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Preface

This volume studies metric spaces and general topology. It considers the general
properties of topological spaces and their mappings. The special structure of a metric
space induces a topology having many applications of topology in modern analysis,
geometry and algebra. Contents of Volume 1 are expanded in eight chapters. The
chapterwise texts run as follows:

Chapter 1 assembles together some basic concepts and results of set theory, alge-
braic systems, analysis, Euclidean spaces and category theory through the concepts
of categories, functors and natural transformations with the standard notations for
smooth reading of the book.

Chapter 2 starts with the concept of themetrics, which is an abstraction of distance
in theEuclidean space and conveys an axiomatic framework for this abstractionwith a
systemic study of elementary basic properties of metric spaces with a view to define
open sets and hence to study continuity of functions. Urysohn lemma for metric
spaces facilitates to provide a vast number of continuous functions while metric
spaces provide a rich supply of topological spaces. In fact, most of the applications
of topology to analysis arise through metric spaces. Normed linear spaces form a
special class of metric spaces which provide Banach and Hilbert spaces. Metric
spaces give the simplest setting for the study of certain problems arising in analysis.
The framework for topology beginswith an introduction tometric spaces. The special
structure of a metric space induces a topology having many applications of topology
in modern analysis and modern algebra.

Chapter 3 conveys the basic concepts of topological spaces. In fact, their contin-
uous mappings in an axiomatic framework by introducing the concept of open sets
without the notion of distance function or metric, where the basic objects are topo-
logical spaces and basic functions between them are continuous maps. The basic
motivation of framing the axioms is to introduce the notion of continuity, which is
the central concept in topology. It provides a convenient language to study when
different points in a space come near to each other, and hence, the subject plays an
important role in science and technology.

Chapter 4 studies topological spaces by imposing certain conditions, called sepa-
ration axioms, as the defining properties of a topological are weak to study most
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of the topological spaces of our interest, which carry more structure (not like a
metric). These axioms initially used by P. S. Alexandroff (1896–1982) and H. Hopf
(1894–1971) facilitate to classify topological spaces and provide enough supply of
continuous functions which are linked to open sets. Separation properties provide
enough supply of continuous functions which are linked to open sets. Many impor-
tant topological properties can be characterized with the help of separation axioms
by distributing the open sets in the space X and imposing natural conditions on X
such that X behaves like a metric space.

Chapter 5 studies compactness and connectedness in topological settings, which
are two important topological properties. A compact space is a natural generalization
of closed and bounded sets in the Euclidean spaceRn. On the other hand, the concept
of connectedness as a single piece generalizes the intuitive idea of nonseparateness of
a geometric object. These two topological concepts are utilized to solve many prob-
lems in topology, mainly classification of topological spaces up to homeomorphism,
and are fundamental in the study of modern analysis, geometry, topology, algebra
and many other areas. Moreover, this chapter studies compactification, which is a
process or result of making a topological space into a compact space. There are
many noncompact spaces. Considering the importance of compactness in mathe-
matics, this study includes Stone–Čech compactification and Alexandroff one-point
compactification.

Chapter 6 presents more results on continuous functions from a topological space
to the real line space, called real-valued continuous functions, which plays a central
role in topology and studies uniform convergence and normal spaces through separa-
tion by such functions. This chapter proves Urysohn lemma for normal spaces with
the help of dyadic rational numbers, which is a surprising result and applies it to
Tietze extension theorem and ring theory.

Chapter 7 studies certain class of topological spaces satisfying the two axioms of
countability formulated byF.Hausdorff in 1914 and establishes a connection between
compactness and the Bolzano–Weierstrass property (B-Wproperty) and proves some
embedding theorem. Motivation for the study of the concepts of countability and
separability of topological spaces comes from some natural problems discussed in
this chapter.

Chapter 8 conveys the history of emergence of the concepts leading to the
development of general topology as a subject with their motivations.

The book is a clear exposition of the basic ideas of topology and conveys a
straightforward discussion of the basic topics of topology and avoids unnecessary
definitions and terminologies. Each chapter starts with highlighting the main results
of the chapter with motivation and is split into several sections which discuss related
topics with some degree of thoroughness and ends with exercises of varying degrees
of difficulties, which not only impart an additional information about the text covered
previously but also introduce a variety of ideas not treated in the earlier texts with
certain references to the interested readers for more study. All these constitute the
basic organizational units of the book.

This three-volume book together with the authors’ two other Springer booksBasic
Modern Algebra with Applications (Springer, 2014) and Basic Algebraic Topology
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and its Applications (Springer, 2016) will form a unitary module for the study of
modern algebra, general and algebraic topology with applications in several areas.

The authors acknowledge theHigher EducationDepartment of theGovernment of
West Bengal for sanctioning the financial support to the “Institute for Mathematics,
Bioinformatics and Computer Science (IMBIC)” toward writing this book vide order
no 432 (Sanc)/ EH/P/SE/ SE/ 1G-17/07 dated August 29, 2017, and also to IMBIC,
University of Calcutta, Presidency University, Kolkata, India, and Moulana Abul
KalamAzad University of Technology,West Bengal, for providing the infrastructure
toward implementing the scheme.

The authors are indebted to the authors of the books and research papers listed
in the bibliography at the end of each chapter and are very thankful to Profs. P.
Stavrions (Greece), Constantine Udriste (Romania), and Akira Asada (Japan) and to
the reviewers of themanuscript for their scholarly suggestions for improvements.We
are thankful to Md. Kutubuddin Sardar for his cooperation towards the typesetting
of the manuscript and to many UG and PG students of Presidency University and
Calcutta University, and to many other individuals who have helped in proofreading
the book. Authors apologize to those whose names have been inadvertently not
entered. Finally, the authors acknowledge, with heartfelt thanks, the patience and
sacrifice of long-suffering family of the authors, especially Dr. Shibopriya Mitra
Adhikari and Master Avipriyo Adhikari.
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June 2021
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A Note on Basic Topology—Volumes 1–3

The topic “Topology” has become one of the most exciting and influential fields of
study inmodernmathematics, because of its beauty and scope. The aimof this subject
is to make a qualitative study of geometry in the sense that if one geometric object
is continuously deformed into another geometrical object, then these two geometric
objects are considered topologically equivalent, called homeomorphic. Topology
starts where sets have some cohesive properties, leading to define continuity of
functions.

The series of three books on Basic Topology is a project book funded by the
Government of West Bengal, which is designed to introduce many variants of a
basic course in topology through the study of point set topology, topological groups,
topological vector spaces, manifolds, Lie groups, homotopy and homology theo-
ries with an emphasis of their applications in modern analysis, geometry, algebra
and theory of numbers. Topics in topology are vast. The range of its basic topics is
distributed among different topological subfields such as general topology, topolog-
ical algebra, differential topology, combinatorial topology, algebraic topology and
geometric topology. Each volume of the present book is considered as a separate
textbook that promotes active learning of the subject highlighting elegance, beauty,
scope and power of topology.

Basic Topology—Volume 1: Metric Spaces and General
Topology

This volume majorly studies metric spaces and general topology. It considers the
general properties of topological spaces and their mappings. The special structure of
a metric space induces a topology having many applications of topology in modern
analysis, geometry and algebra. The texts ofVolume 1 are expanded in eight chapters.
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xii A Note on Basic Topology—Volumes 1–3

Basic Topology—Volume 2: Topological Groups, Topology
of Manifolds and Lie Groups

This volume considers additional structures other than topological structures studied
in Volume 1, links topological structure with other structures in a compatible way to
study topological groups, topological vector spaces, topological and smooth mani-
folds, Lie groups and Lie algebra and also gives a complete classification of closed
surfaces without using the formal techniques of homology theory. Volume 2 contains
five chapters.

Basic Topology—Volume 3: Algebraic Topology
and Topology of Fiber Bundles

This volume mainly discusses algebraic topology and topology of fiber bundles.
The main aim of topology is to classify topological spaces up to homeomorphism.
To achieve this goal, algebraic topology constructs algebraic invariants and studies
topological problems by using these algebraic invariants. Because of its beauty and
scope, algebraic topology has become an essential branch of topology. Algebraic
topology is an important branch of topology that utilizes algebraic tools to study
topological problems. Its basic aim is to construct algebraic invariants that classify
topological spaces up to homeomorphism. It is found that this classification, usually
in most cases, is up to homotopy equivalence.

This volume conveys a coherent introduction to algebraic topology formally inau-
gurated by H. Poincaré (1854–1912) in his land-marking Analysis situs, Paris, 1895,
through his invention of fundamental group and homology theory, which are topo-
logical invariants. It studies Euler characteristic, the Betti number and also certain
classic problems such as the Jordan curve theorem. It considers higher homotopy
groups and establishes links between homotopy and homology theories, axiomatic
approach to homology and cohomology inaugurated by Eilenberg and Steenrod. It
studies the problems of converting topological and geometrical problems to algebraic
one in a functorial way for better chance for solution.

This volume also studies geometric topology and manifolds by using algebraic
topology. Contents of Volume 3 are expanded in seven chapters.

Just after the concept of homeomorphisms is clearly defined, the subject of
topology begins to study those properties of geometric figureswhich are preserved by
homeomorphisms with an eye to classify topological spaces up to homeomorphism,
which stands the ultimate problem in topology,where a geometric figure is considered
to be a point set in the Euclidean space Rn. But this undertaking becomes hopeless,
when there exists no homeomorphism between two given topological spaces. The
concepts of topological properties and topological invariants play key tools in such
problems:



A Note on Basic Topology—Volumes 1–3 xiii

(a) The concept of “topological property,” such as compactness and connectedness,
is introduced in general topology,which solves this problem in a very few cases,
which are studied in Volume 1. A study of the subspaces of the Euclidean plane
R2 gives an obvious example.

(b) On the other hand, the subjects algebraic topology and differential topology
(studied in Volume 2) were born to solve the problems of impossibility in
many cases with a shift of the problem by associating invariant objects in the
sense that homeomorphic spaces have the same object (up to equivalence),
called topological invariants. Initially these objects were integers, and subse-
quent research reveals that more fruitful and interesting results can be obtained
from the algebraic invariant structures such as groups and rings. For example,
homology and homotopy groups are very important algebraic invariants which
provide strong tools to study the structure of topological spaces.
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Chapter 1
Prerequisites: Sets, Algebraic Systems
and Classical Analysis

This chapter assembles together some basic concepts and results of set theory,
modern algebra, classical analysis and also of category theory by using a natural
language for smooth reading of the book. It is assumed that the readers are familiar
with these basic concepts. Inmathematical problems, subspaces of the n-dimensional
Euclidean spaces arise frequently. Such spaces are used both in theory and application
of topology. Some standard notations used throughout the book are also given in this
chapter.

The notion of functions is the most important concept used in all branches of
mathematics. Sets and functions are closely related. They have the vast potential to
enrichmathematical sciences and form the basic concepts of set theory. There are two
different approaches to the theory of sets: one is known as naive set theory created
by the German mathematician G. Cantor (1845–1918) in 1870s and the other one is
known as axiomatic set theory born through the work of Zermelo, Frankel, Skolem
and others. D. Hilbert (1862–1943) wrote in 1910 “set theory is that mathematical
discipline which today occupies an outstanding role in our science and radiates its
powerful influence in all branches of mathematics.” The basic concepts of naive set
theory as well as Cantor set constructed by Cantor himself in 1883 are also given in
this chapter.

For detailed study of the concepts and results given in this chapter, the books
Adhikari andAdhikari (2014),Adhikari (2016), Conway (1914), Alexandrov (1979),
Simmons (1963) and some other references are given in Bibliography.

1.1 Sets and Set Operations

This section presents the meanings of sets and subsets from the set-theoretic view-
point of naive set theory. There are certain terms, called undefined terms whose
meanings require no explanation.A set is such anundefined term.Butmathematicians
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have accepted in “naive set theory” the Cantor’s concept “a set is any collection of
definite, distinguishable objects of our intuition or of our intellect to be conceived
as a whole,” which we use throughout this book. An object of a set X is called an
element or member of the set X . If x is an element of the set X , then it is symbolized
by x ∈ X . On the other hand, if x is not an element of X, it is expressed by the symbol
x /∈ X . If one defines a set as a well-defined collection of objects, then the meaning
of “collection of objects” is not clear. Again if one defines a “collection of objects,”
as an “aggregate of objects,” then a natural question arises about the meaning of
“aggregate.” As other synonyms like “class,” “family,” etc. are limited, they will also
exhaust soon. But an operational and intuitive approach is taken throughout the book
to define a set as a well-defined collection of distinguishable objects.

Example 1.1.1 Mathematicians accept the following familiar notations of the sets:

(i) N = {1, 2, 3, . . . }: the set of all natural numbers (positive integers);
(ii) Z: the set of all integers;
(iii) Q: the set of all rational numbers;
(iv) Q+: the set of all positive rational numbers;
(v) R: the set of all real numbers;
(vi) I: the closed unit interval [0, 1] in R;
(vii) R − Q: the set of all irrational numbers;
(viii) R+: the set of all positive real numbers;
(ix) C: the set of all complex numbers.
(x) H: the set of all quaternionic numbers (quaternions).

Definition 1.1.2 A set having no element is called the empty set, or the void set,
or the null set, abbreviated ∅, which is unique and is considered a subset of every
set.

Definition 1.1.3 Given two sets X and A, if every element of A is an element of X ,
then A is said to be a subset of X , symbolized A ⊂ X or X ⊃ A. The symbol ⊂ is
called the inclusion relation for sets with the possibility of equality. If X ⊃ A, then
X is said to contain A with the possibility of equality.

Example 1.1.4 N ⊂ Z ⊂ Q ⊂ R.

Proposition 1.1.5 (i) Two sets X and Y are equal (X = Y) iff X ⊂ Y and Y ⊂ X.
(ii) Given three sets X, Y and Z, the inclusion relations X ⊂ Y , Y ⊂ Z imply

X ⊂ Z.
(iii) Every set X is a subset of itself, written as X ⊂ X.

Proof Left as an exercise. �

1.1.1 Indexed Family of Sets

This subsection conveys the concept of an indexed family of subsets of a fixed set.
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Definition 1.1.6 Let A be a nonempty set. If for each a ∈ A, Xa is a subset of a
given set X , thenA is called an indexing set, and the family of subsets of X , denoted
by {Xa}a∈A or simply by {Xa} is called an indexed family of subsets of X . The
definition of indexed family {Xa}a∈A of sets (not necessarily subsets of a given set)
with A indexing set is similar.

Definition 1.1.7 IfA is afinite set givenbyA = {1, 2, . . . , n}, then {X1, X2, . . . , Xn}
is said to be a finite collection of sets.

1.1.2 Set Operations: Union, Intersection and Complement

This subsection addresses set operations such as the intersection, union and comple-
ment of subset, which are the main set operations. Cartesian product of sets is also
a basic set operation discussed in Sect. 1.4.4. Let {Xa} be an indexed family of sets
with an indexing set A (finite or infinite).

Definition 1.1.8 The join or union of the indexed family of sets {Xa}a∈A (written
also as {Xa : a ∈ A}) is the set X , defined by the property that an element x is in X
if x is in at least one member of the given family {Xa : a ∈ A}, it is symbolized as

X =
⋃

{Xa : a ∈ A}.

It is also said that X is covered by {Xa : a ∈ A}. The union of a family of sets is
empty if each member of the family is empty. The join of two sets X and Y is denoted
by X ∪ Y .

Definition 1.1.9 The meet or intersection of the indexed family of sets {Xa : a ∈
A} or {Xa}a∈A is the set M defined by the property that an element x ∈ M if x ∈ Xa

for each a ∈ A, it is symbolized as

M =
⋂

{Xa : a ∈ A}.

The intersection of two sets A and B is denoted by A ∩ B. The sets A and B are said
to be disjoint if A ∩ B = ∅.
Proposition 1.1.10 The set operations ∪ and ∩ satisfy the following properties:

(i) X ∩ X = X and X ∪ X = X; (idempotent properties)
(ii) X ∪ Y = Y ∪ X and X ∩ Y = Y ∩ X; (commutative properties)
(iii) (X ∪ Y ) ∪ Z = X ∪ (Y ∪ Z) and (X ∩ Y ) ∩ Z = X ∩ (Y ∩ Z); (associative

properties)
(iv) X ∩ (Y ∪ Z) = (X ∩ Y ) ∪ (X ∩ Z) and X ∪ (Y ∩ Z) = (X ∪ Y ) ∩ (X ∪ Z);

(distributive properties)
(v) X ∩ (X ∪ Y ) = X and X ∪ (X ∩ Y ) = X; (absorptive properties)
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(vi) Any one of the three properties:

X ⊂ Y, X ∩ Y = X and X ∪ Y = Y

implies the other two (consistency property).

Remark 1.1.11 Since ∅ is a subset of every set X , then ∅ ⊂ X . This asserts by part
(vi) of Proposition1.1.10 that X ∩ ∅ = ∅ and X ∪ ∅ = X , for every set X .

Definition 1.1.12 Given two sets X and Y , their difference set X − Y (or X \ Y ) is
defined to be the set, consisting of all those elements of X , which are not elements
of Y , in notation:

X − Y = {x ∈ X : x /∈ Y }.

Clearly, the difference set X − Y = ∅ iff X ⊂ Y and X − Y = X , iff X ∩ Y = ∅.
Definition 1.1.13 Given a subset A of a set X , the difference set X − A is called
the complement of A in X and is written as X − A or Ac.

Remark 1.1.14 The difference set X − A is a subset of X . Again, a subset B of X is
the complement of A in X iff A ∪ B = X and A ∩ B = ∅. Let X be a fixed set, called
the universal set and A, B,C, . . . be subsets of X . In considering the intersection,
union, complements in X of these subsets, the set X is usually taken as the universal
set.

Proposition 1.1.15 (De Morgan’s Rules) Let {Aα} be a family of subsets of a fixed
set X. Then the following dualization properties hold:

X −
⋂

{Aα} =
⋃

{X − Aα}, and X −
⋃

{Aα} =
⋂

{X − Aα}

Proof Left as an exercise. �

Corollary 1.1.16 Given two subsets A, B of X,

X − (A ∩ B) = (X − A) ∪ (X − B) and X − (A ∪ B) = (X − A) ∩ (X − B).

Definition 1.1.17 The union of an indexed family of subsets {Xa}a∈A of a fixed
set X , denoted by

⋃
Xa∈A, is the set defined by

⋃
Xa∈A = {x ∈ X : x ∈ Xa for at least one index a ∈ A}.

Definition 1.1.18 The intersection of an indexed family of subsets {Xa}a∈A of a
fixed set X , denoted by ∩Xa∈A, is the set defined by

⋂
Xa∈A = {x ∈ X : x ∈ Xa for each index a ∈ A}.
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1.2 Basic Properties of Real Numbers

This section conveys some basic properties of the setR of real numbers, which play a
key role in mathematics, in particular, in algebra, geometry and analysis. The theory
of real analysis of a single variable is mainly based on some basic properties enjoyed
by real numbers. One of them is thatR is a complete Archimedean ordered field. The
geometrical representation of R asserts that each point on the real line represents a
unique point, and conversely, each real number represents a unique point. Moreover,
R has its natural or usual order “≤.” The natural order relation onR defines the usual
topology on R (see Chap.3).

Definition 1.2.1 A subset X of R is said to be bounded above if there is a real
number M such that x ≤ M, ∀ x ∈ X . The number M is called an upper bound of
X . A lower bound of X is defined in a similar way. The subset X is said to be bounded
if it is bounded both above and below.

Definition 1.2.2 If X ⊂ R is bounded above, then a least upper bound (lub) or
supremum of X is a real number M0, symbolized M0 = sup X such that

(i) M0 is an upper bound for X ;
(ii) M0 ≤ M for any upper bound M for X .

Example 1.2.3 For the subset X = {1/n : n = 1, 2, . . .} ⊂ R, sup X = 1. The set
X ⊂ [0, 1] is bounded and its sup X ∈ X .

Definition 1.2.4 If X ⊂ R is bounded below, then a greatest lower bound (glb) or
infimum of X is a real number m0, symbolized m0 = inf X such that

(i) m0 is a lower bound for X ;
(ii) m0 ≥ m for any lower bound m for X .

Example 1.2.5

(i) For the subset X = (4, 5) ⊂ R, inf X = 4, and sup X = 5 and both of them
are not in X .

(ii) The set of all subsets of a given nonempty set X is accepted to be the power
set of X and is denoted by P(X). Then for any family C of subsets of X , the
union ∪{S : S ∈ C} is an upper bound and the intersection ∩{S : S ∈ C} is a
lower bound for C with respect to set inclusion.

(iii) The set X = { 1x : x ∈ (0,∞)} is bounded below but it has neither minimum
nor maximum.

(iv) The set X = {x ∈ Q : x > 0 and 2 < x2 < 3} has an infinite number of both
upper and lower bounds but it has neither infimum nor supremum present
within the set X .

Remark 1.2.6 Example1.2.5 shows that the concepts of maximum, minimum, infi-
mum or supremum of a nonempty set are independent. Given a nonempty subset
X ⊂ R, if supremum of X or infimum of X exists, then it must be unique.
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The following fundamental properties of R are taken as axioms:

(i) (Least Upper Bound Axiom): If X is any nonempty subset of R bounded
above, then X has a lub.

(ii) (Density Axiom): Let r, t be two rational numbers such that r < t . Then there
is an irrational number x with r < x < t . If r, t are two irrational numbers such
that r < t , then there is a rational number x with r < x < t .

(iii) (Completeness Property): Given a nonempty subset X ⊂ R, if X is bounded
above, then it has a least upper bound lub, andhence, sup X exists. Its dualization
asserts that if given a nonempty subset X ⊂ R, if X is bounded below, then it
has a greatest lower bound glb and hence inf X exists.

(iv) (Archimedean Order Axiom on R): The set N = {1, 2, . . .} of natural num-
bers is not bounded above in the sense that there exists no real number r ∈ R
such that r > n, ∀ n ∈ N.

1.2.1 Least Upper Bound or Completeness Property of R

This property of R satisfying the least upper bound axiom solves many problems
such as the problem whether any nonempty subset of R bounded above has the lub.
Least upper bound property of R asserts that if X is any nonempty subset of R
bounded above, then X has a lub, which implies that sup X exists.

Remark 1.2.7 Completeness property of R is the same as the least upper bound of
R and it asserts that if a nonempty subset X ⊂ R has an upper bound , then X has a
supremum.

Proposition 1.2.8 Let X be a nonempty subset of R, which is bounded below. Then
X has the greatest lower bound, i.e., inf X exists.

Proof It follows by applying completeness property of R (see Remark1.2.7) to the
set X . �

Remark 1.2.9 Though R has the completeness property,Q does not enjoy the com-
pleteness property. Because, if X = {x ∈ Q : x2 < 2}, then X has no supremum in
Q, but it has the supremum in R, which is

√
2.

1.2.2 Archimedean Property of R

This subsection proves Archimedean property of R, which is used subsequently.

Theorem 1.2.10 (Archimedean property) Given two real numbers x, y with y > 0,
there exists a positive integer n such that ny > x.
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Proof Suppose the theorem is not true. Then ny ≤ x, ∀ n ∈ N. Consider the set
X = {u ∈ R : u = ny, n ∈ N} ⊂ R. Hence, x is an upper bound of X . Then by
completeness property of R (see Remark1.2.7), it follows that X has a least upper
bound M say. Then M − y < M , since by hypothesis y > 0. Hence, M − y cannot
be an upper bound of the set X . This shows that there is a real number ny in X
such that ny > M − y. This implies that (n + 1)y > M which is not possible, since
(n + 1)y ∈ X . This contradiction proves the theorem. �

Corollary 1.2.11 For every x ∈ R+, there exists an n ∈ N such that n > x.

Corollary 1.2.12 For every x ∈ R, there exists an n ∈ Z such that n < x.

Corollary 1.2.13 For every x ∈ R+, there exists an n ∈ N such that 1
n < x.

Corollary 1.2.14 For every x ∈ R+, there exists an n ∈ N such that n − 1 ≤ x < n.

Corollary 1.2.15 Given x, y ∈ R+ with x < y, there exists a number q ∈ Q such
that x < q < y.

1.2.3 Denseness Property of Q in R

This subsection conveys “denseness property” of Q in R, which is a fundamental
property of the set R of real numbers.

Theorem 1.2.16 (Denseness Property of Q)

(i) For any two distinct real numbers x and y with x < y, there exists a rational
number α such that

x < α < y.

(ii) Given any irrational number x, there exist rational numbers xn and yn such
that

xn < x < yn and xn − yn → 0, as n → ∞.

Proof Left as an exercise. �

Remark 1.2.17 Denseness property of Q in R given in Theorem1.2.16 asserts that
any real number x can be approximated as close as we please by a rational number.
Moreover, as there exists at least one rational number between any two distinct real
numbers by this theorem, it follows that there exist infinitely many rational numbers
between any two distinct real numbers. This property of Q is called the denseness
property of Q in R.



8 1 Prerequisites: Sets, Algebraic Systems and Classical Analysis

1.2.4 Complex Numbers: Ordered Pairs of Real Numbers

This subsection defines a complex number as an ordered pair of real numbers with
certain conditions.

Definition 1.2.18 C is defined as R × R such that

(i)
(a, b) + (c, d) = (a + c, b + d), ∀ a, b, c, d ∈ R;

and
(ii)

(a, b) · (c, d) = (ac − bd, ad + bc), ∀ a, b, c, d ∈ R;

Using usual convention, (a, 0) is identified with the real number a, because,

(a, 0) + (c, 0) = (a + c, 0), and (a, 0) · (c, 0) = (ac, 0),

and i stands for (0, 1). Then i2 = i · i = −1, and hence if z = (a, b) ∈ C, then the
complex number z takes the form z = a + ib, where a, b ∈ R.

1.3 Binary Relations on Sets

This section conveys some basic binary relations such as equivalence relation, par-
tial ordered relation and ordered relation, which are important binary relations in
mathematics.

Definition 1.3.1 A binary relation ρ on a nonempty set X is a subset ρ ⊂ X × X .

Example 1.3.2 The diagonal� = {(x, x) : x ∈ X} ⊂ X × X is a binary relation on
a nonempty set X , called the relation of equality.

1.3.1 Equivalence Relation

This subsection presents the concept of an equivalence relation, which is very impor-
tant to form new sets, called quotient sets, from the old one.

Definition 1.3.3 Abinary relationρ on anonempty set X is said to be an equivalence
relation if

(i) (x, x) ∈ ρ, ∀ x ∈ X (reflexive property);
(ii) (x, y) ∈ ρ implies (y, x) ∈ ρ (symmetric property);
(iii) (x, y) ∈ ρ and (y, z) ∈ ρ imply (x, z) ∈ ρ (transitive property).



1.3 Binary Relations on Sets 9

For an equivalence relation ρ on X , if (x, y) ∈ ρ, then the elements x and y are said
to be ρ-equivalent, sometimes denoted by x ∼ y.

Example 1.3.4 Define a binary relation ρ on Z by the rule: (x, y) ∈ ρ iff the integer
x − y is divisible by a fixed positive integer n > 1. Then ρ is an equivalence relation
on Z.

Definition 1.3.5 Given a nonempty set X , the family P = {Xi : i ∈ A} of subsets
of X is said to be a partition of X , if

(i) each Xi is nonempty;
(ii) Xi ∩ X j = ∅, ∀ i, j ∈ A with i �= j ;
(iii) X = ∪{Xi : Xi ∈ P}.
Example 1.3.6 For the set X = {1, 2, 5, 6, 9, 10}, the subsets X1 = {1, 2, 5}, and
X2 = {6, 9, 10}, form a partition of X . Again X3 = {1, 5, 9, 10} and X4 = {2, 6}
also form a different partition of X . This shows that partition of X is not unique.

Theorem1.3.7 asserts that the set of all equivalence classes on a nonempty set X and
the set of all partitions of X are closely related.

Theorem 1.3.7 Let ρ be an equivalence relation on a nonempty set X, and for each
x ∈ X, the class [x] be defined by [x] = {y ∈ X : (x, y) ∈ ρ}. Then
(i) x ∈ [x], ∀ x ∈ X;
(ii) for x, y ∈ X, either [x] = [y] or [x] ∩ [y] = ∅:
(iii) X = ∪{[x] : x ∈ X}:
(iv) if Pρ = {[x] : x ∈ X}, then Pρ is a partition of X, called the partition induced

by ρ, denoted by X/ρ.

There exists a bijective correspondenceψ between the set E of all equivalence classes
and the set of all partitions P on a nonempty set X defined by

ψ : E → P, ρ �→ Pρ.

Proof Left as an exercise. �

Definition 1.3.8 The disjoint classes [x] into which a nonempty set X is partitioned
by an equivalence relation “∼” form a new set, called the quotient set of X by ∼,
written as X/ ∼, where [x] denotes the class containing the element x ∈ X . The
element x is called a representative of the class [x].
Example 1.3.9 The quotient set Z/ ∼ defined by an equivalence relation “∼” in
Example1.3.4 consists of the n distinct classes [0], [1], . . . , [n − 1], denoted by Zn .
It is called the set of residue classes of Z modulo n. It admits different algebraic
structures depending on n.
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1.3.2 Order Relation

The ordered sets form an important class of sets in mathematics, specially, for the
study of analysis, topology and algebra. An ordered set is a nonempty set with an
order relation.

Definition 1.3.10 An order relation, abbreviated “<” on a nonempty set X , is a
binary relation such that

(i) if x, y ∈ X, then one and only one of the relations holds

x < y, x = y, y < x

(ii) if x, y, z ∈ X are the three elements with x < y and y < z, then x < z.

Remark 1.3.11 If x < y, then it is read as “x is less than y” or “x is smaller than
y.” Sometimes, it is convenient to write y > x in place of x < y. The symbol x ≤ y
is used to indicate

x < y or x = y.

Definition 1.3.12 An ordered set X is a nonempty set with an order relation <

defined on X .

Example 1.3.13 The set R with an order relation < defined by the rule x < y if
y − x is a positive real number is an ordered set. The ordering ≤ on R is called the
natural ordering on R.

Definition 1.3.14 Let X be an ordered set with ordering ≤ and A ⊂ X . If there
exists an element μ ∈ X such that x ≤ μ, ∀ x ∈ A, then A is said to be bounded
above and μ is said to be an upper bound of A. Lower bound is defined in a similar
way.

Definition 1.3.15 Let X be an ordered set with order relation < and A ⊂ X be
bounded above. If there exists an element μ ∈ X such that

(i) μ is an upper bound of A;
(ii) for any α < μ, α is not an upper bound of A. Then μ is called the least upper

bound (lub) of A or supremum of A , denoted by μ = sup A.
(iii) The greatest lower bound (glb) or infimum β of A is defined in a similar way,

and it is denoted by β = inf A.

Example 1.3.16 Let A = {1, 1/2, 1/3, 1/4, . . .} ⊂ R. Then sup A = 1 and inf A = 0.

Definition 1.3.17 An ordered set X is said to have the least upper bound property:
if A ⊂ X, A �= ∅ and A is bounded above, then sup A exists in X . The greatest lower
bound property is similar.

Example 1.3.18 Q has no least upper bound property.
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1.3.3 Partial Order Relation and Zorn’s Lemma

Zorn’s lemma supplies a very powerful tool in mathematics. Partial order relation
is essential in Zorn’s lemma, which is important concept to prove many results in
mathematics.

Definition 1.3.19 Areflexive, antisymmetric and transitive relationρ on a nonempty
set P is called a partial order relation, usually written “≤” in place of ρ and the pair
(P,≤) is called a partial order set or a poset.

Definition 1.3.20 Let (P,≤) be a poset such that for every pair of elements x, y ∈
P , exactly one of the relations holds:

x < y, x = y, y < x .

Then P is said to be a totally (fully or linearly) ordered set or a chain.

Example 1.3.21 With natural ordering, the poset (R,≤) is a totally ordered set.

Lemma 1.3.22 (Zorn) Let (P,≤) be a nonempty partial order set. If every subset
X ⊂ P, which is totally ordered by ≤, has an upper bound in P, then P has at least
one maximal element.

Remark 1.3.23 Zorn’s lemma is logically equivalent to the axiom of choice and
well-ordering principle.

Example 1.3.24 With natural ordering the poset (R,≤) is a totally ordered set.

Definition 1.3.25 Let (P,≤) be a poset and a, b ∈ X . Then an element x ∈ X is
said to be a lower bound of a and b if x ≤ a and x ≤ b. If x is a lower bound of
a, b ∈ X and y ≤ x for any lower bound y of a and b, then x is uniquely determined
and is called the greatest lower bound (glb or infimum or meet) of a and b, denoted
by a ∧ b. Similarly, the least upper bound (lub or supremum or join) of a and b
denoted by a ∨ b.

1.4 Functions or Mappings

This section gives the concept of functions (mappings), which is perhaps the single
most important and universal notion used in all branches of mathematics. Differ-
ent types of functions are studied in different areas of mathematics. For example, a
function f in elementary calculus is a correspondence that assigns to a real num-
ber x , a real number f (x). The functions in algebra are polynomials, permutations,
homomorphisms; in linear algebra, they are linear transformations, matrix multipli-
cations, and in analysis, they are continuous, differentiable, integrable functions, etc.
An extended version of a function is closely related to sets.
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Definition 1.4.1 Let X andY be two nonempty sets. A function or amapping f from
X to Y is a correspondence which assigns to each element x ∈ X , a unique element
y ∈ Y , written, f : X → Y, x �→ y ( or simply, y = f (x)). The set X is called the
domain and Y is called the codomain of f . The set {y ∈ Y : y = f (x), for some x ∈
X} is called the image or range of f , denoted by Im f or rang f . If X ⊂ Y , then the
map i : X → Y is said be an inclusion map if i(x) = x for all x ∈ X , and it is
symbolized as i : X ↪→ Y .

Example 1.4.2

(i) f : R → R, x �→ x2 is a function, usually written in elementary calculus as
f (x) = x2, whose graph G f = {(x, x2)} represents the parabola y = x2 on
the Euclidean plane.

(ii) det : M(n,R) → R, A �→ detA is a function, known as determinant function
on the set of square matrices of order n over R.

(iii) t : M(n,R) → M(n,R), A �→ At is a function, known as transpose function
on the set of square matrices of order n over R.

(iv) i : N ↪→ R, n �→ n is an inclusion function or map.

Remark 1.4.3 All functions in elementary calculus are taken to have the same range
(the real numbers, represented geometrically as y-axis). On the other hand, there are
different ranges in algebra.

Definition 1.4.4 A map f : X → Y is called

(i) an injective map if x �= x ′ in X implies f (x) �= f (x ′) in Y , i.e., different
elements in X have different images in Y ;

(ii) a surjective map if f (X) = Y , i.e., every element in Y is the image of some
element in X ;

(iii) a bijective map if it is both injective and surjective.

Injective, surjective and bijective maps or functions are sometimes called injec-
tions, surjections and bijections, respectively.

Example 1.4.5

(i) The map f :→ R → R, x �→ x2 is neither injective nor surjective;
(ii) The determinant function det : M(n,R) → R, A �→ detA is not injective but

surjective.
(iii) The function f : (0, 1) → R, x �→ log x

1−x is a bijection.
(iv) If m and n are two distinct natural numbers with m < n, then there exists no

injective mapping

f : {1, 2, . . . , n} → {1, 2, . . . ,m} (Pigeonhole Principle).

Definition 1.4.6 Inverse function: Let f : X → Y be a function and B ⊂ Y be
nonempty. Then the inverse image of B under f , abbreviated f −1(B), is defined to
be the subset

f −1(B) = {x ∈ X : f (x) ∈ B} ⊂ X.
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Remark 1.4.7 Given a subset B ⊂ Y , the subset f −1(B) ⊂ X is uniquely deter-
mined, even when B is a singleton set (i.e., consists of one element only) but f −1

cannot be considered as a function on Y into X . Because, for an element y ∈ Y ,
there may not exist any element x ∈ X such that f (x) = y, unless f is, in particu-
lar, surjective. Again if f is surjective, then the function h on Y onto X , such that
h(y) = {x ∈ X : f (x) = y}, is said to be the inverse of f and is denoted by f −1.
The function f −1 may not however be single-valued, unless f is injective. If f is
bijective, then f −1 is also bijective and every element x ∈ X has a unique image
y ∈ Y , and every y ∈ Y is the image of a unique element x ∈ X . If f is bijective,
then it establishes a (1, 1)-correspondence between the elements of X and Y .

Definition 1.4.8 Two sets X and Y are said to be equivalent denoted by X ∼ Y , if
there exists a bijection f : X → Y .

Example 1.4.9 Theopen intervals (a, b) and (c, d) are equivalent, since themapping

f : (a, b) → (c, d), x �→ c + d − c

b − a
(x − a)

is a bijection.

Theorem 1.4.10 Every map f : X → Y induces an equivalence relation σ(∼) on
X, such that xσ x ′ holds iff f (x) = f (x ′); and produces a bijective map

ψ : X/σ → f (X) ⊂ Y,Cx �→ f (x),

where Cx ∈ X/σ denotes the particular class to which the element x belongs.

Proof Left as an exercise. �

1.4.1 Geometrical Examples of Functions

This subsection presents some geometrical examples of functions, which are used
throughout the book. We are interested in geometrical configurations, which are
subsets of Euclidean line R (or R1), Euclidean plane R2 or in general, Euclidean
n-space Rn , where there are Cartesian coordinates having each point is expressed
uniquely by coordinates of an ordered n-tuple of real numbers (x1, x2, . . . , xn). In
particular, it represents a point in the Euclidean line R (or R1) for n = 1; a point in
the Euclidean plane R2 for n = 2 or in general, a point in the Euclidean n-space Rn .

Example 1.4.11 (i) (Translation) A translation Ta by a ∈ R on the Euclidean
line R is a function

Ta : R → R, x �→ x + a.
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This translation carries a point x ∈ R to the point x + a ∈ R. Similarly,
given a, b ∈ R, a translation T : R2 → R2, (x, y) �→ (x + a, y + b) carries
the point (x, y) ∈ R2 to the point (x + a, y + b) ∈ R2.

(ii) (Rotation) A rotation of the plane R2 is described by specifying its center and
the angle of rotation. For example,

Rθ : R2 → R2, (x, y) �→ (x cos θ − y sin θ, x sin θ + y cos θ)

represents a rotation of the plane R2 about its origin through an angle θ .
(iii) (Reflection) Reflection on a line l inR2 is a continuous function Rl : R2 → R2,

which keeps every point of the line l fixed and takes the mirror image of points
of the two sides of l, i.e., interchanges the the two sides of the line l.

Remark 1.4.12 Any translation, rotation, reflection or any reflection followed by a
translation described inExample1.4.11 keeps the shape and size of the configurations
in the plane unchanged but their positions and sizes may be altered. Such functions
are the congruences in elementary geometry.

Definition 1.4.13 A rigid motion on Rn with Euclidean distance function d is a
continuous function f : Rn → Rn such the distance between every pair of points is
preserved under f in the sense that

d( f (x), f (y)) = d(x, y), ∀ x, y ∈ Rn

(see Chap.2).

Example 1.4.14 Every translation, rotation, reflection or any reflection followed by
a translation described in Example1.4.11 is a rigid motion.

1.4.2 Geometrical Examples of Bijections

This subsection presents some geometrical examples of bijections.

Example 1.4.15 (i) Every translation, rotation, reflection or any reflection fol-
lowed by a translation described in Example1.4.11 is a bijection. The transla-
tion

Ta : R → R, x �→ x + a

has its inverse which is T−a . The rotation

Rθ : R2 → R2, (x, y) �→ (x cos θ − y sin θ, x sin θ + y cos θ)

has its inverse R−θ .
(ii) Every rigid motion of the plane is a bijection.
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(iii) Let S2 = {(x1, x2, x3) ∈ R3 : x21 + x22 + x23 = 1} be the unit sphere in R3 and
N = (0, 0, 1) be the north pole of S2. Then S2 − N and R2 are equivalent sets,
since the map

f : S2 − N → R2, (x1, x2, x3) �→ 1

1 − x3
(x1, x2)

is a bijection, called stereographic projection.

1.4.3 Restriction, Extension and Composition of Functions

This subsection gives the concepts of restriction, extension and usual composition
of functions.

Definition 1.4.16 Let f : X → Y be a function and A ⊂ X be nonempty. Then
f (A) ⊂ f (X) ⊂ Y . The function

r : A → f (A), x �→ f (x), ∀ x ∈ A

is called the restriction of f to A, denoted by f |A.
Definition 1.4.17 Let A ⊂ X and f : A → Y be a given function. Then a function
f̃ : X → Y is said to be an extension of f over X if

f̃ : X → A : f̃ (x) = f (x), ∀ x ∈ A.

An extension f̃ of a function f : A ⊂ X → Y is not unique. Because, the values of
f̃ (x) may be arbitrarily chosen for x ∈ X − A. On the other hand, the restriction of
a function to subset is unique.

Definition 1.4.18 (Composition of Functions): Let f : X → Y, g : Y → Z be
two functions. Then the function h : X → Z , x �→ g( f (x)) is called the composite
of the maps f and g, denoted by g ◦ f .

Proposition 1.4.19 (Associativity of Composition of Functions): Let f : X →
Y, g : Y → Z and h : Z → W be three functions. Then their composition maps
(h ◦ g) ◦ f and h ◦ (g ◦ f ) are well defined and they are equal.

Proof It follows from the Definition1.4.18 of the composition of functions. �
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1.4.4 Cartesian Product of Any Collection of Sets

This subsection conveys the concept of Cartesian product of sets born through the
coordinate plane of the analytical geometry along with its generalization for any
family of sets.

Definition 1.4.20 Given two nonempty sets X and Y ,

X × Y = {(x, y) : x ∈ X, y ∈ Y }

is called the Cartesian product of X and Y .

Example 1.4.21 (i) I × I represents geometrically the set of all points in the unit
square I2.

(ii) Let S1 be the unit circle. Then S1 × I represents geometrically the set of all
points in the hollow unit cylinder over S1.

(iii) R × R represents the points in the Euclidean planewith usual distance function
(see Chap.2).

Definition1.4.20 is now extended to the finite product of n (n > 2) nonempty sets
X1, X2, . . . , Xn .

Definition 1.4.22 Given a finite collection of nonempty sets X1, X2, . . . , Xn, their
Cartesian product (or combinatorial product), denoted by X1 × X2 × · · · × Xn , is
the set defined by

X1 × X2 × · · · × Xn = {(x1, x2, . . . , xn) : xi ∈ Xi , i = 1, 2, . . . , n}.

In particular, for X1 = X2 = · · · = Xn = X , their Cartesian product symbolized
by Xn , yields well-known sets such as Rn and Cn .

The Definition1.4.22 of Cartesian product can be extended in Definition1.4.23 for
any collection of sets.

Definition 1.4.23 Let {Xa}a∈A be an arbitrary collection of sets (the sets Xa may
not be different). The product of the sets denoted by 	a∈AXa is defined to be the
set of all functions ψ with domain A such that ψ(a) is an element in Xa for each
index a ∈ A. The set Xa is called the a-th coordinate set. It is assumed that if any
set Xa = ∅, then the product set 	a∈AXa is also ∅. So we take each coordinate set
Xa is nonempty for nonempty product. If the indexing set A = ∅, then the Cartesian
product of the sets {Xa} is taken to be empty.
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1.4.5 Choice Function and Axiom of Choice

This subsection defines choice function and describes the axiom of choice, which has
wide applications in different areas of mathematics such as in set theory, analysis,
topology and algebra.

Definition 1.4.24 (Choice Function) Let {Xa : a ∈ A} be any nonempty family of
nonempty sets. Then there exists a function ψ : A → ∪a∈AXa , with the property
that ψ(a) ∈ Xa, ∀ a ∈ A. The map ψ is called a choice function for the family
{Xa : a ∈ A} of sets.
Remark 1.4.25 One cannot prove the existence of a choice function for an arbitrary
family of sets. To avoid this difficulty, we take recourse to an axiom, known as the
axiom of choice. The axiom of choice has wide applications in different areas of
mathematics. The axiom of choice formulated by E. Zermelo in 1904 asserts that
for any family of sets {Xa : a ∈ A}, such that A �= ∅ and Xa �= ∅ for each a ∈ A,
there always exists at least one choice function. If the indexing set A = ∅, then the
null function is the only possible choice function. On the other hand, if one of the
sets Xa is empty, then the Cartesian product of the sets {Xa} is empty. G. Peano
(1858–1932) introduced this axiom in 1889 for natural number (in another form),
known as the principle of mathematical induction.

1.5 Cantor Set

This section constructs the Cantor set C obtained by successively deleting the open
middle one-third of the closed interval I = [0, 1] ⊂ R, defined by G. Cantor in 1883.
It is named after him. It is a basic uncountable set used in analysis, topology and
geometry. It conveys the richness of the structure of real number system. Its length is
zero, because its complement in the unit interval is of length unity. The importance
of the set can be realized in the study of metric spaces and in illustration of several
concepts discussed in subsequent chapters. For example, the Cantor set C is totally
disconnected, and it is compact (see Chap.5).

1.5.1 Construction of the Cantor Set

This subsection describes construction of the Cantor set. Denote the closed unit
interval I = [0, 1] ⊂ R by I0. Delete from I the middle third (1/3, 2/3) and denote
by I1 the remaining closed set, i.e., I1 = [0, 1] − (1/3, 2/3) = [0, 1/3] ∪ [2/3, 1].
Again delete from I1 the middle thirds of its two parts (1/9, 2/9) and (7/9, 8/9)
and denote by I2, the remaining closed set, i.e., I2 = ([0, 1/3] − (1/9, 2/9)) ∪
([2/3, 1] − (7/9, 8/9)) = [0, 1/9] ∪ [2/9, 1/3] ∪ [2/3, 7/9] ∪ [8/9, 1]. If we go on
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continuing this process as shown in Fig. 1.1 by deleting at every stage the open mid-
dle third of every closed interval remaining from the previous stage, a sequence of
closed sets {In} is obtained such that each In contains all its successors.

Definition 1.5.1 The set C obtained by

C =
∞⋂

n=1

In

is called the Cantor set.

Remark 1.5.2 The Cantor set C consists of those points in I = [0, 1] which ulti-
mately survive after deleting all the open intervals (1/3, 2/3), (1/9, 2/9), (7/9, 8/9),
. . .. This asserts thatC contains the end points of the closed intervals which constitute
each set In:

0, 1, 1/3, 2/3, 1/9, 2/9, 7/9, 8/9, . . . .

The point 1/4 is also in C but not an end point of any one of the closed intervals
which build up In . The cardinal number |C | of C is c, which is the cardinal number
of the continuum.

1.5.2 Geometrical Method of Construction of the Cantor Set

The Cantor’s ternary set may be constructed by an interesting geometrical method
as described in Fig. 1.1. The closed unit interval [0, 1] is divided into the three equal
parts, and the middle open segment (1/3, 2/3) is deleted. The remaining closed
subsegments [0, 1/3] and [2/3, 1] are again trisected, and their middle open seg-
ments, viz. (1/32, 2/32) and (2/3 + 1/32, 2/3 + 2/32), are deleted. The remaining
4 closed subsegments are then trisected, and their middle open segments are deleted.
This process is continued ad infinitum, and the points, which survive, constitute
Cantor’s ternary set, denoted by C .

Definition 1.5.3 The Cantor’s ternary set C is defined to be the set of all those
real numbers x which are expressible in the form,

x = x1 + x2/3
2 + · · · + xn/3

n + . . . (1.1)

where x1, x2, . . . , xn, . . . assume the value 0 and 2 only.

Remark 1.5.4 (Geometrical Representation of Cantor Set) The closed unit inter-
val [0, 1] is divided into the three equal parts, and themiddle open segment (1/3, 2/3)
is deleted. The remaining closed subsegments [0, 1/3] and [2/3, 1] are again tri-
sected, and their middle open segments, viz. (1/32, 2/32) and (2/3 + 1/32, 2/3 +
2/32), are deleted . The remaining 4 closed subsegments are then trisected, and their
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Fig. 1.1 Geometrical construction of the Cantor set

middle open segments are deleted. This process is continued ad infinitum as shown
in Fig. 1.1 and the points, which survive, constitute the Cantor’s ternary set, denoted
byC . The Cantor’s ternary setC is also defined to be the set of all those real numbers
x which are expressible in the form,

x = x1 + x2/3
2 + · · · + xn/3

n + · · · (1.2)

where x1, x2, . . . , xn, . . . assume the value 0 and 2 only.

Example 1.5.5 Let C be the Cantor set. Then the set

A = {x + y : x, y ∈ C} = [0, 2].

Because,C ⊂ [0, 1] and hence A ⊂ [0, 2]. Conversely , for any element a ∈ A, there
exist two elements x, y ∈ C such that x + y = a.

1.6 Countability and Cardinality of Sets

This section conveys the concepts of countability and cardinality of sets, which play
a key role in the study of mathematics.
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1.6.1 Countability of Sets

We use positive integers 1, 2, . . ., for counting in daily life that are the elements of
a finite set but there are many sets which are not finite (called infinite sets) such as
N,Z,Q,R, etc. For example, the set R is infinite in the sense that the set of points
in the real line R is not finite. Cantor described a method for counting infinite sets
by introducing the concepts of cardinality of sets, which plays a key role in the study
of algebra, analysis, topology and in many areas, and this concept carries a great
aesthetic appeal developed into a natural structure of thought.

Definition 1.6.1 Two sets X and Y are said to be equivalent, denoted X ∼ Y , if
there exists a bijection f : X → Y .

Example 1.6.2 Let S2 = {(x, y, z) ∈ R3 : x2 + y2 + z2 = 1} be the unit sphere in
the Euclidean space R3 and C∞ = C ∪ {∞} be the extended complex plane. Then
the stereographic projection f : S2 → C∞ defined in Example1.4.15 is a bijection.
Thus as sets C∞ are equivalent to the sphere S2, called the Riemann sphere.

Definition 1.6.3 A set X which is equivalent to the set N of natural numbers is said
to be an enumerable (or denumerable) set. The set X is said to be countable, if it
is either finite or enumerable.

Example 1.6.4 The set of rational numbers Q is countable.

Example 1.6.5 If A is a countable indexing set given by A = N = {1, 2, 3, . . .},
then {X1, X2, X3, . . .} is said to be a countable collection (family) of sets.

Definition 1.6.6 Given a nonempty set X , amap f : N → X is said to be a sequence
in X . It is usually written as f (n) = xn ∈ X, ∀ n ∈ N , and the sequence f is sym-
bolized by {xn}.

1.6.2 Cardinality of Sets

The concept of counting for sets is introduced by assigning to every set X (finite or
infinite), an object, called the cardinal number or cardinality of X , denoted by |X |
with the property that |X | = |Y | iff X ∼ Y . Cardinality of a set plays a key role in
mathematics, and it extends the concept of counting.

Example 1.6.7 If X is a finite set of n distinct elements, then |X | = n.

Definition 1.6.8 If X is an infinite set, then |X | is called a transfinite cardinal
number. In particular, |N| = d and |R| = c.

Example 1.6.9 An infinite set X has the cardinal number d or c according as X is
infinitely countable or not so. As |R| �= d, and |R| = c, the cardinal number c stands
for the power of continuum. Thus the cardinal number of an infinite set X is d or c
asserts that X is infinite countable or not.
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Definition 1.6.10 Two sets X and Y are said to have the same cardinality if there
exists a bijection f : X → Y .

Example 1.6.11 (i) The sets N × N(= N2) and N have the same cardinality.
(ii) Any two concentric circles in the Euclidean plane have the same cardinality.
(iii) The sets S2 − N and R2 have the same cardinality, because the map f : S2 −

N → R2, (x1, x2, x3) �→ 1
1−x3

(x1, x2) is a bijection.
(iv) The open interval (0, 1) and the real line R have the same cardinality, because

the function f : (0, 1) → R, x �→ log x
1−x is a bijection.

A cardinal number is assigned to every set and signifies a property which is
common to all sets which are equivalent with each other.

Definition 1.6.12 The cardinal number of a set X is denoted by |X | or card(X) and
has the characteristic property: for two sets X and Y , the equality card(X) = card(Y )

holds if and only if X ∼ Y .

Remark 1.6.13 Two finite sets are evidently equivalent if and only if they have the
same number of elements. A finite set, consisting of n elements, is assigned the
number n as its cardinal number (for n = 1, 2, . . . ). The cardinal number of the null
set ∅ is taken to be the number 0. The cardinal number of an infinite set is sometimes
called a transfinite cardinal number. In particular, the cardinal number assigned
to the set of natural numbers N (a denumerable set) is denoted by d. The cardinal
number assigned to the set of real numbers R, called the power (or potency) of the
continuum, is denoted by c.

Definition 1.6.14 A set X is said to be nondegenerative if card(X) > 1.

Example 1.6.15 N, Q and R are important examples of nondegenerative sets.

Theorem 1.6.16 Every infinite set has infinitely many countable subsets.

Proof Let X be an infinite set. We claim that, for each natural number n, there exists
a subset Xn ⊂ X , such that |Xn| = n. As X �= ∅, there exists a one-pointic subset
X1 ⊂ X . Let Xi ⊂ X , where |Xi | = i . As X is an infinite set, X − Xi �= ∅; and
let x ∈ X − Xi . Then Xi+1 = Xi ∪ {x} ⊂ X , and |(Xi+1)| = i + 1. Hence, by the
principle of mathematical induction, there exists a subset Xn ⊂ X , with |(Xn)| = n,
for each natural number n. Define a family of sets Yn by

Yn = X2n − (X1 ∪ X2 ∪ X22 ∪ · · · ∪ X2n−1), for n = 1, 2, . . . .

Then Y1 = X2 − X1,Y2 = X4 − (X1 ∪ X2), . . . . This produces a family {Yn : n ∈
N} of pairwise disjoint nonempty subsets of X such that |Yn| ≥ 2n − (2n − 1) = 1.
Let f be a choice function for the nonempty family of nonempty sets {Yn : n ∈ N}.
Then f : N → X is injective, which asserts that Im f (Image of f ) is an enumerable
subset of X . �

Theorem 1.6.17 Any subset of a countable set is countable.
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Proof Let A be a subset of X of a countable set X . If A is finite; then it is obviously
countable. If A is an infinite subset of X , then as X is infinitely countable, there
exists a function f : N → A defined recursively:

f (1) = xn1 , where n1 is the smallest positive integer n such that an ∈ A,

f (m + 1) = xnm+1 , where nm+1 is the smallest positive integer n such that an ∈
A − {a1, a2, . . . , anm },

This shows that f is a bijection and hence A is countable. �

Theorem 1.6.18 The Cartesian product of two countable sets is countable.

Proof Let X and Y be two countable sets, and let P denote their Cartesian product.
Now, if both the sets X and Y are finite, then P is also a finite set and hence also
countable. Next, let X = {x1, . . . , xr } be a finite set, and Y a denumerable set with
Y = {y1, y2, . . . , yn, . . . } an enumeration of Y . Then the elements of the Cartesian
product P can be arranged as a sequence

(x1, y1), . . . , (xr , y1); (x1, y2), . . . , (xr , y2); . . . , (x1, yn), . . . , (xr , yn); . . . ;

and P is therefore a denumerable set (and hence also countable). Finally, let both
X and Y be denumerable, and X = {x1, x2, . . . } and Y = {y1, y2, . . .} be their enu-
merations. Then the elements of their Cartesian product P can be arranged as a
sequence,

(x1, y1); (x1, y2), (x2, y1); . . . ; (x1, yn), (x2, yn−1), . . . , (xn, y1); . . . ,

where the element (xi , y j ) precedes the element (xm, yn) iff either i + j < m + n,

or i < m when i + j = m + n. This defines a bijection f : P → R (for its explicit
expression proceed as in the proof of Theorem1.6.19). �

Theorem 1.6.19 The union of any countable family of countable sets is countable.

Proof First, let X1, X2, . . . , Xn be a finite collection of denumerable sets, and let
{xr1, xr2, . . . , xrn, . . . } be an enumeration of the set Xr , for r = 1, 2, . . . , n. Then
their union consists of the elements {xi j }, for i = 1, 2, . . . , n and j = 1, 2, . . . , n, . . .

(or a subset of this collection, in case the given sets are not pairwise disjoint). The
elements xi j can be arranged as a sequence:

x11, x21, . . . , xn1; x12, x22, . . . , xn2; . . . ; xm1, xm2, . . . , xmn; . . . ,

where xi j precedes xrs if, either j < s, or i < r when j = s. In fact, f (xi j ) =
n( j − 1) + i is a collection of the {xi j } onto N. Next, let X1, X2, . . . , Xn, . . . be a
denumerable family of denumerable sets. Let {xr1, xr2, . . . , xrn}be an enumeration of
the elements of the set Xr , for r = 1, 2, . . . . Then the elements {xi j }, for i = 1, 2, . . . ,
and j = 1, 2, . . . , can be arranged as a sequence,
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x11; x12, x21; x13, x22, x31; . . . ; x1n, x2,n−1, . . . , xn1; . . . ,

where xi j precedes xmn iff either i + j,m + n, or i < m when i + j = m + n. Then
f (xi j ) = [1 + 2 + · · · + (i + j − 2)] + i is a bijection of the set of elements {xi j :
i = 1, 2, . . . , j = 1, 2, . . . } onto N. The union of the given family of sets is given
by the denumerable set of elements {xi j : i = 1, 2, . . . , j = 1, 2, . . . } or a subset of
this set; hence the union is countable. �

Theorem 1.6.20 Each of the following sets is countable:

(i) the set of all integers Z is countable;
(ii) the set of all rational numbers Q is countable;
(iii) the set of all polynomials with rational coefficients is countable;
(iv) A real number is said to be a (real) algebraic number, if it is a root of some

(nonnull) polynomial with rational coefficients (or, equivalently, with integral
coefficients). The set of all (real) algebraic numbers is countable.

Proof (i) Z = N ∪ {0} ∪ {−n : n ∈ N}; hence Z is countable.
(ii) The set Q+

r = {1/r, 2/r, . . . , n/r, . . . } is denumerable, for r = 1, 2, . . . . So,
Qr = Q+

r ∪ {0} ∪ {−n/r : n ∈ N } is also a denumerable set, for r = 1, 2, . . . .
Hence, Q1 ∪ Q2 ∪ · · · ∪ Qn ∪ . . . is also denumerable and is therefore count-
able. The set of rational numbersQ is a subset of the setQ1 ∪ Q2 ∪ . . . ; hence
the set Q is also countable.

(iii) Let Pn denote the set of all polynomials of degreen andwith rational coefficients
(ofwhich the leading coefficient �= 0).Hence Pn is equipotentwith theCartesian
product Q1 × Q2 × · · · × Qn × [Q − {0}], where Q1 = Q2 = · · · = Qn = Q
denotes the set of all rational numbers. Pn is therefore denumerable (by gen-
eralization of Theorem1.6.18). Hence the union, P0 ∪ P1 ∪ P2 ∪ · · · ∪ Pn∪,
is also denumerable; in other words, the set of all polynomials with rational
coefficients is countable.

(iv) Let P denote the set of all polynomials with rational coefficients. Then P is a
countable set, by (iii). Again every polynomial belonging to P has only a finite
number of real roots, not exceeding the degree of the polynomial. Hence, the
set of all real algebraic numbers being a subset of the denumerable set formed
by the union of a denumerable collection of finite sets is necessarily a countable
set.

�

Definition 1.6.21 An infinite set, which is not denumerable, is called an uncount-
able set.

Example 1.6.22 (i) The set of all real numbers R is uncountable.
(ii) A (real) number, which is not algebraic, i.e., which is not a root of any (non-

null) polynomial with rational coefficients, is called a (real) transcendental
number. The set of all (real) transcendental numbers is uncountable.

(iii) The Cantor set C is uncountable.
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1.6.3 Order Relations on Cardinal Numbers

The concept of natural ordering of positive integers is now extended to cardinal
numbers.

Definition 1.6.23 Let α and β be two cardinal numbers and A and B be two sets,
such that |A| = card(A) = α and |B| = card(B) = β. A binary relation “≤” (equiv-
alently,≥) is defined on the set of cardinal numbers by the rule that α ≤ β (or β ≥ α)
if the set A is equipotent to a subset of B.Again α < β (β > α), if, α ≤ β and α �= β.

Theorem 1.6.24 Let α, β and γ be cardinal numbers. Then

(i) α ≤ α;
(ii) α ≤ β and β ≤ γ imply α ≤ γ .

Proof Let A, B and C be three sets, such that card(A) = α, card(B) = β and
card(C) = γ .

(i) Since the identity mapping of A onto A is a bijection (and A is a subset of
itself), it follows that α ≤ α.

(ii) By hypothesis, there exists a bijection f of A onto a subset B1 ⊂ B and also
a bijection g of B onto a subset C1 ⊂ C . Let g(B1) = C2, then C2 ⊂ C1 ⊂ C ,
and the composite g ◦ f is a bijection of A onto the subset C2 ⊂ C . Hence
α ≤ γ .

�

Corollary 1.6.25 “≤” is an order relation on the set of cardinal numbers.

Proof The relation “≤” is both reflexive and transitive by Theorem1.6.24. It is not
symmetric, since if A and B are two finite sets with 3 and 5 elements, respectively,
then card(A) = 3 and card(B) = 5, where 3 ≤ 5, but 5 ≤ 3 does not hold. �

Theorem 1.6.26 (Schroeder and Bernstein) If A and B are two sets, such that
A ∼ B1 ⊂ B and B ∼ A1 ⊂ A, then A ∼ B.

Proof To prove the theorem use the result which asserts that if A2 ⊂ A1 ⊂ A, and
A ∼ A2, then A ∼ A1. �

Corollary 1.6.27 The relation “≤” is antisymmetric.

Proof It follows from Schroeder and Bernstein Theorem1.6.26. �

Corollary 1.6.28 Let I = [0, 1]. Then In = {(x1, x2, . . . xn) : xi ∈ I, i = 1, 2, . . . , n}
is called the n-dimensional unit cube. Then I ∼ In.
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1.6.4 Sum, Product and Powers of Cardinal Numbers

This subsection defines sum, product and power of cardinal numbers.

Definition 1.6.29 Let α and β be two cardinal numbers, and let X and Y be two sets
such that card(X) = α and card(Y ) = β. If then their sum α + β, product α · β and
power αβ are defined by the rules:

α + β = card(X ∪ Y ), i f X ∩ Y = ∅;
α · β = card(X × Y ), i f X �= ∅ and Y �= ∅;

αβ = card(XY ),

where XY denotes the set of all functions f : Y → X .

1.7 Well-Ordered Sets and Ordinal Numbers

This section introduces the concept of ordinal numbers of a well-ordered set, which
is a concept different cardinal numbers, because, every set (not necessarily, ordered
set) has a unique cardinal number; on the other hand, only well-ordered sets have
ordinal numbers. Since a nonempty set can be well-ordered in essentially different
ways, and hence correspondingly different ordinal numbers are assigned to the same
set; on the other hand a set has a unique cardinal number.

Definition 1.7.1 Let (X,<) be an ordered set. An element a ∈ X is called the first
element in (X,<), if a < b for every element b( �= a) ∈ X . An element c ∈ X is said
to be last element in (X,<), if b < c for every element b( �= c) ∈ X . If they exist,
they are unique.

Definition 1.7.2 An ordered set X is said to be well-ordered if every nonempty
subset of X has a first element.

Definition 1.7.3 Let (X,<X ) and (Y,<Y ) be two ordered sets with their respective
order relations <X and <Y . A bijective mapping

f : X → Y

is said to an order-isomorphism, if

x1 <X x2(in X) =⇒ f (x1) <Y f (x2)(in Y ).

Remark 1.7.4 As the relation of an order-isomorphism is an equivalence relation on
any collection of ordered sets, this collection is accordingly partitioned into disjoint
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classes, and each such class is called an order type. It asserts that every ordered set
belongs to an order type or it is usually said that every ordered set has an ordered
type. Two sets have the same order type if, and only if, they are order-isomorphic.
This leads to the definition of an ordinal number.

Definition 1.7.5 Theordered type of awell-ordered set is called an ordinal number.

Example 1.7.6 Let N denote the set of natural numbers. Then (N,<) is an ordered
set {1 < 2 < 3 . . . }. LetN∗ denote the same setN, but with the inverse order relation
>; i.e., (N∗,>) is the ordered set {· · · > 3 > 2 > 1}. The two sets are equivalent by
identity map but they are not order-isomorphic, since (N,<) has 1 as its first element,
but (N∗,>) has no first element.

Remark 1.7.7 (Notations of Ordered Types)

(i) If α be the order type of an ordered set (X,<), then the same set with the
inverse order relation will be denoted by (X∗,>), and its order type will be
denoted by α∗.

(ii) The order type of the ordered set (N,<) of natural numbers is denoted by ω,
whereas that of (N∗,>) is denoted by ω∗.

(iii) The order type of the set of rational numbersQ, ordered by the usual inequality
relation <, i.e., Ord(Q,<), is denoted by η.

(iv) The order type of the set of real numbers, ordered by the usual inequality
relation <, i.e., (R,<), is denoted by λ.

Remark 1.7.8 Two finite sets X and Y , ordered by their respective order relations
<X and <Y , are order-isomorphic, iff they are equivalent as sets. Hence the order
type of a finite set with n (distinct) elements is denoted by the natural number n. In
particular, we take Ord(∅) = 0.

Theorem 1.7.9 Let (X,<) be a well-ordered set and f be an order-isomorphism
of (X,<) onto a subset Y ⊂ X. Then

x < f (x), ∀ x ∈ X.

Proof If possible, there exists an element x ∈ X such that f (x) < x . Then the set of
all such elements x forms a nonempty subsetU of X , and henceU has a first element
u (say). If f (u) = y, then y < u. Since f is an order-isomorphism by hypothesis,
y < u asserts that

f (y) < f (u), i.e., f (y) < y.

But this contradicts the defining property of U . Hence it follows that

x < f (x), ∀ x ∈ X.

�
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Definition 1.7.10 Let x be an element of a well-ordered set (X,<), and let Xx be a
subset of X , defined by Xx = {y ∈ X : y < x}. Then Xx is called the initial segment
of X determined by x .

Theorem 1.7.11 (i) A well-ordered set cannot be ordered-isomorphic to any of
its initial segments.

(ii) Initial segments determined by two distinct elements cannot be order-
isomorphic.

Proof (i) If possible, (X,<) is order-isomorphic to an initial segment Xx deter-
mined by x ∈ X under an order-isomorphism f . Then f (x) ∈ Xx and hence
f (x) < x . But it contradicts Theorem1.7.9.

(ii) Let x, y be two distinct elements of X with y < x . Then the initial segment Xx

determined by x is a well-ordered set, and y ∈ Xx . This asserts that the initial
segment Xy determined by y is also an initial segment of the well-ordered
(Xx ,<). Hence it follows that Xx cannot be order-isomorphic to Xy , by the
first part of the theorem.

�

Definition 1.7.12 Let α and β be the ordered types of two well-ordered sets X and
Y respectively. Then the ordinal number α is said to be less than the ordinal number
β, abbreviated α < β if X is order-isomorphic to an initial segment of Y .

Theorem1.7.13 generalizes the well-known principle of mathematical induction for
any well-ordered set.

Theorem 1.7.13 (Principle ofTransfinite Induction) Let (Xx ,<)be awell-ordered
set and Y be a subset of X such that the initial segment Xx determined by x ∈ X has
the property

Xx ⊂ Y =⇒ x ∈ Y.

Then Y = X.

Proof Suppose Y �= X. Then X − Y �= ∅. Hence it has a first element x (say), since
X is well-ordered. Since any element of Xx precedes x , it follows that it does not
belong to X − Y . This shows that it belongs to Y . Thus Xx ⊂ Y . Hence, by hypoth-
esis, x ∈ Y , which is not possible. This concludes that Y = X . �

1.8 Rings and Ideals

This section recalls some concepts of ring theory needed for our future study. A
group is an algebraic system having with only one binary operation; a ring is also an
algebraic system having two binary operations which are connected by some inter-
relations. A field is an important special ring. The set of integers Z is the prototype
of rings and R is the prototype of fields.
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Definition 1.8.1 A ring is an algebraic system (R,+, ·) consisting of a nonempty
set R together with two binary operations “+” (called addition) and “·” (called mul-
tiplication) such that

(i) (R,+) is an abelian group, i.e., it is an additively an abelian group;
(ii) (R, ·) is semigroup, i.e., (x · y) · z = x · (y · z) for all x, y, z ∈ R; and
(iii) the operation “·” is distributive (on both sides) over the operation “+,” i.e.,

x · (y + z) = x · y + x · z and (y + z) · x = y · x + z · x for all x, y, z ∈ R.
(distributive laws).

A ring (R,+, ·) is conventionally written by the set symbol R and x · y by xy simply.

Definition 1.8.2 A ring R is said to be commutative if its multiplication is commu-
tative, i.e., xy = yx, ∀ x, y ∈ R. It is said to have an identity element denoted by 1
if 1x = x1 = x ∀ x ∈ R.

Example 1.8.3 (i) Z,Q,R,C are important commutative rings under usual com-
positions of addition and multiplication.

(ii) Zn(n > 1) is commutative ring under usual compositions of addition and mul-
tiplication of classes.

(iii) Each of the set of all square matrices M(n,Z), M(n,Q), M(n,R), M(n,C)

of order n is a noncommutative ring under usual addition and multiplication
of matrices.

(iv) The set of all polynomials R[x] over a ring R is a ring, called the polynomial
ring over R in indeterminate x .

Definition 1.8.4 Let R be a ring. An element a ∈ R is said to be a divisor of zero,
if there exists a nonzero element b ∈ R such that ab = 0 and ba = 0.

Example 1.8.5 In the ring Z12 the element [3] is a zero divisor of the element [4].
Definition 1.8.6 A commutative ring with identity element having no zero divisor
is called an integral domain.

Example 1.8.7 Z is an integral domain.

Definition 1.8.8 An element x in a ring R with identity element 1 is said to be
invertible if there exists an element y ∈ R such that xy = 1 = yx . The element y
(if it exists) is unique and said to be an inverse element of x , abbreviated x−1. An
invertible element is sometimes called a unit.

Example 1.8.9 The set of all units in a ring R with 1 forms a (multiplicative) group.

Remark 1.8.10 The integral domainQ and the integral domainR enjoy an algebraic
advantage over the integral domain Z: every equations ax = b (a is not zero) has a
unique solution in them. Integral domains with this property are called fields.

Definition 1.8.11 A ring R with 1 is said to a division ring or a skew field if every
nonzero element of R is invertible, i.e., if its nonzero elements form a multiplicative
group. A commutative division ring is said to be a field.
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Example 1.8.12 Every finite integral domain is a field.

Example 1.8.13 (i) All square matrices of order 2 of the form

(
x1 + x2i x3 + x4i

−x3 + x4i x1 − x2i

)

where i2 = −1 and xi are real numbers (i = 1, 2, 3, 4) is a division ring under
usual addition and multiplication of matrices, but it not a field.

(ii) (QuaternionRing) The real quaternion ringH introducedbyWiliamR.Hamil-
ton (1805–1865) is a division ring but it is not a field. It consists of all ordered
4-tuples of real numbers such that ifH = {(x, y, z, t) : x, y, z, t ∈ R}, thenH
forms a division ring under the composition

(a, b, c, d) + (x, y, z, t) = (a + x, b + y, c + z, d + t),

(a, b, c, d) · (x, y, z, t) = (ax − by − cz − dt, ay + bx + ct − dz,

az − bt + cx + dy, at + bz − cy + dz

The symbols

1 = (1, 0, 0, 0), i = (0, 1, 0, 0), j = (0, 0, 1, 0), k = (0, 0, 0, 1),

used in H are such that

i2 = j2 = k2 = −1, i · j = k, j · k = i, k · i = j, j · i = −k, k · j = −i, i ·

k = − j.

InH, the element 1 is themultiplicative identity and an element (x, y, z, t) ∈ H,
called a real quaternion takes the form

(x, y, z, t) = x + yi + z j + tk.

The subset K ⊂ H defined by K = {(x, y, 0, 0) : (x, y, 0, 0) ∈ H} forms a
subring of H, isomorphic to C. So real quaternions may be considered as
generalization of complex numbers and an element k = (x, y, 0, 0) ∈ K takes
the form k = x + yi .
The integral quaternion ring and rational quaternion ring are defined in
an analogous way by taking, respectively, integral and rational coefficients.

(iii) The commutative rings R, Q and C are important examples of fields, called
the field of real numbers, the field of rational number and the field of complex
numbers, respectively.

Definition 1.8.14 Let R be a ring and A be an additive subgroup of R. Then A
is said to an ideal of R if ra, ar ∈ A, ∀ r ∈ R, i,e., the subgroup A swallows up
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multiplication by elements of R from sides. Every ring R has at least two ideals viz.
{0} and R. The two ideals such as {0} and R are called trivial ideals, and any other
ideals (if there exist) are called nontrivial ideals. An ideal different from R is said
to be proper ideal. A proper ideal I of R is said to be prime if for x, y ∈ R, xy ∈ I
implies either x ∈ I or y ∈ I and it said to be maximal if there exists no ideal K of
R such that I ⊂ K ⊂ R satisfying I �= K �= R.

Proposition 1.8.15 A proper ideal I of a commutative ring R with 1 is prime iff its
quotient ring R/I is an integral domain, and it is maximal iff R/I is field.

Example 1.8.16 (i) A division ring has no nontrivial ideals.
(ii) For every nonnegative integer n, the subgroup A = nZ = {nm : m ∈ Z} is an

ideal of the ring of integers Z. Conversely, for any ideal A of the ring R, there
is a unique nonnegative integer n such that A = nZ.

(iii) Every maximal ideal of a commutative ring is a prime ideal but its converse is
not true. For example, 〈x〉 is a prime ideal but it is not a maximal ideal in the
ring of polynomials Z[x] over Z.

Ring of Real-Valued Continuous Functions

The ring C([0, 1]) of real-valued continuous functions on the closed interval [0, 1] is
an important ring in mathematics. This ring gives an interplay between real analysis
and algebra.

Definition 1.8.17 Let C([0, 1]) be the set of all real- valued continuous functions on
the closed interval [0, 1]. i.e., C([0, 1]) = { f : [0, 1] → R such that f is continuous}.
Then C([0, 1]) forms a commutative ring under usual pointwise addition and multi-
plication:

( f + g)(x) = f (x) + g(x), ( f · g)(x) = f (x)g(x),

for all f, g ∈ C([0, 1]) and for all x ∈ [0, 1], where the right-hand addition and
multiplication are the usual addition and multiplication of real numbers. The ring
C([0, 1]) is called the ring of real-valued continuous functions on [0, 1].
Example 1.8.18 The ring C([0, 1]) contains divisors of zero and hence it is not an
integral domain. Consider

f : [0, 1] → R : f (x) =
{
0, if 0 ≤ x ≤ 1/2

x − 1
2 , if 1/2 ≤ x ≤ 1

g : [0, 1] → R : g(x) =
{

1
2 − x, if 0 ≤ x ≤ 1/2

0, if 1/2 ≤ x ≤ 1
.
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Then f, g ∈ C([0, 1]) are nonzero elements such that their product f · g = 0. This
implies that the ring C([0, 1]) cannot be an integral domain.

Theorem 1.8.19 For each x ∈ I = [0, 1] the ideal Mx = { f ∈ R : f (x) = 0} is a
maximal ideal of the ring C([0, 1]). Moreover, if M is the set of all maximal ideals
of C([0, 1]), then the map ψ : I → M, x �→ Mx is a bijection.

Proof Left as an exercise. �

1.9 Vector Space and Linear Transformations

This section recalls the concept of vector spaces (linear spaces) which has a very
strong algebraic structure to solve many specific problems. Let F be the field F = R
or C. For an arbitrary field F the definition of a vector space is similar.

Definition 1.9.1 A vector space or a linear space over a field F ( whose elements
are called scalars) with identity element e, is an additive abelian group V (whose
elements are called vectors) together with an external law of composition, called
scalar multiplication)m : F × V → V , the image of (α, v) underm abbreviated αv,
if the following conditions are satisfied:

(i) ex = x ;
(ii) α(x + y) = αx + αy;
(iii) (α + β)x = αx + βx ;
(iv) (αβ)x = α(βx)

∀ x, y ∈ V, α, β ∈ F .

Example 1.9.2 For a given field F , Fn is a vector space over F . In particular, the
n-dimensional Euclidean space Rn is a vector space over the field R.

1.9.1 Basis for a Vector Space

This subsection studies basis of vector spaces.Then vectors such as e1 = (1, 0, . . . , 0),
. . . , en = (0, 0, . . . , 1) ∈ Rn determine every vector of Rn uniquely. This leads to
the concept of basis (finite) of a vector space.

Definition 1.9.3 Let B be a nonempty subset (finite or infinite) of a vector space V
over F . A vector v ∈ V is called a linear combinations of vectors of B over F if it
can be expressed as

v = a1v1 + · · · + anvn, ai ∈ F; vi ∈ B; i = 1, 2, . . . , n.
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Proposition 1.9.4 Let B be a nonempty subset (finite or infinite) of a vector space
V over F. Then the set L(B) of all linear combinations of vectors of B is a subspace
of the vector space V, which is the smallest subspace of V containing B.

Definition 1.9.5 L(B) is called the subspace generated or spanned by B in V . In
particular, if V = L(B) for some B ⊂ V , then B is said to be a set of generators for
V . It is said to finitely or infinitely generated according as card B is finite or infinite.

Example 1.9.6 The vector space Cn is finitely generated. On the other hand, the
polynomial ring R[x] with real coefficients is not finitely generated. Because, any
linear combination of a finite set of polynomials is a polynomial whose degree
does not exceed the maximum degree say k of the set of polynomials but R[x] has
polynomials having degree > k.

Definition 1.9.7 A nonempty subset B of a vector V is said to be a basis of V over
F if

(i) V is generated by the set B; and
(ii) B is linearly independent over F .

If a vector space V is trivial, i.e., V = {0}, then the empty set ∅ is conventionally
taken as its basis.

Theorem 1.9.8 (Existence of a Basis) Every vector space has a basis. The cardi-
nality of every basis of a vector space is the same.

Definition 1.9.9 Given a nonzero vector space V over F , the cardinality of every
basis of V being the same, this common value is said to dimension of V , abbreviated
as dim V . The vector space is said to be finite or infinite dimensional if V has a finite
or an infinite basis B, i.e., if card V is finite or not. If dim B is n, then V is said to
be an n-dimensional vector space over F .

Example 1.9.10 Rn is an n-dimensional vector space over R. On the other hand,
R[x] is an infinite dimensional vector space over R.

Example 1.9.11 The real quaternions form a four-dimensional vector spaceH over
R, with a basis B = {1, i, j, k}.

1.9.2 Linear Transformations

A linear transformation between vector spaces is an analogue concept between
groups. Many mathematical problems, when properly posed, may be solved with the
help of linear transformations. The concept of linear transformation is used through-
out Basic Topology, Volumes I, II, III of the present book series.

Definition 1.9.12 Given two vector spaces V andU over the same field F , a linear
transformation is a map T : V → U such that for all u, v ∈ V and for all a, b ∈ F ,
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(i) T (u + v) = T (u) + T (v) (additivity law);
(ii) T (av) = aT (v) (homogeneity law).

The above two conditions can be combined together to have an equivalent
condition:

(iii) T (au + bv) = aT (u) + bT (v).

In particular, for U = V , a linear transformation T : V → V is said to be a linear
operator.

A linear transformation is also a group homomorphism between the corresponding
additive groups.

Definition 1.9.13 A linear transformation T : V → U is said to be

(i) a monomorphism if T is injective;
(ii) an epimorphism if T is surjective;
(iii) an isomorphism of T is bijective.

1.9.3 Dual Space of a Vector Space

Definition 1.9.14 Let V be a vector space over a field F . Then the set L(V, F) of
all linear transformations T : V → F forms a vector space over F , called the dual
space of V , denoted by V d . An element T ∈ V d is called a linear functional of V
into F . A linear functional T ∈ V d transforms a vector to a scalar.

1.9.4 C([0, 1]) as a Vector Space

This subsection defines linear functional for the vector space C([0, 1]). Clearly,
C([0, 1]) is a commutative ring under the operations

( f + g)(x) = f (x) + g(x), ( f · g)(x) = f (x) · g(x), ∀ x ∈ [0, 1].

Again V = C([0, 1]) is also a vector space over the field R under pointwise addition
and scalar multiplication. The function ψ : V → R defined by f (x) �→ ∫ 1

0 f (x)dx
is a linear function such that ψ ∈ V d = L(V,R), called the dual space of V .

1.10 Euclidean Spaces and Related Spaces with Standard
Notations

In mathematical problems, subspaces of an n-dimensional Euclidean space arise
frequently. Such spaces are used both in theory and application of topology. Some
standard notations used throughout the book are given.
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∅: empty set
Z: ring of integers (or set of integers)
Zn: ring of integers modulo n
R: field of real numbers
C: field of complex numbers
Q: field of rational numbers
H: division ring of quaternions

Rn: Euclidean n-space, with ‖x‖ =
√∑n

i=1
x2i and 〈x, y〉

=
∑n

iz=1
xi yi for x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn)

∈ Rn

Cn: complex n-space
I: [0, 1]
İ: {0, 1} ⊂ I
In: n-cube={x ∈ Rn : 0 ≤ xi ≤ 1 for 1 ≤ i ≤ n} for x = (x1, x2,

. . . , xn)
Dn: n-disk or n-ball={x ∈ Rn : ‖x‖ ≤ 1}
Sn: n-sphere = {x ∈ Rn+1 : ‖x‖ = 1} = ∂ Dn+1 (the boundary of

the (n + 1)-disk Dn+1)
RPn: real projective space = quotient space of Sn with x and −x

identified for all x ∈ Sn

CPn: complex projective space = space of all complex lines through
the origin in the complex space Cn+1

⊔
: disjoint union of sets or spaces

×,	: product of sets, groups, modules, or spaces
∼=: isomorphism
≈: homeomorphism
iff: if and only if
X ⊂ Y or Y ⊃ X : set-theoretic containment (not necessarily proper).

1.11 Exercises

1. Given any x ∈ R, let Sx = {y ∈ Q : y < x} ⊂ Q. Show that lub Sx = x .
2. Let X and Y be nonempty sets, and let f : X → Y and g : Y → X twomappings.

Show that

(i) If g ◦ f is the identity mapping on X , then f is an injection and g is a
surjection.

(ii) If g ◦ f is the identity mapping on X and f ◦ g is the identity mapping on
Y , then both f and g are bijections and g = f −1.

3. Let X be a nonempty set, and let f ∈ XX . Prove that;

(i) if f ◦ g = f ◦ h, then g = h for all g, h ∈ XX iff f is injective;
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(ii) if g ◦ f = h · f , then g = h for all g, h ∈ XX iff f is a surjection.

4. Let f : X → Y be a surjection and B ⊂ Y .
Prove the following statements:

(i) f −1(∅) = ∅, and f −1(Y ) = X .
(ii) f −1(Y − B) = X − f −1(B), where B ⊂ Y .
(iii) B ⊂ A ⊂ Y implies f −1(B ⊂ (A) ⊂ X .
(iv) For any collection of subsets {Bα} of Y ,

f −1(
⋃

{Bα}) =
⋃

{ f −1(Bα)} and f −1(
⋂

{Bα}) =
⋂

{ f −1(Bα)}.

(v) B ∩ A = ∅ in Y implies f −1(B) ∩ f −1(A) = ∅ in X .
(vi) D ⊂ f −1(B) implies f (D) ⊂ B, where D ⊂ X and B ⊂ Y .

5. Show that

(i) The order-isomorphism of anywell-ordered set onto itself is only its identity
map.

(ii) Any two order-isomorphic well-ordered set can be mapped order-
isomorphically onto each other in a unique way.

6. (Cayley transformation) Let R be the real line and S1 = {z ∈ C : |z| = 1} be
the unit circle in the complex plane.
Show that the map

CT : R → S1 − {1}, t �→ t − i

t + i

is a bijection.
7. Show that the Cantor set C is equivalent to the set I = [0, 1].
8. Given two maps f : X → Y, g : Y → Z , with their inverse maps f −1 : Y →

X, g−1 : Z → Y , show that the inverse of the composite map g ◦ f : X → Z is
the composite map f −1 ◦ g−1 : Z → X .

9. Show that every infinite set has an enumerable subset.
10. (Fundamental theorem of arithmetic) Show that every integer n > 1 is

uniquely factorizable (up to order).
11. Show that

(i) Every subset of a countable set is countable.
(ii) The Cartesian product of a finite collection of countable sets is countable.
(iii) Countable union of countable sets is countable.
(iv) Every open interval (a, b) has cardinality c.
(v) Cantor set has cardinality c.

12. Show that card (I) = card (In).
[Hint: Use that I ∼ In .]

13. Show that card (I) = card (R).
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14. Let G and H be two groups with with 1G and 1H identity automorphisms of G
and H respectively.
Let f : G → H, g : H → G be two homomorphisms. Show that

(i) If g ◦ f : G → G is 1G , then f is a monomorphism.
(ii) If f ◦ g : H → G is 1H , then f is an epimorphism.
(iii) If g ◦ f is 1G and f ◦ g is 1H , then f is an isomorphism with g its inverse.

15. Let C([0, 1]) be the ring of real-valued continuous functions on [0, 1]. Show that
Mx = { f ∈ C([0, 1]) : f (x) = 0} is a maximal ideal of C([0, 1]).

16. Show the there exists a bijective correspondence between the set of all maximal
ideals of the ring C([0, 1]) and the points of [0, 1].
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Chapter 2
Metric Spaces and Normed Linear
Spaces

This chapter starts a journey in metric spaces describing the concept of metrics,
which is an abstraction of distance in the Euclidean space and conveys an axiomatic
framework for this abstraction with a systemic study of elementary basic properties
of metric spaces. It also discusses normed linear spaces which form a versatile
class of metric spaces. This discussion includes a brief study of Banach and Hilbert
spaces.

Metric spaces give the simplest setting for the study of certain problems arising
in analysis and provide a rich supply of continuous functions as well as topological
spaces. Most of the applications of topology to analysis arise through the metric
spaces. In many areas of mathematics such as in geometry, analysis and algebra
(specially, in matrix algebra), the concept of distance is generalized in an abstract
setting by introducing the concept of metric spaces, which facilitates a study of
continuous functions defined on abstract sets as well as convergent sequences on
these sets.

The basic aim of this chapter is to address an introduction to metric spaces with
an eye to make a preparatory grounding for a general topology course which offi-
cially begins in Chap.3. The motivation of this approach is that metric spaces are
immediate generalizations of real and complex number systems and lie between them
and topological spaces. Thus metric spaces are less general than topological spaces.
Metric spaces are discussed as our first step, because of their simplicity and wide
usefulness in modern mathematics. Moreover, metric spaces have more structure
than topological spaces, and they provide stepping stones to a variety of important
topics in topology. Various interesting applications of metric spaces are available
in Sect. 2.16. Throughout the book, Rn represents the Euclidean n-space with usual
distance function d formulated in Definition2.3.10 unless specified otherwise.

General topology (also called point set topology) is developed in Euclidean n-
space Rn as well as in the setting of more general metric spaces. The central concept
in analysis and topology is the continuity of functions. This chaptermotivates to study
spaces such asmetric spaces onwhich aworkable definition of continuity of functions
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can be given, where the concept of continuity can be completely expressed in terms of
open sets (see Theorem2.12.6 for metric spaces and Chap. 3 for topological spaces).
Continuity of a function between metric spaces can be characterized in the language
of sequences (see Theorems2.12.3 and 2.12.4).

Urysohn lemma for metric spaces provides a vast supply of real-valued continu-
ous functions on the metric spaces. Another important theorem of this chapter is the
Banach contraction theorem on complete metric spaces, which is applied to prove
Picard’s theorem on the existence of solution of a differential equation. In general,
a metric space does not carry any algebraic structure. But there exist metric spaces
which are also linear (vector) spaces, and their metrics are induced by certain norm
functions defined on these linear spaces, which are known as normed linear spaces.

Historically, the concept of metric spaces was introduced by the French mathe-
matician Maurice Fréchet (1878–1973) in 1906 in his Ph.D. thesis by generalizing
the concept of Euclidean spaces. This concept is an abstraction of distance in the
Euclidean space born through the well-known properties of the Euclidean distance
in an abstract setting, and it provides a rich supply of continuous functions. The
special structure of a metric space induces a topology (see Chap. 3) having many
applications of topology in modern analysis. The term Topology was coined by J.
B. Listing (1808–1882) in 1847, but Felix Hausdorff (1868–1942) popularized the
term topology in 1914 and developed this subject in his book Grundzüge der Men-
genlehre of 1914, which stemmed from analysis. His land-marking work sets out
the systematic journey of general topology.

For this chapter, the books Bredon (1993), Simmons (1963), Stephen (1970),
Patterson (1959) and some other books are referred in Bibliography.

2.1 Results of Analysis Leading to the Concept of Metric
Spaces

Before presenting the formal definition of a metric space, this section conveys some
fundamental results of classical analysis, which motivated the concept of metric
spaces as well as its systematic study in an abstract setting. Most of the concepts
related to metric spaces were born through the geometric ideas of the set R of real
numbers. So, it has become necessary to study open sets, closed sets and continuity of
functions in R, which play a key role in mathematics, particularly, in algebra, geom-
etry and analysis. Throughout this chapter, R represents the real line endowed with
Euclidean metric d, sometimes, called it the Euclidean line, formally formulated in
Definition2.1.1.
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2.1.1 Open Sets in R

This subsection studies open sets in R. Let “≤” be the usual (natural) ordering on R,
and as usual, (a, b) denotes an open interval, and [a, b] denotes a closed interval in
R for a, b ∈ R, with a < b.

Definition 2.1.1 The Euclidean distance d(x, y) in R is defined by

d(x, y) = |x − y|, ∀ x, y ∈ R,

where |x − y| denotes the absolute value of the real number x − y. The map

d : R × R → R, (x, y) �→ |x − y|

is called the Euclidean metric or usual metric on R, the set R equipped with the
Euclidean metric is called the Euclidean line, and it is also denoted, sometimes by
R1.

Definition 2.1.2 A subset X of R is said to be open if for each point x ∈ X , there
exist points a, b ∈ R, with a < b, such that x ∈ (a, b) ⊂ X .

Example 2.1.3 Every open interval (a, b) is an open set in R, because, for any
x ∈ (a, b), there is an open interval (x − ε, x + ε) ⊂ (a, b) obtained by taking
ε = min{x − a, b − x}, which is positive. On the other hand, its converse is not
necessarily true, since all open sets in R are not intervals. For example, the set
(2, 6) ∪ (8, 9) is an open set in R by Corollary2.6.13 but it is not an open interval.
In general, the set X = ⋃∞

n=1(2n, 2n + 1) is an open set in R, but it is not an open
interval. The closed interval [a, b] is not open set in R.

Remark 2.1.4 The set of all open sets in a nonempty set defined in Definition2.1.2
satisfies the four axioms of open sets for a topology (see Theorem2.6.15), called the
Euclidean topology onR. This leads to the concept of topology on an abstract setting
(seeChap.3) by defining open sets facilitating to define continuity of functions,which
is one of the basic concepts in topology.

Definition 2.1.5 Let X be a subset of R. A point x ∈ X is said to be an interior
point of X if the point x is in some open interval Ox which is contained in X , i.e.,
x ∈ Ox ⊂ X . A subset X of R is said to be open if every point of X is an interior
point of X . On the other hand, a subset X of R is not open iff there exists a point
x ∈ X such that x is not an interior point of X .

Example 2.1.6 Every point of an open interval (a, b) in R is an interior of (a, b).

Example 2.1.7 (i) The empty set ∅ in R is trivially an open set because there
exists no point in ∅.

(ii) The real line R is itself an open set, because every point in R is an interior
point of R.
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(iii) Any open interval (a, b) in R is an open set.
(iv) The closed interval [a, b] in R is not an open set, because the end points a and

b are not interior points of [a, b].
(v) The infinite open intervals (a, ∞) = {x ∈ R : a < x < ∞} and (−∞, a) =

{x ∈ R : −∞ < x < a} in R are open sets, but infinite half-closed intervals
[a, ∞) = {x ∈ R : a ≤ x < ∞} and (−∞, a] = {x ∈ R : −∞ < x ≤ a} are
not open in R, because the point a ∈ R is not an interior point of either of these
two infinite half-closed intervals [a, ∞) and (−∞, a].

Theorem2.1.8 is a fundamental theorem on open sets of R.

Theorem 2.1.8 (i) The union of any number of open sets in R is an open set.
(ii) The intersection of a finite number of open sets in R is an open set.

Proof Left as an exercise; otherwise, see Corollary2.6.13. �

Definition 2.1.9 Let X be a subset of R. A point p in R is said to be a limit point,
cluster point or an accumulation point of X if every open set U containing the
point p contains a point of X other than the point p.

Example 2.1.10 (i) Every point of R is a limit point of the set Q of rational
numbers.

(ii) For the subset X = { 1n : n ∈ N} of R, the point 0 is the only limit point of X .
(iii) Every point in the interval X = [a, b) ⊂ R is a limit point of X . Even, the point

b /∈ X is also a limit point of X .
(iv) The subset X = {1, 1/2, 1/3, 1/4, . . .} of R has limit point 0, since any open

intervalU (such as (−a, b) with −a < 0 < b) containing the point 0 contains
infinitely many points other than 0.

Definition 2.1.11 Let X be a subset ofR. The set of all limit points of X , abbreviated
X ′, is called the derived set of X .

Example 2.1.12 (i) The point 0 is the only limit point of the subset X = {1, 1/2,
1/3, 1/4, . . .} of R and hence its derived set X ′ = {0}.

(ii) The derived set of the set of integers Z is the empty set ∅.
(iii) For X = [a, b) ⊂ R, its derived set X ′ = [a, b].

2.1.2 Closed Sets in R

This subsection studies closed sets in R which are complements of open sets in R.

Definition 2.1.13 A subset F of R is said to be a closed set in R if its complement
Fc = R − F is an open set in R.

Example 2.1.14 (i) The complement of an open set in R is a closed set, and
dually, the complement of a closed set in R is an open set in R.
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(ii) The closed interval [a, b] ⊂ R is a closed set, because its complement in R is
the open set (−∞, a) ∪ (b,∞), which is the union of two open sets in R.

(iii) The subset Z of R is a closed set, because the complement of Z is the union of⋃∞
−∞(n, n + 1) of open intervals (n, n + 1) of R, is an open set and hence Z

is a closed set in R.
(iv) R and ∅ are closed sets, because their complements are open sets in R.

A closed set in R is characterized in Theorem2.1.15 by its limit points.

Theorem 2.1.15 A subset F ⊂ R is closed iff F contains all of its limit points.

Proof Left as an exercise. �

Example 2.1.16 The set F = {1, 1/2, 1/3, . . .} ⊂ R is not closed in R, because its
limit point 0 is not in F . On the other hand, [0, 1] is closed in R.

2.1.3 Two Classical Theorems: Bolzano–Weierstrass
Theorem and Heine–Borel Theorem

This subsection conveys Bolzano–Weierstrass Theorem and Heine–Borel Theorem,
which are two classical results in real analysis. These theorems are generalized in
Chap.5 in the context of compactness in a topological setting. Bernard Bolzano
(1781–1848) proved Theorem2.1.19, in the 1817. This theorem was also proved
by Karl Weierstrass (1815–1897) independently. On the other hand, Eduard Heine
(1821–1881) used finite subcovers in a paper published in 1872 on his study of
uniformly continuous functions. Emile Borel (1871–1956) proved that a countable
open covers of closed intervals have finite subcovers in a paper published in 1894,
which led to the concept of compactness studied in Chap.5 of the present volume of
the book series.

Definition 2.1.17 Let X be a subset of R. A family C = {Xi } of open sets of R is
said to be an open covering of X , if X ⊂ ⋃

i Xi . A subset X of R is said to be
compact if every open covering of X has a finite subcovering.

Remark 2.1.18 An infinite setmaynot have a limit point. So the problemof existence
of limit points is interesting. Bolzano and Weierstrass solved this problem in the
classical Bolzano–Weierstrass Theorem2.1.19, named after them.

Theorem 2.1.19 (Bolzano–Weierstrass theorem in R) Let X be a bounded infinite
subset of R. Then X has at least one limit point.

Proof Left as an exercise. �

Remark 2.1.20 The property of R embodied in Theorem2.1.19 is said to be
Bolzano–Weierstrass (B-W) property of R. Its generalization in metric spaces
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asserts that a metric space M is said to have the Bolzano–Weierstrass property if
every infinite subset of M has a limit point. A further generalization of this property
in the topological language asserts that a metric space is compact iff its every infinite
subset has a limit point (see Chap. 5).

Corollary 2.1.21 Every bounded sequence in R with the Euclidean metric has a
convergent subsequence.

Remark 2.1.22 Another important property of R is the classical Heine–Borel Theo-
rem2.1.23, named after E. Heine andE. Borel, which asserts that every open covering
C of a closed and bounded interval X in R has a finite subcovering S in the sense
that S is a finite subset of C such that X is contained in a finite union of members
of S. This leads to the concept of compactness in the topological language which is
studied in Chap. 5.

Theorem 2.1.23 (Heine–Borel theorem in R) Every closed bounded subset of R is
compact in the sense that its every open covering has a finite subcovering.

Proof Left as an exercise or see Chap.5. �

Remark 2.1.24 The property of R embodied in Theorem2.1.23 is said to be the
Heine–Borel property of R, named after Heine and E. Borel. A generalization of
this property in the topological language asserts that every closed and bounded subset
of R is compact (in the usual metric topology) (see Chap. 5).

2.1.4 Continuity of Functions on R

This subsection addresses some basic properties of real-valued continuous functions
defined onR. The concept of continuity of a function plays a key role inmathematics.
It is defined at school level by utilizing the usual distance between two points in R,
called “ε-δ” definition.

Definition 2.1.25 A function f : R → R is said to be continuous at a point a ∈ R,
if for every real number ε > 0, there exists a real number δ > 0 such that | f (x) −
f (a)| < ε, whenever |x − a| < δ, i.e., for every open set O f (x) containing the point
f (x), there exists an open set Ox containing the point x such that f (Ox ) ⊂ O f (x).
The function f is said to be continuous if it is continuous at every point in R.

Intuitively, if a function f : R → R is continuous at a point a, then whenever x is
close to a, its image f (x) becomes close to f (a), and here closeness is measured by
the Euclidean distance d(x, a) = |x − a| on R.

Definition 2.1.26 A function f : R → R is said to be continuous on a subset S ⊂ R
if f is continuous at each point in S.
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Remark 2.1.27 The continuity of a function f : R → R can be characterized in
terms of open sets as shown in Corollary2.12.7, which asserts that a function f :
R → R is continuous iff the inverse image of every open set is open. Thus, a function
f : R → R is not continuous iff there exists an open set U ⊂ R such that f −1(U )

is not open.

Example 2.1.28 The function

f : R → R, x �→
{
x − 1, ifx ≤ 3
x+5
2 , if x > 3

.

is not continuous, since its inverse image of every open interval is not open.

Proposition 2.1.29 Let a function f : R → R be continuous at every point x ∈
[a, b] and satisfy the property that f (a) < 0 < f (b). Then there exists a point c ∈
[a, b] such that f (c) = 0.

Proof Left as an exercise. �
Weierstrass Intermediate Value Theorem2.1.30 proves the connectedness prop-

erty of R. Its generalization in a topological setting is available in Chap. 5.

Theorem 2.1.30 (Weierstrass intermediate value theorem) If f : R → R is a con-
tinuous function on the closed interval [a, b] ⊂ R, then f assumes every value
between f (a) and f (b).

Proof Without any loss of generality, let f (a) < f (b) and r be a real number such
that f (a) < r < f (b). Consider the continuous function

ψ : R → R, x �→ f (x) − r.

Then ψ(a) < 0 < ψ(b). Hence it follows by Proposition2.1.29 that there exists
a point c ∈ [a, b] such that ψ(c) = f (c) − r = 0, which asserts that f (c) = r . �

2.2 Sequence of Real Numbers and Cauchy Sequence

This section discusses the concepts of sequences of real numbers and specially
Cauchy sequences used in analysis to facilitate their generalizations in metric spaces
(see Sect. 2.10).

2.2.1 Sequence of Real Numbers

This subsection studies sequences of real numbers, which play a key role in topology
and analysis.
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Definition 2.2.1 A sequence of real numbers is a function (map) f : N → R, and
the image f (n) = xn ∈ R is called the nth term of the sequence. It is said to be
bounded if its image set Im f = {xn : n ∈ N} is bounded in R.

Example 2.2.2 (i) The sequence {1/2, 1/4, 1/8, . . .} defined by

f : N → R, n �→ 1/2n

is bounded in R.
(ii) The sequence {2, 4, 6, 8, . . .} defined by

f : N → R, n �→ 2n

is not bounded in R.

Definition 2.2.3 A sequence {xn} = {x1, x2, . . . , xn, . . .} of real numbers is said to
converge to a point x ∈ R, if for every real number ε > 0, there exists a positive inte-
ger n0 such that |xn − x | < ε for every integer n ≥ n0, i.e., every open set containing
x contains almost all, except possibly, a finite number of terms of the sequence.

Example 2.2.4 (i) The constant sequence {5, 5, . . . , 5, . . .} converges to 5,
because every open interval containing 5 contains every term of the sequence.

(ii) The sequence {1, 1/2, 1/3, 1/4, . . .} converges to 0, because every open inter-
val containing 0 contains almost all terms of the sequence.

Definition 2.2.5 In the sequence {xn} = {x1, x2, . . . , xn, . . .} of real numbers, if { jn}
is a sequenceof positive integers such that j1 < j2 < j3 < · · · , then {x j1 , x j2 , x j3 , . . .}
is called a subsequence of {xn}.

Bolzano–Weierstrass Theorem2.1.19 is also expressed in terms of real sequences
in Theorem2.2.6.

Theorem 2.2.6 (Bolzano–Weierstrass theorem) Every bounded sequence of real
numbers has a convergent subsequence.

Proof It follows from Theorem2.1.19 . �

2.2.2 Cauchy Sequence

This subsection studies a special class of sequences of real numbers, called Cauchy
sequences, and characterizes convergence of sequences of real numbers with the
help of Cauchy sequences in Theorem2.2.13. This sequence is named after the
French mathematician Augustin-Louis Cauchy (1789–1857), who is considered as
a cofounder of mathematical analysis.
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Definition 2.2.7 A sequence {xn} = {x1, x2, . . . , xn, . . .} of real numbers is said to
be a Cauchy sequence if for every positive real number ε, there exists a positive
integerm such that |xi − x j | < ε for all i, j ≥ m, i.e., a sequence {xn} of real numbers
is a Cauchy sequence iff the terms of the sequence {xn} come arbitrarily close to each
other as n becomes sufficiently large.

Definition 2.2.8 A subset X of real numbers is said to be complete if every Cauchy
sequence {xn} of points in X converges to a point in X .

Example 2.2.9 Every convergent sequence of real numbers is a Cauchy sequence,
but its converse is not true. For example, consider the metric space X = (0, 1) with
standard metric

d : X × X, (x, y) �→ |x − y|.

Then the sequence {xn = 1/n} is a Cauchy sequence in X , but this sequence does
not converge in X .

Example 2.2.10 The set Q of rational numbers endowed with the usual metric

Q × Q, (x, y) �→ |x − y|

is not complete, because there exist Cauchy sequences in Q which converge to an
irrational number such as the sequence

1.4, 1.41, 1.4142, 1.41421, . . .

converges to
√
2 ∈ R, is a Cauchy sequence in Q, but it does not converge in Q.

Example 2.2.11 The set R of real numbers is complete by Corollary2.2.14.

Proposition 2.2.12 Every Cauchy sequence of real numbers is bounded.

Proof Let {xn} = {x1, x2, . . . , xn, . . .} be a Cauchy sequence of real numbers. Then
given an ε = 1, there exists a positive integer n0 such that |xi − x j | < ε = 1 for all
i, j ≥ n0. This shows that

|xn| = |xn − xn0 + xn0 | ≤ |xn − xn0 | + |xn0 | < 1 + |xn0 | , ∀ n ≥ n0,

This asserts that the sequence {xn} is bounded.
�

Theorem2.2.13 characterizes convergenceof real sequences byCauchy sequences.

Theorem 2.2.13 (Cauchy) A sequence {xn} = {x1, x2, . . . , xn, . . .} of real numbers
is convergent iff it is a Cauchy sequence.

Proof Left as an exercise. �
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Corollary 2.2.14 The set R of real numbers is complete.

Proof Since every Cauchy sequence in R converges to a point in R by Theo-
rem2.2.13, the Corollary follows. �

Remark 2.2.15 Corollary2.2.14 gives one of the fundamental properties of R that
R is complete. On the other hand, the set Q of rational numbers is not complete by
using the supporting Example2.2.10.

Example 2.2.16 Every Cauchy sequence in R is convergent, but it is not valid on
a proper subset of R. For example, in the open interval (0, 1) endowed with the
Euclidean metric, the sequence

0.1, 0.01, 0.001, 0.0001, . . .

is a Cauchy sequence, but it fails to converge to any point in (0, 1).

Proposition 2.2.17 Every sequence {xn} in R has a monotonic subsequence.

Proof Left as an exercise. �

Proposition 2.2.18 Let {xn} be a monotonic sequence in R. Then the sequence {xn}
converges to a point in R iff the sequence {xn} is bounded.
Proof Left as an exercise. �

2.3 Concept of Distance in Euclidean Spaces Rn

We are familiar with the concept of distance in Euclidean spaces from school level.
This concept permits the definitions of open sets, closed sets and continuity of
functions from one Euclidean space to another. The most of the spaces of our
interest are subsets of Euclidean spaces. This section generalizes the concepts of
distance and continuity of functions defined in R for the Euclidean n-space Rn .
Since Rn represents the Euclidean n-space with usual distance function d formu-
lated in Definitions2.3.10, 2.1.9 of limit points for a subset in R can be extended in
a similar way for a subset in Rn .

2.3.1 Open Sets of Euclidean Plane R2

This subsection studies open sets in the Euclidean plane R2 by using the usual
distance in the Euclidean plane. Throughout the book, R2 stands for the Euclidean
plane with usual metric d, given in Definition2.3.1, unless specified otherwise.
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Definition 2.3.1 Let x = (x1, x2), y = (y1, y2) ∈ R2 be two points. Then their
usual distance d(x, y) defined by

d(x, y) = [(x1 − y1)
2 + (x2 − y2)

2]1/2,

is called the Euclidean distance between the points x and y and the map

d : R2 × R2 → R, (x, y) �→ [(x1 − y1)
2 + (x2 − y2)

2]1/2, for x = (x1, x2),

y = (y1, y2) ∈ R2

is called the Euclidean metric or usual metric on R2. The set R2 endowed with the
Euclidean metric is called the Euclidean plane.

Definition 2.3.2 An open disk or an open ball in R2 centered at a point x ∈ R2

and radius r > 0 symbolized Bx (r) is defined by

Bx (r) = {y ∈ R2 : d(x, y) < r}.

Example 2.3.3 The open unit disk centered at a point x ∈ R2 and radius 1 is given
by

Bx (1) = {y ∈ R2 : d(x, y) < 1}.

Definition 2.3.4 Given a subset X ⊂ R2, a point x ∈ X is said to be an interior
point of X if x is an element of some open disk Bx (r), equivalently, x ∈ Bx (r) ⊂ X
for some open disk Bx (r). The set X is said to be open if every point of X is an
interior point.

Example 2.3.5 (i) The Euclidean plane R2 is an open set.
(ii) Any open disk Bx (r) in R2 is an open set.
(iii) The empty set ∅ is an open set.

Remark 2.3.6 Definition2.1.9 of limit points for a subset in R can be extended in a
similar way for R2 and in general, for Rn .

Definition 2.3.7 Let X be a subset of R2. A point x ∈ R2 is said to be an accumu-
lation point or limit point of X if every open set U containing the point x contains
a point of X which is different from x .

Definition 2.3.8 Let X be a subset of R2. The set of all limit points of X abbreviated
X ′ is called the derived set of X .

Example 2.3.9 In the Euclidean plane, every point of the set A = {(x, y) ∈ R2 :
x = 0, |y| ≤ 1}, i.e., every point on the y-axis lying between the points (0,−1) and
(0, 1) is a limit point of the set

X =
{

(x, y) ∈ R2 : y = sin
1

x
, x > 0

}

.
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2.3.2 Distance Function in Rn

The Euclidean n-space Rn for any finite dimension n is defined as a natural general-
ization of 2-dimensional Euclidean plane R2 and 3-dimensional Euclidean space R3.
A point x in the Euclidean n-space Rn can be represented by an ordered set of n-real
numbers, x = (x1, x2, . . . , xn). For convenience, a point x ∈ Rn is sometimes writ-
ten as (x) ∈ Rn . For infinite dimensional Euclidean space R∞, see Example2.14.12.
The concept of distance between any two points in Euclidean lineR, Euclidean plane
R2 and Euclidean 3-space R3 is well known to the students from their school level.
This notion of distance in Euclidean n-space Rn is analogous.

Definition 2.3.10 Given twopoints x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) ∈
Rn , their Euclidean distance d(x, y) is defined by

d(x, y) =
[

n∑

i=1

(xi − yi )
2

] 1
2

,

and the function
d : Rn × Rn → R, (x, y) �→ d(x, y)

is called the Euclidean distance function on Rn .

This distance function formulated inDefinition2.3.11 facilitates to formulate an open
ball in Rn .

Definition 2.3.11 The subset Bx (ε) = {y ∈ Rn : d(x, y) < ε} ⊂ Rn is called an
open ball of radius ε (> 0), centered at the point x ∈ Rn .

2.3.3 Continuity of Functions f : Rn → Rm

Continuity is a basic concept on which topology is founded. This subsection studies
continuity of functions f : Rn → Rm by using the concept of distance function. Our
study relies on the standard setting in Rn with an eye to generalize this study in
arbitrary metric spaces in Sect. 2.12 and in topological spaces in Chap.3 (where the
concepts of distance, angle and derivatives are lacking). The continuity of a function
in Euclidean spaces defined by generalizing “ε- δ” definition of continuity given in
calculus or real analysis is equally well defined by its equivalent definition in terms
of open balls in Rn .

Definition 2.3.12 A function f : Rn → Rm is said to be continuous at a point
x ∈ Rn if for every ε > 0, there exists a real number δ > 0 such that if d(x, y) <

δ, then d( f (x), f (y)) < ε, where d is the Euclidean distance function given by
d(x, y) = |x − y| between any two points x, y ∈ Rn (accordingly, f (x), f (y) ∈
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Rm). A function f : Rn → Rm is said to be continuous if it is continuous at every
point x ∈ Rn .

Remark 2.3.13 Definition2.3.12 is analogous to the “ε-δ” definition of continuity
of a function given in calculus or real analysis. It is frequently used in the study
of manifolds given in Basic Topology, Volume 2 of the present series of books.
Geometrically, this definition asserts that a function f : Rn → Rm is continuous
if the points f (x) and f (y) in Rm can be made arbitrarily close by choosing the
points x and y in Rn close enough according to the need. Moreover, it follows that
a function f : Rn → Rm given by

f (x) = ( f1(x), f2(x), . . . , fm(x))

is continuous at a point a ∈ Rn if and only if each of the component functions fi :
Rn → R is continuous at the point a, for i = 1, 2, . . . , n.We formulate a definition of
continuity of a function in Definition2.3.14 in terms of open balls which is equivalent
to the Definition2.3.12.

Definition 2.3.14 A function f : Rn → Rm is said to be continuous at a point x ∈
Rn if for every real number ε > 0, there exists a real number δ > 0 such that y ∈
Bx (δ) implies f (y) ∈ B f (x)(ε) (i.e., f (Bx (δ)) ⊂ B f (x)(ε)). The function f : Rn →
Rm is said to be continuous if it is continuous at every point x ∈ Rn .

Remark 2.3.15 Equivalence of two definitions of continuous functions given in
Definitions2.3.12 and 2.3.14, i.e., Definition2.3.12 ⇔ Definition2.3.14, is estab-
lished in Proposition2.3.16.

Proposition 2.3.16 A function f : Rn → Rm is continuous if f satisfies either of
the conditions prescribed

(i) in Definition2.3.12 or
(ii) in Definition2.3.14.

Proof Let f : Rn → Rm be a given function. First suppose that f is continuous in
terms of Definition2.3.12. Let y ∈ Bx (δ) be an arbitrary point. Then by hypothesis,
d( f (x), f (y)) < ε. This shows that

y ∈ Bx (δ) =⇒ f (y) ∈ B f (x)(ε).

Hence f is also continuous in terms of Definition2.3.14. Conversely, suppose that
f is continuous in terms of Definition2.3.14. Let y ∈ Bx (δ) be an arbitrary point.
Then the hypothesis f (y) ∈ B f (x)(ε) shows that

d(x, y) < δ =⇒ d( f (x), f (y)) < ε.

Hence f is also continuous in terms of Definition2.3.12.
�
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Definition 2.3.17 A subset U of Rn is said to be open if for every element x ∈ U ,
there exists a real number δ > 0 such that the open ball Bx (δ) ⊂ U .

Theorem2.3.18 characterizes continuity of a function in terms of open sets.

Theorem 2.3.18 A function f : Rn → Rm is continuous iff f −1(U ) is an open set
in Rn for every open set U in Rm.

Proof Let f : Rn → Rm be a continuous function, U be an open set in Rm and
x ∈ f −1(U ). AsU is open and f (x) ∈ U , there exists a real number ε > 0 such that
the open ball B f (x)(ε) ⊂ U . Again, since f is continuous by hypothesis, there exists
a real number δ > 0 such that f (Bx(δ)) ⊂ B f (x)(ε). This asserts that

Bx (δ) ⊂ f −1(B f (x)(ε)) ⊂ f −1(U ).

This shows that f −1(U ) is open in Rn .
Conversely, suppose that f −1(U ) is open in Rn for every open set U in Rm . Let

ε > 0 be given and x ∈ Rn be an arbitrary point. Since the open ball B f (x)(ε) is open
in Rm , the set f −1(B f (x)(ε)) is open in Rn and x ∈ f −1(B f (x)(ε)). Consequently,
there exists a real number δ > 0 such that

Bx (δ) ⊂ f −1(B f (x)(ε)).

This implies that f (Bx (δ)) ⊂ B f (x)(ε) and hence f is continuous by Defini-
tion2.3.14. �

Remark 2.3.19 Some examples of continuous functions from the geometrical view-
point are given in Sect. 2.16.4.

2.4 Metric Spaces: Introductory Concepts

This section beginswith the introductory concept ofmetric spaces by defining several
metrics on abstract settings and studies different properties ofmetric spaces. Ametric
space X is a set of points admitting a quantitative measure of the degree of nearness
between pair of points in X . The concept of “nearness” in a metric space through
its metric generalizes “ε-δ” definition of continuity of a function in R. The study of
convergence of sequences of points in metric spaces is almost similar to the study of
sequences of real numbers. For example, the concept of Cauchy sequence in a metric
space is similar to the concept of Cauchy sequence of real numbers in analysis.

The continuity of functions can be studied with the help of convergence of
sequences in metric spaces. The concept of distance available in many branches
of mathematics can be extended to abstract sets by defining metrics. For example,
given two real numbers x, y ∈ R, there exists a nonnegative real number d(x, y),
called the distance between the points x and y. This defines a function
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d : R × R → R

satisfying the properties (i)–(iii) prescribed in Definition2.4.1. In the Euclidean
n-space Rn a distance function can be defined in a similar way. These properties
of R (or Rn) are sufficient to study continuity of a function and motivate to extend a
study of continuity in an abstract set X admitting a distance function d : X × X → R
given in Definition2.4.1.

Definition 2.4.1 A nonempty abstract set X is said to have a metric or a distance
function

d : X × X → R,

if for every pair of elements x, y in X

(i) (positivity) d(x, y) ≥ 0, equality holds iff x = y;
(ii) (symmetry) d(x, y) = d(y, x);
(iii) (triangle inequality) d(x, y) + d(y, z) ≥ d(x, z) for all z ∈ X .

d(x, y) is called the distance between x and y and the pair (X, d) is called a metric
space or X is said to be metricized by d.

Remark 2.4.2 In ametric space (X, d), the distance functiond conveys aquantitative
measure of the degree of closeness of two points in X , and the triangle inequality
in Definition2.4.1 asserts the transitivity of closeness in the sense that given three
points x, y, z ∈ X , if x is close to y and y is close to z, then x is close to z.

Pseudo-metric Spaces

There are many spaces studied in modern analysis which are not metric spaces, but
they behave almost like metric spaces. Such spaces, called pseudo-metric spaces, are
formally defined in Definition2.4.3.

Definition 2.4.3 A nonempty set X is said to have a pseudo-metric

d : X × X → R,

if it satisfies the following axioms:

(i) d(x, x) = 0, ∀ x ∈ X ;
(ii) (triangle inequality) d(x, z) + d(y, z) ≥ d(x, y), ∀ x, y, z ∈ X .

Then the pair (X, d) is called a pseudo-metric space with d as its pseudo-metric.

Example 2.4.4 (i) Every metric space is a pseudo-metric space.
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(ii) The converse of (i) is not true. For example let X be set such that card(X) > 1.
Consider the function

d : X × X → R, (x, y) �→ 0.

Then d is a pseudo-metric, but it is not a metric.

Proposition 2.4.5 If a set X has a pseudo-metric d : X × X → R, then

(i) (positivity) d(x, y) ≥ 0, ∀ x, y ∈ X;
(ii) (symmetry) d(x, y) = d(y, x), ∀ x, y ∈ X.

Proof Let (X, d) be a pseudo-metric space.

(i) Apply the axioms of Definition2.4.3 to the elements x, x, y ∈ X to show that

2d(x, y) = d(x, y) + d(x, y) ≥ d(x, x) = 0.

This implies that d(x, y) ≥ 0, ∀ x, y ∈ X .
(ii) Apply the axiom (ii) of Definition2.4.3 to the elements x, y, x ∈ X to show

that
d(x, x) + d(y, x) ≥ d(x, y).

This implies that d(y, x) ≥ d(x, y), since d(x, x) = 0. Similarly, it follows
that d(x, y) ≥ d(y, x) and hence d(x, y) = d(y, x).

�

Remark 2.4.6 A metric on a nonempty set X can be redefined as a pseudo-metric

d : X × X → R

satisfying the following additional axiom:
(M) for any two points x, y ∈ X , if d(x, y) = 0, then x = y.

2.5 Examples of Metrics Arising from Mathematical
Analysis

This section presents some examples of useful metrics arising from mathematical
analysis.

Example 2.5.1 (i) The function

d : R × R → R, (x, y) �→ |x − y|,

defines a metric on R, called the Euclidean metric or usual metric on R.
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(ii) The function

d : R × R → R, (x, y) �→
{

|x − y|, if xy ≤ 0

|x | + |y|, otherwise.

also defines a metric on R.

Remark 2.5.2 Example2.5.1 shows that there may exist different nontrivial metrics
on the same set.

Example 2.5.3 The function

d : C × C → C, (z1, z2) �→ |z1 − z2|,

(absolute value of the complex number z1 − z2) is called the usual metric on C. The
complex plane is an ideal model of a metric space.

2.5.1 Norm Function

Norm functions given in Definition2.5.4 on vector spaces provide a rich supply of
metric spaces.

Definition 2.5.4 Let V be a real vector space with 0 its zero vector. A real-valued
function

‖ ‖ : V → R

is called a norm function on V if it satisfies the following axioms for all x, y ∈ V
and for all r ∈ R:

N(1) ‖x‖ ≥ 0 and ‖x‖ = 0 iff x = 0;
N(2) ‖x + y‖ ≤ ‖x‖ + ‖y‖;
N(3) ‖r x‖ = |r | ‖x‖.
Example 2.5.5 Let C = C([0, 1]) be the set of all real-valued continuous functions
on [0, 1]. Then every function f ∈ C is also bounded, since [0, 1] is compact (see
Chap.5). C is a real vector space under usual compositions of addition and scalar
multiplication of functions. Using the different norm functions on it, some important
metrics are defined on C = C([0, 1]). Such metric spaces are also born through the
study of the problems in analysis.

(i) (l1-metric on C) If a norm of f ∈ C is defined by

‖ f ‖ =
1∫

0

| f (x)|dx,
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where the integral is the Riemann integral, then the function

d : C × C → R, ( f, g) �→ ‖ f − g‖ =
1∫

0

| f (x) − g(x)|dx

is a metric on C. By a property of Riemann integral,
∫ 1
0 | f (x) − g(x)|dx ≥ 0

implies that d is well defined. Again, for f ∈ C, the integral
∫ 1
0 f (x)dx = 0

iff f vanishes identically on [0, 1]. It shows that d( f, g) = 0 iff f = g. This
metric d is called l1-metric on C.

(ii) If a norm of f ∈ C is defined by

‖ f ‖ = sup{| f (x)| : x ∈ [0, 1]} = sup
x∈[0,1]

{| f (x)|},

then the function ρ defined by

ρ( f, g) = ‖ f − g‖ = sup
x∈[0,1]

{| f (x) − g(x)|}

is a metric on C.
On the other hand,

σ : C × C → R, ( f, g) �→ inf
x∈[0,1]{| f (x) − g(x)|}

is not a metric on C. Because for f, g ∈ C, defined by f (x) = 0, g(x) =
x, ∀ x ∈ [0, 1], ρ( f, g) = 0 but f �= g, since f (1) = 0, g(1) = 1.
Geometrically, this d( f, g) (defined in Example2.5.5 (i)) represents the area
of the shaded region lying between the graphs of the functions f, g ∈ C and
the lines x = 0 and x = 1, as shown in Fig. 2.1.
Geometrically, this ρ( f, g) (defined in Example2.5.5 (ii)) represents the
largest vertical gap h between the graphs of the functions f, g ∈ C, as shown
in Fig. 2.2.

Example 2.5.6 (i) Let B(X) be the set of all bounded real-valued functions
defined on a given set X . Then the function d : B(X) × B(X) → R defined by

d( f, g) = sup
x∈X

| f (x) − g(x)|

is a metric on B(X), and hence (B(X), d) is a metric space.
(ii) Let M(n, R) be the set of all n × n matrices over R. Then identifying M(n, R)

with the Euclidean space Rn2 , the function



2.5 Examples of Metrics Arising from Mathematical Analysis 55

Fig. 2.1 Geometrical
representation of d( f, g)

0 1

Fig. 2.2 Geometrical
representation of ρ( f, g)

0 1

h

d : M(n, R) × M(n, R) → R, (A, B) �→
n∑

i, j=1

|ai, j − bi, j |,

∀ A = (ai, j ), B = (bi, j ) ∈ M(n, R),

defines a metric on M(n, R) and hence (M(n, R), d) is a metric space.
(iii) (Discrete metric): Given a nonempty set X , the function d : X × X → R,

defined by
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d(x, y) =
{
0, if x = y

1, if x �= y

gives a metric, called the discrete metric on X , and (X, d) is called a discrete
metric space.

2.5.2 Euclidean Metric, l p-Metric and l∞-Metric on Rn

This subsection defines several commonly used metrics such as Euclidean metric,
l p-metric and l∞-metric on Rn .

Definition 2.5.7 (i) The metric

d : Rn × Rn → R, ((x1, x2, . . . , xn), (y1, y2, . . . , yn)) �→
[(x1 − y1)

2 + · · · + (xn − yn)
2] 1

2

is called the usual metric or Euclidean metric on Rn .
(ii) For any integer p ≥ 1, the metric

dp : Rn × Rn → R, ((x1, x2, . . . , xn), (y1, y2, . . . , yn)) �→
[|x1 − y1|p + · · · + |xn − yn|p] 1

p

is called the l p-metric on Rn .
(iii) The metric

d∞ : Rn × Rn → R, ((x1, x2, . . . , xn), (y1, y2, . . . , yn)) �→
max{|x1 − y1| + · · · + |xn − yn|}

is called the l∞-metric on Rn .

2.5.3 l p-Metric and l∞-Metric on C([0, 1])

This subsection defines two special metrics, called l p-metric and l∞-metric on the
set of all real-valued continuous functions on [0, 1].
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Definition 2.5.8 (l p-metric). Let C = C([0, 1]) be the set of all real-valued contin-
uous functions on [0, 1] and p > 0 be an integer.

(i)

dp : C × C → R, ( f, g) �→
⎡

⎣

1∫

0

| f (x) − g(x)|pdx
⎤

⎦

1
p

is a metric on C, called l p-metric on C. In particular, for p = 2, the metric d2
is called l2-metric on C.

(ii)
d∞ : C × C → R, ( f, g) �→ max

x∈[0,1] | f (x) − g(x)|

is a metric on C, called l∞-metric on C.
Clearly, d∞(x, y) = lim p→∞ dp(x, y).

2.5.4 l p-Metric and l∞-Metrics on Sequences of Real
Numbers

This subsection introduces the concepts of l p- space, Hilbert space and l∞-space by
defining the corresponding metrics on the set of all sequences of real numbers.

Definition 2.5.9 (l p-metric) Let X be the set of all sequences {xn} over R with the
property that for p > 0,

∑∞
n=1 |xn|p < ∞. Then the function

d : X × X → R, ( f, g) �→
[ ∞∑

n=1

|xn − yn|p
] 1

p

, ∀ f = {xn}, g = {yn} ∈ X,

is a metric on X , called the l p-metric on X . The metric space (X, l p) is called
łp-metric space. Let R∞ denote the family of real infinite sequences {xn} such that∑∞

n=1 |xn|2 < ∞, i.e., the family of sequences {xn} such that the series
∑∞

n=1 |xn|2
is convergent. Then in particular, for p = 2, the metric l2 is called the l2-metric on
R∞, and the metric space (R∞, l2) is called a Hilbert space or l2-space.

Definition 2.5.10 (l∞-metric) Let X be the set of all bounded sequences {xn} over
R. Then the function

d : X × X → R, ( f, g) �→ sup{|xn − yn| : n ∈ N}, ∀ f = {xn}, g = {yn} ∈ X

is well defined (since f, g are bounded real sequences), and it is a metric on X , called
the l∞-metric on X . The metric space (X, l∞) is called l∞-space.

Remark 2.5.11 For more study of Hilbert space or l∞-space, see Sect. 2.14.
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2.5.5 p-Adic Metric on Q

This subsection introduces an interesting metric on Q, known as p-adic metric by
defining p-adic valuation of an integer, by using fundamental theorem of arithmetic.

Definition 2.5.12 (p-Adic metric) Let p be a given prime integer and x ∈ Q be
nonzero. Then x is represented as x = pr mn , where r,m, n are integers such that p
divides neither m nor n. Then the function vp defined by vp(x) = r is called the
p-adic valuation of x .

Example 2.5.13

dp : Q × Q → R, (x, y) �→
{
0, if x = y

p−vp(x−y), if x �= y

defines a metric on Q, called the p-adic metric or p-adic distance function on Q, and
(Q, dp) is called a p-adic metric space.

Proposition 2.5.14 For m, n ∈ Q,

(i) vp(m + n) ≥ min{vp(m), vp(n)}, equality holds iff vp(m) �= vp(n).
(ii) vp(mn) = vp(m) + vp(n).

Proof Left as an exercise. �

Definition 2.5.15 Given a prime integer p, the function

‖ ‖ : Q → R, x �→
{
0, if x = 0

p−vp(x), if x �= 0

is said to be the p-adic norm on Q, abbreviated by ‖ ‖p.

Proposition 2.5.16 The p-adic norm function ‖ ‖p has the following properties:

(i) ‖n‖p = 0 iff n = 0;
(ii) ‖mn‖p = ‖m‖p + ‖n‖p, ∀m, n in Q;
(iii) ‖m + n‖p ≤ max{‖m‖p, ‖n‖p, ∀m, n inQ}, the equality holdswhen ‖m‖p �=

‖n‖p.

Proof Left as an exercise. �

Definition 2.5.17 The p-adic norm function ‖ ‖p is said to be nonArchimedean on
Q, if

‖m − n‖p ≤ max{‖m‖p, ‖n‖p}, ∀m, n in Q.

Corollary 2.5.18 The norm ‖ ‖p is non Archimedean on Q.
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Given a fixed prime integer p, the difference x − y of any two x, y ∈ Q can be
expressed uniquely as

x − y = r

t
ps such that : r, s, t ∈ Z, and r, t are not divisible by p.

Then the p-adic distance function dp can be given equally well by

dp : Q × Q → R, (x, y) �→
{
0, if x = y

p−s, if x �= y

Example 2.5.19 For x = 9
5 and y = 3

2 , the p-adic distances dp(x, y) f or p =
2, 3, 5, are d2(x, y) = 2, d3(x, y) = 1

3 , d5(x, y) = 5, because, x − y = 3 · 2−1 ·
5−1 and hence d2(x, y) = 2−(−1) = 2, d3(x, y) = 3(−1) = 1

3 , d5(x, y)
= 5−(−1) = 5.

2.6 Open Balls and Open Sets in Metric Spaces

This section addresses the concepts of open balls and open sets in metric spaces for
our subsequent study by taking open balls in a metric space as open sets. Open balls
in a metric space X are generalizations of open intervals in R, and closed balls in X
are generalizations of closed intervals in R.

Definition 2.6.1 Let (X, d) be a metric space and Y ⊂ X be a nonempty subset. If
d ′ : Y × Y → R is the restriction of d : X × X → R to Y × Y , then d ′ is said to
be a metric on Y induced by the metric d, and (Y, d ′) or simply Y is said to be a
subspace of the metric space X .

Example 2.6.2 Definition2.6.1 asserts that every nonempty subset of a metric space
inherits a metric structure from its mother metric space.This shows that every
nonempty subset of the Euclidean space Rn is a metric space.

Definition 2.6.3 Let X be a metric space with metric d. The set

Bx (ε) = {y ∈ X : d(x, y) < ε},

for x ∈ X and ε > 0, is said to be the open ball of radius ε, centered at x , also
known as the “ε-ball” about the point x . The set

Bx (ε) = {y ∈ X : d(x, y) ≤ ε},

for x ∈ X and ε > 0 is said be the closed ball of radius ε, centered at x .
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Definition 2.6.4 Let (X, d) be a metric space with metric d. A subsetU of X is said
to be open if given x ∈ U , there is a positive real number ε such that the open ball
Bx (ε) ⊂ U .

Example 2.6.5 (i) No one-pointic set {x} on the real line R is open, because for
each bounded open interval centered on the point x contains points not in the
set {x}.

(ii) The subset (0, 1) of R is an open set (see Corollary2.6.9).
(iii) The subset [0, 1) of the real line R is not open.

Theorem 2.6.6 Let (X, d) be a metric space. Then the emptyset ∅ and the whole set
X are open sets.

Proof Let x ∈ X be an arbitrary point. Then every open ball Bx (ε) centered at x
and radius ε > 0, however small it may be, is contained in X . This shows that every
open ball in X centered on its every point is contained in X and hence the whole set
X is open. Again, as there are no points in ∅, the empty set ∅ is automatically an
open set. �

Example 2.6.7 [0, 1) is not an open subset of the real line R but [0, 1) is an open
set considered as a metric space X , i.e., [0, 1) = X , the whole metric space is open
by Theorem2.6.6. This shows that given set B, whether it is open or not, it depends
on the metric space containing B, which we are considering.

Theorem 2.6.8 Let (X, d) be a metric space with metric d. Then every open ball
Bxo(ε) in X is an open set.

Proof Let x ∈ Bxo(ε). Then d(x, x0) < ε implies that r = ε − d(x, x0) is a positive
real number. This implies that Bx (r) ⊂ Bxo(ε). Because, for any point z ∈ Bx (r), its
distance d(x, z) < r from x . Using the triangle inequality, it follows that

d(x0, z) ≤ d(x0, x) + d(x, z)

This shows that

d(x0, z) < ε − r + r = ε =⇒ z ∈ Bx0(ε) =⇒ Bx (r) ⊂ Bx0(ε)

This asserts by Definition2.6.4 that every open ball in X is an open set.
�

Corollary 2.6.9 Any open interval (a, b) of R is an open set.

