD)-{K] = {F}- ({IG}-{KD for all {F}, {G}, {K] €
(Z, 2).

Proof. We must show that (F-G)-K = F-(G-K).
We define H:1?* — Z as follows:
4
H(t,s)—-F(H__'l), 4t—'1§8,
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H({ s) =G4t —s— 1), 4 —-—2=s=4-1,
— 2s
H(t,s) _K(2—s —1), sS4t — 2

The various definitions of H agree when s = 4¢ — 1 and
s = 4 — 2 so H is continuous. Again by setting s = 0
and s = 1it is easily seen that H is a homotopy connect-
ing (F-@)-K with F-(G-K).

In Figure 25 we have illustrated the homotopy H. A point
(¢, s) with 4¢ — 1 < s is projected from (0, —1) onto the point

!

t t
(m, )whlch by (F-@G)- K is mapped into ((F-G)-K) (s T 1)

G

Figure 25

=F (s T 1) Points (¢, s) with 4¢ — 2 < s < 4t — 1 are paral-

lel projected onto (‘LL‘I——S, 0) which by (F-G)-K are mapped

into ((F-@)-K) (4t 4_ s) = (I(4t — s — 1). Finally a point (¢, )

withs < 4t — 2is projected from (1, 2) onto the point (g———t ___ :, 0)

which by (F-G)-K is mapped into ((F-G)-K) (3“_‘ :) =

4t — 2s
K(zB )
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EXERCISES

1. Let X, Y be topological spaces and f: X — Y be a continuous func-
tion with f(z) = y. Let g and g’ be closed paths at x & X. Prove
that fg = fg’ whenever g =2 g’. Set f+[g] = {fg}. Prove that fx is a
homomorphism from II(X, z) to II(Y, y).

2. The category of topological spaces with base points has as its objects
pairs of the form (X, z) where X is a topological space and z € X
and has as its mappings functions f:(X, z) — (Y, y) such that
f:X — Y is a continuous function and f(x) = y. Set Fi(X, z) =
II(X, z) and Fy(f) = f, as defined in Exercise 1. Prove that (Fy, F,)
is a functor from the category of topological spaces with base points
to the category of groups and homomorphisms as defined in Sec-
tion 9, Chapter 3.

3. Two groups G and G’ are called isomorphic if there are homomor-
phisms h2:G — @ and h':G’ — G such that h'h is the identity
mapping of G and hh’ is the identity mapping of G’. Prove that if
f:X — Y is a homeomorphism of the topological space X with the
space Y such that f(z) = y then II(X, z) is isomorphic to II(Y, y).

4. Let A be a subspace of a topological space X. If there is a contin-
uous function 7:X — A such that r(a) = a for all a €E A, 4 is
called a retract of X and r is called a retraction, i.e., ri = 14 where
1:4 — X is the inclusion map and 1, is the identity mapping of A.
Let a € A. Prove that if r:X — A is a retraction then
14:11(4, ag) = II(X, ao) is one-one and 7,:1I(X, a)) — II(4, ao) is
onto. Prove that a circle on the boundary of an annulus is a retract
of the annulus.

5. Two continuous functions f, g:X — Y are said to be homotopic if
there is a continuous function H:X X I — Y such that H(z, 0) =
f(x), H(z, 1) = g(z). If furthermore for some z, & X we have
H(zo, 8) = f(xo) = g(x), s € I, they are said to be homotopic rel x,.
Let f,9:X — Y be homotopic rel z, and let p:I — X be a closed
path at z,. Set K(t, s) = H(p(?), s). Prove that K is a homotopy
connecting fp to gp and that therefore f, = g,.

6. A subspace A of a topological space X is called a deformation retract
rel 2, of X if there is a retraction 7: X — A such that ir: X — X is
homotopic rel z, to the identity map of X where ¢ is the inclusion
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map. Prove that in this case II(4, a,) and II(X, a,) are isomorphic.
Prove that the center zo of a closed disc is a deformation retract
rel z, of the disc. Let C be the circular boundary of a closed disc D.
Prove that if II(C, ¢) contains more than one element then C cannot
be a retract of D.

8 SIMPLE CONNECTEDNESS

DerFiniTION 8.1 A topological space Z is said to be simply connected if
at each point z € Z there is only one homotopy class
of closed paths.

Thus if Z is simply connected, at each point z € Z the funda-
mental group II(Z, z) consists of precisely the identity element

1
§/
4

1

2

%
N7

0

Figure 26

fe.}. In this case there is for each closed path f at z a homotopy
H:I* — Z which deforms f into the constant path e,, as depicted
in Figure 26. The possibility of carrying out the deformation
corresponds to the fact that the curve traced out by f does not
enclose any holes in the space Z.

One can prove that an annulus is not simply connected, for,
although a closed path such as C, (see Figure 27) is homotopic
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to a constant path, a closed path such as C, is not homotopic to

a constant path.
I

Ce

Figure 27

THeoREM 8.2 Let Z be a path-connected topological space and let
2 € Z. Z is simply connected if and only if there is
exactly one homotopy class of closed paths at z.

In order to prove this theorem we must develop a procedure
for comparing the homotopy classes of closed paths at different
points.

DeFiNiTION 8.3 Let f be a path in a topological space Z with z = f(0)
and y = f(1). Let g be a closed path at y. Define
gr:l — Z by

g:(t) = f(3¢1), 0
gr(t) = g(3t — 1), ;

t
t
(&) = f3 — 31), t

IA TIA TIA
A IA IIA
= W eopes
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g is a closed path at z which is constructed in accordance
with Figure 28. In particular if g is the constant path e, the

f g Vi

0

[N
wolto ¢

Frigure 28

same homotopy used in the proof of Theorem 7.10 shows that
(eu)j‘ %’ €;.

Lemma 84 Let [g} = {¢'} € (Z, y), then {g/} = [/} € T(Z, 2).

Proof. Let K:I?— Z be the homotopy connecting
g to ¢’. Define H:I? — Z as follows:

H(t)s)=f(3t)y Oété%
H(t98)=K(3t_1)s)) %ét§%
H(, s) = f(3 — 31), i=st=sl

In the usual fashion one verifies that H is a homotopy

connecting g; to g/.

We may picture the homotopy H as being constructed in
accordance with Figure 29. The homotopy K has been contracted
by a factor of 3 on the t-axis so that it can occupy the middle
strip of 1%, while the first and third segments of each horizontal
line are appropriately contracted repetitions of f and f~. In fact,
if f’ is homotopic to f it is easily seen that using a contraction
of this homotopy to map the first strip and the reverse to map
the third strip we can obtain a homotopy connecting g, and g;..
We have thus shown:

Lemma 8.5 Let f and f/ be homotopic paths with f(0) = f/(0) = 2
and f(1) = f'(1) = y. Then for {g} € II(Z, y), {g;} = {9}

153



Ch. 4 Connectedness

f 4q
f | K| f?
f g I

Figure 29

DeriniTION 8.6 Let f:I — Z be a path with z = f(0) and y = f(1).

For g} € 11(Z, y) set a/(Ig}) = Ig/}.

ProrosrTioN 8.7 a;:1I(Z,y) > I(Z,2) is a homomorphism and if

f=2f' then as = ay.

Proof. Since (e,); =2 e,, as carries the identity
of II(Z, y) into that of II(Z, z). We must show that

a;(lg}-{rD) = (as(IgD) - (as([RD)

for {g}, {2} € TI(Z, y). Now a,({g}-1r]) = a,(Ig-R}) =
[(g-2)s} and (a,({gD) - (a,(T2D)) = {gs1-Th} = gs-As}-

f g st f b g

fog kb f
Faigure 30

Thus we must show that (g-k); = g;- hy. In Figure 30
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we have indicated how I? can be mapped along the
lower edge by (g-h); and along the upper edge by
gr-hy. By now the procedure for constructing the
appropriate homotopy should be clear. The last part
follows from Lemma 8.5.

THEOREM 8.8 a;:1I(Z, y) — II(Z, z) and ap+:1I(Z, z2) — II(Z, y) are in-
verse functions.

Proof. Suppose {g] € II(Z, y). Figure 31 shows

how (g;)/- is defined. Again a slight modification of the

construction used in Lemma 7.10 provides a homotopy

.05 95 f

0

col-
ol
P

Figure 31

connecting (g7)s to g. Thus ap(as(IgD) = {(gn)-] = g}
Similarly asas- is the identity.

If Z is path-connected and II(Z, y) consists of a single
element {e,], then for any point z € Z there is a path f from
z to y and II(Z, 2) = a;(II(Z, y)) is also a single element. Thus
Theorem 8.2 is a corollary to Theorem 8.8.

A homomorphism a:G — G’ of a group G into a group G’
which has an inverse is called an tsomorphism and G and G’ are
said to be tsomorphic. In this event a is one-one and onto. The
relation @ is isomorphic to G’ is an equivalence relation. Theo-
rem 8.8 therefore states that in a path-connected space the funda-
mental groups at any two points are isomorphic.

EXERCISES

1. An isomorphism of a group G with itself is called an automorphism.
Let f and f’ be paths in a space Z with f(0) = f'(1) = z and
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f(1) = f'(0) = y. Let f'-f~1 be the path defined by (f'-f~)(t) =
fl@), o0st=3 (f-fHO=r"2-1), $ =t=1 Prove
that apa; is an automorphism of II(Z, y) such that ara/(Jg]) =
L' -f~1-ok-15 -1

2. The fundamental groupoid of a space Z has as its objects the points
of Z and as its maps H(z, y) the homotopy classes of paths from
2 to y. Define a rule of composition H(z, y) X H(y, w) — H(z, w) so
that the fundamental groupoid of Z becomes a category. Prove that
foreach o € H(z, y) thereisan element o! € H(y, z) witha™la = 1,
and aa! = 1,. Let f:Z — W be continuous. Let F,(z) = f(z) and

Fo([gh) = [fg] for {g} € H(z, y). Prove that (Fy, F,) is a functor
from the fundamental groupoid of Z to that of W.

