
Algebraic 
Topology

Clark Bray
Adrian Butscher
Simon Rubinstein-Salzedo



Algebraic Topology



Clark Bray • Adrian Butscher •

Simon Rubinstein-Salzedo

Algebraic Topology

123



Clark Bray
Department of Mathematics
Duke University
Durham, NC, USA

Simon Rubinstein-Salzedo
Euler Circle
Palo Alto, CA, USA

Adrian Butscher
Autodesk Research
Toronto, ON, Canada

ISBN 978-3-030-70607-4 ISBN 978-3-030-70608-1 (eBook)
https://doi.org/10.1007/978-3-030-70608-1

Mathematics Subject Classification: 55-01

© Springer Nature Switzerland AG 2021
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, expressed or implied, with respect to the material contained
herein or for any errors or omissions that may have been made. The publisher remains neutral with regard
to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-70608-1


Foreword

Stanford University Mathematics Camp (SUMaC) was founded in the 1994–95
academic year, when Stanford mathematics professors Rafe Mazzeo and Ralph
Cohen successfully secured a four-year grant from the Howard Hughes Medical
Institute to fund a mathematics summer program for high school students. I joined
the founding team to help design the program and teach the course in the first
summer. The students were wonderful, and the overall experience was delightfully
rewarding for everyone involved, inspiring me to continue with SUMaC ever since.

From the beginning, we recognized great value in showing mathematically
curious and talented high school students advanced topics from the undergraduate
curriculum. Although many of these students could have developed their talents
through mathematics competitions, there were few opportunities for them to
explore pure mathematics in a deep way. As we put it in our first program materials,
our aim was to “excite and inspire students by exposing them to the beauty of
mathematics.”

We recognized the value of creating a friendly environment for interaction
among students with shared interest in mathematics. Along with that goal, we also
sought to reach students from communities traditionally under-represented in
mathematics or who did not have opportunities for advanced academics generally.
Over the years, SUMaC has been successful at drawing high school students at the
highest level of mathematical talent, and each year SUMaC creates a community
where these students can engage in mathematics with similarly talented and curious
peers. These students are immersed in a social-academic environment that shapes
their educational path and leads to long-lasting friendships.

In 1995, SUMaC had just a dozen participants, primarily from the San Francisco
Bay Area, and all within a two-hour drive of the Stanford campus. In this first year,
the program was three weeks long, and the course was a streamlined version of an
introductory course in abstract algebra at the undergraduate level that also included
topics from number theory and geometry. The program consisted of lectures along
with problem-solving sessions that allowed participants to engage more fully in the
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course material. Additionally, the program included an opportunity to explore
topics of the students’ choice in greater depth, and they got practice communicating
mathematics by giving presentations to their peers. These features continue to be
the essential ingredients of the SUMaC program.

Building on the success of the first summer, SUMaC expanded to 28 students in
the second summer, and then 35 students in the third. Although the demand could
easily sustain more growth, we found having 35–42 students was an optimal size
for the style of program that we had developed, and it has remained in that range
over the years. From the beginning, we secured a single campus residence that we
could make our own, furthering our goal of establishing a social environment where
the participants and residential staff would feel like family. Starting in 1997, we had
participants from outside of California, and in the following year students joined
from outside the US. Now the program draws an international mix of students,
representing a diversity of backgrounds and experiences, who share a common
passion for mathematics.

From early on, we were interested in opportunities for students to return to
SUMaC for a second summer. One of the first twelve students from 1995 returned
in 1996 to explore Galois theory and other topics through guided independent
study. In 1997, four students from the previous year returned for a special one-week
program in Real Analysis led by Rafe Mazzeo. In 1997, we launched the first
version of “Program 2,” a course designed to run concurrently with the original
course, which then became known as “Program 1.” This allowed students the
potential to return for a second summer, if they had participated in Program 1
following their sophomore year in high school.

While the Program 1 maintains a focus on abstract algebra and number theory,
Program 2 has varied in topic. From 1998 through 2000, Program 2 was a course in
complex analysis designed and taught by Dr. Marc Sanders, who had received his
Ph.D. in Mathematics at Stanford in 1994. In 2001, Dr. Clark Bray, who had been
working for SUMaC while in the Ph.D. program in mathematics at Stanford,
designed a course in algebraic topology that became the program 2 course from
2001 through 2004.

From 2005 through 2007, Prof. Rafe Mazzeo and his student Dr. Pierre Albin
taught the Program 2 course. They kept the focus on algebraic topology while also
including ideas from geometric topology, where methods from algebra and calculus
have proved to be effective tools.

Starting in 2008, Adrian Butscher took over Program 2 and further developed
the coursework on algebraic topology, building on the course design that had been
used previously. In 2009, mathematics Ph.D. student Simon Rubinstein-Salzedo, an
alumnus of SUMaC 2001, joined the instructional team of SUMaC as a TA for
Adrian’s algebraic topology course. Adrian continued as the SUMaC Program 2
instructor until 2013, and Simon remained one of the TAs for the course even after
receiving his Ph.D. from Stanford in 2012.

In 2014, Simon took over teaching the SUMaC Program 2 course. He had been
working with Adrian to refine, expand, and improve the course materials, and that
collaboration continued for several years. Simon has now been teaching the
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Program 2 course for six years. Given his engaging teaching style, his passion for
mathematics, and his wonderful presentation of the course material, Simon has
inspired his students and helped them take their mathematical talent and curiosity to
a higher level. All have left the course with a deeper understanding and greater
appreciation of mathematics, and many have become successful mathematicians in
their own right.

Dr. Rick Sommer
Director, Stanford University Mathematics Camp

Stanford, California, USA
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Introduction

This book is based on a four-week class that we have taught many times at the
Stanford University Mathematics Camp (SUMaC). Students attending this camp
have just finished grades 10 and 11 and are selected from among the strongest
mathematics students of that age in the world. Still, we do not assume that they
have seen typical material that students would be familiar with before taking an
algebraic topology class, such as abstract algebra or point-set topology (or, for that
matter, multivariable calculus or linear algebra). Thus we include background on
these subjects as needed.

As in any mathematics book, the problems are very important. They are intended
to be doable but challenging, and ideally several people will work on the problems
together and share ideas. When compared with competition problems that students
of this age are often familiar with, the difficulty in most of the problems in this book
lies elsewhere: most of them do not require clever tricks in order to solve, but rather
the challenge is in unraveling the definitions and theorems and becoming accus-
tomed to a deeper level of abstraction.

The presentation of material in this book differs to some extent from other books
on algebraic topology due to our different audience. While we aim to present the
material rigorously when reasonable, there are times when we feel that the technical
details of the subject are overwhelming, so we skip certain challenging steps in our
arguments. This is especially true in our discussion of homology. We have chosen
to work with simplicial or D homology, so that we can do hands-on computations.
This is opposed to singular homology, where the proofs are much easier but
computations are very difficult. Given our target audience, this feels like the right
decision.

We also occasionally take short detours to discuss other interesting and tan-
gentially related topics in mathematics. At least one of us feels that he would have
learned many more interesting things as a student, had more authors not been so
disciplined about staying on topic! Thus we have been as undisciplined as we feel
we can get away with.

Each chapter of the book corresponds to one day of class at SUMaC. Each
morning, the instructor presents material in the chapter in a 150-minute lecture
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(with a break). In the afternoons, students work on the problems for at least 150
minutes, then possibly more in the evenings if they choose to do so. During this
time, students also discuss problems from the previous chapter one-on-one with a
teaching assistant. It is difficult to learn this amount of material in such a short
amount of time. Some students manage to learn nearly all of it, and some students
struggle more with certain topics depending on their mathematical background,
geometric intuition, and other factors. But everyone who attends gets a lot out of it
and learns a tremendous amount of new mathematics that they wouldn’t have
learned otherwise.

We believe that, at a less blistering pace, this book can also be used either for
self-study or as a textbook for an introductory undergraduate topology course. For
students who aren’t studying this material full-time, learning a chapter or two a
week is probably a more reasonable goal.

We hope you enjoy reading this book as much as we have enjoyed writing it and
teaching the classes. Both of these activities have been exceptionally rewarding and
exciting for us.

We would like to thank many people who have read earlier versions of this book
and made suggestions and corrections. These people include, but are not limited to,
Porter Adams, Neil Makur, Nicholas Scoville, Lynn Sokei, Peterson Tretheway,
Enrique Treviño, Nina Zubrilina, the anonymous referees, and all the TAs and
students who have been part of the SUMaC community. This book also benefited
from the contributions of Pierre Albin and Rafe Mazzeo, who have taught the class
based on some earlier versions of this material. We would also like to thank Dahlia
Fisch and the Springer production team for making this book a reality.
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Chapter 1
Surface Preliminaries

1.1 Surfaces

One of the main objects of study in this book is that of a surface. We will thus spend
a good deal of time in the first two chapters explaining what a surface is.

Informally, a surface is a mathematical object that “looks like a plane when we
zoom in at any point.” Or, just a bit more precisely, a surface is a set of points for
which, around every point in the set, we can find a small neighborhood that can be
deformed to a plane. Typical examples of surfaces are spheres, tori, and planes.When
we refer to a sphere, we always mean just the surface of the sphere, not including
the interior. We will meet these surfaces in more detail in the near future.

A very reasonable question you might have in mind at this point is why we are
focusing on surfaces rather than some other sort of object. The reason is that surfaces
have a number of convenient properties. For one thing, they can often be visualized
so that we can use our already-existing intuition tomake new concepts easier to grasp
and work with. Surfaces are also nice because they aren’t so trivial to understand so
as be boring, but neither are they so complicated that we can’t say much about them
(at least, without considerably more background). The lower-dimensional version of
surfaces, known as simple curves, have a very simple classification (although even
here the proof of this classification still requires some work). On the other hand,
higher-dimensional analogues of surfaces are extremely complicated and are not
amenable to a simple description like the one we’ll see for surfaces. So, surfaces are
at just the right place for us along the scale from trivial to impossible.

Our informal description of a surface as something that looks like a plane when
we zoom in at any point isn’t mathematics yet, so let us now give a proper definition.

Definition 1.1 A surface S is a topological space such that for every point p ∈ S,
there is an open setU ⊂ S containing p, and a map f : U → V onto an open subset
V ⊂ R

2, so that f is a continuous bijection with a continuous inverse.

The above definition contains a lot of unfamiliar vocabulary that we will go
through term by term in the forthcoming sections. Once we have defined all of this
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2 1 Surface Preliminaries

vocabulary carefully, we will revisit the definition of a surface in the next chapter
with a deeper understanding.

1.2 Euclidean Space

Let us first assign some names and notation to interesting sets of numbers.

• R will be the set of real numbers.
• N will be the set of natural numbers: N = {0, 1, 2, . . .}.
• Z will be the set of integers:

Z = {. . . ,−2,−1, 0, 1, 2, . . .}.

(We use the letter “Z” because it is the first letter of the German word “Zahlen,”
meaning “numbers.”)

• Qwill be the set of rational numbers, or fractions. (The “Q” stands for “quotient.”)
• C will be the set of complex numbers.

Sometimes, we will use variants of these notations to mean rather predictable things;
e.g. R>0 is the set of real numbers greater than 0.

In much of mathematics, and topology in particular, we like to think of sets
of numbers in geometric terms. For instance, we think of the real numbers R =
R

1 geometrically, as a line. We obtain “higher-dimensional” spaces as follows. If
S1, S2, . . . , Sn are any sets, then we define their Cartesian product or direct product
(or sometimes just product) to be the set

S1 × S2 × · · · × Sn = {(s1, s2, . . . , sn) : si ∈ Si for all i},

the set of all ordered n-tuples of elements, one from each Si . As a special case of this,
if S is any set and n ≥ 0 is a given natural number, we write Sn for S × S × · · · × S,
where there are n S’s in the product. This is the set of n-tuples of elements of S. That
is, Sn = {(s1, s2, . . . , sn) : each si ∈ S}. If we apply this construction to S = R, we
get the higher-dimensional Euclidean spaces. Geometrically, we think of R

2 as a
plane, R

3 as 3-dimensional space, and so forth.
The case n = 0 deserves special attention. By the construction above, we have

S0 = {()}. Writing it in that way is a bit unwieldy, so we prefer to think of S0 as a
set consisting of just one element, without necessarily giving that element the name
(). Hence, for any S, S0 is a single point.

Thus we have now explained the first, and most basic, unfamiliar term in Defini-
tion1.1, namely R

2. This is just the set of ordered pairs of real numbers. The second
unfamiliar term is topological space. For now, a topological space is simply a subset
of a Euclidean space of some dimension. That is our preliminary definition until
we’re ready for the correct definition of this concept, in Chapter 3.
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1.3 Open Sets

The next unfamiliar term appearing in Definition1.1 is an open set. We will discuss
open sets in three stages: we start with open balls in Euclidean space, then open sets
in Euclidean space, and finally open sets in topological spaces as previously defined.

Open Balls. An open interval in R with endpoints a and b is simply the set of
numbers denoted (a, b) and defined by (a, b) = {x ∈ R : a < x < b}. If the open
interval takes the form (p − r, p + r) for some p ∈ R and r ∈ R>0, then this interval
has width 2r and is centered at p. An alternative characterization of (p − r, p + r) is
thus as the set of points whose distance to p is less than r . Mathematically speaking,
we write (p − r, p + r) = {x ∈ R : |x − p| < r}, since the inequality |x − p| < r
is equivalent to p − r < x < p + r . (Note: we will use the notation (a, b) for both
the open interval and for a point in R

2. It will always be possible from context to
determine which one we mean!)

An open ball in the Euclidean space R
n is a generalization of the notion we have

just described. We will need a notion of distance in Euclidean space. This is given by
the Pythagorean formula: if x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) are two
points in R

n , then the distance between them is defined as

d(x, y) =
√
(x1 − y1)2 + (x2 − y2)2 + · · · + (xn − yn)2.

We can now state our definition.

Definition 1.2 Let r > 0 be a positive real number, and let p ∈ R
n be a point. We

let Br (p) be the set of points in R
n whose distance from p is less than r . That is,

Br (p) = {x ∈ R
n : d(x, p) < r}.

We call Br (p) the open ball of radius r centered at p.

Let us look at some examples of open balls in low dimensions.

Example Let p ∈ R be a point. Since d(x, p) = |x − p| in this case, then indeed
Br (p) = (p − r, p + r) as described above.

Example Let p = (p1, p2) ∈ R
2 be a point in the plane. Then Br (p) is the set of

points (x1, x2) ∈ R
2 with

√
(x1 − p1)2 + (x2 − p2)2 < r , or

(x1 − p1)
2 + (x2 − p2)

2 < r2.

Hence, Br (p) consists of all the points on the inside of a circle of radius r centered
at p.

Open Sets in Euclidean Spaces. We are ready to move on to open sets in R
n . For

the one-dimensional case, open sets can be characterized quite simply as unions of
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Figure 1.1 Open balls are
open.

p

x

r

ε

collections of disjoint open intervals. Hence, we may describe all open sets in R as
being of the form (a1, b1) ∪ (a2, b2) ∪ · · · , where each ai < bi , and all the intervals
are disjoint. (We allow the endpoints to be at ±∞.) This union may contain finitely
many or infinitely many terms; for example, the set

⋃

n∈Z

(
n − 1

4
, n + 1

4

)

is an open set.
In higher dimensions, no such simple characterization exists. Instead, we capture

the property of “openness” in a somewhat indirect way.

Definition 1.3 A set S ⊂ R
n is said to be open if, for every point p ∈ S, we can find

some positive number r (which may depend on p) so that Br (p) ⊂ S.

Example Open intervals insideR are open sets according to the definition above. To
see this, let (a, b) be an open interval. (We can have a or b being equal to±∞, andwe
ought to consider those cases separately. Let us assume, however, that a, b �= ±∞.)
For any x ∈ (a, b), we have a < x < b, so let r = min(x − a, b − x) > 0. Then for
every y with d(x, y) < r , we have y ∈ (a, b). Hence, Br (x) ⊂ (a, b). Thus (a, b) is
open.

Example Open balls inside R
2 are open sets according to the definition above. To

see this, let Br (p) be an open ball and choose x ∈ Br (p). We must show that there
exists a radius ε > 0 so that Bε(x) ⊂ Br (p). An ε that will work is some number
smaller than the distance between x and the edge of the circle of radius r centered
at p; namely ε = 1

2 (r − d(x, p)). (Here, the fraction 1
2 is arbitrary—the point is that

it is less than one!) Now it is “pictorially” obvious that Bε(x) ⊆ Br (p), based on
Figure1.1. But we can prove this rigorously using the triangle inequality (namely:
d(x, y) ≤ d(x, z)+ d(z, y) for any choices of x, y, z ∈ R

n) as follows. Pick any
y ∈ Bε(x). Then by definition d(y, x) < ε. Consequently,
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d(y, p) ≤ d(y, x)+ d(x, p)

< 1
2 (r − d(x, p))+ d(x, p)

= 1
2r + 1

2d(x, p)

< 1
2r + 1

2r

= r.

Therefore y ∈ Br (p) because we have just shown that its distance to p is less than
r . Since y was arbitrarily chosen inside Bε(x), we can say that Bε(x) ⊂ Br (p).

Remark 1.4 Observe that we can actually replace the 1
2 with 1 in the above example.

However, it might not be so clear in advance that all the inequalities will work out if
we do that. There is no prize for bravery here: no extra points are awarded for finding
the best ε in town! So, it’s better to be safe and choose something that you know is
going to work.

Proposition 1.5 The following are true of open sets in R
n:

(1) The union of an arbitrary number of open sets is open.
(2) The intersection of finitely many open sets is open.
(3) The empty set is open.
(4) The entire space R

n is open.

Proof (1) Let A1, A2, . . . be a collection of open sets (this collection may be finite,
infinite and countable, or infinite and uncountable). We’ll show that A = A1 ∪
A2 ∪ · · · is open as follows. Let x be an arbitrary element of A. Then x ∈ Ai for
some i . Since Ai is open, then there is r > 0 so that Br (x) ⊂ Ai by definition.
Since Ai ⊂ A, then Br (x) ⊂ A. Since this result holds for all x ∈ A, this means
that A is open.

(2) Let A1, A2, . . . , AN be a finite collection of sets.We’ll show A = A1 ∩ · · · ∩ AN

is open as follows. Let x be an arbitrary element of A. Then x ∈ Ai for each i .
Since Ai is open, there is some ri > 0 so that Bri (x) ⊂ Ai . Can we construct a
ball about x which is contained in all the Ai at once, i.e. such that the ball is
contained in A? The answer is yes—let r = min{r1, . . . , rN }. Then r > 0 and
Br (x) ⊂ Bri (x) ⊂ Ai for all i . Hence Br (x) ⊂ A. Since this result holds for all
x ∈ A, it follows that A is open.

(3) We argue that the empty set is open as follows. The definition requires that for
a set A to be open, for every point x ∈ A, we can find . . .Well, can we? In the
empty set, there are no points to consider, so the conclusion holds for the entirety
of the points in the empty set—i.e. none at all. The bottom line: the conclusion
holds!

(4) Let x ∈ R
n , and let r > 0 be any positive real number. Then Br (x) ⊂ R

n . Since
x is arbitrary, this shows that R

n is open.
�
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Remark 1.6 An infinite collection of open sets in R whose intersection is not open
is An = (−1/n, 1/n) for each n = 1, 2, . . .What is the intersection of all these sets?
Prove that it is not open. Pinpoint where the proof of (2) fails for these sets.

Remark 1.7 Here is another way to think about statements about the empty set.
Think of a procedure like that of determining whether a set is open as being a two-
player game. The first player picks a point in a set, and the second player must
produce a suitable r . Player 1 wins by producing a point for which player 2 cannot
find a suitable r , and player 2 wins by finding such an r for every choice that player
1 makes. If the set is open, then player 2 has a winning strategy, whereas if the set
is not open, then player 1 has a winning strategy. Who wins such a game in the case
of the empty set? Player 2 of course, because player 1 can’t even make a first move
by presenting player 2 with a point.

Since vacuous statements are very important in mathematics but take some time
to get used to, we should go through another (more frivolous) example of a vacuous
statement. So consider “All blue unicorns are pink.” This statement sounds like
nonsense, since any blue unicorn would be blue and not pink, but it is actually true.
In order for it not to be true, it would be necessary to exhibit a blue unicorn that fails
to be pink. But there aren’t any blue unicorns to begin with, so there is no chance of
finding a counterexample.

In the future, the notation we will use for the empty set is ∅.
Open Sets in Topological Spaces. We finally arrive at the notion of an open set
inside a given topological space S. This notion is sometimes referred to as relative
openness.

Definition 1.8 Let S be a topological space in R
n . An open set in S (also called a

relatively open set in S) is the intersection of an open set U of R
n with S.

Example Let S
1 be the circle {(x, y) ∈ R

2 : x2 + y2 = 1}. The set {(x, y) ∈ S
1 :

y > 1/2} is an open set of S
1, because it is the intersection of U = {(x, y) ∈ R

2 :
y > 1/2} with S

1.

Figure 1.2 There aren’t any
of these.
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There is another description of open sets in a topological space S that is easily
seen to be equivalent to the previous one: a subset A of S is open in S if and only if,
for every p ∈ A, we can find some r so that Br (p) ∩ S ⊂ A.

Related Notions. There are several other notions related to open sets which deserve
to be mentioned, even though they do not appear explicitly in the definition of a
surface that we have been studying. Basically, we would like to be able to describe a
wider array of subsets of topological spaces. We begin with the idea of a closed set.
First, recall that the complement of the set A, denoted Ac or S\A, is defined as the
set of points in S that are not in A. Mathematically speaking, Ac = {x ∈ S : x /∈ A}.
Definition 1.9 Let S be a topological space, and let A ⊂ S be a set. We say that A
is closed if the complement of A is open.

Example The interval [a, b] = {x ∈ R : a ≤ x ≤ b} in R is closed. This set is
known as the closed interval with endpoints a, b.

Example The set Br (p) = {x ∈ R
n : d(x, p) ≤ r} is closed inR

n . This set is known
as the closed ball of radius r centered at p. We’ll explain the meaning of the notation
(i.e. the line hovering above the notation for the open ball) below.

Example The sets [a, b) = {x ∈ R : a ≤ x < b} and the “half-open ball” in R
2

given by

{(x1, x2) : x21 + x22 ≤ 1, x1 < 0} ∪ {(x1, x2) : x21 + x22 < 1, x1 ≥ 0}

are neither open nor closed.

We see from the examples above that sets need not be either open or closed—and
in some cases can even be both at once! But closed sets seem to contain all of their
boundary points. To put this statement on a more rigorous footing, we make the
following definitions.

Definition 1.10 Let S be a topological space, and let A ⊂ S be a set. A point x ∈ S
is a boundary point of A if every ball centered at x contains points of A and of Ac.
That is, for every r > 0 we have Br (x) ∩ A �= ∅ and Br (x) ∩ Ac �= ∅.

Definition 1.11 Let S be a topological space, and let A ⊂ S be a set. The boundary
of A, denoted ∂A, is the set of all boundary points of A. The closure of A is the set
A = A ∪ ∂A. The interior of A is the set A◦ = A ∩ (

∂A
)c
.

Example If A = [a, b) ⊂ R then ∂A = {a, b}, A = [a, b], and A◦ = (a, b).

The notion of boundary points allows us to make alternative characterizations of
open and closed sets.

Proposition 1.12 Let S be a topological space, and let A ⊂ S be a set.
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(1) A is closed if and only if A contains all of its boundary points if and only if
A = A.

(2) A is open if and only if Ac contains all of its boundary points if and only if
A = A◦.

Proof Exercise. �

Finally, we conclude this section with another alternative description of closed
sets that does not involve open sets. In order to do that, however, we will need the
notion of a limit point.

Definition 1.13 Let S be a topological space, and let a1, a2, . . . be a sequence of
points in S. Then a point a ∈ S is a limit of the sequence a1, a2, . . . (also called a limit
point) if, for every ε > 0, there is some N ∈ N so that, whenever n > N , an ∈ Bε(a).

It is easy to see that if a sequence has a limit point, then it is unique. Hence we
may speak of the limit rather than merely a limit.

Example Let S = R, and let an = 1/n. Then the limit of this sequence is 0.

Example Let S = R, and let bn = n. Then the sequence has no limit.

Remark 1.14 The choice of S in Definition1.13 can be important. In the example
above with an = 1/n, if we take S = R>0, then the sequence has no limit. The only
possible candidate for the limit point would be 0, but 0 /∈ S.

Theorem 1.15 Let S be a topological space. A subset A ⊂ S is closed if and only
if, whenever a1, a2, . . . is a sequence of points in A approaching some point a ∈ S,
we have a ∈ A.

Proof First, suppose A is a closed set, and let a1, a2, . . . be a sequence of points in
A which approach some a ∈ S. We must show that a ∈ A. Suppose a ∈ Ac. Then,
since Ac is open, there is some r > 0 so that Br (a) ⊂ Ac. But since the sequence
of ai ’s approaches a, there is some n so that an ∈ Br (a). Hence, an ∈ Ac. But we
assumed that each ai was in A, so we have a contradiction. Hence a ∈ A, as desired.

Now suppose that whenever a1, a2, . . . is a sequence of points in A approaching
some point a ∈ S, we have a ∈ A. Pick some point x ∈ Ac. Then there is no sequence
of points a1, a2, . . . of points in A approaching x . Let us now consider the sequence of
open setsUn = B1/n(x) ∩ S of S. We claim that we can find some n so thatUn ⊂ Ac.
If not, thenwe canfind somean ∈ Un ∩ A for eachn. But then the sequencea1, a2, . . .
is in A and approaches x , which is a contradiction. Thus the open neighborhood Un

of x in S is contained in Ac. Since this works for an arbitrary x ∈ Ac, it follows that
Ac is open and thus that A is closed. �
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1.4 Functions and Their Properties

The definition of a surface presented earlier uses several unfamiliar terms to describe
functions. In fact, it also uses the term function in perhaps a slightly different way
from what you might be used to.

To define the concept of a function f : A → B where A and B are two sets, we
won’t actually need much beyond the colloquial formulation “a function f : A → B
is a rule which assigns a unique element f (a) ∈ B to each element a ∈ A.” For
completeness, a more mathematically rigorous definition is the following.

Definition 1.16 A function f : A → B is a subset F of the Cartesian (or direct)
product A × B which satisfies the properties:

• A = {a : (a, b) ∈ F};
• if (a, b1) and (a, b2) both belong to F then b1 = b2.

Remark 1.17 Very few mathematicians actually think about a function in terms of
this definition. Instead, mathematicians tend to think of a function as a box, perhaps
with an intricate set of gears and cranks, that eats an element of A as its input and
spits out an element of B as its output. However, it is sometimes useful when proving
things to have the more formal definition available to us.

In a calculus course, the sets A and B are usually subsets of R (or perhaps R
n in

a multivariable calculus course), and functions are given by mathematical formulas
that describe the operations to be carried out on the input numbers to produce the
output numbers. By contrast, in a topology course, we would like to take a more
geometric perspective in which A and B are topological spaces, and functions take
points in A and convert them into points in B. Of course A and B are still subsets
of R

n and the operations carrying points from A to B may still be described using
mathematical formulas; we just want to think geometrically about what is going on.

Example Here are some different types of functions that can be understood from a
geometric perspective.

(1) Familiar functions f : R → R, such as f (x) = x3 − 5x and f (x) = cos(x) are
functions.

(2) Functions of several variables, i.e., f : R
n → R, such as f (x, y) = x − y2 or

f (x, y, z) = xyee
z
are functions.

(3) We can also consider functions f : R → R
n . Consider, for instance, f (x) =

(x2, x3), as a functionR → R
2. Considering such functions is useful for studying

curves: ifwe look at the subset ofR2 which is the image of f , we get an interesting
curve in the plane. Another example of a curve in the plane is the image of the
function f : R → R

2 given by f (t) = (cos t, sin t), i.e., a circle of radius 1.
(4) Functions f : R

2 → R
3 can similarly be used to study surfaces inR

3. For exam-
ple, the imageof the function f : R

2 → R
3 givenby f (θ, φ) = (cos θ sin φ, sin θ

sin φ, cosφ) is a sphere of radius 1.
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(5) We can write down functions f : R
2 → R

2 that do specific geometric things
to points in the plane. For example, a function that rotates points counter-
clockwise about the origin by an angle of θ is given by f (x, y) = (x cos θ −
y sin θ, x sin θ + y cos θ).

(6) We can also write down equations of projections. For example, we have the pro-
jection p : R

3 → R
2 onto the xy-plane, given by p(x, y, z) = (x, y). Similarly,

we can project onto the z-axis by taking q : R
3 → R to be q(x, y, z) = z.

(7) Slightly more deviously, we can project onto the xy-plane inside of R
3 by taking

p : R
3 → R

3 to be p(x, y, z) = (x, y, 0).

Before we continue, let us recall some standard terminology. For a function
f : A → B, the set A is called the domain of f , B is called the codomain, and the
range or image of f is the set f (A) = {b ∈ B : b = f (a) for some a ∈ A}. There-
fore f (A) ⊂ B. We now return to the unfamiliar terminology relating to functions
that first appeared in Definition1.1.

Definition 1.18 Let A and B be two sets, and let f : A → B be a function from A
to B.

• We say that f is surjective, or onto, if for every b ∈ B, there is some a ∈ A so that
f (a) = b. In other words, f (A) = B.

• We say that f is injective, or one-to-one, if whenever f (a) = f (a′) we have
a = a′.

• We say that f is bijective, or a bijection, if it is both injective and surjective.

Exercise 1.19 Of the functions listed in the previous example, which are surjective?
Injective?

Bijective functions are special in that they have inverses, as we now explain. The
inverse of a function f : A → B is a function g : B → A that “undoes” the action of
f ; that is g( f (x)) = x for all x ∈ A. We would also like this relation to hold with the
roles of f and g reversed; in other words, f is the inverse of g and f (g(y)) = y for
all y ∈ B. A more succinct way of saying this is that f ◦ g = idB and g ◦ f = idA,
where id is the identity function on the appropriate space, defined by id(x) = x for
all x in this space; and ◦ denotes the composition of functions f ◦ g(x) = f (g(x))
defined whenever the range of g is contained in the domain of f .

Here is the reasonwhybijective functions have inverses. If f : A → B is bijective,
then by surjectivity, for every b ∈ B there is some a ∈ A so that f (a) = b. Moreover,
by injectivity, this a is unique: for if any other a′ ∈ A satisfies f (a′) = b, then a′ = a.
Hence we can define a function (in the sense of the mathematically precise definition
of this concept given above) g : B → A by the rule

g(b) = a where a is such that f (a) = b.

Note that both injectivity and surjectivity are needed for the inverse to be well-
defined. A non-injective function will have more than one point in A mapping to the
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same point in B, while for a non-surjective function, it will be the case that there is
at least one b ∈ B that has no points in A mapping to it.

Notation The inverse of a bijective function f : A → B is denoted f −1 : B → A.

Example Let f : R → R>0 be defined by f (x) = ex . Then f is a bijective function,
and its inverse is f −1(x) = log(x). As respectable mathematicians, we write “log”
to denote the base-e logarithm.

In contrast to the previous definition of the inverse of a bijective function, the
following definition holds for any function at all. Be careful not to confuse the
notation!

Definition 1.20 Let f : A → B be a function and let S ⊂ B be a subset. Then the
inverse image or preimage of S under f is the set

f −1(S) = {a ∈ A : f (a) ∈ S}.

In other words, f −1(S) is the set of points in A mapped into S by f .

Example Let f : A → B be a function, and let b ∈ B be any point. Then the level
set of f at b is the set f −1({b}) = {a ∈ A : f (a) = b} ⊂ A. Typically, we write
f −1(b) instead of f −1({b}). If B ⊂ R, then we also have a notion of a sublevel set:
the sublevel set is the set f −1((−∞, b]) = {a ∈ A : f (a) ≤ b}.
Example Let us consider Example (7) on page 10 above. Then:

• f −1((1, 3, 0)) = {(1, 3, z) : z ∈ R}.
• f −1({(x, y, 0) | x2 + y2 ≤ 1}) = {(x, y, z) | x2 + y2 ≤ 1}.
• f −1((2, 3, 4)) = ∅.

Example Let f : R
3 → R be defined by f (x, y, z) = x2 + y2 + z2. Then f −1(1)

is the sphere of radius 1 centered at the origin.

1.5 Continuity

The final concept that we will need to describe in order to make sense of the defi-
nition of a surface given at the beginning is that of continuity of functions between
topological spaces. But before we define this concept properly, let us say informally
what it means.

Let S ⊂ R
m . Roughly, a function f : S → R

n is continuous if it sends nearby
points in S to nearby points in R

n .
Our immediate task is to convert this intuitive idea into formal mathematics. Our

first hope might be that when we take a small open set U in S, then f (U ) is a small
open set in R

n . But a quick check shows that this is not quite right: If f is a constant
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function, which sends everything in S to one point in R
n , then the image of any open

set in S is just a single point, which is not open.
This first idea didn’t quite work, but we are on the right track. Let us instead look

at nearby points in R
n and see where they come from in S. More precisely, let V

be an open set in R
n , and look at f −1(V ). If x ∈ f −1(V ), then f (x) ∈ V , so if y

is close to x , then f (y) should also be in V . We can rephrase that to say that, if V
is open in R

n , then f −1(V ) is open in S. This will, in fact, be the definition of a
continuous function.

Definition 1.21 Let S ⊂ R
m . A function f : S → R

n is said to be continuous if, for
every open set V ⊂ R

n , f −1(V ) ⊂ S is an open set of S.

A different definition of continuity is commonly given in calculus classes—the
famous ε–δ definition that you may be familiar with. In the case where S is an open
subset of R

m , it is equivalent:

Theorem 1.22 Let S be an open subset of R
m, and let f : S → R

n be a function.
Then f is continuous if and only if, for every point x ∈ S and every ε > 0, there is
some δ > 0 so that, whenever x ′ ∈ S and d(x, x ′) < δ, then d( f (x), f (x ′)) < ε.

Proof Assume that f : S → R
n is continuous according to the topological definition

of continuity. We will show that the calculus definition holds. Pick some x ∈ S,
and let y = f (x) ∈ R

n . Pick also some ε > 0, and let V = Bε(y) ⊂ R
n . Since f

is continuous, f −1(V ) ⊂ S is open, so it is of the form U ∩ S, for some open set
U ⊂ R

m . Now, sinceU is open inR
m and x ∈ U , there is some δ > 0 so that Bδ(x) ⊂

U . Hence U ∩ S contains all points x ′ ∈ S with d(x, x ′) < δ, and f (U ) ⊂ V . This
shows that whenever x ′ ∈ S and d(x, x ′) < δ, then d( f (x), f (x ′)) < ε.

Now let’s do the other direction: suppose that for every x ∈ S and every ε > 0,
we can find some δ > 0 so that if d(x, x ′) < δ, then d( f (x), f (x ′)) < ε. Let us pick
some open set U ⊂ R

n . For every y ∈ U , we can find some ry so that Bry (y) ⊂ U ,
so that

U =
⋃

y∈U
Bry (y).

Note that
f −1(U ) =

⋃

y∈U
f −1(Bry (y)),

which will be open in S if each f −1(Bry (y)) is open in S. So, now we are reduced
to showing that f −1(Bry (y)) is open in S. Fix some particular y, and let r = ry , to
simplify notation.

We want to show that f −1(Br (y)) is open in S. Pick some point a ∈ f −1(Br (y)),
and let b = f (a) ∈ Br (y). Since Br (y) is open, we can find some ε > 0 so that
Bε(b) ⊂ Br (y). By the hypothesis, we can find some δ > 0 so that if d(a, a′) < δ,
then d(b, f (a′)) < ε, i.e., f (a′) ∈ Bε(b) ⊂ Br (y), so a′ ∈ f −1(Br (y)). So, Bδ(a) ⊂
f −1(Br (y)). Hence f −1(Br (y)) is open in S. We can therefore conclude that f is
continuous. �



1.5 Continuity 13

There are several advantages to using the topological definition of continuity over
the calculus one. For one thing, it is a lot simpler to state and understand. It is also
more general, and might be easier to work with at times. Let us give an example to
see how easy it is to use.

Theorem 1.23 Let f : A → B and g : B → C be two continuous functions. Then
their composition g ◦ f : A → C is continuous.

Proof Let W ⊂ C be an open set. We must show that (g ◦ f )−1(W ) is an open set
in A. Since g is continuous, V = f −1(W ) is an open set in B. Since f is continuous,
U = g−1(V ) is an open set in A. But U = (g ◦ f )−1(W ). So g ◦ f is continuous.

�

Imagine how much more annoying this would be using ε’s and δ’s!
Let us now look at some examples of continuous and discontinuous functions.

Example Most of the functions f : R → R that you are friends with are continuous.
For example, the function f (x) = x + 1 is continuous. This is probably completely
obvious, but let us prove it, just tomake surewe can really trust our intuition. LetU ⊂
R be an open set. We have to show that f −1(U ) is also open. We already know what
all the open sets in R look like: they are unions of open intervals,U = ⋃

i∈I (ai , bi ).
Then

f −1(U ) =
⋃

i∈I
f −1((ai , bi )),

so in order to show that f −1(U ) is open, we only have to show that each f −1((ai , bi ))
is open. But f −1((ai , bi )) = (ai − 1, bi − 1), which is an open interval and hence
open. Thus f is continuous.

Example f (x) = x2 is also continuous. To see this, wemust take an open setU ⊂ R

and show that f −1(U ) is also open. Suppose U = ⋃
i∈I (ai , bi ). Since

f −1(U ) =
⋃

i∈I
f −1((ai , bi )),

we can assume that U is just an interval U = (a, b). The preimage of U is then
{x ∈ R : a < x2 < b}. Let us now break up the problem into a few cases, based on
whether a and b are positive or negative.

Case 1: a ≥ 0. Then f −1(U ) = (−√
b,−√

a) ∪ (√a,
√
b), which is the union of

two open intervals and hence open.

Case 2: a < 0 < b. Then f −1(U ) = (−√
b,

√
b), which as we just mentioned is an

open interval and hence open.

Case 3: b ≤ 0. Then f −1(U ) = ∅, which is open.
So, in all cases, the preimage of an open interval is an open set, so the preimage

of any open set is open. Hence f (x) = x2 is a continuous function.
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Similarly, any polynomial f : R → R is continuous, as are rational and algebraic
functions, trigonometric functions, exponential functions, logarithmic functions, and
so forth, on the intervals on which they are defined. (So, f (x) = tan(x) is continuous
on (−π/2, π/2), but not on any interval containing π/2, since f (x) is not defined
at that point.)

Piecewise-defined functions, ones that have different sorts of definitions at differ-
ent points, are likely to be discontinuous.

Example Let

f (x) =
{
0 x ≤ 0,

1 x > 0.

Then f is discontinuous. In order to show this, we must find some open set U ⊂ R

so that f −1(U ) fails to be open. Let U = (−1/2, 1/2). Then f −1(U ) = (−∞, 0],
which is not open. This shows that f is discontinuous.

All is not lost with the function in this example, however. Something bad is going
on at 0, but everywhere else, it “looks” continuous, in that nearby points get sent
to nearby points. To make this precise, we now define the notion of continuity at a
point. This notion of continuity, too, can be described both in terms of open sets as
well as in terms of δ’s and ε’s. We give both definitions (which are equivalent to each
other), starting with the open set definition.

Definition 1.24 Let f : S → R
n be a function, and let x ∈ S be a point. We say that

f is continuous at x if, for every open set V ⊂ R
n containing f (x), there is an open

set U ⊂ S containing x such that f (U ) ⊂ V .

Definition 1.25 Let f : S → R
n be a function, and let x ∈ S be a point. We say that

f is continuous at x if, for every ε > 0, there is some δ > 0 so that if d(x, x ′) < δ,
then d( f (x), f (x ′)) < ε.

The only difference between this definition and the alternative characterization of
continuous functions above is that here we are not allowed to vary x .

It is easy to see that the function f in the last example is continuous for all x �= 0.
But let us check, just so that we get a bit more practice using the definition. Pick
some point x �= 0. Now, if |x − x ′| < |x |, then f (x) = f (x ′). So, for any ε > 0,
if we take δ = |x |, then whenever d(x, x ′) < δ, we have d( f (x), f (x ′)) = 0 < ε.
Thus f is continuous at x .

A common way of interpreting continuity is that the graph can be drawn without
lifting the pen from the paper. This notion is called path-connectedness, and we will
discuss it later in the book. However, continuity is a bit more subtle than this. Let us
see an example which shows some of the subtleties of continuity.

Example Let f : R → R be the function, known as the Riemann function or the
Thomae function, defined by
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f (x) =
{

1
q if x = p

q in lowest terms,

0 if x is irrational.

Since the graph of f (x) is a mess of points whose y-coordinates are between 0 and
1, we might expect that f is not continuous at any point. However, this is false:
f is continuous at all the irrational numbers and discontinuous at all the rationals.
Let us carefully examine why this is the case. First, let x be rational, say x = p

q .

Pick ε < 1
q = f (x). For any δ > 0, we can find some irrational number x ′ with

d(x, x ′) < δ. For such an x ′, we have f (x ′) = 0, so d( f (x), f (x ′)) = 1
q > ε. In

other words, we can’t find any appropriate δ > 0 for this choice of ε.
Now let’s look at the irrational points, which are more interesting. Let x be irra-

tional, so that f (x) = 0, and pick some ε > 0. Then there is some Q > 0with 1
Q < ε.

Pick δ > 0 to be less than theminimumof the distances from x to each p
q with q < Q.

Then if d(x, x ′) < δ and x ′ is rational, then the denominator of x ′ must be at least
Q, so f (x ′) < ε. Thus if d(x, x ′) < δ, then d( f (x), f (x ′)) < ε. In other words, f
is continuous at x . So, even though the graph of f can’t be drawn without lifting the
pen off the paper at any point, it is still continuous at some—even most!—points.

Just for fun, let us present an exercise which is way too hard.

Exercise 1.26 Can you find an example of a function f : R → R that is continuous
at all the rational numbers and at none of the irrational numbers?

The more “interesting” functions that we will be looking at in this book are
functions betweenhigher-dimensional topological spaces. That is, functions f : S →
R

m where S ⊂ R
n for either m > 1 or n > 1. Continuity here is also a more subtle

concept, since an open set V ⊂ R
m is more complicated than a union of intervals,

and so f −1(V ) can fail to be open in much more interesting ways, and of course f
itself can act in much more complicated ways.

There are some very important properties of continuous functions that we will
use repeatedly throughout this book.

Theorem 1.27 Let S ⊂ R
m, and let f : S → R

n be a continuous function. Let p ∈
R

n be any point. Then f −1(p) is a closed subset of S.

Proof Webeginwith the observation that f −1(p) = S \ f −1(Rn \ {p}), so it suffices
to show that f −1(Rn \ {p}) is open. Since R

n \ {p} is an unwieldy name, let us
rename itU . Since f is assumed to be continuous, it suffices to show that U is open
in order to show that f −1(U ) is open. Let x ∈ U be an arbitrary point. Wemust show
that there is some r , depending on x , so that Br (x) ⊂ U . We can take r = d(x, p)
so that p /∈ Br (x); note that p is the only point in R

n which is not in U , so any set
that avoids p is contained in U . Hence U is open, so f −1(U ) is open, so f −1(p) is
closed, as desired. �

A very similar argument shows, more generally, that the preimage under a contin-
uous function of any closed set is closed. In fact, this could be used as a definition of
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continuity instead of the same condition for open sets, and it is occasionally useful
for checking whether functions are continuous.

1.6 Problems

(1) Prove the following. Be super rigorous for at least one of your proofs; you can
be less so for the others.

(a) The rectangle A = (0, 1)× (0, 1) := {(x1, x2) : 0 < xi < 1 for i = 1, 2} is
open. Your proof should consist of picking a point (x1, x2) ∈ A and then
determining a value for r for which Br (x1, x2) ⊆ A. Prove this last assertion
as rigorously as you can.

(b) The open half-plane A = {(x, y) : ax + by < 0}, where a, b are fixed real
numbers, is open. (For concreteness you can choose a = 1 and b = 2 if you
like. But try to construct a proof for general a, b.)

(c) The interval [a, b] is closed.
(d) The closed ball {(x, y) ∈ R

2 : x2 + y2 ≤ 1} is closed.
(e) The line L = {(x, y) : ax + by = 0}, where a, b ∈ R are constants defining

the slope of the line, is closed. What is its boundary?

(2) Write down a set in the plane that is neither open nor closed, and explain why.
Is there a set which is both open and closed?

(3) Drawgraphs of the functions f1(x) = sin(x) and f2(x) = arctan(x) and f3(x) =
x4 − x2 and f4(x) = log(x) and f5(x) = (x − 1)/(x + 1). For each i = 1, . . . , 5
do the following if possible. (Do as many as you need until you are convinced
that you can do the rest without any significant effort.)

(a) Find subsets A, B ⊆ R so that fi : A → B is injective.
(b) Find subsets A, B ⊆ R so that fi : A → B is injective but not surjective.
(c) Find subsets A, B ⊆ R so that fi : A → B is surjective.
(d) Find subsets A, B ⊆ R so that fi : A → B is surjective but not injective.
(e) Find subsets A, B ⊆ R so that fi : A → B is bijective.
(f) Find a formula for f −1

i when fi maps as in part (e).
(g) Find f −1

i ([−2,−1]) and f −1
i ([ 12 , 1]). (Here the notion f −1(A) can be

defined even if f doesn’t have an inverse. It means: the set of all points
that map into A under f . I.e. f −1(A) = {x : f (x) ∈ A}.)

(4) Let f : R
2 → R

3 be defined by f (x1, x2) = (x1, x2, 1). Is this function injective,
surjective or both? What is f −1(B2(0, 0, 0))? Draw pictures.

(5) Describe with pictures and/or write down formulae for reasonably simple func-
tions f : R

2 → R
3 that are not injective; not surjective; neither injective nor

surjective.
(6) Let f : X → Y be any function, and let V ⊂ Y be any subset. Show that

f −1(V c) = ( f −1(V ))c.
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(7) Suppose that f : X → Y and g : Y → X are functions so that g ◦ f : X → X
is the identity: (g ◦ f )(x) = x for all x ∈ X . Show that f is injective and g is
surjective.

(8) Use the definition of continuity in terms of inverse images of open sets in this
problem.

(a) Show that f (x) = 3x + 5 is continuous as a function from R to itself.
(b) Show that f (x, y) = x + y is a continuous function from the plane to the

line.
(c) Show that f (x, y) = 1 is a continuous function from the plane to the line.
(d) Show that the function f (x, y) that equals 1 when (x, y) �= (0, 0) and

f (0, 0) = 0 is not continuous as a function from the plane to the line.

(9) Let f : A → B be a function (not necessarily bijective).

(a) Show that U ⊆ f −1( f (U )) for all U ⊆ A. What is the most general condi-
tion under which you can prove U = f −1( f (U ))?

(b) Show that f ( f −1(V )) ⊆ V for all V ⊆ B. What is the most general condi-
tion under which you can prove f ( f −1(V )) = V ?
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Mathematical Symbols

• ∀ “for all”
• ∃ “there exists”
• ∈ “belongs to” or “in” (refers to a point p belonging to a set S as in p ∈ S)
• ⊆ or ⊂ “contained in” or just “in” (refers to a subset of points A contained in a
set S as in A ⊆ S)

• � “strictly contained in” or “contained in but not equal to”
• {x : blah blah} “the set of all x such that blah blah holds”
• ≡ or := “defined as” (as in R+ ≡ {x ∈ R : x > 0})
• f : A → B “the function f maps the set A to the set B”
• ∩ “intersection” i.e. A ∩ B = the points simultaneously in A and in B
• ∪ “union” i.e. A ∪ B = the points either in A or in B

Greek Letters

Lower case:

α alpha β beta γ gamma δ delta
ε epsilon ζ zeta η eta θ theta
ι iota κ kappa λ lambda μ mu
ν nu ξ xi o omicron π pi
ρ rho σ sigma τ tau υ upsilon
φ phi χ chi ψ psi ω omega

Upper case:

A alpha B beta � gamma � delta
E epsilon Z zeta H eta � theta
I iota K kappa � lambda M mu
N nu � xi O omicron � pi
R rho � sigma T tau ϒ upsilon
! phi X chi " psi # omega



Chapter 2
Surfaces

2.1 The Definition of a Surface

Let us take a moment to remind ourselves of the definition of a surface given in the
previous chapter (Definition1.1). We introduce the terminology homeomorphism to
mean a continuous bijective function with a continuous inverse.

A surface S is a topological space such that for every point p ∈ S, there is an open setU ⊂ S
containing p, and a homeomorphism f : U → V , where V is some open subset of R

2.

Now that we know all the words in the definition, let us take another look at this
definition and re-interpret it. We would like to be able to say that S is a surface if
and only if “it locally looks like a piece of the plane.” Mathematically speaking,
the word “locally” is (usually) equivalent to “for every p ∈ S there is an open set
U containing p” such that the surface property holds; and “looks like a piece of
the plane” is equivalent to the existence of the homeomorphism f : U → V ⊂ R

2.
Informally, this homeomorphism “flattens” U into a subset V of R

2 in an invertible
way. Thus the definition above precisely captures what we would like!

Remark 2.1 According to our definition, we do allow surfaces to be empty, i.e. not
contain any points, but we shall often tacitly assume that our surfaces are nonempty
so as to avoid trivialities.

2.2 Examples of Surfaces

We now look at some examples and nonexamples of surfaces. We won’t prove any-
thing yet—we’ll save an explicit proof of the surface property in a particular case
for the next section. For now, we’ll concentrate on building intuition.

Example Planes. For any point p ∈ R
2, we can take U to be the full plane R

2 and
f to be the identity function f (x) = x . So a plane is a surface. More generally, any
nonempty open subset of a plane is a surface.
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Figure 2.1 A torus.

Example Spheres. A sphere is a surface. We are all very familiar with this fact,
because we live on a sphere. If we look at just a small piece of a sphere, then it looks
as though it could be part of a plane; this is why people in past centuries believed that
Earth was flat. The latitude and longitude coordinates constitute a homeomorphism
from a large part of the sphere (but not all of the sphere—which part is missing?) to
a part of the plane (i.e. latitude φ ∈ (−π/2, π/2) and longitude θ ∈ (0, 2π) give us
the point (φ, θ) ∈ (−π/2, π/2) × (0, 2π) ⊂ R

2). We refer to the sphere as S
2.

Example Tori.A torus is the surface of a bagel: something that has a hole in it. (See
Figure2.1.) A small piece of a (sufficiently large) torus once again looks like a piece
of a plane. If we were to live on a torus-shaped planet, we would not be able to notice
this easily without looking at a large portion of the planet. We refer to the torus as T.

Example Cubes. A cube also looks locally like a plane. In fact, for a point on a face
(rather than an edge or vertex), a neighborhood of that point does lie on a plane. For
a point on the edge, a neighborhood lies in two adjacent faces. We must bend one
of the faces to lie in the plane of the other, and then the neighborhood will lie in a
plane. Can you see how to deal with the vertices?

We now come to a nonexample of a surface.

Nonexample Let X be the union of the xy-plane and the xz-plane in R
3. (See

Figure2.2.) Then X is not a surface. A neighborhood of the point (0, 0, 0) ∈ X does
not look like a piece of a plane; it looks like a piece of two planes. (In fact, it is a
piece of two planes.) Actually proving that X is not a surface is challenging, and
we won’t be able to do it completely, but here is something close to a proof: An
open neighborhood U of (0, 0, 0) is the union of two pieces Y and Z , where Y is
an open subset of the xy-plane, and Z is an open subset of the xz-plane, and Y ∩ Z
is a line segment (or union of line segments) on the x-axis. By passing to a smaller
open neighborhood if necessary, we may assume that Y ∩ Z is a single line segment.
Now, suppose f : U → V is a homeomorphism from U to an open subset V ⊆ R

2.
Then U \ (Y ∩ Z) consists of four pieces, but V \ f (Y ∩ Z) consists of only two.
But the number of pieces (connected components) of a space does not change when
we apply a homeomorphism.
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Figure 2.2 The union of
two planes.

Figure 2.3 The figure-eight
curve.

Figure 2.4 An interval X
maps continuously (via f ) to
the figure-eight curve Y , but
g is not continuous, since the
preimage of the interval in
red is not open.

X f

g

Y

The reason this argument is not completely satisfactory is that we do not yet
know what the image of Y ∩ Z under a homeomorphism can look like. How do we
know that it divides V into two pieces, and not four? It is true that it divides it into
two pieces, but this is not obvious. A related result is the notorious Jordan Curve
Theorem, which says that a simple closed curve (i.e. the image of a circle under an
injective continuous map) in R

2 divides the plane into two regions: an inside and an
outside. While this is “obvious,” the proofs are highly nontrivial. We will prove it in
Chapter14.

There is one piece of the definition of a surface that may seem a little bit mys-
terious: If f is a continuous bijection, is it possible that its inverse could fail to be
continuous? Let us demonstrate that this is possible.

Nonexample Let X be the open interval (0, 1), and let Y be the figure-eight curve.
(See Figure2.3.) We define a function f : X → Y , which is obtained by wrapping
the interval around the figure-eight. Then f is a continuous bijection. (Note that the
only preimage of the nodal point in the middle is 1/2 ∈ X , because X is an open
interval.) Let g : Y → X be the inverse function of f . Then g is discontinuous: the
preimage of the interval (.4, .6) contains points on only two edges leaving the node,
rather than on all four, whereas any open neighborhood of the node contains points
on all four. (See Figure2.4.)
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2.3 Spheres as Surfaces

The most familiar example of a surface (other than an open set in R
2) is a sphere S

2,
since we live on one. If we look around a bit at the surface of our planet, we might
be inclined to suspect that Earth is flat, because it appears flat when we can only see
a bit of it at a time.

Let us now start a rigorous proof that a sphere is a surface according to our
definition. To do so, we need to show that for every point p ∈ S

2, there is an open set
U of S

2 containing p, and a homeomorphism f : U → V ⊂ R
2. Thus we must first

choose an appropriate open set U for each point p, and then construct the required
homeomorphism. Note that the latitude and longitude coordinates we introduced
above do not yet suffice. There are two reasons: the first is that they are only well-
defined on part of S

2, so we would only be able to prove that this part of S
2 is a

surface rather than all of S
2; the second is that we have not defined f , nor shown the

existence of f −1, for these coordinates yet. We’ll leave both of these issues for you
to ponder on your own, and we will presently prove that S

2 is a surface in a different
way.

Proposition 2.2 The unit sphere S
2 in R

3, which is defined as the set of points
{(x, y, z) ∈ R

3 : x2 + y2 + z2 = 1}, is a surface.

Proof Let us define six open sets in S
2, namelyUtop,Ubottom,Uleft ,Uright,Ufront, and

Uback. These are the six open hemispheres you would expect based on their names.
For exampleUtop = {(x, y, z) ∈ S

2 : z > 0}. The important points about these hemi-
spheres are that eachone is anopen set inS

2, and every point on the sphere is contained
in at least one of them. Therefore if we canmap each of these hemispheres bijectively
to an open subset of R

2 and show the existence of a continuous inverse, then we’ll
be done.