Proof It follows from Theorem2.6.8. �

Theorem2.6.10 characterizes open sets in a metric space with the help of open
balls.

Theorem 2.6.10 Let (X, d) be a metric space. A subset B of X is open iff B is a
union of open balls in (X, d).
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Proof Let (X, d) be a metric space. First suppose that the subset B of X is open. We
claim that B is a union of open balls in (X, d). If B = ∅, then B is is the union of
empty class of open balls. On the other hand, if B �= ∅, then as B is open in (X, d),
every point of B is the center of an open ball contained in it, and B is the union of
all the open balls contained in it.

Conversely, if B is the union of a class B of open balls in (X, d), then we claim
that B is open in (X, d). If B = ∅, then B is open by Theorem2.6.6. On the other
hand, if B �= ∅, then B �= ∅. If x ∈ B, then B being the union of the open balls in
B, x ∈ Bxo(ε) in B. This shows by Theorem2.6.8 that x is the center of an open ball
Bx (r) ⊂ Bxo(ε). Again as Bxo(ε) ⊂ B, it follows that there is an open ball centered
at x and contained in B. This implies that B is open in (X, d). �

Remark 2.6.11 Given a metric space X , the empty set ∅ and the whole (universal)
set X are open sets by Theorem2.6.6. We now claim that the union of any number
of open sets in X is an open set and the intersection of a finite number of open sets
in X is an open set.

Theorem 2.6.12 Let (X, d) be a metric space. Then

(i) the union of any number of open sets in (X, d) is an open set;
(ii) the intersection of a finite number of open sets in (X, d) is an open set.

Proof (i) Let {Fi } be an arbitrary family (may be finite or infinite) of open sets
in (X, d). Claim that F = ⋃

i Fi is open in (X, d). If each member in {Fi } is
empty, then F = ∅ is open by Theorem2.6.6. On the other hand, if {Fi } �= ∅,
each Fi , being an open set by hypothesis, it is a union of open balls in (X, d) by
Theorem2.6.10. Again applying Theorem2.6.10 it follows that F is an open
set in (X, d).

(ii) Let {Fi } be a finite family of open sets in (X, d). Claim that F = ⋂
i Fi is open

in (X, d). To prove this, we consider the following cases:
Case 1: If {Fi } = ∅, then F = ⋂

i Fi = ∅ is open by Theorem2.6.6.
Case 2: If {Fi } �= ∅, and {Fi } = {F1, F2, . . . , Fn} for some n ∈ N, then F =⋂

i Fi is also open in (X, d). Because, in this case, there is a point x in each
Fi , which is an open set. Hence, there exists a real number εi > 0 such that
Bx (εi ) ⊂ Fi for every i = 1, 2, . . . , n. Let ε be the smallest real number of the
set {ε1, ε2, . . . , εn} of real numbers. Then ε > 0 and

Bx (ε) ⊂ Bx (εi ) ⊂ Fi , ∀ i = 1, 2, . . . , n.

This asserts that Bx (ε) ⊂ F . This implies that F is an open set in (X, d).
�

Corollary 2.6.13 (i) The union of any number of open sets in R is an open set.
(ii) The intersection of a finite number of open sets in R is an open set.

Proof It follows from Theorem2.6.12 as a particular case. �
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Remark 2.6.14 Given a metric space (X, d), a subset U ⊂ X is open if for every
point x ∈ U , there exists an ε > 0 such that the open ball Bx (ε) ⊂ U . The discus-
sion in Theorems2.6.6 and 2.6.12 (taken together) is summarized in the following
basic and important result embodied in Theorem2.6.15 that leads to the axiomatic
framework for open sets defining a topology on an abstract set (see Chap. 3).

Theorem 2.6.15 Let (X, d) be a metric space. A subset U ⊂ X is defined to be
open in X, if for every point x ∈ U, there exists an ε > 0 such that the open ball
Bx (ε) ⊂ U. Let τ be the set of all open sets in X. Then

OS(1) the empty set ∅ is an open set;
OS(2) the union of any number of open sets is an open set;
OS(3) the intersection of a finite number of open sets is an open set;
OS(4) the whole (universal) set X is itself an open set.

Definition 2.6.16 The family τ of all open sets in X given in Theorem2.6.15 is said
to form a topology on X , called the topology determined by the metric d, and the the
pair (X, τ ) is called the corresponding topological space.

Example 2.6.17 Theorem2.6.12 shows that the collection of all open sets in ametric
space is closed under arbitrary union and finite intersection. The restriction of finite
intersections in this theorem is necessary. For example, consider the metric space R
with usual metric and the sequence

{(−1, 1), (−1/2, 1/2), (−1/3, 1/3), . . . , },

which is the sequence of open intervals {Xn = (− 1
n ,

1
n )}. Then for each n ∈ N, the

open interval Xn is an open set in R, but their infinite intersection
⋂∞

1 Xn = {0} is
not an open set in R.

Theorem 2.6.18 Every nonempty open set in the metric space (R, d) with usual
metric d on R is the union of a countable family of disjoint open intervals.

Proof Let U ⊂ R be a nonempty open subset. Then for each x ∈ U , there is a
bounded open interval contained in U , since U is open and hence the point x is the
center of a bounded open interval Ix contained in U . Let Ux denote the union of all
open intervals Ix such that x ∈ Ix ⊂ U and hence

Ux =
⋃

{Ix : x ∈ Ix ⊂ U }

is an open interval and contains every interval which contains x and is contained in
U with the property that if y ∈ Ux , then Ux = Uy . Again it follows that if x, y ∈ U
and x �= y, then either Ux = Uy or they are distinct, because if z ∈ Ux ∩Uy , then
Ux = Uz , and Uy = Uz imply that Ux = Uy . Let � be the set of all distinct subsets
of R of the form Ux for x ∈ U . Then � is a family of disjoint open intervals, and U
is their union. Let Ur be the set of all rational points in U . Then Ur �= ∅. Define a
map
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ψ : Ur → �, r �→ Ir

where Ir is the unique open interval in � which contains the point r . Then ψ is onto
and Ur is countable. This asserts that the set � is countable. �

Definition 2.6.19 Let (X, d) be a metric space and A ⊂ X be a given subset. Then
a point x ∈ A is said to be an interior point of A with respect to metric d if x ∈
Bx (ε) ⊂ A for some ε > 0, i.e., x is at the center of some open ball in A. The set of
all interior points of A is called Interior of A, denoted by Int(A).

Example 2.6.20 For the closed interval A = [2, 3] ⊂ R, Int(A) = (2, 3).

Example 2.6.21 For a nonenumerable subset A of a metric space (X, d), the set
Int(A) may be ∅. For example, metric space (R, d) with usual metric d, let A be the
set of all irrational points. Then for any irrational point x , and any ε > 0, the open
ball Bx (ε) contains rational points. Hence x cannot be an interior point of A. This
implies that Int(A) = ∅.
Proposition 2.6.22 Let (X, d) be a metric space and A ⊂ X be any subset. Then

(i) Int(A) is an open set;
(ii) Int(A) is the largest open set contained in A;
(iii) A is open iff Int(A) = A.

Proof It follows from the Definition2.6.19 of Int(A). �

2.7 Neighborhoods in Metric Spaces

This section starts with the concept of neighborhoods (nbd) in the real line space R
and generalizes this idea inmetric spaces. Neighborhoods in the real lineR play a key
role in real analysis and are closely related to its open sets. So its generalization for
an arbitrary metric space has become necessary for the study of topological spaces,
in particular, manifolds. The entire (whole) metric space needs not be taken as a nbd
of any point of the space.

2.7.1 Neighborhoods in R

This subsection considers neighborhoods in the metric space R with usual metric,
which is the beginning of the framework for neighborhoods in metric spaces. A nbd
of a point in a metric space is not necessarily an open set (see Example2.7.2 (iv)).
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Definition 2.7.1 Let x ∈ R. Then a subset Nx ⊂ R is said to be a neighborhood
in brief (nbd) of x if x ∈ Nx , and there is a real number δ > 0 such that the open
interval (x − δ, x + δ) ⊂ Nx .

Example 2.7.2 (i) R is itself a nbd of every point x ∈ R.
(ii) Q is not a nbd of any point x ∈ Q, because for every δ > 0, the open interval

(x − δ, x + δ) must contain irrational and rational points and hence the open
interval (x − δ, x + δ) is not contained in Q.

(iii) [0, 2] is a nbd of 1, but it is not so for x = 0 or x = 2.
(iv) Nbd of a point inR is not necessarily an open set. Because, for any x ∈ R, each

closed interval [x − δ, x + δ] ( δ > 0) is a nbd of x , since x ∈ (x − δ, x +
δ) ⊂ [x − δ, x + δ]. This example shows that a closed interval in R may be
a nbd of a point but it is not an open set. Thus a nbd of a point in R is not
necessarily an open set.

2.7.2 Neighborhoods and Open Sets in Metric Spaces

This subsection considers neighborhood system in an arbitrary metric space, which
is a generalization of neighborhood system in the metric space R with usual metric.

Definition 2.7.3 Let (X, d) be a metric space. Given x ∈ X and ε > 0, the subset
{y ∈ X : d(x, y) < ε} ⊂ X , denoted by Nx (ε), is called a neighborhood (in brief
nbd) of x .

Definition 2.7.4 Let (X, d) be a metric space. Given x ∈ X , a subset A ⊂ X is said
to be a nbd of x with respect to “d” if there exists an ε > 0 such that Nx (ε) ⊂ A.
Equivalently, A is said to be a nbd of x with respect to “d” if there exists an ε > 0
such that x ∈ Bx (ε) ⊂ U . In particular, Nx (ε) is itself a nbd of x , called an ε-nbd of
x . The set of all nbds of x abbreviated by Nx is called the nbd system of x .

Remark 2.7.5 For a metric space X , a nbd system Nx at the x ∈ X , is a family of
nbds of x , such that for any nbdUx of x , there is amember Nx ∈ Nx with the property
that x ∈ Nx ⊂ Ux .

Example 2.7.6 For any point x ∈ R2, each closed ball

Bx (δ) = {y ∈ R2 : d(x, y) ≤ δ} (δ > 0)

in R2 is a nbd of x .

Definition 2.7.7 Let (X, d) be a metric space. A subsetU of X is said to be open in
(X, d), i.e., open with respect to the metric d, if for every x ∈ U , there is an ε > 0
(depending on x) such that

Nx (ε) ⊂ U.
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Example 2.7.8 Let (X, d) be a metric space. Then

(i) every open ball Bx (ε) is an open set in (X, d) for every choice of x ∈ X and
ε > 0;

(ii) The whole set X and ∅ are open sets in (X, d).

2.8 Limit Points, Closed and Dense Sets in Metric Spaces

This section introduces the concepts of limit points of subsets, closed sets and dense
sets in the setting of metric spaces and characterizes closed sets with the help of open
sets in metric spaces. Open and closed sets are considered as the basic sets for the
study of topological spaces (see Chap.3).

Definition 2.8.1 Let (X, d) be a metric space and A be a subset of X . Then a point
x ∈ X is said to be a limit point of A if every open ε-ball Bx (ε) centered at x contains
at least one point of A different from the point x . The limit points of A form a subset
of X , called the derived set of A, and are written as A′.

Remark 2.8.2 Definition2.8.1 asserts that for a metric space X with a metric d and
a subset A of X , a point x ∈ X is a limit point of A if for every ε > 0, there exists a
point y ∈ A, (x �= y) such that d(x, y) < ε. The limit point or points of A (if exist)
may or may not lie in A. Geometrically, it means that if x is a limit point of A, there
exist points y ∈ A different from x which are arbitrarily close to the point x .

Definition 2.8.3 Let (X, d) be a metric space and A be a subset of X . Then the
closure of A denoted by A is defined by

A = A ∪ A′.

Remark 2.8.4 Let (X, d) be a metric space and A be a subset of X . Then a point
x ∈ X is said to be a point of closure A of A if either x ∈ A or x is a limit point of A.
It follows that A is the smallest closed set in (X, d) containing A and if A is itself
closed in (X, d), then A = A.

Remark 2.8.5 The concepts of Interior andClosure operations on subsets of ametric
space are dual in the sense that if A is any subset of a metric space (X, d), then

X − A = X − Int(A).

Definition 2.8.6 Let (X, d) be a metric space and A be a subset of X . Then A is
said to be dense or everywhere dense in X , if A = X .

If a subset A of a metric space (X, d) is dense in X , then every point x ∈ X is a limit
point of A.
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Example 2.8.7 (i) 0 is the only limit point of the subset X = {1, 1
2 ,

1
3 , . . .} ⊂ R

in the Euclidean line R = R1.
(ii) Every real number in the Euclidean line R is a limit point of the set of all

rationals Q in R. The set Q is dense in R, since Q = R.
(iii) The set of integral points Z on the Euclidean line R has no limit points in R.
(iv) Let D2 = {(x, y) ∈ R2 : x2 + y2 < 1} be the open disk in the Euclidean plane

R2. Then the limit points of D2 are either the points of D2 or the points on the
unit circle x2 + y2 = 1. These are also the points of the closure ofD2, and hence
the closure of D2 is the closed disk defined by {(x, y) ∈ R2 : x2 + y2 ≤ 1}.

Definition 2.8.8 Let X be a metric space. A subset A of X is said to be closed if it
contains each of its limit points.

Remark 2.8.9 Theorem2.8.10 characterizes closed sets in terms of open sets, assert-
ing that these two are dual concepts.

Theorem 2.8.10 Let (X, d) be a metric space. Then a subset A of X is closed iff its
complement Ac = X − A is an open set.

Proof Let A be closed in the metric space X . Claim that Ac is an open in X . If
Ac = ∅, then it is automatically open. If Ac �= ∅, take an arbitrary point x ∈ Ac.
Then the point x is not in the closed set A, and hence the point x cannot be a limit
point of A. This asserts that there exists an open ball Bx (r) centered at the point x and
disjoint from A. Since x ∈ Ac is an arbitrary point, it follows from x ∈ Bx (r) ⊂ Ac

that
Ac ⊂

⋃
Bx (r) ⊂ Ac

and hence Ac = ⋃
Bx (r) is an open set in X .

Conversely, let Ac be open in (X, d). The set A will not be closed set if it has a
limit point in Ac. But this not possible, because Ac is open in (X, d) and every point
of Ac is the center of an open ball, which is disjoint from A, and hence no such point
can be a limit point of A.

�

Theorem 2.8.11 Let (X, d) be a metric space. Then each closed ball Bx (ε) = {y ∈
X : d(y, x) ≤ ε} in X is a closed set in (X, d).

Proof Let Bx0(ε) be a closed ball in the metric space (X, d). To prove the theorem, it
is sufficient by using Theorem2.8.10 to show that its complement Bx0(ε)

c in X is an
open set in (X, d). If Bx0(ε)

c = ∅, the proof follows automatically. So,we assume that
Bx0(ε)

c �= ∅. Take an arbitrary point x ∈ Bx0(ε)
c. Then d(x, x0) > ε, ∀ x ∈ Bx0(ε)

c.
If ε1 = d(x, x0) − ε, then ε1 > 0. To show that Bx0(ε)

c is open, we prove that
Bx (ε1) ⊂ Bx0(ε)

c. The latter inclusion is true, because for any y ∈ Bx (ε1), the dis-
tance d(y, x) < ε1 and d(x0, x) ≤ d(x0, y) + d(y, x) imply that
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d(x0, y) ≥ d(x0, x) − d(y, x) > d(x0, x) − ε1 = ε.

This shows that y ∈ Bx0(ε)
c. Since y ∈ Bx (ε1) is an arbitrary point, it follows that

Bx (ε1) ⊂ Bx0(ε)
c. Hence the theorem follows from Theorem2.8.10.

�

Remark 2.8.12 The concepts of open balls and closed balls in a metric space are just
higher dimensional analogues of open intervals and closed intervals in R. By using
de Morgan rule, the discussions in Theorems2.6.6, 2.6.12, 2.6.15 and 2.8.10 are
summarized in the basic and important result embodied in Theorem2.8.13, which
leads to the axiomatic framework for closed sets defining a topology ( see Chap. 3).

Theorem 2.8.13 Let X be a metric space with a metric d. Then

CS(1) the whole (universal) set X is itself a closed set;
CS(2) the intersection of any number of closed sets is a closed set;
CS(3) the union of a finite number of closed sets is a closed set;
CS(4) the empty set ∅ is a closed set.

Definition 2.8.14 Let C be a family of some subsets of a nonempty set X satisfying
the conditions CS(1) − CS(4) of Theorem2.8.13. Then there exists a unique topol-
ogy τ on X such that the closed sets in X defined by τ are precisely the same as the
given family C.

Corollary2.8.15 asserts that the Cantor set C = ⋂∞
n=1 In constructed in Chap.1

is a closed set.

Corollary 2.8.15 Cantor set C = ⋂∞
n=1 In is a closed set in R.

Proof Since each closed interval is a closed set and each In is a finite union of closed
intervals in R, it follows by CS(3) that each In is a closed set for n = 1, 2, 3, . . ..
Again since Cantor set C = ⋂∞

n=1 In , it follows by CS(2) that C is a closed set
in R. �

2.9 Diameter of Sets and Continuity of Distance Functions
on Metric Spaces

This section generalizes the concept of distance between a pair of points in a metric
space for a point from a set and also between a pair of its subsets in a metric space.
Moreover, the concept of diameter of a subset of metric space is introduced, and
continuity of the function f : X → R, x �→ d(x, A) for any nonempty subset A of
a metric space (X, d) is proved in this section.
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2.9.1 Distance of a Point from a Set in Metric Spaces

This subsection studies the distance function of a point from a set in a metric space.

Definition 2.9.1 Let (X, d) be metric space and A ⊂ X be nonempty. Then the
distance d(x, A) from a point x ∈ X to A is defined by

d(x, A) = inf {d(x, a) : a ∈ A},

which is the glb of the distances from the point x to the points in A. In particular, if
x ∈ A, then d(x, A) = 0.

Example 2.9.2 Let X be a nonempty set with discrete metric d. If A be a nonempty
subset of X , then

(i) d(x, A) = 0, if x ∈ A;
(ii) d(x, A) = 1 if x /∈ A.

Proposition 2.9.3 Let (X, d) be a metric space and A ⊂ X be nonempty. Then for
all x, y ∈ X,

|d(x, A) − d(y, A)| ≤ d(x, y).

Proof Given any two points x, y ∈ X ,

d(x, a) ≤ d(x, y) + d(y, a), ∀ a ∈ A.

This shows that

d(x, A) = inf {d(x, a)) : a ∈ A} ≤ d(x, y) + inf {d(y, a) : a ∈ A}
= d(x, y) + d(y, A).

Interchanging the role of x and y, we obtain

d(y, A) ≤ d(x, y) + d(x, A).

Hence it follows that

|d(x, A) − d(y, A)| ≤ d(x, y), ∀ x, y ∈ X.

�

2.9.2 Distance Between Two Sets in Metric Spaces

The concept of distance of a point from a set defined in Definition2.9.1 is now
extended for a pair of subsets of a metric space.
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Definition 2.9.4 Let (X, d) be ametric space and A, B be a pair of nonempty subsets
of X . Then their distance d(A, B) is defined by

d(A, B) = inf {d(a, b) : a ∈ A, b ∈ b}.

It is the glb of the distances of the points in A from the points in B, which exists,
since the set is nonempty and bounded below in R.

Remark 2.9.5 inf {d(a, b) : a ∈ A, b ∈ b} in Definition2.9.4 cannot be replaced
by min {d(a, b) : a ∈ A, b ∈ b}, because, there may not exist any a ∈ A and b ∈ B
such that d(a, b) = d(A, B), which is necessary in the second case. For example, for
A = (0, 2) and B = (3, 4), by Definition2.9.4, their distance d(A, B) = 1, but there
exist no points a ∈ A, b ∈ B such that d(a, b) = 1, because, d(a, b) > 1, ∀ a ∈
A, b ∈ B.

Proposition 2.9.6 Let (X, d) be a metric space and A, B be two subsets of X. If
d(A, B) > 0, then there exist two open sets U and V in X such that

A ⊂ U, B ⊂ V and U ∩ V = ∅.

Proof Suppose d(A, B) = r > 0. Then for any point a ∈ A and any point b ∈ V ,
d(a, b) ≥ r . Take two open sets U and V as open balls defined by

U = Ba

( r

2

)
, and V = Bb

( r

2

)
.

Then
A ⊂ U, B ⊂ V and U ∩ V = ∅.

�

Example 2.9.7 d(A, B) given in Definition2.9.4 does depend on the metric on X .
For example, let X = R, A = [0, 1) and B = (1, 2]. Then
(i) under usual metric d on R, the distance d(A, B) = 0;
(ii) under discrete metric d on R, the distance d(A, B) = 1, because A and B are

disjoint subsets of R. If C = [2, 3), then d(B,C) = 0, since B ∩ C �= ∅.
Example 2.9.8 Under Euclidean metric, for two sets subsets A and B in R2 defined
by

A = {(x, y) ∈ R2 : y = 0}, and B = {(x, y) ∈ R2 : xy = 1},

d(A, B) = 0 because the graph of B will never intersect that of A but y → 0, when
x → ∞.
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2.9.3 Diameter of a Set

This section introduces the concept of diameter of a nonempty subset of a met-
ric space. This concept plays a key role in Cantor’s Intersection Theorem2.11.8.
Bounded sets are defined in metric spices to facilitate the concept of diameter of a
set.

Definition 2.9.9 Let (X, d) be a metric space and A ⊂ X be nonempty. Then A is
said to be bounded, if there exists a positive real number K such that

d(x, y) ≤ K , ∀ x, y ∈ A.

Otherwise, A is said to be unbounded.

Remark 2.9.10 Boundedness in a metric space depends on the particular choice of
its metric . More precisely, corresponding to every metric, there exists the standard
bounded metric constructed in Definition2.9.11.

Definition 2.9.11 Let (X, d) be a metric space. Then the function

ρX : X × X → R, (x, y) �→ min {d(x, y), 1}

defines a metric on X such that every subset of the metric space (X, ρX ) is bounded.
The metric ρX is called the standard bounded metric corresponding to the metric
d on X .

Definition 2.9.12 Let (X, d) be a metric space and A be a nonempty subset of X .
Then the diameter of A, denoted by diam A, is defined by

diamA = sup{d(a, y) : a, y ∈ A},

which is the lub of the distances between the points in A, provided the set {d(a, y) :
a, y ∈ A} is bounded above in R, written as diam A < ∞.

Remark 2.9.13 sup{d(a, y) : a, y ∈ A} in Definition2.9.12 cannot be replaced by
max {d(a, y) : a, y ∈ A}, because, there may not exist any a, b ∈ A such that
d(a, b) = diam A, which is necessary in the second case. For example, for A =
(0, 1), by Definition2.9.12, diam A = 1, but there exist no points a, b ∈ A such that
d(a, b) = 1, because, d(a, b) < 1, ∀ a, b ∈ A.

Example 2.9.14 Let X = R and A = (0, 4). Then under usual metric d on R, diam
A = 4.

Proposition 2.9.15 Let (X, d) be a metric space and A be a nonempty subset of X.
Then

(i) if diam A < ∞, then the set A is bounded;
(ii) diam A = diam A, where A is the smallest closed set in X, which contains A.

Proof It follows from Definition of diam A. �
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2.9.4 Continuity of Distance Function on a Metric Space

This subsection proves the continuity of the real-valued function

f : X → R, x �→ d(x, A)

for any nonempty subset A of a metric space (X, d) in Proposition2.9.16.

Proposition 2.9.16 Let (X, d) be a metric space and A be a nonempty subset of X.
Then the map

f : X → R, x �→ d(x, A)

is continuous.

Proof Let ε be an arbitrary small positive real number. Then there exists an open
ball Bx (ε) such that whenever y ∈ Bx (ε), then d(x, y) < ε. This asserts by Propo-
sition2.9.3 that whenever, d(x, y) < ε, then

|d(x, A) − d(y, A)| < ε.

This implies that

f : X → R, x �→ d(x, A)

is continuous.
�

Corollary 2.9.17 Let (X, d) be a metric space and A = {a} be a one-pointic subset
of X. Then the map

f : X → R, x �→ d(x, a)

is continuous.

Proof It follows from Proposition2.9.16. �

2.10 Sequences, Convergence of Sequences and Cauchy
Sequences in Metric Spaces

This section generalizes the concepts of convergence of sequences of real numbers
and Cauchy sequences of analysis in metric spaces and studies them. The concept
of limit of a convergent sequence {xn} and that of the limit point of the set of points
of the sequence {xn} are in general different, but these two concepts coincide in a
metric space under suitable condition laid down in Theorem2.10.6.
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2.10.1 Convergence of Sequences in Metric Spaces

This subsection generalizes the convergence of sequences of real numbers for
sequences in metric spaces. A sequence in a metric space X is a way of enumerating
some points in the space X . Its formal definition is now given in Definition2.10.1.

Definition 2.10.1 Let (X, d) be a metric space. A sequence of points x ∈ X is a
function f : N → X , symbolized

{xn} = {x1, x2, . . . , xn, . . .},

where f (n) = xn .

Definition 2.10.2 A sequence {xn} = {x1, x2, . . . , xn, . . .} in a metric space (X, d)

is said to converge to a point x ∈ X if given a real number ε > 0, there exists a
natural number n0 such that d(xn, x) < ε for all n ≥ n0. Equivalently, for each open
ball Bx (ε) in X , there exists a natural number n0 such that xn ∈ Bx (ε) for all n ≥ n0.
This x (if it exists) is unique and is called the limit point of the sequence {xn}, and it
is often symbolized as xn → x or limn→∞ xn = x , which asserts that d(xn, x) → 0
as n → ∞. Otherwise, the sequence {xn} is said to be divergent in X .

Remark 2.10.3 Definition2.10.2 asserts that if a sequence {xn} = {x1, x2, . . . , xn,
. . .} in a metric space (X, d) converges to a point x ∈ X , then for any nbd U of x
in X , there exists a natural number n0 such that xn ∈ U for all n ≥ n0. If X = R,
(endowed with Euclidean metric), then the concept of convergence of a sequence in
Definition2.10.2 coincides with its classical concept used in analysis. Let x be the
limit of the sequence {xn}. Then the points in {xn} remain nearer and nearer to x from
certain term and onward of the sequence {xn} (i.e., for every n ≥ n0), and hence x is
the limit of the set S = {x1, x2, . . . , xn, . . .}.
Example 2.10.4 Let (X, d) be a discrete metric space. A sequence {xn} in X con-
verges to x iff there is an integer n0 such that xn = x for every n ≥ n0.

Example 2.10.5 The concepts of limit point of the set of points of a conver-
gent sequence and limit of the sequence are different. For example, the sequence
{5, 5, 5, . . .} is convergent and converges to the point 5. On the other hand, the set
of points of this sequence has no limit point. But these two concepts coincide under
certain conditions prescribed in Theorem2.10.6.

Theorem 2.10.6 If {xn} is a convergent sequence in a metric space (X, d) has
infinitely many distinct points, then its limit is a limit point of the set of points of
the sequence {xn}.
Proof Let (X, d) be a metric space and {xn} be a convergent sequence in (X, d) hav-
ing infinitely many distinct points. Suppose x is the limit of the convergent sequence
{xn}. If x is not a limit point of the set of points A = {x1, x2, . . .}, then the sequence
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{xn} has only finitelymany distinct points. Otherwise, there exists an open ball Bx (ε),
which contains no point of the sequence {xn}, different from x . Then all the points
xn’s, after a certain place, will lie in the ball Bx (ε), since x is the limit of the sequence
{xn}. This implies that there exists an integer n0 such that xn = x, ∀ n ≥ n0. This
shows that the sequence {xn} has only a finitely many distinct points. This contra-
diction proves the theorem.

�

2.10.2 Cauchy Sequences in Metric Spaces

This subsection studies Cauchy sequences in metric spaces. Cauchy’s criterion of
the convergence of a sequence of real numbers in the space R is generalized in the
context of an arbitrary metric space in this subsection. The Cauchy’s criterion of
convergence of real numbers in analysis asserts that a sequence {xn} of real numbers
converges to a point x , if corresponding to an ε > 0, there exists positive integer n0
such that

d(xn, xm) < ε, ∀m, n ≥ n0.

Equivalently,
|xn+k − xn| < ε ∀ n ≥ n0, k ≥ 1.

This implies that for a Cauchy sequence {xn}, its terms get arbitrarily closer to each
other in R as n becomes sufficiently large.

The concept Cauchy sequences {xn} in R is now generalized in Definition2.10.7
for metric spaces.

Definition 2.10.7 Let (X, d) be a metric space. A sequence {xn} = {x1, x2, . . . , xn,
. . .} in X is said to be a Cauchy sequence if for every positive real number ε, there
exists a positive integer n0 such that

d(xn, xm) < ε, ∀m, n ≥ n0.

Example 2.10.8 Every convergent sequence in the metric space (R, d) with usual
metric d is a Cauchy sequence, but its converse is not true by Example2.10.10.

Proposition 2.10.9 (i) Every convergent sequence in a metric space has a unique
limit.

(ii) Every convergent sequence in a metric space is a Cauchy sequence.

Proof Let (X, d) be a metric space and {xn} be a convergent sequence in (X, d).

(i) To prove the uniqueness of limit of the convergent sequence {xn} in (X, d), use
the triangle inequality for the metric space (X, d).
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(ii) For the second part, as {xn} is a convergent sequence in (X, d), if xn → x ∈ X ,
then given an ε > 0, there exists a positive integer n0 such that d(xn, x) <

ε/2, ∀ n ≥ n0. Now,

∀m, n ≥ n0, d(xn, xm) ≤ d(xn, x) + d(xm, x) < ε,

which implies that {xn} is a Cauchy sequence.

�

Example 2.10.10 The converse of Proposition2.10.9 (ii) is not necessarily true in an
arbitrarymetric space, but it is valid under a situation specified in Proposition2.10.12.
For example, consider the sequence { 1n } in the metric space (X, d), where X = (0, 1]
and d is the Euclidean metric on X defined by d(x, y) = |x − y|. Since xn → 0 in
R, it follows that { 1n } is a Cauchy sequence in (0, 1], but it is not convergent.
Remark 2.10.11 The converse of Proposition2.10.9 (ii) holds under certain condi-
tions prescribed in Proposition2.10.12.

Proposition 2.10.12 A Cauchy sequence in a metric space is convergent if it has a
convergent subsequence.

Proof Let (X, d) be a metric space and {xn} be a Cauchy sequence in X such that it
has a convergent subsequence {xnk }. If xnk → x ∈ X , to prove this proposition, it is
sufficient to prove that xn → x, i.e., given an ε > 0, there exists a positive integer
n0 such that d(xn, x) < ε, ∀ n ≥ n0. By hypothesis, {xn} is a Cauchy sequence in X .
Hence it follows that corresponding to the given ε > 0, there exists a positive integer
n0 such that

d(xn, xm) < ε/2, ∀m, n ≥ n0.

Since by hypothesis, xnk → x ∈ X , it follows that for any integer n ≥ n0, there
exists some k ∈ N such that

d(xnk , x) < ε/2, ∀ nk ≥ n0.

Hence by triangle inequality,

d(xn, x) ≤ d(xn, xnk ) + d(xnk , x) < ε/2 + ε/2 = ε, ∀ n, nk ≥ n0

implies that the Cauchy sequence {xn} is convergent.
�
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2.11 Complete Metric Spaces and Cantor’s Intersection
Theorem

This section studies completemetric spaces,which is an important concept andproves
Cantor’s intersection theorem, a basic theorem in metric spaces which characterizes
a complete metric space in Theorem2.11.8 by a decreasing sequence of nonempty
subsets of the metric space.

2.11.1 Complete Metric Spaces

This subsection conveys the concept of a complete metric space in which every
Cauchy sequence is convergent and characterizes the completeness of its proper
subsets in Theorem2.11.3.

Definition 2.11.1 A metric space (X, d) is said to be complete if every Cauchy
sequence in X converges in X .

Example 2.11.2 (i) The Euclidean line R is a complete metric space, which fol-
lows directly from the completeness property of the real line R (see Corol-
lary2.11.10).

(ii) The complex plane C is a complete metric space.
(iii) Q is not a complete metric space by Corollary2.11.12. Alternatively, as there

exist sequences of rational numbers which converge to an irrational number
(see Example2.2.9), i.e., it has no limit in Q. Hence it follows that Q is not a
complete metric space.

(iv) [0, 1] is a complete metric space, but (0, 1] is not so by Theorem2.11.3, since
the Euclidean line R is a complete metric space.

Theorem2.11.3 characterizes completeness property of a subset of a metric space
by its closeness property.

Theorem 2.11.3 Let (X, d) be a complete metric space and A be a proper subset
of X. Then A is complete iff A is closed in X.

Proof Let (X, d) be a complete metric space and A be a proper subset of X . First
suppose that A is closed in X . To prove that A is complete, let {an} be a Cauchy
sequence in A. Then {an} is also a Cauchy sequence in X , and hence the sequence
{an} converges to a point a ∈ X . It is sufficient to show that a ∈ A. Suppose {an}
has only finitely many distinct points, then the point a in the set of points of this
sequence is to be repeated infinitely many times and hence a ∈ A. Again, if {an}
has infinitely many distinct points, then a is a limit point of the set of points of the
sequence {a1, a2, . . . , an, . . .} by Theorem2.10.6, and hence a is also a limit point
of A. By hypothesis A is closed and hence a ∈ A.
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Conversely, let the subset A ⊂ X be complete in (X, d). To show that A is closed,
let a be a limit point of A. Now, for each n ∈ N, the open ball Ba(1/n) contains a
point an in A, and hence the sequence {an} converges to the point a ∈ X . Since by
hypothesis, A is complete, it follows that the sequence {an} is a Cauchy sequence in
A and a ∈ A. This asserts that A is closed.

�

2.11.2 Completion of a Noncomplete Metric Space

There aremetric spaceswhich are not complete. This subsection provides a particular
construction method for completion of a noncomplete metric space.

Definition 2.11.4 Let (X, d) be a metric space. A metric space (X̃ , d̃) is said to be
a completion of (X, d) if

(i) the metric space (X̃ , d̃) is complete and
(ii) there exists a map f : X → X̃ such that f is an isometry of X into X̃ and f (X)

is dense in X̃ .

Example 2.11.5 Under Euclidean metric, R is a metric completion of the metric
space Q, because R is complete and Q is dense in R.

Theorem 2.11.6 (Completion of a metric space) Let (X, d) be a metric space. Then
there exists a unique completion ( upto isometry) of (X, d).

Proof I: Let (X, d) be an arbitrary metric space and B(X) be the set of all bounded
real-valued functions defined on X . Then the function d∞ : B(X) × B(X) → R
defined by

( f, g) �→ sup
x∈X

| f (x) − g(x)|

is a metric. Hence (B(X), d∞) is a metric space. Given a fixed x0 ∈ X , for every
x ∈ X , define a map

fx : X → R, y �→ d(y, x) − d(y, x0).

Hence it follows that fx ∈ B(X) and the map

ψ : X → B(X), x �→ fx

is an isometry. Let X̃ ⊂ (X) be the closureψ(X) and endowedwithmetric d̃ induced
on X̃ induced from B(X). Since X̃ is a closed subset of the complete metric space
B(X), the metric space (X̃ , d̃) is complete. Finally, by construction ψ(X) is dense
in X . This completes the proof of the theorem.
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Proof II: Let (X, d) be an arbitrary metric space and Cs(X) be the set of all Cauchy
sequences in X . Define an equivalence relation ∼ on Cs(X) by the rule

{xn} ∼ {yn} iff lim
n→∞ d(xn, yn) = 0.

Then “∼” identifies the Cauchy sequences in X having the same limit. Let X̃ =
Cs(X)/ ∼ be the quotient set. Define

d̄ : X̃ × X̃ → R, ({xn}, {yn}) �→ lim
n→∞ d(xn, yn).

Then d̃ is well-defined, and it defines a metric on X̃ . This metric space (X̃ , d̃) is a
complete metric space, which is a completion of the metric space (X, d). Moreover,
if (Ỹ , ρ) is any other completion of (X, d) then (Ỹ , ρ) is isometric to (X̃ , d̃).

�

2.11.3 Cantor’s Intersection Theorem for Metric Spaces

This subsectionprovesCantor’s IntersectionTheorem2.11.8 formetric spaces,which
characterizes a complete metric space by a decreasing sequence of its nonempty
subsets satisfying certain conditions.

This theorem is named after Georg Cantor (1845–1918) who gave first the formal
definition of the set of real numbers in 1871.

Definition 2.11.7 Let (X, d) be a metric space. A sequence {An} of subsets of X is
said to be decreasing if the following set-theoretic relation holds

A1 ⊃ A2 ⊃ · · · ⊃ An ⊃ · · · .

Theorem 2.11.8 (Cantor’s intersection theorem) Let (X, d) be ametric space.Then
it is complete iff whenever {An} is a sequence of nonempty subsets of X satisfy the
conditions

(i) every An is a closed set in (X, d);
(ii) the sequence {An} is decreasing;
(iii) diam An → 0 as n → ∞,

then
⋂∞

n=1 An contains exactly one point.

Proof Let (X, d) be a metric space and {xn} be a Cauchy sequence in X . Let An be
the set defined by

An = closure{xn, xn+1, . . .},

i.e., it is the smallest closed set containing the set of points of {xn, xn+1, . . .}.
First suppose that

⋂∞
n=1 An contains exactly one point. Then the conditions (i)
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and (ii) are satisfied. For the condition (iii), let given ε > 0, there is an integer
n0 such that d(xn, xm) < ε for m, n ≥ n0. But for k ≥ n0, the diameter diam Ak =
sup{d(xn, xm) : n,m ≥ k} ≤ ε. This asserts that the sequence {An} satisfies all the
above three above conditions (i)–(iii). Hence by hypothesis

⋂∞
n=1 An = {x} for some

point x ∈ X . Again for any n ≥ 1, d(x, xn) ≤ diam An =⇒ d(x, xn) → 0 since
diam An → 0 as n → ∞. This implies that xn → x and hence the metric space
(X, d) is complete. Conversely, let the metric space (X, d) be complete and {An} be a
sequence of nonempty subsets of X satisfying all the 3 conditions of the theorem such
that for each n, xn ∈ An . We claim that {xn} is a Cauchy sequence. Given an ε > 0,
let n0 be an integer such that diam An < ε for n ≥ n0. Hence, if m, n ≥ n0, then the
condition (i i) asserts that xn, xm ∈ An0 and hence d(xn, xm) ≤ diam An0 < ε. This
implies that {xn} is a Cauchy sequence. As (X, d) is a complete metric space, there
is a point x ∈ X such that xn → x . Again x ∈ ⋂∞

n=1 An , since An is closed for each
n. If y ∈ ⋂∞

n=1 An , then d(x, y) ≤ diamAn for every n ≥ 1. Then the condition (iii)
implies that x = y. �

Another form of Cantor’s Intersection Theorem is given in Corollary2.11.9.

Corollary 2.11.9 (Cantor’s intersection theorem) Let (X, d) be a complete metric
space and {An} be a decreasing sequence (i.e., A1 ⊃ A2 ⊃ · · · ) of nonempty closed
sets in X such that diam An → 0 as n → ∞. Then

⋂∞
n=1 An contains exactly one

point.

Proof It follows from the proof of the second part of the Theorem2.11.8. �

Corollary 2.11.10 The Euclidean R is a complete metric space.

Proof To prove the corollary, we use the following properties of R.

(i) If a nonempty subset A of R has an upper bound, then A has a supremum. By
applying this property to the set −A, it follows that if a nonempty subset B of
R has a lower bound, then B has a infimum.

(ii) If a nonempty subset A of R is bounded above and x = sup A, then there is an
increasing sequence {xn} in A such that xn → x .

(iii) If a nonempty subset A of R is bounded below and y = inf A, then there is an
decreasing sequence {yn} in A such that yn → y.

(iv) If a bounded sequence inR is either increasing or decreasing, then it converges.

To prove the corollary, let {An} be a sequence of nonempty subsets of R satisfying all
the conditions of Cantor’s Theorem2.11.8. Then each diam An is finite and hence it
is bounded. By using the property (i) of R, it follows that inf An = xn and sup An =
yn exist. Since each An is closed by hypothesis, it follows that xn, yn ∈ An and
0 ≤ yn − xn ≤ diam An → 0 as n → ∞. Again, by hypothesis, the sequence {An}
is deceasing and hence An+1 ⊂ An . This shows that xn ≤ xn+1 ≤ yn+1 ≤ yn . This
asserts that the increasing sequence {xn} converges to a point and the decreasing
sequence {yn} converges to a point. Hence there exist points x, y ∈ An for every
integer n such that xn → x and yn → y. Moreover, |y − x | ≤ diam A → 0 and
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hence x = y. It asserts that
⋂∞

n=1 An = {x} and hence R is complete by Cantor’s
Theorem2.11.8. �
Corollary 2.11.11 Euclidean m-space Rm is a complete metric space with usual
metric for every integer m ≥ 1.

Proof Rm is a metric space with Euclidean metric d for every integer m ≥ 1. For
xn = (xn1 , xn2 , . . . , xnm ) ∈ Rm, let {xn} be a Cauchy sequence in Rm . Then |xnp −
xqp | ≤ d(xn, xq) for 1 ≤ p ≤ m. This asserts that each sequence {xnp} is a Cauchy
sequence inR. Hence it follows by Corollary2.11.10 that xnp → xp for some xp ∈ R
This proves that xn → x = (x1, x2, . . . , xm) ∈ Rm . �
Corollary 2.11.12 Q with Euclidean metric is not a complete metric space.

Proof Consider the subspace (Q, d) of themetric space (R, d)withEuclideanmetric
d. Applying Theorem2.11.3, it follows that (Q, d) is not complete, since Q is not
closed in R. �
Example 2.11.13 The condition that {An} is to be a decreasing sequence (i.e., A1 ⊃
A2 ⊃ · · · ) of nonempty closed sets in X in Cantor’s Intersection Theorem2.11.9
is necessary. In support, consider the sequence {An = (0, 1/n]} of subsets in R.
Then {An} forms a decreasing sequence such that diam An → 0 as n → ∞ but this
sequence is not a sequence of closed sets in R. The metric space R is complete but⋂∞

n=1 An = ∅.

2.12 Continuity and Uniform Continuity in Metric Spaces

This section generalizes “ε-δ” definition of continuity of functions f : Rn → Rm

of analysis (see Sect. 2.3.3) for arbitrary metric spaces by utilizing the concept of
distance function. Themotivation of this generalizationwas born through the concept
of usual distance in Euclidean n-space Rn , which permits the notion of continuity
of functions from Rn to Rm by the usual “ε-δ” method. In analysis and geometry,
the notion of usual Euclidean metric is available to develop the subjects. But as all
spaces used in topology are not subsets of Euclidean spaces, it becomes necessary
to extend the definition of continuity for a certain class of spaces where a suitable
concept of distance is available such as in metric spaces. This section also studies
uniform continuity in metric spaces with the help of Lipschitz functions.

2.12.1 Continuity of Functions and Convergence
of Sequences in Metric Spaces

This subsection continues a study of continuity of functions and proves its equiva-
lence with convergence of sequences in metric spaces, which implies that continuity
of functions in metric spaces preserves convergence.
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Definition 2.12.1 Given metric spaces (X, d) and (Y, ρ), a function f : X → Y is
said to be continuous at a point a ∈ X if either of the following equivalent criteria
holds for every real number ε > 0 :
(i) there exists a number δ > 0 such that d(x, a) < δ implies ρ( f (x), f (a)) < ε;

or
(ii) there exists a number δ > 0 such that for each open ball B f (a)(ε), there exists

an open ball Ba(δ) in X such that

f (Ba(δ)) ⊂ B f (a)(ε).

Remark 2.12.2 The condition (i) generalizes the concept of continuity used in calcu-
lus and the condition (ii) conveys (i) in the language of open balls. In the topological
setting the concept of continuity of a function is given in a similar way in Chap.3 by
using the concept of open sets (or closed sets).

Theorems2.12.3 and 2.12.4 characterize continuity of a function between metric
spaces in the language of sequences.

Theorem 2.12.3 Let (X, d) and (Y, ρ) be two metric spaces. Then a function f :
X → Y is continuous iff for any sequence {xn} in X converging to a point a ∈ X,
the sequence { f (xn)} in Y converges to the point f (a) ∈ Y .

Proof Let (X, d) and (Y, ρ) be two metric spaces and f : X → Y be a given func-
tion. First suppose that a sequence {xn} in X converges to a point a ∈ X and f is
continuous at a. Then xn → a. Claim that f (xn) → f (a). Since f is continuous at
a ∈ X , corresponding to the open ball B f (a)(ε) in Y , there exists an open ball Ba(δ)

such that

f (Ba(δ)) ⊂ B f (a)(ε).

As xn → a, there exists an integer n0 ∈ N such that

xn ∈ Ba(δ), ∀ n ≥ n0.

Hence it follows that f (xn) ∈ B f (a)(ε), ∀ n ≥ n0. This asserts that f (xn) → f (a).
Conversely, if f is not continuous at the point a ∈ X , claim that xn → a does not
assert that f (xn) → f (a). By hypothesis, there exists an open ball B f (a)(ε) such
that f (Ba(δ)) is not contained in B f (a)(ε). Construct the sequence of open balls
{Ba(1/n) : n = 1, 2, . . .} in X and consider a sequence points

{xn : xn ∈ Ba(1/n) : n = 1, 2, . . . , and f (xn) /∈ B f (a)(ε)}.

This shows that the sequence {xn} converges to the point a but the sequence { f (xn)}
does not converge to f (a).

�
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A mapping f : X → Y between metric spaces is continuous if it is continuous
at each point x ∈ X and Theorem2.12.3 conveys the concept of continuity in the
language of sequences.

We summarize the above discussion in a basic and important result given in
Theorem2.12.4.

Theorem 2.12.4 Let (X, d) and (Y, ρ) be two metric spaces. Then a function f :
X → Y is continuous iff for any sequence {xn} in X converging to x, the sequence
{ f (xn)} in Y converges to f (x).

Remark 2.12.5 Theorem2.12.4 shows that continuous maps f : X → Y between
metric spaces are precisely those maps f which send convergent sequences in X
to the convergent sequences in Y . The continuity of functions in metric spaces is
also completely characterized in Theorem2.12.6 by open sets by utilizing the Theo-
rem2.6.8 saying that every open ball Bx (ε) in a metric space X is an open set. This
idea is also employed for continuity of a function in a topological setting in Chap. 3
in an analogous way.

Theorem 2.12.6 Let (X, d) and (Y, ρ) be metric spaces. Then a function

f : X → Y

is continuous iff f −1(U ) is an open subset in X for every open subset U of Y .

Proof Let (X, d) and (Y, ρ) be two metric spaces and f : X → Y be a given func-
tion. First suppose that f : X → Y is continuous, U ⊂ Y is an open set and f (x) ∈
U . Then there exists a real number ε > 0 such that the open ball B f (x)(ε) ⊂ U . As
f is continuous by hypothesis, there is a real number δ > 0 such that f maps the
open ball Bx (δ) in X centered at x into the open ball B f (x)(ε). This implies that
Bx (δ) ⊂ f −1(U ). This asserts that f −1(U ) is open. Next suppose that given ε > 0,
there is an open set f −1(B f (x)(ε)) in X , containing the point x ∈ X . Then there
exists a δ > 0 such that Bx (δ) ⊂ f −1(B f (x)(ε)). Hence by using the distance func-
tions of metric spaces it follows that f is continuous, because, if d(x, x ′) < δ, then
f (x ′) ∈ B f (x)(ε)) and hence ρ( f (x), f (x ′)) < ε, which shows the continuity of f
by ε-δ definition.

�

Equivalence of conditions for continuity: The criterion of continuity of a func-
tion f : R → R given in Corollary2.12.7 coincides with the ε-δ definition of its
continuity.

Corollary 2.12.7 Let R be the Euclidean line. Then a function f : R → R is con-
tinuous iff the inverse image of every open subset in R is also open in R.

Proof Since R is a metric space, the Corollary follows from Theorem2.12.6. �

Corollary 2.12.8 Let (X, d) be a metric space and Id : X → X be the identity
function. Then Id is continuous.
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Proof It follows from Theorem2.12.6. �

Proposition 2.12.9 Let d1 and d2 be two different metrics on the same set X such
that for every point x ∈ X and an ε > 0, there is a δ > 0 with the properties

(i) d1(x, y) < δ, whenever d2(x, y) < ε;
(ii) d2(x, y) < ε, whenever d1(x, y) < δ.

Then the metrics d1 and d2 determine the same open sets in X.

Proof Left as an exercise. �

2.12.2 Uniform Continuity and Lipschitz Functions in Metric
Spaces

This subsection conveys the concept of uniform continuity in metric spaces and
relates this concept to Lipschitz functions given in Definition2.12.16. By uniform
continuity, we mean continuity together with an additional condition: For every
ε > 0, there exists a δ > 0 such that it works uniformly over the whole space in the
sense of Definition2.12.10. Continuity of a function at a point is a local property
of the function. On the other hand, uniform continuity of a function is its global
property.

Definition 2.12.10 Let (X, d) and (Y, ρ) be twometric spaces. A function f : X →
Y is said to be continuous if for any x0 ∈ X and any ε > 0 , there is a δ > 0
(depending on ε and x0) such that d(x, x0) < δ implies ρ( f (x), f (x0)) < ε. If δ

does not depend on x0 in the sense that given any ε > 0, there is a δ > 0 such that
every pair of points x1 and x2 in X has the property:

d(x1, x2) < δ =⇒ ρ( f (x1), f (x2)) < ε.

Then the function f is said to be uniformly continuous on X . Equivalently, f is
uniformly continuous on X if every pair of sequences {xn} and {yn} in X has the
property :

d(xn, yn) → 0 =⇒ ρ( f (xn), f (yn)) → 0.

Example 2.12.11 Consider the function f : [1,∞) → R, x �→ 1/x . Then

f (x1) − f (x2) = |x2 − x1|
x1x2

≤ |x1 − x2| for every pair of points x1, x2 ∈ [1,∞).

This shows that given an ε > 0, we may take δ = ε. Hence it follows the f is
uniformly continuous on [1,∞). But the function f : (0, 1) → R, x �→ 1/x is not
uniformly continuous.
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Remark 2.12.12 Let (X, d) and (Y, ρ) be two metric spaces. If a function f :
X → Y uniformly continuous, then for every ε > 0, there is a δ > 0 such that
ρ( f (x), f (y)) < ε, whenever d(x, y) < δ. For continuity of a function, δ depends
on both x and ε, but for uniform continuity, δ depends only on ε. This asserts that
every uniformly continuous function is continuous but its converse is not necessarily
true (see Example2.12.13).

Example 2.12.13 The function f : (0, 1] → R, x �→ sin(x−1) is continuous but
not uniformly continuous. The continuity of f follows from the fact that it is the
composite of two continuous functions x �→ x−1 and the sine function. It is not
uniformly continuous, because, given ε = 1 there exists δ > 0, such that there exist
points x, y ∈ (0, δ) for which f (x) = 1, f (y) = −1 and hence

|x − y| < δ but | f (x) − f (y)| = 2 > ε = 1.

Example 2.12.14 The function f : S2 → S2, α �→ −α is continuous, where S2 =
{(x, y, z) ∈ R3 : x2 + y2 + z2 = 1} is the unit sphere in R3 and for α = (x, y, z) ∈
S2, the element −α = (−x,−y,−z) ∈ S2.

Example 2.12.15 The continuous function f : R → R, x → x2 is not uniformly
continuous, because, given any δ > 0, for x = n, y = n + δ, where n is a positive
integer, | f (x) − f (y)| > 2nδ, which can assume a large value as we like, even for
a small value of δ.

Definition 2.12.16 Let (X, d) and (Y, ρ) be twometric spaces. A function f : X →
Y is said to be a Lipschitz function if there exists a positive constant K such that

ρ( f (x), f (z)) ≤ Kd(x, z), ∀ x, z ∈ X.

The positive constant K is called a Lipschitz constant.

Example 2.12.17 Let f : [a, b] → R be a continuously differential function with
the property that | f (x)| ≤ K > 0 for all x ∈ [a, b]. Then under the Euclidean metric
on R

| f (x) − f (z)| = |
x∫

z

f ′(t)dt | ≤
x∫

z

| f ′(t)|dt ≤ K |x − z|,

where the integral is the Riemann integral, shows that f is a Lipschitz function.

Proposition 2.12.18 Let (X, d) and (Y, ρ) be two metric spaces and f : X → Y be
a Lipschitz function. Then f is uniformly continuous.

Proof Byhypothesis, f : X → Y is a Lipschitz function. Then there exists a positive
constant K such that ρ( f (x), f (z)) ≤ Kd(x, z) for all x, z ∈ X . Now, for every
ε > 0, there is a δ = ε/K > 0 such that ρ( f (x), f (z)) < ε, whenever d(x, z) < δ.
Hence, it follows that f is uniformly continuous. �
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Example 2.12.19 Let f : X → Y be a map between twometric spaces X and Y and
{xn} be a Cauchy sequence in X .

(i) If f is uniformly continuous, then image of the Cauchy sequence {xn} in X is
also a Cauchy sequence in Y . Because, every Cauchy sequence in X is mapped
to a Cauchy sequence in Y by every uniformly continuous map.

(ii) On the other hand, if X is complete and f is continuous, then image of the
Cauchy sequence {xn} in X is also a Cauchy sequence in Y . Because, as X is
complete, every Cauchy sequence {xn} in X has a limit x ∈ X , and hence by
continuity of f , the sequence { f (xn)} converges to f (x), and every convergent
sequence is a Cauchy sequence.

2.13 Homeomorphism and Isometry in Metric Spaces

This section addresses the concept of homeomorphism in metric spaces. Homeo-
morphisms form an important class of continuous functions to study metric spaces.
It is a natural question: when two metric structures are equivalent? In group theory,
two groups are equivalent if there exists an isomorphism between them. Similarly,
two metric spaces are equivalent if there exists a homeomorphism between them. An
isometry in metric spaces is a particular homeomorphism between them by Proposi-
tion2.13.10. Finally, this section defines the concept of equivalent metrics and relates
it to a homeomorphism in Sect. 2.13.3.

2.13.1 Homeomorphisms in Metric Spaces

This subsection introduces the concept of homeomorphisms for metric spaces, which
plays a key role in classification of metric spaces.

Definition 2.13.1 A bijective mapping f : X → Y between metric spaces X and
Y is said to be a homeomorphism if both f and f −1 are continuous functions. If
there exists a homeomorphism between the metric spaces X and Y , then they are
called homeomorphic metric spaces; they are also said to be equivalent as metric
spaces.

Example 2.13.2 The open intervals (0, 1) and (a, b) in R with usual metric are
homeomorphic.

Example 2.13.3 The metric spaces S2 − N and R2 (where N is the north pole of
the sphere S2) are equivalent by stereographic projection (see Chap. 3).

Definition 2.13.4 A property of a metric space X which is preserved by a homeo-
morphism is said to a topological property of X .
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Example 2.13.5 The property of being open or closed sets in a metric space is a
topological property.

Example 2.13.6 Completeness in a metric space is not a topological property. Con-
sider R with usual metric and its open interval (−1, 1). The sequence {xn : xn =
1 − 1/n} is a Cauchy sequence in (−1, 1), but it does not converge in (−1, 1), which
shows that open interval (−1, 1) is not complete. On the other hand, R is complete,
and it is homeomorphic to (−1, 1). On the other hand, compactness and connected-
ness in a metric space (also in a topological space) are both topological properties
(see Sects. 2.17.1 and 2.17.5).

Example 2.13.7 (Nonhomeomorphic spaces) While classifying metric spaces ( or
topological spaces) up to equivalence, either we have to give an explicit expression
for a homeomorphism between the given spaces or we have to show that no such
homeomorphism exists. For example, a circleminus a point is not homeomorphic to a
closed line segment. For topological spaces, we utilize certain topological property (
see Chap.5) in this volume but for topological invariant (see Volume 3 of the present
series of books). For example, the space X = [0, 2] is not homeomorphic to the
subspace [0, 1] ∪ [2, 3] of R, because X is connected but Y is not so (connectedness
is a topological property which is proved in Chap.5).

2.13.2 Isometry in Metric Spaces

This subsection introduces the concept of isometry in metric spaces and establishes
its relation to a homeomorphism in Proposition2.13.10.

Definition 2.13.8 Let (X, d) and (Y, ρ) be two metric spaces. Then a bijective map
f : X → Y is said to be (d, ρ)-isometry (or simply an isometric mapping) if

d(x, x ′) = ρ(( f (x), f (x ′)), ∀ x, x ′ ∈ X.

Two metric spaces (X, d) and (Y, ρ) are said to be isometric if there exists a (d, ρ)-
isometry between them.

Remark 2.13.9 (Importance of isometry) Let two metric spaces (X, d) and (Y, ρ)

be isometric. Then it asserts that the points in X and Y are in bijective correspondence
by an isometric mapping f : X → Y in such a way that the distance between every
pair of points x, x ′ ∈ X and the distance between their image points f (x), f (x ′) in
Y are the same. This implies that an isometry identifies the metric structures of two
metric spaces and also identifies their closed sets and open sets.

Proposition2.13.10 asserts that every isometry is a homeomorphism.

Proposition 2.13.10 Let f : X → Y be an isometry between metric spaces (X, d)

and (Y, ρ). Then f is a homeomorphism.
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Proof It follows from the defining condition of the isometry f that f is a bijection
such that both f and f −1 are continuous.

�

Remark 2.13.11 Proposition2.13.12 proves that completeness property of a metric
space is preserved by an isometry and hence by a homeomorphism. An isometry
preserves metric structures. On the other hand, a homeomorphism preserves their
open sets, i.e., their topological structures (see Chap.3).

Proposition 2.13.12 Let f : X → Y be an isometry between metric spaces (X, d)

and (Y, ρ). Then (X, d) is complete iff (Y, ρ) is complete.

Proof Let {xn} be a Cauchy sequence in X . Then { f (xn)} is a Cauchy sequence in Y .
If (X, d) is complete, then {xn} → x for some x ∈ X . This implies that { f (xn)} →
f (x). Its converse part is similar. �

Example 2.13.13 Every isometry is a homeomorphism by Proposition2.13.10, but
its converse is not necessarily true. In support, consider the metric spaces (X, d)

and (X, ρ) with different metrics d and ρ on the same set X . Then the identity map
1d : X → X is an isometry iff the metrics d and ρ are equivalent in the sense of
Definition2.13.14.

2.13.3 Equivalent Metrics

This subsection introduces the concept of equivalent metrics, which is an important
concept, because they induce the same topology (see Chap.3) and the identity map
on metric spaces admitting equivalent metrics is a homeomorphism.

Definition 2.13.14 Let X be a nonempty set and d, ρ be two metrics on X . Then
they are said to equivalent metrics if they define the same convergent sequences.
Alternatively, the two metrics d, ρ on X are said to be equivalent if given any
point x ∈ X , any open ball Bd

x (r) in (X, d) contains an open ball Bρ
x (r ′) in (X, ρ)

for some r ′ > 0 and any open ball Bρ
x (t) in (X, ρ) contains an open ball Bd

x (t
′)

in (X, d) for some t ′ > 0. Equivalently, the identity map 1d : (X, d) → (X, ρ) is a
homeomorphism.

Example 2.13.15 Let (X, d) be a metric space. Define a metric

ρ : X × X → R, (x, y) �→ d(x, y)

1 + d(x, y)
.

This shows that ρ(x, y) < 1, ∀ x, y ∈ X and hence

ρ(xn, x)[1 + d(xn, x)] = d(xn, x) =⇒ d(xn, x) = ρ(xn, x)

1 − ρ(xn, x)
.
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Then d and ρ are equivalent metrics on X . Because, if d(xn, x) → 0, then
ρ(xn, x) = d(xn ,x)

1+d(xn ,x)
→ 0. Again, if ρ(xn, x) → 0, then d(xn, x) → 0.

2.14 Normed Linear Spaces: Banach Spaces, Hilbert
Spaces and Hahn–Banach Theorem

This section studies a special type of metric spaces having an additional structure
such as normed linear structure with a brief study of Banach and Hilbert spaces,
which form important classes of normed linear spaces.

Definition 2.14.1 A normed linear space is a linear space (vector space) X over R
or C together with a real-valued function || || : X → R, called a norm function on
X such that it satisfies the following conditions for all x, y ∈ X and all α ∈ R or C :
N(1) ||x || ≥ 0 and ||x || = 0 iff x = 0;
N(2) ||x + y|| ≤ ||x || + ||y||;
N(3) ||αx || = |α| ||x ||.
It is sometimes written as the pair (X, || ||). Geometrically, the nonnegative real
number ||x || called the norm of x represents the length of the vector x from the
origin of the linear space.

Example 2.14.2 Let C = C([0, 1]) be the set of all real-valued continuous functions
on [0, 1]. Then the norm function defined in Example2.5.5 makes the linear space
C a normed linear space.

Remark 2.14.3 Everynormed linear space is ametric spacewith respect to themetric
defined by d(x, y) = ||x − y||. This result facilitates to study normed linear spaces
with the help of the corresponding metrics. For example, it defines the equivalent
norms in terms of equivalent metrics.

Definition 2.14.4 Two norms || ||1 and || ||2 on the same linear space X are said
to be equivalent if the corresponding metrics are equivalent in the sense of Defini-
tion2.13.14.

Example 2.14.5 The norms || ||1 and || ||2 on Rn defined by

(i) || ||1 : Rn → R, x �→ (
∑n

i=1 x2i )
1/2 (Euclidean norm) and

(ii) || ||2 : Rn → R, x �→ (
∑n

i=1 |xi |)
are equivalent.
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2.14.1 Pseudo-normed Linear Spaces

This subsection defines pseudo-normed linear spaces by defining pseudo-norm func-
tion, which is more general than a norm function in the sense that every norm func-
tion is a pseudo-norm function but its converse is not necessarily true (see Exam-
ple2.14.10). Moreover, l p-metric defined in Sect. 2.5.3 is generalized in this section
by defining pseudo-metric Lp.

Definition 2.14.6 A pseudo-normed linear space is a linear space X over R or
C such that there is a real-valued function || || : X → R, called a pseudo-norm
function if it satisfies the following conditions for all x, y ∈ X and all α ∈ R or C :
PN(1) ||x + y|| ≤ ||x || + ||y||;
PN(2) ||αx || = |α| ||x ||.
Proposition 2.14.7 Let X be a pseudo-normed linear space. Then

PN(3) ||0|| = 0;
PN(4) ||x || ≥ 0, ∀ x ∈ X.

Proof ||0|| = 0 follows from PN(2), because ||0|| = ||00|| = |0|||0|| = 0. Again,
PN(4) follows from PN(1) − PN(3), because for any x ∈ X ,

0 = ||0|| = ||x + (−x)|| ≤ ||x || + |(−1)|||x || = 2||x ||.

This shows that ||x || ≥ 0, ∀ x ∈ X .
�

Remark 2.14.8 A normed linear space is a pseudo-normed linear space X such that

PN(5) : f or any x ∈ X, ||x || = 0 =⇒ x = 0.

Definition 2.14.9 On a pseudo-normed linear space X , the function

d : X × X → R, (x, y) �→ ||x − y||

is called a pseudo-metric on X .

We now use the Minkowski’s inequality which asserts that for any two points
x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) ∈ Rn or Cn ,

(
n∑

k=1

|xk + yk |2
) 1

2

≤
(

n∑

k=1

|xk |2
) 1

2

+
(

n∑

k=1

|yk |2
) 1

2

,

equivalently, ||x + y|| ≤ ||x || + ||y||.



2.14 Normed Linear Spaces: Banach Spaces, Hilbert Spaces and Hahn–Banach Theorem 89

Example 2.14.10 (Lp-space) For any integer p > 0, the setLp consists of all func-
tions f : [0, 1] → R such that the Lebesgue integral

1∫

0

| f (x)|pdx

exists. Thus

Lp =
⎧
⎨

⎩
f ∈ C([0, 1]) :

1∫

0

| f (x)|pdx exists

⎫
⎬

⎭

The set Lp forms a real linear space under usual addition and scalar multiplication
of functions, called Lp- space. Then the function

‖ ‖ : Lp → R, f �→
⎡

⎣

1∫

0

| f (x)|pdx
⎤

⎦

1
p

,

exists andLp becomes apseudo-normed linear spacebyusing the secondMinkowski’s
inequality. But it is not a normed linear space, because the equality || f || = 0 holds for
each function f : [0, 1] → R, which vanishes except on a subset S of [0, 1] having
Lebesgue measure 0.

2.14.2 Banach Spaces and Hahn–Banach Theorem

This subsection presents a special type of normed linear spaces, called Banach spaces
named after S. Banach (1892–1945), which are complete as metric spaces. Banach
is considered as one of the founders of functional analysis. Banach spaces provide a
link between algebraic and metric structures.

This subsection proves Hahn–Banach theorem on Banach (or normed linear)
spaces which guarantees a rich supply of functionals. This theorem is named after
H. Hahn (1879–1934) and S. Banach .

Definition 2.14.11 A Banach space X is a normed linear space which is complete
with respect to the metric defined by its norm, i.e., a Banach space is a normed linear
space X in which every Cauchy sequence is convergent.

Example 2.14.12 Examples of Banach spaces are enormous.

(i) For the real field R, the Euclidean n-space Rn is a real Banach space, since Rn

is a complete metric space with respect to usual Euclidean metric induced by
the norm
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‖x‖ =
(

n∑

i=1

|xi |2
) 1

2

, ∀ x = (x1, x2, . . . , xn) ∈ Rn .

(ii) For the complex field C, the complex linear space Cn is a complex Banach
space with respect to the metric induced by the norm

‖z‖ =
(

n∑

i=1

|zi |2
) 1

2

, ∀ z = (z1, z2, . . . , zn) ∈ Cn.

(iii) (Infinite-dimensional Euclidean space R∞) The set of all infinite real
sequences {x = (x1, x2, . . .) : ∑∞

i=1 |xi |2 < ∞}, denoted by R∞, is a real lin-
ear space, which admits a norm function

‖x‖ =
( ∞∑

i=1

|xi |2
) 1

2

makes R∞ a real Banach space, called the infinite-dimensional Euclidean
space. Clearly, the point x = (2, 2, 2, . . .) /∈ R∞. On the other hand, the point
y = (1, 1

2 ,
1
22 ,

1
23 , . . .) ∈ R∞.

(iv) (Infinite-dimensional unitary space C∞) The set of all infinite complex
sequences {z = (z1, z2, . . .) : ∑∞

i=1 |zi |2 < ∞}, denoted by C∞, is a complex
linear space, which admits a norm function

‖z‖ =
( ∞∑

i=1

|zi |2
) 1

2

makes C∞ a complex Banach space, called the infinite-dimensional unitary
space.

Proposition 2.14.13 Let X and Y be two normed linear spaces over the same scalar
field F = R or C and C(X,Y ) be the set of all continuous linear transformations
from X to Y . Then

(i) C(X,Y ) is also a normed linear space under pointwise linear operations and
the norm function defined by

||T || = sup{||T (x)|| : ||x || ≤ 1}.

(ii) moreover, if Y is a Banach space, then C(X,Y ) is also a Banach space.

Proof By hypothesis, C(X,Y ) is the set of all continuous linear transformations
from X to Y .
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(i) C(X,Y ) is clearly a normed linear space under the given linear operations and
norm.

(ii) Let Y be a Banach space. We claim that the normed linear space C(X,Y ) is
also a Banach space. Given a Cauchy sequence {Tn} in C(X,Y ), let x ∈ X be
an arbitrary point. Then

||Tk(x) − Tn(x)|| = ||(Tk − Tn)(x)|| ≤ ||Tk − Tn||||x ||

implies that {|Tn(x)|} is also a Cauchy sequence in Y . By hypothesis Y is a
Banach space and hence the sequence {|Tn(x)|} is complete. Then there exists
a point (vector ) T (x) ∈ Y (say) such that Tn(x) → T (x). This assignment
defines a linear map T : X → Y by using the continuity of both addition and
scalar multiplication.
T is continuous: T is bounded, because

||T (x)|| = || lim Tn(x)|| = lim ||Tn(x)|| ≤ sup(||Tn||||x ||)
= ( sup ||Tn||) ||x ||, ∀ x ∈ X.

This implies that T is continuous.
Next, to show that ||Tn − T || → 0, take an ε > 0 and an k0 ∈ N such that

||Tk(x) − Tn(x)|| < ε ∀ k, n ≥ k0.

If ||x || ≤ 1, then for k, n ≥ k0

||Tk(x) − Tn(x)|| = ||(Tk − Tn)(x)|| ≤ ||Tk − Tn|| ||x || ≤ ||Tk − Tn|| < ε.

Keeping k fixed and allowing n → ∞, it follows that

||Tk(x) − Tn(x)|| → ||Tk(x) − T (x)||.

This implies that for all x satisfying ||x || ≤ 1.

||Tk(x) − T (x)|| < ε ∀ k ≥ k0.

It proves that
||Tk − T || ≤ ε ∀ k ≥ k0.

This proves that ||Tn − T || → 0.

�

Hahn–Banach Theorem2.14.14 is a basic theorem in linear space theory. It pro-
vides a rich supply of functionals. It is proved by using Zorn’s lemma.
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Theorem 2.14.14 (Hahn–Banach theorem) Let X be a normed linear space and
Y be a linear subspace of X. If T is a functional on Y , then it can be extended to a
functional T̃0 over X with the property that ||T̃0|| = ||T ||.
Proof LetF be the set of all extensions of T to functionals T̃ having the same norm
on subspaces containing Y . Then F �= ∅. If domT̃ represents the domain of T̃ , then
this domain set is partially ordered by the relation : T̃ ≤ T̃ ′ if domT̃ ⊂ domT̃ ′ and
T̃ (x) = T̃ ′(x) for all x ∈ domT̃ . Consider a chain {Ci : i ∈ A} in F and the union
of any chain of members of the family F . Then this union is an upper bound for
the chain. Now use Zorn’s lemma to show that there exists a maximal extension
T̃0. Again domT̃ = X , because, otherwise, T̃0 can be further extended, which will
contradict the maximality of T̃0. �

Corollary 2.14.15 Let X be a real normed linear space and x0 ∈ X be a nonzero
vector. Then there exists a functional T0 : X → R such that

T0(x0) = ||x || and ||T0|| = 1.

Proof Byhypothesis, x0 ∈ X be a nonzero vector. ThenY = {r x0 : r ∈ R} is a linear
subspace of X , called the subspace of X spanned by x0. Define

T : Y → R, r x0 �→ r ||x ||.

Then T is a functional on Y such that

T (x0) = ||x0|| and ||T || = 1.

Then by Hahn– Banach Theorem2.14.14, there exists an extension of T to a func-
tional

T0 : X → R

such that
T0(x0) = ||x || and ||T0|| = 1.

�

2.14.3 l p-Space

This subsection gives examples of l p-spaces which are used in subsequent study.

Example 2.14.16 (i) Let p be a real number such that 1 ≤ p < ∞. Then the
linear space lnp of all n-tuples {x = (x1, x2, . . . , xn)} over R or C is a Banach
space with respect to the norm function defined by
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‖x‖p =
(

n∑

i=1

|xi |p
) 1

p

(ii) Let p be a real number such that 1 ≤ p < ∞. Then the linear space l p of
all sequences {x = (x1, x2, . . . , xn . . . , )} over R or C is a Banach space with
respect to the norm function defined by

‖x‖p =
( ∞∑

i=1

|xi |p
) 1

p

.

Example 2.14.17 (i) The real l2-space is precisely the infinite-dimensional
Euclidean space R∞ with metric

d : R∞ × R∞ → R, (x, y) �→ ‖x − y‖ =
( ∞∑

i=1

|xi − yi |2
) 1

2

,

called the l2-metric on R∞. This metric space is called real l2-space with the
l2-metric.

(ii) The complex l2-space (defined in an analogous way) is precisely the infinite-
dimensional unitary space C∞.

2.14.4 Hilbert Spaces and Examples

This subsection presents a special type of complex Banach spaces, called Hilbert
spaces, whose norm is defined by an inner product. Banach spaces fail to provide
the angle between two vectors; on the other hand, Hilbert spaces provide the concept
of orthogonality of two nonzero vectors. Hilbert space is named after D. Hilbert (
1862–1943), and modern development of such spaces is stimulated by the operator
theory.

An inner product space X is said to be aHilbert space iff X is completewith respect
to the inner product norm. For example, a complete Hilbert space is formulated in
Definition2.14.18.

Definition 2.14.18 A complex Hilbert space is a complex Banach space X with a
function

〈 , 〉 : X × X → C

such that for all x, y, z ∈ X and α, β ∈ C,

H(1) 〈αx + βy, z〉 = α〈x, z〉 + β〈y, z〉;
H(2) 〈x, y〉 = 〈y, x〉, where 〈x, y〉 is the complex conjugate of 〈x, y〉;
H(3) 〈x, x〉 = ‖x‖2.
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A real Hilbert space is defined in an analogous way.

Example 2.14.19 Examples of Hilbert spaces are plenty. For example,

(i) the space ln2 with respect to inner product of two vectors defined by

〈x, y〉 =
n∑

i=1

xi yi ,

where x = (x1, x2, . . . , xn) ∈ ln2 is a Hilbert space.
(ii) the space l2 with respect to inner product of two vectors defined by

〈x, y〉 =
∞∑

i=1

xi yi ,

where x = (x1, x2, . . . , xn, . . .) ∈ l2, is a Hilbert space, because the above
series is convergent and converges to a complex number for every x, y ∈ l2
by Cauchy’s inequality.

2.15 Continuity of Functions on Normed Linear Spaces

This section studies continuity of linear transformations and linear functionals on
normed linear spaces. An analogous study from the viewpoint of topological vector
spaces is available in Basic Topology, Volume 3 of the present series of books.

2.15.1 Continuous Linear Transformations

This subsection defines continuous linear transformations between normed linear
spaces which are continuous linear transformations between metric spaces. Since
every normed linear space is a metric space, the properties which hold for continuous
linear transformations between metric spaces are also satisfied by continuous linear
transformations between normed linear spaces.

Definition 2.15.1 Let X and Y be normed linear spaces over the same field R and
T : X → Y be a linear transformation. Then T is said to be continuous if it is
continuous as a mapping from the metric space X to the metric space Y and T said
to be bounded if there exists a real number K > 0 such that

‖T (x)‖ ≤ K‖x‖, ∀ x ∈ X.
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A continuous linear transformation T : X → Y between normed linear spaces X and
Y asserts that whenever xn → x in X , then T (xn) → T (x) in Y .

Definition 2.15.2 Let X and Y be normed linear spaces over R and T : X → Y be
a linear transformation. Then T is said to be an isometrically isomorphism, if T is
a bijective map such that

‖T (x)‖ = ‖x‖, ∀ x ∈ X.

The normed linear spaces X and Y are said to be isometrically isomorphic if there
exists an isometric isomorphism between them.

Remark 2.15.3 Two isometrically isomorphic normed linear spaces are essentially
the same from the viewpoint of their normed linear structures like two isomorphic
group structures.

Theorem 2.15.4 Let X and Y be normed linear spaces over the same field R and
T : X → Y be a linear transformation. Then the following statements on T are
equivalent:

(i) T is continuous at every point x ∈ X;
(ii) for a sequence {xn} in X, the term xn → 0 implies that T (xn) → 0, i.e., T is

continuous at the origin 0;
(iii) T is bounded in the sense that there exists a real number K > 0 such that

‖T (x)‖ ≤ K‖x‖, ∀ x ∈ X;

(iv) if B = {x ∈ X : ‖x‖ ≤ 1} is the closed unit ball in X, then T (B) is bounded
in Y .

Proof (i)⇔ (ii). Suppose T is continuous. Then T (0) = 0 shows that T is continuous
at the origin 0. Conversely, let T be continuous at 0. Then xn → x ⇔ xn − x → 0.
This implies that T (xn − x) → 0 ⇔ T (xn) − T (x) → 0 ⇔ T (xn) → T (x) ⇒ T is
continuous at every point x ∈ X.

(ii) ⇔ (iii) Let there exist a real number K > 0 such that ‖T (x)‖ ≤ K‖x‖ ∀ x ∈
X . Then xn → 0 implies T (xn) → 0. Conversely, let T be continuous at 0 and (ii)
hold. If possible, there exists no such K > 0 such that ‖T (x)‖ ≤ K‖x‖,∀x ∈ X .
Then for each n ∈ N, there exists a vector xn such that ||T (xn)|| > n ||xn||. This
shows that ‖T (xn)‖

n‖xn‖|| > 1. Take yn = xn
n‖xn‖ . Then yn → 0 but T (yn) does not tend to 0.

This failure shows that T is not continuous at 0. This is a contradiction.
(iii)⇔ (iv) A nonempty subset of a normed linear space is bounded iff it is con-

tained in closed ball B0(1)with center at O and radius 1. This shows that (iii) implies
(iv), because if ‖x‖ ≤ 1, then ‖T (x)‖ ≤ K . Conversely, let T (B) be contained in a
closed ball B0(K ) with center at O and of radius K . For x = 0, T (x) = 0 implies
‖T (x)‖ ≤ K‖x‖. For x �= 0, x/‖x‖ ∈ B0(K ) and hence ‖T (x)‖

‖x‖ ≤ K . This asserts
‖T (x)‖ ≤ K‖x‖, ∀ x ∈ X ⇒ (i i i).

(iv) ⇔ (i): Left as an exercise.
�
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Definition 2.15.5 The norm ‖T ‖ of a continuous linear transformation T : X → Y
is defined by

‖T ‖ = sup{‖T (x)‖ : ‖x‖ ≤ 1}.

Proposition 2.15.6 Let X and Y be two normed linear spaces over the same scalar
field F = R or C and C(X,Y ) be the set of all continuous linear transformations
from X to Y . Then C(X,Y ) is also a normed linear space under pointwise linear
operations and the norm function defined by

‖T ‖ = sup{‖T (x)‖ : ‖x‖ ≤ 1}.

Moreover, if Y is a Banach space, then C(X,Y ) is also a Banach space.

Proof Left as an exercise. �

2.15.2 Continuous Linear Functionals

This section continues the study of normed linear spaces over R by introducing
the concept of linear functional and provides the requirement for continuity of linear
transformations in some equivalent forms, which are convenient for our further study.

Definition 2.15.7 Let X be anormed linear spaceoverR. Then a continuous function
f : X → R is said to be a continuous linear functional if

f (r x + sy) = r f (x) + s f (y),

for all x, y ∈ X and all r, s ∈ R.

Example 2.15.8 Given a point r = (r1, r2, . . . , rn) ∈ Rn , the function

f : Rn → R, x →
n∑

i=1

ri xi

is a continuous linear functional.

Example 2.15.9 The elements of the set C(X, R) or C(X, C) defined in Proposi-
tion2.15.6 are continuous linear functionals or simply called functionals, and this
set of functionals of X is abbreviated as X∗.
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2.16 Applications

This section conveys some applications related to metric spaces such as Banach
contraction theorem on complete metric spaces, Urysohn’s lemma on metric spaces
and some geometrical applications.

2.16.1 Banach Contraction Principle

This subsection proves Banach contraction theorem on complete metric spaces
named after the Polish mathematician Stefan Banach (1892–1945) and applies it
to prove Picard’s theorem on the existence of solutions of a differential equation (see
Theorem2.16.7 andExercise 28 of Sect. 2.18), named after the Frenchmathematician
Charles Emile Picard (1856–1941).

Fixed-point theorems play a key role in the study of solution of certain system of
equations:
Let

f j (x1, x2, . . . , xn) = 0, j = 1, 2, . . . , n,

be a given systemof n-equations in n-unknowns,where f j are continuous real-valued
functions of the n real variables xi : i = 1, 2, . . . , n. Suppose

g j (x1, x2, . . . , xn) = f j (x1, x2, . . . , xn) + x j ,

for any point x = (x1, x2, . . . , xn). If the function

g(x) = (g1(x), g2(x), . . . , gn(x))

has a fixed point x0 ∈ Rn , then x0 is a solution of the above system of equations.

Definition 2.16.1 (X, d) be ametric space. Then amap T : X → X is said to satisfy
Lipschitz condition if there exists a real number r ≥ 0 such that

d(T (x1), T (x2)) ≤ rd(x1, x2), ∀ x1, x2 ∈ X.

The smallest r satisfying the above inequality is called the Lipschitz constant for
the map T . If r ≤ 1, then the map T is said to be nonexpansive, and it is said to be a
contraction if 0 < r < 1.

Definition 2.16.2 Let (X, d) be a metric space. A mapping T : X → X is said to
be a contraction if there exists positive real number r < 1 such that

d(T (x), T (y)) ≤ rd(x, y) < d(x, y), ∀ x, y ∈ X.
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Remark 2.16.3 For a contraction mapping T on a metric space (X, d), the distance
between the images T (x) and T (y) of any two points x, y ∈ X under T is less than
the distance between the points x and y. Such a mapping is (uniformly) continuous,
since it is continuous at every point x ∈ X . Because given an ε > 0, if d(x, y) < ε,
then by defining criterion of a contraction mapping, it follows that

d(T (x), T (y)) ≤ rd(x, y) < d(x, y) < ε ∀ x, y ∈ X.

Theorem 2.16.4 (Banach contraction theorem) Let (X, d) be a complete metric
space and T : X → X be a contraction mapping. Then T has a unique fixed point,
i.e., there exists a unique point x ∈ X such that T (x) = x.

Proof Let x0 ∈ X be an arbitrary point and T : X → X be a contraction mapping.
Then there exists a positive real number r < 1 such that

d(T (x), T (y)) ≤ rd(x, y) < d(x, y), ∀ x, y ∈ X.

(r may be taken the Lipschitz constant (0 < r < 1) for the contraction mapping T ,
given in Definition2.16.1). Denote

x1 = T (x0), x2 = T (x1) = T 2(x0), . . . , xn = T (xn−1) = T n(x0).

Suppose k < n. Then

d(xk, xn) = d(T k(x0), T
n(x0)) = d(T k(x0), T

k ◦ T n−k(x0)) ≤ rkd(x0, T
n−k(x0))

= rkd(x0, xn−k)

≤ rk[d(x0, x1) + d(x1, x2) + · · · + d(xn−k−1, xn−k)] ≤ rkd(x0, x1)[1 + r + · · · +
rn−k−1] < rkd((x0, x1)/((1 − r). As r < 1, the sequence {xn} is a Cauchy sequence.
Hence by completeness of X , it follows that there exists a point x ∈ X with the prop-
erty that xn → x . By continuity of T (see Remark2.16.3), it follows that

T (x) = T (lim xn) = lim (T (xn)) = lim xn+1 = x,

which shows that x is a fixed point of T . To prove the uniqueness of fixed point of
T , let y ∈ X be also a fixed point of T . Then T (x) = x and T (y) = y assert that

d(x, y) = d(T (x), T (y)) ≤ r d(x, y)

which shows that d(x, y) = 0 or y = x , since r < 1. It asserts that the fixed point
of T is unique. �

Example 2.16.5 Theorem2.16.4 known as Banach contraction principle or sim-
ply contraction principle may not be true for spaces which are not complete metric.
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For example, consider the metric space X = (0, 1]. It is not complete. The map
T : X → X, x �→ x/3 has no fixed point.

Example 2.16.6 There are subjective maps on metric spaces, which are not contin-
uous, but they have unique fixed points. For example, consider the map

T : I → I, x �→
{
1/2 + 2x, ifx ∈ [0, 1/4]
1/2, if x ∈ (1/4, 1]

The map T has a unique fixed point which is x = 1/2. The map T is onto but not
continuous.

2.16.2 Further Application to Analysis: Picards’s Theorem

This subsection proves Picards’s Theorem2.16.7 on existence of solution of differ-
ential equations.

Theorem 2.16.7 (Picards’s theorem) Let the functions f (x, y) and ∂ f
∂y be both

continuous in a closed rectangle R = {(x, y) ∈ R2 : a ≤ x ≤ b and c ≤ y ≤ d}.
If (x0, y0) is an interior point of the rectangle R, then the differential equation

dy

dx
= f (x, y)

has a unique solution y = h(x) with h(x0) = y0.

Proof By hypothesis of continuity of both the functions f (x, y) and ∂ f
∂y , it follows

that there exist positive constants A and B such that

| f (x, y)| ≤ A and |∂ f (x, y)
∂y

| ≤ B, ∀ (x, y) ∈ R2.

Take a number k > 0 such that Bk < 1 and a closed rectangle R∗ determined
by |x − x0| ≤ k and |y − y0| ≤ Ak. Let X be the set of all continuous real-valued
functions y = h(x) defined on the closed interval |x − x0| ≤ k with |h(x) − y0| ≤
Ak. Let I0 = [x0 − a, x0 + a] and C(I0) be the complete metric space of all real-
valued continuous functions on I0. Then X is a closed subspace of C(I0), and hence
X is a complete metric space. Consider the map

φ : X → X, g �→ w, where w(x) = y0 +
x∫

x0

f (t, g(t))dt.
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Then φ is a contraction mapping on the complete metric space X . Finally, using
Banach contraction Theorem2.16.4 on φ, it follows that φ has the unique fixed point
h and hence φ(h) = h. �

Remark 2.16.8 An alternative form of Picard’s Theorem2.16.7 is given in Exercise
28 of Sect. 2.18.

2.16.3 Urysohn Function and Urysohn Lemma for Metric
Spaces

This subsection proves Urysohn’s Lemma2.16.10 for metric spaces, which is a very
significant result in metric spaces with wide applications. It provides a rich supply
of continuous functions. This result was given by P. S. Urysohn (1898–1924). We
utilize the Corollary2.9.16 to prove Urysohn’s lemma on metric spaces. For its more
general result, see Chap. 6.

Definition 2.16.9 Two disjoint subsets A and B of a metric space (X, d) are said
to be separated by real-valued continuous functions x, f ∈ C(X, R) with the
property:

f (x) =
{
0, for allx ∈ A

1, for allx ∈ B

and
0 ≤ f (x) ≤ 1 for all x ∈ X.

Such a function f is called Urysohn function corresponding to the pair of disjoint
subsets A and B.

Urysohn’s Lemma2.16.10 guarantees the existence of Urysohn functions.

Lemma 2.16.10 (Urysohn lemma) Let (X, d) be a metric space and A, B be two
disjoint closed subsets of X. Then there is a continuous function f : X → R such
that

(i) f (x) ∈ [0, 1] for all x ∈ X;
(ii) f (x) = 0 for all x ∈ A;
(iii) f (x) = 1 for all x ∈ B.

Proof By hypothesis, A and B are closed sets in X . Since x is a limit point of A iff
d(x, A) = 0 and x is a limit point of B iff d(x, B) = 0. This implies that d(x, A) = 0
iff x ∈ A and d(x, B) = 0 iff x ∈ B. Since A and B are disjoint closed sets, d(x, A)

and d(x, B) cannot vanish simultaneously. Hence it follows that d(x, A) + d(x, B)

never vanishes. Define a function
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f : X → R, x �→ d(x, A)

d(x, A) + d(x, B)
.

Then f is a well-defined continuous function such that

f (x) =
{
0, for allx ∈ A

1, for allx ∈ B

and
0 ≤ f (x) ≤ 1 for all x ∈ X.

�

Corollary 2.16.11 Let (X, d) be a metric space and U be an open set containing a
closed subset G of X. Then there is a continuous function f : X → R such that

(i) f (x) ∈ [0, 1] for all x ∈ X;
(ii) f (x) = 1 for all x ∈ G;
(iii) f (x) = 0 for any x ∈ X but not lying in U.

Proof The corollary follows from Urysohn Lemma2.16.10 by taking in particular
A = X −U and B = G, since here A and B are disjoint closed sets in X . �

Remark 2.16.12 Urysohn’s lemma2.16.10 given by P. S. Urysohn (1898–1924)
prescribes a method of construction of a real-valued continuous function on a metric
space. Its generalization for specific topological spaces is given in Chap.6 of this
book. This is an outstanding result connecting a particular class of topological spaces
to the real number space which characterizes this type of topological spaces (normal
spaces). The tenure of his mathematical work was only three years.

2.16.4 Geometrical Applications

This subsection presents some geometrical examples of continuous functions arising
through Euclidean spaces of different dimensions, which will be used throughout the
book.We are interested in geometrical configurations of certain metric spaces, which
are subsets of Euclidean line R (or R1), Euclidean plane R2 or in general, Euclidean
n-space Rn, where there are Cartesian coordinates having each point expressed
uniquely by coordinates of an ordered n-tuple of real numbers (x1, x2, . . . , xn). In
particular, it represents a point in the Euclidean line R (or R1) for n = 1, a point in
the Euclidean plane R2 for n = 2 or in general, a point in Euclidean n-space Rn .
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Example 2.16.13 (i) (Translation) A translation Ta by a ∈ R on the Euclidean
line R is a continuous function

Ta : R → R, x �→ x + a.

This translation carries a point x ∈ R to the point x + a ∈ R. Similarly, given
a, b ∈ R, a translation

T(a,b) : R2 → R2, (x, y) �→ (x + a, y + b)

is continuous function which carries the point (x, y) ∈ R2 to the point (x +
a, y + b) ∈ R2.

(ii) (Rotation) A rotation of the plane R2 is described by specifying its center and
the angle of rotation. For example, the continuous function

Rθ : R2 → R2, (x, y) �→ (x cos θ − y sin θ, x sin θ + y cos θ)

represents a rotation of the plane R2 about its origin through an angle θ .
(iii) (Reflection)Reflection on a line l inR2 is a continuous function Rl : R2 → R2,

which keeps every point of the line l fixed and takes the mirror image of points
of the two sides of l, i.e., interchanges the two sides of the line l.

Remark 2.16.14 Any translation, rotation, reflection or any reflection followed by a
translation described inExample2.16.13 keep the shape and size of the configurations
in the plane unchanged, but their positions may be altered. Such functions are the
congruences of elementary geometry.

Definition 2.16.15 A rigid function (motion) on Rn with Euclidean distance func-
tion d is a continuous function f : Rn → Rn such the distance between every pair of
points is preserved under f in the sense that d( f (x), f (y)) = d(x, y), ∀ x, y ∈ Rn .

Example 2.16.16 Every translation, rotation, reflection or any reflection followed
by a translation described in Example2.16.13 is a rigid motion.

Proposition 2.16.17 Every rigid motion f on Rn with Euclidean distance function
d is a continuous function f : Rn → Rn .

Proof Let f : Rn → Rn be a rigidmotion. Then d( f (x), f (y)) = d(x, y), ∀ x, y ∈
Rn . For any x ∈ X and for every ε > 0, take δ = ε. If y ∈ Bx (δ), then

d(x, y) < δ = ε =⇒ d( f (x), f (y)) =d(x, y) < ε =⇒ f (y) ∈ B f (x)(ε),

∀ y ∈ Bx (δ)

This asserts that
f (Bx (δ)) ⊂ B f (x)(ε).
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Since x ∈ X is an arbitrary point of X , it follows by Definition2.3.14 that f is
continuous. �

Corollary 2.16.18 (i) Every rigid motion of the plane is continuous.
(ii) Every translation, rotation, reflection or any reflection followed by a translation

described in Example2.16.13 are continuous.

Proof (i) It follows from Proposition2.16.17 for n = 2.
(ii) It follows from Example2.16.16 by using Proposition2.16.17.

�

2.16.5 Separable Metric Spaces

This subsection studies separable metric spaces introduced by M. Fréchet, which
form an important class of metric spaces. Separable spaces in the topological setting
are discussed in Chaps. 3 and 7.

Definition 2.16.19 Let (X, d) be a metric space and A be a nonempty subset of X .
Then A is said to be dense in X if

Bx (ε) ∩ A �= ∅, for everyx ∈ X and for all ε > 0.

Thus if A is dense in X , then every open ball centered at any point in X contains a
point of A.

Definition 2.16.20 Ametric space (X, d) is said to separable if there exists a count-
able dense subset A of X.

Example 2.16.21 The Euclidean line R is a separable metric space, since its subset
Q is countable, and Q is dense in R, because every open interval in R contains
rational numbers. On the other hand, R equipped with the discrete metric

d : R × R → R, (x, y) �→
{
0, ifx = y

1, if x �= y,

is not separable.

Example2.16.22 gives a generalization of Example2.16.21.

Example 2.16.22 The Euclidean n-space Rn is a separable metric space. Because,
its subset

Qn = {(x1, x2, . . . , xn) : x1, x2, . . . , xn ∈ Q} ⊂ Rn

is countable and it is dense in the metric space Rn .
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Theorem2.16.23 characterizes separable metric spaces (X, d) with the help of its
distance function d.

Theorem 2.16.23 A metric space (X, d) is separable iff there exists a countable
subset A of X such that for every ε > 0 and x ∈ X, there exists y ∈ A satisfying the
condition d(x, y) < ε.

Proof Let A be a countable subset of the metric space X satisfying the given hypoth-
esis. Then every point x ∈ X is either a point of A or is a limit point of A. This asserts
that A = X and hence X is separable. Conversely, suppose that the metric space is
separable. Then there exists a countable dense subset A of X , which implies that A
is countable and A = X . Then given ε > 0 and x ∈ X, it follows that x ∈ A and the
open ball Bx (ε) contains a point y ∈ A. This asserts that d(x, y) < ε.

�

2.17 Compact Subsets of Metric Spaces

This section addresses the concept of compact subsets in a metric space, which is an
abstraction of the concept of compactness derived from the Heine–Borel property
of the real line R expressed in Theorem2.1.23. On the other hand, a study of com-
pactness for a topological space generalizing Heine–Borel Theorem2.1.23 is given
in Chap.5.

Definition 2.17.1 Let (X, d) be a metric space. X is said to have an open covering
if there exists a collection of open sets U = {Ua : a ∈ A} such that X = ⋃{Ua : a ∈
A}, i.e., every point of X belongs to at least oneUa . A subfamily of an open covering
U is said to be subcovering of X if this subfamily forms itself an open covering of
X . A metric space (X, d) is said to be compact if every open covering of X has a
finite subcovering. In the language of sequences, (X, d) is said to be compact (or
sequentially compact) if every sequence in X has a convergent subsequence.

Remark 2.17.2 Definition2.17.1 asserts that every compact metric space is com-
plete. But its converse is not true. For example, the the Euclidean line R is a complete
metric space, but it is not compact.

Example 2.17.3 Consider the Euclidean line R and its open interval (0, 1) with
metric induced from the standard metric of R. Then U = {(−n, n) : n ∈ N} forms
an open covering of R. There exists different coverings of the same subset of R. For
example, U1 = {(1/n, 1) : n > 1 and n ∈ N} forms an open covering of (0, 1), and
U2 = {( 1n , n

n+1 ) : n > 1 and n ∈ N} forms another open covering of (0, 1).

Example 2.17.4 Let (X, d) be a metric space. Then given r > 0, the family B =
{Bx(r) : x ∈ X} of all open balls in X of radius r centered at x forms an open covering
of X . This gives a nontrivial open covering of any metric space (X, d).
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Example 2.17.5 Let (X, d) be ametric space and Y ⊂ X be finite. If dY is the metric
on Y induced by the metric d of X , then (Y, dY ) is compact.

Example 2.17.6 Under usual metric on R, the closed and bounded interval [a, b]
is compact, but the open interval (a, b) is not compact. Because Heine–Borel The-
orem2.1.23 in R asserts that every closed bounded subset of R is compact in the
sense that its every open covering has a finite subcovering. On the other hand, (0, 1)
is not compact, because U1 = {(1/n, 1) : n > 1 and n ∈ N} forms an open covering
of (0, 1) but it does not admit any subcovering.

Theorem2.17.7 determines precisely the compact subsets of the Euclidean space
Rn , which is a generalization of the classical Heine–Borel theorem in analysis. Its
partial generalization in an arbitrarymetric space is given in Exercise 46 of Sect. 2.18.

Theorem 2.17.7 (Generalization of Heine–Borel theorem in Rn) A subset A in the
Euclidean plane Rn is compact iff it is closed and bounded.

Proof Let A be a compact subset of Rn . Then the family of open balls B = {B0(n) :
n ∈ N} with center at origin 0 ∈ Rn forms an open covering of A admitting a finite
covering of A by compactness property of A. Then

A ⊂
⋃

B0(n) for finite values of n.

Consequently, it follows that A is closed and bounded. For its converse part see
Chap.5. �

2.17.1 Compactness of Metric Spaces is a Topological
Property

This subsection shows that the compactness of metric spaces is a topological prop-
erty in the sense that if two metric spaces X and Y are homeomorphic and if X is
compact, then Y is also compact and conversely, if Y is compact, then X is also.More
precisely, Theorem2.17.8 proves that compactness in metric spaces is preserved by
a continuous map and hence it follows that compactness in a metric space is a topo-
logical property (see Corollary2.17.10). In topological setting, it is also proved in
Chap.5 that compactness is a topological property.

Theorem 2.17.8 Let (X, d) and (Y, ρ) be two metric spaces and f : X → Y be a
continuous onto map. If X is compact , then Y is also compact.

Proof Let (X, d) be a compact metric space.We claim that f (X) = Y is also a com-
pact metric space. To prove it, take any open covering U = {Ui : i ∈ A} of Y . Then
V = {Vi : i ∈ A} forms an open covering of X , where Vi = f −1(Ui ). By hypothe-
ses, X is compact. Hence there exists a finite subcovering {Vik : 1 ≤ k ≤ n} of V .
This asserts that the finite subfamily of open sets {Uik : 1 ≤ k ≤ n} of U is an open
covering of Y . This proves that Y is also compact. �
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Corollary 2.17.9 Let (X, d) and (Y, ρ) be two metric spaces and f : X → Y be a
continuous map. If X is compact, then f (X) is also so.

Proof It follows from Theorem2.17.8. �

Corollary 2.17.10 Let (X, d) and (Y, ρ) be two homeomorphic metric spaces. Then
X is compact iff Y is also so.

Proof It follows from Theorem2.17.8. �

Remark 2.17.11 More study on compactness in topological setting is available in
Chap.5.

2.17.2 Lebesgue Lemma and Lebesgue Number

The notion of a Lebesgue number stems from Lebesgue’s work on measure theory,
starting with his dissertation in 1902. This subsection studies Lebesgue lemma and
Lebesgue number named after H. Lebesgue (1875–1941) for an open covering of
a compact metric space establishing a relation between such a space and Lebesgue
number and proves Lebesgue lemma providing a technical result on open covering
of a compact metric space.

Definition 2.17.12 Given an open covering F = {Uα : α ∈ A} of a compact metric
space X , there exists a real number δ > 0 (called Lebesgue number of F = {Uα})
such that every open ball Bx (ε) in X for some ε > 0, is contained in at least one
open set {Uα} ∈ F .

The existence of Lebesgue number is proved in Lemma2.17.13.

Lemma 2.17.13 (Lebesgue covering lemma) Let X be a compact metric space.
Given an open covering F = {Uα : α ∈ A} of X, there exists a Lebesgue number
δ > 0 of the coveringF = {Uα}) such that whenever Y ⊂ X and diam(Y ) < δ, then
Y ⊂ Uα for some α ∈ A.

Proof Let X be a compact metric space with metric d. Then for an arbitrary point
x ∈ X , there is an ε(x) > 0 depending on x such that the open ball Bx (2ε(x)) ⊂ Uα

for some α ∈ A. Since X is compact, there is a finite number of the open balls
Bx (2ε(x)), suppose for x = x1, x2, . . . , xm . Let δ = min{ε(x j ) : j = 1, 2, . . . ,m}.
If dim(Y ) < δ and y0 ∈ Y , there exists an index j such that 1 ≤ j ≤ m with the
property that d(y0, x j ) < ε(x j ). Again, for y ∈ Y, d(y, y0) < δ ≤ ε(x j ). Hence by
triangle inequality for the metric space X , it follows that

d(y, x j ) ≤ d(y, y0) + d(y0, x j ) < 2ε(x j ).

This asserts that Y ⊂ Bx (2ε(x)) ⊂ Uα for some α ∈ A.
�



2.17 Compact Subsets of Metric Spaces 107

Example 2.17.14 In the Euclidean line R,

(i) consider an open covering of U of X = [0, 1] given by

U = (−1/10, 1/10) ∪ {Ut = (t/2, 2) : 0 < t ≤ 1}.

It has a Lebesgue number δ = 1/10. Because if Y ⊂ X and dim(Y ) < 1/10,
then t = Inf Y is either positive or 0. For the first case, Y ⊂ Ut and for the
second case, Y ⊂ (−1/10, 1/10).

(ii) consider an open covering of U of X = (−1, 0) ∪ (0, 1) given by

U = {(−1, 0), (0, 1)}.

Then U has no Lebesgue number.

Remark 2.17.15 More studyonLebesgue Covering Lemma2.17.13 andLebesgue
number is available in Chap.5.

2.17.3 A Characterization of Totally Bounded Complete
Metric Spaces

Every compact metric space is complete, but its converse is not true
(see Remark2.17.2). So, it is a natural question: does there exist any additional
condition on a complete metric space to make it a compact space? The search of
such a condition leads to the concept of totally boundedness in a metric space. This
concept gives a satisfactory answer to this question saying that a metric space (X, d)

is compact iff it is complete and totally bounded (see Exercise 49 of Sect. 2.18). This
subsection characterizes a totally bounded complete metric space (X, d) in The-
orem2.17.19 with the help of a sequence in X having a convergent subsequence,
which is equivalent to the compactness of (X, d) by Exercise 49 of Sect. 2.18).

Definition 2.17.16 Ametric space (X, d) is said to be totally bounded if, for every
ε > 0, the space X is covered by a finite number of ε-balls in the sense that X =⋃

Bx (ε) (union of finite number of ε-balls).

Proposition 2.17.17 Every totally bounded metric space is bounded.

Proof Let (X, d) be a totally bounded metric space. Then for every ε > 0, the space
X is covered by a finite number of ε-balls. For ε = 1/2, let

X ⊂ Bx1(1/2) ∪ Bx2(1/2) ∪ · · · ∪ Bxn (1/2)

This asserts that
diam X ≤ 1 + max {d(xi , xk)}.
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It proves that X is bounded.
�

Example 2.17.18 Total boundedness implies boundedness in a metric space by
Proposition2.17.17. Its converse is not true in general. For example,

(i) Let (R, d) be the metric space with metric

d : R × R → R, (x, y) �→ min {1, |x − y|}.

This asserts that (R, d) is bounded. But (R, d) is not totally bounded.
(ii) Converse of Proposition2.17.17 is true for finite-dimensional Euclidean space

Rn but it is not true for the infinite-dimensional Euclidean space R∞ (see
Example2.14.12). Because, the closed infinite-dimensional unit sphere S∞ in
R∞ defined by

S∞ = {x ∈ R∞ : ||x || ≤ 1} ⊂ R∞

is not totally bounded but it is bounded.

Theorem2.17.19 characterizes a totally bounded complete metric space by its
sequences.

Theorem 2.17.19 Let (X, d) be a metric space. Then it is totally bounded and
complete iff every sequence in X has a convergent subsequence.

Proof Let (X, d) be a totally bounded complete metric space and {xn} be any
sequence in X . As the metric space X is totally bounded by hypothesis, X can
be covered by only a finite number of 1-balls of the form Bx (1). Then there is some
1-ball B1, say, out of these finite number of 1-balls, such that B1 contains xn for an
infinite number of n. Since B1 ⊂ X and X is totally bounded, B1 ⊂ X can also be
covered by a finite number of 1

2 - balls of the form Bx (
1
2 ). Then there is some 1

2 -ball,
B2, say, out of these finite number of 1

2 -balls such that B2 contains xn for infinitely
many n. Hence B1 ∩ B2 must contain xn for an infinite number of n. Repeating this
process for n = 1, 2, 3, . . ., it follows that there is some 1

n -ball , say Bn , of the form
Bx (

1
n ), such that B1 ∩ B2 ∩ · · · ∩ Bn contain xk for an infinite number of k. So there

exists a subsequence {xnk } of the given sequence {xn} such that

xnk ∈ B1 ∩ B2 ∩ · · · ∩ Bn, ∀ k.

If k < m, then both the elements xnk and xnm are in Bk and hence d(xnk , xnm ) <
1
k . This asserts that the subsequence {xnk } is a Cauchy sequence and hence it is
convergent by Proposition2.10.12.

Conversely, let every sequence in X have a convergent subsequence and {xn} be
a Cauchy sequence in X . Then by hypothesis, there is a convergent subsequence
{xnk } of the sequence {xn} and hence xnk → x for some x ∈ X . Applying triangle
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inequality, it follows that xn → x ∈ X . This shows that X is a complete metric space.
To show that X is totally bounded, assume to the contrary that X is not covered by a
finite number of open ε-balls in X . Then there exist points x1, x2, . . . , xm, . . . , xk, . . .
in X such that

d(xk, xm) > ε, ∀ k > m.

This implies that such a sequence {xn} cannot have a convergent subsequence, which
contradicts the hypothesis that every sequence in X has a convergent subsequence.
This shows that X is totally bounded.

�

2.17.4 Connectedness in Metric Spaces and Connected
Subsets of R

This subsection introduces the concepts of connectedness inmetric spaces and studies
connected subsets of theEuclidean lineR. The intermediate value theorem in calculus
says that if f : [a, b] → R is continuous and r ∈ R lies between f (a) and f (b),
then there exists a point α ∈ [a, b] such that f (α) = r . There is a natural question:
does there exist a generalization of this theorem? This theorem depends not only on
continuity of f but also on a special property of [a, b], now called connectedness.

Definition 2.17.20 Let (X, d) be ametric space. A separation of X by a pair {U, V }
of open sets in X means

X = U ∪ V and U ∩ V = ∅.

For this separation, U and V are both open and closed in X . This separation is said
to be trivial if either U or V is ∅. Otherwise, it is said to be nontrivial.
Definition 2.17.21 Let (X, d) be a metric space. It is said to be connected if it has
no nontrivial separation. Otherwise, X is said to disconnected. Alternatively, X is
connected if X has no nonempty proper subset that is both open and closed in X .

Theorem2.17.22 characterizes connectedness in terms of closed-open sets and
hence it gives another formulation of Definition2.17.21, which can be used as an
equivalent definition of connectedness.

Theorem 2.17.22 Let (X, d) be a metric space. It is connected iff the only subsets
of X which are both open and closed in X are the set X itself and the emptyset ∅.
Proof Suppose that X is connected. If Y ⊂ X be a proper subset of X , which is both
open and closed in X , then choose U = Y and V = X − Y. Since U ∩ V = ∅, the
pair {U, V } forms a separation of X . Since by hypothesis, X is connected, no such
proper subset of X exists. In other words, the only subsets of X which are both open
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and closed in X are the set X itself and ∅. Conversely, suppose that {U, V }forms a
separation of X . Then U �= ∅ and U �= X and it is both open and closed. �

Definition 2.17.23 Let (X, d) be a metric space and (Y, dY ) be a subspace of (X, d)

with metric dY induced from metric d of X . Then a pair {U, V } of disjoint open sets
is said to form a separation of Y , if Y = U ∪ V and neither of them contains a limit
point of the other.

Proposition 2.17.24 Let (X, d) be a metric space and (Y, dY ) be a subspace of
(X, d) with metric dY induced from metric d of X. Then Y is connected iff there is
no separation of Y .

Proof If possible, let {U, V } form a separation of Y . Then U and V are both open
and closed in Y . If U denotes the closure of U and V denotes the closure of V ,
then U = U ∩ Y , which implies that U = U ∩ Y , since U is closed in Y and hence
U ∩ V = ∅, because U = U ∪U ′ (derived set of U ) and V contains no point of
U ′. Similarly, it follows that U ∩ V = ∅. This asserts that {U, V } cannot form a
separation of Y . This contradiction shows that Y has no separation and hence Y is
connected. Conversely, suppose thatU and V are two disjoint subsets of Y such that
Y = U ∪ V and U ∩ V = ∅ = U ∩ V . Then U ∩ V = V and U ∩ V = U . Hence
it follows that both U and V are closed sets in Y and they are also open on Y , since
U = Y − V and V = Y −U . �

In view of Proposition2.17.24, connectedness of a metric space is redefined in
Definition2.17.25.

Definition 2.17.25 Let (X, d) be a metric space. Then it is connected if whenever
X is decomposed as X = U ∪ V of two nonempty subsets, then either U ∩ V �= ∅
or U ∩ V �= ∅.

Theorem2.17.26 proves the connectedness of the Euclidean line R , which is a
motivating example of connectedness.

Theorem 2.17.26 The Euclidean line R is connected.

Proof Suppose R = A ∪ B for some disjoint nonempty subsets A and B of R. To
prove the theorem, it is sufficient to show that there is a point of B, which is a limit
point of A or there is a point of A, which is a limit point of B, which asserts that either
A intersects B or A intersects B. To show it, let a ∈ A, b ∈ B, with a < b. Define
the set X = {x ∈ A : x < b} ⊂ A. Since a ∈ X , the set X �= ∅. Suppose supX = m.
Then m ∈ A or m ∈ A (by definition of supremum). If m ∈ A, then m < b and all
the points x such that m < x < b are in B, since m is an upper bound for X . This
asserts that m is a limit point of B. Again, if m /∈ A, then m ∈ B, since R = A ∪ B.
Hence, in this case, m is a limit point of A. This implies that either A ∩ B �= ∅ or
A ∩ B �= ∅ and hence R is connected.

�
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Definition 2.17.27 Let (X, d) be a metric space and Y be a discrete space. Then a
continuous map f : X → Y is called a discrete-valued map.

A connected space is characterized in Theorem2.17.28 with the help of a discrete-
valued map on it. This theorem is used to show that in Theorem2.17.33 that every
continuous image of a connected space is also connected.

Theorem 2.17.28 Let (X, d) be a metric space. Then X is connected iff every
discrete-valued map on X is a constant map.

Proof First suppose that every discrete-valued map on X is constant but X is not
connected. Then there exist disjoint clopen sets A and B in X such that X = A ∪ B.
Define the map

f : X → {0, 1}, x �→
{
0, for all x ∈ A

1, for all x ∈ B

But this discrete-valued map f on X is not constant. This contradiction implies that
X is connected. Conversely, let X be connected and f : X → Y be a discrete-valued
map. If y ∈ Y is such that y ∈ Im( f ), then the set { f −1(y)} is nonempty and clopen
in X , and hence this set is the same as X . This implies that f (x) = y for all x ∈ X .
This proves that f is a constant map. �

Theorem2.17.29 determines the connected subsets of the Euclidean line.

Theorem 2.17.29 Let A be nonempty subset of the Euclidean line R. If A consists
of at least two distinct points, then A is connected iff A is an interval.

Proof First suppose that A is connected. If A is not an interval, there exist points
a, b ∈ A and a point c ∈ R − A such that a < c < b. Consider the sets

X = {x ∈ A : x < c} ⊂ A

and
Y = A − X.

Let X be the closure of X in A and Y be the closure of Y in A. As the point c is not
in A , every point α of X in A is such that α < c, and every point β of Y in X is such
that β > c. This implies that X ∩ Y and X ∩ Y are both ∅. This shows that A is not
connected. This contradiction asserts that A is an interval. For its converse, consider
the interval X = [a, b] as a subspace in the Euclidean line space R. We prove that
X is connected. If it is not so, then there exist nonempty disjoint open sets U, V in
R such that (X ∩U ) ∪ (X ∩ V ) = X . Consider the map

f : X → R, x �→
{
0, for all x ∈ X ∩U

1, for all x ∈ X ∩ V .
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Since the inverse image of f of any open set inR is either X ∩U, X ∩ V, ∅ or X ,
each of which is an open set in X , it follows that f is continuous. By definition
of f , for any point a ∈ X ∩U, f (a) = 0 and for any point b ∈ X ∩ V, f (b) =
1. Then by intermediate value theorem, there exists a point c ∈ X such that
f (c) = 1/2, which is different from 0 or 1. But this not possible. This asserts that X is
connected. �

Theorem2.17.26 proves that intervals of the Euclidean line R are its only con-
nected subsets, which may be open, closed, half-open or it can be stretched to infinity
in either direction and all other subsets of R have gaps and hence consist of several
distinct pieces which are described in Corollary2.17.30.

Corollary 2.17.30 All the intervals: [a, b], (a, b), [a, b), (a, b], (−∞, a], [a,+∞)

of the Euclidean line R are connected subsets of R.

Proof It follows from Theorem2.17.26. �
Example 2.17.31 Consider the subspace X = (−1, 7) ∪ (7, 10) of the Euclidean
lineR. Then X is not connected. On the other hand the interval (−1, 10) is connected.
The punctured Euclidean line R∗ = R − {0} is not connected.
Theorem 2.17.32 (Intermediate value theorem) Let f : X = [a, b] → R be a
continuous function such that f (a) �= f (b). Then for each real number r with
f (a) < r < f (b), there is a real number c ∈ [a, b] such that f (c) = r .

Proof As X = [a, b] is connected and f is continuous, it follows that f (X) ⊂ R
is an interval. Then f (a) �= f (b) ∈ f (X) and r ∈ f (X), since f (X) is an interval.
By hypothesis r is a real number between f (a) and f (b). This asserts that there is
a point c ∈ X such f (c) = r . �

2.17.5 Connectedness of Metric Spaces is a Topological
Property

This subsection shows that the connectedness of metric spaces is a topological prop-
erty. In topological setting, it is also proved in Chap.5 that the connectedness is a
topological property. More precisely, Theorem2.17.33 proves that connectedness in
metric spaces is preserved by a continuous map and hence it follows that connected-
ness in a metric space is a topological property (see Corollary2.17.35).

Theorem 2.17.33 Let (X, d) and (Y, ρ) be two metric spaces and f : X → Y be a
continuous onto map. If X is connected, then Y is also connected.

Proof Let X be connected andU and V be two disjoint open sets in Y = f (X) such
that U ∪ V = Y . Then f −1(U ) and f −1(V ) are open sets in X such that f −1(U ) ∪
f −1(V ) = X . As the space X is connected, one of f −1(U ) and f −1(V ) must be an
empty set ∅. Again since f is onto, this asserts that either U or V must be ∅. This
shows that the space Y is connected. �
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Corollary 2.17.34 Let (X, d) and (Y, ρ) be two metric spaces and f : X → Y be
a continuous map. If X is connected, then f (X) is also so.

Proof It follows from Theorem2.17.33. �

Corollary 2.17.35 Let (X, d) and (Y, ρ) be two homeomorphic metric spaces. Then
X is connected iff Y is also so.

Proof It follows from Theorem2.17.33. �

Remark 2.17.36 More study on connectedness in topological setting is available in
Chap.5.

2.17.6 Other Applications

This subsection presents more applications related to metric spaces.

Proposition 2.17.37 Let X ⊂ Rn be an uncountable subset. Then there is sequence
of distinct points in X converging to a point in X.

Proof If possible, X contains no limit point. Then for each x ∈ X , there is a δx > 0
(depending on x) such that Bx (δx ) ∩ X = {x}. If εx = δx/2, then the balls Bx (εx ) are
disjoint, and hence there exist distinct points taken one from each ball with rational
coordinates. As the set of points in Rn with rational coordinates is countable, the set
X is countable, which contradicts the fact that X is uncountable. �

Proposition 2.17.38 Let (X, d) be a complete metric space. Let f : X → X be a
map such that f 2 = f ◦ f is a strict contraction map in the sense that there is a
positive real number r < 1 such that for all x, y ∈ X, d( f 2(x), f 2(y)) < rd(x, y).
Then f has a unique fixed point in X.

Proof By hypothesis, (X, d) is a complete metric space such that the map f 2 :
X → X is a strict contraction. Then by Banach Contraction Theorem2.16.4, there
is a unique point x ∈ X such that f 2(x) = x . If f (x) = y, then f 2(y) = f 3(x) =
f (x) = y shows that y is a fixed point of f 2. It implies that x = y. It asserts that
any fixed point of f is also a fixed point of f 2. It concludes that f has a unique fixed
point. �

Example 2.17.39 Let f : [0, 1] → [0, 1] be a map such that

| f (x) − f (y)| ≤ 1

2
|x − y|, ∀ x, y ∈ [0, 1].

Then f is a contraction mapping from the complete metric space [0, 1] to itself,
since, [0, 1] is closed in R and hence it is complete. Hence it has a unique fixed point.
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Proposition 2.17.40 Let (X, d) be a complete metric space and X1, X2, · · · be
nonempty closed subsets of X with Xn+1 ⊂ Xn, ∀ n ≥ 1. If limn→∞ diam(Xn) = 0,
then

⋂∞
n=1 Xn �= ∅, where the diameter diam(Xn) is defined by

diam(Xn) = sup{d(x, y) : x, y ∈ Xn}.

Proof It follows from Cantor’s Intersection Theorem2.11.8. However, for an inde-
pendent proof, construct a sequence

{xn : xn ∈ Xn, ∀ n ≥ 1}.

This construction is possible, as every Xn is nonempty. For a given ε > 0, there is
a positive integer n0 (depending on ε) such that diamXn < ε, ∀ n > n0. Hence it
follows that d(xn, xm) < ε, ∀ n,m > n0. By hypothesis, as X is a complete metric
space, then this Cauchy sequence converges to a point x ∈ X . Again, by hypothesis,
since each Xn is closed and it contains the sequence {xn}, it follows that x ∈ Xn for
all n ≥ 1. This asserts that x ∈ ⋂∞

n=1 Xn and hence
⋂∞

n=1 Xn �= ∅. �

2.18 Exercises

(Assume that R is endowed with the Euclidean metric unless stated otherwise)

1. (i) Let X be a nonempty set. If x = {xn} and y = {yn} are two sequences in X ,
show that the function

d : X × X → R, (x, y) �→
∞∑

n=1

1

2n
· |xn − yn|
1 + |xn − yn|

defines a metric on X .
(ii) Let X be the set of all mappings f : N → R, i.e., X be the set of all

sequences over R. If f = {xn} and g = {yn} are in X , show that the function

d : X × X → R, ( f, g) �→
∞∑

n=1

1

2n
· |xn − yn|
1 + |xn − yn|

defines a metric on X .
2. Show that every open set in R is a union of disjoint open intervals.
3. Show that theCantor setC = {x ∈ R : x = ∑∞

k=1 an/3
n, an = 0, 2} (seeChap.1)

(i) is contained in [0, 1];
(ii) does not meet the open interval (1/3, 2/3);
(iii) is closed in R.

4. Let (X, d) be a metric space. Show that
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(i) given a point a ∈ X , the function f : X → R, x �→ d(x, a) is continuous;
(ii) given a subset A ⊂ X , the function f : X → R, x �→ d(x, A) = inf {d(x, a)

: a ∈ A} is continuous.
5. Let (X, d) be a metric space and A, B be two nonempty subsets of X . If diamA

denotes the diameter of A and d(A, B) denotes the distance between A and B
defined by

d(A, B) = inf {d(x, y) : x ∈ A, y ∈ B},

show that
d(A ∪ B) ≤ diamA + diamB + d(A, B).

6. Show that

(i) given a continuous function f : R → R, the set A = {x ∈ R : f (x) = x},
i.e., the set of points of R which are kept fixed by f is a closed subset of R;

(ii) the function g : R → (0, 1), x �→ ex/(1 + ex ) is a homeomorphism.

7. Let (X, d) be a metric space. Declaring a subset A of X to be open if its com-
plement Ac = X − A is closed, show that the set A is open iff for every point
x ∈ A, there exists an open ball Bx (ε) such that Bx (ε) ⊂ A.

8. Let (X, d) be a discrete metric space. Show that every nonempty subset in X is
closed.

9. Let (X, d) and (Y, d ′) be two metric spaces and f ; X → Y be a function. Show
that f is continuous at a point x ∈ X iff whenever {xn} is a sequencewith xn → x
in X , then f (xn) → f (x) in Y .
Further show that the following statements are equivalent for f :

(i) f is continuous on X .
(ii) For every open subset U of Y , f −1(U ) is an open subset of X .
(iii) For every closed subset U of Y , f −1(U ) is a closed subset of X .

10. Let (X, d) be a metric space and A ⊂ X . Show that A is bounded iff for every
point x ∈ X , there is an ε > 0 such that A ⊂ Bx (ε).

11. Let (X, d) be a metric space. Prove the following statements:

(i) any finite union of bounded sets in X is a bounded set;
(ii) any Cauchy sequence in X is a bounded set.

12. Let X and Y be two metric spaces. If a function

f : X → Y

is uniformly continuous and {xn} is a Cauchy sequence in X , show that

(i) { f (xn)} is a Cauchy sequence in Y ;
(ii) moreover, if the metric space Y is complete, then given a subset A ⊂ X with

its closure A, every uniformly continuous function
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f : X → Y

can be extended to a uniformly continuous function

ψ : A → Y.

In particular, if A is dense in X , then the extension ψ : X → Y is unique.

13. (Equivalent definitions of continuity) Let (X, d) and (Y, ρ) be two metric
spaces. If

f : X → Y

is continuous, show that the following statements are equivalent:

(i) f is continuous at a point x ∈ X .
(ii) Corresponding to any ε > 0, there exists a δ > 0 such that if d(x, x ′) < δ,

then ρ( f (x), f (x ′)) < ε.
(iii) Corresponding to an open set U containing f (x) in Y , there exists an open

set V containing x such that f (V ) ⊂ U .

14. Let X be a normed linear space over R and f : X → R be an arbitrary linear
functional. Show that the following statements are equivalent:

(i) f is uniformly continuous.
(ii) f is continuous.
(iii) for every ε > 0, there exists a δ > 0 with the property that | f (x)| < ε for

every x ∈ X satisfying ‖x‖ < δ.
(iv) f is bounded.

15. Let X be a normed linear space over R. Show that its dual space X∗ is a Banach
space.

16. Let X and Y be normed linear spaces and T : X → Y be a linear transformation.
Show that T is continuous iff T is continuous at the origin (i.e., iff xn → 0 asserts
that T (xn) → 0).

17. Show that

d : N × N → R, (m, n) �→
∣
∣
∣
∣
1

m
− 1

n

∣
∣
∣
∣

defines a metric on N such that each singleton set {x} in N is open.
18. Let X be a metric space with metric d. Show that

(i) the function f : X × X → R, (x, y) → d(x, y)/1 + d(x, y) is a metric;
(ii) the function g : X × X → R, (x, y) → min{d(x, y), 1} is a metric;
(iii) the metrics d and ρ = d/(1 + d) are equivalent on X .

19. Let d and ρ be two equivalent metrics on X . Show that the metric space (X, d)

is complete iff (Y, ρ) is also so.
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20. (Characterization of complete metric spaces) Let (X, d) be a metric space.
Show that the following statements are equivalent:

(i) The metric space (X, d) is complete;
(ii) Each sequence {xn} in X having the property

∑∞
n=1 d(xn+1, xn) < ∞ is

convergent.
(iii) Each Cauchy sequence {xn} in X has a convergent subsequence.

21. Let h : R → R be a function such that

(i) h(0) = 0.
(ii) h(x + y) ≤ h(x) + h(y) for all x, y ∈ R.

If h is monotonic increasing and d is a metric on R, show that the function

f : R × R → R, (x, y) → h(d(x, y))

is also a metric.
22. Show that the composite of continuous functions in metric spaces is also con-

tinuous.
23. Let Id : Rn → Rn be the identity function. If d, d ′ are two metrics on Rn , show

that the identity functions

Id : (Rn, d ′) → (Rn, d)

and
Id : (Rn, d) → (Rn, d ′)

are both continuous.
24. Let f : R → R be continuous at a point a ∈ R. If f (a) > 0, show that there

exists a number δ > 0 such that whenever |x − a| < δ, then f (x) > f (a)/2.
25. Show that in a metric space X , if lim n→∞ xn = x and lim n→∞ xn = y, then

x = y.
26. Show that every subspace of a complete metric space is complete iff it is closed.
27. Show that the space C[0, 1] of real-valued continuous maps with the metric d1

defined by
d1( f, g) = max

0≤x≤1
| f (x) − g(x)|

is complete, but it is not so with the metric d2 defined by

d2( f, g) =
⎡

⎣

1∫

0

| f (x) − g(x)|2dx
⎤

⎦

1
2

28. (An Alternative form of Picard’s theorem) Given a differential equation
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dy

dx
= f (x, y),

let there be a nbdU of the (x0, y0) in which f (x, y) is continuous and a constant
K > 0 such that

| f (x, y1) − f (x, y2)| ≤ K |y1 − y2|, ∀ (x, y1), (x, y2) ∈ U (Lipschitz condition)

Show that the given differential equation dy
dx = f (x, y) has a unique solution

y = h(x) such that h(x0) = y0.
29. Show that the sequence

{

1, 1 + 1

1! , 1 + 1

1! + 1

2! , · · ·
}

is a Cauchy sequence in the metric space (Q, d), where d is the usual metric.
[Hint: Use the result that every convergent sequence in ametric space is a Cauchy
sequence .]

30. Let (X, d) be a complete metric space and {xi j , i, j ∈ N} be a doubly indexed
set (double sequence) in X such that

d(xi j , xm,n) ≤ min{max{1/ i, 1/m},max{1/j, 1/n}}.

Show that the repeated limits limi→∞ lim j→∞ xi j and limits lim j→∞ lim i→∞ xi j
exist and they are equal.

31. Let (X, d) and (Y, d ′) be two metric spaces. If f : X → Y, g : Y → X are two
inverse functions in the sense that f ◦ g = 1Y and g ◦ f = 1X . Show that the
following statements are equivalent:

(i) The functions f and g are continuous;
(ii) A subset U ⊂ X is open iff f (U ) ⊂ Y is open;
(iii) A subset A ⊂ X is closed iff f (A) ⊂ Y is closed ;
(iv) Given a point a ∈ X and a subset B ⊂ X , the subset B is a nbd of a iff f (B)

is a nbd of the point f (a).

32. (Bolzano–Weierstrass Theorem) Prove that every bounded sequence in R with
the Euclidean metric has a convergent subsequence.

33. Let X = C([0, 1]) be the set of all continuous real-valued functions on I = [0, 1].
Define for f ∈ X , its norm

‖ f ‖ = max
t∈I

| f (t)|

and define a metric
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d : X × X → R, ( f, g) �→ || f − g||.

Show that

(i) (X, d) is a Banach space;
(ii) (X, d) is a complete metric space.

[Hint:Use the result that every uniformly convergent sequence of continuous
functions converges to a continuous function.]

34. Let (M, d) be a metric space and X ⊂ M . Show that

(i) if X is complete, then X is closed in M ;
(ii) if M is complete and X is closed in M , then X is complete.

35. Let p > 1 be a prime integer. Define a function

dp : Z × Z → R, (m, n) �→
{
0, ifm = n

1/pr , if m �= n
,

where pr is the nonnegative power of p that divides m − n. Show that dp is a
metric on Z.

36. Given normed linear spaces X and Y over R, show that the set C(X,Y ) of all
continuous linear transformations T : X → Y forms a normed linear space under
pointwise linear operations with norm function ‖ ‖ defined by

‖T ‖ = sup{‖T (x)‖ : ‖x‖ ≤ 1}

such that if Y is a Banach space, then this C(X,Y ) is also so.
37. (Canonical embedding theorem) Let X be a given normed linear space with

X∗ and X∗∗ as its dual and bidual spaces. Show that the function

ψ : X → X∗∗, x �→ ψx ,where ψx ( f ) = f (x), ∀ x ∈ X and ∀ f ∈ X∗,

equivalently, the function

ψ : X → X∗∗, ( f, x) �→ f (x), ∀ x ∈ X and ∀ f ∈ X∗

is an isometric linear operator such that ‖ψ‖ = 1. (ψ is called the canonical
embedding of X into X∗∗).

38. A normed linear space is said to be reflexive if the canonical embedding ψ

defined in Exercise 37 is surjective. Show that any reflexive normed linear space
is complete.
[Hint: Use that the map ψ is bijective and the space X∗∗ is complete.]
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39. Let M be a metric space and f : M → M be a contracting mapping. Show that
the map f is continuous.

40. Let M be a complete metric space and f : M → M be a contracting mapping.
Show that the map f has a unique fixed point.

41. Let (X, d) be a metric space and {Un} be a countable family of open sets each
of which is dense in X . Show that

⋂∞
n=1Un �= ∅.

42. Given a metric space (X, d) and a nonempty closed subset A of X , show that
d(x, A) = 0 iff x ∈ A.

43. Show that
(i) every convex subset of Rn(n ≥ 1) is connected;
(ii) the Euclidean n-space Rn(n ≥ 1) is connected.
[Hint: First part: Let X be a convex subset of Rn . Suppose that X = A ∪ B for
two nonempty separated open sets A and B. Take a point a ∈ A and a point
b ∈ B. Then the line segment Y = [a, b] has the property

Y ∩ A = AY (say) �= ∅,Y ∩ B = BY (say) �= ∅ and Y = AY ∪ BY .

It contradicts the connectedness of the line segment [a, b]. Second part follows
from First part.]

44. (Existence of n-th roots) For any integer n ∈ N and any point a ∈ [0.∞) ⊂ R,
show that there a unique point x ∈ [0.∞) such that xn = a.
[Use Archimedean property of R and apply intermediate value theorem.]

45. Let X and Y be normed linear spaces over R and T : X → Y be a linear trans-
formation. Show that T is continuous iff T is a Lifschitz function.

46. Show that every compact subset of any metric space is closed and bounded.
47. Show that the real Hilbert space R∞ is isometric to a proper subspace of R∞.

[Hint: Consider the proper subspace of R∞ consisting of all points in R∞ having
first coordinate zero.]

48. Let (X, d) be a compact metric space and (Y, ρ) be a metric space. Show that
every continuous map f : X → Y is uniformly continuous.

49. (Characterization of compact metric spaces ) Let (X, d) be a metric space.
Show that for (X, d), the following statements are equivalent:

(i) X is compact in the sense that every open covering of X has a finite sub-
covering;

(ii) X is complete and totally bounded;
(iii) Every infinite subset of X has an accumulation point;
(iv) Every sequence {xn} in X has a convergent subsequence.
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Multiple Choice Exercises

Identify the correct alternative(s) (there may be more than one) from the following
list of exercises:

1. Let dn : Xn × Xn → R, n = 1, 2, 3, 4 be the four metrics defined as follows:

(i) For X1 = (0, π/2) ⊂ R, themetricd1 : X1 × X2 → R, (x, y) �→ | tan x −
tan y| is complete.

(ii) For X2 = [0, 1] ⊂ R, the metric d2 : X2 × X2,→ R, (x, y) �→ |x−y|
1+|x−y| is

complete.
(iii) For X3 = Q, the metric d3 : X3 × X3 → R, (x, y) �→ 1, i f x �= y and 0,

otherwise, is complete.
(iv) For X4 = R, the metric d4 : X4 × X4 → R, (x, y) �→ |ex − ey | is com-

plete.

2. Let (X, d) be a metric space and d(A, B) be the usual distance between two
nonempty subsets A and B of X .

(i) If A and B are disjoint and closed, then d(A, B) > 0.
(ii) If A and B are disjoint and compact, then d(A, B) > 0.
(iii) If A and B are disjoint and compact, then there exist points a ∈ A and b ∈ B

such that d(A, B) = d(a, b).

3. Let dn : R → R → R, n = 1, 2, 3 be three functions defined as follows:

(i) If d1 : R × R → R, (x, y) �→ | |x |−|y| |
1+|x | |y| , then d1 is a metric on R.

(ii) If d2 : R × R → R, (x, y) �→ [|x − y|]1/2, then d2 is a metric on R.
(iii) If f : R → R is a strictly monotonic increasing function, then

d3 : R × R → R, (x, y) �→ | f (x) − f (y)|

is a metric on R.

4. Let X be a complete normed linear space and B be a basis for X as a vector space.

(i) The set B is a finite.
(ii) The set B is countably infinite.
(iii) If the set B is infinite, then it is an uncountable set.