3. Prove that a product of simply connected spaces is simply connected.
4. Prove that for each positive integer n,R» and I are simply connected.

For further reading, in addition to the more general texts,
Wall, A Geometric Introduction to Topology, Chinn and Steenrod,
First Concepts of Topology, Massey, Algebraic Topology: An Intro-
duction, and Wallace, Introduction to Algebraic Topology are highly
recommended.
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CHAPTER 5

Compactness

1 INTRODUCTION

A closed and bounded subset A of the real line R is character-
ized by the fact that for each collection {O.}.cr of open subsets
of R such that A C Uwuer O, there is a finite subcollection
04 O,y . . ., 0, with A C Ql O... This second property is stated
in terms that are applicable to any topological space. If this prop-
erty holds in a particular topological space, the space is said to
be “compact.” The closed and bounded subsets of R* are precisely
the compact subspaces of R*. This fact can be either proved
directly or established by proving that the product of two com-
pact spaces is itself compact. In metrizable spaces there is an
alternate formulation of compactness; namely, that each infinite
subset has a ‘“point of accumulation.”

Compactness, like connectedness and arcwise connectedness,
is a “global” property, in that it depends on the nature of the
entire space. The advantage in compact spaces is that one may
study the whole space by studying a finite number of open sub-
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sets. We shall see this when we prove that a continuous function
f:X — Y from a compact metric space X to a metric space Y is
‘“uniformly continuous.” In conclusion we shall examine some
compact surfaces that may be formed by ‘“‘identifying”’ edges of
a rectangle.

2 COMPACT TOPOLOGICAL SPACES

DEerINITION 2.1 Let X be a set, B a subset of X, and {A.}.cr an in-
dexed family of subsets of X. The collection {A.}acr
is called a covering of B or is said to cover B if
B C User Ao If, in addition, the indexing set I is
finite, {Aq}acr is called a finite covering of B.

Let X be a topological space and for each z € X let N,
be a neighborhood of . Then {N.}.cx is a covering of X. For
each integer n, let A, = [n,n + 1]. Then {A,}.cz, where Z
is the set of integers, is a covering of the set R of real numbers.
Similarly, if for each ordered pair (m, n) of integers we let A »
be the set of points (z;, z;) € R? such that m < 2, < m + 1,
n <1, <n+ 1, then {An .} mmezxz is a covering of R% As a
final example of a covering, let X = R and let B = (0, 1]. If we
set A, = (3,2), 4. = 4, 1), As = (1, 3), and in general, for each
positive integer n > 1, set 4, = (—n _}_ =1 l 1), then {An}nen,
where N is the set of natural numbers, is a covering of B.

DrriniTioN 2.2 Let X be a set and let {A.}«cr, {Bs}scs be two cover-
ings of a subset C of X. If foreacha & I, A, = Bs
for some 8 € J, then the covering {A.}«er is called a
subcovering of the covering {Bg}secy.

Thus {A.}.er is a subcovering of {Bs}ses if “every Aq is a
Bs.” In particular, if {Bs}ses is a covering of a subset C, and I is
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a subset of J such that {Bs}se:r is also a covering of C, then
{Bs}scr is a subcovering of {Bs}secs. Let Q be the set of rational
numbers and for each ¢ € Q, set B, = [q, ¢ + 1]. Then {B,}.co
is a covering of the real numbers R. If again we let Z be the set
of integers and A, = [n,n + 1], then {A,}.ez is a subcovering
of {B,}co-

Suppose that f: X — Y is a continuous function from a top-
ological space X to a metric space Y. Given € > 0, the continuity
of f gives rise to a covering of X in the following manner. For each
z € X, given this € > 0, there is an open neighborhood U, of z
such that the images under f of all points of U. are within ¢ of
f(z), or equivalently, f(U,) C B(f(z);€). The family {U.}.cx of
these subsets of X is clearly a covering of X. This covering has
the additional property that it is composed of open sets. We shall,
naturally, refer to such a covering as an ‘“open’’ covering.

DeriniTioN 2.3 Let X be a topological space and B a subset of X.
A covering {A.}«cr of B is said to be an open covering
of B if for each « € I, A, is an open subset of X.

DeriNITION 2.4 A topological space X is said to be compact if for each
open covering {Ua.}acr of X there is a finite subcover-
ing {Us} sev.

As an alternate definition of compactness we may use the
criterion, X is compact if for each open covering {U.}.cr of X
there is a finite subset of indices {ai, az, . . ., @} such that the
collection U,, U,, . . ., U,, covers X.

DEerFINITION 2.5 A subset C of a topological space X is said to be com-
pact, if C is a compact topological space in the relative
topology.

A topological space C may be a subspace of two distinct
larger topological spaces X and Y. In this event the relative
topology of C is the same whether we regard C as a subspace of
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X or of Y, and, consequently, the assertion C is compact depends
only on C and its topology. We may relate the compactness of a
subspace C of a topological space X to the topology of X by
means of the following theorem.

THEOREM 2.6 A subset C of a topological space X is compact if and
only if for each open covering {Ud}acsr of C, Ua open
in X, there is a finite subcovering Ua, U, . . ., U,, of C.

Proof. Let C be compact and let {Ua.}acr be an
open covering of C. Then {U. N C}acr is a covering
of C by relatively open sets. Thus there is a finite sub-
covering {Us N C}ocs and {U.}acs covers C. Con-
versely, suppose that for each open covering {Ua}eer
of C there is a finite subcovering. Let {Vs}ser be a
covering of C by relatively open subsets of C. For each
BEI Vg= UsgN C where Ug is open in X. Thus
{Ug}ser is an open covering of C. By our hypothesis
there is a finite subcovering U, U, . . ., Ug,. It fol-
lows that Vg, Vg, . .., Vg, covers C and C is compact.

Compactness may be characterized in terms of neighbor-
hoods.

TueorREM 2.7 A topological space X is compact if and only if, when-
ever for each z € X a neighborhood N, of z is given,
there is a finite number of points zy, 25, ..., z, of X

such that X = Ol N...

Proof. Suppose X is compact. Let there be given
for each z € X a neighborhood N, of z. For each z,
there is an open set U. such that 2 € U, C N, and
consequently the family {U.}.ex is an open covering
of X. Since X is compact there is a finite subcovering
U,, U, ..., U But Uz, C N, for each i, whence
N, N, ..., N, covers X.

Conversely, suppose that whenever, foreachz € X
a neighborhood N of z is given, there is a finite number
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n
of points z;, zs, ..., 7, of X such that X = U N,
i=1

Let {Ua}acr be an open covering of X. Then, for each
x € X, there is an a = a(z) such that z € U,, and
therefore N, = U, is a neighborhood of z. By our
hypothesis, there are points z), 23, . . ., z, of X such
that N;, = Uae), t = 1,2, ..., n, covers X, and hence
X is compact.

In terms of closed sets, we have:

THEOREM 2.8

TuHEOREM 2.9

A topological space is compact if and only if whenever
a family {F.}.cr of closed sets is such that N,cr Foa = O
then there is a finite subset of indices {ai, aq, . . ., an}

such that () Fa, = ©.
1=1
Proof. Suppose X is compact and a family {Fa.}acr
of closed sets is given such that Naer Fa = @. Then
Ueer C(Fa) = C(Nact Fo) = X,

so that {C(F.)}.cr is an open covering of X. Hence
there is a finite subcovering C(F,), C(Fa), . . ., C(Fa,).
Therefore

Afu=c(Ocrn) =0
Conversely, suppose that for each family {Fa}.cr of
closed sets such that Naer Fo = @ there is a finite sub-
set of indices {ay, o, - . ., an} such that rn\ Foi = 0. Let
i=1

{Og}ses be an open covering of X. Then {C(0g)}secs is
a family of closed sets such that Nscs C(05) = D. Thus

_r"\l C(0.) =P and O, O, ..., 0, is a finite sub-

covering.

Let f:X — Y be continuous and let A be a compact
subset of X. Then f(A4) is a compact subset of Y.

Proof. Let {U.}.cr be an open covering of f(A).
Thus f(A) C Uaer U and consequently
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A C Uaer f71(Ua)

so that {f~1(U.)}«cr is a covering of A. Since f is con-
tinuous, f~*(U,) is an open subset of X for each a € I
and therefore {f~2(U.)}acr is an open covering of A.
A is compact, thus there is a finite subcovering
F(Ua), (s, - - -, f(Us) of A. But A C f-(Us)
U (Us) U. ..U (U,,) implies that f(4) C U, U
Ua,U . . . U Ua. {Ud}aer was an arbitrary open cover-
ing of f(A), whence by Theorem 2.6, we have shown
that f(4) is compact.

CoroLLARY 2.10 Let the topological spaces X and Y be homeomor-
phic. Then X is compact if and only if Y is compact.