Let us first consider Utop. A very simple way of mapping this hemisphere to a
piece of the plane is by projection. Namely, we use the map ftop : Utop → R

2 defined
by ftop(x, y, z) = (x, y). The range of ftop is the open ball B1(0) ⊂ R

2. Note that
ftop is actually defined for all (x, y, z) ∈ R

3, but we consider only the restriction of
this map to (x, y, z) ∈ Utop. What about an inverse? The inverse should take a point
(x, y) ∈ B1(0) and yield a point f

−1
top (x, y) ∈ S

2. The point we want is clear: it is the

point on S
2 lying “above” (x, y, 0), namely the point (x, y,

√
1 − x2 − y2). Thus we

propose
f −1
top (x, y) = (x, y,

√
1 − x2 − y2).

Note that both ftop and f −1
top are continuous, as they are built from the reason-

able functions of high-school calculus. Also we have ftop ◦ f −1
top (x, y) = (x, y)

and f −1
top ◦ ftop(x, y, z) = (x, y,

√
1 − x2 − y2) = (x, y, z) for any (x, y, z) ∈ Utop,

because the defining formula x2 + y2 + z2 = 1 holds there. Thus ftop is a homeo-
morphism.

To complete the proof, we have to provide a similar analysis for the remaining five
hemispheres of S

2. For Ubottom we propose fbottom(x, y, z) = (x, y) once again, but
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now we can check that f −1
bottom(x, y) = (x, y,−√

1 − x2 − y2) is the desired inverse
function. For the remaining four hemispheres, we use similar ideas except using the
“lateral projections” given by (x, y, z) �→ (x, z) and (x, y, z) �→ (y, z). The details
are left to you! �

2.4 Surfaces with Boundary

A natural question prompted by our consideration of hemispheres just now is: What
is the nature of the closed hemisphere U top := {(x, y, z) ∈ S

2 : z ≥ 0}? Although
this object is almost as surface-like as the familiar sphere S

2, we are unfortunately
not justified in calling it a surface—at least according to our definition. This is
because any point on the boundary of the closed hemisphere, namely any point
of the form (x, y, 0) ∈ U top, does not satisfy the surface property. For instance,
we can form a relatively open set in U top containing (x, y, 0) by intersecting U top

with Br ((x, y, 0)). This open set is homeomorphic to a half-disk in R
2 under the

projection ftop, which is neither open nor closed. This is only one example, but it
reflects a general phenomenon: Try as we might, we will never be able to map a
relatively open set containing (x, y, 0) to an open set in the plane, because the image
of U top will always be on only one side of the image of the boundary of U top.

We would, however, like to include the closed hemisphere U top in our list of
allowed “surface-like” objects. Therefore we make a special definition that covers
the case of the closed hemisphere and similar surfaces with boundary curves. We’ll
need the standard two-dimensional closed half-space defined by H

2 := {(x, y) ∈
R

2 : y ≥ 0}. We denote its boundary by ∂H
2 = {(x, 0) : x ∈ R}.

Definition 2.3 A surfacewith boundary S is a non-empty topological space such that
for every point p ∈ S, there is an open setU ⊂ S containing p, and a homeomorphism
f : U → V onto a relatively open subset V ⊂ H

2.

This definition admits two kinds of points in S. There are those points for which
the original definition of “surface” holds, namely the homeomorphism f : U → V
is such that V is contained in the interior of H

2 and is thus an ordinary open set in
R

2. And there are those points whose image under f lie on ∂H
2.

Remark 2.4 Atechnical note: therewill typically be several homeomorphismsmap-
ping neighborhoods of S to H

2. It is possible to show that if f1 and f2 are home-
omorphisms from a neighborhood of p ∈ S to H

2 and f1(p) ∈ (H2)◦, then also
f2(p) ∈ (H2)◦; and if f1(p) ∈ ∂H

2, then this is also true for f2(p). Therefore the
characterization of p into one of two kinds is unambiguous. The full proof requires
more machinery than we currently have available, but here is the idea: let U be an
open neighborhood around some point p ∈ S◦, and let f : U → R

2 be a homeomor-
phism onto an open subset. By passing to a smaller neighborhood V if necessary, we
can assume that f (V ) is a disk in R

2. Now, look at f (V \ {p}). This is a disk with a
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hole in it. On the other hand, if q ∈ S \ S◦, then we can assume that a small neigh-
borhood W around q in S is homeomorphic to a half-disk. Then let g : W → H

2

be a homeomorphism onto an open subset, with g(q) ∈ ∂H
2. Now, g(W \ {q}) does

not have a hole in it. Based on theory we will develop later on, these two regions
f (V \ {p}) and g(W \ {q}) are not homeomorphic. Thus f (V ) and g(W ) are not
either.

Definition 2.5 Let S be a surface with boundary. The boundary of S is the set
of points p ∈ S such that there exists a homeomorphism f : U → V ⊂ H

2 with
f (p) ∈ ∂H

2. The boundary of S is denoted ∂S.

2.5 Closed, Bounded, and Compact Surfaces

Recall that a surface S is a topological space, which for now means that S is a subset
of some Euclidean space R

n . Therefore we can ask about the nature of S as a point
set inside R

n . It is possible for a surface or surface with boundary to be a closed
set (e.g. the sphere or the closed hemisphere) or a set which is neither open nor
closed (e.g. the open hemisphere). In fact, an elementary property of a surface with
boundary is that S ∩ (∂S)c, i.e. S with its boundary removed, is a surface according
to the original definition. But this surface is not closed unless ∂S = ∅. (Can you
prove this?) Finally, a surface can never be an open set unless n = 2. (Can you see
why this should be true?)

There is one additional feature of surfaces viewed as point sets in R
n that we

should highlight. This concerns their behavior at infinity. We will say a surface S
is bounded if there exists a perhaps large ball that fully encloses S, i.e. there exists
R > 0 such that S ⊂ BR(0). We will say that S is unbounded if this fails to hold.

A very important technical property possessed by many surfaces that we’ll
encounter is the combination of closedness and boundedness. This has a special
name.

Definition 2.6 A surface, or surface with boundary, is called compact if it is both
closed and bounded as a subset of Euclidean space.

Remark 2.7 This definition is not the best ormost general definitionof compactness.
The best definition is given in Problem9.

2.6 Equivalence Relations and Topological Equivalence

A subject that we will explore in the next few chapters is the topological classifica-
tion of surfaces. Broadly speaking, this is the partitioning of all possible surfaces into
distinct categories, where two surfaces in the same category are considered topolog-
ically the same. This kind of partitioning based on sameness from a certain point
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of view is actually an instance of a very general idea in mathematics known as a
partition into equivalence classes. This is a very abstract concept that we will briefly
explain here, given it will arise in various guises throughout the book.

Definition 2.8 Let X be a set. An equivalence relation on X is a subset of the product
spaceR ⊂ X × X that satisfies three key properties. We will use the notation x ∼ y
instead of the usual (x, y) for pairs in R, and we read x ∼ y as “x is equivalent to
y.” The properties are:

(1) Reflexivity. x ∼ x for every x ∈ X .
(2) Symmetry. x ∼ y if and only if y ∼ x for all x, y ∈ X .
(3) Transitivity. If x, y, z ∈ X with x ∼ y and y ∼ z, then x ∼ z.

Exercise 2.9 Why doesn’t property (1) in Definition2.8 follow from properties (2)
and (3)?

Example Let X be the set of all triangles in the plane and let T1, T2 ∈ X . We define
T1 ∼ T2 whenever T1 is similar to T2 (i.e. both triangles have the same internal
angles). Now for any T ∈ X it is clearly the case that T ∼ T . Also, if T1, T2 ∈ X and
T1 ∼ T2, then by the symmetry of “equal angles” it is true that T2 ∼ T1. Finally, if
T1, T2, T3 ∈ X with T1 ∼ T2 and T2 ∼ T3, then by the transitivity of “equal angles”
it is true that T1 ∼ T3. Thus similarity is an equivalence relation on X .

Example Let X be the set of all topological spaces (yes, this set is quite huge!),
and let S1, S2 ∈ X . We define S1 ∼ S2 whenever there exists a homeomorphism
f : S1 → S2. Now for any S ∈ X we always have the identity homeomorphism id :
S → S defined by id(x) = x . Hence S ∼ S. Also, if S1 ∼ S2, then the homeomor-
phism f : S1 → S2 can be inverted to yield another homeomorphism f −1 : S2 → S1.
Hence S2 ∼ S1. Finally, if S1, S2, S3 ∈ X with S1 ∼ S2 and S2 ∼ S3, then the home-
omorphisms f12 : S1 → S2 and f23 : S2 → S3 can be composed to yield another
homeomorphism f23 ◦ f12 : S1 → S3. Hence S1 ∼ S3. Therefore the existence of a
homeomorphism is an equivalence relation on X .

The key feature of an equivalence relation is that we can partition the set upon
which it is defined into disjoint subsets called equivalence classes.

Definition 2.10 Let ∼ be an equivalence relation on X and let x ∈ X . The equiva-
lence class of x is the subset [x] = {y ∈ X : y ∼ x} of X . In other words, [x] consists
of all y ∈ X related to x . We write X/ ∼ for the set of equivalence classes modulo
∼.

Proposition 2.11 Let ∼ be an equivalence relation on X. The equivalence classes
created by ∼ share the following key properties:

(1) Equivalence classes are non-empty subsets of X.
(2) If [x] and [y] are two equivalence classes, then either [x] ∩ [y] = ∅ or

[x] = [y].
(3) The union of all equivalence classes is X.
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Proof The proof of (1) is simply to observe x ∼ x implies it is always the case that
x ∈ [x]. Item (3) follows from this, because any x ∈ X lies in an equivalence class
(namely the class [x]) and so lies in the union of all equivalence classes. Hence X is
a subset of the union of all equivalence classes. It is trivially true that the union of
all equivalence classes is a subset of X . Hence X equals the union of all equivalence
classes.

The proof of (2) is slightly more involved. Let [x] and [y] be two equivalence
classes and suppose z ∈ [x] ∩ [y] is a common element. (If we could not find such
a z that would mean that [x] ∩ [y] = ∅ so we’d be done.) Hence z ∼ x and z ∼ y.
By symmetry we have x ∼ z. Thus by transitivity we have x ∼ y. By symmetry
again we have y ∼ x . Using this, we can prove both the [x] ⊂ [y] and [y] ⊂ [x]
(which is what it takes to show [x] = [y]). Here’s how: first pick an arbitrary element
x̄ ∈ [x]. Then x̄ ∼ x , and because x ∼ y, we have x̄ ∼ y by transitivity. Thus x̄ ∈ [y].
Since x̄ was chosen arbitrarily, this implies that [x] ⊂ [y]. The reverse inclusion is
similar. �

By the key property (3) above, X is equal to the union of its equivalence classes. By
key property (2) above, there are only a certain number of distinct equivalence classes,
and these do not overlap. Let [x1], . . . , [xn] be the distinct equivalence classes. (In
fact, there may not be finitely many or even countably many of them, so the labeling
of these with 1 through n is a bit of a misnomer.)We say that x1, . . . , xn are represen-
tatives of the distinct equivalence classes. Note that representatives of equivalence
classes are not unique, because if y ∼ x1 then [x1] = [y], and y serves just as well
as x1 as a representative of the class [x1].
Exercise 2.12 What are the equivalence classes of the equivalence relations given
in the two examples above? What are the possible representatives?

2.7 Homeomorphic Spaces

The question posed so glibly in the previous section, about characterizing the equiv-
alence classes of homeomorphic equivalence on the set of all topological spaces,
is actually a very deep mathematical question. Such questions have motivated and
continue to motivate the development of the field of topology and of mathematics
in general! In fact, it is fair to say that much of algebraic topology is about ways to
tackle this question.

Let us build some intuition for the notion of homeomorphic equivalence of topo-
logical spaces. The question we’d like to consider here is: For what kinds of spaces
S1 and S2 can we find a homeomorphism f : S1 → S2?

Example A sphere S is homeomorphic to a cube C , as shown in Figure2.5. To
see this, let us describe the homeomorphism. Suppose the sphere is {(x, y, z) ∈ R

3 :
x2 + y2 + z2 = 1}, and the cube has vertices {(±1,±1,±1)}. Let p be a point on the
cube.Then p

d(p,0) is a point on the sphere. Let f : C → S bedefinedby f (p) = p
d(p,0) .
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Figure 2.5 A sphere is
homeomorphic to a cube.

Then f is a homeomorphism. (How would we go about writing down the inverse
map?)

Nonexample The sphere, the plane, and the torus, all appear to live in different
homeomorphism classes, although we do not yet have the tools to prove this.

Major Question 2.13 Given two topological spaces, how can we tell whether they
are homeomorphic or not?

It is worth thinking a bit about the form that an answer to this question might
have. Ideally, we would get an algorithm that runs for a while and then gives us an
answer of “yes” or “no.” Failing that, we could hope for an algorithm that runs for
a while and then gives us an answer of “yes” or “no” or “I don’t know.” What we’ll
actually get is usually something resembling the latter type of answer, although in
some cases we’ll be able to get an answer of the former type.

2.8 Invariants

One tool that topologists have developed for determining whether or not two topo-
logical spaces are homeomorphic is called an invariant. An invariant is a function I
on the set of all topological spaces of a certain type such that I (S) is equal to a well-
defined mathematical object for every appropriate topological space S. For instance
I might be defined on the set of all compact surfaces, and I (S) might be a natural
number for each S. Moreover, this function must possess the following invariance
property:

Let S1 and S2 be two topological spaces in the domain of definition of the invariant I . If
there exists a homeomorphism f : S1 → S2 then I (S1) = I (S2).

The existence of an invariant for a given type of topological space is very powerful
because it allows us to tell spaces apart: if we find that I (S1) �= I (S2) then we can
be sure that S1 is not homeomorphic to S2.

Invariants are very special objects, and some of the most important achievements
in mathematics involve finding them—Fields Medals have been awarded for the
discovery of new invariants! Of course, we’re talking about non-trivial invariants
here, because it is quite easy to come up with some useless invariants:
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• I (S) = 1 for all topological spaces S is certainly invariant under homeomorphisms
—but it isn’t useful for telling anything apart from anything else!

• I (S) = 1 if S is homeomorphic to a sphere and I (S) = 0 otherwise is a perfectly
good invariant for determining if S is homeomorphic to a sphere—except that you
must already know whether S is homeomorphic to a sphere in order to compute
I (S)!

A good invariant will be one for which it is much easier to compute I (S) for a
given S—or deduce properties of I (S) depending on the nature of S—than it would
be to prove the non-existence of homeomorphisms for such S using some ad hoc
argument. Note that if we find I (S1) = I (S2) we can not necessarily conclude that
S1 is homeomorphic to S2. We call a complete invariant one for which it is true
that I (S1) = I (S2) if and only if S1 is homeomorphic to S2. Complete invariants are
much rarer than ordinary invariants.

Example Here are some simple non-trivial invariants:

• I (S) = 1 if S is compact, and I (S) = 0 if it is not.
• I (S) = the number of connected components of S. (A nonempty topological space
T is said to be connected if it is not the union of two nonempty open subsets. A
subset T of S is a said to be a connected component if T is connected, and every
subset U of S properly containing T is not connected.)

• I (S) = the number of components of ∂S.

The proof that the above “functions” are invariant under homeomorphisms ismore
or less straightforward. In the next chapter, we will study a much more interesting
non-trivial invariant of surfaces called the Euler characteristic. It will take a bit of
work to prove the invariance property for it! We will actually discover much more: It
turns out that the Euler characteristic is very nearly a complete invariant of compact
surfaces and can be used to solve the problem of characterizing the equivalence
classes of homeomorphic equivalence in the set of all surfaces.

2.9 Problems

(1) (a) Show that the annulus {(x, y) ∈ R
2 : 1 < x2 + y2 < 2} is homeomorphic to

the cylinder {(x, y, z) ∈ R
3 : x2 + y2 = 1}.

(b) Show that the punctured sphere {(x, y, z) ∈ R
3 : x2 + y2 + z2 = 1, z �= 1}

is homeomorphic to the plane.
(c) Do you think there exists a surjective continuous function from the torus to

the sphere? If so, describe an example of such a function, in words.
(d) Do you think that there exists a surjective continuous function from the

sphere to the torus? If so, describe an example of such a function, in words.
(e) Do you think that there exists an injective continuous function from the

sphere to the torus? If so, describe an example of such a function, in words.
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(f) Let γ1 be a closed curve and γ2 an open curve. (Here “closed” means the
endpoints are glued together, like a loop, whereas “open” means that there
are distinct endpoints (that are contained in the curve); note that these are
different usages of the words “open” and “closed” from the ones we have
seen before.) Do you think that there exists a continuous mapping from γ1
to γ2? What about from γ2 to γ1? Can they be surjective? Injective?

(2) Suppose you have four circles on a sphere for which the following hold:

• C1, C2 do not intersect and the centre of C1 is “inside” the circle C2, and
• C ′

1, C
′
2 also do not intersect, but the centre of C

′
1 is not “inside” the circle C

′
2.

(See Figure2.6.) Is there a homeomorphism from the sphere to itself that maps
C1 to C ′

1 and C2 to C ′
2? If so, explain what the homeomorphism looks like.

(You don’t have to write down explicit equations.) If not, explain why there
can be no such homeomorphism.

(3) Show that the cylinder S = {(x, y, z) ∈ R
3 : x2 + y2 = 1} is a surface.

(4) Either finish the proof started on Section2.3 that the sphere is a surface, or give
an alternative proof using a construction involving latitude and longitude.

(5) (a) Explain why the union of the xy- and xz-planes in R
3 is not a surface with

boundary.
(b) Show that the finite cylinder S = {(x, y, z) ∈ R

3 : x2 + y2 = 1 and z ∈
[−1, 1]} is a surface with boundary.

(6) Explain why each of the following sets is not a compact surface. (A surface in
R

3 is closed if its complement is open. A surface in R
3 is bounded if it can be

enclosed in some large ball centered at the origin. A surface is compact if it is
both closed and bounded.)

(a) A plane.
(b) The set of points in R

3 with z = x2 + y2 and z < 1.
(c) The set of points in R

3 with z = x2 + y2 and z ≤ 1.
(d) The union of {(x, y, 0) : x2 + y2 < 1} with {(0, y, z) : y2 + z2 < 1}.
(e) The union of the unit sphere centered at (0, 0, 0) and the unit sphere centered

at ( 12 ,
1
2 ,

1
2 ).

(7) In the definition of an equivalence relation, we could try to deduce reflexivity
from symmetry and transitivity, as follows: pick x, y ∈ X with x ∼ y. Then
y ∼ x as well. By transitivity, taking z = x , we have x ∼ y ∼ x , so x ∼ x . Why
doesn’t this work?

(8) Stereographic projection of the sphere of radius 1 centered at (0, 0, 0) in R
3 into

the plane R
2 works as follows. Choose a point p on the sphere. Draw a line

between the south pole and p. This line intersects the plane having x3 = 0 in
some point (q1, q2, 0). Define F(p) ≡ (q1, q2).

(a) What are the largest possible sets A, B we can put in the statement F : A →
B such that F is surjective?

(b) Show that F is injective as a function F : A → B.
(c) Write down a formula for (q1, q2) ∈ B in terms of the coordinates of p ∈ A.
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C1
C2

C ′
1 C ′

2

Figure 2.6 Left: C1 and C2. Right: C ′
1 and C

′
2.

(d) Write down a formula for F−1 : B → A.

(9) Let X be a compact set, and suppose {Uα}α∈I is a collection (not necessarily
finite, or even countable) of open sets so that

X ⊂
⋃

α∈I
Uα.

Show that we can find a finite subset J ⊂ I so that

X ⊂
⋃

β∈J

Uβ.

(This is really the definition of compactness; the “definition” we gave in the text
should actually be a theorem.)



Chapter 3
The Euler Characteristic and
Identification Spaces

3.1 Triangulations and the Euler Characteristic

The goal of this chapter is to describe a useful homeomorphism invariant of surfaces
known as the Euler characteristic. In order to do that, we need to discuss the notion
of a triangulation of a surface.

Beforewe define a triangulation rigorously, let us explain intuitivelywhat it is. The
idea is to subdivide a surface S into patches, or faces, that are “triangularly shaped”
and overlap in a controlled manner. Here is an example. Let S be the sphere S

2.
Of course there is no way to divide the smooth, round sphere into planar triangular
patches. Instead, we use a homeomorphism as follows. Let T be the surface of a
regular tetrahedron. Then T is homeomorphic to a sphere, and suppose f : T → S

2

is such a homeomorphism. Now, T has four vertices, six edges, and four faces, and
we can look at the images of these on the sphere. These divide the sphere up into
four regions (the image of the faces), which are triangular in the sense that each
face is delimited by three curves (the images of the edges) which intersect at the
images of the three vertices. The homeomorphism f together with the regions and
their boundaries created by the images of the faces, edges, and vertices is what we
will call a triangulation of the sphere.

Remark 3.1 When we refer to a face in a polyhedron, we will always mean the
closed face, so that it includes the edges and vertices on its boundary.

There are many ways to triangulate a surface. For example, another triangulation
of the sphere is provided by the surface of a regular octahedron O (see Figure3.1),
because we can again take a homeomorphism f : O → S

2 and map to the sphere its
faces, edges, and vertices. Some common properties shared by this triangulation and
the previous triangulation are:

• The image of every face is bounded by the images of exactly three edges and is
homeomorphic to a disk.

• The intersection of any two faces is empty, a single vertex, or a single edge.
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Figure 3.1 An octahedron.

• The intersection of any two edges is empty or a single vertex.

We will define a general triangulation of a surface to be the image, under a
homeomorphism, of a domain that admits a subdivision into triangular faces such
that these three properties hold. To be precise:

Definition 3.2 Let S be a surface, let P be a polyhedron, and let f : P → S be
a homeomorphism. We say that f is a triangulation if it satisfies the following
properties:

• Every face of P has exactly three edges and is homeomorphic to a closed disk.
• The intersection of any two faces of P is empty, a single vertex, or a single edge.
• The intersection of any two edges of P is empty or a single vertex.

Remark 3.3 Note that the choice of homeomorphism f is not used in the definition
of a triangulation. That is, if f : P → S is some triangulation, and g : P → S is
any other homeomorphism, then g is also a triangulation. Thus it is the subdivision
of S into “triangularly shaped” patches with the correct intersection properties that
counts, and not the shape of the patches.

Remark 3.4 In practice, wewill tend to think of a triangulation by drawing edges on
a surface S with the correct intersection properties, rather thanmapping a polyhedron
to S.

We have seen a few examples of triangulations of spheres so far, so now let us
look at some nonexamples of triangulations to see what can go wrong.

Nonexample A homeomorphism f from a cube to a sphere is not a triangulation,
because the faces of a cube are bounded by four edges rather than three. We can fix
this problem by dividing each face of the cube (each square) into two triangles by
drawing a diagonal edge. The resulting figure is then a triangulation.
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Figure 3.2 Dividing the
sphere into two triangles (N
and S) like this is not a
triangulation, because the
triangles intersect at all three
edges.

N

S

Figure 3.3 This can never
be a piece of a triangulation.

Nonexample If we break the sphere into two faces, the northern and southern hemi-
spheres, and we break the equator up into three edges, the resulting figure is not
a triangulation: the two faces intersect at three edges, which is not allowed. See
Figure3.2.

Nonexample Consider the subdivision of the torus into two regions: one is a small
triangle, and other is the rest of the torus. This is not a triangulation, for two reasons.
First, the two regions intersect at three edges, which is not allowed. Second, the large
region is not homeomorphic to a disk (or at least, it does not appear to be).

Nonexample Two faces cannot meet in only part of an edge. So, the configuration
shown in Figure3.3 cannot be part of a triangulation.

We would like to use triangulations in order to determine a homeomorphism
invariant for surfaces. But the problem is that surfaces can have many different trian-
gulations. Thus, we want to find a number that we can calculate from a triangulation
that still somehow doesn’t depend on the choice of triangulation.

Let us look carefully at a few different triangulations of the sphere. The easiest
information we can get out of a triangulation is the number of vertices, edges, and
faces it has, so let us tabulate those.

• The tetrahedron is a triangulation of the sphere, and it has 4 vertices, 6 edges, and
4 faces.
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Figure 3.4 An icosahedron.

Table 3.1 Vertices, edges,
and faces of various
triangulated polyhedra.

Polyhedron Vertices Edges Faces

Tetrahedron 4 6 4

Octahedron 6 12 8

Cube 8 18 12

Icosahedron 12 30 20

• The octahedron has 6 vertices, 12 edges, and 8 faces.
• The cube is not a triangulation, but we can modify it to become one. The cube has
8 vertices, 12 edges, and 6 faces. However, in order to make it into a triangulation,
we need to draw a new edge on each face, thereby dividing each face into two new
faces. As a result of this operation, we increase the edge count and face count each
by 6, yielding 8 vertices, 18 edges, and 12 faces.

• The icosahedron (a regular 20-sided polyhedron; see Figure3.4) has 12 vertices,
30 edges, and 20 faces. It is a triangulation of the sphere.

We collect our data in Table3.1. A pattern pops out: the number of vertices (V )
minus the number of edges (E) plus the number of faces (F) is always equal to 2.
Or, more succinctly,

V − E + F = 2.

This formula is one of Euler’s most famous results.
We can compute a similar quantity for any compact surface: we first triangulate

the surface, count the number of vertices, edges, and faces, and then compute V −
E + F .

Definition 3.5 Let S be a compact surface, and let T be a triangulation of S. Let
V , E , and F denote the number of vertices, edges, and faces, respectively, of T . We
call the quantity V − E + F the Euler characteristic of S (with respect to T ), and
we write

χT = V − E + F.
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Note that, at the moment, χT might depend on the choice of triangulation of T .
Our goal in the next section will be to show that this is not the case: χT is the same
for all triangulations T of a fixed compact surface S.

3.2 Invariance of the Euler Characteristic

In this section, we will prove the following theorem:

Theorem 3.6 Let T and T ′ be two triangulations of a compact surface S. Then
χT = χT ′ .

Proof Our strategy for proving Theorem3.6 will be to take two triangulations T and
T ′ of S and produce a new triangulation T ′′, which is a refinement of both T and T ′.
We will then show that χT and χT ′ both equal χT ′′ which of course implies the truth
of the theorem.

When we say that T ′′ is a refinement of T , this is what we mean:

Definition 3.7 Let T1 and T2 be triangulations of S. We say that T2 is a refinement
of T1 if every face of T1 is a union of faces of T2.

In order to start the proof of Theorem3.6, we need to show that any two triangu-
lations T and T ′ of S share a common refinement T ′′. To do this, superimpose T and
T ′ on S. The result will not in general be a triangulation, perhaps for several reasons.
First, two edges can intersect at points other than vertices. When this happens, we
add new vertices at the intersection points. Furthermore, the faces might not be tri-
angles: they might be polygons with more than three sides. When this happens, we
draw more edges to break these faces into several smaller ones, in just the way we
did to turn the cube into a triangulation of the sphere. The result of these operations
is the common refinement.

We will now analyze the common refinement to show that χT and χT ′ both equal
χT ′′ . The hope is that any refinement of T or T ′ can be built up using a succession
of steps in which we add one vertex at a time. In this way we obtain a sequence
of triangulations T = T0, T1, T2, . . . , TN = T ′′ where each Tk is a refinement of
Tk−1 and contains exactly one additional vertex, as well as a certain number of
additional edges connecting this vertex to the original vertices and a certain number
of additional faces resulting from subdividing the original faces.1 There are in fact
only two possibilities for where a vertex v can go, and what it can be connected to:

(1) v can be in the interior of a face f of T . In this case, we must draw edges
connecting v to each vertex of f in order to obtain a new triangulation whose
vertices consist of the vertices of T together with v. See Figure3.5 for a picture.

1This isn’t exactly true, but it is true that we can find a further refinement of T ′′′ of T ′′ such that
T ′′′ can be obtained this way, even though T ′′ might not be one of the intermediate triangulations.
We will not dwell further on this point, but see if you can convince yourself of this fact.
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Figure 3.5 Here we have
added a new vertex in the
middle of a face f and
connected it (the red edges)
to all the vertices of f .

(2) v can be on an edge e of T . If T is a triangulation of a compact surface S, then
e is an edge of exactly two faces f1 and f2. Now, f1 and f2 each have three
vertices, two of which are the vertices of e, so they each have one additional
vertex, say v1 and v2. Furthermore, v1 and v2 must be distinct, or else f1 and f2
would have an illegal intersection type. In order to create a triangulation whose
vertices are the vertices of T together with v, we must draw edges connecting
v to v1 and to v2, where these edges must lie inside f1 and f2, respectively. See
Figure3.6 for a picture.

Our final taskwill be to show thatwhenwe add a vertex to a triangulation, theEuler
characteristic of the triangulation is unchanged. Therefore we will have χTk = χTk−1

for every k, and thereforeχT = χT ′′ as desired. To seewhy this is so, wemust analyze
both of the scenarios above and count the number of vertices and faces before and
after adding the vertex. So let us suppose that Tk−1 has V vertices, E edges, and F
faces. Let Tk be the triangulation obtained by adding a new vertex v.

(1) If v is in the interior of a face f of Tk−1, then Tk has V + 1 vertices. The edges
are the same as the edges of Tk−1, together with the three new edges connecting
v to the vertices of f , so Tk has E + 3 edges. The faces of Tk are the same as
the faces of Tk−1, except that we have replaced f with three smaller faces. The
effect of this is that we have lost one face of Tk−1 and introduced three new ones,
so the number of faces of Tk is F + 2. Hence

χTk = (V + 1) − (E + 3) + (F + 2) = V − E + F = χTk−1 .

(2) If v is on an edge e of Tk−1, then Tk has V + 1 vertices again. The edges are now
the same as the edges of Tk−1, except that we have removed e and replaced it
with two smaller edges, and we also introduced the two new edges connecting
v to v1 and v2 as above. Hence Tk has E + 3 edges again. Finally, both f1 and
f2 have been split into two smaller faces, so Tk has F + 2 faces. Once again, we
see that χTk = χTk−1 .

�

Remark 3.8 There are several technical steps we are skipping in this last argument
about common refinements. For example, it could be the case that some pair of edges
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Figure 3.6 Here we have
added a new vertex in the
middle of an edge e and
connected it (the red edges)
to the other vertices of the
neighboring faces.

intersect infinitely many times but are still not the same edge. In order to fix this,
we will want to deform one of the triangulations a little bit so that this no longer
happens. Try to convince yourself that this can be done!

Since we now know that the Euler characteristic of a surface S does not depend
on the choice of triangulation, we can write χ(S) for the Euler characteristic of S.

3.3 Identification Spaces

Now that we have defined the Euler characteristic and seen that it is an invariant of
a surface, we would like to be able to calculate it for different types of surfaces. Of
course, we know already that χ(S2) = 2. At the moment, it isn’t very easy to go
beyond this, because it is quite hard to visualize a triangulation of, say, a torus and
count the vertices, edges, and faces. (But try and see if you can do it!)

In order to address this limitation, we will develop an easier way to work with
surfaces—essentially by drawing them in the plane! To illustrate what we have in
mind, let us use the torus as an example. The torus is a surface, so we know that every
point of the torus has a small neighborhood that is homeomorphic to part of the plane
(the definition of a surface!). But how do we get the whole torus to be part of the
plane? We can do this by cheating a bit—but the “cheat” we’ll use will actually end
up being a rigorous mathematical operation. First, cut the torus along a circle, as in
Figure3.7. Once we have made this cut, we stretch out the cut torus into a cylinder.
Then we make a cut along a line connecting the top and bottom of the cylinder and
unroll it. The result is a rectangle, as we can see from looking at Figure3.8.

We can go the other way too. If we start with a rectangle, we can glue one pair of
opposite sides together to create a cylinder, and then we can glue the top and bottom
of the cylinder to create a torus. In other words, we get a torus by gluing pairs of
opposite sides of a rectangle.

Remark 3.9 Wewere a little bit sloppy when we talked about gluing opposite sides
together, because we could glue them in either orientation. When we create a torus,
we glue the top edge and the bottom edge in such a way that the left side of the top
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Figure 3.7 If we cut along
the curve α, the red loop, we
can stretch the resulting
figure into a cylinder.

α

Figure 3.8 If we cut along
the blue line, we can unroll
the resulting figure into a
rectangle.

Figure 3.9 A rectangle as
an identification space for a
torus.

edge is glued to the left side of the bottom edge, but we could have switched it and
glued the left side of the top edge to the right side of the bottom edge instead. This
will be very important in the near future. In order to be unambiguous about which
way to glue, we will draw arrows on the sides to specify the gluing direction, as
shown in Figure3.9.

The object we have created—a rectangle with edges that are meant to be glued
together—is the planar representation of the torus that we had in mind. It is an
example of an identification space which can be defined in general as follows.

Definition 3.10 An identification space (or ID space) is a polygon in R
2 along with

instructions for gluing edges together.
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Figure 3.10 An
identification space aaa−1,
sometimes called the dunce
cap.

Figure 3.11 Another
interesting identification
space.

Exercise 3.11 Consider the ID space shown in Figure3.10. For what sort of figure
is this an ID space? Is it a surface?

Exercise 3.12 Consider the ID space shown in Figure3.11. For what sort of figure
is this an ID space? Is it a surface? Cutting up pieces of paper is encouraged!

Let us introduce some notation that will make it easier to describe ID spaces.
Supposewe have an ID spacewhose underlying space is a polygon P . Each identified
edgewill be labeled by a different lowercase letter. Pick somevertex v ∈ P , and travel
around the boundary of the polygon (in either direction), starting from v. If we travel
along an edge labeled “e” (say) in the direction indicated by the arrow, then we write
down an e; if we travel in the wrong direction, then we instead write e−1. Continue
in this manner until we get back to v.

Example The ID space for a torus can be written as aba−1b−1, and the ID space in
Exercise3.12 can be written as aba−1b−1cdc−1d−1.

3.4 ID Spaces as Surfaces

Two important questions that we must address are: (1) given a compact surface S,
can we always obtain an ID space representation for it; (2) supposing we have an



40 3 The Euler Characteristic and Identification Spaces

ID space as defined in Definition3.10, how can we tell whether it is an ID space for
a surface or a surface with boundary? The answer of the first question is yes—this
involves systematically cutting S into triangular faces and assembling these into an
ID space. We’ll see how this is done in the next chapter. The second question is
interesting to ponder, because we have just seen some examples of ID spaces that
are not surfaces amongst the examples above.

Here’s another reason why this is an interesting question. Consider the ID space
for the torus that we constructed earlier, namely the square with opposite sides glued
together as shown in Figure3.9. Call it S.We can show that only part of the definition
of a surface is satisfied. That is, we can show that for every p ∈ S there is an open set
U containing p that can be mapped homeomorphically to an open set in the plane.
To see this, consider the following three cases.

(1) If p belongs to the interior of S, then the condition is trivially satisfied.
(2) If p belongs to an edge of S but is not a corner of S, then we define an open

neighborhood of p to be the union of the open half-disk containing p and the
open half-disk containing the point p′ on the opposite edge that is meant to be
glued to p. Note that, as far as the topology of the torus is concerned, this union
of two open half-disks is identical to the open disk from Case (1) because of
the gluing instructions that come with S. Thus we can also easily map the glued
union of open half-disks to the plane.

(3) If p is a corner of S, then we define an open neighborhood of p to be the union of
four open quarter-disks at the four corners of S. Note that, as far as the topology
of the torus is concerned, this union of open quarter-disks is identical to the open
disk from Case (1) because of the gluing instructions that come with S. Thus we
can also easily map the glued union of open quarter-disks to the plane.

Therefore we can show that every point in S has an open neighborhood that can be
mapped to the plane, provided we are allowed to decide what “open” means. But we
have not exhibited S as a set of points in R

3 (or any other R
n), nor have we shown

that our open sets are of the form O ∩ S where O is an open set in R
3.

Well, the fact is that we cannot do this. Thus S is not a surface as we have defined
it in Chapter1. However, S is an example of an abstract surface. This is a “two-
dimensional” topological space that exists in its own right, without reference to an
ambient space such asR

3. To define it, we need amore general notion of a topological
space than merely a subset of R

n , which was our earlier preliminary definition of a
topological space.

3.5 Abstract Topological Spaces

Roughly speaking, a topological space is a set together with some notion of what it
means for a subset to be considered open. The precise definition is as follows:
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Definition 3.13 A topological space is a set S together with a collection T of
subsets of S (called the open sets in S) so that

• ∅, S ∈ T .
• If A is any set and {Sα}α∈A is a collection of subsets of S indexed by A, so that
each Sα ∈ T , then

⋃
α∈A Sα ∈ T .

• If S1, S2, . . . , Sn ∈ T , then
⋂n

i=1 Si ∈ T .

We call T a topology on S.

Remark 3.14 It is possible to put many different topologies on a set S. In particular,
if S = R

n , then the open sets of someexotic topologyneednot satisfy the ball property
that we discussed in Chapter1.

When we translate these into statements about open sets, these properties are
saying the following:

• The empty set and all of S are open sets.
• The union of any collection of open sets is open.
• The intersection of a finite collection of open sets is open.

These are the properties of open sets that we proved in Proposition1.5. Hence, R
n

with the usual definition of open sets is a topological space, as is any subset of R
n

with the notion of (relatively) open sets we discussed in Chapter1. However, there
are many other topological spaces out there, which do not live inside of R

n , some of
which are of paramount importance in other areas of mathematics.

Example The most important topology in algebraic geometry is the Zariski topol-
ogy. We describe only a simple case here, that of the Zariski topology on the set C

of complex numbers. We define the open sets to be the empty set ∅, and the comple-
ments of finite sets. Let us verify that this is a topology. We must check first that ∅

andC are open.∅ is open becausewe said it is, andC is open because its complement
is ∅, which is finite. Now we must check that unions of open sets are open sets. Let
us suppose {Uα}α∈A is a collection of open sets. We now have two cases. If all the
Uα’s are ∅, then so is their union, which is open. If at least oneUα is nonempty, then
it is the complement of a finite set. Taking the union with all the rest of the Uα’s can
only make the complement smaller, so the union is still the complement of a finite
set. Finally, we must check that if U1, . . . ,Un are open, then so is their intersection.
If some Ui = ∅, then so is their intersection. Otherwise, suppose that their comple-
ments contain a1, . . . , an elements. Then the complement ofU1 ∩ · · · ∩Un contains
at most a1 + a2 + · · · + an elements, which is still finite. Hence the Zariski topology
on C is a topology. The reason that the Zariski topology is important in algebraic
geometry is that its closed sets are exactly the roots of polynomials.

Example Let p be a prime. Then we can put an interesting new topology, based on
divisibility by p, on the set Z of integers. We define open balls first, and then declare
the open sets to be exactly the unions of open balls. For an integer n and an integer
r ≥ 0, we define An,r to be {m ∈ Z : m − n is divisible by pr }. Note that the balls
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get smaller as r increases; as a result, we could consider writing 1/r in place of r .
Check that unions of these balls define a topology on Z, called the p-adic topology.
It is the starting point for the delightful p-adic numbers Zp—and its friends—and is
the right setting for much of number theory; see [Gou97] for a good starting point
on the subject.

For an abstract surface, there are also several other technical conditions that we
must impose to make them into things that could be embedded into some R

n . We
relegate discussion of those to AppendixA.

3.6 The Quotient Topology

One particularly important type of topology is called the quotient topology, which is
just the thing we need for ID spaces.

Definition 3.15 Let S be a topological space with topology T , and let ∼ be an
equivalence relation on S. We define a topology, called the quotient topology, on the
set S/ ∼ of equivalence classes modulo ∼ as follows: let p : S → S/ ∼ be the map
that takes an element of S to its equivalence class modulo ∼. Then we define a set
U ⊂ S/ ∼ to be open if p−1(U ) ∈ T , i.e. if p−1(U ) is an open set of S.

This is relevant for ID spaces, because they are defined to be sets of equivalence
classes. For example, we can view the torus, in its ID space form, as being the square
[0, 1] × [0, 1] of its ID space, modulo the equivalence relation that points on the left
side are equivalent to points on the right side, and similarly with top and bottom sides.
To set this up as an equivalence relation, we declare that (a, 0) ∼ (a, 1) and (0, b) ∼
(1, b). The only other equivalences we allow are the trivial ones (a, b) ∼ (a, b).
For (a, b) in the interior (0, 1) × (0, 1) of the square, a small disk in (0, 1) × (0, 1)
centered at (a, b) is an open neighborhood of (a, b). But for (a, b) on an edge or
vertex of a square, a neighborhood looks a little different, as shown (in the case of
an edge) in Figure3.12.

Similarly, we can view a circle as a quotient of the closed interval [0, 1], by saying
that 0 ∼ 1, and the only other equivalences are a ∼ a for a ∈ [0, 1].

We now look at the quotient topology for ID spaces and surfaces. An open set in
an ID space is just what you expect it to be: a set U is open if, for any point x in the
ID space, U contains a small open disk around x . However, if the open set hits an

Figure 3.12 A
neighborhood (shown in
green) of a point on the edge
of the square, under the
quotient topology that turns
it into a torus.
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edge of the ID space, then it must continue on, out the other side: the topology does
not “know” that is being drawn as an ID space. (It only “knows” about the open sets,
not about how it’s being drawn on the page.)

Exercise 3.16 Given an ID space, how can you tell whether it is an ID space for a
surface or a surface with boundary?

3.7 Further Examples of ID Spaces

Let us look at the ID spaces for several other surfaces, starting with the sphere. The
ID space represented by abb−1a−1 is a sphere, as shown in Figure3.13.

What else can we do with a square? One possibility is to create a surface with
boundary by gluing two opposite edges, so that we obtain a cylinder. Amore exciting
possibility is to glue two opposite edges with a twist: first we glue the left and right
edges, and then we glue the top part of the left edge to the bottom part of the right
edge. In doing so, we obtain a surface with boundary called a Möbius strip (see
Figure3.14). We can represent this as an ID space as abac.

Exercise 3.17 If you haven’t played with Möbius strips before, do so! For example,
how many boundary curves are there? What happens when you start drawing a path
through the middle of the strip? What happens when you cut along this path? Can
you figure out more cool properties of the Möbius strip?

We can obtain two more surfaces without boundary from a square as follows. The
first is called the Klein bottle and is denoted by K. We can get our hands on this
in one of two ways: either we take a cylinder and identify the boundary circles in

Figure 3.13 An ID space
for a sphere.

Figure 3.14 AMöbius strip.
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Figure 3.15 Here is a
representation of a Klein
bottle inside R

3, with some
self-intersections. It can be
embedded in R

4 without any
self-intersections.

opposite directions (rather than in the same direction—which would give us a torus);
or we can take a Möbius strip and identify pairs of points on the boundary curve.
(How exactly? Exercise! Hint: try to see what is going on with a piece of paper.)
Either way, the resulting ID space can be written as abab−1. This space cannot be
embedded into R

3 without self-intersections, although it can in R
4. See Figure3.15

for a picture in R
3 with some self-intersections. One can buy glass Klein bottles like

it online from http://www.kleinbottle.com/.
The second additional surface without boundary obtainable from the square is

called the projective plane and is denoted by RP
2, for reasons to be explained in the

next chapter. RP
2 can be written in ID space notation as abab, although it also has

an even simpler ID space description as aa. This space cannot be embedded into R
3

without self-intersections, although it can in R
4. See Figure3.16 for a picture with

some self-intersections. This figure is known as Boy’s surface.

Exercise 3.18 Convince yourself that the two ID space descriptions abab and aa
of RP

2 are homeomorphic.

Why is Boy’s surface a representation of RP
2? Start with the ID space abab for

RP
2, and split b into two edges, which we’ll call b and c. Thus RP

2 has a hexagonal
ID space labeled abcabc, as shown in Figure3.17.We nowbring the a edges together,
rotating one of them in the process. That creates one of the bulbs in Boy’s surface.We

http://www.kleinbottle.com/
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Figure 3.16 Here is a
representation of RP

2 inside
R
3, with some

self-intersections. It can be
embedded in R

4 without any
self-intersections.

Figure 3.17 A hexagonal
ID space for RP

2.

Figure 3.18 Suppose
opposite sides are identified,
so that this figure is an ID
space for a torus. This is not
a triangulation, because the
vertex in the middle of the
left side should be identified
with a vertex in the middle of
the right side.

get the other two bulbs by bringing together the two b edges and the two c edges. The
fact that there are three pairs of edges to glue gives the surface a threefold symmetry.
See https://www.mathcurve.com/surfaces.gb/boy/boy.shtml for an animation of the
process of folding the hexagon into Boy’s surface.

Exercise 3.19 Try playing chess on the square ID spaces of a torus, Möbius strip,
projective plane, sphere, and Klein bottle.

3.8 Triangulations of ID Spaces

One nice thing we can do with ID spaces is to draw triangulations on them. In order
to do that, we just subdivide the polygon in question into triangles. When we then
glue the polygon’s edges together, we obtain a triangulation on the resulting surface.
However, it is possible for things to go wrong with this approach if we apply it
naïvely. For example it might happen that the intersection of two faces is not of the
desired type. (See Figure3.18 for an example of something that can go wrong.)

https://www.mathcurve.com/surfaces.gb/boy/boy.shtml
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Exercise 3.20 Draw an allowable triangulation on an ID space for a torus. What is
its Euler characteristic?

Exercise 3.21 Draw an illegal “triangulation” on an ID space for a torus (i.e. one
where we have the wrong type of face intersections). Count the vertices, edges, and
faces of this “triangulation.”What is the “Euler characteristic” for this triangulation?
Is it the same as the actual Euler characteristic of a torus? Can you explain what is
going on?

3.9 The Connected Sum

One useful operation when studying surfaces and other topological spaces is the
connected sum.

Definition 3.22 Let S1 and S2 be two surfaces.We define their connected sum S1#S2
as follows: Choose open disks U1 and U2 inside S1 and S2, respectively, and let T1
and T2 denote S1 \U1 and S2 \U2, respectively. Now, glue T1 and T2 together by
identifying the boundaries ofU1 andU2. The resulting surface is the connected sum.

Exercise 3.23 Show that, up to homeomorphism, S1#S2 is independent of the
choices of open disks U1 and U2, and also of the orientations of the boundaries
along which we glue.

Example A two-holed torus is the connected sum of two ordinary tori. Similarly, a
three-holed torus is the connected sum of a torus and a two-holed torus, and so forth.

Exercise 3.24 If S is a surface, what is S#S
2?

Remark 3.25 We tend to think of the connected sumoperation as being analogous to
multiplication for integers. By the previous exercise, we know that doing a connected
sum with a sphere (spoiler alert!) doesn’t change the surface, so the sphere acts like
1. Furthermore, we have a notion of primes for surfaces: a surface S is prime if
whenever we have S = S1#S2, then one of S1 and S2 is a sphere (and also S is not
a sphere). This is the start of a very deep connection between topology and number
theory; see [Mor12] for a book-length treatment on one aspect of this fascinating
connection.

Remark 3.26 We call a g-holed torus a surface of genus g.

Exercise 3.27 Let S and T be two surfaces. Can you express χ(S#T ) in terms of
χ(S) and χ(T )? What is the Euler characteristic of a surface of genus g?

It is also useful to understand how connected sums work in terms of ID spaces.
Let us suppose we have ID spaces for two compact surfaces S and T , and let us
suppose that they are represented by polygons P and Q, respectively, with some
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P

Q

�

Figure 3.19 The connected sum of two ID spaces.

edge identifications. Here is one way of drawing an ID space for S#T : Pick vertices
vP and vQ of P and Q, respectively. Then vP and vQ are each adjacent to two edges
of their respective polygons. Pick points on each of those adjacent edges, which are
close to vP or vQ , and draw an edge between those two points. Then remove the new
triangle formed. We now have two new edges, one on each of the mutilated original
polygons, which are not identified with any other edges. So, identify them with each
other. (See Figure3.19.)

Remark 3.28 Let e be an edge adjacent to vP , and let e′ be the edge in P that is
identified with e. After we cut out the triangle around P , we have to change the
identification between the new e and e′, since e is now a little bit shorter. The same
thing holds for the other modified edges.

Exercise 3.29 Solve Exercise3.27 using the ID space interpretation of connected
sums.

Exercise 3.30 Is RP
2#RP

2 a surface we have already studied? If so, which one is
it?

3.10 The Euler Characteristic of a Compact Surface with
Boundary

So far we have only looked at Euler characteristics for compact surfaces. However,
we can also define the Euler characteristic for compact surfaces with boundary. They
are defined in the same way as before: If S is a surface with boundary, we can show
that S is homeomorphic to a compact surface with a finite number of open disks
removed. Using this, we can show that S has a triangulation consisting of a finite
number of triangles. Thus we can count the numbers V , E , and F of vertices, edges,
and faces, and define the Euler characteristic as χ(S) = V − E + F . Furthermore,
χ(S) remains independent of the choice of triangulation.



48 3 The Euler Characteristic and Identification Spaces

Exercise 3.31 What is the Euler characteristic of a closed disk in R
2?

Exercise 3.32 Suppose a surface with boundary S is equal to a compact surface S′
from which a finite number n of open disks have been removed. Express χ(S) in
terms of χ(S′) and n.

3.11 Problems

(1) Draw a triangulation of a torus, and compute the Euler characteristic. Use this
computation to explain why the torus and the sphere cannot be homeomorphic.

(2) Suppose we drop the restriction in a triangulation that the intersection of two
faces or edges can only be an edge, a vertex, or nothing, but we allow it to be
perhaps a union of several of these. Draw an invalid triangulation of a torus that
only fails to be valid in this respect, and compute the Euler characteristic now.
What happens?

(3) Prove that if we divide a surface up into polygons that might not be triangles
and try to compute the Euler characteristic by counting the vertices, edges, and
faces, then we get the same result as we do by triangulating.

(4) (a) Suppose we perform our connected sum in two different ways. Let S1 and
S2 be connected surfaces. Let A be the connected sum you get when you
perform the procedure described in Section3.9 by removing disks containing
the points p1 ∈ S1 and p2 ∈ S2. Let A′ be the connected sum you get when
you perform the procedure above by removing disks containing completely
different points p′

1 ∈ S1 and p′
2 ∈ S2. Argue that A is homeomorphic to A′.

(b) Prove that χ(S1#S2) = χ(S1) + χ(S2) − 2.
(c) Let S be any surface. Show that χ(S) = χ(S#S

2). Is this reasonable?
(d) Show that the “orientable surface of genus g” (the connected sum of g tori)

has Euler characteristic equal to 2 − 2g.
(5) (a) Explain how the ID-space aba−1b−1cdc−1d−1 physically becomes a surface

that looks like two tori joined together, by drawing the results of performing
the gluings in the following order:
(i) Glue together the a’s and the c’s.
(ii) Observe that the two remaining b’s and two remaining d’s are now

closed loops.
(iii) Glue together the b’s and the d’s.

(b) Using a similar procedure, determine what sort of surface you get from the
ID-space aba−1dcb−1c−1d−1.

(6) What sort of object is the ID-space represented by aaa or by aaa−1? Are these
objects surfaces? Can they be visualized as something that lives in R

3?
(7) Is an ID-spacewith an even number of oriented edges, identified in pairs, always

a surface?
(8) Compute χ(RP

2) and χ(K) using triangulations of ID-spaces.
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(9) Show that, in any triangulation of the sphere where each vertex has at least 5
edges, there are at least 20 faces.

(10) Consider the following variation of the connected sum of two tori. Start out by
removing disks in each torus. Before gluing the tori together along the boundary
circles, reverse the orientation of one of the circles. What surface do you end
up with?



Chapter 4
Classification Theorem of Compact
Surfaces

4.1 The Geometry of the Projective Plane and the Klein
Bottle

Wenow take a small diversion to discuss some interesting properties of the projective
plane and theKlein bottle that we introduced in the previous chapter. Recall that these
are abstract surfaces that exist in their own right, without reference to an embedding
space like R3, but which nonetheless are locally homeomorphic to open sets in the
plane.
The Projective Plane.We start by presenting another way of describing the projec-
tive plane. Consider the set of all lines through the origin in R

3. It turns out that we
can make a sort of space out of this set (which will turn out to be RP2) as follows.
Since the origin is on all these lines, and every other point is on exactly one of them,
it makes sense to throw out the origin and look at R3 \ {(0, 0, 0)}. Now we consider
two nonzero points (a, b, c) and (a′, b′, c′) to be the same if they lie on the same
line. Alternatively, we can rephrase this condition by saying that points (a, b, c) and
(a′, b′, c′) are considered the same if there is some (nonzero) number λ ∈ R so that
a′ = λa, b′ = λb, and c′ = λc. In this way, each point of R3 \ {(0, 0, 0)} is glued to
many other points inR3 \ {(0, 0, 0)}. Now the “space of all lines” that we’re studying
becomes R3 \ {(0, 0, 0)} but with points glued like this.

Remark 4.1 We can use the language of equivalence relations introduced in
Chapter2 to define this spacemore rigorously. Define a relation onR3 \ {(0, 0, 0)} by
(a, b, c) ∼ (a′, b′, c′) if and only if a′ = λa, b′ = λb, and c′ = λc for some nonzero
λ ∈ R. It turns out that∼ is an equivalence relation onR3 (exercise). An equivalence
class of ∼ is a line through the origin in R3, but with the origin removed (exercise).
So the set of lines through the origin in R

3 is the set of equivalence classes of ∼,
which we denote as Q for now. The set Q inherits a topology from the topology on
R

3, thanks to the quotient topology. Namely: A set of equivalence classes in Q is
open if the union of all lines represented by these classes is an open set in the usual
sense in R3.
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So now we have made a topological space out of the set of all lines through the
origin in R

3. We now show that this space is in fact an abstract surface. To see this,
note that for every line � through the origin, we can find some point (a, b, c) on �

with length 1: a2 + b2 + c2 = 1. Well, actually two points—both (a, b, c) and its
antipodal point (−a,−b,−c). All these points form a sphere in R

3, and the rela-
tion (a, b, c) ∼ (a′, b′, c′) if and only if (a′, b′, c′) = (a, b, c) or (−a,−b,−c) is an
equivalence relation. If we now define RP2 as the set of equivalence classes (which
we can think of as the sphere with antipodal points glued together and representing
the same point), then this RP2 becomes a surface under the quotient topology. Fur-
thermore, we have a natural map from the space of lines to RP

2, by sending � to
(a, b, c) or (−a,−b,−c), that takes open sets of lines to open sets inRP2. (Exercise:
think this through.)

Now pick a point � in the space of all lines through the origin (i.e. pick a line
through the origin in R

3). This line � corresponds a point (a, b, c) ∈ RP
2 accord-

ing to the procedure above. A small open neighborhood of (a, b, c) is equivalent
to two small neighborhoods on the sphere—one around (a, b, c) and one around
(−a,−b,−c). Furthermore, these neighborhoods are in correspondence with an
open neighborhood of lines containing �. Now, because the sphere is a surface, each
of these neighborhoods can be mapped to an open neighborhood of the plane. Thus
we obtain a mapping from a neighborhood of lines to a neighborhood of RP2 to a
pair of neighborhoods in S

2 to a pair of neighborhoods in R
2. We have an abstract

surface!

Exercise 4.2 Show that an ID space representation for this version of RP2 is aa.
Thus, it is the same as the version of RP2 introduced in Chapter3.

Remark 4.3 There are also more general projective spaces RPn , which are spaces
of lines through the origin inRn+1. Another description ofRPn is that it’s the quotient
of an n-dimensional sphere by the equivalence relation that equates antipodal points.

Exercise 4.4 What is RP1?