5. Let (X, d) be a metric space, A and B be two nonempty subsets of X and d(A, B)

be the usual distance between A and B.

(i) The function f : X → R, x �→ d(x, A) is continuous.
(ii) d(A, B) = 0 =⇒ A ∩ B = ∅.
(iii) d(x, B) = 0 iff x ∈ B.
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Chapter 3
Topological Spaces and Continuous Maps

The subject Topology sets out its official journey in this chapter through the address
of the concepts of topological spaces and their continuous maps, which are the basic
objects and the basic functions in topology. They are presented in an axiomatic
framework by introducing the concept of open or closed sets, where a notion of
nearness is defined without any distance function or a metric. This approach is given
in a convenient language to study the situation when different points in a space come
near to each other. Classical analysis traditionally studies real-valued functions in the
Euclidean space Rn. To extend the study of continuous functions between abstract
sets, it is necessary to endow them with topological structures, which are then called
topological spaces. A topology is defined on an abstract nonempty set by using the
concepts of open sets or closed sets, and continuity of functions is also introduced
in the language of open sets or closed sets. This leads to the concepts of topological
spaces and their continuous maps. Though the term Topology was coined by J. B.
Listing (1808–1882) in 1830s, this term failed to attract the mathematicians till Felix
Hausdorff (1869–1942) popularized this term in 1914 and developed this subject in
his book Grundzüge der Mengenlehre of 1914, which stemmed from analysis. His
land-marking work sets out the journey of general topology, which is also called
set topology.

Present day, the subject Topology has become very powerful and beautiful, as
it provides various key tools to solve problems in almost all areas of mathematics
such as in algebra, theory of numbers, analysis, geometry, knot and graph theories,
differential equations and in many other areas of mathematics and even outside
mathematics. As this subject studies in a general sense, a precise concept of the
intuitive ideas of nearness and continuity of functions, it plays an important role in
science and technology. Various interesting applications of topological spaces are
also available in Sect. 3.18, and a historical note on beginning of topology through
the work of Euler is available in Sect. 3.19.

The concept of topological spaces is motivated by the concept of metric spaces.
But the concept ofmetric spaces studied inChap. 2, generalizing theEuclidean spaces
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fails to solve many important mathematical problems, specially, where a metric is
not available. For example, the cylinder, Möbius band (Möbius strip), torus and the
Klein bottle are constructed in Sect. 3.16.7 from the metric space X = I × I with the
Euclidean metric d . As they are not subsets of the metric space (X , d), the metric
d fails to contribute anything to their study. So, a generalization of metric spaces is
needed. A general concept of spaces known as the theory of topological spaces and
their continuous maps was born during the twentieth century for the development of
mathematics. An open interval (a, b) in the real line R is the prototype of the abstract
concept of an open set in topology. In metric spaces, an open set is defined as a set
which contains an open ball around each of its points. Every metric space defines
a topology, called a metric topology (see Sect. 3.8). There are various choices of
defining open sets on a nonempty set, and each choice of open sets defines a topology
on the given set. The open sets and the corresponding topologies play a key role in
general topology aswell as different branches of topology. This chapter also discusses
certain topologies such as Euclidean topology, metric topology, Zariski topology,
Kuratowski closure topology, Sierpinski topology and some other topologies. The
basic motivation of metric topology comes from the standard distance function in the
Euclidean line and Euclidean space which induce Euclidean topology. A study of this
topology leads to the concept of basis for a topology in a general setting. Like a vector
space, every open set in a topological space can be expressed as a union of elements
(open sets) of the basis. Though every metric space induces a topological space, it
is very difficult to define a metric on some interesting sets. Instead of making them
topological space via metric, they are made topological spaces directly by properly
choosing open sets or closed sets. They are more general than the metric spaces in
the sense that every metric space induces a topology on itself but its converse is not
necessarily true. For example, the Zariski topology given in Definition 3.17.7 is a
particular topology defined by Oscar Zariski (1899–1986) around 1950 in algebraic
geometry that conveys the algebraic nature of varieties. This topology is not induced
by any metric (see Chap. 4).

The subject Topology has now several branches. General topology (or point-set
topology), differential topology and algebraic topology, which are its principal
areas of study. This book in three volumes intends to study basic topology with
applications in modern analysis, geometry and algebra in a series of three volumes.
The present Volume (Volume 1) of the series of the books studies Metric Spaces and
General topology. General topology conveys the basic set-theoretic definitions and
constructions used in topology and formulates the basic concepts used in all other
branches of topology such as the concepts of continuity, compactness, and connect-
edness, thereby it establishes the foundational aspects of topology and investigates
properties of topological spaces and concepts inherent to topological spaces. On
the other hand, Volume 2 addresses topological groups, manifolds and differential
topology, Lie groups and Volume 3 addresses fundamentals of algebraic topology
and topology of fiber bundles.

For this chapter, the books, Alexandrov (1979), Bredon (1983), Chatterjee
et al. (2002), Dugundji (1966), Kelly (1955), Adhikari and Adhikari (2014, 2022),
Adhikari (2016, 2022), Armstrong (1983), Borisovich et al. (1985), Hilbert and
Cohn-Vossen (1952), Lipschutz (1988), Mendelson (1962), Munkres (2000),
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Patterson (1959), Prasolov (1995), Singer and Thorpe (1967), Stephen (1970) and
some others are referred in Bibliography.

3.1 Topological Spaces: Introductory Concepts

This section presents introductory concepts of topological spaces which are much
general thanmetric spaces. For example, the continuity of a function in ametric space
can be studied in terms of convergence of sequences. On the other hand, convergence
of sequences in an arbitrary topological space is not adequate to study continuity.
But the framework for topology started in Chap. 2 through a study of metric spaces
and the continuity of functions in Euclidean spaces Rn, facilitates to build up a
general theory of topology, which provides powerful tools to invade many problems
of mathematics. The axiomatic definition of topology was introduced by the Poland
mathematician K. Kuratowski (1896–1980) in 1922. This topology is now known
as Kuratowski closure topology in his honor. While studying metric spaces in Chap.
2, the concepts of open sets and continuity of functions with their basic interesting
properties are explained using open sets. This suggests a possible way to define
continuous functions in abstract sets, whenever an abstract concept of open sets or
closed sets is available. The open sets in a metric space (X , d) have the following
four properties (see Chap. 2):

OM(1) the empty set ∅ is an open set;
OM(2) the union of any number of open sets is an open set;
OM(3) the intersection of a finite number of open sets is an open set;
OM(4) the whole (universal) set X is itself an open set.

As the central concept in topology is the notion of continuity of a function, it is
necessary to consider spaces on which a workable definition of continuity can be
given, even in the absence of a metric structure (see Definition 3.6.1). This leads to
the concept of topological spaces by specifying open sets in an axiomatic way in
Definition 3.1.1. The geometric objects studied in topology are called topological
spaces, whose definition is extremely general and hence all topological spaces are not
geometric. For obtaining an abstract concept of open sets, the following postulates
are taken formulated in Definition 3.1.1, which are analogous to the above properties
OM(1)–OM(4) of metric spaces.

Definition 3.1.1 Let X be a nonempty set and τ be a family of some subsets of X .
Then τ is called a topology of X (or a topology on X ), and subsets in τ are called
open sets (or open subsets) of X if the following axioms OS(1)–OS(4), called
axioms for open sets are satisfied:

OS(1) the empty set ∅ is an open set, i.e., ∅ ∈ τ ;
OS(2) the union of any number of open sets is an open set;
OS(3) the intersection of a finite number of open sets is an open set;
OS(4) the whole (universal) set X is itself an open set, i.e., X ∈ τ .



126 3 Topological Spaces and Continuous Maps

The ordered pair (X , τ ) is called a topological space and it is sometimes called X a
topological space with a topology τ on X .

Remark 3.1.2 In order to define a topological space, a nonempty set is specified and
certain subsets of the set are chosen satisfying the above axiomsOS(1)–OS(4), called
the open sets. The merits of these axioms are justified by the growth of topology as
a separate subject and its various applications in mathematics and other fields also.
We write generally a topological space as (X , τ ) to avoid any confusion regarding
the topology τ on X . Sometimes, (X , τ ) is written simply by X , where there is no
confusion of its topology. The sets U ∈ τ are called the open sets of the topological
space X , and τ is said to determine a topological structure on X . The elements of X
are called points of the topological space X . There exist different topologies on the
same nonempty set. Their comparison is available in Sect. 3.1.3.

Definition 3.1.3 (Trivial or indiscrete topology) Let X be a nonempty set. The two
subsets∅ andX constitute a topology ofX , called the trivial topology or the indiscrete
topology (sometimes, called the chaotic topology) of X .

Definition 3.1.4 (Discrete topology) The family of all subsets of a nonempty set X
constitutes a topology of X , called the discrete topology of X .

Remark 3.1.5 Trivial and discrete topologies are the two extreme topologies. If X
has more than one element, then the trivial topology and the discrete topology of X
are different. The trivial topology contains the smallest number of open sets, and the
discrete topology contains the largest number of open sets. Usually, there exist other
topologies of X , such as cofinite topology and topology of countable complements,
which lie between these two extreme topologies and they are used throughout the
book.

Example 3.1.6 (Cofinite topology) Let X be an infinite set, and τ consists of the
null set ∅ and all those subsets of X whose complements in X are finite subsets.
Then τ forms a topology on X , called the cofinite topology or the topology of finite
complements on X .

Example 3.1.7 (Topology of countable complements) Let X be a noncountable set,
and τ consist of the null set ∅ and those subsets of X whose complements in X are
countable subsets. Then τ forms a topology of X , called the topology of countable
complements.

3.1.1 Natural Topology on R,R2 and Rn

This subsection defines the natural topology on the Euclidean lineR,Euclidean plane
R2 and Euclidean n-space Rn, which are used throughout the present book series.
They are also equally well-defined by open base. For more study of the natural
topology on Rn, see Sects. 3.3 and 3.8. If a ring is regarded as a generalization of
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the concept of real numbers R, then a topological space may also be regarded as a
generalization of R. The natural operations of addition and multiplication in R are
generalized for rings. On the other hand, the concept of limit point inR is generalized
for topological spaces. This concept stays at the foundation of the structure of a
topological space, which will be realized on subsequent development of topological
structure.

Definition 3.1.8 (Real line space) A topology σ is defined on R by declaring pre-
cisely the following family of subsets of R as open sets:

(i) ∅ is an open set;
(ii) R is an open set;
(iii) all open intervals (ai, bi) with ai, bi ∈ R and ai < bi, are open sets;
(iv) the unions U = ⋃

i(ai, bi) are open sets.

The setR together this family of open sets σ inR is called the real line space, denoted
by (R, σ ) and this topology σ called the natural topology or usual topology on
R. This topology is also induced by the usual metric

d : R × R → R, (x, y) �→ ‖x − y‖

on R. (see Example 3.8.7).

Remark 3.1.9 An alternative approach of defining natural topology on R is given
in Corollary 3.2.6 by using the concept of open base on R.

Definition 3.1.10 formulates the concepts of natural topology on R2 and Rn as a
natural generalization of usual topology on R.

Definition 3.1.10 (Natural topology on R2 and Rn) A topology σ on the set R2 =
R × R is defined by declaring precisely the following family of subsets of R2 as
open sets with the help of Euclidean metric on R2 :
(i) ∅ is an open set;
(ii) R2 is an open set;
(iii) a subset U of R2 is said to be open if for every element x ∈ U, there exists a

real number δ > 0 such that the open circle or open ball Bx(δ) ⊂ U.

This family σ of open sets in R2 forms a topology on R2 is called the natural or
usual topology on R2. The definition of natural topology σ on Rn is defined in an
analogous way, and this topology is also induced by the usual metric

d : Rn × Rn → R, (x, y) �→ ‖x − y‖

on Rn (see Example 3.8.7).
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3.1.2 Construction of Topologies on Some Finite Sets

This subsection constructs specific topologies on some finite sets, consisting of two,
three or four distinct elements for clear understanding of the concepts of topology
and topological spaces which are used in future study.

Example 3.1.11 LetX = {x, y} be the set consisting of two distinct elements. Then
each τi: i = 1, 2, 3, 4 defined below

(i) τ1 = {∅, {x}, {y}, {x, y}} (discrete topology);
(ii) τ2 = {∅, {x}, {x, y}} (Sierpinski topology given in Definition 3.10.5);
(iii) τ3 = {∅, {y}, {x, y}} (Sierpinski topology) and
(iv) τ4 = {∅, {x, y}} (trivial topology).
constitutes a topology on X = {x, y} of various types, showing that there exist dif-
ferent topologies on the same set and making X different topological spaces.

Example 3.1.12 Let X = {x1, x2, x3} be the set consisting of three distinct ele-
ments. Then

τ = {∅, {x1}, {x2}, {x1, x2},X }

constitutes a topology on X = {x1, x2, x3}. It is one of the topologies on X .

Example 3.1.13 Let X = {x1, x2, x3, x4} be the set consisting of four distinct ele-
ments. Then

τ = {∅, {x2}, {x4}, {x1, x2}, {x2, x3}, {x2, x4}, {x1, x2, x4}, {x2, x3, x4}, {x1, x2, x3},X }

constitutes a topology on X = {x1, x2, x3, x4}. It is one of the topologies on X .

3.1.3 Comparison of Topologies

This subsection gives a comparison among different topologies defined on the same
set. Any topology τ of a given setX is a subset of the power setP(X ), i.e., τ ⊂ P(X ).
Hence, it is possible to establish an order relation among the topologies that can be
defined on X , in terms of the set-theoretic inclusion relation for subsets.

Definition 3.1.14 Given two topologies τ1 and τ2, defined on a set X , the topology
τ1 is said to be coarser or weaker than the topology τ2, if τ1 ⊂ τ2, and in that case
τ2 is said to be finer or larger or stronger than τ1. If the inclusion relation is proper
in the sense that τ1 ⊂ τ2, but τ1 �= τ2, then τ1 is said to be strictly weaker or coarser
than τ2, and τ2 is said to be strictly stronger or finer than τ1.

Example 3.1.15 (i) Among all the topologies on a set X , the trivial topology is
the weakest topology and the discrete topology is the strongest topology on X
(see Definitions 3.1.3 and 3.1.4).
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(ii) For an infinite set X , the cofinite topology is strictly stronger than the trivial
topology and is strictly weaker than the discrete topology;

(iii) For a noncountable set X , the topology of countable complements is strictly
stronger than the cofinite topology and is strictly weaker than the discrete
topology.

(iv) Each of the lower-limit, upper-limit and K-topologies on R defined in Sect.
3.4.1 is strictly stronger than the natural topology on R by Proposition 3.4.11.

Definition 3.1.16 Two topologies τ1 and τ2 defined on a set X are said to be non-
comparable if neither of them is weaker than the other.

Example 3.1.17 Consider the topologies τ1, τ2 and τ3 on X = {x, y} consisting of
two distinct points x and y defined in Example 3.1.11. Then the topologies τ2 and τ3
are noncomparable. On the other hand, τ2 ⊂ τ1 and τ3 ⊂ τ1.

Example 3.1.18 The lower-limit topology and upper-limit topology on R defined
in Sect. 3.4.1 are noncomparable.

Remark 3.1.19 The family � of all topologies on a nonempty set forms a lattice
which is a complete lattice under the weaker or stronger relations on this family �.
(see Sect. 3.5).

3.1.4 Neighborhoods and Limit Points

This subsection conveys the concept of limit points of a given subset of a topological
space generalizing the concept of limit points in analysis, which started in classical
analysis with the study of limit process and continuity of functions. This concept is
now studied by neighborhood systems which is utilized to study open sets containing
a given point of the topological space.

Definition 3.1.20 Let (X , τ ) be a topological space. A subset Nx of X is said to be
a neighborhood (abbreviated as nbd) of a point x ∈ X if there exists an open set
U ∈ τ such that x ∈ U ⊂ Nx.

Example 3.1.21 A nbd of a point in a topological space is not necessarily an open
set. For example, in the real line space (R, σ ), the closed interval [2, 5] is not an
open set but it is a nbd of the point 3 ∈ R, because

3 ∈ (2, 5) ⊂ [2, 5].

An open set in a topological space is characterized in Proposition 3.1.22 with the
help of nbds.

Proposition 3.1.22 Let (X , τ ) be a topological space and U ⊂ X . Then U is open
in X iff U contains a nbd of each of its points.
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Proof If U is an open set in X , it is a nbd of each of its points by definition of nbd.
Conversely, let U be subset in X such that it contains a nbd of each of its points.
Then given an arbitrary point x inU, there exists a nbd Nx of the point x ∈ X and an
open set Ux such that

x ∈ Ux ⊂ Nx.

Then

U =
⋃

x∈U
{x} ⊂

⋃

x∈U
Ux ⊂ U =⇒

⋃

x∈U
Ux = U =⇒ U is open in X .

�

Definition 3.1.23 Let (X , τ ) be a topological space and x ∈ X be an arbitrary point.
Then the familyNx of all nbds of x in X is said to be a nbd system of the point x in
the given topological space.

Proposition 3.1.24 Let (X , τ ) be a topological space and x ∈ X be an arbitrary
point. If Nx is a nbd system of the point x in the given topological space X , then

(i) every finite intersection of members belonging to Nx also belongs to Nx and
(ii) every subset in X which contains a member of Nx also belongs to Nx.

Proof It follows from Definition 3.1.20. �

Definition 3.1.25 Let (X , τ ) be a topological space and A be a subset of X . A point
x ∈ X is said to be a limit point (or accumulation point or cluster point) of the
set A if every nbd of x intersects A in at least one point other than the point x. The
set formed by all the limit points of A is called the derived set of A, denoted by A′.

Example 3.1.26 In the real line space R,

(i) the set X = {1/n: n = 1, 2, . . . , } has only one limit point, which is 0;
(ii) the limit points of the set X = (0, 1) fill the line segment I = [0, 1];
(iii) the limit points of the sets X = (0, 1] and Y = [0, 1) also fill the line segment

I = [0, 1];
(iv) the set X = {0, 1} has no limit point. In general, if X is a finite subset of R,

then X has no limit point.
(v) every point x ∈ R is a limit point of the set Q of all rational numbers, since

every open set contains rational points. Similarly, every point x ∈ R is a limit
point of the set R − Q of irrational numbers.

3.1.5 Closed Sets

This subsection studies closed sets of a topological space via its open sets, which are
our primitive undefined terms. A topology on a set is usually defined by specifying
which sets are open. There is another approach to describe a topology by declaring
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which sets are closed. This subsection first defines closed sets, which are sometimes
convenient to define a topology on a set by the axioms of closed sets, which are
duals of the axioms of open sets for a topology. The unique topology determined in
Theorem 3.10.2, called Kuratowski closure topology satisfying the four axioms of
closed sets C(1)–C(4) of Definition 3.1.28, plays an important role in topology.

Definition 3.1.27 A subset F ⊂ X of a topological space (X , τ ) is said to be closed
if its complement Fc = X − F (= X \ F) is open in (X , τ ).

Instead of open sets, Definition 3.1.28 formulates a topological space in terms of
closed sets.

Definition 3.1.28 Let X be a nonempty set. It is called a topological space if there
is a family of subsets of X , called closed sets such that

C(1) the union of finitely many closed sets is a closed set;
C(2) the intersection of any number of closed sets is a closed set;
C(3) X is a closed set;
C(4) the empty set ∅ is a closed set.

Example 3.1.29 In the real line space (R, σ ) (with usual topology σ ),

(i) ∅ and R are closed sets, since their complements ∅c = R and Rc = ∅ in R, are
open sets in (R, σ ).

(ii) every closed interval [a, b] ⊂ R is a closed set, because its complement
[a, b]c = (−∞, a) ∪ (b,∞) is an open set in (R, σ ). On the other hand, the
open-closed interval (a, b] is neither closed nor open under the usual topology
on R.

Example 3.1.30 Let X be an infinite set and τ be the cofinite topology on X given
in Example 3.1.6. Then the closed sets in the topological space (X , τ ) are precisely
the finite subsets of X together with the emptyset ∅ and the whole set X .

Example 3.1.31 The union of infinitely many closed sets may not be a closed set.
For example, consider the sequence of closed sets An = [ 1n , 1] in the real line space
(R, σ ). Their infinite union

⋃
An = (0, 1] is not closed in (R, σ ).

Proposition 3.1.32 asserts that any family of some subsets of a nonempty set
satisfying the conditions C(1) –C(4) of Definition 3.1.28 completely determines the
closed sets in any topological space.

Proposition 3.1.32 Let C be a family of some subsets of a nonempty set X satisfying
the conditions C(1)–C(4) of Definition 3.1.28. Then there exists a unique topology τ

on X such that the closed sets in X defined by τ are precisely the same as the given
family C.

Proof Let a subsetU of X be called open, if its complement X −U ∈ C and τ be the
family of all open sets defined in this way. By hypothesis, C satisfies the conditions
C(1)–C(4) of Definition 3.1.28. Then by dualizing the properties C(1)–C(4) in X , it
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follows that the family τ satisfies the conditions O(1)–O(4) of Definition 3.1.1 for
open sets. Hence, (X , τ ) forms a topological spaces by using the concept of open
sets. The closed sets in this topological space (X , τ ) are precisely the complements
of open sets, which are exactly the members of C. The topology τ thus determined
on X is clearly unique. �

Example 3.1.33 Let C be a family of some subsets of an infinite set X , consisting
of X and all finite subsets of X . Then C satisfies all the conditions C(1)–C(4) of
Proposition 3.1.32. The topology τ determined by C is the cofinite topology on X as
given in Example 3.1.6.

Example 3.1.34 In a cofinite topological space (X , τ ) given in Example 3.1.6, all
finite subsets of X are closed by Proposition 3.1.32 but all of its infinite subsets may
not be open (see Example 3.1.35).

Example 3.1.35 In the set N of all positive integers, its finite subsets such as {1},
{2, 3, 4} are closed in the cofinite topology on N. Hence, their complements in N,

which are {2, 3, 4, . . .} and {1, 5, 6, . . .} are open sets in the cofinite topology on N.
On the other hand, the set of odd positive integers is not closed in cofinite topology,
because the set of even positive integers which is its complement is infinite.

Proposition 3.1.36 characterizes closed sets of a topological space in terms of its
limit points.

Proposition 3.1.36 Let (X , τ ) be a topological space. Then a set A ⊂ X is closed
iff it contains all its limit points.

Proof Left as an exercise. �

Example 3.1.37 In the real line space (R, σ ) (with usual topology σ ), the subset
A = {1, 1

2 ,
1
3 ,

1
4 , . . .} ⊂ R is not closed, because its limit point 0 is not in A.

Corollary 3.1.38 Let (X , τ ) be a topological space. Then for any subset A ⊂ X ,

the set A ∪ A′ is closed, where A′ is the derived set of A.

Proof It follows by using Proposition 3.1.36. �

3.1.6 Closed and Open (Clopen) Sets

There may or may not exist nontrivial subsets of a topological space which are both
open and closed sets. On the other hand, ∅ and the whole set are both open and closed
sets of any topological space.

Definition 3.1.39 Let (X , τ ) be a topological space. If a subset of X is both open
and closed in X , then it is designated as a clopen set.
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Proposition 3.1.40 In the real number space R, the subset Q is neither closed nor
open.

Proof The set Q is to be open in R, if for each x ∈ Q, there exist a, b ∈ R with
a < b such that x ∈ (a, b) ⊂ Q. Claim thatQ does not contain any such open interval
(a, b), with a < b. Otherwise, since between any two distinct real numbers, there is
an irrational number, there exists some y ∈ (a, b) such that y /∈ Q. This contradicts
the assumption that (a, b) ⊂ Q. This shows that Q does not contain any interval
(a, b), and hence, Q is not an open in R. Claim that Q is not also closed; otherwise,
the set R − Q must be an open set. Since between two distinct real numbers, there
is a rational number, R − Q does not contain any interval (a, b). This implies that
R − Q is not open in R, and hence, Q is not closed in R. �
Corollary 3.1.41 The only closed and open (clopen) subsets of the real number
space R are R and ∅.
Proof Proof I: In the real number space R, the set Z of all integers is a closed subset
of R, since the complement of Z in R is the union

⋃∞
−∞(n, n + 1), which is an

open set in R. But Z is not open in R. Again Q is neither open nor closed in R by
Proposition 3.1.40. Hence, the set of irrational numbers Qc = R − Q is neither open
nor closed in R. Again, the open intervals in R are not closed and closed intervals in
R are not open in R.

Proof II: LetU �= ∅ be an open set inR such thatU is both open and closed. Since
U is open, byDefinition 3.3.1, for x ∈ U, there exist some ε > 0 such that (x − ε, x +
ε) ⊂ U . Let A = sup {y ∈ R: (x − ε, y) ⊂ U, y > x}. Then A �= ∅. It is not bounded
above; otherwise, the openness property of U would produce a contradiction.

Proof III: Use the connectedness property of R (see Chap. 5) and use the result
asserting that a topological (X , τ ) is connected iff the only subsets of X which are
both open and closed in (X , τ ) are ∅ and X itself. �
Example 3.1.42 In the topological space R endowed with discrete topology, every
subset of R is clopen, since all subsets of R that constitute the discrete topology on
R are both open and closed.

3.1.7 Closure of a Set

This subsection defines the concept of the closure of a nonempty set as the intersection
of specified closed sets and illustrates this concept by examples.

Definition 3.1.43 Let (X , τ ) be a topological space and A be a subset of X . The
intersection of all closed sets of (X , τ ) containing A is called the closure of A,

denoted by Ā. It is the smallest closed set in (X , τ ) containing A.

Remark 3.1.44 The concepts of closure of a set and limit points of the set are closely
related. Let (X , τ ) be a topological space and A ⊂ X . Then the closure Ā is given
by Ā = A ∪ A′, where A′ is the derived set of A. This asserts that a subset A of X is
closed iff A contains all of its limit points in X (see Proposition 3.1.36).
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Example 3.1.45 Let (R, σ ) be the real line space with usual topology σ . Then in
the space (R, σ ),

(i) the closure of Q is R. Since every real number x ∈ R is a limit point of Q, it
follows that Q = R;

(ii) the closure of the open interval (0, 1) is the closed interval [0, 1];
(iii) the closure of the closed interval [0, 1] is [0, 1] itself.

3.1.8 Interior of a Set

This subsection conveys the concept of interior of a nonempty subset of a topological
space, which is a dual concept of its closure with illustrative examples.

Definition 3.1.46 Let A be a subset of a topological space (X , τ ). The union of all
open sets of (X , τ ) contained in A is called the interior of A, denoted by Int(A). It
is sometimes denoted by Å or by simply IntA.

Remark 3.1.47 Since the empty set ∅ is contained in every subset A of a topological
space, Int(A) of A always exists and it consists precisely of all points a ∈ A for which
A is a nbd of a in X . Int(A) is the largest open set in X contained in A and consists
of all interior points of A in X .

Example 3.1.48 Let (R, σ ) be the real line space with usual topology σ . Then in
the space (R, σ ),

(i) Int([0, 2)) = (0, 2), since [0, 2) is not open in the real line space (R, σ ) but
the open interval (0, 2) is the largest open set in (R, σ ), contained in [0, 2).

(ii) Int(Q) = ∅ in the real line space (R, σ ), since any interval in R contains an
irrational point, so Q does not contain a nonempty open set in (R, σ ).

(iii) In the real line space (R, σ ), for the set A defined by

A = {x ∈ Q: 0 < x < 1} ⊂ Q

the interior Int(A) = ∅.
Proposition 3.1.49 Let (X , τ ) be a topological space. Then for any subset A ⊂ X ,

(i) a point x is an interior point of A iff there is an open set U with the property
that x ∈ U ⊂ A;

(ii) Int(A) ⊂ A;
(iii) Int(A) is largest open set contained in A;
(iv) A is an open set iff Int(A) = A;
(v) A ⊂ B ⊂ X implies that Int(A) ⊂ Int(B);
(vi) Int(A) = X − X − A.
(vii) A is closed in X iff A = A.

Proof Left as an exercise. �
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3.1.9 Exterior of a Set

This subsection conveys the concept of exterior of a nonempty subsetA of a topologi-
cal spaceX , which is the interior of (X − A) and illustrates this concept by examples.

Definition 3.1.50 LetAbe a subset of a topological space (X , τ ). The set Int(X − A)

is called the exterior of A, denoted by Ext(A) or simply by ExtA.

Remark 3.1.51 Definition 3.1.50 asserts that Ext(A) consists of all exterior points
of A in (X , τ ) and Ext(A) ∩ A = ∅. Moreover, A = X − Ext(A).

Example 3.1.52 Let X be the real line space R and A = (0, 1] ⊂ R. Then

Ext(A) = Int(X − A) = (−∞, 0) ∪ (1,∞), since X − A = (−∞, 0] ∪ (1,∞).

Proposition 3.1.53 characterizes location of exterior points of a subset of a topo-
logical space with the help of its open sets.

Proposition 3.1.53 Let X be a topological space and A ⊂ X . Then a point x ∈ X
is an exterior point of A iff there is an open set U such that x ∈ U ⊂ X − A.

Proof It follows from Proposition 3.1.49, since an exterior point of A is an interior
point of X − A. �

3.1.10 Boundary of a Set

This subsection conveys the concept of boundary of a nonempty subset A of a topo-
logical space (X , τ ), which formulates generalizing the intuitive idea of a separator
between a region of Euclidean space and its exterior and illustrates this concept by
examples.

Definition 3.1.54 Let A be a nonempty subset of a topological space (X , τ ). Then
the set

X − (Int(A) ∪ Ext(A))

is called the boundary of A, denoted by ∂A. It consists of all boundary points of A
in the topological space (X , τ ).

Example 3.1.55 Let X be the real line space R and A = (0, 1] ⊂ R. Then ∂A =
{0, 1}.

Proposition 3.1.56 characterizes location of boundary point of a subset of a topo-
logical in terms of its open sets.
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Proposition 3.1.56 Let (X , τ ) be a topological space and A ⊂ X . Then a point
x ∈ X is a boundary point of A iff every open set in (X , τ ) containing the point x
intersects both the sets A and X − A.

Proof Left as an exercise. �

3.1.11 Interrelations Among Closure, Interior, Exterior
and Boundary Operators

This subsection conveys interrelationships among the concepts of different operators:
Closure, Interior, Exterior and Boundary Operators defined in this section. Some
properties of closure operator proved in Theorem 3.10.1 lead to define a topology
in Definition 3.10.3, known as Kuratowski closure topology. For any nonempty
subset A of a topological space X , only three possible locations of a point x ∈ X
occur:

(i) x ∈ Int A asserts that there is an open set U in X such that x ∈ U ⊂ A;
(ii) x ∈ Int (X − A) asserts that there is an open set U in X such that x ∈ U ⊂

X − A;
(iii) x ∈ ∂A asserts that there is an open set U in X such that x ∈ U, U ∩ A �=

∅ and U ∩ (X − A) �= ∅.
The points x satisfying (i) are the points with the property that every open set U
containing the point x intersects the set A, and hence, the limit points of A and the
set of these limit points are the set A, the closure of A.

Definition 3.1.57 Given a topological space (X , τ ), the operators such as Closure,
Interior, Exterior and Boundary on a subset A ⊂ X can be considered as mappings
on the power P(X ) of X :
(i) Closure operator is a mapping Cl:P(X ) → P(X ), A �→ Cl(A) = A.
(ii) Interior operator is a mapping Int:P(X ) → P(X ), A �→ Int(A).
(iii) Exterior operator is a mapping Ext:P(X ) → P(X ), A �→ Ext(A).
(iv) Boundary operator is a mapping ∂:P(X ) → P(X ), A �→ ∂A.

Theorem 3.1.58 Let (X , τ ) be a topological space and A be a subset of X . Then

(i) ∂A = A ∩ (X − A);
(ii) ∂A = A − Int(A);
(iii) A = A ∪ ∂A;
(iv) Int(A) = A − ∂A;
(v) A is closed in X iff ∂A ⊂ A, i.e., A is closed in X iff it consists of all points of

its boundary ∂A.
(vi) A is open in X iff ∂A ∩ A = ∅, i.e., A is open in X iff it contains no point of

its boundary ∂A.
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Proof It follows from the respective definitions. �

Example 3.1.59 For (X , τ ) = (R, σ ) (real-line space) and A = (0, 1], verify the
validity of the properties (i)-(iv) of Theorem 3.1.58.

Example 3.1.60 The composite of the interior and closure operators on a subset of
an arbitrary topological space is not commutative. In support, consider the real line
space R with its natural topology σ and the subspace Q of rarional numbers. Then
Int(Q) = ∅ and Q = R =⇒ (Int ◦ Cl)(Q) = R but (Cl ◦ Int)(Q) = ∅.

3.1.12 Subspace Topology

This subsection defines a topology, called relative topology or subspace topology
induced on a subset of a given topological space and illustrates this concept by
examples. Given a nonempty subset Y of a topological space X , the problem is: how
to define a topology on Y so that Y becomes a topological space compatible with the
topology of X ? Definition 3.1.61 provides a solution of this problem.

Definition 3.1.61 Let X be a topological space and Y be a subset of X . A setU ⊂ Y
is defined to be open in Y if there exists an open set V ⊂ X such that V ∩ Y = U .
This topology on Y is called the subspace or relative topology induced by the
topology of X on Y . The resulting topological space is said to be a subspace of X .

Example 3.1.62 Let (X , τ ) be a topological space and (Y , τY ) be a subspace of
(X , τ ). Then the topology τY induced by the canonical injection i:Y ↪→ X is given
by

τY = {i−1(U ):U ∈ τ } = {U ∩ Y :U ∈ τ }.

Example 3.1.63 (i) The set I = [0, 1] endowed with relative topology inherited
from the natural topology on R is called the space of unit interval, which is
used throughout the book.

(ii) The topology of a surface inR3 such as the 2-sphere S2 = {(x, y, z) ∈ R3: x2 +
y2 + z2 = 1} ⊂ R3 is customarily taken to be the topology induced by the
Euclidean topology on R3.

(iii) Let (M , d) be a metric space and X be a nonempty subset of X . Then X can
be endowed with a metric dX induced by the metric d . The topology τdX on X
induced by the metric dX (see Definition 3.8.5) is the topology on X induced
by the metric d .

3.1.13 Dense and Nowhere Dense Sets

This subsection continues a study of closed sets by defining dense and nowhere dense
sets in topological spaces and illustrates these concepts by examples.
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Definition 3.1.64 Let (X , τ ) be a topological space and A ⊂ X . Then

(i) A is said to be a dense (or everywhere dense) set in X if A = X ;
(ii) A is said to be a nowhere dense (or a nondense) set if Int(A) = ∅, where

Int(A) is the union of all open sets of X contained in A, called the interior of
A in X .

Remark 3.1.65 A subset A of a topological space X is dense in X if for any point
x ∈ X , any nbd of x contains at least one point from A (i.e., A has a nonempty
intersection with every nonempty open subset of X ). In other words, A is dense in X
if the only closed subset of X containing A is X itself.

Example 3.1.66 The set of all rational numbersQ is dense inR with usual topology,
since in this topology, every real number is a limit point of Q and hence Q = R. On
the other hand, every one-pointic set in R is nowhere dense.

Example 3.1.67 The set of all irrational numbers is also dense in R with usual
topology, since (R − Q) = R.

Example 3.1.68 In the real line space R, the set A defined by

A = {x ∈ Q: 0 < x < 1},

is not nowhere dense in R, because A = [0, 1] and hence Int(A) = (0, 1) �= ∅.
Example 3.1.69 The real number space R with the natural topology has the rational
numbers Q as a countable dense subset. This implies that the cardinality of a dense
subset of a topological space may be strictly smaller than the cardinality of the space
itself.

Example 3.1.70 The subset A = {1, 1
2 ,

1
3 ,

1
4 , . . .} of the real number space R (with

usual topology) is nowhere dense in R, because A = {0, 1, 1
2 ,

1
3 ,

1
4 , . . .} has no inte-

rior point.

Example 3.1.71 Let (X , τ ) be a topological space and A be a subset of X .

(i) If A is open in (X , τ ), then ∂A is nowhere dense in (X , τ ).
(ii) If A is closed in (X , τ ), then ∂A is nowhere dense in (X , τ ).
(iii) If A is a closed in X , then A is nowhere dense iff its complement is everywhere

dense.

Proposition 3.1.72 characterizes nowhere dense subsets of a metric space with the
help of its open balls.

Proposition 3.1.72 Let (X , d) be a metric space. A subset A of X is nowhere dense

(i) iff A does not contain any nonempty open ball; equivalently,
(ii) iff every nonempty open set has a nonempty open ball disjoint from A.
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Proof It follows from Definition 3.1.64(ii). �

Example 3.1.73 LetM (n, R)be the set of alln × nmatrices overR. The setM (n, R)

identified with the n2-Euclidean space Rn2 and endowed with its usual product topol-
ogy forms a topological space (see Sect. 3.18.1). This topological space has some
interesting properties. For example,

(i) The general linear group GL(n, R) = {A ∈ M (n, R): detA �= 0} is the set of
all nonsingular matrices of order n over R. It is an open and a dense subset but
it is not closed inM (n, R), (see Proposition 3.18.2).

(ii) Let X = {A ∈ M (n, R):A is singular}. Then X is nowhere dense in the topo-
logical space M (n, R), (see Proposition 3.18.3).

3.2 Open Base and Subbase for a Topology

This section introduces the concepts of open base B and subbase for a topology τ

on a set X to determine completely the open sets in τ as a union of some members
belonging to B for open base for the topology τ and as an intersection of a finite
number of members belonging to B for a subbase for the topology τ . In doing so,
a subset U ⊂ X is said to be open in X if for every point x ∈ U, there exists a
member B ∈ B such that x ∈ B ⊂ U . The importance of an open base or a subbase
for a topology lies in the result that the topology of a topological space is completely
determined by an open base or a subbase. For example, the concept of compact
open topology on a function space defined by a subbase is an important concept
in topology (see Chap. 5) and the topology generated by a family of functions is
available is Sect. 3.9.

3.2.1 Open Base

To study a topological space, it is not necessary to describe completely (i.e.,
all) its open sets. Rather, in doing so, this subsection studies the work of spec-
ifying a topology τ by taking only chosen open sets to generate all the open
sets (similar to a basis of a vector space) by introducing the concept of open
base for the topology τ . Many topological properties can be proved by using
the concept of an open base generating the relevant topology. In linear algebra,
it is proved that every vector space has a basis and every vector in this vector
space is a linear combination of the members of the basis. An analogue is true
in topology, which asserts that every open set in a topological space (X , τ ) can
be expressed as a union of certain collection of open sets in (X , τ ). The open sets
in R, R2 and Rn under metric topology are respectively defined in terms of open
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intervals, open disks and open balls and arbitrary open sets are expressed as unions
of a certain collection open sets in terms of open intervals. open disks and open balls
in the respective cases. Such a special collection of open sets determines completely
the open sets. This idea leads to the concept of basis for a topology in Definition
3.2.1. Many important topologies such as order topology, Euclidean topology, met-
ric topology and important topological spaces such as a second-countable space are
defined by the concept of a base.

Definition 3.2.1 Let (X , τ ) be a given topological space. A collection of open sets
B in X is said to form an open base (base or basis) for the topology τ, if every
open set in (X , τ ) is expressible as the union of some open sets belonging to B.
Equivalently, B forms an open base if for any point x belonging to an open set U in
(X , τ ), there exists a member V ∈ B such that x ∈ V ⊂ U (see Theorem 3.2.4).

Example 3.2.2 (i) Any topology τ on any nonempty set always forms an open
base of itself.

(ii) For the discrete topology on any nonempty set, ∅ and the singletons (i.e.,
subsets consisting of one point only) also form an open base. Some authors do
not include ∅ for forming a base, because if U = ∅, it satisfies vacuously the
defining criterion of an open set.

Example 3.2.3 Let X be a given topological space with topology τ . The unions of
all subcollections of an open base B of the topology τ constitute the topology τ .
Thus, the topology τ is completely determined by any open base B. For example, the
natural topology σ on R is completely determined by the family of open intervals in
R in Corollary 3.2.6.

An open base of a topological space is characterized in Theorem 3.2.4.

Theorem 3.2.4 Let (X , τ ) be a topological space. Then a given collection of open
sets B forms an open base of the topology τ if and only if for any open set U and
any point x ∈ U, there exists a set V ∈ B such that x ∈ V ⊂ U.

Proof Let the given condition be satisfied for B, and let U be any open set. Then
for any point x ∈ U , there exists a set V (x) ∈ B, such that x ∈ V (x) ⊂ U . Let x run
over U . Then we obtain

⋃

x∈U
{x} ⊂

⋃

x∈U
{V (x)} ⊂ U, i.e., U ⊂

⋃

x∈U
{V (x)} ⊂ U.

This shows that the open set U = ⋃
x∈U {V (x)} is a union of some members of B.

Conversely, let B be an open base for the topology τ of X . Then any open set U
is a union of some sets lying in B. Consequently, for any point x ∈ U , there exists a
set V ∈ B, such that x ∈ V ⊂ U . Hence, B forms an open base for τ . �
Remark 3.2.5 Theorem 3.2.4 asserts that any nonempty open setU in X is express-
ible as the union of open sets belonging in the open base B. Conversely, if a nonemp-
tyset X is expressible as the union X = ⋃

a∈A Va, then the family B = {Va: a ∈ A}
forms an open base for a topology on X .
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Corollary 3.2.6 The family of open intervals inR forms an open base for the natural
topology σ on R.

Proof Let R be the set of real numbers with natural ordering. A subset U ⊂ R is
said to be open if for every point x ∈ U, there exists an open interval (a, b) such
that x ∈ (a, b) ⊂ U . Then for any open set U ⊂ R and x ∈ U, by the openness of
U , there exists an open interval (a, b) such that

x ∈ (a, b) ⊂ U.

Hence, the corollary follows fromTheorem3.2.4. It is assumed that (a, a) = ∅, ∀ a ∈
R. On the other hand (a, b) �= ∅ for any a < b in R. �

Example 3.2.7 The null set ∅ and all open intervals (a, b), where a and b are real
numbers with a < b, form a base B for a topology of the set R. This topology is the
natural topology or usual topology of R and the set R endowed with this topology
is the real number space. Again the null set ∅ and all open intervals (a, b), where a
and b are rational numbers forms a countable a base B1 for the natural topology or
usual topology of R. Sometimes, it is simply said that open intervals inR form a base
for the natural topology or usual topology on R on the assumption that (a, a) = ∅,

Remark 3.2.8 The open base for a topology is not unique in the sense that there
may exist different open bases for any particular topology. In support, see Examples
3.2.2, 3.2.9 and 3.2.10.

Example 3.2.9 Three different bases the usual topology on R. Consider three bases
F ,Fr and Fi for generating the usual topology on R..

(i) The family F of all open intervals forms a base for the usual topology σ on R.
(ii) The familyFr of open intervals with rational endpoints forms a countable base

for the usual topology σ on R.
(iii) The family Fi of open intervals with irrational endpoints forms a base (not

countable) for the usual topology σ on R.
The basic sets Fr and Fi are disjoint but both of them are properly contained
in F .

Example 3.2.10 The Euclidean plane R2 with natural topology τ has different open
bases:

(i) The family D of open disks in R2 forms an open base for the topology τ .
Because if U ∈ τ, and x ∈ U , then there exists an open disk Dx in R2 with
center x such that x ∈ Dx ⊂ U .

(ii) The family S of open squares in R2 having horizontal and vertical sides forms
an open base for the topology τ .

(iii) The family R = {(x, y) ∈ R2: a ≤ x < b, c ≤ y < d} of half-open rectangles
in R2 forms an open base for the topology τ .
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A criterion for an aggregate of subsets of a given set X to form an open base for a
suitable topology of X is given in Theorem 3.2.11.

Theorem 3.2.11 A collection of subsets B of a set X forms an open base for a
suitable topology of X if, and only if,

(i) the null set ∅ ∈ B,
(ii) X is the union of some sets lying in B, and
(iii) the intersection of any two sets lying in B is the union of some sets lying in B.
Proof Let the conditions (i), (ii) and (iii) hold for a given collection of subsetsB ofX
and τ be the family of all those subsets of X , which are expressible as unions of some
members of B. Then τ forms a topology on X , of which B is an open base. Clearly,
OS(1) and OS(4) hold for τ , by the conditions (i) and (ii). Also, since every member
of τ is a union of some members of B, it follows that the union of any aggregate
of members of τ is expressible as union of some members of B and is therefore
a member of τ . Consequently, OS(2) holds for τ . Finally, the intersection of two
members of τ is the intersection of two unions of members of B, which is (by the
distributive property for union and intersection of subsets) a union of intersections
of pairs of members of B; and this is a union of some members of B, by (iii); i.e.,
this is a member of τ . Hence, 0S(3) is also satisfied for τ .

Conversely, let B form an open base for a topology τ of X . Since the null set ∅
and the set X are open sets, and ∅ cannot expressed as the union of nonempty sets,
the conditions (i) and (ii) must hold. Again, since each member of B is an open set,
the intersection of any two members of B is an open set and is therefore expressible
as the union of some sets lying in B. Thus (iii) also holds for B. �

Remark 3.2.12 The conditions (ii) and (iii) prescribed in Theorem 3.2.11 to form a
base B for a topology on X are sometimes replaced by their equivalent conditions
(ii a) and (iii a):

(ii a): Every point of X is contained in at least one member of B;
(iii a): If x ∈ U and V , whereU,V ∈ B, then there exists a member W ∈ B such

that x ∈ W ⊂ U ∩ V .

Definition 3.2.13 The topology τ determined in Theorem 3.2.11 by a collection of
subsets B of a set X forms an open base for a suitable topology of X is called the
topology generated or induced by the base B. A subsetU ⊂ X is called open in X ,
if U ∈ τ , and for every x ∈ U, there exists a member V ∈ B such that x ∈ V ⊂ U .

Example 3.2.14 The family of all open intervals in R forms an open base for a
topology on R, since the intersection of any two open intervals is either ∅ or an open
interval.

Theorem 3.2.15 establishes a necessary and sufficient condition for two bases to
generate the same topology on a nonempty set.
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Theorem 3.2.15 Two open bases B1 and B2 defined on a given nonempty set X
generate the same topology on X iff the following two conditions are satisfied:

(i) given an U2 in B2 and any point x ∈ U2, there is an U1 in B1 with the property
that x ∈ U1 ⊂ U2;

(ii) given an U1 in B1 and any point y ∈ U1, there is an U2 in B2 with the property
that y ∈ U2 ⊂ U1.

Proof Use Exercise 15 of Sect. 3.20 to prove the theorem. Because if the topology
τ1 is generated on X by the open base B1 and the topology τ2 is generated on X by
the open base B2, then τ1 = τ2 iff τ1 is finer than τ2 and τ2 is finer than τ1. �

Example 3.2.16 The natural topology σ onR is generated by the open intervals, and
hence, every open set in σ is a union of open intervals. There are also other topologies
on R. For example, let σ be the natural topology on R and τ be the topology on
R defined by τ = {U ⊂ R:U = ∅ or U is a union of open intervals}.Then the
topologies σ and τ coincide. This gives another way of description of the natural
topology on R, which shows that any nonempty set in σ is a union of open intervals
and conversely every such union is an open set. Let σI be the subspace topology on
I = [0, 1] induced by the natural topology σ on R. A nonempty proper subsetU ⊂ I
is open in σI iffU is a union of open intervals of the form (a, b) or of the form of an
half-open interval of the form (x, 1] or [0, y), for 0 ≤ x < y ≤ 1.

3.2.2 Local Base at a Point in a Topological Space

This subsection defines a local base or a neighborhood basis of a topological space at
a point in the space, which is sometimes conveniently used to prove the continuity of
a function. The concept of a neighborhood basis at a point gives the intuitive concept
of the smallness of the neighborhood. The criterion of Theorem 3.2.4 motivates to
define a local base at a point.

Definition 3.2.17 Let (X , τ ) be a topological space and x ∈ X be an arbitrary point.
Then a collection Bx of open sets in (X , τ ) with each member containing the point
x is called an open base (or a local base) about the point x, if for every open set U
containing x, there exists a set Vx ∈ Bx such that x ∈ Vx ⊂ U .

There is another way of formulating a local base given in Definition 3.2.18 in the
language of open nbds.

Definition 3.2.18 Let (X , τ ) be a topological space and x ∈ X be an arbitrary point.
Then a collection Bx of open sets in (X , τ )with each member containing the point x,
is called local base(or a nbd base) at the point x, if for every open setU containing
x, there exists a set Vx ∈ Bx such that x ∈ Vx ⊂ U . Each member of Bx is called a
nbd of x in X . The members of nbd base Bx are called the basic nbds of x in (X , τ ).
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Theorem 3.2.19 Let (X , τ ) be a topological space. If B is an open base for the
topology τ , then the totality of all those members of B, which contain a particular
point x, forms a local base at the point x.

Proof The proof follows from Theorem 3.2.4. �

Example 3.2.20 The collection Ba = {(a − δ, a + δ): δ > 0} in the real line space
R for any point a ∈ R. forms a local base at the point a. To show it consider for every
δ > 0, the δ-nbd of the point a in R

Na(δ) = {x ∈ R: |x − a| < δ}

If
{δn} = {δ1, δ2, . . . , δn, . . .}

is any sequence of positive real numbers converging to the point 0 ∈ R, then the
collection {Na(δn)} forms a local base at the point a in R.

Theorem 3.2.21 Let X be a nonempty set and Bx be a collection of subsets of X
containing the point x such that every nbd of x in X contains some member of Bx

and each member of Bx is a nbd of x in X . Then there exists a unique topology τ on
X such that Bx forms a nbd basis of the point x, for every point x ∈ X .

Proof Left as an exercise. �

Proposition 3.2.22 gives a relation between a base for a topology and a local base
at a point.

Proposition 3.2.22 Let (X , τ ) be a topological space and B be a base for the τ .
Then for any point x ∈ X , the members of B that contain the point x form a local
base at the point x.

Proof Left as an exercise. �

Example 3.2.23 For the usual topology σ on R, the collection of all open intervals
{(a, b)} in R forms a base for the topology σ ; on the other hand, the collection
Ba = {(a − δ, a + δ): δ > 0} in R forms a local base at the point a ∈ R.

Definition 3.2.24 Let X be a nonempty set and Bx be a collection of subsets of X
defined in Theorem 3.2.21. The family Bx is called a nbd filter of the point x.

3.2.3 Subbase for a Topology

This subsection studies the work of specifying a topology τ on a set X by taking only
a collection S of chosen open sets to generate all open sets in τ completely, i.e., to
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form an open base B for τ as an intersection of a finite subcollection of S of subsets
of X . This solves a natural problem: given a family F of subsets of X , is it possible
to find a subfamily of S consisting of all unions of finite intersections of members
of S to form a topology on X ? To solve this problem, the concept of subbase for a
topology is introduced in Definition 3.2.25.

Definition 3.2.25 Given a topological space (X , τ ), a family of open subsets S in
(X , τ ) is said to be a subbase or subbasis for the topology τ if the subsets obtained
by the intersection of all finite subcollections of S constitute a base of the topology
τ . The open sets in S are called subbase open sets of X . In other words, a subbasis
S for a topology τ is a family of subsets of X whose union is X and the topology
generated by S on X is a family of subsets of X whose union is the set X and the
topology τ is generated by S is defined to be the family τ of all unions of finite
intersections of members belonging to S.
Example 3.2.26 Let (R, σ ) be the real line space with natural topology σ . For each
real number r, the sets

Lr = {x ∈ R: x ≤ r}

and
Rr = {x ∈ R: x ≥ r},

called the open-half lines determined by r ∈ R are such that the open interval (r, s) =
Rr ∩ Łs. The collection S of all such open-half lines constitutes a subbase for the
natural topology on R. This asserts that the family of all infinite open intervals in R
is a subbase for the natural topology σ on R, because, every open interval (r, s) in R
is the intersection of two infinite open intervals (r, s) = (r,∞) ∩ (−∞, s). On the
other hand, the family of all open intervals in R is a base for the topology σ on R by
Corollary 3.2.6.

Theorem 3.2.27 establishes a necessary and sufficient condition for a family of
subsets to form a subbase for a topology.

Theorem 3.2.27 A family F of subsets of a given set X constitutes a subbase for a
suitable topology of X , iff

(i) either the emptyset ∅ ∈ F or the intersection of a finite number of subsets
belonging to F is also in F ;

(ii) X is the union of the subsets belonging to F .

Proof Let F form a subbase for a topology σ on X and B be the base generated
by F . Since ∅ ∈ B, either ∅ ∈ F or F contains a finite number of subsets, whose
intersection is ∅. Since every point x ∈ X is in at least one member of B, the point
x is in at least one member belonging to F . This shows that X is the union of the
subsets belonging to F . This implies that the conditions (i) and (ii) hold for F .

Conversely, let F satisfy the conditions (i) and (ii). If B be the set consisting of
all finite intersections of the members of F , then ∅ ∈ B by (i). Again, since F ⊂ B,



146 3 Topological Spaces and Continuous Maps

it follows that by condition (ii) that X is the union of the subsets belonging to B. Let
x ∈ U, x ∈ V for some U,V ∈ B. Then x ∈ U ∩ V = W and

U = U1 ∩U2 ∩ · · · ∩Um and V = V1 ∩ V2 ∩ · · · ∩ Vn

for some members U1,U2, . . . , Umand V1,V2. . . . ,Vn ∈ F . Hence, it follows that

x ∈ W = U ∩ V = U1 ∩U2 ∩ · · · ∩Um ∩ V1 ∩ V2 ∩ · · · ∩ Vn ∈ B.

This asserts that B forms an open base generated by F , which is a subbase for a
suitable topology σ on X . �

Remark 3.2.28 The topology of a topological space is completely determined by an
open base or a subbase. Because a family F of open sets forms a subbase for the τ

of a topological space (X , τ ), if every open set U ∈ τ and every point x ∈ X , there
are finite number of open sets in F , say V1,V2, . . . ,Vr such that

x ∈ V1 ∩ V2 ∩ · · · ∩ Vr ⊂ U.

Theorem 3.2.29 The weakest topology σ on a set X containing a given family F
of subsets of X is the topology generated by the subbase B formed by ∅,X and all
those subsets, which are in F .

Proof Let A be the collection of the subsets ∅,X and all those subsets, which are
in F . Then by Theorem 3.2.27 A forms a subbase for a topology σ on X . Let τ be
a topology on X , such that F ⊂ τ . Then A ⊂ τ . Let B be the base generated by
A. Then B ⊂ τ . Since the topology σ is obtained from B by taking unions of finite
number of elements of all subcollections of B, it follows that σ ⊂ τ . This asserts
that σ is weakest topology on X containing the given family F of subsets of X . �

Remark 3.2.30 For better understanding of the concept of a subbase, a geometrical
illustration is given in Example 3.2.31.

Example 3.2.31 (Geometrical example) Let R2 be the Euclidean plane and R be
the Euclidean line. Then p1: R2 → R, (x, y) �→ x and p2: R2 → R, (x, y) �→ y are
projection maps such that the inverse images of an open interval (a, b); i.e., p−1

1 (a, b)
and p−1

2 (a, b) geometrically represent infinite open strips inR2. Such strips constitute
a subbase for the natural (Euclidean) topology on R2.

Example 3.2.32 In the real line space R,

(i) a base for the subspace topology induced on the open interval (2, 3) is the
collection

{(x, y) ∩ (2, 3): x, y ∈ R,with x < y} = {(x, y): x, y ∈ R, 2 ≤ x < y ≤ 3};
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(ii) a base for the subspace topology induced on the closed interval [2, 3] is the
collection

{(x, y) ∩ [2, 3]: x, y ∈ R, x < y},

which is the same as the collection

{(x, y): 2 ≤ x < y ≤ 3} ∪ {[2, y): 2 < y ≤ 3} ∪ {(x, 3): 2 ≤ x < 3} ∪ {[2, 3]}

3.3 Euclidean Topology

This section studies Euclidean topology on Rn by using the concept of open base.
This topology is the same as the metric (usual) topology induced by the Euclidean
metric (usual metric) on Rn. Its more study is available in Sect. 3.8. The concept of
locally Euclidean space plays a key role in the study the topological manifolds. It
is discussed in Basic Topology, Volume 2 of the present book series.

3.3.1 Euclidean Topology on R

This subsection studies Euclidean topology on the Euclidean line R. It uses the
concept of open base.

Definition 3.3.1 A subset U ⊂ R is said to be open for a topology σ on R if for
every point x ∈ R, there are points a, b ∈ R, with a < b such that

x ∈ (a, b) ⊂ U.

Then the collection B of such sets {U } forms an open base by Theorem 3.2.4 for the
usual topology σ, which is also called the Euclidean topology on R. This topology
is the same as the metric topology induced by the standard Euclidean metric (usual
metric)

d : R × R → R, (x, y) �→ |x − y|

(see Example 3.8.6)

Proposition 3.3.2 Under the Euclidean topology on R, all open intervals are open
sets and all closed intervals are closed sets.

Proof Left as an exercise. �
Remark 3.3.3 There exist several important topologies on R:Other thanEuclidean
topology, the set R has also several topologies such as lower-limit topology, upper-
limit topology defined in Sect. 3.4.1 and metric topology defined in Sect. 3.8.1 and
others.
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3.3.2 Euclidean Topology on R2

This subsection introduces the concept of Euclidean topology on R2 by extending
the concept of Euclidean topology on R. It uses the concept of open base.

Definition 3.3.4 Let a, b, c, d ∈ R be such that a < b, c < d , and B2 = {(x, y) ∈
R2: a < x < b, c < y < d} ⊂ R2. Then B2 forms an open base for a topology on
R2, called the Euclidean topology on R2.

Geometrically, an open base for the Euclidean topology on R2 given in Definition
3.3.4, is the set of open rectangles of the form Ui × Vj, where Ui and Vj are open
intervals. The collection B2 of all equilateral triangles with bases parallel to x-axis
also forms an open base for the Euclidean topology on R2.

3.3.3 Euclidean Topology on Rn

This subsection introduces the concept of Euclidean topology on Rn by extending
the concept of Euclidean topology on R. It uses the concept of open base.

Definition 3.3.5 Let x = (x1, x2, . . . , xn), a = (a1, a2, . . . , an), and b = (b1, b2,
. . . , bn) be arbitrary points in Rn with ai < bi: i: i = 1, 2, . . . , n. If Ua,b = {x ∈
Rn: ai < xi < bi, ∀ i: i = 1, 2, . . . , n}, then the collection of sets

B = {Ua,b}

forms a base for a topology on Rn, called the Euclidean topology on Rn. This
topology is the same as the metric topology induced by the standard Euclidean
metric (usual metric)

d : R × R → R, (x, y) �→ ‖x − y‖

(see Example 3.8.7).

Geometrically, the set Ua,b given in Definition 3.3.5, represents a parallelopiped
in Rn with sides parallel to axes and this collection forms an open base for the
Euclidean topology on Rn. It is natural to choose a base with the least possible
number of countable number of elements for this topology. For example, there exists
a countable base forRn,which are precisely the parallelopipedswith rational vertices
such as

Vr,t = {x ∈ Rn: ri < xi < ti, r = (r1, r2, . . . , rn),

t = (t1, t2, . . . , tn), ri < ti, ∀ i: i = 1, 2, . . . , n}.

where ri and ti are rational points in R.
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Definition 3.3.6 Let X ⊂ Rm and Y ⊂ Rn. A function f :X → Y is said to be con-
tinuous at a point x ∈ X , if given a real number ε > 0, there is a δ > 0 such that if
x′ ∈ X and ‖x − x′‖ < δ, then

‖f (x) − f (x′)‖ < ε.

If f is continuous at every point x ∈ X, then it is said to be continuous.

Example 3.3.7 (i) In the Euclidean line R, let X = [0, 2π ] and in the Euclidean
plane R2, let Y = S1 = {(x, y) ∈ R2: x2 + y2 = 1} with subspace topology.
Then the function

f :X → Y , x �→ (cos x, sin x)

is continuous.
(ii) Let M (n, R) be the set of all n × n matrices over R identified with Rn2 and

endowedwith its usual product topology (seeSect. 3.12.2) onRn2 andGL(n, R)

be the set of all nonsingular real matrices with subspace topology ofM (n, R).
The determinant function

det:GL(n, R) → R,M �→ detM

is continuous (see Proposition 3.18.1).
(iii) Let GL(n, C) be the set of all nonsingular complex matrices. The determinant

function
det:GL(n, C) → C,M �→ detM

is continuous (see Proposition 3.18.4).

3.3.4 Special Examples of Open and Closed Sets in Rn

This subsection presents a few special examples of open and closed subsets in Rn

endowed with Euclidean topology which are other than the whole space Rn and the
empty set ∅.
Example 3.3.8 Given a set of continuous functions fi: Rn → R : i = 1, 2, . . . , n,
the set of solutions of the system of n-equations fi = 0 is a closed set in Rn, since
the complement of the solution set is the union of the open sets determined by
{fi �= 0, i = 1, 2, . . . , n}. As an immediate applications of this result, it follows that
the 2-sphere S2 = {(x, y, z) ∈ R3: x2 + y2 + z2 = 1} is a closed set in R3.

Example 3.3.9 The open disk

Dn = {x ∈ Rn: ||x|| < 1}

is an open set in the Euclidean n-space Rn. On the other hand,
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(i) the closed disk
Dn = {x ∈ Rn: ||x|| ≤ 1}

(ii) and its boundary

Sn−1 = {x ∈ Rn: ||x|| = 1}, the (n − 1) - sphere Sn−1

are both closed sets in Rn.

3.4 Topology on Linearly Ordered Sets

This section studies topology on a linearly ordered set as a generalization of the
usual topology on R with a particular study of order topology on R, Q and Z. In this
section, X denotes an arbitrary linearly ordered set with an order relation “ ≤” such
that for every pair of elements x, y ∈ X either x ≤ y or y ≤ x. Then x < ymeans that
x ≤ y but x �= y. If x < y, then x is said to be less (or smaller) than y and y is said to
be greater than x.

Definition 3.4.1 Let X be a linearly ordered set (or order set ) with an order
relation “ ≤”. Given a < b in X , the open interval (a, b), closed interval [a, b], the
right-half open interval [a, b), left-half open interval (a, b] are defined by

(i) (a, b) = {x ∈ X : a < x < b};
(ii) [a, b] = {x ∈ X : a ≤ x ≤ b};
(iii) [a, b) = {x ∈ X : a ≤ x < b};
(iv) (a, b] = {x ∈ X : a < x ≤ b}.

Theorem 3.4.2 Let X be a linearly ordered set with an order relation “ ≤”. If X
has neither any greatest element nor any least element, then the family of all open
intervals (a, b) together with the empty set ∅ form an open base B for a topology τ

on X , called the order topology or interval topology on X .

Proof Let X be a linearly ordered set with an order relation “ ≤” and x ∈ X . Then
by hypothesis X has neither a least element nor a greatest element. This shows
that there exist elements a, b ∈ X such that a < b, a < x and x < b. Consequently,
x ∈ (a, b) ∈ B. Again, for x ∈ (a, b) and x ∈ (c, d), the element x ∈ (z, t) ⊂ (a, b) ∩
(c, d),where z is greater than a, c and t is smaller than b, d . Hence, the proof follows
from Remark 3.2.12. �

Theorem 3.4.3 X be a linearly ordered set with an order relation “ ≤”. If X has no
greatest element, then

(i) the emptyset ∅ and the right half open intervals [a, b) = {x ∈ X : a ≤ x < b}
constitute a base for a topology τl on X , called the lower-limit topology or
right-half open interval topology on X ;
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(ii) the emptyset ∅ and all the improper intervals (∞, x) constitute a base for a
topology on X , called the left-hand topology on X ;

Proof Proceed as in Theorem 3.4.2. �
Definition 3.4.4 Let X be a linearly ordered set with an order relation “ ≤”. If X has
no least element, then the upper-limit or left-half open interval topology defined
on X is generated by a base consisting of the emptyset ∅ and all the left-half open
interval (a, b] = {x ∈ X : a < x ≤ b} and the right-hand topology on X is generated
by a base consisting of the emptyset ∅ and all the improper intervals (x,∞).

Example 3.4.5 Order topologies on R by using usual order relation “ ≤” on R are
available in Sect. 3.4.1

3.4.1 Order Topologies on R

By using usual order relation “ ≤” on R, this subsection defines the natural, lower-
limit, upper-limit topologies and K-topology on R and compare them.

Definition 3.4.6 (Natural topology on R) Let B be the family of open intervals in
R given by

B = {(a, b): a, b ∈ R, a < b}.

B forms a base for the order topology on R. Natural topology on R is the order
topology derived from the natural ordering on R.

Definition 3.4.7 (Lower-limit topology on R) Let B be the family of closed-open
intervals in R given by

B = {[a, b): a, b ∈ R, a < b}.

Then R is the union of the members of the family B, since every real number x
is in some closed-open interval belonging to B. Again for [a, b), [c, d) ∈ B, their
intersection [a, b) ∩ [c, d) is either ∅ or in B, Because, for

a < c < b < d =⇒ [a, b) ∩ [c, d) = [c, b) ∈ B.

This asserts that the family Rl consisting of unions of closed-open intervals in R
form a topology for which B is a base. This topology Rl is called the lower-limit
topology on R.

Definition 3.4.8 (Upper-limit topology on R) Let B be the family of open-closed
intervals in R given by

B = {(a, b]: a, b ∈ R, a < b}.
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Then as before, B forms a base for a topology Ru on R, called the upper-limit
topology on R.

Example 3.4.9 Let B be the family of intervals in R given by

B = {(a, b): a, b ∈ R, a < b anda, b rational}.

Then B forms a base for a topology on R, which is countable, different from both
lower-limit topology and upper-limit topology on R.

Definition 3.4.10 (K-topology onR) LetK = {xn = 1
n }n∈N ⊂ R andB be the family

of all open intervals (a, b) in R together with the sets of the form (a, b) − K . Then
the topology RK generated by B as a base is called the K-topology on R.

Proposition 3.4.11 Each of the lower-limit topology Rl , upper-limit topology Ru

and the K-topology RK on R is strictly stronger than the natural (usual) topology
on R. Moreover, they are not comparable.

Proof For any x ∈ (a, b), the element x ∈ (a, c] ⊂ (a, b) and for any x ∈ [d , b) ⊂
(a, b), where x ≤ c < b and a < d ≤ x. On the other hand, if x ∈ (a, b], then there
is no open interval (z, t) such that x ∈ (d , t) ⊂ (a, b], for b = x. This asserts that
the upper-limit topology is strictly stronger than the usual topology on R. Similarly,
the lower limit topology is strictly stronger than the usual topology on R. Finally,
the K-topology is strictly stronger than the usual topology on R, because, given
x ∈ (a, b), the same interval (a, b) is a basic set for theK-topology that contains the
point x. But corresponding to the basic set B = (−1.1) − K for the topologyRK and
the point 0 ∈ B, there exists no interval such that it contains 0 and wholly lies in B.
The last part follows from the respective definitions. �

Example 3.4.12 The setR (with natural ordering) endowedwith the natural or usual
topology σ is the real line space. On the other hand, the setR endowedwith the lower-
limit topology σl (or Rl) is called the Sorgenfrey line space. This space has some
special properties discussed in subsequent chapters and is referred throughout the
book. For Sorgenfrey plane (R2, σ ); see Example 3.12.9.

3.4.2 Order Topologies on Q and Z

This subsection studies the lower-limit topology and the upper-limit topology on Q
and Z defined in a way analogous to these topologies defined on R (see Sect. 3.4.1).

Example 3.4.13 In each of the ordered sets R, Q, and Z with natural ordering, there
are neither a greatest element nor a least element. Hence for each of them, there exist

(i) the usual topology or the natural topology;
(ii) the lower-limit topology;
(iii) the upper-limit topology.
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Proposition 3.4.14 (i) The usual topology, lower-limit topology and upper-limit
topology are identical on Z.

(ii) The lower-limit topology and upper-limit topology on Q are strictly stronger
than the usual topology on Q,

Proof (i) Since

(x, y) = (x, y − 1] = [x + 1, y), ∀ x, y ∈ Z,

it asserts (i).
(ii) Similar to Proposition 3.4.11.

�

3.4.3 Ordinal Space

This subsection defines ordinal topology on the set of all ordinal numbers by using
the concept of order topology. Let (X ,<) be a well-ordered set; i.e., every nonempty
subset of X has a first element. Its order type is called an ordinal number (see Chap.
1).

Definition 3.4.15 Given an ordinal number α, let [0, α] be the set of all ordinal
numbers less than or equal to α. The set [0, α] endowed with the order topology τ

is called the closed ordinal space.

Example 3.4.16 The order topology τ of the ordinal space [0, α] is generated by a
base consisting of all sets

B = (β, δ + 1) = (β, δ] = {x: x ∈ (β, δ]} = {x: β < x < δ + 1},

where β, δ + 1 ∈ [0, α]. It asserts that [β, δ) is an open set in τ iff either β = 0 or β

has an immediate predecessor.

3.5 Lattice of Topologies

This section is a continuation of Sect. 3.1.3 with a basic result that the family of all
topologies defined on a nonempty set forms a complete lattice under the weaker or
stronger relations between two topologies. Themotivation of the lattice of topologies
comes from the Propositions 3.5.1, 3.5.4 and 3.5.7. The main result of this section
is the Theorem 3.5.8 which asserts that the family of all topologies defined on a
nonempty set forms a complete lattice.

Proposition 3.5.1 Let X be a nonempty set and� be the set of all topologies defined
on the same set X .
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(i) Let ρw be the relation on � of being a topology τ to be weaker than a topology
σ on X . Then (�, ρw) is a partially ordered set.

(ii) Let ρs be the relation on� of being a topology τ to be stronger than a topology
σ on X . Then (�, ρs) is also a partially ordered set.

Proof Since the relation ρw on� is reflexive, transitive and antisymmetric, it follows
that (�, ρw) is a partially ordered set. Similarly, since the relation ρs is reflexive,
transitive and antisymmetric, it follows that (�, ρs) is also a partially ordered set.�
Definition 3.5.2 A partially ordered set X is said to be a

(i) lattice if every pair of elements in X has both the lub and glb in X;
(ii) complete lattice if every nonempty collection of elements in X has both the

lub and glb in X.

Example 3.5.3 Consider the set N partially ordered by divisibility relation. Under
this relation, N is a partial ordered set for which the lub is the least common multiple
(lcm) and the glb is the greatest common divisor (gcd).

Proposition 3.5.4 Let�be the set of all topologies definedonagiven setX ,partially
ordered by ρw and {τi: i ∈ A} be any of its subfamily. Then their intersection also
forms a topology on X such that it is the glb of this family of topologies.

Proof Let X be a nonempty set and {τi: i ∈ A} be a family of topologies on X and
τ = ⋂{τi: i ∈ A}. Since ∅ and X are in each τi, it follows that ∅ and X are also in
τ . Let U,V ∈ τ . Then they are in each τi. Hence, it follows that their intersection
U ∩ V ∈ τ . Again, let {Vi} be any subfamily of τ . Then Vi ∈ τi for each i, and hence
their union

⋃{Vi} is in each τi. It shows that it is also in τ . Consequently, τ forms
a topology on X . Finally, to show that τ is the glb of the family {τi: i ∈ A}, let σ be
a topology weaker than every topology τi. Then σ ⊂ τi, ∀ i ∈ A and hence σ ⊂ τ .
This asserts that τ is the glb of the family {τi: i ∈ A} of topologies. This shows
that there exists glb of any given subfamily of topologies on X partially ordered
by ρw. �
Corollary 3.5.5 Let X be a nonempty set and � be the set of all topologies defined
on X . Then there exists a glb of any subfamily of this family �.

Proof It follows from Proposition 3.5.4. �
Example 3.5.6 Let {τi: i ∈ A} be a family of topologies on X . Then their union⋃{τi: i ∈ A} may not be a topology on X . On the other hand, the family of all
topologies defined on a nonempty set forms a complete lattice by Theorem 3.5.8.

Proposition 3.5.7 Let � be the set of all topologies defined on a given set X and
{τi: i ∈ A} be any of its subfamily. Then there exists lub of this subfamily.

Proof Let σ be the topology on X generated by the subbase B, formed by ∅,X and
all those subsets of X which are contained in all the topologies belonging in the
subfamily {τi: i ∈ A}. Then it follows by Theorem 3.2.29 that σ is the lub of this
subfamily {τi: i ∈ A}. �
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The above discussion is summarized in the following basic and important result.

Theorem 3.5.8 The family of all topologies defined on a nonempty set forms a
complete lattice under the both weaker and stronger relations between topologies
on this family.

3.6 Continuous Maps

This section addresses the concept of continuous maps or functions between topo-
logical spaces. It is the central basic concept of topology, and its workable definition
is given in Definition 3.6.1, even in the absence of a metric structure. For metric
spaces, this concept is given with the help of distance functions but this notion is
generalized for arbitrary topological spaces by using the concept of open sets in
this section. Topological spaces and their continuous maps are the basic topics for
the study of the subject “Topology.” The concept of a homeomorphism, which is a
special type of continuity, plays a key role for classification of topological spaces, is
studied in Sect. 3.7.

3.6.1 Problems Leading to Continuous Functions

To extend the study of continuous functions in Rn for abstract sets , it is necessary
to endow some topology on them making them topological spaces. This subsection
discusses three types of problems on continuity of functions in topology, which we
encounter frequently.

(i) Given a map f :X → Y between two topological spaces X and Y , how can we
examine whether f is continuous or not?

(ii) Given a map f :X → Y from a topological space X to a nonempty set Y , how
can we endow Y with a topology so that f is continuous?

(iii) Given a map f :X → Y from a nonempty set X to a topological space Y , how
can we endow X with a topology so that f is continuous?

3.6.2 Continuous Functions: Introductory Concepts

This subsection studies continuity of maps or functions in topological settings.
Although most of the spaces of our interest are metric spaces or can be endowed
with metrics, where continuity is defined by metrics (see Chap. 2), but there are
some important spaces where there is no concept of a metric. Continuity of functions
on such spaces is formulated by using the concepts of open or closed sets in Defini-
tion 3.6.1 and in Theorem 3.6.7. The motivating example for the study of continuity
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is the continuity of a real function f : R → R. In analysis, its continuity is studied
by using “ε − δ” method or in terms of limits. But in topological setting, there is
a third definition of continuity of a function in the language of open sets given in
Definition 3.6.1 and all these three definitions are equivalent.

Definition 3.6.1 Let (X , τ ) and (Y , σ ) be two topological spaces. A function
f :X → Y is said to be continuous if f −1(U ) ⊂ X is an open set in X for every
open set U in Y .

Example 3.6.2 Let (X , τ ) and (Y , σ ) be two topological spaces. Then

(i) the constant function c:X → Y , y �→ y0 ∈ Y is continuous;
(ii) the identity function 1X :X → X , x �→ x is continuous; and
(iii) the map f : (0, 2π) → R2, x �→ (sin x, sin 2x) is continuous under usual

topology for this particular choice of (X , τ ) and (Y , σ ).

Example 3.6.3 If the condition prescribed inDefinition 3.6.1 fails for some function,
then the function cannot be continuous. For example, consider any function f : R →
R on the real-line space R, which fails to satisfy the condition of Definition 3.6.1.
Then there exists an open setU in R such that f −1(U ) in not an open set in R. Then
there exists a point p ∈ f −1(U ) such that there is no interval (a, b) ⊂ R with the
property that

p ∈ (a, b) ⊂ f −1(U )

Then it follows that f is is not continuous at p.

Remark 3.6.4 Definition 3.6.1 gives a partial answer of the problem (i) raised inSect.
3.6.1. To solve problem (ii) raised in the same subsection, it is necessary that given a
topology τ = {U } on X , a topology σ is to be endowed on Y , by declaring a subset V
of Y to be open in Y , i.e., V ∈ σ iff f −1(V ) = U ∈ τ . Then the collection {V } forms
the topology σ on Y . It is largest topology on Y such that themap f : (X , τ ) → (Y , σ )

is continuous by Proposition 3.6.5. The topology τf defined in Proposition 3.6.5
solves the problem (ii) posed in Sect. 3.6.1.

Proposition 3.6.5 Let (X , τ ) be a topological space and Y be a nonempty arbitrary
set. Given a map f :X → Y , the family

τf = {V ⊂ Y : f −1(V ) ∈ τ }

of subsets of Y forms a topology on Y , which is the strongest (largest) topology on
Y such that the map f : (X , τ ) → (Y , τf ) is continuous.

Proof Clearly, τf forms a topology on Y such that the map

f : (X , τ ) → (Y , τf )
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is continuous by Definition 3.6.1. To prove that τf is the strongest (largest) topology
on Y such that the map f : (X , τ ) → (Y , τf ) is continuous, let σ be a topology on Y
such that the given map

f : (X , τ ) → (Y , σ )

is continuous. Let U ∈ σ be an arbitrary open set in (Y , σ ). Then by continuity of
f , it follows that f −1(U ) ∈ τ and hence U ∈ τf . This implies that σ ⊂ τf .

�

Definition 3.6.6 The topology τf given in Proposition 3.6.5 is called the topology
induced on Y by themap f :X → Y from the topological space (X , τ ) to a nonempty
set Y .

The concept of continuity can also be equally well formulated by closed sets
in topological settings in Definition 3.6.8 by utilizing Theorem 3.6.7 .

Theorem 3.6.7 Let (X , τ ) and (Y , σ ) be two topological spaces. A map f :X → Y
is continuous iff f −1(A) ⊂ X is a closed set in X for every closed set A in Y .

Proof Let f :X → Y be continuous and A be an arbitrary closed set in Y . Then
Y − A is open set in Y . Hence by continuity of f , its inverse f −1(Y − A) is an open
set in X . Since f −1(Y − A) = X − f −1(A), which is an open set, it follows that
f −1(A) is a closed set in X . Conversely, let f −1(A) be a closed set in X for every
closed set A in Y and V be an open set in Y , then Y −U is closed in Y and hence
f −1(Y − V ) = X − f −1(V ) is a closed set in X . This asserts that f −1(V ) is an open
set in X , and hence, f is continuous.

�

Definition 3.6.8 Let (X , τ ) and (Y , σ ) be two topological spaces. A map f :X → Y
is said to be continuous if

f −1(V ) ⊂ X

is a closed set in X for every closed set V in Y .

Remark 3.6.9 To solve problem (iii) raised in Sect. 3.6.1, it is necessary that given
a map f : X → Y and a topology σ = {V } on Y , a topology τ is to be endowed on
X , by declaring a subset U of X to be open in X , if U = f −1(V ) for some open
set V ∈ σ. Then the collection {U } forms a topology τ on X , which is the smallest
topology on X such that the map (X , τ ) → (Y , σ ) is continuous.

The topology σf defined in Proposition 3.6.10 solves the problem (iii) posed in
Sect. 3.6.1. Its immediate applications are given in Sect. 3.16

Proposition 3.6.10 Let X be a nonempty arbitrary set and (Y , σ ) be a topological
space. Given a map f :X → Y , the topology

σf = {U } = {f −1(V ), ∀V ∈ σ }
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is the weakest (smallest) topology on X such that the function f : (X , σf ) → (Y , σ )

is continuous.

Proof Proceed as in Proposition 3.6.5 . �

Definition 3.6.11 The topology σf given in Proposition 3.6.10 is called the topology
on X induced by the function f :X → Y from the nonempty set X to the topological
space (Y , σ ).

Remark 3.6.12 The classical “ε − δ” definition of continuity in analysis has no
generalization in an arbitrary topological spaces unless there is a concept of a distance
function, which a metric space carries. But its equivalent formulations are available
in arbitrary topological spaces (see Exercise 12 of Sect. 3.20). Any one of them may
be taken as a definition of continuity.

Theorem 3.6.13 The composite of two continuous maps is also continuous (in topo-
logical settings).

Proof Let (X , τ ), (Y , σ ) and (Z, ρ) be three topological spaces. If f : (X , τ ) →
(Y , σ ) and g: (Y , σ ) → (Z, ρ) are two continuous maps, then their composite map

g ◦ f : (X , τ ) → (Z, ρ), x �→ g(f (x))

is also continuous. Because, given an open set W in (Z, ρ), its inverse image (g ◦
f )−1(W ) = f −1(g−1(W )) is such that g−1(W )) is open in (Y , σ ) by continuity of g.
Hence, (g ◦ f )−1(W ) is open in (X , τ ) by continuity of f . This asserts that g ◦ f is
continuous.

�

3.6.3 Neighborhoods and Continuity at a Point

The intuitive idea of smallness of a nbd of a point in a topological space is reflected
though the concept of local base at the point, which plays a convenient role in the
study of continuity of functions (maps). A nbd is not necessarily an open set and the
idea of smallness of a nbd dictates that the entire space need not be taken as a nbd
of any of its points.

Definition 3.6.14 Let (X , τ ) and (Y , σ ) be two topological spaces. Then a function
f :X → Y is said to be continuous at a point x ∈ X , if given any nbd Nf (x) in Y , there
is a nbd Nx of x in X such that

f (Nx) ⊂ Nf (x).

Remark 3.6.15 As f (f −1(Nf (x))) ⊂ Nf (x), to prove the continuity of function f :X →
Y between topological spaces at a point x ∈ X , it is sufficient to show that given any
nbd Nf (x) in Y belonging to some local base at f (x), there is a nbd f −1(Nf (x)) of
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x in X . The equivalence of the two definitions of continuity of functions by open
sets given in Definition 3.6.1 and nbds given in Definition 3.6.14 is established in
Theorem 3.6.16.

Theorem 3.6.16 Let (X , τ ) and (Y , σ ) be two topological spaces. Then a function
f :X → Y is continuous iff it is continuous at every point x ∈ X .

Proof Let f :X → Y be continuous byDefinition 3.6.1.We claim that f is continuous
at every point x ∈ X . By continuity of f , it follows that f −1(V ) is an open set in X for
every open set V in Y . Let Nf (x) be an arbitrary nbd of f (x) in Y . Then by definition
of nbd, there is an open set V in Y such that

f (x) ∈ V ⊂ Nf (x).

This asserts that x ∈ f −1(V ) ⊂ f −1(Nf (x)). Since f −1(V ) is an open set in X , it
follows that f −1(Nf (x)) is a nbd of x in X. This asserts by Definition 3.6.14 and
Remark 3.6.15 that f is continuous at the point x. Conversely, let f :X → Y be
continuous at every point x ∈ X and V be an arbitrary open set in Y . Then for every
point x ∈ f −1(V ) ⊂ X , the subset f −1(V ) is a nbd of x in X . This asserts that there
is an open set Ux in X such that

x ∈ Ux ⊂ f −1(V ).

This shows that ⋃

x∈f −1(V )

{x} ⊂
⋃

x∈X
Ux ⊂ f −1(V )

and hence f −1(V ) = ⋃
x∈X Ux is an open set in X implies that f −1(V ) is an open

set in X . Since V is an arbitrary open set in Y , it follows that f is continuous by
Definition 3.6.1. �

3.6.4 Pasting or Gluing Lemma

This section studies Pasting or Gluing Lemma, which is an important result used
throughout the present book series in proving continuity of a certain class of maps.
For example, this lemma is used to define product path of paths (see Definition
3.6.22).

Lemma 3.6.17 (Pasting orGluingLemma) LetX be a topological space andA,Bbe
closed subsets in X such that X = A ∪ B. Given a topological space Y , if f1:A → Y
and f2:B → Y are continuous maps such that f1(x) = f2(x), ∀ x ∈ A ∩ B, then the
map

f :X → Y , x �→
{
f1(x), if x ∈ A

f2(x), if x ∈ B

is continuous.
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Proof Themap f :X → Y defined in this lemma is thewell-defined uniquemap such
that f |A = f1 and f |B = f2. We show that f is continuous. Let K be a closed set in
Y . Then f −1(K) = (A ∪ B) ∩ f −1(K) = (A ∩ f −1(K)) ∪ (B ∩ f −1(K)) = f −1

1 (K) ∪
f −1
2 (K). Since each of f1 and f2 is continuous, f

−1
1 (K) and f −1

2 (K) are both closed in
X . This implies that f −1(K) being the union of two closed set is closed in X . This
asserts that f is continuous. �

Remark 3.6.18 Geometrically, the map f defined in Lemma 3.6.17 is obtained by
“gluing” f1 and f2 together along their common domain A ∩ B. For its immediate
application see Sect. 3.6.5.

A generalization of the Pasting Lemma 3.6.17 is given in Proposition 3.6.19.

Lemma 3.6.19 (Generalized Pasting or Gluing Lemma) Let X be topological space
such that it is a finite union of closed subsets Xi, i.e., X = ⋃n

i=1 Xi. For a given
topological space Y , if there are continuous maps fi:Xi → Y such that fi|Xi∩Xj =
fj|Xi∩Xj , ∀ i, j (i.e., they agree on their common domain), then ∃ a unique continuous
map f :X → Y with the property that f |Xi = fi, ∀ i.

Proof Proceed as in Lemma 3.6.17. �

3.6.5 Path in a Topological Space

This subsection continues the study of continuous functions through a study of paths
in an arbitrary topological space. For more study of paths and loops,Basic Topology,
Volume 3 of the present book series is referred.

Definition 3.6.20 (Path) Let I = [0, 1] be the unit closed interval with subspace
topology inherited from the usual topology on R. Given a topological space (X , τ ),

a continuous map α : I → X is said to be a path in X . If α(0) = x0 and α(1) = x1,
then it is said to be a path in X from the point x0 to the point x1. The points x0, x1 ∈ X
are called the initial point and the terminal point of the path α, respectively. It is said
to be a loop in X based at the point x0 ∈ X if α(0) = x0 = α(1).

Example 3.6.21 Given twopoints x0, x1 ∈ R2, themapα: I → R2, t �→ (1 − t)x0 +
tx1 is a path in R2 from x0 to x1. On the other hand, the map β: I → R2, t �→
tx0 + (1 − t)x1 is a path in R2 from x1 to x0, called the reverse path of α in R2.

Definition 3.6.22 (Product-path) Let f1 and f2 be two paths in a topological space
(X , τ ) such that the terminal point of f1 is the same as the initial point of the path f2,
i.e., f1(1) = f2(0). Then their product path f1 ∗ f2: I → X is defined by
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(f1 ∗ f2)(t) =
{
f1(2t), 0 ≤ t ≤ 1/2

f2(2t − 1), 1/2 ≤ t ≤ 1
(3.1)

The map f1 ∗ f2: I → X is continuous, since it is well-defined by the defining
condition that f1(1) = f2(0) and is continuous by pasting Lemma 3.6.17. It is called
the product of the paths f1 and f2 or their product path. Here, take A = [0, 1

2 ] and
B = [ 12 , 1]. Then X = I = A ∪ B and f1, f2 agree with A ∩ B = {t = 1

2 }. Product of
two loops in X at a point x0 ∈ X is defined in an analogous way.

3.6.6 Open and Closed Maps

This subsection conveys the concepts of open and closedmaps for topological spaces,
which are used throughout the book. For example, they are used in Proposition 3.7.4
and in Proposition 3.16.8 to ascertain a homeomorphism or an identification map.
An open map is characterized by interior operator and a closed map is characterized
by closure operator in Theorem 3.6.31.

Definition 3.6.23 Let (X , τ ) and (Y , σ ) be topological spaces. A map f : (X , τ ) →
(Y , σ ) is said to be

(i) open if f sends every open set U ∈ τ to the open set f (U ) ∈ σ ;
(ii) closed if f sends every closed set K in (X , τ ) to the closed set f (K) in (Y , σ ).

Remark 3.6.24 The concepts of continuity, closeness and openness of a map
between topological spaces are independent of each other. In support see Exam-
ples 3.6.25–3.6.30.

Example 3.6.25 A continuous map may be neither open nor closed. For example,

(i) let (R, τ ) be the spaceR with the discrete topology τ and (R, σ ) be the real line
spacewith usual topologyσ . Then the identitymap f : (R, τ ) → (R, σ ), x �→ x
is continuous. But it is nether open nor nor closed. Because its inverse map
f −1: (R, σ ) → (R, τ ), x �→ x is not continuous, and hence, it is neither open
nor nor closed by Proposition 3.7.4.

(ii) in the real line space R, the map the map f : R → R, x �→ ex cos x is contin-
uous, but f is not open, because f (−∞, 0) is not open in R. It is not closed,
because, for S = {−tπ : t ∈ R}, its image f (S) = {ex cos x: x = −tπ, t ∈ R}
is not closed in R.

Example 3.6.26 An open and closed map may not be continuous. For example,

(i) let (R, τ ) be the spaceR with the discrete topology τ and (R, σ ) be the real line
spacewith usual topologyσ . Then the identitymap f : (R, σ ) → (R, τ ), x �→ x
is not continuous. But it is both open and closed by Proposition 3.7.4, since
f −1 is continuous.
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(ii) for the unit circle S1 = {(x, y) ∈ R2: x2 + y2 = 1} with subspace topology
inherited from the usual topology on R2 and the space A = [0, 2π) with the
topology inherited from the usual topology on R, the map

f : S1 → A, (x, y) �→ α, where x = cosα, y = sin α, and α ∈ A

is both open and closed but it is not continuous at the point (1, 0) ∈ S1.

Example 3.6.27 An open map may be neither continuous nor closed. For example,
let τ be the topology on R2 consisting of the emptyset ∅ and the complements
of countable sets in R2 and σ be the topology on R consisting of the emptyset ∅
and the complements of finite sets in R. Then the projection map p1: (R2, τ ) →
(R, σ ), (x, y) → x is open but it is neither closed nor continuous.

Example 3.6.28 A continuous and open map may not be closed. For example,
let (R, σ ) be real line spacewith usual topologyσ and (R2, σ2) be theEuclidean plane
space with Euclidean topology σ2. Then the projection lap p1: R2 → R, (x, y) → x
is continuous and open but it is not closed.

Example 3.6.29 A continuous and closed map may not be open. For example,
let X = [0, 2] = Y be endowed with the subspace topology inherited from the usual
topology on R. Then the map

f :X → Y , x �→
{
0, if 0 ≤ x ≤ 1
x − 1, if 1 < x ≤ 2

is closed and continuous. Moreover, X and Y are compact metric spaces. But the
map f is not open, because, f (0, 1), the image of the open set (0, 1) in X under f is
not open in Y .

Example 3.6.30 A closed map may be neither continuous nor open. For example,
for the unit circle S1 = {(x, y) ∈ R2: x2 + y2 = 1} with subspace topology inherited
from the usual topology on R2 and the space A = [0, 2π)with the topology inherited
from the usual topology on R. Then the map

f : S1 → A, (cosα, sin α) �→
{
0, if α ∈ [0, π ]
α − π, if α ∈ (0, 2π)

is closed but it is neither open nor continuous.

Theorem 3.6.31 characterizes open maps by interior operator and closed maps by
closure operator.

Theorem 3.6.31 Let (X , τ ), (Y , σ ) be two topological spaces and A ⊂ X be an
arbitrary subset. Then a map f : (X , τ ) → (Y , σ ) is

(i) open iff
f (Int(A)) ⊂ Int(f (A))for all subsets A of X.
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(ii) closed iff
f (A) ⊂ f (A)for all subsets A of X.

Proof (i) Let f satisfy the condition: f (Int(A)) ⊂ Int(f (A)), ∀ subsetsA ⊂ X and
U be an open set in (X , τ ). Then

f (U ) = f (Int(U )) ⊂ Int(f (U ))by hypothesis =⇒ f (U ) = Int(f (U )).

This shows that f (U ) is an open set in (Y , σ ). It asserts that f is an open map.
Conversely, let f be an openmap andA be an arbitrary subset ofX . Since Int(A)

is an open set in (X , τ ), Int(A) ⊂ A and f is open by hypothesis, it follows that

f (Int(A)) = Int(f (Int(f (A)))) ⊂ Int(f (A)), because, f (Int(A)) ⊂ f (A).

(ii) Proceed as in (i).
�

3.6.7 Lebesgue Sets of a Continuous Function

This subsection defines Lebesque sets of a continuous function f : Rn → R and their
basic properties. For more study on Lebesque sets of a continuous function, see
Exercise 9 of Sect. 3.20 and for its generalization see Chap. 6.

Definition 3.6.32 Let f : Rn → R be a continuous function and r be any real number.
Then the sets

Xr = {x ∈ Rn: f (x) < r} ⊂ Rn;

Yr = {x ∈ Rn: f (x) ≤ r} ⊂ Rn;

and

Zr = {x ∈ Rn: f (x) = r} ⊂ Rn

are called Lebesque sets of the function f corresponding to r.
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Proposition 3.6.33 Let f : Rn → R be a continuous function and r be any real num-
ber. Then the Lebesque sets have the following properties:

(i) Xr is open;
(ii) Yr is closed;
(iii) Zr is closed;
(iv) X r ⊂ Yr.

Proof Left as an exercise. �

3.7 Homeomorphism, Topological Embedding, Topological
Property and Topological Invariant

This section continues the study of Sect. 3.6 and discusses the problems on homeo-
morphism, topological embedding, topological properties and topological invariants.
The concept of homeomorphism is a basic tool used to determine the equivalence
of topological spaces. One of the main problems of topology is the classification of
topological spaces up to homeomorphism, like classification of groups in algebra
up to isomorphism. For such classification of topological spaces, the concept of a
homeomorphism is essential. A homeomorphism in topology is a bijective map that
preserves topological structures involved and is analogous to the concept of an iso-
morphism between algebraic objects such as groups or rings, which is also a bijective
map that preserves the algebraic structures involved.

3.7.1 Problems Leading to Homeomorphism

The main aim of topology is to ascertain whether two given topological spaces are
identical or different from the topological viewpoint. So, it needs define equivalence
of topological spaces like congruence of figures in school geometry. Two figures
in topology are said to be equivalent if one figure is obtained from the other by a
continuous deformation (see Basic Topology, Volume 3) of the present series of
books, which presents the qualitative properties of geometric figures .To understand
this meaning, we consider a sphere to be a rubber balloon. It can be stretched and
shrunk without torning it or gluing any two distinct points together in any manner.
Each of such transformations is called a homeomorphism, and the geometric objects
obtained by homeomorphism are called homeomorphic to each other. The qualitative
properties of geometric figures are conventionally called topological properties (see
Sect. 3.7.4). On the other hand, characteristics shared by homeomorphic spaces are
called topological invariants (see Sect. 3.7.5).
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3.7.2 Homeomorphism

This subsection starts with a formal definition of a homeomorphism and illustrates
this concept with several examples. The subject topology is also called a qualitative
geometry in the sense that if one geometric object is continuously deformed into
another, then the two objects are said to topologically same and each such trans-
formations is called a homeomorphism and the geometric objects obtained by a
homeomorphism are called homeomorphic to each other. For example, the quali-
tative property distinguishes the circle from the figure-eight curve (formed by two
circles touching at a single point), because the number of connected pieces are dif-
ferent after deletion of any single point from the circle and deletion of the point of
contact from the figure-eight curve, and hence, the circle and figure-eight curve can
not be homeomorphic. Definition 3.7.1 formulates the concept of a homeomorphism.

Definition 3.7.1 Let (X , τ ) and (Y , σ ) be two topological spaces. Then a continu-
ous map f :X → Y is said to be a homeomorphism if f is bijective and f −1:Y → X
is also continuous. If f is a homeomorphism, then X and Y are said to be home-
omorphic spaces abbreviated X ≈ Y . Its equivalent definitions are available in
Proposition 3.7.4 and in Exercise 13 of Sect. 3.20.

Example 3.7.2 (i) In R2 with usual topology, a circle and a square are homeo-
morphic.

(ii) The real line space R and the open interval (0, 1) with subspace topology
inherited from the usual topology on R are homeomorphic.

(iii) The open ballB = {x = (x1, x2) ∈ R2: ‖x‖ < 1} is homeomorphic to thewhole
plane R2.

(iv) For more examples, see Example 3.7.6.

Example 3.7.3 The continuity of a bijective map can not guarantee the continuity
of its inverse. To solve such a problem, a search is made to establish a necessary and
sufficient condition under which a continuous bijective map will have its continuous
inverse. More precisely, let X and Y be topological spaces. The inverse map f −1 of
a bijective map f :X → Y always exists but it may not be a homeomorphism. For
example,

(i) let R be the set of real numbers with usual topology σ and R be the same set
with discrete topology τ or the lower-limit topology σl . Then the identity map
f : (R, σ ) → (R, σl), x �→ x is a bijection but it is not a homeomorphism;

(ii) let (R, σ ) be the topological spaceR endowedwith usual topology τ and (R, τ )

be the topological space endowed with discrete topology τ, then the identity
map f : (R, τ ) → (R, σ ), x �→ x is a bijection and continuous but its inverse
is not continuous.

Proposition 3.7.4 gives a necessary and sufficient condition under which a contin-
uous bijective map has its continuous inverse, which solves the problem appearing
in Example 3.7.3.
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Proposition 3.7.4 Let (X , τ ) and (Y , σ ) be two topological spaces. If f : (X , τ ) →
(Y , σ ) is a continuous bijective map, then the following statements are equivalent:

(i) f −1 is continuous;
(ii) f :X → Y is open;
(iii) f :X → Y is closed.

Proof It follows from the definition of continuity of a map, definitions of open and
closed maps. �

Corollary 3.7.5 Let (X , τ ) and (Y , σ ) be two topological spaces. A continuous
bijective map f : (X , τ ) → (Y , σ ) is a homeomorphism if it satisfies any one of the
equivalent conditions prescribed in Proposition 3.7.4.

Example 3.7.6 (i) The map f : (0, 2π) → R2, x �→ (sin x, sin 2x) is continuous
and bijective but f −1 is not continuous.

(ii) A homeomorphism f : (0, 1) → R cannot be extended over I = [0, 1].
(iii) The open square A = {(x, y) ∈ R2: 0 < 〈x, y〉 < 1} is homeomorphic to the

open ball B = {x = (x1, x2) ∈ R2: ‖x‖ < 1}.
(iv) The cone A = {(x, y, z) ∈ R3: x2 + y2 = z2, z > 0} is homeomorphic to the

plane R2.
(v) Let Sn be the n-sphere defined by Sn = {x ∈ Rn+1 : ‖x‖ = 1, n ≥ 1}, N =

(0, 0, . . . , 1) ∈ Rn+1 be the north pole of Sn and S = (0, 0, . . . ,−1) ∈ Rn+1

be the south pole of Sn. Then

(a) Sn − S is homeomorphic to Sn − N ;
(b) The standard homeomorphism

f : Sn − N → Rn

is called the stereographic projection. Its precise expression is the home-
omorphism

f : Sn − N → Rn, x �→ 1

1 − xn+1
(x1, x2, . . . , xn),

∀ x = (x1, x2, . . . , xn+1) ∈ Sn − N .

For every point P ≡ (x1, x2, , xn+1) ∈ Sn − N , its image point f (P) is
the unique point P′ ≡ 1

1−xn+1
(x1, x2, . . . , xn) ∈ Rn. Clearly, f (x) = x iff

x ∈ Sn−1 (equator).The stereographic projection f is geometrically rep-
resented in Fig. 3.1

(vi) A circle minus a point is homeomorphic to a line segment, and a closed arc is
homeomorphic to a closed line segment.
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Fig. 3.1 Stereographic projection from north point

Example 3.7.7 Analogue of Schroeder–Bernstein theorem does not exist in
Topology. For example, consider the subspaces X = (0, 1) and Y = [0, 1] in the
real line space (R, σ ) with usual topology σ . Then the subspaces A = [1/4, 3/4]
and B = (1/2, 2/3) are such that X is homeomorphic to B and Y is homeomorphic
to A. But X and Y are not homeomorphic (see Chap. 5). This shows that an ana-
logue of Schroeder–Bernstein theorem (see Chap. 1) for bijections does not hold for
homeomorphisms.

Remark 3.7.8 Just after the concept of homeomorphisms is clearly defined, the
subject of topology begins to study those properties of geometric figures which
are preserved by homeomorphisms with an eye to classify topological spaces up to
homeomorphism, which stands the ultimate problem in topology, where a geometric
figure is considered to be a point set in the Euclidean space Rn. But this undertak-
ing becomes hopeless, when there exists no homeomorphism between two given
topological spaces.

(i) The concept of topological property (see Definition 3.7.15) such as compact-
ness and connectedness introduced in general topology, solves this problem in
a very few cases which is studied in Basic Topology, Volume 1. A study of
the subspaces of the Euclidean plane R2 gives an obvious example.

(ii) On the other hand, the subject Algebraic Topology (studied in Basic Topology,
Volumes III) was born to solve the problems of impossibility in many cases
with a shift of the problem by associating invariant objects in the sense that
homeomorphic spaces have the same object (up to equivalence). Initially, these
objects were integers and subsequent research reveals that more fruitful and
interesting results can be obtained from the algebraic invariant structures such
as groups and rings. For example, homology and homotopy groups are very
important algebraic invariants which provide strong tools to study the structure
of topological spaces.
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3.7.3 Embedding of Topological Spaces

This subsection conveys the concept of an embedding of topological spaces and
illustrates this concept by examples. An embedding is a homeomorphism from a
topological space onto its image space and is a very important concept in topology.

Definition 3.7.9 A topological space (X , τ ) is said to be embedded in a topological
space (Y , σ ) if there exists a homeomorphism from X onto a subspace of Y . An
injective continuous map f :X → Y between topological spaces is said to be an
embedding, if

f :X → f (X ) ⊂ Y

is a homeomorphism, i.e., if f is a homeomorphism from a topological space onto
its image space. By an embedding f :X → Y , the space X may be considered as a
subspace of Y .

Example 3.7.10 Let X and Y be topological space and y0 ∈ Y be a fixed point. Then
the map f :X → X × Y , x �→ (x, y0) is an embedding.

Example 3.7.11 Let (R, σ ) be the real line space with usual topology σ . Since it
is homeomorphic to any open interval (a, b) with a < b in R, it follows that the
topological space (a, b) with relative topology induced on (a, b) by σ is embedded
in (R, σ ). The real line space (R, σ ) is also embedded to its every open interval
(a, b) with relative topology induced by σ on (a, b).

Definition 3.7.12 An embedding f : S1 → R2 of the circle S1 in R2 is said to be a
Jordan curve.

Definition 3.7.13 An embedding f : S1 → R3 of the circle S1 in R3 is said to be a
knot.

Remark 3.7.14 Jordan curve and knot are studied in Basic Topology: Volume 3 of
the present book series.

3.7.4 Topological Property

This subsection is a continuation of the study of homeomorphism and conveys the
concept of topological property which is a property shared by homeomorphic spaces,
i.e., a property which is preserved by every homeomorphism. To make it precise, let
(X , τ ) and (Y , σ ) be two topological spaces. For a homeomorphism f :X → Y , both
f and f −1 are continuous means that f sends not only the points of X to the points of
Y in a (1–1)manner, but f also sends the open sets ofX to the open sets of Y in a (1–1)
manner. This asserts that two homeomorphic spaces differ only in the nature of their
points but they are same from the topological viewpoint in the sense that if X and Y
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are homeomorphic spaces, then a topological property enjoyed by X is also enjoyed
byY and conversely. This implies that if any property ofX is expressed completely by
the open sets of X , then Y has also the corresponding property. This correspondence
leads to the concept of a topological property in Definition 3.7.15. Thus, if X ≈ Y ,

then any topological property enjoyed by X is also enjoyed by Y and conversely.
For example, Proposition 3.8.26 asserts that metrizability is a topological property.
For other powerful topological properties, consider a homeomorphism f :X → Y .
Then X is compact (or connected) iff Y is compact (or connected) (see Chap. 2 for
metric spaces andChap. 5 for topological spaces), which shows that compactness and
connectedness are both topological properties. The concept of topological property is
very useful to solve classification problems of topological spaces. Historically, C.
F. Klein (1849–1925 defined in his Analysis Situs in 1872, now called topology as the
geometry whose basic aim is to study topological properties. Topology presents the
qualitative properties of geometric figures. The qualitative properties of geometric
figures are conventionally called topological properties.

Definition 3.7.15 A topological property of a topological space X is a property
of X which when possessed by X is also possessed by every topological space
homeomorphic to X , i.e., a property of a topological space X which is preserved by
any homeomorphic image of X is said to a topological property of X .

Example 3.7.16 The properties of a set of being open or closed in a topological
space are topological properties.

Example 3.7.17 Metrizability of a topological space is a topological property (see
Proposition 3.8.26)

Example 3.7.18 Completeness of a metric space is not a topological property1. For
example, consider the following examples.

(i) Consider R with usual metric and its open interval (−1, 1). The sequence
{xn: xn = 1 − 1/n} is a Cauchy sequence in (−1, 1) but it does not converge in
(−1, 1), which shows that open interval (−1, 1) is not complete. On the other
hand, R is complete and it is homeomorphic to (−1, 1).

(ii) Consider the real line space R and its subspace (a, b) with the usual topology.
Both R and (a, b) are metric spaces with usual metrics, and they are also
homeomorphic. The space R is complete but (a, b) is not so (see Chap. 2).

(iii) Let X = (−∞,+∞) and Y = (0, 1)with subspace topology induced by usual
topology on R. The spaces X and Y are homeomorphic. X is complete but Y
is not so.

(iv) Consider themetric spacesX = (−π/2, π/2) ⊂ R and Y = R with usual met-
ric. Then the map f :X → Y , x �→ tan x is a homeomorphism from the topo-
logical spaces X to the topological space Y having the topology induced by
the their usual metric. As a metric space Y is complete, but X is not so.

Example 3.7.19 Connectedness, compactness, regularity, normality and paracom-
pactness (discussed in Chaps. 4 and 5) are topological properties. On the other hand,
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in Euclidean geometry, distance aswell as angles are not topological properties, since
they can be changed by suitable continuous deformations.

Remark 3.7.20 A common problem in topology is to decide whether two topo-
logical spaces are homeomorphic or not. To prove that two spaces are not homeo-
morphic, it is sufficient to find a topological property which is not shared by them.
This book studies several topological properties with their various applications. They
include first countability, second countability, separability, connectedness, regular-
ity, normality, compactness and paracompactness which are important topological
properties.

3.7.5 Topological Invariant with a Historical Note

This subsection continues the study of homomorphism through the concept of topo-
logical invariant, which plays a key role in classification problem of topological
spaces by converting a topological problem into an algebraic one for better chance
for solution. Characteristic which is shared by homeomorphic spaces is called a
topological invariant. The problem of attempting to show that given two topological
spaces are not homeomorphic is of separate nature. It is not possible to examine every
function between two spaces. The concept of topological invariants solvesmany such
problems. For example, the Euler characteristic invented by L. Euler (1703–1783)
in 1752 is an integral invariant, which distinguishes nonhomeomorphic spaces. The
search of other invariants has established connections between topology and modern
algebra in such a way that homeomorphic spaces have isomorphic algebraic struc-
tures (see Basic Topology, Volume 3) of the present series of books. Historically,
the concept of fundamental group and homology groups invented by Henri Poincaré
(1854–1912) in 1895 are the first powerful topological invariants in homotopy and
homology theorieswhich came from such a search.Hiswork explained the difference
between curves deformable to one another and curves bounding a larger space. The
first one led to the concepts of homotopy and fundamental group. The fundamental
group is one of the basic homotopy invariants. It is a very important invariant in
algebraic topology and is the first of a series of algebraic invariants πn associated
with a topological space with a base point. On the other hand, the second idea of
Poincaré led to the concept of homology theory. Both the homotopy and homology
theories are studied in Basic Topology, Volume 3 of the present series of books.

Definition 3.7.21 Characteristics of topological spaces which are shared by home-
omorphic spaces are called topological invariants in the sense that a characteristic
of a topological space is an invariant which is preserved by a homeomorphism.

Remark 3.7.22 Several topological invariants such as Euler characteristics, fun-
damental group, higher homotopy groups and homology groups, which are basic
topological invariants are studied in Basic Topology, Volume 3 of the present series
of books.
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3.8 Metric Topology and Metrizability
of Topological Spaces

This section conveys the concepts of metric topology andmetrizability of topological
spaces born through a specified topology defined on metric spaces by using distance
functions. Metrizable spaces provide a special class of topological spaces and carry
more structure than most of the topological spaces. A metrizable space is a certain
topological space such that it admits a metric which generates the original topology.
Theorem 3.8.23 characterizes metrizability of a topological space in terms of a con-
tinuous function. Moreover, Urysohnmetrizable theorem gives a sufficient condition
of metrizability of a topological space (see Chap. 7).

3.8.1 Metric Topology

This subsection continues a study of metric spaces and relates this study with a
special class of topological spaces by introducing a topology τd generated by the
metric d on the metric space (X , d). This topology plays a key role in the study
modern analysis. However, most of the applications of topology and analysis arise
through metric spaces. Moreover, metric spaces provide a rich supply of topological
spaces and their continuous functions. For example, the Euclidean topology on Rn

defined in Sect. 3.3 plays a key role in analysis and topology, which can also be
equally well-defined by the Euclidean metric on Rn.

Definition 3.8.1 Let X be a metric space with metric d . The set Bx(ε) = {y ∈
X : d(x, y) < ε}, for x ∈ X and ε > 0 is said be the open ball of radius ε, centered
at x.

Proposition 3.8.2 Let X be a metric space with metric d . A subset U of X is open
if given x ∈ U, there is a positive real number ε such that the open ball Bx(ε) ⊂ U.

Proof Left as an exercise. �

Proposition 3.8.2 leads to define an open set in ametric space as given inDefinition
3.8.3.

Definition 3.8.3 Let X be a metric space with metric d . Then a subset U of X is
said to be open if given x ∈ U , there is a positive real number ε such that the open
ball Bx(ε) ⊂ U .

Theorem 3.8.4 Let (X , d) be a metric space. Then the collection B = {Bx(ε): x ∈
X , ε > 0} of open balls in X together with ∅ form an open base for a topology of X .

Proof Let x ∈ X be an arbitrary point. Since x ∈ Bx(ε), it follows that every point
of X is contained in at least one member ofB. Claim that if y ∈ Bx(ε), there exists an
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open ball By(δ) ∈ B such that By(δ) ⊂ Bx(ε). To prove this, take δ = ε − d(x, y) >

0. Then

z ∈ By(δ) =⇒ d(y, z) < δ = ε − d(x, y) =⇒ d(x, z) ≤ d(x, y) + d(y, z) < ε

This asserts that By(δ) ⊂ Bx(ε). Finally, let Bd
1 and B

d
2 be any two members of B and

y ∈ Bd
1 ∩ Bd

2 . By above discussion, there exist δ1 > 0 and δ2 > 0 such that

By(δ1) ⊂ Bd
1 and By(δ2) ⊂ Bd

2

Take δ = min{δ1, δ2}. Then δ > 0 and By(δ) ⊂ Bd
1 ∩ Bd

2 . This proves that there
exists a member Bd

3 = By(δ) of B such that

y ∈ Bd
3 ⊂ Bd

1 ∩ Bd
2 .

This concludes by Theorem 3.2.11 thatB forms an open base for a topology on X .
�

Ametric space X with a metric d can be made into a topological space in a natural
way by using Theorem 3.8.4.

Definition 3.8.5 (Metric Topology) Let (X , d) be ametric space. Then the collection
B = {Bx(ε): x ∈ X , ε > 0} of open balls in X together with ∅ form an open base
for a topology of X by Theorem 3.8.4. This topology denoted by τd or τ(d) on X ,

called the metric topology on the metric space (X , d) induced by the metric d .

Example 3.8.6 Let R be endowed with the usual metric d : R × R → R, (x, y) �→
|x − y|. Then the open ball Bx(ε) in R is formulated by

Bx(ε) = (x − ε, x + ε) ⊂ R (open interval).

However, y ∈ Bx(ε) ⇐⇒ d(x, y) < ε ⇐⇒ |x − y| < ε ⇐⇒ y ∈ (x − ε, x + ε).

Example 3.8.7 The usual topology andmetric topology on Rn is the same. Because,
the usual topology on Rn is induced by the usual metric on Rn. More precisely, the
usual topology on R is induced by the usual metric d : R × R → R, (x, y) �→ |x − y|
because themetric topology, called the Euclidean topology onR induced by the usual
metric d and the usual topology on R are both generated by open intervals. Similarly,
the usual metric d : Rn × Rn → R, (x, y) �→ ‖x − y‖ induces the usual topology on
Rn, because the open sets in Rn under usual topology on Rn are characterized as:
a subset U ⊂ Rn is open iff given a point x ∈ U, there exist an ε > 0 and an open
ball BX (ε) such that x ∈ BX (ε) ⊂ U . This asserts that the Euclidean topology on Rn

induced by the usual metric d and the usual topology on Rn are both generated by
open balls.

Definition 3.8.8 Let (X1, d1) and (X2, d2) be two metric spaces with corresponding
metric topologies τd1 and τd2 respectively. A function f : (X1, τd1) → (X2, τd2) is said
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to be continuous at a point p ∈ X1 if corresponding to a given ε > 0, there exists a
real number δ > 0 such that whenever d1(x, p) < δ, then d2(f (x), f (p)) < ε.

Example 3.8.9 Different metrics on a set may or may not give identical topology.
In support, consider the Euclidean n-space Rn. For points x = (x1, x2, . . . , xn) and
= (y1, y2, · · · , yn) in Rn, the metrics defined by

(i) d1(x, y) = max 1≤i≤n|xi − yi|;
(ii) d2(x, y) = |x1 − y1| + |x2 − y2| + · · · + |xn − yn|;
(iii) d3(x, y) = [(x1 − y1)2 + (x2 − y2)2 + · · · + (xn − yn)2] 1

2

give rise to the same topology, which is the usual topology on Rn. On the other hand,
consider another Example 3.8.13 which shows that different metrics on a given
nonempty set may not give rise the same topology.

Proposition 3.8.10 is an immediate application of metric topology.

Proposition 3.8.10 Let (X , d) be a metric space and A be nonempty subset of X .
Then A = {x ∈ X : d(x,A) = 0}.
Proof To prove the proposition, it is sufficient to show that d(x, y) = 0 if x ∈ A.
Since the open balls Bx(ε) for x ∈ X and ε > 0, constitute an open base for the
metric topology τd on X , it follows that x ∈ A iff A ∩ Bx(ε) is nonempty for all open
ballsBx(ε), i.e., iff for every ε > 0, there exists a point aε ∈ A such that d(x, aε) < ε,

i.e., iff d(x, y) = 0. This shows that

A = {x ∈ X : d(x,A) = 0}.

�

3.8.2 Equivalent Metrics from Viewpoint Topology

This subsection conveys the concept of equivalent metrics from the viewpoint topol-
ogy. In Chap. 2, this concept is given from the viewpoint of convergent sequence.

Definition 3.8.11 Let d and ρ be two metrics on the same set X . Then the metrics d
and ρ are said to be equivalent, denoted by d ∼ ρ, if both of them define the same
topology on X .

Example 3.8.12 The metrics d1, d2 and d3 defined in Example 3.8.9 are equivalent
metrics, as they induce the same topology on Rn.

Example 3.8.13 All metrics on a given nonempty set may not give the same topol-
ogy. For example, consider the topologies τd1 and τd2 induced by the metrics d1 and
d2 on R, defined by
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(i)
d1: R × R → R, (x, y) �→ |x − y|;

(ii)

d2: R × R → R, (x, y) �→
{
0, ifx = y

1, if x �= y
.

The open sets in the topology τd1 defined by d1 are generated by the open intervals in
R and hence the open sets in τd1 are the usual open sets in R. On the other hand, the
collection of all open sets in the topology τd2 defined by the metric d2 is the set 2R

which is the collection of all subsets of R. However, the open balls Bx(1/2) relative
to the metric d2 are given by Bx(1/2) = {x}, ∀ x ∈ R, and hence each point in R is
an open set for the topology τd2 generated by the metric d2. This asserts that each
union (finite or infinite) of points x ∈ R is an open set in τd2 , and hence, the subsets
of R are precisely the open sets in the topology τd2 .

Remark 3.8.14 Example 3.8.13 shows that there may exist different metrics on the
same set inducing different topologies. On the other hand, Proposition 3.8.15 asserts
that given a metric space (X , d1), there may exist another metric d2 on X such that
the metrics d1 and d2 induce the same topology on X .

Proposition 3.8.15 Let (X , d1) be a metric space. Consider metric d2

d2:X × X → R: (x, y) �→
{
1, if d1(x, y) > 1

d(x, y), if d1(x, y) ≤ 1,
.

Then d1 and d2 induce the same topology on X .

Proof Since the topology on X depends only on the open balls Bx(ε) for small
ε > 0, it follows from the defining conditions of d1 and d2 that they induce the same
topology on X . �

Corollary 3.8.16 The metrics d1 and d2 defined in Proposition 3.8.15 on X are
equivalent.

Proof It follows from Proposition 3.8.15. �

Example 3.8.17 The metric d2 on X defined in Proposition 3.8.15 is bounded.

Proposition 3.8.18 Let (X , d) be a metric space. Then the metric

ρ:X × X → R, (x, y) �→ d(x, y)

1 + d(x, y)

is equivalent to the metric d .
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Proof Let Bd
x (ε) be the open ball in (X , d) with center x and radius ε and Bρ

x (ε
′) be

the open ball in (X , ρ) with center x and radius ε′. Then

Bd
x (ε) = y ∈ X : d(x, y) < ε} = {y ∈ X : d(x, y)

1 + d(x, y)
<

ε

1 + ε

= y ∈ X : ρ(x, y) <
ε

1 + ε
} = Bρ

x (
ε

1 + ε
).

Since the induced topology τd on a metric space (X , d) depends on the open balls
Bd
x (ε) in X , the equality Bd

x (ε) = Bρ
x ( ε

1+ε
) asserts that τd = τρ . It proves that the

metrics d and ρ are equivalent.
�

Corollary 3.8.19 The standard (Euclidean) metric d on R

d : R × R → R, (x, y) �→ |x − y|

and the metric ρ

ρ: R × R → R, (x, y) �→ |x − y|
1 + |x − y|

are equivalent.

Proof It follows from Proposition 3.8.18 by taking X = R and the metric d the
standard (Euclidean) metric on R. �

3.8.3 Metrizable Spaces

Metrizable spaces form an important family of topogical spaces. This subsection
introduces the concept of metrizability of a topological space (X , τ ), having its
topological structure τ identical with the topology τd induced by some metric struc-
ture d (if it exists) on X . Thus, a metrizable space X is a topological space such that
while considering its open sets, it is essentially, the same open sets as induced by
a metric on X . It gives a natural problem: When a given topological space can be
equipped with a metric topology? One of its positive answers is given in Theorem
3.8.23. It is proved that every metrizable space can be metrized by a bounded met-
ric in Proposition 3.8.22 and metrizability is a topological property in Proposition
3.8.26.

Definition 3.8.20 A topological space X with topology τ is said to be metrizable if
at least one metric d can be defined on X such that the family of open sets τd defined
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by the metric d coincides with the family of open sets in τ, i.e., if τ = τd ; i.e., a
topological space (X , τ ) is metrizable if there exists at least one metric on X whose
class of generated open sets is precisely the given topology τ on X .

Example 3.8.21 (i) Every finite space is metrizable iff it is discrete.
(ii) The real line space (R, σ ) with usual topology σ is metrizable. Because the

usual metric on R induces the usual topology on R. Hence, in general, the
Euclidean n-space (Rn, σ ) with usual metric on Rn is also metrizable by The-
orem 3.13.1.

(iii) The closed unit interval I = [0.1] with natural topology is metrizable, and
hence, the unit n-cube In with natural topology is metrizable by Theorem
3.13.1.

(iv) Let X be a indiscrete space with indiscrete topology τ such that |X | > 1. It is
not metrizable. However, τ = {∅,X }, and hence, ∅ and X are the only closed
sets in (X , τ ).

Proposition 3.8.22 Every metrizable space can be metrized by a bounded metric.

Proof Let (X , τ ) be a metrizable space. Then there exists at least one metric d such
that τ = τd . It follows from Proposition 3.8.18 that the metric d is equivalent to a
bounded metric ρ defined by

ρ:X × X → R, (x, y) �→ d(x, y)

1 + d(x, y)
.

�

Metrizability of a topological space is characterized in Theorem 3.8.23.

Theorem 3.8.23 Let (X , τ ) be a topological space. Then it is metrizable iff there
exist a metric space (Y , d) and an embedding

f : (X , τ ) → (Y , τd ),

where τd is the topology on Y induced by the metric d .

Proof Let (X , τ ) be a topological space. Suppose there exist a metric space (Y , d)

and an embedding

f : (X , τ ) → (Y , τd ),

where τd is the topology on Y induced by the metric d on Y . Define a function

ψ :X × X → R, (x, y) �→ d(f (x), f (y)).

Since f is an embedding by hypothesis, it follows that ψ is a metric and its induced
topology on X is the same as τ . This asserts that (X , τ ) is metrizable. Conversely,
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let the topological space (X , τ ) be metrizable. Then there exists a metric d on X
such that its induced topology τd is identical with τ . Let (Y , d) be this metric space,
where Y = X . Then the identity map

1d : (X , τ ) → (Y , τd ), x �→ x

is a homeomorphism, and hence, it is an embedding.
�

Corollary 3.8.24 Every subspace of a metrizable space is metrizable.

Corollary 3.8.25 The unit interval I = [0, 1] is metrizable, since it is a subspace
the real line space R.

3.8.4 Metrizability Is a Topological Property

A topological property is a property of a topological space which is shared by home-
omorphic spaces. For example, Proposition 3.8.26 proves that metrizability is a topo-
logical property. This property plays an important role in classification of topological
spaces.

Proposition 3.8.26 Metrizability is a topological property.

Proof Let (X , τ ) be a metrizable space. Then there exists a metric dX such that τ is
induced by the metric dX on X . Let (Y , σ ) be a metrizable space homeomorphic to
(X , τ ). Then there exists a homeomorphism

f : (X , τ ) → (Y , σ ).

Consider the map

dY :Y × Y , (y, y′) → dX (f −1(y), f −1(y′)).

Then dY is a metric on Y . We claim that the metric dY induces the same topology
σ on Y . Since every homeomorphism from X onto Y sends an open base for τ to
an open base for σ, the homeomorphism f sends the τ -basis elements Bx0(ε) = {x ∈
X : dX (x, x0)) < ε} in X to the set Bf (x0)(ε) = {y ∈ Y : dY (f (x), f (x0)) < ε} ⊂ Y .
Denoting f (x0) by y0 and f (x) by y. It follows that all the subsets of Y of the form

Bf (x0)(ε) = By0(ε) = {y ∈ Y : dY (y, y0) < ε}

forms an open base for the σ on Y . It asserts that σ is induced by the metric dY on Y ,
and hence, it follows that the topological space space (Y , σ ) is also metrizable. This
implies that metrizability is preserved under every homeomorphism, and hence, it is
a topological property. �
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3.8.5 Topologically Complete Metric Spaces

This subsection conveys the motivation of topologically complete metric spaces with
illustrative examples. It is sometimes convenient to consider topologically complete
metric spaces, specially,when ametric space is not complete. For example, there exist
homeomorphic. spaces (X , d) and (X , ρ) such that (X , ρ) is complete but (X , d) is
not so ( see Example 3.8.29).

.

Definition 3.8.27 (Topologically complete metric spaces) Let (X , d) be a metric
space with its induced topology τd , which is not complete. If there exists another
metric ρ on X such that (X , ρ) is complete and its induced topology τρ coincides
with the topology τd , then the space (X , ρ) is said to be topologically complete.

Example 3.8.28 The set Q of rational numbers under the metric inherited from the
standard metric on R is not topologically complete.

Example 3.8.29 shows that at some situations, it is convenient to consider topologi-
cally complete metric spaces.

Example 3.8.29 Consider the metric space X = (−1, 1) ⊂ R equipped with stan-
dard metric d . Then the metric d is given by

d :,X × X → R, (x, y) �→ |x − y|.

The metric space (X , d) is not complete. On the other hand, there exists a topologi-
cally equivalent metric

ρ:X × X → R, (x, y) �→ (
x

(1 − x2)1/2
,

y

(1 − y2)1/2
).

The spaces (X , d) and (X , ρ) are homeomorphic. (X , ρ) is complete but (X , d)

is not so.

Example 3.8.30 The set Q of rational numbers under the metric inherited from the
standard metric on R is not topologically complete.

3.9 Topology Generated by a Family of Functions

There is a natural problem in topology: given a nonempty set X and a family of
topological spaces {(Ya, τa): a ∈ A} and a family of functions {fa:X → Ya: a ∈ A},
how to endow a topology σ on X such that the function fa: (X , σ ) → (Ya, τa) is con-
tinuous for each a ∈ A? This section solves this problem by constructing a subbase
for the topology σ .
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Definition 3.9.1 Let X be a nonempty set and {(Ya, τa): a ∈ A} be a family of topo-
logical spaces. If S is the family of subsets of X defined by

S =
⋃

{f −1
a (V ):V ∈ τa, a ∈ A},

i.e., S is the set consisting of inverse image of every open subset of each Ya under fa.
Then S forms a subbase for a topology on X . The topology σ generated by S is said
to be the topology generated by the family of functions {fa:X → Ya: a ∈ A}.
Theorem 3.9.2 Let X be a nonempty set and {(Ya, τa): a ∈ A} be a family of topolog-
ical spaces. Let σ be the topology on X generated by S = ⋃{f −1

a (V ) : V ∈ τa, a ∈
A} given in Definition 3.9.1. Then

(i) each function fa: (X , σ ) → (Ya, τa) is continuous;
(ii) the topology σ is the intersection of all the topologies on X such that each

fa: (X , σ ) → (Ya, τa) is continuous;
(iii) the topology σ on X is the coarsest (weakest or smallest) topology on X such

that each fa is continuous.

Proof It follows from the construction of S. �

Definition 3.9.3 The set S given in Definition 3.9.1 is called the defining subbase
for the topology σ such that each function fa:X → Ya is continuous for each a ∈ A.

Example 3.9.4 Let τσ be the topology on R generated by the family of all linear
transformations

T : R → R, x �→ cx + d , ∀ c, d ∈ R.

Then τσ is the weakest topology on R such that each linear transformation

T : (R, τσ ) → (R, σ ), x �→ cx + d , ∀ c, d ∈ R

is continuous and τσ is the usual topology σ on R.

Example 3.9.5 Consider the projection maps p1, p2: R2 → R defined by p1(x, y) =
x, p2(x, y) = y. Then the inverse images of an open interval (a, b), i.e., p−1

1 (a, b)
and p−1

2 (a, b), are infinite open strips in R2. Such strips constitute a subbase for the
natural topology on R2, which is the smallest topology on R2 such that the projection
maps p1 and p2 are continuous by Theorem 3.12.11.

Example 3.9.6 (Projective topology) Let X be a linear space, Y be a linear topo-
logical space and F(X ,Y ) be a family of maps f :X → Y . The weakest topolgy for
X is the weakest topology making each member f ∈ F(X ,Y ) continuous is called
the projective topolgy for X .
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3.10 Kuratowski Closure Topology, Sierpinski Topology
and Niemytzki’s Disk Topology

This section discusses three special types of topologies such as Kuratowski closure
topology, Sierpinski topology and Niemytzki’s disk topology which are used in
subsequent chapters. The unique topology determined in Theorem 3.10.2, called
Kuratowski closure topology, satisfies the four axioms of closed sets C(1)–C(4) of
Definition 3.1.28. So, a topology can be defined satisfying the axioms OS(1)–OS(4),
for open sets or the axioms for closed sets. It is found that there exist different
approaches of defining a topological space. But the open set approach is the most
natural. Other approaches are used according to the nature of the problem.

3.10.1 Kuratowski Closure Topology

This subsection addresses Kuratowski closure topology defined by K. Kuratowski. It
is an interesting topology on the power set P(X ) of a nonempty set X . In his honor,
this topology is known as Kuratowski closure topology. More precisely, let (X , τ ))
be a topological space and P(X ) be the power set X . If A (the intersection of all
closed subsets containing A in (X , τ )) denotes the closure of A, then the closure
operator operator

k:P(X ) → P(X ), A �→ Ā

has the properties given in Theorem 3.10.1

Theorem 3.10.1 Let (X , τ ) be a topological space. For arbitrary subsets A,B of X ,
the closure operator k : P(X ) → P(X ), A �→ Ā has the properties:

(i) K(1) A ⊂ Ā ; equivalently, A ⊂ k(A);
(ii) K(2) A ∪ B = Ā ∪ B̄; equivalently, k(A ∪ B) = k(A) ∪ k(B);
(iii) K(3) ¯̄A = Ā; equivalently, k(Ā) = ¯̄A = k(A);
(iv) K(4) ∅̄ = ∅, equivalently, k(∅) = ∅.
Proof It follows from the definition of the closure of a set. �

Theorem 3.10.2 asserts that Kuratowski’s closure axioms on a nonempty set deter-
mine the unique topology, known as Kuratowski’s closure topology on the set.

Theorem 3.10.2 Let X be a nonempty set and P(X ) be its power set. If an operator
k:P(X ) → P(X ), A �→ Ā is defined satisfying the properties

(i) K(1) A ⊂ Ā;
(ii) K(2) A ∪ B = Ā ∪ B̄;
(iii) K(3) ¯̄A = Ā;
(iv) K(4) ∅̄ = ∅,
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for arbitrary subsets A and B of X , then there exists a unique topology τ on X such
that for every subset A of X , the set Ā (thus obtained) is the closure of A in this
topological (X , τ ).

Proof Let X be a nonempty set. Let a subset A ⊂ X be called closed if Ā = A and
F be the family of all closed sets defined in this way. Then F satisfies all the four
axioms C(1)–C(4) of Definition 3.1.28 of closed sets by using the given properties
K(1)–K(4). Hence, a set U is open in X if X −U is closed. Then the collection τ

of all such open sets determines a unique topology on X . Hence, the closed sets of
(X , τ ) are the same as the members of F. Let A∗ denote the closure of A in (X , τ ),

which is determined in terms of τ . This implies that A∗ is the intersection of all
closed sets in (X , τ ) containing the set A, which is also the intersection of all those
members of F containing the set A. Utilizing the properties K(1)–K(4), it follows
that Ā = A∗. �

Definition 3.10.3 The conditions K(1)–K(4) of Theorem 3.10.2 on the power set
P(X ) of X are called the Kuratowski’s closure axioms, and the resulting topology is
known as Kuratowski’s closure topology on X ,which is unique by Theorem 3.10.2

Example 3.10.4 In an arbitrary topological space X , the relation A ∩ B = Ā ∩ B̄ is
not necessarily true for its arbitrary subsets A and B. For example, in the real line
space (R, σ ), for the subsets A = Q (set of rationals) and B = T (set of irrationals),

Q = R = T =⇒ Q ∩ T = R.

On the other hand,
Q ∩ T = ∅ =⇒ Q ∩ T = ∅.

This shows that
Q ∩ T �= Q ∩ T.

3.10.2 Sierpinski Space

This subsection conveys the concept of Sierpinski space having only two distinct
points. This space has certain properties, some of them are given in Proposition
3.10.6 and others are studied in subsequent chapters.

Definition 3.10.5 Sierpinski space is a finite topological space (S, τS) consisting
of only two distinct points, abbreviated S = {0, 1} such that only one of them is
the closed set. If {0} is the closed set, then the open sets of Sierpinski topology τS
are precisely, {∅, {1}, {0, 1}} and its closed sets are precisely, {∅, {0}, {0, 1}}. In the
Sierpinski space (S, τS), if {0} is closed, then {1} is open. Again, if {1} is closed,
then {0} is open by definition of Sierpinski topology.
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Sierpinski space has some special properties proved in Proposition 3.10.6. For more
properties of this space such as its separation, compactness, connectedness properties
see Chaps. 4 and 5.