Not every subset of a compact space is itself compact. We
shall see that the closed interval [0, 1] is compact, whereas the
open interval (0, 1) is not compact. To show that (0, 1) is not
compact, it suffices to find one open covering of (0, 1) that does
not have a finite subcovering. To this end, for each integer
n=2345...,let U, = (%, 1- %) Then (U,)nes,s.s.... is an
open covering of (0, 1). On the other hand, for each integer £ > 3

k
we have Ilc & U U,. Thus the union of every finite subcollection
n=3
of {Un}n=s.4s,... must fail to contain some point of (0, 1), and
hence there is no finite subcovering of {Ua}n=s.4,5
We do, however, have this result.

.....

THEOREM 2.11 Let X be compact. Then each closed subset of X is
compact.

Proof. Let F be a closed subset of the compact
space X. If {Ua}«cr is an open covering of F, then by
adjoining the open set O = C(F) to the family {Ua.}aer
we obtain an open covering {Vg}secs of X. Since X is
compact there is a finite subcovering Vg, Vg, . . ., V.
of X. But each Vyg, is either equal to a U, for some
a € I or equal to O. If O occurs among Vg, Vg, . . .,
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V5. we may delete it to obtain a finite collection of the
U.'s that covers F = C(0).

Thus, in a compact space, for each subset the property of
being closed implies the property of being compact. In a
Hausdorff space, the converse is also true.

THEOREM 2.12 Let X be a Hausdorff space. If a subset F of X is
compact, then F is closed.

Proof. We shall show that O = C(F) is open by
showing that for each point z & O there is a neighbor-
hood U of z contained in O, or equivalently, for which
UNF =@. To this end, with z € O fixed, by the
Hausdorff property, we may choose for each point
z € F an open neighborhood U. of z and an open
neighborhood V, of z such that U, N\ V, = @. The
family {V.}.cr is an open covering of F. Since F is
compact, there is a finite subcovering V,, V,, ..., V,,
of F. The intersection U = U, NU,N ... N U, is
an intersection of a finite set of neighborhoods of 2z and
is therefore a neighborhood of 2. Furthermore, U can-
not intersect F since it does not intersect each element
Vey Vo . .., Va,of acovering of F. Thus U C O, from
which it follows that O is a neighborhood of each of its
points and F = C(O) is closed.

CoroLLARY 2.13 Let X be a compact Hausdorff space. Then a subset F
of X is compact if and only if it is closed.

THEOREM 2.14 Let f:X — Y be a one-one continuous mapping of the
compact space X onto a Hausdorff space Y. Then f is
a homeomorphism.

Proof. We define g:Y — X by setting g(y) = z
if f(x) = y, so that f and ¢ are inverse functions. It
remains to prove that g is continuous. We shall prove
this by proving that for each closed subset F of X,
g~X(F) is a closed subset of Y. Given a closed subset F
of X, by Theorem 2.11, F is compact. Hence
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f(F) = g"Y(F) is a compact subset of Y. By Theo-
rem 2.12, g}(F) is a closed subset of Y. Thus, g is
continuous and f is a homeomorphism.

EXERCISES

1. Prove that the real line R is not compact.
. Prove that every finite subset of a topological space is compact.

3. Let {U.}«cr be an open covering of [0, 1]. Define a subset P of [0, 1]
as follows: a point z is in P if and only if there is a finite collection
Uey Ug, - - -, U, of elements of {Ua}acr that covers [0, z]. Prove
that if z € P, then there is a neighborhood O of = such that 0 C P
and that therefore P is open. Prove that if £ & P, then there is a
neighborhood O of z such that 0 N P = @ and therefore P is closed.
Conclude that P = [0, 1] and that therefore [0, 1] is compact.

4. Let X be a topological space. A family {F,}a.cr of subsets of X is
said to have the finite intersection property if for each finite subset J
of I, Nees Fa = 9. Prove that X is compact if and only if for each
family {F.}.cr of closed subsets of X that has the finite intersection
property, we have Macr Fou 7 0.

5. Let X be a set and 3 and 3’ be two topologies on X. Prove that if
3 C % and (X, 3) is compact then (X. 3) is compact. Prove that
if (X, 3) is Hausdorff and (X, 3’) is compact with 3 C 3/, then 3 = J'.

6. Let f:X — Y be a continuous mapping of a compact space X onto
a Hausdorff space Y. Prove that f is an identification.

3 COMPACT SUBSETS OF THE REAL LINE

DerFiNiTioN 3.1 A subset A of R is said to be bounded if there is a real
number K such that foreachz = (2, 2,,...,2,) € 4,
|z < Kforl ¢ < n.

In particular a subset A of the real line R is bounded if A is
contained in some closed interval [— K, K], K > 0. Every closed
interval [a,b] is bounded for [a,b] C [—K, K] where
K = maximum {|a|, |b|}.
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Lemma 3.3

Compact Subsets of the Real Line Sec. 3

If A is a compact subset of R then A is closed and bounded.

Proof. Since the real line satisfies the Hausdorff ax-
iom, by Theorem 2.12, A is closed. For each positive
integer n, let 0, = (—n, n). B = Unen On, where N is the
set of natural numbers. Therefore {0,} .cx is an open cover-
ing of A. Since A is compact, A C 0, U0, U...UO,,
If we set & = maximum {n,, ny, ..., n,} then O,, C O
for :=1,2,...,q, whence A C O = (—k, k). Thus
A C [—k, k] and A is bounded.

The closed interval [0, 1] is compact.

Proof. Let {O.}a.cr be a covering of [0, 1] by open
sets. Assume that there is no finite subcovering of {Og} «c:.
In this event, at least one of the two closed intervals [0, 3]
or [, 1] cannot be covered by a finite subcollection of the
family {O.}.cr. Let [ai, bi] denote one of these two inter-
vals of length } that cannot be covered by a finite sub-
collection of the family {0.}.cr. We may now divide the
interval [a,, b;] into the two subintervals

[ a + bl]
a, 2

[al ;‘ bl’ bl]

of length } and assert that at least one of these two inter-
vals cannot be covered by a finite subcollection of the
family {O.}.cr. Let [as, b2] denote one of these two inter-
vals of length } that has the property that it cannot be
covered by a finite subcollection of the family {O.}.cr. We
shall now proceed to define a sequence [ay, bo], [a1, b1],
[az, bal, . . ., [@s, bn), . . . of such intervals. Assume that
for r=0,1,2,...,n we have defined intervals [a,, b,]
such that:

1. [aq, bo] = [0, 1];

and

2. b,—a,=2l'forr=0,l,...,n;
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3. forr=0,1,...,n — 1, either [a,41, byy1] = [a,,

r bf
or [a,.+1, br+l] = [a -2|- ’ bf],

4. for each r=0,1,...,n, no finite subcollection of
{0a} «cr covers [a,, b,].

We then define [@ny1, bata] in the following manner. In
view of (4) at least one of the two intervals

G + by an + b,
o ] [ ]

cannot be covered by a finite subcollection of {O.}acr.
Denote by [@n41, bny1] Whichever of these two intervals
cannot be covered by a finite subcollection of {O.}acr, (if
neither can be, we may agree that [@ni1, bayi1] is the first
of the two). Then conditions (2), (3), and (4) will also hold
for [@n+1, basa). It follows by induction that we may define
a sequence [ay, bo], [a1, b1, [as, ba), . . . of such intervals
for which conditions (1) through (4) are true.

By conditions (3), @ < @nt1 S boyr S b,. It follows
that for each pair of positive integers m and n, an < b,.
Thus each b, is an upper bound of the set {ao, a1, a,, . . .}.
Let a be the least upper bound of this set. Then a < b,
for each n, and hence a is a lower bound of the set
{bo, by, by, . . .}. Let b be the greatest lower bound of the
latter set. We therefore have a < b. But, by the definition
of @ and b, we must have a, < a < b < b, for each n,

ar+b':|
2

whence by condition (2), b — a < % for each » and we

conclude that ¢ = b. We are now in a position to obtain
a contradiction to condition (4), from which it will follow
that our assumption that there is no finite subcovering
of [0, 1] is untenable.

{Oa} acr covers [0, 1] and a = b € [0, 1]. Therefore
a € Og for some 8 € I. Since Og is open there isan e > 0
such that B(a;e) C Op. Let us choose the positive inte-

ger N large enough so that 2%, < ¢ Then by — ay < e
Now a = b € [an, bx]. Therefore, a — ay < %,— < ¢ and
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b—by < %—v < e Consequently, [axr, by] C B(a; ) C O.

Thus [aw, by] may be covered by a finite subcollection
(namely, one!) of the family {O.}.cr. Therefore the as-
sumption that no finite subcollection of {O.}.cr covers
[0, 1] leads to a contradiction and we must conclude that
[0, 1] is compact.

It can be seen that the gist of the above argument is that if
no finite subcollection of {O.}.cr covers [0, 1], then no finite
subcollection of {0.}.cr covers a sequence of subintervals whose
lengths approach zero, whereas on the other hand if the length of
one of these subintervals is small enough it is contained in some Oj.

Since each closed interval [a, b] is homeomorphic to the
closed interval [0, 1] and compactness is a topological property,
we obtain:

CoroLLARY 3.4 Each closed interval [a, b] is compact.

The next theorem, which characterizes the compact subsets
of the real line, is frequently referred to as the Heine-Borel
Theorem.

THEOREM 3.5 A subset A of the real line is compact if and only if 4 is
closed and bounded.

Proof. The “if” half of the theorem is Lemma 3.2.
Conversely, if A is closed and bounded A4 is a closed
subset of a closed interval [—K, K] for some K > 0.
But [—K, K] is a compact space and therefore, by
Theorem 2.11, A is compact.

EXERCISES

1. Using the method of subdivision of Lemma 3.3, prove that the unit
square I2 is a compact subset of the plane and in general that the
unit n-cube I is a compact subspace of R».
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2.