RP
2 is awonderful setting for doing geometry: There is a notion of a line, and it has

the advantage over Euclidean geometry that any two lines intersect at a point: there
are no parallel lines! Many classical theorems of geometry, such as Pascal’s hexagon
theorem, are really theorems about projective geometry and are best understood
inside RP

2, because in this setting we can avoid annoying special cases involving
parallel lines. We invite the interested reader to look into the beautiful subject of
projective geometry; see for instance [Cox94].
The Klein Bottle. The Klein bottle is closely related to the Möbius strip. In fact, we
can cut a Klein bottle into a Möbius strip, as is shown in the ID-space diagram in
Figure4.1: cutting the top/bottomhorizontal edge leaves aMöbius strip. Furthermore,
if we make two parallel cuts on the Klein bottle, we obtain a Möbius strip and a
cylinder, as in Figure4.2.
An Important Relationship.An important relationship betweenRP2 andK is given
in the following proposition. Its proof shows the usefulness of surface triangulations!
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Figure 4.1 An ID space for the Klein bottle. If we cut along the top (or, equivalently, bottom)
edge, we obtain a Möbius strip.

Figure 4.2 This is what happens when we make two parallel cuts (the solid line at the top/bottom,
and the dashed lines in the middle, which together form one line) in the Klein bottle: we obtain a
Möbius strip and something homeomorphic to a cylinder.

Proposition 4.5 The surfaces RP2#RP2 and K are homeomorphic.

Proof We know that RP2 is homeomorphic to the ID space abab and that K is
homeomorphic to the ID space cdcd−1. The sequence of “cut and paste” operations
shown in Figure4.3 shows that the ID spaces ofRP2#RP2 andK are in fact the same.

�

RP
2

RP
2

Figure 4.3 The cut-and-paste operations showing that RP2#RP2 = K.
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4.2 Orientable and Nonorientable Surfaces

The Möbius strip, the Klein bottle, and the projective plane are examples of nonori-
entable surfaces (or nonorientable surfaces with boundary in the former case). In
this section, we will define this notion more carefully.

The orientability of a compact surface or surface with boundary will be a boolean
topological invariant—either a surface S is orientable or it is nonorientable; and this
remains true for the image of S under any homeomorphism. One intuitive way to
define this notion is by means of the “number of sides” that a surface embedded in
R

3 has. Take any such surface S and pick a point p ∈ S. Let’s assume that S is in fact
a very thin three-dimensional shell rather than an idealized, infinitesimally thin, two-
dimensional membrane. Now pick a side of this shell at p and start painting it blue
near p. Keep painting such that every new place you paint is physically reachable
from a place that you’ve already painted. At some point, you will not be able to reach
any unpainted parts of the shell. At this point you ask: have you painted the whole
shell? If your shell is spherical and has two distinct sides, the answer is no. If your
shell is the Möbius strip and has only one distinct side (boundary edges don’t count)
then the answer is yes. No means orientable, and yes means nonorientable!

The previous intuitive definition can actually be made rigorous in the case of
surfaces embedded in R

3. It requires a notion of “side,” i.e. for every p ∈ S there
is a neighborhood in R

3 containing p that can be subdivided into two subsets of
R

3 which we designate the “interior” and the “exterior” sides. We can encode the
sidedness of S by defining a unit normal vector for each p ∈ S. This is a vector of
length one that is orthogonal to the tangent plane of S—and note that S must be a
smooth surface! The region into which the normal vector points is the “exterior.”
Now, S will be called orientable if it is possible to define this normal vector in a
consistent and continuous way. More precisely:

Definition 4.6 A smooth, i.e. differentiable, compact surface S with or without
boundary embedded in R

3 is said to be orientable if there exists a continuous way
to assign a unit normal vector at each p ∈ S. If no such assignment exists, then S is
nonorientable.

Unfortunately, the preceding definition is not suitable for all the surfaces that we
will encounter in this book. Certainly, we would have to modify this definition for
non-smooth surfaces. But what about abstract surfaces for which an embedding into
R

3 is not given? It is still possible to define orientability in these cases, but we must
proceed differently. To formulate a new definition, which is still equivalent to the old
one, we proceed as follows. For each p ∈ S we define an orientation. An orientation
is an assignment of a small set of coordinate axes at p, where we decide what is the
x-axis and positive x-direction, as well as the y-axis and the positive y-direction.
Note that there are precisely two kinds of systems of coordinate axes: right-handed
ones and left-handed ones. With a right-handed coordinate system, the “right-hand
rule” describes the positive x-axis turning into the positive y-axis, whereas with
a left-handed coordinate system, the “left hand rule” describes the positive x-axis
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Figure 4.4 The Möbius
strip is nonorientable,
because the orientation
changes as we travel around
it.

turning into the positive y-axis. Now S will be called orientable if it is possible to
define an orientation in a consistent way. Without loss of generality, this orientation
can be right-handed. More precisely:

Definition 4.7 A smooth compact surface S—with or without boundary—is said to
be orientable if there exists a continuous way to assign a right-handed orientation at
each p ∈ S. If no such assignment exists, then S is said to be nonorientable.

Exercise 4.8 This alternate definition seems less “mathematical” than the first.
Although even in the first definition (Definition4.6), we haven’t defined rigorously
what it means for a normal vector to be assigned continuously. Both of these defini-
tions are nevertheless perfectly rigorous. Can you explain how?

Remark 4.9 There is a simple way to detect the failure of orientability of a surface:
the existence of an orientation-reversing curve. This is a non-trivial, continuous,
closed curve γ ⊆ S (one that starts and ends at a single point p ∈ S and traverses a
path that includes points other than p) uponwhich the following phenomenon occurs.
Pick a direction in which to walk away from p along γ, and assign a right-handed
orientation to each point on γ by assigning the positive x-axis to the direction you’re
moving and the positive y-axis to the side of the curve on your left. Now, eventually
you will come back to p—and you might find that the positive y-axis has changed
sides! See Figure4.4 to see a path that changes the orientation on a Möbius strip.

Exercise 4.10 Find orientation-reversing curves on the Klein bottle and projective
plane.

Exercise 4.11 Let S be an orientable surface and let S′ be a nonorientable surface.
What can we say about the orientability of S#S′?

Exercise 4.12 Let S be a smooth, compact surface embedded in R
3. Argue that

given a continuous assignment of orientation as in Definition4.7, we get a continuous
assignment of normal vector as inDefinition4.6, and vice-versa. In otherwords, argue
that these two definitions are equivalent in the case of smooth, embedded, compact
surfaces.

Now that we have defined orientation, albeit in a somewhat non-rigorous fash-
ion, we must establish that orientability and non-orientability are homeomorphism
invariants.
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Theorem 4.13 Let S, S′ be compact surfaces with or without boundary and let
φ : S → S′ be a homeomorphism. Then S is orientable (or nonorientable) if and
only if S′ is orientable (or nonorientable).

We can’t prove this theorem rigorously at this point, but we can at least sketch the
idea. If S is nonorientable, then there is a curve γ in S so that when we start with a
right-handed orientation and travel along γ, we eventually end up with a left-handed
orientation. Now, φ will drag γ to some curve γ′ in S′, and γ′ will also switch a
right-handed orientation in S′ to a left-handed orientation.

The reason that this is not completely rigorous is that we don’t really know any-
thing yet about what φ does to γ at a global level. So, how can we be so sure that it
isn’t possible to find a homeomorphism such that γ′ is orientation-preserving, even
though γ is orientation-reversing? There are ways of dealing with this issue, mostly
involving coming up with more technical definitions of orientability that are more
conducive to proving theorems, but they would take us too far off course here. To
point you in the right direction as you go through the rest of the book, orientability
can be defined cleanly in terms of homology; once we have defined homology, you
will immediately notice the difference between the top-dimensional homology of a
Klein bottle and that of a torus.

4.3 The Classification Theorem for Compact Surfaces

In the material we have covered so far in this book, we have defined two invariants—
the Euler characteristic and orientability—that are sufficiently powerful to classify all
compact surfaces without boundary up to homeomorphism. In other words, we first
define an equivalence relation on the set of all compact surfaces without boundary by
saying that two surfaces are equivalent if and only if there exists a homeomorphism
between them. Then we are able to prove that every equivalence class of surfaces can
be uniquely described by two numbers: the Euler characteristic and the orientation
bit (i.e. 1 if S is orientable and 0 otherwise). Moreover, for each equivalence class,
we can specify a natural representative that has these two numbers. We will prove
this in the remainder of this chapter. This is an important mathematical result with
a long history. Perhaps Möbius first attempted a proof of this in [Möb61], but his
proof was flawed. The first correct proof seems to have been given by Brahana in
1921 in [Bra21].

Theorem 4.14 (Classification of Compact Surfaces without Boundary) Let S be a
connected compact surface without boundary. Then S is homeomorphic to exactly
one of the following surfaces:

• The sphere S2, which is orientable and has Euler characteristic χ = 2.
• A connected sum of g tori, which is orientable and has Euler characteristic χ =
2 − 2g.
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• A connected sum of g projective planes, which is nonorientable and has Euler
characteristic χ = 2 − g.

Therefore the homeomorphism type of S can be determined by knowing only the
Euler characteristic and orientation bit of S.

Exercise 4.15 Why don’t the surfaces of type

T# · · · #T#RP2# · · · #RP2

appear on this list? Are these surfaces orientable?

Exercise 4.16 Where is the Klein bottle on this list?

For completeness, we state the classification of compact 1-manifolds, which are
the 1-dimensional analogue of surfaces:

Theorem 4.17 Let M be a compact connected 1-manifold, possibly with boundary.
Then M is homeomorphic to the closed interval [0, 1], or to a circle.

We do not give a proof of this here. Instead, we refer the reader to David Gale’s
paper [Gal87] for an elementary proof.

4.4 Compact Surfaces Have Finite Triangulations

In the previous section, we stated that one of the invariants used in the classification
theorem is the Euler characteristic. However, so far we do not necessarily know how
to compute Euler characteristics for all compact surfaces. The problem is that we
have defined the Euler characteristic in terms of triangulations. Thus, in order to
guarantee that Euler characteristic makes sense for all compact surfaces, we need to
show that every compact surface admits a triangulation.

Theorem 4.18 Let S be a compact surface. Then S has a triangulation into finitely
many triangles.

This theorem is not easy to prove, and we will skip the proof here. You can
find a relatively elementary—but rather long and intricate—proof in Thomassen’s
paper [Tho92].

It is worth pointing out that Theorem4.18 is not nearly as obvious as it seems.
While it is true for surfaces, and also for 3-dimensional manifolds broken up into
tetrahedra, it is false in higher dimensions. Freedman in [Fre82] provided an example
of a 4-dimensional manifold that is not triangulable, and Manolescu in [Man16]
proved that there are also examples in all dimensions ≥5.
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4.5 Proof of the Classification Theorem

The proof of the classification theorem uses the ID space representation of a surface.
Therefore, we have to begin by showing that every connected compact surface is
homeomorphic to an ID space consisting of a polygon of some finite number 2N of
sides that are identified in pairs. We can argue, as follows, that this is true. First,
apply Theorem4.18 to the compact surface S to decompose it into a union of cells
{T1, . . . , TN } that satisfy all the properties of a valid triangulation given in the last
chapter. Label each edge on S with a unique identifier a1, . . . , aM , and transfer these
labels to the appropriate edges of all the Ti . Thus, each identifier is used exactly twice
as a label among the edges of all the Ti ’s. Also, for each i , there is a planar triangle
T ′
i that is homeomorphic to the cell Ti . Let us label the edges of the T ′

i ’s using the
same labels as the Ti ’s.

At this point, we have already shown that S is homeomorphic to an ID space—
namely the union of all triangles T ′

1, . . . , T
′
N whose edges are identified according to

the assignment of labels we have made. However, this ID space isn’t a polygon! To
get a polygon, first start by choosing any two triangles in {T ′

1, . . . , T
′
N } that have an

edge with the same label, and gluing them together along the labeled edge, as shown
in Figure4.5. Now we have an ID space for S consisting of N − 2 triangles and one
lozenge. Now keep repeating this process until there are no triangles left. Every time
you add a triangle, a pair of commonly labeled edges disappears. Thus the process
terminates in a polygon with 2N boundary edges identified in pairs.

Wewill nowprove the classification theoremby applying cut-and-paste operations
to this ID space until we have an equivalent ID space that we recognize as one of the
three different kinds of surfaces listed in the theorem. The following five steps allow
us to reach this goal.

Step 1. We start with an ID space S, orient its boundary, and name its distinct
edges as a1, a2, a3, . . . , aM for some M . Note that each ai appears twice in S with
either the same orientation or the opposite orientation. If it’s the case that ai appears
with a−1

i , then we say that the edge ai is of Type I. If it’s the case that ai appears
with ai or a

−1
i appears with a−1

i , then we say that the edge ai is of Type II.
The first step of the proof of the classification theorem is to remove adjacent Type

I edges. That is to say, if we find that two edges of S are labeled aia
−1
i or a−1

i ai for
some i , then we can apply the “folding away trick” used in the previous cut-and-paste

Figure 4.5 Converting two triangles into a lozenge. The red edges have the same label and can
thus be glued.
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Figure 4.6 The cut-and-paste operations for Step 2.

Figure 4.7 The cut-and-paste operations for Step 3.

proof giving a homeomorphism betweenRP2#RP2 andK, to show that S is identical
to the ID space obtained from S by simply removing the pair of edges ai and a

−1
i .

Note that it may be possible to collapse S all the way down to a single aa−1 pair.
Of course we can’t go any further, but no matter: aa−1 is the ID space for the sphere
S
2. Thus S is homeomorphic to S2 in this case.
Step 2. If we reach this stage, we now have an ID space S with no adjacent Type I

edges. But it may be the case that not all of the vertices of the ID space are identified
under the gluing instructions. (Exercise: give an example!) The second step of the
proof of the classification theorem is to replace S with an equivalent ID space where
all vertices are identified. (Exercise: give an example of a ID space with all vertices
identified!)

Given the above, we can apply an inductive sequence of steps to S that allows us
to replace S with an equivalent ID space where all vertices are identified with each
other. To see how, suppose that there are at least two distinct vertices P and Q that
appear i and j times, respectively, in S. Now apply the sequence of cut-and-paste
operations shown in Figure4.6, and obtain an equivalent ID space where P and Q
appear i − 1 and j + 1 times. We continue to apply these operations until no P’s are
left. (Exercise: What happens at the end?)

Step 3. Next, we show that all Type II edges of S can be made adjacent. The
sequence of cut-and-paste operations given in Figure4.7 achieves this. If we do this
for all Type II edges, we are in a situation where S looks like S′#RP2# · · · #RP2 for
some other ID space S′ and some number (possibly zero, if there were no Type II
edges to begin with) of projective planes. Note that it may be the case that S′ isn’t
there, so S is homeomorphic to RP2# · · · #RP2 in that case.

Step 4. If we reach this stage, we now have

S = S′#RP2# · · · #RP2

(or perhaps no RP
2’s), and S′ contains only Type I edges. By Step 1, none of these

edges are adjacent. Moreover, it is a consequence of Step 2 that, for every pair of
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Figure 4.8 We show that in Step 4, there must be an edge of A identified with an edge of B.

Figure 4.9 The cut-and-paste operations for Step 4.

Type I edges in S′, there is a second pair of Type I edges in S′ that separates them.
To see this, suppose not: there is some pair of Type I edges c that do not separate
any pair of Type I edges. Then, in Figure4.8, every edge in Amust be identified with
another edge in A, and every edge in B must be identified with another edge in B.
But then the two endpoints of c are not identified, contradicting Step 2, where we
arranged for all the vertices to be identified.

Now the fourth step of the proof of the classification theorem is to show that every
such quartet of Type I edges in S′ can be put into torus order. This is achieved by
applying the sequence of cut-and-paste operations shown in Figure4.9.

Step 5. Once we reach this stage, we have

S = T# · · · #T#RP2# · · · #RP2

for some number of each factor (possibly zero factors of one kind but not of both
kinds). The remaining step is to show the following: If there is one RP

2 factor in
S then S can be re-arranged to have only RP

2 factors. It thus suffices to show
that T#RP2 is homeomorphic to RP

2#RP2#RP2. There is a similar cut-and-paste
argument for doing this. We leave this step as Problem9.

This concludes the proof of the classification theorem. �
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4.6 Problems

(1) Prove the following rephrasing of the Classification Theorem:

Any compact surface can be obtained from a sphere in a unique way by first doing a
connect sum with some number of tori, and then doing a connect sum with either zero,
one, or two projective planes.

(2) Determine which pairs of the following surfaces are homeomorphic to one
another:

(a) T#T#T#RP2

(b) T#T#K#RP2

(c) T#K#K#RP2

(d) K#K#K#RP2

(e) T#T#RP2#RP2

(f) T#T#T#K

(g) K#(RP2)5 (5 copies of RP2)

(h) T#T#T#T

(i) T#T#RP2#RP2#RP2

(3) Show that it is not possible to subdivide the surface of a sphere into regions, each
of which has six sides, such that any two regions have no more than one side in
common.

(4) Suppose we have a sphere that is divided up into regions by n great circles, no
three of which intersect in a common point. How many regions is the sphere
divided into?

(5) Let S1 be a surface (either orientable or not, perhaps with boundary) and let S2
be a nonorientable surface (perhaps with boundary). Show that S1#S2 is nonori-
entable.

(6) Let S be a compact surface with boundary.

(a) Argue that the boundary of S consists of a finite collection of circles. Argue
that it is possible to “cap off” each of these circles with a disk, and the object
S′ that results from this process is a compact surface.

(b) Using these ideas, determine a formula for the Euler characteristic of S in
terms of that of S′ and the number of boundary circles of S.

(c) Extend the classification theorem to compact surfaces with boundary. To see
how, take a surface with boundary and use the “capping off” procedure to
obtain a compact surface S′. Now use the original classification theorem to
determine all the possibilities for S′. Now, what happens when you remove
the disks? Try to formulate a clear statement and outline a proof, even if you
cannot supply all details.

(7) Let S be a compact surface of Euler characteristic χ ≤ 0. Let N = 1
2 (7 +√

49 − 24χ); N is a root of the equation 6(1 − χ/N ) = N − 1.

(a) If we have a polygonization (like a triangulation, but with polygons instead
of triangles) P of S with V vertices, E edges, and F faces, then show that
E ≤ 3(F − χ).
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(b) Show that 2E < 
N�F . Conclude that there is some region with fewer than

N� edges.

(c) Show that it is possible to color the faces of P with at most 
N� colors so
that any two adjacent regions are colored differently. (The result is also true
whenχ = 1, but the proof is different. The result is also truewhenχ = 2, but
the proof is much harder: this is the infamous Four-Color Theorem proven
in [AH77] and [AHK77]. This is also best possible except in the case of the
Klein bottle, where only 6 colors are needed rather than 7.)

(8) Are the following two surfaces homeomorphic?

Imagine trying to classify noncompact surfaces.Whatmight such a classification
look like? Can you guess what the statement of this theorem might look like?
What difficulties arise?1

(9) Consider the surfaces T#RP2 and RP
2#RP2#RP2. In order to complete the

classification of compact surfaces, we must show that they are homeomorphic.
Show that this is true by using an ID-space rearrangement.

1In case you are curious, a complete description of the classification of noncompact surfaces can
be found in [Ric63].



Chapter 5
Introduction to Group Theory

5.1 Why Use Groups?

So far, in order to understand topological spaces, we have been using numerical
invariants such as the Euler characteristic in order to detect whether spaces are
homeomorphic or not. However, there is a wide class of other invariants, which
associate other sorts of objects to spaces. For the next few chapters, we will build
up to the fundamental group, and then we will work on understanding its behavior.

At this point, it would be reasonable to wonder why we would bother looking for
more invariants of topological spaces now that we have already completely classified
compact surfaces. There are many reasons to do this, but let us focus on two at the
moment:

(1) Compact surfaces turn out to be uncommonly easy to classify, because they can
be completely described only by their Euler characteristic and orientability. But
if we look at different classes of topological spaces, for example 3-dimensional
manifolds, then the situation is far more complicated, and the set of invariants
needed to classify them is quite a bit longer. The classification of 3-manifolds
was only recently more-or-less resolved, with Perelman’s proof of Thurston’s
Geometrization Conjecture in [Per02, Per03b, Per03a]. As a result, if we wish to
figure out whether topological spaces that aren’t just surfaces are homeomorphic
or not, we need a wider range of tools. In general, it will not be possible to write
down a complete invariant for interesting classes of topological spaces. This
statement can be made into a precise theorem, but that’s far beyond the scope of
this book; see [Mar60].

(2) The Euler characteristic does not give us verymuch insight into the possible rela-
tionships between two spaces. For example, if we have two surfaces S and S′ and
a continuous function from S to S′—which need not be a homeomorphism—
what can we say about the Euler characteristics of S and S′? Or, if we know
the Euler characteristics of S and S′, can we say something about the map?
The answer here is, more or less, no. There is one theorem, due to Riemann
and Hurwitz (see [Mir95, Theorem 4.16]), which gives us a small amount of
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information, but the relationship is rather weak. Other invariants allow us to say
interesting things about maps between spaces as well as just the spaces them-
selves. A modern theme in mathematics, pioneered by Grothendieck, Eilenberg,
and Mac Lane, and others (see for instance [EML45]), is that we can best under-
stand mathematical objects not in isolation, but based on their maps to and from
other similar types of objects.

5.2 A Motivating Example

Let us start with a square S in the plane. What are the rigid motions of the plane
that send the square to itself? That is, what are the distance-preserving functions
f : R2 → R

2 for which f (x) ∈ S for every x ∈ S? One could count these, and we
will do so later, but for now let us instead look at the properties that such functions
have.

LetG be the set of such functions. InsideG, there is a special element: the element
that takes every point back to itself. This element is called the identity. If we pick any
two elements σ, τ ∈ G, then we can investigate what happens when we first apply σ
and then apply τ . If we start with a point x ∈ S, then σ(x) ∈ S. But since σ(x) ∈ S,
we also have τ (σ(x)) ∈ S. Hence the composition of σ and τ , written τσ, is also an
element of G. We think of τσ as the “product” of τ and σ. Note, however, that τσ
need not be the same as στ . For example, if σ is a rotation by π/2 counterclockwise
and τ is a reflection about the y-axis, then στ and τσ are not the same. (Convince
yourself of this!)

If we multiply the identity by any element σ (in either order), we just end up
with σ again. This is the basic property of the identity. If we have any element
σ ∈ G, we can “undo” the effect of σ: there is some element, called σ−1, so that
σ−1σ(x) = x . In this case, multiplying in the reverse order also has the same effect:
σσ−1(x) = x as well. We call σ−1 the inverse of σ. For example, if σ is a rotation
by π/2 counterclockwise, then σ−1 is a rotation by π/2 clockwise.

Finally, if we have three elements ρ,σ, τ ∈ G, then consider the elements (ρσ)τ
and ρ(στ ). These two elements are actually the same: (ρσ)(τ (x)) = ρ(στ (x)) for
all x ∈ S, because this is always true of compositions of functions. This is called the
associative property, or associativity. It tells us that we can unambiguously compute
threefold (or higher) products of elements by chaining together, in the correct order,
a sequence of pairwise products.

5.3 Definition of a Group

We are now ready to introduce the notion of a group. A group, roughly, is an object
that satisfies all the properties that G had in the above example. More precisely, we
have the following definition:
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Definition 5.1 A group is a pair (G, ·), where G is a set, and · : G × G → G is a
binary operation, satisfying the following three properties:

• (Identity property.) There is some element e ∈ G so that, for any g ∈ G, e · g =
g · e = g.

• (Inverses.) For any g ∈ G, there is an element g−1 ∈ G so that g · g−1 = g−1 · g =
e.

• (Associativity.) If g, h, k are any three elements ofG, then g · (h · k) = (g · h) · k.
Remark 5.2 Frequently, we suppress the · formultiplication and just write gh rather
than g · h. However, if we use a different notation for the group multiplication, such
as “+” (which we will frequently do), then we do not suppress the symbol for the
operation. Also, we will generally refer to a group as G, rather than the pair (G, ·),
when it is clear from context what the appropriate operation is.

Theorem 5.3 Let G be a group. Then g has a unique identity element.

Proof Let us suppose that G has two elements e and e′ that both satisfy the identity
property. Then consider the element e · e′. On the one hand, the identity property for
e states that e · g = g for any choice of g ∈ G. In particular e · e′ = e′. On the other
hand, the identity property for e′ states that g · e′ = g for any choice of g ∈ G. In
particular e · e′ = e. Hence we have e = e′. �

Theorem 5.4 Let G be a group, and let g be an element of G. Then g has a unique
inverse.

Proof SinceG is a group, we know that g has at least one inverse. Let us suppose that
it has two, say h and k. Then consider the element h(gk). Since k is an inverse of gwith
gk = e, this element is equal to he = h. However, by associativity, h(gk) = (hg)k.
Now, since h is also an inverse of g with hg = e, this element is equal to ek = k.
Hence this element is equal to both h and k, so h = k. Thus these two supposedly
different inverses were actually the same. �

5.4 Examples of Groups

We now take the opportunity to introduce several important groups and collections
of groups, as well as give some nonexamples of groups.
Elementary Examples. We first rephrase the very familiar sets of “ordinary num-
bers” in the language of groups.

Example The integers (Z,+) form a group under the operation of addition. The
identity is e = 0, and the inverse of n ∈ Z is −n. Similarly, the rationals (Q,+) and
the real numbers (R,+) form groups under addition.
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Nonexample The integers (Z,×) under multiplication do not form a group. The
only possible identity element is e = 1, but then there are no inverses: for example,
there is no integer x so that 2x = 1, so 2 does not have an inverse. Similarly, the
rational numbers (Q,×) under multiplication do not form a group, because there is
no inverse for 0.

Example But the rational numbers under multiplication come close to forming a
group: 0 is the only element without an inverse. Hence the nonzero rationals, denoted
Q

× and pronounced “Q star,” do form a group under multiplication. Similarly, the
nonzero real numbers form a group under multiplication. There are other closely
related groups to these: for example, the positive rational or real numbers under
multiplication also form groups. The negative ones do not!

The Integers Modulo n. We now define a very important group, denoted Z/nZ,
where n is a positive integer. The set of elements here is the integers, except that we
consider two integers to be the same if they leave the same remainder upon division
by n. For example, 1 and 7 leave the same remainder upon division by 6, so they are
the same element in Z/6Z. We call Z/nZ the integers modulo n.

Remark 5.5 We can rephrase the construction of Z/nZ in terms of an equivalence
relation. We put an equivalence relation ∼ on Z by saying that a ∼ b if a − b is a
multiple of n. (Exercise: Verify that this is an equivalence relation!) Then the set of
Z/nZ is the set of equivalence classes of the equivalence relation ∼.

How many elements are there in Z/nZ? Well, if we start with any integer k, we
can divide k by n and end up with some remainder between 0 and n − 1; that is, we
have k = qn + r for some integers q and r with 0 ≤ r ≤ n − 1. Then k is equal to r
in Z/nZ. Furthermore, all the numbers from 0 to n − 1 are different in Z/nZ. Hence
Z/nZ consists of exactly n elements, which we can think of as being the integers
from 0 to n − 1.

Some notation will be convenient here: If two numbers a and b correspond to the
same element of Z/nZ, then we write a ≡ b (mod n). This is equivalent to saying
that a − b is a multiple of n.

Now let us see how to make Z/nZ into a group, under addition. If we take two
elements x and y of Z/nZ, we can pretend that they are normal integers and add
them together, and we would end up with some integer x + y. Since x + y may now
be larger than n, we then reduce x + y modulo n. Thus we define + in Z/nZ as
x + y (mod n). We have to be a little bit careful though: Does this definition really
make sense?

What could go wrong? Let us suppose that, instead of picking x and y in Z

that reduce to the desired elements of Z/nZ, we chose other integers x ′ and y′ that
are equivalent to x and y in Z/nZ, i.e. x ≡ x ′ (mod n) and y ≡ y′ (mod n). Is
x ′ + y′ ≡ x + y (mod n)? It has to be, in order for our group operation to make
sense!

Exercise 5.6 Show that if x ≡ x ′ (mod n) and y ≡ y′ (mod n), then x + y ≡ x ′ +
y′ (mod n).
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Exercise 5.7 What is the identity and what are inverses in Z/nZ?

As a result of these exercises, addition in Z/nZ makes sense, and Z/nZ under
the operation of addition forms a group.

Remark 5.8 The notation for the integers modulo n might look strange, but it is an
example of a general construction of groups called quotient groups. We will see in
Chapter7 how to define quotient groups in general. There is also another notation
for the group of integers modulo n, written Cn , which stands for “the cyclic group
of order n.” We will also soon see what a cyclic group is.

Multiplication Tables. Sometimes, it will be important to be able to define group
operations, not by having general rules for how to multiply two elements, but rather
by just listing all possible products of the elements. To do this, we can write down
tables for the products of all pairs of elements in a set and check that this does in fact
give us a group structure. Let us show an example, of a group with four elements,
which we call a, b, c, d.

× a b c d
a a b c d
b b a d c
c c d a b
d d c b a

(5.1)

We read this table just like we would read an ordinary multiplication table. For
example, the entry in the c row and the b column (which in this case is d) is the
product cb.

It won’t be very fun, but it is possible to check that the operation × on the set
{a, b, c, d} as described by (5.1) satisfies all the properties needed to be a group.
This group is called the Klein 4-group, or the Vierergruppe. This is the same Klein
as the one responsible for the Klein bottle.

Exercise 5.9 What is the identity in this group? What are the inverses of all the
elements?

Exercise 5.10 Show that, in any group multiplication table, every element appears
exactly once in each row and each column.

Dihedral Groups. Let us now return to the motivating example above: the rigid
motions preserving a square. This is a group called D4, where the D stands for
“dihedral.”More generally, the group of rigid motions of a plane preserving a regular
n-gon is called Dn . These are important examples of groups, but we will defer their
discussion until Section5.5.

Exercise 5.11 How many elements does Dn have?

SymmetricGroups.Another important family of groups consists of the permutations
of all the elements of some set. Let us consider the set Xn = {1, 2, 3, . . . , n}. Let Sn
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denote the set of all ways of rearranging the elements of Xn . There are n! elements
of Sn .

We would like to put a group structure on Sn . To do so, we view a permutation
of Xn as a bijective function σ : Xn → Xn from Xn to itself. In this interpretation,
multiplication of two permutations is the same as composition of two bijective func-
tions. The identity permutation is the same as the identity function. The inverse of a
permutation is the same as the inverse of the function representing that permutation.
This set-up is perhaps best illustrated with an example. Let us suppose n = 4, and
let us take two elements of S4: σ will be the element that puts X4 into the order
1432, and τ will be the element that puts X4 into the order 3421. This means that, as
functions, σ and τ behave as follows:

σ(1) = 1 σ(2) = 4 σ(3) = 3 and σ(4) = 2

as well as

τ (1) = 3 τ (2) = 4 τ (3) = 2 and τ (4) = 1 .

We can write these identities in more concise notation as

σ =
(
1 2 3 4
1 4 3 2

)
, τ =

(
1 2 3 4
3 4 2 1

)
.

By inspection, we can read off the inverse functions as

σ−1(1) = 1 σ−1(4) = 2 σ−1(3) = 3 σ−1(2) = 4

as well as

τ−1(3) = 1 τ−1(4) = 2 τ−1(2) = 3 τ−1(1) = 4 .

Rearranging these identities, and using our concise notation, yields

σ−1 =
(
1 2 3 4
1 4 3 2

)
, τ−1 =

(
1 2 3 4
4 3 1 2

)
.

Note that σ = σ−1 (this also implies σ2 = 1). This is interesting!
With this interpretation in mind, we can now multiply σ and τ in the order στ .

We view this as the composite function σ ◦ τ : Xn → Xn . Consequently, σ ◦ τ (1) =
σ(τ (1)) = σ(3) = 3, and similarly for all other elements in Xn . We obtain

στ =
(
1 2 3 4
3 2 4 1

)
.
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It is useful to write elements of Sn in a different form, called cycle notation. Let
us take a slightly longer example: consider the permutation of X8 given by

σ =
(
1 2 3 4 5 6 7 8
8 2 6 5 7 3 1 4

)
.

Let us now start with 1 and figure out where it goes: it goes to position 8. Now that
we’re focused on 8, let’s figure out where that goes: it goes to position 4. Where does
4 go? It goes to position 5. Where does 5 go? It goes to position 7. And 7? It goes to
position 1. And now we’re back to where we started. So, let us write down the list
of numbers we encountered in that process: (18457). It describes the permutation
that permutes the numbers 18457 in cyclic order. We call this kind of a permutation
a cycle.

Now, the cyclewe just found above doesn’t completely describe the permutationσ
because we still have not investigated the action of σ on the remaining numbers 2, 3,
and6. So, let’s now try the sameprocess starting from2.Thenumber 2goes to position
2, and now we have already looped back. We can write that as a (very short) cycle
though: it’s just (2).Once again,we can repeat the process startingwith 3. Thenumber
3 goes to 6, and then 6 goes back to 3, so we have another cycle (36). If we put all the
cycles together, as (18457)(2)(36), we have completely described the permutation.
This is called the cycle decomposition of the cycle. Notationally, we tend to delete
any cycles of length one, e.g. the cycle (2) in the cycle decomposition we have just
found, because all cycles of length one are really the same: the identity permutation.
Finally, note that we can honestly write σ = (18457)(36) as the multiplication of
two permutations, i.e. the composition of two functions that act by permuting the
numbers inX8. These are the permutations τ1 = (18457) and τ2 = (36). So we have
σ = τ1τ2. Note that τ1τ2 = τ2τ1.

Exercise 5.12 Show that disjoint cycles, i.e. cycles without any common elements,
always commute.

The following type of cycle is especially important:

Definition 5.13 An element of Sn that switches exactly two elements ofXn is called
a transposition.

Abelian Groups.One key property that certain groups have is that any two elements
commute: if a and b are two elements, then ab = ba. If this happens, we say that
the group is abelian. This was named after Norwegian mathematician Niels Henrik
Abel. True fame in mathematics is indicated by having your name made into an
improper adjective.

Example The group Z of integers is an abelian group.

Nonexample The symmetric group Sn is not abelian, because (12) and (23) do not
commute with one another.
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Exercise 5.14 Classify the groups we have looked at so far on the basis of whether
they are abelian or not.

Remark 5.15 Frequently, when we are especially interested in abelian groups, we
write the operation as addition rather than multiplication, we denote the identity by
0 rather than 1, and we denote the inverse of an element g by −g rather than g−1.
This is by analogy with the group of integers under addition.

5.5 Free Groups, Generators, and Relations

So far, all of our examples of groups have been pretty concrete: we have seen cyclic
groups, which can be described in terms of explicit elements, and we have seen
groups such as dihedral groups and symmetric groups, which we have interpreted as
the symmetries of certain objects. These are importantways of thinking about groups,
and many groups naturally arise in this way. However, sometimes we will want to
think of groups in a more abstract way: by describing how certain key elements relate
to each other.

Let us see how we could have described the dihedral group D4 in such a manner.
The first step will be to find several elements in D4 such that every element can
be obtained by multiplying these together; such a set of elements will be called a
generating set. One possibility is to take all the elements of D4 as a generating set.
This is perfectly valid, but it isn’t very efficient. In order to state how all the elements
relate to each other, we would need to write down an entire multiplication table,
which has 64 entries.

We do better by choosing two elements, which we call ρ and σ. We let ρ be
rotation by π/2 in the counterclockwise direction, and we let σ be a reflection about
the y-axis. Every element of D4 can be written as a product of powers of ρ and
powers of σ, possibly with many repetitions. (Exercise: Why?)

However, just specifying that we can build D4 out of products of ρ and σ is not
enough: that doesn’t tell us, for example, that σ2 is the identity. So, we also need
to specify certain identities that these two elements satisfy; in this case, the three
relations

σ2 = e, (5.2)

ρ4 = e, (5.3)

σρ = ρ−1σ (5.4)

are enough to specify all the group behavior. (Exercise:Why do these relations hold?)
From this information, how can we list all the elements of the group? First, let

us see what a typical element of D4 should “look like” in terms of ρ and σ. Since
every element is expressible in terms of them, this means that we can write a typical
element as
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ρa1σb1ρa2σb2 · · · ρanσbn ,

for some integers ai and bi (which might be zero). However, we can simplify such
an expression using the rules (5.2)–(5.4). For example, if any ai is at least 4, we can
replace it with ai (mod 4), which we interpret as being an integer between 0 and 3.
Similarly, if any ai is negative, we can replace it with an integer between 0 and 3.
The same thing holds for the powers of σ, except that now we can replace a power
of σ by either σ0 = e or σ1 = σ. If any exponents are 0, then we can remove those
terms and shorten the expression.

The relation (5.4) allows us to do even more: If we ever have a σ before a ρ, then
we can switch the order, at the cost of replacing the ρwith a ρ−1. So, we can simplify
the expression by forcing all the ρ’s to come before all the σ’s. Hence every element
can be expressed as one of the following eight:

e, ρ, ρ2, ρ3,σ, ρσ, ρ2σ, ρ3σ.

Let us note that there are other groups that have generating sets {ρ,σ} satisfying
(5.2)–(5.4). For example, in the trivial group G = {e}, we can take both ρ and σ to
be e, and then they clearly satisfy (5.2)–(5.4). But D4 is in some sense the “best”
group described in this way: it satisfies those relations, and no others that do not
automatically follow from them.

Let us now look at groups described in this way more generally. Let G be a group,
and let S be a generating set for G—i.e. every element of G can be expressed as a
product of elements in S, possibly with many repetitions. We call the elements of
S generators. Let R be a set of identities in the elements of S that are satisfied in
G—so that a group generated by the set S subject to the identities in R is forced to
be G or smaller. The elements of R are called relations. The pair (S, R) is called a
presentation for G.

Notation We usually write G = 〈S | R〉 when we want to say that G is a group
generated by the elements S, subject to the relations R. Hence, we can write

D4 = 〈ρ,σ | ρ4 = e,σ2 = e,σρ = ρ−1σ〉.

Example Let us work out some presentations for the symmetric group Sn . There are
many natural choices of presentations, and we will look at two of the most important.
The first one is

Sn = 〈τ1, . . . , τn−1 | τiτ j = τ jτi if |i − j | ≥ 2,

τiτi+1τi = τi+1τiτi+1, τ 2
i = e〉.

In order to interpret this as the symmetric group we are used to, we need to explain
which elements (written in terms of permutations) the τi ’s are. In this case, τi is
the transposition (i, i + 1). (Exercise: Verify that these elements actually satisfy the
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relations we claim they do. Can you show that any σ ∈ Sn can be written as a product
of generators?)

The other important presentation for the symmetric group, with just two genera-
tors, is

Sn = 〈x, y | x2 = yn = (xy)n−1 = e, (xy−1xy)3 = e,

(xy− j xy j )2 = e for 2 ≤ j ≤ �n/2
〉.

In this case, x is the transposition (12) and y is the n-cycle (123 · · · n).
Exercise 5.16 Convince yourself that the first presentation is actually a presentation
for Sn . In the second case, at least convince yourself that x and y generate Sn . You
are encouraged to Play with decks of cards. (Hint: it suffices to check that every
transposition canbe expressed in termsof x and y, because the transpositions generate
Sn .)

Exercise 5.17 What is the shortest presentation you can give for the cyclic group
Z/nZ?

Free Groups and Free Abelian Groups. Some groups have particularly simple
presentations, in that we do not need any relations in their presentation. Such groups
are called free groups.

Example The group Z of integers is a free group. Its presentation is

Z = 〈1 | 〉.

Note that when we specify a free group, we do not put anything after the vertical bar,
because there are no relations. In the case of the integers, we can write everything as
n × 1, for some n. That completely describes the group: we don’t need any further
information to cut it down to the right size. Indeed, any relation must take the form
1 × n = 0 for some n, and that is false in Z for n �= 0.

Example The trivial group is also a free group. It has no generators and also no rela-
tions. Hence we can write {e} = 〈 | 〉. But generally, people do not use this notation.

Free groups with at least two generators have a different feel to them from the
trivial group and the group of integers. Let us consider the free group on two gener-
ators:

F2 = 〈a, b | 〉.

As we saw when discussing the dihedral group, a typical element of F2 has the form

am1bn1am2bn2 · · · amk bnk

for some k and some integers mi and ni . However, unless some mi or ni is equal
to 0, we cannot shorten this expression, as every similar expression corresponds to
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a different element of F2. The situation is completely similar for free groups on
more—and possibly infinitely many—generators.

Free groups with at least two generators are not abelian. However, we have a
notion similar to free groups in the setting of abelian groups: we can have groups
that have no relations other than the ones that are needed to make the groups abelian.
Such a group has the following presentation:

Fab
n = 〈x1, x2, . . . , xn | xi x j = x j xi 〉.

We call Fab
n the free abelian group on n generators, or just a free abelian group.

5.6 Free Products

Let us take another look at the free group F2 on two generators, a and b. We know
that a typical element has the form

am1bn1 · · · amk bnk .

There are two important smaller groups (“subgroups,” which we will introduce for-
mally in the next chapter) inside F2: there is the group of all powers of a, and there
is the group of all powers of b. Each of these looks like a copy of the integers Z. Let
us call these two groups A and B, respectively.

To write a general element of F2, then, we take some element of A, then multiply
it by some element of B, and then we go back to A, and so forth. We can perform
this operation more generally, in the following way. Let G and H be two groups. We
wish to form a new group out of them, as we formed F2 out of A and B. The group
we form is called the free product of G and H , and it is denoted G ∗ H . A typical
element is of the form

g1h1g2h2 · · · gkhk,

for some gi ∈ G and hi ∈ H . (It might also start with an element of H or end with an
element of G.) If we also require that none of the gi and hi are the identity elements
in G and H , respectively, then such a representation is unique.

We can also write down a presentation for G ∗ H in terms of presentations of G
and H . Suppose that G = 〈SG | RG〉 and H = 〈SH | RH 〉. Suppose furthermore that
SG and SH are disjoint. Then we have

G ∗ H = 〈SG ∪ SH | RG ∪ RH 〉.

Remark 5.18 Free products come up naturally when studying fundamental groups;
we’ll see them all over the place shortly. In fact, the study of fundamental groups
is the main reason that people are interested in free products. But one free product
shows up, rather unexpectedly, in number theory: (Z/2Z) ∗ (Z/3Z). Consider the
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group of matrices

SL2(Z) =
{(

a b
c d

)
: a, b, c, d ∈ Z and ad − bc = 1

}
.

The “SL” in the name of this group stands for “special linear,” and the subscript “2”
tells us that we are looking at 2 × 2 matrices. (Exercise: Check that this is a group!)
This group isn’t quite a free product, but it is very close. If we consider the two
matrices A and −A to be the same, similar to what we did to construct Z/nZ from
Z, we obtain a new group: PSL2(Z). The “P” stands for “projective.” Then PSL2(Z)

is the free product of Z/2Z and Z/3Z. Hence, PSL2(Z) has the presentation

〈a, b | a2 = b3 = 1〉.

Here, we can take

a =
(

0 1
−1 0

)
, b =

(
0 −1
1 1

)
.

5.7 Problems

(1) Prove that Z/5Z \ {0} is a group under multiplication modulo 5. Find its multi-
plication table. More generally, for which n is Z/nZ \ {0} a group under multi-
plication modulo n?

(2) Find all possible groups with four elements.
(3) Which of the following are groups? If not, can the set be modified in a simple

way to make it into a group? Which are abelian?

(a) The set of all translations, rotations about the origin and reflections across
arbitrary lines of the plane.

(b) ({Continuous functions on R} ,+) where ( f + g)(x) = f (x) + g(x)
defines f + g.

(c) ({Continuous functions on R} , ·) where ( f · g)(x) = f (x)g(x) defines f ·
g.

(d) The set of 2 × 2 matrices with real entries under matrix multiplication. We
multiply 2 × 2 matrices with the following rule:

(
a b
c d

)(
e f
g h

)
=

(
ae + bg a f + bh
ce + dg c f + dh

)
.

(4) Consider the transformation group G consisting of all isometries of R2—i.e.
consisting of all translations, rotations about an arbitrary point and reflections
across arbitrary lines, along with all their compositions and inverses. If you
would like to have a simple presentation of this group in terms of simple building
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blocks, you would need to work out the commutation relations between different
motions. Let τa denote translation in the direction a ∈ R

2; let ρb,θ denote a
counterclockwise rotation by the angle θ ∈ [0, 2π) about the point b ∈ R

2; and
let πc,m denote the reflection across the line whose slope is m ∈ [−∞,∞) and
that passes through the point c ∈ R

2. We’d like to show that G is generated in
some way by ρ0,θ, τa and π0,0. The standard form you would like to achieve
is g ∈ G can be written g = πε

0,0 ∗ τa ∗ ρ0,θ where ε = 0 or 1, and a ∈ R
2 and

θ ∈ [0, 2π).
(a) Write ρb,θ in terms of translations and ρ0,θ.
(b) Write πc,m in terms of translations, rotations, and π0,0.
(c) How can you commute π0,0 past translations? (In other words: suppose T

is a translation; now what group element g satisfies π0,0 ∗ T = g ∗ π0,0?)
(d) How can you commute π0,0 past rotations?
(e) What happens when you encounter πk

0,0 where k ≥ 2?
(f) Describe the procedure for putting an arbitrary composition of rotations

about points in space, reflections about various lines, and translations into
standard form.

(5) The dihedral group of order n is the group of symmetries of a regular n-gon and
is denoted Dn . Consider the group D4 of symmetries of the square. Let ρ be the
rotation by one quarter turn counterclockwise (i.e. by π/2 radians), and let σ be
the reflection across the horizontal line going through the center of the square.

(a) How many different elements does D4 have?
(b) Write all of these elements in terms of ρ and σ.
(c) Write out a multiplication table for D4.
(d) Is D4 abelian?

(6) Find a group with eight elements (e.g., write down its multiplication table or
construct it from simpler groups) such that every element is its own inverse.

(7) (a) Find the cycle decompositions of
(i) (

1 2 3 4 5 6 7 8 9
6 4 1 3 2 7 9 8 5

)

(ii) (
1 2 3 4 5 6 7 8 9
6 4 5 3 2 7 9 8 1

)

(b) Find the cycle decomposition of the product

(1327)(453)(287)

in S8.
(c) Let τ = (a1, a2, . . . , ak) be a cycle in Sn and let σ ∈ Sn . Show that
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στσ−1 = (σ(a1), . . . ,σ(ak)) .

(d) Now let ρ = c1c2 · · · ck be a product of cycles in Sn . Show that σρσ−1 =
c′
1c

′
2 · · · c′

k , where each c′
i is obtained from ci according to the rule you just

determined.
(e) Let τ = (a1, a2, . . . , ak) be a cycle in Sn . Show that

τ = (a1a2)(a2a3)(a3a4) · · · (ak−1ak) .

In this way, show that every permutation can bewritten as a product of cycles
of length 2.



Chapter 6
Structure of Groups

6.1 Subgroups

This chapter is an introduction to the rich structure possessed by a set endowed with
a group operation. The first notion we will explore is that of subgroups, or subsets
of a group that themselves satisfy all the properties of a group.

Definition 6.1 Let G be a group. A nonempty subset H ⊂ G is called a subgroup
if it is closed under taking products and inverses. In other words:

• If h1, h2 ∈ H , then the product h1h2 ∈ H .

• If h ∈ H , then the inverse h−1 ∈ H .

We will use the notation H ≤ G to denote that H is a subgroup of G. Here are
some elementary properties of subgroups.

Proposition 6.2 Let H ≤ G be a subgroup. Then the following hold.

(1) An alternative defining property for a subgroup is: H is a subgroup if and only
if H is nonempty and h1h

−1
2 ∈ H for all h1, h2 ∈ H.

(2) The identity e belongs to H.
(3) H is a group in its own right.

Proof (1) If H is a subgroup and h1, h2 ∈ H , then we know that h−1
2 ∈ H as well,

and thus that h1h
−1
2 ∈ H by the primary defining properties of a subgroup.Hence

we have established the alternative defining property. Conversely, suppose the
alternative defining property holds and choose any h ∈ H . Then, letting both h1
and h2 be h, we have hh−1 = e ∈ H . Next, by choosing h1 = e and h2 = h, we
know that h1h

−1
2 = h−1 ∈ H . Next, choose h1, h2 ∈ H . Hence h−1

2 ∈ H bywhat
we have just shown. Hence h1h2 = h1(h

−1
2 )−1 ∈ H by the alternative defining

property. In this way, we have established both primary defining conditions.
(2) To show that e ∈ H , we proceed as follows. Pick any h ∈ H and let h1 = h2 = h.

Now, when we apply the alternative defining property, we find that h1h
−1
2 =

hh−1 = e ∈ H , as desired.

© Springer Nature Switzerland AG 2021
C. Bray et al., Algebraic Topology,
https://doi.org/10.1007/978-3-030-70608-1_6

77

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-70608-1_6&domain=pdf
https://doi.org/10.1007/978-3-030-70608-1_6


78 6 Structure of Groups

(3) Finally, H is a group because it contains the identity and inverses of all its
elements, and associativity is inherited from G.

�

It is time to give several examples of subgroups. The order of a finite group or
subgroup is equal to the number of elements it contains.

Example LetG = D3 = 〈σ, ρ | σ 2 = ρ3 = e and σρσ = ρ2〉. A subgroup of order
two is H = {e, σ }. A subgroup of order three is H = {e, ρ, ρ2}. (Exercise: Show
that Proposition6.2(1) holds for each H . What are the other subgroups of D3?)

Example Let G be any group, and let g ∈ G be an arbitrary element. We can build
a subgroup out of g that we denote 〈g〉, namely 〈g〉 = {gn | n ∈ Z}. In other words,
〈g〉 consists of e, all products of g with itself, and all products of g−1 with itself.
This subgroup is called the cyclic subgroup generated by g. If the subgroup 〈g〉 has
order N , then we say the element g itself has order N . (Exercise: Prove that N is the
smallest positive integer such that gN = e.)

Example We can generalize the previous example as follows. Let g1, . . . , gk ∈ G
be elements. Then the set

〈g1, . . . , gk〉 = {products of g1, . . . , gk and their inverses}

is also a subgroup. It is called the subgroup generated by g1, . . . , gk .

Example LetG = D4 = 〈σ, ρ | σ 2 = ρ4 = e and σρσ = ρ3〉. A subgroup of order
four that is not cyclic is H = 〈σ, ρ2〉 = {e, σ, ρ2, σρ2}.
Example Let G = Sn , and let An be the set of all possible products of an even
number of transpositions. (Exercise: Show that An is a subgroup.) We call An the
alternating group. (Exercise: Can you express it in the form An = 〈 · · · 〉?)

6.2 Direct Products of Groups

If the theme of the previous section was finding smaller groups within bigger groups,
the theme of this section is constructing bigger groups from smaller ones. There are
several such constructions in group theory, and we will present only one of these—
which is the most straightforward and ubiquitous of such constructions.

Let G1 and G2 be two groups. We will show that the direct product of G1 and
G2, namely the set of pairs of elements, one from G1 and one from G2, defined by

G1 × G2 = {(g1, g2) : g1 ∈ G1 and g2 ∈ G2},

can be made into a group. To do this, we first must define a binary operation on
G1 × G2. The obvious choice is
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(g1, g2) · (h1, h2) = (g1h1, g2h2)

for any (g1, g2) and (h1, h2) in G1 × G2. Next, we must define an identity element,
and the obvious choice is

e = (e1, e2),

where e1 is the identity in G1 and e2 is the identity in G2. Finally, we must define
inverses, and the obvious choice is

(g1, g2)
−1 = (g−1

1 , g−1
2 )

for every (g1, g2) ∈ G1 × G2.

Remark 6.3 If G1 and G2 have finite orders N1 and N2, respectively, then the order
of G1 × G2 is equal to N1N2.

Proposition 6.4 The set G1 × G2, equipped with the binary operation and the iden-
tity element and inverses as defined above, is a group.

Proof We must show that the group properties of Definition5.1 hold for G1 × G2.
First, wemust show that the putative identity element we have defined truly “behaves
like” an identity element. To this end, let (g1, g2) ∈ G1 × G2 be any element. Then
the computation

e · (g1, g2) = (e1, e2) · (g1, g2) = (e1g1, e2g2) = (g1, g2)

confirms this behavior. Similarly, we must show that the putative inverse element
(g−1

1 , g−1
2 ) truly “behaves like” the inverse of (g1, g2). The computation

(g−1
1 , g−1

2 ) · (g1, g2) = (g−1
1 g1, g

−1
2 g2) = (e1, e2) = e

confirms this. Finally, we must show that the operation · is associative. To this end,
let (g1, g2), (h1, h2) and (k1, k2) be any three elements of G1 × G2. Then the com-
putation

(
(g1, g2) · (h1h2)

) · (k1, k2) = (g1h1, g2h2) · (k1, k2)

= (
(g1h1)k1, (g2h2)k2

)

= (
g1(h1k1), g2(h2k2)

)

= (g1, g2) · (h1k1, h2k2)

= (g1, g2) · (
(h1, h2) · (k1, k2)

)

confirms associativity. We have used the associativity of G1 and G2 to pass from the
second line to the third line above. �
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Example The direct product of Z/2Zwith itself is Z/2Z × Z/2Z = {(0, 0), (1, 0),
(0, 1), (1, 1)}. The group operation is (a1, a2) + (b1, b2) = (a1 + b1 (mod 2), a2 +
b2 (mod 2)). This group is the same as, i.e. isomorphic to (in the language we will
see very soon), the Klein 4-group that we saw in Chapter 5.

Example LetG and H be two groups, and let A ≤ G and B ≤ H be any subgroups.
Then A × B is a subgroup of G × H . (Exercise: Show this. Can you come up with
an example of groups G and H such that G × H has a subgroup that is not of this
form?)

Remark 6.5 Wementioned at the beginning of this section that there are other sorts
of product-like constructions to build new groups out of smaller ones. We won’t
define the others here, but in case you’re interested in learning about them, here
are a few others. There are semidirect products and their generalizations known as
group extensions. Then there are wreath products, which have a rather different feel
to them. All of these notions are discussed in [Rot95, Chapter7].

6.3 Homomorphisms

A general principle in mathematics is that once you have defined an interesting
structure, you should also study the maps that preserve that structure. Thus when
you are studying topology, you should study continuous functions and especially
homeomorphisms. We now consider the types of maps between groups that preserve
the basic structure. These are known as homomorphisms; the homomorphisms that
are bijective are called isomorphisms.

Remark 6.6 Do not get homomorphisms confused with homeomorphisms. Despite
the similarities in the words, they are very different notions. Homomorphisms are
for groups, or more generally for algebraic structures, whereas homeomorphisms are
for topological spaces. In fact, homeomorphisms of topological spaces more closely
resemble isomorphisms of groups. We will see that there are relationships of this
type once we have studied our group-theoretic invariants of topological spaces.

Definition 6.7 Let (G, ·) and (G ′,⊗) be two groups. Then a function f : G → G ′
is said to be a homomorphism if for any g1, g2 ∈ G we have

f (g1 · g2) = f (g1) ⊗ f (g2).

In this way, the function f “preserves the structure” of G and G ′. This is because
themost important structure, the groupmultiplication (themultiplication · ofG on the
left hand side above, and the multiplication ⊗ of G ′ on the right hand side above), is
“respected” by f . In the future, we’ll continue to suppress the multiplication symbol
when convenient, so we’ll write f (g1g2) = f (g1) f (g2).
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Example Let G and G ′ be any groups. Then there is always at least one homo-
morphism from G to G ′—the trivial homomorphism defined by f (x) = e′, where
x ∈ G is arbitrary and e′ is the identity in G ′. (Exercise: Show that f is indeed a
homomorphism.)