Proposition 3.10.6 Let (S, τS) be a Sierpinski space with {0} as a closed set. Then
{1} is an open set. (S, τS) has the following properties:

(i) {1} and {0} are topologically distinct in (S, τS).
(ii) Let I = [0, 1] be the subspace of the real line space. Then the map

f : I → S, t �→
{
0, if t = 0

1, for all t > 0

is continuous in (S, τS), since f −1(1) = (0, 1] is open in I.
(iii) The group of all homeomorphisms of the Sierpinski space (S, τS) is the trivial

group. Because if f : (S, τS) → (S, τS) is any continuousmap, then f is the same
as the identity map 1S : S → S, x �→ x, or the constant map c0: S → S, x �→ 0,
or the constant map c1: S → S, x �→ 1. This asserts that there exist only three
distinct continuous maps from the space (S, τS) to itself. Hence, the group of
all homeomorphisms of the space (S, τS) is the trivial group consisting of only
the identity homeomorphism 1S .

(iv) The Sierpinski space (S, τS) is not metrizable (see Chap. 4).

3.10.3 Niemytzki Topology

This subsection defines a special topology on the open upper half of the Euclidean
plane R2, known as Niemytzki’s disk space topology, For interesting properties of
Niemytzki’s tangent dick topology such as its Hausdorff and regularity properties,
see Chap. 4 and for some other properties, see Chap. 6. This topology was first
defined by Viktor Niemytzki (1900–1967).

Definition 3.10.7 Let R2+ = {(x, y) ∈ R2: y ≥ 0} be the open upper half-plane
endowed with the topology induced by the Euclidean metric. Let R = R1 be the
subset of R2 consisting of all points on the x-axis, which are precisely the points of
R2 for which y = 0. Given r > 0, define

(i) for each point x ∈ R2+ − R1, the set Ux(r) = Bx(r) ∩ R1 where Bx(r) denotes
an open ball (disk) with center at x and radius r, which lies entirely above the
x-axis and

(ii) for each point x ∈ R1, the set Ux(r) = {x} ∪ Bx(r), where x is a point in the
Euclidean line R1 for which y = 0, i.e., x is a point on the x-axis and Bx(r) is
an open disk in R2+, which touches the x-axis at the point x.

Geometrically, Ux(r) consists of all points inside the circumference of the arc of the
disk Bx(r) along with points on the x-axis for the case (i) andUx(r) does not contain
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any point on the x-axis excepting the point x of tangency of Bx(r) with the x-axis for
the case (ii).

For each point x ∈ R2+, the family Fx = {Ux(r)} forms a nbd filter of the point x
(see Definition 3.2.24). If τ is the resulting nbd topology onR2+, then the correspond-
ing topological space (R2+, τ ) is called the Niemytzki’s space and this topology τ

is called Niemytzki’s tangent disk topology or Niemytzki’s topology

3.11 Two Countability and Separability Axioms

Topologies defined on an arbitrary set areweak in the sense that they fail to invite their
deep study until certain additional condition or conditions are imposed on them.With
this aim, this section initiates the concepts of first and second countable spaces and
also separable spaces through an axiomatic approach. Their more study is available
in Chap. 7.Historically, two axioms of countability were formulated by F. Hausdorff
(1868–1942) in 1914 and the concept of separability was introduced by M. Fréchet
in 1906. Such spaces are important for our subsequent study.

3.11.1 Countability Axioms: First and Second Countable
Spaces

This subsection imposes the two axioms of countability to obtain two special classes
of topological spaces such as first and second countable spaces.

Definition 3.11.1 Let (X , τ ) be a topological space. A collection of open sets Bx in
(X , τ ) such that each member of Bx contains a point x ∈ X is said to an open base
(or local base) for τ at x, if for every open setU containing the point x, there exists
a member Vx ∈ Bx such that x ∈ Vx ⊂ U .

Definition 3.11.2 A topological space (X , τ ) is said to satisfy the first axiom of
countability if there is a countable open base for τ at every point of X . A topological
space (X, τ ) satisfying the first axiom of countability is said to be a first countable
(or locally separable) space.

Example 3.11.3 In the real line space (R, σ ), anopen interval (a, b),wherea, b: a <

b, are both rational numbers is called an open rational interval and they (open rational
intervals) form a countable open base for the natural topology σ on R. Hence, (R, σ )

is a first countable space.

Example 3.11.4 The Euclidean n-space Rn and the n-sphere Sn have each a count-
able open base for their natural topology.

Definition 3.11.5 A topological space (X, τ ) is said to satisfy the second axiom of
countability, if there exists a countable open base for the topology τ . A topological
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space (X, τ ) satisfying the second axiom of countability is said to be a second
countable (or strongly separable) space.

Example 3.11.6 The real number space (R, σ ), with the usual topology σ , is second
countable, because, the empty set ∅ and the collection of open intervals {(a, b) : a <

b, and a, b are rational numbers } form a countable open base for the topology σ

on R. This shows that (R, σ ) is a second countable space.

Example 3.11.7 Every second countable space is first countable but its converse is
not true. In support consider the examples:

(i) Let X be any metric space.Then it is first countable but there are some metric
spaceswhich are not second countable. For example, if (X , d) is an uncountable
metric space with discrete metric

d :X × X → R, (x, y) �→
{
0, ifx = y

1, if x �= y

then it is not second countable, since the metric d induces the discrete topology
on X .

(ii) Euclidean spaces Rn are second countable, because the family of open balls
{Bx(ε)}with x and ε both rational numbers, form a countable open base for the
Euclidean topology on Rn.

3.11.2 Separability Axioms: Separable Spaces

This subsection imposes certain conditions to obtain separable spaces and compares
these spaceswith second countable spaces. The concept of separability of topological
spaces introduced by M. Fréchet in 1906 is given below.

Definition 3.11.8 A topological space (X, τ ) is said to be separable, if there is a
countable subset C in X such that C = X ; i.e., if X has a countable dense subset in
X (separability axiom)

Example 3.11.9 The real number space (R, σ ), with the usual topology σ , is second
countable, also first countable and separable,

Example 3.11.10 Let the set C[0, 1] of real-valued continuous functions on [0, 1] be
endowed with sup-norm topology. Then this topological space is separable by using
the result that a metruc space is separable if it has a countable dense set, because the
set of all polynomials with rational coefficients forms a countable dense set in the
space C[0, 1], by Weierstrass approximation theorem saying that any continuous
function on a closed and bounded interval can be approximated uniformly on the
same interval by polynomials.
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Definition 3.11.11 Let (X , d) be a metric space. It is said to be separable, if for
every point x ∈ X , and any open ball Bx(ε), there is an element yn ∈ Y for some
countable and everywhere dense set Y in X , which can be represented as

Y = {y1, y2, . . . }.

Proposition 3.11.12 Every separable metric space satisfies the second axiom of
countability.

Proof (X , d) be a separable metric space and Y = {y1, y2, . . . } be a countable and
everywhere dense set in X . Consider the family of open sets

F = {Un, t = {x ∈ X : d(x, yn) < 1/t for n, t = 1, 2, . . .}.

Then F forms an open base for the topology τd induced by d on X .
�

3.12 Sum and Product of Topological Spaces

This section constructs sum and product of a given family of topological spaces to
obtain new topological spaces from the old ones. The concept of sums of topological
spaces was first found in the book (Bourbaki 1940).

3.12.1 Sum of Topological Spaces

This subsection prescribes a method of construction of topological sum of a given
family of topological spaces. Given a topological X , and its two disjoint subspaces
Y and Z such that X = Y ∪ Z, it not always possible to recover the topology of X
from the topologies of the subspaces Y and Z . For example if y �= z, then the set
X = {y, z} has 4 distinct topologies ( see Example 3.1.11); on the other hand, each
of the sets {y} and {z} has exactly only one topology. To avoid such situation, the
concept of topological sum of topological spaces is introduced.

Definition 3.12.1 Let X be a topological and Y and Z be its two disjoint subspaces
such that X = Y ∪ Z . Then X can be topolozied by declaring a subset U to be open
in X if U ∩ Y is open in Y and if U ∩ Z is open in Z . With this topology, X is called
the topological sum of Y and Z and is written as X = Y � Z or X = Y + Z .

Definition 3.12.2 gives a generalization ofDefinition 3.12.1 for an arbitrary family
of topological spaces.



186 3 Topological Spaces and Continuous Maps

Definition 3.12.2 Let {(Xi, τi): i ∈ A} be a given family of topological spaces (finite
or infinite) and X = ⋃

i∈A Xi (set-theoretic union). Then the collection τ of subsets
U of X , defined by

τ = {U ⊂ X :U ∩ Xi ∈ τi, ∀ i ∈ A}

forms a topology on X , called the topological sum or the sum of the given family
of topological spaces, denoted by (X , τ ) = �{(Xi, τi): i ∈ A}.

Theorem 3.12.3 proves some properties of the topological sum of spaces.

Theorem 3.12.3 Let (X , τ ) = �{(Xi, τi): i ∈ A} be the topological sum of a given
family {(Xi, τi): i ∈ A} of topological spaces and fi:Xi ↪→ X be the inclusion map
for each i ∈ A. Then

(i) each fi: (Xi, τi) ↪→ (X , τ ) is continuous.
(ii) if the sets Xi of the given family are pairwise disjoint, then each

fi: (Xi, τi) ↪→ (X , τ )

is both open and closed.

Proof (i) Let U be an arbitrary open set in (X , τ ). Then f −1
i (U ) = U ∩ Xi ∈ τi

implies that fi is continuous.
(ii) Let the setsXi in the family {Xi: i ∈ A} be pairwise disjoint andU be an arbitrary

open set in τi. Since fi is an inclusion map, fi(U ) = U . Moreover,

U ∩ Xi = U ∈ τi and U ∩ Xk = ∅ ∈ τk , ∀ k �= i ∈ A}

imply that fi(U ) ∈ τ, ∀ U ∈ τ . This asserts that each fi is an open map. For
the last part, let B be an arbitrary closed set in (Xi, τi). Then V = X − B is an
open set in (Xi, τi). Hence

V ∩ Xi = (X − B) ∩ Xi = Xi − B ∈ τi and V∩
Xk = (X − B) ∩ Xk = Xk ∈ τK

show that B is a closed set in (X , τ ), and hence, fi(B) = B is also closed in
(X , τ ). This implies that each fi is a closed map.

�
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3.12.2 Product Space of a Finite Family of Topological
Spaces

This subsection describes the construction process of product spaces, which can be
viewed as a generalization of the usual geometric process of construction of the
Euclidean spaces R2, R3, . . . , Rn from the real line space R. This subsection also
describes a base for finite product topology to obtain all its open sets.

The Cartesian product U × V of two finite intervals U and V in R is an open
rectangle in R2. The open rectangles form an open base for the natural topology
on R2, which is called a product topology on R2. This technique is borrowed for
construction of any finite product topology. M. Fréchet first studied a finite product
of abstract topological spaces in 1910.Constructionof theproduct spaceof an abitrary
family of topological spaces and Tychonöff topology are available in Sect. 3.12.3.

Definition 3.12.4 Given topological spaces X and Y , a topology τ is defined on
their product set X × Y by declaring a subset U ⊂ X × Y to be open if U is the
union of the sets of the form U1 ×U2, where U1 is open in X and U2 is open in Y .
This topology τ is called the product topology on X × Y .

Example 3.12.5 The product topology on X × Y is generated by the collection of
sets {U × V :U ⊂ X , V ⊂ Y are both open} as a subbase. Because,

(U × V ) ∩ (U ′ × V ′) = (U ∩U ′) × (V × V ′).

Remark 3.12.6 The product topology given in Example 3.12.5 is now generalized
in Proposition 3.12.7 for a finite product of topological spaces.

Proposition 3.12.7 Let (X1, τ1), (X2, τ2), · · · , (Xn, τn) be a finite number of topo-
logical spaces and B be a collection of subsets of the product set X = X1 × X2 ×
· · · × Xn defined by

B = {U1 ×U2 × · · · ×Un:Ui ∈ τi, ∀ i = 1, 2, . . . , n}.

Then B constitutes an open base for a topology τ on X .

Proof Clearly, ∅ × ∅ × · · · × ∅ = ∅ ∈ B, since ∅ ∈ τi, ∀ i = 1, 2, . . . , n. Again,
every point of X is at least in one member of B, since X1 × X2 × · · · × Xn ∈ B.
Finally, let x ∈ U ∩ V for some U, V ∈ B. Hence, there exist Ui, Vi ∈ τi for i =
1, 2, . . . , n such that

U = U1 ×U2 × · · · ×Un and V = V1 × V2 × · · · × Vn.
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Then

U ∩ V = (U1 ×U2 × · · · ×Un) ∩ (V1 × V2 · · · × Vn)

= (U1 ∩ V1) ∩ (U2 ∩ V2) ∩ · · · ∩ (Un ∩ Vn) ∈ B,

because, Ui ∩ Vi ∈ τi ∀ i = 1, 2, . . . , n. This asserts that if x ∈ U, x ∈ V and W =
U ∩ V , then

x ∈ W ⊂ U ∩ V .

Hence, it follows that given B forms an open base for a topology τ on X .
�

Definition 3.12.8 The topology τ on X generated by the open base B constructed in
Proposition 3.12.7 is sometimes denoted by τ(B) and is called the product topology
on X and the resulting topological space (X , τ (B)) is called the topological product
space of the finite family of topological spaces (X1, τ1), (X2, τ2), . . . , (Xn, τn).

Example 3.12.9 The Sorgenfrey plane (R2, σ ) is the product space defined by
(R2, σ ) = (R, σl) × (R, σl), where (R, σl) is the Sorgenfrey line. Geometrically,
this topology σ on R2 is generated by all rectangles of the form [a, b) × [c, d) as a
basis, where a, b, c, d ∈ R with a < b and c < d .

Definition 3.12.10 Let X ,Y and Z be topological spaces. Then a function f :X ×
Y → Z from the product space X × Y to the space Y considered as a function f (x, y)
of two variables, with values in Z is said to be continuous if it is continuous jointly
in both variables x and y.

Theorem 3.12.11 Let X and Y be topological spaces. If X × Y is their product
space and

p1:X × Y → X , (x, y) �→ x and p2:X × Y → Y , (x, y) �→ y

are projectionmaps, then p1 and p2 are both continuousmaps in the product topology,
which is the weakest topology such that p1 and p2 are continuous.

Proof Let BX and BY be two bases for the topological spaces X and Y , respectively.
Given any open setUi ∈ BX , the set p−1

1 (Ui) = Ui × Y is an open set in the product
space X × Y . However, the space Y = ⋃

(Vj:Vj ∈ BY ) and

p−1(Ui) = Ui × Y = Ui ×
⋃

j

Vj =
⋃

j

(Ui × Vj).

It asserts that p−1(Ui) is an open set in the product space X × Y , and hence, p1 is
continuous. Similarly, p2 is continuous. It proves the first part of theorem. To prove
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the second part, let σ be any topology on X × Y such that p1 and p2 are continuous.
Then the sets p−1

1 (Ui) = Ui × Y and p−1
2 (Vi) = X × Vj are both open in the product

space X × Y with topology σ . Hence the sets

p−1
1 (Ui) ∩ p−1

2 (Vj) = (Ui × Y ) ∩ (X × Vj) = Ui × Vj

are open sets belonging to σ . This asserts that any topology on X × Y under which
both the projection maps p1 and p2 are continuous contains all the basic open sets
of the form Ui ×Uj and also the topology generated by them. This shows that the
topology σ is stronger than the product topology on X × Y . In other words, the
product topology on X × Y is weaker than any other topology on X × Y such that
the projection maps p1 and p2 are continuous.

�
Theorem 3.12.11 is reformulated in Theorem 3.12.12.

Theorem 3.12.12 Let (X , τ ) and (Y , σ ) be two topological space with (X × Y , �)

be their topological product space. Then the projection maps

(i) p1: (X × Y , �) → (X , τ ), (x, y) �→ x and
(ii) p2: (X × Y , �) → (Y , σ ), (x, y) �→ y

are con both continuous.
(iii) The product topology � is the smallest topology on X × Y such the projection

maps p1 and p2 are continuous.

3.12.3 Product Space of an Arbitrary Family of Topological
Spaces and Tychonöff Topology

This subsection defines Tychonöff topology defined by Andrey Tychonöff (1906–
1993) in 1930 with the help of product topology for any family (possibly, infinite)
of topological spaces, which gives a generalization of the product topology for a
finite family of topological spaces. An element of the product X = �a∈AXa is a
set {xa: , xa ∈ Xa, a ∈ A}; i.e., the elements of �a∈AXa are functions x: A → ⋃

Xa

such that x(a) ∈ Xa. In particular, if A = {1, 2, . . . , n}, then the product (finite) of
X1,X2, . . . ,Xn denoted by X1 × X2 × · · · × Xn and its elements are denoted by the
ordered n-tuples (x1, x2, . . . , xn), where xi ∈ Xi for i = 1, 2, . . . , n.

Definition 3.12.13 (Tychonöff topology) Let {(Xa, τa): a ∈ A}, where A is an arbi-
trary (possibly, infinite) indexing set and let X = �a∈AXa be the Cartesian product
of the sets Xa, for all a ∈ A. Consider the family B of subsets of X defined by

B = {p−1
a (Ua):Ua ∈ τa, a ∈ A},

where pa:X = �a∈AXa → Xa is the projection mapping onto Xa, for each a ∈ A.
ThenB forms a subbase for a topology τ onX = �a∈AXa called the product topology
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or the Tychonöff topology on X and the resulting topological space (X , τ ) is called
the topological product space of the given family of topological spaces.

Let G be the base for the topology generated by the subbase B given in Definition
3.12.13. Then a subset V of X = �a∈AXa is in the base G iff V is is the intersection
of finitely many members of the subbase B prescribed in Definition 3.12.13.

Definition 3.12.14 (Base for Tychonöff topology) A base for the Tychonöff topology
on X given in Definition 3.12.13 consists of the sets of the form

V = p−1
a1 (Ua1) ∩ p−1

a2 (Ua2) ∩ · · · ∩ p−1
an (Uan),

where a1, a2, . . . , an are arbitrary finite number of elements in A and Uai is an
arbitrary member of the base G. In particular, if the indexing set A = {1, 2, . . . ,m},
then base G consists of all products of the formU1 ×U2 × · · · ×Um, whereUi ∈ τi
for i = 1, 2, . . . ,m.

Theorem 3.12.15 Let (X , τ ) and (Y , σ ) be two topological spaces with (X ×
Y , �) their topological product space. If (W, ρ) is a given topological space and

p1: (X × Y , �) → (X , τ ), (x, y) �→ x,

and
p2: (X × Y , �) → (Y , σ ), (x, y) �→ y

are projection maps, then a map

f : (W, ρ) → (X × Y , �)

is continuous iff the composite maps

(i) p1 ◦ f : (W, ρ) → (X , τ ) and
(ii) p2 ◦ f : (W, ρ) → (Y , σ )

are both continuous.

Proof First suppose that f is continuous. Since p1 and p2 are both continuous by
Theorem3.12.12, it follows that the composites p1 ◦ f and p2 ◦ f are both continuous.
Conversely, suppose that p1 ◦ f and p2 ◦ f are both continuous. Let U × V be an
arbitrary basic open set in the product topology � of X × Y . To prove the continuity
of f , it is sufficient to show that f −1(U × V ) ∈ ρ. Now,

f −1(U × V ) = (p1 ◦ f )−1(U ) ∩ (p2 ◦ f )−1(V ) ∈ ρ,

since it is the intersection of twoopen sets of the topological spaceW under continuity
assumption of p1 ◦ f and p2 ◦ f . This asserts that f is continuous. �
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3.13 Topological Product of Metrizable Spaces

This section proves the metrizability of product of metrizable spaces, which is used
to prove the metrizabilty of the Euclidean space Rn and unit cube In ⊂ Rn. For
more study of metrizability, see subsequent chapters. Theorem 3.13.1 proves that
metrizability is preserved by product of countable family of metrizable spaces. An
alternative proof of this Theorem is given in Theorem 3.13.6.

Theorem 3.13.1 The topological product of any countable family of metrizable
spaces is metrizable.

Proof Let F = {(Xn, τn)} be a countable family of metrizable spaces and (X , τ ) be
their topological product space. We have to prove that (X , τ ) is also metrizable.

Case I: Let F be finite and

(X , τ ) = (X1, τ1) × (X2, τ1) × · · · × (Xn, τn).

Then there exists a metric di on each Xi such its induced topology τdi coincides
with τi for each i = 1, 2, 3, . . . , n. Define a map

d :X × X → R, (x, y) �→ [�i=n
i=1(di(xi, yi))

2] 1
2

for every pair of points x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) in X . Then d is
a metric on X , and hence, it defines the topology τd = τ . This proves that the product
space (X , τ ) is also metrizable.

Case II: Let F be countable. Without loss of generality, assume by Exercise 61
of Sect. 3.20 (or see proof of Theorem 3.13.6) that for every positive integer i,

di(xi, yi) ≤ 1, ∀ (xi, yi) ∈ Xi × Xi.

Then the map

d :X × X → R, (x, y) �→ �∞
i=1

1

2i
(di(xi, yi))∀ xi, yi ∈ Xi, and ∀ i > 0

for every pair of points x = (x1, x2, . . .) and y = (y1, y2, . . .) inX , is ametric. Hence,
d defines the topology τd = τ . This asserts that in this case, the product space (X , τ )

is also metrizable.
Considering both the cases, the proof of the theorem is completed. �

Corollary 3.13.2 Euclidean n-space (Rn, σ ) with usual metric on Rn is metrizable

Proof It follows from Theorem 3.13.1, since R is metrizable. �

Corollary 3.13.3 The unit n-cube In with usual metric is metrizable.
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Proof The product space �n
n=1(In, τn) is the unit n-cube. Hence, the Corollary fol-

lows from Theorem 3.13.1, since I is metrizable. �

Metrizability of Hilbert Cube

This subsection defines Hilbert cube named after David Hilbert (1862–1943) and
unit n-cube, which are important topological spaces and studies their metrizability
property.

Definition 3.13.4 Let the topological space (In, τn) be homeomorphic to [0, 1] for
each positive integer n. Then the product space �∞

n=1(In, τn) is called the Hilbert
cube, denoted by I∞.

Remark 3.13.5 An alternative statement of Theorem 3.13.1 with a proof in more
precise form is given in Theorem 3.13.6.

Theorem 3.13.6 Let {(Xn, τn): n ∈ N} be a countably infinite family of metrizable
spaces. Then their product space �∞

n=1(Xn, τn) is also metrizable.

Proof Let dn be ametric onXn,which induces the topology τn onXn for every n ∈ N.
Define a metric mn equivalent to the metric dn on Xn for all n ∈ N by taking

mn = min{1, dn(x, y), ∀ x, y ∈ Xn and ∀ n ∈ N}.

So, we may assume that

dn(x, y) ≤ 1, ∀ x, y ∈ Xn and ∀ n ∈ N.

Define the function

d : �∞
n=1Xn × �∞

n=1Xn → R: (�∞
n=1xn,�

∞
n=1yn) �→ �∞

n=1
dn(xn, yn)

2n

Then the function d is well-defined, because, each dn(xn, yn) ≤ 1 and so it is
bounded above by �∞

n=1
1
2n = 1, and hence, the right-hand series �∞

n=1
dn(xn,yn)

2n is con-
vergent. This function d is a metric on �∞

n=1Xn. Hence, it follows that the product
space �∞

n=1(Xn, σn) is also metrizable.
�

Corollary 3.13.7 The Hilbert cube I∞ is metrizable.

Proof It follows from Theorem 3.13.6, since I is metrizable. �
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3.14 Continuous Maps into Product Spaces

This section studies the problems of continuity of maps from an arbitrary topological
space to a product space. For this subsection, �a∈AXa denotes the product space of
the topological spaces {(Xa, τa): a ∈ A}, where A is an arbitrary (possibly, infinite)
indexing set. Consider the map f :X → �a∈AXa from an arbitrary topological space
X into a product space �a∈AXa. If

pa: �a∈AXa → Xa

is the projection map, then the component mapping fa:X → Xa of f is such that
fa = pa ◦ f . Again given a set of mappings

{fa:X → Xa: a ∈ A},

the mapping f :X → �a∈AXa is uniquely determined. This gives a bijective corre-
spondence between the set of mappings

f :X → �a∈AXa

and the set of the family of mappings {fa:X → Xa: a ∈ A}.
Theorem 3.14.1 Let {(Xa, τa): a ∈ A} be a family of topological spaces and X be a
given topological space. Then a mapping

f :X → �a∈AXa

is continuous iff the component mapping fa:X → Xa of f is continuous for each
a ∈ A.

Proof Suppose fa:X → Xa is continuous for each a ∈ A. Let U be any member of
the open base for the product space �a∈AXa. Then f −1(U ) is open in X . It asserts
that f is continuous. Its converse is left to an exercise. �

Theorem 3.14.1 is applied to prove Corollary 3.14.2, an important result in topol-
ogy.

Corollary 3.14.2 Every diagonal map on a topological space is continuous.

Proof Let X be a topological space and X × X be the product space. If

�:X → X × X , x �→ (x, x)

is the diagonal map, then

�(x) = (x, x) = (1X (x), 1X (x)), ∀ x ∈ X
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shows that the map� can be represented as the map (1X , 1X ). Since the identity map
1X :X → X is continuous, it follows by Theorem 3.14.1 that � is continuous. �

Remark 3.14.3 If X = X1 = X2 = · · · = Xn = R, then a mapping f : R → Rn is an
n-tuple of numerical functions. A mapping f :X → �a∈AXa may be considered as
its generalization.

3.15 Weak Topology and Construction of S∞, RP∞
and CP∞

This section presents the concept of weak topology which is used in construction
of some important geometrical and topological spaces such as infinite dimensional
sphere S∞, infinite dimensional real projective space RP∞ and infinite dimensional
complex projective space CP∞.

3.15.1 Weak Topology (Union Topology)

This subsection introduces the concept of weak topology or union topology with an
eye to construct some important spaces such as infinite dimensional sphere, infinite
dimensional real and complex projective spaces.

Definition 3.15.1 Let A be an indexing set (countable or noncountable) and {Xi: i ∈
A} be a family of subsets of a set X such that X = ⋃

i∈A Xi. Suppose

(i) each Xi is a topological space;
(ii) for every pair of indexes i, j ∈ A, the topologies on Xi and Xj agree on their

intersection Xi ∩ Xj;
(iii) for every pair of indexes i, j ∈ A, the intersection Xi ∩ Xj is closed in both Xi

and Xj.

Then the topology τ defined on X by declaring a subset A ⊂
⋃

i≥1
Xi to be closed

iff its intersection A ∩ Xi is closed in the topological space Xi for each i ∈ A. This
topology τ is called the union topology or weak topology on X determined by the
family {Xi: i ∈ A}.
Example 3.15.2 Important examples of topological spaces endowed with weak
topology are available in Sect. 3.15.2.
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3.15.2 Construction of S∞, RP∞ and CP∞ with Weak
Topology

This subsection constructs the infinite dimensional spheres S∞, infinite dimensional
real projective space RP∞ and also infinite dimensional complex projective space
CP∞ in Proposition 3.15.3 by using the concept of weak topology. For construction
of the n-sphere Sn and n-dimensional real projective of RPn see Sect. 3.16.3. More
properties of weak topology are given in Exercise 30 of Sect. 3.20.

Proposition 3.15.3 (Construction of S∞, RP∞ and CP∞)

(i) (Infinite dimensional sphere): S∞ =
⋃∞

n=0
Sn with weak topology, where the

n-sphere Sn is defined by Sn = {x ∈ Rn+1: ||x|| = 1}, which is the boundary
of the (n + 1)-disk Dn+1 in Rn+1. The space S∞ is called infinite dimensional
sphere.

(ii) (Infinite dimensional real projective space): RP∞ =
⋃∞

n=0
RPn with weak

topology, where the n-dimensional real projective space RPn is the space of
all straight lines through the origin in Euclidean space Rn+1 (see Example
3.16.20). The space RP∞ is called infinite dimensional real projective space.

(iii) (Infinite dimensional complex projective space): CP∞ =
⋃∞

n=0
CPn with

weak topology, where the n- dimensional complex projective space CPn is
the space of all complex lines through the origin in complex space Cn+1. The
space CP∞ is called infinite dimensional real projective space.

Example 3.15.4 If X is endowed with weak topology determined by its subspaces
{Xi: i ∈ A}, then each Xi is closed in X and each subspace Xi of X has its original
subspace topology. In particular, if the indexing set A is finite, there is only one
topology on X , which is the weak topology.

3.16 Quotient Spaces: Construction of Geometrical Objects
Through Topological Methods

The section is devoted to address the concept of quotient spaces or identification
spaces and also presents the mathematical version of a geometric process to obtain
new geometric objects by several methods to obtain quotient spaces described in
this section. Many interesting topological spaces can be constructed from a simple
topological space by identifying some subset (or points) of X . For example, a circle
is obtained by gluing together the end points of a closed line segment. The con-
cept of quotient spaces was introduced by Robert L. Moore in 1925 and was also
independently, by Pavel Alexandroff (1896–1982).
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3.16.1 Quotient Topology and Quotient Spaces

This subsection explains the formal definition of the quotient topology formalizing
the geometric process of gluing and identification and also constructs quotient (factor)
spaces by using the concept quotient topology (see Proposition 3.16.2).

Definition 3.16.1 Identification topology or quotient topology induced by a sur-
jective map. Let (X , τ ) be a topological space. Given a nonempty set Y and a sur-
jective map f :X → Y , the family of subsets τf , determined by

τf = {U ⊂ Y : f −1(U ) ∈ τ }

forms a topology, called the identification topology or quotient topology on Y ,

induced by the map f and the new topological space (Y , τf ) is called the quotient
space or identification space. The process of identification is sometimes called
gluing or pasting

Proposition 3.16.2 Let (X , τ ) be a topological space. Given a nonempty set Y and
a surjective map f :X → Y , the quotient topology τf on Y is the strongest (largest)
topology on Y for which f :X → Y is continuous.

Proof It follows from Proposition 3.6.5. �

Example 3.16.3 (An immediate application of Proposition 3.16.2). Let X be a given
topological space, and P be a partition of X . A new topological space Y is an
identification space or a quotient space if the points of Y are the members of P and
if p:X → Y sends each point of X to the subset of Pcontaining it, the topology of
Y is the largest for which p is continuous by Proposition 3.16.5. More precisely, let
(X , τ ) be a topological space and ρ be an equivalence relation on X generating the
partition P . Let X /ρ be the quotient set and [x] denote the class which contains the
element x ∈ X . Then the map

p:X → X /ρ, x → [x]

called the natural projection, which is surjective. Let σ be the family of subsets of
X /ρ given by

σ = {U ⊂ X /ρ: p−1(U ) ∈ τ }.

Then σ forms a topology by Proposition 3.16.2 onX /ρ, called the quotient topology
or topology on X /ρ determined by the equivalence relation ρ and the topological
space (X /ρ, σ ) thus obtained is called the quotient space or the decomposition
space or identification space, determined by ρ.

Example 3.16.4 Let I be the closed unit interval and ρ be an equivalence relation
on I such that

[0] = [1] = {0, 1} and [x] = {x} for 0 < x < 1.
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Then I/ρ is the quotient space homeomorphic to the circle S1. In other words, S1 is
obtained from I by identifying the end points 0 and 1 of I.

Proposition 3.16.5 Given a topological space (X , τ ) and an equivalence relation
ρ on X , the quotient topology σ on X /ρ is the strongest (largest) topology for which
the projection

p:X → X /ρ, x → [x], the class which contains the element x ∈ X ,

is continuous.

Proof Proof I: It follows from Proposition 3.16.2, since the projection map

p:X → X /ρ, x → [x]

is surjective.
Proof II: Let {V } be a family of open sets forming a topology τ ′ on X /ρ such that

p:X → X /ρ, x → [x]

is continuous. Then p−1(V ) is open in (X , τ ). Consequently,V is open in the quotient
space X /ρ, i.e., V ∈ τp ⊂ σ . This implies that V ∈ σ . This means that the topology
τ ′ is weaker than the topology σ . Consequently, the topology σ on X /ρ is the largest
topology such that p is continuous. �
Remark 3.16.6 The natural problem is: How to relate the topological spaces (Y , τf )

and (X /ρ, σ ) constructed in Definition 3.16.1 and in Proposition 3.16.5? To solve
this problem, let (X , τ ) be a topological space and Y be an arbitrary nonempty set.
If f :X → Y be a surjective set function, then by Proposition 3.16.2, there exists
a topology τf , which is the largest topology on Y such that the map f :X → Y is
continuous.Again, themap f :X → Y induces an equivalence relationρ onX defined
by (x, y) ∈ ρ iff f (x) = f (y) such that the projection map p:X → X /ρ, x → [x] is
surjective. Then by Proposition 3.16.2, there exists a topology τp,which is the largest
topology on X /ρ such that the projection map p is continuous. Again, by Proposition
3.16.5 there exists a topology σ on X /ρ, which is the largest topology such that the
projection map

p:X → X /ρ, x → [x]

is continuous. It asserts that σ = τp.

3.16.2 Quotient or Identification Maps

This subsection studies identification topology and identification map. For different
applications of identification maps see the rest of this chapter as well as Chapters 5
and Basic Topology, Volumes II and III of the present book series..
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Definition 3.16.7 (Quotient or identification map) Let (X , τ ) and (Y , σ ) be two
topological spaces and f : (X , τ ) → (Y , σ ) be a surjective map. If τf is the quotient
topology on Y induced by f , then the map f is called a quotient or identification
map, if σ = τf .

Proposition 3.16.8 Let (X , τ ) and (Y , σ ) be two topological spaces. Then a sur-
jective map

f : (X , τ ) → (Y , σ )

is a quotient map if either

(i) f is both open and continuous or
(ii) f is both closed and continuous.

Proof To prove the proposition, it is sufficient to prove that σ = τf .

(i) Let f be both open and continuous. Since f is continuous, then for every open
set U ∈ σ , f −1(U ) ∈ τ , and hence, U ∈ τf . This shows that σ ⊂ τf . Again,
since f is open, for every open set V ∈ τf , the inverse image f −1(V ) ∈ τ , and
hence, V = f (f −1(V )) ∈ σ shows that τf ⊂ σ . This asserts that σ = τf .

(ii) Let f be both closed and continuous. By continuity of f , it follows that σ ⊂ τf .
Conversely, for any open set

U ∈ τf , f −1(U ) ∈ τ =⇒ X − f −1(U )

is a closed set in (X , τ ). This asserts that f (X − f −1(U )) = Y −U is a closed
set in (Y , σ ), and hence,U ∈ σ shows that τf ⊂ σ . This asserts that σ = τf . �

The conditions (i) and (ii) prescribed in Proposition 3.16.8 give a sufficient condition
for a surjective map to be a quotient map but are not necessary (see Proposition
3.16.9).

Proposition 3.16.9 Let (X , τ ). (Y , σ ) and (Z, μ) be three topological spaces. If
f : (X , τ ) → (Y , σ ) is a quotient map and g: (Y , σ ) → (Z, μ) is a given map, then
g is continuous iff

g ◦ f : (X , τ ) → (Z, μ)

is continuous.

Proof First let g : (X , τ ) → (Z, μ) be continuous. Since any quotient map f is
continuous, then composite g ◦ f is also continuous. Conversely, let g ◦ f be contin-
uous. Let U be an open set in Z . Then f −1(g−1(U )) = (g ◦ f )−1(U ) is an open set
in (X , τ ), and hence, g−1(U ) ∈ σ, since σ is the quotient topology τf induced by f .
This implies that g is continuous.

�

Remark 3.16.10 Theorem 3.16.11 solves the problem raised in the Remark 3.16.6
by proving that the topological spaces (Y , τf ) and (X /ρ, τp) are homeomorphic.
Notations used in Theorem 3.16.11 are explained in Remark 3.16.6.
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Theorem 3.16.11 Let (X , τ ) be a topological space, Y be a nonempty set and
f :X → Y be a given surjective set function. If τf is the identification topology on
Y , induced by f , then topological space (Y , τf ) is homeomorphic to the quotient
space (X /ρ, τρ), where ρ is a equivalence relation on X defined by (x, y) ∈ ρ iff
f (x) = f (y).

Proof Since ρ is an equivalence on X , it determines a topological space (X /ρ, τρ).
By hypothesis, f is surjective and hence the map g:X /ρ → Y , [x] �→ f (x) is a bijec-
tion. Let p : (X , τ ) → (X /ρ, τρ), x �→ [x] be the canonical projection mapping onto
X /ρ. Since g ◦ p = f is continuous, it follows by Proposition 3.16.9 that g is continu-
ous. Again, since g−1 ◦ f = p is continuous it follows by Proposition 3.16.9 that g−1

is also continuous. This asserts that g: (X /ρ, τp) → (Y , τf ) is a homeomorphism.
�

Theorem 3.16.12 Given an identification map p:X → Y on Y and an arbitrary
topological space Z, a map

f : Y → Z

is continuous iff the composite f ◦ p:X → Z is continuous.

Proof Given an open subset V ⊂ Z , f −1(V ) is open in Y iff p−1(f −1(V )) is open
in X . This asserts that p−1(f −1(V )) is open in X iff {p ◦ p}−1(V ) is open in X . This
implies that f is continuous iff p−1(f −1(V )) is is open in X , i.e., iff f ◦ p:X → Z is
continuous.

�

Proposition 3.16.13 The quotient space of a quotient space is also a quotient space.

Proof Let X ,Y ,Z be three topological spaces such that Y is endowed with quotient
topology from X and Z is endowed with quotient topology from Y . Since for two
continuous ontomaps f :X → Y and g:Y → Z, the quotient topology ofZ is induced
by the composite map g ◦ f , the proposition follows. �

Example 3.16.14 Define an equivalence∼ on the real line space R by the rule x ∼ y
iff x − y is an integer. Then the quotient space R/ ∼ is homeomorphic to the circle
S1.

Example 3.16.15 Define an equivalence ∼ on the real line space R by the rule
x ∼ y iff x − y is a rational number. Then the corresponding quotient space R/ ∼ is
an indiscrete space.

Theorem 3.16.16 gives a criterion for an identification map.

Theorem 3.16.16 Let X and Y be topological spaces. If f :X → Y is a surjective
map such that f maps open sets of X to open sets of Y or f maps closed sets of X to
closed sets of Y , then f is an identification map.
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Proof Let f be a map such that f maps closed sets of X to closed sets of Y . Suppose
A is a subset of B such that f −1(A) is closed in X . As f is onto by hypothesis,
f (f −1(A)) = A.. This asserts that A must be closed in the given topology on Y . This
topology is the largest topology for which f is continuous and f is an identification
map. The proof is similar for open maps. �

3.16.3 Construction of Sn and RPn by Identification Method

This subsection constructs the n-sphere Sn and real projective space RPn by identi-
fication method. In view of Theorem 3.16.11, the identification space and identifi-
cation topology can be reformulated in the following form:

Definition 3.16.17 Let X be a given topological space, andP be a partition on X . A
new topological space Y is said to be an identification space if the points of Y are the
members of P and if p:X → Y sends each point of X to the subset of P containing
it, the topology of Y is the largest for which p is continuous. An identification space
Y is obtained from a topological space (X , τ ) by identifying each member of the
partition P on X to a single point.

Example 3.16.18 Let I = [0, 1] be the closed unit interval and ρ be an equivalence
relation ∼ on I such that [0] = [1] = {0, 1} and [x] = {x} for 0 < x < 1. Then I/ρ
is the quotient space homeomorphic to the circle S1. In other words, S1 is obtained
from I by identifying the end points 0 and 1 of I.

Example 3.16.19 (i) Let D2 = {(x, y) ∈ R2: x2 + y2 = 1} be the closed disk. Then
its boundary ∂D2 is the circle S1 = {(x, y) ∈ R2: x2 + y2 = 1}. Define an equivalence
relation ρ on S1: (x1, y1)ρ(x2, y2) iff x21 + y21 = 1 = x22 + y22, i.e., iff ρ identifies the
points on S1. The quotient space thus obtained is the 2-sphere S2 written as D2/S1.
Geometrically, if we identify all the points of the circumference of a diskD2, then the
resulting quotient space is homeomorphic to the sphere S2. In general. the quotient
space Dn/Sn−1 is the n-sphere Sn.

Theorem 3.16.20 (Real Projective Space RPn): Let X = Rn+1 − {0}, where 0 =
(0, 0, . . . , 0) ∈ Rn+1 and (X , τ ) be the subspace of the Euclidean n-space Rn+1. Let
“ ∼” be a binary relation on X defined by

(x1, x2, . . . , xn+1) ∼ (y1, y2, . . . , yn+1)

holds iff yi = rxi (i = 1, 2, . . . , n + 1) for some nonzero real number r. Then ∼ is
an equivalence relation on X . The quotient space X / ∼ thus obtained is called the
n-dimensional real projective space, denoted by RPn. Hence, the points of RPn are
the straight lines in Rn+1 passing through its origin 0. Let

p:X → RPn
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be the natural projection. Since the n- sphere Sn ⊂ X , the restriction of p to Sn,

q = p|Sn: Sn → RPn

is surjective, because, any point x = (x1, x2, . . . , xn+1) ∈ X can be normalized by
multiplying with nonzero real number r = 1

||x|| , and hence, q is an identification map.
For any two points x = (x1, x2, . . . , xn+1) and y = (y1, y2, . . . , yn+1) ∈ Sn,

q(x) = q(y)

iff xi + yi = 0 (i = 1, 2, . . . , n + 1), i.e., iff x and y are antipodal points of Sn. This
asserts that RPn can be obtained from Sn by identifying the antipodal points of Sn.

Remark 3.16.21 Geometrical Interpretation of Theorem3.16.20: This theorem
asserts that the real projective space RPn obtained from Rn+1 − {0} as a quotient
space by an equivalence relation ∼ consists of all straight lines in Rn+1 passing
its origin. It is also obtained from the n-sphere Sn by identifying its diametrically
opposite points.

Proposition 3.16.22 Let (Y , σ ) be an identification space obtained from the topo-
logical space (X , τ ) by a surjective map f :X → Y . Given an arbitrary topological
space (Z, μ), a map g : Y → Z is continuous iff the composite map

g ◦ f : (X , τ ) → (Z, μ)

is continuous.

Proof It follows from Proposition 3.16.9. �

3.16.4 Constructions of Spheres and Cones by Collapsing
Method

This subsection constructs some interesting topological spaces such as sphere and
cone by collapsing a subspace of a topological space to a point.

Definition 3.16.23 LetX be a topological space andAbe a given nonempty subspace
of X . The set A together and the individual points of X − A constitute a decompo-
sition of the space X . This defines a quotient space, called the topological space
obtained from X by collapsing the subspace A to a point, and this process is known
as collapsing method. In this method, all points of A are identified to a single equiv-
alence class and all points in X − A are remained equivalent to themselves by this
decomposition.
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Example 3.16.24 (Construction of the n-sphere Sn) Let X = Dn be the closed
unit disk in Rn and A = Sn−1 = ∂ Dn be the (n − 1)-sphere in Rn. The set A being
the boundary of X , it is a subspace of X with relative topology. The unit n-sphere
Sn is homeomorphic to the quotient space obtained from X by collapsing A to a
point. This implies that the n-sphere Sn can be obtained as a quotient space from
the closed n-disk Dn by collapsing its boundary Sn−1 to a point. This is sometimes
written as Dn/Sn−1 = Sn (up to homeomorphism). In particular, the 2-sphere S2

is homeomorphic to the quotient space D2/S1 obtained from the unit disk D2 by
identifying its boundary ∂ D2 = S1 to the single equivalent class.

Example 3.16.25 (Construction of Cone) Let A be an arbitrary space and X =
A × I be the product space of A and the closed unit interval I. If T = A × {1}, then
the quotient space obtained fromX by collapsing its topT to a point, then the quotient
space is called the cone over A, denoted by Con (A). The point v = A × {1} is called
the vertex of the cone Con (A). The given space A is considered as a subspace of
Con (A) by an embedding

f :A → Con(A), a �→ p(x, 0),

where p:A × I → Con(A) is the natural projection.

3.16.5 Construction of New Spaces by Gluing Method

This subsection constructs somewell-known surfaces in theEuclidean space obtained
by gluing method. The concept of quotient spaces in topology and geometry formal-
izes mathematically the intuitive idea of the process of identification by gluing or
pasting.

Example 3.16.26 The circle S1 is obtained from the closed interval I = [0, 1] by
gluing (identifying) its end points 0 and 1, as shown in Example 3.16.18.

3.16.6 Attaching Map: Construction of Mapping Cylinder
and Mapping Cone

This section concentrates on a special type of identification spaces, called adjunct
spaces. The concept of attaching one space to another by a continuous map may be
given by using identification space. The process of attaching a topological space to
another space by a map plays a key role in topology which provides constructions
of many important objects such as cone, cylinder and suspension space. Recall that
given two disjoint spaces X and Y , their disjoint union X � Y (or X + Y) is the
set X ∪ Y endowed with the topology defined: a subset V ⊂ X � Y is open iff both
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V ∩ X is open in X and V ∩ Y is open in Y , is called the topological sum of X and
Y . Moreover, given a disjoint union X � Y , as X ∩ Y is the empty set, X and Y carry
their own topologies and they are disjoint open sets in X + Y , Moreover, a subset
A ⊂ X + Y is closed if both A ∩ X is closed in X and A ∩ Y is closed in Y . We now
utilize these result in our next constructions. Definition 3.16.27 shows an important
aspect of identification of topological spaces by formalizing the concept of attaching
one topological space to another by a continuous map.

Definition 3.16.27 (Attaching map) Given two disjoint topological spaces X and Y ,
a closed subset A of X , and a continuous map f :A → Y , the topological sum X + Y
gives an equivalence relation ρ obtained by identifying a with f (a) for each a ∈ A.
More precisely, the subsets of the partition generated by ρ are precisely,

(i) the pairs of points {(a, f (a))};
(ii) the individual points in the set X − A:
(iii) the individual points in the set Y − Imf (f ).

The quotient space (X + Y )/ρ is denoted by X ∪f Y . The map f is called the
attaching map f and the space X ∪f Y is said that X is attached to Y by the attaching
map f .

Example 3.16.28 The 1-circle S1 is obtained from the closed interval I = [0, 1] by
attaching I to a point x0 by the attaching map f : I → R2 such that f (0) = f (1) = x0

Remark 3.16.29 The space X ∪f Y obtained in Definition 3.16.27 is also called the
adjunction space constructed by gluing X to Y defined by the equivalence relation
ρ:xρy iff x ∈ A and f (x) = y. The equivalence classes of the disjoint union X � Y
under ρ constitute X �f Y . For A = ∅, the adjunction space Y �f X = Y � X , and
for A = X , the adjunction space Y �f X = Y . In particular, for X = Y , the map
f = 1d and the adjunction space Y �1d X = X .

Example 3.16.30 The equivalence relation generated by all pairs

a ∼ f (a): a ∈ A

consists of the following pairs:

(i) either for x, y ∈ X , x ∼ y if x = y
(ii) or x, y ∈ A and f (x) = f (y)
(iii) or x ∈ A and y = f (x) ∈ Y .

Example 3.16.31 Let f : S1 → S1, z �→ z2. Then f is an identification map identify-
ing the points z, and − z of S1 to the point z. Hence, S1 �f R2 is homeomorphic to
the quotient space obtained from S2 with its diametrically opposite points identified.
This produces the real projective space RP2.

Mapping cylinder andmapping cone are important objects in topology constructed
is Example 3.16.32.
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Example 3.16.32 (Constructions of Mapping Cylinder and Mapping Cone)

(i) Let X and Y be topological spaces and f :X → Y be continuous. Let S =
(X × I) � Y denote the disjoint union of topological spaces X × I and Y . Then
both X × I and Y are open sets of (X × I) � Y . If we define an equivalence
relation ρ on (X × I) � Y by (x, t)ρy iff y = f (x) and t = 1, then the quotient
space Mf = ((X × I � Y )/ρ is called the mapping cylinder of f . Thus, Mf

is the space obtained from Y and (X × I)/(x0 × I) by identifying for each
x ∈ X , the points (x, 1) and f (x) as shown in Fig. 3.2, in which the thick line is
supposed to be identified to a point (the base point ofMf ). Denote (x, t)ρ inMf

by [x, t] and yρ inMf by [y]. Then [x] = [x, 1] = [f (x)], ∀ x ∈ X . The space
Y is embedded in Mf under the map y → [y.] In particular, if Y is a one-point
space, then f :X → Y is a constant map and Mf is CX , the cone over X .

(ii) Alternative construction of mapping cylinder and mapping cone: Let X and
Y be topological spaces and f :X → Y be continuous. The individual points

{(x, t) ∈ X × I: x ∈ X , 0 ≤ t < 1}

together with the subsets

{(f −1(y) × 1) ∪ {y}: y ∈ Y }

of the topological sum S = (X × I) + Y form a partition of S. The quotient
space obtained in this way is the mapping cylinder of f , denoted by Mf and
the spaces X , Y are considered as subspaces ofMf by the embeddings

g:X → Mf , x �→ p(x, 0) and h: Y → Mf , y �→ p(y),

where p: S = (X × I) � Y → Mf is the natural projection map. On the other
hand, the quotient space obtained from the mapping cylinderMf by collapsing
its subspace X to a point v0 is the mapping cone Cf with vertex v0. The space
Y is embedded in Cf by usual embedding.

Example 3.16.33 Let X and Y be topological spaces with base points x0 and y0,
respectively. Given a continuous map f :X → Y , the mapping cone Cf as shown in
Fig. 3.3.
is the quotient space obtained from Y and the cone CX over X by identifying the
point [x, 1] of CX with the point f (x) of Y for all x ∈ X . The base point of Cf is the
point to which [x0, t] and y0 are identical for all t ∈ I .

Example 3.16.34 (Wedge) Let (X , x0) and (Y , y0) be two pointed topological
spaces. Their wedge(or one-point union) X ∨ Y is the quotient space of their disjoint
union X � Y in which the base points are identified. In general, if Xi is a collection
of disjoint spaces, with base point xi ∈ Xi, then their wedge (or one-point union)∨

i∈I Xi is the quotient space X /X0, where X =
⊔

i∈I Xi and X0 is the subspace of X
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Fig. 3.2 Mapping cylinder
Mf of f :X → Y x

f(x)

X

Y

y0 f(X)

x0

Fig. 3.3 Mapping cone Cf
of f :X → Y

f(X)

1

Y
y0 = f(x0)

consisting of all base points xi; the base point of
∨

i∈I Xi is the point corresponding

to X0. In other words,
∨

i∈I Xi is the space obtained from X by identifying together
the base point xi.

Example 3.16.35 (Smash product) Let X and Y be two pointed spaces with base
points x0 and y0, respectively. Then their smash product (or reduced product) X ∧ Y
is defined to be the quotient spaceX × Y /(X ∨ Y ).Wemay thinkX ∧ Y as a reduced
version of X × Y obtained by collapsing X ∨ Y to a point. The smash product X ∨ Y
is also written as X #Y . The spaces X and Y are considered as subspaces of X ∨ Y
by embedding

f :X ∨ Y → X × Y , x �→
{

(x, y0), if, x ∈ X

(x0, y), if y ∈ Y ,
.

Example 3.16.36 The smash product X ∨ Y depends on the base point. For exam-
ple, if 0 ∈ [0, 1] = I is taken as a base point of I, then the smash product I ∨ I is
homeomorphic to I × I, where two adjacent sides of I × I are identified. On the
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other hand, if 1
2 ∈ I is taken as a base point of I, then the smash product I ∨ I is

homeomorphic to the wedge of four copies of I × I.

Example 3.16.37 (Reduced suspension space) Let X be a pointed topological
space with base point x0. Then the suspension of X , denoted by �X , is defined to be
the quotient space of X × I in which the subspace

(X × 0) ∪ (x0 × I) ∪ (X × 1)

is identified to a single point. It is sometimes called the reduced suspension space.
If (x, t) ∈ X × I, we use [x, t] to denote the corresponding point of �X under the
identification map

f :X × I → �X

such that [x, 0] = [x0, t] = [x′, 1] for all x, x′ ∈ X and for all t ∈ I. The point [x0, 0] ∈
�X is also denoted by x0. Thus, �X is a pointed space with base point x0 and
�X = X ∧ S1. In particular, �Sn is homeomorphic to Sn+1 for n ≥ 0. Moreover, if
f :X → Y is a base point preserving continuousmap, then�f : �X → �Y is defined
by �f ([x, t]) = [f (x), t].
Proposition 3.16.38 expresses � in the language of the category theory.

Proposition 3.16.38 Let Top∗ be the category of pointed topological spaces and
base point preserving continuous maps. Then

�: Top∗ → Top∗

is a covariant functor.

Proof Define the object function

�: Top∗ → Top∗, X �→ �X

and define the morphism function for every morphism f :X → Y ∈ Top∗

�f : �X → �Y , [x, t] �→ [f (x), t],

where�X ∈ Top∗ for every object X ∈ Top∗ by its construction and�f ∈ Top∗ for
every morphism f ∈ Top∗ as described in Example 3.16.37. �

Example 3.16.39 For the n-sphere Sn, its suspension space �Sn = Sn+1 and �n−1

(S1) = Sn (up to homeomorphism)
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3.16.7 Construction of Cylinder, Möbius Band, Torus
and Klein Bottle

This subsection describes construction of some geometrical objects such as the cylin-
der, Möbius band (Möbius strip) named after A. F. Möbius (1790–1868), torus and
the Klein bottle named after F. Klein (1849–1925) from the square by identification
methods. Historically, the Möbius band was constructed by Möbius in 1858 and the
Klein bottle was constructed by Klein in 1882.

(i) The cylinder can be obtained as a quotient space obtained from the square
I × I by identifying the point (0, t) to the point (1, t) for all t ∈ I.

(ii) The Möbius band (Möbius strip) M can be obtained as a quotient space
obtained from the square I × I by identifying the point (0, t) to the point (1, 1 −
t) for all t ∈ I as shown in Fig. 3.4. The identification topology onM coincides
with the subspace topology induced on M by the usual topology on R3. Then
Möbiu1s stripM is embedded in R3. If

p: I × I → M

is natural projection, then the subspace

Y = p(I × {0} ∪ (I × {1}) ⊂ M ,

is called the edge ofM , which is homeomorphic to the circle S1. If f : S1 → M
is an embedding mapping S1 homeomorphically onto Y , then the cone Cf is
homeomorphic to RP2. which can be embedded in R4.

(iii) The 2-torus T 2 (or torus) can be obtained as a quotient space obtained from
the square I × I by identifying both pairs of opposite edges via identifying the
point (0, t) with the point (1, t) and the point (s, 0) with the point (s, 1) for all
t, s ∈ I as shown in Fig.3.5. The torus T 2 is homeomorphic to S1 × S1 by an
identification map

f : I × I → S1 × S1, (t, s) → (e2π it, e2π is).

(iv) The Klein bottle K can be obtained as a quotient space obtained from the
square I × I by identifying the point (0, t) with the point (1, 1 − t) and the
point (t, 0) with the point (t, 1) for all t ∈ I as shown in Fig. 3.6. The Klein
bottle K is homeomorphic to the quotient space from the topological sum of
two Möbius strips by identifying the corresponding points of the edges. It is
not possible to visualize the Klein bottle K, since K cannot be embedded in
R3.

(v) The real projective plane RP2 can be obtained as the quotient space of the
square I × I by identifying (t, 0) with (1 − t, 1) and (0, t) with (1, 1 − t)
for all t ∈ I.
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Fig. 3.4 Möbius band obtained as the quotient space of unit square

Fig. 3.5 Torus obtained as the quotient space of unit square

Fig. 3.6 Klein bottle
obtained as the quotient
space of the unit square

(vi) The 2-sphere S2 can be obtained as the quotient space of the square I × I by
identifying all its boundary points to a common point. In general, construction
of Sn by identification method is described in Example 3.16.24.

(vii) The general construction of the real projective space RPn is done in two dif-
ferent ways:

Method I: RPn is constructed from the n-sphere Sn by identifying its antipodal
points. For this identification, consider Sn in Rn+1 and a partition of Sn into subsets
which contain exactly two points lying at opposite ends of a diameter of Sn. Such
points are called antipodal or diametrically opposite points of Sn.
Method II: It is described in Theorem 3.16.20.
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3.17 Zariski Topology, Scheme and Zariski Space

This section describes the Zariski topology on an affine space and also Zariski
topology on a commutative ring defined by Oscar Zariski (1899–1986) around 1950,
which were born through algebraic geometry while studying algebraic varieties. This
topology is an interplay among algebra, geometry and topology and is different from
the metric topology because every metric topology is Hausdorff but every Zariski
topology is not so. For example, the Zariski topology on the polynomial ring R[x]
over R is not Hausdorff, and hence, this topology cannot be induced by a metric
(see Chap. 4). Zariski topology on the n-dimensional complex space Cn has fewer
open sets than its metric topology. This gives an advantage of Zariski topology over
the metric topology. It is interesting that Zariski topology on R coincides with the
cofinite topology onR. (see Exercise 37 of Sect. 3.20). In this sense, Zariski topology
on Rn is a generalization of cofinite topology on R.

3.17.1 Zariski Topology on an Affine Space

This subsection studies Zariski topology on an affine space with the help of affine
algebraic set. This specific topology provides an interplay between algebraic geome-
try and topology. It is interesting that the closed interval I = [0, 1] is closed under the
Euclidean topology induced on I from R but it is not closed under Zariski topology.
For more study on Zariski topology, see Chap. 4.

Definition 3.17.1 Let A be a field. Then an affine n-space

An = {x = (x1, x2, . . . , xn): xi ∈ A, ∀ i = 1, 2, . . . , n}

is a vector space of dimension n over the field A.

Example 3.17.2 The Euclidean n-space Rn is an affine n-space of dimension n.

Definition 3.17.3 Given an affine space An, an n-tuple x = (x1, x2, . . . , xn) ∈ An

is said to be a zero of a polynomial f (x) = f (x1, x2, . . . , xn) ∈ A[x1, x2, . . . , xn]
(polynomial ring of n determinates over A), if

f (x) = f (x1, x2, . . . , xn) = 0.

Given a subset S ⊂ A[x1, x2, . . . , xn], the algebraic set V (S) of zeros of S is defined
by

V (S) = {x ∈ An: f (x) = 0, ∀ f ∈ S} ⊂ An.

A subset X ⊂ An is said to be an affine algebraic set or simply, an algebraic set if
there is a subset S ⊂ A[x1, x2, . . . , xn] such that X = V (S).
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Definition 3.17.4 Let X be a subset of An and the subset I(X ) of A[x1, x2, . . . , xn]
be defined by

I(X ) = {f ∈ A[x1, x2, . . . , xn]: f (x) = 0 for all x ∈ A},

is an ideal of A[x1, x2, . . . , xn], called the ideal of X .

Definition 3.17.5 An algebraic set X in An is said to be an affine variety if I(X ) is
a prime ideal in the polynomial ring A[x1, x2, . . . , xn].

Theorem 3.17.6 characterizes affine variety with the help of quotient ring.

Theorem 3.17.6 An algebraic set X in An is an affine variety iff the quotient (coor-
dinate) ring A[x1, x2, . . . , xn] / I(X ) is an integral domain.

Proof We use the result of algebra that a proper ideal of a commutative ring with
identity is prime iff the quotient ring R/I is an integral domain. Then the theorem
follows from Definition 3.17.5 of affine variety. �

Wenowuse the concept of algebraic set given inDefinition 3.17.3 to defineZariski
topology.

Definition 3.17.7 (Zariski Topology on An) The Zariski topology τ on an affine n-
space An for an arbitrary field A is defined by declaring a subset X ⊂ An to be closed
if it is an algebraic set in An. A subset U ⊂ An is open iff its complement An −U is
closed in the topology τ .

Example 3.17.8 Let X be an algebraic set in An. If X = V(S) for some subset S ⊂
A[x1, x2, . . . , xn], then X = V (I(X )). If K = I(X ) is an ideal of the algebraic set X .
then K = I(V (K)).

Example 3.17.9 Let C be the field of complex numbers. Then it has only two ideals,
viz. 〈0〉 and C itself. So the Zariski topology on C consists of only one open set 〈0〉.
Example 3.17.10 For n = 1, in An, i.e., for A = A1, the emptyset ∅,A and the finite
subset of A are closed sets and hence ∅,A and the complements of finite subsets of A
are open sets in the Zariski topology on A. If A is an infinite field, then in the Zariski
topology, any two nonempty open sets in A have nonempty intersection.

Example 3.17.11 The space I is not closed in Zariski topology on R. Because, if
A = R, then in Zariski topology on R, the closed sets are also closed sets under
Euclidean topology on R, and Zariski open sets in topology on R are also open sets
in Euclidean topology on R. But the closed interval I = [0, 1] is closed under the
Euclidean topology induced on I from R but it is not closed under Zariski topology.

Example 3.17.12 Let C be the field of complex numbers. Then it has only two
ideals, viz. < 0 > and C itself. So the Zariski topology on C consists of only one
open set < 0 >.
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3.17.2 Zariski Topology on the Spectrum of a Ring
and Scheme

This subsection defines Zariski topology on the spectrum spec R of a commutative
ring R. This specific topology provides an interplay between algebra and topology.
This leads to the concept of the “scheme” defined by A. Grothendieck (1928–2014).
“Fields Medal” was awarded to him in 1966 in recognition of his outstanding con-
tribution in the theory of schemes.

Definition 3.17.13 Given a commutative ring R with identity, the prime spectrum
of R is defined to be the set of all prime ideals of R, i.e., prime spectrum or simply
spectrum of R, abbreviated spec R is defined to be the set

spec R = {P:P is a prime ideal in R}.

A topology is defined on the set spec R by declaring closed sets given inDefinition
3.17.14.

Definition 3.17.14 Let P be a prime ideal of a commutative ring R with identity.
The closed sets in spec R are defined to be sets

V (P) = {A:A is a prime ideal in R containing P}.

The complements c(P) = spec R − V (P) ofV (P) are called open sets. The topology
defined in this way on spec R is called the Zariski topology on spec R. The points in
spec R corresponding tomaximal ideals in spec R (see Chap. 5), are called geometric
points.

Definition 3.17.15 Given a commutative ring R with identity, and a subset X ⊂ R,
the set V (X ) is defined to be the set

V (X ) = {P ∈ spec R:X ⊂ P}.

Example 3.17.16 Let I be the ideal generated by the subset X ⊂ R of a commutative
ring R, then V (X ) = V (I).

Proposition 3.17.17 For any subset X ⊂ R, the sets V (X ) in spec R have the fol-
lowing properties:

(i) V (R) = ∅;
(ii) V(0) = spec R;
(iii) For any two ideals P and Q in spec R, the union V (P) ∪ V (Q) = V (P ∩ Q);
(iv) Given any family {V (Xa) ∈ spec R: a ∈ A} the intersection

⋂

a∈A

V (Xa) = V

(
⋃

a∈A

V (Xa)

)

.
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Proof It follows from the definition of V (X ). �

Definition 3.17.18 Given a commutative ring R, the Zariski topology on spec R is
defined by declaring open sets to be the unions and finite intersections of all sets of
the form spec R − V (P). The collection of all subsets of spec R of the form V (X ),

form a topology on spec R in which the closed sets are of the form V (X ) for some
X ⊂ R by Proposition 3.17.17.

Theorem 3.17.19 Let R, S be two rings with identity elements, spec(R) and spec(S)

be topological spaces endowed with Zariski topology. Then every ring homomor-
phism f :R → S induces a continuous function

spec f : spec S → spec R, P �→ f −1(P)for all P in spec S.

Proof Since P is a prime ideal of S, the quotient ring S/P is an integral domain.
This asserts that R/f −1(P) is an integral domain. This implies that f −1(P) is a prime
ideal of R. This shows that the function spec f is well-defined. Moreover, for any
V (P), (spec f )−1(V (P)) = {Q ∈ spec S: f (P) ⊂ Q} = V (f (P)) �

Grothendieck studied the scheme given in Definition 3.17.20.

Definition 3.17.20 Given a commutative ringR, the specR endowedwith theZariski
topology is said to be a scheme.

The above discussion is now summarized in a basic and important Theorem 3.17.21
in the language of the category theory establishing a close relation between algebra
and topology.

Theorem 3.17.21 Let CRng be the category of commutative rings with identity
element and their homomorphisms and Top be the category of topological spaces
and their continuous maps.Then

spec: CRng → Top

is a contravariant functor.

Proof The object function assigns to every object R ∈ CRng, the object spec R
endowed with Zariski topology and hence spec R ∈ Top. The morphism function
assigns to every ring homomorphism f :R → S, the continuous function

spec f : spec S → spec R, P �→ f −1(P) for all P in spec S

and hence spec f is a morphism in the category Top. Hence, it follows that

spec: CRng → Top

is a contravariant functor.
�
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3.17.3 Zariski Space Defined by Descending Chain of Closed
Sets

This subsection discusses Zariski space having a particular topology defined by
irreducible closed sets.

Definition 3.17.22 Let X be a topological space. It is said to be irreducible if
X = A ∪ B for closed sets A and B in X implies either X = A or X = B. A subspace
Y ⊂ X is irreducible if Y is irreducible in the subspace topology. The topological
space X is said to be a Zariski space if given any descending chain

A1 ⊃ A2 ⊃ A3 ⊃ · · ·

of closed sets in X , there exists an integer n (depending on the sequence) such that

Am = An, ∀m ≥ n.

Every Zariski space X can be expressed uniquely (up to order) as a finite union

X = X1 ∪ X2 ∪ · · · ∪ Xn,

where X ′
i s are closed and irreducible subsets of X such that Xi is not a subset Xj for

i �= j.

Example 3.17.23 Let R be the real line with the topology having the open sets ∅
together with the complements of finite subsets. Then R endowed with this topol-
ogy is an irreducible Zariski space. Hence, R endowed with cofinite topology is an
irreducible Zariski space.

Proposition 3.17.24 Let (X , τ ) be a topological space. Then the closure of every
one-pointic set in X is irreducible.

Proof Let x ∈ X andA = {x} ⊂ X . IfA = X1 ∪ X2,where bothX1 andX2 are proper
closed subsets of A. Hence, they are closed subsets of X which are strictly contained
in X . Then either x ∈ X1 or x ∈ X2. But it is not possible, because, A is the smallest
closed set containing the point x. It asserts that A is closed in (X , τ ), and hence, A is
irreducible by Definition 3.17.22. �

3.18 Topological Applications

This section presents some interesting topological applications to communicate the
importance and beauty of topology.
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3.18.1 Topological Applications in Matrix Algebra

This subsection studies different classes of matrices from the viewpoint of topology.
Let M(n, R) be the set of all n × n matrices over R and Rn2 denote the Euclidean
n2-space. Then the map

f :M (n, R) → Rn2 ,

(aij) �→ (a11, a12, . . . , a1n, a21, a22, . . . , a2n, . . . , an1, an2, . . . , ann)

identifiesM (n, R)with the Euclidean n2-spaceRn2 . AsR has the usual topology,Rn2

has the product topology, called the usual topology onRn2 . Hence,M(n, R) endowed
with metric topology (usual topology) forms a topological space. This subsection
begins a study of this topological space. A detailed study of this topological space
of matrices is available in Basic Topology, Volume 2 of the present series of books.

Proposition 3.18.1 The determinant function

det:M (n, R) → R, M �→ detM

is continuous.

Proof Since the determinant function

det:M (n, R) → R, M �→ detM

is a polynomial function in Rn2 , it follows that it is continuous. �

Proposition 3.18.2 The general linear group GL(n, R) = {A ∈ M (n, R): detA �=
0} is the set of all nonsingular matrices of order n over R. The set GL(n, R) is an
open and a dense subset but it is not closed in M (n, R).

Proof Let R∗ = R − {0} be the set of nonzero real numbers. Then it is an open set
in R. Again, the determinant function

det:GL(n, R) → R∗, A �→ det A

is continuous. It is surjective, since for any r ∈ R∗, the diagonal matrix D with one
diagonal entry r and the remaining (n − 1) diagonal entries 1 is such D ∈ GL(n, R)

with det D = r. Hence it follows that

GL(n, R) = det−1(R∗)

is an open set in the given space, as it is the inverse image of an open set under a
continuous map. Let A ∈ M (n, R) be an arbitrary matrix. If det polynomial vanishes
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on some nbd of A in Rn2 , then there exists no nonsingular matrix in the nbd of A,

since nonzero polynomial functions have countably many zeros. This asserts that
det polynomial is identically the zero polynomial, which is not true. This shows
that GL(n, R) is dense in M (n, R), since every nbd of A contains an element of
GL(n, R). �

Proposition 3.18.3 Let X = {M ∈ M (n, R):M is singular}. Then X is nowhere
dense in M (n, R).

Proof By hypothesis, X = M (n, R) − GL(n, R). Since GL(n, R) is open in
M (n, R), the set X is a closed set. To prove the proposition, it is sufficient to show
that Int(X ) = ∅. Let M ∈ X be a matrix which is not identically zero. Then det
M is a nonzero polynomial function, called det function. Suppose det polynomial
vanishes in some nbd of M . Then there exists no invertible matrix in this nbd,
because nonzero polynomial functions have only finitely many zeros. This implies
that det function vanishes identically by fundamental theorem of algebra (see Chap.
1). This is a contradiction of our supposition that M is nonzero. This proves the
proposition. �

Proposition 3.18.4 Let GL(n, C) be the set of all nonsingular complex matrices.
The determinant function

det:GL(n, C) → C,M �→ detM

is continuous.

Proof Proceed as in Proposition 3.18.1.
. �

Proposition 3.18.5 X = {M ∈ M (n, R):M is symmetric nonnegative definite
matrices}. Then the subspace X is closed in M (n, R).

Proof Let M ∈ X and x ∈ Rn. Then the map

Tx:X → R, A �→ xtAx

is linear, and hence, it is continuous. Consequently, T−1
x ([0,∞) is closed in X and

the set

X =
⋂

x∈Rn

T−1
x ([0,∞))

is closed, since it is the intersection of an arbitrary family closed sets inM (n, R).
�
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3.18.2 Uniform Convergence of Sequence of Functions
to Metric Space

This subsection studies uniform convergent sequences from a topological space to a
metric space with an eye to solve some continuity problems. The classical definition
of uniform convergence in the language of ε − δ method leads to its generalization
in this subsection.

Definition 3.18.6 Let X be a topological space and Y be a metric space with metric
d. Then a sequence {fn:X → Y } of functions is said to converge uniformly to a
function f :X → Y if corresponding to a given ε > 0, there exists a positive integer
n0 such that whenever n ≥ n0,

d(fn(x) − f (x)) < ε, ∀ x ∈ X .

Theorem 3.18.7 Let X be a topological space and Y be ametric spacewithmetric d.
If a sequence of continuous functions {fn:X → Y } converges uniformly to a function
f :X → Y , then f is continuous.

Proof Let the sequence {fn:X → Y } of continuous functions converge uniformly to
a function f :X → Y . Hence corresponding to a given ε > 0, there exists a positive
integer n0 such that whenever n ≥ n0,

d(fn(x) − f (x)) < ε/3, ∀ x ∈ X .

Again, since each fn is continuous, given a point a ∈ X , there is a nbd Na of a with
the property that whenever x ∈ Na,

d(fn0(x), fn0(a)) < ε/3.

This shows that for every x ∈ Na,

d(f (x), f (a)) ≤ d(f (x), fn0(x)) + d(fn0(x), fn0(a))

+ d(fn0(a), f (a)) < ε/3 + ε/3 + ε/3 = ε.

This proves that f is continuous, since the point a ∈ X is arbitrary. �
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3.18.3 Solution of Homeomorphism Problems in R
by Cardinality

This subsection proves a necessary and sufficient condition for a certain class of
subspaces ofR to be homeomorphic with the help of cardinality of the corresponding
underlying sets.

Theorem 3.18.8 Let X and Y be two finite subsets of the Euclidean line R. Then
the subspace R − X and R − Y are homeomorphic iff card X = card Y.

Proof Let X = {x1, x2, . . . , xn: x1 < x2 < · · · < xn} ⊂ R be a finite subset of R.
Then its complement in R

R − X = (−∞, x1) ∪ (x1, x2) ∪ (x2, x3) ∪ · · · ∪ (xn,∞),

is homeomorphic to the disjoint union of n + 1 copies of the open interval (0, 1).
Hence, it follows that the subspaces R − X and R − Y are homeomorphic if card
X = card Y, each being homeomorphic to the disjoint union of n + 1 copies
of (0, 1). Conversely, let card X = n and card Y = m, where m �= n. Without
loss of generality, suppose m < n. If possible, the topological spaces R − X and
R − Y are homeomorphic. Let X = {x1, x2, . . . , xn: x1 < x2 < · · · < xn} ⊂ R and
Y = {y1, y2, . . . , ym: y1 < y2 < · · · < ym} ⊂ R. Then

R − X = (−∞, x1) ∪ (x1, x2) ∪ (x2, x3) ∪ · · · ∪ (xn,∞),

and

R − Y = (−∞, y1) ∪ (y1, y2) ∪ (y2, y3) ∪ · · · ∪ (ym,∞),

This asserts R − X are homeomorphic to (0, 1)n+1, which is the (n + 1) copies
of (0, 1) and R − Y is homeomorphic to (0, 1)m+1, which is the (m + 1) copies of
(0, 1). But it is not possible, sincem �= n by assumption. This forces to conclude that
m = n.

�

3.18.4 Cantor Space

This subsection studies Cantor space, defined by G. Cantor (1845–1918), which is
the Cantor set endowed with the subspace topology inherited from the topological
space I = [0, 1]. It is interesting that the topological space [0, 1] is a continuous
image of the Cantor space and the Cantor space is also homeomorphic to a countably
infinite product of two-point spaces. Recall that the Cantor set C is obtained from
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[0, 1] by successively deleting middle thirds and is defined by C = ⋂∞
n=1 In (see

Chap. 1).

Definition 3.18.9 Cantor space (C, τC) is the topological space with the subspace
topology τC on the Cantor set C induced on I relative to the usual topology τ on R.

Proposition 3.18.10 Cantor space (C, τC) is a closed subset of I.

Proof Since the Cantor set C defined by

C =
∞⋂

n=1

In

is the infinite intersection of closed sets In: ∀ n = 1, 2, . . . , it follows that (C, τC) is
a closed subset of I = [0, 1].

�

Theorem 3.18.11 Let the set {0, 2} be endowed with the discrete topology. The
Cantor space C is homeomorphic to a countably infinite product space of {0, 2}.
Proof Let Xn = {0, 2} and σn be the discrete topology on Xn for every n ∈ N. Then
{(Xn, σn)} be a family of topological spaces and �∞

n=1(Xn, σn) be the product space
of this family. Let (C, τ ) be the Cantor space. Then the map

ψ : (C, τ ) → �∞
n=1(Xn, σn):�∞

n=1
xn
3n

�→ (x1, x2, . . .), where xn assumes the values 0 or 2

is a homeomorphism.
�

Proposition 3.18.12 The topological space [0, 1] is a continuous image of the Can-
tor space (C, τ ).

Proof To prove the proposition, use the homeomorphism ψ defined in Theorem
3.18.11 and consider the map

φ: �∞
n=1(Xn, σn) → [0, 1]: (x1, x2, . . . , xn, . . .) �→ �∞

n=1
xn
2n+1

Then the map φ is continuous and onto. This asserts that the topological space
[0, 1] is the continuous image of the Cantor space (C, τ ) under the composite map
φ ◦ ψ : (C, τ ) → [0, 1], which is continuous.

�
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3.18.5 Application of Pasting Lemma for Functions
from Product Spaces

This subsection gives an interesting application of Pasting Lemma 3.6.17 to examine
continuity of functions from a product space in Proposition 3.18.13. For its use in
homotopy theory (see Basic Topology: Volume 3) of the present series of books.

Proposition 3.18.13 Let X and Y be two topological spaces and F,G:X × I → Y
be two continuous maps from the product space X × I to the space Y such that

F(x, 1) = G(x, 0), ∀ x ∈ X .

Then the map H :X × I → Y , defined by

H (x, t) =
{
F(x, 2t), 0 ≤ t ≤ 1/2
G(x, 2t − 1), 1/2 ≤ t ≤ 1

is continuous.

Proof Let A = X × [0, 1
2 ] and B = X × [ 12 , 1]. Then A and B are closed sets in

X × I such that
X × I = A ∪ B and A ∩ B = X × { 12 }.

Since by hypothesis, F(x, 1) = G(x, 0), ∀ x ∈ X , it follows that

F(x.t) = G(x, t), ∀ (x, t) ∈ A ∩ B,

and hence by using pasting Lemma 3.6.17, it follows that H is continuous. �

3.19 Historical Note: Beginning of Topology Through
the Work of Euler

This section gives a short historical note on Euler seven bridge problem of Königs-
berg and Euler characteristic of a polyhedron, named after L. Euler (1707–1783).
These two papers of Euler involve no concept of distance, and they are considered as
beginning of the subject Topology but as a well-defined mathematical discipline,
it was systematically originated through the monumental work of Henri Poincare’
(1854–1912) in Analysis Situs published during the period 1895–1904, but some
isolated results can be traced back to the eighteenth century. Their study is given in
Basic Topology: Volume 3 of the present series.
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3.19.1 Seven Bridge Problem of Königsberg

This subsection conveys Seven Bridge Problem of Königsberg posed by Euler
which initiated the concept of a new geometry, now called topology, without the
concept of distance. This problem is posed: Is it possible to cross each of the seven
bridges of Konigsberg , once and only once on a walk through the town ? More pre-
cisely, Euler published a paper “Solutio problematic adgeometriam situs pertinentis”
in 1736, where he studied the solution of a problem relating to geometry of position
without the concept of distance. This problem is now called Seven Bridge Problem
of Königsberg, displayed in Fig. 3.7. The diagram shows the original Konigsberg
bridge problem, with two land areas on the opposite sides of Pregel River and two
islands in the river, and also its graph-theoretic abstraction, in which the four land
areas are represented by vertices and the seven bridges by edges. This problem arises
the definition of an Eulerian graph. Its graphical representation is given in Fig. 3.8.

Fig. 3.7 City of Königsberg
with seven bridges

Fig. 3.8 Graph
corresponding to seven
bridge problem of
Königsberg
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3.19.2 Euler Characteristic of a Polyhedron

This subsection conveys the concept of “Euler Characteristic of a Polyhedron,”which
is considered as the first topological (numerical) invariant. Euler characteristic estab-
lishes a relation between geometry and algebra. Euler sent a letter to C. Goldbach (
1690–1764) in 1750giving his formula for a connected graphG on a two-dimensional
sphere S2, known as Euler formula: (number of vertices of G) − (number of edges
of G) + (number of regions of the sphere divided by the graph G) = 2.

Definition 3.19.1 Let G be finite graph with V vertices and E edges (number of
1-simplexes), then the Euler characteristic κ(G) is defined to be the integer

κ(G) = V − E.

On the other hand, Euler theorem on a polyhedron is stated in Theorem 3.19.2.

Theorem 3.19.2 (Euler’s theorem) If P is any polyhedron homeomorphic to the
2-sphere S2, then

κ(P) = V − E + F = 2,

where V is the number of vertices, E is the number of edges and F is the number of
faces of the polyhedron P and κ(P) is independent of the choice of the polyhedron
provided P is homeomorphic to S2.

Remark 3.19.3 Euler characteristic is an integral invariant. As Z is an algebraic
object, the concept of Euler characteristic establishes a relation between geometry
and algebra. Euler’s Theorem 3.19.2 is considered the first basic result conveying the
geometric properties of a polyhedron without using the concept of distance, though
both Archimedes (287 BC–212 BC) and R. Descartes (1556–1650) did extensive
work on polyhedron. A detailed study of the Euler characteristic of a polyhedron is
available in Basic Topology, Volume 3 of the present series of books.

3.20 Exercises

1. Show that the open n-disk Dn = {x ∈ Rn: ||x|| < 1} is homeomorphic to the
Euclidean n-space Rn for all n ≥ 1.

2. Show that the circle S1 is homeomorphic to the square I2 in R2 with usual
topology.
[Hint: The map f : I2 → S1, (x, y) �→ ( xr ,

y
r ): r = (x2 + y2)

1
2 is a homeomor-

phism.]
3. Let (R, σ ) be the real line space with natural topology σ . Show that

(i) every open subset of R is a union of disjoint open intervals;
(ii) the topology σ is generated by the metric d : R × R → R, (x, y) �→ |x − y|.
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4. In the real line space R, show that

(i) a subsetU ⊂ R is open iffU is a countable union of disjoint open intervals;
(ii) the only subsets of R which are both open and closed are the emptyset ∅

and the whole set R.

5. Show that every topological space satisfying the second axiom of countability
is separable.

6. Show that the standard unit n-simplex sn = {(x1, x2, . . . , xn+1) ∈ Rn+1: xi ≥ 0,
∀ i = 1, 2, . . . , n + 1 and x1 + x2 + · · · + xn+1 = 1} in Rn+1 is homeomorphic
to the both

(i) unit n-cube In in Rn and
(ii) closed unit n-disk Dn = {x ∈ Rn: ||x|| ≤ 1} in Rn.

7. Let (X , d) be a metric space and A be a subset of X . Show that its closure A
coincides with the set limits in X of the sequences of points lying in A.
[Hint: If x is the limit point of a sequence of points inA, then x ∈ A and conversely
if x ∈ A and n ∈ N, then Bx(1/n) contains a point xn ∈ A and limn→∞xn = x.]

8. In the real line space R, prove that

(i) Q̄ = R;
(ii) [0, 1) = [0, 1];
(iii) (R − Q) = R.

9. Let f : Rn → R be a continuous function and r be any real number. Then the sets

Xr = {x ∈ Rn: f (x) < r} ⊂ Rn;

Yr = {x ∈ Rn: f (x) ≤ r} ⊂ Rn;

and

Zr = {x ∈ Rn: f (x) = r} ⊂ Rn

are Lebesgue sets of the function f corresponding to r. Give

(i) an example showing that Xr = Yr;
(ii) an example showing that ∂Xr = Zr;
(iii) an example showing that Xr �= Yr and ∂Xr �= Zr .

10. Show that a finite topological space is metrizable iff it is discrete.
11. Let (X , τ ) be a topological space and X = A ∪ B be the union of its two closed

sets A and B. If f :X → Y is a function such that its restrictions f |A and fB are
both continuous, show that f is continuous.
[Hint: Use Pasting Lemma 3.6.17.]
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12. Let (X , τ ) and (Y , σ ) be topological spaces and f : (X , τ ) → (Y , σ ) be a map.
Show that the following statements are equivalent:

(i) f is continuous;
(ii) for every subset A of X , the set f (A) is a subset of f (A);
(iii) for every closed set B of (Y , σ ), the set f −1(B) is closed in (X , τ ).

13. Let (X , τ ) and (Y , σ )be topological spaces and f : (X , τ ) → (Y , σ )be a bijective
map. Show that f is a homeomorphism iff f satisfies any one of the following
equivalent conditions:

(i) the map f and its inverse f −1 are both continuous;
(ii) the map f and its inverse f −1 are both open or both closed;
(iii) the map f is both continuous and closed;
(iv) f (A) = f (A) for every subset A ⊂ X ;
(v) f (Int(A)) = Intf (A) for every subset A ⊂ X .

14. Let (X , σ ) be a nonempty closed subspace of the Cantor space (C, τ ). Show that
there exists a continuous onto map

f : (C, τ ) → (X , σ ).

15. Show that the topology τ1 on a nonemptyset X , generated by a base B1 is finer
than the topology τ2 on X , generated by a base B2 iff given any point x ∈ X and
any U2 in B2 with x ∈ U2, there is some U1 in B1 such that x ∈ U1 ⊂ U2.

16. If A is a closed subset of a topological space X , show that A is nowhere dense
iff its complement is everywhere dense.

17. Show that the Cantor space is nowhere dense.
18. Show that any infinite subset of R with cofinite topology is dense in R. Use this

result to show that Z is dense in this topological space.
19. Let T be the set of all triangular regions in the Euclidean plane R2. Show that

T forms a base of the standard topology on R2.
20. Let X be an arbitrary topological space and f :X → R be a continuous function.

Show that for every real number r ∈ R, f −1(r) is a closed subset in X . Hence
show that the sphere Sn is a closed subset in Rn+1.
[Hint: Use the facts that the map f : Rn+1 → R, x �→ ||x|| is continuous, 1 ∈ R
and Sn = f −1(1)].

21. Examine whether the two bases Bn and B in Rn defined by

(i) Bn = {(x1, x2, . . . , xn) ∈ Rn: ai < xi < bi, c < y < d} ⊂ Rnwith sides par-
allel to axes, and

(ii) B, the collection of open balls in Rn

induce the same topology on Rn.
22. (Embedding Theorem)Let (X , τ ) be a topological space and {(Yn, τn): ∀ n ∈ N}

be a countable family of topological spaces and
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fn: (X , τ ) → (Yn, τn): ∀ n ∈ N

be a countable family of maps. If

e: (X , τ ) → �∞
n=1(Yn, τn), x �→ �∞

n=1fn(x)

is the evaluation map, show that

(i) e is a homeomorphism of (X , τ ) onto the subspace (e(X ), σ ); i.e., e is an
embedding of (X , τ ) in the product space �∞

n=1(Yn, τn), where σ is the
subspace topology on e(X );

(ii) each fn is continuous;
(iii) the countable family {fn} of continuous maps separates points of X in the

sense that for every pair of distinct points x, y ∈ X , their images fn(x) and
fn(y) are distinct for the same value of n;

(iv) the countable family {fn} of continuous maps separates points of X and
closed sets in the sense that for any point x ∈ X and any closed set A of
(X , τ ), not containing the point x, fn(x) /∈ fn(A) for some n.

23. Let (X , d) be a metric space. If A ⊂ X , x ∈ X and

d(x,A) = inf{d(x, a): a ∈ A},

show that x ∈ Ā iff d(x,A) = 0.
24. Let (X , d) be a metric space and A ⊂ X . Show that

(i) the collection of all open balls {Bx(r): r > 0} forms a basis for a topology
τd on X :

(ii) the metric topology on A is the same as the subspace topology induced from
the topology τd on X .
[Hint: The metric d :X × X → R induces a metric d |A:A × A → R.]

25. Let X and Y be two topological spaces and p:X × Y → X and q:X × Y → Y
be canonical projections. Show that

(i) corresponding to any pair of continuousmaps f : I → X and g: I → Y , there
is a continuous map

(f , g): I → X × Y , t �→ (f (t), g(t));

(ii) conversely, corresponding to any continuous map α: I → X × Y , there is a
pair of continuous maps (f , g) such that

f = p ◦ α: I → X , g = q ◦ α: I → X .
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26. Let a, b ∈ Q and a < b. If S is the family of such closed intervals [a, b], Show
that the set B = S ∪ {x: x ∈ Q} forms a base for the topology σ generated by S
on the real line R.

27. Let Y and Z be disjoint subspaces of a topological space X such that X = Y ∪ Z .
Show that the following statements are equivalent:

(i) X = Y ∪ Z (topological sum);
(ii) Y and Z are both open sets in X ;
(iii) Y is open and closed in X ;
(iv) Ȳ ∩ Z = ∅ and Y ∩ Z̄ = ∅.

28. Let X = Y + Z be the topological sum of two disjoint subspaces Y and Z of a
topological space X and i:Y → X , j:Z → X be inclusion maps. If f :Y → W
and g:Z → W are continuous maps, show that there exists a unique continuous
map h:X → W such that h ◦ i = f , h ◦ j = g.

29. Let X and Y be topological spaces and given a closed subspace A of X ,

letf :X → Y be a continuous map. If Y ∪f X is the quotient space obtained from
the disjoint union X + Y by the equivalence relation generated by identifying
a ∼ f (a), ∀ a ∈ A, show that

(i) for Y = {y}, Y ∪f X = X /A;
(ii) the canonical map p: Y → Y ∪f X is an embedding onto a closed subspace

of Y ∪f X ;
(iii) the canonical map p:X − A → Y ∪f X is an embedding onto an open sub-

space of Y ∪f X .

30. Let X be the topological space endowed with the weak topology determined by
subspaces {Xi: i ∈ J }. Show that

(i) a subset U ⊂ X is open iff U ∩ Xi is open in Xi for every i ∈ J ;
(ii) if B is a closed subspace of X , then B has also the weak topology determined

by the subspaces {Xi ∩ B: i ∈ J }.
31. Let (X , τ ) and (Y , σ ) be two topological spaces and S be a subbase for the

topology σ . Show that a function

f : (X , τ ) → (Y , σ )

is continuous iff the inverse image of every member of S under f is an open set
in (X , τ ).

32. Let X0 = {0, 1} and Xn = {m/2n:m ∈ N, m is odd, and 0 < m < 2n} for all
n ≥ 1. The set X = ⋃∞

n=0 Xn is called the set of dyadic rational numbers in
the closed interval [0, 1]. Show that the set X of dyadic rational numbers in the
closed interval [0,1] is dense in [0,1].

33. Let f :X → Y be a map between two topological spaces X and Y . If G =
{(x, f (x)} is the graph of f , endowed with product topology (inherited fron
X × Y ). Show that the map
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ψ :X → G, x �→ (x, f (x))

is a homeomorphism iff f is continuous.
34. Let (R, d) be the Euclidean line and Z ⊂ R be set of integers endowed with

metric induced from the Euclidean metric d from R. Show that the set of open
balls inZ is the set of all subsets ofZ that consists of anoddnumber of consecutive
integers with the center of the ball at its middle position. y consists of precisely
the set of all arithmetic progressions of common difference one and of the form

A(n, k) = {n − k, . . . , n, . . . , n + k}

for some nonnegative integer k.
[Hint:The open ball Bn(r) in Z at center n with radius r > 0 ∈ R is given by

Bn(r) = {a ∈ Z: d(n, a) = |n − a| < r}

It is of the form

A(n, k) = {n − k, . . . , n, . . . , n + k}

for some nonnegative integer k depending on r.
Let p = [r] denote the greatest nonnegative integer such that p ≤ r. Then k = p,
if r > p and k = p − 1, if r = p. For example,

d1(π) = {−2,−1, 0, 1, 2, 3, 4}.

35. Let � be the family of subsets of N consisting of the empty set ∅ and all those
subsets Xn of N which are expressible in the form

Xn = {n, n + 1, n + 2, n + 3, . . . : n ∈ N}.

Show that � forms a topology on N.
[Hint: Use that X1 = N to show that N ∈ �. Again, since � is totally ordered
by set inclusion, the intersection of any two sets in � is also in �. Let S be a
subfamily of� − {∅, N} in the sense that S = {Xn: n ∈ J ⊂ N}.As J is a subset
of positive integers, it has a smallest positive integer p. Hence

⋃
{Xn: n ∈ J } = {p, p + 1, p + 2, p + 3, . . .} = Xp ∈ �.]

36. (i) Given a nonempty subset X ⊂ N, let there exist a positive integer nX such
that X contains no arithmetic progression (AP) of length greater than nX .
Show that the family of subsets of N having this property together with ∅
and the set N form a collection of closed sets for some topology on N.
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[Hint: Use Van der Waerden’s theorem which asserts that given an integer
n ∈ N, there is an integer n0 such that for any subset X ⊂ {1, 2, . . . , n0} =
Y , either X or Y − X contains an AP of length n.]

(ii) Show that the collection of all infinite AP’s in N forms a base for some
topology on N.
[Hint: Use the result that the finte intersection of AP’s in N is also an AP.]

(iii) Using this topology on N show that the set of prime integers is infinite.
[Hint: The sets A(k, d) = {k, k + d , k + 2d , . . . : k = 1, 2, . . . , d} are
open, pairwise disjoint, and form a covering of N. Hence, it follows that
each of them is closed. As a particular situation, for each prime integer
p, the sets of the form {p, 2p, 3p, . . .} forms a covering of N − {1}. This
shows that the set of prime integers cannot be finite, otherwise, if the set
were finite, then the set {1}would be open. This shows that it is not a union
of arithmetic progressions. This concludes that the set of prime integers
cannot be finite, and hence, it is infinite.

(iv) Show that there exists infinite primes in Z.
[Hint: An independent proof: For any pair of integers d > 0, 0 ≤ k < b
define the sets

A(k, d) = {x ∈ Z: x ≡ k mod (d)} = {k, k ± d , k ± 2d , k ± 3d , . . .} ⊂ Z.

Hence, {A(k, d): d > 0, 0 ≤ k < b} forms a family of infinite arith-
metic progressions in Z. If x ∈ A(k, d) ∩ A(a, b), then x ∈ A(x, db) ⊂
A(k, d) ∩ A(a, b). Hence, the family of subsets {A(k, d)} forms a sub-
base generating a base B for a topology τ on Z. An element B of B is
B = A(k1, d1) ∩ A(k2, d2) ∩ · · · ∩ A(kn, dn) Then B is either ∅ or infinite
by Chinese remainder theorem.]

37. Let R be the field of real of real numbers and x = (x1, x2, x3, . . . , xn) ∈ Rn be
an arbitrary point. Given any polynomial f ∈ R, in the polynomial ring R =
R[x1, x2, x3, . . . , xn], define

V (f ) = {x ∈ Rn: f (x) = 0} ⊂ Rn.

Show that

(i) the collection

B = {Rn − V (f ): f ∈ R[x1, x2, x3, . . . , xn]}

forms a base for a topology τ on Rn, called Zariski topology on Rn;
(ii) the Zariski topology τ on R is the cofinite topology on R

38. Let X be a subset of the affine space An, then the subset I(X ) of A[x1, x2, . . . , xn]
defined by

I(X ) = {f ∈ A[x1, x2, . . . , xn]: f (x) = 0 for all x = (x1, x2, . . . , xn) ∈ X }
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is an ideal of A[x1, x2, . . . , xn], called the ideal of X and V (I(X )) is called the
algebraic set in An corresponding to the ideal I(X ). Let I be the set if all ideals
of A[x1, x2, . . . , xn], defined above and V be the set of all algebraic sets in An.
Show the mapping

V : I → V, I �→ V (I)

has the following properties

(i) V (0) = An;
(ii) V (A[x1, x2, . . . , xn] = ∅;
(iii) V (I ∩ J ) = V (I) ∪ V (J );
(iv) V (�k Ik) = ⋂

k V (Ik)

Hence show that the above properties define the Zariski topology on An.
39. Let X be a Zariski space. Show that X can be uniquely represented (up to order)

as a finite union of closed and irreducible sets Xi such that

X = X1 ∪ X2 ∪ X3 ∪ · · · ∪ Xn,

where Xi is not contained in Xj for any i, j with i �= j.
40. Find the Zariski topology on the ring Z of integers.
41. Prove that the collection of open disks forms an open base for the usual topology

on the Euclidean space R2.
42. Show that the Sorgenfrey line is not metrizable.
43. Let X ⊂ [0, 1] be the set of dyadic fractions

X =
{
1

2
,
1

4
,
3

4
,
1

8
,
3

8
,
5

8
,
7

8
,
1

16
, . . . ,

15

16
, . . . ,

}

,

(i.e., the set of proper fractions having denominators powers of 2). Show that X
is dense in [0, 1].
[Hint: Any open interval (a − ε, a + ε) for every a ∈ [0, 1] contains a point of
X . Moreover, limn→∞ 1

2n = 0. Hence, it follows that X̄ = [0, 1].]
44. Let H = {(x, y) ∈ R2: x > a, or x < a or y > a or y < a} be the family of all

open half planes. Show that the topology on R2 generated by H is the usual
topology on R2.

45. Show that the familyS = {(x, 1] ∪ [0, y): 0 < x, y < 1} of all half-open intervals
form a subbase for the topology induced on [0, 1] by the usual topology on R.

46. Let X be a complete metric space with metric d and Y be an arbitrary topological
space. Let T :X × Y → X be continuous map such that

d(T (x1), y),T (x2), y)) ≤ r d(x1, x2) (r < 1), ∀ x1, x2 ∈ X , ∀ y ∈ Y .

Show that for a given y ∈ Y , the map

T :X → X , x �→ T (x, y)
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has a unique fixed point f (y), say and the map ψ :Y → X , y �→ f (y) is contin-
uous.

47. Show that every open (closed) subspace of a topologically complete space is also
topologically complete.
[Hint Let (X , d) be a complete metric space and U ⊂ X be open. Define a map

ψ :U → R, x �→ 1

d(x,X −U )
.

Then there exists an embedding

f :U → X × R, x �→ x × ψ(x)].

48. Show that the area of a region in Euclidean planeR2 is not a topological property.
[Hint: Let (r, θ) be the polar coordinates of a point in R2, and D1, D2 be two
open disks in R2 defined by

D1 = {(r, θ): r < 1} and D2 = {(r, θ): r < 2}.

Then the map h: D1 → D2, (r, θ) �→ (2r, θ) is a homeomorphism.]
49. Let σ be the topology on the real line R generated by the closed-open intervals

[c, d) and ρ be the topology on R induced by collection of all the linear maps
T : R → R, x �→ cx + d , ∀ c, d ∈ R. Show thar ρ is the discrete topology on R.

50. Let (0. ∞) and [−1, 1] have the relative topology induced from the usual topol-
ogy on R. Show that the map

f : (0.∞) → [−1, 1], x �→ sin(1/x)

is neither open nor closed but it is continuous.
51. Let κA:X → R be the characteristic function for a subset A of a topological

space X. Show that it is continuous at a point a ∈ X iff the point a is not a point
of the boundary of A.
[Hint: Use the fact that κA(x) = 1 if x ∈ A and is 0, otherwise.]

52. Let B = {( ab , c
d ): a, b, c, d ∈ Z and b, d �= 0}. Show that B constitutes an open

base for the Euclidean topology on R.
53. Let ρ be the equivalence relation defined on R by the rule xρy iff x − y ∈ Q i.e.,

(x, y) ∈ ρ ⇐⇒ x − y ∈ Q. Show that R/ρ has uncountably many points, but
it has the trivial topology.

54. Let X and Y are two topological spaces. Show that the twist map T :X × Y →
Y × X , (x, y) �→ (y, x) is continuous.
[Hint: Let p1:X × Y → X , (x, y) �→ x and p2 : X × Y → Y , (x, y) �→ y be the
projection maps. Then they are continuous and T is (p2, p1). Hence, T is con-
tinuous.]

55. Show that the bijectivemap p: [0, 1] → S1, t �→ (cos2π t, sin 2π t) is continuous
but not a homeomorphism.
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[Hint: The map p is a bijection. Since the components of p are continuous, p is
continuous but p−1 is not continuous because N0 = [0, 1

2 ] is a nbd in (0,1) of 0,
but p(N0) is not a nbd in S1 of p(0)=(1,0)]

56. (Structure of open sets in R) LetR be the real line space. Show that a nonempty
subset of R is open iff it is a countable union of pairwise disjoint open intervals.

57. Show that the boundary of a closed set in a topological space is nowhere dense.
58. (Characterization of nowhere dense sets) Let (X , τ ) be a topological space.

Show that

(i) a nonempty subset of A of X is nowhere dense iff each nonempty open set
has a nonempty open subset U such that U ∩ A = ∅;

(ii) a closed setA ofX is nowhere dense iff its complement is everywhere dense.

59. Let (X , τ ) be a topological space and A be a nonempty subset of X . Show that
X is the disjoint union of Int (A), boundary ∂A and X − A.

60. (Invariance of domain) (Brouwer) Let A and B be subsets of Rn such that there
exists a homeomorphism f :A → B. Show that

f (Int(A)) ⊂ Int(B).

Use this result to prove that if f : Rm → Rn is a homeomorphism, then m = n.
61. A metric d :X × X → R is said to be bounded if there exists a real number

M such that d(x, y) < M , ∀ (x, y) ∈ X × X . Show that every metric on X is
equivalent to a bounded metric on X .
[Hint: Given a metric d ′ on X , define a map

d :X × X → R, (x, y) �→ min {1, d ′(x, y)}.

Then d is a bounded metric on X , which is equivalent to the given metric d ′.]
62. LetX = �∞

n Mn be theTychonoff product of a countable number ofmetric spaces
(Mn, dn) endowed with the metric

d :X × X → R, ((x1, x2, . . . , xn, . . .), (y1, y2, . . . , yn, . . .))

�→ �∞
n=1

1

2n
· dn(xn, yn)

1 + dn(xn, yn)
.

(i) Show that the topology induced by d on X is the Tychonoff topology and
hence prove that

(ii) the countable product of the line segment I (called Hilbert cube) is ametriz-
able topology space.
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Multiple Choice Exercises

Identify the correct alternative (s) (there may be none or more than one) from the
following list of exercises:

1. LetM (n, R) be the set of all n × nmatrices over R identified with the Euclidean
n2-space Rn2 (endowed with its usual topology). Then the general liner group
GL(n, R) = {M ∈ M (n, R): detM �= 0} is
(i) open but not closed in M (n, R);
(ii) closed but not open inM (n, R);
(iii) dense in M (n, R).

2. The subspace Z = {(x, y) ∈ R2: y = mx} − {(0, 0)} of the Euclidean plane R2 is

(i) open in R2;
(ii) neither open nor closed in R2;
(iii) dense in R2.

3. Let (X , τ ) be a topological space.

(i) Int (A ∪ B) = Int A ∪ Int B for any two subsets A,B of X ;
(ii) Int (A ∩ B) = Int A ∩ Int B for any two subsets A,B of X ;
(iii) Int A = Acc, for any subset A of X , where Ac = X − A denotes the comple-

ment of A in X .

4. Let (X , τ ) be a topological space.

(i) A ∪ B = A ∪ B, ∀A, B ⊂ X .
(ii) A ∩ B = A ∩ B, ∀A, B ⊂ X .
(iii) If A = {(x, y): y = 0}, then Int (A) = ∅.

5. let (X , τ ) be a topological space.

(i) If A is an arbitrary dense subset in (X , τ ), then its complement X − A is
nowhere dense in (X , τ ).

(ii) If A is an arbitrary nowhere dense subset in (X , τ ), then its complement
X − A is dense in (X , τ ).

(iii) The setR identified with the x-axis of the Euclidean plane is nowhere dense.

6. Let (X , τ ) be a topological space and p ∈ X . If A = X − {p} is endowed with
relative topology induced from X on A, then the subspace A is

(i) open in (X , τ );
(ii) closed in (X , τ );
(iii) dense in (X , τ ).

7. (i) Let (X , τ ) and Y , σ ) be two topological space. If f :X → Y is a continuous
map and Gf = {(x, f (x))} endowed with product topology (inherited fron
X × Y ) is its graph. then the map
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ψ :X → Gf , x �→ (x, f (x))

is continuous but not necessarily a homeomorphism.
(ii) The open ball B = {x = (x1, x2) ∈ R2: ‖x‖ < 1} is homeomorphic to the

whole plane R2.
(iii) The cone A = {(x, y, z) ∈ R3: x2 + y2 = z2, z > 0} is homeomorphic to the

plane R2.
8. Let M (n, R) be the set of all n × n matrices over R and be identified with Rn2

and endowed with its usual topology. If S = {M ∈ M (n, R): traceM = 0}, then
S

(i) is nowhere dense in M (n, R);
(ii) is dense inM (n, R);
(iii) is a closed set inM (n, R).
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Chapter 4
Separation Axioms

This chapter studies topological spaces by imposing certain conditions, called sep-
aration axioms on these spaces in terms of their points and open sets, specially,
where there is possibly no concept of distance. The additional conditions are needed,
because the defining axioms for a topological space are extremely general and they
are too weak to study them in depth. These axioms are natural restrictions on topo-
logical structure to make the structure nearer to metrizable structure, and they are
called Ti -axioms for i = 0, 1, 2, 3, 4, 5. The corresponding topological spaces are
known as Ti -spaces. These spaces are interrelated to some extent (see Exercise 17
of Sect. 4.7).

Historically, the symbol “T ” in their designations comes from the German word
Trennungs axiom, meaning separation axiom. These axioms facilitate to classify
topological spaces.Most of the topological spaces of our interest carrymore structure
(not necessarily a metric), but they have separation properties which provide a rich
supply of continuous functions. There are topological spaces having only two open
sets such as the empty set and the whole set, on which the constant functions are
the only continuous functions. On the other hand, every subset is open in a discrete
topological spaceonwhich every function is continuous.Most of the important spaces
of analysis and geometry lie between these two extremes which are studied in this
chapter by separation properties to obtain interesting topological spaces providing
enough supply of continuous functions.

Various interesting applications of separation properties of topological spaces are
also available in Sect. 4.6. Several separation axioms are known, but this chapter
addresses only Ti -axioms for i = 0, 1, 2, 3, 4, 5 and the corresponding Ti -spaces.
The interest of this address is caused by the fact that continuous functions play a
key role in topology, and the supply of open sets of such a space is closely linked
to its supply of continuous functions. For example, normal spaces and completely
regular spaces include metric spaces, and they are closely linked with the real-valued
continuous functions. More studies on these topics are made in Chap. 6.
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Motivation of separation axioms was born through the observation that any two
points in ametric space are separated if they have a strictly positive distance. But there
exist many topological spaces satisfying a set of certain conditions in addition to the
axioms defining topological spaces which can recover many significant properties of
metric spaces lost to arbitrary topological spaces. Such conditions defined in terms
of points and open sets lead to the so-called separation axioms on the topology,
initially used by Alexandroff (1896–1982) and Hopf (1894–1971). Such spaces X
are important objects in topology as many important topological properties can be
characterized with the help of separation axioms by distributing the open sets in the
space X and imposing natural conditions on X such that X behaves like a metric
space. Any structure like a metric is not studied in this chapter, and instead, certain
conditions are completely described in terms of the points and open sets of the
topological spaces. For example, everymetrizable space is a T4 space, called a normal
space, which is characterized by Minor Urysohn Lemma 4.6.1. The importance of
separation axioms is reflected throughout the three volumes of the present book
series.

For this chapter, the books Chatterjee et al. (2002), Conway (2014), Dugundji
(1966),Kelly (1975),Munkres (2000),Adhikari (2016, 2022),Adhikari andAdhikari
(2014, 2022), Bredon (1983), Borisovich et al. (1985), Brown (1988), Fuks and
Rokhlin (1984), Hu (1966), Patterson (1959), Singer and Thorpe (1967), Stephen
(1970) and some other books are referred in Bibliography.

4.1 Separation by Open Sets and Ti -Spaces

There is a natural question: can any two distinct points or distinct subsets in a topo-
logical space be separated by open sets? The answer is positive for the real number
space R under usual topology. But the answer is not positive for an arbitrary topo-
logical space. So a search is made for finding suitable conditions to have a positive
answer. The two concepts such as weakly and strongly separated subsets of a topo-
logical space given in Definition 4.4.1 play a key role in the study of separation
properties of topological spaces formulating Ti -axioms followed by Ti -spaces, for
i = 0, 1, 2, 3, 4, 5.

4.1.1 Separation by Open Sets

This section introduces the concept of separation by open sets to formalize the sep-
aration axioms.

Definition 4.1.1 Let (X, τ ) be a topological space. Two nonempty subsets A and B
in X are said to be

(i) weakly separated or (simply) separated in (X, τ ), if there exist two open
sets U and V in (X, τ ) such that
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A ⊂ U, B ⊂ V, A ∩ V = ∅ and B ∩U = ∅;

(ii) strongly separated in (X, τ ), if there exist two open sets U and V in (X, τ )

such that
A ⊂ U, B ⊂ V and U ∩ V = ∅.

Example 4.1.2 Let (X, τ ) be a topological space. If two nonempty subsets A and B
in X are strongly separated in (X, τ ), then they are also weakly separated in (X, τ ),
but its converse is not necessarily true. For example, consider the space (R, τ ) with
cofinite topology τ on R.

4.1.2 Separation Axioms and Ti -Spaces

This section imposes certain conditions prescribed in Definition 4.1.3, known as sep-
aration axioms on a topological space. They are called separation axioms, because
they generate a separation of certain types of sets from each other by disjoint open
sets. Some separation axioms are introduced, and the corresponding topological
spaces are studied.

Definition 4.1.3 A topological space (X, τ ) is said to be a

(i) T0-space (due toKolmogoroff) if it satisfies T0-axiom: for every pair of distinct
points x, y ∈ X , there exists an open set which contains only one of the points x
and y; equivalently, {x} �= {y}. Andrey Kolmogorov (1903–1987) introduced
T0-spaces around 1930;

(ii) T1-space (due to Fréchet) if it satisfies T1-axiom: for every pair of distinct
points x, y ∈ X , there exist two open sets U and V in X such that

x ∈ U, y ∈ V, x /∈ V, and y /∈ U,

i.e., every pair of distinct points is weakly separated in X ; equivalently, for
every pair of distinct points x, y ∈ X , there exists a neighborhood of x which
does not contain y, and a neighborhood of y which does not contain x . Some
authors say that the concept of T1-spaces was given by Frigyes Riesz (1880–
1956) in 1907;

(iii) Hausdorff space (due to Hausdorff) if it satisfies T2-axiom: any two distinct
points are strongly separated in X ; equivalently, distinct points have disjoint
neighborhoods, i.e., if x, y are any two distinct points of X , then there exist two
disjoint open setsU and V in X such that x ∈ U, y ∈ V . This class of topolog-
ical spaces introduced by Felix Hausdorff (1868–1942) in 1914 is commonly
known as Hausdorff spaces. On the other hand, other classes of topological
spaces are rarely named after their inventors;
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(iv) regular space (due to Vietoris) if it satisfies T3-axiom: any closed set F and
any point p /∈ F are always strongly separated in X . This class of topological
spaces was introduced by Leopold Vietoris (1891–2002) in 1921;

(v) normal space (due to Tietze) if it satisfies T4-axiom: any two disjoint closed
sets are strongly separated in X ; equivalently, each pair of disjoint closed sets in
X have disjoint neighborhoods. This class of topological spaceswas introduced
by Tietze in 1923 and also independently by Pavel Alexandroff (1896–1982)
and Pavel Urysohn (1898–1924) in 1929;

(vi) T5-space if it satisfies T5-axiom: if any two sets are weakly separated, then
they are also strongly separated in X ;

(vii) completely normal space if every subspace of X is normal.

Remark 4.1.4 (i) The T0-axiom on a topological space (X, τ ) asserts that every
pair of distinct points in X can be separated by the open sets in (X, τ ), which
contain only one of them.

(ii) Every topological space can be made into a T0-space by identifying points
having identical closures.

(iii) The T1-axiom on a topological space (X, τ ) asserts that for every x ∈ X , the
one-pointic set {x} is closed in (X, τ ). The reason is that for every y ∈ X
different from the point x , there exists by T1-axiom, an open setUy containing
y but not containing x . Then X − {x} = ⋃

x �=y∈X Uy being the union of open
sets, X − {x} is an open set. On the other hand, if {x} is closed in X , the open
set X − {x} can be chosen by the T1-axiom as an open set containing any point
other than x .

(iv) Every discrete space and every indiscrete space are both normal, and hence,
a normal space may not satisfy T1-axiom, the first or the second countability
axioms for topological spaces. Since singleton sets in a T1-space are closed, it
follows that every normal T1-space is a regular space. It is also Hausdorff by
Exercise 23 of Sect. 4.7.

Remark 4.1.5 Topologies defined in Examples 4.1.6, 4.1.7, and 4.1.8 are interesting,
and they are used throughout the book.

Example 4.1.6 Let τ be the natural topology, τ1 be the left-hand (or right-hand)
topology, and τ2 be the lower-limit (or upper-limit) topology on R. Then,

(i) (R, τ ) is a Hausdorff space by Proposition 4.2.4. It is also a T5-space by
Exercise 30 of Sect. 4.7.

(ii) (R, τ1) is not Hausdorff by Proposition 4.2.13.
(iii) (R, τ1) is a normal and is also a completely normal space byProposition 4.2.15.
(iv) (R, τ2) is a T5-space by Proposition 4.2.18.

Example 4.1.7 The Sierpinski space (S, τS), say, S = {0, 1} and τS = {S,∅, {1}}
(see Chap. 3). Its concrete example is given in Example 4.2.10. The space (S, τS),

(i) is T0, since {1} is an open set containing only one of the points 0 or 1.
(ii) is not T1, since {1} is not closed in (S, τS).
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(iii) is not Hausdorff, since the points 0 and 1 are not strongly separated by open
sets in (S, τS).

(iv) is neither regular nor completely regular, because the point 1 and the closed
set {0} are not strongly separated by open sets in (S, τS).

Example 4.1.8 Consider all the four the topologies τ1, τ2, τ3, τ4 on X = {x, y}
consisting of two distinct elements x and y only.

(i) τ1 = {∅, {x}, {y}, {x, y}} (discrete topology);
(ii) τ2 = {∅, {x}, {x, y}};
(iii) τ3 = {∅, {y}, {x, y}}; and
(iv) τ4 = {∅, {x, y}} (trivial topology).
Remark 4.1.9 The topology τ1 is Hausdorff, but the other three topologies are not
so. On the other hand, all the four topologies are normal or (vacuously) normal in
the sense that there exists no pair of nontrivial disjoint closed sets in τ2, τ2 and τ3.

4.1.3 Characterization of T1-Spaces

This section gives a characterization of T1-spaces in Theorem 4.1.10 and studies
its immediate consequences. This characterization and its consequences assert that
T1 spaces are precisely the topological spaces in which points are closed sets. This
characterization fulfills a natural requirement that each point of a topological space
is a closed set. Characterizations of T1-spaces in some other forms follow as a direct
consequence of Theorem 4.1.10.

Theorem 4.1.10 A topological space (X, τ ) is a T1-space iff every one-pointic sub-
set of X is a closed set.

Proof Let (X, τ ) be a T1-space and {x} be a one-pointic subset of X . If y ∈ X is
any point different from x , then there exists an open set V in X such that y ∈ V but
x /∈ V by T1 axiom. This shows that y is not an accumulation point of the set {x},
and hence, {x} is a closed set. Conversely, suppose X is a topological space such that
every one-pointic subset of X is closed. If x, y ∈ X and x �= y, then the points x and
y are weakly separated by the open sets X − {y} and X − {x} in X . This asserts that
X is a T1-space. �

Remark 4.1.11 An alternative proof of Theorem 4.1.10 is already given in Remark
4.1.4 (iii).
Some immediate consequences of Theorem 4.1.10.

Corollary 4.1.12 A topological space (X, τ ) is a T1-space iff every point x ∈ X,
considered as a one-pointic set is a closed set.

Proof It follows from Theorem 4.1.10. �
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Corollary 4.1.13 A topological space (X, τ ) is a T1-space iff every finite subset set
of X is a closed set.

Proof Let (X, τ ) be a T1-space. Then every finite subset set of X is a closed set,
because every one-pointic set in a T1-space is closed and finite unions of closed sets
are closed sets. Again if every finite subset of X is a closed set, then every one-pointic
subset of X is closed in X . This asserts that X be a T1-space. �
Corollary 4.1.14 Let (X, τ ) be a topological space. Then it is a T1-space iff τ

contains the cofinite topolgy on X.

Proof It follows from Theorem 4.1.10, because every finite union of closed sets in
(X, τ ) is a closed set. �

The above discussion is summarized in a basic result embodied inTheorem4.1.15.

Theorem 4.1.15 T1-spaces are precisely the topological spaces (X, τ ) in which
singleton subsets {x} of X are closed sets.

4.2 Hausdorff Spaces

This section addresses Hausdorff spaces which form an important family of topo-
logical spaces, because

(i) Every metric space is a Hausdorff spaces by Proposition 4.2.4.
(ii) Every metrizable space is also Hausdorff by Corollary 4.2.5.
(iii) Compact Hausdorff spaces studied in Chap. 5 form a very important class of

topological spaces.
(iv) Locally Euclidean spaces discussed in Sect. 4.6.5 form an important class of

Hausdorff spaces, specially, in the study of manifold theory (see Adhikari and
Adhikari (2022) of the present series of book series), and

(v) Many other important results involving Hausdorff spaces.

Remark 4.2.1 The Hausdorff property is a topological property in the sense that
any topological space homeomorphic to a Hausdorff space is also Hausdorff. This
property is stronger than that of a T1-space and every pair of distinct points in a
Hausdorff space have disjoint nbds. This property is utilized to prove the uniqueness
of limit of a convergent sequence in a Hausdorff space in Theorem 4.2.2.

4.2.1 Basic Properties of Hausdorff Spaces

This section proves some basic properties enjoyed by Hausdorff spaces. Every Haus-
dorff space is a T1-space.Wenowconsider someother properties ofHausdorff spaces.
Moreover, Proposition 4.2.4 and Corollary 4.2.5 provide a vast supply of Hausdorff
spaces.
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Theorem 4.2.2 Every convergent sequence in a Hausdorff space converges to a
unique limit.

Proof Let (X, τ ) be a Hausdorff space and {xn} = {x1, x2, x3, . . .} be a convergent
sequence in X and converge to a point a ∈ X . If b �= a is a point in X , then by T2-
axiom, there exist two open setsU, V in X such that a ∈ U, b ∈ V andU ∩ V = ∅.
Since a is a limit point of {xn} andU is an open set containing the point a, there exists
a positive integer n0 such that xn ∈ U, ∀ n ≥ n0. Since U ∩ V = ∅, it follows that
V can contain at most n0 elements of the sequence {xn}. This asserts that b cannot
be a limit point of {xn}. �
Example 4.2.3 The converse of Theorem 4.2.2 is not true in general, because there
is a topological space (X, τ ) in which every convergent sequence has a unique limit
in it, but the topological space is not Hausdorff. For example, if X is an uncountable
set endowed with the topology τ of countable complements, then every convergent
sequence in this topological space (X, τ ) has a unique limit, but the space (X, τ )

is not Hausdorff (see Exercise 9 of Sect. 4.7). On the other hand, the converse of
Theorem 4.2.2 is true with an additional condition: for a first countable topological
space (X, τ ), if every convergent sequence in X has a unique limit, then topological
space is Hausdorff (see Chap. 7).

Proposition 4.2.4 Every metric space is Hausdorff.

Proof Let (X, d) be ametric space and x, y ∈ X be any two distinct points. Supposes
ε = d(x, y)/2. Then the ε-neighborhoods Bx (ε) of x and By(ε) of y are disjoint,
otherwise, if z ∈ Bx (ε) ∩ By(ε), then d(x, z) < d(x, y)/2 and d(y, z) < d(x, y)/2
would jointly imply that d(x, z) + d(z, y) < d(x, y), which contradicts the triangle
inequality condition of a metric space. Since Bx (ε) and By(ε) are open sets for the
metric topology in X , it follows that the metric (X, d) is Hausdorff. �
Corollary 4.2.5 Every metrizable space is a Hausdorff space.

Proof Let (X, τ ) be a metrizable space. Then there exists a metric d on X such that
its induced topology τd on X coincides with τ . Hence the corollary follows from
Proposition 4.2.4. �
Proposition 4.2.6 Let (X, d) and (Y, ρ) be two metric spaces and D ⊂ X be dense
in X. If f, g : X → Y are two continuous maps such that f (x) = g(x), ∀ x ∈ D.
Then f (x) = g(x), ∀ x ∈ X.

Proof Suppose f (x) �= g(x), for some x ∈ X . Then there exists at least one point
x0 ∈ X , such that f (x0) �= g(x0). Since Y is Hausdorff by Proposition 4.2.4, then for
this distinct pair of elements f (x0) and g(x0) in Y , there exist disjoint open sets U
and V in Y , such that f (x0) ∈ U and g(x0) ∈ V . Then U1 = f −1(U ) is an open set
in X containing x0, and V1 = f −1(V ) is an open set in X containing x0, and hence
x0 ∈ U1 ∩ V1. Since by hypothesis D is dense in X and f (x) = g(x), ∀ x ∈ D,
there exists a point x1 ∈ D ∩U1 ∩ V1 such that f (x1) = g(x1) and hence f (x1) =
g(x1) ∈ U ∩ V , which contradicts that U ∩ V = ∅. This contradiction asserts that
f (x) = g(x), ∀ x ∈ X . �
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Corollary 4.2.7 gives an extension of Proposition 4.2.6 for topological spaces with
an alternative condition.

Corollary 4.2.7 Let (X, τ ) be a topological space and (Y, σ ) be a Hausdorff space.
If D ⊂ X is dense in X and f, g : X → Y are two continuous maps such that f (x) =
g(x), ∀ x ∈ D. Then

f (x) = g(x), ∀ x ∈ X.

Proof Proceed as in Proposition 4.2.6. �

Remark 4.2.8 For alternative proof of Proposition 4.2.4 and its Corollary 4.2.5 see
Chap. 6.

Example 4.2.9 Quotient space of a Hausdorff space may not be Hausdorff. For
example, R endowed with the natural topology is Hausdorff by Proposition 4.2.4
but the quotient space R/ ∼, where x ∼ y iff x − y is a rational number, is an
uncountable set having trivial topology. Hence R/ ∼ is not a Hausdorff.

Example 4.2.10 Quotient space of even a compact Hausdorff space may not be
Hausdorff. For example, consider the quotient space X/A, where X = I = [0, 1]
and A = [0, 1) are subspaces of R with subspace topology of R and the canonical
map p : X → X/A, x �→ [x], where X/A is the quotient space corresponding to
the equivalence relation ∼, which identifies every pair of elements in A and no other
pair of points is continuous and surjective. Since p−1([0]) = [0, 1) is open, the point
[0] ∈ X/A is open. On the other hand, since p−1([1]) = {1} is not open, the point
[1] ∈ X/A is not open. This implies that the quotient space X/A is Sierspenski
(see Chap. 3), and hence, the quotient space X/A is not Hausdorff. This gives an
application of Sierspenski space.

4.2.2 Separation Property of Left-Hand (Right-Hand)
Topology on R

This section proves some special properties (structures) of the left-hand and right-
hand topologies on R and their deviation from natural topology on R, defined in
Chap. 3. For example, let τ be the natural topology, τ1 be the left-hand (or right-
hand) topology. Then

(i) (R, τ ) is a Hausdorff space by Proposition 4.2.4. It is also a T5-space by
Exercise 30 of Sect. 4.7.

(ii) (R, τ1) is not Hausdorff by Proposition 4.2.13.
(iii) (R, τ1) is a normal and completely normal space by Proposition 4.2.15.

Remark 4.2.11 All the results evolving left-hand topology are also valid for right-
hand topology and vice-versa. So, it is sufficient to study only one of them.
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Example 4.2.12 Hausdorff property of a topological space (X, τ ) depends on the
topology of the set X . For example, R endowed with the natural topology is Haus-
dorff by Proposition 4.2.4, but R endowed with the left-hand topology is not so by
Proposition 4.2.13.

Proposition 4.2.13 proves nonHausdorff property of τl onR, and hence, the space
(R, τl) is not metrizable.

Proposition 4.2.13 Let τl be the left-hand topology on R. Then the space (R, τl) is
not Hausdorff.

Proof The open sets in τl consist of all the subsets U = {x ∈ R : x < a, ∀ a ∈ R},
the empty set ∅ and the whole set R, and hence the closed sets are the subsets
{x ∈ R : a ≤ x, ∀ a ∈ R}, the whole set R and the empty set ∅. For any two distinct
points a, b ∈ R, with a < b, the open set V = {x :∈ R : x < b}, contains a, but does
not contain b. This asserts that the space (R, τl) can not be Hausdorff and hence it
not metrizable by Corollary 4.2.5.

�

Corollary 4.2.14 Let τl be the left-hand topology on R. Then the space (R, τl) is
not metrizable.

Proof The space (R, τl) is not Hausdorff by Proposition 4.2.13, and hence it is not
metrizable by Corollary 4.2.5. �

Proposition 4.2.15 Let τl be the left-hand topology on R. Then the space (R, τl) is
normal and also completely normal.

Proof The topology τl consists of R,∅ and the family of subsets Ua = {x ∈ R :
x ∈ R, x < a} ⊂ R for all a ∈ X . Hence the closed sets in (X, τl) are ∅,R and the
family of subsets {x ∈ R : x ∈ R, a ≤ x} ⊂ R for all a ∈ X . Consequently, for any
two distinct nonempty open sets one open set will lie in the other. This shows that no
two nonempty subsets ofR are weakly separated in (X, τl). Again, no two nonempty
closed sets are disjoint in (X, τl). This asserts that the topology τl satisfies T4 and T5
axioms on R vacuously. This proves that the space (R, τl) is normal, and it is also
completely normal.

�

Example 4.2.16 There is a natural problem: does every topological space admit a
metric structure? The answer is negative. Because, if a topological space (X, τ ) is
such that it not Hausdorff, then (X, τ ) can not be a metrizable by Corollary 4.2.5,
and hence there exists no metric d on X such that its induced topology τd coincides
with τ . For example, as the topological space (R, τl) with the left-hand topology τl
on R, is not metrizable by Corollary 4.2.14, there exists no metric d on X such that
its induced topology τd coincides with τl .
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4.2.3 Separation Property of Lower-Limit (Upper-Limit)
Topology on R

This section proves some special properties (structures) of the lower-limit and upper-
limit topologies onR and their similaritywith natural topology onR, defined inChap.
3. For example, let τ be the natural topology and τ2 be the lower-limit (or upper-limit)
topology on R. Then

(i) (R, τ ) is a Hausdorff space by Proposition 4.2.4. It is also a T5-space by
Exercise 30 of Sect. 4.7;

(ii) (R, τ2) is also a Hausdorff space by Proposition 4.2.19.
(iii) (R, τ2) is also a T5-space by Proposition 4.2.18.

Remark 4.2.17 All the results evolving lower-limit topology are also valid for upper-
limit topology and vice-versa. So, it is sufficient to study only one of them.

Proposition 4.2.18 Let τ2 be the lower-limit (upper-limit) topology on R. Then
(R, τ2) is a T5 space.

Proof Let τ2 be the the lower-limit topology on R generated by the closed–open
intervals [z, w). Let x, y (x < y) ∈ R be any pair of distinct points. Then they are
strongly separated by two disjoint open sets [x, x + t) and [y, y + t), where t =
y − x . This implies that (R, τ2) is a Hausdorff space. Let A and B be an arbitrary
pair of weakly separated subsets in (R, τ2). Then for any point a ∈ A, there exists
a real number ra > a such that [a, ra) ∩ B = ∅, because a is not an accumulation
point of B. Similarly, for any point b ∈ B, there exists a real number rb > b such that
[b, rb) ∩ A = ∅. This implies that [a, ra) ∩ [b, rb) = ∅, otherwise, either a ∈ [b, rb)
or b ∈ [a, ra) but it is not possible. Consider two open sets

U =
⋃

a∈A

[a, ra) and V =
⋃

b∈b
[b, rb).

Then U and V are two disjoint open sets in (R, τ2) such that the pair of weakly
separated sets A and B are also strongly separated by U and V in (R, τ2). This
proves that (R, τ2) is a T5 space.
Similar result holds for lower-limit topology.

�

Proposition 4.2.19 Let σ be the the upper-limit (lower-limit) topology on R. Then
(R, σ ) is a Hausdorff space.

Proof Let σ be the the upper-limit topology on R generated by the open–closed
intervals (z, w] and x, y ∈ R be two elements such that x �= y. Without loss of
generality, assume that x < y. TakeU = (x − 1, x] and V = (x, y]. ThenU, V ∈ σ

are such that x ∈ U, y ∈ V and U ∩ V = ∅. This shows that the space (R, σ ) is
Hausdorff. �
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4.2.4 First Countable Hausdorff Spaces

This section studies first countable Hausdorff spaces and characterizes such spaces
with the help of convergent sequences on them. Theorem 4.2.2 asserts that every
convergent sequence in a Hausdorff space converges to a unique limit. On the other
hand, Exercise 9 of Sect. 4.7 shows that its converse is not true in general but is true
for a certain class of topological spaces (see Theorem 4.2.21).

Definition 4.2.20 Let (X, τ ) be a first countable topological space and Bx =
{B1, B2, . . .} be a countable local base at the point x ∈ X . Then Bx is said to be
a nested local base at the point x ∈ X if

B1 ⊃ B2 ⊃ B3 ⊃ · · · .

Theorem 4.2.21 characterizes Hausdorff property of first countable topological
spaces by convergent sequences using the concept of nested local base.

Theorem 4.2.21 A first countable topological space (X, τ ) is Hausdorff iff every
convergent sequence on X has a unique limit.

Proof Let (X, τ ) be a Hausdorff space and {xn} = {x1, x2, x3, . . .} be a convergent
sequence in X . Then by Theorem 4.2.2, the sequence {xn} has a unique limit point
in X . Conversely, let (X, τ ) be a first countable space such that every convergent
sequence in X has a unique limit point in X . Then (X, τ ) must be a Hausdorff space.
Otherwise, there exist distinct points x, y ∈ X such that every open set containing
the point x has a nonempty intersection with each open set containing the point y in
X . Let {Un} be a nested local base at the point x and {Vn} be a nested local base at
the point y. Then Un ∩ Vn �= ∅, otherwise, for every positive integer n, there exists
a sequence {xn} in X such that

x1 ∈ U1 ∩ V1, x2 ∈ U2 ∩ V2, . . . .

This implies that the sequence {xn} converges to both the points x and y, which is not
possible, since x �= y. This contradiction proves that the topological space (X, τ ) is
Hausdorff.

�

4.3 Structures of Normal and Completely Normal Spaces

This section studies normal and completely normal spaces to determine their addi-
tional topological structures. Metric and metrizable spaces form important classes
of normal spaces. On normal spaces, in particular, on metric spaces, there always
exist nonconstant real-valued continuous functions by Urysohn lemma, named after
Urysohn (1998–1924) (see Chap. 6).
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Since an arbitrary subspace of a normal space is not normal, the concept of a
completely normal space is introduced in Definition 4.3.12 to avoid the situation for
failure of normality criterion with regard to its subspaces in the sense that a com-
pletely normal space is a topological space such that its every subspace is normal.
Every metric space is also completely normal. Every completely normal space is
normal by its defining property. But Example 4.3.15 asserts that its converse is not
true. Theorem 4.3.1 gives a characterization of normal spaces, known as normality
criterion of Urysohn. On the other hand, Exercise 32 of Sect. 4.7 gives a character-
ization of completely normal spaces. Theorem 4.3.3 and Corollary 4.3.5 provide a
rich supply of normal spaces.

4.3.1 Normal Spaces and Normality Criterion of Urysohn

This section studies normal spaces and proves normality criterion of Urysohn
in Theorem 4.3.1, which is one of the outstanding results for characterization of
normal spaces. There exist several characterizations of normal spaces. For example,
Theorem 4.3.1 and Exercise 28 of Sect. 4.7 give different characterizations of nor-
mal spaces. Two other characterizations of normal spaces formulated by real-valued
functions and proved in Urysohn’s lemma and Tietze’s theorem (see Chap. 6) are
basic results in topology. It has been proved in this section that metric spaces and
metrizable spaces are normal spaces. Moreover, compact Hausdorff spaces form also
an important class normal of spaces (see Chap. 5)

Theorem 4.3.1 (Normality Criterion of Urysohn) Let (X, τ ) be a topological
space. Then it is normal iff for every closed set A ⊂ X and any open set U con-
taining A, there exists an open set V such that A ⊂ V, V̄ ⊂ U.

Proof Let the given condition hold for the topological space (X, τ ). We claim that it
is normal. Let A and B be a pair of disjoint closed sets in (X, τ ). Then A is contained
in the open set X − B. This asserts by hypothesis that there exists an open set V such
that

A ⊂ V, V̄ ⊂ X − B.

It implies that the pair of closed sets A and B are strongly separated by disjoint open
sets V and X − V̄ in (X, τ ). This implies that the space (X, τ ) is normal.

Conversely, let the space (X, τ )be normal andU be anopen set containing a closed
set A. Then the pair of disjoint closed sets A and X −U are strongly separated in
(X, τ ), and hence for this pair of closed sets, there exist a pair of open sets V and W
such that

A ⊂ V, X −U ⊂ W, V ∩ W = ∅.

Since V ∩ W = ∅, it follows that V ⊂ X − W and hence
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V̄ ⊂ X − W = X − W ⊂ U.