Let X be a compact space and (F,),=1.23,... & sequence of non-
empty closed subsets of X such that F,.; C F, for each n. Prove
that Nz-1 F. 5 0.

Let f:[a, b] — R be continuous. Prove that the set f([a, b]) has both
a least upper bound M and a greatest lower bound m and that there
are points u, v € [a, b] such that f(u) = M, f(v) = m.

Let f:[a, b] — [c, d] be a continuous increasing function such that
f(a) = ¢, f(b) = d. Prove that f is a homeomorphism.

4 PRODUCTS OF COMPACT SPACES

The fundamental result of this section is that the product of two
compact spaces is itself compact. We shall establish this fact with
the aid of the next lemma, which relates compactness to coverings
by members of a base for the open sets. Let us recall that a base
for the open sets of a topological space Z is a collection ® of open
subsets with the property that each open subset of Z is a union
of members of the collection ®.

LEmma 4.1 Let ® be a base for the open sets of a topological space Z.

If, for each covering {Bg}secs of Z by members of ®, there
is a finite subcovering, then Z is compact.

Proof. We must show that, if each covering of Z
by “basic’” open sets has a finite subcovering, then each
open covering {O.}«cr of Z has a finite subcovering. For
each @ € I, O, is a union of members of ®. Let J be an
indexing set for all the basic sets Bs that occur in the
expression of some O, as a union of members of ®. Thus
Uaer O« C Uspes Bs and hence {Bg}scy is a covering of Z
by members of ®. It follows from our hypothesis that there
is a finite subcovering B,, B,, . . ., B, of Z. Since each
B, occurs in the expression of some O,, @ € I, as a union
of members of ®, B, C O, Consequently, O,, O, - . -, Oa,
must cover Z and therefore Z is compact.
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Let us recall that if X and Y are topological spaces, then a
base for open sets of X X Y is the collection of sets of the form
U X V, where U is open in X and V is open in Y.

THEOREM 4.2 Let X and Y be compact topological spaces; then X X Y
is compact.

Proof. By virtue of Lemma 4.1 it suffices to prove
that each covering of X X Y by sets of the form U X V,
U open in X, V open in Y, has a finite subcovering. Let
{U« X Va}acr be such a covering. As an aid to under-
standing the proof, let us view the product X X Y as
pictured in Figure 32, where a point (z,y) € X X Y
lies over the point x € X and level with the pointy & Y.
In particular, for each 2o € X, the subset ¥, of X X ¥
consisting of all points (o, ¥), ¥y € Y, may be thought
of as the collection of points lying over z,. The open
covering {U, X Va}acr is necessarily an open covering
of Y,. But ¥, is homeomorphic to Y and hence com-
pact. We may therefore find a finite subset I 2, of I such
that {U. X Vi}aers, covers Y, [this finite covering of
Y,, is portrayed by the small rectangles in Figure 32].
We may also assume that z, € Uj for each g € I, for

Y Y,

%’//'—‘U;XY

Figure 32
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otherwise we may delete Ug X Vs and still cover Y.
The set Uz, = Naelz, Ua is a finite intersection of open
sets containing z, and is therefore an open set contain-
ing 0. We assert that {Ua X Va}aerz, is an open cover-
ing of Uz X Y. For, suppose (z,y) € Uz X Y. The
point (z, y) is in Ups X Vj for some g € I;. Since
r€ Uz, € Ua for all @« € I,. It follows that
(=, y) € Ug X Vi, B € I, proving our assertion.

Now {U?}.cx is an open covering of the compact
space X, hence there is a finite subcovering Uz, Uz,
.o, Uz of X. Let usset I* =1, UI,U...Ul,
and show that the finite family {U. X Va}.em is a
covering of X X Y. Given a point (z,y) EX X Y,
x € U?, for some z; so that (z,y) € U2 X Y. By our
previous assertion (z,y) € Us X Vj for some 8 € I,
which certainly implies that (z, y) € U. X V. for some
a € I*. We have thus established that {Ua. X Va}aer+
is a finite subcovering and that therefore X X Y is
compact.

If X,, X,,...,X. are topological spaces, one may distin-
n n—1
guish between TI X; and (11 Xi) X X., for the points of the
i=1 t=1
first space are n-tuples (x;, 25, . . . , *»), whereas the points of the
second space are ordered pairs ((x;, 3, . . . , 1), Z,) Whose first
elements are (n — 1)-tuples. Nevertheless, these two spaces are
certainly homeomorphic [the obvious homeomorphism carries a
point (21, Z, . . ., &,) into ((z1, 23, . . ., Tn—1), )], hence by induc-
tion on n we obtain:

CoroLLARY 4.3 Let X;, X5, ..., X, be compact topological spaces.
Then I X, is also compact.

t=1

It is true that the product of an arbitrary family of compact
spaces is compact. This result, which we shall not prove, is called
the Tychonoff Theorem.

Let us recall that the unit n-cube I" is the subset of B* con-
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sisting of all points = (21, s, . . ., Z,) such that 0 < z; =< 1 for
1=1,2, ...,n. Asasubspace of R* I* has the same topology as
the product space I X I X ... X I (n-factors). Since I = [0, 1]
is compact, as a special case of Corollary 4.3 we have:

CoROLLARY 4.4 The unit n-cube I" is compact.

THEOREM 4.5 A subset 4 of R* is compact if and only if A is closed
and bounded.

Proof. The proof that if A is compact then A4 is
closed and bounded is similar to the proof of this fact
for a subset of the real line as presented in the pre-
ceding section. Conversely, we shall first show that
each closed ‘“cube’ is compact. The collection of points
z = (,2,...,%,) in R* such that |z;| < K for
1=1,2,...,n, which we shall denote by My, is a
“cube’” of width 2K with center at the origin. Mg is
homeomorphic to the unit n-cube I*, for the function
F:I" —» Mg defined by

F(xy, 23, . . ., %)

= (2Kz, — K, 2Kz, — K, . . ., 2Kz, — K)
is easily seen to be a homeomorphism (Theorem 2.14).
Since I* is compact, Mg is compact. Now suppose 4 is
closed and bounded; then A is a closed subset of the
compact cube Mk for some K, whence A is compact.

EXERCISES

1. Let S be the set [0, 1] and define a subset F of S to be closed if either
it is finite or is equal to S. Prove that this definition of closed set
yields a topology for S. Show that S with this topology is connected,
path-wise connected, and compact, but that S is not a Hausdorff
space. Show that each subset of S is compact and that therefore
there are compact subsets of S that are not closed.

2. A topological space X is said to be locally compact if each point
z € X has at least one compact neighborhood. Prove that the real
line and R" are locally compact.
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3. Let X be a topological space and z* a point of X. Assume a base for
the system of neighborhoods of z* consists of the complements of
compact subsets of X — {z*}. Prove X is compact. Prove that if
in addition X — {z*} is a locally compact Hausdorff space, then
X is a compact Hausdorff space. Given a locally compact Hausdorff
space Y which is not compact, show that Y is a subspace of a
compact Hausdorff space that contains one more point than ¥ does.
This space is called the one-point compactification of Y. Prove that
the one-point compactification of R* is homeomorphic to S».

5 COMPACT METRIC SPACES

A metric space (X, d) is said to be compact or is called a compactum
if its associated topological space is compact. In this section we
shall derive certain properties of compact metric spaces. A basic
result is that a metric space is compact if and only if every infinite
subset has at least one “point of accumulation.”

DerFiniTION 5.1 Let X be a topological space and A a subset of X.
A point @ € X is called an accumulation point of A
if each neighborhood of @ contains infinitely many
distinct points of A.

In referring to the accumulation points of a set A, care
must be taken to specify of which topological space A is to be
considered a subset. For example, in the real line R, the subset
A= {l, %, %» e, %» .. } has the accumulation point 0, whereas
in the topological space (0, +«), the same set A has no accumula-
tion points.

Recall that in a metric space we defined a as a limit point
of a subset A if every neighborhood of a contains a point of 4
different from a. If we use the same definition in a topological
space every accumulation point of A is also a limit point of A.
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In Hausdorff spaces, and hence in metric spaces, accumulation
points and limit points coincide.

Lemma 5.2 Let X be a Hausdorff space and 4 a subset of X. A point
a € X is an accumulation point of A if and only if a is a
limit point of 4.

Proof. Suppose a is not an accumulation point of 4.
Then there is a neighborhood N of a that contains at most
a finite collection {ai, as, . . ., a,} of points of A distinct
from a. For each of these points a,, 1 = 1,2,...,p, we
can find neighborhoods U of @ and neighborhoods V; of a;
suchthat U;NV,=@. Then NN U, NU:N...N U,
is a neighborhood of @ that contains no points of A other
than possibly a.

THEOREM 5.3 Let X be a compact space; then every infinite subset K
of X has at least one limit point in X.

Proof. Suppose K is a subset of X that has no
limit points. For each x & K there is a neighborhood N,
of z such that N, N\ K = {z}. K is closed and hence

compact. Therefore there are points z;, 23, ..., Tm
such that N, N, ..., Nz, cover K. It follows that
K = {z;, 1, . .., Zn and K is finite.

For compact Hausdorff spaces, and in particular for compact
metric spaces, Theorem 5.3 becomes every infinite subset 4 of X
has at least one point of accumulation in X. The next two lemmas
are used to prove the converse for metric spaces.

