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Foreword
Dependent type theory, the subject of this book, is a wonderfully beguiling, and aston-
ishingly effective, unification of mathematics and programming. In type theory when
you prove a theorem you are writing a program to meet a specification—and you can
even run it when you are done! A proof of the fundamental theorem of arithmetic
amounts to a program for factoring numbers. And it works the other way as well: every
program is a proof that its specification is sensible enough to be implementable. Type
theory is a hacker’s paradise.

And yet, for many, type theory remains an esoteric world of sacred texts, revered
figures, and arcane terminology—a hermetic realm out of the novels of Umberto Eco.
Be mystified no longer! My colleagues Dan Friedman and David Christiansen reveal
the secrets of type theory in an engaging, organic style that is both delightful and
enlightening, particularly for those for whom running code is the touchstone of rigor.
You will learn about normal forms, about canonization, about families of types, about
dependent elimination, and even learn the ulterior motives for induction.

When you are done, you will have reached a new level of understanding of both
mathematics and programming, gaining entrance to what is surely the future of both.
Enjoy the journey, the destination is magnificent!

Robert Harper
Pittsburgh
February, 2018
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Preface
A program’s type describes its behavior. Dependent types are a first-class part of a
language, which makes them vastly more powerful than other kinds of types. Using just
one language for types and programs allows program descriptions to be just as powerful
as the programs that they describe.

If you can write programs, then you can write proofs. This may come as a surprise—
for most of us, the two activities seem as different as sleeping and bicycling. It turns
out, however, that tools we know from programming, such as pairs, lists, functions,
and recursion, can also capture patterns of reasoning. An understanding of recursive
functions over non-nested lists and non-negative numbers is all you need to understand
this book. In particular, the first four chapters of The Little Schemer are all that’s
needed for learning to write programs and proofs that work together.

While mathematics is traditionally carried out in the human mind, the marriage
of math and programming allows us to run our math just as we run our programs.
Similarly, combining programming with math allows our programs to directly express
why they work.

Our goal is to build an understanding of the important philosophical and mathemat-
ical ideas behind dependent types. The first five chapters provide the needed tools to
understand dependent types. The remaining chapters use these tools to build a bridge
between math and programming. The turning point is chapter 8, where types become
statements and programs become proofs.

Our little language Pie makes it possible to experiment with these ideas, while
still being small enough to be understood completely. The implementation of Pie is
designed to take the mystery out of implementing dependent types. We encourage you
to modify, extend, and hack on it—you can even bake your own Pie in the language of
your choice. The first appendix, The Way Forward, explains how Pie relates to fully-
featured dependently typed languages, and the second appendix, Rules Are Made to
Be Spoken, gives a complete description of how the Pie implementation works. Pie is
available from http://thelittletyper.com.
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Guidelines for the Reader
Do not rush through this book. Read carefully, including the frame notes; valuable
hints are scattered throughout the text. Read every chapter. Remember to take breaks
so each chapter can sink in. Read systematically. If you do not fully understand one
chapter, you will understand the next one even less. The questions are ordered by
increasing difficulty; later questions rely on comfort gained earlier in the book.
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Guess! This book is based on intuition, and yours is as good as anyone’s. Also,
if you can, experiment with the examples while you read. The Recess that starts on
page 62 contains instructions for using Pie.

From time to time, we show computation steps in a chart. Stop and work through
each chart, even the long ones, and convince yourself that each step makes sense by
understanding why it makes sense.

The Laws and Commandments summarize the meanings of expressions in Pie.
Laws describe which expressions are meaningful, and Commandments describe which
expressions are the same as others. For a Commandment to apply, it is assumed that
the corresponding Laws are satisfied.

Food appears in some examples for two reasons. First, food is easier to visualize
than abstract symbols. We hope the food imagery helps you to better understand the
examples and concepts. Second, we want to provide a little distraction. Expanding your
mind can be tiring; these snacks should help you get through the afternoon. As such,
we hope that thinking about food will lead you to take some breaks and relax.

You are now ready to start. Good luck! We hope you enjoy the book.

Bon appétit!
Daniel P. Friedman
Bloomington, Indiana

David Thrane Christiansen
Portland, Oregon

Preface xiii





The Little Typer





Welcome back! 1 It’s good to be here!

Let’s dust off and update some of our old
toys for a new language called Pie.

Is it obvious that this is an Atom?
'atom

2 Not at all. What does Atom mean?

To be an Atom is to be an atom.†
†In Lisp, atoms are symbols, numbers, and

many other things. Here, atoms are only symbols.

3 Then 'atom is an Atom because 'atom is
an atom.

Is it obvious that this is an Atom?
'ratatouille

4 Yes, because 'ratatouille is also an atom.

But what does it precisely mean to be an
atom?

Atoms are built from a tick mark
directly followed by one or more letters
and hyphens.†

†In Pie, only atoms use the tick mark.

5 So, is it obvious that
'is-it-obvious-that-this-is-an-atom

is an Atom?

Certainly, because atoms can contain
hyphens.