This asserts that
A ⊂ V and V̄ ⊂ U,

which proves the necessity of the condition.
�

Corollary 4.3.2 A topological space (X, τ ) is normal iff either of the following
conditions is satisfied:

(i) For every pair of disjoint closed sets A and B in (X, τ ), there exists an open
set U such that A ⊂ U and B ∩ Ū = ∅, or

(ii) Every pair of disjoint closed sets have nbds with disjoint closures.

Proof Left as an exercise. �

Theorem 4.3.3 Every metric space is normal.

Proof Let X be a metric space with a metric d and A be a nonempty subset in X .
Given x ∈ X , define d(x, A) to be the glb of the distances d(x, a) for a ∈ A, i.e.,
d(x, A) = glb {d(x, a) : a ∈ A}. If A is closed, then d(x, A) = 0 iff x ∈ A. Because,
if x ∈ A, then d(x, A) = 0. Moreover, if d(x, A) = 0, then corresponding to a given
ε > 0, there exists an a ∈ A such that d(x, a) < ε, which shows that x ∈ Ā = A, as
A is a closed set in X . Let A, B be two disjoint closed sets in a metric space X and Y
be the subset of X defined by Y = {x ∈ X : d(x, A) < d(x, B)} ⊂ X . Given y ∈ Y ,
there exists a δ > 0 (depending on y) such that d(y, A) = d(y, B) − δ. If z ∈ N δ

2
,

an δ
2 − nbd of y, then d(y, z) < δ

2 . Again, by triangle inequality,

d(z, a) ≤ d(z, y) + d(y, a).

It implies that d(z, A) ≤ d(z, y) + d(y, A) and hence

d(z, A) ≤ d(z, y) + d(y, B) − δ.

Again, d(y, B) ≤ d(y, z) + d(z, B) and hence

d(z, A) ≤ 2d(y, z) − δ + d(z, B).

Now, d(z, A) < d(z, B), since d(y, z) < δ
2 . This shows that the set of points y ∈ Y

such that d(y, A) < d(y, B) is an open set containing A. In a similar way, the set
of points y ∈ Y satisfying d(y, B) < d(y, A) is an open set containing B. As these
two sets are disjoint, the metric space X is normal. �

Remark 4.3.4 An alternative proof of Theorem 4.3.3 by using Urysohn lemma is
available in Chap. 6.
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Corollary 4.3.5 Every metrizable space is normal.

Proof Let (X, τ ) be a metrizable space. Then there exists a metric d on X such
the τ = τd (topology induced on X by d). Hence the corollary follows from Theo-
rem 4.3.3. �
Corollary 4.3.6 The real line-space R is normal.

Proof It follows from Theorem 4.3.3. �
Example 4.3.7 Everymetrizable space is normal byCorollary 4.3.5, but its converse
is not true. For example, if τl is the left-hand topology on R, then the space (R, τl)

is normal by Proposition 4.2.15, but it is not metrizable by Corollary 4.2.14.

Example 4.3.8 An arbitrary subspace of a normal space may not be normal. In
support, consider Example 4.3.15. On the other hand, Proposition 4.3.9 asserts that
every closed subspace of a normal space is normal.

Proposition 4.3.9 Every closed subspace of a normal space is normal.

Proof Let (X, τ ) be a normal space and Y be a closed subspace of X . Consider the
the subspace (Y, τY ) of (X, τ ). Let A and B be any two disjoint closed sets in (Y, τY ).
Then they are also disjoint closed sets in (X, τ ). By hypothesis, (X, τ ) is normal.
Hence A and B are strongly separated by two open sets U and V in (X, τ ). This
implies that A and B are strongly separated by two open sets Y ∩U and Y ∩ V in
(X, τY ). This asserts that the subspace (X, τY ) is normal.

�
Corollary 4.3.10 Let (X, τ ) and (Y, σ ) be two topological spaces such that their
product space (Z , α) is normal. Then each of the topological spaces (X, τ ) and
(Y, σ ) is normal.

Proof By hypothesis, product space (Z , α) of the spaces (X, τ ) and (Y, σ ) is normal.
Then each of the factor spaces (X, τ ) and (Y, σ ) is closed in (Z , α), and hence the
Corollary follows from Proposition 4.3.9. �
Example 4.3.11 The topological product space of normal spacesmay not be normal.
For example, consider the topological product space (X, σ ) = (R, τl) × (R, τl) of
Sorgenfrey line (R, τl). The space (R, τl) is normal, but (X, σ ) is not normal.

4.3.2 Completely Normal Spaces

This section continues the study of a completely normal spaces initiated in Sect. 4.1.2.
This space is different from a normal space. Example 4.3.15 shows that every sub-
space of a normal space may not be normal. This motivates to define a completely
normal space, which asserts that its every subspace is normal. A characterization of
a completely normal space in terms of disjoint closed sets containing separated sets
is given in Exercise 32 of Sect. 4.7.



4.3 Structures of Normal and Completely Normal Spaces 247

Definition 4.3.12 A topological space (X, τ ) is said to be completely normal if
every subspace of (X, τ ) is normal.

Example 4.3.13 The set R equipped with left-hand topology is completely normal.
by Proposition 4.2.15.

Example 4.3.14 Every metric space is completely normal.
.

Example 4.3.15 The concepts of normal and completely normal spaces are differ-
ent, because every subspace of a completely normal space is normal by its defin-
ing property. On the other hand, every subspace of a normal space may not be
normal. For example, consider the set X = {x, y, z, t} and its family of subsets
τ = {∅, {t}, {y, t}, {z, t}, {y, z, t}, X}. Then τ forms a topology on X . The closed
sets of (X, τ ) are

X, {x, y, z}. {x, z}, {x, y}, {x} and ∅.

Then (X, τ ) is (vacuously) a normal space, since there exists no pair of nontrivial
disjoint closed sets in (X, τ ). On the other hand, if Y = {y, z, t}, then the subspace
(Y, τY ) of the normal space (X, τ ) with relative topology τY on Y is not normal,
because the pair of disjoint closed sets {y} and {z} can not be strongly separated in
(Y, τY , ) since τY = {∅, {t}, {y, t}, {z, t},Y } and the closed sets in (Y, τY ) are

Y, {y, z}, {z}, {y} and ∅.

This shows that (X, τ ) is normal, but its subspace (X, τY ) is not normal, and hence,
(X, τ ) is not completely normal.

4.4 Structures of Regular and Completely Regular Spaces

This section studies the structures of regular and completely regular spaces andproves
regularity criterion of Tychonoff in Theorem 4.4.5. Every completely regular space is
closely linked with real-valued continuous functions by its Definition 4.4.13. Metric
spaces provide a rich supply of completely regular spaces by Corollary 4.4.19.

4.4.1 Regular Spaces

This section proves “Regularity Criterion of Tychonoff” in Theorem 4.4.5 providing
a characterization of regular spaces and also establishes some other properties of
regular spaces.
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Definition 4.4.1 A topological space (X, τ ) is said to be regular at a point a ∈ X if
the one-pointic set {a} and any closed A in X not containing the point a are strongly
separated. It is said to be a regular space if it is regular at every point of X .

Remark 4.4.2 It follows fromDefinition 4.4.1 that a topological space (X, τ ) is said
to be regular if given any closed set A in (X, τ ) and a point y ∈ X, but y /∈ A, there
exist disjoint open sets U and V such that

A ⊂ U and y ∈ V .

Example 4.4.3 A regular space may not be T1 . In support, let X = {x, y, z} and the
topology on X be τ = {∅, X, {x}, {y, z}}. Then the closed sets of (X, τ ) are precisely

{X,∅, {y, z}, {x}}.

This shows that (X, τ ) is a regular space, but it is not a T1 space, because there exists
a finite set {y}, which is not closed.

Remark 4.4.4 Theorem 4.4.5 gives a characterization known as regularity criterion
of Tychonoff. Again, Corollary 4.4.6 gives another characterization of regular spaces
formulated in an equivalent form of regularity criterion of Tychonoff.

Theorem 4.4.5 (Regularity Criterion of Tychonoff) A topological space (X, τ ) is
regular iff for every point a ∈ X, and every nbd U of a, there exists a nbd K of a
such that K̄ ⊂ U.

Proof Let (X, τ ) be a regular space and U be a nbd of the point a ∈ X . Then there
exists an open set V in X such that a ∈ V ⊂ U. Hence the closed set X − V can not
contain the point a. This shows that X − V and {a} are strongly separated in (X, τ ),
since (X, τ ) be a regular space. This asserts that there exist two disjoint open sets
S, T in X such that

X − V ⊂ S, a ∈ T and S ∩ T = ∅.

But S ∩ T = ∅ =⇒ T ⊂ X − S. Since X − S is closed, it follows that

T̄ ⊂ X − S ⊂ X − S ⊂ V ⊂ U.

Taking T = K , it shows that K is an open nbd of the point a such that K̄ = T̄ ⊂ U .
Conversely, let a topological space (X, τ ) satisfy the given conditions and A be a
closed set such that the given point a lies outside A. This implies that U = X − A
is an open nbd of the point a and hence by hypothesis, there exists a nbd K of a
such that K̄ ⊂ U = X − A. LetW be an open set such that a ∈ W ⊂ K . This shows
that {a} and A are strongly separated by two disjoint open sets W and X − K̄ . This
implies that the topological space (X, τ ) is regular.

�
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Corollaries 4.4.6 and 4.4.7 give regularity criterion of Tychonoff formulated in
two equivalent forms.

Corollary 4.4.6 A topological space (X, τ ) is regular iff for every point a ∈ X and
for any open set U containing the point a, there exists an open set V such that

a ∈ V ⊂ V ⊂ U.

Proof It follows from Theorem 4.4.5. �

Corollary 4.4.7 A topological space (X, τ ) is regular iff for any nbd Ua containing
the point a ∈ X, there exists an open nbd N such that

a ∈ N ⊂ N ⊂ U.

Proof It follows from Theorem 4.4.5. �

Proposition 4.4.8 Let (X, τ ) be a regular space and x, y be two distinct points in
X. Then the subsets {x} and {y} are either identical or they are disjoint.
Proof If both x ∈ {y} and y ∈ {x} hold, then

{x} ⊂ {y} = {y} ⊂ {x} = {x}

asserts that {x} = {y}. Again, if at least one relation is not true, say y /∈ {x}, then
the point y lies outside the closed set {x}, and hence, the closed set {x} and the point
y lying outside the closed set {x} are strongly separated in (X, τ ). This implies that
there exists an open set V in (X, τ ) such that {x} ⊂ V and y ∈ X − V . This shows
that {y} ⊂ X − V = X − V . This implies that {y} ∩ {x} = ∅, since {x} ⊂ V and
{y} ⊂ X − V . This proves that either {x} = {y} or they are disjoint.

�

4.4.2 Independence of Regularity and Hausdorf Properties

This section shows that regularity and Hausdorff properties of topological spaces
are independent in the sense one property does not guarantee the holding of other
property. In support consider the Examples 4.4.3 and 4.4.10.

Example 4.4.9 A regular space may not be Hausdorff. For example, the topological
space (X, τ ) given in Example 4.4.3 is regular but not Hausdorff.

Example 4.4.10 A Hausdorff space may not be regular.

(i) Let R be the sets reals and Q be the set of rationals. If B is the family of all
open intervals (a, b) ⊂ R together with the subset Q, then B forms an open
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base for topology τ on R. If R is the usual topology σ on R, then the topology
τ is stronger than the usual topology on σ . Since (R, σ ) is Hausdorff, it follows
that (R, τ ) is also Hausdorff. But the space (R, τ ) is not regular, because the
closed set of irrationals which isR − Q and the point 1 staying outside R − Q
cannot be strongly separated by the disjoint open sets in the space (R, τ ).

(ii) Consider Niemytzki’s space defined in Chap. 3. This space may be reformu-
lated: Let X+ = {p = (x, y) ∈ R2 : y ≥ 0}, which is the closed upper-half of
the Euclidean plane R2. Let the x-axis for which y = 0 be denoted by R1 and
open upper-half plane X+ − R1 by X∗. Define B1 and B2 as

B1 = {Bp(ε) : p = (x, y) ∈ X∗ and ε < y},

B2 = {(Bp(ε) ∩ X∗) ∪ {x} : p = (x, 0) and x ∈ R1},

where Bp(ε) denotes the open ball having center p and radius ε with respect
to the Euclidean metric on R2. Then B = B1 ∪ B2 forms an open base for a
topology τ on X+,which is different from the usual topology σ induced on X+
by the Euclidean topology on R2. The topological space (X+, τ ) is Hausdorff.
It is not regular, because one-pointic sets in this space (X+, τ ) are closed by its
Hausdorff property and the set A = R1 − {0} is also closed in (X+, τ ), since
its complement X∗ ∪ {0} is open in (X+, τ ). The closed set A and the point 0
which lies outside A can not be separated by open sets, because ifU is an open
set containing the point 0, then there exists some ε > 0 such that the basis
element (B0(ε) ∩ X∗) ∪ {0} ⊂ U . This implies that any open set containing
the point (ε/2, 0) intersects U . This shows that space (X+, τ ) is not regular.

4.4.3 Completely Regular Spaces

This section conveys the concept of completely regular spaces introduced by Andrey
L.Tychonoff (1906–1993) (also spelledTikhonov) in 1930.This class includesmetric
spaces. A completely regular spaces is closely linked with real-valued continuous
functions in the sense that one can separate a point from a closed set by a real-valued
continuous function in this space. On the other hand, Urysohn lemma asserts the
existence of a real-valued continuous function for every pair of disjoint closed sets in
a normal space. Since every completely regular space is regular by Proposition 4.4.17
and every normal space is completely regular by Uryshon lemma, it has become
necessary a new separation axiom to define a completely regular space. A detailed
study on Urysohn lemma and completely regular spaces is available in Chap. 6.

Definition 4.4.11 Let (X, τ ) be a topological space. A pair of subsets A and B in
X are said to be separated by a real-valued continuous function if there exists a
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continuous function f : X → R such that

f (x) =
{
0, for all x ∈ A

1, for all x ∈ X −U,

and
0 ≤ f (x) ≤ 1.

Remark 4.4.12 Urysohn Lemma separates every pair of disjoint closed sets of a
normal space X by a real-valued continuous function on X . This lemma characterizes
a normal space by a real-valued continuous function asserting that a topological space
(X, τ ) is normal iff for every pair of disjoint closed sets A and B in X , then there
exists a continuous real-valued function f : X → R such that

f (x) =
{
0, for all x ∈ A

1, for all x ∈ B,

and
0 ≤ f (x) ≤ 1 for all x ∈ X

The proof of Urysohn Lemma is deferred to Chap. 6.

Definition 4.4.13 A Hausdorff space (X, τ ) is said to be completely regular if
given any closed set A in (X, τ ) and any point a ∈ X but not lying in A, (i.e., a /∈ A)

there is a real-valued continuous function f : X → R such that

f (x) =
{
0, for x = a

1, for all x ∈ A

and
0 ≤ f (x) ≤ 1for all x ∈ X,

i.e., if A and {a} are separated by a continuous real-valued function on X .

By replacing f (x) by 1 − g(x) in Definition 4.4.13, its equivalent definition is
now given:

Definition 4.4.14 A topological space (X, τ ) is is said to be completely regular if
every one-pointic set is closed and given a closed set A and any point x0 ∈ X − A,
there exists a continuous function g : X → [0, 1] such that

g(x0) = 1, and g(x) = 0, ∀ x ∈ A.

Example 4.4.15 (i) Every normal space is completely normal byUrysohn lemma
(see Chap. 6).
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(ii) Every regular normal space is completely regular by Proposition 4.4.16.
(iii) Every metric space is completely regular by Corollary 4.4.19.

Proposition 4.4.16 Every regular normal space is completely regular.

Proof Let (X, τ ) be a regular and normal space and A be closed in (X, τ ). Take a
point y ∈ X such that y /∈ A. Then X − A is an open set in (X, τ ), which contains
the point y. Since by hypothesis, (X, τ ) is regular, there exists an open set U ∈ τ

such that
y ∈ U, U ⊂ X − A.

Again, since (X, τ ) is normal, there exists a continuous function f : X → I such
that

(i) f (x) = 0, ∀ x ∈ U ;
(ii) f (x) = 1, ∀ x ∈ A and
(iii) 0 ≤ f (x) ≤ 1, ∀ x ∈ X .

This shows that f (y) = 0, since y ∈ U and hence (X, τ ) is completely regular.
�

Proposition 4.4.17 Every completely regular space (X, τ ) is regular.

Proof Let (X, τ ) be completely regular. Then it is also Hausdorff by definition. We
claim that it is regular. To show it, let A be a given closed subset of (X, τ ) and a ∈ X
be a point such that a /∈ A. Then the closed sets A and {a} are separated by a real
function f on X , i.e., there exists a real function f : X → R such that

f (x) =
{
0, for x = a

1, for all x ∈ A

and
0 ≤ f (x) ≤ 1 for all x ∈ X.

Consider two open setsU = f −1([0, 1
2 )) and V = f −1(( 12 , 1]) in (X, τ ). The lower-

limit andupper-limit topologies onR are both strictly stronger than the usual topology
on R. This asserts that the closed sets A and {a} are strongly separated by disjoint
open sets V and U in X . This shows that the space (X, τ ) is regular.

�

Proposition 4.4.18 Let (X, τ ) be a topological space and A be any closed set in
X. If for every point x ∈ X − A, there is a continuous function f : X → R such
that f (y) = 0, ∀ y ∈ A but for every x ∈ X − A, f (x) �= 0. Then the space X is
completely regular.

Proof Let (X, τ )be a topological space and A be any closed set in X . Suppose that for
every point x ∈ X − A, there is a function g : X → R such that g(y) = 0, ∀ y ∈ A
but g(x) �= 0 ∈ R. Define a continuous function
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f : X → R, y �→ g(x)−1g(y).

This function shows that there is a continuous function f such that

f : X → R, y �→
{
g(y), for all y ∈ A

g(x)−1g(y), for all y ∈ X − A,

Then
0 ≤ f (y) ≤ 1 for all y ∈ X.

This asserts that f is a real-valued continuous function such that

f : X → R, y �→
{
0, for all y ∈ A

1, for all x ∈ X − A,

and
0 ≤ f (x) ≤ 1 for all x ∈ X.

This implies that (X, τ ) is completely regular. �

Corollary 4.4.19 Every metric space is completely regular.

Proof Let (X, d) be a metric space, A be any closed set in X and x ∈ X − A be an
arbitrary point. Then

f : X → R, y �→ d(y, A)

is a continuous function such that f (y) = 0, ∀ y ∈ A and f (x) �= 0, ∀ x ∈ X − A.
This asserts by Proposition 4.4.18 that (X, d) is a completely regular space. �

Remark 4.4.20 Corollary 4.4.19 raises the problem: is every normal space is com-
pletely regular? Its answer by using Urysohn function is available in Chap. 6.

4.5 Homeomorphisms of Ti -Spaces and Topological
Property

This section proves that homeomorphic images of Ti -spaces are also Ti -spaces for
i = 0, 1, 2, 3, 4, and 5 in Theorem 4.5.4 asserting that the property of a topological
space of being a Ti -space is a topological property in the sense that homeomorphic
images of Ti -spaces are also Ti -spaces for each i = 0, 1, 2, 3, 4 and 5, which is the
main result of this section.

Theorem 4.5.1 Let f : (X, τ ) → (Y, σ ) be a map.
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(i) If f is closed and onto, and the space (X, τ ) is T1, then the space (Y, σ ) is also
T1.

(ii) If f is closed and bijective, and the space (X, τ ) is T2, then the space (Y, σ ) is
also T2.

(iii) If f is closed, onto and continuous, and the space (X, τ ) is Ti , then the space
(Y, σ ) is also Ti for i = 4 and 5.

Proof (i) Let (X, τ ) be a T1-space and f : (X, τ ) → (Y, σ ) be a closed and onto
map. Then for a point y ∈ Y , there exists a point x ∈ X such that f (x) = y.
Since one-pointic set {x} is closed in X , and f is closed by hypothesis, it follows
that the one-pointic set { f (x)} = {y} is also closed in Y . Since the point x ∈ X
is arbitrary, hence (i) follows.

(ii) Let (X, τ ) be a T2-space and f : (X, τ ) → (Y, σ ) be a closed and bijective
map. Then f is also an open map, by using the result that a bijective map
f is open iff it is also closed. Since f is bijective, for any two distinct point
y, z ∈ Y , points f −1(y) and f −1(z) are also two distinct points in X . Since by
hypothesis (X, τ ) be a T2-space, then there exist two disjoint open sets U and
V in (X, τ ) such that f −1(y) ∈ U and f −1(z) ∈ V . Since f is a bijective open
map, it follows that f (U ) and f (V ) are two disjoint open sets in (Y, σ ), which
strongly separate the points y and z. This proves (ii).

(iii) Let (X, τ ) be a T4-space and f : (X, τ ) → (Y, σ ) be a closed, onto and con-
tinuous map. Since (X, τ ) is also a T1-space, it follows by (i) that (Y, σ ) is also
a T1-space. Let A and B be two disjoint subsets in (Y, σ ). Since by hypoth-
esis, f is continuous, and onto, it follows that f −1(A) and f −1(B) are two
disjoint closed sets in (X, τ ). By normality property of (X, τ ), it follows that
there exist two disjoint open sets U and V in (X, τ ) such that f −1(A) ⊂ U
and f −1(B) ⊂ V . Take G = Y − f (X −U ) and H = Y − f (X − V ). Then,
G and H are two disjoint open sets in (Y, σ ) such that A ⊂ G and B ⊂ H .
This implies that A and B are strongly separated by G and H in (Y, σ ). Hence
(Y, σ ) is a normal, i.e., a T4-space. The proof for the case of T5 is similar.

�

Corollary 4.5.2 If f : (X, τ ) → (Y, σ ) is a homeomorphism, and (X, τ ) is a
Ti -space, for i = 0, 1, 2, 3, 4, and 5. then (Y, σ ) is also a Ti -space, for i =
0, 1, 2, 3, 4, and 5.

Proof Let f : (X, τ ) → (Y, σ ) be a homeomorphism. Then f is a bijective, closed
and continuous map. Hence the corollary follows from Theorem 4.5.1, for i =
1.2, 4, 5. It is left as an exercise for i = 0, 3. �

Remark 4.5.3 Theorem 4.5.4, proves the topological property of Ti -spaces, for
i = 0, 1, 2, 3, 4 and 5, which is a basic result of topology. The same result also
follows from Corollary 4.5.2.

Theorem 4.5.4 Let f : (X, τ ) → (Y, σ ) be a homeomorphism. If (X, τ ) is a Ti -
space, then its homeomorphic image (Y, σ ) under f is also a Ti -space , ∀ i =
0, 1, 2, 3, 4, 5.
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Proof We consider the following cases:

(i) a and b are distinct points in Y .
(ii) a ∈ Y is a point and B is a closed set in (Y, σ ), not containing the point a.
(iii) A and B are disjoint closed sets in (Y, σ ).
(iv) A and B are weakly separated in (Y, σ ).

By hypothesis f is a homeomorphism. Hence its inverse f −1 is also a homeo-
morphism, and it is a bijective and closed map. Consider the above four cases:

(i) In this case, f −1(a) and f −1(b) are two distinct points in X . If U is an open
set containing only one of the points f −1(a) and f −1(b) in X , then f (U ) is an
open set, which contains one only of the points a and b.

(ii) In this case, f −1(a) ∈ X is a point and f −1(B) is a closed in (X, τ ), not
containing the point f −1(a). If f −1(a) and f −1(B) are strongly separated by
open sets U and V in (X, τ ), then f (U ) and f (V ) are open sets and strongly
separate {a} and B in (Y, σ ), since f is an open mapping.

(iii) In this case, f −1(A) and f −1(B) are disjoint closed in (X, τ ). If f −1(A) and
f −1(B) are strongly separated by open setsU and V in (X, τ ), then f (U ) and
f (V ) are open sets and strongly separate A and B in (Y, σ ), since f is an open
mapping.

(iv) In this case, f −1(A) and f −1(B) form a pair of weakly separated sets in (X, τ ).
If f −1(A) and f −1(B) are weakly separated by open sets U and V in (X, τ ),
then f (U ) and f (V ) are open sets and weakly separate A and B in (Y, σ ),
since f is an open mapping.
Considering all of the above cases, it follows that for any homeomorphism
f : (X, τ ) → (Y, σ ), if (X, τ ) is a Ti space, then its homeomorphic image
(Y, σ ) is also a Ti -space, ∀ i = 0, 1, 2, 3, 4, 5.

�

Corollary 4.5.5 The property of a topological space of being a Ti -space is a topo-
logical property for i = 0, 1, 2, 3, 4, and 5.

Proof It follows from Theorem 4.5.4. �

Continuity of Functions on Normal Spaces

This section studies continuity of functions onnormal spaces.Continuous image of an
arbitrary normal space may not be normal (see Example 4.5.6). But Proposition 4.5.7
gives a sufficient condition asserting that the image of every closed continuous map
of a normal space is normal. For more study of continuity of functions on normal
spaces, see Exercise 27 of Sect. 4.7.



256 4 Separation Axioms

Example 4.5.6 Continuous image of an arbitrary normal space may not be normal.
The identity map on the same set endowed with different topologies may not be
continuous. For example, let (R, σ ) be the Euclidean line space and (R, τ ) be the
topological space with trivial topology τ on R. Then the identity map

1d : (R, τ ) → (R, σ ), x �→ x

is not continuous, because its inverse image 1−1
d (a, b) of the open interval (a, b) ∈ σ,

which is also (a, b) but (a, b) /∈ τ . On the other hand, the identity map

1d : (R, σ ) → (R, τ ), x �→ x

is continuous but its image is not Hausdorff, because the topological space (R, τ ) is
not Hausdorff.

Proposition 4.5.7 Let (X, τ ) be a normal space and f : (X, τ ) → (Y, σ ) be a con-
tinuous closed surjective map. The the space (Y, σ ) is also normal.

Proof It follows from Theorem 4.5.1. �

4.6 Applications

This section studies different applications of separation axioms such as Minor
Urysohn Lemma 4.6.1 characterizing normal spaces by open sets, Hausdorff Prop-
erty ofRn and Sn in Sect. 4.6.3, retraction property of Hausdorff spaces in Sect. 4.6.4
and locally Euclidean property of the real projective spaceRPn , that of complex pro-
jective space CPn and that of general linear group GL(n,R) in Sect. 4.6.5, which
are used in subsequent development of topology.

4.6.1 Minor Urysohn Lemma for Normal Spaces

This section proves Minor Urysohn Lemma 4.6.1 characterizing normal spaces,
which can be used as an equivalent definition of normal spaces. On the other hand,
Urysohn Lemma 6.3.9 proved in Chap. 6 characterizes normal spaces by real-valued
continuous functions. This characterization provides an equivalent definition of nor-
mal spaces.

Lemma 4.6.1 (Minor Urysohn lemma) A topological space (X, τ ) is normal iff for
any open set U containing a given closed set A, there exists an open set V such that

A ⊂ V ⊂ V̄ ⊂ U.
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Proof Let (X, τ ) be a normal space and U be an open set containing a given closed
set A in (X, τ ). Then B = X −U is a closed set such that A ∩ B = ∅. Since X is
normal, it follows that there exist two open sets V and V ′ such that

A ⊂ V, B ⊂ V ′ and V ∩ V ′ = ∅.

But V ∩ V ′ = ∅ =⇒ V ⊂ X − V ′ and X −U = B ⊂ V ′ =⇒ X − V ′ ⊂ U .
Since X − V ′ is closed, it follows that

A ⊂ V ⊂ V̄ ⊂ X − V ′ ⊂ U.

Consequently, A ⊂ V ⊂ V̄ ⊂ U .
Conversely, let (X, τ ) be a topological space and A, B be two disjoint closed sets

in (X, τ ). Then A ⊂ X − B and X − B is an open set. Hence by hypothesis, there
exists an open set V such that A ⊂ V ⊂ V̄ ⊂ X − B. Consequently, it follows that
B ⊂ X − V̄ , V ∩ (X − V̄ ) = ∅. Hence A ⊂ V and B ⊂ X − V̄ , which shows that
the disjoint closed sets A and B are strongly separated by two disjoint open sets by
V and X − V . Since A and B is an arbitrary pair of closed sets in (X, τ ), it proves
that (X, τ ) is normal. �

Definition 4.6.2 Let (X, τ ) be a topological and A be a subset of X . An open set
UA in (X, τ ) containing A is said to be a nbd of A.

Corollary 4.6.3 Any two disjoint closed sets A and B in a normal space (X, τ ) have
open nbds UA and UB containing A and B, respectively, such that ŪA ∩ ŪB = ∅.
Proof It follows from Urysohn Lemma 4.6.1. �

Example 4.6.4 Normality property of a topological space is not hereditary in the
sense that a subspace of a normal space is not in general a normal space. But under
certain conditions, it is hereditarily normal (see Exercise 31 of Sect. 4.7).

4.6.2 Link Between Hausdorff Property and Continuity
of Real Functions

This section studies Hausdorff spaces with the help of real-valued continuous func-
tions by providing a sufficient condition for a space to be Hausdorff in Proposi-
tion 4.6.5.

Proposition 4.6.5 Let (X, τ ) be a topological space such that for every pair of
distinct points x, y ∈ X, there exists a real-valued continuous function

f : X → R, such that f (x) �= f (y).

Then (X, τ ) is Hausdorff.
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Proof Let (X, τ ) be a topological space and x, y ∈ X be a pair of distinct points
satisfying the given condition. To show that (X, τ ) is Hausdorff, letU and V be two
disjoint open sets in the real line space R such that f (x) ∈ U and f (y) ∈ V . Then

x ∈ f −1(U ), y ∈ f −1(V ) and f −1(U ) ∩ f −1(V ) = ∅,

otherwise, if z ∈ f −1(U ) ∩ f −1(V ), then f (z) ∈ U and f (z) ∈ V would imply that
U ∩ V �= ∅. Hence it follows that (X, τ ) is Hausdorff.

�

4.6.3 Hausdorff Property of Rn, Sn, and Hilbert Cube

The section proves theHausdorff property of Rn, Sn , and Hilbert cube which are
important objects in the study of analysis, geometry, algebra and topology.

Proposition 4.6.6 The n-dimensional Euclidean space Rn is Hausdorff.

Proof Since R is a Hausdorff space, it follows by Exercise 22 of Sect. 4.7 that its
topological product space Rn is also Hausdorff. �

Corollary 4.6.7 The n-sphere is Hausdorff.

Proof The n-sphere Sn = {x ∈ Rn+1 : ||x || = 1} is a subspace of the (n + 1)-
dimensional Euclidean space Rn+1. Since any subspace of a Hausdorff space is
Hausdorff, it follows from Proposition 4.6.6 that the n-sphere Sn is Hausdorff. �

Remark 4.6.8 Proposition 4.6.9 proves that the real Hilbert space H is Hausdorff.
The Hausdorff property of the Hilbert space also follows from Exercise 22 of
Sect. 4.7.

Proposition 4.6.9 The real Hilbert space H is Hausdorff.

Proof Since the real Hilbert space H is the set of all sequences {x = (x1, x2, . . . ,
xn, . . . ) ∈ R∞ : �x2n is a convergent series}, H is a metric space with a metric

d : H × H, (x, y) �→ [�∞
n+1(xn − yn)

2] 1
2 .

Hence H is Hausdorff. �

Remark 4.6.10 The space R∞ is metrizable and can be embedded in metric space.
Because, as the space R is homeomorphic to the open interval (0, 1), it follows that
the space R∞ can be embedded into the product space I∞ = 	∞

n=1In = [0, 1].
Definition 4.6.11 The product space I∞ = 	∞

n=1In = [0, 1], which is the countable
product of the line segment I, is called theHilbert cube. In particular, Im = 	m

n=1In =
[0, 1] is called the unit m-cube.
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Proposition 4.6.12 The Hilbert cube I∞ is Hausdorff.

Proof Let H be the Hilbert space. Consider the map

f : I∞ → H, (x1, x2, . . . , xn, . . .) �→
(
x1,

x2
2

, . . . ,
xn
n

, . . .
)

f is well-defined, because

{ [x21 + x22 + . . . + x2n ]
1
2 }∞n=1

converges for all xn ∈ I. Clearly, f is continuous and injection such that Imf( f ) =
	∞

m=1[0, 1/m]. Since I is compact, I∞ is also compact by Tychonoff product theorem
asserting that the topological product of any family of compact spaces is also compact
(see Chap. 5). Moreover, H is Hausdorff by Proposition 4.6.9. This shows that f
is a homeomorphism onto a subspace of H by the result saying that every bijective
continuous map from a compact space to a Hausdorff space is a homeomorphism
(see Chap. 5).

�

4.6.4 Retraction of a Hausdorff Space

This section studies the concept of retraction of a topological space from the view-
point of Hausdorff property, which is an important concept in topology. It has wide
applications in homotopy and homology theories to study topological problems by
algebraic methods, discussed in Basic Topology, Volume 3 of the present series of
books.

Definition 4.6.13 Let (X, τ ) be a topological space and A ⊂ X be a subspace of X .
Then A is said to be a retract of X , if there exists a continuous map

r : X → A such that r |A = 1A,

i.e., for the inclusion map i : A ↪→ X ,

r ◦ i = 1A.

This map r is called a retraction.

Example 4.6.14 Let (X, τ ) be a topological space. Then

(i) (X, τ ) is a retract of itself.
(ii) Every singleton subspace {x} of (X, τ ) is a retract of X .

Proposition 4.6.15 Let R be the Euclidean line and I = [0, 1] be the unit interval
of R with subspace topology of R. Then I is a retract of R.
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Proof Define the map

r : R → I, t �→

⎧
⎪⎨

⎪⎩

0, if t ≤ 0,

t, if t ∈ I,
1, if t ≥ 1.

Then r is a continuous map such that its restriction to I is the identity map on I.
This proves the proposition.

�

Proposition 4.6.16 relates retraction of a subspace A of a Hausdorff space X by
proving that A is closed set of X .

Proposition 4.6.16 Let (X, τ ) be a Hausdorff space and A be a retract of X. Then
A is closed in (X, τ ).

Proof Let (X, τ ) be a Hausdorff space and A be a retract of X . Then there exists
a retraction r : X → A such that r(x) = x, ∀ x ∈ A. To prove the proposition, it is
sufficient to show that X − A is an open set in (X, τ ). If X − A = ∅, then there is
nothing to prove. So, assume that X − A �= ∅. Then there exists a point x ∈ X − A.
This point x /∈ A but its image point r(x) = y ∈ A shows that x �= y. Since (X, τ )

is Hausdorff, it follows that there exist open sets U and V in (X, τ ) such that

x ∈ U, y ∈ V and U ∩ V = ∅.

Since r is continuous and A ∩ V is open in A, it follows that r−1(A ∩ V ) is an open
set in (X, τ ) containing the point x . Then W = U ∩ r−1(A ∩ V ) is an open set in
(X, τ ) such thatW ⊂ X − A. This implies that X − A is an open set in (X, τ ). This
proves that A is closed in (X, τ ). �

Corollary 4.6.17 gives an alternative proof of the well-known result asserting that
every one-pointic set in a Hausdorff space is closed.

Corollary 4.6.17 Every one-pointic set in a Hausdorff space is closed.

Proof Let (X, τ ) be a Hausdorff and x ∈ X be an arbitrary point. Consider the one-
pointic subspace {x} of X . Then the corollary follows from Proposition 4.6.16, by
taking A = {x}. �

4.6.5 Locally Euclidean Spaces

This section studies a special class of Hausdorff spaces, called locally Euclidean
spaces, which are very important spaces in geometry, specially, in the study of
manifolds in Basic Topology, Volume 2 of the present series of books.
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Definition 4.6.18 A Hausdorff space (X, τ ) is said to be locally Euclidean of
dimension n if for every point x ∈ X , there exists a homeomorphism ψx such that
it maps some open set in (X, τ ) containing x onto an open subset in the Euclidean
space Rn .

Example 4.6.19 Consider the following Hausdorff spaces.

(i) The Euclidean space n-space Rn is a locally Euclidean space of dimension n.
Here for each point x ∈ Rn , the homeomorphism ψx is taken to be the identity
map on Rn .

(ii) The n-sphere Sn is a locally Euclidean space of dimension n. Because, for
every pair of distinct points x, y ∈ Sn , the stereographic projection

f : Sn − N → Rn, x �→ 1

1 − xn+1
(x1, x2, . . . , xn),

∀ x = (x1, x2, . . . , xn+1) ∈ Sn − N .

ψy : Sn − {y} → Rn, , x �→ 1

1 − xn+1
(x1, x2, . . . , xn),

∀ x = (x1, x2, . . . , xn+1) ∈ Sn − {y}

is a homeomorphism.
(iii) Locally Euclidean property of the real projective space. The real projective

space RPn consisting of all straight lines passing through the origin of Rn is
a locally Euclidean space of dimension n, because, RPn is covered by Sn and
each point x ∈ RPn is contained in an open set homeomorphic to an open set
in Sn , which is homeomorphic to an open set in Rn .

(iv) Locally Euclidean property of the complex projective space CPn . It consists
of all complex lines passing through the origin of Cn is a locally Euclidean
space of (complex) dimension n.

(v) LocallyEuclidean property ofGL(n,R). The setM(n,R) of all n × nmatrices
over R can be identified with Rn2 by the map

f : M(n,R) → Rn2 , ai, j
�→ (a11, a12 j , . . . , a1n, a21, a22, . . . , a2n, . . . , an1, an2, . . . , ann).

The determinant function

det : M(n,R) → R, M → det M

is just a polynomial in the matrix coefficients and hence it is continuous. Then
it follows that GL(n,R) = M(n,R) − det−1{0} is open, because the set {0})
is closed in R and hence det−1{0} is closed in M(n,R). This asserts that for
each point x ∈ GL(n,R), there exists a nbd of x , homeomorphic to an open set
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in Rn2 . It asserts that GL(n,R) = M(n,R) − det−1{0} is locally Euclidean.
More study on GL(n,R) is found in Basic Topology, Volume 2 of the present
series of books.

Definition 4.6.20 An n-dimensional (topological) manifold or an n-manifold M
is a Hausdorff space with a countable base such that for each point x ∈ M, there
exists a homeomorphismψx mapping some neighborhood of the point x onto an open
subset ofRn .Aone-dimensionalmanifold is called a curve anda two-dimensional
manifold is called a surface.

Example 4.6.21 Every n-dimensional manifold is a locally Euclidean space of
dimension n satisfying the second axiom of countability (see Basic Topology, Vol-
ume II of the present series of books for its study).

4.7 Exercises

1. Let (X, τ ) be a topological space. Show that the following statements are equiv-
alent

(i) X is a T1-space;
(ii) Every one-pointic subset in X is closed in X ;
(iii) Every finite subset of X is closed in X;
(iv) The derived set {x}′ of every point x ∈ X is ∅;
(v) Given a subset S ⊂ X , the intersection of all open sets in X containing S is

the set S;
(vi) Every open set containing an accumulation point a of a subset S of X inter-

sects S in a countably infinite collection of points (called anω-accumulation
points of S).

2. Let (X, τ ) be a topological space. Show that two nonempty subsets A and B of
X are weakly separated in X iff either of the following conditions is satisfied

(i) (A ∩ B̄) ∪ ( Ā ∩ B) = ∅ (Hausdorff-Lennes condition);
(ii) A ∩ B = ∅, A′ ∩ B = ∅, and A ∩ B ′ = ∅.

3. The set R with finite-complement topology is not Hausdorff.
[Hint: Use the fact that any two nonempty open sets in this space are overlapping.]

4. Find the separation axioms under which there is a smallest topology on the set R
such that every singleton is closed.

5. Let X be a nonempty set and Bx be a family of subsets of X forming a nbd basis
of a point x ∈ X in a topological space(X, τ ). Then the family Bx is called a nbd
filter of the point x .
Let (X, τ ) be a topological space. Show that the space (X, τ ) is Hausdorff iff

(i) either given any point x ∈ X, {x} = ∩{B̄x : Bx ∈ Bx }, where Bx denotes
the nbd filter of the point x ∈ X ;
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(ii) or the diagonal set  = {(x, x) : x ∈ X} ⊂ X × X is a closed set in the
product space (X × X, τ × τ).

6. Let (X, τ ) be a a Hausdorff space. Show that (X, τ ) is regular iff the closed nbds
of any point x ∈ X , constitute a nbd basis of the point x .

7. Show that every subspace of a Hausdorff space is also Hausdorff.
8. Show that every subspace of a regular space is regular.

[Hint: Use Exercise 6.]
9. (A nonHausdorff space in which every convergent sequence has a unique limit)

Let X be an uncountable set endowed with the topology τ of countable comple-
ments. Show that

(i) The topology τ is T1;
(ii) The topology τ is not Hausdorff;
(iii) Every convergent sequence in this topological space (X, τ ) has a unique

limit.

10. Let (X, τ ) be a Hausdorff space and Y, Z be two subspaces of X consisting of
points of two convergent (infinite) sequences in X . Show that the subspaces Y
and Z are homeomorphic.

11. Let (X, τ ) be a Zariski space defined in Chap. 3. If X is Hausdorff, show that it
is finite.

12. Let A be an infinite field. Show that the Zariski topology defined in Chap. 3 on
A = A1 is not Hausdorff

13. Let X be the set whose point set is the Euclidean plane R2 and whose open sets
described by the basis consisting of the usual open sets inR2 together with the sets
defined by {(x, y) ∈ R2 : x2 + y2 < r, ∀ r > 0, y �= 0} ∪ {(0, 0)}. Show that X
is not regular but it is Hausdorff.

14. Let X = [0, 1] ⊂ R be given relative topology induced from the usual topology
onR. If ρ is an equivalence relation on X defined by the rule (x, y) ∈ ρ iff x − y
is a rational number, show that the quotient space X/ρ is

(i) not Hausdorff;
(ii) is not metrizable.

15. Let (X, τ ) be a topological space. Show that it is Hausdorff iff its diagonal  =
{(x, x) : x ∈ X} ⊂ X × X is closed in the product topology on X × X .

16. Let (X, τ ) be a regular space, A be a closed set in (X, τ ) and p be a point in X
but lying outside A. Show that there exist open sets U and V in X such that

p ∈ U, A ⊂ V, and Ū ∩ V̄ = ∅.

17. Show that

(i) Every T1-space is a T0-space.
(ii) Every Hausdorff space is both a T1 and a T2-space;
(iii) Every completely normal space is a normal space;
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(iv) Every T5-space is also a T4-space;
(v) A normal space may not be a regular space;
(vi) A topological space (X.τ ) is T1 iff every one-pointic set is closed in (X, τ );
(vii) Every Ti space is a Ti−1-space for every i = 1, 2, 3, 4, and5 but its converse

is not necessarily true.

18. LetR be the real line endowed with the topology generated by the base consisting
of all rays of the form a < x < +∞. Show that this topological space is T0 but it
is not T1.

19. (Example of a T1-space which is not Hausdorff) The closed interval I = [0, 1]
endowed with the topology τ whose open sets are ∅ and all the subsets of I
obtained by deleting either a finite or a countable number of points from I. Show
the resulting topological space (I, τ ) is T1 but it is not Hausdorff.

20. Show that the setR endowedwith a right-hand or left-hand topology is a T0-space,
a normal and completely normal space but is not a regular space.

21. Show that the topological sum of any nonempty family of Hausdorff spaces is
also Hausdorff.

22. Show that the topological product of any nonempty family of Hausdorff spaces
is also Hausdorff.
[Hint: Let {Xi , τi }be anonempty familyHausdorff spaces and (X, τ ) = 	i (Xi , τi )

be their product space. Suppose x = {xi } and y = {yi } are two distinct points of
X . Then there exists at least one index ik such that xik �= yik . Use the Hausdorff
property of the space Xik .]

23. Show that every regular T1-space is Hausdorff.
24. Let (X, τ ) be a completely regular space T1 space and C(X,R) be the set of all

real-valued continuous functions on X . Show that the space C(X,R) separates
points of X in the sense that if a, b are two distinct points in X , then there exists
a function f ∈ C(X,R) such that f (a) �= f (b).

25. Consider the nbds of an arbitrary point in I = [0.1], except 0, consisting of ordi-
nary nbds and the nbd of 0, defined by all the possible half-intervals [0, x) with
the deleted points {1/n, n = 1, 2, 3, . . .} Show that the resulting space (X, τ ) is
Hausdorff but not regular.
[Hint: The point 0 ∈ X and the closed set {0} and A = {1/n, n = 1, 2, . . .} are
not strongly separated by open nbds.]

26. Let (X, τ ) be the Niemytzki’s space endowed with Niemytzki’s tangent dick
topology (see Chap. 3). Show that this space (X, τ )

(i) is Hausdorff;
(ii) is not normal;
(iii) is not completely normal.

27. Let (X, τ ) be a normal space and (Y, σ ) be an arbitrary topological space. Show
that for every continuous closed onto mapping

f : (X, τ ) → (Y, σ ).
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its image (Y, σ ), is also normal.
28. Let (X, τ ) be a topological space, U = {Uα : α ∈ A}and V = {Vα : α ∈ A} be

two open coverings of X . If V α ⊂ Uα, ∀α ∈ A, then U is said to be shrinkable
and V is said to be shrinking of U . The covering U is said to be point-finite if
every point x ∈ X is in only finitely many Uα .
Show that a topological space (X, τ ) is normal iff

(i) either every finite open covering of X is shrinkable;
(ii) or every point-finite open covering of X is shrinkable.

29. (Jones lemma) Let (X, τ ) be a topological space such that it contains a dense
subset D and a closed discrete subspace C . If card(D) = β and card(C) ≥ 2β ,
show that the space (X, τ ) is not normal.
[Hint: If X is normal, show that card(P(C)) ≤ card(P(D), which is not possible,
since by hypothesis card(C) ≥ 2β .]

30. Show that

(i) Every metric space is completely normal.
(ii) Every metrizable space is completely normal.

31. (Urysohn) Two sets A and B in a topological space are said to be separated1 if
A ∩ B = A ∩ B = ∅. Prove that a topological space (X, τ ) is hereditarily normal
iff any two separated sets of (X, τ ) have disjoint nbds.

32. Let (X, τ ) be a topological space. Show that X is completely normal iff for any
two subsets A, B ⊂ X satisfying the condition

A ∩ B = ∅, and A ∩ B = ∅,

there exist two disjoint open sets U and V in (X, τ ) such that

A ⊂ U and B ⊂ V .

Multiple Choice Exercises

Identify the correct alternative (s) (there may be none or more than one) from the
following list of exercises:

1. (i) Let (X, τ ) be a Hausdorff space. Then every retract of X is open in (X, τ ).
(ii) The Euclidean plane R2 is Hausdorff.
(iii) The standard sphere S2 is Hausdorff.

2. Let R be the set of real numbers.

(i) The space R endowed with upper-limit topology is completely normal.
(ii) The space R endowed with finite-complement topology is Hausdorff.
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(iii) The space R endowed with the topology generated by the base of all rays
a < x < ∞ is T1.

3. (X, τ ) be a first countable space. Then

(i) X is Hausdorff if every convergent sequence in X has a unique limit point.
(ii) Every convergent sequence in X has a unique limit point if X is Hausdorff.
(iii) X is Hausdorff iff every convergent sequence in X has a unique limit point.

4. (i) Let X be a nonempty set and (Y, σ ) be a Hausdorff space. Given a map
f : X → Y , declare a subset U ⊂ X to be open in X , iff U = f −1(V ) for
some V ∈ σ . Then {U } defines a Hausdorff topology on X .

(ii) Let (X, τ ) be a topological space and X × X have the product topology. If
the subset

 = {(x, x) : x ∈ X} ⊂ X × X

is closed in X × X , then the topological space (X, τ ) is Hausdorff.
(iii) Zariski topology on C is Hausdorff.

5. (i) Every metrizable space is normal.
(ii) Every subspace of a normal space is normal.
(iii) Every closed subspace of a normal space is normal.

6. Let (R, τl) be the topological space with the left-hand topology τl on R.

(i) The space (R, τl) is Hausdorff.
(ii) The space (R, τl) is metrizable.
(iii) There exists a metric d on X such that its induced topology coincides with

τl .

7. (i) The Euclidean 3-space R3 is locally Euclidean.
(ii) The 2-sphere S2 in R3 is locally Euclidean.
(iii) The space GL(3.R) is locally Euclidean.
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Chapter 5
Compactness and Connectedness

This chapter is devoted to address the concepts of compactness and connectedness
in topological settings, which first arose through the study of subsets of the Euclidean
line R in calculus and mathematical analysis. The motivation of these two concepts
has come through the three basic theorems in calculus for a continuous function
defined on the closed interval [a, b] ⊂ R such as

(i) Intermediate value theorem,
(ii) Maximum value theorem and
(iii) Uniform continuity theorem.

The first one leads to the concept of connectedness, on the other hand, both of
the second and third theorems lead to the concept of compactness in topological
settings. These generalized concepts are fundamental in the study ofmodern analysis,
geometry, topology, algebra andmanyother areas.Compactification of a topological
space is a topological method or a result of making a noncompact topological space
into a compact space.

Various interesting applications of compactness and connectedness properties
of topological spaces are also available in Sects. 5.28 and 5.27. Ascoli’s theo-
rem on function spaces is available in Sect. 5.24.6. On the other hand, Gelfand–
Kolmogoroff theorem on the rings C(X ,R) of real-valued continuous functions
from compact Hausdorff spaces X says that two compact Hausdorff spaces X and Y
are homeomorphic iff the corresponding rings C(X ,R) and C(Y ,R) are isomorphic.
This deep result recovers the topology of X from the ring structure of C(X ,R). The
study of Gelfand–Kolmogoroff theorem is given in Chap.6. Different concepts such
of compactness, locally compactness, compactly generated, countably compactness,
sequentially compactness, BW-compactness paracompactness, compactification of
noncompact spaces, connectedness, local connectedness and path connectedness,
etc. introduced in this section in topological settings are used throughout all the three
volumes of the present book series.
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Historically, Heinrich Heine (1821–1881) introduced the concept of finite sub-
covering in 1872 in his work on uniformly continuous functions. Emile Borel (1871–
1956) proved a result in 1894 asserting that every open covering of a closed interval
has a finite subcovering. The concept of compactness was born through theHeine–
Borel theorem 5.2.8 for any closed and bounded set of the real line R, described in
real analysis. Amore general result was published byHenri Lebesgue (1875–1941) in
1898 and by Arthur Schnflies (1853–1928) in 1900. A characterization of compact-
ness in terms of closed sets having finite intersection property was given by Leopold
Vietoris (1891–2002) in 1921 (see Theorem 5.9.6). On the other hand, the concept
of connectedness of some subsets of the Euclidean line R2 was given by Camille
Jordan (1838–1922) in 1914. A systematic study of connected topological spaces
was inaugurated by Felix Hausdorff in his book Grundzüge der Mengenlehre of
1914, which stemmed from analysis.

The intermediate value theorem 5.18.4 asserts that if f : [a, b] → R is contin-
uous and r ∈ R lies between f (a) and f (b), then there is a point α ∈ [a, b] such
that f (α) = r. What is the generalization of this theorem in topology ? This theorem
depends not only on the property of continuity of f but also depends on a special
property of [a, b], called connectedness, which is also a topological property differ-
ent from compactness property. On the other hand, motivation of the different types
of compactness is given in Sect. 5.1.1.

For this chapter, the books (Armstrong 1983; Bredon 1993; Chatterjee et al. 2002;
Borisovich et al. 1985; Munkres 2000; Patterson 1959) and papers and some other
books are referred in Bibliography.

5.1 Different Types of Compactness and Compact
Subsets of Rn

This section introduces the concepts of six different types of compactness in
Sect. 5.1.1 and studies compact subsets of Rn in Sect. 5.1.2. Their generalization
in arbitrary topological spaces is given in Sects. 5.1.3 and 5.1.4. In classical analy-
sis, bounded and closed subsets of Euclidean spaces have several basic interesting
properties. The properties of the set R of real numbers given in Theorem 5.1.1 are
well known.

Theorem 5.1.1 Let X be a nonempty subset of R. Then X and R have interesting
properties:

(i) Every infinite bounded subset of X has a limit point in X (Bolzano–Weierstrass
theorem).

(ii) Every open cover of a closed and bounded set X has a finite subcover (Heine–
Borel–Lebesgue theorem).

(iii) Every sequence in a closed and bounded set X has a convergent subsequence.
(iv) Cantor’s theorem on nested closed sets in R.
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(v) Every continuous function takes a closed and bounded set onto a closed
bounded set in R.

(vi) Every continuous function on a closed and bounded set is uniformly continuous
in R.

Proof Left as an exercise. �

5.1.1 Motivation of Six Different Types of Compactness

This subsection conveys motivation for defining different types of compactness. The
properties of R given in Theorem 5.1.1 can be utilized to introduce various classes
of compactness in a topological space, as they are formulated in terms of topological
properties. But the results prescribed in (i), (ii) and (iv) of Theorem 5.1.1, which
are equivalent in Euclidean space, are not necessarily true in an arbitrary topological
space. This problemmotivates to define different types of compactness in an arbitrary
topological space.

Definition 5.1.2 Let (X , τ ) be a topological space. Then X is said to be

(i) compact, if every open covering of X has a finite subcovering;
(ii) locally compact if each point of X has a compact nbd ;
(iii) paracompact if every open covering of X has a locally finite subcovering of

X ;
(iv) countably compact, if every countable covering of X has a finite subcovering;
(v) sequentially compact, if every infinite sequence on X has a convergent sub-

sequence;
(vi) Bolzano–Weierstrass compact (B–W compact), if every infinite subset of X

has a point of accumulation in X .

Remark 5.1.3 Six types of compactness may not be different for a certain class of
topological spaces. For example, the concepts of compactness, countably compact-
ness and sequentially compactness coincide for a subset of a metrizable space (see
Exercise 6 of Sect. 5.28). The concepts of compactness and B–W-compactness are
different in an arbitrary topological space (see Example 5.3.4) but Theorem 5.3.11
asserts that these two concepts coincide in metric spaces. Let (X , d) be a metric
space. Then its associated topological space (X , τd ) is compact iff it satisfies B–W
property.

5.1.2 Compactness of Subsets of R and Rn

This subsection studies the concept of compactness of subsets ofR andRn. A closed
and bounded subset X of the real line space R can be characterized by the property
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of R that every open covering of X has a finite covering, which is the Heine–Borel
theorem. This property can be extended to a certain class of topological spaces, called
compact spaces. So while studying a compact topological space, it is sufficient to
study only a finite number of its open subsets. This is the advantage of the study of
compact topological spaces. In metrizable spaces X , compactness may be examined
by the property that every infinite subset of X has an accumulation point.

Some results of classical analysis on compactness of a subset of the Euclidean
space Rn are stated with an eye to describe the motivation of compactness.

Definition 5.1.4 A subset X of Rn is said to be bounded if X ⊂ Bx0(r) for some
open ball

Bx0(r) = {x ∈ Rn: d(x, x0) < r} ⊂ Rn

with x0 as its center and r > 0 its radius, where d is the Euclidean metric. Equiva-
lently, a subset X of Rn is bounded, if there is a real number r > 0 such that

d(x, y) < r for all pairs of points x, y ∈ X .

Example 5.1.5 All segments, circles, triangles, etc. are bounded; on the other hand,
lines, half-lines, planes, exteriors of circles, Euclidean spaceRn and the set of rational
numbers are unbounded.

Remark 5.1.6 We state two fundamental Theorems 5.1.7 and 5.1.9 of classical anal-
ysis which historicallymotivated the concept of compactness in a topological setting.

Theorem 5.1.7 (Borel) Let X be a closed and bounded subspace of the n-dimen-
sional Euclidean space Rn. Then for every open covering {U } of X , there is a finite
subcovering in the sense that from the open sets {U } which cover X , a finite number
of open sets can be chosen which still covers X .

Proof Left as an exercise or see Theorem 5.2.4 �
Remark 5.1.8 Borel Covering theorem 5.1.7 leads to the concept of compactness
for a topological space X by calling X to be compact if every open covering of X
has a finite subcovering. Hence Theorem 5.1.7 shows that the closed and bounded
subspaces of Euclidean spaces Rn are compact. Its converse is also true by Heine–
Borel theorem 5.2.4 in Rn, which asserts that a subset of Rn is compact iff it closed
and bounded.

Theorem 5.1.9 Let X be a closed and bounded subspace of the n-dimensional
Euclidean space Rn. Then for every continuous map f :X → Rn, its image f (X )

is also closed and bounded in Rn.

Proof Left as an exercise. �
We start with a concrete result that a closed and bounded subset X of the real line

R is characterized by the property that for any open covering of X , there is a finite
subcovering of X . If this property holds for a topological space, this space is called
a compact space.
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Theorem 5.1.10 (i) The real line spaceR, with the usual topology, is not compact
but a closed interval [a, b] inR is compactwith respect to its subspace topology.
But [a, b] endowed with discrete topology is not compact. This example shows
that the compactness property of a topological space depends on its topology.

(ii) An open interval (a, b) in R, with the usual topology, is not compact.
(iii) A subset X of R, with usual topology, is compact iff X is closed and bounded.
(iv) Let τ be the finite complement topology on the set of real numbers R and

X = R − {0}. Then the subspace X of the topological space (R, τ ) is compact
but it is not closed in the topological space (R, τ ).

Proof Left as an exercise. �

Example 5.1.11 Compactness property depends on the topology. For example, the
closed interval [a, b] is compact in the subspace topology inherited from the natural
topology on R but it is not compact as a subspace of R endowed with discrete
topology. Because, [a, b] = ⋃{x: x ∈ [a, b]} and hence {x: x ∈ [a, b]} forms an open
covering of [a, b]with respect to the discrete topology but it has no finite subcovering.
Theorem 5.1.12 Let X ⊂ R be a nonempty subset. Then following statements on X
are equivalent:

(i) Let {x1, x2, . . . , xn, . . .} be a sequence of points in X . Then there is a subse-
quence {xn1, xn2 . . . , xnk , . . .}, which converges to a point x ∈ X .

(ii) Every infinite subset of X has at least one limit point in X .
(iii) Let {Uk : k ∈ K} be an open covering of X by a family of open intervals of R.

Then it has a finite subcovering.

Proof Left as an Exercise. �

Remark 5.1.13 The equivalence of the properties of a subset X ⊂ R stated in The-
orem 5.1.12 is given in (Heritt 1960).

Definition 5.1.14 A subset X ⊂ R having any one of equivalent properties of The-
orem 5.1.12 is called a compact set in R.

Example 5.1.15 There are infinitely many compact and noncompact sets in R. For
any two real numbers a, b with a < b, the closed interval [a, b] ⊂ R is a compact
subset of the real line spaceR. On the other hand, its every open interval (a, b) ⊂ R is
noncompact, because the family of open intervals U = {Un = (a, b − 1

n ), ∀ n ∈ N}
forms an open covering of (a, b) but it has no finite subcovering.

Proposition 5.1.16 Every real-valued function defined on a nonempty finite set is
bounded and attains its bounds.

Proof Let X = {x1, x2, . . . , xn} be a finite set (may or may not be a subset of
R) and f :X → R be a function. Then max{f (x1), f (x2), . . . , f (xn)} is the lub and
min{f (x1), f (x2), . . . , f (xn)} is the glb of the values of f , which are attained by f at
points of its domain of definition X . �
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Remark 5.1.17 For an arbitrary nonempty compact subset of R, every real-valued
continuous function f :X → R is bounded and attains its lub and glb. This gives a
generalization of Proposition 5.1.16. See proof of Theorem 5.27.2.

Remark 5.1.18 Remark 5.1.17 needs the condition of continuity of the function
f but for Proposition 5.1.16 no assumption on continuity is needed. It is clear of
course that every real-valued continuous function defined on a finite subset of R is
continuous.

5.1.3 Compact Sets in Arbitrary Topological Spaces

This subsection conveys the concept of compactness in the language of open sets.
Compactness is an important topological property in the sense that this property is
shared by homeomorphic spaces. Compact sets are almost finite for certain technical
purposes. The properties described in Theorem 5.1.12 can be utilized to introduce the
concept of “compactness” in a topological setting as these theorems are formulated in
terms of open sets. This concept was motivated by Heine–Borel theorem of analysis
on closed and bounded sets of R. In an arbitrary topological space, as boundedness
carries neither any significance nor it is a topological property, it has no direct impact
in defining compactness. But Borel Covering Theorem 5.1.7 relates boundedness of
closed sets in Euclidean spaces to certain families of open sets, called open coverings,
which lays the foundation of Definition 5.1.22 of compactness.

In more general, for a metric space X , given an ε > 0, X can be expressed as an
union of all its open balls Bx(ε). There is a natural problem: Does there exist a finite
collection of these open balls Bx(ε) that can cover X ? If X has no metric, to solve
this problem, the balls Bx(ε) is replaced by arbitrary open sets and this process leads
to the concept of compactness.

Definition 5.1.19 Let (X , τ ) be a topological space and U be a certain family of
subsets of X . Then

(i) U is said to be a cover of A ⊂ X , if A ⊂ ⋃{U :U ∈ U} and
(ii) U is said to be an open cover (or covering) of A if U is a cover of A and

every set U ∈ U is open,
(iii) a subcover of A is a subset of U which is also a cover of A.

Example 5.1.20 An open covering of a topological space (X , τ ) is a family of {Ui}
of open sets of (X , τ ), whose union is the whole set X . A topological space may
have different open coverings. For example,

(i) the family U = {(−n, n): n ∈ N} is an open covering ofR in the natural topol-
ogy and the family U = {{x}: x ∈ R} is also an open covering of R in the
discrete topology.

(ii) both U = {Un = (1/n, 1): n = 2, 3, . . .} andV = {Vn = ( 1n ,
n

n+1 ): n = 2, 3, . . .}
form two different open coverings of the open interval (0, 1) in the subspace
topology inherited from R with the natural topology.
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Example 5.1.21 (i) Let (X , τ ) be a discrete topological space. Then the family
U = {{x}: x ∈ X } forms an open covering of X .

(ii) The family U = {(−n, n): n ∈ N} forms an open covering of R both in the
natural topology and in the lower-limit topology of R.

(iii) Let (X , d) be a metric space with its induced topology τd . Then given r > 0,
the family B = {Bx(r): x ∈ X } of all open balls in X of radius r centered at x
are open sets in (X , τd ) and this family forms an open covering of X .

Definition 5.1.22 A topological space (X , τ ) is said to be compact if every open
covering of X has a finite subcovering. A subspace A ⊂ X of a topological space X
is said to be compact if A is compact with respect to its subspace topology.

Remark 5.1.23 Definition 5.1.22 of compactness asserts that from any open cov-
ering {Ui} of a compact space X , we can choose finitely many indices ij with
j = 1, 2, . . . , n such that

⋃n
j=1Uij = X . If X is a compact space, every sequence

of points xn of X has a convergent subsequence, which means, every subsequence
xn1 , xn2 , . . . , xnt , . . . converges to a point of X . For metric spaces, this condition is
equivalent to compactness (see Exercise 27 of Sect. 5.28).

5.1.4 Subspaces of Compact Spaces

This subsection studies subspaces of compact spaces. A subset X of the real line
space R with usual topology is compact iff X is closed and bounded (see Corollary
5.14.4). The following natural problems arise :

(i) is every subspace of an arbitrary compact space compact?
(ii) is every closed subspace of an arbitrary compact space compact?
(iii) is every finite union of compact subspaces of an arbitrary topological space

compact?

Remark 5.1.24 The answers of the problems (ii) and (iii) are affirmative byTheorem
5.1.26. On the other hand, the answer of the problems (i) is negative by Example
5.1.25.

Example 5.1.25 The answer of the problem (i) is not affirmative: every subspace of
an arbitrary compact space is not compact. For example, consider the subspace (0, 1)
of the closed interval [0, 1] in the real line space R. The subspace (0, 1) ⊂ [0, 1] is
not compact. Because, {( 1n , n

n+1 ): n = 2, 3, . . .} forms an open covering of the open
interval (0, 1), but it has no finite subcovering. Hence the open interval (0, 1) is not
compact but the closed interval [0, 1], is compact.

Theorem 5.1.26 (i) Every closed subspace of a compact space is compact.
(ii) Every finite union of compact subspaces of a topological space is compact.
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Proof (i) Let (X , τ ) be a compact space, Y be a closed subset in (X , τ ) andA =
{Ai: i ∈ A} be a family of closed sets in (Y , τY ) having the finite intersection
property. Since Y is closed in (X , τ ), each set Ai is also closed in (X , τ ).
This asserts that {Ai: i ∈ A} is also a family of closed sets in (X , τ ) having the
finite intersection property. Since (X , τ ) is compact by hypothesis, it follows
by Theorem 5.9.6 that

⋂{Ai: i ∈ A} �= ∅. Consequently, the subspace Y is also
compact by Theorem 5.9.6.

(ii) Let (X , τ ) be a topological space and {Xi: i = 1, 2, . . . , n} be a finite collec-
tion of closed subspaces of (X , τ ). Suppose that Y = X1 ∪ X2 ∪ · · · ∪ Xn ⊂ X
and F is an open covering of Y . Then this F forms also an open covering
of each compact subspace Xi. Hence there exists a finite subcovering Fi =
{Ui1 ,Ui2 , . . . ,Uik } of F for each Xi: i = 1, 2, . . . , n. This asserts that the sets
in F1,F2, . . . ,Fn form a finite open covering of (Y , τY ). Hence it follows that
the subspace Y is also compact.

�

Cantor space definedbyCantor (1845–1918) is theCantor set (defined inChap.1)
endowed with the subspace topology inherited from the topological space I = [0, 1].
Corollary 5.1.27 Cantor space C is compact.

Proof Since Cantor spaceC is closed in the compact set [0, 1], the corollary follows
immediately by the first part of Theorem 5.1.26. �

Theorem 5.1.28 Every compact subspace of a Hausdorff space is closed.

Proof Let A be a compact subspace of a Hausdorff space (X , τ ). We claim that A
is closed in (X , τ ). Let y be an arbitrary point of A and x ∈ X − A. Since (X , τ ) is
Hausdorff by hypothesis, there exist disjoint open sets Uy and Vy such that x ∈ Uy

and y ∈ Vy. Keeping x fixed and varying y ∈ A, it follows that the family {Vy: y ∈ A}
of open sets forms an open covering of the compact subspace A. Hence there exists
a finite subcovering of A such that

A ⊂ Vy1 ∪ Vy2 ∪ · · · ∪ Vyn ,

for a finite number of points y1, y2, . . . , yn ∈ A. Construct two sets

V (A) = Vy1 ∪ Vy2 ∪ · · · ∪ Vyn ,

and
U (x) = Uy1 ∩Uy2 ∩ · · · ∩Uyn ,

which are disjoint and open nbds of x and A. This asserts that the compact set A and
a point not in A can be separated in a Hausdorff space by disjoint open nbds U (x)
and V (A). This shows that the complement X − A is open and hence A is closed in
(X , τ ). �
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5.2 Compactness in Metric Spaces

This section generalizes the concept of compactness in Rn for metric spaces and
discusses compact sets in metric spaces. It proves Heine–Borel theorem in Rn and
LebesgueLemma. It is shown that for ametric space, the concepts of compactness
and B–W properties coincide.

5.2.1 Compact Sets in Metric Spaces

This subsection studies compact sets in an arbitrary metric space with an emphasis
on Euclidean spaces. The concept of compact space is a generalization of closed and
bounded sets in the Euclidean space but a closed and bounded set in an arbitrary
metric space may not be compact (see Example 5.2.10).

Definition 5.2.1 A subset A of a metric space X is said to be compact if every open
covering of A permits a finite subcovering.

Example 5.2.2 (i) Every finite subset of a metric space is compact.
(ii) Every closed interval [a, b] in the real line space R is compact.
(iii) The open interval (0, 1) in the real line space R is not compact, because there

exists an open covering such as U = {Un = (1/n, 1): n (> 1) ∈ N}, of the open
interval (0, 1), but U has no subcovering.

Remark 5.2.3 Example 5.2.2 raises the problem: Exactly which subspaces of Rn

are compact? The answer is that the compact subsets of the Euclidean space Rn are
precisely its closed and bounded subsets, which is the Heine–Borel theorem 5.2.4 in
Rn named after H. E. Heine (1821–1881) and Emile Borel (1871–1956) and hence
it characterizes completely a compact subspace of Rn by its bounded and closed
subsets. Some alternative proofs of this theorem are given in Theorem 5.25.29.

Theorem 5.2.4 (Heine–Borel theorem inRn) A subset ofRn is compact iff it closed
and bounded.

Proof Let A be a compact subspace of Rn. Since A is a compact subspace of the
Hausdorff space Rn, it is closed by Theorem 5.1.26. Consider the open balls B0(n)
in Rn with center at the origin 0 ∈ Rn and integral radius n. Then the family of open
balls {B0(n): n ∈ N} forms an open covering of the compact subspace A of Rn. As
A is compact by hypothesis, the family {B0(n): n ∈ N} has a finite subcovering of
A. Hence A must be inside the union of finitely many balls of {B0(n)}. This shows
that there is an integer n0 such that A ⊂ B0(n0). This asserts that A is bounded.
Consequently, A is closed and bounded. For the converse part, suppose that A is
closed and bounded. Then there are bounded intervals [a1, b1], [a2, b2], . . . , [an, bn]
in R such that A ⊂ [a1, b]] × [a2, b2] × · · · × [an, bn]. If {xk} is a sequence in
A such that xk = (xk1 , xk2 , . . . xkn), where, xki ∈ [ai, bi]: i = 1, 2, . . . , n, ∀ k ∈ N.
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Then {xk1 : k ∈ N} is a sequence in [a1, b1] such that it has a convergent subse-
quence say, {xk1 : k ∈ N1 ⊂ N}. Then N1 has also its natural ordering. Let x1 =
lim k∈N1 xk1 . Consider the sequence {xk2: k∈N1} in [a2, b2]. It has a convergent sub-
sequence {xk2 : k ∈ N2 ⊂ N1} such that x2 = limk∈N2xk2 . Proceeding as above, there
exist subsets: Np ⊂ · · · ⊂ N1 ⊂ N such that

limk∈Np xkm = xm, for 1 ≤ m ≤ p.

This shows that {xk : k ∈ Np} is a subsequence of the original sequence {xk : k ∈ N}
and it converges to the point x = (x1, x2, . . . , xp) ∈ A, since A is closed. This asserts
that A is compact by Exercise 27 of Sect. 5.28. �

Corollary 5.2.5 A subset A of R is compact iff it is closed and bounded.

Proof It follows from Theorem 5.2.4 for n = 1, in particular. �

Corollary 5.2.6 A subspace of the real line space R is compact iff it is closed and
bounded.

Proof It follows from Theorem 5.2.4. �

Corollary 5.2.7 The closed interval [a, b] is compact in the real line space R.
Proof It follows from Theorem 5.2.4. �

Theorem 5.2.8 (Heine–Borel theorem inR). Every closed interval in the real num-
ber space R, with usual topology, is compact.

Proof Proof I: It follows from Theorem 5.2.4.

Proof II: See proof of Theorem 5.14.1.

Proof III: Let [a, b] be a given closed interval in R and C be an open covering of
[a, b] inR. Let E be the set of all those elements x ∈ [a, b] such that there is a finite
subcovering of C for the closed interval [a, x]. Then a ∈ E and the point b is an
upper bound of the set E . This shows that E has an lub e, say. Then it follows that
a < e. If U ∈ C is such that e ∈ U and d ∈ (a, e) ∩U , then [a, d) has an open
finite subcovering covering C ′, which is finite subcollection of C. Hence C ′ ∪U
is a finite subcollection of C, which forms a finite open subcovering of [a, e]. If
e �= b, there is a number f such that f ∈ U, (e, f ) ⊂ U and hence C ′ ∪U is a
finite subcollection of C and forms an open covering of [a, f ] such that f ∈ E ,
which is not possible as f > e and e is the lub of E . This asserts that e = b and
hence C ′ ∪U is a finite subcollection of C, which forms a finite covering of [a, b]..
Consequently, [a, b] is compact in the real number space R.

�

Corollary 5.2.9 (Another form Heine–Borel theorem in R) Every closed and
bounded subspace of the real number space, with usual topology, is compact.
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Proof Since a closed and bounded subspace of the real line space R is a closed
subspace of some closed interval [a, b], the corollary follows from
Theorem 5.2.8. �

Example 5.2.10 Heine–Borel theorem is true in Euclidean space but it is not true
in an arbitrary metric space, because, every closed and bounded set in an arbitrary
metric space (even in (R, d) having a metric d equivalent to the Euclidean metric on
R) is not compact. In support, consider

(i) the example, where the metric d is defined

d :R × R → R, (x, y) �→ |x − y|
1 + |x − y| .

This metric d is different from the standard (Euclidean) metric on R but these
two metrics are equivalent. With this metric d , the space R is closed and
bounded but not compact.

(ii) another example: given two rational numbers a, b with a < b, define the set

S = {x ∈ Q: a ≤ x ≤ b} = [a, b] ∩ Q.

This set S is closed and bounded. It is not compact, since there is a sequence
{xn} in S converging to an irrational number and hence this sequence has no
subsequence converging to a point of S.

Example 5.2.11 A subspace of a compact space may not be compact. For example,
in the real number space R with usual topology, an open interval is not compact (see
Example 5.2.2). The open interval (0, 1) is a proper subspace of [0, 1]. The open
interval (0, 1) is not compact but the closed interval [0, 1] is compact byHeine–Borel
theorem.

5.2.2 Lebesgue Lemma and Lebesgue Number

This subsection studies Lebesgue Lemma and Lebesgue number named after H.
Lebesgue (1875–1941) for an open covering of a compact metric space establishing
a relation between such a space and Lebesgue number and proves Lebesgue Lemma
providing a technical result on open covering of a compact metric space.

Given an open covering F = {Uα: α ∈ A} of a compact metric space X , there
exists a real number δ > 0 (called Lebesgue number of F = {Uα}) such that every
open ball Bx(ε) in X for some ε > 0, is contained in at least one open set {Uα} ∈ F .
The concept of a Lebesgue number stems from Lebesgue’s work on measure theory,
starting with his thesis in 1902. The existence of Lebesgue number is proved in
Lemma 5.2.12.
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Lemma 5.2.12 (Lebesgue) Let X be a compact metric space. Given an open cov-
ering F = {Uα: α ∈ A} of X , there exists a real number δ > 0 (called Lebesgue
number of F) such that any subset Y of X of diameter diam(Y ) < δ is contained in
some member of F , i.e., whenever Y ⊂ X and diam(Y ) < δ, then Y ⊂ Uα for some
α ∈ A.

Proof I: Let X be a compact metric space with metric d . Then for an arbitrary point
x ∈ X , there is an ε(x) > 0 depending on x such that the open ball Bx(2ε(x)) ⊂ Uα

for some α ∈ A. Since X is compact, there is a finite number of the open balls
Bx(ε(x)), suppose for x = x1, x2, . . . , xm. Let δ = min{ε(xj): j = 1, 2, . . . ,m}. If
dim(Y ) < δ and y0 ∈ Y , there exists an index j such that 1 ≤ j ≤ m with the prop-
erty that d(y0, xj) < ε(xj). Again, for y ∈ Y , d(y, y0) < δ ≤ ε(xj). Hence by triangle
inequality for the metric space X , it follows that

d(y, xj) ≤ d(y, y0) + d(y0, xj) < 2ε(xj).

This asserts that Y ⊂ Bx(2ε(x)) ⊂ Uα for some α ∈ A.

Proof II: If the result is not true, there exists a sequence X1,X2, . . . ,Xn, . . . of
subsets of X such that none of them is contained in a member F = {Uα}, and whose
diameter tends to 0 as we move along the sequence. For every n, select a point
xn ∈ Xn. Consider the two cases:

Case I: The sequence {xn} contains only finitely many distinct points. In this case,
some point will be repeated infinitely many times.

Case II: The sequence {xn} contains infinitely many distinct points. In this case,
it has a limit point, since by hypothesis X is compact.

Let x denote the repeated point for case I or limit point for case II. IfU is amember
ofF ,which contains the point x, then choose a real number ε > 0 such that the open
ball Bx(ε) ⊂ U and a positive integer n0 sufficient large so that

(i) diamXn0 < ε/2 and
(ii) xn0 ∈ Bx(ε/2).

Hence, d(xn0 , x) < ε/2 and d(x′, xn0) < ε/2 for any point x′ ∈ Xn0 . This shows by
triangle inequality that d(x, x′) < ε, ∀ x′ ∈ Xn0 , and hence Xn0 ⊂ U . But it contra-
dicts our assumption that U /∈ F . This contradiction proves the theorem. �

Corollary 5.2.13 (Lebesgue Lemma: Alternative Form ): Let X be a compact met-
ric space. Given an open covering {Uα : α ∈ A} of X , there exists a real number
δ > 0 (called Lebesgue number of {Uα}), such that every open ball of radius less
than δ lies in some element of {Uα}.
Proof It follows from Lemma 5.2.12. �

Remark 5.2.14 For another proof of Lebesgue Lemma, see Basic Topology, Volume
III of the present series of books.
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Corollary 5.2.15 Let X and Y be two compact metric spaces. If f :X → Y is con-
tinuous, then it is uniformly continuous.

Proof Given an ε > 0, the collection C = {f −1(By(ε/2)): y ∈ Y } of open sets forms
an open covering of X . Let δ > 0 be a Lebesgue number of C. Then f sends every
ball Bx(δ) in X to some ball By(ε/2) in Y . Hence, if d(x, z) < δ then

d(f (x), f (z)) ≤ d(f (x), y) + d(y, f (z)) < ε/2 + ε/2 = ε

asserts that f is uniformly continuous. �

5.3 Bolzano–Weierstrass (B–W) Compactness

This section is devoted to the study of the concept of (B–W)-compactness in a
topological setting, which is motivated by Bolzano–Weierstrass theorem of analysis
asserting that every bounded infinite subset of real numbers has an accumulation
point. A key link between compactness and Bolzano–Weierstrass (B–W) property is
established in Theorem 5.3.11. The (B–W) property of a metric space X asserts that
every infinite subset of X has at least one accumulation point. The main result of
this section is the Theorem 5.3.9 and its Corollary 5.3.10 saying every metric space
having the (B–W)-property is compact and conversely, every compact metric space
has the (B–W) property.

Definition 5.3.1 asserts that a topological space (X , τ ) is (B–W)-compact or limit
point compact if every infinite subset of X has a limit point.

Definition 5.3.1 Let (X , τ ) be a topological space.

(i) The space (X , τ ) is said to be Bolzano–Weierstrass compact or (B–W)-
compact or limit point compact if every infinite subset of X has an accumu-
lation point.

(ii) A subset A of X with relative topology is said to be (B–W)-compact, if every
infinite subset of A has an accumulation point.

Example 5.3.2 Let R be the Euclidean line.

(i) Every bounded closed interval X = [a, b], with subspace topology inherited
from R, is (B–W)-compact. Because, if A is an infinite subset of X , then A
is a bounded infinite subset of real numbers and hence it has an accumulation
point a say, by Bolzano–Weierstrass theorem. Since, X is closed, it follows
that a ∈ X and hence X is (B–W)-compact.

(ii) The open interval X = (0, 1) with subspace topology inherited from R, is not
(B–W) is compact. Because, the infinite subsetA = { 12 , 1

3 , · · · , 1
n , · · · } ofX has

accumulation point 0 but 0 /∈ X shows that X = (0, 1) is not (B–W)-compact.

Theorem 5.3.3 Every compact space is a (B–W)-compact space.
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Proof Let (X , τ ) be a compact space and Y be an infinite subset of X . To prove
the theorem, it is sufficient to show that Y has a limit point. If Y has no limit point
outside Y , then Y contains all its limit points and hence Y is closed in X . This shows
that Y is compact as a closed subset of the compact space X . Again, for each point
y ∈ Y , there exists a nbdUy of y such thatUy ∩ (Y − {y}) = ∅, since y is not a limit
point of Y . Moreover, as {Uy} forms an open covering of the compact set Y , there
exists a finite subcovering whose number is say n. Again, since every nbdUy contains
exactly one point of Y and hence this set Y contains precisely these n elements. This
contradicts our hypothesis that Y is an infinite subset of X .

�

Example 5.3.4 Compactness property of a topological space implies its (B–W)-
compactness property by Theorem 5.3.3 but its converse is not true. For example, let
Nτ be the topology on N defined by

Nτ = {(n, n + 1): n ∈ N}.

Then the topological space (N,Nτ ) is (B–W)-compact. But it not compact. Because
{(n, n + 1): n ∈ N} forms an open covering of N but it has no finite subcovering.

Remark 5.3.5 Example 5.3.4 implies that the concepts of Bolzano–Weierstrass (B–
W) property and compactness property are different for an arbitrary topological
space. But these two concepts coincide for a metric space by Theorem 5.3.11.

Compactness and Bolzano–Weierstrass Properties in Metric Spaces

This subsection continues the study of compactness property in metric spaces and
establishes a key link between compactness property and Bolzano–Weierstrass (B–
W) property for metric spaces as stated in Remark 5.3.5. Another form of Bolzano–
Weierstrass theorem is given in Theorem 5.27.1. For more connection between com-
pactness and (B–W) properties in a topological space, see Chap.7.

Theorem 5.3.6 (Bolzano–Weierstrass) Let (X , d) be a compact metric space and
A be an infinite subset of X . Then A has at least one accumulation (limit) point.

Proof Let (X , d) be a compactmetric space andA be an infinite subset ofX . Suppose
A has no accumulation point. This supposition implies that every point of X is not
an accumulation point of A and hence for each point x ∈ X , there is an open ball Bx

with center at x such that

Bx ∩ A =
{

∅, if x /∈ A

{x}, if x ∈ A
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The family B of all these open Bx forms an open covering of X . Since by hypoth-
esis, X is compact, there exists a finite subcovering S ⊂ B of X . Since the set A is
contained in the set of centers of the open balls in this finite subcovering S, there
are finite number of points x1, x2, . . . , xn such that A = {x1, x2, . . . , xn} is finite,
which contradicts the assumption that A is infinite. This contradiction proves the
theorem. �
Theorem 5.3.7 Let (X , d) be a metric space. If every infinite subset of X has at
least one accumulation point, then X is compact.

Proof Let C = {Ui: i ∈ A} be an open covering of X and εL be its Lebesque number.
Select a positive integer n such that 1

n < εL. Then there exists a finite set of points
{x1, x2, . . . , xm} of X such that the family of open balls

{

Bx1

(
1

n

)

,Bx2

(
1

n

)

, . . . ,Bxm

(
1

n

)}

forms an open covering of X . Again, for each k = 1, 2, . . . ,m, there is an αi ∈ I
such that Bxk (

1
n ) ⊂ Uαi . This asserts that the family

{Uα1 ,Uα2 , . . . ,Uαm}

forms a finite subcovering of C = {Ui : i ∈ A} of X . This implies that X is compact.
�

Definition 5.3.8 Every metric space (X , d) induces a topology τd on X . The result-
ing topological space (X , τd ) is called the associated topological space of (X , d).

Theorem 5.3.9 Let (X , d) be a metric space. Then every infinite subset of X has at
least one accumulation point iff its associated topological space (X , τd ) is compact.

Proof Let (X , d) be a metric space such that every infinite subset of X has at least
one accumulation point. Then its associated topological space (X , τd ) is compact
by Theorem 5.3.7. Conversely, let X be a compact metric space. Then using The-
orem 5.3.6, it follows that every infinite subset of X has at least one accumulation
point. �
Corollary 5.3.10 Let (X , d) be a metric space. Then it is compact iff its associated
topological space (X , τd ) is compact.

The above discussion is summarized in Theorem 5.3.11, which is a basic and
important result characterizing compactness of topological spaces with the help of
Bolzano–Weierstrass (B–W)-property.

Theorem 5.3.11 Let (X , d) be ametric space. Then its associated topological space
(X , τd ) is compact iff it satisfies (B–W) property.

Remark 5.3.12 In a metric space, the three concepts: Bolzano–Weierstrass (B–W)-
property, compactness property and sequentially compactness property coincide (see
Exercise 16 of Sect. 5.28).
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5.4 Basic Link between Compactness and Hausdorff
Properties of Topological Spaces

This section describes some interesting properties obtained by relating compactness
property with Hausdorff property of topological spaces. Theorem 5.4.5 is one of
the useful results providing a simple tool to invade certain type of homeomorphism
problems.

Proposition 5.4.1 Let (X , τ ) be a compact Hausdorff space. Then it is normal.

Proof Let (X , τ ) be a compact Hausdorff space. Suppose A and B are two disjoint
closed sets in X . Then they are also compact sets of (X , τ ). For each a ∈ A, there
exist disjoint open sets Ua and Va such that a ∈ Ua,B ⊂ Va. Running a over A, we
have an open covering {Ua} of A. Then it has a finite subcovering whose union isU ,
say, and the intersection of the corresponding sets Va is V , say. These U and V are
disjoint open nbds of A and B. This proves that (X , τ ) is normal. �

Remark 5.4.2 The imposition of the condition of Hausdorff property of (X , τ ) in
Theorem 5.4.1 is necessary so that one-pointic sets are closed and the condition of
disjoint closed sets having open nbds includes the condition that distinct points have
disjoint open nbds. Again, the restriction that A and B are to be closed is necessary:
since arbitrary disjoint subsets may not have disjoint open nbds: for example, the
subsets {0} and (0, 1] in the real line space R have no disjoint open nbds.

Proposition 5.4.3 Let (X , τ ) be a compact space and (Y , σ ) be a Hausdorff space.
If a map f : (X , τ ) → (Y , σ ) is continuous and surjective, then a set V ⊂ Y is open
iff f −1(V ) is open in X .

Proof Let (X , τ )be a compact space and (Y , σ )be aHausdorff space.Byhypothesis,
f is continuous. Then for every open setV inY , f −1(V ) is open inX . For the converse,
supposeX is compact andY isHausdorff. If f −1(V ) is open inX , then its complement
X − f −1(V ) is closed in the compact spaceX , and hence it is compact. Consequently,
its continuous image f (X − f −1(V )) is compact in Y . As Y is Hausdorff, f (X −
f −1(V )) is closed in Y . Again as f is bijective, f (X − f −1(V )) = Y − V . This asserts
that Y − V is closed and hence V is open in Y . �

Proposition 5.4.4 Let (X , τ ) be a Hausdorff space and Y ⊂ X be compact. Then
Y is closed.

Proof Let (X , τ ) be a Hausdorff space and Y ⊂ X be compact. It is sufficient to
show that X − Y is open. Let x ∈ X − Y be an arbitrary point. Then x is not an
element of Y . Let y ∈ Y . Since X is a Hausdorff space by hypothesis, there exist
two disjoint open setsUy and Vy in X such x ∈ Vy and y ∈ Uy. Now, Y = ⋃

(Yy ∩ A)

asserts by compactness of Y that there exist points y1, y2, . . . , yn ∈ Y such that

Y ⊂ Uy1 ∪Uy2 ∪ · · · ∪Uyn = U, say
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and correspondingly,

x ∈ Vy1 ∩ Vy2 ∩ · · · ∩ Vyn = V , say

Then U and V are two disjoint open sets such that

x ∈ V ⊂ X −U ⊂ X − Y .

Since V is open and x is an arbitrary point of X − Y , it follows that X − Y is open
and hence it is proved that Y is closed. �

Theorem 5.4.5 asserts that any continuous bijective map from a compact space to
a Hausdorff space is a homeomorphism. It is an important theorem which is applied
to solve some homeomorphism problems. For example, see Sect. 5.4.

Theorem 5.4.5 Let (X , τ ) be a compact space and (Y , σ ) be a Hausdorff space. If
a map f : (X , τ ) → (Y , σ ) is continuous and bijective, then f is a homeomorphism.

Proof Let (X , τ ) be a compact space and (Y , σ ) be aHausdorff space. Let f :X → Y
be a continuous bijective map. To prove that f −1 is continuous it is sufficient to prove
that f sends closed sets of X to closed sets in Y ,which implies that if A ⊂ X is closed
in X , then f (A) ⊂ Y is closed in Y . As A is a closed subset of the compact subset X ,

it is compact. This asserts that its continuous image f (A) is a compact subspace of
the Hausdorff space Y . Then it follows by Proposition 5.4.4 that f (A) ⊂ Y is closed
in Y . It concludes that f is a homeomorphism. �

Remark 5.4.6 The topology τ on a compact Hausdorff space (X , τ ) has an optimal
property in the sense that any topology finer than a Hausdorff topology is also Haus-
dorff and any topology coarser than a compact topology is also compact. Hence, any
topology σ strictly stronger (finer) than the given topology τ is Hausdorff; on the
other hand, any topology σ strictly weaker (coarser) than the given topology τ is
compact but it is not Hausdorff, otherwise the identity map 1X :X → X would be a
homeomorphism by Theorem 5.4.5 asserting that σ = τ, which is a contradiction.

Identification Maps from Compact Spaces

This subsection studies identification maps and relates such maps with maps from
compact spaces to Hausdorff spaces to construct new geometric objects.

Recall that given topological spaces (X , τ ) and (Y , σ ), a continuous surjective
map

f : (X , τ ) → (Y , σ )

is an identification map if σ = τf , where τf is the quotient topology on Y induced
by f .
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Theorem 5.4.7 is an important result in topology which is used to identify some
quotient spaces with well-known spaces (see Examples 5.4.9 and 5.4.11).

Theorem 5.4.7 Let (X , τ ) be a compact space, (Y , σ ) be a Hausdorff space and
f : (X , τ ) → (Y , σ ) be a surjective map. If f maps closed (open) sets of X to closed
(open) sets of Y , then f is an identification map.

Proof To prove this theorem we first prove that if X and Y are topological spaces
and if f :X → Y is a surjective map such that f maps closed sets of X to closed sets
of Y , then f is an identification map. To prove this let A be a subset of B such that
f −1(A) is closed in X . As f is onto by hypothesis, f (f −1(A)) = A. This asserts that
A must be closed in the given topology on Y . This implies that this topology is the
largest topology for which f is continuous and hence f is an identification map. The
proof is similar for open sets. �

Corollary 5.4.8 Let (X , τ ) be a compact space and (Y , σ ) be a Hausdorff space. If
f : X → Y is continuous and surjective, then f is an identification map.

Proof Let f :X → Y be a continuous onto map. As X is compact by hypothesis,
any closed subset A of X is compact and its image f (A) is compact in Y , since f
is continuous. Hence f (A) is closed in Y . This shows that f sends closed sets in X
to the closed sets in Y . This implies by Theorem 5.4.7 that f is an identification
map. �

Example 5.4.9 Let I be the closed unit interval and ∼ be an equivalence relation on
I such that [0] = [1] = {0, 1} and [x] = {x} for 0 < x < 1. Then I/ ∼ is the quotient
space homeomorphic to the circle S1 by Theorem 5.4.7. In other words, S1 = I/ ∼,

which is obtained from I by identifying the end points 0 and 1 of I.

Example 5.4.10 Quotient space of a compact Hausdorff space may not be Haus-
dorff. For example, consider the quotient space X /A, where X = I and A = [0, 1)
are subspaces of R with subspace topology of R and the canonical map p:X →
X /A, x �→ [x], where X /A is the quotient space corresponding to the equivalence
relation ∼, which identifies every pair of elements in A and no other pair of points
is continuous and surjective. Since p−1([0]) = [0, 1) is open. the point [0] ∈ X /A
is open. On the other hand, since p−1([1]) = {1} is not open, the point [1] ∈ X /A
is not open. This implies that the quotient space X /A is Sierpinski and hence is not
Hausdorff.

Example 5.4.11 If we identify all the points of the circumference of a diskD2, then
the resulting quotient space is homeomorphic to the sphere S2. To show it, let N be
the north pole of S2. Then there exists a homeomorphism

f :D2 − S1 → S2 − N .
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Extend the map f to a continuous map

f̃ :D2 → S2

mapping the entire S1 to the point N . This produces a continuous surjective map

ψ :D2/S1 → S2.

Hence it follows by Corollary 5.4.8 that ψ is a homeomorphism.

5.5 Sequentially Compact Spaces

This section studies sequentially compact spaces. The concept of sequentially com-
pactness in a metric space abstracts the Bolzano–Weierstrass property which asserts
that the closed and bounded subsets of the real line R are sequentially compact.

Definition 5.5.1 A topological space (X , τ ) is said to be sequentially compact, if
every infinite sequence in X has a convergent subsequence.

Example 5.5.2 Let τ be the collection of subsets of the set R of real numbers con-
sisting of

(i) all those subsets of R, which do not contain 0; and
(ii) the other four subsets R, which are R, R − {1, 2}, R − {1}, and R − {2}.
Then τ forms a topology onR. The topological space (R, τ ) is sequentially compact.
Because, if U is any open covering of (R, τ ), then U must contain at least one of
the sets prescribed in (ii) to include 0. Let V be a set of this type taken from the
open covering U, then the subset X − V consists of at most two points which are
1 and 2. If V1 and V2 are two open sets which are in U and contain the points 1
and 2 respectively, then {V ,V1,V2} forms a finite subcovering of R. This shows that
the space (R, τ ) is compact. It is also sequentially compact. Because, any infinite
sequence {xn} in R is either of the two types, which are

(a) xn �= 1 and 2 for all n, excepting for a finitelymany values of n; and the sequence
{xn} is itself convergent and converges to the limit 0;

(b) xn = 1 or 2 for infinitely many values of n and then there exists an infinite
subsequence of {xn}, which converges to the limit 1 or 2.

Proposition 5.5.3 Every closed subspace of a sequentially compact space is also
sequentially compact.

Proof Left as an exercise. �

Remark 5.5.4 The remaining part of this section studies (B–W)-compact spaces
(i.e., limit point compact spaces) and relates them to sequentially compact spaces.
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Definition 5.5.5 A metric space X is said to be sequentially compact if every
sequence {xn}∞n=1 of points in X has a convergent subsequence.

Proposition 5.5.6 In ametrizable space, every (B–W)-compact space is sequentially
compact.

Proof Let X be a (B–W)-compact space. To prove the proposition, it is sufficient
to show that every infinite sequence {xn} in X has a convergent subsequence. Corre-
sponding to the infinite sequence {xn} in X , construct the set

Y = {xn: n ∈ R} ⊂ X .

Case I: If the set Y is finite, then there is a point x ∈ Y such that xn = x for infinitely
many values of n and hence the sequence {xn} has a subsequence which is constant
and converges automatically.

Case II: If the set Y is infinite, then by definition of (B–W)-compact space, the set Y
has a limit point x ∈ Y . Construct a subsequence {xn1 , xn2 , . . . xnk , . . .} of {xn} in X
that converges to x; take xn1 so that xn1 ∈ Bx(1). Let nk−1 be a given positive integer.
Since the open ballBx(

1
n )) intersects Y at infinitelymany points, we can take an index

nk > nk−1 such that xnk ∈ Bxnk
( 1n ). This completes the construction of subsequence

{xn1 , xn2 , . . . xnk , . . .} of {xn} in X that converges to x. Alternatively for each n ∈ N,
there exists a finite set of points xn1 , xn2 , . . . xnk such that the family of open balls

Bxn1

(
1

n

)

,Bxn2

(
1

n

)

, . . . ,Bxnk

(
1

n

)

forms an open covering of Y , otherwise, there exists an integer n such that no
finite family of open balls of radius 1

n would cover Y . Construct a sequence
{x1, x2, . . . , xk , . . .} of points of Y such that for k > 1,

xk /∈
i=k−1⋃

i=1

Bxi

(
1

n

)

.

This implies that d(xk , xj) ≥ 1
n if k �= j. This asserts that the set of points xn1 , xn2 , . . .

xnk is infinite and hence this set has a limit point x ∈ Y . As the points xk , xj ∈ Bx(
1
2n ),

this gives the contradiction that d(xk , xj) < 1
n .

�

Remark 5.5.7 In an arbitrary topological space, the concepts of compactness, (B–
W)-compactness and sequentially compactness are different but they are closely
related by Theorem 5.3.3 and Proposition 5.5.6. On the other hand, all these three
concepts coincide in a metrizable space (see Exercise 103 of Sect. 5.28).
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5.6 Locally Compact and Compactly Generated
Hausdorff Spaces

This section studies locally compact and compactly generated Hausdorff spaces.
There exist many topological spaces which are not compact but they contain very
important compact subspaces. The Euclidean spaces is an important example. This
type of spaces called locally compact spaces forms an important class of topological
spaces, specially for the study of function spaces (see Sect. 5.24) and one-point
compactification (see Sect. 5.13.3). A characterization of locally compact Hausdorff
spaces is given in Exercise 51 of Sect. 5.28. On the other hand, the category of
compactly generated Hausdorff spaces is very important, since it contains all locally
compact spaces and almost all important spaces in topology. For this category, the
paper (Steenrod 1967) is referred.

5.6.1 Locally Compact Spaces

This subsection studies locally compact spaces. Euclidean spacesRn are not compact
but they form an important class of locally compact spaces for every integer n ≥ 1
(see Example 5.6.4). This example motivates to study locally compact spaces.

Definition 5.6.1 A topological space (X , τ ) is said to be locally compact at a point
a ∈ X , if the point a has at least one compact nbd in X . It is said to be locally
compact if it is locally compact at every point x ∈ X , i.e., a topological space (X , τ )

is locally compact if its every point x lies in an open set Ux such that its closure Ux

is compact.

Example 5.6.2 (i) The real line space R is locally compact, because, the open
intervals (a, b) are basis elements for the natural topology on R and any point
x ∈ (a, b) lies in its closure [a, b],which is compact inR. On the other hand, the
space Q of rational numbers with topology induced from the natural topology
on R is not locally compact.

(ii) Euclidean n -space Rn is locally compact, because x ∈ (a1, b1) × (a2, b2) ×
· · · × (an, bn) asserts that x ∈ [a1, b1] × [a2, b2] × · · · × [an, bn], which is
compact under product topology by Tychonoff product theorem 5.11.4. The
subspace X = {(x, y) ∈ R2: x, y ∈ Z} of R2 is also locally compact. Because,
it is a discrete set and hence every point x ∈ X has a compact nbd {x}.

Example 5.6.3 (i) Every discrete topological space is locally compact.
(ii) Any compact space is a locally compact space ;
(iii) Any closed subset of a locally compact space is a locally compact space;
(iv) C[0, 1] with compact open topology (see Sect. 5.24.1) is not locally compact.
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Example 5.6.4 Every compact space is locally compact but its converse is not
necessarily true. For example, the real line space R with the usual topology σ

is not compact but it is locally compact. Because, the family of open intervals
{ · · · , (−3,−1), (−2, 0), (−1, 1), (0, 2), . . . , } forms an open covering of R but it
has no finite subcovering. Again, every point x ∈ R is an interior point of the closed
interval [x − ε, x + ε] for every ε > 0, which is compact by Heine–Borel theorem.

Definition 5.6.5 Let A be a subspace of a topological space (X , τ ). Then A is said to
be locally closed if every point x ∈ A has an open nbdUx such that A ∩Ux is closed
in Ux.

Proposition 5.6.6 characterizes locally closed sets in terms of intersection of a
closed set and an open set.

Proposition 5.6.6 Let (X , τ ) be a topological space and Y be a subspace of X . Then
Y is locally closed iff Y can be expressed as Y = U ∩ A, where A is closed in X and
U is open in X .

Proof Let (X , τ ) be a topological space and Y be a subspace of X . Let Y be locally
closed. IfU = ⋃{Uy: y ∈ Y }, whereUy has the property of the Definition 5.6.5, then
U is an open set. Again if A = Ȳ , then A is closed. Consequently,

U ∩ A =
⋃

y∈Y
{Uy: y ∈ Y } ∩ Ȳ =

⋃

y∈Y
(Uy ∩ Ȳ ) =

⋃

y∈Y
(Uy ∩ Y ) = U ∩ Y = Y .

The converse part follows from Definition 5.6.5. �

Proposition 5.6.7 Let (X , τ ) be a locally compact space and Y be a closed subspace
of X . Then Y is also locally compact.

Proof Let Y be a closed subspace of X and x ∈ Y be an arbitrary point. As X is
locally compact at the point x, there is a compact nbd Nx of x in X . Let Z be the
space defined by Z = Nx ∩ Y . As a closed nbd of Nx, the space Z is compact. Since
Nx is a nbd of x in X , the space Z is also a nbd of x in Y . This asserts that Y is
locally compact at x. As x ∈ Y is an arbitrary point, it follows that Y is also locally
compact. �

5.6.2 Locally Compact Hausdorff Space

This subsection studies locally compact Hausdorff spaces, (imposing Hausdorff con-
dition on locally compact spaces), which play an important role in the study of func-
tion spaces (see Exponential Correspondence Theorem 5.24.9). For more properties
of locally compact and locally compact Hausdorff spaces, see Sect. 5.28.

The concept of a locally compact space given in Definition 5.6.1 is reformulated
in Definition 5.6.8 for a Hausdorff space.
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Definition 5.6.8 Let (X , τ ) be a Hausdorff space. It is said to be a locally compact
Hausdorff space if for every point x ∈ X and every open setU in (X , τ ) containing
the point x, there exists an open set V in (X , τ ) such that

(i) V is compact and
(ii) x ∈ V ⊂ V ⊂ U.

Theorem 5.6.9 Let (X , τ ) be a locally compact space and x ∈ X . Then the family of
closed nbds of x in X forms a local base at x if (X , τ ) is either Hausdorff or regular.

Proof By hypothesis, (X , τ ) is a locally compact space and x ∈ X . Then there exists
a compact nbd N of x in X . Let T be an arbitrary nbd of x in X . First suppose that
(X , τ ) is regular. Then there exists a closed nbd W of x in X such that W ⊂ N ∩ T .
Since N is compact and W is closed in N , it follows that W is also compact. Next
suppose that (X , τ ) is Hausdorff. ThenN is a normal Hausdorff space by Proposition
5.4.1 and hence N is also regular. So, there exists a closed nbdW of x in N such that
W ⊂ N ∩ T , because N ∩ T is a nbd of x in the regular space N . Since every closed
set in a compact space is compact, it follows that N is closed. This asserts that W is
both closed and compact in X . Hence W is also a nbd of x, because N is itself a nbd
of x in X . This asserts that W is a closed and compact nbd of x if (X , τ ) is either
Hausdorff or regular. This proves the existence of a closed compact nbd W of x in
X . �

Corollary 5.6.10 Every locally compact Hausdorff space is regular.

Proof Let (X , τ ) be a locally compact Hausdorff space and x ∈ X be an arbitrary
point. Then the family of closed nbds of x in X forms a local base at x by Theorem
5.6.9. This implies that X is regular at the point x. Since x ∈ X is an arbitrary point,
it follows that (X , τ ) is regular. �

5.6.3 Category of Compactly Generated Hausdorff Spaces

This subsection is devoted to describe the category of compactly generatedHausdorff
spaces, which contains all locally compact spaces, metrizable spaces, all topological
spaces satisfying the first axiom of countability and almost all important spaces in
topology. So, it is necessary to convey the concept of compactly generated spaces.

Definition 5.6.11 A topological space (X , τ ) is said be compactly generated if

(i) it is a Hausdorff space and
(ii) each subsetAofX satisfying the property thatA ∩ C is closed for every compact

subset C of X , is itself closed.

Remark 5.6.12 Acompactly generated space is aHausdorff space such that it has the
weak topology determined by its compact subsets. If X and Y are two topological
spaces such that X is locally compact and Y is compactly generated, then their
Cartesian product is compactly generated.
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Definition 5.6.13 Compactly generatedHausdorff spaces and their continuousmaps
form a category, called the category of compactly generated Hausdorff spaces,
denoted by CG.
Example 5.6.14 (i) Every metrizable space is in CG. In more general, every first

countable space is in CG by Proposition 5.6.17.
(ii) Every locally compact space is in CG by Proposition 5.6.17.

Proposition 5.6.15 Let X be a Hausdorff space such that for every subset B and
each limit point b of B, there exists a compact set C in X with the property that if b
is a limit point of B ∩ C, then X ∈ CG.
Proof Suppose B intersects every compact set in a closed set and b is a limit point
of B. Then by hypothesis, there exists a compact set C such that b is a limit point
of B ∩ C. Since the set B ∩ C is closed, the point b ∈ B ∩ C. This shows that b ∈ B
and hence B is closed. Consequently, X ∈ CG. �

Corollary 5.6.16 Let X be a Hausdorff space such that every limit relation as stated
in Proposition 5.6.15 holds in X , then X ∈ CG.
Proof It follows from Proposition 5.6.15. �

Proposition 5.6.17 asserts that the category CG is large in the sense that it contains
several important families of topological spaces.

Proposition 5.6.17 The category CG contains

(i) all locally compact spaces;
(ii) all first countable spaces;
(iii) all metrizable spaces.

Proof (i) Let X be a locally compact space and x ∈ X . If Ux is a nbd of the point
x ∈ X ,we takeC to be the compact closure ofUx. Hence it follows thatX ∈ CG.

(ii) Let X be a first countable space and x ∈ X . Then there exists a compact set C,

which consists of x together with a sequence in X converging to the point x.
Hence it follows that X ∈ CG.

(iii) Let X be a metrizable space. Since every metrizable space is first countable, it
follows by (ii) that X ∈ CG.

�

Theorem 5.6.18 Let X be an object in the category CG and Y be a Hausdorff
space. If a function f :X → Y is continuous on each compact subset of X , then f is
continuous.

Proof Let B be an arbitrary closed subset in Y and C be a compact subset in X .
Since by hypothesis, Y is a Hausdorff space and f |C is continuous, it follows that
f (C) is compact and hence it is closed in Y . This asserts that B ∩ f (C) is closed in
Y and hence (f |C)−1(B ∩ f (C)) = f −1(B) ∩ C is closed in X . Since X be an object
in the category CG, the set f −1(B) is closed in X . Moreover, since B is an arbitrary
closed subset of Y , it follows that the map f is continuous. �
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Definition 5.6.19 Given a Hausdorff space X , its associated compactly generated
space A(X ) is the set X with the topology obtained by declaring a set to be a closed
set of A(X ) if it intersects each compact set of X in a closed set. If

f :X → Y

is a mapping of Hausdorff spaces, then

A(f ):A(X ) → A(Y )

defines the same function.

Theorem 5.6.20 proves some interesting properties of A(X ).

Theorem 5.6.20 Let X be a Hausdorff and A(X ) be its associated compactly gen-
erated space, Then

(i) the identity function 1d :A(X ) → X is continuous ;
(ii) A(X ) is a Hausdorff space;
(iii) A(X ) and X have the same compact subsets.
(iv) A(X ) is an object of the category CG;
(v) If X is an object in the category CG, then the identity map 1d :A(X ) → X is a

homeomorphism;
(vi) If f :X → Y is continuous on compact sets, then the function A(f ) is also

continuous.

Proof (i) Let B be a closed set in X and C be a compact subset in X . Then C is
closed in X and consequently, B ∩ C is also closed in X . Hence B is also closed
in A(X ). This proves (i).

(ii) Since X is Hausdorff by hypothesis, (ii) follows from (i).
(iii) Let B be a compact set inA(X ). Then (i) shows that B is compact in X . Again,

if C is compact in X and CA(X ) denotes the set C with its relative topology
induced fromA(X ). Then by (i), the identitymap1d :CA(X ) → C is continuous.
To prove the continuity of its inverse, let A be a closed set of CA(X ). Then A
intersects every compact set of X in a closed set. Hence A ∩ C = A is closed
in C. This implies that the identity map C → CA(X ) is continuous. Hence it
follows that CA(X ) is compact. It proves (iii). (iv) If a set B intersects each
compact set of A(X ) in a closed set, then by (iii), it intersects each compact
set of X in a closed set. Then by (iii), it intersects each compact set of X in a
compact set and hence it is closed. This implies that B is closed in A(X ). It
proves (iv).

(iv) It follows from (iv).
(v) To prove that A(f ) is continuous on each compact set of A(X ), it is sufficient

by using Theorem 5.6.18 thatA(f ) is continuous on each compact set ofA(X ),
which follows from the above results.

�
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5.7 Baire Space

This section studies Baire spaces named after René -Louis Baire (1874–1932), which
form an important class of topological spaces containing complete metric spaces by
Corollary 5.7.7 and compact Hausdorff spaces and also locally compact Hausdorff
spaces (see Exercise 99 of Sect. 5.28). A Baire space X given in Definition 5.7.1
cannot be expressed as a countable union of closed sets with empty interior in X .
The nomenclature originally used by René -Louis Baire for defining a Baire space
involved the word category.

Definition 5.7.1 A topological space (X , τ ) is said to be a Baire space if given any
countable family {Xn} of closed sets of X with each Xi having empty interior in X ,

their union
⋃

Xn has also empty interior in X . Equivalently, a topological space
(X , τ ) is said to be a Baire space if intersection of every countable family of open
dense sets in X is dense.

Example 5.7.2 Every locally compact space is a Baire space.

Example 5.7.3 In the real number space R,

(i) the subspace N of positive integers is a Baire space, because it satisfies the
condition of a Baire space vacuously. Because every subset of N is open, and
hence there exist no subsets of N with empty interior, except the empty set ∅;

(ii) the subspace Q of the rational number space is not a Baire space, since every
one-pointic set in Q is closed and hence it has empty interior in Q. Moreover,
Q is a countable union of its one-pointic subsets;

(iii) every closed subset of R is a Baire space by Exercise 99 of Sect. 5.28, because
it is a complete metric space;

(iv) the subspace of irrational numbers in R is also a Baire space.

Definition 5.7.4 A topological space (X , τ ) is said to be of the first category if it
is a countable union of nowhere dense subsets of X . Otherwise, (X , τ ) is said to be
of the second category.

Example 5.7.5 In the real number space R, the set Q is of first category, since the
one-pointic subsets {x} of Q are nowhere dense in Q whose union is Q. Hence Q is
the countable union of nowhere dense subsets subset of Q. On the other hand, the
real number space R is of second category by Baire Category theorem 5.7.8.

Theorem 5.7.6 Let (X , d) be a complete metric space and {Xn} be a countable
family of open sets such that each of them is dense in X . Then their intersection

∞⋂

n=1

Xn �= ∅.
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Proof By hypothesis, (X , d) is a complete metric space and {Xn} is a countable
family of open sets such that each of them is dense in X . Then

Xn = X , ∀ n = 1, 2, . . . .

Construct a sequence inX converging to a point in
⋂∞

n=1 Xn. For this construction,
take a point x1 ∈ X1. By hypothesis, X1 is an open set in X . Hence, there is an open
ball Bx1(r1) ⊂ X1 for some r1 > 0. Now, x1 ∈ X = X̄2 implies that Bx1(r1) ∩ X2 �=
∅. Again, take another point x2 ∈ Bx1(r1) ∩ X2. Choose r2 > 0 such that Bx2(r2) ⊂
Bx1(r1) ∩ X2 and r2 < min {r1/2, r1 − d(x1, x2)}. For x ∈ Bx2(r2), it follows that

d(x, x1) ≤ d(x, x2) + d(x2.x1) ≤ r2 + d(x1, x2) < r1

and hence it asserts that Bx2(r2) ⊂ Bx1(r1). Go on continuing induction process to
construct a sequence {xn} of points in X and a sequence of balls Bxn(rn) with center
at xn and radius rn such that)

rn <
r1

2n−1
and Bxn+1(rn+1) ⊂ Bxn(rn) ⊂ Xn.

The sequence {xn} is clearly a Cauchy sequence in X by its construction. Since by
hypothesis, X is a complete metric space, it follows that the sequence {xn} converges
to some point x0 ∈ Xn for all n = 1, 2, 3, . . .. This asserts that

∞⋂

n=1

Xn �= ∅.

�

Corollary 5.7.7 Every complete metric space is a Baire space.

Proof It follows from Theorem 5.7.6. �

Theorem 5.7.8 (Baire Category theorem) Every complete metric space is of the
second category in the sense that it is not expressible as the union of a countable
number of nowhere dense sets.

Proof Let (X , d) be a complete metric space. If

X =
∞⋃

n=1

Xn ,

where every Xn is nowhere dense, then X = ⋃∞
n=1 X̄n. By taking complements, it

follows that

∅ =
∞⋂

n=1

(X̄n)
c.
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But each (X̄n)
c is open and also dense in X . Hence ∅ = ⋂∞

n=1(X̄n)
c contradicts The-

orem 5.7.6. �

Remark 5.7.9 Theorem 5.7.6 and Baire Category theorem 5.7.8 are also valid if the
condition “complete metric space” in these theorems are replaced by the condition
“compact Hausdorff space.” For other forms of Baire Category theorem see Exercise
100 of Sect. 5.28.

5.8 Compactness Is a Topological Property

This section proves that compactness is a topological property, i.e., it is preserved
under every homeomorphism by Corollary 5.8.3. Even compactness is preserved by
every continuous surjective map by Theorem 5.8.1. This topological property is very
important to solve many problems of topology such as classification of topological
spaces up to homeomorphism. Applications of this topological property to homeo-
morphism problems are available in Sect. 5.25.4. Compactness property is also used
to study maximal ideals in ring theory offering an interplay between topology and
algebra (see Chap.6).

Theorem 5.8.1 Let (X , τ )and (Y , σ )be topological spaces and f : (X , τ ) → (Y , σ )

be a continuous onto map. If (X , τ ) is compact, then f (X ) = Y is also compact in
(Y , σ ).

Proof Let (X , τ ) be compact and C be an open covering of Y . If U ∈ C, then by
continuity of f , it follows that f −1(U ) ∈ τ . Hence the family of open sets

D = {f −1(U ):U ∈ C}

forms an open covering of X . As X is compact, the open coveringD of X has a finite
subcovering such as

X = f −1(U1) ∪ f −1(U2) ∪ · · · ∪ f −1(Un).

Since f is onto by hypothesis, it follows that

f (f −1(Ui)) = Ui, ∀ i = 1, 2, . . . , n and hence Y = U1 ∪ U2 ∪ · · · ∪Un.

This proves that (Y , σ ) is also compact.
�

Corollary 5.8.2 Every continuous image of a compact space is compact.
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Proof Let (X , τ ) be a compact space and f : (X , τ ) → (Y , σ ) be a continuous map.
Then f (X ) is compact by Theorem 5.8.1. �

Corollary 5.8.3 asserts that compactness of a topological space is a topological
property.

Corollary 5.8.3 Let (X , τ ) and (Y , σ ) be two homeomorphic spaces. Then (Y , σ )

is compact iff (X , τ ) is compact.

Proof Let f : (X , τ ) → (Y , σ ) be a homeomorphism. If (X , τ ) is compact, then
(Y , σ ) is its homeomorphic image and hence it is compact by Theorem 5.8.1. Its
converse part is similar. �

Theorem 5.8.4 Let f :X → R be a continuous function from a compact space X .
Then f assumes its maximum and minimum.

Proof SinceX is compact, it follows by Theorem 5.8.1 that f (X ) is a compact subset
ofR. This asserts that f (X ) is closed and bounded inR. Consequently, the maximum
of f exists and it is finite and is the lub of f (X ), which is a limit point of f (X ). Since
f (X ) is closed in R, the maximum M of f is in f (X ). Similarly, its minimum m is
in f (X ). �

Corollary 5.8.5 If f :X → R is a continuous function and X is compact, then
sup f (X ) and inf f (X ) exist in f (X ) and they are finite.

Proof Since X is compact and f is continuous, the set f (X ) is compact in R. Hence
f (X ) is a closed and bounded subset of R. This shows that sup f (X ) exists and it is
finite. Moreover, since, f (X )is closed, sup f (X ) ∈ f (X ). Similarly, it is proved that
inf f (X ) is in f (X ) and it is finite. �

Corollary 5.8.6 Every continuous real-valued function on a compact set is bounded.

Proof It follows from Corollary 5.8.5. �

The converse of Corollary 5.8.6 is given in the following form.

Proposition 5.8.7 Let X ⊂ Rn be a subspace such that every continuous real-valued
function on X is bounded. Then X is compact.

Proof Suppose X is not bounded. Then the function

f :X → R, x �→ ||x||

is not bounded on X . Because, if possible, X is bounded but it is not compact. Then
it is not closed by Heine–Borel theorem and there exists a point α in X − X . Under
this situation, the function

g : X → R, x �→ ||x − α||−1

cannot be bounded on X . This contradiction proves that X is compact. �
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5.9 Characterization of Compactness by Finite Intersection
Property with Motivation

This section addresses the concept of compactness in terms of closed sets and char-
acterizes compact spaces by finite intersection property. The motivation of this char-
acterization comes from the observation: if O is an open covering of topological
space X , then the collection F of complements of sets inO is a collection of closed
sets, where their intersection is ∅ and conversely, if F is a collection of closed sets,
where their intersection is ∅, the collection O of complements of sets of F is an
open covering. This asserts that the space X is compact iff every collection of closed
sets with an empty intersection has a finite subcollection, where intersection is also
∅. The compactness property of a topological space X is characterized in Theorem
5.9.6 with the help of “finite intersection property of closed sets of X .”

Definition 5.9.1 A collection of subsets {Xi: i ∈ A} of a given nonempty set X is
said to have the finite intersection property if every finite subcollection of {Xi} has
a nonempty intersection.

Example 5.9.2 The collection of open intervals

C = {(0, 1), (0, 1/2), (0, 1/3), . . .}

has the finite intersection property, because, if

x1 ∈ (0, 1), x2 ∈ (0, 1/2), . . . , xn ∈ (0, 1/n),

and
x = min{x1, x2, . . . , xn} > 0,

then C has the finite intersection property:

(0, x1) ∩ (0, x2) ∩ · · · ∩ (0, xn) = (0, x) �= ∅

but C has itself an empty intersection.

Remark 5.9.3 It is well known in analysis that

(i) the compact subsets ofRn are closed and bounded subsets ofRn (Heine–Borel
theorem);

(ii) an open interval (a, b) of the real line space R is not compact.

Definition 5.9.4 A topological space (X , τ ) is said to have finite intersection prop-
erty (FIP) with respect to closed sets, if every collection F = {Xi: i ∈ A} of closed
sets in (X , τ ) has the property
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X1 ∩ X2 ∩ · · · ∩ Xn �= ∅

for every finite collection of closed sets

{X1,X2, . . . ,Xn} ⊂ F ,

then (X , τ ) has also the property

⋂
{Xi: i ∈ A} �= ∅.

Remark 5.9.5 Compactness is now characterized with the help of finite intersection
property of closed subsets of a topological space in Theorem 5.9.6 given by Leopold
Vietoris. On the other hand, countably compactness is characterized by Cantor inter-
section theorem 5.16.4. Theorem 5.9.6 just translates the Definition 5.1.22 of com-
pactness in terms of open sets to a statement in terms of closed sets. Themotivation of
this result comes from the bijective correspondence between the family F of closed
sets in a topological space (X , τ ) and the family O of open sets in (X , τ ) obtained
by complementation.

Theorem 5.9.6 (Vietoris) A topological space (X , τ ) is compact iff (X , τ ) has the
finite intersection property (FIP) with respect to closed sets.

Proof Let (X , τ ) be a compact space andF = {Xi : i ∈ A} be a collection of closed
sets in (X , τ ) having the finite intersection property. If possible, their intersec-
tion

⋂{{Xi: i ∈ A} = ∅. It follows by DeMorgan rule that
⋃{X − Xi: i ∈ A} = X ,

which shows that the collection {X − Xi: i ∈ A} forms an open covering of the com-
pact space (X , τ ). As by assumption, (X , τ ) is compact, there exists a finite subcov-
ering of X formed by the open sets say, X − X1,X − X2, . . . ,X − Xn. Hence

X = (X − X1) ∪ (X − X2) ∪ · · · ∪ (X − Xn) = X − (X1 ∩ X2 ∩ · · · ∩ Xn)

asserts that X1 ∩ X2 ∩ · · · ∩ Xn = ∅,which contradicts the assumption thatF has the
finite intersection property. Conversely, let (X , τ ) be a topological space satisfying
the given conditions. To prove that (X , τ ) is compact, let C = {Ui: i ∈ A} be an open
covering of X . Then X = ⋃{Ui: i ∈ A}. Taking complements we have

∅ = X −
⋃

{Ui: i ∈ A} =
⋂

{X −Ui: i ∈ A}.

HenceF = {X −Ui: i ∈ A} forms a family of closed sets inX such that ∅ = ⋂{X −
Ui: i ∈ A}. This asserts that the family F has not finite intersection property. Hence
there exists a certain finite subcollection {X −U1,X −U2, . . . ,X −Un}, say, must
have an empty intersection. This shows that

∅ = (X −U1) ∩ (X −U2) ∩ · · · ∩ (X −Un) = X − (U1 ∪U2 ∩ · · · ∪Un),
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which implies that
X = U1 ∪U2 ∪ · · · ∪Un.

Consequently,
{U1,U2, . . . ,Un}

forms a finite subcovering of the open covering C of (X , τ ). This proves that (X , τ )

is compact. �

Corollary 5.9.7 Let (X , τ ) be a compact set and X1 ⊃ X2 ⊃ · · · be a nested
sequence of closed sets in (X , τ ). If every member Xn of this sequence is nonempty,
then ⋂

{Xn: n ∈ N} �= ∅.

Proof It follows from Theorem 5.9.6 as a particular case. �

Example 5.9.8 All topological spaces are not compact. For example, the real num-
ber space R with usual topology is not compact. Because, the open covering
{(−n, n): n ∈ N} of R has no finite subcovering. Even, in the real number space
R with usual topology an open interval is not compact. For example, the open cov-
ering {(1/n, n/n + 1): n ≥ 2} of the open interval (0, 1) has no finite subcovering.
On the other hand, by Heine–Borel theorem every closed interval of the real number
space R with usual topology is compact. Theorem 5.9.9 gives a generalization of
Heine-Borel theorem for an arbitrary compact space and Theorem 5.14.1 gives an
independent proof of Heine–Borel theorem.

Every closed interval [a, b] ⊂ R is compact. Theorem 5.9.9 gives a generalization
of Heine–Borel theorem in a topological setting.

Theorem 5.9.9 Every closed subset A of a compact space (X , τ ) is compact in the
relative topology induced from X .

Proof By hypothesis, A is a closed subset of a compact space (X , τ ). We claim that
A has the finite intersection property. Let F be a collection of closed subsets of A
satisfying the finite intersection property given in Definition 5.9.4. Every F ∈ F is
closed in X , because, A is closed by hypothesis and F is closed in A. This asserts
that F is a collection of closed sets in X and since X is compact, the intersection⋂

F∈F F �= ∅. But ⋂
F∈F F ⊂ A asserts that A has the finite intersection property.

This proves that A is compact by Theorem 5.9.6. �

Corollary 5.9.10 (Heine–Borel theorem) Every closed interval of the real number
space R with usual topology is compact.

Proof It follows from Theorem 5.9.9. �
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5.10 Paracompact Spaces

This section addresses the concept of paracompactness of topological spaces intro-
duced by Jean Dieudonné in 1944. Paracompact spaces include regular and normal
spaces by Proposition 5.10.11. There are many important topological spaces which
are not compact but they are paracompact. For example, the real number space R
is paracompact but it is not compact. Paracompact spaces represent a special class
of topological spaces having localization of its compactness. The significance of
paracompactness is the assertion of the existence of partition of unity in Theorem
5.10.15.

The concept of paracompactness is closely related to that of metrizability of topo-
logical spaces. The former concept is sometimes applied in a easier way to study
metrizable spaces. Paracompactness is an important tool to study some problems in
algebraic topology and geometry such as homotopy classification of vector bundles
over paracompact spaces (see Basic Topology: Volume 3 of the present series of
books). Its other importance lies in the results that the class of paracompact spaces
contains the compact Hausdorff spaces and metrizable spaces. By Stone’s theorem,
every metrizable space is paracompact. Its converse is true in the sense that every
paracompact locally metrizable space is metrizable (see Nagata–Smirnov theorem).
For a paracompact topological space (X , τ ), a locally finite covering of (X , τ ) always
exists.

Definition 5.10.1 Let C andD be two open coverings of a topological space (X , τ ).
Then C is said to be a refinement of D if every element of C is a subset of some
element of D.

Definition 5.10.2 Let (X , τ ) be a topological space. A familyF of open covering of
X is said to be locally finite if every point ofX has a nbdwhich interests, nontrivially,
only a finite number of members belonging to F i.e., if for every point x ∈ X , there
is an open set Ux ∈ τ containing x such that the set

{U ∈ F :U ∩Ux �= ∅} is finite.

Definition 5.10.3 AHausdorff space (X , τ ) is said to be paracompact if every open
covering C of X has an open, locally finite refinement, i.e., for every open covering
C of X , there is a locally finite open coveringD such that for every open set V ∈ D,

there is an open set U ∈ C with the property that V ⊂ U .

Remark 5.10.4 Hausdorff axiom is not assumed for defining a paracompact space
by some authors.

Example 5.10.5 (i) Rn is paracompact by Proposition 5.10.6.
(ii) Every regular space with topology having a countable basis is paracompact.
(iii) Every compact space is paracompact but its converse is not necessarily true.

For example, the Euclidean space Rn is paracompact but it is not compact.



302 5 Compactness and Connectedness

(iv) Every metric space is paracompact by Theorem 5.10.9.
(v) Every closed subspace of a paracompact space is paracompact by Proposition

5.10.7; but an arbitrary subspace of a paracompact space is not necessarily
paracompact (see Exercise 86) of Sect. 5.28.

Proposition 5.10.6 The Euclidean n-space Rn is paracompact.

Proof Let C be an open covering of Rn. Let {Bn = B0(n): n ∈ N} be a countable
family of open balls centered at the origin 0 ∈ Rn and radius n. Take B0(0) = ∅. For
an arbitrary n ∈ N, select finitely many members of C that cover B0(n) and meet
every open set Rn − B0(n − 1) = Rn − Bn−1. Denote this finite collection of open
sets by An. Consider the family A = ⋃An. It is a refinement of C and is locally
finite, since the open set Bn meets only finitely many members of A such as those
members which are expressible as A1 ∪ A2 ∪ · · · ∪ An. Moreover, A is a covering
of Rn, since for an arbitrary element x ∈ Rn, let n be the smallest positive integer
such that x ∈ Bn. This asserts that x ∈ An for some n. �

Proposition 5.10.7 Every closed subspace of a paracompact space is paracompact.

Proof Let (X , τ ) be a paracompact space and A be a closed subspace of (X , τ ).
Consider an open covering A of A. Corresponding to every A ∈ A, take an open set
UA ∈ τ such thatUA ∩ A = A. Let C be an open covering of X consisting of open sets
UA and open sets X − A and L be a locally finite refinement of C. Then the family
F = {Y ∩ A: Y ∈ L} forms a locally finite open refinement of the original covering
A of A.

�

Remark 5.10.8 Paracompact space is close to being a metric space (in the sense of
Theorem 5.10.10 and Proposition 5.10.11). Theorem 5.10.9 asserts that every metric
space is paracompact. It was first proved by Stone (1948a) by using the axiom of
choice. But M.E. Rudin proved this result in an alternative but short-end method in
1969 (Rudin 1969) by using well-ordering principle of an arbitrary open covering of
the given metric space. Theorem 5.10.9 is now proved following the technique used
by Rudin.

Theorem 5.10.9 (Stone) Every metric space is paracompact.

Proof The proof of the theorem consists of several steps. Let (X , d) be a metric
space. Then it is Hausdorff and every open covering of X can be well-ordered. Let
U = {Uα} be an open covering of X indexed by ordinals α and Sx(r) be the open ball
in X with center x and radius r. For every positive integer n, define Sαn

Sαn =
⋃

{Sx (
1

2n
)}

such that

(i) α is the smallest ordinal with x ∈ Uα;
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(ii) x /∈ Sβm, if m < n;
(iii) Sx ( 3

2n ) ⊂ Uα .

We claim that {Sαn} forms an open locally finite refinement of the open covering
U = {Uα} of X indexed by ordinals α. It is clearly open. To show that it is locally
finite, let x ∈ X and α be the smallest cardinal such that x ∈ Sαn for some n ∈ N.
Select an m ∈ N such that

Sx

(
1

2m

)

⊂ Sαn.

We now prove the following two results:

(A): if k ≥ n + m, then Sx ( 1
2n+m ) ∩ Sβk = ∅ for any ordinal β;

(B) : if k < n + m, then Sx ( 1
2n+m ) ∩ Sβk �= ∅ for at least one ordinalβ.

For (A), since k > n, it follows from (ii) that the ball Sy
(
1
2k

)
has its center y not

in Sαn. Again since, Sx ( 1
2m ) ⊂ Sαn, it follows that

d(x, y) ≥ 1

2m
.

Since k ≥ m + 1 and n + m ≥ m + 1, it follows that

Sx

(
1

2n+m

)

∩ Sy

(
1

2k

)

= ∅.

For (B), let z ∈ Sβk , and t ∈ Sγ k with ordinals β < γ . Then

d(z, t) >
1

2n+m+k
,

because, there are points w, p ∈ X such that

z ∈ Sw

(
1

2k

)

⊂ Sβk and t ∈ Sp

(
1

2k

)

⊂ Sγ k .

Hence it follows by using the condition (iii) that

Sw

(
3

2k

)

⊂ Uβ.

To show that the family {Sαn} covers X , take an arbitrary point x ∈ X . Let α be
the smallest ordinal number such that x ∈ Uα and n ∈ N be taken so large such that
the condition (iii) holds. Then it follows by using the condition (ii) that x ∈ Uβm for
some m ≤ n. This asserts that every element of X is in some Uβm. This implies that
{Sαn} covers X . Consequently, the family {Sαn} of open sets refines the open covering
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U = {Uα} of X indexed by ordinals α. This concludes that the metric space (X , d)

is paracompact. �

Theorem 5.10.10 Let (X , τ ) be a metrizable space. Then it is paracompact.

Proof LetC be an open covering ofX . Then byExercise 61 of Sect. 5.28, the covering
C has an open refinement which also covers X and is countably locally finite. Finally,
Exercise 62 of Sect. 5.28 asserts that C has an open refinement that also covers X
and is locally finite. Hence it follows by Definition 5.10.3 that the metrizable space
(X , τ ) is paracompact.

�

Proposition 5.10.11 Let (X , τ ) be a paracompact space. Then

(i) (X , τ ) is a regular space;
(ii) (X , τ ) is a normal space.

Proof Let (X , τ ) be a paracompact space.

(i) Given a point x ∈ X , let A be a closed subset of X such that x /∈ A. For every
point a ∈ A, there are open sets Ua,Va such that x ∈ Ua and a ∈ Va. Consider
a covering of X by the open set X − A together with the open sets {Va: a ∈ A}.
Then there exists an open locally finite refinement by the setsUi, say. Consider
the set U = ⋃{Ui:Ui ⊂ Va for some a ∈ A} ⊃ A. As this is a locally finite
collection, Ū is the union of Ū ′

i s. Since x /∈ Ūi for any i, it follows that x /∈ Ū ,

and hence the pair U and X − Ū of open sets form a separation, implying that
X is a regular space.

(ii) To show that (X , τ ) is normal, take A and B be any two disjoint closed sets in
(X , τ ) and proceed as in (i) with A playing the role of x and the other closed
set B playing the role of A.

�

A Characterization of Paracompact Spaces by Partition of Unity

This subsection conveys the concept of partition of unity subordinate to a given open
covering which is important in mathematics and is used to characterize paracompact
spaces in Theorem 5.10.15. Such a characterization is very important in the study
of paracompact spaces, because, by using just its definition is difficult to examine
that the given space is compact. Another characterization of compact spaces by its
σ -subsets is given by its disjoint union of open σ -compact subsets in Exercise 104
of Sect. 5.28. Many problems arising in the study of differential manifold theory are
easy to solve locally by using the concept of local coordinate system. Sometimes,
global solutions are obtained from such local solutions by using a partition of unity
(see Basic Topology, Volume 2) of the present series of books.
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Definition 5.10.12 Let f : X → R be continuous function. Then the support of f ,
denoted by supp (f ) is defined by

supp (f ) = {x ∈ X : f (x) �= 0} ⊂ X

i.e., supp (f ) is the closure of the set

Sf = {x ∈ X : f (x) �= 0}.