Lemma 5.4 Let (X, d) be a metric space such that every infinite subset
of X has at least one accumulation point in X. Then, for
each positive integer », there is a finite set of points
2%, 2%, . . ., 2 of X such that the collection of open balls

B (:c'f;l>, B (:c'z‘; 1>, ..., B (:cz; -l-)
n n n

covers X.
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Proof. Suppose there were an integer n such that no

finite collection of balls of radius i covered X. Choose a
point -y € X. B (:cl ; }‘) certainly does not cover X,
hence there is a point z; € X such that z, & B (:c,; 11»)
B (zl, ) UB (xg, 1) does not cover X, hence there is a

point 23 € X such that z; & B (xl, ) UB (332, ) Con-

tinuing in this way we may construct a sequence z,, Z,,
., Zx, . . . of points of X such that for k > 1,

z & U B(x,, 1)

t=1
Thus
d(xk, xk:) g }L
if k = k’. It follows that the set {z1, 2, ..., 2 ...} is

infinite and therefore has a point of accumulation z € X.
The neighborhood B (x; 2in) contains infinitely many
points of {zi, &2, ..., % ...} and in particular contains

two points xx, zx with k  k’. Since i, 7»» € B (x; %L)’

we obtain the contradiction d(z, zx) < %

A similar argument yields the following result.

Lemma 5.5 Let (X, d) be a metric space such that each infinite subset
of X has at least one point of accumulation. Then for each
open covering {O.}.cr of X there is a positive number ¢
such that each open ball B(z; ¢) is contained in an ele-
ment Op of this covering.

Proof. We shall suppose the result is false and ob-
tain a contradiction. If the lemma is false, for each
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n =12, ..., there is an open ball B (x,.;%) such that

B (x,.;}l) Z Oy foreacha €1 Let A = {x1, 2y, ...}. If

A is finite, some point z € X occurs infinitely often in the
sequence i, Ty, . . . . Since {O.}a.cr covers X,z € Oy for
some 8 € I. Also, Op is open, hence there is a § > 0 such
that B(z;8) C O0s. We may, however, choose n so that

% < 8§ and z, = z, in which case

1 1
B (:t,.; 7_1) =B (CE,’;’;) C Op,

a contradiction. There remains the possibility that
A = {x1, xs, ...} is infinite. Thus A has at least one
point of accumulation z. Again 2 & Op for some 8 € I so
that B(x; 8) C Og for some & > 0. There are infinitely many

points of A in the neighborhood B (:z:; g) of z. Hence we

) )
3 and z, € B (z, 5) We

then have B (:c,.;%) C B(z; é) C Og, which is again a

contradiction.

may choose an n such that 7—1)’ <

The number & of Lemma 5.5 depends on the particular open
covering {0.}.cr considered. Given the open covering {O.} e, if
the number ¢ has the property that for each z € X, B(z; &) C Op
for some 8 € I, then each number &’ with 0 < ¢ < ¢ also has
this property. The least upper bound of the set of numbers having
this property is called the Lebesgue number, €., of the open cover-
ing {O,}ec:. We may now state:

CoroLLARY 5.6 Let (X, d) be a metric space such that each infinite
subset of X has an accumulation point. Then each
open covering {Oa}.cr Of X has a Lebesgue number e;.

A topological space X is said to have the Bolzano-Weierstrass
property if each infinite subset of X has at least one point of
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accumulation. We may now prove that every metric space that
has the Bolzano-Weierstrass property is a compact metric space.

TeEOREM 5.7 Let (X, d) be a metric space that has the property that
every infinite subset of X has at least one accumulation
point. Then X is compact.

Proof. Let {O.}«cr be an open covering and let ¢,
be its Lebesque number. Let us choose 7 so that 1% < gr.
By Lemma 5.4 there is a finite set {x1, 75, . . ., z,} of
points of X such that the open balls B (xl ; %),

B (xz; }L), ..., B (x,,; 112) cover X. Furthermore, by
Lemma 5.5, foreach 7 = 1,2,...,p, thereisa g, € I
such that B (xi; ;lz> C Og.. 1t follows that the collec-

tion Og, O, . . ., O, is a finite subcovering of {Oa} acr-
We have now proved the main result of this section.

THEOREM 5.8 Let (X, d) be a metric space. Each infinite subset of X
has at least one accumulation point if and only if X is
compact.

Having proved that a subspace X of Euclidean n-space R" is
compact if and only if it is closed and bounded, we may state:

CoroLLARY 5.9 Let X be a subspace of R». Then the following three
properties are equivalent:

1. X is compact.
2. X is closed and bounded.

3. Each infinite subset of X has at least one point of
accumulation in X.

The existence, for each open covering of a compact metric
space, of a Lebesgue number has as a consequence the fact that
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each continuous function defined on a compact metric space is
“uniformly’’ continuous.

DerFiniTION 5.10 Let f: (X, d) — (Y, d’) be a function from a metric
space (X, d) to a metric space (Y, d’). f is said to be
uniformly continuous if, for each positive number ¢,
there is a & > 0, such that whenever d(z, y) < 9,
then d'(f(z), f(y)) < e

If the function g: X — Y is continuous, then for each z € X
and each ¢ > 0, there is a 6 > 0, where 6 may depend on both the
choice of z and ¢, such that d(z, a) < 6§ implies d’(g(z), g(a)) < e.
If, however, g is uniformly continuous, then given & > 0, the
number 6 may be used at each point x € X, that is, uniformly
throughout X, to yield d’'(g(x), g(a)) < ¢ if d(z, a) < 8. Thus:

CoroLLaRY 5.11 If f: X — Y is uniformly continuous, then f is con-
tinuous. \

On the other hand a continuous function need not be uni-
formly continuous. As an example, consider f:(0, 1] — R defined

by f(x) = i Given € = 1, we shall show that there does not exist
a8 > Osuch that |z — y| < dimplies |f(z) — f(y)| < 1. Forgiven

any 8 > 0 we can choose n large enough so that if z = ;ll,

we have

_ 1
y n+1
_ 1
_n(n+1)<

(@)l

In view of the next result, it should be noted that in this example
the interval (0, 1] is not compact.

zT—y o

whereas
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THEOREM 5.12 Let f:(X, d) — (Y, d’) be a continuous function from
a compact metric space X to a metric space Y. Then
f is uniformly continuous.

Proof. Given & > 0, for each z € X, there is a
5. > O such that f y € B(z; 8.) then f(y) € B ( f(x);g).

The collection {B(z; é.)}.cx is an open covering of X.
Since X is compact, this open covering has a Lebesgue
number. Let us choose & to be a positive number less
than this Lebesgue number. If 2, 2/ € X and d(z,2') < &
so that z and 2’ are in a ball of radius less than 5, we
have z, 2’ € B(z; 8.) for some x € X. Consequently,

16), 5 € B (f(a); 5 whence d'(s(s), J2) S
L), 1) + E(F@, 1) < e

EXERCISES

1. In a metric space (X, d), a sequence aj, @z, . . . of points of X is
called a Cauchy sequence if for each ¢ > 0 there is a positive inte-
ger N such that d(a., an) < e whenever n, m > N. A metric space X
is called complete if every Cauchy sequence in X converges to a point
of X. Prove that a compact metric space is complete.

2. In Euclidean n-space R*, prove that every Cauchy sequence lies in
a bounded closed subset of R». Use this fact to prove that R» is
complete.

3. Let (X, d) be a compact metric space. Prove that X is “bounded
with respect to d”’; that is, there is a positive number K such that
d(z,y) < Kforallz,y € X.

4. Let (X, d) be a compact metric space and let {F.}a.cr be a family
of closed subsets of X such that Neaecr Fo = Q. Prove that there is a
positive number ¢ such that for each z € X, d(z, F,) = ¢ for some
aE Il

5. A subset A of a topological space X is called dense if 4 = X. Let
X be a compact metric space. Prove that there is a sequence
a1, @y, . . . of points of X such that the set A = {a,, as, . . .} is dense
in X.
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6. Let X be the set of continuous functions f:[a, b] = R. Let I: X —» R
be defined by I(f) = L > f(®) dt. Define a distance function d on X
by setting d(f, g¢) = Lu.b. |f(t) — ¢(t)|. Prove that I is uniformly

astsbh

continuous. Let fi, fo, . . . be a Cauchy sequence in (X, d). Prove
that for each t € [a, b], fi(t), f2(1), . . . is a Cauchy sequence of real
numbers. For each ¢ € [a, b], denote by f(t) the limit of this se-
quence. Prove that the function f:[a, b] — R so defined is contin-
uous, that lim, f, = fin X, and therefore (X, d) is complete, so that
in the terminology of Problems 2 and 3 in Section 8, Chapter 2, X
is a complete normed vector space. [A complete normed vector space
with either the real or complex numbers as scalars is called a Banach
space.]

7. Let A be any set and let R4 be the set of all functions f:4 — R
where R is the reals. Define f + g by (f + ¢)(a) = f(a) + g(a) and
af by (af )(a) = af(a), for f, g € R4 and @ € R. Prove that R4is a
vector space with R as scalars. A function f € R4 is bounded if
7]l = I‘é}: |f(a)| exists. Prove that the set B of bounded functions

is a normed vector space in the sense of Problem 2, Section 8,
Chapter 2. Prove that B is a complete metric space. Now let A be
a topological space and let C(4, R) be the set of all bounded con-
tinuous functions from A to R. Prove that C(4, R) is a closed subset
of B and is complete.