Example Let G = G ′ = Z. Group homomorphisms f : Z → Z are of the form
f (x) = nx , where n ∈ Z is a fixed integer. Note that for such a function, we do
indeed have f (x + y) = n(x + y) = nx + ny = f (x) + f (y).

Example Let G = Z and G ′ = Z/2Z, and define f : Z → Z/2Z by

f (x) =
{
1 x is odd,

0 x is even.

This is a homomorphism, because we can show f (x + y) = f (x) + f (y) by con-
sidering even and odd x, y separately; we can also use the fact that the sum of two
even numbers and the sum of two odd number is even, while the sum of an even and
an odd number is odd.

Example Generalizing the example above, define f : Z → Z/nZ by f (x) = x
(mod n). This is a homomorphism; to see this, we must show that x + y (mod n) =
x (mod n) + y (mod n). This follows because we have defined the group Z/nZ in
Chapter5 as the set of equivalence classes of the equivalence relation x ∼ y on Z if
and only if x − y is a multiple of n; and we have defined addition in this group as
ordinary addition of representatives of the classes of numbers, followed by taking
remainders upon division by n. In the next chapter, we’ll see a generalization of this
sort of homomorphism.

Group homomorphisms satisfy several elementary properties.

Proposition 6.8 Let f : G → G ′ be a homomorphism between groups G and G ′.

• f (e) = e′, where e is the identity in G and e′ is the identity in G ′.

• f (x−1) = (
f (x)

)−1
for any x ∈ G.

• If x ∈ G has order n, then f (x) has order at most n.

Proof For the first statement, consider the equalities f (e) = f (ee) = f (e) f (e) that
follow by the homomorphism property. We still don’t know what f (e) is, but since
it belongs to the group G ′, it has to have an inverse ( f (e))−1. Now multiply both
sides of the equality by this inverse; we get

e′ = f (e)( f (e))−1 = f (e) f (e)( f (e))−1 = f (e)e′ = f (e).

For the second statement, we compute

f (x−1) f (x) = f (x−1x) = f (e) = e′.
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This follows from the homomorphism property and from what we have just shown.
So we see that f (x−1) “behaves like” the inverse of f (x). We know from Chapter5
that inverses are unique, so we can conclude that f (x−1) actually is the inverse of
f (x) or, in other words, f (x−1) = ( f (x))−1.
The third statement follows from ( f (x))n = f (xn) = f (e) = e′. We will see a

stronger version of this statement in Chapter7. �

A homomorphism f : G → G ′ between groups G,G ′ is always associated with
two special subgroups, one inside G and the other inside G ′.

Definition 6.9 The kernel of the homomorphism f : G → G ′ is the set

ker( f ) = {g ∈ G : f (g) = e′},

where e′ is the identity in G ′. The image of f is the set

im( f ) = {g′ ∈ G ′ : there exists g ∈ G so that g′ = f (g)} .

The image of f is also denoted f (G).

Proposition 6.10 Let f : G → G ′ be a homomorphism. Then ker( f ) ≤ G and
im( f ) ≤ G ′.

Proof For the first statement, let x, y ∈ ker( f ). Then xy−1 ∈ ker( f ), because

f (xy−1) = f (x) f (y−1) = f (x)( f (y))−1 = e(e−1) = ee = e.

Thus ker( f ) satisfies Proposition6.2(1). Also, ker( f ) is nonempty, because e ∈
ker( f ).

For the second statement, let g, h ∈ im( f ). Then we know that g = f (x) and
h = f (y) for some x, y ∈ G. But now

gh−1 = f (x)( f (y))−1 = f (x) f (y−1) = f (xy−1).

Hence we have succeeded in writing gh−1 in the form required to belong to im( f );
in other words, gh−1 ∈ im( f ). Also, im( f ) is nonempty, because for any x ∈ G,
f (x) ∈ im( f ) and G is nonempty. Thus im( f ) also satisfies Proposition6.2(1). �

The kernel and the image of f characterize the degree to which f fails to be
bijective in the following sense. Consider injectivity first. If f (x) = f (y) for some
pair of elements x, y ∈ G, then f (xy−1) = f (x)( f (y))−1 = e or xy−1 belongs to
ker( f ). Conversely, if k is a non-trivial element of ker( f ) then x and kx are different
elements in G so that

f (kx) = f (k) f (x) = e f (x) = f (x).
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Therefore f is injective if and only if ker( f ) = {e}. Surjectivity is simpler: f is onto
G ′ if every element g′ ∈ G ′ can be written as g′ = f (g) for some g ∈ G, or in other
words im( f ) = G ′. If im( f ) is a strictly smaller subgroup, then there are elements
in G ′ that can not be “reached” from G by mapping under f , and f is not surjective.

6.4 Isomorphisms

A homomorphism f : G → G ′ is called an isomorphism if it is bijective. In terms
of kernels and images, if f : G → G ′ is an isomorphism, then the kernel of f is the
trivial subgroup K = {e} ⊂ G, and the image of G is the entire group G ′. However,
notice in particular that if only the kernel of f is trivial, then f : G → f (G) = H ′ ⊂
G ′ is always an isomorphism between G and H ′.

An easy but important fact is that because f is bijective, it has an inverse, and
this inverse f −1 is also a homomorphism. This is because f (g1g2) = f (g1) f (g2)
iff f −1(g′

1) f
−1(g′

2) = f −1(g′
1g

′
2), where g

′
j = f (g j ).

Isomorphisms should be thought of as the natural notion of equivalence of groups,
so if two groups are isomorphic, then they are really “the same” even though they
may have been described in very differentways initially. (Exercise: Check that indeed
G ∼ G ′ if and only if G is isomorphic to G ′ is an equivalence relationship amongst
groups.1)

WhenG andG ′ are isomorphic, we shall writeG ∼= G ′ (rather thanG = G ′). One
interesting and important fact is that if G ∼= G ′, then there may be many different
isomorphisms between these groups. The notation ∼= omits the explicit choice of
isomorphism and simply records that there is at least one. An isomorphism from a
group to itself, i.e. f : G → G, is called an automorphism. The identity map (so
f (g) = g for every g) is always an automorphism, but sometimes—in fact, nearly
always—there are nontrivial automorphisms.

Example Here are two simple examples that show how two groups may initially
look fairly different yet still be isomorphic.

• The groups G = {±1} (with multiplication) and G ′ = Z/2Z = {0, 1} (with addi-
tion) are isomorphic. Indeed, we obviously just need to define f by

f (1) = 0, f (−1) = 1.

In fact, it is easy to see that any group with precisely two elements is isomorphic
to this G! Let’s prove this (though the proof is simpler than one of the homework
exercises you have already done). The point is that there is precisely one coherent

1Actually this isn’t quite true, because there is no set of all groups: the collection of all groups forms
a proper class. However, nothing goes wrong, at least initially, if we put equivalence relations on
proper classes. Things can become a little more complicated, though, when we wish to take a set
of representatives or look at the set of all equivalence classes.
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way to fill in the multiplication table for a group with two elements, in which a is
the identity:

∗ a b
a · ·
b · ·

Namely, we have to put in a on the two principal diagonal slots, and b in the two
off-diagonal slots. Oncewe know this, then clearlywe can define a homomorphism
by mapping a to 1 and b to −1.

• Let G = Z/6Z and G ′ = Z/2Z × Z/3Z. Then G ∼= G ′. In fact, define f : G →
G ′ by setting f (1) = (1, 1). Since G is cyclic, this is enough to determine f
completely, and you can check that this really is a bijective homomorphism. It is
an interesting problem to decide when the two groups Z/kZ and Z/nZ × Z/mZ

are isomorphic.

6.5 Existence of Homomorphisms

Given any two groups G and G ′, it is an interesting question to decide whether
there are any homomorphisms f : G → G ′, and if so, how many. Actually, there is
always at least one—the trivial homomorphism. Beyond this one, however, there are
sometimes many others and sometimes no others at all. Let’s try to understand this
through a few observations and examples.

First consider the case where G is cyclic, so G = Z or Z/nZ for some n, and let
G ′ be any other group. The element 1 is a generator forG. Therefore it makes sense to
try to first define a homomorphism f by its action on this generator, and then seewhat
consequences follow. For example, if we define g′ = f (1) for some g′ ∈ G ′, then
using additive notation for G ′, we know that f (2) = f (1 + 1) = f (1) + f (1) =
g′ + g′. In general, for any integer �, we have f (�) = f (1 + · · · + 1) (� times),
hence in G ′ this is equal to f (1) + · · · + f (1) (� times), or simply �g′. Therefore
if G = Z, this creates no problems, and in fact we can define a homomorphism f
in this way by choosing g′ to be an arbitrary element of G ′. Note that f really is a
homomorphism, because

f (k + �) = kg′ + �g′ = (k + �)g′,

which is all that we need to check. Thus we have proved that there are very many
homomorphisms f : Z → G ′ for any group G ′. (In fact |G ′| many.)

However, now suppose that G = Z/nZ. Then � ≡ 0 if � = kn for some integer
k, and this means that unless f (n) = n · f (1) = e′, the identity in G ′, then we are in
trouble and f cannot be ahomomorphism.Thismeans that unless g′ ∈ G ′ has the very
special property, that ng′ = e′, then there is no homomorphism f : Z/nZ → G ′ such
that f (1) = g′. If e′ is the only such g′ ∈ G ′, this means that the only homomorphism
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from Z/nZ to G ′ is the trivial homomorphism. For example, suppose that G ′ = Z.
If f is a (putative) homomorphism between G and G ′ and f (1n) = k (where we use
the notation 1n to denote the element 1 in Z/nZ so as to distinguish it from 1 ∈ Z),
then

f (� · 1n) = f (1n + · · · + 1n) = f (1n) + · · · + f (1n) = �k,

and as we observed before, if � = n, then the left hand side equals 0 and the right
hand side is nonzero unless k = 0. This proves the following proposition:

Proposition 6.11 If n ∈ Z, n ≥ 2, then there is no nontrivial homomorphism f :
Z/nZ → Z.

We can recast this slightly more generally in the following proposition. Note that
we use multiplicative notation so that g + g = 2g becomes g · g = g2, and �g for
some integer � becomes g�.

Proposition 6.12 Suppose every element g ∈ G has finite order, i.e. for each g there
exists some � (depending on g) such that g� = e. Suppose on the other hand that the
only element of finite order in G ′ is e′. Then there are no nontrivial homomorphisms
from G to G ′.

Proof The proof uses the same reasoning as we just used above. �

Here is another useful (and somewhat related) fact. Suppose that G is abelian.
Then the subgroup im( f ) in G ′ must be an abelian subgroup. The reason is simply
that for any g1, g2 ∈ G,

f (g1) f (g2) = f (g1g2) = f (g2g1) = f (g2) f (g1),

or in other words, any two elements f (g1) and f (g2) in f (G) commute with one
another as elements ofG ′. Now, any groupG ′ has some nontrivial abelian subgroups.
Indeed, just as above, choose any g′ ∈ G ′, g′ �= e′, and consider the cyclic subgroup
generated by g′: H ′ = {(g′)� : � ∈ Z}. This is obviously abelian. Remember that this
may contain infinitely many elements, which happens if and only if (g′)� �= e′ except
when � = 0. Or, it may be finite and so is isomorphic to Z/nZ for some n, and this
is the case when (g′)n = e′ but (g′)� �= e′ for 1 ≤ � < n.

Here is a much broader generalization of all of this. To state it, first recall an idea
fromChapter5.We said thatG is generated by some subset of its elements g1, . . . , gn
if any element in G can be written—not necessarily uniquely—as a “word” in these
elements and their inverses. That is, every g ∈ G can be written in at least one way
as

g = g�1
i1
g�2
i2

· · · g�N
iN

,

where each i j ∈ {1, . . . , n} and each � j ∈ Z. We also discussed some interesting
examples of this, e.g. when a cyclic group Z/nZ is generated by one of its elements
p, and the group of all rigid motions in R

2 or R3 is generated by the subset of
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reflections (across lines or planes, respectively). In this last example, both the group
and the set of generators are infinite. For simplicity, we shall usually just work
with groups with only finitely many generators, but—unless we say so explicitly—
everything works just the same if there are infinitely many generators. Now clearly, if
g1, . . . , gn generateG, and f : G → G ′ is a homomorphism, then f (g1), . . . , f (gn)
generate the subgroup im( f ) of G ′.

Finally,we come to the pointwewish tomake. IfG is generated by some collection
of elements {g j }, then every relationship satisfied by the g j must also be satisfied
by the images g′

1 = f (gn), . . . , g′
n = f (gn) in G ′. Thus, the two instances of this

we have already discussed are that if g�
j = e for some g j and �, then f (g j )

� = e′;
similarly, if g j gk = gkg j , then f (g j ) f (gk) = f (gk) f (g j ) in G ′. All that this more
general statement is asserting is that no matter how complicated the relationships
satisfied by these generators, e.g. if

g1g
−25
2 g−17

1 g22g3g
−1
4 = e

in G, then it is also true that

g′
1(g

′
2)

−25(g′
1)

−17(g′
2)

2g′
3(g

′
4)

−1 = e′

in G ′. More precisely:

Theorem 6.13 Suppose G = 〈g1, . . . , gn | r1, . . . , rm〉 is a presentation of G, and
supposeri = gei1i1 g

ei2
i2 · · · geikik , where the gi j ’s are generators, and the ei j ’s are integers.

Then, for any group H, there is a natural bijection between the following two sets:

• Homomorphisms φ : G → H.
• Tuples (h1, . . . , hn) of elements of H (not necessarily distinct), for which hei1i1
hei2i2 · · · heikik is the identity of H, where hi j = h� if gi j = g�.

The bijection works as follows: if φ : G → H is a homomorphism, then h� = φ(g�).
On the other hand, if we have a collection of elements h1, . . . , hn with the above
property, then we can construct a homomorphism φ : G → H by setting φ(g�) = h�

and using the homomorphism property to extend φ to all of G starting from the
generators.

Or, more informally, a homomorphism φ : G → H is equivalent to the data of
the image of the generators, subject to the constraint that all the relations map to
the identity. In particular, to define a homomorphism from a free group to any other
group, it suffices to specify what the images of the generators are, and any images
will work.

One possible moral of all of this is that if G is generated by a set of elements
that have rather complicated relationships, and if G ′ is another group for which any
set of generators satisfies only much simpler relationships, then any homomorphism
f : G → G ′ must be somehow “close” to the trivial homomorphism.
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6.6 Finitely Generated Abelian Groups

A natural question to ask is whether one can classify all groups up to isomorphism,
i.e. to write down a list of all possible groups {G1,G2, . . .} such that every group is
isomorphic to one and only one element of this list. This turns out to be an unrea-
sonably hard question, and is in a certain sense known to be impossible! However,
if we just consider groups of certain special types, then one can sometimes answer
this question. Here’s an elementary example: Classify all cyclic groups. We know
the answer. Any cyclic group is isomorphic either to the trivial group, or else to
some Z/nZ where n = 2, 3, . . ., or else to Z. A less trivial problem, which requires
a real proof, is to classify all finitely generated abelian groups. We will discuss this
classification theorem in the remainder of this section.

Let us review what we know. First of all, amongst all possible groups of this type,
there are some which are infinite, such as Z or Z2 = Z × Z, and others which are
finite, such as Z/nZ or Z/nZ × Z/mZ. Furthermore, if both G and G ′ are finitely
generated abelian, then so is G × G ′. However, we do know that “redundancies” can
occur, e.g. Z/6Z ∼= Z/2Z × Z/3Z. So, even though the first reasonable guess is that
an arbitrary finitely generated abelian group should be obtained by starting with the
examples we know, namely Z and Z/nZ and taking some finite number of direct
products of these, we will still be faced with the problem of winnowing down this list
to cull out all these redundancies. Furthermore, we still also need to prove that there
are no weird extra examples that we didn’t know about beforehand, or that there are
no other ways of combining two abelian groups—other than by a direct product—to
obtain an abelian group. Here is the general result.

Theorem 6.14 Let G be any finitely generated abelian group. Then there exists
a finite collection of (not necessarily distinct) prime numbers p1, . . . , pn, positive
integers �1, . . . , �n, and a nonnegative integer k such that

G ∼= Z
k × Z/p�1

1 Z × · · · × Z/p�n
n Z.

Furthermore, this decomposition is unique up to rearrangement of the factors.

Sketch of the Proof Notice some special cases of this. First, if G is a finite abelian
group, then k = 0. Second, if G is a finitely generated abelian group, and no element
of G has finite order, then G ∼= Z

k for some k. A slightly simpler statement of a part
of this theorem is that if G is any finite abelian group, then

G ∼= Z/k1Z × Z/k2Z × · · · × Z/kmZ

for somenonnegative integers k1, . . . , km . However, this decomposition is not unique.
This is the reason for the further decomposition into cyclic groups with prime power
orders.

The least elementary part of this proof is whenG is infinite, so that k > 0. The first
step in the general case is to show that there exists some k so thatG = Z

k × G ′, where
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G ′ is a finite abelian group. Thus, for simplicity, we shall restrict to this latter case.
The proof is then accessible to you at this stage, though it takes enough space and
time that we will not prove it in full detail here. (One of the standard proofs is based
on the Smith algorithm and Smith normal form, which we discuss in Chapter13.)
However, let us describe some of the ideas in the proof.

Let G be a finite abelian group. The key idea is to first find a largest cyclic
subgroup Z/k1Z ⊂ G, i.e. for which k1 is as large as possible. To see why this is
possible, note that if g ∈ G is arbitrary, then g generates a cyclic group of finite order
in G (because G is finite), so we simply need to choose the element g for which the
size of this cyclic group is maximal. The main step is to show that if H1 denotes
this particular cyclic subgroup, then there exists another subgroup G1 ⊂ G such
that G ∼= H1 × G1. A decomposition like this is very far from true for an arbitrary
subgroup, even when G is finite abelian, so this is nontrivial. It must now be checked
that G1 is again finite abelian, which is easy. (Why?) Now we repeat this process.
Namely, let us find a largest cyclic subgroup Z/k2Z ⊂ G1 and then (by the same
argument as before) write G1

∼= Z/k2Z × G2. If we continue in this way, we must
reach our conclusion in finitely many steps. The reason is that the size (or order) of
the successive subgroups G j gets smaller and smaller, and because the initial G was
finite, we must reach a subgroup Gm+1 of order 1 eventually, so that Gm+1 = {e}.
This means that the subgroup reached at the previous stage, Gm , was already cyclic.

Once we have written G as a finite product of cyclic groups, we must continue to
break down these cyclic groups into products of cyclic groups of prime power order.
Finally, we must also prove that once we have ensured that the cyclic factors are of
this special form, the decomposition is unique up to rearrangement of the factors. �

The last step of this proof involves a sequence of ideas that includes the Chinese
Remainder Theorem and an interesting use of a group isomorphism. We’ll conclude
this chapter by presenting these ideas.

Theorem 6.15 (ChineseRemainder Theorem) Suppose n1, . . . , nk are positive inte-
gers that are coprime in pairs. This means that the greatest common divisor of any
ni , n j with i �= j is equal to one. Then for any given integers a1, . . . , ak, it is possible
to find an integer x that solves all of the following congruences simultaneously:

x ≡ a1 (mod n1)

...

x ≡ ak (mod nk) .

Moreover, all solutions of these equations differ by a multiple of N = n1n2 · · · nk.
Proof We know that ni and N/ni are coprime integers for every i . Therefore we can
find ri , si so that rini + si N/ni = 1 by definition of the greatest common divisor.
(The proof of this fact is the so-called “Euclidean algorithm.”) Let ei = si N/ni .
Then ei = 1 (mod ni ) and ei = 0 (mod n j ) for all j �= i . (This is because N/ni is
divisible by all other n j .) Now let x = ∑

i ai ei . The first part of the theorem follows
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by the homomorphism property of congruence modulo an integer, meaning x + y
(mod n) = x (mod n) + y (mod n). Finally, if x and y are two solutions of the
equations above, then x − y is congruent to zero modulo n1 through nk . Therefore
x − y is divisible by the product of the ni , namely N . �
Corollary 6.16 Suppose the integer N can be decomposed into powers of prime
numbers as N = p�1

1 · · · p�k
k . Then Z/NZ ∼= Z/p�1

1 Z × · · · × Z/p�k
k Z.

Proof Let ni = p�i
i , and define a homomorphism φ : Z/nZ → Z/n1Z × · · · ×

Z/nkZ by
φ(x) = (

x (mod n1) , . . . , x (mod nk)
)
.

(Why is φ a homomorphism?) Since n1, . . . , nk are coprime in pairs and N =
n1 · · · nk , the Chinese Remainder Theorem applies, and for every set of integers
a1, . . . , ak we can find x ∈ Z/NZ (why can we say x ∈ Z/NZ and not merely
x ∈ Z?) such that φ(x) = (a1, . . . , ak). In other words, φ is surjective. Finally, sup-
pose φ(x) = 0. Then x (mod ni ) = 0 for each i , and so x is in fact a multiple of
N . Therefore x = 0 (mod N ). Therefore x = 0 in Z/NZ, and we have now shown
that ker(φ) is trivial. Thus φ is injective. �

6.7 Problems

(1) Let n,m be positive integers. Show that Sn × Sm is a subgroup of Sn+m in a
natural way.

(2) Describe carefully how the dihedral group D3 can be regarded as a subgroup of
S6, in the most interesting way possible.

(3) A cyclic group is a groupG generated byone element; i.e.G = {e, a±1, a±2, . . .}.
The groupG is finite cyclic having order n ∈ N if n is the smallest positive integer
such that an = e, and it is infinite cyclic otherwise.

(a) Prove that every cyclic group is abelian.
(b) Show that in a cyclic group G of order n generated by an element a, every

g ∈ G can be expressed uniquely in the form g = ai , where 0 ≤ i ≤ n − 1.
(c) Show that every cyclic group must be isomorphic to either Z/nZ for some

n ∈ N, or to Z.

(4) Define π : Sn → Z/2Z by

π(σ) := [number of 2-cycles making up σ ] mod 2.

Show that π is well-defined (meaning that if σ can be written in two different
ways as a product of 2-cycles, then their number (mod 2) is the same) and is
a group homomorphism. The kernel of π consists of all permutations that can
be decomposed into an even number of cycles of length 2, and is called the
alternating group and denoted An . Find A2, A3, and A4.
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(5) LetG be a group and g1, . . . , gk ∈ G. Then the subgroup generated by g1, . . . , gk
is denoted by 〈g1, . . . , gk〉 and is the smallest subgroup of G containing
g1, . . . , gk .

(a) Determine the subgroup generated by (123), (134), (234), and (124) in S4.
(b) Determine the subgroup generated by (12), (23), and (34) in S4.

(6) (a) Write down all homomorphisms Z/2Z → Z/6Z.
(b) Write down all homomorphisms Z/3Z → Z/6Z.
(c) Write down all homomorphisms Z/2Z × Z/3Z → Z/6Z.
(d) Which of the homomorphisms from part (c) are isomorphisms?

(7) Let f : Z/mnZ → Z/mZ × Z/nZ be a homomorphism defined by f (1) :=
(1, 1). Show f is an isomorphism if and only if m and n are relatively prime.
(This explains how Z/6Z ∼= Z/2Z × Z/3Z.)

(8) (a) Howmany distinct abelian groups containing exactly 36 elements are there?
(b) Explain why Z/8Z, Z/2Z × Z/4Z and Z/2Z × Z/2Z × Z/2Z are non-

isomorphic groups.
(9) (a) Let G1 and G2 be groups containing subgroups H1 and H2, respectively.

Show that H1 × H2 is a subgroup of G1 × G2.
(b) If G1 is generated by g1 and G2 is generated by g2, show that G1 × G2

is generated by (g1, eG2) and (eG1 , g2). Are there other ways of generating
G1 × G2? Under what circumstances is it possible to generate G1 × G2 by
only one element?

(c) Can you find a pair of groups G1 and G2 and a subgroup of G1 × G2 that
is not of the form H1 × H2 for some subgroups Hi ≤ Gi?



Chapter 7
Cosets, Normal Subgroups, and Quotient
Groups

7.1 Cosets

There are several very important constructions that one can obtain from a group G
and a subgroup H . Before we define them formally, let us look at an example.

LetG = Sn be the symmetric group, consisting of all permutations of the elements
of Xn . Suppose we have some element σ ∈ Sn , but for some reason we can only
tell what σ(1) and σ(2) are; in other words, we are only able to see some of the
information that σ possesses. Now, this information doesn’t allow us to recover σ

completely, but it does cut down on the possibilities for what σ might be. Let’s start
with a warmup: let H be the set of elements of Sn that have the property that σ(1) = 1
and σ(2) = 2.

Example Show that H ≤ G, i.e. that H is a subgroup.

Okay, subgroups we already understand, so let’s move on to a different sort of
subset. Let S denote the subset of the elements of Sn that have the property that
σ(1) = 4 and σ(2) = 3. What structure does S have?

Example Show that S is not a subgroup of G.

Nonetheless, S is still interesting and has some relevant structure. Here is an
example of structure possessed by S: suppose that τ ∈ H . Now choose any σ ∈ S
and observe that στ is also in S, since for example στ(1) = σ(1) = 4 and στ(2) =
σ(2) = 3. Another example of structure possessed by S is that if σ1 and σ2 are both
in S, then there is some τ ∈ H with σ1τ = σ2. In fact, we have τ = σ−1

1 σ2.
We can formalize the observations above as follows: H and S have the property

that SH = S, meaning that if σ ∈ S and τ ∈ H , then στ ∈ S. Alternatively, if σ ∈ S,
then S = σH . Finally, every element in S can be written as στ for some σ ∈ S and
τ ∈ H . Here, S is a typical example of something called a coset.

Definition 7.1 Let G be a group and H ≤ G a subgroup. Also, let g ∈ G be some
element. Then the set
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gH = {gh : h ∈ H}

is called a left coset of H . Similarly,

Hg = {hg : h ∈ H}

is a right coset of H .

Remark 7.2 No one can ever remember which is a left coset and which is a right
coset. It is, in general, only important to remember that these are different. In the rest
of this chapter, we will do some constructions for left cosets only; all these things
will work for right cosets as well, and vice versa.

Example The introductory discussion suggests an example in which left and right
cosets differ. Let G = S4, and let H be the subgroup of G consisting of those σ for
which σ(1) = 1 and σ(2) = 2. Let g = (23). Then gH consists of all the elements
τ ∈ S4 for which τ(1) = 1 and τ(2) = 3. On the other hand, Hg consists of all
the elements τ ∈ S4 for which τ(1) = 1 and τ(3) = 2. Note that these are different
subsets of G!

Example Let G = Z be the group of integers under addition and let H = 3Z =
{. . . ,−6,−3, 0, 3, 6, . . .} be the subgroup of all multiples of three. Since addition is
the operation in Z, we adapt the notation for cosets accordingly: k + 3Z = {. . . , k −
6, k − 3, k, k + 3, k + 6, . . .} is the coset of k ∈ Z.

Remark 7.3 We will soon see a condition that allows us to conclude that the right
and left cosets gH and Hg do in fact coincide.

Let us look at some basic properties of cosets.

Theorem 7.4 Let G be a group and H ≤ G. Let g1H and g2H be two cosets of
H. Then g1H and g2H are either equal or disjoint, i.e., g1H = g2H or else g1H ∩
g2H = ∅.

Proof Suppose that g1H and g2H are not disjoint, so that there is an element x ∈
g1H ∩ g2H . Then there are h1, h2 ∈ H so that x = g1h1 = g2h2. We can then solve
for g1 in this equation, so that g1 = g2h2h

−1
1 . Now, we show that g1H ⊂ g2H . Let

g1h ∈ g1H . Then we have

g1h = (g2h2h
−1
1 )h = g2(h2h

−1
1 h) ∈ g2H.

Since g1h was an arbitrary element of g1H , we have g1H ⊂ g2H . By symmetry, we
also have g1H ⊃ g2H . Hence g1H = g2H . �
Example We can see this theorem at work in the example k + 3Z inside Z

introduced above. There are in fact exactly three distinct cosets: 0 + 3Z = 3Z

and1 + 3Z = {. . . ,−5,−2, 1, 4, 7, . . .} and2 + 3Z = {−4,−1, 2, 5, 8, . . .}. Every
other coset coincides with one of these three cosets. For example, 3 + 3Z = 3Z and
10 + 3Z = 1 + 9 + 3Z = 1 + 3Z.
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It is useful to be able to distinguish between these two possibilities: Given two
cosets g1H and g2H , how can we tell whether they are equal or disjoint? The fol-
lowing proposition answers this question:

Proposition 7.5 Let g1H and g2H be two cosets of H. Then g1H = g2H if and
only if g−1

1 g2 ∈ H.

Proof Since e ∈ H , we know that g2 ∈ g2H . So, by Theorem7.4, we know that
g1H = g2H if and only if

g2 ∈ g1H. (7.1)

Now,we canmultiply (7.1) on the left by g−1
1 to obtain g−1

1 g2 ∈ H . In otherwords,we
have shown that g1H = g2H if and only if g−1

1 g2 ∈ H , which is what we wanted. �

Example Again, we can see this proposition at work in the k + 3Z example. Con-
sider another coset � + 3Z. A typical element of this coset has the form � + 3n
for some integer n. We can find this element inside k + 3Z if and only if � + 3n
can be written as k + 3m for some integer m. Hence � + 3n = k + 3m if and only
if � − k = 3(m − n), or in other words � − k ∈ 3Z. Also, in the example above,
10 − 1 = 9 = 3 × 3, so that 1 + 3Z = 10 + 3Z as we have observed.

Proposition 7.6 Let G be a finite group and H a subgroup. Then any two cosets of
H have the same size.

Proof Let g1H and g2H be two cosets (which could be the same). We will find a
bijection between the elements of g1H and g2H . A typical element of g1H has the
form g1h. We define a function ϕ : g1H → g2H by setting ϕ(g1h) = g2h.

In order to check thatϕ is a bijection, we find an inverse functionψ : g2H → g1H
so that the compositions ϕ ◦ ψ andψ ◦ ϕ are the identities on their respective cosets.
We define ψ by setting ψ(g2h) = g1h. It is easy to check that ϕ and ψ are inverses
of each other. Hence there is a bijection between g1H and g2H , so these two cosets
have the same number of elements. �

Since every element g ∈ G is in the coset gH , the union of all the cosets of H is
equal to all of G. Consequently we have this picture: The group G can be partitioned
into a collection of sets, the cosets of H in G, and these sets are disjoint from each
other. If this reminds you of equivalence relations, that’s because we can indeed
rephrase some of what we have done in the language of equivalence relations!

Theorem 7.7 The relation ∼ on G, described by g1 ∼ g2 if and only if g1 ∈ g2H,
is an equivalence relation on G.

Proof We must show that ∼ is reflexive, symmetric, and transitive. There are many
ways of doing this, so let us demonstrate a few different techniques for the different
parts.

Reflexivity: We need to show that g ∈ gH . But this is clear, because e ∈ H .
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Symmetry: Suppose g1 ∈ g2H . Then we can write g1 = g2h for some h ∈ H .
Hence g2 = g1h−1. But since H is a subgroup, h−1 ∈ H , so g2 ∈ g1H .

Transitivity: Suppose g1 ∈ g2H and g2 ∈ g3H . By Theorem7.4, since g1H ∩
g2H 
= ∅, wemust have g1H = g2H . Similarly, since g2H ∩ g3H 
= ∅, wemust
again have g2H = g3H . Hence g1H = g3H , so in particular g1 ∈ g3H .

�

7.2 Lagrange’s Theorem and Its Consequences

Cosets offer us a convenient way of proving what is probably the first interesting
theorem in finite group theory.

Theorem 7.8 (Lagrange) Let G be a finite group of order n, and let H ≤ G be a
subgroup of order m. Then m divides n.

Proof One way of proving that the size of one set S divides the size of some other
set T is to divide T into several disjoint subsets, each of the same size as S, in such a
way that each t ∈ T is contained in exactly one of these sets. Cosets provide a natural
way of doing so in this case: G is the union of the cosets gH , and by Proposition7.6,
they all have the same size as each other, and hence as H . Thus m divides n. �
Corollary 7.9 The order of any element of G divides the order of G.

Proof Let g ∈ G be any element, and let H = 〈g〉 be the subgroup generated by g.
Then apply Lagrange’s Theorem on G and H . �

This Corollary offers us a simple way of proving an important result in number
theory.

Theorem 7.10 (Fermat’s Little Theorem) Let p be a prime, and let a be an integer
not divisible by p. Then a p−1 ≡ 1 (mod p).

Proof The nonzero elements of Z/pZ form a group denoted (Z/pZ)× of order
p − 1. Since a is not divisible by p, it is represented by some element of (Z/pZ)×,
say b. Let m be the order of b in (Z/pZ)×. By Corollary7.9, m divides p − 1, so
bp−1 = e in (Z/pZ)×, which means that a p−1 ≡ 1 (mod p). �
Exercise 7.11 Modify this proof to prove Euler’s Theorem: If a is relatively prime
to n, then aφ(n) ≡ 1 (mod n). Here φ is the so-called totient function, which counts
the number of positive integers less than or equal to n and relatively prime to n.

Remark 7.12 It is tempting to suspect that the order of any element of Sn will be
at most n. However, Lagrange’s Theorem only tells us that an element has order
dividing n!, and indeed we can easily come up with examples of elements of Sn
whose orders are larger than n. For example, in S5, the element (12)(345) has order
6, which you can verify. (Exercise: What is the largest possible order of an element
of S20?)
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7.3 Coset Spaces and Quotient Groups

In this section we will consider an abstract mathematical object: the set of all cosets.
That is to say, we take a group G and a subgroup H , and consider all possible cosets
gH . Then we collect them into a set! Let’s call it S := {gH : g ∈ G}. The elements
of this set are the various cosets gH , and of course each coset is a subset of G—so
S is a set of sets!

Wewould like to understand ifS possesses any interestingmathematical structure.
A natural question to ask is if it is possible to define a multiplication in S, i.e. if it
is possible to multiply two cosets. Let’s see how this might work. Let g1H and g2H
be two cosets. What could the product g1H · g2H be? Presumably it must be the set

g1H · g2H = {k1k2 : k1 ∈ g1H and k2 ∈ g2H}
= {g1hg2h′ : h, h′ ∈ H} .

If the operation · on cosets defined above is to make any sense as an operation on
S, then it must be the case that g1H · g2H is itself a coset of H in G. So we would
need to find g ∈ G so that g1hg2h′ = gh′′ for some h′′ ∈ H , nomatter what choice of
g1, g2, h, h′ we start with. Here is a condition which guarantees that this will happen.

Definition 7.13 A subgroup H of a group G is said to be normal if, for any g ∈ G
and h ∈ H , g−1hg ∈ H . When H is a normal subgroup of G, we write H � G.

Exercise 7.14 The condition for normality is sometimes written as g−1Hg = H , or
as gH = Hg. Show that these are equivalent to the definition above. So we find that
the right and left cosets of H in G agree exactly when H is a normal subgroup of G!

As a consequence, if H � G then we have hg2 = g2h̃ for some potentially dif-
ferent element h̃ ∈ H . Thus g1hg2h′ = g1g2h̃h′ = g1g2h′′, where h′′ = h̃h′ ∈ H
because H is a subgroup. Therefore the product of the coset g1H and g2H is unam-
biguously the coset g1g2H .

Example The subgroup 3Z is normal in Z because Z is abelian, and all sub-
groups of abelian groups are normal (a fact we will prove in the next section, in
Proposition7.23). Now we can add cosets: for example (1 + 3Z) + (2 + 3Z) =
(1 + 2) + 3Z = 3 + 3Z = 3Z and so on. Note that there are only three cosets in
S in this case: 3Z, 1 + 3Z, 2 + 3Z, and that they form a group of order three pos-
sessing the same multiplicative properties as the group Z/3Z of integers modulo
three. This is no accident!

We formalize the above discussion with the following theorem.

Theorem 7.15 If H � G, then the space of cosets of H in G forms a group. We call
this group the quotient group of G by H, and we write it as G/H.
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Proof We have endowed G/H (which used to be called S above) with a binary
operation, and it remains for us to show that it is actually a group operation. To
do so, we must establish the three required properties of this operation. First, the
operation is associative because multiplication in G is. Second, the identity is the
coset H = eH itself. Third, the inverse of the coset gH is the coset g−1H . �

Remark 7.16 This is the origin of the possibly mysterious notation Z/nZ for the
integers modulo n: it is the group of cosets of nZ in Z.

Remark 7.17 Even when H is not a normal subgroup of G, the space of left cosets
G/H is sometimes still a useful object. It has the structure of a pointed set, i.e. a
set together with a distinguished element. The distinguished element is the coset
containing the identity element.

Definition 7.18 The number of cosets of H in G is called the index of H in G. We
write this number as [G : H ].
Example

• If G is any group, then the trivial subgroup {e} and the entire group G are both
normal subgroups of G. We call any other normal subgroup a nontrivial normal
subgroup.

• [Z : nZ] = n.
• [Sn : Sn−1] = n, where we think of Sn−1 as being the subgroup of Sn consisting of
all σ ∈ Sn with σ(n) = n.

• Let G = Sn and H be the subgroup in the first section of this chapter, consisting
of those σ for which σ(1) = 1 and σ(2) = 2. Then [G : H ] = n(n − 1).

When H � G, then we have [G : H ] = |G/H |, the size of the quotient group.
Note that, ifG is a finite group, then there are [G : H ] cosets, eachwith |H | elements.
Since every element of G is contained in a unique coset, we have

|G| = [G : H ]|H |.

Note the relationship with Lagrange’s Theorem.

7.4 Properties and Examples of Normal Subgroups

Now that we have seen the importance of normal subgroups, we would like to have
a natural source for them. We will in fact be able to characterize normal subgroups
completely. We begin with a key result.

Theorem 7.19 Letφ : G → G ′ beahomomorphismbetweengroups. Thenker(φ) �
G.

Proof Suppose g ∈ G and h ∈ H = ker(φ). Then we must show that g−1hg ∈ H
as well. We have
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φ(g−1hg) = φ(g−1)φ(h)φ(g)

= φ(g)−1φ(h)φ(g)

= φ(g)−1φ(g)

= eH ,

so g−1hg ∈ ker(φ). �
We can extend this result as follows.

Theorem 7.20 A subgroup H ≤ G is normal if and only if there exists a group K
and a homomorphism φ : G → K so that H = ker(φ).

Proof Suppose that H � G. We need to find a group K and a homomorphism φ :
G → K so that H = ker(φ). We can take K = G/H and define a map φ that sends
g to gH . We now show that φ is a homomorphism: φ(g1g2) = g1g2H = g1H ·
g2H = φ(g1) · φ(g2). Now g ∈ ker(φ) if and only if gH = H , i.e. if g ∈ H . Hence
H = ker(φ). �
Definition 7.21 We call the map G → G/H a quotient map or a canonical projec-
tion.

Remark 7.22 The quotient map G → G/H is very important and will be used all
over the place for the rest of your life. We think of this homomorphism as remem-
bering certain information and forgetting other information. For example, the homo-
morphism Z → Z/3Z remembers the remainder when some number n is divided by
3, but it forgets what the actual number was. We can describe any such quotient map
in a similar manner.

There are some more specific results that give us conditions under which sub-
groups are normal. We give two such results, the first of which is obvious.

Proposition 7.23 If G is abelian and H ≤ G, then H � G.

Proof If g ∈ G and h ∈ H , then g−1hg = h ∈ H . �
Theorem 7.24 If H ≤ G and [G : H ] = 2, then H � G.

Proof Let g ∈ G and h ∈ H , where [G : H ] = 2. Since there are only two cosets,
and the cosets cover all of G, either g−1hg ∈ H , or else it’s in the other coset. Let
us break the problem down into two cases:

Case 1: g ∈ H . In this case, g−1, h, and g are all in H , so their product is as well.
Case 2: g /∈ H . Suppose that g /∈ H , and that g−1hg = g′ /∈ H . Then g(g′)−1 ∈

H (because there are only two cosets). We can then rewrite the equation g−1hg = g′
as g = hg(g′)−1 = h(g(g′)−1), which is the product of two elements of H . Hence
g ∈ H as well, contradicting our assumption. �
Remark 7.25 In fact, we can do better. If G is a finite group, p is the smallest prime
dividing |G|, and H ≤ G is a subgroup with [G : H ] = p, then H � G. However,
the proof of this is a little bit harder.

Example Since [Sn : An] = 2, An � Sn . The quotient is Sn/An
∼= Z/2Z.
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7.5 Coset Representatives

The proper way of thinking of the quotient group G/H is as the set of cosets gH .
However, this is a bit unwieldy at times: for example, we like to think of Z/3Z as
{0, 1, 2} with a suitable addition law, and not as {3Z, 1 + 3Z, 2 + 3Z}. We can do
something similar in general, as follows:

Definition 7.26 Let H � G, and let G/H be the quotient group. Let A = {ai : i ∈
I } ⊂ G be a set of elements with the following property: for every g ∈ G, there is a
unique i ∈ I for which g ∈ ai H . Then we say thatA is a set of coset representatives
for H in G.

Note that coset representatives are not unique. For example, we can take {0, 1, 2}
to be a set of coset representatives for Z/3Z, but we could also take {36,−11, 5}.
In general, there is no “preferred” choice of coset representatives: any choice works
equally well.

It is also worth noting that coset representatives do not usually form a group
themselves—although they occasionally do, in exceptional circumstances, and it
says something interesting when it does happen. For example A = {0, 1, 2} ⊂ Z

does not form a group, because 1 + 2 = 3 /∈ A.

Remark 7.27 One might wonder whether it is possible to find a set of coset repre-
sentatives for G/H that do form a group. In general, the answer is no: for example,
there is no set of coset representatives for Z/3Z in Z which form a group. But we
can state a precise condition that allows us to find such a set of representatives. Let
p : G → G/H be the canonical projection.Thenwecanfinda set of coset representa-
tivesA ⊂ G that form a group if and only if there is a homomorphism ι : G/H → G
so that the composition p ◦ ι : G/H → G/H is the identity map; we call ι a section
of p. If we have such a section, then im(ι) is a set of coset representatives that forms
a group.

7.6 A Quotient of a Dihedral Group

In this section, we will look carefully at an example of a normal subgroup and the
corresponding quotient group of the dihedral group D3. Recall that D3 has 6 elements,

e, ρ, ρ2, σ, ρσ, ρ2σ,

where ρ denotes a counterclockwise rotation by 2π/3, and σ denotes a reflection
about the y-axis. Let us recall the multiplication table for D3.
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D3 e ρ ρ2 σ ρσ ρ2σ

e e ρ ρ2 σ ρσ ρ2σ

ρ ρ ρ2 e ρσ ρ2σ σ

ρ2 ρ2 e ρ ρ2σ σ ρσ

σ σ ρ2σ ρσ e ρ2 ρ

ρσ ρσ σ ρ2σ ρ e ρ2

ρ2σ ρ2σ ρσ σ ρ2 ρ e

D3 has a normal subgroup H , which consists of the elements {e, ρ, ρ2}. We
could verify this directly by writing out a multiplication table, but we can do it more
directly with some geometric thinking. We need to check that, for every g ∈ D3 and
h ∈ H , g−1hg ∈ H . If g ∈ H , then we’re multiplying together three elements in H ,
so the result is still in H . If g /∈ H , then g contains a reflection and hence reverses
orientations. But g−1 also contains a reflection, so it also reverses orientation. But h
doesn’t reverse orientation, so g−1hg reverses orientation exactly twice. If we reverse
orientation an even number of times, then we have preserved the original orientation.
The only elements of D3 that preserve orientation are the rotations e, ρ, ρ2. Hence
g−1hg ∈ H . (More abstractly, this follows from Theorem7.24.)

So, now we understand that D3 has a normal subgroup H of order 3. What is the
quotient group? Since the order of the quotient group D3/H is equal to the order of
D3 divided by that of H , we know that D3/H has order 2 and thusmust be isomorphic
to Z/2Z. But let us work this out more explicitly. Let us make a multiplication table
for the cosets.

D3/H {e, ρ, ρ2} {σ, ρσ, ρ2σ }
{e, ρ, ρ2} {e, ρ, ρ2} {σ, ρσ, ρ2σ }

{σ, ρσ, ρ2σ } {σ, ρσ, ρ2σ } {e, ρ, ρ2}

We can write this multiplication table in a less cluttered form, as follows.

D3/H H Hσ

H H Hσ

Hσ Hσ H

We can now write down an isomorphism φ : D3/H → Z/2Z as follows: let
φ({e, ρ, ρ2}) = φ(H) = 0 and φ({σ, ρσ, ρ2σ }) = φ(Hσ) = 1. (Exercise: Verify
that this is actually an isomorphism.)

7.7 Building up Finite Groups

One reason we find normal subgroups to be particularly useful is that they allow us
to break a complicated group into less complicated pieces. That is, if H � G, then G
is somehow “built up” of the smaller groups H and G/H . These groups can be glued
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in some way to reconstructG. Thus, if we want to understand all (finite) groups, then
a good starting point is to understand the basic building blocks—those groups that
have no nontrivial normal subgroups.

Definition 7.28 We say a nontrivial group G is simple if its only normal subgroups
are the trivial subgroup and the entire group G.

Example

• If p is a prime, then Z/pZ is a simple group.
• If n ≥ 5, then the alternating group An is simple. (This is not obvious, or especially
easy. For a proof, see [Rot95, Chapter3].)

One of the most remarkable achievements of twentieth-century mathematics was
to give a complete classification of the finite simple groups. This was achieved
over the course of hundreds of papers, spanning more than 10000 pages of difficult
mathematics. Here are some of the highlights of that program:

Theorem 7.29 (Feit–Thompson [FT63]) If G is a simple group and |G| is odd, then
G ∼= Z/pZ for some odd prime p.

Theorem 7.30 (Classification of Finite Simple Groups) The finite simple groups fall
into 18 explicitly described infinite families, plus 26 extra “sporadic” groups.

See [Wil09] for a book all about the simple groups and their descriptions.
Fortunately, however, this is not the end of the story. (We say “fortunately” because

it is always a good thing to have more fascinating problems to work on!) The Clas-
sification of Finite Simple Groups tells us what all the building blocks are, but we
still don’t understand the glue used to stick them together perfectly. In general, if we
know what H and G/H are, there are still several possibilities for G.

Example Suppose that we know that H = Z/2Z and G/H = Z/2Z. What can G
be? It turns out that G can be either Z/4Z or (Z/2Z) × (Z/2Z). Let us spell this out
explicitly. If G = Z/4Z, which we’ll think of as being the elements {0, 1, 2, 3}, and
we let H = {0, 2}, thenG/H is represented by {0, 1}, so it is isomorphic toZ/2Z. On
the other hand, suppose G = (Z/2Z) × (Z/2Z), which we’ll write as the elements
{(0, 0), (0, 1), (1, 0), (1, 1)}. Let H = {(0, 0), (0, 1)}. Then G/H is represented by
the elements {(0, 0), (1, 0)}, which is again isomorphic to Z/2Z.

There are techniques available to tell us the various ways we can glue together H
and G/H , but this problem has not been solved in general. Nor is it ever likely to be
solved. For instance, every group of order 1024 = 210 can be built up out of 10 copies
of Z/2Z, but there are 49487365422 of them (up to isomorphism). See [BEO02] for
a discussion on finding all groups of a given order, or just counting them. Even the
problem of listing all groups of order 16 is an interesting challenge, but an elementary
discussion can be found in [Wil05].
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7.8 An Isomorphism Theorem

One of the most frequently used results in group theory—and abstract algebra, in
general—is the following result, which relates the kernel and the image of a homo-
morphism. It is sometimes called the first isomorphism theorem, and sometimes the
second, but it is by far the most important of all the “isomorphism theorems.”

Theorem 7.31 Let φ : G → H be a homomorphism. Then G/ ker(φ) ∼= im(φ).

Proof Let K = ker(φ). First, we will come up with a homomorphism ψ : G/K →
im(φ). The natural choice is to try to define ψ(gK ) = φ(g). However, this might
not make sense, because it might be the case that gK = g′K , but φ(g) 
= φ(g′). So,
let us check that this does not happen, i.e. that if g(g′)−1 ∈ K , then φ(g) = φ(g′).
If we can verify this, then we’ll know that we have a well-defined map ψ . So, let us
suppose that g(g′)−1 = k ∈ K . Then we have

e = φ(k) = φ(g(g′)−1) = φ(g)φ(g′)−1,

so φ(g′) = φ(g), as desired. Let us now verify that this map is indeed a homomor-
phism. We have

ψ(gKg′K ) = ψ(gg′K ) = φ(gg′) = φ(g)φ(g′) = ψ(gK )ψ(g′K ),

as desired.
To conclude the proof of the theorem, we must check that ψ is an isomorphism,

so we need to check that it is both injective and surjective. Let us check that it is
injective. Suppose that ψ(gK ) = ψ(g′K ). We have ψ(gK ) = φ(g) and ψ(g′K ) =
φ(g′), so φ(g) = φ(g′). Hence φ(g(g′)−1) = e, so g(g′)−1 ∈ ker(φ). This means
that gK = g′K , which shows injectivity.

Finally, let us show thatψ is surjective. Let h ∈ im(φ). Then there is some g ∈ G
so that φ(g) = h. But then ψ(gK ) = h as well. Since h ∈ im(φ) was arbitrary, we
have shown that ψ is surjective. Hence ψ is an isomorphism. �

7.9 Problems

(1) We have stated (as part of the classification theorem of finite abelian groups) that
Z/105Z can be written as a product of cyclic groups whose orders are powers
of primes.

(a) Find three prime numbers p1, p2, and p3 such that

Z/105Z ∼= Z/p1Z × Z/p2Z × Z/p3Z .
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(b) Determine the possible values of (a, b, c) ∈ Z/p1Z × Z/p2Z × Z/p3Z so
that the homomorphism f : Z/105Z → Z/p1Z × Z/p2Z × Z/p3Z deter-
mined by f (1) = (a, b, c) is an isomorphism.

(2) (a) Let p be a prime number. Without using the classification of finitely gen-
erated abelian groups, show that the groups Z/pZ × Z/pZ and Z/p2Z are
not isomorphic.

(b) What are all the abelian groups of order pq up to isomorphism, where p
and q are distinct primes?

(3) Consider the groupG = Z/5Z × Z/6Z × Z/30Z. Let H ≤ G be the cyclic sub-
group generated by the element (1, 1, 2). Show that |H | = 30. Find a subgroup
G1 ≤ G such that G = H + G1 and H ∩ G1 = {0}. (That is, every element of
G can be written as a sum of something in H and something in G1, and H and
G1 have trivial intersection.)

(4) Let G be a finitely generated abelian group. An automorphism of G is an iso-
morphism f : G → G. Of course the identity map is always one example, but
there may be others.

(a) Determine the set of possible automorphisms of G = Z/4Z, G = Z/5Z,
and G = Z/12Z.

(b) Let Aut(G) denote the set of all automorphisms of G. Show that Aut(G) is
a group.

(c) For which finitely generated abelian groups G is Aut(G) abelian?

(5) Let G = Z
2, which we can think of as the set of all integer lattice points in the

plane. Give a geometric description of the cosets of the following subgroups H .

(a) H is the subgroup generated by (1, 0).
(b) H is the subgroup generated by (1, 1).
(c) H is the subgroup generated by (3, 3).

(6) Let G = Sn and let H = {ρ ∈ G : ρ(n) = n}. In other words, each permuta-
tion in H fixes n but permutes {1, . . . , n − 1}. Let ( jn) be the permutation
that exchanges j and n, while leaving all other numbers fixed. Show that
H, (1n)H, (2n)H, . . . , (n − 1, n)H are all the cosets of H . In otherwords, show
that {id, (1n), (2n), . . . , (n − 1, n)} is a minimal set of representatives for all the
cosets of H in G.

(7) For any two elements a and b of any group G, we call the element aba−1 ∈ G
the conjugate of b by a. The conjugacy class of b is by definition the subset of
G defined by

Cb = {aba−1 : a ∈ G}.

(a) Show that any two conjugacy classes Cb and Cb′ are either identical or
disjoint. (Hint: If they intersect, first show that b′ is conjugate to b.)

(b) What is the conjugacy class Ce?
(c) By part (a), we can divide up the elements of G into disjoint subsets that are

the various conjugacy classes,
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G =
⋃

b

Cb.

Do this explicitly for G = Z/nZ, Z/nZ × Z/mZ, S3, and D4.

(8) Recall that a subgroup N in G is called normal if the conjugate of every element
of N by any element of G is also an element of N . Suppose that N ≤ G.

(a) Show that if every conjugate of x is in N , and if every conjugate of y is in
N , then every conjugate of xy must also be in N .

(b) Show that if every conjugate of x is in N , then every conjugate of x−1 is in
N as well.

(c) Use the above results to show that N is normal if the conjugate of every
element of a generating set for N is also an element of N . (In other words,
you don’t have to check all elements of N , just a generating set.)

(d) Extend the above further to show that N is normal if the conjugate of every
element of a generating set for N , by elements of a generating set for G that
is closed under inverses, is also an element of N .

(9) (a) Using the result from the previous problem, show that N = {id, ρ2, ρ4} is
a normal subgroup of D6 by computing only two conjugates.

(b) Up to isomorphism, what is the quotient D6/N?



Chapter 8
The Fundamental Group

Wehavebeen studyinggroups in the past three chapters in order to lay the groundwork
for introducing the fundamental group of a topological space S. This is a homeo-
morphism invariant that is associated to a topological space. Rather than being a
number like the Euler characteristic χ(S) or a boolean invariant like orientability,
the fundamental group associates a group to S, denoted π1(S). Furthermore if S is
homeomorphic to S′, then the fundamental groups π1(S) and π1(S′) are isomorphic
in the group-theoretic sense. In this chapter, we will build up a set of ideas for defin-
ing the fundamental group. For visualization purposes, we will phrase these ideas
as if S were a surface; but everything that follows holds mostly unchanged for any
topological space.

8.1 Paths and Loops on a Surface

Let S be a surface. Then a continuous path on S between two points p, q ∈ S is
just the easily visualized notion of an unbroken 1D curve of points connecting p to
q. Formally, we define a path by a continuous mapping γ : [0, 1] → S that satisfies
γ(0) = p and γ(1) = q. Technically speaking, γ is a parametrization of the path,
and the path itself—viewed as a geometric object—is just the range of γ, i.e. the
set of points {γ(t) : t ∈ [0, 1]}. We’ll often be a bit sloppy and just write γ for both
the parametrization and the geometric path. Note that different parametrizations can
have the same path; for instance γ1 : [0, 1] → S given by γ1(t) = γ(t2). Note also
that it is not necessary to parametrize a path on the interval [0, 1]. For instance
γ2 : [0, 1

2 ] → S given by γ2(t) = γ(2t) is the same path as γ1 and γ.
Whenwe talk about paths on a topological space, wewill generally want to restrict

ourselves to spaces in which there is a path connecting any two points. We call such
spaces path-connected.
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Definition 8.1 Aspace S is said to be path-connected if, for any two points p, q ∈ S,
there is a continuous path γ : [0, 1] → S so that γ(0) = p and γ(1) = q.

Example

• A straight line segment in R
2 can be parametrized as follows. Let p ∈ R

2 be a
starting point and q ∈ R

2 an ending point. Then the vector that points from p
to q is simply v = q − p. Then points on the line segment are given by γ(t) =
p + tv = (1 − t)p + tq for t ∈ [0, 1].