Thus if x /∈ supp (f ), then there exists a nbd Nx in X on which f vanishes.

Definition 5.10.13 Let (X , τ ) be topological space and C = {Ua: a ∈ A} be an open
covering of X . A partition of unity subordinate to C consists of a family of contin-
uous functions

F = {fb:X → I: b ∈ B}

such that

(i) there is a locally finite open refinement {Vb: b ∈ B} with the property that
supp(fb) ⊂ Vb, ∀ b ∈ B; and

(ii)
∑

b fb(x) = 1, ∀ x ∈ X .
∑

b fb(x) is always a finite sum for every x ∈ X , since at each point x ∈ X , only a
finite number of the functions fb(x) is different from 0 and hence the condition (ii)
caries sense.

Example 5.10.14 Let (X , d) be a metric space and C be an open covering of X .
Define a map

σ :X → R, x �→ 
U∈C d(x,X −U ).

Since C is an open covering of X and d(x,X −U ) > 0 for every x ∈ U, it follows
that σ(x) > 0 for every x ∈ X . This defines for every U ∈ U a continuous map

fU :X → R. x �→ d(x,X −U )/σ (x).

Then the family of continuous functions

F = {fU :X → I:U ∈ C}

forms a partition of unity inX such that the support supp(fU ) of themap fU is precisely
the open set U ∈ C.

Theorem 5.10.15 characterizes a paracompact space in term of partition of unity
subordinate to its open covering.

Theorem 5.10.15 Let (X , τ ) be a topological space. It is paracompact iff every
open covering C of X has a partition of unity subordinate to the covering C.
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Proof First suppose that C is an open covering of X and {ψa: a ∈ A} is a partition
of unity subordinate to C. Then the collection {x ∈ X : ψa(x) > 0, a ∈ A} forms a
locally finite open covering ofX ,which is a refinement ofC. This asserts that (X , τ ) is
paracompact. Conversely, suppose that (X , τ ) is paracompact. Then by Proposition
5.10.11, it is normal. Let C be an open covering of X and L be a locally finite
refinement of C. Then by using Exercise 63 of Sect. 5.28, there is a locally finite over
covering V = {VU :U ∈ L} of X . Since (X , τ ) is normal, finally, by using Exercise
64 of Sect. 5.28, it follows that there exists a partition of unity on X subordinate to
the covering C.

�

5.11 Alexander’s Subbase Theorem and Tychonoff Product
Theorem

This section proves Alexander’s Subbase Theorem 5.11.2, which is a powerful theo-
rem in topology. This theorem is applied to prove the celebrated Tychonoff Product
Theorem 5.11.4 for the product space of compact spaces asserting that compactness
is a product invariant property in the sense that the product of compact spaces is also
compact. As its consequence, this section also proves the compactness of n-cube In

for every integer n ≥ 1 and the cube Iβ, where β is any transfinite cardinal number.
Finally, Tychonoff Embedding Theorem 5.11.8, which is a basic theorem in topol-

ogy is proved. An important application of Tychonoff theorem is the generalization
of the classical Heine–Borel theorem (see Proof II of Theorem 5.25.29).

Definition 5.11.1 A family F of sets is said to have finite character, if ∅ ∈ F , and
a nonempty set A is a member of F iff every finite subset of A is in F .

To prove Alexander’s subbase theorem, we use Tukey’s lemma (see Chap.1),
which asserts that every nonempty family of sets of finite character has a maximal
member.

Theorem 5.11.2 (Alexander’s subbase theorem) Let (X , τ ) be a topological space
and B be a subbase for the topology τ . If for any open covering of X by a sub-
collection of members of B, there is a finite subcovering of X , then the topological
space (X , τ ) is compact.

Proof Let F be a given family of open sets in (X , τ ) having the property that no
finite subcollection of F forms an open covering of X . Then F is of finite character.
Applying Tukey’s lemma, it follows that there is a maximal family A having this
property. To prove the theorem it is sufficient to prove thatA does not form an open
covering of the topological spaceX . LetS be the collection of all thosemembers ofA
which are in the subbaseB for the topology τ . Then there exists no finite subcollection
of S, which forms a covering of the topological space X . This asserts by hypothesis
that S does not form a covering of X . Again, as B forms a subbase for the topology
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τ, given any point x ∈ F ∈ F , there is a finite subfamily {B1,B2, . . .Bn}, say of the
family B such that

x ∈ B1 ∩ B2 ∩ · · · ∩ Bn ⊂ F (5.1)

If no set Bi ∈ {B1,B2 . . .Bn}, is inA, then by using its maximal property ofA, it
follows that for the family A ∪ {Bi}, there is a finite subfamily forming a covering
of X , say X = Bi ∪ Ai, where Ai is a finite union of members belonging to A, say.

X = (B1 ∪ B2 ∪ · · · ∪ Bn) ∪ (A11 ∪ A12 ∪ · · · ∪ A1r1) ∪ · · ·
∪(An1 ∪ An2 ∪ · · · ∪ Anrn :Aij ∈ A).

Hence, it follows that

X = F ∪ (A11 ∪ A12 ∪ · · · ∪ A1r1) ∪ · · · ∪ (An1 ∪ An2 ∪ · · · ∪ Anrn).

But it is not possible, since no finite subfamily of A forms an open covering of
X . This asserts that our supposition that no set Bi ∈ {B1,B2 . . .Bn}, is in A is not
tenable. Hence there exists at least one of the sets Bi ∈ {B1,B2, . . .Bn} is in A. Let
Bk be this set in A and hence Bk ∈ S. This implies that x ∈ ⋃

S∈S{S}. It asserts that
⋃

A∈A
{A} =

⋃

S∈S
{S}.

This proves thatA does not form an open covering of X , because S does not form
an open covering of X . Hence it follows that the topological space (X , τ ) is compact.
Alternative proof : Suppose (X , τ ) is not compact. Let B be a subbase for the
topology τ . Then the family F of all open coverings of X with no finite subcovering
ofX is empty. It is a partially ordered set by set inclusion. Let {Fα} be a totally ordered
subset in F . Then F = ⋃

α Fα is an upper bound and hence by Zorn’s lemma, F has
a maximal element A. Consider the family S = A ∩ B. Then S forms a covering
of X . Since S ⊂ B, there is a finite subcover by assumption. But it is not possible,
since S ⊂ A. This contradiction shows that the original family F = ∅. This proves
that (X , τ ) is compact.

�

Definition 5.11.3 The topological product of compact spaces is called theTychonoff
product space

Theorem 5.11.4 (Tychonoff product theorem) The product space of any nonempty
family of compact spaces is compact.

Proof Proof I: It is proved by using Alexander’s subbase theorem. Let F =
{(Xk , τk): k ∈ K} be a given family of compact spaces and (X , τ ) be their topological
product space. Let
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pk :X → Xk

be the natural projection maps for all k ∈ K. Consider the subbase

B = {p−1
k (Uk):Uk ∈ τk , k ∈ K}

for the product topology τ . Then by Alexander’s Subbase Theorem 5.11.2, it follows
that X is to be compact if each subfamily A of B with the property that no finite
subcollection ofA forming a covering of X does not form a covering of X . Let Sk be
the collection of all those open sets Uk ∈ τk for which p−1

k (Uk) ∈ A for each index
k ∈ K. Then no finite subcollection of Sk forms a covering of the compact space Xk .
This asserts that there is a point xk ∈ Xk , which is not in any open set Uk ∈ Sk . This
shows that the point x ∈ X having the k-th coordinate xk is not in any member of
A. This implies that A fails to form a covering of the topological space X . Hence it
follows by Theorem 5.11.2 that the product space (X , τ ) is compact.
Proof II: It is proved by finite intersection property (FIP) of compactness. To prove
the compactness of the product space (X , τ ), it is sufficient to prove that given any
family C of subsets of X having FIP, their intersection

⋂
{C̄:C ∈ C} �= ∅.

Let B be the class of all families of subsets of X having FIP. Then B is of finite
character and hence by Tukey’s lemma it has a maximal elementM,which contains
the given family C. Hence it follows that the intersection of the elements of every
finite subfamily of M is also in M. Moreover, if a subset A ⊂ X intersects every
member of M, then A ∈ M. Consider the family of natural projections

pk :X → Xk , ∀ k ∈ K

and the family of sets

Fk = {pk(M ):M ∈ M} ⊂ Xk , ∀ k ∈ K.

Since, each Xk is compact by hypothesis, it follows by its FIP that

Dk =
⋂

{pk(M ):M ∈ M} �= ∅.

Take a point xk ∈ Dk for each k ∈ K. If x ∈ X is the point whose k-th coordinate
x(k) is the point xk ∈ Xk , then x ∈ M̄ for every M ∈ M. Hence it follows that the
product space (X , τ ) is compact.

�

Corollary 5.11.5 (Tychonoff theorem for finite products) Let (X1, τ1), (X2, τ2),
. . . , (Xn, τn) be compact spaces. Then their product space
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(X1, τ1) × (X2, τ2) × · · · × (Xn, τn)

is also compact.

Corollary 5.11.6 Let I = [0, 1] be the closed interval in the real line space R with
usual topology σ . Then

(i) the n-cube In is compact for every integer n ≥ 1;
(ii) the cube Iβ is compact, where β is any transfinite cardinal number.

Proof Let R be the real line space with natural topology σ and σI be the relative
topology on I induced from σ . Then (I, σI) is compact by Heine–Borel theorem.
Let B be a set such that card B = β. Then Iβ is the topological product of the family
of compact spaces {(Xb, σb):Xb = I, σb = σI, ∀ b ∈ B}. Then Iβ is compact by
Tychonoff Product Theorem 5.11.4.

(i) If B = {1, 2, . . . , n} is a finite set, then β = n and hence (i) follows.
(ii) If B is an infinite set such that card B = β, an infinite cardinal. Then (ii) follows.

�

Tychonoff Embedding Theorem

This subsection deals with the problem of embeddings of a given topological space in
a cube and proves Tychonoff embedding theoremwhich asserts that every Tychonoff
space, i.e., a completely regular T1 space (such as I) can be embedded as a subspace
of a cube. This gives an equivalent definition of aTychonoff space inCorollary 5.11.9.

Definition 5.11.7 Let F = {fk :X → Yk : k ∈ K} be a given family of maps from a
topological spaceX into a topological spaceYk . Then this family is said todistinguish
points of X if for any two distinct points p, q ∈ X , there exists a map fk ∈ F such
that fk(p) �= fk(q). Again, this family is said to distinguish points from closed sets
of X if for any closed set A in X and any point p ∈ X − A, there exists a map fk ∈ F ,

such that fk(p) is not an element of fk(A). A a completely regular T1 space is called
a Tychonoff space.

Theorem 5.11.8 (Tychonoff embedding theorem) Let (X , τ ) be a Tychonoff space.
Then it can be embedded as a subspace of a cube.

Proof Let (X , τ ) be a Tychonoff space. Then it is a completely regular T1 space. Let
F = {fk :X → I: k ∈ K} be the family of all continuous real functions fk :X → I.
Then by completely regularity property of X , the familyF distinguishes points from
the closed sets of X . Again, since, every one-pointic set of X is closed, F also
distinguishes points of X . This asserts that the map
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ψ :X → IF , x �→ ψx where ψx:F → I, fk �→ fk(x), equivalently. ψ(x)(fk) =
fk(x) is an embedding, where IF is a topological power of I. �

Corollary 5.11.9 characterizes a Tychonoff space in terms of an embedding as a
subspace of a cube.

Corollary 5.11.9 A topological space (X , τ ) is a Tychonoff space iff X is homeo-
morphic to a subspace of a cube.

Proof Let F = {fk :X → I: k ∈ K} be the family of all continuous real functions
fk :X → I. Since IF is a compact Hausdorff space, it follows that IF is Tychonoff
and its every subspace is also Tychonoff. Hence the Corollary follows from Theorem
5.11.8. �

Remark 5.11.10 Every subspace of a normal space may not be normal. In addi-
tion to its supporting examples in Chap.4, it is observed that under the notation of
Theorem 5.11.8, every cube IF is normal but this theorem shows that a subspace
of IF may not be normal, since every Tychonoff space is a completely regular T1
space by its definition (not necessarily normal) and it can be embedded as a subspace
(not necessarily normal) of a cube. For more properties of completely regular and
Tychonoff spaces see Chap.6.

5.12 Net and Convergence

This section starts with the concept of Net by generalizing the concept of a sequence
in a metric space (studied earlier) for an arbitrary topological space and studies
convergence problems by using this concept. This concept has wide applications in
topology such as it is used in the study of compactness and continuity of functions
and others (see Exercises 54–57 of Sect. 5.28). The convergence of sequences in
metric spaces plays a key role in the study of continuity of functions. But it is not
so for arbitrary topological spaces in general. The concept of “Net” provides useful
tools to prove some results in arbitrary topological spaces, which are analogous to
sequences in metric spaces.

5.12.1 Net: Introductory Concepts

This subsection conveys the concept of net in an arbitrary topological space X as
a mapping from a directed set D to X , instead, of a mapping from N to X for a
sequence in X .
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Definition 5.12.1 A directed setD is a partially ordered set with respect to a binary
relation “≥” (or “≤”) such that if a, b ∈ D, then there exists an element c ∈ D with
the property that c ≥ a and c ≥ b.

Example 5.12.2 (i) The set N of natural numbers is a directed set by the natural
ordering “≥” of real numbers.

(ii) Let X be a nonempty set and P(X ) be its power set. Then it is a directed set
by set theoretic inclusion “⊂”, i.e., for A,B ∈ P(X ),A ≤ B holds if A ⊂ B.

(iii) Let C(X ) be the set of all open coverings of the topological spaceX is a directed
set by refinement relation “≤” given by {V } ≤ {U } if {U } refines {V }, because
any two coverings have a common refinement.

Definition 5.12.3 (Net) Let X be a topological space. A net in X is a function
ψ :D → X from a directed set D into X . In particular, if D = N with its natural
ordering, then ψ is said to be a sequence in X . A net ψ :D → X in X is usually
expressed by {xd : d ∈ D}, where xd represents the element ψ(d) ∈ X .

Example 5.12.4 (i) Given a topological space X , every sequence ψ :N → X in
X is a net.

(ii) Let P(X ) be the power set of X . It is a directed set by set theoretic inclusion
“⊂”. Take a point xA ∈ A for each A ∈ P(X ). Clearly {xA:A ∈ P(X )} is a net.

(iii) LetX be a topological space and x0 ∈ X be a given point. IfN be the collection
of all nbds of x0, define “≥” on N by the rule A ≥ B holds iff A ⊂ B. Take a
point xA ∈ A for each A ∈ N . Clearly {xA:A ∈ N } gives an example of a net.

Definition 5.12.5 Let D be a directed set and L ⊂ D be a given subset. Then L is
said to be a residual subset of D if there is an element α0 ∈ D such that α ≥ α0

implies α ∈ L for every α ∈ D. If for each α ∈ D, there is an element β ∈ L with
the property that β ≥ α, then L is said to be a cofinal subset of D.

Example 5.12.6 (i) Every residual subset of a directed set D is cofinal.
(ii) Every cofinal subset of D is also directed by “≥”.

Definition 5.12.7 Let X be a topological space and ψ :D → X be a net. Given a
subset V ⊂ X . the net ψ is said to be in V if ψ(D) ⊂ V .

(i) The net ψ is said to be eventually in V if there is a residual subset K ⊂ D
such that ψ(K) ⊂ V .

(ii) The net ψ is said to be frequently in V if there is a cofinal subset L ⊂ D such
that ψ(L) ⊂ V .

5.12.2 Convergence

This subsection addresses the convergence of nets in a topological space X as a
generalization of convergence of sequences in metric spaces and it characterizes
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completely the topology on X in terms of open sets involving the concept of net in
Theorem 5.12.10 and hence it determines the topology on X by using the concept of
convergence of nets, which is similar in case of convergence of sequences in metric
spaces.

Definition 5.12.8 (Convergence of Net) Let X be a topological space and ψ :D →
X be a net. Then ψ is said to converge to a point a ∈ X , if for every nbdU of a in X ,

the netψ is eventually inU . Equivalently,ψ is said to converge to a point a ∈ X , if for
every nbdU of a inX , there exists point d0 ∈ D such that xd = ψ(d) ∈ U, ∀ d ≥ d0.
It is symbolized, xd → a.

This definition of convergence of a net is analogous to the classical definition of
convergence of a sequence in a metric space.

Example 5.12.9 (i) If X is a discrete space, then every net ψ :D → X converges
to a point a ∈ X iff there is some α0 ∈ D such that ψ(α) = a ∀α ≥ α0.

(ii) If X is an indiscrete space, then every net ψ :D → X converges to every point
of X .

Theorem 5.12.10 determines completely the topology of a topological space with
the help of convergence of nets.

Theorem 5.12.10 Let X be a topological space. A subset V ⊂ X is open in X iff no
net in X − V can converge to a point in V .

Proof First suppose that V is a subset of X such that there is no net in X − V . We
claim that V is open in X . If V is not open set in X , then there is a point a ∈ V such
that every nbd of a intersects X − V . If D is a local base at the point a in X , then
D becomes a directed set by the set-theoretic inclusion “⊂.’. Take a point ψ(A) in
A ∩ (X − V ) for each nbd A ∈ D. Then the function ψ :D → X ,A �→ ψ(A) gives a
net which converges to the point a ∈ X − V . But it contradicts the hypothesis. This
forces to conclude that V is open in X .

Conversely, suppose that V ⊂ X is open in X and ψ : D → X is a net such that
it converges to a point a ∈ V . As V is nbd of a, and ψ :D → X is a net such that it
converges to a point a ∈ V , it follows that the net ψ is eventually in V . But it asserts
that ψ is not in X − V . �

Corollary 5.12.11 Let X be topological space such that it has a countable local
base at each point x ∈ X (i.e., it satisfies the first axiom of countability). Then a
subset V ⊂ X is open iff no sequence in X − V converges to a point of V .

Proof Let B = {V1,V2,V3, . . .} be a countable local base at the point a of X . Set
Un = V1 ∩ V2 ∩ · · · ∩ Vn for each n = 1, 2, . . . . Then the sequence {U1,U2,U3, . . .}
also forms a local base of X at the point a ∈ X . As Un ⊃ Un+1, ∀ n = 1, 2, . . . ,
the sequence {U1,U2,U3, . . .} is a decreasing sequence of open nbds of the point
a that forms a local base. Then the corollary follows from the proof of
Theorem 5.12.10. �
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Definition 5.12.12 (Cofinal map) Let D and F be two directed sets. A function
α:F → D is said to be cofinal if for every residual subset C ⊂ D, there is a residual
subset G ⊂ D with the property that f (G) ⊂ C. The set F with a cofinal function is
called a cofinal set. If a function α:F → D is cofinal, then for every element d of
D, there is an element f of F with the property that α(x) ≥ d , ∀ x ≥ f in F .

Definition 5.12.13 (Subnet of Net) Let ψ :D → X be a net. A net β:F → X is
said to be a subnet ofψ if there is a cofinal function α:F → D such that β = ψ ◦ α.

Example 5.12.14 Let ψ :D → X be a net and F be a cofinal subset of D, which is
directed by the ordering induced by the ordering in D. Then the inclusion function
i:F ↪→ D is cofinal and the restriction map ψF = ψ ◦ i:F → X is a subnet of ψ .

Definition 5.12.15 (Cluster point of Net) Let ψ :D → X be a net. A point a ∈ X
is said to be a cluster point of the net ψ if the net ψ is frequently in every nbd of a.

Remark 5.12.16 Theorem 5.12.10 characterizing the topology of a space with the
help of convergence of nets facilitates a study of cluster point of a subset of a topo-
logical space and characterization of Hausdorff spaces by using the concept of net.
Let ψ :D → X be a net. In particular, if X is a first countable space, then all the
results regarding “net,” excepting the characterization of compactness (Exercise 56
of Sect. 5.28) hold if one replaces “ net” by “sequence.” For more study on net, see
Exercises 54–57 of Sect. 5.28.

5.13 Compactification Problems: Stone-Čech
Compactification and Alexandroff One-point
Compactification

This section is devoted to the study of the concept of compactification of a noncom-
pact space X by adjoining one or more points to X and by declaring a topology on
the enlarged space X+ such that X+ is a compact space containing X as a dense
subspace. There are many noncompact spaces which need compactification for their
deep study. For example, the Euclidean n-space Rn is not compact but its one-point
compactification is the n-sphere Sn (see Corollary 5.13.16).

Compactification is a process or result of making a topological space into a com-
pact space. Considering the importance of compactness inmathematics, it is a natural
problem: given a noncompact space X , how to construct a compact space Y which
contains X as a dense subspace? This method of construction is called compactifica-
tion. This section describes Stone-Čech compactification in Sect. 5.13.2 and Alexan-
droff one-point compactification in Sect. 5.13.3, which solve the above problem.
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5.13.1 Motivation of Compactification

This subsection conveys the basic motivation of compactification of noncompact
topological spaces. It gives a solution of the problem: given a noncompact space
X , how to construct a compact space Y which contains X as a dense subspace ? A
compactification of a noncompact space X to a compact space Y is an embedding
i:X ↪→ Y such that i(X ) is dense in Y .

Definition 5.13.1 A compactification of a topological space (X , τ ) is any compact
space (X+, σ ) containing (X , τ ) as a dense subspace. In the language of mapping, a
compactification X+ of X , is an embedding

f :X → X+

of X into a compact space X+ such that f (X ) is dense in X+.

Example 5.13.2 A compactification of the real line space R is the compact space
obtained by adjoining two new points, abbreviated, +∞ and −∞. The new space
thus obtained is called the extended real line.

Example 5.13.3 One-point compactification of the Euclidean n-space Rn is the n-
sphere Sn proved in Corollary 5.13.16, which is a very useful result in topology.

Example 5.13.4 (Construction) Let (X , τ ) be T1-space and∞ be a point not in X .
The simplest compactification of a noncompact space X is the one-point compacti-
fication X+ of X is a compact topological space constructed from the original space
X as follows:

(i) The underlying sets of X+ and X ∪ {∞} are the same;
(ii) The topology σ on X+ are precisely the open sets in τ together with all subsets

U of X+ such that X+ −U is a closed compact subset of X , i.e., the topology
τ on X is the same as the relative topology on X induced by the topology on
X+. This topological space (X+, σ ) is a one-point compactification of X .

Example 5.13.5 (i) Let X = R be the Euclidean line space. Hence its one-point
compactification X+ = X ∪ {∞}, where an open set containing the point ∞
is a complement of a compact subset of X . Then X+ is the topological space
homeomorphic to the circle S1.

(ii) Let X = R2 be the Euclidean plane. Then the one-point compactification
X+ = X ∪ {∞} is the topological space homeomorphic to the 2-sphere S2

by a homeomorphism

ψ : S2 → X+,

which is given by the stereographic projection

p: S2 − N → R2.
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Given a point x ∈ S2, the point ψ(x) is the point of intersection of the line
through the north pole N of S2 and x with the planeR2,which is the point p(x).

Theorem 5.13.6 Let (X , τ ) be a noncompact T1-space and X+ be the space con-
structed in Example 5.13.4.

(i) If i:X ↪→ X+ is the inclusion map, then i is an embedding.
(ii) The space X+ is compact.
(iii) X is dense in X+.
(iv) The map i is a compactification of X .

Proof Consider the topological space (X+, σ ) constructed in Example 5.13.4.

(i) Since the topology σ of X+ consists of precisely the open sets in τ together
with all subsets U of X+ such that X+ −U is a closed compact subset of X ,

the inclusion map
i:X ↪→ X+

is an embedding.
(ii) Assume that the space X is noncompact. Let� be an arbitrary open covering of

X+. Then there is a memberU∞ ∈ �which contains the point∞. HenceX+ −
U∞ is a compact subset of X . This asserts that there exists a finite subcovering
{U1,U2, . . . ,Uk}, say, of �. such that

X+ −U∞ ⊂ U1 ∪U2 ∪ · · · ∪Uk .

This shows that {U∞,U1,U2, . . .Uk} forms a finite subcover of X+ and hence
X+ is compact.

(iii) To show that X is dense in X+, letU be an arbitrary nonempty open set of X+.
If the point ∞ is not in the open set U, then U ⊂ X . On the other hand, if the
point ∞ is in the open set U, then X+ −U is a compact subset of X . Since by
assumption X is noncompact, U contains at least one point of X . This asserts
that X is dense in X+.

(iv) It follows from the above discussion in the language of a mapping.

�

Remark 5.13.7 One-point compactification process of a topological space X is sim-
ple and elegant but its deep study needs additional conditions such as locally compact-
ness of X . More precisely, the one-point compactification of a noncompact space X
is closely related to locally compactness of property of X (if it exists). The Hausdorff
property of one-point compactification of a noncompact space X is characterized in
Proposition 5.13.8 by its locally compact Hausdorff property.

Proposition 5.13.8 LetX+ be theone-point compactificationof anoncompact space
X . Then the space X+ is Hausdorff iff X is locally compact Hausdorff
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Proof First assume that the space X is locally compact Hausdorff. To show that X+
is Hausdorff, let x, y ∈ X+ be two distinct points. If both of them are points different
from ∞, then there exist disjoint open sets U and V of X such that

x ∈ U, y ∈ V , U ∩ V = ∅.

Again, if one of the points x and y is the point ∞, say, x = ∞, then y ∈ X . Since, by
hypothesis, X is locally compact, the point y has a compact nbd Uy in X . Suppose
thatU = X+ −Uy and V = Int(Uy). SinceUy is a compact set in a Hausdorff space
X , it follows that Uy is closed. This asserts that U and V are open sets of X+ such
that

x ∈ U, y ∈ V , U ∩ V = ∅.

This proves that the space X+ is Hausdorff.

Conversely, let the space X+ be Hausdorff. Then the open subspace X = X+ −
{∞} of the compact Hausdorff space X+ is a locally compact Hausdorff space.

�

5.13.2 Stone-Čech Compactification

This subsection proves Stone–Cech compactification in Theorem 5.13.9, which is
a basic result in topology. This theorem named after M. H. Stone (1902–1989) and
E. Čech (1893–1960) asserts that every completely regular space X is embeddable
as a dense subspace in a specified compact Hausdorff space β(X ), which has an
important property that every bounded real-valued function continuous on X has
a unique extension to a bounded continuous real-valued function on β(X ). Stone
published a paper (Stone 1948a, b) on compactification of topological spaces.

Theorem 5.13.9 (Stone-Čech Compactification) If X is a completely regular space,
then there exists a compact Hausdorff space β(X ) such that

(i) X is a dense subspace of β(X ) and
(ii) every bounded continuous function

f :X → R

has a unique extension to a bounded continuous function

f̃ : β(X ) → R.

Proof Existence of β(X ): Let I = [0, 1] be the closed unit interval which is a sub-
space of the real line space R and C = C(X , I) be the set of all continuous functions
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{fα:X → I:α ∈ B}. Then by using Tychonoff Embedding Theorem 5.11.8, there
exists an embedding

ψ :X → IC : x �→ ψx where ψx: C → I, fα �→ fα(x),

which asserts thatψ(x)(fα) = fα(x). Since IC is a compact Hausdorff space by Corol-
lary 5.11.6, it follows that

ψ :X → ψ(X )

is a homeomorphism and hence β(X ) = ψ(X ) proves the existence of β(X ).

(i) It follows from the construction of β(X ).
(ii) For the proof of this part, it is sufficient to consider the image of f in I. Let

{μβ} be a net in IC converging to μ. Define a function

f̃ : IC → R, μ �→ μ(f ).

Then

lim{f̃ (μα)} = lim{f (μα)} = μ(f ) = f̃ (μ)

asserts that f̃ is continuous by Exercise 57 of Sect. 5.28. Since

f̃ (ψ(x)) = (ψ(x))f ) = f (x), ∀ x ∈ X ,

it implies that f̃ is a continuous extension of f over β(X ). The uniqueness of f̃
follows from its construction.

�

Definition 5.13.10 Given a completely regular space X , the compact Hausdorff
space β(X ) defined in Theorem 5.13.9 is called the Stone–Cech compactification
of X .

Example 5.13.11 In the real line space R, consider its subspaces X = (0, 1] and
I = [0, 1]. Then X is a completely regular space and it is a dense subspace of the
compact Hausdorff space I. But its Stone–Cech compactification β(X ) �= [0, 1] = I.
Because, themap f :X → R, t �→ sin t−1, is a bounded continuous real function, but
it cannot be continuously extended over I. On the contrary, the space I is a compact
Hausdorff space containing X as a dense subspace.

5.13.3 Alexandroff One-point Compactification

This subsection proves Alexandroff one-point compactification in Theorem 5.13.14,
which is the simplest important one-point compactification. Given a noncompact
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space X , this subsection presents a construction process of a compact space X+
containing X as a dense subspace by adjoining one extra point, known as a one-point
compactification of Alexandroff by imposing certain conditions on X prescribed in
Theorem 5.13.14 and also establishes some relations between the topologies of X
and X+ as well as the properties of functions defined on these topological spaces.

Locally compactness of a topological space is characterized by one-point com-
pactification of the topological space in Theorem 5.13.14. An important consequence
of this theorem asserts that one-point compactification of Rn is Sn, which has wide
applications in geometric topology (see Basic Topology, Volume 3 of the present
series of books).

Definition 5.13.12 (Alexandroff one-point compactification) Given a noncom-
pact space (X , σ ), a compact Hausdorff space (X+, σ+) is said to a one-point com-
pactification ofX . whereX+ = X ∪ {∞},where∞ is a point not inX and a topology
σ+ is defined on X+ making (X+, σ+) it a compact Hausdorff.

Remark 5.13.13 The one-point compactificationX+ of a noncompact spaceX plays
a key role to obtain interesting results when X is taken to be locally compact. The
concept of Alexandroff one-point compactification is now applied to characterize
locally compactness of a topological space.

Theorem 5.13.14 (Alexandroff) Let (X , σ ) be a topological space.

(i) There exists a one-point compactification X+ = X ∪ {∞} iff the space (X , σ )

is locally compact.
(ii) Moreover, the topology on X+ is uniquely determined and coincides with the

topology on X as a subspace in X+.

Proof Let (X , σ ) be a locally compact space and X+ = X ∪ {∞}. A subset U in
X+ is declared to be open if either U is an open set in X ⊂ X+ or it is of the form
V ∪ {∞}, where V is an open set in X such that X − V is compact. The existence
of V follows from the local compactness of X . The family of all open sets thus
described form a topology σ+ on X+. We claim that X+ is compact with respect to
this topology σ+.

Hausdorff property of X+: Under this topology σ+, the space X ∗ is Hausdorff.
Because, given a point x ∈ X and the point ∞, they have disjoint nbds: take a nbd
Ux of x such that Ūx is compact in X and a nbd V∞ = (X − Ūx) ∪ {∞}, which are
clearly disjoint.

Compactness property of X+: Next we show that the spaceX+ is compact. For this,
letC+ = {Uβ} be an open covering of X+. Then there is a memberUβ0 inC

+,which
contains the point ∞ and hence V ∪ {∞} = Uβ0 , where X − V = A is compact in
X ∗. The subcovering C+

1 = {Uβ}β �=β0 of A has a finite subcovering {Uβ1 , . . . ,Uβm}.
Hence {Uβ0 ,Uβ1 , . . . ,Uβm} is finite covering of the space X+.

Combining the above results, it follows that the topological space (X+, σ+) is a
compact Hausdorff space, called Alexandroff one-point compactification of X .
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Conversely, let X+ = X ∪ {∞} be a one-point compactification of X . We claim
that X is locally compact. As X is open in X+, every point x ∈ X has an open nbd
Ux in the topology σ+ on X+ such that Ūx ⊂ X . Then Ūx is a closed set in X+ and
hence it is compact in both X+ and X . This asserts the local compactness of X . Any
open set in X+ containing a point ∞ is of the form V ∪ {∞}, where V is an open
set in X . On the other hand, the closed set X+ − (V ∪ {∞}) = X − V is compact,
since X+ is so.

Uniqueness of the topology σ+ on X+: Let V be an open set in some such topology
σ+
1 on X+. Then the set X+ − V = A is closed and hence A is compact. If A ⊂ X ,

then V is open in the topology σ+. On the other hand, if A is not a subset of X , then
V ⊂ X is open in X , because, X is a subspace. V is also open in the topology σ+.
Again, since X is a subspace of X+, if V ⊂ X is open in X , then V is of the form
V = U ∩ X for some open setU in X+. Then it follows that V = U ∩ X is also open
in X+, since X is open in X+. Again, if A is compact in X , then it is also compact
in X+, since the property of compactness does not depend on the space which it
contains. This shows that A is closed in X+ and hence the set X+ − A is open in X+.
This asserts that σ+

1 ⊂ σ+. Proceeding likewise, it also follows that σ+ ⊂ σ+
1 . This

implies that σ+ = σ+
1 .

�
Corollary 5.13.15 If X is a compact space (already), then the isolated point set
{∞} and X are both clopen in (X+, σ+).

Proof It follows from Theorem 5.13.14. �
Corollary 5.13.16 The one-point compactification of the Euclidean n-space Rn is
the n-sphere Sn.

Proof LetN be the north point of the n-sphere Sn. Then the punctured sphere Sn − N
is homeomorphic toRn by stereographic projection. Hence it follows by Alexandroff
one-point compactification that Sn is a one-point compactification ofRn, abbreviated
Rn ∪ {∞} = Sn. �
Corollary 5.13.17 The 3-sphere S3 is the one-point compactification R3 ∪ {∞} of
R3 and a homeomorphism h:R3 → R3 has a unique extension to a homeomorphism
h̃: S3 → S3.

Proof It follows from Corollary 5.13.16. �
Remark 5.13.18 The compactification of a topological space X can also be done by
adjoining one or more points to X and subsequently, a suitable topology is defined
on the larger set X+ with an eye to make the set X+ compact, which contains X as
an dense subspace of X+.

Example 5.13.19 (Two-point compactification) Let R be the real line space with
usual topology σ and R+ = R ∪ {−∞,∞} be the extended real line obtained by
adjoining two new points −∞ and ∞ to R. The usual order relation on R is now
extended toR+ by defining−∞ < x < ∞ for any x ∈ R. Then the family of subsets
of R+ of the forms
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(i) [−∞, a) = {x ∈ R+: x < a};
(ii) (a, b) = {x ∈ R: a < x < b} and
(iii) (a,∞] = {x ∈ R+ : a < x}
forms an open base for a topology σ+ on R+. The topological space (R+, σ+) is
compact and it contains the noncompact space (R, σ ), as a dense subspace and hence
by definition, (R+, σ+) is a two-point compactification of (R, σ ).

Theorem5.13.20 conveys an important application ofAlexandroff one-point com-
pactification and proves equivalent formulation of a locally compactHausdorff space.

Theorem 5.13.20 Let H be a Hausdorff space. Then the following statements are
equivalent:

(i) The space H is locally compact.
(ii) The space H is a locally closed subspace of a compact Hausdorff space.
(iii) The space H is a locally closed subspace of a locally compact Hausdorff space.

Proof (i) =⇒ (ii): Let the space H be locally compact. Then by Alexandroff one-
point compactification H+ (see Theorem 5.13.14), H is an open subspace of its
one-point compactification H+. This shows that (i) implies (ii).

(ii) =⇒ (iii) trivially.
(iii) =⇒ (i): LetX be a locally compact space containingH andH be expressed

asH = A ∩U , whereA ⊂ X is closed andU ⊂ X is open. ThenA is locally compact
and H = U ∩ A is open in A. This asserts that H is locally compact which shows
that (iii) implies (i). �

5.14 Haar–Konig Theorem: Characterization of
Compactness in Linearly Ordered Spaces

This section communicates a complete characterization of compactness in linearly
ordered spaces in Theorem 5.14.2, from which Heine–Borel theorem in R follows
as a particular case. We start with an independent proof of Heine–Borel theorem in
R to facilitate the proof of Theorem 5.14.2.

Theorem 5.14.1 (Heine–Borel theorem in R) Every closed interval in the real
number space (R, σ ) with usual topology σ, is compact.

Proof Let [a, b] be a given closed interval in R and C be an open covering of [a, b]
in R. Let E be the set of all those elements x ∈ [a, b] such that there is a finite
subcovering of C for the closed interval [a, x]. Then a ∈ E and the point b is an
upper bound of the set E . This shows that E has an lub e, say. Then it follows that
a < e. IfU ∈ C is such that e ∈ U and d ∈ (a, e) ∩U , then [a, d) has an open finite
subcovering covering C ′, which is finite subcollection of C. Hence C ′ ∪U is a finite
subcollection of C, which forms a finite open subcovering of [a, e]. If e �= b, there
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is a number f such that f ∈ U, (e, f ) ⊂ U and hence C ′ ∪U is a finite subcollection
of C and it forms an open covering of [a, f ] such that f ∈ E , which is not possible
as f > e and e is the lub of E . This asserts that e = b and hence C ′ ∪U is a finite
subcollection of C, which forms a finite covering of [a, b]. Consequently, [a, b] is
compact in the real number space (R, σ ). �

Haar–Konig Theorem 5.14.2 characterizes compactness of a linearly ordered
space (with interval topology) in terms of its order-completeness, fromwhichHeine–
Borel theorem in R follows as a corollary.

Theorem 5.14.2 (Haar–Konig theorem) Let X be a linearly ordered set X with
interval topology. Then X is compact iff X is order-complete in the sense that every
nonempty subset of X has both a lub and a glb.

Proof Let X be a linearly ordered set X and τ be the interval topology on X . First
suppose that X is order-complete. Let m be the smallest element and M be the
greatest element of X . Proceed likewise as in proof of Theorem 5.14.1 to show that
the topological space (X , τ ) is compact.

For the converse part, suppose that (X , τ ) is compact. If the linearly ordered
set X is not order-complete, then we show that the topological space (X , τ ) is not
compact. To show it, let Y ⊂ X be nonempty and suppose that Y has no lub in
X . Consider the family of open intervals O consisting of the open intervals of the
forms (−∞, y), ∀ y ∈ Y and (v,+∞) for every upper bound v of Y . Then O forms
an open covering of X . But this covering has no finite subcovering, otherwise, the
largest element y or the smallest element v appearing in that subcovering would
be the lub of the set Y . Hence (X , τ ) would refuse to be compact. For the other
possibility, if Y has no glb in X , similar argument also produces a contradiction.
This contradiction proves that (X , τ ) is compact. �

Corollary 5.14.3 Everywell-ordered set endowedwith interval topology is compact
iff it contains a maximal element.

Proof It follows from Theorem 5.14.2. �

Corollary 5.14.4 proves theHeine–Borel theorem saying that every closed interval
in the real line space with usual topology is compact.

Corollary 5.14.4 A subset X of the real number space R with usual topology is
compact iff X is closed and bounded.

Proof The subset X ⊂ R is order-complete iff it is closed and bounded. Hence the
corollary follows by using Theorem 5.14.2.

�
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5.15 Compact Subsets of Metrizable Spaces

This section is devoted to address compact subsets of a metrizable space in Proposi-
tion 5.15.1 and disjoint compact subsets inmetric spaces in Proposition 5.15.2. There
are different formulations of compactness. For example, every closed and bounded
subset of the real line spaceR is compact by Corollary 5.14.4. Here, the boundedness
is with respect to the usual distance function

d :R × R → R, (x, y) �→ |x − y|.

Proposition 5.15.1 Let (X , τ ) be a metrizable space and d be an arbitrary metric
on X . If Y �= ∅, is a compact subset of X , then

(i) Y is closed;
(ii) there exists a pair of points x and y in Y such that diam Y = d(x, y);
(iii) Y is bounded.
(iv) diam Y < ∞;

Proof Let τd be the topology on X induced by the metric d . Then topological space
(X , τd ) is a Hausdorff space, because for any two distinct points x, y ∈ X , if we take
a real number ε such that 0 < 2ε < d(x, y), then Bx(ε) ∩ By(ε) = ∅ and hence the
points x and y are strongly separated by the open sets Bx(ε) and By(ε).

(i) By hypothesis, Y is compact and hence it is a compact subset of a Hausdorff
space. This implies that Y closed by Proposition 5.4.4.

(ii) Let PX = X × X , PY = Y × Y be product spaces. Define a function

f :PX → R, (x, y) �→ d(x, y).

Then f is continuous. By hypothesis, Y is a compact subset of X and hence PY

is a compact subset of PX and f (PY ) is a compact subset of R. Then f (PY ) is a
closed and bounded set inR. Ifm = lub f (PY ), thenm ∈ f (PY ) and hence there
exists a point z ∈ PY such that f (z) = m. Ifwe take z = (x, y) for some x, y ∈ Y ,

then d(x, y) = diam Y .
(iii) It follows from (ii).
(iv) It also follows from (ii).

�

Proposition 5.15.2 Let (X , d) be a metric space and Y ,Z be two nonempty disjoint
compact subsets of X . Then

(i) d(Y ,Z) > 0;
(ii) there exist points a ∈ Y and b ∈ Z such that d(Y ,Z) = d(a, b).

Proof By hypothesis, (X , d) is a metric space and Y ,Z are two nonempty disjoint
compact subsets of X
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(i) If possible, d(Y ,Z) = 0. Then m = inf{d(y, z): ∀ (y, z) ∈ Y × Z} = 0. Since
dY×Z :Y × Z → R is continuous andY × Z is compact inX × X , it follows that
there exists a point (a, b) ∈ Y × Z such that d(a, b) = m = 0. Then a ∈ Ȳ = Y
implies a contradiction. This proves (i).

(ii) From above discussion, it follows that there exist points a ∈ Y , b ∈ B such that
d(a, b) = d(Y ,Z).

�

5.16 Countably Compactness and Its Characterization

This section introduces the concept of countably compactness and characterizes
countably compact spaces by FIP in Theorem 5.16.3, by Cantor intersection theorem
5.16.4 and also by infinite sequences in Theorem 5.16.6.

Definition 5.16.1 A topological space (X , τ ) is said to be countably compact if
every countable open covering X has a finite subcovering.

Remark 5.16.2 The concepts of compactness and countably compactness are differ-
ent, because every compact space is countably compact. But its converse is true for
spaces (X , τ ) having the second axiom of countability property, i.e., if there exists a
countable open base for τ .

Theorem 5.16.3 A topological space (X , τ ) is countably compact iff every count-
able collection of closed sets having the finite intersection property (FIP) has a
nonempty intersection in (X , τ ).

Proof It follows from Theorem 5.9.6 by taking the indexing set to be a countable
set. �

Theorem 5.16.4 also characterizes countably compact spaces in terms of nested
sequence of their closed sets.

Theorem 5.16.4 (Cantor intersection theorem for countably compactness) A
topological space (X , τ ) is countably compact iff every decreasing sequence of
nonempty closed sets A1 ⊃ A2 ⊃ · · · in (X , τ ) has a nonempty intersection, i.e.,
iff

⋂{Ai: i = 1, 2, . . . .} �= ∅.
Proof Let (X , τ ) be a countably compact space and A1 ⊃ A2 ⊃ · · · be a decreasing
sequence of nonempty closed sets in (X , τ ). Hence {Ak : k = 1, 2, . . .} is a countable
collection of closed sets in (X , τ ) having the finite intersection property. This asserts
by Theorem 5.16.3 that ⋂

{Ak : k = 1, 2, . . .} �= ∅.

Conversely, let {Bi: i = 1, 2, . . .} be a countable collection of closed sets in (X , τ )

having the finite intersection property and Ai = B1 ∩ B2 ∩ · · · ∩ Bi, i = 1, 2, . . . .
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Then A1 ⊃ A2 ⊃ · · · is a decreasing sequence of nonempty closed sets in (X , τ ).
This implies by hypothesis that

⋂
{Ai: i = 1, 2, . . . .} �= ∅.

This asserts that

⋂
{Ai: i = 1, 2, . . . .} =

⋂
{Bi: i = 1, 2, . . .} �= ∅.

This implies by Theorem 5.16.3 that (X , τ ) is countably compact. �

Remark 5.16.5 Cantor’s intersection theorem 5.16.4 gives a characterization of
countably compactness of a topological space in terms of its nested sequence of
closed sets. On the other hand, Theorem 5.16.6 also gives its another characteriza-
tion of countably compactness of a topological space in terms of its cluster point.
Recall that a point x of a topological space X is a cluster point of an infinite sequence
{xn} in X , if given any open set U, containing the point x and any positive integer
n0, there exists a positive integer m ≥ n0 such that xm ∈ U .

Theorem 5.16.6 also characterizes countably compact spaces in terms of infinite
sequences together with their cluster points.

Theorem 5.16.6 Let (X , τ ) be a topological space. Then it is countably compact iff
every infinite sequence {xn} in X has a cluster point in X .

Proof Let (X , τ ) be a topological space. Suppose that every infinite sequence {xn}
in X has a cluster point in X but X is not countably compact. Then there exists
a countable open covering F = {Ui} of X such that it has no finite subcovering.
Let V1 = U1 and x1 ∈ V1. For an integer n > 1, let Vn be the first one of the open
sets U2,U3,U4, . . . which is not contained in V1 ∪ V2 ∪ · · · ∪ Vn−1. Suppose xn ∈
Vn − (V1 ∪ V2 ∪ · · · ∪ Vn−1) and x ∈ X . Then there exists a positive integer n0 such
that x ∈ Vn0 . This implies that x is not a cluster point of the infinite sequence {xn} in
X , because, Vn0 ∩ {xn0+1 , xn0+2 , . . .} = ∅. This shows that the infinite sequence {xn}
in X has no cluster point in X . This contradiction implies that (X , τ ) is countably
compact.

Conversely, let (X , τ ) be a countably compact space. Suppose the infinite
sequence {xn} in X has no cluster point in X . Then for each x ∈ X , there is an
open set Ux such that x ∈ Ux and Ux ∩ {xn0+1 , xn0+2 , . . .} = ∅ for some positive inte-
ger n0. For every positive integer n, let Vn be the union of all open sets Ux which
do not contain any point of set {xn0+1 , xn0+2 , . . .}. Then F = {V1,V2, . . .} forms a
countable open covering of X , such that there exists no finite subcovering ofF . This
implies that the given topological space (X , τ ) cannot be countably compact. This
contradiction asserts that the infinite sequence {xn} in X has a cluster point in X . �

The above discussion is assembled together in the basic and important Theorem
5.16.7 to provide different equivalent formulations of countable compact spaces.
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Theorem 5.16.7 A topological space (X , τ ) is countably compact iff it satisfies any
one of the following conditions:

(i) Every countable collection of closed sets (X , τ ) having the finite intersection
property has a nonempty intersection in (X , τ ).

(ii) Every decreasing sequence of nonempty closed sets in (X , τ ) has a nonempty
intersection.

(iii) Every infinite sequence in X has a cluster point in X .

Example 5.16.8 A subspace of a countably compact space may not be countably
compact. For example, in the real line spaceR, the closed interval [0, 1]with subspace
topology is compact by Heine–Borel theorem and hence for every countable open
covering of [0, 1] has also a finite subcovering. This implies that closed interval [0, 1]
is countably compact. But its subspace (0, 1) ⊂ [0, 1] is not countably compact,
because F = {( 1n , n

n+1 ): n = 2, 3, . . .} forms a countable open covering of the open
interval (0, 1) but it has no finite subcovering.

5.17 Connectedness

This section conveys the concept of connectedness, which is a topological property
different from compactness property. This concept generalizes the intuitive idea of
the wholeness of a geometric figure and is used to solve some classification problems
up to homeomorphism. A connected space is a topological space, which is one piece
in the sense that it cannot be decomposed into two disjoint nonempty open sets.
Connectedness property answers the natural question: how is the intermediate value
theorem generalized in topology? The motivation of the concept of connectedness
for a topological setting comes from the standard result of analysis given in Theorem
5.17.6 asserting that the real line space R is connected.

5.17.1 Three Different Types of Connectedness

Three different types of compactness such as

(i) connectedness;
(ii) local connectedness;
(iii) path connectedness

and the concept of disconnectedness are studied in this chapter.
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5.17.2 Connectedness: Introductory Concepts

This subsection conveys the introductory concepts of connectedness and their basic
properties. Intuitively, a space like R or the torus in which one can move from
one point to any other point without jump, is considered as a single piece, called
connected. This simple idea leads to many important applications of topology to
geometry and analysis. For example, connectedness plays a vital role in topology
which discusses continuous curves and their properties.

Definition 5.17.1 A topological space (X , τ ) is said to be a connected space if
whenever X = A ∪ B, where A �= ∅ and B �= ∅, then A ∩ B �= ∅ or A ∩ B �= ∅.

Remark 5.17.2 Definition 5.17.1 asserts that whenever X is decomposed as X =
A ∪ B, where A �= ∅ and B �= ∅, then A and B have a common point or some point
of A is a limit point of B or some point of B is a limit point of A.

Example 5.17.3 The closed interval I = [0, 1] decomposes as [0, 1
3 ) ∪ [ 13 , 1], then

1
3 ∈ [0, 1

3 ) ∩ [ 13 , 1]. The subspace [0, 1] is connected in the real line space R. Its
connectedness also follows from Corollary 5.18.2.

Definition 5.17.4 : Let (X , τ ) be a topological space. A pair {U, V } of open sets
U and V in (X , τ ) is said to form a separation of X by open sets if U ∪ V =
X and U ∩ V = ∅. This separation is said to be trivial if either U = ∅ or V = ∅,

otherwise, it is said to be nontrivial.

Remark 5.17.5 For a topological space (X , τ ), the condition for a separation of X
by the pair {U, V } of open sets asserts that the sets U and V are both open and
closed.

Theorem 5.17.6 proves the connectedness of the real line space, which is the
motivating example of connectedness.

Theorem 5.17.6 The real line space (R, σ ) is connected.

Proof In the space (R, σ ), let R = A ∪ B for some disjoint nonempty subsets A
and B of R. To prove the theorem, it is sufficient to show that there is a point of
B, which is a limit point of A or there is a point of A, which is a limit point of
B, because it will prove that either A intersects B or B intersects A. To show it, let
a ∈ A, b ∈ B, with a < b. Define the set

X = {x ∈ A: x < b} ⊂ A.

Since a ∈ X , the set X �= ∅. Suppose sup X = m. Then m ∈ A or m ∈ A (by
definition of supremum). If m ∈ A, then m < b and all the points x such that m <

x < b are in B, since m is an upper bound for X . This asserts that m is a limit point
of B. Again, if m /∈ A, then m ∈ B, since R = A ∪ B. Hence, in this case, m is a
limit point of A. This implies that either A ∩ B �= ∅ or A ∩ B �= ∅ and hence R is
connected.

�
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Remark 5.17.7 An alternative proof of Theorem 5.17.6 is given in Theorem 5.25.10
by using the compactness property of the closed interval of the real line space R.

Theorem 5.17.8 presents different equivalent formulations of connectedness, and
one of them may be taken as the definition of connectedness according to the con-
venience.

Theorem 5.17.8 Let (X , τ ) be a topological space. Then following statements on
(X , τ ) are equivalent:

(i) (X , τ ) is connected;
(ii) The only subsets of X which are both open and closed in (X , τ ) are precisely

the whole set X and the empty set ∅;
(iii) X cannot be expressed as the union of two nonempty disjoint open sets in

(X , τ );
(iv) There exists no continuous surjective map h:X → D for a discrete space D

having card D > 1 (i.e., D has more than one point).

Proof (i) =⇒ (ii): Let (X , τ ) be connected and Y ⊂ X be both open and closed in
(X , τ ). Then Z = X − Y is also both open and closed in (X , τ ). Hence Y = Y and
Z = Z =⇒ Y ∩ Z = Y ∩ Z = Y ∩ Z = ∅. Since by hypothesis, X is connected,
one of the sets Z, Y is ∅ and the other is X .

(ii) =⇒ (iii): It is trivial
(iii) =⇒ (iv): Suppose (iii) holds for (X , τ ). Let D be a discrete space having

more than one element such that there exists a continuous surjective map h:X → D.
If D = U ∪ V for two disjoint nonempty open sets U and V , then

X = h−1(U ) ∪ h−1(V )

implies a contradicts (iii). This contradiction proves that (iii) =⇒ (iv).
(iv) =⇒ (i): Let (iv) hold for (X , τ ). Suppose (X , τ ) is not connected. Then X

can be expressed as

X = A ∪ B

for two nonempty sets A and B such that

A ∩ B = A ∩ B = ∅.

This shows that A an B are both open sets in (X , τ ), since A is the complement of
the closed set B and B is the complement of the closed set A in X . Given the discrete
subspace {−1, 1} of the real number space R construct a map

h: X → {−1, 1}, x �→
{

−1, for all x ∈ A

1, for all x ∈ B.
.
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Since h is continuous and surjective, the existence of this map h contradicts (iv).
This contradiction proves that (iv) =⇒ (i).

This proves that all the statements given in this theorem are equivalent.
�

Remark 5.17.9 In view of Theorem 5.17.8, any one of its equivalent statements may
be conveniently taken as a definition of connectedness according to the situation.
Moreover, a continuous function cannot send a connected space onto a space which
is not connected. This leads to characterize connected spaces with the help of discrete
valued functions (see Theorem 5.17.19.) To the contrary, the continuous image of a
connected space is always connected (see Corollary 5.17.24).

Example 5.17.10 Consider the real line space R.

(i) All the intervals: [a, b], (a, b), [a, b), (a, b], (−∞, a], [a,+∞) of the real line
space R are connected subsets of R (see Corollary 5.18.2).

(ii) The subspace Q of the real line space R is not connected.
(iii) The only connected subsets of the subspace Q in the real line space R, are the

one-pointic sets.

Definition 5.17.11 Let X be a topological space and A,B ⊂ X be subsets. Then A
and B are said to be separated if

A ∩ B̄ = Ā ∩ B = ∅.

Example 5.17.12 The intervals A = (1, 2),B = (2, 3) in the real line space R are
separated. On the other hand, intervals A = (1, 2],B = (2, 3) in the real line space
R are not separated, because, A ∩ B̄ = {2}.
Remark 5.17.13 Theorem 5.17.8 shows that a topological space (X , τ ) is connected
if the only sets which are both open and closed are ∅ and X . Hence a subset A ⊂ X
is connected if A is connected with respect to its relative topology. Thus a connected
space cannot be represented as the union of two nonempty separated sets. A topo-
logical space X is connected iff for X = A ∪ B with A ∩ B = ∅, and both A,B are
open (closed), either A = ∅ or B = ∅.
Theorem 5.17.14 A topological space (X , τ ) is connected iff it is not the union of
two disjoint nonempty open subsets.

Proof It follows from Theorem 5.17.8. �
Theorem 5.17.15 Let X be a convex subset of the Euclidean n-space Rn (n ≥ 1).
Then X is connected.

Proof Let X = A ∪ B for two nonempty separated open sets A and B. Take a point
a ∈ A and a point b ∈ B. Then the line segment Y = [a, b] has the property

Y ∩ A = AY �= ∅,Y ∩ B = BY �= ∅ and Y = AY ∪ BY = [a, b].

It contradicts the connectedness of the line segment [a, b]. �
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Corollary 5.17.16 Euclidean n-space Rn (n ≥ 1) is connected.

Proof It follows from Theorem 5.17.15. �

Definition 5.17.17 Let (X , τ ) be a topological space and Y be a discrete space. Then
a continuous map f : X → Y is called a discrete-valued map.

Remark 5.17.18 A connected space is characterized in Theorem 5.17.19 in term of
a discrete-valued map on it. This theorem is used to show in Theorem 5.17.21 that
every continuous image of a connected space is also connected.

Theorem 5.17.19 Let (X , τ ) be a topological space. It is connected iff every
discrete-valued map on X is a constant map.

Proof Suppose every discrete-valued map on X is constant. If X is not connected,
then there exist disjoint clopen sets A and B in X such that X = A ∪ B. Define the
map

f : X → {0, 1}, x �→
{
0, for all x ∈ A

1, for all x ∈ B

Then f is a discrete valued-map. But f is not constant on X . This contradicts
our hypothesis that every discrete-valued map on X is constant. This contradiction
implies that X is connected. Conversely, suppose X is connected and f : X → Y
is a discrete-valued map. If y ∈ Y is such that y ∈ Im(f ), then the set {f −1(y)} is
nonempty and is clopen in X , and hence this set is the same as X . This implies
that f (x) = y for all x ∈ X . This asserts that f is a constant map with y as its only
value. �

Remark 5.17.20 Theorem5.17.8 asserts that there exists no continuousmap sending
a connected space onto a topological spacewhich is not connected.On the other hand,
compactness is preserved by a continuous map by Theorem 5.17.21. It is proved in
two different ways one by using Theorem 5.17.8 and the other by using Theorem
5.17.19. A continuous map cannot tear a piece into several pieces.

Theorem 5.17.21 Let (X , τ ) and (Y , σ ) be two topological spaces and f : X → Y
be a continuous onto map. If X is connected, then Y is also connected.

Proof Let the spaceX be connected and f : X → Y be a continuous ontomap. Claim
that Y = f (X ) is connected.

Proof I by using Theorem 5.17.8: Suppose U is a subset of Y = f (X ), which is
both open and closed in Y . Then f −1(U ) is both open and closed in X by continuity
of f . Since by hypothesis X is connected, it follows by Theorem 5.17.8 that f −1(U )

is either X itself or it is ∅. This implies that either U = Y or U = ∅. This proves by
Theorem 5.17.8 that the space Y is connected.
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Proof II byusingTheorem 5.17.19: LetX be connected, f : X → Y be a continuous
map and g: Y = f (X ) → D be a discrete-valued map on Y . Then

g ◦ f : X → D

is also a discrete-valued map on X . Since by hypothesis X is connected, it follows
from Theorem 5.17.19 that g ◦ f is a constant map. This asserts that the map g is
constant and hence f (X ) = Y is connected by Theorem 5.17.19. �

Corollary 5.17.22 Let (X , τ ) and (Y , σ ) be two topological spaces and f : X → Y
be a continuous map. Then f (X ) is also connected.

Proof The corollary follows from Theorem 5.17.21. �

Remark 5.17.23 Corollary 5.17.24 asserts that connectedness of a topological space
is a topological property in the sense that it is preserved by every homeomorphism.
It is also product invariant in the sense that the topological product of any family of
connected sets is also connected (see Exercise 58 of Sect. 5.28).

Corollary 5.17.24 Let (X , τ ) and (Y , σ ) be two topological spaces and f : X → Y
be a homeomorphism. Then X is connected iff Y is connected.

Proof The corollary follows from Theorem 5.17.21. �

Corollary 5.17.25 Let f : X → Y be a continuous map from a connected space X
to a space Y . Then the graph Gf = {(x, f (x)} of f is also connected.

Proof The corollary follows from Theorem 5.17.21. �

Corollary 5.17.26 The circle S1 is connected.

Proof Consider the continuous surjective map

f : [0, 1] → S1, t �→ e2π it .

Since [0, 1] is connected, the corollary follows from Theorem 5.17.21. �

Corollary 5.17.27 is another form of the Bolzano theorem of classical analysis
(see Corollary 5.18.6).

Corollary 5.17.27 Let f : I = [0, 1] → R be a continuous function such that f (0) ·
f (1) < 0, then f has a zero at a point α ∈ (0, 1), i.e.,f (α) = 0 for some α ∈ (0, 1).

Proof Thehypothesis f (0) · f (1) < 0 asserts that f (0) �= f (1). The corollary follows
from Theorem 5.17.21 by using the connectedness of [0, 1]. �

Theorem 5.17.28 Let (X , τ ) be a topological space and Y ⊂ X be any subset dense
in X . If Y is connected, then X is also connected.
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Proof Let B be a nonempty subset of X such that B is both open and closed in X .
Then B ∩ Y �= ∅, since Y being dense in X , it intersects every nonempty open subset
of X . Clearly, B ∩ Y is both an open and closed subset of Y . Finally, since Y is
connected by hypothesis, it follows that Y ∩ B = Y , and hence Y ⊂ B. This asserts
that X = Y ⊂ B = B, which implies that X = B. Thus the only nonempty subset of
X which are both open and closed is X itself. Hence X is connected by Theorem
5.17.8. �
Corollary 5.17.29 Let (X , τ ) be a topological space and B ⊂ X be connected. If Y
is a subset of X such that B ⊂ Y ⊂ B, then

(i) Y is connected;
(ii) B is also connected (i.e., closure of a connected set is connected).

Proof If Y is not connected and Y = U ∪ V , where the pair (U,V ) forms a sepa-
ration of Y by open sets. Then either B ⊂ U or B ⊂ V , because, Y is connected by
hypothesis. If B ⊂ U, then B ⊂ U . Then Y cannot intersect Y , since U ∩ V = ∅.
This contradicts the assumption that V is a nonempty subset of Y . This contradiction
proves part(i). By hypothesis, B ⊂ Y ⊂ B and hence part (ii) of the corollary follows
from part (i). �
Theorem 5.17.30 Let (X , τ ) and (Y , σ ) be two topological spaces. If their product
space (X × Y , τ × σ) is connected, then the spaces (X , τ ) and (Y , σ ) are both
connected. In general, if �a∈A(Xa, τa) is the product space of a family {(Xa, τa): a ∈
A} of connected spaces, then (Xa, τa) is connected for every a ∈ A.

Proof Let (X , τ ) and (Y , σ ) be two topological spaces and

pX : X × Y → X , (x, y) → x,

pY : X × Y → Y , (x, y) → y

be usual projection maps. Since pX and pY are both continuous onto maps and X × Y
is connected by hypothesis, it follows that bothX andY are connected. For the general
case, the proof is similar.

�
Remark 5.17.31 The converse of Theorem 5.17.30 is also true. It says that if both
the topological spaces (X , τ ) and (Y , σ ) are connected, then the product space is
also conceited. For general case see Exercise 44 of Section 5.28.

5.18 Connectedness Property of R and Its Subspaces

This section studies the connectedness property of the real line space R and its sub-
spaces and establishes some consequences of classical intermediate value theorem,
which is a classical result of analysis.
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Theorem 5.18.1 A nonempty subset A of the real line space R, which consists of at
least two distinct points. Then A is connected iff A is an interval.

Proof Suppose A is connected. If A is not an interval, there exist points a, b ∈ A
with a < b and another point c ∈ R − A such that a < c < b. Consider the sets

X = {x ∈ A: x < c} ⊂ A

and
Y = A − X .

Let X̄ be the closure of X in A and Ȳ be the closure of Y in A. As the point c is
not in A, every point α of X in A is such that α < c, and every point β of Y in X is
such that β > c. This implies that X ∩ Y and X ∩ Y are both ∅. This shows that A is
not connected. This contradiction asserts that A is an interval. Since every interval
in R is convex, the converse part follows by Theorem 5.17.15 for n = 1.

An independent proof of the converse part: Consider the interval X = [a, b] as
a subspace in the real line space R. Claim that X is connected. If it is not so, then
there exist nonempty disjoint open setsU,V inR such that (X ∩U ) ∪ (X ∩ V ) = X .
Consider the map

f :X → R, x �→
{
0, for all x ∈ X ∩U

1, for all x ∈ X ∩ V .

Since the inverse image of f of any open set inR is either X ∩U, X ∩ V , ∅ or X ,
each of which is an open set in X , it follows that f is continuous. By definition of f ,
for any point a ∈ X ∩U, f (a) = 0 and for any point b ∈ X ∩ V , f (b) = 1. Then by
intermediate value theorem, there exists a point c ∈ X such that f (c) = 1/2, which
is different from 0 or 1. But this not possible. This asserts that X is connected. �

Corollary 5.18.2 All the intervals: [a, b], (a, b), [a, b), (a, b], (−∞, a], [a,+∞)

of the real line space R are connected subsets of R.

Proof It follows from Theorem 5.18.1. �

Remark 5.18.3 Theorem 5.18.1 asserts that intervals of R are its only connected
subsets, which may be open, closed, half open or it can be stretched to infinity in
either direction and all other subsets of R have gaps and hence consist of several
distinct pieces.

Intermediate value theorem is a classical theorem in calculus. It is proved in
Theorem 5.18.4 by the concept of connectedness of a topological space. The specific
property of the subspace [a, b] of the real line space R on which intermediate value
theorem is based is the connectedness property of [a, b].
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Theorem 5.18.4 (Intermediate value theorem) Let f : X = [a, b] → R be a con-
tinuous function such that f (a) �= f (b). Then for each real number r between with
f (a) and f (b), there is an element c ∈ [a, b] such that f (c) = r.

Proof LetGf = {(x, f (x)} be the graph of f . ThenGf is also connected by Corollary
5.17.25. Hence the theorem follows from Theorem 5.17.21 and Corollary 5.17.27 by
taking the nonempty intersection of the graphGf of f in the Euclidean planeR2 with
the straight line y = r by using the connectedness of the graph Gf and the choice of
the number r ∈ R.

Alternative Proof : As X = [a, b] is connected and f is continuous, it follows that
f (X ) ⊂ R is an interval by Theorem 5.18.1. Then f (a) �= f (b) ∈ f (X ) and r ∈ f (X ).
By hypothesis r is a real number between f (a) and f (b). This asserts that there is a
point c ∈ X such f (c) = r. �

Remark 5.18.5 Geometrical interpretation of intermediate value theorem: For
each real number r between f (a) and f (b), the horizontal line y = r intersects the
graph Gf = {(x, f (x)): x ∈ [a, b]} of f at some point (c, r) for some c ∈ [a, b].

Corollary 5.18.6 is a generalization of the classical Bolzano theorem used in
analysis and is closely related to intermediate value theorem 5.18.4.

Corollary 5.18.6 (Bolzano theorem) Let f : [a, b] → R be a continuous function
such that f (a)f (b) < 0. Then there is an element x ∈ [a, b] such that f (x) = 0.

Proof f (a)f (b) < 0 implies that f (a) and f (b) are of opposite signs and hence
f (a) �= f (b). Moreover, the point 0 lies between them. Hence the Corollary follows
from intermediate value theorem 5.18.4. �

Corollary 5.18.7 (Brower fixed point theorem for dimension1) Let I = [0, 1] be
the closed unit interval and f : I → I be a continuous function. Then there exists a
point x ∈ I such that f (x) = x.

Proof Suppose f (x) �= x, ∀ x ∈ I. Then

I = {x ∈ I: f (x) < x} ∪ {x ∈ I: f (x) > x}.

Hence f (1) < 1 and f (0) > 0 imply that both the sets U = {x ∈ I: f (x) < x} and
V = {x ∈ I: f (x) > x} are nonempty disjoint open sets in I. This produces a decom-
position I = U ∪ V , asserting that I is not connected. This contradicts the fact that
I is connected.

�

Remark 5.18.8 The proof of each of Bolzano theorem 5.18.6 and intermediate value
theorem (IVT) 5.18.4 depends on the connectedness property of the image of [a, b]
under the continuous map f in the real line spaceR and the property of its connected
sets to contain each intermediate point together with the end points of [a, b]. These
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two theorems and Brower fixed point theorem for dimension 1 are closely related.
More precisely, Bolzano theorem is an immediate consequence of IVT and Corollary
5.18.7, which is the Brower fixed point theorem 5.27.14 for dimension 1 directly
follows from Bolzano theorem 5.18.6. Its proof is also given in Theorem 5.27.14.

5.19 Disconnected and Totally Disconnected Spaces

This section studies disconnectedness of topological spaces, which generalizes the
concept of the negation of separateness of geometric objects and also studies totally
disconnectedness. This property is topological property, because of the preservation
of separateness of sets under a homeomorphism.

Definition 5.19.1 (X , τ ) be a topological space. Two nonempty subsets A,B of X
are said to be separated if

A ∩ B̄ = Ā ∩ B = ∅.

Example 5.19.2 The intervals A = (1, 2),B = (2, 3) in the real line space R are
separated. On the other hand, intervals A = (1, 2],B = (2, 3) in the real line space
R are not separated, because, A ∩ B̄ = {2}.
Example 5.19.3 Consider two nonempty subsets X1 and X2 in the Euclidean plane
R2.

X1 = {(x, y) ∈ R2 : y = sin

(
1

x

)

, 0 < x ≤ 1} ⊂ R2;

X2 = {(0, y) ∈ R2 : 1

2
≤ y ≤ 1} ⊂ R2.

Every point of X2 is an accumulation point of X1 asserts that X1 and X2 are not
separated sets.

Definition 5.19.4 Let (X , τ ) be a topological space. It is said to be disconnected if
it can be expressed as the union of two nonempty separated sets in (X , τ ). Otherwise,
(X , τ ) is said to be connected.

Remark 5.19.5 There is another formulation of disconnectedness of topological
spaces given in Definition 5.19.6, which is equivalent to the formulation given in
Definitions 5.19.4. Their equivalence is established in Theorem 5.19.9. The suitable
one is used according to the nature of the problem.

Definition 5.19.6 Let (X , τ ) be a topological space. It is said to be disconnected if
it decomposes into the union of two disjoint nonempty open sets in (X , τ ).
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Remark 5.19.7 Twomutually complementary closed (open) sets in (X , τ ) are simul-
taneously open (closed) in (X , τ ).

Example 5.19.8 The subspace A = {(x, y) ∈ R2 : y = mx} − {(0, 0)} of the
Euclidean planeR2 is disconnected. Because, geometrically, A represents the family
of straight lines deleted (minus) the origin inR2 and can bemathematically expressed
as

A = {(x,mx): x > 0} ∪ {(x,mx): x < 0},

which shows that X decomposes into the union of disjoint nonempty open sets in
R2.

Theorem 5.19.9 The two definitions 5.19.4 and 5.19.6 of disconnectedness of a
topological space are equivalent.

Proof Toprove this theorem,we have to prove thatDefinition 5.19.4 =⇒ Definition
5.19.6 and Definition 5.19.6 =⇒ Definition 5.19.4. We prove this by using the
Remark 5.19.7.

Definition 5.19.6 =⇒ Definition 5.19.4: Let X be a disconnected space accord-
ing to Definition 5.19.6. ThenX decomposes into the union of two nonempty disjoint
open sets A and B. Hence, X = A ∪ B and A ∩ B = ∅. It shows that A and B are both
closed sets in X . Since Ā = A and B̄ = B, it follows that Ā ∩ B = ∅ and A ∩ B̄ = ∅.
It asserts that X is disconnected according to Definition 5.19.4.

Definition 5.19.4 =⇒ Definition 5.19.6: LetX be a disconnected space according
toDefinition 5.19.4. ThenX decomposes into the union of two nonempty setsA andB
such that X = A ∪ B, where Ā ∩ B = ∅ and A ∩ B̄ = ∅. Then B̄ ⊂ X − A, and Ā ⊂
X − B show that Ā = A and B̄ = B. Thus A and B are closed sets in X and hence X
is disconnected according to Definition 5.19.6. �
Example 5.19.10 (i) The subspace Q of rational numbers in the real line space

R is not connected. Because, given an arbitrary irrational number k, the sets

A = {x ∈ Q: x < k}, B = {x ∈ Q: x > k}

are disjoint nonempty open sets inQ. This gives the decompositionQ = A ∪ B,

which asserts that the space Q is not connected. For an alternative argument,
if we take the open sets A = Q ∩ (−∞,

√
2) and B = Q ∩ (

√
2,∞), then the

decomposition Q = A ∪ B, shows that the space Q is not connected.
(ii) In general, a subspace X of the real line spaceR is not connected, if X is not an

interval. Because, if X is not an interval, then take three distinct real numbers
a, b, c such that

a, b ∈ X , a < c < b but c /∈ X .

If we take A = X ∩ (−∞, c) and B = X ∩ (c, ∞), then X is the union of two
disjoint open sets A and B.
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(iii) On the other hand, every open interval (a, b) in the real number space R is
connected by Corollary 5.25.11 and hence every closed interval [a, b] in the
real number space R is also connected by Corollary 5.25.13.

Definition 5.19.11 Let (X , τ ) be a topological space. It is said to be totally discon-
nected if its only connected subspaces are one-pointic set. Equivalently, (X , τ ) is
totally disconnected if for every pair of distinct points a, b ∈ X , there exist open sets
A and B such that

(i) a ∈ A and b ∈ B;
(ii) X ∩ A and X ∩ B are disjoint open sets with X = A ∪ B.

Then A ∪ B is called a disconnection of X with a ∈ A and b ∈ B.

Example 5.19.12 The space Q endowed with induced topology from the real line
space R is a totally disconnected space. Because, for any pair of distinct rational
numbers a and bwith a < b, there exists an irrational number c such that a < c < b.
Then

A = {x ∈ Q: x < c}

and
B = {x ∈ Q: x > c}

form the required disconnection of Q with a ∈ A and b ∈ B. This proves that Q is
totally disconnected.

Example 5.19.13 Cantor space defined in Chap.3 with subspace topology inherited
from the usual topology of R is a totally disconnected space.

Example 5.19.14 Every topological space with discrete topology is totally discon-
nected.

5.20 Components of a Topological Space

This section describes the decomposition of disconnected spaces. Given an arbitrary
topological space X , there is a natural way to decompose X in connected and path
connected pieces, called components by equivalence relations on X described in
Definition 5.20.1 and in Definition 5.22.4 respectively. The first one gives connected
components that is studied in this subsection. On the other hand, the second one
gives connected path components that is studied in Section 5.22. Let (X , τ ) be a
topological space and “∼” be a binary relation on X defined by x ∼ y iff there is a
path in X from x to y. Then ∼ is an equivalence relation and each equivalence class
is called a path component of X .

A topological space which is not connected also plays a key role in topology and
geometry. Such a space X can be uniquely expressed as a union of connected pieces,
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called components of X . So it is natural to decompose a disconnected space into
connected spaces. We construct such a decomposition.

Definition 5.20.1 Let (X , τ ) be a topological space. Given a point x inX , the largest
(maximal) connected set Cx (from set theoretic viewpoint) containing the point x, is
called the component or connected component of x in X . The set Cx is the union
of all connected sets in X containing the point x. The connected components of X
can be equally well defined by an equivalence relation on X : x ∼ y iff there is a
connected subspace of X containing both x and y. The equivalence class containing
x denoted by Cx is the connected component of x in X .

Remark 5.20.2 Let (X , τ ) be a topological space. Given a point x in X , the set Cx

is the union of all connected sets in X containing the point x.

Theorem 5.20.3 asserts that distinct connected components of a topological space
are separated from one another.

Theorem 5.20.3 Let (X , τ ) be a topological space. Then it can be decomposed into
the union of connected components which are closed and disjoint.

Proof As the connected components of X are determined by an equivalence relation
on X : x ∼ y iff there is a connected subspace of X containing both x and y and the
equivalence class Cx containing x is the connected component of x in X , it follows
thatX can be decomposed into the union of connected componentswhich are disjoint.
It can also be explained in an alternative way. Let x and y be two distinct points
of X with Cx and Cy as their connected components. As the sets Cx and Cy are
both connected and maximal (i.e., largest from the set theoretic viewpoint) only two
possibilities occur :

(i) either Cx = Cy

(ii) or Cx ∩ Cy = ∅.
Since Cx ∩ C̄y = ∅ and Cy ∩ C̄x = ∅, it follows that Cx is separated from Cy. Con-
sequently, X = ⋃

Cx, where the union is performed over all x ∈ X . Again, since
the closure of the connected set Cx is Cx and hence it is connected by Corollary
5.17.29. By maximality of the connected set Cx containing the point x, it follows
that Cx ⊂ Cx ⊂ Cx and hence Cx = Cx implies that Cx is closed.

�

Proposition 5.20.4 Let (X , τ ) be topological space and S be a connected subset of
X . Then S is contained in a component of X .

Proof LetCS be the union of the family of all connected subsets of X ,which contain
S. Then CS is also connected. It is also maximal by its construction. Hence it follows
that CS is a component of X , which contains S. �

Example 5.20.5 (i) The subspace X = R − {0} of R has two components

C1 = {x ∈ X : x < 0}, C2 = {x ∈ X : x > 0}.
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(ii) The space Q endowed with topology induced from the real line space R has
component Cx = {x} for every point x ∈ X .

(iii) The subspaceX = Rn+1 − Sn of theEuclidean spaceRn+1 has two components
C1 and C2 defined by

C1 = {x ∈ X : ||x|| < 1},C2 = {x ∈ X : ||x|| > 1}.

(iv) The space R1 − S0 has three components C1,C2 and C3, where C1 = (−∞,

−1),C2 = (−1, 1) and C3 = (1,∞).
(v) A torus T is connected and hence it has only one component.
(vi) In a discrete space each point is a component.
(vii) Every connected space has only one component which is the whole space itself.

Example 5.20.6 Let A be the subspace of the Euclidean plane R2 defined by

A = {(x, y) ∈ R2 : 3x + 5y + 1 = 0}

For A∗ = R2 − A and f (x, y) = 3x + 5y + 1, define

C1 = {(x, y) ∈ A∗: f (x, y) > 0} ⊂ A∗

and

C2 = {(x, y) ∈ A∗: f (x, y) < 0} ⊂ A∗.

Then the straight line 3x + 5y + 1 = 0 separates the Euclidean plane R2 into two
disjoint connected components C1 and C2. The point (0, 0) ∈ C1, since f (0, 0) =
1 > 0. On the other hand, the point (1,−3) ∈ C2, since f (1,−3) = −11 < 0.

5.21 Local Connectedness and Its Characterization

This section studies the local connected spaces and characterize them in Proposition
5.21.5. Connectedness is an useful topological property. On the other hand, local
connectedness is not a topological property (see Example 5.21.12) but at some situa-
tions, it is convenient and important to study spaces satisfying conditions analogous
to connected spaces locally. This facilitates to study local connected spaces. Every
connected component of a topological space is a closed set by Theorem 5.20.3. But
it may not be open. For example, for the subspace X = {0} ∪ {1/n: n ∈ N} of the
real line space R, the only connected component containing 0 is {0}, is not an open
subset of X , since {0} is not a nbd of 0 in X . This problem leads to the concept of
local connectedness. A characterization of locally connected spaces in terms of open
connected components is given in Proposition 5.21.8
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Definition 5.21.1 Let (X , τ ) be a topological space, and x be a point of X . Then X
is said to be locally connected at x if for every open set V containing x, there exists
a connected open set U with x ∈ U ⊂ V , i.e., any two points of U are connected in
V . The space X is said to be locally connected if it is locally connected at each of
its points.

Example 5.21.2 The Euclidean space Rn is connected and locally connected for
all n ≥ 1 but its subspace X = [−1, 0) ∪ (0, 1] is not connected but it is locally
connected.

Example 5.21.3 The concepts of connectedness and locally connectedness are inde-
pendent. Consider the following examples.

(i) Example of a locally connected space which is not connected: X considered
in Example 5.21.2 is not connected but it is locally connected.

(ii) Example of a connected space which is not locally connected: Consider the
graph Gf = {(t, f (t)): t ∈ I} of the function

f : I → R, t �→
{
0, if t = 0

sin π
t , if t ∈ (0, 1]

with subspace topology inherited from the Euclidean topology on R2.
Since f is continuous on (0, 1] and (0, 1] is connected the graph G1 of the
restriction f |(0,1] is connected. Again, Gf − {0, 0} = G1 has its limit point
{(0, 0)} assertsGf is connected. On the other hand,Gf is not locally connected
at the point (0, 0) implies that Gf is not locally connected.

(iii) Example of a locally connected space which is not connected. Consider the
topological space X = {0, 1} endowed with discrete topology. Then this space
is locally connected but it not connected.

Example 5.21.4 (i) Any space which is locally Euclidean is locally connected.
(ii) Every discrete topological space X is locally connected, because if x ∈ X , then

{x} is an open connected set containing x. But it is not connected if X consists
of more than one element.

(iii) A surface such as torus, sphere S2 are locally connected.
(iv) The topological space X = {0} ∪ {1/n: n = 1, 2, . . . .} endowed with the sub-

space topology from the real line space R is not locally connected.

Proposition 5.21.5 gives a characterization of local connectedness at a point in
terms of its open nbds. So, locally connected spaces can be restated in the following
form:

Proposition 5.21.5 A topological space (X , τ ) is locally connected at a point x ∈ X
iff every nbd of x contains a connected nbd of x.
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Proof Let X satisfy the given condition and V be a given nbd of x in X . Then by
hypothesis, V contains a connected nbd U of x. Consequently, any two points of U
are connected in U and thus also in V . This asserts that X is locally connected at x.
Conversely, suppose that X is locally connected at a point x ∈ X . Let V be a given
nbd of x in X . Then by definition, there is a nbd U ⊂ V of x with the property that
any two points ofU are connected in V . Hence for an arbitrary point y ∈ U , there is
a connected set Cy ⊂ V which contains both the points x and y. If

C =
⋃

{Cy: y ∈ U } ⊂ V ,

then C is a connected nbd of x contained in V .
�

Corollary 5.21.6 Let (X , τ ) be a locally connected space at a point x ∈ X . Then x
is an interior point of the component Cx of X .

Proof It follows from Proposition 5.21.5 that the point x ∈ X has a connected nbd
Ux. Since Cx is the largest connected set in X , which contains the point x, it asserts
that Ux ⊂ Cx. This implies that x is an interior point of Cx. �

Proposition 5.21.7 Let (X , τ ) be a locally connected space. Then

(i) every subspace of X is locally connected;
(ii) for every point x ∈ X , the component Cx of X , is a open set in (X , τ ).

Proof By definition of a locally connected space, X is locally connected at every
point ofX . Hence it follows that every subspace ofX is locally connected. This proves
the part (i) of the proposition. On the other hand, part (ii) follows from Corollary
5.21.6. �

Proposition 5.21.8 characterizes locally connectedness property of a topological
space in terms of the components of its open sets.

Proposition 5.21.8 Let (X , τ ) be a topological space. Then it is locally connected
iff the component of an open set is also open.

Proof First suppose that component of every open set is also open in X . Let Nx be
a nbd of a point x ∈ X and U be a component of the open set Nx, containing the
point x. Then by hypothesis, U is open and hence for a nbd Nx, containing the x,
there exists a connected nbd U of x such that x ∈ U ⊂ Nx. This asserts that (X , τ )

is locally connected.

Conversely, suppose that (X , τ ) is locally connected and V is a component con-
taining x of the open setU containing x. Then there exists a connected setW such that
x ∈ Int(W ) ⊂ W ⊂ U. Since x ∈ V ∩ W, both V and W are connected. it follows
that V ∪ W is connected and is contained in U . Again, since V is a component, it
follows that V ∪ W = V , W ⊂ V and x ∈ Int(W ) ⊂ V . It shows that V is open. �
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Theorem 5.21.9 Let (X , τ ) and (Y , σ ) be two topological spaces and f : X → Y
be a continuous closed map. If X is locally connected, then f (X ) is also so.

Proof Let (X , τ ) be locally connected,U be an open set in f (X ) and A be a compo-
nent ofU . We claim that A is open in f (X ). By hypothesis, f : X → Y is continuous.
It implies that f : (X , τ ) → (f (X ), σf (X )) is also continuous. Hence, for every open
set U in f (X ), its inverse image f −1(U ) is also open in X . Any component C of
f −1(U ) inX , is open, sinceX is locally connected. SinceC is connected, f (C) is also
connected. Hence it follows that f −1(A) is the union of a family of components of
f −1(U ) in X . Since, X is locally connected by hypothesis, it follows that each com-
ponent of f −1(U ) is open in X and hence X − f −1(A) is closed in X . By hypothesis
f is a closed map and hence

f (X − f −1(A)) = f (X ) − A

is closed. This shows that A is open in f (X ) and hence f (X ) is locally connected by
Proposition 5.21.8. �

Corollary 5.21.10 Local connectedness is preserved by every continuous closed
map.

Proof It follows from Theorem 5.21.9. �

Remark 5.21.11 Example 5.21.12 shows that local connectedness is not a topolog-
ical property, because it is not preserved by an arbitrary continuous map (though it
is preserved by every continuous closed map).

Example 5.21.12 The continuous image of a locally connected space may not be
locally connected. For example, consider the topological spaces X = {0, 1, 2, . . .}
endowed with discrete topology and Y = {0} ∪ { 1n : n = 1, 2, 3, . . .} with subspace
topology inherited from the real line space R. Then X is locally connected but Y is
not locally connected. Consider the continuous bijective map

f :X → Y , n �→
{
0, if n = 0
1
n , if n ∈ N.

Then X is locally connected but its continuous image f (X ) = Y is not locally con-
nected. This example justifies the assumption f : X → Y to be a continuous closed
map in Theorem 5.21.9 to make f (X ) locally connected.

Remark 5.21.13 For more properties of local connectedness, see Exercises 47 and
48 of Section 5.28.
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5.22 Path Connectedness, Path Component and Locally
Path Connectedness

This section studies the concept of path connectedness, sometimes, written also as
path connectedness. It is an important concept in topology. It is closely related to
the concept of connectedness, since every path connected space is connected (see
Corollary 5.22.11). The path components of a topological space X are described in
Definition 5.22.4 by an equivalence relation on X . This section studies locally path
connected spaces. Roughly speaking, by a local path connected space, it is meant
that its every point has an arbitrary small nbd such that it is path connected.

Definition 5.22.1 Let (X , τ ) be a topological space. A continuous map

f : I → X

is said to be a path in X . If f (0) = a and f (1) = b, then f is said to be a path
connecting the points a, b ∈ X . The point a is said to be the initial point and the
point b is said to be the terminal point of the path f .

Definition 5.22.2 A topological space (X , τ ) is said to be path connected if for
every pair of points a, b ∈ X , there is a path connecting the points a, b in X , i.e., if
there exists a continuous map f : I → X such that f (0) = a, f (1) = b and f (I) ⊂ X .
A path connected space is sometimes written as a path connected space. It is said to
be locally path connected at a point x ∈ X , if every open nbdU of x, there is a path
connected nbd V of x such that such that V ⊂ U . The space X is said to be locally
path connected if it is locally path connected at every point x ∈ X .

Example 5.22.3 Every convex set in Rn is path connected.

Definition 5.22.4 Let (X , τ ) be a topological space and “∼” be a binary relation on
X defined by x ∼ y iff there is a path in X from x to y. Then ∼ is an equivalence
relation and each equivalence class is called a path component of X .

Remark 5.22.5 Let (X , τ ) be a topological space. It follows from Definition 5.22.4
that the path components of X are path connected disjoint subspaces of (X , τ ) such
that

(i) their union is X and
(ii) they satisfy the property: every nonempty path connected subspace of (X , τ )

meets only of them.

Example 5.22.6 In the real line space R, each path component of its subspace Q
consists of a single rational point and no path component of Q is open in the sub-
space Q.

Example 5.22.7 (Comb space)Consider the subspaceComb of theEuclidean plane
R2
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Fig. 5.1 Comb space (0, 1)

(0, 0) (1/2, 0) (1, 0)
L

Comb = {(x, y) ∈ R2: 0 ≤ y ≤ 1, x = 0, 1/n,

∀ n ∈ N or y = 0, 0 ≤ x ≤ 1, } ⊂ R2.

The set Comb endowed with topology inherited from the usual topology of R2

is called the comb space. Every small nbd of the point (0, 1) has infinite number of
path components in the comb space Comb. Geometrically, the comb space Comb
consists of the horizontal closed unit line segment lying on the x-axis, joining the
point (0, 0) to the point (1, 0) together with the the vertical closed unit line segment
standing on each of the points (1/n, 0) for every n ∈ N as shown in Diagram in
Fig. 5.1.

Remark 5.22.8 The more properties of Comb space are studied in Basic Topology,
Volume 3 of the present book series.

Example 5.22.9 (Topologist’s sine curve): LetX = {(x, y) ∈ R2 : y = sin( 1x ), x >

0} ∪ {(0, y) ∈ R2 : |y| ≤ 1} ⊂ R2. Then the space X endowed with subspace topol-
ogy inherited from Euclidean topology R2 is called topologist’s sine curve (see
Fig. 5.2). Let A = {(x, y) ∈ R2 : y = sin( 1x ), x > 0} and B = {(0, y) ∈ R2: |y| ≤ 1}.
Then X = A ∪ B. Clearly, A is the image of the continuous map

f : (0, 1) → R2 : x �→
(

x, sin

(
1

x

))

Hence A is connected. But X has two path components, one is A and the other one
is the vertical interval given by B.

Theorem 5.22.10 Let (X , τ ) be a topological space such that every pair of points
can be joined by some connected subset of X . Then X is connected.

Proof If X is not connected, then there exist two disjoint open sets U and V such
that X = U ∪ V . Let a ∈ U and b ∈ V be two points and W ⊂ X be a connected
set containing the points a and b. Then U1 = U ∩ W and V1 = V ∩ W are two
disjoint nonempty open sets in W such that W = U1 ∩ V1. But it contradicts the
connectedness of W .

�
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Fig. 5.2 Topologist’s sine curve

Corollary 5.22.11 Every path connected space is connected.

Proof Proof I It follows from Theorem 5.22.10.

Proof II(An independent proof ): Let (X , τ ) be a path connected space. If it is not
connected, then X can be expressed as X = A ∪ B, where A and B are nonempty
disjoint open sets in (X , τ ). Hence, there exist two distinct elements a ∈ A, b ∈ B.
If f : I → X is a path in X with f (0) = a and f (1) = b, then f −1(A) and f −1(B) are
nonempty disjoint open subsets in I, such that I = f −1(A) ∪ f −1(B). But it contra-
dicts the connectedness of I. �

Example 5.22.12 An immediate application of Corollary 5.22.11 in matrix algebra
is now given. Let M (n,R) be the set of all n × n matrices over R. It is considered
as a subspace of the Euclidean n2-space Rn2 . If

X = {M ∈ M (n,R): xtMx ≥ 0, ∀ x ∈ Rn},

then X is path connected, since for any two matrices M ,N ∈ X , and any λ ∈ [0, 1]

xt(λM + (1 − λ)N )x ≥ 0

asserts that X is path connected and hence it is also connected by Corollary 5.22.11.

Converse ofCorollary 5.22.11 is not true. In support consider theExample5.22.13.
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Example 5.22.13 A connected space may not be path connected.

(i) Let [An,Bn] denote the line segment joining the points An = (1/n, 0) and Bn =
(1/n, 1) in R2. If [P,Q] represents the line segment joining the points P =
(0, 0) and Q = (1, 0) in R2, then the subspace

X = [P,Q] ∪ (0, 1)
∞⋃

n=1

[An,Bn] ⊂ R2

is connected. But it is not path connected, since the point (0, 1) cannot be
connected by a path to any other point in X .

(ii) Let X1 and X2 be two nonempty subsets of the Euclidean plane R2 defined by

X1 = {(x, y) ∈ R2: 0 ≤ x ≤ 1, y = x

n
, n ∈ N} ⊂ R2;

X2 = {(x, 0) ∈ R2: 1
2

≤ x ≤ 1} ⊂ R2.

Then X1 and X2 are both path connected subsets of R2 and hence each of them
is connected by Corollary 5.22.11. On the other hand, since every point of X2

is a limit point of X1, it follows that X1 and X2 are not separated and hence
their union X1 ∪ X2 is connected. As there exists no path from any point of X1

to a point of X2, X1 ∪ X2 is not path connected. This example shows that a
connected space may not be path connected.

Example 5.22.14 Consider the subspace

X =
∞⋃

n=1

{(x, y) ∈ R2 : x = ny, n ∈ N}

of the Euclidean plane R2. To show that the subspace X is path connected it is
sufficient to show that any two points of X can be joined by a path in X . Let α =
(ny, y) and β = (my′, y′) be two arbitrary points in X . Define the map

f : I = [0, 1] → X : t �→
{

(1 − 2t)(ny, y), for all t ∈ [0, 1
2 ]

(2t − 1)(my′, y′), for all t ∈ [ 12 , 1]

Then f is well defined and is continuous by pasting lemma. Hence f is a path in X .
Moreover,

f (0) = α, f (1) = β =⇒ X is path connected

and hence X is connected by Corollary 5.22.11.
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Definition 5.22.15 A topological space X is said to be locally path connected if
every nbd Nx of x ∈ X , contains a path connected nbd.

Remark 5.22.16 In a locally connected topological space the components are both
open and closed.Converse ofCorollary 5.22.11 is not true, i.e., a connected spacemay
not be path connected see Example 5.22.13. But Proposition 5.22.17 and Corollary
5.22.11 taken together assert that under certain specified conditions the concepts of
connectedness and path connectedness coincide.

Proposition 5.22.17 Every connected, locally path connected space is path con-
nected.

Proof Let X be a connected, locally path connected space with base point x0. Then
the subset A = {x ∈ X : x, x0 can be joined by a path in X } is an open set in X .But if
x is not in A, then x has a path connected nbd Nx with the property that no point of
Nx is in A. This asserts that X − A is an open set. Again since X is path connected by
hypothesis and A is nonempty, the only possibility is that A = X . This implies that
X is path connected. �

Remark 5.22.18 Formore study of path connectedness and local path connectedness
see Sects. 5.25 and 5.28.

5.23 Space-Filling Curve Theorem

This section proves the existence and makes a construction of a continuous function,
called space-filling curve, defined on a closed interval of the real line space whose
image is a two-dimensional region in the Euclidean plane R2. There are several
versions of space-filling curve theorem. The common version is that there is a sur-
jective continuous map f : I → I2. But for convenience of its proof, we first prove its
version given in Theorem 5.23.4 from which the common version follows in Corol-
lary 5.23.5, since a triangle and a square in the Euclidean plane are topologically
equivalent.

Historically, G. Cantor (1845–1918) proved in 1877 that the interval I = [0, 1]
and the square I2 have the same number of points by establishing a bijective corre-
spondence between the sets I and I2, i.e., I ∼ I2. He remarked that the dimension is
not a set-theoretic concept. The difference of their dimensions involves topology.
G. Peano (1858–1932) showed again in 1890 that there is a continuous function on I
such that its image is a two-dimensional region, such as a square or a triangle in the
Euclidean plane, called a space-filling curve or Peano curve named after G. Peano.

Example 5.23.1 Let X ,Y be two topological spaces defined by

X = I = [0, 1] and Y = I × I.
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Then a continuous map f : X → Y geometrically represents a path in the square Y .
There exist continuous maps f : X → Y whose image covers the whole square Y
by “Space-filling Curve Theorem” (see Corollary 5.23.5). No such map f can be
injective, otherwise, f would be homeomorphism by Theorem 5.4.5. But it is not
possible, since deletion of a point p from X makes the space X − {p} disconnected
but it not so for the space Y − {f (p)}.
Remark 5.23.2 Analogue of Schroeder–Bernstein theorem for sets is not valid
for topological spaces. This theorem for sets asserts that if X and Y are two sets,
such that X ∼ Y1 ⊂ Y and Y ∼ X1 ⊂ X , then X ∼ Y . But its analogue result is not
valid for topological spaces in the sense that there exist continuous surjective maps
f : X → Y having its inverse map g : Y → X which is continuous but it not injective
showing that such spaces X and Y may not be homeomorphic see Example 5.23.1.

Remark 5.23.3 Since a triangle and a square in the Euclidean plane are topologically
equivalent, Theorem 5.23.4 proves one version of space-filling curve for a triangle,
from which the common version for a square follows in Corollary 5.23.5.

Theorem 5.23.4 There is a surjective continuous map f : I → �, where � is a
triangle in the Euclidean plane R2.

Proof Without any loss of generality, we assume that � is an equilateral triangle in
the Euclidean plane R2 having each side is of length of one half unit. Construct a
sequence of continuous functions {fn}, where fn: I → �: n = 1, 2, 3, . . . is defined
as follows: The first three functions f1, f2, f3 are defined as depicted in the Fig. 5.3.

More precisely, the curve f1(I) joins two vertices of the� by a broken line passing
through its center of gravity in the sense that the broken point is the center of gravity
of the �, as shown in Fig. 5.3(a). To construct f2, the triangle is subdivided into
four smaller congruent triangles with the curve f2(I) as shown in Fig. 5.3 (b)). As
n increases, the curve fn will go on increasing filling up more and more points of
the �. Given two positive integers m, n with n ≥ m, and a point t ∈ I, a triangle is
obtained containing both the points fn(t) and fm(t) in this triangle, whose sides have
length 1/2m units. Hence

||fn(t) − fm(t)|| ≤ 1/2m, ∀ t ∈ I,

where ||fn(t) − fm(t)|| denotes Euclidean distance between the points fn(t) and fm(t)
in the Euclidean planeR2. This asserts that the constructed sequence {fn} is uniformly
convergent and the limit function f : I → � is continuous, since every function fn
is continuous. To show that f (I) = �, we use the fact that every image point of
fn lies within the distance 1/2n from every point of the � for all n. Let U be a
nbd of a point x ∈ � in R2 and n0 be an integer large enough so that the open ball
Bx(1/2n0−1) falls inside the nbd U . Select a point t0 ∈ I such that ||x − fn0(t0)|| ≤
1/2n0 . Since ||fn0(t) − f (t)|| ≤ 1/2n0 , ∀ t ∈ I, it follows from triangle inequality of
the usual metric on the Euclidean plane R2 that ||x − f (t0)|| ≤ 1/2n0−1. This shows
that each point of the triangle � is a limit of the image set f (I). Again, since, I is
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(a) (b)

(c)

Fig. 5.3 Construction of space-filling curve

closed in the real line space R its continuous image f (I) under the continuous map
f is also a closed subset of the Euclidean plane R2 and hence it contains all its limit
points. This asserts that the image of this function f is the whole set �. �

Corollary 5.23.5 (Space-Filling Curve Theorem) There is a surjective continuous
map ψ : I → I2.

Proof Since there exists a homeomorphism h: � → I2. it follows from Theorem
5.23.4 that the composite map

ψ = h ◦ f : I → I2

is a surjective continuous map. �
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Corollary 5.23.6 If there exists a continuous onto map f : I → I2, then f cannot be
a homeomorphism.

Proof This existence of a continuous onto map f : I → I2 is guaranteed by space-
filling curve theorem 5.23.5. If f is injective, then f : I → I2 is a continuous bijective
map and hence f is a homeomorphism by Theorem 5.4.5. But is not possible, since
deletion of any point from I2. makes the remaining space disconnected (such a point
is called a cut point in I but but no such cut point exists in I2, because deletion of
a point from R2 keeps the remaining space connected. This asserts that the space I
and I2 cannot be homeomorphic. �

Corollary 5.23.7 There exists no homeomorphism

f : I → I2.

Proof It follows from Corollary 5.23.6. �

5.24 Function Spaces

This section continues the study of topologies generated by functions initiated in
Chap.3 by defining different topologies on the set F(X ,Y ) of all set functions
f : X → Y for sets X and Y with specializing the sets X and Y . More precisely,
various topologies such as compact open topology, uniform convergence topology,
point open topology and pointwise convergence topology are defined on F(X ,Y )

makingF(X ,Y ) function spaces. Such spaces play an important role in topology and
geometry. For its key role in topology, see Basic Topology, Volume 3 of the present
series of books. The concept of uniform convergence topology on every compact set
was born through the study of classical theory of functions. For the study of function
spaces F(X ,Y ), it becomes necessary to convey the following basic concepts.

Definition 5.24.1 Let X and Y be nonempty arbitrary sets. The set F(X ,Y ) is
endowed with a topology generated by its suitable subcollection as a subbase for a
topology τ . Then the topological space (F(X ,Y ), τ ) is called a function space.

Definition 5.24.2 Let X and Y be two nonempty arbitrary sets. Given a nonempty
set Z, let

ψ : Z × X → Y

be a function of two variables. Keeping the first variable fixed at z ∈ Z, we obtain a
function

ψz:X → Y , x �→ ψ(z, x),
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which gives a one-parameter family of functions. This defines a function

g: Z → F(X ,Y ), z �→ ψz,

called the associated function of ψ .

Definition 5.24.3 Let X , Y and Z be three nonempty arbitrary sets and

g: Z → F(X ,Y ), z �→ ψz

be given in 5.24.2. Then the map

h: F(Z × X ,Y )) → F(Z,F(X ,Y )), ψ �→ g

is a bijection, called the exponential law for sets.

Remark 5.24.4 As the map h given in Definition 5.24.3 is bijective, it follows that g
canbe recovered fromψ and conversely,where g andψ are given inDefinition 5.24.2.
This is called exponential law for sets. Because, using the notation, YX forF(X ,Y ),

Definition 5.24.3 asserts that YZ×X = (YX )
Z
(which is equal up to equipotency by

a bijection).

Definition 5.24.5 Given two nonempty sets X and Y . The map

e: F(X ,Y ) × X → Y , (f , x) �→ f (x)

is called the evaluation map.

5.24.1 Compact Open Topology

This subsection studies compact open topology, which arises in a natural way. If X
is a metric space, then the compact open topology on F(X ,Y ) for any topological
space Y coincides with the topology of uniform convergence (see Definition 5.24.11)
on compact subsets (see Exercise 76 of Section 5.28).

Definition 5.24.6 Let X and Y be topological spaces and C(X ,Y ) be the set of
all continuous functions from X to Y . Then a topology τ , called compact open
topology, is defined on C(X ,Y ) by taking a subbase for the topology τ consisting
of all subsets of the form

VK,U = {f ∈ C(X ,Y ): f (K) ⊂ U },

where K is a compact subset of X and U is an open subset of Y . An open set in the
compact open topology τ on C(X ,Y ) is an arbitrary union of finite intersections of
sets of the form VK,U .



5.24 Function Spaces 351

Theorem5.24.7 proves the continuity of the evaluationmap e and characterizes the
continuity of the function ψ : Z × X → Y by its associated function g described in
Definition 5.24.2 and also provides the key results to proveTheorem of Exponential
Correspondence and Exponential Law formulated in Theorem 5.24.9.

Theorem 5.24.7 Let Y ,Z be two arbitrary topological spaces and X be a locally
compact Hausdorff space. If C(X ,Y ) is endowed with compact open topology τ ,
then (using the notations given in Definition 5.24.2)

(i) the evaluation map (function) e: C(X ,Y ) × X → Y , (f , x) �→ f (x) is contin-
uous;

(ii) amap (function) ψ : Z × X → Y is continuous iff its associatedmap (function)

g: Z → C(X ,Y ), z �→ ψz

is continuous, where
ψz: X → Y , x �→ ψ(z, x).

Proof (i) Given an element (f , x) ∈ C(X ,Y ) × X , let U be a nbd of f (x) in Y .
Then e(f , x) = f (x) ∈ U and hence x ∈ f −1(U ), which is an open set in X
by continuity of f . As X is a locally compact Hausdorff space by hypothesis,
it follows from Definition 5.6.8 that there exists an open set W in X with W
compact such that

x ∈ W ⊂ W ⊂ f −1(U ).

This asserts that VW ,U = B forms a subbasic open set for the topology τ

on C(X ,Y ), which contains f . Consider the open nbd B × W of (f , x) in
C(X ,Y ) × X . If (f ′, x′) ∈ C(X ,Y ) × X , then

e(f ′, x′) = f (x′) ∈ f ′(W ) ⊂ f ′(W ) ⊂ U.

This implies that e maps B × W into U . This asserts that e−1(U ) is open in
C(X ,Y ) × X and hence the evaluation map e is continuous.

(ii) First suppose that ψ is continuous. Then given z ∈ Z , the map fz: X →
Z × X , x → (z, x) is continuous andψz = ψ ◦ fz. It shows that eachψz is con-
tinuous. Moreover, if z ∈ Z and VK,U is any subbasic open nbd of g(z) = ψz

in C(X ,Y ), then there exists an open nbd W of z such that g(W ) ⊂ VK,U .
This asserts that g is continuous. Conversely, assume that g: Z → C(X ,Y ) is
continuous. Then ψ is the composite map

Z × X
g×1d−−−−−→ C(X ,Y ) × X

e−−−→ Y ,

i.e.,ψ = e ◦ (g × 1d ):Z × X → Y is a function. Since e and g are continuous,
it follows that ψ is continuous.

�
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Corollary 5.24.8 Let Y ,Z be two arbitrary topological spaces and X be a locally
compact Hausdorff space. If C(X ,Y ) is endowed with compact open topology, then
a map k: Z → C(X ,Y ) is continuous iff the composite map

Z × X
k×1d−−−−−→ C(X ,Y ) × X

e−−−→ Y

is continuous.

Proof It follows from the second part of Theorem 5.24.7 by taking ψ = e ◦ (k ×
1d ):Z × X → Y . Because k is then the associated map of ψ . �

We summarize the above discussion in the basic and important theorems.

Theorem 5.24.9 (Theorem of exponential correspondence)LetX bea locally com-
pact Hausdorff space and Y ,Z be arbitrary topological spaces. Then a function
g:Z → C(X ,Y ), z �→ ψz is continuous, iff the composite function (map)

ψ :Z × X
g×1d−−−−−→ C(X ,Y ) × X

e−−−→ Y

i.e.,ψ = e ◦ (g × 1d ):Z × X → Y is continuous, whereψz: X → Z, x �→ ψ(z, x).

Theorem 5.24.10 (Exponential Law) Let X be a locally compact Hausdorff space
and Z be a Hausdorff space. If Y is a topological space, then the function (map)

h:C(Z,C(X ,Y )) → C(Z × X ,Y ), g �→ ψ = e ◦ (g × 1d )

is a homeomorphism.

5.24.2 Uniform Convergence Topology

This subsection studies compact open topology, which arises in a natural way. For
example, if Y is a metric space, then for any topological space X , the topology
defined by uniform convergence on compact subsets coincides with the compact
open topology (see Definition 5.24.6) on C(X ,Y ).

Definition 5.24.11 Let (X , τ ) be a compact space and (Y , d) be a metric space.
Then the map

ψ : C(X ,Y ) × C(X ,Y ) → R, (f , g) �→ sup
x∈X

{d(f (x), g(x))}

defines a metric on C(X ,Y ) and the corresponding topology τψ on C(X ,Y ) induced
by the metric ψ is called the topology of uniform convergence.
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Remark 5.24.12 The definition of topology of uniform convergence on the collec-
tionB(X ,Y ) of all bounded functions from an arbitrary setX to ametric space (Y , d)

is similar.

Theorem 5.24.13 Let (X , τ ) be a compact space, (Y , d) be a metric space and
C(X ,Y ) be endowed with the topology τψ of uniform convergence given in Defini-
tion 5.24.11. Then the following statements are equivalent in the topological space
(C(X ,Y ), τψ).

(i) The sequence {fn} of continuous functions in C(X ,Y ) converges to h ∈ C(X ,Y )

with respect to the distance functionψ given inDefinition 5.24.11 is continuous.
(ii) The sequence {fn} of functions converges to h in the usual sense.

Proof (i) =⇒ (ii): Suppose (i) holds, i.e., the sequence {fn} of functions in C(X ,Y )

converges to h ∈ C(X ,Y ). Then given an ε > 0, there exists a positive integer n0
such that ψ(fn, h) < ε, whenever n ≥ n0. Hence

∀ n ≥ n0, d(fn(x), h(x)) ≤ sup
x∈X

{d(fn(x), h(x))} = ψ(fn, h) < ε, ∀ x ∈ X .

This shows that the sequence {fn} uniformly converges to h, showing that (i) =⇒
(ii). Clearly, h is continuous.

(ii) =⇒ (i) Suppose that (ii) holds. Then given an ε > 0, there exists a positive
integer n0 such that

∀ n ≥ n0, d(fn(x), h(x)) < ε/2, ∀ x ∈ X .

This asserts that

∀ n ≥ n0, sup
x∈X

{d(fn(x), h(x))} ≤ ε/2 < ε =⇒ ψ(fn, h)) < ε.

It shows that the sequence {fn} converges to h and hence (ii) =⇒ (i). �

Theorem 5.24.14 Let B(X ,Y ) of all bounded functions from an arbitrary set X to
a metric space (Y , d) and B(X ,Y ) be endowed with the topology τψ of uniform
convergence. Then the following statements are equivalent in the topological space
(B(X ,Y ), τψ).

(i) The sequence {fn} of functions in B(X ,Y ) converges to h ∈ B(X ,Y ) with
respect to the distance function ψ given in Definition 5.24.11.

(ii) The sequence {fn} of functions converges to h in the usual sense.

Proof It is similar to the proof of the Theorem 5.24.13. �
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5.24.3 Point Open Topology

This subsection conveys the concept of point open topology to study the function
spaces F(X ,Y ). by specifying the sets X and Y .

Definition 5.24.15 Let X be an arbitrary set and Y be a topological space. Define
a subbase B of the product topology on F = �{Yx: x ∈ X }, where B consists of
all subsets of F(X ,Y ) of the form {f ∈ F(X ,Y ): f (x0) ∈ U }, i.e., all functions
f ∈ F(X ,Y ) such that f maps an arbitrary point x0 ∈ X to an arbitrary open set U
of Y . We call this product topology τp generated by B, the point open topology on
F(X ,Y ).

Example 5.24.16 For F(I, R), the members of the defining subbase B for the
topology τp are of the form

{f ∈ F(I, R): f (i0) ∈ U, i0 ∈ I and U is an open subset of R}.

Geometrically, the subbase B for this topology τp consists of elements, which are
functions having graphs passing through the open setU on the vertical lineR standing
at the point i0 on the horizontal x-axis.

Theorem 5.24.17 Let τ be the point open topology on C(X ,Y ). Then the following
statements are equivalent in the topological space (C(X ,Y ), τ ).

(i) The sequence {fn} of continuous functions in C(X ,Y ) converges to h ∈ C(X ,Y )

with respect to the topology τ .
(ii) The sequence {fn} of functions converges pointwise to h.

Proof Proceed as in proof of the Theorem 5.24.13. �

Theorem 5.24.18 Let B(X ,Y ) of all bounded functions from an arbitrary set X to
a metric space (Y , d) and B(X ,Y ) be endowed with the topology τψ of uniform
convergence. Then the following statements are equivalent in the topological space
(B(X ,Y ), τψ).

(i) The sequence {fn} of functions in B(X ,Y ) converges to h ∈ B(X ,Y ) with
respect to the distance function ψ given in Definition 5.24.11.

(ii) The sequence {fn} of functions converges to h in the usual sense.

Proof It is similar to the proof of the Theorem 5.24.13. �

Remark 5.24.19 Formore study on point open topology, see Exercise 101 of Section
5.28.
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5.24.4 Pointwise Convergence Topology

This subsection conveys the concept of pointwise convergence topology to study the
mapping spaces M (X ,Y ) by specifying the sets X and Y . Let {fn} be a sequence
of functions fn:X → Y from an arbitrary set X to a topological space Y . Then this
sequence {fn} is said to converge pointwise to a function f : X → Y , if for every
x0 ∈ X , the sequence {fn(x0)} converges to h(x0), i.e., limn→∞fn(x0) = h(x0).

Definition 5.24.20 Let X be an arbitrary set and Y be a topological space. Given
the set F(X ,Y ) of all maps from X to Y ., points xi ∈ X , i = 1, 2, . . . , n, and open
sets Ui: i = 1, 2, . . . , n, taking the sets {xi,Ui}nn=1 = {f ∈ F(X ,Y ): f (xi) ∈ Ui, i =
1, 2, . . . , n} as a subbase for a topology τp. This topology is called the pointwise
convergence topology on F(X ,Y ).

Remark 5.24.21 Let X be a topological space. If (Y , d) is a metric space, then the
sequence of functions

{fn: X → Y }

converges pointwise to h iff for every x0 ∈ X and every ε > 0, there exists an integer
n0 depending on n0 and ε such that

d(fn(x0, h(x0)) < ε, whenever n ≥ n0.

Example 5.24.22 Let X = I and Y = R (real line space). If fn : I → R, x �→ xn,
then the sequence {fn} converges pointwise to the function

h: I �→ R, x �→
{
0, for all x ∈ [0, 1)
1, for x = 1,

which is not continuous, although {fn} is a sequence of continuous functions.
Remark 5.24.23 For more study on point open topology, see Exercise 102 of
Sect. 5.28.

5.24.5 Relations on Different Topologies on F(X,Y)

The compact open topology, pointwise convergence topology and uniform conver-
gence topology on the set F(X ,Y ) of all mappings from X to Y have some weaker
or stronger relations given in Proposition 5.24.24.

Proposition 5.24.24 Let τc, τp, τψ denote the compact open topology, pointwise
convergence topology and uniform convergence topology on the set F(X ,Y ) of all
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mappings from X to Y respectively (by specifying the sets X and Y ). Then these three
topologies have the following relations for a metric space Y

(i) τp ⊂ τc;
(ii) τc ⊂ τψ .

Proof It follows from the respective definitions. �

5.24.6 Ascoli’s Theorem on Function Spaces

This subsection proves Ascoli’s Theorem 5.24.30, which characterizes compact
subsets of a certain class of function spaces. For this purpose we start with the
concepts of uniform boundedness and equicontinuity. Let C = C([0, 1]) be the set of
real-valued continuous functions on [0, 1]. Then it is a real vector space under usual
compositions of addition and scalar multiplication of functions. Using the different
norm functions on it, some important metrics are defined on C = C([0, 1]). Such
metric spaces are born through the study of the problems in analysis.

For several forms of Ascoli’s theorem and Ascoli–Arzela theorem see Exercises
78–80 of Sect. 5.28. Ascoli’s theorem is named after Giulio Ascoli (1843–1896). He
introduced the concept of equicontinuity in 1884, which is one of the fundamental
concepts in the theory of real functions.

Definition 5.24.25 Let X be an arbitrary set and F = {f : X → R} be the set of all
real-valued functions on X . Then F is said to be uniformly bounded if there exists
a real number K > 0 if

|f (x)| ≤ K, ∀ f ∈ F , and, ∀ x ∈ X

In particular, a subset F ⊂ C is uniformly bounded if ||f || ≤ K, ∀ f ∈ F , i.e., if
F is bounded in C.
Example 5.24.26 F = {fn : [0, 1] → R: fn(x) = cos nx, ∀ n = 1, 2, 3, . . .} ⊂ C is
uniformly bounded where K = 1 may be taken.

Definition 5.24.27 Let (X , d) be an arbitrary metric space and F = {f : X → R}
be the set of all real-valued functions on X . Then F is said to be equicontinuous if
for every ε > 0, there a δ > 0, depending on ε such that

d(x, y) < δ =⇒ |f (x) − f (y)| < ε, ∀ f ∈ F .

Remark 5.24.28 Definition 5.24.27 asserts that δ depends on ε but not on f and
hence every f ∈ F is uniformly continuous.
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Example 5.24.29 The subset F = {f : [0, 1] → R: f converges uniformly} of C is
equicontinuous.

Theorem 5.24.30 characterizes compactness of closed subsets of the function
space C with the help of uniform boundedness and equicontinuity properties.

Theorem 5.24.30 (Ascoli) Let (X , d) be a compact metric space andF be a closed
subspace of the function space C(X ,R) or C(X ,C). Then F is compact iff it is
uniformly bounded and equicontinuous.

Proof First assume that F is compact. Then it is bounded and hence uniformly
bounded in C. To prove that F is equicontinuous, take an ε > 0. Then it follows
that there is an ε/3-net N = {f1, f2, . . . , fn} in F . Since each fi ∈ N , is uniformly
continuous, for i = 1, 2, 3, . . . , n, there exists δi > 0 such that

d(x, y) < δi =⇒ |fi(x) − fi(y)| < ε/3, x, y ∈ X .

Let δ = min{δ1, δ2, . . . , δn}. Then for any f ∈ F , select fi ∈ N such that

||f − fi|| = sup{|f (x) − fi(x)| : x ∈ X } < ε/3.

Then for any x, y ∈ X

d(x, y) < δ =⇒ |f (x) − f (y)| ≤ |f (x) − fi(x)| + |fi(x) − fi(y)|
+|fi(y) − f (y)| < ε/3 + ε/3 + ε/3 = ε.

This asserts that F is equicontinuous.
Conversely, let the closed subset F of the complete metric space C be uniformly

bounded and equicontinuous. To prove that F is compact, use the uniformly bound-
edness and equicontinuity properties of F .

�

Remark 5.24.31 The Gelfand–Kolmogoroff Theorem is a basic theorem in topol-
ogy. It studies the rings C(X ,R) for compact Hausdorff spaces X and says that two
compact Hausdorff spaces X and Y are homeomorphic iff the corresponding rings
C(X ,R) and C(Y ,R) are isomorphic. This deep result recovers the topology of X
from the ring structure of C(X ,R). The study of Gelfand–Kolmogoroff theorem is
given in Chap.6.

5.25 Applications

This section conveys some applications of connectedness and compactness expanded
in Sects. 5.25.1–5.25.5. with an eye to solve various problems.
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5.25.1 Geometric Applications

This subsection solves some geometric problems such as lifting problems, com-
pactness of the real projective space RP2 and connectedness of the n-sphere Sn

for n ≥ 1. Let S1 = {z ∈ C: |z| = 1} be the unit circle in the complex plane C and
p: R → S1, t �→ e2π it be the exponential map. S1 is algebraically a group under
usual multiplication of complex numbers. It is also a topological group (see Volume
2), since the multiplication function S1 × S1 → S1, (z, w) �→ zw and the inversion
function S1 → S1, z �→ z−1 are both continuous. The additive group (R,+) is also
a topological group under usual addition of real numbers. The map

p: (R,+) → (S1, ·)

is a group homomorphism with its kernel, ker p = {t ∈ R : p(t) = 1} = Z.

Definition 5.25.1 Let (X , x0) be a pointed topological space consisting of a topo-
logical space X and a point x0 ∈ X , called a base point. A base point preserving
continuous map

f : (X , x0) → (S1, 1)

is said to have a lifting f̃ if

f̃ : (X , x0) → (R, t0) (t0 ∈ ker p = Z)

is a continuous map such that p ◦ f̃ = f

There is a natural question: Under what condition this lifting exists uniquely?
Theorem 5.25.2 and Theorem 5.25.3 provide answers to this question.

Theorem 5.25.2 Let X be a connected space and f : (X , x0) → (S1, 1) be a given
continuousmap. If f̃ , g̃: (X , x0) → (R, t0)are two liftings of f , then f̃ = g̃,whenever
f̃ (x0) = g̃(x0).

Proof Let p: R → S1, x �→ e2π ix be the exponential map and f̃ , g̃: (X , x0) →
(R, t0) be two liftings of f : (X , x0) → (S1, 1). Then p ◦ f̃ = f and p ◦ g̃ = f . Define
a map

ψ : (X , x0) → (R, t0), x �→ f̃ (x) − g̃(x).

Then (p ◦ ψ)(x) = p(f̃ (x) − g̃(x)) = e2π i(f̃ (x)−g̃(x)) = (p ◦ f̃ )(x)/(p ◦ g̃)(x)= f (x)/
f (x) = 1, ∀ x ∈ X . It asserts that ψ(x) ∈ ker p = Z. Thus ψ is an integral-valued
continuous function. SinceX is connected by hypothesis, it follows fromdiscreteness
of Z that ψ is a constant function and hence ψ(x0) = f̃ (x0) − g̃(x0) = 0, since by
hypothesis, f̃ (x0) = g̃(x0). Then for the constant functionψ it follows thatψ(x) = 0
for all x ∈ X . It proves the uniqueness of the lifting of f . �
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Theorem 5.25.3 Given a convex compact subset of the Euclidean n-space Rn for
some n, a continuous map f : (X , x0) → (S1, 1) and an integer t0, there exists a
unique lifting f̃ : (X , x0) → (R, t0) such that p ◦ f = f̃ .

Proof By hypothesis,X is a convex compact subset of themetric spaceRn with stan-
dard metric. Then f is uniformly continuous. Consequently, given an ε > 0, when-
ever, ||x − x′|| < ε, then |f (x) − f (x′)| < 2 (diameter of the circle S1). This implies
that the points f (x) and f (x′) cannot be antipodal points and hence f (x)/f (x′) �= −1.
Since X is bounded, there exists a positive integer n such that ||x − x′||/n < ε, ∀ x ∈
X . Subdivide the line segment from the point x0 and to the point x for each
x ∈ X ,(which lies entirely inX , sinceX is convex) into k equal subintervals by insert-
ing the points x0, x1, . . . , xk = x. This asserts that ||xi+1 − xi|| = ||x − x0||/n < ε,

which shows that f (xi+1)/f (xi) �= −1. Again, for each i satisfying 0 ≤ i ≤ k − 1,
the function

fi:X → S1 − {−1}, x �→ f (xi+1)/f (xi)

is continuous, since the usualmultiplicationS1 × S1 → S1 and inversionS1 → S1

are continuous. Taking i = 0, 1, 2, . . . , k − 1 successively, it follows that

f (x) = f (x0)f0(x)f1(x) · · · fk(x)(telescopic product on S1).

Taking f (x0) = z0, we get a continuous map

f̃ :X → R, x �→ z0 + log f0(x) + log f1(x) + · · · + log fk−1(x)

such that fi(x0) = 1, ∀ i and p ◦ f = f̃ . If f̃ and g̃ are two liftings of f satisfying the
above conditions, then it follows from Theorem 5.25.2 that f̃ and g̃ are equal.

�

Corollary 5.25.4 Let I = [0, 1] and İ = {0, 1}. If f : (I, İ) → (S1, 1) is continuous,
then there exists a unique continuous map f̃ : I → R such that p ◦ f = f̃ .

Proof I = [0, 1] and İ = {0, 1} are subspaces of the real line space R. Taking in
particular, X = I, corollary follows from Theorem 5.25.2 and Theorem 5.25.3. �

Definition 5.25.5 (Geometric cone) Let X be a compact subspace of Rn. The geo-
metric cone on X denoted by CX defined by

CX = {y ∈ Rn+1: y = tu + (1 − t)x, u = (0, 0, . . . .0, 1) ∈ Rn+1, x ∈ X , 0 ≤ t ≤ 1}

is built up by all straight-line segments joining the point u = (0, 0, . . . .0, 1) ∈ Rn+1

to some point x ∈ X .

The concept of geometric cone CX on X is now extended to the concept of cone
CX on an arbitrary topological space X .
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Definition 5.25.6 Given an arbitrary topological space X , an equivalence relation
∼ on X × I is defined by (x, t) ∼ (y, s) iff t = s = 1. The quotient space X × I/ ∼,
denoted by CX is called the cone over X .

Remark 5.25.7 Given an arbitrary topological space X , the cone CX over X is
obtained as the quotient space provided by the partition given by

(i) the subset X × {1};
(ii) sets consisting of a single point (x, t) for x ∈ X and t ∈ I.

Geometrically, the cone CX over X is obtained from X × I by identifying its
top X × {1} to a single point and this identified point [x, 1] is its vertex where
[x, t] denotes the point of CX corresponding to the point (x, t) ∈ X × I under the
identification map

p : X × I → CX , (x, t) �→ [x, t].

The space X is embedded as a closed subspace of CX by the map x → [x, 1].
There is a close relation between the cones CX and CX on a topological space X

and it is proved in Proposition 5.25.8.

Proposition 5.25.8 The geometric cone CX is homeomorphic to CX for any com-
pact subspace X of Rn.

Proof Define a map

f : X × I → CX, (x, t) → tu + (1 − t)x: u = (0, 0, . . . .0, 1) ∈ Rn+1, x ∈ X , t ∈ I.

Then f is continuous and surjective. Moreover, f (x, t) = f (y, s) iff either x = y and
t = s or t = s = 1. This shows that the partition of X × I provided by f is precisely
the same as provided by the identification space CX . Again as X × I is compact, the
geometric cone CX ⊂ Rn+1 is Hausdorff. This asserts by Theorem 5.4.5 that f is an
identification map. �

Remark 5.25.9 An alternative proof of Theorem 5.17.6 is now given in Theorem
5.25.10 by using the concept of compactness, establishing a link between compact-
ness and connectedness properties.

Theorem 5.25.10 The real line space R is connected.

Proof Let {U,V } be a nontrivial separation by open sets of the real line space R.
Suppose x, y be two real numbers such that x < y, x ∈ U, y ∈ V . Let A = U ∩
[x, y], B = V ∩ [x, y]. Since A,B are closed subsets of the compact set [x, y], they
are compact. This asserts that the topological product space A × B is also compact.
Consider the continuous map

d : A × B → R, (a, b) �→ |a − b|.
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Then its continuous image d(A × B) = Y ⊂ R is compact and hence closed in R.
This asserts that Y contains its glb βY . Hence there exists some (a, b) ∈ A × B such
that d(a, b) = βY > 0. If c = 1

2 (a + b), then d(a, c) = 1
2βY = d(c, b). This gives a

contradiction, since the point c belongs to neitherU nor V . This contradiction forces
to prove the proposition.

�

Corollary 5.25.11 Every open interval (a, b) in the real number space R is con-
nected.

Proof Since (a, b) andR are homeomorphic spaces, this corollary follows fromThe-
orem 5.25.10 and Corollary 5.17.24, since connectedness is a topological property.

�

Proposition 5.25.12 Let X be a topological space and A ⊂ X be connected. If B ⊂
X is a subset such that A ⊂ B ⊂ Ā, then B is also connected.

Proof Let {U,V } be a separation of the subspace B of the topological X . Then it
follows that the pair {(U ∩ A), (V ∩ A)} is a separation of the subspace A of X . By
hypothesis, the subspaceA is connected. Hence it follows that either of the setsU ∩ A
or V ∩ A is ∅. If V ∩ A = ∅, then A ⊂ U and hence B ⊂ Ā ⊂ Ū . Since U is closed
in B, it follows that

B ⊂ B ∩ Ū = U.

This asserts that V = ∅ and hence the separation {U,V } of B is trivial. This asserts
that subspace B is connected. If U ∩ A = ∅, then as above, the subspace B is
connected. �

Corollary 5.25.13 Every closed interval [a, b] ⊂ R is connected.

Proof Since the open interval (a, b) is connected and (a, b) = [a, b], the corollary
follows Proposition 5.25.12. �

Proposition 5.25.14 The n-sphere Sn is connected for every integer n ≥ 1.

Proof Let x ∈ Sn be a point. Then the spaces Sn − {x} and Rn are homeomorphic
by stereographic projection. As Rn is connected, it follows that the space Sn − {x} is
also connected. Again Sn − {x} = Sn. Hence it follows by Proposition 5.25.12 that
Sn is connected. �

Proposition 5.25.15 The n-sphere Sn is compact for every integer n ≥ 1.

Proof Since Sn is a closed and bounded subset of Rn+1, compactness of Sn follows
from Heine–Borel theorem 5.2.4, which asserts that a subset of Rn+1 is compact iff
it closed and bounded. �

Proposition 5.25.16 The real projective space RP2 is the space of all lines through
the origin in R3. It is a compact space.



362 5 Compactness and Connectedness

Proof To show that the real projective spaceRP2 is compact, consider the projection
map

p: S2 → RP2, x �→ {x,−x}.

Then p is continuous under the quotient topology on RP2 in the sense that a subset
U ⊂ RP2 is open iff p−1(U ) is open in S2. Since S2 is compact by Proposition
5.25.15 and p is continuous, it follows that RP2 = p(S2) is compact. �

5.25.2 Matrix Algebra from Viewpoint of Connectedness and
Compactness

The subsection presents some topological applications in algebra, specially in matrix
algebra from the viewpoint of connectedness and compactness. Let M (n,R) be the
set of all n × n matrices over R. It is studied on considering it as a subspace of the
Euclidean n2-space Rn2 . Similarly,M (n,C) is studied. Let R∗ = R − {0}. Then the
subspace R∗ of R is neither connected nor compact.

Proposition 5.25.17 The general linear group GL(n,R) is not connected.

Proof To show that GL(n,R) is not connected, consider the determinant function

det:GL(n,R) → R∗, A �→ detA.

It is a continuous surjective map whose image R∗ is not connected and hence
GL(n,R) fails to be connected. �

Proposition 5.25.18 The general linear group GL(n,R) is not compact.

Proof Consider the determinant function

det:GL(n,R) → R∗, A �→ detA.

It is a continuous surjective map. As its continuous image is R∗ = R − {0}, which
is not compact, GL(n,R) fails to be compact. �

Proposition 5.25.19 Let S = {M ∈ M (n,R):M is symmetric} ⊂ M (n,R). Then
the subspace S is connected.

Proof For any A,B ∈ S, and any t satisfying 0 ≤ t ≤ 1,

(tA + (1 − t)B) ∈ S =⇒

S is path connected and hence S is connected by Corollary 5.22.11. �
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Proposition 5.25.20 The subspace X = {M ∈ M (n,R): M is symmetric and pos-
itive definite } of M(n,R) is connected.

Proof By definition, X is a subspace ofM (n,R). If A ∈ X is positive definite, then
for anyvector y ∈ Rn, the real number ytAy > 0.Then for any twomatricesA,B ∈ X ,

and for all t satisfying 0 ≤ λ ≤ 1,

yt(λA + (1 − λ)B)y = λ(ytAy) + (1 − λ)(ytBy)y > 0

asserts that the matrix λA + (1 − λ)B) ∈ X , ∀ λ satisfying0 ≤ λ ≤ 1 and hence X
is path connected. This implies that it is connected by Corollary 5.22.11.

�

Proposition 5.25.21 The subspace

X = {A ∈ M (n,R): xtAx ≥ 0, ∀ x ∈ Rn},

of M (n,R) is both path connected and connected.

Proof For any two matrices A,B ∈ X , and any λ ∈ [0, 1]

xt(λA + (1 − λ)B)x ≥ 0

asserts that X is path connected and hence it is also connected by Corollary 5.22.11.
�

Proposition 5.25.22 The subspace

X = {M = (mij) ∈ M (n,R): trace M = 
n
i=1mii = 0}

of M (n,R) is connected but not compact.

Proof Consider the trace map tr defined by

tr : M (n,R) → R, M �→ trace M .

Then tr is a linear transformation. Let M ,N ∈ X be any two arbitrary elements.
Then trace M = 0 and trace N = 0. Hence for all t satisfying 0 ≤ t ≤ 1,

tr (tM + (1 − t)N )) = t trM + (1 − t) trN = 0

asserts that X is path connected and hence it is also connected Corollary 5.22.11.
For the second part consider the matrices of the form

Mt =
(

t 0
0 −t

)

,
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for all t ∈ R. Then tr Mt = 0, ∀ t ∈ R. Since the set R is unbounded, it follows that
the given set X is not compact. �

Corollary 5.25.23 The kernel of the linear homomorphism

tr: M (n,R) → R, M �→ trace M .

is connected in M (n,R).

Proof It follows from Proposition 5.25.22. �

5.25.3 Topological Study of Algebraic Groups

This subsection gives an application of compactness in group theory by using
Tychonoff product theorem.

Proposition 5.25.24 Let G be an algebraically group endowed with a topology such
that its group multiplication is continuous in the product topology. If the subsets A,B
of G are compact, then AB = {ab : a ∈ A, b ∈ B} is also compact.
Proof Consider the continuous multiplication

m: G × G → G, (g, h) �→ gh.

By hypothesis A and B are compact subsets of G. Then their product space A × B
is also compact by Tychonoff Product theorem 5.11.4. Since AB is the image of
A × B under the continuous multiplication m, it follows that AB is also compact. �

Remark 5.25.25 Formore studyof topological applications to algebra andgeometry,
see Basic Topology, Volume 2 and Volume 3 of the present series of books.

5.25.4 Applications to Homeomorphism Problems

This subsection uses two basic topological properties such as connectedness and
compactness properties to solve the homeomorphism problem in topology:given two
topological spaces are they homeomorphic or not ? It is one of the main problems of
topology.Moreover by using the combined properties of compactness andHausdorff,
it is proved that the quotient space Dn/Sn−1 is homeomorphic to the n-sphere Sn.
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We now consider some problems given in the following examples.

Example 5.25.26 Consider the subspaces of R2 defined by

(i) A = {((x, y) ∈ R2: xy = 0},
(ii) B = {((x, y) ∈ R2: x + y ≥ 0 and xy = 0}
(iii) C = {((x, y) ∈ R2: xy = 1},
(iv) D = {((x, y) ∈ R2: x + y ≥ 0 and xy = 1}

Are these spaces homeomorphic? The answer is that all of these spaces are not
homeomorphic. Its justification is given below:

The subspace C represents geometrically a hyperbola in R2 having two connected
components described by

C =
{(

x,
1

x

)

: x ∈ R+
}

∪
{(

−x,−1

x

)

: x ∈ R+
}

.