6 COMPACTNESS AND THE BOLZANO-
WEIERSTRASS PROPERTY

Theorem 5.8, which states that a metric space is compact if and
only if each infinite subset has at least one accumulation point,
raises the question as to whether or not these two properties are
equivalent in an arbitrary topological space. We already know
that the first implies the second for Hausdorff spaces. Since there
are examples of topological spaces that are not compact, but in
which each infinite subset has a point of accumulation, compact-
ness is the stronger of the two properties. We might therefore
think of the second property, which we have called the Bolzano-
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Weierstrass property, as a weaker type of compactness. To illus-
trate how much weaker the Bolzano-Weierstrass property is, we
need to introduce the concept of countability.

DeriniTION 6.1 A non-empty set X is said to be countable if there is an
onto function f: N — X, where N is the set of positive
integers.

A finite set X = {x,, 2,,. . ., Z.} is countable, for we may con-
struct an onto function f: N — X by setting f(i) = z;,, 1 < ¢ < n,
and defining f(¢) for ¢ > n arbitrarily, say f(&) = 21, © > n. A
countable set that is not finite is called denumerable. In this case
an onto function f:N — X gives rise to an ‘“enumeration,”
2 = fQ1),z2: = f(2),...,2,. = f(n), ... of the elements of X, so
that we may write X = {x;, z,, ..., Za, . . .}. Since we have not
required the function f to be one-one, a given element x € X may
occur more than once in this enumeration. It is easy to see,
however, that by deleting all but the first occurrence of any
element £ € X and reducing the succeeding subseripts accord-
ingly, it is possible to obtain an enumeration of X in which each
element occurs one and only one time.

There are several facts about countability that are of general
interest. As a simple consequence of Definition 6.1 we obtain:

CoroLLARY 6.2 Let X and Y be non-empty sets. If X is countable and
there is an onto function g: X — Y, then Y is count-
able.

Proof. Since X is countable, there is an onto
function f: N — X, N the set of positive integers. The
composite function gf:N — Y is onto and hence Y is
countable.

CoroLLARY 6.3 A non-empty subset of a countable set is countable.

Proof. Let A C X, X countable, A non-empty.
We may define an onto function g: X — A by setting
g(a) = a for a € A and defining ¢ arbitrarily for
points z & A.
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The set N of positive integers is countable, since the identity
function 7: N — N is onto. On the other hand, the collection 2¥
of subsets of N is not countable, since for an arbitrary set X there
is no onto function f: X — 2% [see Exercise 1]. A set that is not
countable is called uncountable. Another example of an uncount-
able set is the set R of real numbers [see Exercise 2]. Surprisingly,
N X N is a countable set.

THEOREM 6.4 Let N be the set of positive integers. Then N X N is
countable.

Proof. The elements of N X N may be arrayed
in the form of the infinite matrix of Figure 33. We may
arrange these elements in the form of a sequence,

(13 l) (ly 2) (]9 3) s o (19 n) LI Y
(2’ 1) (2¢ 2) (2: 3) o o0 (21 n) oo o
(3’ l) (3! 2) (3a 3) L) (3’ n) LI Y

(m’ 1) (m,2) (m,8) , ) (m! n) e o o

Figure 33
= f(1), 2, = f2),...,z = f(k),. .., by setting

rn = (l) 1): T2 = (27 1)7 T3 = (l} 2)) Ty = (31 l)’ ey
that is, having exhausted the entries on the diagonal of
this matrix from (p, 1) to (1, p) we proceed to enumerate
the entries on the diagonal from (p + 1, 1) to (1, p + 1).
To explicitly define the onto function f:N — N X N we

plp+1)
2

note that there are entries on or above the
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diagonal from (p, 1) to (1, p), henceif 1 Sj<p+1
we are setting

_(Ptp . \N_ . _ -
I¥+j—f( 2 +]>—(P J+2,7).

As a direct consequence of Theorem 6.4 and Corollary 6.2
one obtains the result that the set Q* of positive rational numbers
is countable, for the function h:N X N — @t defined by

h(r, s) = g, (r,s) € N X N is onto.

CoroLLARY 6.5 Let Xy, X5, ..., X,,..., be a sequence of sets, each

of which is countable. Then O X is a countable set.
i=1

Proof. Since each X, is countable there is an

onto function fi:N — X;, 1=1,2,...,n,.... We

define a function F:N X N — CJ X;: by setting

i=1
F@,7) = fi(§), &,7) EN X N. F is onto, for if
Tz E C)lXi, z € X, for some 7, whence z = f,(j) =
F(4, j) for some (z,7) € N X N. But N X N is count-

able and therefore C) X is countable.

i=1
A more direct proof of Corollary 6.5 can be given by utilizing
the matrix of Figure 33 to display the elements of O X, entering
i=1
the element z; = fi(j) = F(7,7) in the 7** row and j* column.
One then enumerates the elements of O X in accordance with the
i=1
scheme adopted in the proof of Theorem 6.4. Since any countable
collection of sets may be arranged in the form of a finite or infinite
sequence of sets, Corollary 6.5 states that, if X is the union of a
countable collection of sets, each of which is countable, then X is
countable.

In view of the fact that the set @ of positive rational num-
bers is countable, the set @~ of negative rational numbers is also
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countable. Consequently, the set @ of all rational numbers is
countable. Using Corollary 6.5 we may then assert that the collec-
tion B of all open intervals on the real line of the form B(p;q),
¢ > 0, with p and ¢ rational, is also a countable set, for it is a
countable union of sets each of which is countable. This fact may
be used to prove that there is a countable basis for the open sets
on the real line.

Let us now return to our discussion of the relation between
compactness and the Bolzano-Weierstrass property. The Bolzano-
Weierstrass property implies that each countable covering has a
finite subcovering.

THEOREM 6.6 Let E be a subspace of a topological space X with the
property that each infinite subset of E has a point of
accumulation in E. Then every countable open covering
of E has a finite subcovering.

Proof. We may assume that a countable open
covering of E is given in the form of a sequence
0,0,,...,0, ... of open subsets of X such that

EC O 0,. Suppose that no finite subcollection cov-
n=1

k
ers E. Then for each integer &, the openset Of = U O,

n=1
does not cover E. Hence for each k there is a point
xx € E such that z; & 0. The subset

A= {x;,xg,...,xk,...}

of E must be infinite. Let x € E be a point of accumula-
tion of A. Since z € E, ¢ € O, for some index p. O, is
a neighborhood of x and therefore infinitely many of
the points of A belong to O,. In particular, for some
k > p we would have z, € 0, C 03 C O, contradicting
the choice of zx. Therefore there must be a finite sub-
collection of the open sets 0,0, ...,0,, ... that
covers E.

If a topological space X is such that every open covering has
a countable subcovering, by virtue of Theorem 6.6, the Bolzano-
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Weierstrass property implies compactness. A sufficient: condition
for every open covering to have a countable subcovering is given
by the next theorem, often called Lindel6f’s Theorem.

TaeEOREM 6.7 Let X be a topological space that has a countable basis
for the open sets. Then each open covering {O.}acr has
a countable subcovering.

Proof. Let ® = {Bg}scs be a countable basis for
the open sets of X. We shall first prove that for each
point £ € X and each open set O containing z, there
is a basis element Bg such that z € Bs C O. For, since
® is a basis for the open sets, O is a union of elements
of ®, thus O = Ugey Bp for some subset J' of J. But
z € 0, hence = € Bg for some 8 € J’, and clearly
Bs C 0. Now suppose that {O.}.cr is an open covering
of z. We must find a countable subset I' C I such that
{O.}acr’ is a covering. For each z € X and each O,
containing z, we choose a Bg such that x € Bs C O..
The totality of sets Bg so chosen constitute a countable
subfamily {Bg}ges of the basis ® and this subfamily
covers X. Now, for each such Bg with 8 € J', let
us choose a single index a = f(8) € I such that
Bs C O, = Oy. The totality of sets O, so chosen con-
stitute a subfamily {O.}.crr = {Os@}ser, which is also
countable and must cover X, for Upes Bs C Ueer’ Oa.

CoroLLaRY 6.8 Let X be a topological space that has a countable
basis for the open sets. Then X is compact if and only
if X has the Bolzano-Weierstrass property.

Although we shall not give an example of a topological
space X that has the Bolzano-Weierstrass property, but is not
compact, the preceding discussion has revealed that such a space
must be found among those topological spaces which are not
metrizable and do not possess a countable basis for the open sets.
Those spaces which possess a countable base for the open sets
are called completely separable or are said to satisfy the second
axiom of countabrility.
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EXERCISES

Let X be an arbitrary non-empty set and f: X — 2X an arbitrary
function from X to the subsets of X. Let A be the subset of X
consisting of those points z € X such that z & f(z). Prove that
there cannot be a point ¢ € X such that A = f(a). Finally, prove
that there is no onto function f: X — 2%,

Let a function f: N — [0, 1] be given, N the set of positive integers.
In the resulting enumeration z, = f(1), z» = f(2),..., of num-
bers in [0, 1], express each number z; in decimal notation
zr = .afa¥...af..., at an integer 0 < af < 9. Construct a real
number ¥ = .y1y2...Yn... such that y,=a], r=12 ...,
thereby obtaining the result that f cannot be onto and conse-
quently the real numbets are not countable.

Use the rational density theorem, which states that between any
two real numbers there is a rational number, to prove that the
collection of open intervals B(p;q), ¢ > 0, p, q rational are a basis
for the open sets of R and that therefore R satisfies the second axiom
of countability.

Let X and Y be topological spaces satisfying the second axiom of
countability. Prove that X X Y also satisfies the second axiom of
countability and hence R" does.