• The unit circle in R2 centered at (0, 0) can be parametrized by

γ(t) = (cos(2πt), sin(2πt))

for t ∈ [0, 1].
If p = q, so that γ starts and ends at the same place (as in the second example

above), we call γ a loop. If we need to single out the basepoint of the loop, namely
the point p = γ(0) = γ(1), we’ll say that γ is based at p.

8.2 Equivalence of Paths and Loops

We will define a topological notion of equivalence for paths and loops. Let’s stick to
paths for now; the extension to loops is straightforward. Suppose γ0, γ1 : [0, 1] → S
are two paths in a topological space S. We’ll let γ0 be equivalent to γ1, denoted
γ0 ∼ γ1, if it is possible to continuously deformγ0 intoγ1 while keeping the endpoints
fixed. This kind of equivalence is called homotopy, and γ0 is said to be homotopic to
γ1. A precise mathematical definition of this notion can be formulated as follows.

Definition 8.2 Two paths γ0, γ1 in a topological space S, starting at p ∈ S and
ending at q ∈ S, are said to be homotopic if there exists a continuous mapping
F : [0, 1] × [0, 1] → S such that

• F(0, t) = γ0(t) for all t ∈ [0, 1],
• F(1, t) = γ1(t) for all t ∈ [0, 1],
• F(s, 0) = p for all s ∈ [0, 1],
• F(s, 1) = q for all s ∈ [0, 1].

We view F as interpolating between γ0 and γ1 in S. So we should view the
functions t �→ F(s, t) for each fixed s ∈ (0, 1) as intermediate paths connecting p
to q, and we can denote these by γs . The function F is called a homotopy between
γ0 and γ1. See Figure8.1.

Example Let γ be any path in S, and let γ′ be a reparametrization of γ that leaves
the endpoints fixed. In other words, γ′(t) = γ(g(t)), where g : [0, 1] → [0, 1] is a
homeomorphism with g(0) = 0 and g(1) = 1. Then γ and γ′ are homotopic via the
homotopy

F(s, t) = γ((1 − s)t + sg(t)) .



8.2 Equivalence of Paths and Loops 107

Figure 8.1 Colors match up under F . The solid black line on the left varies t , while s remains
constant. This corresponds to an intermediate curve γs(t) = F(s, t) on the right. The dashed black
line on the left varies s, while t remains constant, and the corresponding path is shown on the right.

This example shows that homotopy is a geometric concept that does not depend
on the way in which paths are parametrized.

Example Let γ0 and γ1 be any two paths connecting any pair of points p, q in R
2.

Then we can show that γ0 ∼ γ1 by constructing the homotopy between γ0 and γ1
directly, i.e.

F(s, t) = (1 − s)γ0(t) + sγ1(t) .

This is the so-called “straight-line homotopy” between γ1 and γ2, because the inter-
polation caused by F is such that the point F(s, t) lies on the line segment between
γ1(t) and γ2(t).

The conclusion that we can draw from the previous example is that all paths inR2

with the same endpoints are equivalent to each other. But we shouldn’t conclude that
homotopy equivalence is a vacuous notion. In fact, a simple modification leads to
a space where the straight-line homotopy argument fails to show that all curves are
equivalent. This is the topological space S = R

2 \ {(0, 0)} in whichwe have removed
the origin from R

2. This time, the straight-line homotopy is not always allowed,
because the basic assumption F : [0, 1] × [0, 1] → S fails to hold. In particular, this
happens when the intermediate path crosses over the origin. In the next few chapters,
we’ll characterize the homotopic and non-homotopic curves in S in greater detail.

8.3 Equivalence Classes of Paths and Loops

The notion of “equivalence” that we introduced in the previous section does indeed
stem from an equivalence relation on the set of paths in S.

Proposition 8.3 The relation∼ on paths in S from p ∈ S to q ∈ S is an equivalence
relation.
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Proof The relation∼ is reflexive, because F(s, t) = γ(t) for all s ∈ [0, 1] is a homo-
topy from γ to itself. It is symmetric because, given a homotopy F(s, t) from γ0 to
γ1, the function F(1 − s, t) is a homotopy from γ1 to γ0. Finally, if F(s, t) is a
homotopy from γ0 to γ1 and G(s, t) is a homotopy from γ1 to γ2, then the function

H(s, t) =
{
F(2s, t) s ∈ [0, 1

2 ]
G(2s − 1, t) s ∈ [ 12 , 1]

is a homotopy from γ0 to γ2. (Exercise: Why is H continuous?) �

Consequently, we can think of the space of all paths in S starting at p ∈ S
and ending at q ∈ S as being partitioned into a union of—possibly infinitely many,
possibly uncountably many—equivalence classes of paths.

Notation We’ll denote the equivalence class, or homotopy class, of a path γ by
[γ]. Note that [γ] = [γ′] whenever γ′ ∼ γ, so a homotopy class can have many
representatives.

8.4 Multiplication of Path and Loop Classes

A natural geometric operation on two paths γ, γ′ is called concatenation and is
simply adjoining the second path to the first. The concatenated path γ ∗ γ′ is the path
obtained by following γ for half of the parameter interval, then following γ′ for the
rest of the parameter interval. In order for γ ∗ γ′ to be a continuous path, the endpoint
of γ must coincide with the starting point of γ′. We make this concept rigorous with
the following definition.

Definition 8.4 Let γ be a path from p ∈ S to q ∈ S and let γ′ be a path from q ∈ S
to r ∈ S. Then γ ∗ γ′ is the path from p to r defined by

γ ∗ γ′(t) =
{

γ(2t) t ∈ [0, 1
2 ]

γ′(2t − 1) t ∈ [ 12 , 1].

Note that if γ, γ′ are loops based at the same point, then p = q = r and con-
catenation works. A crucial fact is that concatenation preserves homotopy classes of
paths or loops.

Theorem 8.5 Let γ0, γ
′
0 be two paths with compatible start and end points, and

suppose γ0 ∼ γ1 and γ′
0 ∼ γ′

1. Then γ0 ∗ γ′
0 ∼ γ1 ∗ γ′

1.

Proof Just as we can concatenate paths, we can also concatenate the homotopies
between the paths. That is, let F be a homotopy from γ0 to γ1 and let F ′ be a
homotopy from γ′

0 to γ′
1. Then we can show that
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H(s, t) =
{
F(s, 2t) t ∈ [0, 1

2 ]
F ′(s, 2t − 1) t ∈ [ 12 , 1]

is a homotopy between γ0 ∗ γ′
0 and γ1 ∗ γ′

1. First, H(0, t) = F(0, 2t) = γ(2t) for
t ∈ [0, 1

2 ], and H(0, t) = F ′(0, 2t − 1) = γ′(2t − 1) for t ∈ [ 12 , 1]. Thus H(0, t) =
γ0 ∗ γ′

0(t). Similarly, H(1, t) = γ1 ∗ γ′
1(t). Next, H(s, 0) = F(s, 0) = p for all s ∈

[0, 1], and also H(s, 1) = F ′(s, 1) = p for all s ∈ [0, 1]. Finally, H is continuous
because at the transition time t = 1

2 we have F(s, 2 · 1
2 ) = F(s, 1) = p = F ′(s, 0) =

F ′(s, 2 · 1
2 − 1) for all s. �

A consequence of this fortuitous property is that it is now possible to define an
operation of multiplication on equivalence classes of paths with compatible end-
points. If [γ] and [γ′] are two such equivalence classes, then we define their product
by

[γ] · [γ′] = [γ ∗ γ′] . (8.1)

This is the “natural” definition, of course. But here is something that might have gone
wrong: since representatives of equivalence classes are not unique, we can represent
[γ] as [τ ] and [γ′] as [τ ′] for perhaps different paths τ and τ ′. So now we’d hope that
our definition gives us [γ] · [γ′] = [τ ] · [τ ′]. But it might be the case that γ ∗ γ′ and
τ ∗ τ ′ are not homotopic for some reason. Luckily, Theorem 8.5 tells us that indeed
γ ∗ γ′ ∼ τ ∗ τ ′, so we can be assured that no matter what representatives for [γ] and
[γ′] we choose, their concatenations all lie in the homotopy class [γ ∗ γ′]. Thus our
multiplication (8.1) is well-defined.

An important technical result is to establish the associativity of the multiplication
of paths with compatible endpoints.

Theorem 8.6 Let γ1, γ2, γ3 be three paths with compatible endpoints. Then([γ1] · [γ2]
) · [γ3] = [γ1] · ([γ2] · [γ3]

)
.

Proof By re-writing path class multiplication in terms of path concatenation, the
desired formula is equivalent to

[
(γ1 ∗ γ2) ∗ γ3

] = [
γ1 ∗ (γ2 ∗ γ3)

]
or just (γ1 ∗ γ2) ∗

γ3 ∼ γ1 ∗ (γ2 ∗ γ3). So let us try to construct a homotopy between (γ1 ∗ γ2) ∗ γ3 and
γ1 ∗ (γ2 ∗ γ3). This is not trivial, because after we invoke the definition of ∗, we have

(γ1 ∗ γ2) ∗ γ3 =
{

γ1 ∗ γ2(2t) t ∈ [0, 1
2 ]

γ3(2t − 1) t ∈ [ 12 , 1]

=

⎧⎪⎨
⎪⎩

γ1(4t) t ∈ [0, 1
4 ]

γ2(4t − 1) t ∈ [ 14 , 1
2 ]

γ3(2t − 1) t ∈ [ 12 , 1]

and
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Figure 8.2 The
intermediate curves change
the length of time spent
moving along γ1, γ2, and γ3.

γ1 ∗ (γ2 ∗ γ3) =
{

γ1(2t) t ∈ [0, 1
2 ]

γ2 ∗ γ3(2t − 1) t ∈ [ 12 , 1]

=

⎧⎪⎨
⎪⎩

γ1(2t) t ∈ [0, 1
2 ]

γ2(4t − 2) t ∈ [ 12 , 3
4 ]

γ3(4t − 3) t ∈ [ 34 , 1],

which are different. But we can construct a homotopy between them as suggested in
Figure8.2. (Exercises: Does the function shown in Figure8.2 satisfy the properties
of a homotopy? What does an intermediate curve look like? Can you convert the
picture into an explicit function?) �

8.5 Definition of the Fundamental Group

Henceforth we will consider loops based at a point p in a surface S, i.e. paths γ in
S such that γ(0) = p = γ(1). We can concatenate any two such loops because the
endpoints are guaranteed to be compatible. We now collect all equivalence classes
of all loops based at p into one set.

Definition 8.7 Let S be a topological space with p ∈ S. The fundamental group of
S with basepoint p is defined as

π1(S, p) = {[γ] : γ is a loop based at p}.

The first fundamental result about the fundamental group is that it is a group!

Theorem 8.8 Let S be a topological space with p ∈ S. Then π1(S, p) is a group
under multiplication of homotopy classes of paths.

Proof We already know that multiplication of homotopy classes is a well-defined,
associative operation. We still have to show the existence of an identity element and
the existence of inverses.
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Figure 8.3 The homotopy for e ∗ γ.

Figure 8.4 The homotopy for γ ∗ γ̄.

For the identity element, we first define a special path e : [0, 1] → S by e(t) = p
for all t ∈ [0, 1]. Next, we claim that [e] is the identity in π1(S, p), or that [e] · [γ] =
[γ] for all [γ] ∈ π1(S, p). In other words, e ∗ γ ∼ γ for all loops γ. To verify this,
we compute

e ∗ γ(t) =
{
p t ∈ [0, 1

2 ]
γ(2t − 1) t ∈ [ 12 , 1] .

Therefore the following homotopy does the trick (see Figure8.3):

F(s, t) =
{
p t ∈ [0, 1−s

2 ]
γ
(
2t+s−1
s+1

)
t ∈ [ 1−s

2 , 1] .

(Exercise: Double-check that F has all the desired properties!)
We leave inverses for Problem 4; see Figure8.4. �

In the definition of π1(S, p) above, we had to choose a basepoint to “anchor” our
loops somewhere. This ingredient will play an important role in the future because it
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Figure 8.5 Changing
basepoints.

willmakemanyproofs simpler.But really, the choice of basepoint abovewas arbitrary
and it would be nice if it didn’t actually matter. The next theorem establishes this.

Theorem 8.9 Let S be a path-connected topological space with p, q ∈ S. Then
π1(S, p) and π1(S, q) are isomorphic in the sense of groups.

Proof Wewill construct an isomorphismbetweenπ1(S, p) andπ1(S, q). To this end,
let c : [0, 1] → S be a path connecting q with p, i.e. c is continuous and c(0) = q
and c(1) = p. (This path exists because we have assumed that S is path-connected,
meaning any pair of points in S can be connected by a path.) Define c̄ : [0, 1] → S by
c̄(t) = c(1 − t), which traces out the path of c in reverse. Now if γ is a loop based at
p, then c ∗ γ ∗ c̄ is a loop based at q. See Figure8.5. Finally, define φ : π1(S, p) →
π1(S, q) by φ([γ]) = [c ∗ γ ∗ c̄]. This φ is well-defined because if γ ∼ γ′, then we
have already shown (thanks to Theorem 8.5) that c ∗ γ ∗ c̄ ∼ c ∗ γ′ ∗ c̄.

To show that φ is a homomorphism, we must show that φ([γ] · [τ ]) = φ([γ]) ·
φ([τ ]). This is in fact an easy task, except for the fact that there’s a lot of notation
in the way. Thus to proceed, we first “unpack” the notation a bit. By applying the
definition of φ and of homotopy class multiplication, the left-hand side becomes

φ([γ] · [τ ]) = φ([γ ∗ τ ]) = [c ∗ γ ∗ τ ∗ c̄],

while the right-hand side becomes

φ([γ]) · φ([τ ]) = [c ∗ γ ∗ c̄] · [c ∗ τ ∗ c̄] = [c ∗ γ ∗ c̄ ∗ c ∗ τ ∗ c̄] .

Therefore, what we really need to show is [c ∗ γ ∗ c̄ ∗ c ∗ τ ∗ c̄] = [c ∗ γ ∗ τ ∗ c̄], or
more simply that c ∗ γ ∗ c̄ ∗ c ∗ τ ∗ c̄ ∼ c ∗ γ ∗ τ ∗ c̄. And now we can see that the
homomorphism property holds if we can show that c̄ ∗ c ∼ e. And we’ve done this
before! This is essentially the same as what you will do in Problem 4 when showing
that the fundamental group is closed under inverses—i.e. is actually a group.

Finally, we show that φ is bijective by constructing an inverse for φ. For this
purpose, we propose the mapping ψ : π1(S, q) → π1(S, p) given by ψ([γ]) = [c̄ ∗
γ ∗ c]. Themappingψ is well-defined and is a homomorphism by the same reasoning
as for φ. Also,

φ ◦ ψ([γ]) = φ([c̄ ∗ γ ∗ c]) = [c ∗ c̄ ∗ γ ∗ c ∗ c̄] = [c ∗ c̄] · [γ] · [c ∗ c̄] = [γ],
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because [c ∗ c̄] = [e]. Therefore φ ◦ ψ = e, and so ψ is indeed the inverse of φ. �
Remark 8.10 There is a major subtlety here: Although the fundamental groups
based at two different points are isomorphic, there is not generally a preferred choice
of isomorphism. If we had chosen another path c′ instead of c in the above proof—
where c′ is not homotopic to c—wemight have ended upwith a different isomorphism
between the two fundamental groups.

8.6 Problems

(1) Consider the homomorphism f : F(x, y) → Fab(p, q) determined by f (x) =
p and f (y) = q. What are the images of the following words under the homo-
morphism f ?

(a) x2yx3y−2

(b) xyx−3y2

(c) x2y5x−2y−2xy−3

(d) x2y−4x7y8x−8y4

(2) Compute the following products in the free product F(a, b) ∗ Fab(x, y):

(a)
(
axybax2y3a

) · (
bxybaxy3a

)
(b)

(
axybax2y3

) · (
x3ybax2y3a

)
(c) (ab) · (bax)
(d) (ab) · (xba)

(3) Let γ1 be a path from p0 to p1, let γ2 be a path from p1 to p2, and let γ3 be
a path from p2 to p3. Prove that γ1 ∗ (γ2 ∗ γ3) ∼ (γ1 ∗ γ2) ∗ γ3. Construct the
homotopy explicitly and draw a representative picture in the (s, t)-square.

(4) Let γ be a loop based at a point x . Define γ̄(t) := γ(1 − t) for all t ∈ [0, 1].
Show that γ ∗ γ̄ ∼ e, where e is the loop defined by e(t) := x for all t ∈ [0, 1].
Construct the homotopy explicitly, and draw a representative picture in the (s, t)-
square.

(5) Show that π1(R, 0) ∼= {e}.
(6) The fundamental group π1 is just one of a family of groups associated to a space.

For a space X with basepoint x ∈ X , define πn(X, x) to be the set of homotopy
classes of maps from [0, 1]n to X , so that all points in [0, 1]n with at least one
coordinate equal to 0 or 1 get mapped to x .

(a) Show that πn(X, x) is a group for n ≥ 1.
(b) Show that πn(X, x) is abelian for n ≥ 2.
(c) There is also a notion ofπ0.What do you expect it tomean?What topological

property does it capture? (For this part, think of πn as homotopy classes of
based maps from S

n to X .)



Chapter 9
Computing the Fundamental Group

9.1 Homotopies of Maps and Spaces

In the last chapter, we discussed homotopies ofmaps between [0, 1] and a topological
space X . We can generalize this to maps between two arbitrary topological spaces
X and Y . We say that two maps f, g : X → Y are homotopic if we can continuously
deform one into the other. We can express this notion more formally, in a similar
manner to how we defined homotopies of maps between [0, 1] and X :

Definition 9.1 Suppose X and Y are two topological spaces, and f, g : X → Y
are two continuous maps. Then a homotopy between f and g is a continuous map
H : [0, 1] × X → Y satisfying the following properties:

• H(0, x) = f (x) for all x ∈ X ,
• H(1, x) = g(x) for all x ∈ X .

If there is a homotopy between f and g, then we say that f and g are homotopic.
We write f ∼ g when f and g are homotopic.

Note that this notion of homotopy is a little bit weaker than the one we saw in the
last chapter. A homotopy H between two paths f and g starting at p and ending at
q must satisfy H(s, 0) = p and H(s, 1) = q, i.e. the starting and ending points of
all intermediate paths must be the same as those of f and g. In this new version of
homotopy, this isn’t required. Indeed, there aren’t any obvious starting and ending
points in sight.

For us, it will be most useful to talk about two maps from one space to itself being
homotopic—especially when one of the maps is the identity map. The reason for
that is that we’re interested in the following notion, that of homotopies of spaces.

Definition 9.2 Suppose that X and Y are two topological spaces. We say that X and
Y are homotopy equivalent if there are continuous maps f : X → Y and g : Y → X
so that g ◦ f ∼ idX and f ◦ g ∼ idY . We call f and g homotopy equivalences.

At this stage, it is useful to look at some examples of homotopy equivalent spaces.
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Figure 9.1 A convex set:
the segment connecting any
two points in the set is
entirely contained in the set,
as illustrated with the points
labeled A and B.

A

B

Example Let X be the interval [0, 1], and let Y be the single point 0. Then X
and Y are homotopy equivalent. To see this, we need to define maps f : X → Y
and g : Y → X . We define f (x) = 0 for all x ∈ X , and g(0) = 0 (for the only
point 0 in Y ). Then (g ◦ f )(x) = 0 for all x ∈ X . To see that this is homotopic
to the identity map h(x) = x , we need to construct a homotopy H : [0, 1] × X →
X between them. Our homotopy will be defined by H(s, x) = sx . Then we have
H(0, x) = 0 = (g ◦ f )(x), and H(1, x) = x = h(x). So this is a homotopy between
(g ◦ f )(x) and the identity function on X .

Now we have to show that f ◦ g is homotopic to the identity function on Y . But
this is easier, because both functions are the same function that sends the only point
in Y to itself. The homotopy J between them is defined by J (s, x) = 0.

This is our first example of homotopy equivalent spaces—and in this case, one of
those spaces is a point. We have a word for this phenomenon: contractible.

Definition 9.3 We say that a space X is contractible if X is homotopy equivalent to
a point.

Hence, the above example shows that the interval is contractible. There are many
other examples of contractible spaces, and the following describes a general class of
them.

Definition 9.4 A subset X ⊂ R
n of Euclidean space is called convex if, for any two

points x, y ∈ X , the segment between x and y is also contained in X .

See Figure9.1 for a picture of a convex set.

Proposition 9.5 Any convex set is contractible.

The proof is very similar to the argument above that shows that the interval is
contractible. See if you can work out how to prove this proposition before reading
on.

Proof Let X be a convex set, and let x be any point in X . Wewill findmaps f : X →
{x} and g : {x} → X so that the compositions are homotopic to the identities on X
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Figure 9.2 A star-shaped,
but not convex, set. Every
point is visible from point A,
but the line connecting
points B and C is not
contained in the set. A

B

C

and {x}. There is really only one way to define the maps: let f (y) = x for all y ∈ X ,
and let g(x) = x . Then the composition f ◦ g : {x} → {x} is equal to the identity
map, whereas g ◦ f : X → X is the map that sends every point in X to x . We now
need to construct a homotopy H : [0, 1] × X → X so that H(0, y) = y for all y ∈ X ,
and H(1, y) = x for all y ∈ X . We define H to be the “straight-line homotopy” that
we saw in Chapter8: We set H(s, y) = (1 − s)y + sx . The homotopy in the other
direction is simply the constant map. �

In fact, convexity was really a stronger hypothesis than we needed in the above
proposition: we didn’t need that the segment connecting any two points is in X , only
that the segment connecting any point to x is in X .

Definition 9.6 We call a subset X ⊂ R
n star-shaped if there is some point x ∈ X

so that, for any point y ∈ X , the segment connecting y to x is contained in X .

See Figure9.2 for a picture of a star-shaped set.

Proposition 9.7 Star-shaped sets are contractible.

However, there are setswhich are not star-shaped that are nonetheless contractible.
In fact, sometimes the question of whether a set is contractible can be rather difficult:
a famous example is Bing’s House with Two Rooms, pictured in Figure9.3. Let’s
take a look at why this space is contractible. To do this, instead of homotoping it
to a point, we’ll start with another contractible space. We’ll take a solid cylinder
and homotope that to Bing’s House with Two Rooms. This is sufficient thanks to
Theorem 9.12.

Let’s start with a solid cylinder B1(0, 0) × [0, 1] made of modeling clay, and
let’s consider the middle layer B1(0, 0) × { 12 }. Now poke your finger through the
bottom, say at ( 12 , 0, 0) until it passes above the middle layer. Then poke another
finger through the top, say at (− 1

2 , 0, 1) until it passes below the middle layer. Now,
use the hole coming from the bottom to hollow out the top part, except for the hole
your top finger made and a wall connecting it to the edge. Similarly, use the hole
coming from the top to hollow out the bottom part, again except the hole made by
your bottom finger and a wall connecting it to the edge. What’s left is Bing’s House
with TwoRooms, or perhaps a slightly thickened version of it which is still homotopy
equivalent to it. See [Bak10] for lots of pictures.
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Figure 9.3 Bing’s House
with Two Rooms: a
contractible space that
doesn’t “look” contractible.

So, now we’ve seen some examples of contractible sets, but we don’t (provably)
know any examples of non-contractible sets yet. However, there are many examples.

Example Let X be the set consisting of two points, say {0, 1} ⊂ R. Then X is not
contractible. To see this, suppose that it were contractible. That wouldmean that for a
one-point set {x}, there would be maps f : X → {x} and g : {x} → X so that g ◦ f
is homotopic to the identity. Let us suppose that g(x) = 0, without loss of gener-
ality. Then we would need to have some homotopy H : [0, 1] × X → X satisfying
H(0, y) = y for y = 0, 1, and H(1, y) = 0 for y = 0, 1. Let us look at the function
h(s) = H(s, 1). This must be a continuous function, with h(s) ∈ X for all s ∈ [0, 1],
i.e., h(s) is always either equal to 0 or 1, and h(0) = 1 and h(1) = 0, so h must con-
tain a “jump” somewhere. However, such a jump function cannot be continuous.
To see this, suppose that h were continuous. Then let I1 = h−1((−1/2, 1/2)) and
I2 = h−1((1/2, 3/2)) be the preimages of two intervals. (Hence I1 is the preimage of
0, and I2 is the preimage of 1.) Then I1 and I2 are two disjoint sets. If h is continuous,
then both I1 and I2 would be open, as they are preimages of open sets. But then we
would have expressed [0, 1] as the union of two disjoint nonempty open sets, which
is impossible.

But even many sets that are connected are not contractible. It will take us some
time to see this, but we can start by relating contractibility to the fundamental group.

Theorem 9.8 A contractible space has trivial fundamental group.

We shall give a proof here which is morally correct (see [Che04] for a discussion
about what that means) but which nonetheless contains a small gap. In Problem 9,
you will turn this argument into a full proof.

Sketch of the Proof Let X be a contractible space. This means we have a homotopy
H : [0, 1] × X → X so that H(1, y) is some single point x ∈ X . We now let that
point x be the basepoint for the fundamental group, and we let γ be any loop in X
based at x . We must show that we can deform γ continuously down to the trivial
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loop. To do this, we deform γ via H : let F : [0, 1] × [0, 1] → X be the map defined
by F(s, t) = H(s, γ(t)). This is a homotopy from γ to the trivial loop, as F(0, t) =
H(0, γ(t)) = γ(t), and F(1, t) = H(1, γ(t)) = x . �

Exercise 9.9 Find a minor flaw in this proof. How can you fix it?

As a consequence of Theorem 9.8, any space with non-trivial fundamental group
is not contractible. While we haven’t yet proven that there are spaces with non-trivial
fundamental group, it is certainly plausible that many of our favorite spaces, such as
the circle, annulus, and torus, have non-trivial fundamental group. This will turn out
to be true.

However, the sphere has trivial fundamental group but is still not contractible.
We can’t quite prove this yet, but we can get close by reducing the statement to a
plausible-looking claim thatwewill be able to prove oncewe have studied homology.

Theorem 9.10 The sphere S
2 is not contractible.

Most of the Proof Suppose that S2 were contractible. Then we would have a homo-
topy H between the identity on S

2 and a constant function, sending every point to
the south pole p (say). Hence we have H(0, x) = x for all x ∈ S

2, and H(1, x) = p
for all x ∈ S

2. We can use this homotopy to construct a rather strange map r from
the solid sphere B to the sphere S

2, so that the restriction of this map to the boundary
sphere is the identity. We can write down a formula for r :

r(x) =
{
p ‖x‖ = 0,

H
(
1 − ‖x‖, x

‖x‖
)

‖x‖ > 0.

(Exercise: Check that r is actually a continuous map from B to S
2, and that r(x) = x

for all x ∈ S
2.) Once we discuss homology, we shall be able to see that such an r

cannot exist. �

Shockingly, however, the infinite-dimensional sphere S
∞ is contractible! An

infinite-dimensional sphere has a slightly strange definition: it is the set of points
in infinite-dimensional space at distance 1 from the origin, but a point in infinite-
dimensional space can only have finitely many nonzero coordinates. Hence we have

S
∞ = {(x1, x2, . . .) : x21 + x22 + · · · = 1,

and only finitely many xi ’s are nonzero}.

It seems rather remarkable that the infinite-dimensional sphere should be con-
tractible when the circle and sphere are not, so let us think about why this is reason-
able. Although a circle is not contractible, if we look at one particular circle on a
sphere (say, the equator), then we can deform it to a point by deforming it through
the north (or south) hemisphere. Let us be more precise about this: we can give a
homotopy from the equator {(x, y, 0) : x2 + y2 = 1} to the north pole p = (0, 0, 1)
that stays entirely on the sphere: one such map is
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H(s, x) = sp + (1 − s)x

‖sp + (1 − s)x‖ .

The interpretation of this is that it wants to be the straight line homotopy from the
equator to the north pole, but that doesn’t lie on the sphere.We fix this by normalizing
so that it does stay on the sphere. Since the line doesn’t pass through the center of the
sphere (which would cause the denominator ‖sp + (1 − s)x‖ to vanish), this can be
done in a continuous and unambiguous manner.

Similarly, while the sphere isn’t contractible, if we put it inside a 3-dimensional
sphere, we can deform it down to a point in much the same way. In general, we
can always deform an (n − 1)-dimensional sphere to a point by putting it into an
n-dimensional sphere. So, stated in a very non-rigorous manner, what we do to show
that the ∞-dimensional sphere is contractible is to start by finding a homotopy to
an “(∞ − 1)-dimensional sphere” inside the full ∞-dimensional sphere. Then, we
deform that to a point inside the full∞-dimensional sphere.We now have everything
we need to prove the following theorem.

Theorem 9.11 The infinite-dimensional sphere S
∞ is contractible.

Proof We construct a homotopy to a point in two steps: first, we homotope it to an
“(∞ − 1)-dimensional subsphere,” and thenwe deform that subsphere to a point. Let
us define the first part of the map, the homotopy to the subsphere. We will define a
map H(t, x) from S

∞ to the point (1, 0, 0, . . .). For a point x=(x1, x2, . . .)∈ S
∞, let

T (x)=(0, x1, x2, . . .) ∈ S
∞. We will send x to T (x). The homotopy that does this

wants togoalongastraight linefromx toT (x), except that thisdoesn’t lieonthesphere.
However, the line connecting x to T (x) doesn’t pass through the origin, sowe can nor-
malize every point to lie on the sphere. If wewant an actual formula, we can write

H(s, x) = 2sT (x) + (1 − 2s)x

‖2sT (x) + (1 − 2s)x‖ ,

where ‖x‖ is the length of x . Hence H(0, x) = x and H(1/2, x) = T (x).
We now work out the other part of the homotopy, which sends the image of T to

the point p = (1, 0, 0, . . .). We do this in the same sort of way, following a straight-
line homotopy from T (x) to p and normalizing so that the path lines on the sphere.
We thus take

H(s, x) = (2s − 1)p + (2 − 2s)T (x)

‖(2s − 1)p + (2 − 2s)T (x)‖
for this part of the homotopy, so that H(1/2, x) = T (x) and (1, x) = p. Putting this
together, we have the full homotopy:

H(s, x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2sT (x) + (1 − 2s)x

‖2sT (x) + (1 − 2s)x‖ 0 ≤ s ≤ 1/2,

(2s − 1)p + (2 − 2s)T (x)

‖(2s − 1)p + (2 − 2s)T (x)‖ 1/2 ≤ s ≤ 1.

Thus, we have shown that S
∞ is contractible. �
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Figure 9.4 Dumbbell.

Figure 9.5 Theta.

Example Let us look at an example of two spaces that are homotopy equivalent, but
which are not (or at least, to be safe, do not appear to be) contractible. The dumbbell
(Figure9.4) and the theta (Figure9.5) are homotopy equivalent. It will be painful to
try to write down equations for everything, so let us instead describe the maps in
words. We can construct a map from the dumbbell to the theta by first squashing the
vertical line to obtain a figure-eight. Then we push up the top of the bottom circle
into a line. Finally, we push the bottom of the top circle down to the same line.

Similarly, we can describe a map from the theta to the dumbbell. We first collapse
the horizontal line to obtain a figure-eight. Then, to create a vertical line, we push in
a bit of the bottom of the top circle and the top of the bottom circle, and that gives
us the dumbbell.

We should now check that these maps are homotopy equivalences. That is, we
should look at the composition of the maps and show that this composition is homo-
topic to the identity. Let us look at the composition that takes the dumbbell to the
theta and then back again. What does this map do? All it does is to move points on
and near the vertical line around a little bit: it pushes all the points on the vertical line
and in a neighborhood of the vertical line to the center point on this line, and it sends
a slightly larger neighborhood to the vertical line and a neighborhood around it. To
find a homotopy from the identity on the dumbbell, to this map from the dumbbell
to itself, we just imagine slowly pushing the points from the identity to where they
are supposed to go. This is a homotopy. The homotopy on the theta is described
similarly.
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Example After we classified compact surfaces, we wondered about how to classify
noncompact surfaces, such as surfaces with punctures. The sphere with three punc-
tures and the torus with one puncture are homotopy equivalent. (Exercise: Can you
see why?) There is a deep connection between these two spaces and their topology
and geometry; see for instance [HS09].

Homotopy equivalence is an important criterion for classifying topological spaces.
It is similar in many ways to classification up to homeomorphism.

Theorem 9.12 Homotopy equivalence is an equivalence relation.

Proof As usual, we have to check that homotopy equivalence is reflexive, symmetric,
and transitive.

Reflexive:Weneed to show that a space X is homotopy equivalent to itself; that is,
there are maps f, g : X → X so that f ◦ g and g ◦ f are homotopic to the identity.
The obvious choice here is to let both f and g be the identity maps, so that their
composition is as well. Clearly, the identity is homotopic to the identity, so homotopy
equivalence is reflexive.

Symmetric:We need to show that if X is homotopy equivalent to Y , then Y is also
homotopy equivalent to X . But this is essentially built into the definition of homotopy
equivalence, because the definition requires that we can find maps f : X → Y and
g : Y → X so that both f ◦ g and g ◦ f are homotopic to their respective identities.

Transitive: Suppose we have homotopy equivalences f1 : X → Y , f2 : Y → Z ,
g1 : Y → X , and g2 : Z → Y . We want to show that f2 ◦ f1 : X → Z and g1 ◦
g2 : Z → X are homotopy equivalences as well. We need to show that (g1 ◦ g2 ◦
f2 ◦ f1) and ( f2 ◦ f1 ◦ g1 ◦ g2) are homotopic to their respective identities; we will
do only the first of these, as the second is similar. Since f1 and g1 are homotopy
equivalences, there is some map H1 : [0, 1] × X → X homotoping g1 ◦ f1 to the
identity. Similarly, there is a map H2 : [0, 1] × Y → Y homotoping g2 ◦ f2 to the
identity. From this, we can define a map H : [0, 1] × X → X homotoping (g1 ◦ g2 ◦
f2 ◦ f1) to the identity. We define H by

H(s, x) =
{
H1(2s, x) s ∈ [0, 1

2 ]
g1

(
H2(2s − 1, f1(x))

)
s ∈ [ 12 , 1] .

We can check that this is indeed a homotopy, and this shows that homotopy equiva-
lence is an equivalence relation. �

Remark 9.13 Although at the beginning of the book we stated that a goal of topol-
ogy is to classify spaces up to homeomorphism, this goal is actually frequently
beyond the power of algebraic topology: the tools of algebraic topology are rarely
sufficient for distinguishing between two spaces which are homotopy equivalent but
not homeomorphic, such as the dumbbell and the theta, or between the sphere with
three punctures and the torus with one puncture.

The above theorem and remark suggest a generalization of Theorem 9.8.
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Theorem 9.14 If X and Y are two path-connected spaces that are homotopy equiv-
alent, then they have isomorphic fundamental groups.

The proof of this theorem is nearly identical to that of Theorem 9.8, so we will
not present it here.

9.2 Computing the Fundamental Group of a Circle

So far, it is not yet clear whether the fundamental group is an interesting invariant—
that is, does it ever distinguish spaces? Are there any spaces at all with nontrivial
fundamental group? In case the name didn’t give it away, here’s a spoiler: yes! We
will show that the circle has nontrivial fundamental group.

Before we do this, let us see intuitively why we ought to believe that the circle has
nontrivial fundamental group. Suppose our circle is the set S1 = {(x, y) : x2 + y2 =
1} ⊂ R

2. Let us pick as our basepoint the point p = (1, 0). Let us consider the loop
α on the circle; α is a map α : [0, 1] → S

1 so that α(0) = α(1) = p, and we will
choose it to be the loop α(t) = (cos 2πt, sin 2πt), so it is a loop of constant speed
that goes around the circle once in the counterclockwise direction.

This loop appears not to be homotopic to the trivial loop: it seems that this loop
goes around once, and the trivial loop goes around 0 times. But how can we prove
that, by doing some clever homotopy, we can’t shrink it down to a point?

There are several ways of proving this, and the different techniques highlight
different properties of fundamental groups. In this section, we’ll see a way to do
it using a first example of covering spaces, while in the next chapter we’ll see a
different proof. We won’t talk more about covering spaces in general in this book,
but the procedure we employ here to compute fundamental groups is very general
and can be used to compute the fundamental group of any reasonably nice space.

The outline of the proof is the following: We want to start with a loop on the
circle, lift it up to some other space, and see what the lifted version of the loop looks
like.

Theorem 9.15 The fundamental group of the circle is isomorphic to the group Z of
integers.

Proof We consider the map f : R → S
1, given by f (t) = (cos 2πt, sin 2πt), which

wraps the real line around the circle infinitely many times. Let us fix a preimage of
p = (1, 0) in R, say 0 ∈ R. Now, let γ : [0, 1] → S

1 be a loop in S
1 based at p. We

can lift γ to a path γ̃ in R so that γ̃(0) = 0; this means that f (̃γ(t)) = γ(t); in fact,
there is exactly one such path γ̃. To lift a path from S

1 to R, we simply lift it a bit at
a time: each point has infinitely many preimages, but only (at most) one of them is
very close to any given point, so we can easily figure out which one to use. This can
be proven rigorously, but we will not do so here. (For a proof, see [Mas91, Chapter
V, Lemma 3.1].)
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Now, while γ was a loop in S
1, γ̃ will not necessarily be a loop in R; that is, it

might have different starting and ending points. Suppose that r ∈ R is the ending
point for γ̃; that is, r = γ̃(1). Since f (̃γ(t)) = γ(t), we must have f (r) = p, so r
must be some preimage of p. The preimages of p under f are exactly the integers.
Hence, r is some integer.

This now tells us how we should define the map φ : π1(S
1, p) → Z. That is, for

any equivalence class of loops [γ] ∈ π1(S
1, p), we define φ([γ]) = γ̃(1) = r .

There aremany thingsweneed to check about thismap. First,weneed to check that
it is a well-defined map.What could go wrong? Remember that [γ] is an equivalence
class of loops in S

1 based at p, whereas we have defined φ([γ]) in terms of the lift of
a representative of the equivalence class, namely the loop γ. But, of course, the class
[γ] can have many representatives; i.e. we have [γ] = [γ′]whenever γ′ is homotopic
to γ. So, we have to make sure that if we define φ([γ]) by lifting γ or by lifting γ′,
we get the same answer. In order to show this, we observe that we can lift an entire
homotopy from one loop to another, to a homotopy of the lifted versions in R, so
that the endpoints stay fixed throughout the homotopy. This is in much the same way
that we can lift a path; see [Mas91, Chapter V, Lemma 3.3]. The conclusion we draw
is that, because the homotopy doesn’t move the endpoints, two homotopic loops lift
to paths in R with the same endpoints, which is just what we need for φ([γ]) to be
well-defined.

So, now we’ve seen that φ is actually a well-defined map from π1(S
1, p) to Z. We

must now check that it is a homomorphism. Let us take two equivalence classes of
loops, [γ1] and [γ2], inS

1 based at p. Let us suppose thatφ([γ1]) = a andφ([γ2]) = b.
What is φ([γ1][γ2])? In order to work this out, because [γ1][γ2] = [γ1 ∗ γ2], we want
to figure out how to lift γ1 ∗ γ2, given that we know how to lift γ1 and γ2. The lift of
γ1 ∗ γ2 will look like this:

γ̃1 ∗ γ2(t) =
{

γ̃1(2t) 0 ≤ t ≤ 1/2,

γ̃2(2t − 1) + a 1/2 ≤ t ≤ 1.

(Exercise: Why is this the right definition?)
Now we can check that φ([γ1][γ2]) = φ([γ1]) + φ([γ2]). Clearly φ([γ1]) +

φ([γ2]) = a + b, and

φ([γ1][γ2]) = φ([γ1 ∗ γ2]) = γ̃1 ∗ γ2(1) = γ2(1) + a = a + b.

Hence φ is a homomorphism.
Wewanted to check thatφ is an isomorphism, sowemust check that it is surjective

and injective. Let us check that it is injective. Suppose φ([γ]) = 0, so that γ̃(1) = 0.
In that case, γ̃ is a loop, and not just a path, because γ̃(0) = γ̃(1). But we know that
R is contractible, so this means that there is a homotopy H : [0, 1] × [0, 1] → R

which deforms γ̃ to the constant loop. But then f (H(s, t)) is a homotopy between
γ(t) and the constant loop in S

1. Thus γ is homotopic to the constant loop, so its
equivalence class is trivial in π1(S

1, p).
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Finally, we need to show that φ is surjective, i.e. given any integer n, we can find
a loop γ in S

1 so that φ([γn]) = n. To do this, we just write down such a loop γn , and
it is a loop that goes around the circle n times in the counterclockwise direction (or
−n times in the clockwise direction when n < 0). We define γn to be the loop given
by

γn(t) = (cos 2πnt, sin 2πnt).

Thus we have checked everything we needed, and we have shown that
π1(S

1, p) ∼= Z. �

9.3 Problems

(1) Show that a space X is contractible if and only if, for each point x0 ∈ X , there
is a homotopy H : [0, 1] × X → X so that H(0, x) = x and H(1, x) = x0 for
all x ∈ X .

(2) Show that homeomorphisms are homotopy equivalences.
(3) Show that a punctured torus is homotopy equivalent to the theta or the dumbbell.
(4) Let g1 and g2 be nonnegative integers, and let n1 and n2 be (strictly) positive

integers. Show that an orientable compact genus g1 surface with n1 punctures is
homotopy equivalent to an orientable compact genus g2 surfacewithn2 punctures
if and only if 2g1 + n1 = 2g2 + n2.

(5) Let f : S
1 → S

1 be a continuous map that is not homotopic to the identity. Show
that there is a point x ∈ S

1 so that f (x) = −x ; that is, f (x) is diametrically
opposite of x .

(6) Let γ0 and γ1 be two paths in S
2 starting at p ∈ S

2 and ending at q ∈ S
2. Here,

we can view S
2 as the unit sphere in R

3. Explain why there is a homotopy from
γ0 to γ1. Note that the intermediate curves γs must all lie on S

2 and connect p
to q.

(7) Let S be the annular region in the plane lying between the circle of radius 1/2 and
the circle of radius 2. Let p = (1, 0) and q = (−1, 0). Let γ+

0 be the half-circular
arc from p to q in the counterclockwise sense, and let γ−

0 be the half-circular
arc from p to q in the clockwise sense. Let γ1 be some other path in S from p
to q. Explain some of the issues involved in constructing a homotopy from γ1
to either of γ±

0 . Can you always do it? When can you not do it? If you think you
can do it, how would you write down a formula for the homotopy? Note that γ1
can be an arbitrarily “bad” path from p to q! Is γ+

0 homotopic to γ−
0 ?

(8) Mimic the computation of π1(S
1) to compute π1(RP

2). (Hint: Think of a natural
space to lift to.)
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(9) We showed in the text that a contractible space S has trivial fundamental group.
We did this by showing that if γ is a loop in S and F : [0, 1] × S → S is the con-
traction homotopy, then f : [0, 1] × [0, 1] → S given by f (s, t) = F(s, γ(t))
is the homotopy of the loop to a point. However, our argument isn’t quite rigor-
ous because f (s, 0) is not necessarily fixed as s varies, which the definition of
loop homotopy requires. Make the necessary modifications to this argument so
that it becomes completely rigorous.



Chapter 10
Tools for Fundamental Groups

10.1 More Fundamental Groups

We have worked quite hard to find a space whose fundamental group is non-trivial.
We should capitalize on this result and see if we can find other, related spaces whose
fundamental groups can now be computed easily as a result of our hard work. An
example where this approach is successful is for product spaces.

We must first make a small digression and attempt to put the notion of the product
of two topological spaces X and Y on a slightly more rigorous footing. Just as we
defined the product of two groups, let us define the product space as

X × Y := {(x, y) : x ∈ X and y ∈ Y } .

So far, this just defines X × Y as a set of points. To really turn X × Y into a topological
space, we have to extend the topological notions from X and Y to X × Y . We gave
the precise mathematical definition of a topological space earlier, in Chapter3, but
let us repeat it once more.

A topological space X is a set of points together with a topology, which we’ll
loosely take to mean “a way of defining an open set.” If X ⊆ R

3 then we said that
a subset U ⊆ X is open if and only if, for every x ∈ U , we can find ε > 0 so that
the open ball Bε(x) ⊆ R

3 satisfies Bε(x) ∩ X ⊆ U . Thus we use the relatively open
balls Bε(x) ∩ X for all x ∈ X and ε > 0 to prove the openness of any subset of X .
We say that the relatively open balls of X constitute a “basis” for X .

More generally, we may have some space X that is not a subset of R
3—or any

R
n for that matter—yet we still wish to consider it to be a topological space. What

this means is that we need a way of deciding whether a subset of X is open or not.
We allow ourselves flexibility in how this is done, but we require that certain natural
properties of open sets that we have seen before still hold.

Definition 10.1 A topological space is a set X together with a collection T of
subsets of X , so that
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• ∅, X ∈ T ,
• If A1, A2, . . . are in T , then

⋃
Ai ∈ T ,

• If A1, A2 ∈ T , then A1 ∩ A2 ∈ T .

We call T a topology, and we call the sets in T open sets.

The upshot of the above discussion is that we have to describe the open sets of
X × Y in order to transform X × Y into an honest-to-goodness topological space. It
is done as follows.

Definition 10.2 We call a subset U ⊆ X × Y open if, for every point (x, y) ∈ U ,
there are open setsU1 ⊂ X andU2 ⊂ Y with x ∈ U1 and y ∈ U2, so that the product
space U1 ×U2 ⊆ U .

Remark 10.3 There is also a version of this product topology on a direct product
of infinitely many topological spaces, but it isn’t what you would first guess it to be.
See [DS84] for the general definition of the product topology, with an explanation
of why it is the correct definition.

Example Our simplest examples of product spaces are the higher-dimensional
Euclidean spaces. That is, R

2 := R × R and R
n is defined recursively as R

n :=
R

n−1 × R.

Example The two-dimensional torus is defined as T
2 := S

1 × S
1. The

n-dimensional torus is defined recursively as T
n := T

n−1 × S
1.

Remark 10.4 Observe that the torus S
1 × S

1 is not the same as the sphere S
2.

We now return to fundamental groups. We have just developed a simple method
of constructing a bigger topological space X × Y out of two smaller ones X and
Y . The question is: What happens to the fundamental groups in this process? The
following theorem gives the answer. For clarity, we will use (here only!) the notation
×T S for the product of topological spaces just described, and ×G the direct product
of groups. Recall also that ∼= means “isomorphic as groups.”

Theorem 10.5 Let X,Y be two path-connected topological spaces. Thenπ1(X ×T S

Y ) ∼= π1(X) ×G π1(Y ).

Proof Despite the lengthy lead-up to this theorem, the proof is very straightforward.
A loop in X × Y can be uniquely written γ (t) := (γ1(t), γ2(t)), where γ1 and γ2
are loops in X and Y , respectively. Furthermore, a homotopy of loops γ̃ := (γ̃1, γ̃2)

to γ can be written F(s, t) := (F1(s, t), F2(s, t)), where F1(s, t) and F2(s, t) are
homotopies of γ̃1 ∼ γ1 and γ̃2 ∼ γ2, respectively. We conclude from this discussion
that two loops are homotopic in X × Y if and only if both of the “component loops”
are homotopic in X and Y , respectively.

To construct an isomorphism φ : π1(X ×T S Y ) → π1(X) ×G π1(Y ), we simply
define

φ([γ ]) := ([γ1], [γ2]
)
,
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Figure 10.1 π1(T
2) is

abelian.

where γ (t) := (γ1(t), γ2(t)). The discussion above ensures that φ is well-defined
(i.e. if [γ ] = [γ̃ ] or equivalently γ ∼ γ̃ , then φ([γ ]) = φ([γ̃ ])). It remains to check
that φ is a homomorphism and is both injective and surjective. This is an exercise
for you! �

The consequence of the theorem above, and the hard work we have done finding
π1(S

1), is that we now know other spaces with non-trivial fundamental groups: the
product space which is the n-dimensional torus T

n .

Corollary 10.6 For every n ∈ N we have π1(T
n) ∼= Z

n times
︷ ︸︸ ︷× · · · × Z.

Exercise 10.7 Observe that the corollary above tells us that π1(T
2) is an abelian

group. Therefore if a, b are the generators of π1(T
2) as a group, then aba−1b−1 = id.

If a = [γ1] and b = [γ2] for loops γ1, γ2 ⊆ T
2, thenwemust have γ1 ∗ γ2 ∗ γ̄1 ∗ γ̄2 ∼

e, where the bar denotes the reversed loop and e is the constant loop, as always. It
seems to be slightly non-obvious that the two generating loops of π1(T

2) should
behave in this way, if we try to picture the loops directly on the torus. However, it’s
much easier to see what’s going on using an ID space, as shown in Figure10.1.

10.2 The Degree of a Loop

The purpose of this section is to introduce a tool, called the degree, for studying the
topological properties of curves.

Let p ∈ R
2 be a point, and let γ : [0, 1] → R

2 be a continuous loop that does not
pass through p. We can thus view γ as a map from the circle γ : S

1 → R
2 \ {p}. We

would like to define the degree of γ relative to p—roughly speaking—as the number
of times γ winds around p. To put this notion on a rigorous footing, we proceed as
follows.

Definition 10.8 Let p ∈ R
2, and let γ be a loop in R

2 not passing through p. Then
the degree of γ relative to p, denoted degp(γ ), is defined via the following procedure.

1. Partition [0, 1] into n disjoint sub-intervals of the form [ti , ti+1], where 0 = t0 <

t1 < · · · < tn−1 < tn = 1. Choose these ti so close to each other that the angle,
measured counter-clockwise, between the vectors γ (s) − p and γ (s ′) − p for
any s, s ′ ∈ [ti , ti+1] belongs to (−π/2, π/2).
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2. Let θi be the angle, measured counter-clockwise, between γ (ti+1) − p and
γ (ti ) − p.

3. Define degp(γ ) := 1
2π

∑n−1
i=1 θi .

Remark 10.9 The purpose of Steps 1–2 is to remove the ambiguity involved in
deciding what the angle is between two vectors—really this is a number that is
defined only up to an arbitrary integer multiple of 2π . But we can be unambiguous
if the vectors point in directions that are sufficiently close to each other. This should
remind you of what we did while lifting paths from S

1 to R when computing π1(S
1):

each point has many preimages, but if we lift just a little bit at a time, we know how
to choose the right one.

Remark 10.10 It is not entirely trivial to show that a partition of the kind described
in Step 1 always exists. Suffice it to say that the existence of the required partition
follows from the continuity of γ and the compactness of S

1.

We now prove three basic results about the degree.

Lemma 10.11 The degree is an integer.

Proof We can measure each angle θi , at least up to an ambiguity equal to an inte-
ger multiple of 2π , as follows. Let α1i be the angle between γ (ti+1) − p and the
x-axis. Let α2i be the angle between γ (ti ) − p and the x-axis. Then θi ≡ α1i − α2i

(mod 2π). Hence 2π · degp ≡ ∑
i (α1i − α2i ) (mod 2π). But this sum is telescop-

ing and itself equals an integer multiple of 2π , because γ (0) = γ (1). �

Lemma 10.12 The degree is independent of the choice of partition of [0, 1].
Proof Two different partitions of [0, 1] satisfying the requirements of Step 1 always
have a common refinement that also satisfies these requirements. Moreover, each of
the input partitions can be transformed into the common refined partition by adding
several additional points one at a time (and the requirements of Step 1 are met at
each step). We can thus prove the partition-independence of the degree, if the degree
is unchanged whenever one additional point is added to a partition that satisfies the
requirements of Step 1.

To this end, suppose the additional point t ′ is added in the sub-interval [ti , ti+1].
Let θ ′ be the angle between γ (t ′) − p and γ (ti ) − p. Let θ ′′ be the angle between
γ (ti+1) − p and γ (t ′) − p. Using an argument similar to the one from the previous
lemma, we can say that θi ≡ θ ′ + θ ′′ (mod 2π). But since θ ′, θ ′′ ∈ (−π/2, π/2),
it must be the case that θi = θ ′ + θ ′′. Consequently the formula for degree is
unchanged. �

Lemma 10.13 The degree degp is a homotopy invariant of curves γ : S
1 → R

2 \
{p}.
Proof Suppose γ ∼ γ̃ are homotopic curves in R

2 \ {p} and let H : [0, 1] × [0, 1]
→ R

2 \ {p} be a homotopy between them. Introduce partitions 0 = s0 < s1 < · · · <
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p

γ

γ̃

Figure 10.2 One of the θ ′
i j ’s, marked in red.

sm = 1 and 0 = t0 < t1 < · · · < tn = 1 for each of the [0, 1] factors. By continuity
and compactness, we can choose these s and t values so close together that the
angle, measured counter-clockwise, between H(s, t) − p and H(s ′, t ′) − p belongs
to (−π/4, π/4) for all s, s ′ ∈ [si , si+1] and t, t ′ ∈ [t j , t j+1]. Nowdefine the following
angles, all of which are measured counter-clockwise and relative to p:

θi j := angle between H(si , t j ) and H(si , t j+1)

θ ′
i j := angle between H(si , t j ) and H(si+1, t j )

θ ′′
i j := angle between H(si , t j+1) and H(si+1, t j+1)

θ ′′′
i j := angle between H(si+1, t j ) and H(si+1, t j+1) .

One of the θi j ’s is pictured in Figure10.2.
By using arguments similar to those of Lemma 10.11, we can show that θi j ≡

θ ′
i j + θ ′′′

i j − θ ′′
i j (mod 2π). But since all these angles belong to (−π/4, π/4), this

equality holds true without the (mod 2π). To conclude, we simply compute:
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2π · degp(γ ) =
n−1∑

j=0

θ0 j

=
n−1∑

j=0

(
θ ′
0 j + θ ′′′

0 j − θ ′′
0 j

)

=
n−1∑

j=0

θ ′′′
0 j

=
n−1∑

j=0

θ1 j .

The third equation follows from the second because θ ′′
0 j = θ ′

0 j+1, and thus the pair of
sums telescopes to zero; we also use the fact that the angles repeat as we go around
the circle, too. The fourth equation then follows because θ ′′′

0 j = θ1 j by definition. If

we repeat the above process another n − 1 times, we get 2π · degp(γ ) = ∑n−1
j=0 θnj =

2π · degp(γ̃ ) as required. �

Example Let γn(t) := (cos(2πnt), sin(2πnt)). We have used this curve before in
Chapter9; it is the curve that winds n times around the unit circle. We can thus view
γn as a map γn : S

1 → R
2 \ {(0, 0)}. Because γn winds monotonically around the

circle, it is easy to see that deg(0,0)(γn) = n.

10.3 Fundamental Group of a Circle—Redux

As a first application of the degree of a loop, we will prove again that π1(S
1) ∼= Z.

Our proof here will be slightly more “hands on” than our previous proof. But youwill
definitely notice the similarities, because the ideas behind both proofs are essentially
the same.

To begin, let α be the path that goes around the circle once: α(t) := (cos 2π t,
sin 2π t). We divide the proof that π1(S

1) ∼= Z into two propositions. First we will
prove that the group is generated by [α], and then we will prove that [α] has infinite
order. It is in this second step where the degree comes in.

Proposition 10.14 The fundamental group π1(S
1) is a cyclic group generated by

the path α.