The other subspaces A,B and D of R2 are also described as

A = {(x, 0) ∪ (y, 0): x, y ∈ R}.

B = {(x, 0) ∪ (y, 0): x, y ∈ R+ ∪ {0}}.

D =
{(

x,
1

x

)

: x ∈ R+
}

.

Suppose there exists a homeomorphism

f :A → C,

where A is connected but C is disconnected having two connected components.
Since connectedness is a topological property, the image f (A) = C is connected,
which is not true. This asserts the topological spaces A andC are not homeomorphic.
Proceeding in a similar way it follows that A is nether homeomorphic to B nor D.

Example 5.25.27 Consider the subspaces of R2 defined by

(i) A = {((x, y) ∈ R2 : x2 + y2 = 1},
(ii) B = {((x, y) ∈ R2 : ax2 + by2 + 2hxy = 1, and ab − h2 < 0}
(iii) C = {((x, y) ∈ R2 : ax2 + by2 + 2hxy = 1, and ab − h2 = 0}

Are these spaces homeomorphic? The answer is not positive. Its justification
is given below:

Geometrically, the subspace A represents a circle, which is compact. On the other
hand, the subspace B represents a hyperbola, which is not compact and the subspace
C represents a parabola, which is not compact. This asserts that A is homeomorphic
to neither B nor C, since compactness is a topological property.
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There is a natural problem: which space the quotient space Dn/Sn−1 identifies?
Theorem 5.25.28 gives its answer.

Theorem 5.25.28 There exists a homeomorphism ψ : Dn/Sn−1 → Sn.

Proof Proceed as in Example 5.4.11 to construct a continuous bijective map

ψ : Dn/Sn−1 → Sn.

Now, use Corollary 5.4.8 to show that ψ is a homeomorphism. �

5.25.5 Alternative Proof of Heine–Borel Theorem
and Compactness of Sn

This subsection proves Heine–Borel theorem, whose proof is different from the
method prescribed in Theorem 5.2.4. An important consequence of this result proves
the compactness of the n-sphere Sn.

Theorem 5.25.29 (Generalized Heine–Borel theorem) The closed interval I =
[0, 1] in the real line space R is compact. In general a subset of the Euclidean
n-space Rn is compact iff it is closed and bounded.

Proof Proof I: Since the closed interval [a, b] is compact and is homeomorphic
to I, by the topological property of compactness, it follows that I is also compact.
It proves the first part of the theorem. Since a compact subset in a metric space is
closed and bounded, it follows that it follows that every compact subset in Rn is
closed and bounded. Conversely, let Y be a closed and bounded subset of Rn. Let
K > 0 be a large real number such that Y ⊂ [−K,K]n. Since I is homeomorphic to
J = [−K,K] and I is compact, it follows that the interval J is also compact. Hence
[−K,K]n = J × J × · · · × J (n-product) is also compact by Tychonoff theorem.
Since every closed subset of a compact set is compact, it follows that Y is compact.

Proof II: A closed and bounded subspace of Rn is a closed subspace of the product
space�n

i=1[ai, bi] admitting the product topologyσ coincidingwith relative topology
as a subspace of theEuclidean topology onRn. UseTychonoff theoremon the product
space (X , τ ) by using classical Heine–Borel theorem for compactness of the closed
intervals [ai, bi] in R.
Proof III: Let F be an open covering of I. Define the set

Y = {x ∈ I : [0, x] is covered by finitely many open sets in F}.
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Then sup Y ∈ Y and sup Y = 1 asserts that I has a finite subcovering of the
covering F . �

Corollary 5.25.30 Every continuous map f : S1 → R is uniformly continuous.

Proof It follows by using the result that any continuous map on a compact space is
uniformly continuous. �

Corollary 5.25.31 For every nonconstant continuous map f : S1 → R, there are
uncountably many pairs of distinct points x, y ∈ S1 such f (x) = f (y).

Proof Since S1 is compact and f is continuous, its image set f (S1) = X ⊂ R is also
compact.Hence it is a closed andbounded subset inR. This shows that f assumes both
maximum and minimum values M and m (say) respectively. Let x0 be an arbitrary
point between m and M . Assume that f −1(x0) consists of only one point of S1.
Suppose that f −1(x0) = y0 ∈ S1. Since S1 − {y0} is connected and f is continuous, it
follows that its continuous image f (S1 − {y0}) = X − {x0} is connected inR,which
is not true. Since X is both compact and connected inR, it follows that X is a closed
interval inR. This contradiction implies that the assumption f −1(x0) consists of only
one point of S1 is not true. Since the point x0 is arbitrary, the corollary follows. �

Proposition 5.25.32 Let (X , d) be a metric space and Y ⊂ X be nondegenerate in
the sense that card Y > 1. If Y is a connected subset of X , then the subspace Y is
uncountable.

Proof Let a, b ∈ Y be two distinct points and f : Y → R, x �→ d(x, a) be a map.
Then f is continuous and f (Y ) is a connected subset ofR such that f (a) = 0, f (b) =
d(b, a) �= 0. Suppose d(b, a) = k is a positive real number. Hence f (Y ) must con-
tain the open interval (0, k), which is uncountable. This implies that Y is also
uncountable. �

Proposition 5.25.33 Let X be nonempty subset of the Euclidean line R. If every
continuous function

f :X → R

is bounded, then X is compact.

Proof It follows by showing that X is closed and bounded in R. If X is not closed,
there exists some point a ∈ X − X . Then the function

f : X �→ R. x �→ 1

x − a

is continuous but it is unbounded, which contradicts our hypothesis. This asserts that
X is closed in R. Again, if X is unbounded, then the function
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f :X → X , x → x

is continuous but it is unbounded, which contradicts our hypothesis. Consequently,X
is closed and bounded inR.Hence it follows byHeine-Borel theoremof compactness
that X is compact. �

5.26 Application in Measure Theory

Measure theory is an important branch of mathematics. This section proves Theorem
5.26.3, which determines the Lebesquemeasure for a certain class of compact subsets
of the Euclidean n-space Rn. This theorem is a key result in the study of manifolds
(see Basic Topology, Volume 2 of the present series of books).

Definition 5.26.1 A subset X ⊂ Rn is said to have Lebesque measure zero in Rn,

denoted byμ(X ) = 0, if for every ε > 0, there is a countable family of n-dimensional
cubes inRn such that the sum of their volumes< ε. Equivalently,μ(X ) = 0 inRn iff
for any ε > 0, there is an open setU such that X ⊂ U and its volume Vol ( U ) < ε.

Proposition 5.26.2 Any countable union of subsets with measure zero in Rn has
also measure zero.

Proof Let {Xi} be a countable family of subsets in Rn each having measure zero. If
X = X1 ∪ X2 ∪ · · · and Xi ⊂ Ui, where each Ui is open in Rn and Vol ( Ui) < ε/2i

for i = 1, 2, · · · , then

X ⊂ U = U1 ∪U2 ∪ · · · and Vol( U ) ≤ 
iVol ( Ui) < 
iε/2
i < ε.

Hence the proposition follows from Definition 5.26.1.
�

Theorem 5.26.3 (Fubini). Let X be a compact set in Rn such that every subset

Xt = X ∩ ({t} × Rn−1)

hasmeasure zero in the hyperplaneRn−1 for each t ∈ R.. Then the Lebesquemeasure
μ(X ) = 0 in Rn.

Proof Let In be the n-cube. Suppose that X ⊂ In. Define a function

f : I → R, t �→ μ(X ∩ ([0, t] × In−1)).

Given any positive real number ε, there exists by hypothesis an open setU ⊂ In such
that
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X ∩ (t × In−1) ⊂ t ×U, where Vol( U ) < ε.

By hypothesis, X is compact. Hence there exists a real number t0 > 0 such that

X ∩ ([t − t0, t + t0] × In−1) ⊂ [[t − t0, t + t0] ×U.

Then for any real number s such that 0 ≤ s < t0, the set

X ∩ ([0, t + s] × In−1 ⊂ (X ∩ ([0, t] × In−1)) ∪ ([t, t + s] ×U )

can be covered by an open set V with

Vol (V ) < f (t) + εs.

Hence for all s satisfying 0 ≤ s < t0, it follows that

f (t + s) ≤ f (t) + εs.

Proceeding in a similar way, it follows from

X ∩ ([0, t] × In−1) ⊂ (X ∩ ([0, t − s] × In−1)) ∪ ([t − s, s] ×U )

that
f (t) ≤ f (t − s) + εs, ∀ s satisfying 0 ≤ s < t0.

It asserts that

| f (t + s) − f (t)

s
| ≤ ε ∀ s satisfying |s| < t0.

This implies that f is differentiable at t ∈ I with its derivative 0. Since f (0) = 0,
it also follows that f (1) = 0. Hence the theorem follows from Definition 5.26.1.

�

Remark 5.26.4 An alternative proof of Theorem 5.26.3 is available in Exercise 105
of Sect. 5.28.

5.27 Further Applications

This section presents some interesting applications of the Intermediate Value Theo-
rem and Heine- Borel Theorem and compactness property.
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5.27.1 Some Applications of Real-valued Continuous
Functions

We now prove Theorem 5.27.1, which conveys a generalization of the classical
Bolzano-Weierstrass theorem saying that every bounded infinite subset of R has
at least one limit point. Another form of Bolzano-Weierstrass theorem is given in
Theorem 5.3.6.

Theorem 5.27.1 (Generalization of Bolzano-Weierstrass theorem) Any infinite
subset of a compact space must have a limit point.

Proof Let (X , τ ) be a compact space and A be an infinite subset of X such that A
has no limit point. For every x ∈ X , define a nbd Nx of x in X such that

Nx ∩ A =
{

∅, if x /∈ A

{x}, if x ∈ A

otherwise, x would be a limit point of A. By hypothesis, X is compact. Hence the
open covering {Nx : x ∈ X } of X has a finite subcovering. But each set Nx contains
atmost one point of A. Hence, it follows that the set A is finite. This contradiction
proves the theorem.

Theorem 5.27.2 Every real-valued continuous function f :X → R defined on a
compact space X is bounded and it attains its bounds.

Proof Since f (X ) is the continuous image of a compact set X , it follows that f (X ) is
a compact subset ofR. Hence it is a closed and bounded subset ofR by Heine–Borel
theorem 5.2.4. This implies that f is bounded. Again, since f (X ) is closed, both
sup(f (X )) = M and inf(f (X )) = m exist in f (X ). Hence there are points a, b ∈ X
such that

f (a) = M and f (b) = m.

�

Remark 5.27.3 Let A be a nonempty subset of a topological space X . Then every
accumulation point of A is a limit point of A. But in a Hausdorff space and hence in
a metric space, the concepts of accumulation point and limit point coincide. For a
topological space having a countable open base for its topology, the space is compact
iff it satisfies (B–W)-property (see Chap. 7).

Theorem 5.27.4 (Weierstrass theorem) Let X be a compact space and f : X → R
be a continuous map. Then f is bounded and attains its maximum and minimum
values.

Proof Since X is compact and f is continuous, it follows by Corollary 5.8.2 that
f (X ) is a compact subspace of R and hence it is closed and bounded in R. This
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implies that the function f is bounded. As f (X ) is closed, it contains all of its limit
points. This asserts that supx∈X f (x) ∈ f (X ) and infx∈X f (x) ∈ f (X ) exist finitely in
f (X ).

�

Corollary 5.27.5 Every continuous real-valued functiononacompact set is bounded.

Proof Let X be a compact space and f : X → R be an arbitrary continuous map.
Then it is bounded by Theorem 5.27.4. �

The converse of Corollary 5.27.5 is formulated in Proposition 5.27.7.

Proposition 5.27.6 Let X be a nonempty closed and bounded subset in Rn and
f : X → R be continuous. Then f(X) has a maximum and a minimum.

Proof By hypothesis, X is a nonempty closed and bounded subset in Rn. Hence X
is compact. Again, since, f : X → R is continuous, its image f (X ) is a nonempty
bounded set of real numbers and it attains its maximum and also minimum values
by Theorem 5.27.4. �

Proposition 5.27.7 Let X be a subspace of the real line space R such that every
continuous real-valued function on X is bounded. Then X is compact.

Proof Let every continuous function f : X → R be bounded. Suppose X is not
bounded. Then the function f : X → R, x �→ ||x|| is not bounded on X . This implies
a contradiction and hence X is bounded. If possible, X is not compact. Then it is not
closed by Heine–Borel theorem. Then there exists a point α in X − X . Under this
situation, the function g: X → R, x �→ ||x − α||−1 cannot be bounded on X . This
contradiction shows that X is compact. �

A generalization of Proposition 5.27.7 is given in Proposition 5.27.8.

Proposition 5.27.8 Let X be a subspace of the Euclidean space Rn such that every
continuous real-valued function on X is bounded. Then X is compact.

Proof Suppose X is not compact. Then the function f : X → R, x �→ ||x|| is not
bounded on X . If X is bounded but it is not compact, then it is not closed by Heine–
Borel theorem. Then there exists a point α ∈ X − X . Under this situation, the func-
tion g : X → R, x �→ ||x − α||−1 is not bounded on X . �

Theorem 5.27.9 Let X be a nonempty compact subset of a complete metric space
(M , d). If f : X → X is a map satisfying the condition (contraction)

d(f (x), f (y)) < d(x, y)

for all x, y (x �= y) ∈ X , then there exists a unique point x ∈ X such that f (x) = x i.e.,
f has a unique fixed point.
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Proof Let g be a map defined by

g:X → R, x �→ d(x, f (x)).

As f is a contraction map, it is continuous and hence g is continuous. Again, since
X is compact and X �= ∅, the map g attains its minimum m at a point x0 ∈ X . Then
d(x0, f (x0)) = m. By minimality m of g, it implies that

d(f (x0), f (f (x0)) = g(f (x0)) ≥ m = d(x0, f (x0)).

Then by contraction theorem (see Chap.2), it follows that f (x0) = x0. If x1 ∈ X is a
fixed point of f , then f (x1) = x1. Since f is a contraction map,

d(f (x0), f (x1)) = d(x0, x1) =⇒ x0 = x1,

otherwise, there would be a contradiction by the condition of the given contracting
map f .

�

Proposition 5.27.10 Let (X , d) be a compact metric space. If f : X → X is an isom-
etry, then the map f is onto.

Proof Let (X , d) be a compact metric space and f : X → X be an isometry. Then

d(x, x′) = d((f (x), f (x′)), ∀ x, x′ ∈ X .

If possible, f is not onto. Then there is a point x which is not in f (X ). Since f (X )

is closed, there is a real number ε > 0 such that d(x, f (X )) ≥ ε. Again, since by
hypothesis, X is compact, by using Bolzano–Weierstrass theorem, the sequence
{f n(x)} has a convergent subsequence {f nk f (x)}. Again, for k < m, it follows that

d(f nk (x), f nm(x)) = d(x, f nm−nk (x)) ≥ .ε

But it is not possible, since every convergent sequence in X is a Cauchy sequence.
This contradiction proves the proposition.

�

Proposition 5.27.11 Let X be a connected space and Y be a discrete space. If
f : X → Y is locally constant, then f is constant.

Proof Left as an exercise. �

Proposition 5.27.12 Let X be a compact metric space with metric d and Y ⊂ X be
nonempty. If for a given continuous map f : X → R, its restriction f |Y to Y assumes
a maximum value on Y , then Y is compact.
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Proof Let a ∈ Y . Define a function

h:X → R, x �→ −d(x, a).

Since the restriction function h|Y attains a maximum value in Y by hypothesis and
a ∈ Y , it follows that the function h|Y assumes nonpositive values for attaining values
arbitrarily close to 0. Then its maximum value is precisely 0. This implies that a ∈ Y .
This asserts that Y is a closed subset of the compact space X and hence Y is also
compact. �

Proposition 5.27.13 X ⊂ Rn be an arbitrary connected, locally path connected
subset. Then X is path connected.

Proof Given a point a ∈ X , define a set

Xa = {x ∈ X : a and x are connected by a path in X } ⊂ X .

AsX is locally path connected, then the setXa is open and its complement inX is also
so. These two open sets produce a partition of X . As by hypothesis X is connected,
this partition is trivial and hence Xa = X . �

5.27.2 Brouwer Fixed Point Theorem for Dimension 1

Brouwer fixed point theorem named after Luitzen Egbertus Jan Brouwer (1881–
1966) asserts that every continuous mapping f : Dn → Dn has a fixed point. This
subsection proves Brouwer fixed point theorem for dimension one by using Bolzano
theorem5.18.6. Proof for general case is given inBasic Topology,Volume 2 by using
topology ofmanifolds and inBasic Topology, Volume 3 by using algebraic topology.

Theorem 5.27.14 (Brower fixed point theorem for dimension 1) Every continuous
map f : I → I has a fixed point.

Proof If f (0) = 0 or f (1) = 1, then the proof is trivial. So without loss of generality,
we may assume that f (0) > 0 and f (1) < 1. Consider the map

h: I → R, x �→ x − f (x).

Then h is a continuous map such that h(0) · h(1) < 0. It asserts by Corollary 5.18.6
that there is a point α ∈ I such that h(α) = 0. This asserts that f (α) = α. This shows
that α is a fixed point of f .

�

Geometrical Interpretation of Theorem 5.27.14: If f : I → I is a continuous map,
then its graph Gf = {(x, f (x)): x ∈ I} lies entirely in the unit square I2 = I × I. The
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point (α, f (α)) in Theorem 5.27.14 is the point of intersection of the graph Gf and
the line y = x.

Theorem 5.27.15 Let X and Y be homeomorphic spaces and f : X → X be any
continuous map. Then f has a fixed point iff every continuous map g: Y → Y has a
fixed point.

Proof Let X and Y be homeomorphic spaces. Then there exist homeomorphisms

h : X → Y

and
k : Y → X

such that
h ◦ k = 1Y and k ◦ h = 1X .

Let g: Y → Y be an arbitrary continuous map. First suppose that every continuous
map f :X → X has a fixed point. Consider the map

f = k ◦ g ◦ h : X → X

is continuous. Hence by hypothesis, f (x0) = x0 for some x0 ∈ X . If h(x0) = y0 ∈ Y ,

then

g(y0) = g(h(x0)) = (h ◦ k)(g(h(x0))) = h ◦ (k ◦ g ◦ h)(x0)

= (h ◦ f )(x0) = h(f (x0)) = h(x0) = y0.

asserts that y0 is a fixed point of g : Y → Y . This proves that if f has a fixed point,
then g has also a fixed point. Since the hypothesis is symmetric with respect to
homeomorphic spaces X and Y , proceed as in the first part to show that if every
continuous map g : Y → Y has a fixed point, then each continuous map f : X → X
has also a fixed point. �

Corollary 5.27.16 Every continuous map f : [a, b] → [a, b] has a fixed point.

Proof Since the closed intervals [a, b] and [0, 1] = I are homeomorphic and every
continuous map g : [0, 1] → [0, 1] has a fixed point by Theorem 5.27.14. Hence it
follows that f : [a, b] → [a, b] has also a fixed point. �

5.28 Exercises

1. Let (X , τ ) be a countably compact space. Show that every closed subspace of
(X , τ ) is also countably compact.
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2. Let (X , τ ) be a topological space. Show that the union of any finite collection
of countably compact subspaces of (X , τ ) is also countably compact.

3. Let X be a compact metric space and f : X → R be continuous. Show that f (X )

is bounded; and ∃ (there exist) points a, b ∈ X such that f (a) = inf x∈X f (x) and
f (b) = supx∈X f (x).

4. A metric space X has the finite intersection property for closed sets in X if
every decreasing sequence of closed, nonempty sets has nonempty intersection.
Show that a metric space is sequentially compact iff it has the finite intersection
property for closed sets.

5. Show that the open interval (2,4) is not homeomorphic to the closed interval
[2,4] in the real line space R.
[Hint: Use the fact that compactness is a topological property. Here, [2,4] is
compact but (2,4) is not so.]

6. LetM be a subset of a metric space (X , d). Show that the following statements
are equivalent:

(i) M is compact.
(ii) M is countably compact.
(iii) M is sequentially compact.

7. Let f : I → Rn be a continuous map which is injective. Show that the spaces I
and f (I) ⊂ Rn are homeomorphic.
[Hint: Use the result that every continuous surjective map from a compact space
to a Hausdorff space is a homeomorphism. Here, I is compact andRn is a metric
space and hence it is Hausdorff.]

8. Show that the circle S1 is not homeomorphic to the real line space R.
[Hint: S1 is compact but R is not so.]

9. Show that the Sierpinski space (S, τS)

(i) is compact;
(ii) is connected;
(iii) is path connected;
(iv) is locally path connected.

[Hint: (S, τS) is connected, since the only sets which are both open and
closed in this space are ∅ and S.]

10. Show that

(i) if X is a path connected space and f :X → Y is a continuous map, then
f (X ) ⊂ Y is also path connected;

(ii) if f :X → Y is a homeomorphism, then X is path connected iff Y is path
connected;

(iii) if {Xi} is a family of path connected subspaces of X such that their intersec-
tion

⋂
Xi �= ∅, then their union

⋃
Xi also path connected.

11. In the Euclidean plane R2, consider two subspaces
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(i) X1 = {(x, sin π
x ) ∈ R2 : 0 < x ≤ 1};

(ii) X2 = {(0, y) ∈ R2 : −1 ≤ y ≤ 1}.
Show that their union X = X1 ∪ X2 is connected but it is not path connected.
[Hint: The subspace X1 ⊂ R2 is connected, since it is the image of (0, 1] of a
continuous map, It is not possible to join points of X1 to a point of X2.]

12. Let f : X → I be continuous map. Show that X is connected iff f is a constant
function given by f (x) = 0 or 1, ∀ x ∈ X .
[Hint: Use the result that f (X ) ⊂ I is connected.]

13. Show the general linear group GL(n,R), considered as a subspace ofRn2 is not
connected.

14. Show that in the Euclidean plane R2, the graph of the parabola y = x2 is not
homeomorphic to the graph of hyperbola x2 − y2 = 1, though both of them are
noncompact.
[Hint: Use the fact that one is path connected but the other is not so.]

15. Let (X , d) be a complete metric space and A be a subspace of X . Show that A is
compact iff A is totally bounded in X , i.e., iff every subset of the metric space X
is contained in the union of finitely many open balls of radius r, for any r > 0.

16. For a metric space X , show that the following statements are equivalent:

(i) (Heine–Borel Property) X is compact;
(ii) (Bolzano–Weierstrass Property) X is (B–W) (limit point) compact;
(iii) (Sequentially Compactness Property) Every sequence in X has a conver-

gent subsequence.

17. Show that

(i) every compact space is countably compact;
(ii) every sequentially compact space is countably compact;
(iii) every sequentially compact subset of a metric space is totally bounded.

18. Let C(X ,R) be the ring of all real-valued continuous functions from a topolog-
ical space X to the real line space R. In particular, if X is a finite subspace of
R and A is a proper ideal of the ring C(X ,R), show that there is a nonempty
subset S of X such that A consists of precisely the functions in C(X ,R) which
vanish on S.

19. Let X and Y be two topological spaces. Then a continuous map f : X → Y is
said to be proper if f −1(A) is a compact subset of X for every compact subset
A of Y . Show that

(i) if f : X → Y is a closed map such that for every point y ∈ Y , the set f −1(y)
is compact in X , then the map f is proper;

(ii) if X is compact, then the projection map

p : X × Y → Y , (x, y) �→ y

is proper.
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20. Let X be a compact space. Show that every infinite subset of X has a limit point.
[Hint: It is sufficient to show that if a subset A of X has no limit point, then the
set A is finite (see proof of Theorem 5.3.3).]

21. Let X be a compact space and Y be a Hausdorff space. Show that every contin-
uous map f :X → Y is a closed map.

22. Let X be a compact space and f : X → R be continuous. Show that f assumes
its maximum and minimum (values).

23. Show that if f : I → R is a continuous map, then f (I) is a segment.
24. Show that the projective plane is homeomorphic to the mapping cone of the

map
f : S1 → S1, z �→ z2

in the complex plane.
25. Let X be a compact Hausdorff space. Show that X is also a regular space.
26. Let (X , d) be metric space and A be a compact subset of X . Show that

(i) A is closed and bounded;
(ii) for any closed set F contained in A, the set F is compact;
(iii) any continuous image of A to a topological space is a compact subset;
(iv) (Extreme value property) if X is itself compact, then given a continuous

function f : X → R, there are points x1, x2 ∈ X such that

f (x1) ≤ f (x) ≤ f (x2), ∀ x ∈ X .

27. Let (X , d) be a metric space and A be a closed subspace of X . Show that the
following statements are equivalent:

(i) A is compact;
(ii) for any collectionF of closed subsets ofAhavingfinite intersection property,

the intersection
⋂

FF∈F �= ∅;
(iii) every sequence in A has a convergent subsequence;
(iv) every infinite subset of A has a limit point;
(v) (A, d) is a completemetric space that is totally bounded, i.e., given an ε > 0,

there exist points x1, x2, . . . , xn ∈ A such that

A ⊂
n⋃

i=1

Bxi (ε).

[Hint: Equivalence of statements (i) and (ii) follows from Theorem 5.9.6. To
prove (iii) =⇒ (iv), take an infinite subset B of A. Then B has a sequence
of distinct points {xn}. Hence by (iii), this sequence {xn} has a convergent
subsequence, which converges to a point x ∈ B. This shows that x is a limit
point of B. To prove that (iv) =⇒ (iii), take an infinite sequence {xn} of
distinct points in A. Then by assumption (iv), the sequence {xn} has a limit
point x say. Since A is closed by hypothesis, x ∈ A. Hence, it follows that
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the sequence {xn} has a convergent subsequence. This gives equivalence of
statements (iii) and (iv).]

28. Deduce from (v) of Exercise 27 that the closed interval [a, b] ⊂ R (with usual
topology) is compact.
[Hint: [a, b] is a closed subset of the complete metric space R and hence it is
complete. It is totally bounded, since for any ε > 0, there are xi ∈ [a, b] such
that

a = x1 < x2 < · · · < xn = b

with xj − xj−1 < ε. This asserts that

[a, b] ⊂
j=n⋃

j=1

Bxj (ε).]

29. Let X be a topological space. If X0 is a connected subset and {Xj : j ∈ J} is
a family of connected subsets of X such that X0 ∩ Xj �= ∅, ∀ j ∈ J. Show that
X0

⋃
(
⋃

j∈J Xj) is connected. Hence show that Rn is connected.
[Hint: To show that Rn is connected. let X0 = 0 = (0, 0, . . . 0) and {Xj : j ∈ J}
denote the set of all lines in Rn through the origin 0 by taking the indexing set
the unit sphere in Rn. Hence Rn = X0

⋃
(
⋃

j∈J Xj) is connected by the first
part.]

30. Let X be a topological space. Show that

(i) if {Xk : k ∈ K} is a family of path connected subsets ofX such thatXk ∩ Xl �=
∅ ∀ k, l ∈ K, then A = ⋃

k∈K Xk is also path connected;
(ii) if {Xk : k ∈ N} is a sequence of path connected subsets of X such that Xk ∩

Xk+1 �= ∅, ∀ k ∈ N, then A = ⋃
k∈N Xk is also path connected.

31. Let (X , τ ) be a topological space. Show that

(i) X is locally connected iff for each open set U ⊂ X , every connected com-
ponent of U is open in X ;

(ii) X is locally path connected iff for each open set U ⊂ X , every path com-
ponent of U is open in X ;

(iii) (a) if every connected path component of X is contained is a connected
component of X and

(b) X is locally path connected,
then the connected components and connected path components of X are
identical.

32. LetX be a compact space and Y be aHausdorff space. If f : X → Y is a one–one
continuous map, show that the spaces X and f (X ) are homeomorphic.

33. Let X ,Y be topological spaces and f : X → Y be a continuous map. Given
a sequentially compact subset S of X , show that f (S) is also a sequentially
compact subset of Y .
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34. Let (X , τ ) be a topological space. Show that it is countably compact iff it
satisfies any one of the following conditions:

(i) Each countable family of closed sets in X having the finite intersection
property (FIP) has a nonempty intersection in X ;

(ii) Each descending chain of nonempty closed sets in X :

A1 ⊃ A2 ⊃ · · · ⊃

has a nonempty intersection in X (Cantor’s intersection theorem);
(iii) Each infinite sequence {xn} in X has a cluster point p ∈ X in the sense that

given any open setU containing p and any positive integer m, there exists a
positive integer n0 such that xm ∈ U, ∀m > n0.

(iv) Each infinite set A ⊂ X has anω-accumulation point p ∈ X in the sense that
every nbd of p intersects A in infinitely many points.

35. Let RP2 be the real projective plane (space of lines through the origin in R3)
and SO(3,R) be the group of orthogonal transformations of R3 of determinant
1. Let X ⊂ SO(3,R) be the subset of nonidentity symmetric transformations
with the usual subspace topology inherited from R32 . Show that

(i) SO(3,R) and RP2 are compact spaces under their usual topologies;
(ii) RP2 and X are homeomorphic spaces.

36. Let (X , τ ) be a topological space and F be a family of subsets of X with
subspace topology such that

X =
⋃

{S: S ∈ F}.

If each subset S ∈ F is connected and no pair of elements of F are separated
from each other in X , show that the topological space (X , τ ) is connected.

37. Show that cardinality of connected components of a topological space (X , τ )

is a topological characteristic of X in the sense that this cardinality is the same
as the cardinality of connected components of any topological space Y that is
homeomorphic to X .

38. Let (X , τ ) be a topological space. Show that the following statements are equiv-
alent:

(i) X is a connected space.
(ii) If a subset Y of X is open and closed in X , then Y = ∅ or Y = X .
(iii) If X = Y ∪ Z, where Ȳ ∩ Z = ∅ and Y ∩ Z̄ = ∅, then Y = ∅ or Z = ∅.

(iv) Every continuous map f :X → {1, 2} is a constant map.

39. Show that a topological space X is connected iff given any two points in X they
lie in some connected subset ofX , i.e., iffX has only one connected component.
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40. Show that each subspace of the Sorgenfrey line, which is compact is also count-
able.
[Hint: Consider the identity map from the Sorgenfrey line onto the Euclidean
line R.]

41. Show that the Hilbert space is connected
42. Show that in the Hilbert metric space, the unit closed ball

D∞ = {(xn)∞n=1 ∈ R∞ : [
∞
n=1x

2
n]

1
2 ≤ 1}

(i) is closed and bounded;
(ii) is not compact.

[Hint: Consider {(xn)∞n=1 ∈ R∞ : xk = 1, xn = 0, ∀ n �= k}. It has no accu-
mulation point.]

43. Let X1, X2, X3 be three subsets of a topological space (X , τ ). Show that

(i) X1 ∪ X2 is connected if X1 and X2 are both connected in X and X1 ∩ X2 �= ∅;

(ii) X1 ∪ X2 ∪ X3 is connected if all ofX1,X2,X3 are connected andX1 ∩ X3 �= ∅
and X2 ∩ X3 �= ∅.

44. If {(Xa, τa) : a ∈ A} is a family of connected spaces, then that their product
space �a∈A(Xa, τa) is also connected.

45. Show the subspace X of R2 defined by

X = {(t, 1/t): t ∈ (0, 1]} ⊂ R

is connected.
[Hint: Define f : (0, 1] �→ R2 : t �→ (t, 1/t). Then X is the continuous image of
f in R2.]

46. Let Cx be a connected component of a topological space (X , τ ) at an arbitrary
point x ∈ X . Show that Cx is a closed set of X .
[Hint: Use the results that Cx is the largest connected set containing the point x
of X and Cx is also connected. This asserts that Cx = Cx.]

47. Given a metric space (X , d), the metric d is said to anM -metric, if every open
ball Bx(ε) in (X , d) is connected for every x ∈ X and every ε > 0. Show that a
metrizable space (X , τ ) is connected and locally connected iff there exists an
M -metric d on X such that τ = τd (the topology induced by d).

48. Let {Xa, τa : a ∈ A}be a family of topological spaces and (X , τ )be their product
space. If (X , τ ) is locally connected, show that

(i) every Xa is locally connected;
(ii) every Xa excepting only for a finite number of a‘s is connected.

49. Let X be a complete metric space and Y be a closed subset of X . Show that the
following statements are equivalent.
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(i) Y is compact.
(ii) Every infinite subset of Y has a limit point in Y .
(iii) Y is totally bounded.

50. Show that the circle S1 is connected.
[Hint: Consider the mapping f : I → S1, t �→ (cos 2π t, sin 2π t)].

51. Let (X , τ ) be a topological space. Show that it is locally compact Hausdorff iff
there exists a unique space X+ (up to homeomorphism) such that

(i) X is a subspace of X+;
(ii) the cardinality of the set X+ − X is one and
(iii) X+ is a compact Hausdorff space.

52. Show that

(i) the infinite dimensional Euclidean space R∞ is not locally compact;
(ii) the space the C(I,R) (with compact open topology) is not locally compact.

[Hint: Consider the sequence of functions {fn} in C(I,R) defined by

fn : I �→ R. x �→
{
nx, for all x ∈ [0, 1/n]
1, for all x ∈ [1/n, 1] .] .

53. Let (X , τ ) be a complete regular space and C ⊂ X be compact. If U ⊃ C be
an open set in X , show that there exists a continuous map f : X → I such that

f (x) =
{
0, for all x ∈ C

1, for all x ∈ X −U
.

54. Let (X , τ ) be topological space. Prove the following statements:

(i) given a point x ∈ X and a subset A ⊂ X , the point x ∈ Ā iff there exists a
net ψ in A which converges to the point x;

(ii) given a point x ∈ X and a subset A ⊂ X , the point x is an accumulation point
of A iff there exists a net ψ in A − {x} which converges to the point x.

(iii) The space (X , τ ) is Hausdorff iff any two limits of any convergent net are
equal, i.e., every net in (X , τ ) converge at most one point.

(iv) The space X is compact iff every net in (X , τ ) has a subset which converges
to point of X .

55. Let (X , τ ) be topological space and ψ : D → X be a net in (X , τ ). Show that a
point a ∈ X is a cluster point ofψ iff there exists a subnetβ:F → X converging
to the point a.

56. (Characterization of compactness by net) Let (X , τ ) be a topological space.
Show that it is compact iff every net ψ : D → X in X has a subnet which
converges to a point in X .
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57. (Characterization of continuity by net) Let f :X → Y be a function of topo-
logical spaces. Show that it is continuous at a point a ∈ X iff for every net
ψ : D → X in X converging to the point a, the composite function β = f ◦ ψ :
D → Y converges to the point f (a).

58. LetF = {Xa: a ∈ A}be a family of connected spaces. If (X , τ ) is the topological
product space of this family of connected spaces, show that the space X is also
connected. Use this result to prove that

(i) the Euclidean n-space Rn is connected for every integer n ≥ 1;
(ii) the n-cube In is connected for every integer n ≥ 1;
(iii) Sn is connected for every integer n ≥ 1.

[Hint: For any point x ∈ Sn, the subspace Sn − {x} is homeomorphic to
Rn by stereographic projection from x. Since the closure Sn − {x} = Sn, it
follows that Sn is connected.]

59. Let X be a compact subset of the metric space (Rn, d) and {Bk} be an open
covering of X . Show that there is an ε > 0 such that the open ε- ball Ba(ε)

centered at a point a ∈ X with radius ε, which is contained in one of the balls
Bk

′s.
60. (Harr–Konig theorem) Show that a linearly ordered set X with its interval

topology is compact iff it is order-complete in the sense that every nonempty
subset of X has a least upper bound (lub) and a greatest lower bound ( glb).
[Hint: Let X be linearly ordered set having a lub and a glb. If τ is the interval
topology on X , then X is compact. Conversely, if τ is the interval topology on
X and X has no lub and no glb, then X cannot be compact.]

61. Let (X , τ ) be a metrizable space and C be an open covering of X . Show that
there is an open covering L which refines C and is countably locally finite.

62. Let (X , τ ) be a regular space. Show that the following statements are equivalent:

(i) An open covering C of X which is countably locally finite.
(ii) An covering C of X which is locally finite.
(iii) A closed covering D of X which is locally finite.
(iv) An open covering C of X which is locally finite.

63. Let (X , τ ) be a paracompact space and L be a locally finite open covering of
X . Show that for every open set U ∈ L, there is an open set VU such that

VU ⊂ U and V = {VU : U ∈ L}is also a locally finite open covering ofX .

64. Let (X , τ ) be a normal space and L be a locally finite open covering of X . If
{VU : U ∈ L} is another open covering of X such that V = VU ⊂ U, show that
there exists a partition of unity on X subordinate to the covering L.

65. Let (X , τ ) be a paracompact Hausdorff space and S be a family of subsets of
X such that for every subset S ∈ S, there is a real number ε(S) > 0. If S is
locally finite, show that there is a real-valued continuous function

f : X → R: f (x) > 0, ∀ x ∈ X and f (x) ≤ ε(S), ∀ S ∈ S.
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66. Let X ∪ {∞} be the one-point compactification of X . Show that X ∪ {∞} is
Hausdorff iff X is locally compact and Hausdorff. Hence prove that the one-
point compactification Q ∪ {∞} of Q is not Hausdorff.
[Hint: Q is not locally compact.]

67. Show the one-point compactification of an open diskD2 in the Euclidean space
R2 is homeomorphic to the 2-sphere S2.

68. Prove that a homeomorphism h: R3 → R3 has a unique extension to a homeo-
morphism h̃: S3 → S3.
[Hint: Use the result that the 3-sphere S3 is the one-point compactification
R3 ∪ {∞} of R3. ]

69. LetX andY be locally compactHausdorff spaces and f : X → Y be a continuous
surjective map. Show that f has a continuous extension

f̃ :X ∪ {∞} → Y ∪ {∞}

iff f −1(A) is compact for every compact subset A of Y . Hence show that home-
omorphic spaces have homeomorphic one-point compactifications. Is its con-
verse necessarily true? Justify your answer.
[Hint: Converse is not true.]

70. Show that every compact Hausdorff space is normal.
71. Let (X , τ ) be a compact Hausdorff space and A be a subset of X . Show that A

is closed in X iff A is compact.
72. Show that a compact metric space is sequentially compact and conversely, a

sequentially compact metric space is compact.
73. A topological space (X , τ ) is said be said to be locally n-Euclidean, if every

point x ∈ X has an open nbd homeomorphic to an open subset of Rn. It is
said to be an n-manifold, if it is locally n-Euclidean and is Hausdorff having a
countable basis. Show that S2 is a 2-manifold.

74. Let X and Y be topological spaces and C(X ,Y ) be the set of all continuous
maps from X to Y endowed with the compact open topology. Show that

(i) the space C(X ,Y ) is Hausdorff if the space Y is so;
(ii) the space C(X ,Y ) is regular if the space Y is so.

75. Let (X .τ ) be a topological space and (Y , d) be metric space. If the set C(X ,Y )

of all continuous maps from X to Y is endowed with both the compact open
topology στ and uniform convergence topology σd , show that στ = σd .

76. Let (X , d) be a compact metric space and A be a closed subset of C(X ,R).
Show that

(i) A is compact if A is equicontinuous and
(ii) the set Ax = {f (x): f ∈ A} of real numbers is bounded in R for every x ∈

X (called pointwise bounded).

77. Let X , Y and Z be three topological spaces. Define a map
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ψ : C(X ,Y ) × C(Y ,Z) → C(X ,Z): (f , g) �→ g ◦ f .

If X , Z are Hausdorff spaces, and Y is locally compact, show that the map ψ is
continuous.

78. (Ascoli’s theorem) Let (X , d) be a compact metric space. Show that a closed
subspace A of

(i) C(X ,R) is compact iff it is bounded and equicontinuous;
(ii) C(X ,C) is compact iff it is bounded and equicontinuous

79. (Classical Version of Ascoli’s theorem) Let (X , τ ) be a compact metric space
and C(X ,Rn) be the function space with uniform topology induced by the
Euclidean metric d on Rn. Show that a subspace F of C(X ,Rn) has compact
closure iff it is equicontinuous and pointwise bounded under the metric d .

80. (Ascoli–Arzela) Let (X , τ ) be a compact space and

F = {fn ∈ C(X ,Rm): fn is pointwise bounded and equicontinuous}.

Show that F has a uniformly convergent subsequence.
81. Given a locally connected space (X , τ ), show that every connected component

of an open subspace Y of X is open in (X , τ ). Hence show that each connected
component of X is open.

82. Let (Y , d) be a complete metric space. Show that under the metric given in
Definition 5.24.11, C(X ,Y ) is a complete metric space.

83. Given aHausdorff spaceY , show that an embedding k: Y → C(X ,Y ) is a closed
map in the sense that k(Y ) ⊂ C(X ,Y ) is a closed set in C(X ,Y ).

84. Let (X , τ ) be a completely regular space T1 space and C(X ,R) be the set of
all real valued continuous functions on X . Show that there exists a function
f ∈ C(X ,R) such that for points x �= y ∈ X , the points f (x) �= f (y) ∈ R, i.e.,
distinct points in X have distinct images in R under f .

85. Let (X , τ ) be a completely regular space. Show that the space X is homeomor-
phic to a subspace of a product space of closed intervals.
[Hint: Let C(X , I) be the set of all continuous functions from X into the closed
interval I = [0, 1]. ConsideringC(X , I) as an indexing set, for each f ∈ C(X , I),
take If = [0, 1] and Y = �f ∈C(X ,I)If . Define a map

ψ :X → Y : x �→ ψx where ψx: C(X , I) → I, f �→ f (x).

Then ψ is a homeomorphism onto ψ(X ).]
86. Show that

(i) every closed subspace of a paracompact space is paracompact;
(ii) a subspace of a paracompact space is not necessarily paracompact.

87. LetX andY be two homeomorphic spaces. Show that a continuousmap f : X →
X has a fixed point iff every continuous map g: Y → Y has a fixed point.
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88. Let X be a connected space and a ∈ X be a point such that X − {a} is totally
connected. Show that X − {x} is connected for every x ∈ X − {a}.

89. (i) Let X be a topological space and A ⊂ X be connected. If B ⊂ X is such
that A ⊂ B ⊂ A, show that B and A are both connected.

(ii) Hence show that every connected component of a topological space is a
closed set.

90. Show that every locally compact topological space is regular.
91. LetX be a locally compact space andX = ⋃∞

n=1 Xn,where eachXn is a compact
set. Show that X is paracompact.

92. Let X be a locally compact space having a countable base. Show that X is
paracompact.

93. Let X be a compact metric space and Y be a metric space. Show that every
continuous map f : X → Y is uniformly continuous.

94. Let X be a compact metric space and Y be a metric space and f : X → Y be
a continuous onto mapping. Show that the inverse mapping f −1: Y → X is a
continuous surjective map.

95. Let X ⊂ R be a noncompact set. Show that

(i) there exists a real-valued function f :X → R which is not bounded;
(ii) there exists a real-valued function f :X → R which has no maximum;
(iii) if X is also bounded, then there exists a real-valued function f :X → R

which not uniformly continuous.

96. Show that the real projective space RPn is compact.
[Hint:RPn is the quotient space of the compact space Sn obtained by identifying
the diametrically the opposite points of Sn.]

97. Let (X , τ ) be any compact Hausdorff space and C(X ,R) be the space of all
continuous functions f :X → R. Define for f ∈ C(X ,R), its norm

||f || = max x∈X {|f (x)|}

and define a metric

d : C(X ,R) × C(X ,R) → R, (f , g) �→ ||f − g||.

For X = [0, 1], show that

(i) C(X, R) is a Banach space;
(ii) (C((X ,R), d) is a complete metric space.
(iii) (C((X ,R), d) is a paracompact space.

[Hint: For (ii), use the result that a uniformly convergent sequence of contin-
uous functions converges to a continuous map and for (iii) apply Theorem
5.10.9.]

98. Show that a topological space (X , τ ) is a Baire space iff given any countable
family {Xn} of open sets in (X , τ ), every one of which is dense in (X , τ ) is such
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that their intersection

∞⋂

n=1

Xn �= ∅ and it is dense inX .

99. Show that

(i) if (X , τ ) is a compact Hausdorff space, then it is a Baire space;
(ii) if (X , τ ) is a locally compact Hausdorff space, then it is a Baire space;
(iii) if (X , d) is completemetric space, then it is aBaire space of second category.

100. (An alternative form of Baire Category theorem) Let X be a complete metric
space. Show that in X , the following statements are equivalent.

(i) Every countable union of nowhere dense subsets has empty interior.
(ii) Every countable union of nowhere dense closed subsets of X has empty

interior.
(iii) If a countable union has nonempty interior, then the closure of some subset

in the union has nonempty interior.
(iv) Every countable intersection of open and dense subsets of X is also dense.

101. Let X be an arbitrary set and (Y , σ ) be a topological space. Let C be a subfamily
of F(X ,Y ). Show that C is compact with respect to the point open topology τ,

if

(i) C is a closed subspace of (F(X ,Y ), τ );
(ii) for every point x ∈ X , the closure {f (x): f ∈ C} is compact in (Y , σ ).
(iii) Moreover, if (Y , σ ) is Hausdorff, then C is compact under the point open

topology τ iff C is closed and for every point

x ∈ X , the closure {f (x): f ∈ C} is compact.

102. Let X be an arbitrary set and Y be a topological space. Show that a sequence
of functions {fn} in F(X ,Y ) converges to a function h ∈ F(X ,Y ) with respect
to the point open topology on F(X ,Y ), iff {fn} converges pointwise to h.

103. Show that the following statements are equivalent in any metrizable space
(X , τ ):

(i) X is a compact space;
(ii) X is a limit point (B–W) compact space in the sense that every infinite subset

of X has a limit point;
(iii) X is a sequentially compact space;

104. Let (X , τ ) be a topological space. It is said to beσ -compact, if it is representable
as a union of countably many compact subspaces. Prove that a locally compact
Hausdorff space is paracompact iff it is a disjoint union of open σ -compact
subsets of X .
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105. LetR be the Euclidean line andRn be the n-dimensional Euclidean space. Prove
the following statements to have an alternative proof of Theorem 5.26.3:

(i) Let I1, I2, · · · , In be a covering of the closed interval I = [a, b] ⊂ R. Then
there exists another covering I1‘, I2‘, . . . , In‘ of [a, b] such that each Ij‘ ⊂ Ii
for some i and 
n

j=1length(Ij‘) < 2(b − a).
(ii) For any subset A ⊂ R, let VA represent the product space VA = A × Rn−1 ⊂

Rn. Suppose X ⊂ Rn is compact and for any p ∈ R the set Vp represents the
vertical slice {p} × Rn−1 ⊂ Rn. If X ∩ Vp ⊂ U for some open set U of Vp,

then there exists X ∩ VA ⊂ A ×U for some suitably small interval A ⊂ R
containing the point p.

(iii) (Fubini) If X ⊂ Rn is closed and X ∩ Vp has measure zero in Vp for every
p ∈ Rn, then X has measure zero in Rn.
[Hint: Use (i) and (ii) to prove (iii).]

Multiple Choice Exercises

Identify the correct alternative (s) (there may be none or more than one) from the
following list of exercises:

1. Let (X , τ ) be a Hausdorff space. Then

(i) any point x ∈ X and any compact subset A ⊂ X , not containing the point x
can be separated by disjoint open sets in (X , τ );

(ii) every compact subspace of (X , τ ) is closed;
(iii) every one-to-one continuous map from a compact space to (X , τ ) is a home-

omorphism.

2. Given two subsets A and B of the Euclidean line R, let X be the set defined by

X = {x ∈ R: x = a + b, a ∈ A, b ∈ B}.

(i) If A is closed in R and B is compact, then X is closed in R.
(ii) If A is closed in R and B is compact, then X is compact.
(iii) If A and B are both closed in R, then X is also closed

3. Consider the following subspaces X1,X2,X3 of the Euclidean plane R2.

(i) If X1 = {(x, y) ∈ R2 : x2 + y2 = 1}, then X1 is compact.
(ii) If X2 = {(x, y) ∈ R2 : x2 + y2 < 1}, then X2 is compact.
(iii) If X3 = {(x, y) ∈ R2 : xy = 1}, then X3 is compact.

4. Consider the following subspaces X1,X2,X3 of the Euclidean plane R2.

(i) If X1 = {(x, y) ∈ R2 : 0 ≤ 1, 0 < y ≤ 1}, then X1 is locally compact.
(ii) If X2 = {(x, y) ∈ R2 : x2 + y2 + 103xy > 5}, then X2 is locally compact.
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(iii) If X3 = {(x, y) ∈ R2 : x, y are irrational}, then X3 is locally compact.

5. Let f : R → R be a continuous map and Gf = {(x, f (x): x ∈ R} be its graph in
the Euclidean plane R2. Then

(i) Gf is connected in R2;
(ii) Gf is open in R2;.
(iii) Gf is closed in R2.

6. Consider the following subspaces X1,X2,X3 of the Euclidean plane R2. Then

(i) X1 = {(x, y) ∈ R2 : 1 < x2 + y2 < 2} is connected.
(ii) X2 = {(x, y) ∈ R2 : x2y2 = 1} is connected.
(iii) X3 = {(x, y) ∈ R2 : x2 + y2 = 2} is not connected.

7. Consider the following subspaces X1,X2,X3 of the Euclidean plane R2. Then

(i) X1 = {(x, y) ∈ R2 : x, y are integers} is locally compact.
(ii) X2 = {(x, y) ∈ R2 : x2 + y2 = 1 and xy �= 0} is compact.
(iii) X3 = {(x, y) ∈ R2 : x, y are irrationals} is locally compact.
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Chapter 6
Real-Valued Continuous Functions

This chapter continues the study of continuous functions from a topological space
to the real line space R, called the real-valued continuous functions, or, simply,
real functions; such functions play a central role in topology and analysis. This
chapter also studies uniform convergence of real-valued functions and characterizes
normal spaces through separation by real-valued continuous functions. It is not true
that a nonconstant real-valued continuous function can always be defined on a given
space. But on normal spaces, in particular, on metric spaces, there always exist
nonconstant real-valued continuous functions byUrysohn lemma 6.2.8, named after
P. S. Urysohn (1998–1924), which is an outstanding result characterizing normal
spaces by the real-valued continuous functions.His approach by using dyadic rational
numbers studied in this chapter, is more general and different from Urysohn lemma
for metric spaces proved in Chap. 2. This lemma is used to prove Tietze extension
theorem 6.5.1.

A characterization of completely regular spaces by real-valued continuous func-
tions is given in Theorem 6.3.11. A deep result of this chapter is the Gelfand–
Kolmogoroff Theorem 6.7.7, which proves that two compact Hausdorff spaces X
and Y are homeomorphic iff the corresponding rings C(X, R) and C(Y, R) are iso-
morphic. This result recovers the topology of X from the ring structure of C(X, R).

Moreover, Corollary 6.7.8 characterizes compact Hausdorff spaces in terms of alge-
bras. Another problem in topology is to find conditions under which a topological
space is metrizable. Urysohn metrization theorem 6.7.9 provides an affirmative
answer of this problem. Two embedding problems are solved in Sect. 6.8.1. More-
over, Theorem 6.8.14 determines completely the compact subsets of the Euclidean
n-space Rn by real-valued continuous functions. Further applications are available
in Sect. 6.8.
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6.1 Real-Valued Continuous Functions: Introductory
Concepts

This section is devoted to the study of real-valued continuous functions, which are
special type of continuous functions from a topological space to the real line space.
Urysohn Lemma 6.2.8 provides a vast supply of real-valued continuous function
from a normal space and hence frommetric spaces, metrizable spaces, and also from
compact Hausdorff spaces. Throughout this chapter, the topological spaces R and
I = [0, 1] represent the real line space (R, σ ) with natural topology σ and (I, σI)

the subspace of (R, σ ), respectively.

6.1.1 Continuity of Real-Valued Functions

This subsection addresses the continuity of real-valued functions on topological
spaces.

Definition 6.1.1 Let (X, τ ) be a topological space. Then a function

f : (X, τ ) → (R, σ ) (or into (I, σI)

is said to be a real-valued function or a real function on X.

Proposition 6.1.2 Let (X, τ ) be a topological space and (R, σ ) be the real number
space with usual topology σ. Then a function f : X → R is said to be continuous at
a point a ∈ X; if corresponding to a given real number ε > 0, there exists an open
nbd U of a such that

| f (x) − f (a)| < ε, ∀ x ∈ U.

Proof The open intervals of R together with the empty set ∅ form an open base for
the natural topology σ on R. Since any open nbd V of the point f (a) ∈ R contains
an open interval ( f (a) − ε, f (a) + ε) containing the point f (a), it follows that
there exists an open nbd U of a such that

| f (x) − f (a)| < ε, ∀ x ∈ U.

�

Proposition 6.1.3 generalizes Lebesgue sets of a continuous function (see Chap. 3)
and is used in subsequent discussion.

Proposition 6.1.3 Let (X, τ ) be a topological space and (R, σ ) be the real number
space with usual topology σ. If a, b (a < b) ∈ R and f : (X, τ ) → (R, σ ) is a
continuous function, then
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(i) all the three subsets X1, X2 and X3 of X defined by

X1 = {x ∈ X : f (x) ≤ a},
X2 = {x ∈ X : f (x) ≥ a} and
X3 = {x ∈ X : a ≤ f (x) ≤ b}

are closed subsets of (X, τ ) ; and
(ii) all the three subsets U1,U2, and U3 of X defined by

U1 = {x ∈ X : f (x) < a},
U2 = {x ∈ X : f (x) > a} and
U3 = {x ∈ X : a < f (x) < b}

are open subsets of (X, τ ).

Proof (i) The improper intervals (−∞, a], [a,+∞) , which are half infinite
intervals and the closed interval [a, b], are closed sets in (R, σ ), and f is
continuous by hypothesis. Hence it follows that the sets

X1 = f −1((−∞, a]), X2 = f −1([a,+∞)), X3 = f −1(([a, b])

are closed sets in (X, τ ).

(ii) Similarly, (ii) is proved.
�

Theorem 6.1.4 Let (X, τ ) be an arbitrary topological space. If

f : (X, τ ) → (R, σ )

and
g: (X, τ ) → (R, σ )

are two continuous functions, then each of the functions

(i) f + g: (X, τ ) → (R, σ ), x 	→ f (x) + g(x);
(ii) f − g: (X, τ ) → (R, σ ), x 	→ f (x) − g(x);
(iii) f/g: (X, τ ) → (R, σ ), x 	→ ( f (x)/g(x), provided, g(x) 
= 0, ∀ x ∈ X;
(iv) f g: (X, τ ) → (R, σ ), x 	→ f (x)g(x);
(v) c f : (X, τ ) → (R, σ ), x 	→ c f (x), ∀ c ∈ R

is continuous

Proof Left as an exercise. �
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Theorem 6.1.5 Let (X, τ ) be an arbitrary topological space and f : (X, τ ) →
(R, σ ) be a continuous function and g: (R, σ ) → (R, σ ) be a continuous function.
Then their composite function

g ◦ f : (X, τ ) → (R, σ ), x 	→ g( f (x))

is also continuous.

Proof It follows from continuity of composite map of two continuous maps (see
Chap. 3). �

Theorem 6.1.6 is an immediate application of Theorems 6.1.5 and 6.1.4.

Theorem 6.1.6 Let (X, τ ) be an arbitrary topological space, f : (X, τ ) → (R, σ )

and g: (X, τ ) → (R, σ ) be continuous functions. Then the functions

(i)
| f |: (X, τ ) → (R, σ ), x 	→ | f (x)|

(ii)
max ( f, g): (X, τ ) → (R, σ ), x 	→ max{ f (x), g(x)}

and
(iii)

min ( f, g): (X, τ ) → (R, σ ), x 	→ min{ f (x), g(x)}

are continuous.

Proof (i) The map | f |: (X, τ ) → (R, σ ), x 	→ | f (x)| is continuous, since | f |
is the composite of two continuous maps: f1: (X, τ ) → (R, σ ), x 	→ f (x)
and f2: (R, σ ) → (R, σ ), f (x) 	→ | f (x)|, and hence | f | = f2 ◦ f1 implies
that f is continuous by Theorem 6.1.5.

(ii) Since max{ f (x), g(x)} = 1
2 [( f (x) + g(x)) + | f (x) − g(x)|] is the sum of

two continuous functions, it is also continuous by Theorem 6.1.4.
(iii) Since min{ f (x), g(x)} = 1

2 [( f (x) + g(x)) − | f (x) − g(x)|] is the difference
of two continuous functions, it is also continuous by Theorem 6.1.4.

�

Proposition 6.1.7 Let f : (X, τ ) → (I, σI) be a function such that for all real
numbers with 0 < a, b < 1, the inverse images f −1([0, b)) and f −1((a, 1]) are
open sets in (X, τ ). Then f is continuous.

Proof Since the intervals [0, b) and (a, 1] constitute a subbase for the subspace
topology σI and the inverse images f −1([0, b)) and f −1((a, 1]) are open sets in
(X, τ ) by hypothesis, it follows that f is continuous. �
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6.1.2 Uniform Convergence of Real-Valued Functions

This subsection studies uniform convergence of infinite sequences of real-valued
functions on a topological space with a view to examine the continuity of the limit
function of a sequence of uniformly convergent continuous real-valued functions.
Cauchy’s criterion for uniform convergence of a sequence of real functions in topo-
logical setting is proved in Theorem 6.1.9.

Definition 6.1.8 Given a topological space (X, τ ), an infinite sequence of real func-
tions { fn} on X is said to converge uniformly to a real function f on X if for every
positive real number ε, there is a positive integer n0 such that

| fn(x) − f (x)| < ε, ∀ x ∈ X and ∀ n ≥ n0.

On the other hand, an infinite sequence of real functions { fn} on X is said to be a
Cauchy sequence, if for every positive real number ε, there is a positive integer n0
such that

| fn(x) − fm(x)| < ε, ∀ x ∈ X and ∀m, n ≥ n0.

Theorem 6.1.9 (Cauchy’s criterion for uniform convergence) Given a topological
space (X, τ ), an infinite sequence of real functions { fn} on X, converges uniformly
on X, iff for every positive real number ε, there is a positive integer n0 such that

| fn(x) − fm(x)| < ε.∀ x ∈ X, and ∀m, n > n0 (6.1)

Proof Let (X, τ ) be a topological space and (R, σ ) be the real line space such that
the condition (6.1) holds for the sequence { fn} of real functions on X. Then for
every x ∈ X , the sequence { fn(x)} is a Cauchy sequence in the space (R, σ ), which
is a complete metric space. This asserts that the sequence { fn(x)} is convergent. If
f (x) is its limit, then the sequence { fn} on X converges to f. We claim that this
convergence is uniform. To show it, given an ε > 0, suppose there exists a positive
integer n0 such that

| fn(x) − fm(x)| < ε, ∀ x ∈ X and ∀m, n ≥ n0.

Keeping n fixed and allowing m → ∞, it follows that fm(x) → f (x), as m →
∞ and hence

| fn(x) − f (x)| < ε, ∀ x ∈ X and ∀ n ≥ n0.

Consequently, the condition (6.1) asserts that the sequence { fn(x)} converges uni-
formly to f.

Conversely, suppose the sequence { fn} on X converges uniformly to f.Then given
a positive real number ε, there is a positive integer n0 such that
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| fn(x) − f (x)| < ε/2, ∀ n ≥ n0 and ∀ x ∈ X.

Hence it follows that for all m, n ≥ n0,

| fn(x) − fm(x)| ≤ | fn(x) − f (x)| + | f (x) − fm(x)| < ε

for all x ∈ X, which gives the condition (6.1). �
Theorem 6.1.10 Let (X, τ ) be a topological space and { fn} be a uniformly conver-
gent sequence of continuous real functions on X. If f is the limit of the sequence
{ fn}, then f is also a continuous real function on X.

Proof Let ε > 0 and y ∈ X be an arbitrary point. By hypothesis, { fn} is uniformly
convergent with f as its limit. Then it follows that there is a positive integer n0 such
that

| fn0(x) − f (x)| < ε/3, ∀ x ∈ X (6.2)

and hence
| fn0(y) − f (y)| < ε/3.

Again, as the function fn0 is continuous at the point y, there exists an open set Uy

containing y such that

| fn0(x) − fn0(y)| < ε/3, ∀ x ∈ Uy .

Hence it follows that

| f (x) − f (y)| ≤ | f (x) − fn0(x)| + | fn0(x) − fn0(y)|
+ | fn0(y) − f (y)| < ε/3 + ε/3 + ε/3 = ε ∀ x ∈ Uy .

This asserts that the real function f is continuous on X, since y ∈ X is an arbitrary
element of X.

�
Definition 6.1.11 Let (X, τ ) be a topological space and { fn: X → R} be an infinite
sequence of real functions. Then the infinite series �∞

n=1 fn or simply, � fn of the
sequence of functions { fn: X → R: n = 1, 2, . . .} is said to converge to the real
function f on X ; if the sequence of partial sums

{sn = f1 + f2 + · · · + fn: n = 1, 2, . . .}

converges uniformly to f on X , i.e., for every ε > 0, there exists a positive integer
n0 such that

|Sn(x) − f (x)| < ε, ∀ n ≥ n0, and ∀ x ∈ X.
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Theorem 6.1.12 (Weierstrass M- test) Let (X, τ ) be a topological space and
{ fn: X → R; n = 1, 2, . . .} be a given infinite sequence of real functions such that

| fn(x)| < Mn, ∀ n ∈ N and ∀ x ∈ X,

where Mn are positive constants and the series �Mn is convergent. Then the infinite
series � fn converges uniformly on X.

Proof Since the infinite series �Mn of positive constants is convergent, it follows
that given an ε > 0, there is a positive integer n0 such that

�n
k=t Mk < ε, ∀ n > t > n0.

Hence for the sequence {sn} of partial sums,

|sn(x) − st−1(x)| = | ft (x) + ft+1(x) + · · · + fn(x)|
≤ �n

k=t | fk(x)| ≤ �n
k=t Mk < ε, ∀ x ∈ X ∀ n > t > n0

asserts by Theorem 6.1.9 that this sequence is uniformly convergent on X , and hence,
the given infinite series � fn converges uniformly on X.

�
Theorem 6.1.13 Let (X, τ ) be a topological space and { fn: X → R: n = 1, 2, . . .}
be a given infinite sequence of continuous functions on X. If the infinite series � fn
converges uniformly in X, then the sum of the series is also a continuous real function
on X.

Proof By hypothesis, every fn is continuous on X. Hence every partial sum sn =
f1 + f2 + · · · + fn is continuous for n = 1, 2, . . . , n. Again, the infinite series � fn
is uniformly convergent on X iff the infinite sequence of partial sums {sn} is uniformly
convergent on X. Hence the theorem follows by using Theorem 6.1.10. �

6.1.3 C(X, R) and B(X, R)

This subsection studies two special type of metric spaces C(X, R) and B(X, R)

(defined in Chap. 2), which play a key role in the study of real functions, where
C(X, R) denotes the set of all continuous real functions on a compact topological
space X and B(X, R) denotes the set of all bounded continuous real functions on X.

If X is compact, then C(X, R) = B(X, R). Consider the metrics

d: C(X, R) × C(X, R) → R, ( f, g) 	→ sup{| f (x) − g(x)|: x ∈ X},
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ρ: (B(X, R) × B(X, R) → R, ( f, g) 	→ sup{| f (x) − g(x)|: x ∈ X}.

Then d and ρ induce topologies τd and τρ on C(X, R) and B(X, R), respectively.
The spaces (C(X, R), τd) and (B(X, R), τρ) form important classes of topological
spaces.

Remark 6.1.14 The constant functions in C(X, R) are continuous. It is a natural
question: does there exist nonconstant continuous functions in C(X, R)? The answer
is affirmative for specifying spaces X. For example, if X is a metric space, then
Urysohn lemma asserts that for every pair of disjoint closed sets of X, there exists a
nonconstant continuous function f : X → [0, 1] (see Chap. 2).
Theorem 6.1.15 Let (X, τ ) be a topological space and { fn} be a sequence of func-
tions in B(X, R). Then

(i) { fn} converges to a function f in the metric space (B(X, R), ρ) iff the sequence
converges uniformly to f on X;

(ii) { fn} is a Cauchy sequence in the metric space (B(X, R), ρ) iff it is a uniformly
Cauchy sequence in the sense that given an ε > 0, there is an integer n0 such
that

| fn(x) − fm(x)| < ε, ∀ x ∈ X, and ∀m, n ≥ n0.

Proof (i) Let { fn} converge to a function f ∈ B(X, R). Then ρ( fn, f ) → 0, and
hence given an ε > 0, there exists a positive integer n0 such that

ρ( fn, f ) < ε, ∀ n ≥ n0.

This implies by definition of ρ that

| fn(x) − f (x)| < ε, ∀ n > n0, and ∀ x ∈ X.

This proves that fn → f uniformly on X. Conversely, assume that { fn} con-
verges uniformly to a function f ∈ B(X, R). Then given an ε > 0, there is a
positive integer n0 such that

ρ( fn, f ) < ε, ∀ n ≥ n0

and hence fn → f in B(X, R).

(ii) It is similar to the proof of (i).
�
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Theorem 6.1.16 For any topological space (X, τ ), the metric space (B(X, R), ρ)

is complete.

Proof Let { fn} be a Cauchy sequence in the metric space (B(X, R), ρ). Then it
follows from the definition of the metric ρ that

| fn(x) − fm(x)| ≤ ρ( fn, fm), ∀ x ∈ X.

This implies that for every x ∈ X, the sequence { fn(x)} is a Cauchy sequence in R.

Let f (x) = limn→∞ fn(x). Then ρ( fn, f ) → 0 and f is continuous. This implies
that fn → f and f ∈ B(X, R), andhence, themetric space (B(X, R), ρ) is complete.

�

Theorem 6.1.17 essentially due to Italian mathematician U. Dini (1845–1918),
gives a result involving uniform convergence of increasing sequences in C(X, R) for
every compact space X.

Theorem 6.1.17 (Dini) Let (X, τ ) be a compact space, { fn} be an increasing
sequence in C(X, R) and f ∈ C(X, R). If fn(x) → f (x), ∀ x ∈ X, then fn → f
uniformly on X.

Proof Given an ε > 0, construct the set

Xn = {x ∈ X : f (x) < fn(x) + ε} ⊂ X, ∀ n ≥ 1.

Since by hypothesis, { fn} is an increasing sequence in C(X, R) with n increasing, it
follows that Xn ⊂ Xn+1, ∀ n ≥ 1. Again, since fn(x) → f (x), ∀ x ∈ X, it follows
that X = ⋃∞

n=1 Xn. As both f and fn are continuous, it follows that Xn is open in
(X, τ ), ∀ n ≥ 1. Since X is compact by hypothesis, the open covering {Xn} has a
finite subcovering. Then by ascending properties of these sets, it follows that there
is a single positive integer n0 such that Xn0 = X. This implies that

Xn ⊂ Xn0 , ∀ n ≥ n0.

Hence the inequality

fn(x) ≤ f (x) < fn(x) + ε, ∀ n > n0

asserts that fn → f uniformly on X.

�
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6.2 Urysohn Lemma: Separation of Disjoint Subsets
of Topological Spaces by Real-Valued Continuous
Functions

This section conveys the concept of separation of disjoint subsets of a topological
space by real-valued continuous functions and presents more results on continuous
functions from a topological space to the real line space and applies them to study
normal spaces. For example, Urysohn Lemma 6.2.8 is an important result which
characterizes normal spaces by real-valued continuous functions by using dyadic
rational numbers.

Definition 6.2.1 Let (X, τ ) be a topological space and A,B be two disjoint subsets
of X. Then these two subsets are said to be separated by a real-valued continuous
function if there exists a continuous function

f : X → R such that f (x) = 0, ∀ x ∈ A, f (x) = 1,

∀ x ∈ B, and 0 ≤ f (x) ≤ 1, ∀ x ∈ X.

i.e., if there exists a continuous function f such that

f : X → R. x 	→
{
0, for all x ∈ A

1, for all x ∈ B

and
0 ≤ f (x) ≤ 1 for all x ∈ X.

Such a function f (if it exists) is calledUrysohn function or characteristic function
corresponding to the pair of disjoint subsets A and B in (X, τ ), which is sometimes
denoted by κ(A,B).

6.2.1 Existence of Real-Valued Continuous Functions

This subsection solves the natural question: what are the topological assumptions that
ensure the existence of sufficiently many continuous real functions on a topological
space ? In Chap. 4, different classes of topological spaces such as Ti -spaces, regular,
normal, and completely normal spaces are studied by using the separation axioms.
On the other hand, the existence of continuous real functions on a topological space
is closely related to the separation axioms satisfied by the space. Let X be the trivial
topological space having only two open sets such as ∅ and X itself. Then the only
real continuous functions on X are the constant functions. Again, given a topological
X with the property that for every pair of distinct elements x1, x2 ∈ X, there exists a
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continuous function f : X → R such that f (x1) 
= f (x2), then the space X is Haus-
dorff (see Exercise 6 of Sect. 6.9).

Theorem 6.2.2 (Existence of continuous real functions) Let (X, τ ) be a topo-
logical space and Ur be an open set in (X, τ ) for each dyadic rational number
r = m/2n ( 0 ≤ m ≤ 2n) such that if r < t, then Ur ⊂ Ut . Then the function

f : X → R, x 	→
⎧
⎨

⎩

glb {r: x ∈ Ur }, if x ∈ ⋃

r
Ur

1, if x /∈ ⋃

r
Ur

,

is continuous.

Proof Let r be a dyadic rational number. For any such r,

(i) if f (x) < r, then x ∈ Ur ; otherwise, if x /∈ Ur , then f (x) ≥ r;
(ii) if f (x) ≤ r, then x ∈ Ur , otherwise, f (x) > r. Then x /∈ Ur implies that x ∈

X −Ur . This shows that for any real number s, the set

f −1(−∞, s) = {x ∈ X : f (x) < s} =
⋃

{Ur : r < s},

is open in (X, τ ) and the set

f −1(w, +∞) = {x ∈ X : f (x) > w} =
⋃

{X −Ur : r > w} =
⋃

{X −Ut : t > w}.

is also open in (X, τ ). Again, since the half infinite intervals (−∞, s) and
(w,+∞), which are improper intervals, give a subbasis for the usual topology
of R, it follows that the function

f : X → R

is continuous.

�

Recall that a topological space (X, τ ) is normal iff for every closed set A and
open set U containing A, there exists an open set V in (X, τ ) such that

A ⊂ V ⊂ V ⊂ U.

Lemma 6.2.3 (One form of Urysohn Lemma) Let (X, τ ) be a normal space, A be
a closed set and U be an open set containing A such that A ⊂ U. Then there exists
a continuous map f : X → I such that
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f (x) =
{
0, for all x ∈ U

1, for all x ∈ X −U.

Proof To prove this lemma, we use the notations defined in Theorem 6.2.2. By
hypothesis, (X, τ ) is normal, A is a closed set, andU is an open set such that A ⊂ U.

We here take U1 = U and U0 = A. Then by normality criterion of (X, τ ), for the
closed set A and open set U containing A, there exists an open set V = U1/2 in
(X, τ ) such that

A = U0 ⊂ U1/2 and U1/2 ⊂ U1 = U.

Again, for the closed set U1/2 and the open set U1 = U containing the closed set
U1/2, we have

U1/2 ⊂ U3/4 and U3/4 ⊂ U1 = U,

Proceeding in this way, we have

U0 ⊂ U1/4 and U1/4 ⊂ U1/2,

U1/2 ⊂ U3/4 and U3/4 ⊂ U1 = U,

and so on. Consequently, the existence of the requisite continuous map X → I fol-
lows from Theorem 6.2.2.

�

Remark 6.2.4 Another formofUrysohn lemma is available inUrysohn lemma6.2.8.

Theorem 6.2.5 Given a topological space (X, τ ), if two disjoint subsets A and B
of X are separated by a continuous real function, then A and B are also strongly
separated by a pair of disjoint open sets in (X, τ ).

Proof Given a topological space (X, τ ), let the two disjoint subsets A and B of
X be separated by a continuous real function. Then there is a Urysohn function f
corresponding to the pair of disjoint subsets A and B in X. Let σI be the topology
on I = [0, 1] relative to the usual topology σ of the real number space R. Then
the half-open intervals [0, 1/4) and (3/4, 1] are open sets in the space (I, σI). By
using the continuity of f , it follows that f −1([0, 1/4) = U, and f −1((3/4, 1] =
V are two open sets in (X, τ ). Since [0, 1/4) ∩ ((3/4, 1] = ∅, it also follows that
f −1([0, 1/4) ∩ f −1((3/4, 1] = ∅. Consequently, under the given hypothesis, there
exist two disjoint open sets U and V in (X, τ ) such that

A ⊂ U and B ⊂ V .

This asserts that the disjoint subsets A and B of X are strongly separated by disjoint
open sets U and V in (X, τ ), �
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Example 6.2.6 The converse of Theorem 6.2.5 is not necessarily true. In support
consider the Niemytzki’s tangent disk topology τ on X = {(x, y) ∈ R2: y ≥ 0}
(see Chap. 3).

6.2.2 Functionally Separable Sets

This subsection conveys in Definition 6.2.7 the concept of functionally separable
sets, which is used in the study of real-valued continuous functions. This concept
coincides with the concept given in Definition 6.2.1, but it is expressed in a different
language for Urysohn lemma.

Definition 6.2.7 Let (X, τ ) be topological space. Two subsets A and B of X are said
to be functionally separable if there exists a continuous map f : X → I such that

f (x) =
{
0, for all x ∈ A

1, for all x ∈ B

and
0 ≤ f (x) ≤ 1 for all x ∈ X.

6.2.3 Urysohn Lemma and Characterization of Normal
Spaces

This subsection proves Urysohn Lemma 6.2.8, which is a key result in topology
and characterizes normal spaces by real-valued continuous functions. As every met-
ric space is normal and every compact Hausdorff space is also normal, Urysohn
lemma can be conveniently used to study such spaces by the concept of functionally
separability. Tietze Extension Theorem 6.5.1 is a natural generalization of Urysohn
Lemma 6.2.8. On the other hand, Ti -spaces (for i = 1, 2, 3) cannot be characterized
by using the concept of separation by continuous real functions (Hewitt 1946). So
we now proceed to study normal spaces by Urysohn lemma. The existence of contin-
uous functions on a topological space is closely related to the axioms of separation
satisfied by a particular type of topological spaces prescribed in Urysohn Lemma
6.2.8.

Lemma 6.2.8 (Urysohn Lemma) A topological space (X, τ ) is normal if and only
if corresponding to every pair of disjoint closed sets P, Q in (X, τ ), there exists a
continuous map

f : (X, τ ) → (I, σI)
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such that

f (x) =
{
0, for all x ∈ P

1, for all x ∈ Q

and
0 ≤ f (x) ≤ 1 for all x ∈ X.

Proof Existence of such an f is established in Theorem 6.2.2. First assume that a
continuous function f : (X, τ ) → (I, σI) satisfies the given condition for every pair
disjoint closed sets in (X, τ ). This implies that they are separated by the continuous
function f. Hence they are also strongly separated by the continuous function f by
Theorem 6.2.5. This proves that (X, τ ) is normal.

To prove it independently, consider the subspaces I1, I2 of I defined by

I1 = {t ∈ I: 0 ≤ t < 1/4}, I2 = {t ∈ I: 3/4 < t ≤ 1}.

Since I1 and I2 are half-open sets in (I, σI) and f is continuous, it follows
that f −1(I1) and f −1(I2) are open sets in (X, τ ). As I1 ∩ I2 = ∅, it follows that
f −1(I1) ∩ f −1(I2) = ∅. Again since f (P) = 0 and f (Q) = 1 by hypothesis, it fol-
lows that P ⊂ f −1(I1) and Q ⊂ f −1(I2). This asserts that the space X is normal.

Conversely, suppose that (X, τ ) is a normal space. We prove that for every pair
of disjoint closed sets P, Q in (X, τ ), there is a continuous map f : (X, τ ) → (I, σI)

such that

f (x) =
{
0, for all x ∈ P

1, for all x ∈ Q

and
0 ≤ f (x) ≤ 1 for all x ∈ X.

This part follows immediately from Lemma 6.2.3.

An alternative proof of this part (last part). It is proved at two stages. At the first
stage, we construct f , and at the second stage, we prove its continuity.

(i) Construction of f : Corresponding to each dyadic proper fraction of the form
t = r/2n, for a fixed n and r = 1, 2, . . . , 2n − 1, an open set V (r/2n) is defined
such that V̄ (t1) ⊂ V (t2), whenever t1 < t2, and each set V (r/2n) contains P
but does not meet Q. Take V (1) = X − Q. By hypothesis, it follows that the
closed set P is contained in the open set X − Q. As X is a normal space by
hypothesis, then there exists an open set, abbreviated, V (1/2) by normality
criterion such that

P ⊂ V (1/2), and V (1/2) ⊂ X − Q.
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Again as the closed set V (1/2) is a subset of the open set X − Q, by the same
argument, there exist open sets abbreviated V (1/4) and V (3/4) such that

P ⊂ V (1/4), V (1/4) ⊂ V (1/2) and V (1/2) ⊂ V (3/4), V (3/4) ⊂ X − Q.

Proceeding in a similarway,we can define open sets V (1/8), V (3/8), V (5/8),
V (7/8) for the pairs of sets

(P, V (1/4)), ( V (1/4), (V (1/2)), ( V (1/2), (V (3/4)), ( V (3/4), X − P),

respectively, such that

P ⊂ V (1/8), V (1/8) ⊂ V (1/4), V (1/4) ⊂ V (3/8), . . . , V (7/8) ⊂ X − Q.

Continuing this process, we obtain at the n-th stage the open sets

V (1/2n), V (3/2n), V (5/2n)

such that
P ⊂ V (1/2n−1)), (V (1/2n−1) ⊂ V (2/2n−1),

corresponding to the pairs of sets

(P, V (1/2n−1)), (V (1/2n−1), V (2/2n−1)).

This shows that for every dyadic proper fraction r/2n for a fixed n and r =
1, 2, . . . , 2n − 1
there exists an open set V (r/2n) such that

(i) P ⊂ V (r/2n) for every such open set V (r/2n);
(ii) V (r/2n) ⊂ X − Q;
(iii) for r1/2n < r2/2m, V (r1/2n) ⊂ V (r2/2m).

Define

f : X → I: x 	→
{
glb {r/2n: x ∈ V (r/2n)}, ifx ∈ ⋃

r/2n V (r/2n)

1, if x /∈ ⋃
r/2n V (r/2n).

Since 0 < r/2n < 1, it follows that 0 ≤ f (x) < 1,∀ x ∈ X. Again, for every
x ∈ P , x belongs to every V (r/2n) and hence f (x) = 0. Moreover, for any
x ∈ Q, x /∈ V (r/2n) implies f (x) = 1. Hence it follows that
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f : X → I

is a function such that

f (x) =
{
0, for all x ∈ P

1, for all x ∈ Q.

and
0 ≤ f (x) ≤ 1 for all x ∈ X.

(ii) Continuity of f : Define

B = {[0, x), (z, t), (y, 1]: x, y, z, t ∈ I are irrational}.

Then B forms a basis of open sets for the subspace topology on I = [0, 1]
As (z, t) = [0, t) ∩ (z, 1], it follows that

f −1(z, t) = f −1[0, t) ∩ f −1(z, 1].

To show the continuity of f, it is sufficient to prove that f −1[0, t) and f −1[z, 1]
are both open sets in (X, τ ) for all irrational numbers z and t . Since,

f −1[0, t) =
⋃

r/2n<t

V (r/2n) and f −1(z, 1] =
⋃

r/2n>t

V (r/2n),

it follows that f −1[0, t) and f −1(z, 1] are both open sets for all irrational
numbers z and t . This proves the continuity of f.

�

The Urysohn Lemma 6.2.8 can be restated in Lemma 6.2.9.

Lemma 6.2.9 (Alternative Form of Urysohn Lemma ) A topological space (X, τ )

is normal if and only if every pair of disjoint closed sets P, Q in (X, τ ) are separated
by a continuous real-valued function f : (X, τ ) → (R, σ ) such that

f (x) =
{
0, for all x ∈ P

1, for all x ∈ Q

and
0 ≤ f (x) ≤ 1 for all x ∈ X.

Corollary 6.2.10 Let (X, τ ) be a normal space and P, Q ⊂ X be two disjoint closed
subsets of (X, τ ). Then there exists continuous function h: X → [a, b] ⊂ R such that
h(P) = a, and h(Q) = b.
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Proof By hypothesis, P and Q are disjoint closed sets in the normal space (X, τ ).

Hence it follows by Urysohn Lemma 6.2.8 that there exists a continuous function
f : X → I such that

f (x) =
{
0, for all x ∈ P

1, for all x ∈ Q

and
0 ≤ f (x) ≤ 1 for all x ∈ X.

Define a continuous map

g: I → [a, b], t 	→ a + (b − a)t.

Hence the composite function h = g ◦ f : X → [a, b] is a continuous function sat-
isfying the required property. Because, h(p) = (g ◦ f )(p) = g( f (p)) = g(0) =
a, ∀ p ∈ P =⇒ h(P) = a. Similarly, it follows that h(Q) = b.

�

Urysohn Lemma 6.2.9 has also an alternative form in terms of a continuous
extension given in Corollary 6.2.11.

Corollary 6.2.11 Let (X, τ ) be a normal space, P, Q be two disjoint closed subsets
in (X, τ ). If

(i) Y = P ∪ Q; and
(ii) f : Y → I is a function satisfying the conditions f (P) = 0 and f (Q) = 1,

then f has a continuous extension f̃ : X → I over X.

Proof By hypothesis, (X, τ ) is normal, P, Q ⊂ X are two disjoint closed subsets
of X. If Y = P ∪ Q and f :Y → [0, 1] is defined by

f (x) =
{
0, for all x ∈ P

1, for all x ∈ Q
,

then f is continuous. Because, P and Q are both open and closed in Y, they are open
by its normality hypothesis of (X, τ ). Since by hypothesis,P and Q are two disjoint
closed set of the normal space (X, τ ), by Urysohn lemma, there exists a continuous
function f̃ : X → [0, 1] such that

f̃ (x) =
{
0, for all x ∈ P

1, for all x ∈ Q
.

This shows that f̃ : X → I = [0, 1] is a continuous extension of f over X.

�
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Example 6.2.12 The hypothesis in Urysohn lemma 6.2.9 asserts that the sets P and
Q are to be closed in (X, τ ) is necessary. For example, the sets P = (0, 1) and
Q = (1, 2) are disjoint open subsets of the normal space X = R, but there exists no
continuous function f : X → [0, 1] such that

f (x) =
{
0, for all x ∈ P

1, for all x ∈ Q

Example 6.2.13 Let (X, τ ) be a topological space. Suppose for any two disjoint
closed sets A and B in (X, τ ), there exists a continuous function f : X → I such that

f (x) =
{
0, for all x ∈ A

1, for all x ∈ B

and
0 ≤ f (x) ≤ 1 for all x ∈ X,

then the disjoint open sets

U = f −1

(

[0, 1
2
)

)

and V = f −1

(

(
1

2
, 1]

)

in (X, τ ) contain A and B, respectively, and separate them strongly. The openness
of U and V follows from the fact that the lower-limit topology and the upper-limit
topology on R are both strictly stronger than the usual topology on R. It proves one
part of Urysohn lemma.

6.3 More on Completely Regular and Tychonoff Spaces

This section continues the study of completely regular spaces initiated in Chap. 4
and gives an emphasis on Tychonoff spaces with the help of real-valued continuous
functions. Tychonoff spaces form a special class of completely regular spaces.

Example 6.2.13 raises the problems:

(i) Can the proof of the Urysohn lemma be generalized for a completely regular
space?

(ii) Does there exist any link between a completely regular space and a normal
space?

Remark 6.3.1 A positive answer is established by Urysohn lemma by considering
the defining properties of a completely regular space, which is a Hausdorff space
(X, τ ) such that given any closed set A in (X, τ ) and any point a ∈ X not lying in
A,(i.e., a /∈ A), there is a real-valued continuous function f : X → R such that
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f (x) =
{
0, for x = a

1, for all x ∈ A

and
0 ≤ f (x) ≤ 1 for all x ∈ X,

i.e., A and {a} are separated by a continuous real-valued function on X.

6.3.1 More on Completely Regular Spaces

This subsection continues the study of completely regular spaces which is versatile,
because such spaces include metric spaces, normal spaces, and also locally compact
Hausdorff spaces. This establishes a close link by Proposition 6.3.5 between com-
pletely regular spaces and real-valued continuous functions on such spaces.

Theorem 6.3.2 Given any collection {(Xi , τi ): i ∈ A} of completely regular spaces,
their product space (X, τ ) = �i∈A(Xi , τi ) is also completely regular under product
topology.

Proof Let (X, τ ) be the product space of the collection {(Xi , τi ): i ∈ A} of com-
pletely regular spaces. For any point a = (ai ) ∈ X, let A be a closed set in the product
space (X, τ ) not containing the point a. If�Ui is a basis element containing the point
a, which does not meet the set A, thenUi = Xi except for finitely many values of i ,
say i = i1, i2, . . . , in. Let πik : X → Xik be the projection maps. Since by hypothesis,
each (Xi , τi ) is completely regular, given k = 1, 2, . . . , n, select continuous maps

fk : Xik → [0, 1] with fk(aik ) = 1, and fk(X −Uik ) = 0.

Define functions

ψk : X 	→ R, x 	→ ( fk ◦ πik
)(x) = fk(πik

(x)), ∀ k = 1, 2, . . . , n.

Then each ψk, being the composition of two continuous maps, is a real-valued
continuous map and is such that it vanishes outside π−1

ik
(Uik ). Hence it follows that

the function
f : X → [0, 1], x 	→ ψ1(x)ψ2(x) · · · ψn(x)

is the required continuous function such that

f (a) = 1, and f (x) = 0, ∀ x ∈ X − � Ui (i.e., outside � Ui ).

�
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Proposition 6.3.3 proves that the property of completely regularity of topological
spaces is hereditary.

Proposition 6.3.3 (Hereditary property of completely regular spaces) Let (X, τ ) be
a completely regular space and (Y, τY ) be a subspace of (X, τ ). Then (Y, τY ) is also
completely regular.

Proof By hypothesis, (X, τ ) is completely regular space and (Y, τY ) is a subspace
of (X, τ ). Then by definition, (X, τ ) is a T1-space, and hence, its subspace (Y, τY )

is also a T1-space. Let A be closed in Y, y ∈ Y and y /∈ A. Then A = Y ∩ B for
some closed set B in X. Moreover, y /∈ B, otherwise, y ∈ Y ∩ B = A would imply
a contradiction. By hypothesis, X is completely regular, and hence, the closed set B
and the point {y} are separated by a continuous real function

f : X → R, x 	→
{
0, for x = y

1, for all x ∈ B

and
0 ≤ f (x) ≤ 1 for all x ∈ X.

Then its restriction g = f |Y to Y is also continuous and separates y and A. It implies
that (Y, τY ) is also completely regular. �

Corollary 6.3.4 Let (X, τ ) be a locally compact Hausdorff space. Then it is com-
pletely regular.

Proof By hypothesis, (X, τ ) is locally compact Hausdorff. Then its 1-point com-
pactification X̃ is compact and Hausdorff. This asserts that it is normal. Then X̃
is completely regular. Since X is a subspace of the completely regular space X̃ , it
follows by Proposition 6.3.3 that (X, τ ) is completely regular. �

Proposition 6.3.5 Let (X, τ ) be a topological space and A be any closed set in X.

If for every point x ∈ X − A, there is a continuous function f : X → R such that
f (y) = 0, ∀ y ∈ A but f (x) 
= 0. Then the space X is completely regular.

Proof By hypothesis, A is a closed set of (X, τ ). Suppose that for every point
x ∈ X − A, there is a function

g: X → R

such that g(y) = 0, ∀ y ∈ A but g(x) 
= 0 ∈ R. Define a continuous map

f : X → R, y 	→ g(x)−1g(y).

This map shows that there is a continuous map f such that
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f : X → R, y 	→
{
g(y), for all y ∈ A
g(x)−1g(y), for all y ∈ X − A,

Then
0 ≤ f (y) ≤ 1for ally ∈ X.

This asserts that f is a real-valued continuous function such that

f : X → R, y 	→
{
0, for all y ∈ A

1, for all x ∈ X − A,

and
0 ≤ f (x) ≤ 1 for all x ∈ X.

This implies that (X, τ ) is completely regular. �

Definition 6.3.6 Let X,Y be two nonempty sets and F = { fk : X → Y : k ∈ K} be
a family of functions from X to Y. Then the family F is said to separate points of
X if for every pair of distinct points x, y ∈ X , there is a function f ∈ F such that
f (x) 
= f (y).

Example 6.3.7 The family of real-valued continuous functions

F = { fn: R → R, x 	→ sin nx, ∀ n ∈ N}

does not separate points. Because, for every function fn ∈ F and for the pair of
distinct points 0, π ∈ R, its image points fn(0) = 0 = f (π). This shows that the
family F can not separate points.

Proposition 6.3.8 determines the Hausdorff structure of X from C(X, R) pro-
vided C(X, R) separates points in X.

Proposition 6.3.8 Let C(X, R) be the space of all real-valued continuous functions
on a topological space (X, τ ). If the family C(X, R) separates points, then the topo-
logical space (X, τ ) is Hausdorff.

Proof Since by hypothesis, the family C(X, R) separates points, given two distinct
points x, y ∈ X, there is continuous function f : X → R such that f (x) 
= f (y).
Again since, R is Hausdorff, there are disjoint open subsets U and V of R such
that f (x) ∈ U and f (y) ∈ V . Hence it follows that the disjoint open sets f −1(U )

and f −1(V ) in X are such that x ∈ f −1(U ) and y ∈ f −1(V ). This implies that X is
Hausdorff. �

Proposition 6.3.9 Let (X, τ ) be a completely regular T1 space and C(X, R) be the
set of all real-valued continuous functions on X. Then C(X, R) separates points.
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Proof Let (X, τ ) be a completely regular T1 space and x, y ∈ X be two points such
that x 
= y. By hypothesis X is T1. Hence {y} is closed and x is not an element of
{y}. Again, since X is completely regular, there exists a continuous function

f : X → R

such that f (x) = 0 and f ({y}) = f (y) = 1. This asserts that f (x) 
= f (y). �

Corollary 6.3.10 Let (X, τ ) be a completely regular T1 space and C(X, R) be the
set of all real-valued continuous functions on X. Then there exists an embedding
f : X → R.

Proof It follows from Proposition 6.3.9 that there exists an injective continuous map
f : X → R, and hence, f is an embedding (see Theorem 6.8.4 for an independent
proof). �

6.3.2 Characterization of Completely Regular Spaces
by Real-Valued Continuous Functions

This subsection gives a characterization of completely regular spaces X by real-
valued continuous functions on X in Theorem 6.3.11 and another characterization
of completely regularity property of a normal space by its regularity property in
Theorem 6.3.14.

Theorem 6.3.11 (Characterization of completely regular space)A topological space
(X, τ ) is completely regular iff for each point a ∈ X and eachmember V in a subbase
B of τ with the property that if a ∈ V, there is a real-valued continuous function
f : X → R such that

f (x) =
{
0, for x = a

1, for all x ∈ X − V

and
0 ≤ f (x) ≤ 1 for all x ∈ X.

Proof Suppose (X, τ ) is a topological space such that for every point a ∈ X and
every member V in a subbase B for the τ with the property that if a ∈ V, there is a
real-valued continuous function f : X → R such that

f (x) =
{
0, forx = a

1, for all x ∈ X − V

and
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0 ≤ f (x) ≤ 1 for all x ∈ X.

We claim that the topological space (X, τ ) is completely regular. To prove this, let A
be any closed set in (X, τ ) and a ∈ X be a point such that a /∈ A. Then a ∈ X − A
and there exists an open set U ∈ S such that a ∈ U ⊂ X − A, where S is a base
generated by B. Since,U is an intersection of finitely many members of B, the open
set U can be expressed as

U = V1 ∩ V2 ∩ · · · ∩ Vn, where Vi ∈ B, for i = 1, 2, . . . , n.

Then a ∈ Vi for each i = 1, 2, . . . , n. Hence, by hypothesis, there is a real-valued
continuous function fi : X → R, for each i = 1, 2, . . . , n, such that

fi (x) =
{
0, for x = a

1, for all x ∈ X − Vi

and
0 ≤ fi (x) ≤ 1 for all x ∈ X.

Define a function

h: X → I, x 	→ sup { fi (x): i = 1, 2, . . . , n}.

Then h is a real-valued continuous function on X such that

h(x) =
{
0, for x = a

1, for all x ∈ A

and
0 ≤ h(x) ≤ 1 for all x ∈ X.

Moreover, h(a) = 0 and for any x ∈ A, x ∈ A ⊂ X −U (since U ⊂ X − A), and
hence the point x ∈ X − Vj for some index j, since

X −U = (X − V1) ∪ (X − V2) ∪ · · · ∪ (X − Vn).

This asserts that the topological space (X, τ ) is completely regular.

Conversely, suppose that the topological space (X, τ ) is completely regular and
a ∈ V, where V ∈ B (a subbase for τ). Then X − V is a closed set in (X, τ ) such
that a /∈ X − V . Hence there exists a real-valued continuous function f : X → R
such that

f (x) =
{
0, for x = a

1, for all x ∈ X − V
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and
0 ≤ f (x) ≤ 1 for all x ∈ X.

�

Example 6.3.12 A normal space may not be completely regular. For example,
Niemytzki tangent disk topology (see Chap. 3) is completely regular, but it is not
normal .

Remark 6.3.13 Example 6.3.12 raises the problem: does there exist any situation
under which the concepts of normality and completely regularity coincide? Theorem
6.3.14 solves this problemby characterizing completely regularity property of normal
spaces in terms of its regularity property.

Theorem 6.3.14 A normal space (X, τ ) is completely regular iff it is regular.

Proof Let (X, τ ) be a normal space. If it is completely regular, then it is regular
by their definitions. Conversely, suppose that (X, τ ) is both normal and regular. We
claim that it is completely regular. Let A be a closed subset in (X, τ ) and y ∈ X be
a point such that y /∈ A. Then X − A is an open set in (X, τ ) such that y ∈ X − A.
Since by hypothesis (X, τ ) is regular, it follows that there exists an open set U such
that y ∈ U and U ⊂ X -A. Again, since by hypothesis (X, τ ) is normal, it follows
that there is a Urysohn function corresponding to the pair of disjoint closed sets U
and A in (X, τ ) such that

f (x) =
{
0, for all x ∈ U

1, for all x ∈ A

and
0 ≤ f (x) ≤ 1 for all x ∈ X.

This proves that (X, τ ) is completely regular.
�

6.3.3 Tychonoff Spaces

This subsection continues a study of Tychonoff spaces which started at Chap. 5.
Completely regular T1-spaces called Tychonoff spaces form a special class of com-
pletely regular spaces. For example, every T1 normal space is a Tychonoff space by
Proposition 6.3.17. For more study of Tychonoff spaces see Exercises 7 and 8 of
Sect. 6.9.

Definition 6.3.15 A topological space (X, τ ) is said to be a Tychonoff space if it
is a completely regular T1-space.
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Example 6.3.16 (i) The subspace I = [0, 1]of the real line spaceR is aTychonoff
space;

(ii) Niemytzki tangent disk topology is Tychonoff, but it is not normal.

Proposition 6.3.17 provides a vast supply of Tychonoff spaces.

Proposition 6.3.17 Every T1 normal space (X, τ ) (i.e., T4 -space) is a Tychonoff
space.

Proof Let (X, τ ) be a T1 normal space, A be any closed set in (X, τ ), and a ∈ X
be a point such that a /∈ A. As by hypothesis, X is a T1- space, the one-pointic set
{a} is closed in X. Hence corresponding to the pair of closed sets A and {a}, there
exists a real-valued continuous function f : X → R by Urysohn lemma such that

f (x) =
{
0, for x = a

1, for all x ∈ A

and
0 ≤ f (x) ≤ 1 for all x ∈ X.

This shows that (X, τ ) is a completely regular space, which is also a T1-space by
hypothesis. Hence it is a Tychonoff space. �

6.4 Gδ-sets, Perfectly Normal Spaces, and Urysohn
Functions

This section characterizes perfectly normal spaces by Gδ-sets and studies the exis-
tence of Urysohn functions by Gδ-sets.

6.4.1 Gδ-sets and Fδ-sets

This subsection conveys the concepts ofGδ-sets and Fδ-sets. The motivation of these
concepts comes from the observation: the intersection of infinitely many open sets
may not be an open set. For example, in the real line space (R, σ ), every open
interval being an open set, each Un = (− 1

n ,
1
n ): n = 1, 2, 3, . . . is an open set, but

their intersection
⋂∞

1 {Un} = {0} is not open, since its complement R − {0} is not
closed, because 0 is a point of accumulation of R − {0}, which lies outside the set
R − {0}. Dually, the union of infinitely many closed sets may not be a closed set.
This observation leads to define the concepts of Gδ-sets and Fδ-sets in a topological
spaces (X, τ ). For characterization of Urysohn functions by Gδ-sets. see Exercise
10 of Sect. 6.9.
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Definition 6.4.1 Let (X, τ ) be a topological space.

(i) The intersection of a countable family of open sets is called a Gδ-set in (X, τ ).

(ii) The union of a countable family of closed sets is called an Fδ-set in (X, τ ).

Proposition 6.4.2 Let (X, τ ) be a topological space. Then

(i) The complement of a Gδ-set in (X, τ ) is an Fδ-set in (X, τ ).

(ii) The complement of an Fδ-set in (X, τ ) is a Gδ-set in (X, τ ).

(iii) The intersection of two Fδ-sets is also an Fδ-set in (X, τ ).

(iv) The union of two Gδ-sets is also an Gδ-set in (X, τ ).

(v) The union of a countable family of Fδ-sets is an Fδ-set in (X, τ ).

(vi) The intersection of a countable family of Gδ-sets is a Gδ-set in (X, τ ).

Proof It follows from Definition 6.4.1 by using the duality principle. �

Example 6.4.3 In the real line space (R, σ ),

(i) Q is an Fδ-set but it is not a Gδ-set;
(ii) On the other hand, dually, the subset P = R − Q of irrational numbers is a

Gδ-set but it is not an Fδ-set;
(iii) Every closed set is a Gδ-set;
(iv) Every open set is an Fδ-set.

6.4.2 Perfectly Normal Spaces

This subsection introduces the concept of perfectly normal spaces by imposing cer-
tain conditions in addition to the conditions prescribed in Urysohn lemma. This
lemma characterizes normal spaces (X, τ ) by showing the existence of a real-valued
continuous function f, called Urysohn function, corresponding to every pair of
disjoint closed sets A and B in (X, τ ) such that

f (x) =
{
0, for all x ∈ A

1, for all x ∈ B

and
0 ≤ f (x) ≤ 1 for all x ∈ X.

Remark 6.4.4 Themotivation of the concept of perfectly normal spaces comes from
the observation: given two disjoint closed sets A and B in a topological space (X, τ ),

there may exist points x ∈ X − A and y ∈ X − B such that f (x) = 0 and f (y) = 1.
It shows that although the relations f −1(0) ⊃ A and f −1(1) ⊃ B hold, the relations
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f −1(0) = A and f −1(1) = B may not hold. This leads to the concept of perfectly
normal spaces by imposing stronger conditions than those for normal spaces.

Definition 6.4.5 Let (X, τ ) be a topological space. It is said to be perfectly normal
if corresponding to every pair of disjoint closed sets P and Q in (X, τ ), there exists
a real-valued continuous function f : X → R such that

0 ≤ f (x) ≤ 1, ∀ x ∈ X, f −1(0) = A and f −1(1) = B.

Proposition 6.4.6 Every perfectly normal space is a normal space.

Proof Urysohn Lemma 6.2.8 asserts that every perfectly normal space is a normal
space. �

Example 6.4.7 Every metrizable space is perfectly normal by Proposition 6.4.13.

Remark 6.4.8 For characterization of a perfectly normal space see Sect. 6.4.3 and
Exercise 12 of Sect. 6.9.

6.4.3 Existence of Urysohn Function and Characterization
of Perfectly Normal Spaces

This subsection gives a necessary and sufficient condition for existence of Urysohn
function corresponding to a pair of disjoint closed sets of a normal space by using
the concept of Gδ-sets and characterizes perfectly normal spaces.

Theorem 6.4.9 (Existence of Urysohn function) Let (X, τ ) be a normal space and
A, B be a pair of disjoint closed sets in (X, τ ). Then corresponding to this pair A, B,

there exists a Urysohn function f : X → R satisfying the additional conditions

f −1(0) = A and f −1(1) = B

iff A and B are both Gδ-sets.

Proof First suppose that corresponding to the pair A, B of disjoint closed sets in
(X, τ ), there exists a Urysohn function f : X → R satisfying the additional condi-
tions f −1(0) = A and f −1(1) = B. Define

Un = {x ∈ X : f (x) <
1

n
} ⊂ X, n = 1, 2, . . .

and
Vn = {x ∈ X : f (x) >

n

n + 1
} ⊂ X, n = 1, 2, . . . .

This shows that each of Un and Vn are open sets in (X, τ ). Then each of the sets
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A =
∞⋂

1

{Un} and B =
∞⋂

1

{Vn}

is the intersection of a countable collection of open sets, and they are both Gδ-sets
in (X, τ ).

Conversely, let A and B be both Gδ-sets. Then corresponding to the pair A, B of
disjoint closed sets in (X, τ ), there exists a Urysohn function h: X → R satisfying
h−1(0) = A and another Urysohn function g: X → R satisfying g−1(0) = B.

Define a function

f : X → R, x 	→ h(x)

h(x) + g(x)
.

Clearly, f is well-defined, since h(x) + g(x) 
= 0, ∀ x ∈ X, since the sets A and B
are disjoint.
Then f is a continuous function such that

(i) 0 ≤ f (x) ≤ 1, ∀ x ∈ X;
(ii) f −1(0) = A, since f (x) = 0 iff h(x) = 0;
(iii) f −1(1) = B, since f (x) = 1 iff g(x) = 0.

�

Corollary 6.4.10 characterizes perfectly normal spaces. For its another character-
ization see Exercise 12 of Sect. 6.9.

Corollary 6.4.10 Let (X, τ ) be a topological space. Then it is perfectly normal iff

(i) (X, τ ) is normal and
(ii) every closed set in (X, τ ) is a Gδ-set.

Proof It follows from Theorem 6.4.9. �

Remark 6.4.11 Corollary 6.4.10 proves the equivalence of the two definitions of a
perfectly normal space given in Definitions 6.4.12 and 6.4.5.

Definition 6.4.12 (Alternative definition) A topological space is said to be per-
fectly normal if

(i) it is normal and
(ii) its every closed subset is a Gδ-set.

Proposition 6.4.13 provides a vast supply of perfectly normal spaces.

Proposition 6.4.13 Every metrizable space is perfectly normal.
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Proof Let (X, τ ) be a metrizable space and d: X × X → R be a metric such that its
induced topology τd = τ. Since every metrizable space is normal, (X, τ ) is a normal
space. Let P be any closed set in (X, τ ). Then for every n ∈ N,

Un = {x ∈ X : d(x, P) <
1

2n
} is an open set.

Since by hypothesis, P is closed in (X, τ ), it follows that

⋂
{Un: n ∈ N} = P.

This implies that P is a Gδ-set. It concludes by Corollary 6.4.10 that (X, τ ) is
perfectly normal. �

Example 6.4.14 Every perfectly normal space is completely regular, and it is also
completely normal. But its converse is not true.

(i) For example, consider the set Z of integers and the topology τ on Z consisting
of Z,∅ and all even integers. Then (Z, τ ) is completely normal but is not
perfectly normal. Because, the set of odd integers is closed in (Z, τ ) but it is
not a Gδ-set in (Z, τ ).

(ii) Moreover, by usingCorollary 6.4.10, it follows that the topological space (Z, τ )

is not regular.

6.5 Tietze Extension Theorem: Characterization of Normal
Spaces

This section proves Tietze Extension Theorem 6.5.1, which characterizes normal
spaces, by using Urysohn lemma. There are several extension problems in topol-
ogy. For example, if 1S1 : S1 → S1 is the identity map on the circle S1 = {(x, y) ∈
R2: x2 + y2 = 1}, then it has no continuous extension over the entire closed disk
D2 = {(x, y) ∈ R2: x2 + y2 ≤ 1} (see Basic Topology: Volume 3 of the present
series of books). So, it is a natural problem in topology: given a topological space
(X, τ ), when is a continuous function defined on a subspace A ⊂ X continuously
extendable over the whole space X ? Tietze Extension Theorem 6.5.1 partially solves
this problem for real-valued continuous functions on normal spaces. This theorem
has many applications in extension problems.

Theorem 6.5.1 now called Tietze extension theorem is named after Heinerich
Franz Friedrich Tietze (1880–1964). Historically, he proved a theorem in 1915, for
a metric space given in Corollary 6.5.3. Urysohn published its general version in an
article in 1925. Tietze also made significant contribution to topology and introduced
Tietze transformation between presentations of groups.
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Tietze Extension Theorem 6.5.1 is a natural generalization of Urysohn Lemma
6.2.8, whereUrysohn Lemmafinds its significant application. It characterizes normal
spaces X in terms of continuous extension over X of every continuous function
f : Y → R, on every closed subset Y ⊂ X. An alternative form of Tietze Extension
Theorem 6.5.1 is given in Exercise 14 of Sect. 6.9.

Theorem 6.5.1 (Tietze Extension Theorem) A topological space (X, τ ) is normal
iff for every closed set Y in (X, τ ), every continuous map f : Y → I has a continuous
extension over X.

Proof Let (X, τ ) be a topological space such that the given conditions hold. Claim
that (X, τ ) is normal. By hypothesis, it is assumed that for any closed set Y in (X, τ ),

every continuous map f : Y → I has a continuous extension over X. Let A, B be a
pair of disjoint closed sets in (X, τ ). If Y = A ∪ B, then Y is a closed subset in
(X, τ ). Consider a function f on the topological space Y with relative topology τY
induced from the topology τ defined by

f :Y → I, y 	→
{
0, for all y ∈ A

1, for all y ∈ B

Since A and B are disjoint closed sets in (X, τ ), it follows that f is a real-valued
continuous function. Hence by hypothesis f has a continuous extension F over X.

This shows that
F : X → I

is a continuous map such that F(x) = f (x), ∀ x ∈ Y. Define two subsets U and V
in X

U = {x ∈ X : F(x) < 1/2}

and
V = {x ∈ X : F(x) > 1/2}.

Then U and V are open sets in (X, τ ) by Proposition 6.1.3, since F is continuous.
Hence they are two disjoint open sets in (X, τ ) such that A ⊂ U and B ⊂ V . This
asserts that (X, τ ) is a normal space.

Conversely, let Y be a closed subspace of a normal space (X, τ ). Then it is to be
proved that every continuous map

f : Y → I

has a continuous extension over X . Let A and B be a pair of disjoint closed sets in
the normal space (X, τ ). Then for this pair of closed sets, there exists an Urysohn
function, also called a characteristic function κ(A,B) by Urysohn lemma 6.2.8 such
that
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κ(A,B): X → I, x 	→
{
0, for all x ∈ A

1, for all x ∈ B

Let f : Y → I be an arbitrary continuous map. Define maps

fn: Y → I with f0 = f and gn: X → I, ∀ n ≥ 1

inductively as follows (assume that fn is already defined). Let An and Bn be defined
as follows:

An = {x ∈ Y : fn(x) ≤ 1/3 · (2/3)n}

and
Bn = {x ∈ Y : fn(x) ≥ 2/3 · (2/3)n}.

Then An and Bn are two disjoint closed sets in (X, τ ) by Proposition 6.1.3. Let

κ(An ,Bn): X → I

be the corresponding characteristic function. Suppose

gn = (1/3) (2/3)n · κ(An ,Bn): X → I, x 	→ (1/3) (2/3)nκ(An ,Bn)(x).

Define

fn+1: Y → I, x 	→ fn(x) − gn(x), ∀ x ∈ Y.

Then gn(x) ≤ fn(x), ∀ x ∈ Y, because, if x ∈ An, then κA,B(x) = 0
=⇒ gn(x) = 0 and hence gn(x) ≤ fn(x), ∀ x ∈ An and if x /∈ An , then

fn(x) > (1/3) · (2/3)n and gn(x) ≤ (1/3) · (2/3)n.

Hence it follows that gn(x) ≤ fn(x), ∀ x ∈ Y. This asserts that the map

fn+1: Y → I, x 	→ fn(x) − gn(x)

is well-defined, since gn(x) ≤ fn(x), ∀ x ∈ Y. This gives the inductive definition of
the maps fn and gn. Again,

0 ≤ gn(x) ≤ (1/3)(2/3)n, ∀ x ∈ X, since gn(x) = (1/3)(2/3)n · κ(An ,Bn)(x), ∀ ∈ X.
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It asserts that the series�gn(x) is uniformly convergent on X , and hence, it follows
that

lim
n→∞ [go(x) + g1(x) + · · · + gn(x)]

exists for all x ∈ X. Hence it defines a continuous function F : X → I. To prove
that F is a continuous extension of f : Y → I over X, it is sufficient to show that
F(x) = f (x), ∀ x ∈ Y. To show it we use the inequalities

0 ≤ fn(x) ≤ (2/3)n

obtained by induction on n. Again,

fk+1: Y → I, x 	→ fk(x) − gk(x)implies fk+1(x) = fk(x) − gk(x), ∀ x ∈ Y, k = 0, 1, . . . , n.

Consequently, gk(x) = fk(x) − fk+1(x)∀ x ∈ Y, k = 0, 1, . . . , n.

It asserts by taking summation that

�n
k=0 gk(x) = f (x) − fn+1(x), since f0(x) = f (x), ∀ x ∈ Y.

Hence passing to the limit as n → ∞, it follows that

F(x) = f (x), ∀ x ∈ Y,

because, as n → ∞, LHS gives F(x) and as n → ∞, RHS gives f(x), since

0 ≤ fn+1(x) ≤ (2/3)n+1

and hence fn+1(x) → 0, ∀ x ∈ Y as n → ∞,

This concludes that the continuous function

f : Y → I

has a continuous extension
F : X → I

over X. �

Remark 6.5.2 Tietze proved his extension theorem in 1915 where X is a metric
space, now given in Corollary 6.5.3. The general version as given in Corollary 6.5.3
was first time found in an article published by Urysohn in 1925.

Corollary 6.5.3 (Tietze Extension Theorem) If A is a closed subspace of a metric
space X, then every continuous map f : A → I has a continuous extension over X.
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Proof It follows from Theorem 6.5.1 as particular case, when X is a metric
space. �

Corollary 6.5.4 (Tietze Extension Theorem) If A is a closed subspace of a normal
space X, then every continuous map f : A → I has a continuous extension over X.

Proof It follows from one part of Theorem 6.5.1. �

Example 6.5.5 The condition in Theorem 6.5.1 saying that Y is to be closed in
the topological space (X, τ ) is necessary. Because on default of this condition, the
theorem fails. For example, if Y = (0,∞), then Y is not closed in the real space
(R, σ ). The function f defined by

f (x) = sin(1/x)

is continuous on the subspace (Y, σY ) of (R, σ ) but this function has no continuous
extension over (R, σ ), because limx→+0 f (x) is indeterminate. For another example
in this respect, see Exercise 17 of Sect. 6.9.

Example 6.5.6 Sorgenfrey line (Rl , σl) is a normal space. The Sorgenfrey plane R2
l

is the product space (R, σl) × (R, σl)with product topology having a base consisting
of all sets of the form {[x, y) × [z, w)} in the plane. The set of all points in R2

l with
rational coordinates is dense in R2

l . But its subspace A = {t × (−t): t ∈ Rl} has the
discrete topology. Geometrically, A represents the line x + y = 0 in the Sorgenfrey
plane R2

l . Proposition 6.5.7 shows that the product of two normal spaces may not be
normal.

Proposition 6.5.7 Sorgenfrey planeR2
l with Sorgenfrey product topology is not nor-

mal.

Proof Suppose this spaceR2
l is normal. Consider A = {(x, y) ∈ R2: y = −x} ⊂ R2

endowedwith discrete topology induced by Sorgenfrey product topology. Then every
map f : A → R is continuous. Define

P = {z ∈ A: z is a rational point}

and
Q = {z ∈ A: z is an irrational point}

Then P and Q are disjoint closed sets inR2
l .Consider in particular, the continuous

map

f : A → R, z 	→
{
2, for all y ∈ P

−2, for all y ∈ Q

Use Tietze extension theorem on f to have a continuous extension f̃ : R2
l → R.

But this leads to assert that P and Q cannot be separated by disjoint open sets,
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producing a contradiction of our assumption that R2
l is normal. This contradiction

asserts that R2
l is not normal. �

6.6 Rings C(X, R) for Compact Hausdorff Spaces X

This section studies rings C(X, R) for compact Hausdorff spaces X , and it estab-
lishes a 1-1 correspondence between the points of X and maximal ideals of the ring
C(X, R) in Theorem 6.6.8. For Gelfand–Kolmogoff Theorem see Sect. 6.7. This
theorem says that two compact Hausdorff spaces X and Y are homeomorphic iff the
corresponding rings C(X, R) and C(Y, R) are isomorphic. This deep result recovers
the topology of X from the ring structure of C(X, R).

Ideals of Rings C(X, R) for Compact Hausdorff Spaces X

This subsection addresses the maximal ideals of the ring C(X, R) of all real-valued
continuous functions on X , when X is a compact Hausdorff space in general and
X = [0, 1] in particular. Theorem 6.6.5 proves that there is a bijective correspon-
dence between the points of a compact Hausdorff space X and the maximal ideals of
the ring C(X, R).Basic topological tools used in this theorem is the Urysohn lemma.

Definition 6.6.1 Given a topological space X , let C(X, R) be the set of all real-
valued continuous functions on X . Then C(X, R) is a commutative ring (not an
integral domain) under

(i) pointwise addition

f + g: X → R, x 	→ f (x) + g(x) ∈ R

and
(ii) pointwise multiplication

f g: X → R, x 	→ f (x)g(x) ∈ R.

It is called the ring of real-valued continuous functions on X. The zero element
O and identity element α of this ring are the functions defined by

0(x) = 0 and α(x) = 1∀ x ∈ X.

Moreover, C(X, R) forms a vector space over R, which is also a real algebra.
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Proposition 6.6.2 expresses C in the language of category theory.

Proposition 6.6.2 Let T op be the category of topological spaces and their contin-
uous maps and Ring be the category of rings and their homomorphisms. Then

C: T op → Ring

is a contravariant functor.

Proof The object function is defined by assigning to every object X ∈ T op the cor-
responding ring C(X, R) ∈ Ring and the morphism function is defined by assigning
to every morphism ψ : X → Y ∈ T op the corresponding ring homomorphism

C(ψ): C(Y. R) → C(X. R), f 	→ f ◦ ψ.

Hence it follows that C is a contravariant functor. �
Remark 6.6.3 Proposition 6.6.2 shows that for any topological space X, under point-
wise addition and pointwise multiplication, C(X, R) is a ring. On the other hand,
Gelfand–Kolmogoroff Theorem 6.7.7 asserts that two compact Hausdorff spaces X
and Y are homeomorphic iff the corresponding rings C(X, R) and C(Y, R) are iso-
morphic. Hence, given two compact Hausdorff spaces X and Y, an isomorphism
of the corresponding rings C(X, R) and C(Y, R) implies that the spaces X and Y
are homeomorphic and conversely a homeomorphism of two given compact Haus-
dorff spaces X and Y implies that the corresponding rings C(X, R) and C(Y, R) are
isomorphic.

Definition 6.6.4 A proper ideal M of a ring R is said to be a maximal ideal of R if
there is no proper ideal of R strictly containing M in the sense that there is no ideal
A of R such that

M ⊂
= A ⊂
= R.

The ring C(X, R) is now studied when X = I = [0, 1] with subspace topology
induced by the usual topology from R.

Theorem 6.6.5 Let R be the ring C([0, 1], R) and M be the set of all maximal
ideals in R. Then the maximal ideals in the ring R correspond to the points in [0, 1],
in the sense that there exists a bijection φ: [0, 1] → M.

Proof From ring theory, it follows that for any point t ∈ I = [0, 1], Mt = { f ∈
R: f (t) = 0} is a maximal ideal of R and hence Mt ∈ M. To prove the theorem, it
is sufficient to prove that the map

ψ : I → M, t 	→ Mt = { f ∈ R: f (t) = 0}

is a bijection. Let p, q ∈ [0, 1] be two distinct points. Since every compact Hausdorff
space is normal and (I, σI) is a compact Hausdorff space as a subspace of the real
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line space (R, σ ), the space (I, σI) is normal and the one-pointic sets {p} and {q}
are two disjoint closed subsets in (I, σI). Hence it follows by Urysohn lemma that
there exists a continuous real function

f : I → R, t 	→
{
0, if t = p

1, if t = q

and
0 ≤ f (t) ≤ 1 for all t ∈ I.

This asserts that the map ψ is injective. To prove that ψ is surjective, take any
M ∈ M. Then for this M, there is a point t ∈ I at which every function f ∈ M
vanishes. Otherwise, by compactness of I, we would reach at a contradiction. This
implies that M = Mt . This concludes that the map ψ is surjective, and hence, ψ is
a bijection. �
Corollary 6.6.6 Let R be the ring C([0, 1], R) of real-valued continuous functions
on I = [0, 1]. Then the maximal ideals in R correspond to the points in I.

Proof Let F be the set of all maximal ideals of the ring R. Since the map

ψ : I → F , t 	→ Mt = { f ∈ R: f (t) = 0}

is a bijection by Theorem 6.6.5, it follows that the maximal ideals in the ring R
correspond to the points in I. �
Remark 6.6.7 There is a natural problem: what is the generalization of Theorem
6.6.5 ? Theorem 6.6.8 solves this problem communicating a positive answer for an
arbitrary compact Hausdorff space X in place of the space I = [0, 1].
Theorem 6.6.8 Let X be a given compact Hausdorff space and R = C(X, R) be
the ring of all real- valued continuous functions on the compact space X. Then
corresponding to each point x ∈ X, there is a unique maximal ideal Mx of R and
conversely.

Proof Let M be the set of all maximal ideals of the ring R. To prove the theorem,
it is sufficient to prove that the map

ψ : X → M, x 	→ Mx = { f ∈ R: f (x) = 0}

is a bijection. Its proof is similar to the proof of the Theorem 6.6.5. �

Corollary 6.6.9 Let R be the ring C(X, R) of real -valued continuous functions on a
compact Hausdorff space X. Then the maximal ideals in R correspond to the points
in x ∈ X.

Proof Proceed as in Corollary 6.6.6. �
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6.7 The Gelfand–Kolmogoroff Theorem

This section continues the study of the rings C(X, R) for compact Hausdorff spaces
X and proves the Gelfand–Kolmogoroff Theorem 6.7.3. It has another form given in
Theorem 6.7.7, which asserts that two compact Hausdorff spaces X and Y are home-
omorphic iff the corresponding rings C(X, R) and C(Y, R) are isomorphic. This deep
result recovers the topology of X from the ring structure of C(X, R).

Definition 6.7.1 Let X and Y be topological spaces. Then every continuous map

ψ : X → Y

induces a homomorphism of rings

ψ∗: C(Y, R) → C(X, R), g 	→ g ◦ ψ.

Remark 6.7.2 Let α: X → R, x 	→ 1 ∈ R. Then the ring C(X, R) with identity
element α is completely determined. Is its converse true? Its positive answer is
available in this section asserting that whenever X is a compact Hausdorff space
, the ring C(X, R) determines the space X uniquely up to homeomorphism. Here,
C(X, R), is endowed with the discrete topology.

Theorem 6.7.3 Let X be a compact Hausdorff space, C(X, R) be the ring with
identity element α and H(X) be the set of all nonzero ring homomorphisms
h: C(X, R) → R. If H(X) is endowed with the function-space topology of point-
wise convergence, then

(i) the only nonzero homomorphisms h: C(X, R) → R are the evaluation maps

hx : C(X, R) → R, f 	→ f (x).

(ii) (Gelfand–Kolmogoroff) the map

μ: X → H(X), x 	→ hx

is a homeomorphism.

Proof (i) SinceR is a field, the kernel, ker h is a maximal ideal in C(X, R).Hence
by Theorem 6.6.8, there exists a unique point x0 ∈ X such that

ker(h) = Mx0 = { f ∈ C(X, R): f (x0) = 0}.

If f ∈ C(X, R) and f (x0) = c0 ∈ R, then f − c0α ∈ ker h =⇒ h( f − c0α)

= 0 shows that
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h( f ) = h(c0α) = c0 = f (x0) and h = hx0 ,

since hx0( f ) = f (x0) = h( f ), ∀ f ∈ C(X, R).

(ii) By using the first part, it follows that the map

μ: X → H(X), x 	→ hx is surjective.

Since X is a compact Hausdorff space by hypothesis, it is normal. For any two
points x0 
= x1 ∈ X, the sets {x0} and {x1} are disjoint closed sets in X. Then
by Urysohn lemma there exists an f ∈ C(X, R) is such that

f (x) =
{
0, for x = x0
1, for x = x1

and
0 ≤ f (x) ≤ 1 for all x ∈ X.

This shows that μ is injective. Consequently, μ is bijective. To show that it is
continuous, let U = ( f, V ) be a subbasis nbd of the point μ(x0). Then

μ−1(U ) = {x ∈ X : hx ( f ) ∈ V } = {x ∈ X : f (x) ∈ V } = f −1(V )

is an open set. Since X is compact and Hausdorff by hypotheses and the topo-
logical space H(X) is Hausdorff, it follows that μ is a homeomorphism.

�

Characterization of Compact Hausdorff Spaces by Rings of
Continuous Functions

This subsection characterizes compact Hausdorff spaces X by rings C(X, R). Its
motivation comes from the given problem. Proposition 6.6.2 transfers a problem
of topology to algebra. It raises the following problem: is its converse true ? More
precisely, given a ring C(X, R), is it possible to recover the topological structure of
X from the ring structure of C(X, R)? Its positive answer is available in Gelfand–
Kolmogoroff Theorem 6.7.7, which asserts that two compact Hausdorff spaces X
and Y are homeomorphic iff the corresponding rings C(X, R) and C(Y, R) are iso-
morphic, and hence, it gives an interplay between topology and algebra.
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Fig. 6.1 Commutative
diagram connecting ψ and
ψ∗∗

Definition 6.7.4 Let H(X) be the space of all nonzero ring homomorphisms
h: C(X, R) → R endowed with the function-space topology of pointwise conver-
gence for every compact Hausdorff space X. Then the ring homomorphism

ψ∗: C(Y, R) → C(X, R), g 	→ g ◦ ψ,

induced by a continuous map ψ : X → Y , induces a second map

ψ∗∗:H(X) → H(Y ), h 	→ h ◦ ψ∗.

Eachψ∗∗(h): C(Y, R) → R is a nonzero homomorphism, because (h ◦ ψ∗)(α) =
h(α) = 1. Since the rings C(Y, R) are endowed with the discrete topology, it follows
that ψ∗ and hence ψ∗∗ are both continuous. They are such that

ψ∗∗ ◦ μX = μY ◦ ψ : X → H(Y ),

where μX : X → H(X) and μY :Y → H(Y ) are homeomorphisms provided by The-
orem 6.7.3. It asserts that the the diagram in Fig. 6.1 connecting ψ and ψ∗∗ is com-
mutative.

Proposition 6.7.5 Let X and Y be two compact Hausdorff spaces and g: C(Y, R) →
C(X, R) be any ring homomorphism. If g(α) = α for identity element α ∈ C(Y, R)

then there exists a unique continuous map

ψ : X → Y such that ψ∗ = g.

Proof Let ψ : X → Y be defined by

ψ = μ−1
Y ◦ ψ∗∗ ◦ μX .

Since ψ∗∗:H(X) → H(Y ) is continuous and μX , μY are both homeomorphisms, it
follows that ψ is a continuous map. Moreover, ψ(x) = y iff g(k)(x) = k(y), ∀ k ∈
C(Y, R). If

ψ∗ : C(Y, R) → C(X, R)

is the induced map, then
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ψ∗(k)(x) = k ◦ ψ(x) = k(y) = g(k)(x), ∀ x ∈ X =⇒ ψ∗(k)
= g(k), ∀ k ∈ C(Y, R) =⇒ ψ∗ = g.

To prove the uniqueness of ψ, let

ψ, λ: X → Y

be two continuousmaps such thatψ(x) 
= λ(x) for somepoint x ∈ X.Then it follows
by using the given conditions on Y that there is an f ∈ C(Y, R) such that f (λ(x)) 
=
f (ψ(x)) and hence λ∗ 
= ψ∗. �

Remark 6.7.6 Gelfand–Kolmogoroff Theorem 6.7.7 asserts that given two com-
pact Hausdorff spaces, X and Y, an isomorphism between the corresponding rings
C(X, R) and C(X, R) implies that the spaces X and Y are homeomorphic and con-
versely, a homeomorphism between two given compact Hausdorff spaces X and
Y implies an isomorphism between the corresponding rings C(X, R) and C(Y, R).

As a vector space, C(X, R) forms a real algebra with multiplication ( f.g)(x) =
f (x)g(x) ∈ R. Hence it characterizes compact Hausdorff spaces in terms of alge-
bras (see Corollary 6.7.8).

Theorem 6.7.7 (Another form of Gelfand–Kolmogoroff) Two compact Hausdorff
spaces X and Y are homeomorphic iff the corresponding rings C(X, R) and C(Y, R)

are isomorphic.

Proof Let X and Y be two compact Hausdorff spaces and ψ : X → Y be a home-
omorphism with its inverse homeomorphism φ: Y → X such that ψ ◦ φ = 1Y and
φ ◦ ψ = 1X . Then ψ induces a ring homomorphism

ψ∗: C(Y, R) → C(X, R), f 	→ f ◦ ψ.

Then by the functorial property of the contravariant functor C (see Proposition
6.6.2), it follows that the induced homomorphisms satisfy the relation:

(ψ ◦ φ)∗ = φ∗ ◦ ψ∗ = identity

and
(φ ◦ ψ)∗ = ψ∗ ◦ φ∗ = identity.

It implies that ψ∗ is an isomorphism of rings.

Conversely, let h: C(Y, R) → C(X, R) be a ring isomorphism. Since any homo-
morphism

h: C(Y, R) → C(X, R)
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satisfies the property h(α) = α,where α ∈ C(Y, R) is the identity element and every
isomorphism h satisfies the conditions prescribed in Proposition 6.7.5, it follows that
there exists a continuous map

ψ : X → Y : ψ = μ−1
Y ◦ ψ∗∗ ◦ μX with ψ∗ = h.

As ψ is a continuous bijective map from a compact space to a Hausdorff space, it
follows that ψ is a homeomorphism. �

Corollary 6.7.8 characterizes compact Hausdorff spaces in terms of algebras and
recovers the topology of X from the algebra C(X, R).

Corollary 6.7.8 (An alternative formofGelfand–Kolmogoroff)TwocompactHaus-
dorff spaces X and Y are homeomorphic iff the corresponding algebras C(X, R) and
C(Y, R) are isomorphic.

Proof Consider C(X, R) and C(Y, R) as algebras over R. Since an isomorphism
between algebras is a ring isomorphism which preserves the vector space structures,
to prove the corollary, proceed as in proof of Theorem 6.7.7. �

Theorem 6.7.9 In the language of category theory,

C: T op → Rings

is a contravariant functor from the category of topological spaces and their contin-
uous maps to the category of rings and their homomorphisms such that

(i) if X and Y be two homeomorphic spaces, then the corresponding rings C(X, R)

and C(Y, R) are isomorphic and
(ii) in particular, two compact Hausdorff spaces X and Y are homeomorphic iff

the corresponding algebras C(X, R) and C(Y, R) are isomorphic.

Proof By hypothesis, T op is the category of topological spaces and their continuous
maps and Rings is the category of rings and their homomorphisms. Define object
function X 	→ C(X, R) for each object X ∈ T op. If α: X → Y ∈ T op, then C( f )
defines a ring homomorphism

C(α) = α∗:C(Y, R) → C(X, R), f 	→ f ◦ α

which defines the morphism function α 	→ α∗. Hence it follows that C is a con-
travariant functor.

(i) It follows from the functorial properties of C.

(ii) It follows from Corollary 6.7.8. �
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Remark 6.7.10 The functor C defined in Theorem 6.7.9 is similar to cohomology
functor (studied in Basic Topology: Volume 3 of the present book series) in the
sense that

(i) both are contravariant functors from the category of topological spaces and
their continuous maps to the category of rings and their homomorphisms and

(ii) both of them establish a key link between topology and algebra.

6.8 Applications

This section presents some interesting applications arising out of some problems
not discussed in previous chapters. The applications include a study of embedding
problems in Sect. 6.8.1, a proof of Weierstrass Theorem 6.7.9 in topological setting
and application of Baire category theorem in Sect. 6.8.3 and some other applications
in Sects. 6.8.4 and 6.8.4.

6.8.1 Embedding Problems: Urysohn Metrization Theorem

The concept of embedding is very important in mathematics. A topological space
(X, τ ) is said to be embedded in a topological space (Y, σ ), if there exists a home-
omorphism f from X onto a subspace of Y, called an embedding f : X → Y. Then
the space X may be considered as a subspace of Y. This subsection solves a natural
problem: can every completely regular T1-space be embedded in the real line space
? It also solves another problem: can every completely regular space be embedded in
IK for some indexing set K ? Finally, Urysohn metrization theorem providing suffi-
cient conditions for metrizabilty of a topological space is proved by using embedding
theorems in this subsection.

Definition 6.8.1 Let (X, τ ) and (Y, σ ) be two topological spaces. A continuousmap

f : (X, τ ) → (Y, σ )

is said to be an embedding if f is injective and it defines a homeomorphism from
X onto f (X).

Example 6.8.2 Let (Y, τY ) be any subspace of a topological space (X, τ ). Then the
inclusion map

i : Y ↪→ X

is an embedding of Y in X, which says that every inclusion map in topological spaces
is an embedding.
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Proposition 6.8.3 Let (X, τ ) be a regular space with a countable basis and R∞
be the infinite dimensional Euclidean space. If R∞ is endowed with the product
topology, then the map

f : X → R∞, x 	→ ( f1(x), f2(x), . . .)

is an embedding of X in R∞.

Proof Let (X, τ ) be a regular space with a countable basis. Then there exists a
countable family of continuous functions { fn: X → [0, 1]} with the property that
given a point a ∈ X and a nbd U of a in X, there is an integer n such that

fn(a) > 0 and fn(x) = 0, ∀ x ∈ X −U

by using Exercise 20 of Sect. 6.9. Hence it follows that the map

f : X → R∞, x 	→ ( f1(x), f2(x), . . .)

is continuous, since R∞ has the product topology and each fn is continuous. More-
over, f is injective, since given two points x 
= y in X, there exists a positive integer
n such that

fn(x) > 0 and fn(y) = 0 =⇒ f (x) 
= f (y).

It asserts that f is a continuous injective map. Let the subset Y = f (X) ⊂ R∞ have
the subspace topology inherited from the product topology of R∞. This shows that f
is a continuous bijective map from X onto Y. Since given any open set U in (X, τ ),

the set f (U ) is open in the subspace Y, it follows that f is homeomorphism from X
onto the subspace Y of R∞. This asserts that f is an embedding of X in R∞.

�

Theorem 6.8.4 solves an embedding problem (unpublished work of M. R.
Adhikari).

Theorem 6.8.4 Let (X, τ ) be a completely regular T1-space and C(X, R) be the set
of all real -valued continuous functions on (X, τ ). Then the topological space (X, τ )

can be embedded in the real line space R.

Proof Let (X, τ ) be a completely regular T1- space and C(X, R) be the set of all
real -valued continuous functions on (X, τ ). Since the space (X, τ ) is T1, for distinct
points x and y in X, the one-pointic set {y} is closed and x is not an element of {y}.
Again, since (X, τ ) is completely regular by hypothesis , there exists a continuous
function

f ∈ C(X, R) such that f (x) = 0 and f ({y}) = f (y) = 1.