Let {A.}ecr and {Bg}scs be families of subsets of a set X. {Aa}acs is
called a refinement of {Bg}scs if for each a« € I there is a 8 € J
such that A, C Bg. Suppose that {44} «cr is a refinement of {Bg}scs
and that {4.}«er covers X. Prove that if I is finite there is a finite
subcovering of {Bg}ses and if I is countable there is a countable
subcovering of {Bg}secy-

Recall that a subset A of a topological space X is called dense in X
if 4 = X. A topological space X is called separable if there is a
countable dense subset. Prove that X is separable if X satisfies the
second axiom of countability.

A topological space X is said to satisfy the first axiom of countability
if at each point x & X there is a countable basis for the complete
system of neighborhoods at x. Prove that if X satisfies the second
axiom of countability then X satisfies the first axiom of countability.

Let X satisfy the first axiom of countability. Prove that for each
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z € X there is a countable basis U;, U,, . . . for the neighborhoods
at z such that U; D Uz D ... and such that if u;, € U; then
lim, 4, = z. Let f:X — Y be a function into a second topological
space Y. Show that if for all sequences zi, zz, ... such that
z = lim, 2, we have f(z) = lim, f(z.) then f is continuous at z.

9. Let f:X — X be a function from a metric space X into itself. f is
said to be contractive if there is a positive constant K < 1 such that
d(f(z), f(z")) < K-d(z, z') for all z, ' € X. Prove that a contrac-
tive function is continuous. Let a € X. Set ay = a, a; = f(a),
a; = f(a), and in general a,,1 = f(a,) = f»*'(a). Prove that for such
an f the following hold: d(an41, @.) < K*'d(a;, ao); @, a1, - - . , Gn,
... is a Cauchy sequence. If X is a complete metric space so that
lim, @, = a for some a € X, then a is a fixed point of f, and if
f®) = b, b = a, so that every contractive mapping has a unique
fixed point.

7 SURFACES BY IDENTIFICATION

In an earlier section we discussed the function p:[0, 1] — S
defined by p(t) = (cos 2wt, sin 27t). p is a continuous function
defined on a compact space and onto a Hausdorff space. Whenever
this is the case the topology of the image space is determined by
the function and the domain space.

Lemma 7.1 Letf:X — Y bea continuous mapping of a compact space X
onto a Hausdorff space Y. Then a subset B of Y is closed if
and only if f~1(B) is a closed subset of X.

Proof. This lemma is a weaker form of Theorem 2.14.
First suppose B is closed. Then f~1(B) is closed by the
continuity of f. Conversely, if f~!(B) is closed, then f—1(B)
is compact. B = f(f~'(B)), hence B is compact. Being a
compact subset of a Hausdorff space, B is closed.
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CoroLLARY 7.2 Let f:X — Y be a continuous mapping of a compact
space X onto a Hausdorff space Y. Then Y has the
identification topology determined by f.

As a further corollary, let m;: X — X/~ be the identification
map which carries each element # € X into its equivalence set
determined by the relation z ~; z’ if f(x) = f(z’). ~,is continuous
so X/~; is compact. By Theorem 8.2 of Chapter 3 there is a
continuous map f*:X/~; — Y such that f*r, = f. As was re-
marked in that section, f* is one-one; hence by Theorem 2.14,
f* is a homeomorphism.

CoroLLARY 7.3 The mapping f*:X/~;— Y induced by a continuous
function f:X — Y of a compact space onto a Haus-
dorff space is a homeomorphism.

One may think of a point Z € X/~ as being represented by
“pasting”’ together the various points in Z. As an example we shall
consider a cylinder. We start with a rectangle with four corner
vertices A, B, B’, A’ [see Figure 34a] and identify the edge AB
with the edge A’B’ in such a way that 4 is identified with A’ and
B with B’, then we obtain a surface that is homeomorphic to the
cylinder in Figure 34b. We may equally well picture the cylinder
as being the topological space obtained by replacing both 4 and
A’ by a new point A*, both B and B’ by a new point B*, and
similarly any pair of corresponding points C and C’ on the respec-
tive edges AB and A’B’ is replaced by a new point C* as indicated
in Figure 34c.

Furthermore, a neighborhood of this new point C* would contain
the interior of the small semi-circles drawn in Figure 34c. It is
interesting to note that if in this figure we join C* to itself by the
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B B’ B* B*
AN (]
C* v N Cc*
A A’ 4,4’ A* A*
(a) ) ©
Frigure 34

path represented by the horizontal line, the space consisting of
the points of this line would be homeomorphic to a circle [such
as the one drawn about the middle of the cylinder in Figure 34b],
for it consists of an interval whose end points have been identified.
This is a special case of the following general result.

Lemma 7.4 Let X and Y be topological spaces, let f:X — Y be a
continuous function that is onto, and let Y have the
identification topology induced by f. If B C Y is such
that A = f~'(B) is closed, then the subspace B of Y has
the identification topology induced by the restriction
flA:A > B.

Proof. We must show that a subset F of B is closed
in B if and only if (f | A)~1(F) is closed in A. The restric-
tion f| A of the continuous function f to A = f~!(B) is
continuous, so that if F is closed in B, then (f | A)~!(F) is
closed in A. Conversely, suppose that (f | A)~1(F) is closed
in A. Then, since A4 is closed in X, (f| 4)~'(F) is closed
in X. If we prove that (f | A)~1(F) = f~1(F), it will follow
that F is closed in Y and consequently in B, for ¥
has the identification topology and therefore f~1(F) closed
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in X implies F closed in Y. It remains to prove
(f | A)~'(F) = f~\(F). Suppose that z & f~1(F). To show
that = € (f| A)"'(F) we must show that z & A and
(f1 A)(x) € F. But if z € f~'(F), then f(z) €EF C B,
whence £ € f~}(B) = A. Thus z is in the domain of f | 4
and (f| A)(z) = f(z) € F, hence z € f~1(F) implies that
z € (f| A)y"1(F). Conversely, if z € (f| A)~'(F), then
(f|4)(x) €E F. Now (f| A)(z) = f(z), thus f(z) € F and
x € f~1Y(F). It follows that (f | A)~'(F) = f~'(F), and the
proof is complete.

Another surface that may be obtained by identifying some
of the boundary points of a rectangle is a surface called the
Mobius strip or band. Starting again with the rectangle whose
vertices we shall now label in the order A, B, A’, B’ [see Fig-
ure 35a), we identify the edge AB with the edge B’A’ by first
giving the rectangular strip a 180 degree twist, so that the
vertices A and A’ coincide and the vertices B and B’ coincide
[Figure 35b]. A topologically equivalent space is indicated in
Figure 35¢, where corresponding or identified pairs of points such
as A, A’ have been replaced by a single new point A*. The fact
that we intend to identify the two edges AB and A’B’ of Fig-
ure 35a with a twist is often indicated by labelling the edges with
the same letter, such as ‘“a,” and then placing arrowheads on
these edges in such a position that the resulting identification

B A’
Aa
ay
y | B
(a) ®) O]
Figure 356
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matches up or superimposes the two arrowheads. The Mobius
strip has many curious properties. The oblique line in Figure 35¢
joining C* to itself is homeomorphic to a circle. The upper hori-
zontal line running from B* through D to A* is homeomorphic
to an interval. However, if on the Mdbius strip we trace out the
curve from B* through D to A* and continue on [along the lower
horizontal line of Figure 35¢] through E back to B* we trace out
an interval with its end-points identified, that is, a circle. Thus
the Mobius strip is a surface whose bounding curve is a circle.
Other interesting properties may be deduced from the represen-
tation in Figure 35¢. For example, if the Mobius strip is cut down
its center, the resulting surface will not be disconnected for we
may still connect a point of the upper half rectangle in Figure 35¢
to a point of the lower half rectangle by joining both of them to
the bounding curve B*DA*EB*,

If an arrowhead is placed on a circle we say that the circle
is oriented. The sense of rotation indicated by the arrowhead is
then called the positive orientation and the opposite sense of rota-
tion is called the negative orientation. An oriented circle in the
plane can be moved about in the plane in an arbitrary manner
but will always be oriented in the same sense when it returns to
its original position. For this reason the plane is said to be
ortentable. On the Mobius strip an oriented circle can be moved
around the strip, say along the oblique line in Figure 35¢ with
its center initially at C*, and when it returns to its original posi-
tion the orientation will have been reversed. Surfaces with this
property are called non-orientable.

So far we have considered only surfaces resulting from the
identification of a pair of edges of a rectangle. If we identify the
edges of a rectangle according to the scheme indicated in Fig-
ure 36a, the resulting topological space is called a torus.

A torus is topologically the surface of a donut or a rubber
tire, as indicated in Figure 36b. We may view the torus as being
obtained in two steps. First, we identify the two opposite edges
labelled a of the rectangle to obtain a cylinder, and second, we
identify the two resulting circular edges (labelled b) of the cylinder
to obtain the torus. The justification for breaking the identifica-
tion up into two steps is contained in the following proposition.
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Figure 36

ProrosiTioN 7.5 Let X, Y, Z be topological spaces, let f:X — Y and
g:Y — Z be continuous and onto. If ¥ has the iden-
tification topology induced by f:X — Y and Z has
the identification topology induced by g¢:Y — Z,
then Z has the identification topology induced by
af:X - Z.

Proof. Clearly, if F is a closed subset of Z, then
(¢f)~(F) is a closed subset of X, for gf is continuous.
Conversely, suppose (gf)~'(F) = f~'(¢~'(F)) is a
closed subset of X. Since Y has the identification
topology induced by f:X — Y, ¢g~(F) is a closed
subset of Y. Similarly, since Z has the identification
topology induced by ¢:¥ — Z, ¢g~(F) closed in ¥
implies that F is closed in Z. Thus F is closed if and
only if (gf)~1(F) is closed; that is, Z has the iden-
tification topology induced by gf: X — Z.