Proof Construct two overlapping open subsets U1 and U2 of the circle by slightly
extending the top half of the circle and the bottom half of the circle, respectively.
These sets are both contractible; their union is the whole circle; and their intersection
consists of two disjoint open subsets containing (1, 0) and (−1, 0), respectively.
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Let γ be any loop on the circle based at the point (1, 0), and let β = [γ ] be its
homotopy class. If γ stays inside U1 or U2, then because these sets are contractible,
γ is homotopic to the constant map, and β = [α0] = [e].

If γ does not stay in U1 or U2, we can find a partition of the unit interval of the
form 0 = t0 < t1 < t2 < · · · < tn−1 < tn = 1 so that the following conditions hold.

• For all ti < t < ti+1, γ is always in U1 or always in U2.

• If γ stays inside U1 for times ti < t < ti+1, then γ stays in U2 for all times ti+1 <

t < ti+2 (and vice-versa).

We denote by βi the part of the curve γ restricted to [ti , ti+1], so that

γ = β0 ∗ β1 ∗ · · · ∗ βn−1.

We can arrange to have all of the βi end at either (1, 0) or (−1, 0). Indeed, let σi be
the shortest path joining γ (ti ) with either (1, 0) or (−1, 0), then

β = (β0 ∗ γ1) ∗ (γ̄1 ∗ β1 ∗ γ2) ∗ (γ̄2 ∗ β2 ∗ γ3) ∗ · · · ∗ (γ̄n−1 ∗ βn−1)

and we relabel β ′
i := (γ̄i ∗ βi ∗ γi+1) so that γ = β ′

0 ∗ β ′
1 ∗ · · · ∗ β ′

n−1.
If any of the β ′

i is a closed curve—i.e. a loop based at either (1, 0) or (−1, 0)—
then the contractibility of U1 and U2 implies that β ′

i is trivial, so we can just drop it
from our considerations. Thus we can assume that each β ′

i either joins (1, 0) with
(−1, 0) or joins (−1, 0) with (1, 0). Now, again because U1 and U2 are contractible
spaces, we can deform each remaining β ′

i into one of four possible curves: the upper
half of α in the forward or backward direction, or the lower half of α in the forward
or backward direction. Call these curves η1, η̄1, η2 and η̄2 respectively. Notice that
η1 ∗ η2 = α. Therefore, we conclude:

i. γ is the constant loop, or
ii. γ = η1 ∗ η2 ∗ η1 ∗ η2 ∗ · · · ∗ η1 ∗ η2, or
iii. γ = η̄2 ∗ η̄1 ∗ η̄2 ∗ η̄1 ∗ · · · ∗ η̄2 ∗ η̄1.

In each case we have, β = [α0], or β = [αm] for somem > 0, or β = [αm] for some
m < 0, respectively. �

Proposition 10.15 The generator [α] of π1(S
1) has infinite order.

Proof Suppose [α] had finite orderm, namely [α]m = [e]. Then them-fold concate-
nation α ∗ · · · ∗ α is homotopic to the constant curve. But, the constant curve has
degree zero while the curve α ∗ · · · ∗ α has degree m. This is a contradiction, so [α]
must have infinite order. �

The consequence of these two propositions is that π1(S
1) = 〈[α]〉 ∼= Z.
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10.4 The Induced Homomorphism on Fundamental
Groups

As we have seen on several occasions already, an important theme in modern mathe-
matics is that objects are best viewed not in isolation but in terms of how they relate to
similar objects. We have been following this philosophy when we looked not just at
topological spaces, but also at continuous maps between them. Similarly, we looked
not just at groups, but also at homomorphisms between them. In this section, we
will connect the two, by studying the following question: Suppose X and Y are two
topological spaces, and f : X → Y is a continuous map. How do π1(X) and π1(Y )

relate to each other?
The answer is that there is a natural homomorphism between π1(X) and π1(Y )

induced by f . Actually, it is obvious that there is already a natural homomorphism
between π1(X) and π1(Y ), because we could be talking about the trivial homomor-
phism that takes every element of π1(X) to the identity in π1(Y ). But we mean
something much more interesting here!

First, let us introduce some terminology. When we say that (X, x) is a based
topological space, we simply mean that X is a topological space, and one of its points
x ∈ X has been singled out for attention. A continuous map f : (X, x) → (Y, y)
between two based topological spaces is simply a continuous map f : X → Y that
satisfies the additional property f (x) = y.

Proposition 10.16 Let f : (X, x) → (Y, y) be a continuousmap between two based
topological spaces. Then there is a homomorphism1 f∗ : π1(X) → π1(Y ), defined
as follows: If γ is a loop in X based at x, then f∗([γ ]) := [ f ◦ γ ]. We call f∗ the
induced homomorphism of f .

Let us explain what f∗ does in slightly more verbose language. If γ is a loop in
X based at x , then we can use f to take γ to the image of γ under f , namely f ◦ γ ,
which is a loop in Y based at y. Since we can do this for any loop, we can define a
similar operation on classes of loops. So f∗ takes a class of loops in X based at x to
a class of loops in Y based at y by forming f ◦ γ to every representative γ of the
class. In other words f∗ takes the homotopy class of γ to the homotopy class of the
image of γ under f .

Proof There are two things we need to do here: checking that f∗ is well-defined,
and then checking that it is a homomorphism. Let us begin by checking that it is
well-defined.

Suppose γ, γ ′ are both representatives of the same homotopy class in (X, x), i.e.
they are homotopic loops in X based at x . We must show that f ◦ γ and f ◦ γ ′ are in
the samehomotopy class in (Y, y), i.e. they are homotopic loops inY based at y. To see
this, note that since γ and γ ′ are homotopic, there is some homotopy H : [0, 1] ×
[0, 1] → X so that H(0, t) = γ (t), H(1, t) = γ ′(t), and H(s, 0) = H(s, 1) = x .

1This homomorphism is sometimes also written π1( f ).



10.4 The Induced Homomorphism on Fundamental Groups 135

Now, we claim that f ◦ H : [0, 1] × [0, 1] → Y is a homotopy between f ◦ γ and
f ◦ γ ′. This is because f ◦ H is a composition of two continuous functions and is
thus continuous, and we have f ◦ H(0, t) = f (γ (t)), f ◦ H(1, t) = f (γ ′(t)), and
f ◦ H(s, 0) = f ◦ H(s, 1) = y. So, this shows that f ◦ γ and f ◦ γ ′ are homotopic.
Hence f∗ is well-defined.

Now, we must show that f∗ is a homomorphism. In other words, if γ and γ ′
are two loops in X based at x , we must show that f∗([γ ∗ γ ′]) = f∗([γ ]) · f∗([γ ′]).
But this is clear, since ( f ◦ γ ) ∗ ( f ◦ γ ′) = f ◦ (γ ∗ γ ′). (You should check this for
yourself using the definition of path concatenation ∗. You’ll find that they are exactly
the same, not just the same up to homotopy. This is quite a rare event in algebraic
topology!) Hence f∗ is a homomorphism. �

Let us look at some examples of what f∗ does.

Example

(1) If X = Y and x = y, and f is the identity map, then f∗ is the identity homomor-
phism.

(2) If X = Y = S
1 and f is the map given by f (eiθ ) = e2iθ (i.e. the map that wraps

the circle around itself twice), then f∗ is multiplication by 2. (That is, it sends
an element of π1(S

1) = Z to its double.)
(3) Suppose X = T

2 = S
1 × S

1 and Y = S
1, and f sends a point (eiθ , eiφ) to eiθ .

Then f∗ sends (a, b) ∈ Z
2 = π1(T) to a ∈ Z = π1(S

1).

We now derive a further elementary property of the induced homomorphism.
First, if we have three spaces X , Y , and Z , and maps f : X → Y and g : Y → Z ,
then the induced homomorphism of the composed map (g ◦ f )∗ can be related to
the induced homomorphisms f∗ and g∗. In fact, the relation is exactly what you
(probably) expect!

Proposition 10.17 If f : (X, x) → (Y, y) and g : (Y, y) → (Z , z) are continuous
maps, then (g ◦ f )∗ = g∗ ◦ f∗.

Proof Let [γ ] be a homotopy class of loops in X based at some x . Then (g ◦
f )∗([γ ]) = [g ◦ f ◦ γ ] = g∗([ f ◦ γ ]) = g∗( f∗([γ ])). Since [γ ] was arbitrary, this
proves the claim. �

We saw earlier that if f : X → X is the identity map, then f∗ is the identity
homomorphism. We can replace f by any homeomorphism, and almost the same
result still holds.

Proposition 10.18 Suppose f : (X, x) → (Y, y) is a homeomorphism. Then f∗ is
an isomorphism.

Proof Let g : (Y, y) → (X, x) be the inverse homeomorphism. Then g ◦ f is the
identity map on X , and f ◦ g is the identity map on Y . Hence (g ◦ f )∗ is the identity
map on π1(X), and ( f ◦ g)∗ is the identity map on π1(Y ). But, using Proposition
10.17, we have that g∗ ◦ f∗ and f∗ ◦ g∗ are the identity maps, and so g∗ and f∗ are
inverses. Hence, f∗ is an isomorphism. �
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Figure 10.3 The map βh
turns γ into h ∗ γ ∗ h−1. γ

h(1)

h(0)

As a very simple yet far-reaching consequence, we have shown that π1 is a
homeomorphism invariant: if (X, x) and (Y, y) are homeomorphic, then π1(X, x) ∼=
π1(Y, y). Of course, we already proved this as well as the stronger statement that if
(X, x) and (Y, y) are homotopy equivalent then π1(X, x) ∼= π1(Y, y) in Chapter9,
in a different way.

Note the following possible pitfall: if f : X → X is a homeomorphism from X
to itself, then f∗ is an isomorphism. But it is not necessarily the identity map, as the
following example shows.

Example Let X = S
1, and let f : X → X be the map given by f (e2π i t ) = e−2π i t .

Then f is a homeomorphism, but the induced homomorphismon fundamental groups
is f∗ : Z → Z, given by f (n) = −n.

In fact, we can do quite a bit better. Not only is f∗ an isomorphism when f is a
homeomorphism; it’s still an isomorphism even if f is only a homotopy equivalence:

Theorem 10.19 Suppose that f : (X, x) → (Y, y) is a homotopy equivalence. Then
f∗ is an isomorphism.

In order to prove this, we first need a lemma.

Lemma 10.20 Let x0 ∈ X be a basepoint. Suppose H : [0, 1] × X → Y is a homo-
topy of maps from X to Y , and h : [0, 1] → Y is the path given by h(t) = H(t, x0).
Let βh : π1(Y, h(1)) → π1(Y, h(0)) be the map on fundamental groups given by
concatenating a loop in Y based at h(1) with h and h̄. (See Figure10.3.) Let
H1∗ : π1(X, x0) → π1(Y, h(1)) and H0∗ : π1(X, x0) → π1(Y, h(0)) be the induced
maps. Then

H0∗ = βh ◦ H1∗.

Proof Let ht be the restriction of h to [0, t], reparametrized so that its domain is
[0, 1], i.e. ht (s) = h(st). Let γ be a loop in X based at x0. Then the concatenation
ht ∗ H(t, f (x)) ∗ h̄t is a homotopy of loops based at h(0). Restricting to t = 0 and
t = 1 says that

H(0, γ (t)) ∼ βh(H(1, γ (t))),

as desired. �

We can now prove Theorem 10.19.
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Proof of Theorem 10.19 Let f : (X, x) → (Y, y) be a homotopy equivalence. Let
g : (Y, y) → (X, x) be a homotopy equivalence in the reverse direction, so that f ◦ g
and g ◦ f are homotopic to their respective identities. Since g ◦ f is homotopic to
the identity, Lemma 10.20 implies that there is some path h, giving rise to a suitable
βh , for which g∗ ◦ f∗ = βh . (Here, we are taking H1∗ to be the identity and H0∗ to
be (g ◦ f )∗ = g∗ ◦ f∗.) Since βh is an isomorphism, f∗ is injective. Repeating the
argument with the other composition similarly shows that f∗ is surjective. Hence f∗
is an isomorphism. �

10.5 Retracts

One reason to study the induced homomorphism is that it allows us to pick up on
topological features of the spaces and the map between them that are not readily
available on their own. For example, certain types of maps between spaces induce
injective or surjective maps on fundamental groups, and we can use this fact to learn
more about the topology of the spaces.

Earlier, wewere trying to show that S2 is not contractible, andwewere almost able
to do it. However, we were missing one key ingredient: that there is no continuous
map r from the solid sphere B to the boundary sphere S

2 such that the restriction of
r to the boundary is the identity. At the moment, we still won’t be able to prove that
no such r exists exactly. But using the induced map, we will be able to do this in one
dimension lower: There is no retract from the disk to the boundary circle S

1.

Definition 10.21 Suppose that X is a topological space, and A is a subspace of X .
Then a continuous map r : X → A is called a retract if the restriction of r to A is
the identity map.

We will also find the following special type of retract important.

Definition 10.22 A retract r : X → A is called a deformation retract of X if r is
homotopic to the identity map on X .

Remark 10.23 Observe a slight sloppiness in notation here: The codomain of r is
A, but we are asking for it to be homotopic to a map whose codomain is X . If we
were to be more pedantic, we would treat r as a map from X → X whose image is
A, rather than a map from X to A.

We focus on retracts and deformation retracts because they behave nicely with
respect to the induced map on fundamental groups.

Theorem 10.24 Let r : X → A be a retract, let ι : A ↪→ X be the inclusion map
from A into X, and let x ∈ A be a basepoint. Then ι∗ is injective. If r is a deformation
retract, then ι∗ is an isomorphism.
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Proof If r is a retract, then r ◦ ι is the identity map on A. Hence

r∗ ◦ ι∗ = (r ◦ ι)∗ = id∗

is the identity. This means that r∗ is surjective and ι∗ is injective by elementary
properties of injectivity and surjectivity.2 Now, suppose that r is a deformation retract.
We can show that ι∗ is also surjective as follows. In this case, we have a homotopy
H between r and the identity on X . Suppose that γ is a loop in X based at x ∈ A.
We want to show that γ is homotopic to some loop γ ′ in A, which would show that
[γ ] = ι∗[γ ′]. To show this, we simply compose γ with H , which gives a homotopy
from γ to a loop in A. �

As a consequence, we can prove that there is no retract from a disk to a circle.

Theorem 10.25 Let D be a disk and S
1 its boundary circle. There is no retract from

D to S
1.

Proof Suppose there were such a retract r : D → S
1, and let ι : S

1 ↪→ D be the
inclusionmap. Then, byTheorem10.24, ι∗ would be an injection.However,π1(S

1) ∼=
Z, and π1(D) = {0}, so there is no injection from π1(S

1) to π1(D), and hence no
retract D → S

1. �

So, we see that the group theory can tell us about existence of retracts. We can
give a more general group-theoretic statement about the existence (or non-existence)
of retracts. If A is a retract of X , then we have the following maps on spaces:

A
ι

↪→ X
r→ A,

where the composition is the identity. These maps induce maps on fundamental
groups:

π1(A)
ι∗

↪→ π1(X)
r∗→ π1(A),

where again the composition is the identity. Hence, we can think of π1(A) as being
a subgroup of π1(X). If π1(A) is normal in π1(X), then π1(X) can be written as
a direct product of π1(A) and the kernel of r∗. If π1(A) is not normal, then π1(X)

is a semidirect product of π1(A) and the kernel of r∗. Being a direct product or a
semidirect product is quite a special and unusual thing in group theory!

Deformation retracts are especially nice because, as they are defined, they are
homotopy equivalences. Hence, they induce isomorphisms on fundamental groups.
As a result, we now have a wider class of spaces whose fundamental groups we can
compute.

2Reminder: Suppose that f : A → B and g : B → A are two maps such that f ◦ g = id. Now, if
g(x) = g(y), then applying f to both sides yields x = y, hence g is injective. Also, in order to
solve the equation f (x) = y given y, we simply use x := g(y). Hence f is surjective.
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Example

• The fundamental group of an annulus (for example, the set {(x, y) ∈ R
2 : 1/2 ≤

x2 + y2 ≤ 2}) has fundamental group Z, because it deformation retracts onto a
circle.

• The solid torus also deformation retracts onto a circle (namely the circle in the
center of the solid torus with the same axis of rotational symmetry as the solid
torus), so its fundamental group is also Z.

10.6 Problems

(1) Compute the fundamental groups of the following spaces:

(a) S
1 × S

1 × S
1 × S

1 × S
1

(b) S
1 × S

1 × S
1 × S

2

(c) S
1 × S

2 × S
2

(2) Let γ : [0, 1] → S
1 be a loop and let f : S

1 → S
1 be a homeomorphism. What

can you say about deg(0,0)( f ◦ γ )?
(3) How can you describe or visualize—or otherwise develop some intuition for—

the space S
1 × S

1 × S
1?

(4) In each of the questions below, build explicit homotopies.

(a) Show that a line segment in R
n is contractible.

(b) Show that the image of a path γ : [0, 1] → R
n without self-intersections is

contractible.

(5) A connected space is called simply connected if its fundamental group is trivial.
Show that a space S is simply connected if and only if, for all x0 and x1 in S,
all paths joining x0 and x1 are homotopic.

(6) Suppose S is a contractible space and let F : S → S′ be a homeomorphism.
Show that S′ is contractible.

(7) Answer any three of the following questions.

(a) Give a formula for a deformation retraction from R
3 to the z-axis.

(b) Give a formula for a deformation retraction from the solid torus in R
3

obtained by rotating the circle (x − 2)2 + z2 ≤ 1 in the xz-plane around
the z-axis, to the annulus in the xy-plane.

(c) Give a formula for a deformation retraction from the solid torus in R
3 to its

core circle.
(d) Is the unit circle in the xy-plane a deformation retract for R

2? If so, write
down the retraction; if not, prove it. Answer the same question for R

2 \
{(0, 0)}.

(e) Is the unit circle in the xy-plane a deformation retract for R
3 \ z-axis? If so,

write down the retraction; if not, prove it.
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(8) Find a space S and a subset A ⊆ S that is a retract of S but not a deformation
retract.

(9) Let S = B1(0) \ {0} in R
2, and let A ⊆ S be the unit circle. Let φ : S → A

be given by φ(x) = x/‖x‖ and let ψ : A → S be given by ψ(x) = x . (In
other words, ψ is the inclusion map.) Verify that φ and ψ are homotopy
equivalences—namely that φ ◦ ψ : A → A and ψ ◦ φ : S → S are homotopic
to the identity mappings idA : A → A and idS : S → S, respectively.

(10) Letφ, φ′ : S → S′ be twomaps such that there is a subset A ⊆ S onwhichφ and
φ′ are identical, i.e. φ(a) = φ′(a) for all a ∈ A. We say φ and φ′ are homotopic
relative to A if all the intermediate maps in the homotopy are identical on A,
i.e. if there is a homotopy H(s, x) such that H(s, a) = φ(a) for all s ∈ [0, 1]
and for all a ∈ A.

(a) Find a pair of (different) maps from the complement of the open unit ball
in R

2 to the unit circle in R
2 that are homotopic relative to the unit circle in

R
2.

(b) Show that ifφ0 andφ1 are continuousmaps X → Y withφ0(x0) = φ1(x0) =
y0, and if these two maps are homotopic relative to the subset {x0} ⊂ X ,
then the two induced homomorphisms φ0∗, φ1∗ : π1(X, x0) → π1(Y, y0) are
identical.

(11) (a) Let X be the space obtained by forming the connected sum of two infinite
cylinders. Show that X is homotopy equivalent to a union of two circles that
intersect at two points (just like, for example, two different great circles on
the sphere).

(b) Suppose instead that X is obtained by taking the connected sum of two
Möbius strips (where the disks we cut out of these Möbius strips do not
touch the boundary). Is X homotopy equivalent to some union of curves, as
in the first part of this problem? If so, describe it.



Chapter 11
Applications of Fundamental Groups

In this chapter,wewill see several applications of the formalismwehave developed so
far. The first is a proof of an extremely important result that you already know—the
Fundamental Theorem of Algebra! The second is a result known as the Borsuk–
Ulam Theorem, a corollary of which is the amusingly named “Avocado Sandwich
Theorem.” The third is a result known as the Brouwer Fixed-Point Theorem.

11.1 The Fundamental Theorem of Algebra

Complex Numbers. We begin with a quick review of some facts about complex
numbers. Complex numbers are numbers of the form z = x + iy, where x, y ∈ R

and i satisfies i2 = −1. In other words, i and also −i are roots of the polynomial
p(z) = z2 + 1.

• We can add two complex numbers: (x1 + iy1) + (x2 + iy2) = (x1 + x2) + i(y1 +
y2).

• We can multiply a complex number by a real number: c(x + iy) = cx + icy.

Thus, in this respect, complex numbers behave just like points in R
2—the complex

number x + iy becomes the point (x, y) and now addition and real number multi-
plication of complex numbers become vector addition and scalar multiplication in
R

2.

• Wecanalsomultiply one complexnumber by another. Theproduct (x1 + iy1)(x2 +
iy2) is found by fully multiplying these two brackets out, and replacing i2 by −1
when it occurs. The answer is (x1x2 − y1y2) + i(y1x2 + y2x1).

In R
2, we can use polar coordinates to represent points. We represent (x, y) ∈ R

2

by its distance from the origin r = √
x2 + y2, and the angle θ made by the line
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connecting (x, y) to (0, 0), so that tan(θ) = y/x . Now (x, y) = (r cos(θ), r sin(θ)).
We can thus also use polar coordinates to describe complex numbers.

• The length of a complex number z = x + iy is denoted |z| = √
x2 + y2.

• The polar angle of z is denoted arg(z), and tan(arg(z)) = y/x .
• Now z = |z|( cos(arg(z)) + i sin(arg(z))

)
.

• DeMoivre’s Theorem states that (cos(θ) + i sin(θ))n = cos(nθ) + i sin(nθ). This
formula can be proven easily by induction on n, using the angle-sum formulae for
cosine and sine. It follows that zn = |z|n( cos(n arg(z)) + i sin(n arg(z))

)
.

• We therefore define eiθ = cos(θ) + i sin(θ), because it has the analogous property(
eiθ

)n = einθ. (There’s more to this, but we won’t get into it here.)
• Note that |eiθ| = 1 and that as θ ∈ [0, 2π] advances, the curve α(θ) = eiθ traces
out the unit circle in C when it is viewed as R

2.
• As a consequence, the curve γ(θ) = einθ traces out n windings of the unit circle
for θ ∈ [0, 2π].

Polynomials. A polynomial of degree n is a very familiar object. A real polynomial
is a function p : R → R of the form

p(x) = anx
n + an−1x

n−1 + · · · + a1x + a0,

with the ai ’s in R. A real root of a polynomial is any number x0 ∈ R such that
p(x0) = 0. If a polynomial has a root, then it can be factored as p(x) = (x − x0)q(x),
where q is a polynomial of degree n − 1. There are real polynomials that do not have
roots, such as p(x) = x2 + 1. But when we expand the domain of this polynomial
from the real numbers to the complex numbers, we see that it has two complex roots
±i .

It is in fact very fruitful to view a polynomial as a function p : C → C by allowing
complex inputs to be used; we simultaneously also allow the coefficients ai to lie in
C. The output is thus a complex number as well. Note that we now can also view p
as a function p : R

2 → R
2 by making the association of complex numbers to points

in the plane as described earlier.
When do polynomials have roots in C? In other words, we are looking for a point

z0 ∈ C so that p(z0) = 0. The answer to this question is nearly always!

Theorem 11.1 (Fundamental Theorem of Algebra) Every nonconstant polynomial
has at least one root in C.

Applying this theorem to an arbitrary polynomial p of degree n and using factor-
ization, we can now write p = (z − z0)q, where q is a polynomial of degree n − 1.
Hence we can apply the theorem to factor q further. Therefore the Fundamental The-
orem of Algebra actually tells us that the polynomial p always has n roots and can
always be written as a product of n factors of degree one.
A Preliminary Topological Result. Before moving on to the proof of the Funda-
mental Theorem of Algebra, we derive a preliminary result. This is where topology
and induced homomorphisms come in!
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Lemma 11.2 Let φ : B1(0, 0) → R
2 \ {(0, 0)} be a continuous mapping, and let γ

denote the boundary circle of B1(0, 0). Then φ(γ) is trivial in π1(R
2 \ {(0, 0)}).

This result says that if the image of B1(0, 0) under φ is in R
2 \ {(0, 0)}, then

the image of the boundary of B1(0, 0) can’t wrap around the origin in a nontrivial
manner. Draw some pictures to convince yourself that this is an “obvious” result. But,
as is often the case, the “obvious” results are very hard to prove using elementary
techniques and can only be tackled successfully using more sophisticated tools. See
if you can do it without invoking the fundamental group!

Proof We have the mappings

γ
i−→ B1(0, 0)

φ−→ R
2 \ {(0, 0)},

where i : γ → B1(0, 0) is the inclusion. We thus have the induced mappings

π1(γ)
i∗−→ π1(B1(0, 0))

φ∗−→ π1(R
2 \ {(0, 0)})

between fundamental groups. Because π1(B1(0, 0)) = {e}, all these mappings must
be trivial. Consequently φ∗([γ]) = e. By definition, this says that [φ ◦ γ] = [const].
This in turn means that φ ◦ γ is homotopic to the trivial loop. �

Proof of the Fundamental Theorem of Algebra. Let p(z) = zn + an−1zn−1 +
· · · + a1z + a0. Note that from the point of view of proving the existence of a root,
it is sufficient to assume that the leading coefficient of p is 1. Assume that p has no
roots. Hence, as a mapping of topological spaces, we have p : R

2 → R
2 \ {(0, 0)}.

Assume also that |a0| + |a1| + · · · + |an−1| ≤ 1
2 .We’ll remove this assumption later.

Consider the map F : [0, 1] × R
2 → R

2 given by F(s, z) = zn + s
(
an−1zn−1 +

· · · + a0
)
. This is a homotopy of maps from p to the very simple polynomial q(z) =

zn . Let us investigate the behaviour of this homotopy of maps restricted to the unit
circle in R

2. This simply means that we must consider the map F̂ : [0, 1] × γ → R
2

given by
F̂(s, θ) = F(s, z = eiθ) .

We claim that in fact F : [0, 1] × γ → R
2 \ {(0, 0)}. To prove this claim, note

first that it is already true for F̂(1, θ) = p(eiθ), because we know that p maps all
of R

2 into R
2 \ {(0, 0)}. It is also true for F̂(0, θ) = einθ, because this is an n-fold

winding of the unit circle. For intermediate values of s, we compute a sequence of
inequalities from which we derive the conclusion. These inequalities are:
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|F̂(s, θ)| = |F(s, z = eiθ)|
= ∣∣zn + s(an−1z

n−1 + · · · + a1z + a0)|
≥ ∣∣zn

∣∣ − s
∣∣an−1z

n−1 + · · · + a1z + a0
∣∣

≥ |z|n − s
(|an−1||z|n−1 + · · · + |a1||z| + |a0|

)

= 1 − s(|an−1| + · · · + |a1| + |a0|)
≥ 1 − s/2

≥ 1/2 .

The first inequality is a version of the triangle inequality, namely |A + B| ≥ |A| −
|B|. The second inequality is another version of the triangle inequality, namely
|A1 + A2 + · · · + AN | ≤ |A1| + |A2| + · · · + |AN |. We’ve also used De Moivre’s
Theorem to say |zn| = |z|n . The third equality follows because |z| = 1 when z = eiθ.
The fourth inequality follows from our assumption about the size of the coefficients
of p. The final inequality follows since s ∈ (0, 1). As a consequence of the entire
sequence of inequalities, we can now say that |F̂(s, θ)| ≥ 1/2. This means that the
distance of F̂(s, θ) from the origin is always greater than 1/2. Therefore we can
assert that F̂(s, θ) is a homotopy between F̂(0, θ) and F̂(1, θ) that is entirely within
R

2 \ {0}.
Now what do we have? We know that π1(R

2 \ {(0, 0)}) ∼= Z. On the one hand,
the curve F̂(0, θ) is homotopically nontrivial in π1(R

2 \ {(0, 0)}), because it wraps
around the origin n times. However, the curve F̂(1, θ)must be homotopically trivial
because of the Preliminary Topological Result: the curve F̂(1, θ) is the image of the
boundary of the unit circle under p, and p maps the whole unit ball to R

2 \ {(0, 0)}.
Hence we have a homotopy connecting a nontrivial curve to a trivial one. This is a
contradiction.

We have thus almost proved the Fundamental Theorem of Algebra. All that
remains is to remove the assumption on the size of the coefficients of p. To this
end, let p now be a polynomial with coefficients as large as we want. Let C be a
large real number. Then the polynomial q(z) = p(Cz)/Cn is a new polynomial with
the property that q(z) = 0 if and only if p(z/C) = 0. Thus, if we demonstrate the
existence of a root of q, then we have a root of p. But

q(z) = zn + an−1

C
zn−1 + · · · + a1

Cn−1
z + a0

Cn
.

Hence, by choosing C to be sufficiently large, we can make the coefficients of q be
as small as we need. In this way we can reduce the case of a polynomial with general
coefficients to the special case discussed above.
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11.2 Further Applications of the Fundamental Group

The Borsuk–Ulam Theorem. The Borsuk–Ulam Theorem is a classical result in
topology that asserts the existence of a special kind of point (the solution of an
equation) based on very minimal assumptions!

Theorem 11.3 (Borsuk–Ulam) Suppose f : S
2 → R

2 is a continuous function from
the sphere to the plane. Then there exists x ∈ S

2 so that f (x) = f (−x).

Therefore, no matter the function, there exist two antipodal points on the sphere
with identical function values. A surprising, silly application of this theorem (which
everyone is contractually obligated to mention when first discussing the Borsuk–
Ulam Theorem) is that there exists a pair of antipodal points on the surface of the
Earth (or a perfectly spherical version of the Earth, at least, so that we can define
antipodes) where the temperature and atmospheric pressure are exactly the same.

Proof Suppose the Borsuk–Ulam Theorem is false. Define a new function f̂ : S
2 →

R
2 by f̂ (x) := f (x) − f (−x), which by our assumption on the falsehood of the

Borsuk–Ulam Theorem is actually a function f̂ : S
2 → R

2 \ {(0, 0)}. Note that f̂ is
an odd function because f̂ (−x) = − f̂ (x). Next, let α : [0, 2π] → S

2 be the curve
that winds once around the equator, i.e.α(s) := (cos(s), sin(s), 0). The curve f̂ ◦ α :
[0, 2π] → R

2 \ {(0, 0)}nowwinds a certain number of times around the origin (0, 0);
this number is deg(0,0)( f̂ ◦ α). This number has to be zero because we can easily
construct a homotopy of the curve α to a point by sliding it upwards to the north pole
of S

2. Hence this homotopymust also allow the curve f̂ ◦ α to shrink continuously to
a point inside R

2 \ {(0, 0)}. Consequently, the degree of the curve f̂ ◦ α, as defined
in Chapter10, is zero.

We can now reach a contradiction, because we can actually show that the degree
of f̂ ◦ α has to be an odd number. This is due to the following calculation:

f̂ ◦ α(s + π) = f̂ (cos(s + π), sin(s + π), 0)

= f̂ (− cos(s),− sin(s), 0)

= − f̂ (cos(s), sin(s), 0)

= − f̂ ◦ α(s).

Therefore there is an integer m such that the first half of the interval [0,π] is wound
m + 1

2 times around the origin by f̂ ◦ α, while the second half of the interval is also
wound m + 1

2 times around the origin. In total, f̂ ◦ α winds 2m + 1 times around
the origin. This is our contradiction; hence the Borsuk–Ulam Theorem must be
true. �

Exercise 11.4 Make the final argument in the preceding proof more formal using
the definition of the degree of a curve from Chapter10.
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Remark 11.5 Thereis also an n-dimensional version of the Borsuk–UlamTheorem,
which says that if f : S

n → R
n is continuous, then there is some point x ∈ S

n such
that f (x) = f (−x). The proof technique given above does not work, because the
“equatorial” S

n−1 on S
n has trivial fundamental group. However, the higher homo-

topy groups and homology groups can be used to give an analogous proof.

A corollary of the Borsuk–Ulam theorem is the so-called “Avocado Sandwich
Theorem” This states that it is always possible to cut a sandwich (consisting of two
slices of bread on either side of delicious contents) into two pieces, and each half
contains equal volumes of bread from each of the slices and of the avocado. More
formally:

Theorem 11.6 (Avocado Sandwich Theorem) Let A, B,C be compact subsets of
R

3. Then there is a plane that simultaneously divides each of A, B,C into two pieces
of equal volume.

Here we should think of A and C as the two slices of bread, B as the avocado,
and the plane as the direction in which the knife moves as it cuts the sandwich.

Proof We’re going to define a function f : S
2 → R

2 to which we’ll apply the
Borsuk–Ulam Theorem. To this end, pick x ∈ S

2 and view it as a vector in R
3.

Let Px be a plane normal to x that cuts A into two halves of equal volume, and
let P+

x and P−
x denote the half spaces above and below Px , respectively—i.e. the

regions into which the vector x points into and away from, respectively. Now, there
may be several such planes, for instance if A is disconnected; if that is the case, then
the union of all these planes is a direct product of R

2 with an interval—an interval’s
worth of planes. When this happens, choose Px to be the central plane in this interval
of planes, i.e. the one corresponding to the midpoint of the interval. Now define

f (x) :=
(

Volume of
P+
x ∩ B ,

Volume of
P+
x ∩ C

)
.

We omit the proof that f is continuous. However, this is true. (Can you argue why?)
So we can apply the Borsuk–Ulam Theorem to find an x so that f (x) = f (−x). But

f (−x) =
(

Volume of
P+−x ∩ B ,

Volume of
P+−x ∩ C

)

=
(

Volume of
P−
x ∩ B ,

Volume of
P−
x ∩ C

)

because the region above the plane P−x is the same as the region below the plane
Px . Therefore we have

(
Volume of
P+
x ∩ B

)
=

(
Volume of
P−
x ∩ B

)
,

(
Volume of
P+
x ∩ C

)
=

(
Volume of
P−
x ∩ C

)
,

which proves the Avocado Sandwich Theorem. �
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Remark 11.7 Just as in the case of the Borsuk–Ulam Theorem, there is also a
higher-dimensional Avocado Sandwich Theorem. It says that if A1, . . . , An are n
compact sets in R

n , then there is a hyperplane dividing each one into two pieces of
equal volume.

Another consequence of the Borsuk–Ulam Theorem is the
Lyusternik–Shnirel’man Theorem.

Theorem 11.8 (Lyusternik–Shnirel’man) Suppose that A, B,C ⊂ S
2 are sets cov-

ering S
2, i.e. A ∪ B ∪ C = S

2. Suppose that A and B are either open or closed.1

Then one of A, B, and C contains a pair x∗,−x∗ of antipodal points on S
2.

Remark 11.9 In the original Lyusternik–Shnirel’man Theorem, A, B, and C are
required to be closed. Another popular version requires them all to be open. More
recently, Greene in [Gre02] showed that the conclusion still holds if we only require
that each one is either open or closed. But we don’t even need that, because we make
no assumption on C .

Proof Assume that none of A, B, and C contains any antipodal points. Let us write
d(x, A) for the distance from x to A, and similarly for the others. Let us define a
function f : S

2 → R
2 by

f (x) = (d(x, A), d(x, B)).

The function f is continuous, so by the Borsuk–Ulam Theorem, there are antipodal
points x∗ and −x∗ so that f (x∗) = f (−x∗). Because C does not contain any pair of
antipodal points, at least one of x∗ and −x∗ is not in C . Say x∗ /∈ C without loss of
generality. Then x∗ must be in one of the other two sets (i.e. A or B), say A without
loss of generality. Since f (x∗) = f (−x∗), this implies that d(−x∗, A) = 0, because
certainly d(x∗, A) = 0.

Now, is−x∗ ∈ A? If A is closed, then d(−x∗, A) = 0 implies that−x∗ ∈ A. Thus
A contains the antipodal points x∗ and−x∗. On the other hand, if A is open, then−x∗
lies in the closure A of A. Since A does not contain antipodal points, A ∩ −A = ∅,
so A ⊂ S

2 \ −A, and the latter is a closed set. Thus A ⊂ S
2 \ −A, because A is the

smallest closed set containing A. Since −x∗ ∈ A, it follows that −x∗ ∈ S
2 \ −A,

so −x∗ /∈ −A and therefore x∗ /∈ A. But we selected A so that x∗ ∈ A, so this is a
contradiction. �

Remark 11.10 Here, too, there is an n-dimensional version. If A1, A2, . . . , An+1 ⊆
S
n cover S

n , and A1, . . . , An are open or closed, then one of the Ai ’s contains a pair
of antipodal points.

Brouwer Fixed-Point Theorem.TheBrouwer Fixed-Point Theorem is another clas-
sical result in topology that asserts the existence of a solution of a different kind of

1C does not need to be either open or closed. Also, it is allowed for one of A and B to be open and
the other to be closed.



148 11 Applications of Fundamental Groups

equation, again based on very minimal assumptions. It has wide-ranging implica-
tions, even in places where you would least expect it. For example, it is possible to
use the Brouwer Fixed-Point Theorem to prove that the game of Hex cannot end in
a draw; see [Gal79] for details.2 For another application, one can prove that multi-
player games have Nash equilibria using the Brouwer Fixed-Point Theorem, as Nash
did in [Nas51]. This is the most important theorem in economics.

Theorem 11.11 (Brouwer) Let f : B1(0, 0) → B1(0, 0) be a continuous function
of the closed unit disk in R

2 to itself. Then f has a fixed point, i.e. there is an
x ∈ B1(0, 0) so that f (x) = x.

Proof Let us suppose that the Brouwer Fixed-Point Theorem is false and f has no
fixed point. We can now reach a contradiction because, as we’ll see momentarily,
we’ll be able to construct a retraction of B1(0, 0) onto its boundary S

1. Of course
this can’t happen, because π1(B1(0, 0)) is trivial while π1(S

1) ∼= Z.
To construct the retraction, we proceed as follows. Since for every x ∈ B1(0, 0)

we have x 
= f (x), there is a well-defined line, let’s call it Lx , between x and f (x),
which intersects the boundary of S

1 in exactly two places. Define r : B1(0, 0) → S
1

by
r(x) := (

the point in Lx ∩ S
1 closer to x than to f (x)

)
.

This function is continuous, as we can easily show by writing down an explicit for-
mula for r(x). (Do this!) Also, if x ∈ S

1, then r(x) = x because f (x) is somewhere
else in B1(0, 0), and so the closest point on S

1 to x is just x itself. As a result, r sat-
isfies the definition of a retraction. And we know that there is no such map, yielding
the contradiction, so the Brouwer Fixed-Point Theorem must be true. �

Remark 11.12 Unsurprisingly, there is also an n-dimensional version of the
Brouwer Fixed-Point Theorem.

Remark 11.13 Both the Borsuk–Ulam Theorem and the Brouwer Fixed-Point The-
orem can also be proved without using the fundamental group, but with the help of
combinatorial lemmas called Tucker’s Lemma and Sperner’s Lemma, respectively.
The combinatorial versions are more suited for finding—or at least approximating—
the antipodal points and the fixed point guaranteed by the Borsuk–Ulam Theorem
and the Brouwer Fixed-Point Theorem, respectively. See [Mat03] for Borsuk–Ulam
and [AZ14, Chapter 27] and [Su99] for Brouwer. The combinatorial proofs also
prove the n-dimensional versions without significant modification.

2Actually, if one knows that Hex cannot end in a draw, one can use that to prove the Brouwer
Fixed-Point Theorem reasonably quickly as well! In this sense, the Brouwer Fixed-Point Theorem
is equivalent to the fact that Hex cannot end in a draw.
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11.3 Problems

(1) Find the fundamental groups of the following spaces by showing that they have
the same homotopy type as spaces we are more familiar with.

(a) R
2 \ {(0, 0)}

(b) R
3 \ {(0, 0, 0)}

(c) R
3 \ z-axis

(d) R
3 \ z-axis and unit circle in the xy-plane

(e) S
2 \ {any two distinct points on S

2}
(2) (a) The Brouwer Fixed-Point Theorem states that every continuous mapping f

from the disk to itself has a fixed point, i.e. there exists an x so that f (x) = x .
Present a succinct yet complete version of the proof in more or less your
own words.

(b) Let f (x) = x + εex . Use the Brouwer Fixed-Point Theorem in the 1-
dimensional case to prove that there is some open interval I containing
0, so that if ε ∈ I , then there exists xε so that f (xε) = 0. (Note: this result
is easy to prove using the Intermediate Value Theorem, but you should not
use the IVT in your solution to this problem.)

(3) (a) Let A ⊆ R
2 be a compact subset. Give R

2 the usual (x, y) coordinates
and define the half-space Ht := {(x, y) ∈ R

2 : y ≥ t}. Define a function
f : R → R by f (t) = Area(A ∩ Ht ). Will f always be continuous?

(b) Show/discuss the continuity of the mapping of the Avocado Sandwich The-
orem.

(4) (a) Is there a Borsuk–Ulam Theorem for the torus? That is, if f : S
1 × S

1 →
R

2 is a continuous map, must there be some (x, y) ∈ S
1 × S

1 for which
f (x, y) = f (−x,−y)?

(b) Does the Brouwer Fixed-Point Theorem hold for a torus? How about a
sphere? Your favorite surface?

(5) Suppose that the wind is blowing on the surface of the earth in a constant and
continuous fashion. Suppose also that at every point on the equator, the wind is
blowing directly east, thus ensuring that the wind never blows anything from one
hemisphere to the other. Show that there must exist some point in the northern
hemisphere N such that a feather dropped at that point will return to its original
location after exactly one minute. Assume that the equator is considered to be
part of the northern hemisphere.

(6) Let X be the infinite cylinder, and Y be the punctured plane R
2 \ {(0, 0)}. Find

formulas for maps f : X → Y and g : Y → X that are homotopy equivalences,
and find the homotopies to verify that the required compositions are homotopic
to the identity mappings on X and Y respectively.

(7) Two thieves steal a necklace consisting of several jewels on a string. (The string
is a straight line, not circular.) There are two types of jewels, and the number of
jewels of each type is even. The thieves would like to split up the necklace so that
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A B A

Figure 11.1 A 10-jewel necklace divided among two people with two cuts.

each thief receives the same number of jewels of each type, and they would like
to do so by cutting the string in the smallest number of places. (See Figure11.1.)

(a) Use theBorsuk–UlamTheorem to show that there is always awayof splitting
up the string using two cuts so that both people get the same number of jewels
of each type.

(b) Using the Borsuk–Ulam Theorem in higher dimensions, prove that there is
a way of splitting a string consisting of n types of jewels using n cuts.



Chapter 12
The Seifert–Van Kampen Theorem

12.1 The Fundamental Group of a Wedge of Circles

So far, we have learned how to compute fundamental groups for a few spaces, such
as the circle, the sphere, the torus, and the annulus. But there are many more spaces
whose fundamental groups wewould like to know. In order to work them out, wewill
try to build them up from spaces whose fundamental groups we already know. Before
we introduce the general theorem, let us look at an example, that of the wedge of
two circles, meaning two circles that intersect at exactly one point (see Figure12.1).

What should we expect the fundamental group of the wedge of two circles to be?
Let us assume the basepoint is the point of intersection of the two circles. Then it
seems we can go around the left circle as many times as we want, then around the
right loop as many times as we want, then around the left loop as many times as we
want, and so forth. Let a denote the loop that travels around the left loop once in the
counterclockwise direction, and let b be the loop that travels around the right loop
once in the counterclockwise direction. Then a typical element of the fundamental
group will be ai1b j1ai2b j2 · · · air bir , where the ik’s and jk’s are nonzero integers.
(There are also other cases, such as starting with the a loop and ending with the a
loop rather than the b loop, and so forth.) Furthermore, none of these loops seem
as though they should be homotopic to each other. If we go around a bunch of a’s
and b’s in various orders, that should never be homotopic to the constant loop that
just stays at the basepoint. Recall from Chapter5 that what we have just described is
simply is the free group F2 on two generators.

This intuition is correct, and now we wish to formalize it. To do this, let us call
the wedge of two circles X , call the basepoint x , and call the left loop a and the right
loop b.

Theorem 12.1 π1(X, x) ∼= F2.

Proof We define a map φ : F2 → π1(X, x). Let α and β be the generators of F2.
Because F2 is a free group, we can define φ just by saying what φ(α) and φ(β) are.
So, we define φ(α) to be the loop that goes around a once, and we define φ(β) to be
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Figure 12.1 A wedge of
two circles.

Figure 12.2 Breaking the
wedge of two circles into
two open sets. A B

the loop that goes around b once—in both cases in the counterclockwise direction.
This map extends to a map from F2 to π1(X, x); for example, φ(α3β−4α2) is the
loop that goes around a three times in the counterclockwise direction, then around
b four times in the clockwise direction, then around a twice in the counterclockwise
direction.

We need to show that φ is an isomorphism; that is, we need to show that it is
surjective and injective. Let us start with surjectivity. First, we partition X into two
open sets A and B: A is an open set slightly larger than the a circle, and B is an open
set slightly larger than the b circle. (See Figure12.2.) Let γ be a loop in X based at
x . We think of γ as a map [0, 1] → X with γ(0) = γ(1) = x . We divide the interval
[0, 1] up into finitely many subintervals [si , si+1], where s0 = 0, sn = 1, and for each
i with 0 ≤ i ≤ n − 1, γ(t) restricted to si ≤ t ≤ si+1 is either entirely contained in A
or entirely contained in B, so that they alternate: if γ(t) restricted to si ≤ t ≤ si+1 is
contained entirely in A, then γ(t) restricted to si+1 ≤ t ≤ si+2 is entirely contained
in B, but not entirely contained in A, and vice versa. Let us also arrange things
so that γ(si ) = x for all i . Note that we can break up the interval into only finitely
many pieces in this way, because if the curve were to bounce back and forth between
A \ B and B \ A infinitely often, then we would be able to find a sequence of points
0 < x1 < x2 < · · · < 1 (or possibly in the reverse order) so that γ(x2n) ∈ A \ B and
γ(x2n−1) ∈ B \ A, and thus limn→∞ γ(xn)would not exist—even though limn→∞ xn
does—which contradicts the continuity of γ.

Now, since A and B are each homotopy equivalent to S
1, we can homotope γ(t)

restricted to si ≤ t ≤ si+1 to some loop γ in the relevant S1: it is either some number
of loops around a, or some number of loops around b. Hence this path is homotopic to
ak or bk for some k, and every ak or bk can be obtained from si ≤ t ≤ si+1 by taking
the appropriate path in that interval. Hence, when we put all these pieces together,
we see that φ is surjective.



12.1 The Fundamental Group of a Wedge of Circles 153

Figure 12.3 The curves
drawn are the places where
F(s, t) = x . Thus, in each
region, F(s, t) must either be
entirely in the left loop or
entirely in the right loop.

γ(t)

Now we must show injectivity. To do that, suppose that we have some element
w ∈ F2 so that φ(w) is the identity. We must show thatw is the trivial word.1 If φ(w)

is the identity, then it means that the loop γ corresponding to w is homotopic to the
constant loop in X . Let F : [0, 1] × [0, 1] → X be a homotopy, so that F(t, 0) =
γ(t), F(t, 1) = x , and F(0, s) = F(1, s) = x . Draw curves in the square [0, 1] ×
[0, 1] where F(s, t) = x . These curves break up the square into several regions. In
each of those regions, F(s, t) is either entirely contained in the left loop or entirely
contained in the right loop. Look at the regions bordering the bottom of the square.
Each of these regions can be interpreted as a homotopy between a loop in either the
left circle or the right circle, and the constant loop. Hence, each piece of γ contained
in only one of the loops must be homotopic to the constant loop. This shows that φ
is injective. See Figure12.3. �

Similarly, we can compute the fundamental group of a wedge of n circles meeting
at a point. If we were to do this for n = 3, given the result above, we would break
the wedge of three circles up into two pieces, A and B. The A piece is an open set
slightly larger than the union of two of the circles, and the B piece is an open set
slightly larger than the remaining circle. Thus A is homotopy equivalent to the wedge
of two circles, and B is homotopy equivalent to one circle. (See Figure12.4.) We
would then run through a very similar argument to show that the fundamental group
of the wedge of three circles is the free product F2 ∗ Z ∼= F3: the free group on three
generators. Continuing on by induction, we could show that the fundamental group
of the wedge of n circles is Fn−1 ∗ Z ∼= Fn .

12.2 The Seifert–Van Kampen Theorem: First Version

This approach of breaking a space up into two simpler spaces, whose fundamental
groups we already understand, is very useful for computing fundamental groups. We

1By a “word,” we simply mean an element of the free group F2, which is a string of symbols a, b,
a−1, and b−1. The trivial word is the string with no characters in it.
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Figure 12.4 Breaking the
wedge of three circles into
two open sets.

A

B

will now prove a generalization of Theorem 12.1, known as the Seifert–Van Kampen
Theorem. We will start by only stating and proving a special case of this theorem,
but it is already fairly strong.

Theorem 12.2 (Seifert–Van Kampen Theorem, Version 1) Let X be a topological
space with X = A ∪ B, where A and B are open sets, and A ∩ B is a nonempty set
that is path-connected and simply connected (i.e.π1(A ∩ B) is trivial). Let x ∈ A ∩ B
be a basepoint. Then

π1(X, x) = π1(A, x) ∗ π1(B, x).

Proof The idea is to follow the strategy from Theorem 12.1—but now redo every-
thing with more generality. So, we construct a homomorphism φ : π1(A, x) ∗
π1(B, x) → π1(X, x) and show that it is injective and surjective.

An element of π1(A, x) ∗ π1(B, x) is a word of the form

w = a1b1a2b2 · · · ambm
(or possibly starting with a b or ending with an a), where each ai ∈ π1(A, x), each
bi ∈ π1(B, x), and no ai or bi is equal to the identity in π1(A, x) or π1(B, x). If w
is the identity element, then we consider it to be a product of length 0, consisting of
no a’s or b’s. Thus w corresponds to a loop obtained by doing a1 in A, then doing
b1 in B, and so forth.

Let us begin by showing surjectivity. To do this, we must show that any element
of π1(X, x) is represented by a loop of the above form. Let γ be a loop in X based
at x . Partition [0, 1] into s0 = 0 < s1 < s2 < · · · < sn = 1, so that for each i , γ(t)
restricted to [si , si+1] is entirely contained either in A or in B—and they alternate.
Then, for each i , γ(t) restricted to [si , si+1] is homotopic either to an element of
π1(A, x) or to an element of π1(B, x). Suppose γ(t) restricted to [si , si+1] is homo-
topic to ci , where either ci ∈ π1(A, x) or ci ∈ π1(B, x). Then γ is homotopic to the
concatenation c0c1 · · · cn−1. Hence we have written the homotopy class of γ as an
element of π1(A, x) ∗ π1(B, x), so φ is surjective.
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Now we must show that φ is injective. Suppose that w ∈ π1(A, x) ∗ π1(B, x) is
a word, with φ(w) = e, the identity in π1(X, x). We must show that w is the empty
word. Let γ be the loop corresponding to w. If φ(w) = e, then there is a homotopy
F : [0, 1] × [0, 1] → X that deforms γ to the constant loop at x . We cut up both
the s-interval and the t-interval into sufficiently small pieces that, on any rectangle
[s j , s j+1] × [ti , ti+1], the image of F lies either entirely in A or entirely in B. If
two adjacent rectangles, either in the horizontal direction or in the vertical direction,
both lie in A or both lie in B, then join them together. Thus we have broken up the
square [0, 1] × [0, 1] into a bunch of regions bounded by horizontal and vertical line
segments. Let us call the regions we have R1, . . . , Rm .

The image of the boundary of any Ri must lie in A ∩ B and is thus a closed loop in
A ∩ B. Since A ∩ B is path-connected and simply connected, the boundary of each
Ri maps to a loop in X that is homotopic to the identity. So, we can modify the map
slightly so as to deform the image of the boundary of each Ri to x . But this isn’t quite
right, because we cannot modify the image of the s = 0 part of the square, because
that part has to be γ(t). So we can’t modify the s = 0 boundary of the square. But
the rest of the boundaries of the Ri ’s can move.

Noweach R j gives a homotopy betweenγ(t) restricted to [ti , ti+1] and the identity.
Hence each little piece of γ is homotopic to the relevant identity, so w must have
been the empty word, and so φ is injective. �

12.3 More Fundamental Groups

Although we have not given the most general form of the Seifert–Van Kampen
Theorem, we can already use it to compute fundamental groups for quite a lot of
spaces.

Example Let X and Y be two topological spaces, and let x ∈ X and y ∈ Y be points.
We define their wedge sum X ∨ Y as follows: let X � Y be the disjoint union of X
and Y . Define an equivalence relation ∼ on X � Y by declaring that x ∼ y, but all
other points are only equivalent to themselves. Then we let X ∨ Y be (X � Y )/ ∼ be
the quotient space. (The wedge sum of two circles S1 ∨ S

1 above is a special case of
this construction.) Intuitively, this means that we glue X and Y together at one point.
More generally, if {Xα}α∈A is any (not necessarily finite) collection of topological
spaces, and we declare basepoints xα ∈ Xα for each α ∈ A, then we define their
wedge sum

∨
α∈A Xα to be the quotient space of

⊔
Xα, modulo the equivalence

relation that sets xα ∼ xβ for all α,β ∈ A, but all other points are only equivalent to
themselves.

We also need to know the topology on the wedge sum, i.e. the open sets. The
topology we put on the wedge sum is the quotient topology as

⊔
Xα/ ∼. Assuming

that the Xα’s are nice (in particular, Hausdorff; see Appendix A for a definition),
this means the following: Around any point x ∈ Xα other than the basepoint, a small
neighborhood around x in

∨
α∈A Xα is just a neighborhood in Xα not containing
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Figure 12.5 The Hawaiian
earring. This is the union of
circles of radius 1/n, all
meeting at a single point.
There is no neighborhood of
this common point that is
contractible, because any
neighborhood of this point
must contain infinitely many
circles. Its fundamental
group is a very complicated
object!

the basepoint xα, considered as a subset of the wedge sum. On the other hand, a
neighborhood of the basepoint in the wedge sum is the union of neighborhoods
around the basepoint in each Xα.

Let X and Y be two spaces, and let x be the point connecting X and Y in X ∨ Y .
Suppose that, in both X and Y , x has a contractible open neighborhood. (See the
Nonexample below for a situation in which this fails to happen.) Let A be an open
set containing X inside X ∨ Y , which is homotopy equivalent to X , and similarly
let B be an open set containing Y inside X ∨ Y , which is homotopy equivalent to Y .
Then π1(A, x) ∼= π1(X, x) and π1(B, x) ∼= π1(Y, x), so π1(X ∨ Y, x) ∼= π1(A, x) ∗
π1(B, x).

Nonexample It isworth being careful aboutwedge sums.TheHawaiian earring (see
Figure12.5) is a classic example of a space that looks like a wedge sum (of infinitely
many circles). However, it isn’t a wedge sum, because any open neighborhood of the
basepoint must contain all but finitely many circles, whereas a neighborhood in the
infinite wedge sum of circles can contain only an arc of each circle. You can find a
description of the fundamental group of the Hawaiian earring in [dS92].

Unfortunately, there are still many spaces whose fundamental groups we cannot
determine with this version of the Seifert–Van Kampen Theorem. We will need to
use a more powerful version of the theorem in order to determine their fundamental
groups. This is what we will now discuss.