This asserts that f (x) 
= f (y), and hence, it is proved that f : X → R is an embed-
ding. �
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Remark 6.8.5 The basic tool used to prove Urysohn metrization theorem is the
separation of disjoint closed sets by real-valued continuous functions. This tool is
now also utilized to prove the Embedding Theorem 6.8.6.

Theorem 6.8.6 (Embedding theorem) Let (X, τ ) be a completely regular T1- space
and C = { fa : X → R: a ∈ A} be an indexed family of continuous maps from X to R
such that for each point p ∈ X and each nbd U of p in X, there is an index a ∈ A
such that

fa(p) > 0, and fa(x) = 0, ∀ x ∈ X −U.

Then the map

f : X → RA, x 	→ ( fa(x))a∈A

is an embedding of X inRA. In particular, if fa maps X into I = [0, 1], for all a ∈ A,

then the above defined map

f : X → IA

is an embedding of X in IA.

Proof It follows by proceeding as in Theorem 6.8.3 by replacing R∞ by RA and
adjusting the proof accordingly. �

Corollary 6.8.7 Every completely regular T1- space can be embedded in IK for
some indexing set K .

Proof Let (X, τ ) be a completely regular T1 space and C = { fi : X → I: i ∈ K} be
the family of all continuous functions from X to I. Then the corollary follows imme-
diately from Theorem 6.8.6.. �

Remark 6.8.8 The above discussion is summarized in the Urysohn metrization the-
orem providing a sufficient condition for metrizability of a certain class of regular
spaces, which is a basic theorem in topology, because, by Proposition 6.8.3, every
regular space (X, τ )with a countable basis is embedded inR∞ with product topology,
which is a metrizable space.

Theorem 6.8.9 (Urysohn metrization theorem) Let (X, τ ) be a regular space hav-
ing a countable basis. Then (X, τ ) is metrizable.

Proof It follows from Remark 6.8.8. �

Remark 6.8.10 Urysohn metrization theorem 6.7.9 provides a sufficient condition
for metrizability of a topological space having a countable basis. Its another form
asserting that every second countable and completely regular space is metrizable is
available in Chap. 7.
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6.8.2 Application to Analysis

This subsection gives some applications related to classical analysis. For example,
Weierstrass Theorem 6.7.9, which is a basic theorem in analysis, is proved in a
topological setting .Moreover, a characterization of compact subsets of the Euclidean
n-space Rn by real-valued continuous functions is given in Theorem 6.8.14.

Theorem 6.8.11 (Weierstrass theorem) Let (X, τ ) be a compact space and f : X →
R be a real-valued continuous map. Then f is bounded and attains its maximum and
minimum values.

Proof Let (X, τ ) be a compact space and f : X → R be a real-valued continuous
map. Then f (X) is a compact subspace of R and hence it is closed and bounded.
This implies that the function f is bounded. As f (X) is closed, it contains all of
its limit points. This asserts that both supx∈X f (x) ∈ f (X) and infx∈X f (x) ∈ f (X)

exist. �

Remark 6.8.12 Weierstrass theorem6.7.9 asserts that a continuous real-valued func-
tion on a compact set is bounded. Its converse is also true by Proposition 6.8.13.

Proposition 6.8.13 Let X ⊂ Rn be a subspace such that every real-valued contin-
uous function on X is bounded. Then X is compact.

Proof Suppose X is bounded but it is not compact. Then it is not closed by Heine-
Borel theorem. Hence, there exists a point α in X − X such that the function
g: X → R, x 	→ ||x − α||−1 is not bounded on X, which gives a contradiction. This
contradiction proves that X is compact. �

Theorem 6.8.14 determines completely the compact subsets of the Euclidean n-
space Rn by real-valued continuous functions.

Theorem 6.8.14 Let X be a nonempty subset of Rn . Then X is compact iff every
real -valued continuous function on X is bounded.

Proof It follows by using Weierstrass theorem 6.7.9 and Proposition 6.8.13. �

Definition 6.8.15 Let F = { fi : X → R} be a collection of real-valued functions
fromametric space X withmetricd.Then this collection is said to be equicontinuous
if for every ε > 0, there exists a δ > 0 (depending on ε) such that whenever

d(x1, x2) < δ, then | f (x1) − f (x2)| < ε, ∀ f ∈ F .

Proposition 6.8.16 Let F : I × I → R be a continuous function andF be the family
of functions

f : I → R, x 	→
1∫

0

g(z)F(x, z)dz,
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where g: I → R is a continuous function such that |g(x)| ≤ 1, ∀ x ∈ I and f ∈ F .

Then the family F is equicontinuous.

Proof As by hypothesis, F is continuous on the compact set I × I, it is uniformly
continuous. So, given an ε > 0, there exists a δ > 0 such that whenever

[(x1 − x2)
2 + (y1 − y2)

2] 1
2 < δ, then |F(x1, y1) − F(x2, y2)| < ε.

Let f ∈ F and x1, x2 ∈ I be two points such that |x1 − x2| < δ. Then

| f (x1) − f (x2)| = |
1∫

0

g(z)[F(x1, z) − F(x2, z)]dz| <

1∫

0

εdz = ε

asserts that the family F is equicontinuous, since the function f ∈ F is arbitrary. �

Proposition 6.8.17 Let f : R → R be a continuous map such that it maps open sets
to open sets. Then f is monotonic.

Proof If possible, under the given hypothesis, f is not monotonic. So, assume that
there are three points x, y, z ∈ R such that x < y < z and f (x) < f (y) > f (z). By
using Weierstrass Theorem 6.7.9, the map f has a maximum value K say, in [x, z],
which will not be attained at x or z. This implies that f (x, z) is not open, since it
contains K but does not contain K + ε for any ε > 0. This contradiction implies
that f is monotonic. �

Proposition 6.8.18 Let f, g: I → [0,∞) be two continuous functions such that

sup
x∈ I

f (x) = sup
x∈ I

g(x).

Then there is a point x0 ∈ I with the property that

f (x0)
2 + 100 f (x0) = g(x0)

2 + 100 g(x0).

Proof Suppose
sup
x∈ I

f (x) = sup
x∈ I

g(x) = K .

As f, g are continuous on the compact set I , there exist points x1, x2 ∈ I such that
f (x1) = g(x2) = K . Define a continuous function

h: I → [0,∞), x 	→ f (x) − g(x).

Then
h(x1) = f (x1) − g(x1) = K − g(x1) ≥ 0
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and
h(x2) = f (x2) − g(x2) = f (x2) − K ≤ 0.

By continuity of h, it follows that there exists a point x0 ∈ [x1, x2] such that h(x0) = 0
and hence f (x0) = g(x0) proves the proposition. �

6.8.3 Application of Baire Category Theorem

This subsection applies Baire category theorem to prove uniform boundedness prin-
ciple for real-valued continuous functions on a metric space. Baire category theorem
asserts that a complete metric space is of the second category in the sense that it
cannot be expressed as a union of countable number of nowhere dense sets. On the
other hand a subset S of a topological space X is said to of the first category if it can
be expressed as a countable union of nowhere dense sets. Otherwise S is said to be
of second category.

Theorem 6.8.19 (Uniform boundedness principle) Let (X, d) be a complete metric
space and C be a family of real-valued continuous functions on X such that for each
point x ∈ X, there exists a constant Kx with the property that

| f (x)| ≤ Kx , ∀ f ∈ C.

Then there exist a nonempty open set U ⊂ X and a constant K such that

| f (x)| ≤ K , ∀ f ∈ C, and ∀ x ∈ U.

Proof Baire category theorem is applied to prove this theorem. For each n ∈ N and
for each f ∈ C, construct the set

X f,n = {x ∈ X : | f (x)| ≤ n} ⊂ X.

Since X f,n = f −1([−n, n]), the set X f,n is closed in X. Again construct the set

Xn =
⋂

f ∈C
X f,n = {x ∈ X : | f (x)| ≤ n, ∀ f ∈ C}.

Since, each X f,n is a closed set in X , the set Xn is the intersection of a family of closed
sets and hence Xn is a closed set in X.Again, since if x ∈ X, then x ∈ Xn, ∀ n ≥ Kx ,

it follows that
⋃∞

n=1 Xn = X. Hence by Baire category theorem, every Xn is not
nowhere dense. This asserts that there exists some Xn such that X̄n = Xn, which
will contain a nonempty open set U ⊂ X such that

| f (x)| ≤ n, ∀ f ∈ C and ∀ x ∈ U.

Hence, the theorem follows by taking K = n. �
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6.8.4 Extreme Value Theorem

Real-valued continuous functions establish a close link with certain class of topo-
logical spaces.

Proposition 6.8.20 Let X be a compact space and f : X → R be a continuous map.
Then there exist points α, β ∈ X such that

f (X) ⊂ [ f (α), f (β)] ⊂ R

Proof Since byhypothesis, f is continuous and X is compact, f (X) ⊂ R is compact.
Hence f (X) is a closed and bounded subset of R. This asserts that f (X) has the lub
and glb. Again, since f (X) is closed, there exist points α, β ∈ X such that such that

f (X) ⊂ [ f (α), f (β)] ⊂ R

�

Corollary 6.8.21 (Extreme value theorem) Let [a, b] ⊂ R have the subspace topol-
ogy and f : [a, b] → R be continuous. Then f attains its absolute maximum value
M and absolute minimum value m in the sense that

M = lubx∈[a,b] f (x) and m = glbx∈[a,b] f (x).

Proof Since the interval [a, b] ⊂ R is compact in the real line space R, there exist
points α and β in [a, b] such that

f (β) < f (x) < f (α)∀ x ∈ [a, b].

This asserts that
f (α) = M and f (β) = m.

�

6.8.5 Other Applications

This subsection gives some other application on the metric space X = C([0, 1])
endowed with sup metric in Theorem 6.8.22 and also prove topological properties
of metric spaces in an alternative way.
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Theorem 6.8.22 Let X = C([0, 1]) be themetric space of all continuous real-valued
functions on I = [0, 1] endowed with sup metric. Then there exists a function f ∈ X
such that the derivative of f does not exist at any point t ∈ I.

Proof Given any positive integer n, define

Xn = { f ∈ X : | f (t + s) − f (t)

s
| ≤ n for some t and ∀ s such that t + s ∈ I}.

As X is a completemetric space, it is a space of the second category byBaire category
theorem and hence

⋃∞
n=1 Xn 
= X. This shows that there exists an f ∈ X such that

f /∈ Xn for any n. Hence for this function f ,

| f (t + s) − f (t)

s
| > n, ∀ t ∈ I and some s ∈ I, which depends on t and n.

Hence it follows that

(i) for every fixed t ∈ I, s → 0, as n → ∞ and
(ii) lims→ 0 sup | f (t+s)− f (t)

s | is not finite, which implies that the derivative of f
does not exist at any point t ∈ I.

�

Remark 6.8.23 It is already been proved that every metric space is normal. The
same result is proved in Proposition 6.8.24 by using Urysohn lemma. This lemma is
also applicable for metrizable spaces, in view of Proposition 6.8.26.

Proposition 6.8.24 Every metric space is normal.

Proof (Proof by Uryshon lemma): Let (X, d) be a metric space and P, Q be two
disjoint closed subsets of X. Consider the function

f : X → R, x 	→ d(x, P)

d(x, P) + d(x, Q
.

Clearly, f is a well-defined continuous function such that

f (x) =
{
0, ∀ x ∈ P

1, ∀ x ∈ Q

and
0 ≤ f (x) ≤ 1, ∀ x ∈ X.

Hence by Urysohn lemma 6.2.8, it follows that (X, d) is normal. �
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Remark 6.8.25 Urysohn lemma is also applicable for metrizable spaces, in view of
Proposition 6.8.26.

Proposition 6.8.26 Every metrizable space is a normal space.

Proof (X, τ ) be a metrizable space. Then there exists a metric d on X such that the
topology τd induced by d on X coincides with τ , i.e., τ = τd . We claim that it is a
normal space.

Proof I: By hypothesis, (X, τ ) is a metrizable space. Hence the proposition fol-
lows from Proposition 6.8.24.

Proof II: Let P and Q be a pair of disjoint closed sets in (X, τd).Using the metric
d on X, define two subsets of X :

U = {x ∈ X : d(x, P) < d(x, Q)}

and
V = {x ∈ X : d(x, P) > d(x, Q)}.

ThenU and V are two open sets in (X, τd) by Proposition 6.1.3, and hence, they are
disjoint open sets such that P ⊂ U and Q ⊂ V . This asserts that(X, τd) is a normal
space. �

Corollary 6.8.27 Every metrizable space is normal and Hausdorff.

Corollary 6.8.28 The subspace I = [0, 1] of the real line spaceR is a normal Haus-
dorff space.

Proof Since R is both a normal and Hausdorff space, it follows that its subspace I
is also so. �

6.9 Exercises

1. (Weierstrass M-test) Let { fn} be an infinite sequence of real functions on a
topological space (X, τ ) such that for all x ∈ X,

| fn(x)| ≤ Mn, n = 1, 2, . . . ,

where the series �Mn of positive constants Mn is convergent. Show that the
infinite series � fn converges uniformly on (X, τ ).

[Hint: Use Theorem 6.1.9 .]
2. If { fn} is an infinite sequence of continuous real functions on a topological space

(X, τ ) and if� fn converges uniformly on (X, τ ), show that the sum of the series
is also a continuous real function on (X, τ ).

[Hint: Use Theorem 6.1.10 and Exercise 1.]
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3. (Tietze-Urysohn theorem) Let (X, τ ) be a normal space and A be a closed
subset of (X, τ ). Show that given any bounded continuous function f : A → R,
there exists a continuous function ψ : X → R such that

(i) ψ |A = f and
(ii) supx∈X |ψ(x)| = supx∈A | f (x)|.

4. Prove Urysohn lemma 6.2.8 from Tietze Extension Theorem 6.5.1.
5. (Characterization of connectedness in terms of real-valued continuous func-

tions) Let (X, τ ) be a topological space and f : X → R be a function. Then the
support of f, is defined to be the set

S f = {x ∈ X : f (x) 
= 0} ⊂ X.

Show that a topological space (X, τ ) is connected iff the support S f of every
real-valued continuous function f : X → R is disconnected.

6. Let (X, τ ) be a topological space such that for every pair of distinct points x1, x2 ∈
X, there is a real-valued continuous function f on X with the property f (x1) 
=
f (x2). Show that the space (X, τ ) is Hausdorff.
[Hint: Let x1, x2 ∈ X be a pair of distinct points,U & V be two disjoint open sets
in R and f : X → R be a continuous map such that f (x1) ∈ U and f (x2) ∈ V .

Then f −1(U ) and f −1(V ) are two disjoint open sets in X such that x1 ∈ f −1(U )

and x2 ∈ f −1(V ).]
7. Let (X, τ ) be a topological space. Show that

(i) if (X, τ ) is completely regular space and (Y, τY ) is a subspace of (X, τ ),

then (Y, τY ) is also completely regular.
(ii) if (X, τ ) is a Tychonoff space, then (Y, τY ) is also Tychonoff.

8. (i) Show that the topological product of any family {(Xα, τα): α ∈ A} of topo-
logical spaces is Tychonoff iff every (Xα, τα) is a Tychonoff space.

(ii) Show by using (i) that the unit cube IA is a Tychonoff space.
(iii) Show by using (ii) that a topological space (X, τ ) is Tychonoff iff (X, τ ) is

homeomorphic to a subspace of the unit cube IA.

9. Given a topological space (X, τ ), let C(X, R) be the space of all real-valued
continuous functions on (X, τ ). For f, g ∈ C(X, R), show that each of the the
functions

(i) f ∧ g: X → R, x 	→ min{ f (x), g(x)}
(ii) f ∨ g: X → R, x 	→ max{ f (x), g(x)}
(iii) | f |: X → R, x 	→ | f (x)|
is continuous.
[Hint: Consider the product φ ◦ ψ of two continuous maps ψ : X → R2, x 	→
( f (x), g(x)) and φ: R2 → R, (t, s) 	→ min{t, s} to show that f ∧ g is continu-
ous.]



442 6 Real-Valued Continuous Functions

10. Let (X, τ ) be a normal space and A, B be two disjoint closed sets in (X, τ ). Show
that corresponding to this pair of closed sets, there is a Urysohn function

f : X → I

satisfying the properties f −1(0) = A and f −1(1) = B, iff A and B are both Gδ-
sets.

11. Show that

(i) Every perfectly normal space is completely normal.
(ii) Every locally compact Hausdorff space is completely regular.
(iii) Sorgenberg plane R2 with Sorgenberg topology is not normal.

[Hint: Suppose this space R2 is normal. Consider A = {(x, y) ∈ R2: y = −x} ⊂
R2 endowed with discrete topology induced by Sorgenberg topology. Then every
map f : A → R is continuous. Use Tietze extension theorem on f to have a
continuous extension f̃ : R2 → R. But this leads to a contradiction.]

12. Let (X, τ ) be a topological space and (I, σ ), be the subspace of the real line space,
where I = [0, 1].Show that (X, τ ) is perfectly normal iff for any nonempty closed
set P in (X, τ ) and any point a ∈ X − P, there exists a real continuous function

f : (X, τ ) → (I, σ )

such that
f (a) = 1 and f −1(0) = P.

13. Show that the normed linear space of bounded uniformly continuous real-valued
functions on R, equipped with sup-norm is complete.

14. (Another form of Tietze extension theorem) Let (X, τ ) be a normal space and
A be a closed subset of (X, τ ). If the closed interval [−1, 1] is endowed with the
subspace topology of the real line space R and f : A → [−1, 1] is continuous,
show that f has a continuous extension

f̃ : X → [−1, 1]overX.

[Hint: Let C = f −1([ 13, 1]) and D = f −1([−1,− 1
3 ]). Then corresponding to

the disjoint closed subsets C and D in (X, τ ), there exists by Corollary 6.2.10, a
continuous function

f1: X →
[

−1

3
,
1

3

]

such that f (C) = 1
3 , f (D) = − 1

3 and | f (x) − f1(x)| ≤ 2
3 , ∀ x ∈ A. By induc-

tion, construct the functions

fn: X →
[

−2n−1

3n
,
2n−1

3n

]

, ∀ n ∈ N
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such that

| f (x) − �n
i=1 fi (x)| ≤

(
2

3

)n

, ∀ x ∈ A.

Finally, apply Weierstrass M-test to show that the series �∞
i=1 fi (x) converges

uniformly to a continuous function

f̃ : X → [−1, 1],

which is our required continuous extension of f.]
15. Let (X, τ ) be a normal space and (R, σ ) be the real line space. Given a closed

subset A of (X, τ ), if f : A → R is a continuous function such that | f (x)| ≤
M, ∀ x ∈ A, show that there exists a continuous function g: (X, τ ) → (R, σ )

such that

(i) |g(x)| ≤ M/3, ∀ x ∈ X, and
(ii) | f (x) − g(x)| ≤ 2M/3, ∀ x ∈ A.

16. (Existence of Partition of unity) Let (X, τ ) be a normal space and U =
{U1,U2, . . . .Un} be an open covering of a closed subset A of (X, τ ). Show
that there are continuous functions

ψi : (X, τ ) → (R, σ )

such that

(i) 0 ≤ ψ j (x) ≤ 1, ∀ x ∈ X and ∀ j satisfying 1 ≤ j ≤ n;
(ii) ψ j (x) = 0, ∀ x /∈ Uj and ∀ j satisfying 1 ≤ j ≤ n;
(iii) �n

j=1ψ j (x) = 1 ∀ x ∈ A; and
(iv) �n

j=1ψ j (x) ≤ 1 ∀ x ∈ X.

Such indexed family of continuous function ψi is called a partition of unity on
X, dominated by (or subordinate to) an open covering U of A.

17. Consider the subspace F = (0, 1] of (I, σI ) and the function f : F → R, x 	→
sin(1/x). Show that f is continuous but f has no continuous extension over
I = [0, 1].

18. Let (X, d) be a metric space and P, Q be two disjoint closed sets in X. Show that
there exists a continuous function a continuous function f such that

f : X → R. x 	→
{
1, for all x ∈ P

−1, for all x ∈ Q

and
−1 ≤ f (x) ≤ 1 for all x ∈ X − P ∪ Q.

[Hint: Define
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f : X → x 	→ d(x, Q) − d(X, P)

d(x, Q) + d(X, P)
.

Then f is well-defined and continuous.]
19. Let { fn} be a sequence of real-valued continuous functions on the closed interval

[a, b] of the Euclidean line. Show that

(i) (Arzela–Ascoli theorem)If this sequence is uniformlybounded andequicon-
tinuous, then there exists a subsequence of the sequence { fn} such that this
subsequence converges informally.

(ii) The converse of Arzela–Ascoli theorem is also true in the sense if every
subsequence of { fn} has a uniformly convergent subsequence, then { fn} is
uniformly bounded and equicontinuous.

20. Let (X, τ ) be a regular space with a countable basis. Show that there exists a
countable family of continuous functions { fn: X → [0, 1]} with the property that
given a point a ∈ X and a nbd U of a, there an integer n such that

fn(a) > 0 and fn(x) = 0, ∀ x ∈ X −U.

Multiple Choice Exercises

Identify the correct alternative (s) (there may be none or more than one) from the
following list of exercises:

1. (i) Every metrizable space is not normal.
(ii) If (X, τ ) is a normal space and (Y, τY ) is a closed subspace of (X, τ ) under

the induced topology τY , then (X, τ ) is also normal.
(iii) If If (X, τ ) is a normal space having at least two distinct elements, then

there exists a nonconstant real-valued continuous function on X.

2. Let (X, τ ) be a nonempty compact Hausdorff space and C(X, R) be the set of all
real-valued continuous functions on (X, τ ).

(i) If X has at least n distinct elements, then the dimension of the linear space
C(X, R) over R is n.

(ii) If X1 and X2 are two nonempty disjoint closed sets in (X, τ ), then there
exists a function f ∈ C(X, R) such that

f : X → R, x 	→
{

−3, if x ∈ X1

4, if x ∈∈ X2.

(iii) If A is a nonempty closed subset of (X, τ ) and h: A → R is a continuous
function, then there exists a function f ∈ C(X, R) such that

f (x) = h(x), ∀ ∈ A.
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3. Let S1 be the unit circle in the Euclidean plane R2.

(i) There exists a continuous one-one function f : S1 → S1.
(ii) For every continuous one-one map f : S1 → R, there exist an uncountable

number of pairs of distinct points x, y ∈ S1 such that f (x) = f (y).
(iii) There exists a continuous and one–one and onto map f : S1 → R2.

4. Consider the four subspaces of the Euclidean plane of R2.

A = {(x, y) ∈ R2 : x2 + y2 ≤ 1};

B = {(x, y) ∈ R2: x2 + y2 < 1};

C = {(x, y) ∈ R2: x2 + y2 = 3/2}

and
D = {(x, y) ∈ R2: x2 + y2 ≥ 2}.

Examine the the validity of following statements.

(i) For any continuous function h : A → R, there exists a continuous function
f : R2 → R such that

f (x) = h(x), ∀ x ∈ A.

(ii) For any continuous function h : B → R, there exists a continuous function
f : R2 → R such that

f (x) = h(x), ∀ x ∈ B.

(iii) There exists a continuous function f such that

f : R2 → R, x 	→
{
1, for all x ∈ C

0, for all x ∈ A ∪ D.

5. Let [a, b] be a closed interval in the Euclidean line and C[a, b] be the ring of
real-valued continuous functions on [a, b].
(i) If X = { f ∈ C[−5, 5]: f (5) = f (−5) = 0}, then there exists a continuous

function f ∈ X such that f (x) = 2, ∀ x ∈ [−1, 0] and f (x) = 3, ∀ x ∈
[1, 2] ∪ [3, 4].

(ii) If X = { f ∈ C[−5, 5]: f (5) = f (−5) = 0}, then for every f ∈ X, there
exists a point p ∈ (−5, 5) such that f (p) = p.

(iii) For every point x ∈ [−5, 5], there exists a unique maximal ideal Mx in the
ring C[−5, 5].
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(iv) Corresponding to a maximal ideal M in the ring C[−5, 5], there is a unique
point x ∈ [−5, 5] such that the maximal ideal Mx (if (iii) is true) coincides
with M.
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Chapter 7
Countability, Separability and
Embedding

This chapter continues the study of special classes of topological spaces such as
spaces satisfying either of the two axioms of countability formulated by Hausdorff
in 1914 or satisfying the axiom of separability introduced by Frechét in 1906, both
initiated in Chap. 3, which do not arise from the study of calculus and analysis
in a natural way. They arise through a deep study of topology. The axiom of first
countability arose through the study of convergent sequences. For example, Theo-
rem 7.11.4 characterizes Hausdorff property of a topological space satisfying the first
axiom of countability by a convergent sequence. For a metric space the concept of
compactness and the Bolzano–Weierstrass property (B–W) property coincides (see
Chap. 5).

The present chapter characterizes compactness property in Theorem 7.1.8 by the
(B–W) property for more general topological spaces such as a space having a count-
able open base. It is proved in Theorem 7.5.5 that every topological space can be
embedded in a separable space. The classical Urysohn Metrization Theorem 7.10.5,
which asserts that every topological space satisfying the second axioms of count-
ability and regularity can be embedded in a metric space, is also proved in this
chapter, which implies that such a topological space is metrizable. This theorem
gives a sufficient condition of metrizability of a topological space. This chapter also
studies Lindelöf spaces from the viewpoint of countability and separability. Various
applications of the concepts of this chapter are also available in Sect. 7.11.1.

Motivation of the study of the concepts of countability and separability of topo-
logical spaces comes from the following natural problems:

(i) A metric space M is compact iff every infinite subset X ⊂ M has at least
one accumulation point. Is this characterization of compactness valid for an
arbitrary topological space?
Its partial solution is available in Theorem 7.1.8 for a topological space having
a countable open base.

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022
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(ii) Does there exist a certain connection between compactness and the Bolzano–
Weierstrass property (B–W property) of an arbitrary topological space?
Its partial solution is available in Theorem 7.1.8 for a topological space having
a countable open base.

(iii) Does there exist a sufficient condition for metrizability of an arbitrary topolog-
ical space?
Its partial solution is available in Theorem 7.10.5 for a second countable and
completely regular space.

(iv) Can the Hausdorff property of a topological space be characterized by its con-
vergent sequences?
Its partial solution is available in Theorem 7.11.4 for a first countable space.

(v) Can an accumulation point of a subset A of a topological space be characterized
by an infinite sequence of points in A?
Its partial solution is available in Theorem 7.11.6 for a first countable space.

(vi) Is every topological space embeddable in the Hilbert cube IN?
Its partial solution is available in Theorem 7.10.7 for a completely regular
second countable space.

(vii) Is every topological space embeddable in a separable space?
Its partial solution is available in Theorem 7.5.5.

So, for a deep study in topology, it is necessary to further study the countability,
separability and Lindelöf properties of topological spaces.Moreover, two embedding
problems are solved in Theorem 7.5.5.

For this chapter the books (Bredon 1983; Chatterjee et al. 2002; Munkres 2000;
Adhikari 2016, 2022; AdhikariAdhikari 2014; Adhikari and Adhikari 2022; Boriso-
vich et al. 1985; Dugundji 1966; Kalajdzievski 2015;Mendelson 1962;Morris 2007;
Stephen 1970) and some others are referred in the Bibliography.

7.1 Characterization of Compactness by
Bolzano–Weierstrass Property

For a metric space the compactness property and the property that its every infinite
subset has at least one accumulation point coincide. It raises the natural question:
whether these two properties are the same for an arbitrary topological space? To
have a partial answer, this section characterizes compactness property of topological
spaces having countable open base for its topology by Bolzano–Weierstrass (B–W)
property. This establishes a close relation between compactness property and the
Bolzano–Weierstrass (B–W) property in such spaces. On the other hand, given a
metric space (X, d), the compactness of its associated topological space (X, τd) has
been characterized in Chap. 5 by using (B–W) property. There are topological spaces
which are not compact, but its every infinite subset has an accumulation point.

Definition 7.1.1 A topological space (X, τ ) is said to have a countable open base
or simply countable base at a point x ∈ X , if there is a countable family Bx of open
nbds of x such that every nbd of x in (X, τ ) contains at least one member of the
family Bx .
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Remark 7.1.2 A subset X of a metric space M is said to have the Bolzano–
Weierstrass property if every sequence in X has a convergent subsequence in the
sense that it has a subsequence which converges to a point in X . For the general case,
it is defined in Definition 7.1.3.

Definition 7.1.3 A topological space (X, τ ) is said to have Bolzano–Weierstrass
(B–W) property if every countable open covering of X has a finite subcovering.

Theorem 7.1.4 Let (X, τ ) be a topological space and Y be a subspace of X such
that every infinite subset of Y has a point of accumulation in Y . Then every countable
open covering of Y has a finite subcovering.

Proof Let (X, τ ) be a topological space and Y be a subspace of X such that every
infinite subset of Y has a point of accumulation in Y . Let {Un : n ∈ N} be a countable
open covering of Y , where each Un is an open subset of (X, τ ). Suppose there is no
finite subcovering of Y . Then for each m ∈ N, the open set U ∗

m = ⋃m
n=1Un can not

cover Y . This shows that for each integer m, there is a point xm ∈ Y such that xm is
not an element of U ∗

m . Consider the subset S = {x1, x2, . . . , xm, . . .} ⊂ Y . Then the
set S is infinite, and it has a limit point x ∈ Y by hypothesis. Consequently, x ∈ Ut

for some index t . Then there are infinitely many points of S which will lie in Ut ,
sinceUt is a nbd of the point x . This shows that for some choice of the integerm > t ,
the point

xm ∈ Ut ⊂ U ∗
t ⊂ U ∗

m .

This contradicts the choice of xm . This contradiction asserts that there is a finite
subcollection of open sets {Un : n ∈ N} covering Y . �

Remark 7.1.5 Theorem 7.1.4 asserts that (B–W) property of a topological space
implies its compactness property. So, it has becomenecessary to search for a sufficient
condition such that its every open covering has a countable subcovering. Lindelöf
Theorem 7.1.6 provides such a sufficient condition.

Theorem 7.1.6 (Lindelöf) If a topological space (X, τ ) has a countable open base
for its topology τ , then every open covering of the space X has a countable subcov-
ering.

Proof Let (X, τ ) be a topological space and B = {Bk : k ∈ K} be a countable open
base for the topology τ . Then for every point x ∈ X and every open set U ∈ τ

containing the point x , there exists an element Bk ∈ B such that

x ∈ Bk ⊂ U.

This asserts that U = ⋃{Bk : k ∈ K′} for some subset K′ ⊂ K. Suppose, {Ui : i ∈
K} is an open covering of X . Then there exists a countable subset K∗ ⊂ K′′ such that
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{Ui : i ∈ K∗} also forms a countable covering of X , because, for every point x ∈ X
and every open set Uj containing x , there is a member Bk ∈ B such that

x ∈ Bk ⊂ Uj .

�
Remark 7.1.7 The above discussion is summarized in the following basic and
important result characterizing compactness of topological spaces with the help of
Bolzano–Weierstrass (B–W) property.

Theorem 7.1.8 Let (X, τ ) be a topological space having a countable open base for
the topology τ . Then the space (X, τ ) is compact iff it has the Bolzano–Weierstrass
(B–W) property.

Proof Let (X, τ ) satisfy (B–W) property. If it has a countable open base for the
topology τ , then every open covering of the space X has a countable subcovering by
Theorem 7.1.6. This shows that every countable open covering of X has also a finite
subcovering of X by (B–W) property of X . This proves that (X, τ ) is compact.

Conversely, let (X, τ ) be compact. Then every open covering of X has a finite
subcovering. This implies that every countable open covering of X has also a finite
subcovering. This asserts that (X, τ ) satisfies (B–W) property. �

7.2 Countability and Separability

This section continues the study of countability and separability initiated in Chap. 3
for topological spaces which are closely related to metrizable and Lindelöf spaces.
There is a close link between the concepts of countability and separability. The
concept of a countable open base at every point in a topological space is applied to
study important class of spaces such as metrizable, first countable, second countable,
separable and Lindelöf spaces.

Recall the following definitions for smooth study of this chapter:

Definition 7.2.1 A topological space (X, τ ) is said to satisfy the first axiom of
countability, if there exists a countable open base at every point in X. A space (X,
τ ) satisfying the first axiom of countability is said to be a first countable (or locally
separable) space.

Definition 7.2.2 A topological space (X, τ ) is said to satisfy the second axiom of
countability, if there exists a countable open base for the topology τ . A space (X,
τ ) satisfying the second axiom of countability is said to be a second countable (or
completely separable) space.

Example 7.2.3 (i) The real line space (R, σ ) is a second countable space, since
the collection of all open intervals (a, b) with rational end points forms a
countable open base for the topology σ .
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(ii) The Euclidean space Rn with the usual product topology is a second countable
space, since the collection of all products �n∈Z In , where open intervals (a, b)
with rational end points for finitely many values of n and In = R for all other
values of n form a countable open base for the product topology.

Definition 7.2.4 A topological space (X, τ ) is said to be separable if there is a
countable dense subset Y in the topological space (X, τ ) in the sense that Y = X for
some subset Y ⊂ X .

For the metric space, it is the convention to use the following definition.

Definition 7.2.5 A metric space X is said to be separable if there exists a sequence
{xn} in X , which is dense in X , equivalently, if there is a countable subset Y in X
such that Y = X .

Example 7.2.6 (i) The real line space R is a separable, since Q is countable and
Q = R.

(ii) Rn is separable, since sequence of points having rational coordinates is count-
able.

Theorem 7.2.7 Every metrizable space is first countable.

Proof Let (X, τ ) be a metrizable space. Then there is a metric d on X such that its
induced topology τ(d) = τ . Consider the collection of open balls

S = {Bx (1/n) : x ∈ X, n ∈ N}

and
B = {Bx (ε) : x ∈ X, ε > 0}.

Then B along with ∅ gives the topology τ(d) on X . Claim that S forms a base for
the topology τ(d) on X . Given an open set U ∈ τ(d) and a point x ∈ U , there is an
ε > 0 such that x ∈ Bx (ε) ⊂ U . Take n ∈ N such that 1/n < ε. Then

x ∈ Bx (1/n) ⊂ Bx (ε) ⊂ U.

Hence it follows that S forms a base for the topology τ(d) on X . This shows that for
every point x ∈ X , the collection

S = {Bx(1/n) : n ∈ N}

forms a countable base at the point x for the topology τ(d) on X . This proves that
(X, τ ) is a first countable space. �
Remark 7.2.8 There is a natural problem: does there exist a necessary and sufficient
condition for a topological space to be metrizable? Urysohn’s metrization theorem
which asserts that every second countable normal T1 space is metrizable (see Chap.
6). It gives a partial solution of the above problem in 1924. For its complete solution
the book (Kelly 1975) is referred.
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7.2.1 Lindelöf Space and Lindelöf Theorem

This section studies Lindelöf spaces through the concepts of countability and sep-
arability. A topological space (X, τ ) is said to be Lindelöf if every open covering
of X has a countable subcovering and it is countably compact if every countable
open covering of X has a finite subcovering. Clearly, (X, τ ) is compact iff it is both
Lindelöf and countably compact. Historically, the term “Lindelöf space” was given
by Kuratowski and Sierpinski in 1921. Theorem 7.2.10 called the Lindelöf theorem
in honor of E.L. Lindelöf (1870–1946) provides a rich supply of interesting Lindelöf
spaces. His original version was on open subsets of Rn . The other form of Lindelöf
theorem is given in Theorem 7.2.12.

Definition 7.2.9 A topological space (X, τ ) is said to be a Lindelöf space if every
open covering of X has a countable subcovering.

Theorem 7.2.10 (Lindelöf) Every second countable space is Lindelöf.

Proof Let (X, τ ) be a second countable space, B = {Ui : i = 1, 2, . . .} be a count-
able open base for the topology τ and C = {Vα : α ∈ A}, where A is an indexing
set, be an open covering of X. Let x ∈ X , and V ∈ C be such that x ∈ V . Then there
exists a set U ∈ B, such that x ∈ U ⊂ V . Since x ∈ V ∈ C, if x runs over X and V
runs over C, then the corresponding family of sets {U } form a countable subfamily U
of B. If U = {U1,U2, . . . }, thenUi is contained in some V ∈ C. Without loss of gen-
erality, we may assume thatUi ⊂ Vi for all i = 1, 2, . . . Then the family of open sets
{Vi : i = 1, 2, . . .}, thus determined, forms a countable subcovering of C, because,
every point x ∈ X is in some Ui , and hence the point x is in the corresponding open
set Vi . This asserts that the space (X, τ ) is a Lindelöf space. �

Corollary 7.2.11 The real number space (R, σ ), with the usual topology σ , is sec-
ond countable. It is also first countable, separable and Lindelöf.

Proof The empty set ∅ and the collection of open intervals {(a, b) : a < b, and a, b
are rational numbers form a countable open base for the topology σ onR. This shows
that (R, σ ) is a second countable space. Hence it follows by Theorem 7.2.10 that
(R, σ ) is Lindelöf. It is also first countable, separable. �

Theorem 7.2.12 (Another Form of Lindelöf Theorem) Let (X, τ ) be a second
countable space and U be a nonempty open set in (X, τ ). If U is expressed as a
union of a family {Ui } of open sets, then U can also be expressed as a countable
union of Ui ’s.

Proof By hypothesis, (X, τ ) is a second countable space andU be a nonempty open
set in X . Then there exists a countable open base B = {Un} for the topology τ on X .
Let x ∈ U be an arbitrary point. Then this point x ∈ Ui for some i and there exists
a basic open set Um ∈ B such that

x ∈ Um ⊂ Ui .
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As the point x is an arbitrary point of U , it follows that there exists a countable
subfamily B′ of the open base B = {Un}, whose union is U . Again, for each open
set Vi belonging in this subfamily B′, we can choose an open set Ui ∈ B such
that Vi ⊂ Ui . Then the family {Ui } obtained in this way is countable, whose union
is U . �

Remark 7.2.13 Theorem 7.2.10 asserts that every second countable space is Lin-
delöf. It is also first countable and separable by Theorem 7.2.14.

Theorem 7.2.14 Every second countable space is

(i) first countable;
(ii) separable.

Proof Let (X, τ ) be a second countable space, and let B = {Ui : i = 1, 2, . . .} be a
countable open base for the topology τ .

(i) Let x ∈ X be an arbitrary point. Then the collection Bx of all those Ui ∈ B,
which contain the point x , forms a countable open base at the point x for the
topology τ , because for any open set U containing x, there exists an open set
Uj ∈ B, such that x ∈ Uj ⊂ U and this Uj ∈ Bx . This shows that there exists
a countable open base at every point x ∈ X . This asserts that the space (X, τ )
is also a first countable space.

(ii) Select a point xi fromeachUi , for i = 1, 2, . . . such thatY = {xi : i = 1, 2, . . .}
is an infinite sequence. Then the set Y is a countable subset of X. We claim that
Ȳ = X. Let p ∈ X − Y , and V be any open set containing the point p. Then
there exists an open set Uj ∈ B, such that p ∈ Uj ⊂ V . The points p �= x j ,
since x j ∈ Y and p /∈ Y . This implies that V intersects Y at the point x j �= p
and hence p ∈ Y

′
(derived set of Y ). This shows that any point x ∈ X is either

in Y , or is a limiting point of Y . This asserts that x ∈ Y , ∀ x ∈ X and hence
X = Ȳ . Consequently, the space (X, τ ) is separable.

�

Remark 7.2.15 Theorem 7.2.16 shows that the converses of the statements (i) and
(ii) of Theorem 7.2.14 are not true.

Theorem 7.2.16 The topological space (R, σc), with the cofinite topology σc

(i) is separable;
(ii) is Lindelöf; but
(iii) is not first countable.

Proof (i) The space (R, σc) is separable, because the rational numbers form a
countable dense subset in this space.

(ii) To prove that the space (R, σc) is Lindelöf, consider an arbitrary open covering
C of this space and any U ∈ C. Then the complement of U in R is finite, and
hence there exists a finite subfamily of C, which forms an open covering of
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X −U . This asserts that the open set U together with this finite collection of
members of C form a countable open subcovering of (R, σc). This proves that
the space (R, σc) is Lindelöf.

(iii) If possible, assume that the space (R, σc) is first countable. Then for each
x ∈ R, there exists a countable open base Bx = {Ui : i = 1, 2, . . .} about the
point x . Then each set (R −Ui ) is finite set, for i = 1, 2, . . . and hence

∞⋃

i=1

(R −Ui ) =
⋃

{(R −Ui ) : i = 1, 2, . . .}

is a countable set. Let X be a finite subset of R, not containing x . Then x ∈
R − X ∈ σc and there exists an Uj ∈ Bx , such that

x ∈ Uj ⊂ R − X.

This shows that every finite subset X of R which does not contain the point x ,
is contained in a set R −Uj , for some j . The union of all such finite subsets
X is the set R − {x}, which is uncountable, but it is contained in the union⋃∞

i=1(R −Ui ), which is countable. This contradiction proves that the space
(R, σc) is not first countable.

�

Proposition 7.2.17 provides an example of first countable Lindelöf space, which
is not separable.

Proposition 7.2.17 Let R be the set of real numbers. If σ consists of

(i) the empty set ∅;
(ii) all those subsets of R, which do not contain 0;
(iii) the 3 subsets R − {1, 2}, R − {1}, R − {2};
(iv) the whole set R,

then (R, σ ) is a first countable, Lindelöf space, but it is not separable.

Proof Clearly, (R, σ ) is a topological space. For any point x ∈ R, Define

Ux =
{

{x} if x �= 0

R − {1, 2} if x = 0
,

i.e.,

Ux = {x}, if x �= 0, and Ux = R − {1, 2}, if x = 0.

Then {Ux } forms a countable open base at the point x ∈ R for the topology σ .
This asserts that the space (R, σ ) is first countable. Again, any open covering C of
R includes at least one of the sets given in (iii) and (iv) (such that the point 0 is
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covered). LetU ∈ C be an open set of this type. Then the set X −U has at most two
points 1 and 2. IfU1,U2 ∈ C are two open sets such that 1 ∈ U1 and 2 ∈ U2, then the
collection {U,U1,U2} forms a finite and hence obviously a countable subcovering
of C for R.Thus proves that (R, σ ) is a Lindelöf space. Finally, since every one-
pointic subset of R − {0} is open, any subset of R, which is dense in (R, σ ), contains
the uncountable set R − {0}, it follows that the space (R, σ ) is not separable. This
completes the proof of the proposition. �

Remark 7.2.18 Gδ-sets and Fδ-sets defined in Chap. 6, are closely related to regular
and Lindelöf spaces (see Exercises 24 and 25 of Sect. 7.12).

7.2.2 Countable Topological Spaces

This section studies countable topological spaces from the viewpoint of the first
countability and second countability properties.

Definition 7.2.19 A topological space (X, τ ) is said to be a countable space if X
is a countable set.

Proposition 7.2.20 (X, τ ) be an arbitrary countable space. Then (X, τ )

(i) is separable;
(ii) is Lindelöf;
(iii) is not necessarily first countable.

Proof Left as an exercise. �

Proposition 7.2.21 Any countable space which is also first countable is second
countable.

Proof Let (X, τ ) be an arbitrary countable space, which also first countable and
x ∈ X . If Bx is a countable open base in (X, τ ) about the point x , then

{U : U ∈ Bx and x ∈ X}

forms a countable open base for the topology τ . This asserts the space (X, τ ) is also
second countable. �

7.3 Subspaces of First and Second Countable Space

This section studies subspaces of first and second countable spaces and proves that
the properties of first and second countability of topological spaces are hereditary.
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Theorem 7.3.1 (i) Every subspace of a first countable space is first countable.
(ii) Every subspace of a second countable space is second countable.

Proof (i) Let (X, τ ) be a first countable space and (Y, τY ) be an arbitrary sub-
space of (X, τ ). Then for every point y ∈ Y , there exists a countable open
base {U1(y),U2(y), . . .} about the point y for the topology τ in (X, τ ), and
subsequently there is a countable open base {V1(y), V2(y), . . .} about y for the
topology τY in (Y, τY ),where Vi (y) = Y ∩Ui (y), for i = 1, 2, . . . This asserts
that (Y, τY ) is also first countable.

(ii) Let (X, τ ) be a second countable space withU1,U2, . . . a countable open base
for the topology τ and (Y, τY ) be an arbitrary subspace of (X, τ ). Then it follows
that the collection of sets {Y ∩U1, Y ∩U2, . . .} forms a countable open base
for the subspace topology τY . This proves that (Y, τY ) is also second countable.

�

Remark 7.3.2 It follows from Theorem 7.3.1 that the properties of first and second
countability of topological spaces are hereditary. On the other hand, the properties of
separability and Lindelöf of topological spaces are not hereditary, because a subspace
of a separable space may not be separable (see Example 7.6.5) and a subspace of a
Lindelöf space may not be Lindelöf (see Example 7.6.6).

7.4 Properties of Appert’s Space and Sorgenfrey Line

This section studies Appert’s space (see Definition 7.4.1) and Sorgenfrey line from
the viewpoint of countability and separability and other properties. For example, the
Appert’s space is a countable space, which is not first countable; on the other hand,
Sorgenfrey line is Lindelöf and is also separable.

7.4.1 Properties of Appert’s Space

This section studies Appert’s space. This space provides an example of a countable
space which is both separable and Lindelöf. This space is both hereditarily separable
and hereditarily Lindelöf.

Definition 7.4.1 For a subset X of N of natural numbers, let N (n, X) be the number
of integers in X which are less than a given integer n and τ be the family of those
subsets U of N, for which either

(i) 1 /∈ U or
(ii) 1 ∈ U and limn→∞ N (n, U )

n = 1, where N (n,U ) is the number of integers in
U which are less than the given integer n.
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Then τ forms a topology on X and the corresponding topological space (X, τ ) is
known as the Appert’s space.

Theorem 7.4.2 proves some properties of Appert’s space.

Theorem 7.4.2 Let (N, τ ) be the Appert’s space. This space

(i) is countable;
(ii) is separable and Lindelöf;
(iii) is neither first countable nor second countable.

Proof Let (N, τ ) be the Appert’s space.

(i) The Appert’s space (N, τ ) is clearly a countable space.
(ii) It follows immediately, since every countable space is separable and Lindelöff.
(iii) Suppose (N, τ ) is first countable. Let � = {Un : n = 1, 2, . . .} be a countable

open base about the point 1. Since every Un is an infinite subset, select a point
xn ∈ Un such that xn > 10n . Define

U = N − {xn : n = 1, 2, . . .}.

As N (n,U ) ≥ n − log10 n, then it follows that

lim
n→∞

N (n, U )

n
≥ lim

n→∞
(n − log10 n)

n
= 1.

This shows that U is an open set containing 1. Again, since � forms an open
base about the point 1, there is an open set Ur ∈ � such that

1 ∈ Ur ⊂ U.

But it is not tenable, because, xr ∈ Ur but xr /∈ U . This asserts that the Appert’s
space (X, τ ) is not first countable, and hence it is not second countable.

�

Corollary 7.4.3 Appert’s space is both hereditarily separable and hereditarily Lin-
delöf.

Proof Since every countable space is separable and Lindelöf by Proposition 7.2.20
and since every subspace of a countable space is also a countable space, it follows
that the Appert’s space is both hereditarily separable and hereditarily Lindelöf. �

7.4.2 More Properties of Sorgenfrey Line

This section proves more properties of Sorgenfrey line in Theorem 7.4.4 and in
Corollary 7.4.5, in addition to its properties discussed earlier.
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Theorem 7.4.4 Let (Y, σY ) be a subspace of the Sorgenfrey line (R, σl). Then
(Y, σY )

(i) is Lindelöf, and
(ii) is also separable.

Proof (i) Let (Y, σY ) be a subspace of (R, σl) and V = {Vk : k ∈ K} be an
open covering of Y in (Y, σY ). If Vk = Y ∩ Wk, Wk ∈ σl : k ∈ K, then W =
{Wk : k ∈ K} forms an open covering of the subset Y in (R, σl) and hence
Y ⊂ ⋃{Wk : k ∈ K}. Now, for every point x ∈ Y , there exists a half-open inter-
valUx = [x, x + δx ) such that x ∈ Ux ⊂ Wv , for some v ∈ K. Then the family
{Ux : x ∈ Y } of open sets forms an open covering of Y. Claim that there exists
a countable subfamily {Uxi }, such that

⋃{Uxi } = ⋃{Ux }. Given a fixed posi-
tive integer n, and a subfamily {Un

x } consisting of all those half-open intervals
Un

x ∈ {Ux }, for which δx > 1/n. If y ∈ Un = ⋃{Un
x } is a point such that it is

not an interior point of any Un
x , then there exists an interval of length ≥ 1/n,

located at the left of y and containing no point with δx > 1/n. It asserts that
the set X consisting of all such points y, is countable and it can be covered by
the countable family {Un

y : y ∈ X}. If the left end points of all the remaining
intervals Un

x are deleted, then a family of open intervals Inx is obtained. Since
the real number space (R, σ ) (with usual topology σ ) is first countable, it fol-
lows that it is second countable by Corollary 7.2.11, and hence it is Lindelöf
by Theorem 7.2.14. The set In = ⋃{Inx } is open and it can be covered by a
countable subfamily of {Inx }. Consequently, Un has also a a countable subcov-
ering {Un

x }. Hence ⋃{Ux } = ⋃{Un} asserts that Y ⊂ ⋃{Ux } is also covered
by a countable subcovering {Uxi } of {Ux }, and hence it has also by a countable
subcovering {Wi } ofW . This implies that {Vi } forms a countable subcovering
of the covering V of (Y, σY ). Hence (Y, σY ) is a Lindelöf space. This shows
that (R, σI ) is a hereditarily Lindelöf space.

(ii) Let (Y, σY ) be a subspace of (R, σl) and Y1 be the set consisting of all those
points in Y, which are not accumulation points of Y from the right. This implies
that the set Y1 is at most countable. Take Y2 = Y − Y1. Hence every point of Y2
is an accumulation point of Y from the right. Suppose Y0 is a countable dense
subset of Y in the usual Euclidean subspace topology of Y. Then Y1 ∪ Y0 = Y ∗
is a countable dense subset of Y. For any p ∈ Y − Y1 = Y2, consider the half-
open interval [p, p + ε), for any ε > 0. Since p is an accumulation point of Y
from the right, and the subspace (Y, σY ) is a T1-space, there are infinitely many
points in [p, p + ε) ∩ Y . Since (p, p + ε) ∩ Y contains points of Y ∗, the set
[p, p + ε) ∩ Y contains points of Y ∗ for an arbitrary ε > 0. This implies that
p ∈ Ȳ ∗, (closure Ȳ ∗ is with respect to the topology σY on Y ). Consequently,
the subspace (Y, σY ) is separable. This asserts that (R, σI ) is a hereditarily
separable space.

�
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Corollary 7.4.5 Let X be a subspace of the Sorgenfrey line (R, σl) and Y consist
of all those points of X, which are not accumulation points of X from the right in
(R, σl). Then Y is at most countable.

Proof Assume that the set Y is uncountable. Consider the (Y, σY ) as a subspace of
(X, σX )with the topology induced from Sorgenfrey line space (R, σl). Then for any
y ∈ Y , there is an half-open interval [y, zy) with the property that

[y, zy) ∩ X = {y}.

Again, for any y ∈ Y, {y} ∈ σY =⇒ the family {{y} : y ∈ Y } forms an open
covering of Y which has no finite subcovering. This contradicts the result that the
space (Y, σY ) is Lindelöf in Theorem 7.4.4. This contradiction proves that Y is at
most a countable set.

�

7.5 Topological Embedding Problems

This section solves some embedding problems. It is proved in Theorem 7.5.5 that
every topological space is embedded in a separable space and every T1-space is
embedded in a Lindelöf space. Moreover, an immediate application of Urysohn
Embedding Theorem 7.10.7 asserts that every completely regular second countable
space can be embedded in the Hilbert cube IN (see Theorem 7.10.7).

Example 7.5.1 Let X and Y be topological spaces and y0 ∈ Y be a fixed point. Then
the map

f : X → X × Y, x �→ (x, y0)

is an embedding.

Example 7.5.2 Let (R, σ ) be the real line space with usual topology σ . It is home-
omorphic to every open interval (a, b) ⊂ R with relative topology induced by σ on
(a, b). Hence it follows that the subspace (a, b) is embedded in R.

Example 7.5.3 Familiar examples of embeddings:

(i) Jordan curve is an embedding f : S1 → R2 and
(ii) topological knots is an embedding f : S1 → R3.

Both of them are studied in Basic Topology: Volume 3 of the present series
of books.

Remark 7.5.4 Every embedding theorem in topology is important, for example,
Embedding Theorem 7.5.5 is utilized to show that Lindelöf and separability proper-
ties of topological spaces are not hereditary (see Examples 7.6.5 and 7.6.6).
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Theorem 7.5.5 proves that every topological space is embeddable in a separable
space and every Ti -space is embeddable in a Lindelöf space.

Theorem 7.5.5 (Embedding theorem)

(i) Every topological space can be embedded in a separable space.
(ii) Every T1-space can be embedded in a Lindelöf space.

Proof (i) Let (X, τ ) be a given topological space, and the point y /∈ X be arbitrary.
Endow a topology σ on the set Y = X ∪ {y} by declaring open sets consisting
of empty set ∅ and the subsets U ∪ {y}, for all U ∈ τ . Hence it follows that
the given topological space (X, τ ) is a subspace of (Y, σ ), because, τ = σX ,
the induced topology on X by the σ . Moreover, {y} is a countable dense subset
of (Y, σ ). This asserts that the space (Y, σ ) is separable. This proves that the
topological space (X, τ ) is embedded in the separable space (Y, σ ).

(ii) Let (X, τ ) be a given T1-space and the point y /∈ X . Endow a topology σ on the
set Y = X ∪ {y} by nbd filters, i.e., nbds of a point x ∈ Y are to be the same as
its nbds in (X, τ ) if x ∈ X , and the nbds of y are the sets {y} ∪ A, where X − A
are closed Lindelöff subsets of X. Hence it follows that (Y, σ ) is a Lindelöf
space, having (X, τ ) as a subspace. Then it follows that the given topological
space (X, τ ) is embedded in (Y, σ ).

�

7.6 More on Separability and Lindelöf Properties

This section proves in Corollary 7.6.3 that separability of a topological space is a
topological property like compactness and connectedness proved in Chap. 5. But
this property is not hereditary (see Example 7.6.5). Again, Corollary 7.6.4 shows
that Lindelöf property of a topological space is also topological. This property is
also not hereditary (see Example 7.6.6).

The results that separability and Lindelöf are both topological properties follow
as a consequence of Theorem 7.6.1.

Theorem 7.6.1 Let f : (X, τ ) → (Y, σ ) be a continuous onto map.

(i) If the space (X, τ ) is separable, then (Y, σ ) is also so.
(ii) If the space (X, τ ) is Lindelöf, then (Y, σ ) is also so.

Proof By hypothesis, f : (X, τ ) → (Y, σ ) be a continuous onto map. Then
f (X) = Y .

(i) Let (X, τ ) be a separable space. If C is a countable dense subset of (X, τ ),
then f (C) is a countable subset of Y and f (C) is dense in (Y, σ ). Hence it
follows that the space (Y, σ ) is also separable.
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(ii) Let (X, τ ) be a Lindelöf space and U be an open covering of Y in (Y, σ ). Since
f is continuous and onto, it follows that

V = { f −1(U ) : U ∈ U}

forms an open covering ofX in (X, τ ). Again, since the space (X, τ ) is Lindelöf,
it has a countable subcovering H of V. Then the family

{ f (U ) : U ∈ H}

of open sets is a countable subcovering of U, which forms a countable open
covering of Y in (Y, σ ). This asserts that (Y, σ ) is also a Lindelöf space.

�

Corollary 7.6.2 (i) Every continuous image of a separable space is separable.
(ii) Every continuous image of a Lindelöf space is Lindelöf.

Proof It follows from Theorem 7.6.1. �

Corollary 7.6.3 Separability of topological spaces is a topological property.

Proof It follows from Theorem 7.6.1(i). �

Corollary 7.6.4 Lindelöf property of topological spaces is a topological property.

Proof It follows from Theorem 7.6.1(ii). �

Example 7.6.5 Separability is a topological property but it is not a hereditary prop-
erty. The first part is proved by Corollary 7.6.3. For the second part, let X be an
uncountable set and τ be the discrete topology on X . Then (X, τ ) is a nonseparable
space. This topological space can be embedded in a separable space by Embedding
Theorem 7.5.5(i). This asserts that a subspace of a separable space of being separable
is not hereditary.

Example 7.6.6 Lindelöf property is topological but it is not hereditary: The first part
is proved by Corollary 7.6.4. For the second part, take any T1-space (X, τ ) which is
not Lindelöf. Then this topological space can be embedded in a Lindelöff space by
Embedding Theorem 7.5.5(ii). For a specific example, consider the topological space
(R, σ ) described in Proposition 7.2.17. Let R∗ = R − {0} Then every one-pointic
set {x} in the subspace (R∗, σR∗) is open. Again the collection of all one-pointic sets
{x} constitutes an uncountable open covering of R∗ in the space (R∗, σR∗). But this
open covering has no countable open subcovering. This asserts that the space (R, σ )

is Lindelöf but its subspace (R∗, σR∗) is not Lindelöf.

Theorem 7.6.7 Let f : (X, τ ) → (Y, σ ) be a continuous onto open map.
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(i) If the space (X, τ ) is first countable, then (Y, σ ) is also first countable.
(ii) If the space (X, τ ) is second countable, then (Y, σ ) is also second countable.

Proof Let f be a continuous openmapof a topological space (X, τ )onto a topological
space (Y, σ ). Then f (X) = Y .

(i) Let (X, τ ) be first countable, y ∈ Y , and x ∈ f −1(y). Then given any countable
family {Ui : i = 1, 2, . . .} of open sets, containing x in (X, τ ), there exists
a countable family of open sets { f (Ui ) : i = 1, 2, . . .}, containing the point
f (x) = y in (Y, σ ), since f is an open onto map by hypothesis. To show that
this family { f (Ui ) : i = 1, 2, . . .} forms a countable open base about the point
y in (Y, σ ), let V be any open set containing y in (Y, σ ). Since f is a continuous
map, f −1(V ) is an open set containing x in (X, τ ), and hence there exists an
open set Uj ∈ τ such that

x ∈ Uj ⊂ f −1(V ) =⇒ y = f (x) ⊂ f (Uj ) ⊂ V .

This proves that there exists a countable open base about the point y. Since
the point y ∈ Y is arbitrary, it follows that the space (Y, σ ) is a first countable
space.

(ii) Let (X, τ ) be a second countable space and {Ui : i = 1, 2, . . .} be a countable
open base for τ . Since by hypothesis f is an open mapping, it follows that
{ f (Ui ) : i = 1, 2, . . .} forms a countable family F of open sets in (Y, σ ). We
claim that F forms an open base for σ . To show it, take any V ∈ σ . Then
f −1(V ) ∈ τ , since f is continuous by hypothesis, and hence it can be repre-
sented as a union: f −1(V ) = ⋃{Uk : k ∈ N1 ⊂ N} for some subset N1 of the
set of all natural numbers N. As f is surjective by hypothesis, it follows that

V = f ( f −1(V )) =
⋃

{ f (Uk) : k ∈ N1 ⊂ N}.

This shows that
{ f (Ui ) : i = 1, 2, . . .}

forms a countable open base for σ and hence (Y, σ ) is a second countable
space.

�

Corollary 7.6.8 Every image under a continuous open map of a first countable
(second countable) space is a first countable (second countable) space.

Proof It follows from Theorem 7.6.7. �

Proposition 7.6.9 Every separable metric space is second countable.

Proof Let (X, d) be a metric space and τd be the topology on X induced by d.
Suppose the space (X, τd) is separable and Y = {y1, y2, . . . } is a countable dense
subset in X . Consider the family of open spheres
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F = {Xn,t = {x ∈ X : d(x, yn) < 1/t} : n, t = 1, 2, . . . , }.

Then F forms an open base for the topology τd induced by d on X . This concludes
that every separable metric space is second countable.

�
Theorem 7.6.10 Let (X, τ ) be the topological product of a family of topological
spaces {(Xα, τα) : α ∈ A}. If (X, τ ) is a Lindelöf space, then every coordinate space
(Xα, τα) lso a Lindelöf space.

Proof Let the product space (X, τ ) be Lindelöf. Since,

(i) Every coordinate space (Xα, τα) is homeomorphic to a closed subspace of the
product space (X, τ );

(ii) every closed subspace of a Lindelöf space is also a Lindelöf space and
(iii) the property that a space is a Lindelöf space is a topological property,

It follows that the component space (Xa, τa) is Lindelöf, for every a ∈ A. �
Example 7.6.11 The converse of Theorem 7.6.10 is not true. For example, consider
the product space (R, τ1) × (R, τ1), which is not a Lindelöf space; on the other
hand Theorem 7.4.4 asserts that the Sorgenfrey line (R, τ1) is a Lindelöff space.
The product space R2

l is called the Sorgenfrey plane with the topology τ having a
base consisting of all sets of the form {[x, y) × [z, w)} in the plane. Its subspace
A = {(t,−t) : t ∈ R} is a closed subset of the product space (R, τ1) × (R, τ1).
Geometrically, A represents the line x + y = 0 in the Sorgenfrey plane R2

l . The
space R2

l can be covered by the open set R2
l and the basis elements of the form

{[x, y) × [−x, w)} in the plane. Then each of the basis elements intersects the line
A in at most one point. Since A is uncountable, no countable subfamily of this
basis element can cover the Sorgenfrey plane R2

l . This asserts that the product space
(R, τ1) × (R, τ1) is not Lindelöf.

Example 7.6.12 The Sorgenfrey line (R, τ1) is first countable and separable by
Theorem 7.4.4 of Sect. 7.12. It is also Lindelöf. Hence, by Exercise 18 of Sect. 7.12,
the product space (R, τ1) × (R, τ1) is first countable and separable but it is not
Lindelöf by Theorem 7.6.10.

Remark 7.6.13 More properties of the topological product space from the viewpoint
of countability and separability are available in Exercises 17 and 18 of Sects. 7.12
and Theorem 7.4.4.

7.7 Convergence of Sequences in First Countable Spaces

This section studies convergence of sequences in first countable spaces with a view to
characterize Hausdorff property of a first countable space with the help of convergent
sequence having a unique limit in the space (see Theorem 7.11.4).
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Proposition 7.7.1 Let (X, τ ) be a first countable space and x ∈ X. IfB = {Ui : i =
1, 2, . . .} is a countable open base about the point x in (X, τ ), then there is an infinite
subsequence {Wi : i = 1, 2, . . .} of the sequence {Ui : i = 1, 2, . . .} such that

(i) For every open set V in (X, τ ) containing the point x, there is a suffix k such
that

Wi ⊂ V, ∀ i ≥ k.

(ii) Moreover, if (X, τ ) is T1, then
⋂∞

n=1 {Wi } = {x}.
Proof By the given condition,U1 ∩U2 ∩ · · · ∩Uk is an open set containing the point
x in (X, τ ). By hypothesis, B = {Ui } is a countable open base about the point x in
(X, τ ). Hence there is some Wk ∈ {Ui } such that

x ∈ Wk ⊂ U1 ∩U2 ∩ · · · ∩Uk, ∀ k = 1, 2, . . . .

Then the sequence {Wn} has the desired properties. Because,

(i) for any open set V in (X, τ ) containing the point x , there exists an open set
Uk ∈ B such that

x ∈ Uk ⊂ V .

Moreover,
Wi ⊂ Uk, ∀ i ≥ k =⇒ Wi ⊂ V, ∀ i ≥ k.

(ii) Suppose Y = ⋂{Wi }. Then x ∈ Wi , ∀ i implies x ∈ Y . Since by hypothesis,
(X, τ ) is T1, then for any pair of distinct elements x, y ∈ X , there exists an
open sets V in (X, τ ) such that

x ∈ V but y /∈ V .

This shows that there exists some index k such thatWi ⊂ V for all i ≥ k. Hence
y /∈ Wi , ∀ i ≥ k. This implies that y /∈ Y . This proves that

Y =
∞⋂

n=1

{Wi } =
⋂

{Wi : i = 1, 2, . . .} = {x}.

�

Remark 7.7.2 Proposition 7.7.1 is applied to prove Theorem 7.11.4 to obtain a
characterization of first countable Hausdorff spaces.
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7.8 Cardinality of Open Sets in a Second Countable Space

This section studies cardinality of open sets in second countable spaces and also
second countable Hausdorff spaces. More precisely, Theorem 7.8.1 proves that the
cardinality of the set of all open sets in a second countable space is at most equal to
the power of continuum c; on the other hand, Theorem 7.8.3 determines exactly the
cardinality of the set of all open sets in a a second countable Hausdorff space.

Theorem 7.8.1 Let (X, τ ) be a second countable space. The cardinality of the set
of all open sets in (X, τ ) is at most equal to the power of continuum c.

Proof Let (X, τ ) be a second countable space U ∈ τ be an arbitrary open set. Then
there exists a countable open base

B = {Un : n = 1, 2, . . .}

for the topology τ such that U is the union of a subfamily B′ of B. This asserts that
the cardinality card(τ ) of the set of all open sets in τ is not greater than that of the
set of all subfamilies B′ of B, which is c. This shows that card(τ ) ≤ c. �

Corollary 7.8.2 Let (X, τ ) be a second countable space. Then the cardinality of the
set of all closed sets in (X, τ ) is at most equal to the power of continuum c.

Proof As every closed set in (X, τ ) is the complement of an open set in X , the
corollary follows from Theorem 7.8.1. �

Theorem 7.8.3 determines exactly the cardinality of the set of all open sets in a a
second countable Hausdorff space.

Theorem 7.8.3 Let (X, τ ) be a second countable Hausdorff space. Then the cardi-
nality of the set of all open sets in (X, τ ) is c.

Proof Suppose (X, τ ) is a second countable Hausdorff space. Then by using Exer-
cise 2 of Sect. 7.12, it follows that there is an infinite sequence S = {U1,U2, . . .} of
mutually disjoint nonempty open sets U1,U2, . . . in (X, τ ), where different subse-
quences of S determine different open sets as their unions. Hence, it follows that

card τ ≥ c,

since the set of all open sets subsets of a countable set has cardinality c and all the
open sets in (X, τ ) may not be obtained as unions of the subsequences S. Again, by
using Theorem 7.8.1, it follows that

card τ ≤ c.

These two inequalities assert that
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card τ = c.

�

Corollary 7.8.4 Let (X, τ ) be a second countable Hausdorff space. Then the car-
dinality of the set of all closed sets in (X, τ ) is c.

Proof As every closed set in X is the complement of an open set in X , the corollary
follows from Theorem 7.8.3. �

Remark 7.8.5 For cardinality of the set of all points in a second countable T1-space,
see Exercise 26 of Sect. 7.12.

7.9 Points of Condensation of Uncountable Subsets of
Second Countable Spaces

This section conveys the concept of point of condensation in a topological space and
shows its existence by proving that every uncountable subset of a second countable
space has a point of condensation.

Definition 7.9.1 Let (X, τ ) be a topological space and A ⊂ X be an uncountable
set. Then a point p ∈ X is said to be a point of condensation of A in (X, τ ) if every
nbd of p intersects A in an uncountably infinite set of points.

Theorem 7.9.2 provides examples of points of condensation in terms of Defini-
tion 7.9.1.

Theorem 7.9.2 Let (X, τ ) be a second countable space. Then its every uncountable
subset A has a point of condensation.

Proof Let X be a second countable space with topology τ and B = {Un : n =
1, 2, . . .} be a countable open base for the topology τ . Let A ⊂ X be a subset such
that A has no point of condensation. Then for every a ∈ A, the point a is not a point
of condensation of A. This asserts that there exists an open set V in (X, τ ) such that
a ∈ V and V ∩ A is at most countable. Then there exists some suffix Na such that
a ∈ UNa ⊂ V . This shows that A ∩UNa is at most countable. Represent A as

A =
⋃

{a ∈ A} ⊂
⋃

{A ∩UNa : a ∈ A}.

Since there can exist at most a countable number of different suffices, it follows that
the set A is at most a countable union of countable subsets of X . This implies that A
is at most a countable subset of X . Hence it follows that if A is uncountable, then it
has a point of condensation.

�
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Corollary 7.9.3 Let (X, τ ) be a second countable space and D be an uncountable
subset of X. If A ⊂ X consists of all points of condensation of D lying in D, then
the set A is an uncountable set such that A = A.

Proof Using Exercise 27 of Sect. 7.12, the corollary follows from
Theorem 7.9.2. �

7.10 More on Urysohn Metrization Theorem

This section proves Urysohn metrization theorem which gives a sufficient condition
for metrizability of topological spaces and its alternative forms which are different
from forms given in Chap. 6. The basic tool used to prove Urysohn metrization
theorem in Chap. 6 is the separation of disjoint closed sets by real-valued continuous
functions. On the other hand, Urysohn metrization Theorem 7.10.4 is proved in this
chapter by using the result that every regular and second countable space is normal
(see Theorem 7.10.1).

Theorem 7.10.1 proves that the regularity and second countability properties of a
topological space taken together imply its normality property.

Theorem 7.10.1 Every regular and second countable space is normal.

Proof (X, τ ) be a regular and second countable space.We prove that the space (X, τ )

is normal. Let P and Q be any pair of disjoint closed sets in (X, τ ) and B form a
countable open base for the topology τ . Since every point p ∈ P is also in the open
set X − Q, by regularity criterion, there exists an open set Up ∈ B such that

p ∈ Up ⊂ U p ⊂ X − Q.

Again, since B is countable, we can enumerate all the members in {Up : p ∈ P} to
obtain a countable family {Un : n = 1, 2, . . . } of open sets from the members of B
such that

P ⊂
∞⋃

n=1

Un, and Un ∩ Q = ∅, ∀ n ∈ N.

Similarly, we obtain a countable family {Vn = 1, 2, . . . } of open sets from the mem-
bers of B such that

Q ⊂
∞⋃

n=1

V n, and Vn ∩ P = ∅, ∀ n ∈ N.

If U ∗
1 = V1 −U 1 and V ∗

1 = U1 − V 1, then
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U ∗
1 ∩ V ∗

1 = ∅, U ∗
1 ∈ τ, V ∗

1 ∈ τ, U ∗
1 ∩ Q = V1 ∩ Q and V ∗

1 ∩ P = U1 ∩ P.

Define inductively,

U ∗
n = Vn −

n⋃

i=1

Ui and V ∗
n = Un −

n⋃

i=1

Vi .

Then
U ∗

n , V ∗
n ∈ τ, U ∗

n ∩ P = Un ∩ P, and V ∗
n ∩ Q = Vn ∩ Q.

If U = ⋃∞
n=1Un,

∗ and V = ⋃∞
n=1 Vn,

∗, then

U, V ∈ τ, P ⊂ V, Q ⊂ U, and U ∩ V = ∅.

This asserts that the closed sets P and Q are strongly separated by open sets U and
V in (X, τ ), and hence it is proved that the space (X, τ ) is normal.

�

Proposition 7.10.2 Given a regular space (X, τ ) with a countable basis B, there
exists a countable family of continuous functions fk : X → [0, 1] with the property
that for any point a ∈ X and any nbd U of a, there is an index k such that fk(a) > 0
and fk ≡ 0 outside the nbd U.

Proof Let (X, τ ) be a regular space with a countable basis B = {Un : n = 1, 2, . . .}.
Given every pair (n,m) of positive integers two open sets Un and Um are chosen
from the countable basis B such that Un ⊂ Um . Since by Theorem 7.10.1, the space
(X, τ ) is normal, hence by Urysohn lemma, corresponding to the closed setsUn and
X −Um , there exists a continuous function

hn,m : X → [0, 1]

such that

hn,m(x) =
{
0, for all x ∈ X −Um

1, for all x ∈ Un

and
0 ≤ hn,m(x) ≤ 1 for all x ∈ X.

Then the family {hn,m} of continuous functions gives the required function. To
show it, select an open set Um ∈ B such that x ∈ Um ⊂ U . Hence by regularity
property of (X, τ ), given a point x ∈ X and a nbd U of x , there exists an open set
Un ∈ B such that

x ∈ Un ⊂ Un ⊂ Um .
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This shows that the function hn,m defined as above on X is such that

hn,m(x) > 0

and
hn,m ≡ 0 outside U.

The family {hn,m} is indexed by a subset ofN × N. This produces the required family
of continuous functions fk : X → [0, 1] such that for any point a ∈ X and any nbd
Ua of a, there is an index k with the property that fk(a) > 0 and fk ≡ 0 outside the
nbd U . �

Remark 7.10.3 UrysohnMetrizationTheorem7.10.4 provides a sufficient condition
formetrizability of regular spaces having countable bases. On the hand, its alternative
form formulated in Theorem 7.10.5 provides a sufficient condition for metrizability
of second countable and completely regular spaces.

Corollary 7.10.4 (Urysohn metrization theorem) Let (X, τ ) be a regular space
having a countable basis. Then (X, τ ) is metrizable.

Proof Urysohn metrization theorem follows from Theorem 7.10.1. �

Theorem 7.10.5 (An alternative form of Urysohn metrization Theorem) Let
(X, τ ) be a second countable and completely regular space. Then (X, τ ) is metriz-
able.

Proof Let (X, τ ) be a second countable and completely regular space with a count-
able basisB. Construct the countable family of functions { fn : X → [0, 1]} byPropo-
sition 7.10.2 such that for every point x ∈ X , and any nbd U of x , there is an index
n ∈ N such that fn(x) > 0 and fn ≡ 0 outside U . Let Y = I∞ with the product
topology be the Hilbert cube (see Chap. 3). Define a map

H : X → Y, x �→ ( f1(x), f2(x), f3(x), . . .).

Then H is continuous, since Y = I∞ has the product topology and each of its com-
ponents fn is continuous. H is injective, since for distinct points x, y ∈ X , there is
an index k ∈ N such that fk(x) > 0 and fk(y) = 0 and hence H(x) �= H(y). This
asserts that H is a homeomorphism of X onto its image H(X) ⊂ Y . This says that
H is an embedding of X in IN and thus the topological space (X, τ ) is embedded
into the Hilbert cube I∞, which is metrizable. �

Definition 7.10.6 A topological space (X, τ ) is called a Frechét space if every
one-pointic set is closed in (X, τ ). It is a T1-space.

Theorem 7.10.7 (UrysohnEmbedding Theorem)Every completely regular second
countable space can be embedded in the Hilbert cube IN.
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Proof Proof I: It follows from the proof of theUrysohnMetrizationTheorem7.10.4.
Proof II: Let (X, τ ) be a completely regular second countable Frechét space.

It follows from the proof of the Urysohn Metrization Theorem 7.10.4 that (X, τ )

is metrizable. Let { fk : X → I}k∈K. be a family of continuous functions fk : X →
R :∈ K with indexing set K such that for any point a ∈ X and any nbd Ua of a,
there is an index k with the property that fk(a) > 0 and fk ≡ 0 outside the nbd U
(existence of such functions follows from Proposition 7.10.2). Define the function

H : X → IN, x �→ ( f1(x), f2(x), f3(x), . . .).

Then H is continuous, since Y = I∞ has the product topology and each of its com-
ponents fn is continuous. Moreover H is injective, since for distinct points x, y ∈ X ,
there is an index k ∈ K such that fk(x) �= fk(y). This asserts that H is a continuous
injective map from X into IN. This proves that H embeds X in the Hilbert cube IN.
�

Theorem7.10.8 giving an embedding of a regular second countable Frechét space and
Theorem 7.10.9 characterizing completely regular spaces, follow as a consequence
of the above discussion.

Theorem 7.10.8 (One form of Urysohn Embedding Theorem) Every regular sec-
ond countable Frechét space can be embedded in the Hilbert cube IN.

Theorem 7.10.9 A topological space (X, τ ) is completely regular iff space (X, τ )

is homeomorphic to a subspace of IK for some indexing set K.

Remark 7.10.10 A family of continuous functions defined in Urysohn Embedding
Theorem 7.10.7 is said to separate points from the closed sets in (X, τ ).

7.11 Applications

This section conveys various applications of the concepts and results discussed in
this chapter.

7.11.1 Applications of Lindelöf Theorem

This section presents an important application of Lindelöf Theorem and gives a
characterization of Hausdorff spaces in terms of convergent sequences.

Theorem 7.11.1 gives an important application of Lindelöf Theorem 7.2.12.

Theorem 7.11.1 Let (X, τ ) be a second countable space and {Ui : i ∈ A} be an
arbitrary open base for the topology τ . Then {Ui : i ∈ A} has a countable subfamily
forming also an open base for the same topology τ .
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Proof Let B = {Un} is an arbitrary countable open base for the topology τ on X .
By hypothesis, {Ui : i ∈ A} is an arbitrary open base for the topology τ . Then every
nonempty open set Un ∈ B is a union of Ui ’s. Hence it follows by Theorem 7.2.12
that this Un can be represented as a countable subfamily of the family {Ui : i ∈ A}.
By this process, a countable family of countable collection of U ′

i s is obtained. This
asserts that the union of this family of collections thus obtained, forms a countable
subfamily B′ of the given open base {Ui : i ∈ A} such that B′ also forms an open
base for the topology τ on X . �

Corollary 7.11.2 If (X, τ ) has a countable base for τ , then every open covering of
X contains a countable subcovering.

Proof It follows from Theorem 7.11.1. �

Remark 7.11.3 Some authors call Corollary 7.11.2 Lindelöf Theorem,which asserts
everyopen coveringof a topological space satisfying the second axiomof countability
has a countable subcovering.

7.11.2 A Charaterization of First Countable Hausdorff
Spaces

Theorem 7.11.4 gives a characterization of Hausdorff property of a first countable
spaces by convergent sequences.

Theorem 7.11.4 Let (X, τ ) be a first countable space. Then it is Hausdorff iff every
convergent sequence in X has a unique limit in X.

Proof First suppose that (X, τ ) is a first countable Hausdorff space. Since every
convergent sequence in a Hausdorff space has a unique limit, then every convergent
sequence in (X, τ ) has a unique limit in X .

Conversely, suppose the topological space (X, τ ) is a first countable space such
that every convergent sequence in X has a unique limit in X . If it is not Hausdorff,
then there exists a pair of distinct points a, b ∈ X which are not strongly separated
in (X, τ ). By hypothesis (X, τ ) is first countable. Then apply Proposition 7.7.1 to
find a convergent sequence {xn} in X such that

lim
n→∞ xn → a, and lim

n→∞ xn → b.

This implies that there exists a convergent sequence {xn} in X whose limit is not
unique. This contradicts the assumption that every convergent sequence in (X, τ )

has a unique limit in X . This contradiction proves that the space (X, τ ) is Hausdorff.
�

Proposition 7.11.5 (i) The Euclidean n-space Rn is second countable, and also
first countable, separable and Lindelöf.
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(ii) The unit cube Id is second countable, and also first countable, separable and
Lindelöf.

Proof It follows from Theorems 7.2.14 and 18, since the real number space (R, σ )

and the closed unit interval (I = [0, 1], σI) are second countable. �

Theorem 7.11.6 Let (X, τ ) be a first countable space. Then a point x ∈ X, is an
accumulation point of a subset A ⊂ X iff there is an infinite sequence of points
x1, x2, . . . , (xi �= x) in A such that

lim
n→∞ xn = x .

Proof Let (X, τ ) be a first countable space and x ∈ X be an accumulation point
of a subset A of X . Then by Proposition 7.7.1, there is a sequence of open sets
{Ui : i = 1.2. . . .}, which are members of an open base for the topology τ about the
point x such that for every open set V containing the point x , there an integer k with
the property

Ui ⊂ V, ∀ i ≥ k.

Since, x ∈ Un and x is an accumulation point of A, there exists a point xn( �= x) ∈ A
such that xn ∈ Un . For n = 1, 2, . . ., a corresponding sequence of points x1, x2, . . .
is thus obtained in A. Hence it follows that

lim
n→∞ xn = x .

Conversely, suppose that (X, τ ) is a first countable space such that there is an infinite
sequence of points x1, x2, . . . , (xi �= x) in A ⊂ X for some x ∈ X such that

lim
n→∞ xn = x .

To show that x is an accumulation point of A, let V be an open set containing the limit
point x of the sequence {xn}. Then there exists an integer k such that xn ∈ V, ∀ n ≥ k.
Hence by the given condition, it follows that x is an accumulation point of the
subset A.

�

7.12 Exercises

1. If a topological space (X, τ ) has a countable base for its topology τ , show that
there exists a countable dense subset of X .

2. Let (X, τ ) be a Hausdorff space. Show that there exists an infinite sequence of
mutually disjoint nonempty open sets in (X, τ ).
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3. Let (X, τ ) be a regular Lindelöf space. Show that it is a normal space.
4. Let (X, τ ) be a discrete space. Show that it is separable iff X is countable.
5. Show that any subspace of a separable space may not be separable but every

open subspace of a separable space is separable.
[Hint: Use Example 7.6.5 for the first part.]

6. Show that every subspace of a Lindelöf space may not be Lindelöf but every
closed subspace of a Lindelöf space is Lindelöf.

7. Let (X, τ ) be a second countable and completely regular space and B be a
countable open base for its topology τ . Suppose for each pair of open setsU, V ∈
B with Ū ⊂ V , there exist a function

f : X → I : x �→
{
0, for all x ∈ U

1, for all x ∈ X − V

If F is the set of all such maps (may be empty), then for each point x ∈ X and
for each closed set A ⊂ X with x not in A, show that there is a function g ∈ F
such that

(i) g vanishes on a nbd Ux of x i.e., g ≡ 0 on Ux and
(ii)

g ≡ 1d on A.

8. (Heine’s continuity criterion) Let (X, τ ) be a first countable space, C be a
subset of X and (Y, σ ) be a given topological space. Show that a function f :
(C, τC) → (Y, σ ) is continuous at a point x ∈ C iff for any infinite sequence of
points {xn} in C ,

lim
n→∞ xn = x =⇒ lim

n→∞ f (xn) = f (x) in (Y, σ )

9. Show by an example that a subspace of a topological space with a countable
dense subset may not have a countable dense subset.
[Hint: The set of points having rational coordinates is dense in the Sorgenfrey
plane R2

l but the subspace A = {(x,−x)} ⊂ R2
l is uncountable and it has the

discrete topology. Hence it has no countable dense subset.]
10. Show the product space of a Lindelöf space and a compact space is Lindeöff.
11. Show that every metric space is first countable. Hence prove that the Euclidean

n-space Rn is first countable.
12. Show that there are metric spaces which are not second countable.
13. Show that uncountable sets with cofinite topology are not necessarily first count-

able.
14. Let (X, τ ) be a first countable space and x ∈ X be an arbitrary point. Show that

at x , there exists a countable local base Bx = {Un : n ∈ N} such that

U1 ⊃ U2 ⊃ U3 ⊃ · · · ⊃ .
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15. Let C be the family of all complements of finite or infinite countable sets in X .
Then, C together with ∅ forms a topology, called the countable complement
topology on X . Show that the countable complement topology on R is not first
countable.

16. R/ ∼ be the quotient space obtained by the equivalence relation x ∼ y iff x −
y ∈ Z. (Geometrically, R/ ∼ represents the wedge of a countable many circles
having only point in common).
Show that

(i) The quotient space R/ ∼ can not be embedded in the Euclidean plane R2;
(ii) The quotient space R/ ∼ is not first countable.

17. Let {(Xi , τi ) : i = 1, 2, . . . , n} be a finite family of topological spaces and
(X, τ ) = �n

n=1(Xi , τi ) be their product space. Show that

(i) If every coordinate space (Xi , τi ) is separable, then their product space
(X, τ ) is also separable;

(ii) If every coordinate space (Xi , τi ) is second countable, then their product
space (X, τ ) is also second countable.

18. Let {(Xa, τa) : a ∈ A} be any family of topological spaces and (X, τ ) be their
topological product space with natural projection

pa : �Xa = X → Xa, ∀ a ∈ A.

Show that the product space (X, τ ) is

(i) first countable iff, every coordinate space (Xα, τα) is first countable and all
but a countable number of the topological spaces (Xα, τα) are indiscrete;

(ii) second countable iff every coordinate space (Xα, τα) is second countable,
and all but a countable number of the topological spaces (Xα, τα) are indis-
crete;

(iii) separable iff every coordinate space (Xα, τα) is a separable Hausdorff space
having at least two elements and the cardinality card (A) ≤ c.

19. (Box topology) Let Xn be a copy of the discrete space over the set {0, 2} for
each n ∈ N. Then �n∈NXi and R have the same cardinality. Define nonempty
open sets in the product space �n∈NXn as the unions of the sets of the form
�i∈AUi , whereUn = Xi for finitely many n andUi is singleton for others. If the
indexing set is A, then the family of sets of the form �n∈AUi where Ui is open
in Xi forms an open base for the topology τ on X = �i∈AXn . If A is an infinite
set, then corresponding topology is called the box topology, which is different
from the product topology. Show that the box topology on the set �iRi is not
first countable.

20. (Bolzano–Weierstrass space)Atopological x is said to be aBolzano–Weierstrass
space (B–W space), if every infinite subset ofX has a point of accumulation point
in X . If a topological space X is first countable and a B–W-space, show that X
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is sequentially compact in the sense that its every sequence has a convergent
subsequence.

21. Examine whether the l2-space with l2-metric (see Chap. 2) has a countable basis.
22. Let (X, τ ) be a compact metrizable space. Show that the space (X, τ ) has count-

able open base.
23. If a metrizable space has a countable dense set, show that it has a countable open

base.
24. Let (X, τ ) be a regular space having an open base which is countably locally

finite. Show that

(i) (X, τ ) is normal,
(ii) every closed set in (X, τ ) is a Gδ-set in(X, τ ).

25. Let (X, τ ) be a regular second countable space. Show that every closed set in
(X, τ ) is a Gδ-subset of (X, τ ).

26. Let S be the set of all points in a second countable T1 space. Show that card S
is at most equal to c (i.e., at most power of continuum).

27. Let (X, τ ) be a second countable space and D be an uncountable subset of X .
If A ⊂ X consists of all those points of D, which are not points of condensation
of D, then A is at most countable.

28. (Tychonoff) Show that every regular second countable space is perfectly normal.
29. Show that every regular Lindelöf space is paracompact.
30. Show that every regular Lindelöf space is normal.
31. Let (X, τ ) be a Lindelöf space and (Y, σ ) be a topological space. If f : (X, τ ) →

(Y, σ ) is a continuous onto mapping, show that (Y, σ ) is also a Lindelöf space.
32. Let C[a, b] = X be the set of all real-valued continuous functions f on [a, b]

with norm || f || = ∫ b
a f (t))dt . Show that under the induced topology

(i) X is a separable space;
(ii) X is a second countable space.

33. Show that the set R equipped with Euclidean topology σ i.e., the real line space
(R, σ ) is Lindelöf but the same set R endowed with the Sorgenfrey topology τ1
i.e., Sorgenfrey line space (R, τ1) is not so.
[Hint: Sorgenfrey topology τ1 is not second countable.]

34. Show that the Sorgenfrey line space is

(i) first countable and separable.
(ii) Hausdorff but not metrizable.

35. Show that every closed subspace of a Lindelöf space is Lindelöf.
36. Let (X, τ ) be a topological space such that it is both regular and Lindelöf. Show

that the space (X, τ ) is normal.
37. Let (X, τ ) be a topological space such that it is both regular and second countable.

Show that the space (X, τ ) is normal.
38. Show by an example that the topological product of two Lindelöf spaces may

not be Lindelöf.
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39. Show that Niemytzki’s tangent dick topology (or Niemytzki’s topology) (see
Chap. 3) is separable but it is not second countable.

40. (Cantor–Bendixon theorem) Let (X, τ ) be a second countable space and A be
a closed set in (X, τ ). Show that A can be represented uniquely as the union of
a perfect set and a set that is at most countable.

Multiple Choice Exercises

Identify the correct alternative (s) (there may be none or more than one) from the
following list of exercises:

1. Let R be the set of all real numbers.

(i) R endowed with topology generated by the closed-open interval {[a, b) :
b ∈ Q} is first countable.

(ii) R endowed with usual topology is not first countable.
(iii) R endowed with discrete topology is separable.

2. The Euclidean space R3 is

(i) second countable;
(ii) separable;
(iii) first countable;
(iv) not Lindeöf.

3. (i) Every subspace of a first countable space is first countable.
(ii) Every subspace of a second countable space is second countable.
(iii) Separability of topological spaces is a topological property.

4. The real number space (R, σ ), with the usual topology σ , is

(i) second countable;
(ii) separable;
(iii) not Lindelöf.

5. (i) R endowed with usual topology is first countable,
(ii) R2 endowed with the topology generated by half-open rectangles,

[a, b) × [c, d) = {(x, y) ∈ R2 : a ≤ x < b; c ≤ y < d}

is separable.
(iii) Every topological space can be embedded in a separable space.

6. Let (R, σc) denote the topological space (R, σc), with the cofinite topology σc.
Then (R, σc)

(i) is separable;
(ii) is Lindelöf; but
(iii) is not first countable.
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7. (i) Lindelöf property of topological spaces is not hereditary.
(ii) Lindelöf property of topological spaces is a topological property.
(iii) Separability is a topological property but it is not a hereditary property.

8. Let (R, τl) denote the Sorgenfrey line space. This space

(i) first countable;
(ii) separable;
(iii) not Lindelöf.
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Chapter 8
Brief History of Topology I: Motivation of
the Subject with Historical Development

The subject Topology has become one of the most exciting and influential fields of
study inmodernmathematics, because of its beauty and scope. Topology starts where
sets have some cohesive properties leading to define continuity of functions. This
chapter conveys the history of emergence of the concepts leading to the develop-
ment of topology as a subject with their motivations with an emphasis on general
topology. Modern mathematics studies development of classical mathematical ideas,
emergent areas leading to new areas of mathematics and their interrelationship, fun-
damental results and their applications in mathematics and beyond it.

Just after the concept of homeomorphism is clearly defined, the subject of topol-
ogy begins to study those properties of geometric figures which are preserved by
homeomorphisms with an eye to classify topological spaces up to homeomorphism,
which stands the ultimate problem in topology,where a geometric figure is considered
to be a point set in the Euclidean space Rn. But this undertaking becomes hopeless,
when there exists no homeomorphism between two given topological spaces.

The subjects Algebraic Topology (studied in Basic Topology, Volume 3) and
Differential Topology (studied in Basic Topology, Volume 2) were born to solve
the problems of impossibility inmany cases with a shift of the problem by associating
invariant objects in the sense that homeomorphic spaces have the same object (up to
equivalence). Initially these objects were integers, and subsequent research reveals
that more fruitful and interesting results can be obtained from the algebraic invariant
structures such as groups and rings. For example, homology and homotopy groups are
very important algebraic invariants which provide strong tools to study the structure
of topological spaces. The development of homotopy theory started in the middle
1950s. The concepts born in the development of homology and homotopy theories to
solve topological problems applications have found outstanding applications to other
areas of mathematics leading to the starting points of many theories such as category
theory, homological algebra and K-theory, to mention a few (Adhikari, 2016). This
is a remarkable feature in the history of topology.

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022
A. Adhikari and M. R. Adhikari, Basic Topology 1,
https://doi.org/10.1007/978-981-16-6509-7_8

479

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-6509-7_8&domain=pdf
https://doi.org/10.1007/978-981-16-6509-7_8


480 8 Brief History of Topology I: Motivation of the Subject with Historical Development

Classical analysis begins with calculus. The real and complex number systems
are the main texts of analysis. While developing classical analysis, prominent math-
ematicians such as B. Riemann (1826–1866), K. Weierstrass (1815–1897), G. Can-
tor (1845–1918), H. Lebesgue (1875–1941), D. Hilbert (1862–1943), J. Fourier
(1768–1830) and many others identified the basic principles on which the analysis
is founded. These principles play a key role in the development of modern analysis,
algebra, topology, integration and measure theories.

Today, topology is a key subject interlinking modern analysis, geometry and
algebra.The origin of a systematic study of topology may be traced back to the
monumental work of Henri Poincaré (1854–1912) in his Analysis situs Paris, 1895
together with his first note on topology published in 1892 organized first time the
subject topology, now, called algebraic or combinatorial topology. But the beginning
of general topology or “point set topology” dates when M. Fréchet (1878–1973)
published his paper in 1906 on the treatment of the subject in an abstract setting. He
described in his thesis of 1906 a set of axioms on limit of sequences. Set topology
developed at first as a branch of calculus, which was invented independently by
Issac Newton (1643–1727) and G. Leibniz (1646–1716) based on the concept of
limit. Topology lies today on a mathematical foundation. Its main objective is to
extend the concept of continuity and dimension theory born in Euclidean spaces.
The twentieth century witnessed its greatest development. Before Poincaré some
scattered work was done by L. Euler (1707–1783,), B. Riemann (1826–1866), J. B.
Listing (1808–1882), C. F. Klein (1849–1925), David Hilbert (1862–1943) and some
others.

Historically, the word “topology” comes from the Greek words “λo
′
γ oζ”

which means a study and “τo
′
πoζ” which means a place, with an alternative name

“analysis situs” aiming at the study of situations. This subject arising as a branch of
geometry plays a key role in modern mathematical analysis, because of its study of
continuous deformations such as stretching, twisting, crumpling and bending which
are allowed, where tearing or gluing are not allowed . The concept of congruence
in Euclidean geometry is a special type of equivalence between geometrical objects
which is considered identical except for position in Euclidean space. The concept
of similarity in Euclidean geometry indicates figures of the same shape, but not
necessarily of the same size. Topology develops as a field of study out of geome-
try and set theory, through the concepts such as space, dimension and continuous
transformation. These ideas go back to G. Leibniz who indicated a new geometry of
topological type, called “geometry of place” as early as 1679 . The term topology
was first coined by J. B. Listing (1808–1882) in 1847, although it was not popular
until Felix Hausdorff (1868–1942) developed this subject in his book Grundzüge
der Mengenlehre of 1914, which stemmed from analysis. His land-marking work
sets out the journey of general topology. By the middle of the twentieth century,
topology had become a major branch of mathematics.
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8.1 Early Development of Combinatorial Topology by the
Nineteenth-Century Analysts

At the beginning there was no branches of topology like today, and it was consid-
ered one unit named combinatorial topology or simply topology. Some concepts in
combinatorial topology were found in the study of nineteenth-century analysts. For
example,

(i) the investigation of Fourier series by Augustin Cauchy () and Karl Weierstrass
() in which the sequence of functions converge to another function is analogous
to the study of convergence of sequences of points in a topological space;

(ii) the study of convergence by Georg Cantor () providing a close relation between
Fourier series and set theory has established an important mathematical setting
for many problems of analysis which provides a general setting for manymath-
ematical concepts closely related to convergence of sequences.

(iii) The German mathematician David Hilbert () proposed an axiomatic setting for
general geometry in 1899 , which is other than the geometry studied by the
ancient Greeks. Moreover, he gave some axioms in 1910 for neighborhoods of
points in an abstract set, which generalizes properties of small disks centered
at points in the Euclidean plane.

(iv) Georg Cantor and Richard Dedekind had just made significant advances in
placing analysis on a more firmly-based set-theoretic foundation.

(v) The French mathematician Maurice Frenchét () gave a consistent set of axioms
for convergence in an abstract set and also axioms for a metric space endowed
with a distance metric, called a distance function.

8.2 Basic Concepts of Topology Found in the Eighteenth
and the Nineteenth Centuries

Many basic concepts studied now in topology had been used in the 18th and nine-
teenth century by mathematicians like L. Euler ( 1707–1783,), B. Riemann (1826–
1866), K. Weierstrass (1815–1897), J. B. Listing (1802–1882), C. F. Klein (1849–
1925), H Poincare (1854–1912), G. Cantor (1845–1918), DavidHilbert (1862–1943)
and some others in a scattered way. Before them the concept of geometry of topolog-
ical spaces was used as early as 1679 by G. Leibniz ( 1646–1716). But a systematic
study of algebraic topology began as an important part of mathematics through the
work of Poincare in his “Analysis situs”, Paris, 1895. This topologywas born through
his work on the theory of integral calculus in higher dimensions was earlier called
combinatorial topology. Before him, K. Weierstrass studied the concept of limit (as
used today in calculus) during the 1860s and reconstructed real number system and
proved its certain properties, now called topological.

The development of bold theory of point sets made by Georg Cantor (1845–1918)
during the period 1874–1895 has built a new house of topology. F. Hausdorff and
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others provided a foundation of set-theoretic topology during 1900–1910. L. E. J.
Brouwer is the first mathematician who instigated the concept of dimension through
fruitful combination of combinatorial and set-theoretic approach of topology. This
unified approach of topology was laid on a strong foundation during 1915–1930 by
J. W. Alexander, P. L. Alexandroff, S. Lefschetz and some other mathematicians.
Topology was called analysis till 1930. S. Lefschetz first published a book in 1930
with this title, and since then the name became popularized (though the term topology
was coined by Listing) and this subject witnessed its rapid development. Though the
term topology was coined by Listing, S. Lefschetz was the first to publish a book
in 1930 with this title. Since then the name became popular. It reformulates the
study of differential geometry through the work of H. Whitney on fiber bundles.
The work of H. Hopf in 1930s on Lie groups made a revolution in modern algebra
with development of new branch of algebra called homological algebra. Further
development in 1940s was found through the work of S. Eilenberg and S. MacLane.
The term topology was still combinatorial in 1942, and it became algebraic by 1944.

8.3 Main Objective of the Study of Topology

This section begins with the motivation of the study of topology. Two natural ques-
tions arise:

1. what is the subject topology ?
2. why we study this subject ?
3. what is the main problem of study in topology ?

1. There are many different answers of (1). One may call the subject topology
as a qualitative study of geometry without reference to distance in the sense
that if one geometric object is obtained from another geometric object by a
continuous deformation, then these two geometric objects are considered to be
topologically same, called homeomorphic. So it is also called a rubber sheet
geometry. Accordingly, the geometric objects such as a circle, ellipse and a
square are topologically the same, though they are geometrically different.
H Poincaré remarked in 1912 “— In this discipline, two figures are equivalent
whenever one can pass from one to the other by a continuous deformation;
whatever else the law of this deformation may be , it must be continuous. Thus a
circle is equivalent to an ellipse or even to an arbitrary closed curve, but it is not
equivalent to a straight line segment since this segment is not closed. A sphere
is equivalent to a convex surface; it is not equivalent to a torus since there is a
hole in a torus and in a sphere there is not” .

2. There are also many different answers of (2). The simplest answer is topology is
both highly elegant and useful which come from beauty, scope and power of the
subject. Its beauty comes from both its various interesting geometric construc-
tions. Its usefulness comes from the basic properties of continuous functions and



8.3 Main Objective of the Study of Topology 483

geometric objects with their applications in mathematics and also beyond math-
ematics. For example, it facilitates a study of practically all branches of math-
ematics, including algebra, real analysis, complex analysis, functional analysis,
graph theory, number theory, dynamical systems and differential equations and
many more.

3. Themain problem in topology is the classification problem of topological spaces
up to homeomorphism. To solve this classification problem, given two topolog-
ical spaces, either we have to find an explicit expression of a homeomorphism
between these two spaces or we have to show that it is not possible to construct
such a homeomorphism. Algebraic and differential topology were born to prove
this impossibility. The usual technique is to assign “invariant” objects which
are shared by homeomorphic spaces (i.e., same for homeomorphic spaces). The
earliest invariant objects were Euler characteristics which are integers. Subse-
quently, integral invariants are generalized by inventing algebraic invariants such
as groups, rings and modules which offer more information about the structure
of the concerned topological spaces. For example, fundamental group, homo-
topy and homology groups (studied in Basic Topology, Volume 3) provide deep
insight into the structure of the topological spaces. Homology underwent devel-
oped first since its invention byH. Poincaré in 1895; on the other hand, homotopy
did not develop until 1930. Since then, there has been an explosive development
of homotopy theory, and its connection with homology theory has become a
central theme of topology. Many concepts initially introduced in homotopy and
homology theories such as K -theory, Brouwer fixed-point theorem and so on
have found surprising applications to other areas ofmathematics and also beyond
mathematics.

8.4 Inauguration of General Topology

Prior to thework of Frechét in 1906 and that ofHausdorff, the general concept of topo-
logical space was not formally defined but the work of Weierstrass and Cantor led to
some topological concepts, now called open sets, closed sets, nbds, continuous maps
in Rn and in their subspaces. Riemann extended these concepts in n-dimensional
manifolds which are locally homeomorphic to Rn intuitively without any formal
definition. Such manifolds are now called Cr -manifold for r ≥ 1.

More precisely, the beginning of general topology dates in 1860s in the work of
K. Weierstrass, where he studied the concept of the limit of a function and proved
certain properties of number system, which are now called topological. The set-
theoretic aspect begins where sets admit some cohesive properties leading to define
continuity of functions. The sets having such properties are then called topological
spaces, whose study got momentum through the bold development of set theory
created by Georg Cantor (1845–1918) around 1880. This aspect of topology is now
known as general topology or set topology formed a firm foundation through the
work of Felix Hausdorff (1869–1942), Maurice Frechét and others during 1900–
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1910. Early development of general topology during 1900–1930 witnessed several
concepts such as metric spaces, nbd systems, limit points, sequential limits and
closures. Historically, metric spaces developed by F. Hausdorff (1869–1942) in his
book Grundzüge der Mengenlehre published in 1914 are considered as amilestone
of point set topology, where this branch of topology sets out its journey. This book
is stemmed from analysis. His land-marking work sets out the systematic study of
general topology.

Although P.S. Alexandroff (1896–1982) introduced in 1995 the present axioms
for a topology on an abstract set and used the term topological in his research papers,
based onwhich the field of general topologywas born through thework ofHausdorff.
This makes the official inauguration of general topology or point set topology. The
book Grundzüge der Mengenlehre of Hausdorff published in 1914 and the work
of K. Kuratowski (1896–1980) Sur l’ opération A de l’ analysis situs published
in 1922 are considered as the origin and foundation of general topology. The term
Topology was coined by J. B. Listing (1808–1882) in 1830s, but Felix Hausdorff
(1869–1942) popularized the term topology in 1914 and developed this subject in
his book Grundzüge der Mengenlehre of 1914, which stemmed from analysis. His
land-marking work sets out the systematic journey of general topology.

8.5 Beginning of Combinatorial Topology

An older name for the algebraic topology was combinatorial topology in the sense
that the investigating topological spaces were constructed from simpler topological
spaces by some technique. Algebraic topology was born as a subject through the
work of H. Poincaréé based on the idea of dividing a topological space into geomet-
ric elements corresponding to the vertices, edges and faces of polyhedra and their
higher-dimensional analogues. Such investigation presents many topological invari-
ants including the Euler characteristic. Historically, fundamental group and homol-
ogy groups are the first important topological invariants of homotopy and homol-
ogy theories which came from such a search embedded in the work of H. Poincaré
(1854–1912) in his land-marking “Analysis situs”, Paris, 1895. He invented homol-
ogy theory, now called,simplicial homology in 1895 with an aim to study geometric
properties of a topological space by converting topological problems to algebraic
ones for the first time in the history of topology. The term “Homotopy” was first
used by M. Dehn and P. Heegaard in 1907. L. E. J. Brouwer (1881–1967) gave the
precise definition of continuous deformation by using the concept of homotopy of
continuous maps. The Jordan curve theorem stated by Jordan in 1892 is a classical
theorem. Its first rigorous proof given by Oswald Veblen (1880–1960) in 1905 is one
of the remarkable developments of algebraic topology.W.Hurewiczmade significant
contributions to algebraic topology. The invention of the higher homotopy groups πn

by W. Hurewicz in 1935–1936 is a natural generalization of the fundamental group
to higher-dimensional analogue of the fundamental group. More precisely, πn is a
sequence of covariant functors defined by Hurewicz from topology to algebra by
extending the concept of fundamental group formulated by πn(X) = [Sn, X ]. Lens
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spaces defined by H. Tietze (1880–1964) in 1908 form an important class of three
manifolds in the study of their homotopy classification. Historically, the terminology
algebraic topology was first given somewhat later in 1936 by the S. Lefschetz (1884–
1972), though his research in this major area of topology began in 1895 through the
work of Poincaréé. Algebraic topology and its applications are closely related to
other fields of mathematics such as modern algebra, geometry and analysis. On the
other hand, general topology travels mainly in the premises of analysis and moves
away from combinatorial topology.

8.5.1 Combined Aspect of Combinatorial and Set-Theoretic
Topologies

L. E. J. Brouwer (1881–1967) gave the precise definition of continuous deformation
by using the concept of homotopy of continuous maps (see Basic Topology, Volume
III). A union of combinatorial and set-theoretic aspects of topology was achieved
first by L. E. J. Brouwer through his investigation of the concept of dimension during
1908–1912 . The unified theory was laid on a solid foundation in the period 1915–
1930 by J. W. Alexander ( 1888–1971), P. S. Alexandrov (1896–1982), S. Lefschetz
( 1884–1972) and others. Until 1930 topology was called “analysis situs (position
analysis)”. Analysis situs conveyed the qualitative properties of geometric figures
both in the ordinary space as well as in the space of more than three dimensions.
It was Lefschetz who first used and popularized the name topology by publishing a
book with this title in 1930.

8.5.2 Combinatorial Topology Versus General Topology

Topologists were successful in investigating during 1920s and 1939s to convert topo-
logical problems to algebraic problems , which led to rename algebraic topology of
combinatorial topology. The systematic study of algebraic topology as a subject
began with precise formulations and correct proofs at the turn of the nineteenth to
twentieth century (1895–1904) through the work of Henri Poincaré (1854–1912)
in his land-marking “Analysis situs”, 1895, where he used algebraic ideas in com-
binatorial topology. The development of combinatorial topology continued through
the joint work of M. Dehn (1878–1952) and P. Heegard (1871–1948) classification
theorems for two-dimensional surfaces in 1907. The importance of assigning alge-
braic objects to topological objects was clearly established after by Poincaré, was
established by the Dutch mathematician L. E. J. Brouwer ((1881–1967) in his fixed-
point theorem. But the terminology algebraic topology was first used somewhat later
in 1936 by the Russian-born American mathematician Solomon Lefschetz (1884–
1972), although research in this major area of topology was started earlier in the
twentieth century. B. Riemann (1826–1866) studied surfaces (now known as Rie-
mann surfaces) related to complex analysis and used combinatorial topology as a
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tool for investigating functions. Möbius ( 1790–1868) published his work on one-
sided surface in 1858, known as Möbius band or Möbius strip. This surface may be
constructed as a quotient space M obtained by gluing together the ends of a long
rectangular strip of paper with a half twist. The identification topology on M coin-
cides with the subspace topology induced on M by the usual topology on R3. The
Möbiu1s strip M is embedded in R3. The surfaces containing subspaces homeo-
morphic to the Möbius strip are called nonorientable surfaces and play an important
role in the classification of two-dimensional surfaces. On the other hand, C. F. Klein
(1849–1925) also published his separate work on one-sided surface in 1882, known
as Klein bottle. For their construction see Chap. 1. The Klein bottle is a one-sided
surface that is closed in the sense that it is , without any one-dimensional bound-
aries, and it cannot live in R3 without intersecting itself. This has created interest of
mathematicians as other previously well-known surfaces lived only in R3. The term
topology was still combinatorial in 1942, and it became algebraic by 1944.

8.6 Historical Development of the Basic Topics in General
Topology

General topology or point set topology is a branch of topology which studies the
basic set-theoretic concepts such as continuity, compactness and connectedness and
constructions such as quotient spaces used in topology. After the publication of
the paper "Généralisation d’un theoréme de Weierstrass, C.R.Acad. Sei. 139,
1904, 848–849 of Frechét in 1904 and publication of Hausdorff’s c1assic book
Grundzüge der Mengenlehre, Leipzig, 1914 of Hausdorff , there have been various
developments in different directions. It provides foundational aspects of most other
fields of topology such as differential topology and topological algebra both studied
in Volume 2 and algebraic topology and geometric topology both studied in Volume
3 of the present book Basic Topology.

The following subsections convey the motivation of the basic topics and historical
development discussed in this book titled Basic Topology: Volume 1, starting from
metric spaces

8.6.1 History of Metric Spaces

The concept of a metric introduced byM. Fréchet (1878–1973) in 1906 is an abstrac-
tion of distance in the Euclidean space born through the well-known properties of the
Euclidean distance in an abstract setting, and it provides a rich supply of continuous
functions. While developing classical analysis, prominent mathematicians such as
B. Riemann (1826–1866), K. Weierstrass ( 1815–1897), G. Cantor (1845–1918), H.
Lebesgue (1875–1941), D. Hilbert (1862–1943), J. Fourier (1768–1830) and many
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others identified the basic principles on which the analysis is founded. These prin-
ciples play a key role in the development of modern analysis, algebra, topology,
integration and measure theories. Urysohn lemma for metric spaces facilitates to
provide a vast number of continuous functions, and metric spaces provide a rich sup-
ply of topological spaces and most of the applications of topology to analysis arise
through metric spaces. Normed linear spaces form a special class of metric spaces
which provide Banach and Hilbert spaces, and new concepts born through this devel-
opment form the foundation of modern analysis and generalize many concepts of
classical analysis in a more general setting. In many areas of mathematics such as in
geometry and analysis, the concept of distance is generalized in an abstract setting
by introducing the concept of metric spaces, which facilitates a study of continuous
functions defined on abstract sets as well as convergent sequences on these sets. The
Euclidean metric defined by the distance between two given points represents the
usual length of the straight line segment joining these two pints. On the other hand,
a metric in elliptic geometry is defined by the distance on a sphere measured by an
angle, and in hyperbolic geometry, a metric space of velocities is defined by special
relativity. The special structure of a metric space induces a topology enjoying special
properties (see Sect. 8.7) having many applications of topology in modern analysis.

8.6.2 Early Development of General Topology

General topology addresses the basic set-theoretic definitions and constructions used
in topology. It formulates the basic concepts used in all other branches of topology
which are the concepts of continuity, compactness, connectedness, etc., thereby it
establishes the foundational aspects of topology and investigates properties of topo-
logical spaces and concepts inherent to topological spaces. This aspect of topology
formed a firm foundation through the work of Felix Hausdorff (1869–1942) Mau-
rice Fréchet, and others during 1900–1910, though the beginning of general topology
dates in 1860s in the work of K.Weierstrass, where he studied the concept of the limit
of a function and proved certain properties of number system, which are now called
topological. Early development of general topology during 1900–1930 witnessed
several concepts such as metric spaces, though nbd systems, limit points, sequential
limits and closures. Historically, general topology was developed with an aim to
extend the concept of continuity and dimension born in Euclidean spaces. Histori-
cally, metric spaces developed by F. Hausdorff (1869–1942) in his book Grundzüge
der Mengenlehre published in 1914 are considered as a milestone of point set
topology, where this branch of topology sets out its journey. The subject topology
is very powerful and beautiful, as it provides various key tools to solve problems in
almost all areas of mathematics such as algebra, analysis, geometry, knot and graph
theories, differential equations and many other areas. The main objective of analysis
or topology is to study continuity of functions.
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8.6.3 Topological Spaces and Their Continuous Functions

The notion of metric spaces is not adequate to develop many mathematical concepts
such as continuity of a function, specially, which are developed by using metrics in
metric spaces. In the early twentieth century, amore general spacewas defined, called
a topological space. The main objective of analysis or topology is to study continuity
of functions. The creation of intuitive set theory by G. Cantor (1815–1897) leads to
an abstract concept of continuity. General topology starts with sets admitting some
cohesive properties leading to the concept of continuity of functions and addresses
the basic set-theoretic definitions and constructions used in topology. It formulates
the basic concepts used in all other branches of topology which are the concepts of
continuity, compactness, connectedness, etc., thereby it establishes the foundational
aspects of topology and investigates properties of topological spaces and concepts
inherent to topological spaces. This aspect of topology formed a firm foundation
through the work of Felix Hausdorff (1869–1942)Maurice Fréchet and others during
1900–1910. Early development of general topology during 1900–1930 witnessed
several concepts such as metric spaces, nbd systems, limit points, sequential limits
and closures. Sets enjoying such properties are called topological spaces. The set
theory created by Georg Cantor (1845–1918) around 1880 has a great influence
in topology, which is both enormous and decisive. The cohesive properties defining
the concept of continuity were born through the concepts of limits as well as through
a family of subsets in an axiomatic framework by introducing the concept of open
or closed sets, where a notion of nearness is defined without any distance function
or a metric. This axiomatic approach leads to the concepts of topological spaces and
their continuous maps.

8.6.4 Geometry of Continuous Mappings of Segments,
Circles and Disks and Spheres

This subsection conveys some early theorems obtained as continuous images of
segments, circles and disks and spheres in the Euclidean space Rn for n = 1, 2, 3
displaying their geometry, which stimulated investigation for their generalization.
For example, some basic results are given below:

Theorem 8.6.1 Every continuous mapping of a closed interval [a, b] ⊂ R into itself
has at least one fixed point.

Theorem 8.6.2 Every continuous mapping of a circle into a line L sends some pair
of diametrically opposite points onto the same point of L .

Theorem 8.6.3 A subspace J of R2 homeomorphic to the circle separates R2 into
two regions with J their common boundary.
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Theorem 8.6.4 If f : D2 → R2 be a continuous map from a disk D2 into itself, then
f has a fixed point.

Theorem 8.6.5 For every continuous map f : S2 → R2, there exists some pair
{x,−x} of antipodal points of S2 such that they have the same image point.

8.6.5 Product of Topology and Tychonöff Topology

The Cartesian product U × V of two finite intervals U and V in R is an open rect-
angle in R2. The open rectangles form an open base for the natural topology on R2,
which called a product topology on R2. This technique is borrowed for construction
of any finite product topology. M. Fréchet first studied a finite product of abstract
topological spaces in 1910. Construction of the product space of an arbitrary family
of topological spaces is performed in a similar way. Tychonöff topology defined by
Andrey Tychonöff (1906–1993) in 1930 with the help of product topology for any
family (possibly, infinite) of topological spaces, which gives a generalization of the
product topology for a finite family of topological spaces.

8.6.6 Quotient Topology and Quotient Spaces

The concept of quotient spaces was introduced by Robert L. Moore in 1925 and
was also independently by Pavel Alexandroff (1896–1982). The concept of quotient
spaces or identification spaces presents the mathematical version of a geometric
process to obtain new geometric objects by several methods to obtain quotient spaces
described in this section.Many interesting topological spaces can be constructed from
a simple topological space by identifying some subset (or points) of X. For example,
a circle is obtained by gluing together the end points of a closed line segment.

8.6.7 Möbius Band and Klein Bottle

Möbius Band and Klein bottle are important geometrical objects used in topology.
Möbius band (Möbius strip) is named after A. F. Möbius (1790–1868), and the Klein
bottle is named after F. Klein (1849–1925). Historically, from the square the Möbius
band was constructed by Möbius in 1858 and the Klein bottle was constructed by
Klein in 1882 by identification methods,
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8.6.8 Separation Axioms

The topological spaces are studied by imposing certain conditions, called separation
axioms on these spaces in terms of their points and open sets, initially used by
P.S. Alexandroff (1896–1982) and H. Hopf (1894–1971), especially, where there is
no concept of distance. These additional axioms are needed, because the defining
axioms for a topological space are extremely general and are too weak to study them
in depth. These separation axioms are natural restrictions on topological structure to
make the structure nearer to metrizable structure. These axioms facilitate to classify
topological spaces and provide enough supply of continuous functions which are
linked to open sets.

Many important topological properties can be characterized with the help of sep-
aration axioms by distributing the open sets. Motivation of separation axioms was
born through the observation that any two points in a metric space are separated
if they have a strictly positive distance. But there exist many topological spaces
satisfying a set of certain conditions in addition to the axioms defining topological
spaces which can recover many significant properties of metric spaces lost to arbi-
trary topological spaces. Such spaces X are important objects in topology as many
important topological properties can be characterized with the help of separation
axioms by distributing the open sets in the space X and imposing natural conditions
on X such that X behaves like a metric space. Several separation axioms are known,
but this book studies only Ti -axioms for i = 0, 1, 2, 3, 4, 5 and the corresponding
topological spaces, called Ti -spaces.

(i) The concepts of T0-axiom and T0-spaces were introduced by Andrey Kol-
mogorov (1903–1987) around 1930.

(ii) The concepts of T1-axiom and T1-spaces were introduced by Fréchet) (1878–
1973) in 1906. But some authors say that the concept of T1-spaces was given
by Frigyes Riesz (1880–1956) in 1907.

(iii) The concepts of T2-axiom and T2-spaces (commonly known as Hausdorff
spaces) were introduced by Felix Hausdorff (1868–1942) in 1914.

(iv) The concepts of T3-axiom and T3-spaces (commonly known as regular spaces)
were introduced by Leopold Vietoris (1891–2002) in 1921.

(v) The concepts of T4-axiom and T4-spaces (commonly known as normal spaces)
were introduced by H. Tietze (1880–1964) in 1923 and also independently by
Pavel Alexandroff (1896–1982) and Pavel Urysohn (1898–1924) in 1929.

8.6.9 Real-Valued Continuous Functions

Real-valued continuous functions or, simply, real functions play a central role
in topology and analysis. For example, a deep result of Chap. 5 proves that two
compact Hausdorff spaces X and Y are homeomorphic iff the corresponding rings
C(X, R) and C(Y, R) of real-valued continuous functions are isomorphic. This result
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characterizes compact Hausdorff spaces in terms of algebras and recovers the topol-
ogy of X from the ring structure of C(X, R). Moreover, this chapter characterizes
compact Hausdorff spaces in terms of algebras. For more applications of the real-
valued continuous functions see Sect. 8.6.11.

8.6.10 Urysohn Function and Urysohn Lemma for Metric
Spaces

Urysohn’s Lemma for metric spaces, named after P. S. Urysohn ( 1998–1924), is
a very significant result in metric spaces with wide applications. It provides a rich
supply of continuous functions, known as Urysohn function. For its generalization,
see Sect. 8.6.11.

8.6.11 Separation by Real-Valued Continuous Functions and
Urysohn Lemma

A nonconstant real-valued continuous function is not always defined on an arbitrary
topological space. But on normal spaces, in particular, onmetric spaces, there always
exist nonconstant real-valued continuous functions by Urysohn lemma, named after
P. S. Urysohn (1998–1924), which is an outstanding result characterizing normal
spaces by real-valued continuous functions. His approach by using dyadic rational
numbers is studied in th Chap. 6, is more general and different from Urysohn lemma
for metric spaces discussed in Chap. 2.

8.6.12 Tietze Extension Theorem

Urysohn lemma is used to proveTietze extension theorem saying that a topological
space (X, τ ) is normal iff for every closed set Y in (X, τ ) and every continuous
map f : Y → I has a continuous extension over X. Tietze Extension theorem is
named after Heinerich Franz Friedrich Tietze (1880–1964). Historically, he proved
a theorem in 1915, for a metric space. Urysohn published its general version in an
article in 1925. Tietze also made significant contribution to topology and introduced
Tietze transformation between presentations of groups. The general version of Tietze
extension theorem as given in Corollary 6.5.3 was first time found in an article
published by Urysohn in 1925.

Corollary 8.6.6 (Tietze extension theorem) If A is a closed subspace of a metric
space X, then every continuous map f : X → I has a continuous extension over X.
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8.6.13 Countability and Separability Axioms

Topologies defined on an arbitrary set areweak in the sense that they fail to invite their
deep study until certain additional condition or conditions are imposed on them.With
this aim, the concepts of first and second countable spaces and also separable spaces
by an axiomatic approach were introduced. Historically, two axioms of countability
were formulated byF.Hausdorff (1868–1942) in 1914, and the concept of separability
was introduced by M. Fréchet in 1906. They do not arise from the study of calculus
and analysis in a natural way. They arise through a deep study of topology. The axiom
of first countability arose through the study of convergent sequences. For example, a
first countable topological space X is Hausdorff iff every convergent sequence in X
has a unique limit in X.The classical Urysohnmetrization theoremwhich asserts that
every topological space satisfying the second axioms of countability and regularity
can be embedded in a metric space , which implies that such a topological space is
metrizable. This theorem gives a sufficient condition of metrizability of a topological
space. This chapter also studies Lindelöf spaces from the viewpoint of countability
and separability. Separability of topological spaces is a topological property, but it
is not a hereditary property

8.6.14 Compactness Property

Compactness property dates back to Heine–Borel property of R in particular and Rn

in general. Heinrich Heine (1821–1881) introduced the concept of finite subcovering
in 1872 in his work on uniformly continuous functions. Emile Borel (1871–1956)
proved a result in 1894 asserting that every open covering of a closed interval has
a finite subcovering. This result is considered the beginning of the concept of com-
pactness. A more general result was published by Henri Lebesgue (1875–1941) in
1898 and by Arthur Schönflies (1853–1928) in 1900. Heine–Borel theorem says
that a subset of R is compact iff is closed and bounded. This theorem characterizes
compactness in the setting of the real line space R in terms of its bounded and closed
subsets. Another characterization of compactness in terms of closed sets having finite
intersection property was given by Leopold Vietoris (1891–2002) in 1921.

8.6.15 Stone–Čech Compactification

This subsection proves Stone–Cech compactification theorem is a basic result
in topology. This theorem named after M. H. Stone (1902–1989) and E. Čech (1893–
1960) asserts that every completely regular space X is embeddable as a dense sub-
space in a specified compact Hausdorrf space β(X), which has an important property
that every bounded real-valued function continuous on X has a unique extension to
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a bounded continuous real-valued function on β(X). Stone published a paper (Stone
1948) on compactification of topological spaces.

8.6.16 Lebesgue Lemma and Lebesgue Number

This subsection studies Lebesgue lemma and Lebesgue number named after H.
Lebesgue (1875–1941) for an open covering of a compact metric space establishing
a relation between such a space and Lebesgue number and proves Lebesgue lemma
providing a technical result on open covering of a compact metric space. Given an
open covering F = {Uα: α ∈ A} of a compact metric space X , there exists a real
number δ > 0 (called Lebesgue number of F = {Uα}) such that every open ball
Bx (ε) in X for some ε > 0 is contained in at least one open set {Uα} ∈ F . The
concept of a Lebesgue number stems from Lebesgue’s work on measure theory,
starting with his thesis in 1902. The existence of Lebesgue number is guaranteed
in Lemma 8.6.7, which is proved by Lebesgue and named after him.

Lemma 8.6.7 (Lebesgue) Let X be a compact metric space. Given an open covering
F = {Uα: α ∈ A} of X, there exists a real number δ > 0 (called Lebesgue number
of F) such that any subset Y of X of diameter diam(Y ) < δ is contained in some
member ofF , i.e., whenever Y ⊂ X and diam(Y ) < δ, then Y ⊂ Uα for someα ∈ A.

8.6.17 Paracompact Spaces

The concept of paracompactness of topological spaces was introduced by Jean
Dieudonné in 1944. Paracompact spaces include regular and normal spaces. There
are many important topological spaces which are not compact, but they are paracom-
pact. For example, the real number space R is paracompact, but it is not compact.
Paracompact spaces represent a special class of topological spaces having localiza-
tion of its compactness. The significance of paracompactness is the assertion of the
existence of partition of unity. The concept of paracompactness is closely related to
that of metrizability of topological spaces. The former concept is sometimes applied
in an easier way to study metrizable spaces.

Paracompactness is an important tool to study some problems in algebraic topol-
ogy and geometry such as homotopy classification of vector bundles over paracom-
pact spaces (see Basic Topology: Volume 3 of the present series of books). Its other
importance lies in the results that the class of paracompact spaces contains the com-
pact Hausdorff spaces and metrizable spaces. By Stone’s theorem, every metrizable
space is paracompact. Its converse is true in the sense that every paracompact locally
metrizable space is metrizable (see Nagata–Smirnov theorem). For a paracompact
topological space (X, τ ), a locally finite covering of (X, τ ) always exists.
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8.6.18 Baire Spaces

Baire spaces named after René-Louis Baire (1874–1932) form an important family
of topological space. This family includes complete metric spaces, compact Haus-
dorff spaces and also locally compact Hausdorff spaces. A Baire space X given in
Definition 8.6.8 cannot be expressed as a countable union of closed sets with empty
interior in X.

Definition 8.6.8 A topological space (X, τ ) is said to be a Baire space if given any
countable family {Xn} of closed sets of X with each Xi having empty interior in X,

their union
⋃

Xn has also empty interior in X. Equivalently, a topological space
(X, τ ) is said to be a Baire space if intersection of every countable family of open
dense sets in X is dense.

8.6.19 Connectedness Property

The concept of connectedness of some subsets of the Euclidean line R2 was given by
Camille Jordan (1838–1922) in 1914. A systematic study of connected topological
spaces was inaugurated by Felix Hausdorff in his book Grundzüge der Mengenlehre
published in 1914. Again the “intermediate value theorem” asserts that if f : [a, b] →
R is continuous and r ∈ R lies between f (a) and f (b), then there is a pointα ∈ [a, b]
such that f (α) = r.What is the generalization of this theorem in topology? The idea
generalizing “intermediate value theorem” depends not only on the property of
continuity of f but also depends on a special property of [a, b], called connectedness,
which is also a topological property different from compactness property. Brower
fixed-point theorem for dimension 1 saying that every continuous map

f : I → I

has a fixed point is closely related to Bolzano theorem asserting that if

f : [a, b] → R

is a continuous function such that f (a) f (b) < 0, then there exists a point x ∈ [a, b]
such that f (x) = 0.

8.6.20 Compactification of Topological Spaces

Considering the importance of compact topological spaces, a noncompact space
X may be extended to a compact space CX containing X as a everywhere dense
subspace of CX. Then the space CX is called a compactification of X. If CX is
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of the form CX = X ∪ {∞}, where {∞} is a point not isolated in CX, then CX
is called Alexandrov one-point compactification of X . One-point compactification
of a noncompact space X is characterized by Alexandrov’s theorem in terms of
locally compactness. Another compactification theorem, known as (Stone–Čech
compactification), says that if X is a completely regular space, then there exists
a compact Hausdorff space β(X) such that X is a dense subspace of β(X) and
every bounded continuous function f : X → R has a unique extension to a bounded
continuous function

f̃ : β(X) → R.

8.6.21 Space-Filling Curve

A continuous map defined on a closed interval of the real line space whose image is
a two-dimensional region in the Euclidean plane R2 is called a space-filling curve.
There are several versions of space-filling curve theorem. The common version is
that there exists a surjective continuous map

f : I → I2.

G. Cantor (1845–1918) proved in 1877 that the interval I = [0, 1] and the square I2

have the same number of points by establishing a bijective correspondence between
the sets I and I2, i.e., I ∼ I2. He remarked that the dimension is not a set-theoretic
concept. The difference of their dimensions involves topology. G. Peano (1858–
1932) showed again in 1890 that there is a continuous function on I such that its
image is a two-dimensional region, such as a square or a triangle in the Euclidean
plane R2, called a space-filling curve or Peano curve named after him.

8.6.22 The Gelfand–Kolmogoroff Theorem

The Gelfand–Kolmogoroff theoremis a basic theorem in topology. It studies the
rings C(X, R) of real-valued continuous functions for compact Hausdorff spaces X.

This theorem asserts that two compact Hausdorff spaces X and Y are homeomorphic
iff the corresponding rings C(X, R) and C(Y, R) are isomorphic. This deep result
recovers the topology of X from the ring structure of C(X, R).

8.6.23 Ascoli’s Theorem

Ascoli’s theorem characterizes compact subsets of a certain class of function spaces.
This theorem is named after Giulio Ascoli (1843–1896). He introduced the concept
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of equicontinuity in 1884, which is one of the fundamental concepts in the theory of
real functions.

8.7 Topology of Metric Spaces

Following the concept of (abstract) metric spaces introduced by M. Fréchet (1878–
1973) in 1906, several topologists studied the topology of metric spaces and proved
many fruitful results developing the subject topology. Every metric space (X, d)

induces a topology τd , and equivalent metrics induce the same topology on X. From
the topological viewpoint, metric spaces havemany properties. Some of them studied
in this book are stated in this subsection.

(i) (Bolzano–Weierstrass) Let (X, d) be a compact metric space and A be a
compact subset of X. Then every sequence in A has a convergent subsequence.

(ii) Every compact subset of a metric space is closed and bounded.
(iii) Every continuous map from a compact metric space to any metric space is

uniformly continuous.
(iv) (Lebesque covering lemma)Given a compact metric space (X, d) and an open

covering {Ui } of X, There exists a positive real number δ such that for every
subset A of X with its diameter < δ, there is an index i such that A ⊂ Ui .

(v) (Arzela–Ascoli Theorem) Let F = R or C and C(X, F) endowed with sup
norm metric, a subset B of C(X, F) is compact iff B is bounded, closed and
equicontinuous.

(vi) (Cantor’s intersection theorem) Given a compact metric space (X, d) and a
family of closed subsets {An}n∈N with An+1 ⊂ An, ∀ n and diam (An) → 0,
then ∞⋂

n=1

An

consists of exactly one element of X.

(vii) (Baire category theorem) Let (X, d) be a complete metric space.

(i) If {Un} is sequence of open dense subsets of X, then

∞⋂

n=1

Un �= ∅.

(ii) If {An} is sequence of nonempty closed subsets of X with X = ⋃∞
n=1 An,

then exists at least one An having nonempty interior.

(viii) (Banach contraction theorem ) Let (X, d) be a complete metric space and
f ; X → X be a contraction. Then f has a unique fixed point. This theorem
proved by the Polish mathematician Stefan Banach (1892–1945) is named
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after him. It applies to prove Picard’s theorem on the existence of solutions of a
differential equation, which is named after the French mathematician Charles
Emile Picard (1856–1941).

(ix) (Uniform boundedness principle) Let (X, d) be a complete metric space and
F be a family of real-valued continuous functions on X having the property
that for every point x ∈ X, there exists a constant Cx such that

| f (x)| ≤ Cx , ∀ f ∈ F .

Then there exist a nonempty open set U ⊂ U and a constant C such that

| f (x)| ≤ C, ∀ x ∈ X and ∀ f ∈ F .

Remark 8.7.1 Thepresent book series “BasicTopology” consistingof three volumes
is actually three textbooks on different fields of topology.

(i) Volume 1 considers the general properties of topological spaces and their map-
pings. This chapter addresses historical noteswith an emphasis on development
of metric spaces and general topology.

(ii) Volume 2 links with topological structure with other structures in a compatible
way to study topological groups, topological vector spaces, smooth manifolds,
fiber spaces, covering spaces and Lie group and Lie algebra. A historical note
on the texts of this volume is available in Chap. 5 of this volume.

(iii) Volume 3 considers the problems of converting topological and geometrical
problems to algebraic one in a functorial way for better chance for solution. The
foundation of this useful idea was laid by Henri Poincaré (1854–1912) in his
land-marking “Analysis situs”, Paris, 1895, through his invention of fundamen-
tal group and homology theory, which are topological invariants inaugurating
the subject “algebraic topology”. Volume 3 also studies low-dimensional topol-
ogy, manifolds and topology of fiber bundles by using algebraic topology. A
historical note on the texts of this volume is available in Chap. 7 of this volume.
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Second countable, 184
Separable, 184
Sierpinski space, 181
Smash product, 205
Stereographic projection, 15
Subbase, 145
Subbasis, 145
Subcover, 274

T
Tietze extension theorem, 420
Topological sum, 185
Totally bounded, 107
Totally disconnected, 336
Tychonoff product space, 307
Tychonoff spaces, 414

U
Uniformly bounded, 356
Urysohn function, 400
Urysohn lemma, 403
Usual topology, 141

V
Void set, 2

W
Weak topology, 194
Weierstrass theorem, 370

Z
Zariski topology, 209
Zorn’s lemma, 11
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