Topologically, the torus is the product of two circles. An
arbitrary point w of the torus may be written as w = (C, D),
where C is a point of the circle b and D a point of the circle a in
either Figure 36a or 36b. Furthermore, it is clear that the product
of a neighborhood of C and a neighborhood of D is a neighborhood
of w and conversely that a neighborhood of w contains the product
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of a neighborhood of C and a neighborhood of D. Thus the
topology of the torus is the topology of the product of two
circles. One would have anticipated this result if one viewed the
torus as being generated by revolving a circle such as b in a
circular path by moving it in such a way as to always have the
point labelled A4 in contact with the circle labelled a.

There are two other surfaces resulting from the identification
of opposite pairs of edges of a rectangle. One of these surfaces is
called a Klein bottle. The Klein bottle may be obtained by first
identifying the edges labelled a in Figure 37a in the prescribed
manner to obtain a cylinder, and then identifying the two circles
labelled b in either Figure 37a or 37b, not, however, in the manner

A D E A
T a
C B
J y
Bl? bleo
. a
A D E 4
(@) (b
Figure 37

of Figure 36 to obtain a torus, but with a “twist.” Unfortunately,
at least from the point of view of our visualization of the Klein
bottle, there is no way to identify these two circular edges of the
cylinder of Figure 37b without forcing the surface of the Klein
bottle to intersect or pass through itself. For this reason, it is
helpful to construct the Klein bottle in several pieces.

In Figure 38 we have three rectangles. If the rectangles R,
and R, are joined along the edge labelled ¢ and the rectangles
R, and R; are joined along the edge labelled d, we obtain the
rectangle and identifications of Figure 37, so that Figure 38 also
represents the Klein bottle. If, in these three rectangles, we first
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Figure 38

- E E - A4
- -~
\H H c
\
R, d ld R; e
J J B
f g
E E - A4

identify the pairs of edges labelled e, f, and g respectively, we
obtain three cylinders that are homeomorphic to the three corre-
sponding cylindrical surfaces of Figure 39, also labelled R,, R;, Rs.
To construct the Klein bottle we need only identify these three
cylinders along the pairs of circular edges labelled a, ¢, and d,
respectively. We may join the cylinders R, and R along the circles
labelled a, so that R; lies inside R,. If we then join R, and R, along

Figure 39
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Figure 40

the circles labelled ¢, we obtain the cylinder pictured in Figure 40.
To complete the construction, we must identify the two circles
labelled d (Figure 40) in the prescribed manner. Any attempt to
literally carry out this identification will be frustrated by our
inability to pass through the surface of the cylinder. We must
therefore either be content, as in Figure 40, to indicate this

Figure 41

194



Surfaces by Identification Sec. 7

A F E D
T a
Bb C
4 A
C bB
_a"
D E F A

Figure 42

identification, or adopt the fiction that in Figure 41 the Klein
bottle does not intersect itself along the circle d, but that each
point along d is to represent at the same time two points of the
Klein bottle.

The last surface we shall consider in detail is obtained by
identifying both of the pairs of opposite edges of a rectangle with
a “twist.” These identifications are indicated in Figure 42. Note
that in this figure all the vertices are not identified with one
another, but only diagonally opposite vertices are joined together.
In order to relate this surface to some of the preceding surfaces,
we shall adopt the same method as the one used in the examina-
tion of the Klein bottle, [one might call this the ‘‘cut-and-paste
method’’]. We first separate the large rectangle into three smaller
rectangles R,, R,, R;, which when re-identified along the pairs
of edges labelled ¢, d, will again give us the rectangle and the

Ap———1F Fl———E  E[—=—1D
B G G J J c
b R ol e Ry dY 1d Ry b
c H H K Kt B
pt e 1y glS. lp ) S A

Figure 43
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identifications of Figure 42. This operation is indicated in Fig-
ure 43. If we first join the two edges labelled f in rectangle R, we
obtain a Mdbius strip. Since we are only interested in the top-
ological nature of this surface, we may distort [by homeomor-
phisms] the two rectangles R, and R; into the semicircular regions
of Figure 44. If we then join the regions R, and R; along their

F F < E E
4 D
B Y ¢ J c
} Rl Rg 3
C H K B
D H 4
E E > F \F
Figure 44

common edge FABCDE we obtain the disc and the Mébius strip
of Figure 45, with the indicated identifications. The surface we

Fr—e——E E
J D H
G J lo
R, R 7 R,
H K
K 4 G
E > F 7
Figure 46

have been considering is therefore a Mobius strip whose boundary
circle FGHEJKF is to be attached to the boundary circle
FGHEJKEF of a dise. This last surface is easily seen to be homeo-
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morphic to one of the models of the “real projective plane,”
namely, a disc with antipodal points identified.

An analytic model of the real projective plane is obtained in
the following manner. Let A = R?® — {(0, 0, 0)} be the set of all
ordered triples (z,, xs, ;) of real numbers such that not all of
Z, T2, ¥; are zero. Define an equivalence relation on A by
(z3, 2, 23) ~ (%, Y2, Ys), if there is a real number r # 0 such that
T = Y1, ¥ = Y2, 23 = Ys. The collection of equivalence sets P
is the real projective plane. A point p € P is the collection of all
points on a given straight line through the origin of R? other than
the origin itself. The intersection of this equivalence set p with
the unit sphere S? in R? is a pair of antipodal points. If we confine
ourselves to the hemisphere of S? lying above the plane z; = 0,
each equivalence set p meets the hemisphere in either a single
point in the interior of the hemisphere or in a pair of antipodal
points on the equator or boundary of the hemisphere. This upper
hemisphere is a disc (view it from the point at the north pole so
that it may be projected onto the equatorial plane). Identifying
antipodal points on the boundary yields an identification space
which is equivalent to the real projective plane.

The sphere, torus, Klein bottle, and projective plane are
examples of a larger class of surfaces that may be obtained by
identifying pairs of edges of a polygon with 2n sides. Such surfaces
are called closed 2-manifolds. For example, in Figure 46 we have

d 4

 Figure 46
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indicated a surface that can be obtained by identifying pairs of

sides of an octagon. With each such figure we may associate a

“surface symbol.” We do so by starting at any vertex, such as 4

in Figure 46, and writing down the labels of the edges in clockwise
order if the arrow along that edge is also pointing in the clockwise
direction or the label with an inverse sign above if the arrow
points in the counterclockwise direction. Thus a surface symbol
for the surface of Figure 46 would be abbc'a~'cdd. Referring
back to Figure 36, one can see that a surface symbol for the torus
is ab™'a7b.

By the ‘“‘cut-and-paste” method one can show that each
2-manifold is homeomorphic to a 2-manifold whose surface
symbol is of one of the following four forms: abb~la™;
abar byt . .. aybya; by, p 2 1; abab; awa, . . . aa,, ¢ > 1. The
first form indicates that the surface is homeomorphic to a sphere.
The second form includes the surface symbol of a torus and in
general indicates that the surface is homeomorphic to a sphere
with p handles. These two classes of surface are orientable. They
can all be constructed in three-dimensional Euclidean space. The
third form indicates that the surface is homeomorphic to the
projective plane. We have seen that the projective plane is a
dise to whose circular boundary has been attached a Mébius strip.
One may think of the disc as constituting the portion of the
surface of a sphere obtained by removing a circular region.
Attaching a Mobius strip to the circular boundary of this region
is called attaching “a crosscap.” Thus the projective plane is
called ““a sphere with crosscap.” In the same manner, the fourth
form consists of all surfaces obtained by attaching ¢ Mobius
strips or crosscaps to a sphere with ¢ circular regions removed.

EXERCISES

1. Prove that the triangle T with two edges identified as in Figure 47
is homeomorphic to a disc.

2. Prove that the triangle S with two edges identified as in Figure 48
is a Mobius strip.



Figure 47
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3. Prove that the Klein bottle is homeomorphic to a surface with
surface symbol a:a;a:a; by cutting the rectangle of Figure 49 along
the diagonal ¢ and pasting the resulting triangles along their common

edge b.

Figure 49

Y

4. Show that if the Klein bottle of Figure 50 is cut along the curves
¢ and d the result is two Mobius strips and that therefore the Klein
bottle is two Mabius strips joined along their circular boundaries.

a

b

Figure 50

ye

Y
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5. Cut the Klein bottle of Figure 51 along the curves ¢, ¢, ¢s, ¢ and
dy, dz, Show that the regions labelled S;, S,, S;, S, are pasted together
to form a surface homeomorphic to a cylinder and therefore homeo-
morphic to a sphere with two circular regions removed whose
boundaries are the circles did: and cicocseq respectively. Show that
the region labelled M, is a Mébius strip whose boundary is dids and
that the regions labelled N: and N: form a second Mébius strip
whose boundary is ¢iczcscs.

a a as
Sy g
b4 P s N, ) b
4]
boA "

Figure 61

6. Prove that the following three statements about a closed 2-manifold
are equivalent: (i) M contains a Méobius strip; (ii) M is non-
orientable; (iii) the surface symbol of M contains two occurrences
of some symbol “a.”

For further reading in general topology we would include
Kelley, Dugundji, or Simmons, while Blackett, Elementary
Topology, Fréchet and Fan, Combinatorial Topology, Wallace,
Introduction to Algebraic Topology, and Chinn and Steenrod,
First Concepts of Topology are recommended for an introduction
to topics in algebraic topology.
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