12.4 The Seifert–Van Kampen Theorem: Second Version

In the previous sections, we presented a special case of the Seifert–Van Kampen
Theorem in order to be able to compute fundamental groups of more complicated
spaces when we are able to break these spaces down into simple “building blocks”
whose fundamental groups we already understand. However, this special case is
not yet sufficiently powerful to allow us compute the fundamental group of a very
important topological space: the identification space of a compact surface without
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boundary. For this we will need a more general version of the Seifert–Van Kampen
Theorem; once we have stated and proved this theorem, we will be able to apply it to
the case of identification spaces. We will therefore be able to compute π1(S), where
S is any compact surface!

The generalization of the Seifert–Van Kampen Theorem that we will present
addresses the case where π1(A ∩ B) is non-trivial, where A and B are the building
blocks whose union is the topological space of interest. The following theorem gives
the result. But note that this is still not the most general version of the Seifert–Van
Kampen Theorem!

Theorem 12.3 (Seifert–Van Kampen Theorem, Version 2) Let X be a topological
space with X = A ∪ B, where A and B are open sets, and A ∩ B is nonempty and
path-connected. Assume further that B is simply connected (i.e. π1(B) is trivial).
Then

π1(X) ∼= π1(A)/N ,

where N is the smallest normal subgroup containing the image of π1(A ∩ B) under
the homomorphism induced by the inclusion mapping ι : A ∩ B → A.

We’ll sketch the proof of this theorem at the end of this chapter, after presenting
examples of how this theorem can be applied to compute fundamental groups.

12.5 The Fundamental Group of a Compact Surface

We’ll start with two examples that show how the second version of the Seifert–Van
Kampen Theorem can be used to compute the fundamental group of a compact
surface presented as an identification space.

Example Let T be the torus, presented as the ID space aba−1b−1 obtained by iden-
tifying the sides of a rectangle in the usual way. Let B be contained in the interior of
the rectangle, consisting of most of the rectangle not quite all the way to its boundary.
Let A be the remaining part of the rectangle—extended a bit into the interior of B.
Then the intersection A ∩ B is a “ribbon” that runs parallel to the boundary of the
rectangle. See Figure12.6.

Now B is homotopic to an open disk, which is contractible and thus has trivial
fundamental group. Also A ∩ B is an annulus, which deformation retracts onto the
circle and has fundamental group π1(A ∩ B) ∼= Z. What about A? By folding the
rectangle up into a cylinder by gluing together the a-edge, we can see that A is
homotopic to a thickened “figure eight,” which deformation retracts onto the wedge
of two circles and has π1(A) ∼= Z ∗ Z. Concretely, we can say that π1(A) is the free
group F([a], [b]).

In order to apply the Seifert–Van Kampen Theorem, we must know how π1(A ∩
B) injects into π1(A) under the homomorphism induced by the inclusion map
ι : A ∩ B → A. To this end, observe that the curve γ pictured in Figure12.6, whose
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Figure 12.6 The decomposition of T into a pair of overlapping open sets A and B.

equivalence class generates π1(A ∩ B), is a curve that winds once around the rect-
angle by following curve segments that are almost—but not quite equal to—the
edges of the rectangle. In fact, we can say that γ ∼ a ∗ b ∗ ā ∗ b̄, where we recall
that ∗ is curve concatenation and the bar denotes reversed orientation. Therefore,
ι∗[γ] = [a][b][a]−1[b]−1.

The normal subgroup N of the Seifert–Van Kampen Theorem is therefore the
subgroup of F([a], [b]) that contains [a][b][a]−1[b]−1 along with all elements gen-
erated by all conjugates of [a][b][a]−1[b]−1. Hence, in the quotient group, we’ll have
[a][b][a]−1[b]−1 = [e] or else [a][b] = [b][a]. The quotient group is abelian! In fact,
we’ll find

π1(T) ∼= F([a], [b])/N
∼= 〈[a], [b] | [a][b] = [b][a]〉
∼= Z × Z.

This is precisely the result we have already obtained.
To see thatG1 := 〈[a], [b] | [a][b] = [b][a]〉 is isomorphic toG2 := F([a], [b])/N ,

we note that in G1 we have [a][b] = [b][a], so for any g ∈ G1 we also have
[a][b][a]−1[b]−1 = e, so g[a][b][a]−1[b]−1g−1 = e. Hence any conjugate of [a][b]
[a]−1[b]−1 is in the kernel of the map G2 → G1. Now, since G2 is a quotient of
F([a], [b]) having only the elements of N as relations, it must be the largest possi-
ble group determined by these generators and relations. Hence G1 = G2. Note that
this is a little bit sketchy, but essentially correct. A more rigorous way of showing
that G1 = G2 would be to define G1 in terms of the properties (called universal
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properties) it has with respect to other groups and then show that G2 satisfies these
properties. But we wish to avoid getting into that here.

Example LetK be the Klein bottle, presented as the ID space ab−1a−1b−1 obtained
by identifying the sides of a rectangle in the usual way. Similar arguments as in
the torus example lead to π1(K) ∼= 〈[a], [b] | [a][b]−1 = [b][a]〉. This group is non-
abelian, because [a] and [b] do not commute with each other: [b][a] is not equal to
[a][b], but rather to [a][b]−1. To give a complete proof that π1(K) is not abelian,
it is necessary to show that [a][b]−1 �= [a][b] in the group with the presentation
〈[a], [b] | [a][b]−1 = [b][a]〉. We save this task for Problem 6.

Let us now see if we can use arguments as in the torus example to compute the fun-
damental group of an arbitrary compact surface, presented as an ID space of the form
given in the classification theoremof compact surfaces,whichweproved inChapter4.
Recall from the proof given there thatwe can present the ID space of a genus g surface
as a polygon with 4g sides written in “torus order” as a1b1a

−1
1 b−1

1 · · · agbga−1
g b−1

g .

Theorem 12.4 Let Sg be an orientable surface of genus g presented as the identifi-
cation space a1b1a

−1
1 b−1

1 . . . agbga−1
g b−1

g . Then

π1(Sg) ∼= 〈a1, b1, · · · , ag, bg | a1b1a−1
1 b−1

1 · · · agbga−1
g b−1

g = 1〉 .

Proof Let P be a regular polygonwith 4g sides,which becomes homeomorphic to Sg
when its edges are identified.Let B be the interior of P .Hence B is a simply connected
and path-connected open set. Let A be an open neighborhood of the boundary of P .
Consequently, A ∩ B is an open “ribbon” in the interior of P that deformation retracts
onto a circle γ satisfying γ = a1 ∗ b1 ∗ ā1 ∗ b̄1 ∗ · · · ∗ ag ∗ bg ∗ āg ∗ b̄g .

After the identifications are made, and we view A and B as subsets of Sg ,
then B remains homeomorphic to a disk, while A is homeomorphic to a wedge
of 2g circles equal to a1, b1, . . . , ag, bg . Consequently, π1(A) ∼= Z ∗ · · · ∗ Z ∼=
F([a1], [b1], . . . , [ag], [bg]), which is the free group on 2g generators. Moreover, if
ι : A ∩ B → Sg is the inclusion mapping, then ι∗[γ] = [a1][b1][a1]−1[b1]−1 · · · [ag]
[bg][ag]−1[bg]−1. Therefore, theSeifert–VanKampenTheorem implies thatπ1(Sg) ∼=
π1(A)/N , where N is the smallest normal subgroup of F([a1], [b1], . . . , [ag], [bg])
containing the element [a1][b1][a1]−1[b1]−1 · · · [ag][bg][ag]−1[bg]−1. The result of
this quotienting is the group given in the statement of the theorem. �

12.6 Even More Fundamental Groups

We can also apply the technique used in these examples to topological spaces that
are not compact surfaces. For instance, consider the space X obtained by identifying
the three edges of an equilateral triangle in consecutive order; i.e., if we label each
edge by a, then we’re talking about the space aaa. This is not quite the same as the
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dunce cap that we met earlier: that space is the ID space aaa−1. By analogy with the
dunce cap, we’ll call this space X the dance cup.

Exercise 12.5 Why is the dance cup not a surface? Also, show that it contains an
orientation-reversing path.

Example Similar arguments as in the torus example lead to π1(X) ∼= 〈[a] | [a]3 =
[e]〉 = Z/3Z.

12.7 Proof of the Second Version of the Seifert–Van
Kampen Theorem

Proof We’ll show how to construct an isomorphism φ : π1(X) → π1(A)/N .
To begin, let γ be any loop in X based at x0 ∈ A ∩ B. (Recall that the location

of the basepoint can be chosen at will.) We first claim that γ is homotopic to a
loop γ′ based at x0 and contained entirely in A. The reason is as follows. We can
subdivide γ into sub-curves γ1, γ2, . . . , γr , where each γi is either entirely contained
in A or entirely contained in B, and has its endpoints in A ∩ B. For any sub-curve
γi ⊆ B, let σi be a curve in A ∩ B connecting the endpoints of γi . Then γi ∗ σi is a
homotopically trivial loop in B, because π1(B) = {[e]}. Therefore we can homotope
γi into σi . (Exercise: verify this!) If we apply this operation to all parts of γ entirely
contained in B and concatenate the results, we get the curve γ′.

The analysis above shows that [γ] = [γ′], and because γ′ ⊆ A we can say [γ′] ∈
π1(A). Now we can define φ([γ]) := proj ([γ′]), where proj : π1(A) → π1(A)/N
is the natural projection homomorphism that the quotient group construction of
π1(A)/N gives us.

We must now ask the usual set of questions about φ. First, is it well-defined? To
answer this question, suppose that we had started with γ1 ∼ γ. Then, with a bit of
attention to detail, we can show that γ′

1 ∼ γ′ where the “prime” denotes the operation
of deforming a curve in A ∪ B to one in A alone, and so φ([γ1]) = φ([γ]).

Next, is φ a homomorphism? To answer this question, we can write down what
is required for φ([γ1][γ2]) = φ([γ1])φ([γ2])—and it turns out that the critical step is
to show that (γ1 ∗ γ2)

′ ∼ γ′
1 ∗ γ′

2. Again, by being careful with the construction of
the “prime” operation, we can show this without too much difficulty.

Next, is φ surjective? To answer this question, suppose x ∈ π1(A)/N is an
arbitrary element of the quotient group. Since proj is surjective, we can write
x = proj([γ]) for some [γ] ∈ π1(A). Clearly [γ] can also be viewed as a class
in π1(X) so we can say φ([γ]) = x .

Finally, is φ injective? To answer this question, suppose that φ([γ]) = proj([γ′])
= id. Then [γ′] ∈ N or in other words, there exists a class [σ] ∈ π1(A) and a class
[γ0] ∈ π1(A ∩ B) so that [γ′] = [σ][γ0][σ]−1. In other words, at the level of loops,
we have γ′ ∼ σ ∗ γ0 ∗ σ̄. Now, because γ0 ⊆ A ∩ B ⊆ B and B is homotopically
trivial, we can homotope γ0 to the trivial path. Hence σ ∗ γ0 ∗ σ̄ ∼ σ ∗ e ∗ σ̄ ∼ e.



12.7 Proof of the Second Version of the Seifert–Van Kampen Theorem 161

Therefore γ′ is homotopically trivial. This in turn implies that γ is homotopically
trivial, because γ′ and γ differ only by curve segments in B. Therefore [γ] = [e],
showing that φ is indeed injective. �

12.8 General Seifert–Van Kampen Theorem

So far we have worked out several cases of the Seifert–Van Kampen Theorem. For
a complete picture, we now present the general statement, although we will not give
a proof.

Theorem 12.6 (Seifert–Van Kampen Theorem) Let X be a path-connected space,
and suppose that X = A ∪ B, where A and B are open sets with A ∩ B path-
connected. Let ι1 : A ∩ B → A and ι2 : A ∩ B → B be the inclusion mappings and
(ι1)∗ : π1(A ∩ B) → π1(A) and (ι2)∗ : π1(A ∩ B) → π1(B) the induced homomor-
phisms. Let N ≤ π1(A) ∗ π1(B) be the normal subgroup generated by elements of
the form (ι1)∗(h)(ι2)∗(h)−1 for h ∈ π1(A ∩ B). Then π1(X) = π1(A) ∗ π1(B)/N.

Remark 12.7 We call the quotient of the free product that appears in the general
Seifert–Van Kampen Theorem an amalgamated free product. The amalgamated free
product is a generalization of the free product: Rather than joining together two
groups that have nothing to do with each other and forming strings of symbols that
alternate between the two groups, the amalgamated free product identifies certain
marked subgroups of each of the two groups and then makes a group out of the two
groups, one that is as free of relations as it can be, subject to the constraint that it has
glued together the marked subgroup of each. See [Ser03] for a book on amalgamated
free products and their appearances in topology and number theory.

12.9 Groups as Fundamental Groups

Whenever we can construct a group associated to some object that occurs elsewhere
inmathematics, it is tempting to askwhich groups can arise from such a construction.
In the case of fundamental groups, we can answer this question fully.

Theorem 12.8 Every group occurs as the fundamental group of some topological
space.

Sketch of Proof Let G be a group. We will construct a space whose fundamental
group is isomorphic to G. First, we find a presentation G = 〈S | R〉 for G. This can
always be done, because at worst we can let S consist of all the elements of G, and
we can let R consist of all relations that arise in G. (In practice, we will be able to
come up with far more efficient presentations, but that won’t be necessary for this
proof.) Now, construct a wedge of circles, one for each element of S, and label the
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circles by elements of R. Next, for each relation r ∈ R, say r = s1 . . . sn , add a disk
whose boundary is the concatenation s1 . . . sn . This space X has π1(X) ∼= G. The
proof is very similar to the calculation we did above with the fundamental groups of
surfaces from their ID-space representations. �

Example What would a space X with π1(X) ∼= Q look like? There are many spaces
with π1(X) ∼= Q, but the classic example is called a rational telescope. To construct
it, start with a finite cylinder S1 × [0, 1]. The fundamental group of this cylinder isZ,
generated by the loop α that goes around it once in the counterclockwise direction.
Now, at the top of this cylinder, glue another cylinder, but arrange it so that the top
boundary of the bottom cylinder is identified with the loop that goes around the
bottom loop of the top cylinder twice. The fundamental group of the resulting figure
is still Z, but it is no longer generated by α, because for a loop β around the top
cylinder, we have [β ∗ β] = [α], so the fundamental group of the resulting figure is
generated by β. Then, take a third cylinder, and glue the bottom of this cylinder to the
top of the second cylinder, arranging it so that the top boundary of the third cylinder
goes around the bottom circle of the second cylinder three times. The resulting figure
still has fundamental group Z, but again it is a different Z, this time generated by a

Figure 12.7 A picture of a rational telescope.



12.9 Groups as Fundamental Groups 163

loop γ around the third cylinder, so that [γ]3 = [β]. Keep doing this infinitely many
times, identifying the bottom of the nth cylinder with the top of the (n − 1)st cylinder,
going around n times. The final result is a space whose fundamental group isQ. (See
Figure12.7 for an idea of what the rational telescope looks like.) This is an example
of a very important class of constructions in homotopy theory. See [Bak09], which
is where we got the picture, and [Bae09] for more information about the rational
telescope and related spaces, and why they are important in homotopy theory.

12.10 Problems

(1) Let X be a wedge of two projective planes. Give a presentation for π1(X).
(2) Explain carefully why the Hawaiian earring is not homeomorphic to a wedge

of countably many circles. (Remark: Countable means in bijection with the
positive integers. Hence, a wedge of countably many circles means countably
many circles of radius 1, all glued together at a single point. In terms of quotient
topologies, the wedge of countably many circles consists of (x, n), where x ∈ S

1

and n ∈ N, modulo the relation ((1, 0),m) ∼ ((1, 0), n) for all m, n; that is, we
glue all the (1, 0) points on the circles together.)

(3) Let X be the Hawaiian earring, and let Y be a wedge of a countable number
of circles. Is there a surjective continuous function f : X → Y ? What about
Y → X?

(4) (a) Let X3 be the complement inR3 of the three coordinate axes. Find a simpler
space that is homotopy equivalent to X3, and compute π1(X3).

(b) In the same vein, let Xn be the complement in R
3 of n lines which pass

through the origin. Compute π1(Xn).
(5) Use the Seifert–Van Kampen Theorem to calculate the fundamental group of

RP
2.

(6) We saw in the text that π1(K) is nonabelian.

a. Find two curves in an ID-space representation of K whose classes don’t
(appear to) commute.

b. Prove that π1(K) is nonabelian. One possible method is by finding a quotient
of π1(K) that you already know to be nonabelian, because all quotients of
abelian groups are abelian.

(7) The Klein bottle is either the ID-space aba−1b or else it is the ID-space aabb.
This comes from the fact that K is homeomorphic to RP

2#RP2. You can thus
compute π1(K) in two ways and you get seemingly different answers. What’s
going on?

(8) Use the Seifert–Van Kampen Theorem to calculate the fundamental group of the
nonorientable surface of genus g (i.e. the one obtained by taking the connected
sum of the orientable surface of genus g with the projective plane).
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(9) Let W be the space obtained by taking the union of the sphere S2 and a straight
line (not a great circle!) that connects the north and south poles. Can you calculate
π1(W ) using the Seifert–Van Kampen Theorem? If not, can you deform W to a
space where you can apply this theorem?



Chapter 13
Introduction to Homology

13.1 The Idea of Homology

We have already seen one of the key algebraic invariants for topological spaces: the
fundamental group. Roughly, the fundamental group detects interesting maps from
the circle S1 to a space X . There are higher-dimensional versions of the fundamental
group, known as homotopy groups and denoted by πn(X); these are defined in terms
of homotopy classes of maps from S

n to X . In computing π1(S
1) ∼= Z, we already

found that we needed a somewhat involved argument. Nonetheless, as we learned
when studying the Seifert–Van Kampen Theorem, there is a general method for
computing fundamental groups of nice spaces.

No similar methods exist for the higher homotopy groups, and even the compu-
tation of higher homotopy groups of (higher-dimensional) spheres is a major topic
of current research. For example, who would imagine that there are interesting ways
of mapping S3 or S4 to S2? Or that there are exactly 2880 homotopy classes of maps
from S

14 to S4? See [Hat02, Chapter 4] for much more on this.
So, while higher homotopy groups are a nice idea, and they are very important in

advanced algebraic topology, they are very tricky to compute in practice—one must
rely on some technical machinery, especially spectral sequences, in order to compute
them. (See [BT82] for several examples of these computations.) Instead, we must
return to the land of triangulations and dig more deeply, in order to define a family
of topological invariants known as the homology groups.

The basic idea of homology is to count n-dimensional holes. Roughly speaking, an
n-dimensional hole H in X is a compact n-dimensional manifold—an n-dimensional
analogue of a surface—without boundary in X . But a hole is trivial if it is filled in;
that is, if there is a compact (n + 1)-dimensional manifold with boundary in X ,
whose boundary is H . (This isn’t quite correct, but it will suffice for the sake of
intuition for now.) For example, S2 has no nontrivial 1-dimensional holes, because
for every 1-dimensional manifold (namely, a circle) C inside S2, we can find a disk
whose boundary is C . On the other hand, the sphere does have a 2-dimensional
hole, because the sphere itself is not the boundary of a 3-dimensional manifold with
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Figure 13.1 Left: an empty
triangle has a nontrivial hole,
whereas when we fill it in
(Right), the hole becomes
trivial.

boundary contained inside S2. (In fact, there are no 3-dimensional manifolds at all
contained inside S2.) The homology groups measure holes “up to triviality,” in a way
that we will soon make precise.

To give the simplest example of a trivial hole and a nontrivial hole, let us consider
the triangle on the left in Figure13.1, by which we mean just the edges without
the interior. This triangle is a 1-dimensional hole, because we can map a circle (a
1-manifold) to it. This same hole also exists in the filled triangle on the right in
Figure13.1, except this time the hole is trivial: it’s the boundary of the filled triangle.
Once we learn the definition of homology and compute it, we’ll find that the triangle
on the left has nontrivial 1-dimensional homology, whereas the filled triangle on the
right has trivial 1-dimensional homology.

Now, if we take the filled triangle on the right and glue a second filled triangle
to the boundary so as to make a triangular pillow, we would create a nontrivial 2-
dimensional hole formed by the two triangles: we can map an S

2 to our space by
squashing the sphere onto the two triangles. Furthermore, this hole is nontrivial,
because it isn’t the boundary of a 3-manifold with boundary. Thus the 2-dimensional
homology of the triangular pillow is nontrivial.

13.2 Chains

Our basic building blocks in homology—or, to be more precise, simplicial homol-
ogy or � homology—are simplices.1 Simplices are vertices, edges, faces, and their
higher-dimensional analogues that we saw while working with triangulations when
we discussed the Euler characteristic. A vertex is a 0-simplex, an edge is a 1-simplex,
a face is a 2-simplex, and so forth; in general, an n-simplex has n + 1 vertices.

There is a small difference between the vertices, edges, and faces we saw before,
and the simplices we are using now: in homology, it is necessary to work with
oriented simplices. In low dimensions, we can easily visualize oriented simplices.
0-dimensional simplices, or vertices, do not need to be oriented. In the case of a
1-dimensional simplex, or edge, we can travel along the edge in either direction; we
put an arrow from the start vertex to the end vertex:

1The singular of simplices is simplex.
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In the case of a 2-dimensional simplex, we imagine traveling around the boundary
of the simplex. We can travel in the clockwise direction, or in the counterclockwise
direction. We draw a circular arrow to indicate our direction:

It is harder to visualize the orientation on higher-dimensional simplices in an
analogous way, so instead we define the orientation more formally. Let us suppose
that the vertices bounding an n-dimensional simplex S are v0, . . . , vn . (Note that it has
n + 1 vertices, as expected.) We write S = [v0, . . . , vn]. We can order the vertices
in any of (n + 1)! = |Sn+1| ways. The orientation is the sign of the permutation
described by the ordering. (Recall that the sign of a permutationπ ∈ Sn+1 is (−1)t (π),
where t (π) is the number of transpositions in a factorization of π ; t (π) is not well-
defined, but it is well-defined modulo 2: for a fixed permutation, there will either
always be an even number of transpositions in a factorization of π , or else always
an odd number.) Thus there are only two orientations for each simplex: positive and
negative.

Thus, as the pictures suggest, the edge [v0, v1] has the opposite orientation from
[v1, v0]; the faces [v0, v1, v2] and [v2, v0, v1] have the same orientation, whereas
[v0, v2, v1] has the opposite orientation.

If two orderings of the vertices of some n-simplex have the same sign, then we
consider them to be the same; if they have opposite sign, then we consider them to
be off by a factor of −1.

Now, suppose we have a triangulation T of a space X . In the future, we shall
implicitly assume that spaces come with triangulations into simplices, without men-
tioning it explicitly. Pick, once and for all, an orientation on each simplex. An n-chain
on X is a formal integer linear combination of the (oriented) n-simplices of X .

This concept is worthy of an example. Suppose the oriented n-simplices in a
triangulation T of X are T1, . . . , Tr . Then a typical example of an n-chain might be
3T1 − 5T2 + 0T3 + · · · − 6Tr . If there are infinitely many n-simplices, then we are
only allowed to use finitely many of them in the sum; all the rest must be “multiplied
by 0.” All the coefficients must be integers, and they are allowed to be positive,
negative, or zero.

Adding and multiplying n-simplices does not have any geometric meaning: after
all, how might we interpret 3 times some simplex minus 5 times another? Rather,
we think of an n-chain as being something formal: an algebraic object rather than a
geometric one.

The n-chains of a space X form a group, denoted Cn(X) (no relation to the cyclic
group Cn), under addition: just add the coefficients of each of the simplices. For
example, suppose the n-simplices of X are T1, . . . , Tr , and we have two n-chains
a1T1 + · · · + ar Tr and b1T1 + · · · + br Tr . Then their sum is (a1 + b1)T1 + · · · +
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(ar + br )Tr . Since addition is clearly commutative, Cn(X) is an abelian group. In
fact, it is isomorphic to the free abelian group Z

r .

Remark 13.1 The number of n-simplices need not be finite in general, but it will
be in all our examples.

13.3 The Boundary Map

Recall that the idea of homology is to count holes that are not boundaries. Thus, we
need to be able to detect when something is or is not a boundary. We start, naturally
enough, by defining the boundary of a simplex.

Suppose that we have an n-simplex [v0, . . . , vn]. We define its boundary to be

∂n([v0, . . . , vn]) =
n∑

i=0

(−1)i [v0, . . . , v̂i , . . . , vn],

where the hatted term v̂i is omitted. For example, if n = 2, we have

∂2([v0, v1, v2]) = [v1, v2] − [v0, v2] + [v0, v1].

Observe that the boundary of an n-simplex is an (n − 1)-chain.
We now extend the boundary map to a homomorphism ∂n : Cn(X) → Cn−1(X)

in the only way possible:

∂n(a1T1 + · · · + ar Tr ) = a1∂n(T1) + · · · + ar∂n(Tr ).

The most important property of the boundary map is that the boundary of a
boundary is zero, i.e. the following theorem.

Theorem 13.2 If A ∈ Cn(X) is any n-chain, then ∂n−1 ◦ ∂n(A) = 0.

Proof We simply compute. It suffices to check this in the case that A = [v0, . . . , vn]
is an n-simplex because the boundary maps are homomorphisms. Then we have

∂n−1 ◦ ∂n(A) = ∂n−1

(
n∑

i=0

(−1)i [v0, . . . , v̂i , . . . , vn]
)

=
n∑

i=0

(−1)i∂n−1([v0, . . . , v̂i , . . . , vn])

=
n∑

i=0

(−1)i

⎛

⎝
i−1∑

j=0

(−1) j [v0, . . . , v̂ j , . . . , v̂i , . . . , vn]

+
n∑

j=i+1

(−1) j−1[v0, . . . , v̂i , . . . , v̂ j , . . . , vn]
⎞

⎠ .
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In the final expression on the right, we see that there are exactly two terms missing
both vi and v j . But what are the signs? Suppose that i < j . Then it occurs once
with coefficient (−1)i (−1) j−1 = (−1)i+ j−1 by removing first vi and then v j , and
once with coefficient (−1) j (−1)i = (−1)i+ j by first removing v j and then removing
vi . The sum of these two coefficients is 0, so the coefficient of the (n − 2)-simplex
[v0, . . . , v̂i , . . . , v̂ j , . . . , vn] is 0. This is true for each (n − 2)-simplex, so ∂n−1 ◦
∂n(A) = 0, as desired. �

One way of expressing this theorem is to say that im(∂n) ≤ ker(∂n−1), because
ker(∂n−1) consists of the (n − 1)-chains whose boundaries are 0, and im(∂n) consists
of the (n − 1)-chains that are images of n-chains under the boundary map.

Definition 13.3 We call ker(∂n) ≤ Cn(X) the group of n-cycles and denote it by
Zn(X), and we call im(∂n+1) ≤ Cn(X) the group of n-boundaries and denote it by
Bn(X).

Remark 13.4 Recall that we motivated homology by describing it as measuring
n-dimensional holes, up to triviality. The cycles Zn(X) are the holes. Note that a
hole, such as a loop, has trivial boundary—which is exactly what defines a cycle.
The boundaries Bn(X) are the trivial holes, because if c ∈ Bn(X) is the boundary of
some a ∈ Cn+1(X), then the hole c is filled in by a.

The sequence of groups and maps we have here is very important—important
enough to deserve its own name.

Definition 13.5 A sequence

· · · → Cn+1
∂n+1−→ Cn

∂n−→ Cn−1 → · · ·

of abelian groups is called a chain complex if ∂n ◦ ∂n+1 = 0 for all n.

Chain complexes are among the fundamental objects of study in homological
algebra, a powerful algebraic formulation and generalization of the homology we
study in topology.

13.4 Homology

At last, we can define homology. We know that Bn(X) ≤ Zn(X); the homology is a
measure of the discrepancy between these two groups.

Definition 13.6 The nth homology group of X is the quotient group Hn(X) = Zn(X)

Bn(X)
.

It is true, although we will not prove it here, that the homology groups do not
depend on the choice of triangulation of X . (See [Mun84, Section 18] for a proof.)
Hence, the homology groups are a homeomorphism invariant. In fact, they are also a
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homotopy invariant: two spaces that are homotopy equivalent have the same homol-
ogy groups. Furthermore, the triangulation does not have to satisfy our strict rules for
triangulations as defined in Chapter3. Instead, simplices are allowed to meet in more
complicated ways, without any ill effects. In particular, the additional possibilities
we allow are that lower-dimensional faces of a simplex can be glued together, and
the intersection of two simplices must be a union of their lower-dimensional faces.
In addition, we are allowed to glue parts of the boundary of a simplex together, as
long as they are of the same type: that is, we are allowed to glue together two vertices
of a simplex, or two edges, and so forth. The official name of a triangulation with
these weaker rules about intersection types is a �-complex, and perhaps we should
correspondingly call our homology �-homology. But this name is less commonly
used than simplicial homology, so we will stick to the term simplicial homology.

A very simple example of a�-complex that takes advantage of our looser rules for
intersection types is a (filled-in) triangle with two vertices glued together, as shown
in Figure13.2. This isn’t a simplicial complex or a triangulation in the usual sense,
but we allow it among our �-complexes and could compute its homology if desired.

Let us compute the homology groups of a torus, as shown in Figure13.3. Note
that this isn’t a triangulation in the sense of Chapter3, because the two 2-simplices
U and L intersect at three edges e, f , and g. But this is the sort of thing we allow in a
�-complex. This is a huge help, because it means that we can get awaywith far fewer
simplices than would be needed to give a triangulation in the sense of Chapter3, and
we still get the correct answer.

We need to calculate the boundary maps for the torus. For the 2-chains, we have
∂2(U ) = −e − f + g and ∂2(L) = e + f − g. We can see this geometrically: as we
go around the edges ofU (for example), in the direction indicated by the orientation

Figure 13.2 Gluing vertices
A and B (and no other
points) gives a �-complex.

A B

C

Figure 13.3 A triangulation
of a torus.
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of U , we go along g in the “right direction,” but we go along e and f in the “wrong
direction.” Hence, the signs on ∂2(U ) are positive for g and negative for e and f .

For the 1-chains, we have ∂1(e) = ∂1( f ) = ∂1(g) = a − a = 0: there’s only one
vertex a, and all three of those edges both start and end at a. All other boundary
maps in dimensions other than 1 and 2 are 0.

Now let us compute the homology. We start with H2. We have Z2(T) = 〈U + L〉,
because ∂2(U + L) = 0. Now, B2(T) = 0, because there are no 3-chains. Hence
H2(T) = 〈U + L〉 ∼= Z: the free abelian group with one generator, called U + L .

Now let us compute H1. We have Z1(T) = 〈e, f, g〉,2 because all the boundaries
are 0, whereas B1(T) = 〈e + f − g〉. Calculating H1(T) out of this data requires a
bit of finesse now: it’s Z1(T)/B1(T), but what is that as an abstract abelian group? If
we quotient out by 〈e + f − g〉, that means that e + f − g = 0 in H1(T). Thus,
we may “solve for g” and replace every instance of g with e + f . So, given a
cycle a1e + a2 f + a3g, we may rewrite that as (a1 + a3)e + (a2 + a3) f in H1(T).
Furthermore, every cycle involving only e’s and f ’s is distinct in H1(T), so we have

H1(T) ∼= 〈e, f 〉 ∼= Z
2.

Finally, there’s H0. We have Z0(T) = C0(T) = 〈a〉 ∼= Z, whereas B0(T) = 0,
because the boundary of every 1-chain is 0. Hence H0(T) ∼= Z. All other homology
groups are 0. Thus we have calculated:

Hn(T) ∼=

⎧
⎪⎨

⎪⎩

Z n = 0, 2,

Z
2 n = 1,

0 n ≥ 3.

13.5 The Zeroth Homology Group

The 0-dimensional homology group H0 is easy to understand in general. If X is path-
connected, then H0(X) ∼= Z.Why? Pick a vertex (0-simplex) a in the triangulation of
X . Then {na} are all distinct elements in H0(X), for ifma andnawere equal inH0(X),
then they would have to differ by a boundary ∂1(c) for some c ∈ C1(X). However,
the sum of the coefficients in ∂1(c) is always zero, so this cannot happen. Now,
suppose that a and b are two vertices in X . Then there is some sequence of (oriented)
edges e1, . . . , er that starts at a and ends at b. Thus ∂1(e1 + · · · + er ) = b − a, so
b − a ∈ B0(X), so it is zero in H0(X), i.e. a = b in H0(X). Thus we have shown the
following.

Proposition 13.7 If X is path-connected, then H0(X) ∼= Z.

2When discussing homology, all our presentations of groups will be of abelian groups. That means
the relations implying that the generators commute will be omitted whenwewrite our presentations.
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More generally, if X consists of k path-components, then H0(X) ∼= Z
k for the

same reason.

13.6 Homology of the Klein Bottle

We now compute the homology of the Klein bottle, which will turn out to have a
special surprise! We can use almost the same picture as a torus, but now one of the
edges (say, the left edge) must switch orientation, as shown in Figure13.4.

We now compute the boundary maps. We have

∂2(U ) = e − f + g,

∂2(L) = e + f − g,

∂1(e) = ∂1( f ) = ∂1(g) = 0.

Hence

Z2(X) = 0,

B2(X) = 0,

Z1(X) = 〈e, f, g〉,
B1(X) = 〈e − f + g, e + f − g〉.

We don’t need to compute H0, because we already know it: The Klein bottle is
path-connected, so H0(K) ∼= Z.

Clearly H2(K) = 0, but what about H1(K)? We have

Figure 13.4 A triangulation
of a Klein bottle.
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H1(K) = Z1(K)/B1(K)

= 〈e, f, g〉/〈e − f + g, e + f − g〉
= 〈e, f, g | e − f + g, e + f − g〉
= 〈e, f, g | 2e, e + f − g〉
= 〈e, f | 2e〉
∼= Z × (Z/2Z).

This means that, while e is not a boundary of any 2-dimensional submanifold, 2e
is!What is this submanifold? It’s just the Klein bottle itself: cut along e, and you have
a cylinder, with two boundary components, both labeled e. But here, the boundary
components have the same orientation, so the boundary consists of both copies of e.
Contrast this with the case of the torus, where we can again cut along e to obtain a
cylinder, but then the boundary components are oriented in opposite directions, so
they cancel out in Z1(T

2).

13.7 Homology and Euler Characteristic

Homology is a generalization of the Euler characteristic. In order to understand
what that means and how it works, we must first define the Betti numbers. If X is
a topological space that has a finite triangulation, then it has finitely many nonzero
homology groups; furthermore, each homology group is a finitely generated abelian
group, and hence of the form Hi (X) ∼= Z

k × ∏m
j=1(Z/p

e j
j Z). We define the i th Betti

number hi (X) to be k, the number of copies ofZ, also known as the rank of a finitely
generated abelian group.

Theorem 13.8 The Euler characteristic is the alternating sum of the Betti numbers,
i.e.

χ(X) =
∞∑

i=0

(−1)i hi (X).

Note that this is actually a finite sum, because all but finitely many of the Betti
numbers are zero.

Proof Recall that the Euler characteristic is the alternating sum of the number of
faces of dimension i . Now, it is not true that the number of faces of dimension i
is equal to the i th Betti number, only that their alternating sums are equal. (They
couldn’t possibly be equal in general, because the number of faces depends on the
choice of triangulation, and we have stated that the homology does not depend on
the choice of triangulation.) But note that the number of faces of dimension i is the
rank of Ci (X). So we have to show that
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∞∑

i=0

(−1)i rankCi (X) =
∞∑

i=0

(−1)i rank Hi (X).

To do this, observe that rank Hi (X) = rank Zi (X) − rank Bi (X); each new rela-
tion decreases the number of “free” generators by one. Also, recall the isomor-
phism theorem for groups: if f : G → H is a homomorphism of groups, then
G/ ker( f ) ∼= im( f ). This implies that if G is a finitely generated abelian group,
then

rank G = rank im( f ) + rank ker( f ).

Now we’re ready to go! By the above, using the boundary maps, we have

rankCi (X) = rank Bi−1(X) + rank Zi (X).

So

χ(X) =
∞∑

i=0

(−1)i rankCi (X)

=
∞∑

i=0

(−1)i (rank Bi−1(X) + rank Zi (X))

=
∞∑

i=0

(−1)i (rank Zi (X) − rank Bi (X))

=
∞∑

i=0

(−1)i rank Hi (X),

which is what we wanted to show! �

Exercise 13.9 As a sanity check, verify that Theorem 13.8 holds for the torus and
the Klein bottle.

13.8 Homology and Orientability

Let S be a compact, connected surface (without boundary). The homology detects the
orientability of S, in the following way. Note that H2(T) ∼= Z, whereas H2(K) = 0.
In general, the 2-dimensional homology of S is Z if S is orientable, and it’s 0 if
S is nonorientable. More generally, if X is a compact, connected n-dimensional
manifold (without boundary), then Hn(X) ∼= Z if X is orientable, and Hn(X) = 0 if
X is nonorientable. We’ll only prove this for surfaces since we’ll work in terms of
ID spaces.
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Let’s first suppose that S is orientable, and that we have an ID space for S, which
is a polygon with edges identified in pairs. As we recall from Chapter4, because S
is orientable, the edges are Type I edges, i.e. as we traverse the boundary of the ID
space polygon, the two instances of that edge appear with opposite orientations.

Now, split the ID space for S up into triangles so that we have a triangulation of
S, into triangles T1, T2, . . . , Tr . We orient each triangle Ti in the counterclockwise
orientation. Then a 2-chain c is a sum

∑r
i=1 ai Ti , where each ai ∈ Z. What does it

mean for c to be a 2-cycle? Take two triangles that share an edge in the interior of
the polygon, say Ti and Tj , which share edge e. These are the only two triangles
containing that edge, so they are the only contributors to e in ∂2(c). Thus ∂2(ai Ti +
a j Tj ) must have a coefficient of 0 for e. The contribution from ai Ti is ai , whereas
the contribution from a j Tj is −a j (or the signs may both be swapped). Thus we find
that a necessary condition for c to be a 2-cycle is that ai = a j . Because we can apply
this argument to an arbitrary interior edge, we find that all the ai ’s must be equal, i.e.
it must be the case that c = ∑r

i=1 aTi for some a ∈ Z.
But is such a c actually a cycle? The only thing that can go wrong is that the

boundary edges of the polygon might not cancel. However, since S is assumed to
be orientable, each boundary edge appears once with a positive orientation and once
with a negative orientation. Thus chains of the form

∑r
i=1 aTi are indeed cycles,

and they are the only cycles in S. If a �= 0, then they are not boundaries, because
C3(S) = 0. Thus we find that H2(S) = 〈∑r

i=1 Ti 〉 ∼= Z.

Definition 13.10 Let S be an orientable, compact, connected surface divided into
triangles T1, . . . , Tr as above. Then the cycle

∑r
i=1 Ti is called a fundamental class

of S.

Thus a fundamental class generates H2(S). Note that we could have reflected
our ID space polygon, which would flip the orientation of all the triangles and thus
multiplied the fundamental class by −1. This means that there are two possible
choices for a fundamental class of S.

Now, what happens if S is nonorientable? As before, we find that a necessary
condition for c being a cycle is that it has the form c = ∑r

i=1 aTi . However, now we
run into a problem with the boundary. Since S is nonorientable, there is some edge
e on the boundary that is oriented in the same way both times. Thus the contribution
of e to ∂2(c) is ±2a. In particular, c /∈ Z2(S) unless a = 0. Thus Z2(S) = 0, so
H2(S) = 0 as well.

13.9 Smith Normal Form

It seems as though computing homology is easy and completely mechanical—so
that the process is something that one could program a computer to do. But there is
one step that is still difficult. Once we have computed Zi (X) and Bi (X), we obtain
some presentation for Hi (X), but we would like to be able to identify it in a more
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convenient form. If X has a finite triangulation, then Hi (X) is a finitely generated
abelian group, and we know what all the finitely generated abelian groups look like.
But when we see a group like

〈a1, a2, a3, a4 | 5a1 − 2a2 + 3a4, 3a1 + 2a2 + 2a3, 4a3 − 2a4, 9a2 + 6a3〉,
(13.1)

how do we write that nicely, in the form Z
k×(finite group)?

Fortunately, there is a fairly simple algorithm for doing this. It will be convenient
to write out the relations as a matrix. Each relation gets a row, and each generator
gets a column, and the coefficients go in the matrix. Hence the matrix we get from
the presentation (13.1) is ⎛

⎜⎜⎝

5 −2 0 3
3 2 2 0
0 0 4 −2
0 9 6 0

⎞

⎟⎟⎠ .

The goal is to find better generators and relations, ones that make it more obvious
what the group structure is.

So, how do we find other generators? If a1 and a2 generate an abelian group, then
a1 and a1 + a2 generate it just as well, as do a1 and 5a1 + a2. More generally, if
a1 and a2 are two of the generators for an abelian group (and there may be others),
then a1 and ca1 + a2, for any integer c, together with the remaining generators, also
generate the same group.

What happens to thematrixwhenwemodify the generators in thisway?Replacing
a2 with ca1 + a2 means we add c times the a1 column to the a2 column. For example,
in the matrix above, replacing a2 by 2a1 + a2 would turn the matrix into

⎛

⎜⎜⎝

5 8 0 3
3 8 2 0
0 0 4 −2
0 9 6 0

⎞

⎟⎟⎠ .

Also allowable is switching the order of the generators, which amounts to switching
the order of the columns.

Similarly, we can modify the relations: if r1 and r2 are two relations, then cr1 + r2
is also a relation, and we can replace r2 with cr1 + r2 in the list of relations. Thus we
can do the same operations to the rows as we can to the columns. Using these row
and column operations, we can convert the matrix to one that is in a particularly nice
form, called the Smith normal form.

Definition 13.11 A matrix A = (ai j )1≤i≤m
1≤ j≤n

is said to be in Smith normal form if,

for some k ≤ min(m, n), the first k diagonal entries are nonzero, with aii dividing
ai+1,i+1, and all other entries are 0.

Thus, a matrix in Smith normal form looks like this:
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⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a11
a22

. . .

akk
0

. . .

0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

with all other omitted entries being 0.
It turns out that we can put any integer matrix into Smith normal form; this fact

is equivalent to the classification of finitely generated abelian groups, and in fact
this is the idea behind the standard proof of that classification theorem. (We didn’t
quite prove it properly.) The details of how to get a matrix into Smith normal form
are slightly outside the scope of this book (see [Mun84, Section 11] for a proof).
This process involves some elementary number theory (in particular, the Euclidean
algorithm), but the idea is as follows. If there is some nonzero entry in the matrix,
then let g be the gcd of all the entries in the matrix. Using the Euclidean algorithm
repeatedly, it is possible to perform row and column operations so that a11 = g. Then,
everything else in the first row and column is a multiple of g, so we can add multiples
of the first row or column to the others—so as to make all the other entries in the
first row and first column 0. Now, if there are any nonzero entries left in the matrix
other than a11, do the same process to the matrix obtained by deleting the first row
and column, making a22 into the gcd of all the rest of the elements, and so forth.

Once we have a matrix in Smith normal form, it is easy to read off the group
structure so as to fit it into the classification. Let us say that the columns correspond
to generators g1, . . . , gn . If the i th column is all 0’s, then gi contributes a factor of
Z to the group. If there is a nonzero entry in column i (hence the entry aii ), then gi
contributes a factor of Z/aiiZ to the group.

Why? Let us look at the i th row. Once the matrix is in Smith normal form, there
is at most one nonzero entry in that row; if all the entries in row i are 0, then that
corresponds to the relation 0 = 0, which we already knew. But if there is a nonzero
entry aii , then the relation is aii ei = 0, giving us a factor of Z/aiiZ.

In the case of the matrix above, the Smith normal form is

⎛

⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 336

⎞

⎟⎟⎠ ,

meaning that the corresponding group is isomorphic to Z/336Z.
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13.10 The Induced Map on Homology

Recall that, given two topological spaces X and Y , base points x ∈ X and y ∈ Y ,
and a continuous function f : X → Y with f (x) = y, there is a homomorphism
f∗ : π1(X, x) → π1(Y, y). This is the induced homomorphism.
Similarly, in the case of homology, we also have an induced homomorphism—at

least sometimes. Let us think about how to mimic the construction of the induced
homomorphism on fundamental groups, in the case of homology. Remember that,
given a loop γ in X based at x , we set f∗([γ ]) = [ f ◦ γ ]. The analogous construction
in the case of homology, whichwould give usmaps f∗ : Hn(X) → Hn(Y ) for each n,
would be to pick an n-chain

∑r
i=0 ai Ti and define f∗ on chains by f∗

(∑r
i=0 ai Ti

) =∑r
i=0 ai f (Ti ), where f (Ti ) is the image of the simplex Ti under f . That would be a

map of chains, so a homomorphism f∗ : Cn(X) → Cn(Y ). The grand goal would be
to show that, when we restrict f∗ to Zn(X) and Bn(X), we have f∗(Zn(X)) ≤ Zn(Y )

and f∗(Bn(X)) ≤ Bn(Y ).
But there is a problem: if Ti is a simplex of X , then we have no guarantee that

f (Ti ) is a simplex of Y ; it might just be some fairly arbitrary subset of Y with no
nice properties. In order for everything to work out, we need to ensure that the image
of every simplex of X is a simplex of Y .

Definition 13.12 Let X andY be simplicial complexes and f : X → Y a continuous
function. We say that f is a simplicial map if the image of every simplex of X is a
simplex of Y .

Most maps are not simplicial, but for simplicial maps, the idea above for con-
structing an induced homomorphism on homology works perfectly.

Proposition 13.13 Suppose f : X → Y is a simplicial map. Then, for each n,
f∗(Zn(X)) ≤ Zn(Y ) and f∗(Bn(X)) ≤ Bn(Y ).

Proof We show first that, for any n-simplex T of X , ∂n ◦ f∗(T ) = f∗ ◦ ∂n(T ). Sup-
pose that T = [v0, . . . , vn] and that f∗(T ) = [w0, . . . , wn], with wi = f (vi ). Then
we have

∂n ◦ f∗(T ) = ∂n([w0, . . . , wn])

=
n∑

i=0

(−1)i [w0, . . . , ŵi , . . . , wn]

=
n∑

i=0

(−1)i f ([v0, . . . , v̂i , . . . , vn])

= f∗

(
n∑

i=0

(−1)i [v0, . . . , v̂i , . . . , vn]
)

= f∗ ◦ ∂n(T ),
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as desired.
Now, suppose that c = ∑r

i=0 ai Ti ∈ Zn(X), so that ∂n(c) = 0. Then

0 = f∗ ◦ ∂n(c) = ∂n ◦ f∗(c),

so f∗(c) ∈ Zn(Y ). Similarly, if c = ∂n(d) ∈ Bn(X), then

f∗(c) = f∗ ◦ ∂n(d) = ∂n ◦ f∗(d),

so f∗(d) ∈ Bn(Y ). �

Remark 13.14 It may be the case that f (vi ) = f (v j ) for some i �= j , so that f∗(T )

is a lower-dimensional simplex. It is okay if a vertex appears multiple times in f∗(T );
this means that we treat f∗(T ) formally as an n-dimensional simplex; nothing in our
definitions ever has to “know” that f∗(T ) is secretly lower-dimensional.

It is immediate from the definition that f∗ is a homomorphism.
Now we are ready to define the induced homomorphism on homology. Let f :

X → Y be a simplicial map, let c ∈ Zn(X), and let [c] = c + Bn(X) be its class
in homology. Then we define f∗ : Hn(X) → Hn(Y ) by setting f∗([c]) = [ f∗(c)].
Let us verify that f∗ is well-defined. Suppose [c] = [c′]. Then c − c′ = d for some
d ∈ Bn(X). We have

f∗(c) − f∗(c′) = f∗(d) ∈ f∗(Bn(X)) ≤ Bn(Y ).

Thus [ f∗(c)] = [ f∗(c′)], so f∗ : Hn(X) → Hn(Y ) is indeed well-defined.
The induced homomorphism on homology satisfies all the same basic properties

as does the induced homomorphism on fundamental groups. For example:

1. If f : X → Y and g : Y → Z are simplicial maps, then (g ◦ f )∗ = g∗ ◦ f∗.
2. If f : X → Y is a homotopy equivalence, then f∗ is an isomorphism.

There are many types of homology. The one we have been using is called simpli-
cial homology or�-homology. (Which one we’re using depends on the requirements
we put on the intersections of simplices.) This is one of the more computable for-
mulations of homology. Assuming there are only finitely many simplices, then the
computation is a finite problem—unlike in the case of fundamental groups, where
there are potentially infinitely many loops on a space X that must be considered.
One downside of using simplicial or �-homology, though, is that we are only able
to consider simplicial maps. The theorems remain true if we replace “simplicial
maps” in all our theorem statements with arbitrary continuous maps, but the proofs
no longer hold. Furthermore, we have claimed—but not proven—that homology
does not depend on the choice of triangulation, and the proof requires some serious
work! With other formulations, especially singular homology (see Appendix B), it
is immediately clear that homology is a homeomorphism invariant and plays nicely
with all continuous maps. The cost, however, is that computation becomes very chal-
lenging and is not a finite problem—at least, not without some serious theorems. All
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Figure 13.5 A loop (marked
in red) in a genus-2 surface.

homology theories3 give the same answers in the case of “nice” spaces, but there are
pathological spaces where they may disagree.

13.11 Problems

(1) Compute the homology groups of S2 and RP
2.

(2) (a) Compute the homology of a genus-2 surface.
(b) In terms of your generators frompart (a), what is the red curve in Figure13.5?

(3) Compute the homology of the space given by the ID space aaa.
(4) (a) Compute the homology of the n-dimensional sphere Sn .

(b) Show that if m �= n, then R
m is not homeomorphic to Rn .

(5) Consider the space obtained by taking a 2-simplex with vertices v0, v1, v2 and
identifying the edges [v0, v1] and [v1, v2]. Compute its homology. Is this space
homeomorphic to a space you are familiar with?

(6) Consider the space obtained by taking a 2-simplex and identifying all its vertices.
Compute the homology groups of this space.

(7) Using the induced map on homology, prove the Brouwer Fixed-Point Theorem
in n dimensions: let f : Dn → Dn be a continuous map from the n-dimensional
unit disk to itself. Then there must be a point x ∈ Dn so that f (x) = x . (Youmay
use the fact that there is an induced homomorphism associated to any continuous
map, not just a simplicial map.)

3There is a set of axioms, known as the Eilenberg–Steenrod axioms, which all homology theories
must satisfy. See [Mun84, Section 26] for a list of these axioms. Unfortunately, we cannot discuss
them here as they rely on the notion of relative homology, which would be too large of a diversion.



Chapter 14
The Mayer–Vietoris Sequence

14.1 Exact Sequences

Although it is possible to compute homology directly from the definition, it is not
always much fun to do so—computing the homology for a genus-g surface would
require a lot of simplices and matrix manipulations! We were able to compute the
fundamental group for an arbitrary surface using the Seifert–Van Kampen Theorem,
breaking it up into smaller regions and splicing together their fundamental groups. In
particular, we were able to express π1(A ∪ B) in terms of π1(A), π1(B), π1(A ∩ B),
and some information about how they all fit together. It would be nice if we could
do that for homology as well.

In fact,we can relate the homologyof A ∪ B to the homologies of A, B, and A ∩ B,
but the relation is a bit more complicated than in the case of fundamental groups. In
particular, we relate Hn(A ∪ B) not just to Hn(A), Hn(B), and Hn(A ∩ B), but to
all the homologies of these spaces, as well as to all the other homology of A ∪ B.
Before we can state this connection, known as theMayer–Vietoris sequence, we need
to introduce the notion of an exact sequence.

Recall chain complexes from the last chapter: these are sequences

· · · → An+1
fn+1−→ An

fn−→ An−1 → · · ·

of abelian groups and maps between them such that composing any two consecutive
maps gives the zero map, i.e. fn ◦ fn+1 = 0 for any n. This means that im( fn+1) ≤
ker( fn).

Definition 14.1 A sequence

· · · → An+1
fn+1−→ An

fn−→ An−1 → · · ·

of abelian groups and maps is said to be exact at An if im( fn+1) = ker( fn). It is said
to be exact if it is exact at all An .
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It is sometimes the case that a sequence does not go on forever, or perhaps it only
goes on forever in one direction. In this case, we say it is exact if it is exact at all
positions other than the end or ends of the sequence.

It is useful to distinguish between two types of exact sequences: short ones and
long ones.

Definition 14.2 An exact sequence of the form

0 → A′ → A → A′′ → 0

is said to be a short exact sequence.

Naturally, we thus call a sequence with more than three (potentially) nonzero
terms a long exact sequence.

Example If A and B are any two abelian groups, thenwe have a short exact sequence

0 → A
f→ A × B

g→ B → 0, (14.1)

where f is defined by f (a) = (a, 0) and g is defined by g(a, b) = b. Let us check
that this is exact at A. The image of the map 0 → A is just 0. The kernel of f is 0,
because if a �= 0, then (a, 0) �= (0, 0) ∈ A × B. Now let us check exactness at B.
The kernel of B → 0 is all of B: everything gets mapped to 0. The image of g is
also all of B because, for any b ∈ B, g(0, b) = b. Finally, let us check exactness at
A × B. The image of f is {(a, 0)}, and this is also the kernel of g. Hence the sequence
is exact at each position. Short exact sequences of the form (14.1) are known as split
exact sequences.

Note that exactness at A′ means that A′ → A is injective, and exactness at A′′
means that A → A′′ is surjective.

Example If m and n are any positive integers, consider the sequence

0 → Z/mZ → Z/mnZ → Z/nZ → 0,

where the maps Z/mZ → Z/mnZ and Z/mnZ → Z/nZ are given by a + mZ 
→
an + mnZ and b + mnZ 
→ b + nZ, respectively. This sequence is a short exact
sequence. Ifm and n are relatively prime, then this sequence is a split exact sequence
by the Chinese Remainder Theorem, but otherwise it is not. For example, if p is
prime, the sequence

0 → Z/pZ → Z/p2Z → Z/pZ → 0

is exact but not split exact.

In fact, we can in some sense classify all short exact sequences: If A and B are two
abelian groups with A ≤ B, then 0 → A → B → B/A → 0 is an exact sequence,
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and any exact sequence can be expressed in this way. (See [Rot95, p. 307] for an
explanation of why, or work it out yourself!)

14.2 The Mayer–Vietoris Sequence

Suppose X is a topological space (implicitly with a triangulation), and A and B are
subspaces with A ∪ B = X . Furthermore, assume that A and B are each unions of
simplices in X .

Proposition 14.3 For any n, we have a short exact sequence

0 → Cn(A ∩ B)
α→ Cn(A) × Cn(B)

β→ Cn(A ∪ B) → 0

of abelian groups. Here α is given by inclusion: an n-chain c of A ∩ B is also an
n-chain of A and an n-chain of B, so we define α(c) = (c, c). Similarly, an n-chain
of A is an n-chain of A ∪ B, and similarly for B. We define β(c, d) = c − d.

Remark 14.4 The minus sign in the definition of β is necessary to make this
sequence exact!

Proof It is clear that α is injective, so this sequence is exact at Cn(A ∩ B). Now,
let N = ∑r

i=1 ai Ti be an n-chain of A ∪ B. Let us suppose that T1, . . . , Tk are in
A and Tk+1, . . . , Tr are in B. (Each simplex must be in either A or B; some of
themmay be in both, so let us—arbitrarily—group them with A.) Let c = ∑k

i=1 ai Ti
and d = ∑r

i=k+1 ai Ti . Then c ∈ Cn(A) and d ∈ Cn(B), and N = c + d = β(c,−d).
Thus β is surjective.

Finally, we must show that im α = ker β. We have

im α = ker β = {(c, c) : c ∈ Cn(A ∩ B)}.

Thus the sequence is also exact at Cn(A) × Cn(B). �

A general phenomenon in mathematics is that a short exact sequence of chains
induces a long exact sequence in homology. In this case, the resulting long exact
sequence is the Mayer–Vietoris sequence.

Theorem 14.5 (Mayer–Vietoris) Let X = A ∪ B, where X, A, and B are equipped
with triangulations. Then there is a long exact sequence
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· · ·

Hn(A ∩ B)
α∗

Hn(A) × Hn(B)
β∗

Hn(A ∪ B)

∂∗

Hn−1(A ∩ B)
α∗

Hn−1(A) × Hn−1(B)
β∗

Hn−1(A ∪ B)

∂∗

· · · · · · · · ·

H0(A ∩ B)
α∗

H0(A) × H0(B)
β∗

H0(A ∪ B)

0

of homology groups.

It is possible to prove—for once and for all—that short exact sequences at the
level of chains give rise to long exact sequences in homology. We will think in terms
of homology of topological spaces, but nothing in the proof depends on that. We’ll
leave certain aspects of the proof for Problems 3–5.

Proof The first step in the proof is to define the maps α∗, β∗, and ∂∗. The first
two are straightforward: they are the induced maps in homology coming from the
maps α and β of Proposition 14.3. The map ∂∗ is more complicated: for each n, we
wish to construct a homomorphism ∂∗ : Hn(A ∪ B) → Hn−1(A ∩ B). Observe the
following diagram of abelian groups:

Cn(A ∩ B)
αn

∂(1)

Cn(A) × Cn(B)
βn

∂(2)

Cn(A ∪ B)

∂(3)

Cn−1(A ∩ B)
αn−1

Cn−1(A) × Cn−1(B)
βn−1

Cn−1(A ∪ B)

(14.2)

This diagram commutes. This means that if we pick either square of the diagram
and start from the top left corner and then take the horizontal arrow followed by the
vertical arrow, we get the same result as we do if we first take the vertical one then
the horizontal one: The square

W
φ

ψ

X

θ

Y
ρ

Z
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commutes if and only if θ ◦ φ(w) = ρ ◦ ψ(w) for all w ∈ W .
In order to construct ∂∗ : Hn(A ∪ B) → Hn−1(A ∩ B), we first attempt to con-

struct a homomorphism δ : Zn(A ∪ B) → Zn−1(A ∩ B) in an interesting way. We
will fail. But we will fail in exactly the way we need in order to get a homomorphism
on homology! Our attempt is as follows:

(1) Pick x ∈ Zn(A ∪ B); this means that ∂(3)(x) = 0.
(2) We saw earlier that βn is surjective, so we can find some y ∈ Cn(A) × Cn(B) so

that βn(y) = x . (There may be many choices for y; pick one at random.)
(3) Now, look at z = ∂(2)(y). Because the right square of (14.2) commutes, we have

∂(3) ◦ βn(y) = βn−1 ◦ ∂(2)(y) = 0,

so βn−1(z) = 0.
(4) The bottom row of (14.2) is exact and βn−1(z) = 0, so there is some w ∈

Cn−1(A ∩ B) so that αn−1(w) = z.
(5) We wish to set δ(x) = w.

We now check that w ∈ Zn−1(A ∩ B). Observe that z ∈ Zn−1(A) × Zn−1(B). (In
fact, z ∈ Bn−1(A) × Bn−1(B), which is stronger, but we will not need this at the
moment.) Consider the commutative square

Cn−1(A ∩ B)
αn−1

∂(1)

Cn−1(A) × Cn−1(B)

∂(2)

Cn−2(A ∩ B)
αn−2

Cn−2(A) × Cn−2(B)

Because ∂(2)(z) = ∂(2) ◦ αn−1(w) = 0, we also have αn−2 ◦ ∂(1)(w) = 0; by Propo-
sition 14.3, αn−2 is injective, so ∂(1)(w) = 0, so w ∈ Zn−1(A ∩ B).

So, it appears thatwehavemade amap δ : Zn(A ∪ B) → Zn−1(A ∩ B). However,
this is just an illusion. The problem is that it is not well-defined: we hadmany choices
for y, and we just chose one at random. In fact, there is generally no systematic way
of picking y so as to make δ into a homomorphism. (We can make a function, but it
will not have the homomorphism property.)

Nonetheless, all is not lost: Imagine we have two elements y and y′ in Cn(A) ×
Cn(B)with βn(y) = βn(y′). Construct z′ andw′ similarly to the way we constructed
z andw before. Sinceβn(y) = βn(y′) = x , we haveβn(y − y′) = 0, whichmeans by
Proposition 14.3 that y − y′ ∈ im(αn), say y − y′ = αn(v). Then ∂(1)(v) = w − w′.
By definition, this means that w − w′ ∈ Bn−1(A ∩ B). As a result, although δ didn’t
give us a well-defined map from Zn(A ∪ B) to Zn−1(A ∩ B), it did give us a well-
defined map to Zn−1(A ∩ B) up to a boundary—which is exactly the same as a map
to Hn−1(A ∩ B). Thus we have a well-defined map δ : Zn(A ∪ B) → Hn−1(A ∩ B).
One can now check that δ is in fact a homomorphism, as you will do in Problem 3.
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In fact, δ induces a well-defined map ∂∗ : Hn(A ∪ B) → Hn−1(A ∩ B). In order
to verify that, we have to check that if x and x ′ in Zn(A ∪ B) differ by a boundary, then
δ(x) = δ(x ′); equivalently, δ(x − x ′) = 0. We leave this for you to do in Problem 4.

Now that we have constructed the homomorphisms, we have to show that the
sequence is exact.We need to show that the sequence is exact at Hn(A ∩ B), Hn(A) ×
Hn(B), and at Hn(A ∪ B). We prove exactness at Hn(A) × Hn(B) below and leave
the other two for exercises. Warning: Diagram chases can be enjoyable to work out
on your own, but they are never fun to read. Try it on your own first!

We start with exactness at Hn(A) × Hn(B). First, im(α∗) ≤ ker(β∗), because this
is true at the level of chains: if x ∈ Zn(A ∩ B), then we have [β ◦ α(x)] = β∗ ◦
α∗([x]), and the left side is zero by Proposition 14.3. For the other direction, suppose
that y ∈ Zn(A) × Zn(B) and that β∗([y]) = 0. Then βn(y) ∈ Bn(A ∪ B), so that
βn(y) = ∂(3)(z) for some z ∈ Cn+1(A ∪ B). Because βn+1 is surjective, there is some
w ∈ Cn+1(A) × Cn+1(B) so that βn+1(w) = z. Now, βn(y − ∂(2)(w)) = 0, so y −
∂(2)(w) = αn(v) for some v ∈ Cn(A ∩ B). Now, αn−1 ◦ ∂(1)(v) = ∂(2) ◦ αn(v) = 0,
and since αn−1 is injective, ∂(1)(v) = 0, so v ∈ Z1(A ∩ B). Finally, α∗([v]) = [y −
∂(2)(w)] = [y], so [y] ∈ im α∗, as desired.

The arguments for exactness at Hn(A ∩ B) and Hn(A ∪ B) are similar diagram
chases. We leave them for Problem 5. �

14.3 Homology of Orientable Surfaces

Okay, so now that we have the theorem, it’s time to learn how to use it! We will
use it to compute the homology of an orientable surface of genus g. In order to do
this, we first compute the homology of a once-punctured surface of genus g (or, up
to homotopy equivalence, a surface of genus g with a small open disk removed).
This will turn out to be easier, based on the following observation: we saw earlier
that a punctured torus is homotopy equivalent to a wedge sum of two circles. More
generally, a once-punctured surface of genus g is homotopy equivalent to a wedge
sum of 2g circles. We will take advantage of the following fact that we did not prove
(and whose proof is beyond the scope of this book): If two spaces are homotopy
equivalent, then they have the same homology groups. So, we prove the following
by induction using the Mayer–Vietoris sequence.

Proposition 14.6 Let Yr denote a wedge sum of r circles. Then

Hn(Yr ) =

⎧
⎪⎨

⎪⎩

Z n = 0,

Z
r n = 1,

0 n ≥ 2.

Proof When r = 1, the statement is true, so suppose r ≥ 2 and work by induction.
In the Mayer–Vietoris sequence, let A denote a wedge of r − 1 of the circles and let
B denote the remaining circle, so that A ∩ B is a point and A ∪ B = Yr . Because A
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and B have dimension 1, all homology in dimension ≥ 2 is zero. Thus, plugging in
the values we know (and recalling that H0(Yr ) = Z since Yr is connected), we have
an exact sequence

0 → Z
r−1 × Z → H1(Yr ) → Z → Z × Z → Z → 0.

Let us first think about the H0 part of the sequence

Z → Z × Z → Z → 0.

The map Z × Z → Z is surjective, and its kernel is the subgroup of the form (n, n).
But that is exactly the image of the map Z → Z × Z, and this is injective. Thus
the map H1(A ∪ B) → H0(A ∩ B) is the zero map (its image is the kernel of the
map Z → Z × Z, which is zero), so the map H1(A) × H1(B) → H1(A ∪ B) must
be surjective. It is also injective because H1(A ∩ B) = 0, so it is an isomorphism.
Since we already know that H1(A) ∼= Z

r−1 and H1(B) ∼= Z, we have H1(A ∪ B) =
H1(Yr ) ∼= Z

r . �

Now we have everything we need to compute the homology of surfaces of genus
g.

Theorem 14.7 Let Xg be a surface of genus g. Then

Hn(Xg) ∼=

⎧
⎪⎨

⎪⎩

Z n = 0, 2,

Z
2g n = 1,

0 n ≥ 3.

Proof Let A be Xg with a point removed, and let B be a small neighborhood of the
deleted point. Then A ∩ B is an annulus,which is homotopy equivalent to a circle. So,
we know the homology groups of A, B, and A ∩ B. Plugging in everything we know
into the Mayer–Vietoris sequence, we have (starting with 0 for H2(A) × H2(B))

0 → H2(Xg) → Z → Z
2g → H1(Xg) → 0,

where we end with a 0 because the map H1(Xg) → H0(A ∩ B) is the zero map, as
in Proposition 14.6. The map H2(Xg) → H1(A ∩ B) ∼= Z is injective, and there are
only two groups with injective maps to Z: these are 0 and Z itself. So, which is it?

We actually already know the answer to this: in Section13.8, we saw that the
second homology group of a compact connected orientable surface is isomorphic to
Z. Thus H2(Xg) ∼= Z.

Now, to compute H1(Xg), we note that the homomorphism H1(A) × H1(B) →
H1(Xg) is surjective, and that H1(A) ∼= Z

2g . Furthermore, we can use exactness to
compute the rank of H1(Xg): in any exact sequence of finitely generated abelian
groups starting and ending with 0’s, the alternating sum of the ranks is equal to 0.
(The argument is very similar to the one we used to show that the Euler characteristic
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is the alternating sum of the ranks of the homology groups.) This shows that the rank
of H1(Xg) is 2g, and the only abelian group of rank 2g for which there is a surjection
from Z

2g is Z2g itself. This completes the proof. �

14.4 The Jordan Curve Theorem

Wenow tackle one of themost infamous problems inmathematics: The Jordan Curve
Theorem.

Theorem 14.8 (Jordan Curve Theorem) Let h : S1 → S
2 be an injective continuous

map, so that h(S1) is a simple closed curve in S
2. Then S

2 − h(S1) consists of two
connected components.

One can also consider R2 − h(S1); the theorem holds in this case as well, with
a similar proof. In the case of the plane, we can call the two regions “the inside”
and “the outside.” More precisely, one of the regions is bounded, and the other is
unbounded.

The Jordan Curve Theorem seems obvious: in the case of a curve in the plane, it
seems clear that there is an inside and an outside. In fact, we can probably even tell
whether a point is on the inside or the outside. One popular way of doing this is using
ray intersections. Pick a point x not on the curve. Draw a ray, in some direction, from
x to ∞. If the ray intersects the curve an even number of times, it is on the outside,
and if it intersects an odd number of times, it is on the inside.

This seems like a proof, but it is not. The problem is that the ray might intersect
infinitely many times, and then we have learned nothing. In fact, it might be the case
that every ray from x intersects the curve infinitely many times. Some complicated
drawings of Jordan curves can be found in [RR11].

Fortunately, homology and the Mayer–Vietoris sequence provide us with a com-
pletely rigorous proof. We will work with the sphere version, although the planar
version is similar. (See Problem 6.) We break the circle S1 up into two closed semi-
circles, which we call C+ and C−; their intersection consists of two points. Let
A = S

2 − h(C+) and B = S
2 − h(C−). Thus A ∪ B is a sphere with two points

deleted. It is also easy to show that A and B are both homeomorphic to R
2. The

mystery is in A ∩ B, which is S2 − h(S1).
Our goal is to compute H0(A ∩ B), because H0 tells us the number of connected

components. As we saw in the previous chapter, H0 is always of the form Z
r for

some r , and in fact r is the number of connected components.
In order to compute H0(A ∩ B), we throw A and B into the Mayer–Vietoris

sequence and replace the terms we know. We already know the homology of R2 and
of S1 × R (being homotopy equivalent to S

1), so we are only left with our mystery
space. Starting with H2(A ∪ B), the Mayer–Vietoris sequence becomes

0 → H1(A ∩ B) → 0 → Z → H0(A ∩ B) → Z × Z → Z → 0.
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Because H1(A ∩ B) is surrounded by zeros, it is zero, although this is not of major
concern to us.We now compute H0(A ∩ B).We use a similar trick to the one we used
when showing that the alternating sumof theBetti numbers is theEuler characteristic:
in an exact sequence bounded by zeros, the alternating sum of the ranks is 0. We
know all the ranks in the exact subsequence

0 → Z → H0(A ∩ B) → Z × Z → Z → 0,

so we can compute the rank of H0(A ∩ B), which is 2. Since H0 is of the form Z
r ,

we must have r = 2. Thus A ∩ B consists of two connected components, and we’re
done!

14.5 The Hurewicz Map

As we mentioned earlier, homology is an alternative invariant to the fundamental
group and higher homotopy groups. But we might also wonder whether there is any
connection between the homotopy groups and the homology groups. In particular,
is there any connection between π1 and H1?

The answer is yes, at least when the space is path-connected. They can’t always be
the same—because H1 is always abelian whereas π1 doesn’t have to be—but there’s
still a connection between the two. In order to state the result, we need the notion of
abelianization.

Definition 14.9 Let G be a group. Its commutator subgroup is the subgroup [G,G]
generated by all elements of the form [g, h] = ghg−1h−1.

Proposition 14.10 The commutator subgroup [G,G] is a normal subgroup of G.

Proof A typical element of [G,G] has the form

a = [g1, h1][g2, h2] · · · [gk, hk].

Let g ∈ G be any element. Then

gag−1 = [gg1g−1, gh1g
−1] · · · [ggkg−1, ghkg

−1],

which is an element of [G,G]. �

Definition 14.11 The abelianization of a group G is the quotient group Gab =
G/[G,G].

For any group G, Gab is an abelian group. In fact, it is the largest abelian group
that is a quotient of G. If we have a presentation for G, with some generators and
relations, then we obtain the abelianization by adding the extra relations that force
any pair of generators to commute, and no others.
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Figure 14.1 The red and
blue cycles differ by a
boundary, namely the
boundary of the green
2-chain.

x

Example Let G = 〈a1, . . . , an |〉 be a free group on n generators. Then its abelian-
ization is

Gab = 〈a1, . . . , an | aia j = a jai 〉 ∼= Z
n

is the free abelian group on n generators.

Exercise 14.12 Show that, if n ≥ 2, the abelianization of the symmetric group Sn
is isomorphic to Z/2Z.

We can now state Hurewicz’s Theorem in the case of π1 and H1. (Hurewicz more
generally gives a relation between πn and Hn in the case that π0, π1, . . . , πn−1 are
all trivial.)

Theorem 14.13 (Hurewicz) If X is path-connected and x ∈ X is a basepoint, then
H1(X) ∼= π1(X, x)ab.

We will not give a complete proof of Hurewicz’s Theorem (see [Hat02, Section
2.A] for a complete proof), but we can at least give an outline of how the argument
might go. Suppose we have any loop γ in X based at x . Then we can break up γ into
a bunch of 1-simplices whose sum is a 1-cycle in X . (This is more subtle than it may
appear, because γ does not necessarily live in the 1-simplices of X . So, we may have
to subdivide it first and perhaps homotope it slightly.) One can then check that two
homotopic loops give rise to two 1-chains that only differ by a boundary, namely the
boundary of the region between the two loops. See Figure14.1 for a picture. As a
result, we obtain a map, called the Hurewicz map, from π1(X, x) to H1(X). In fact,
the Hurewicz map is a homomorphism.

Next, we must check that the Hurewicz map is surjective, and that its kernel is
[π1(X, x), π1(X, x)], the commutator subgroup of the fundamental group. This is
believable: If we have a cycle in X , we can break it down as a bunch of loops,
then we can add tails to each one of the loops so that they become based at x , as
shown in Figure14.2. Once we check the details, this shows that the Hurewicz map is
surjective. The trickiest part is showing that the kernel is the commutator subgroup.
Since H1(X) is abelian, we know that the kernel of the Hurewicz map is at least as
large as the commutator subgroup. But one must show that it is no larger. And that
is the part that we will skip.
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Figure 14.2 A cycle (left)
and its corresponding loop
(right).

14.6 Problems

(1) Suppose that X = A ∪ B, where A ∩ B is contractible. Express the homology
groups of X in terms of those of A and B.

(2) Let X be a topological space. Define its suspension SX to be X × [0, 1]/ ∼,
where (x, 0) ∼ (y, 0) and (x, 1) ∼ (y, 1) for all x, y ∈ S. (That is, make a cylin-
der out of X , then collapse the top and bottom of this cylinder.)

(a) Is the suspension SSn of an n-sphere homeomorphic to a familiar space? If
so, which one?

(b) Compare the homology groups of X and SX .

(3) Show that δ : Zn(A ∪ B) → Hn−1(A ∩ B), constructed in the proof of the
Mayer–Vietoris sequence, is a homomorphism.

(4) Show that if w ∈ Bn(A ∪ B), then δ(w) = 0, where δ is as in the proof of the
Mayer–Vietoris sequence.

(5) In the proof of the Mayer–Vietoris sequence, prove that the sequence is exact at
Hn(A ∩ B) and Hn(A ∪ B).

(6) Modify our proof of the Jordan Curve Theorem for embeddings of S1 into S
2,

to the case of embeddings of S1 into R2.
(7) Let X be a connected sum of g tori and one projective plane. What is the homol-

ogy of X?



Appendix A
Topological Notions

A.1 Compactness Results

We “defined” a compact set as one that is closed and bounded. While this is true in
the case of subsets of R

n (and equivalent to the other definition), it is not the most
general or most useful definition. A better one, as given in Problem 9 of Chapter2,
is as follows:

Definition A.1 A set X is compact if, whenever {Uα}α∈A is a collection of open
subsets of X such that

⋃
α∈A Uα = X , there exists a finite subset B ⊂ A such that⋃

β∈B Uβ = X .

That is, every open cover of X has a finite subcover.
With this definition, it is easy to prove important theorems about compactness.

Theorem A.2 Let X be a compact set, and let f : X → Y be a continuous function.
Then f (X) is compact.

That is, the image of a compact set under a continuous function is compact.

Proof Let {Vα}α∈A be any open cover of f (X). We wish to show that there is a
finite subcover. Let Uα = f −1(Vα) ⊂ X . Because f is continuous, each Uα is open
in X . As {Vα} is an open cover of f (X), {Uα} is an open cover of X . Because X is
compact, {Uα} must have a finite subcover, say {Uβ}β∈B , where B is a finite subset
of A. But then {Vβ}β∈B is an open cover of f (X), so {Vα}α∈A has a finite subcover.
Since the original choice of cover of f (X) was arbitrary, it follows that any open
cover of f (X) has a finite subcover, so f (X) is compact. �

Corollary A.3 (Extreme Value Theorem) If X is a nonempty compact set and f :
X → R is a continuous function, then f attains a maximum and a minimum value
on X.
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Figure A.1 This happens
for any two points in a
Hausdorff space.

x

U

y

V

Proof Under these hypotheses, f (X) is a nonempty compact subset of R, so let us
show that a nonempty compact set of R must have a maximum (and, by symmetry,
a minimum). Let Y ⊆ R be a nonempty compact set. Thus Y is closed and bounded.
Let s = sup(Y ), i.e. s is the smallest number t such that t ≥ y for all y ∈ Y . (It is a
standard property of real numbers, called the Least Upper Bound Property, that such
an s exists; see [Pug15, Theorem 2].) We claim that s ∈ Y , so that s is the maximum
of Y . For each positive integer n, we can find some yn ∈ Y such that yn > s − 1

n .
Thus limn→∞ yn ≥ s, and since each yn ≤ s, so have limn→∞ yn = s. Since Y is
closed and thus contains all its limit points, s ∈ Y , as claimed. �

A.2 Technical Conditions for Abstract Surfaces

When we define an abstract surface, we want it to mimic all the properties of a
surface in R

n , except without the embedding. The most relevant point is the surface
looks locally like R

2. However, there are some more “global” conditions that hold
automatically for any subset of R

n , which we also expect abstract surfaces to have.

Definition A.4 An abstract topological space X is said to be Hausdorff if, for any
two distinct points x, y ∈ X , there are open sets U, V ⊂ X with x ∈ U and y ∈ V ,
and U ∩ V = ∅.

That is, we can find entirely separate open sets around U and V . See FigureA.1.
Subsets of R

n are automatically Hausdorff, since the Hausdorff property is inher-
ited from the Hausdorffness of R

n . So, it may seem hard to imagine what a non-
Hausdorff space might look like. One famous example is called the line with a
doubled origin. To construct it, take two lines, such as the lines y = 0 and y = 1.
So, points on the first line are of the form (x, 0), and points on the second line are
of the form (x, 1). Now, glue together the points (x, 0) and (x, 1), but do not glue
(0, 0) and (0, 1). The resulting figure is a single line, except that it has two points at
0 rather than one.

In order to make this space into a genuine topological space, we use the quotient
topology: let X be the union of the two lines, and let ∼ be the equivalence relation
such that (x, 0) ∼ (x, 1) if x �= 0. Then the line with the doubled origin is X/ ∼, and
this endows it with a topology. More concretely, if x �= 0 is a point on the line with



Appendix A: Topological Notions 195

the doubled origin, then a small neighborhood around x is just a neighborhood on
the line, since there are small neighborhoods that do not see the two origins. On the
other hand, a small neighborhood around one of the origins is just a neighborhood
on that line, which misses the other origin.

So, this space is not Hausdorff because ifU is a neighborhood of one of the origins
and V is a neighborhood of the other, then U ∩ V �= ∅.

Another technical condition we expect out of our abstract surfaces is known as
second countability.

Definition A.5 A space X is said to be second countable if we can find countably
many open sets U1,U2, . . . ⊆ X so that every open set is a union of some (possibly
infinite) collection of Ui ’s.

Example R is second countable, which follows from the denseness of the rationals.
That is, consider all the open intervals in R that have rational endpoints. Every open
set inR is a union of open intervals with rational endpoints. (Why?) ThusR is second
countable.

More generally, R
n , and indeed any subset of R

n , is second countable.
What would a non-second countable space look like? The standard example of

one is called the long line. We can think of a normal line as consisting of a half-open
interval [n, n + 1) for each integern, and then connecting the (missing) right endpoint
of one interval to the left endpoint of the next interval. Or, up to homeomorphism,
we can let n run only over the nonnegative integers if we remove the point at 0.

But we can go further, if we know about ordinals. For every ordinal α < ω, where
ω is the first infinite ordinal (so that α is just a nonnegative integer), we take an
interval Iα = [α, α + 1), and then we glue the ends of consecutive intervals together
as before. That’s the normal line (or ray).

To modify this to get the long ray or long line, we do the same thing, but now we
let α run over the ordinals less than ω1, the first uncountable ordinal. That gets us a
long ray. To make the long line, just glue together two long rays at their endpoints.

Exercise A.6 Show that the long line is not second countable.

The line with the doubled origin and the long line are just two of themany peculiar
topological spaces out there. For a compendiumof curious and interesting topological
spaces, see the book [SS95].



Appendix B
A Brief Look at Singular Homology

There are many ways of constructing homology. In Chapter13, we introduced sim-
plicial homology, based on splitting a topological space X up into simplices. This
has the advantage that we can calculate homology in an algorithmic manner, but it
has the disadvantage that many crucial theorems are difficult to prove, and indeed
we skipped most of the proofs. For instance, if we were to triangulate X in some
different way, why should the homology groups with respect to the two triangula-
tions coincide? It is possible to prove this using simplicial homology, but doing so
requires a considerable amount of work.

It would be appealing to have a version of homology that “clearly” does not
depend on a choice of triangulation, or anything else beyond the space X itself. One
of the ways of doing that is with singular homology.

Singular homology is constructed in a somewhat similar way to simplicial homol-
ogy, in thatwe have a chain complexwith chain groups, and the corresponding cycles,
boundaries, and homology groups. The difference is in the definition of the chain
groups. To define it, we start by introducing the standard n-simplex.

Definition B.1 The standard n-simplex �n is defined to be

�n = {(x0, x1, . . . , xn) ∈ R
n+1 : x0 + · · · + xn = 1, xi ≥ 0 for all i}.

You can easily verify that �0 is a point, �1 is an edge, �2 is a triangle, and so
forth.

We now use the standard n-simplex to construct singular n-simplices in X .

Definition B.2 Let X be a topological space. A singular n-simplex in X is a contin-
uous function T : �n → X .

The singular n-simplices replace the n-simplices in the simplicial version of
homology. Note that there are many, many singular n-simplices in X : uncountably
many for typical spaces X . This can cause difficulties when trying to do calculations
with them, but it’s not a problem when we’re proving general theorems about them.

The next step is to construct the chain groups.
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Definition B.3 The nth chain group of X is the free abelian group generated by the
singular n-simplices of X . We denote this group by Cn(X).

What thismeans is that an element ofCn(X) can bewritten as c1T1 + c2T2 + · · · +
cr Tr for some r , where the ci ’s are integers and the Ti ’s are singular n-simplices. Note
that this is necessarily a finite sum, even though there are infinitely many singular
n-simplices. Alternatively, we can write an element of Cn(X) as

∑
cT T , where the

sum runs over the singular n-simplices T , and we require that cT = 0 for all but
finitely many singular n-simplices T .

As in the case of simplicial homology, the next step is to define the boundary map
∂n : Cn(X) → Cn−1(X). For this, we need to define n + 1 continuous maps from
�n−1 to �n . For i = 0, . . . , n, define ιi : �n−1 → �n by setting

ιi (x0, . . . , xn−1) = (x0, . . . , xi−1, 0, xi , . . . , xn−1),

i.e. by inserting a 0 in the i th coordinate. Intuitively, this means considering �n−1 as
one of the (n − 1)-dimensional faces of �n .

Definition B.4 Let T be a singular n-simplex. We define ∂n(T ) to be

∂n(T ) =
n∑

i=0

(−1)i T ◦ ιi .

We then extend ∂n linearly to a homomorphism from Cn(X) to Cn−1(X).

The boundary map has the same key property as does the one for simplicial
homology, namely that ∂n+1 ◦ ∂n = 0 for all n. Thus, just as before, we may define
the singular n-cycles as Zn(X) = ker(∂n), and the singular n-boundaries as Bn(X) =
im(∂n+1). Finally, the nth singular homology group is Hn(X) = Zn(X)/Bn(X).

Note that the definition of singular homology doesn’t depend on any auxiliary
structure on X , in the way that simplicial homology at least appears to depend on the
choice of triangulation. We can now easily say that homology is a homeomorphism
invariant.

Proposition B.5 If X and Y are homeomorphic, then Hn(X) ∼= Hn(Y ) for all n.

Proof Suppose that f : X → Y is a homeomorphism.We construct an isomorphism
f∗ : Cn(X) → Cn(Y ) that descends to an isomorphism on homology. We define
f∗ on a singular n-simplex to be f∗(T ) = f ◦ T , which is a continuous function
from �n to Y and thus a singular n-simplex of Y . We then extend linearly to a
homomorphism f∗ : Cn(X) → Cn(Y ). It is straightforward to check that f∗ is in fact
an isomorphism, and that it commutes with ∂n in the sense that ∂n ◦ f∗ = f∗ ◦ ∂n . As
we saw when constructing the induced homomorphism on simplicial homology, this
is what we need for f∗ to descend to a homomorphism (and in fact an isomorphism)
Hn(X) → Hn(Y ). �
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Simplicial and singular homology give the same answers for reasonable spaces,
although proving that is beyond what we can do here; see [Mun84, Section 34] for
a proof. What we can do is to show that there is a homomorphism from simplicial
homology to singular homology. Again, we start by doing this at the level of chains.
Let us write Cn(X)simp for simplicial chains (and similarly for cycles, boundaries,
and homology), and Cn(X)sing for simplicial chains (etc.). Suppose we have a trian-
gulation of X , and the n-simplices of this triangulation are T1, . . . , Tr . Then we can
consider each Ti as being a singular simplex by choosing a way of mapping �n to
Ti , in such a way that the boundary of �n gets mapped to the boundary of Ti . Let us
call this function from ordinary simplices to singular simplices g. Then g extends to
a homomorphism from Cn(X)simp to Cn(X)sing by setting

g

(
r∑

i=1

ci Ti

)

=
r∑

i=1

ci g(Ti ).

Since the boundary homomorphism commutes with g, g descends to a homomor-
phism on homology g� : Hn(X)simp → Hn(X)sing. For nice spaces X , g� is actually
an isomorphism.

All the results we proved (or attempted to prove) using simplicial homology are
also true with singular homology, and the proofs we tried to give turn into correct
proofs. Recall in particular that we were only able to prove that induced homomor-
phisms exist if f : X → Y is a simplicial map. In singular homology, we are easily
freed from such restrictions, since the image of a singular simplex in X is certainly
a singular simplex in Y . Thus all these proofs go through as is, except that they
are completely correct proofs. The Mayer–Vietoris sequence, too, holds for singular
homology, with essentially no change to the proof.



Appendix C
Hints for Selected Problems

Chapter 1, Problem 9: If X and Y are two sets, then we usually prove that
X ⊆ Y by picking an element in X and showing that it’s in Y . For the equal-
ity conditions, note that if a, b ∈ A with a ∈ U , b /∈ U , and f (a) = f (b), then
a, b ∈ f −1( f (U )). Generalize from there.

Chapter 2, Problem 1: All the surjective functions exist. Imagine how youwould
construct a torus out of a clay sphere (or vice versa) in practice; you may wish to
start by squashing it to something flat.

Chapter 2, Problem 7: For this problem, you must find a relation that is sym-
metric and transitive but not reflexive. Try to find the most trivial example you
can.

Chapter 2, Problem 9: One approach is to start by showing that closed and
bounded intervals in R satisfy the covering definition. Then show that if X and
Y satisfy the covering definition, then so does X × Y . Finally, show that if X
satisfies the covering definition and A ⊆ X is a closed set, then A does as well.
All closed and bounded subsets in R

n are closed subsets of rectangular boxes.
Chapter 4, Problem 7: Show that in any graph on the surface of S, there is one

vertex of degree < �N�. Thus if we can color the rest of the graph using �N�
colors such that no two adjacent vertices have the same color, then we can color
that vertex differently from all its neighbors.

Chapter 4, Problem 8: If you’re trying to find a homeomorphism, then just
describe what it looks like. If you’re trying to prove that no such homeomorphism
exists, then you need to separate the two spaces by means of a homeomorphism
invariant.

Chapter 6, Problem 4: Count the number of pairs (i, j)with 1 ≤ i < j ≤ n such
that σ(i) > σ( j).

Chapter 7, Problem 4c: Represent automorphisms of groups like (Z/nZ)k or Z
k

as matrices. What properties do these matrices have to have? When can you find
non-commuting matrices of these types?

Chapter 8, Problem 6: Consider FigureC.1.
Chapter 9, Problem 3: This is easiest to picture if you work with an ID space.
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A B

A

B

B A

Figure C.1 An outline for a possible solution to Chapter 8, Problem 6.

Chapter 9, Problem 4: Show that a surface with genus g with n > 0 punctures is
homotopy equivalent to a bunch of circles glued at one point. How many circles?

Chapter 9, Problem 6: The natural approach based on straight-line homotopies
doesn’t work. Instead, show that the concatenation γ0 ∗ γ̄1 is a loop in S

2. Why
must it be homotopic to the constant loop? The trickiest part is dealing with the
case in which this loop is space-filling: it passes through all points on the sphere.
(This can happen even if γ0 and γ1 are continuous.) In this case, show that you
can homotope the path to one that isn’t space-filling.

Chapter 9, Problem 8: There is a very nice continuous map S
2 → RP

2.
Chapter 11, Problem 2b: If x + εex = 0, then −εex = x , so you need to show

that g(x) = −εex has a fixed point.
Chapter 11, Problem 7: First, suppose that the jewels are continuous rather than

discrete.Howdoyou describe the number of jewels each person gets froma certain
set of cuts by means of a point on S

n? Finally, determine why the continuous case
implies the discrete case.

Chapter 12, Problem 2: Find a simple homeomorphism invariant that distin-
guishes the earring from the wedge.

Chapter 12, Problem 7: There can be many different presentations for the same
group.

Chapter 13, Problem 4: This is tedious to do with the material from Chapter13.
But going through the combinatorics here will make you appreciate the Mayer–
Vietoris sequence even more when you get to it!



References

[AH77] Appel, K., Haken, W.: Every planar map is four colorable. I. Discharging. Ill. J. Math.
21(3), 429–490 (1977). http://projecteuclid.org/euclid.ijm/1256049011

[AHK77] Appel, K., Haken, W., Koch, J.: Every planar map is four colorable. II. Reducibility. Ill.
J. Math. 21(3), 491–567 (1977). http://projecteuclid.org/euclid.ijm/1256049012

[AZ14] Aigner,M., Ziegler, G.M.: Proofs from theBook, 5th edn. Springer, Berlin (2014). Includ-
ing illustrations by Karl H. Hofmann. https://doi.org/10.1007/978-3-662-44205-0

[Bae09] Baez, J.: This Week’s Finds in Mathematical Physics (week 286) (2009). http://math.ucr.
edu/home//baez/week286.html

[Bak09] Baker, K.: A (reverse) rational circle? Sketches of Topology (2009). https://
sketchesoftopology.wordpress.com/2009/12/10/a-rational-circle/

[Bak10] Baker, K.: Bing’s house. Sketches of Topology (2010). https://sketchesoftopology.
wordpress.com/2010/03/25/bings-house/

[BEO02] Besche,H.U., Eick,B.,O’Brien, E.:Amillenniumproject: constructing small groups. Int.
J.AlgebraComput.12(5), 623–644 (2002). https://doi.org/10.1142/S0218196702001115

[Bra21] Brahana, H.R.: Systems of circuits on two-dimensional manifolds. Ann. Math. (2) 23(2),
144–168 (1921). https://doi.org/10.2307/1968030

[BT82] Bott, R., Tu, L.: Differential Forms in Algebraic Topology. Graduate Texts in Mathemat-
ics, vol. 82. Springer, New York (1982)

[Che04] Cheng, E.: Mathematics, morally (2004). http://cheng.staff.shef.ac.uk/morality/morality.
pdf

[Cox94] Coxeter, H.S.M.: Projective Geometry. Springer, New York (1994). Revised reprint of
the 2nd edn. (1974)

[DS84] Drobot, V., Sawka, J.: The teaching of mathematics: why the product topology? Am.
Math. Mon. 91(2), 137–138 (1984). https://doi.org/10.2307/2322114

[dS92] de Smit, B.: The fundamental group of the Hawaiian earring is not free. Int. J. Algebra
Comput. 2(1), 33–37 (1992). https://doi.org/10.1142/S0218196792000049

[EML45] Eilenberg, S., Lane, S.M.: General theory of natural equivalences. Trans. Am. Math.
Soc. 58, 231–294 (1945). https://doi.org/10.2307/1990284

[Fre82] Freedman, M.H.: The topology of four-dimensional manifolds. J. Differ. Geom. 17(3),
357–453 (1982). http://projecteuclid.org/euclid.jdg/1214437136

[FT63] Feit, W., Thompson, J.G.: Solvability of groups of odd order. Pac. J. Math. 13, 775–1029
(1963). http://projecteuclid.org/euclid.pjm/1103053943

[Gal79] Gale, D.: The game ofHex and theBrouwer fixed-point theorem.Am.Math.Mon. 86(10),
818–827 (1979). https://doi.org/10.2307/2320146

© Springer Nature Switzerland AG 2021
C. Bray et al., Algebraic Topology,
https://doi.org/10.1007/978-3-030-70608-1

203

http://projecteuclid.org/euclid.ijm/1256049011
http://projecteuclid.org/euclid.ijm/1256049012
https://doi.org/10.1007/978-3-662-44205-0
http://math.ucr.edu/home//baez/week286.html
http://math.ucr.edu/home//baez/week286.html
https://sketchesoftopology.wordpress.com/2009/12/10/a-rational-circle/
https://sketchesoftopology.wordpress.com/2009/12/10/a-rational-circle/
https://sketchesoftopology.wordpress.com/2010/03/25/bings-house/
https://sketchesoftopology.wordpress.com/2010/03/25/bings-house/
https://doi.org/10.1142/S0218196702001115
https://doi.org/10.2307/1968030
http://cheng.staff.shef.ac.uk/morality/morality.pdf
http://cheng.staff.shef.ac.uk/morality/morality.pdf
https://doi.org/10.2307/2322114
https://doi.org/10.1142/S0218196792000049
https://doi.org/10.2307/1990284
http://projecteuclid.org/euclid.jdg/1214437136
http://projecteuclid.org/euclid.pjm/1103053943
https://doi.org/10.2307/2320146
https://doi.org/10.1007/978-3-030-70608-1


204 References

[Gal87] Gale, D.: The teaching of mathematics: the classification of 1-manifolds: a take-home
exam. Am. Math. Mon. 94(2), 170–175 (1987). https://doi.org/10.2307/2322421

[Gou97] Gouvêa, F.Q.: p-adic Numbers. Universitext, 2nd edn. Springer, Berlin (1997). An intro-
duction. https://doi.org/10.1007/978-3-642-59058-0

[Gre02] Greene, J.E.: A new short proof of Kneser’s conjecture. Am. Math. Mon. 109(10), 918–
920 (2002). https://doi.org/10.2307/3072460

[Hat02] Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2002)
[HS09] Herrlich, F., Schmithüsen, G.: Dessins d’enfants and origami curves. Handbook of Teich-

müller Theory. Vol. II. IRMA Lectures in Mathematics and Theoretical Physics, vol. 13,
pp. 767–809. Eur. Math. Soc. Zürich (2009). https://doi.org/10.4171/055-1/19

[Man16] Manolescu, C.: Pin(2)-equivariant Seiberg–Witten Floer homology and the triangulation
conjecture. J. Am. Math. Soc. 29(1), 147–176 (2016). https://doi.org/10.1090/jams829

[Mar60] Markov, A.A.: Insolubility of the problem of homeomorphy. In: Proceedings of the Inter-
national Congress of Mathematicians, 1958, pp. 300–306. Cambridge University Press,
New York (1960)

[Mas91] Massey, W.S.: A Basic Course in Algebraic Topology. Graduate Texts in Mathematics,
vol. 127. Springer, New York (1991)

[Mat03] Matoušek, J.: Using the Borsuk–Ulam Theorem. Universitext. Springer, Berlin (2003).
Lectures onTopologicalMethods inCombinatorics andGeometry,Written in cooperation
with Anders Björner and Günter M, Ziegler

[Mir95] Miranda, R.: Algebraic Curves and Riemann Surfaces. Graduate Studies in Mathematics,
vol. 5. AmericanMathematical Society, Providence (1995). https://doi.org/10.1090/gsm/
005

[Möb61] Möbius, A.F.: Zur theorie der polyëder und der elementarverwandtschaft. Oeuvres Com-
plètes 2, 519–559 (1861)

[Mor12] Morishita,M.: Knots and Primes. Universitext. Springer, London (2012). An introduction
to arithmetic topology. https://doi.org/10.1007/978-1-4471-2158-9

[Mun84] Munkres, J.R.: Elements of Algebraic Topology. Addison–Wesley Publishing Company,
Menlo Parkd (1984)

[Nas51] Nash, J.: Non-cooperative games. Ann. Math. (2) 54, 286–295 (1951). https://doi.org/10.
2307/1969529

[Per02] Perelman, G.: The entropy formula for the Ricci flow and its geometric applications.
ArXiv Mathematics e-prints (2002). arXiv:math/0211159

[Per03a] Perelman, G.: Finite extinction time for the solutions to the Ricci flow on certain three-
manifolds. ArXiv Mathematics e-prints (2003). arXiv:math/0307245

[Per03b] Perelman, G.: Ricci flow with surgery on three-manifolds. ArXiv Mathematics e-prints
(2003). arXiv:math/0303109

[Pug15] Pugh, C.C.: Real Mathematical Analysis. Undergraduate Texts in Mathematics, 2nd edn.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-17771-7

[Ric63] Richards, I.: On the classification of noncompact surfaces. Trans. Am. Math. Soc. 106,
259–269 (1963). https://doi.org/10.2307/1993768

[Rot95] Rotman, J.: An Introduction to the Theory of Groups. Graduate Texts in Mathematics,
vol. 148, 4th edn. Springer, NewYork (1995). https://doi.org/10.1007/978-1-4612-4176-
8

[RR11] Ross, F., Ross, W.: The Jordan curve theorem is non-trivial. J. Math. Arts 5(4), 213–219
(2011). https://doi.org/10.1080/17513472.2011.634320

[Ser03] Serre, J.-P.: Trees. Springer Monographs in Mathematics. Springer, Berlin (2003). Trans-
lated from the French original by John Stillwell, Corrected 2nd printing of the 1980
English translation

[SS95] Steen, L.A., Seebach Jr., J.A.: Counterexamples in Topology. Dover Publications, Inc.,
Mineola (1995). Reprint of the 2nd edn. (1978)

[Su99] Su, F.E.: Rental harmony: Sperner’s lemma in fair division. Am. Math. Mon. 106(10),
930–942 (1999). https://doi.org/10.2307/2589747

https://doi.org/10.2307/2322421
https://doi.org/10.1007/978-3-642-59058-0
https://doi.org/10.2307/3072460
https://doi.org/10.4171/055-1/19
https://doi.org/10.1090/jams829
https://doi.org/10.1090/gsm/005
https://doi.org/10.1090/gsm/005
https://doi.org/10.1007/978-1-4471-2158-9
https://doi.org/10.2307/1969529
https://doi.org/10.2307/1969529
http://arxiv.org/abs/math/0211159
http://arxiv.org/abs/math/0307245
http://arxiv.org/abs/math/0303109
https://doi.org/10.1007/978-3-319-17771-7
https://doi.org/10.2307/1993768
https://doi.org/10.1007/978-1-4612-4176-8
https://doi.org/10.1007/978-1-4612-4176-8
https://doi.org/10.1080/17513472.2011.634320
https://doi.org/10.2307/2589747


References 205

[Tho92] Thomassen, C.: The Jordan–Schönflies theorem and the classification of surfaces. Am.
Math. Mon. 99(2), 116–130 (1992). https://doi.org/10.2307/2324180

[Wil05] Wild, M.: The groups of order sixteen made easy. Am.Math. Mon. 112(1), 20–31 (2005).
https://doi.org/10.2307/30037381

[Wil09] Wilson, R.A.: The Finite Simple Groups. Graduate Texts in Mathematics, vol. 251.
Springer, London (2009). https://doi.org/10.1007/978-1-84800-988-2

https://doi.org/10.2307/2324180
https://doi.org/10.2307/30037381
https://doi.org/10.1007/978-1-84800-988-2


Index

A
Abelian group, 69, 70, 73
Abelianization, 189, 190
Abel, Niels Henrik, 69
Abstract surface, 40
Alternating group, 78, 89, 100
Amalgamated free product, 161
Annulus, 28, 139
Automorphism, 102
Automorphism group, 102
Avocado Sandwich Theorem, 141, 146, 149

B
Basepoint, 106, 110–113, 136
Bijective, 1, 10, 11
Bing’s House with Two Rooms, 117, 118
Boolean invariant, 54
Borsuk–Ulam Theorem, 141, 145–150
Boundary, 7, 23, 24, 54, 167–169
Boy’s surface, 44
Brahana, Henry Roy, 56
Brouwer Fixed-Point Theorem, 141, 147–

149, 180

C
Canonical projection, 97
Chain, 167–169
Chain complex, 169, 181
Chess, 45
Chinese Remainder Theorem, 88, 89, 182
Classification of finite simple groups, 100
Classification Theorem, 51, 56, 58, 60, 61
Closed ball, 7
Closed interval, 7
Closed set, 7

Closure, 7
Commutator subgroup, 189, 190
Compact, 24, 30, 193
Complete invariant, 28
Connected sum, 46, 47, 49, 140
Continuous, 1, 11–14, 120
Contractible space, 116–121, 125, 126
Convex, 116, 117
Coset, 91–96
Coset space, 95
Cyclic group, 67, 87, 89

D
Deformation retract, 137–140
Degree, 145
De Moivre’s Theorem, 142, 144
Dihedral group, 67, 70, 75, 89, 98
Direct product, 2, 9, 78, 80, 128, 138
Dunce cap, 39, 160

E
Eilenberg, Samuel, 64
Equivalence class, 25, 26
Equivalence relation, 25, 26, 122
Euler characteristic, 28, 31, 34–37, 47, 48,

173
Euler’s Totient Theorem, 94
Exact sequence, 181–184
Extreme Value Theorem, 193

F
Feit–Thompson Theorem, 100
Fermat’s Little Theorem, 94
Finitely generated abelian group, 87

© Springer Nature Switzerland AG 2021
C. Bray et al., Algebraic Topology,
https://doi.org/10.1007/978-3-030-70608-1

207

https://doi.org/10.1007/978-3-030-70608-1


208 Index

Fixed point, 148
Four-Color Theorem, 62
Free abelian group, 73
Freedman, Michael, 57
Free group, 70, 72, 73, 86, 151, 153, 157
Free product, 73, 74, 153, 161
Fundamental class, 175
Fundamental group, 63, 73, 105, 110, 112,

113, 115, 118, 119, 123, 126–129,
132, 137–139, 141, 145, 148, 149,
151, 153, 155–157, 159, 161–163,
189, 190

Fundamental Theorem of Algebra, 141–144

G
Generator, 70
Genus, 46, 48, 125
Geometrization Conjecture, 63
Greene, Joshua, 147
Grothendieck, Alexander, 64
Group, 63–75, 89, 96, 181

H
Hausdorff condition, 155, 194, 195
Hawaiian earring, 156, 163
Hex, 148
Higher homotopy group, 165, 189
Homeomorphism, 19, 122, 125
Homology, 119, 165, 166, 168–173, 175,

178–181, 183–189, 191
Homomorphism, 80–83, 96, 97, 101
Homotopic, 106, 109, 115, 116, 118, 121–

125
Homotopy, 106–111, 113, 115–126
Homotopy equivalence, 107, 115, 116, 121–

123, 125, 136
Hurewicz’s Theorem, 189, 190
Hurwitz, Adolf, 63

I
Icosahedron, 34
Identification space, 31, 37–40, 43, 45, 157
Image, 10, 82, 83, 101
Index, 96
Induced homomorphism, 134–137, 140,

142, 178–180
Injective, 10, 124
Interior, 7
Invariant, 27, 28
Inverse image, 11
Isomorphism, 80, 83, 101

J
Jordan Curve Theorem, 21, 188, 191

K
Kernel, 82, 83, 101
Klein 4-group, 67
Klein bottle, 43–45, 51–53, 55, 159, 163,

172, 173
Klein, Felix, 67

L
Lagrange’s Theorem, 94, 96
Level set, 11
Limit point, 8
Line with a doubled origin, 194
Long line, 195
Loop, 106
Lyusternik–Shnirel’man Theorem, 147

M
Mac Lane, Saunders, 64
Manolescu, Ciprian, 57
Mayer–Vietoris sequence, 181, 183, 186–

188, 191
Möbius strip, 43–45, 52–55, 140
Möbius, August Ferdinand, 56
Multiplication table, 67

N
Nash equilibrium, 148
Nash, John, 148
Nonorientable, 54
Normal subgroup, 91, 95, 96, 98, 99
Normal vector, 54, 55

O
Octahedron, 31, 34
Open ball, 3, 4, 127
Open set, 1, 3–8, 41, 127, 128
Orientable, 48, 54–56, 174
Orientation, 54–56, 167, 170
Orientation-reversing curve, 55

P
p-adic topology, 42
Path, 105
Path-connected, 14, 105, 106, 171
Perelman, Grigori, 63



Index 209

Pointed set, 96
Polynomial, 142
Preimage, 11
Presentation, 71–74, 86, 161
Projective plane, 44, 45, 51, 55
Projective special linear group, 74

Q
Quotient group, 67, 91, 95, 96, 98, 99
Quotient map, 97
Quotient topology, 42, 155

R
Rational telescope, 162, 163
Refinement, 35, 130
Relation, 70
Relatively open, 6, 127
Retract, 137–140, 148
Riemann function, 14
Riemann, Georg Friedrich Bernhard, 63

S
Second countable, 195
Section, 98
Seifert–Van Kampen Theorem, 151, 153–

161, 163, 164
Semidirect product, 138
Simple group, 100
Simplex, 166–168
Simplicial homology, 166, 179
Simplicial map, 178, 179
Simply connected, 139, 154
S

∞, 119, 120
Singular homology, 197, 198
Smith normal form, 175–177
Special linear group, 74
Sperner’s Lemma, 148

Sphere, 20, 22, 119, 120, 122, 125
Split exact sequence, 182
Sporadic group, 100
Star-shaped, 117
Subgroup, 73, 77, 78, 80
Sublevel set, 11
Surface, 1, 2, 19, 20, 29, 156, 157
Surface with boundary, 23
Surjective, 10, 11
Symmetric group, 67, 71, 72

T
Tetrahedron, 31, 33
Thomae function, 14
Thurston, William Paul (Bill), 63
Topological space, 1–3, 40, 41, 127, 128
Topology, 41, 127, 128
Torus, 20, 122, 125, 128, 129, 170
Totient function, 94
Triangle inequality, 4, 144
Triangulation, 31–35, 165–167, 169, 170
Tucker’s Lemma, 148

U
Unicorn, 6

V
Vierergruppe, 67

W
Wedge sum, 155, 156, 186

Z
Zariski topology, 41


	Foreword
	Introduction
	Contents
	1 Surface Preliminaries
	1.1 Surfaces
	1.2 Euclidean Space
	1.3 Open Sets
	1.4 Functions and Their Properties
	1.5 Continuity
	1.6 Problems

	2 Surfaces
	2.1 The Definition of a Surface
	2.2 Examples of Surfaces
	2.3 Spheres as Surfaces
	2.4 Surfaces with Boundary
	2.5 Closed, Bounded, and Compact Surfaces
	2.6 Equivalence Relations and Topological Equivalence
	2.7 Homeomorphic Spaces
	2.8 Invariants
	2.9 Problems

	3 The Euler Characteristic and Identification Spaces
	3.1 Triangulations and the Euler Characteristic
	3.2 Invariance of the Euler Characteristic
	3.3 Identification Spaces
	3.4 ID Spaces as Surfaces
	3.5 Abstract Topological Spaces
	3.6 The Quotient Topology
	3.7 Further Examples of ID Spaces
	3.8 Triangulations of ID Spaces
	3.9 The Connected Sum
	3.10 The Euler Characteristic of a Compact Surface with Boundary
	3.11 Problems

	4 Classification Theorem of Compact Surfaces
	4.1 The Geometry of the Projective Plane and the Klein Bottle
	4.2 Orientable and Nonorientable Surfaces
	4.3 The Classification Theorem for Compact Surfaces
	4.4 Compact Surfaces Have Finite Triangulations
	4.5 Proof of the Classification Theorem
	4.6 Problems

	5 Introduction to Group Theory
	5.1 Why Use Groups?
	5.2 A Motivating Example
	5.3 Definition of a Group
	5.4 Examples of Groups
	5.5 Free Groups, Generators, and Relations
	5.6 Free Products
	5.7 Problems

	6 Structure of Groups
	6.1 Subgroups
	6.2 Direct Products of Groups
	6.3 Homomorphisms
	6.4 Isomorphisms
	6.5 Existence of Homomorphisms
	6.6 Finitely Generated Abelian Groups
	6.7 Problems

	7 Cosets, Normal Subgroups, and Quotient Groups
	7.1 Cosets
	7.2 Lagrange's Theorem and Its Consequences
	7.3 Coset Spaces and Quotient Groups
	7.4 Properties and Examples of Normal Subgroups
	7.5 Coset Representatives
	7.6 A Quotient of a Dihedral Group
	7.7 Building up Finite Groups
	7.8 An Isomorphism Theorem
	7.9 Problems

	8 The Fundamental Group 
	8.1 Paths and Loops on a Surface
	8.2 Equivalence of Paths and Loops
	8.3 Equivalence Classes of Paths and Loops
	8.4 Multiplication of Path and Loop Classes
	8.5 Definition of the Fundamental Group
	8.6 Problems

	9 Computing the Fundamental Group
	9.1 Homotopies of Maps and Spaces
	9.2 Computing the Fundamental Group of a Circle
	9.3 Problems

	10 Tools for Fundamental Groups 
	10.1 More Fundamental Groups
	10.2 The Degree of a Loop
	10.3 Fundamental Group of a Circle—Redux
	10.4 The Induced Homomorphism on Fundamental Groups
	10.5 Retracts
	10.6 Problems

	11 Applications of Fundamental Groups
	11.1 The Fundamental Theorem of Algebra
	11.2 Further Applications of the Fundamental Group
	11.3 Problems

	12 The Seifert–Van Kampen Theorem
	12.1 Wedges of circles
	12.2 The Seifert–Van Kampen Theorem: First Version
	12.3 More Fundamental Groups
	12.4 The Seifert–Van Kampen Theorem: Second Version
	12.5 The Fundamental Group of a Compact Surface
	12.6 Even More Fundamental Groups
	12.7 Proof of the Second Version of the Seifert–Van Kampen Theorem
	12.8 General Seifert–Van Kampen Theorem
	12.9 Groups as Fundamental Groups
	12.10 Problems

	13 Introduction to Homology
	13.1 The Idea of Homology
	13.2 Chains
	13.3 The Boundary Map
	13.4 Homology
	13.5 The Zeroth Homology Group
	13.6 Homology of the Klein Bottle
	13.7 Homology and Euler Characteristic
	13.8 Homology and Orientability
	13.9 Smith Normal Form
	13.10 The Induced Map on Homology
	13.11 Problems

	14 The Mayer–Vietoris Sequence
	14.1 Exact Sequences
	14.2 The Mayer–Vietoris Sequence
	14.3 Homology of Orientable Surfaces
	14.4 The Jordan Curve Theorem
	14.5 The Hurewicz Map
	14.6 Problems

	Appendix A Topological Notions
	A.1  Compactness Results
	A.2  Technical Conditions for Abstract Surfaces
	Appendix B A Brief Look at Singular Homology
	Appendix C Hints for Selected Problems
	Appendix  References
	

	Index