What about
'–––

and
–––

and
'

Are they atoms?

6
'–––

is an atom because hyphens can appear
anywhere in an atom;

–––
is not an atom because it’s missing the
tick mark; and
'

is not an atom because it is neither
followed by a letter nor by a hyphen.
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Is 'Atom an Atom? 7 Yes, even 'Atom is an Atom, because it is
a tick mark followed by one or more
letters or hyphens.

Is 'at0m an Atom? 8 No, because atoms can contain only
letters and hyphens, as mentioned in
frame 5, and the character 0 is not a
letter. It is the digit zero.

Is 'cœurs-d-artichauts an Atom? 9 Yes, because œ is a letter.

Is 'ἄτομον an Atom? 10 That’s Greek to me!

But Greek letters are letters, so it must
also be an Atom.

The Law of Tick Marks
A tick mark directly followed by one or more
letters and hyphens is an Atom.

Sentences such as
'ratatouille is an Atom

and
'cœurs-d-artichauts is an Atom

are called judgments.†

†Thanks, Per Martin-Löf (1942–).

11 What is the point of a judgment?

4 Chapter 1



A judgment is an attitude that a person
takes towards expressions. When we
come to know something, we are making
a judgment.

What can be judged about Atom and
'courgette?

12
'courgette is an Atom.

A form of judgment is an observation
with blank spaces in it, such as

is a .

13 Are there other forms of judgment?

Another form of “judgment” is
“judgement.”

14 Very funny.

Is
'ratatouille

the same
Atom

as
'ratatouille?

15 Yes.

They are the same Atom because both
have the same letters after the tick mark.

Is
'ratatouille

the same
Atom

as
'baguette?

16 No.

They have different letters after the tick
mark.

The More Things Change, the More They Stay the Same 5



The Commandment of Tick Marks
Two expressions are the same Atom if their values are tick
marks followed by identical letters and hyphens.

The second form of judgment is that
is the same as .

17 So
'citron is the same Atom as 'citron

is a judgment.

It is a judgment, and we have reason to
believe it.

Is
'pomme is the same Atom as 'orange

a judgment?

18 It is a judgment, but we have no reason
to believe it. After all, one should not
compare apples and oranges.

Is it obvious that
(cons 'ratatouille 'baguette)†

is a
(Pair Atom Atom)?

†When ready, see page 62 for “typing” instruc-
tions.

19 No, it isn’t.

What does it mean to be a
(Pair Atom Atom)?

To be a
(Pair Atom Atom)

is to be a pair whose car is an Atom, like
'ratatouille, and whose cdr is also an
Atom, like 'baguette.

20 The names cons, car, and cdr seem
familiar. What do they mean again?
And what do they have to do with pairs?

6 Chapter 1



A pair begins with cons† and ends with
two more parts, called its car and its cdr.

†In Lisp, cons is used to make lists longer. Here,
cons only constructs pairs.

21 Okay. That means that
(cons 'ratatouille 'baguette)

is a
(Pair Atom Atom)

because (cons 'ratatouille 'baguette) is a
pair whose car is an Atom, and whose cdr
is also an Atom.

Is cons a Pair, then?

Neither cons nor Pair alone is even an
expression. Both require two arguments.†

Is
(cons 'ratatouille 'baguette)

the same
(Pair Atom Atom)

as
(cons 'ratatouille 'baguette)?
†In Lisp, cons is a procedure and has meaning

on its own, but forms such as cond or lambda are
meaningless if they appear alone.

22 What does it mean for two expressions
to be the same

(Pair Atom Atom)?

It means that both cars are the same
Atom and that both cdrs are the same
Atom.

23 Then
(cons 'ratatouille 'baguette)

is indeed the same
(Pair Atom Atom)

as
(cons 'ratatouille 'baguette).

The More Things Change, the More They Stay the Same 7



Is
(cons 'ratatouille 'baguette)

the same
(Pair Atom Atom)

as
(cons 'baguette 'baguette)?

24 The car of
(cons 'ratatouille 'baguette)

is 'ratatouille, while the car of
(cons 'baguette 'baguette)

is 'baguette.

So we have no reason to believe that
they are the same (Pair Atom Atom).

How can
(cdr
(cons 'ratatouille 'baguette))

be described?

25 It is an
Atom.

Expressions that describe other
expressions, such as Atom, are called
types.

Is (Pair Atom Atom)† a type?
†When a name, such as Pair or Atom, refers to

a type, it starts with an upper-case letter.

26 Yes, because it describes pairs where the
car and cdr are both Atoms.

The third form of judgment is
is a type.

27 This means that both
Atom is a type

and
(Pair Atom Atom) is a type

are judgments.

The Law of Atom
Atom is a type.

8 Chapter 1



Is
'courgette is a type

a judgment?

28 It is a judgment, but we have no reason
to believe it because 'courgette doesn’t
describe other expressions.

Are Atom and Atom the same type? 29 Presumably. They certainly look like
they should be.

The fourth and final form of judgment is
and are the same type.

30 Ah, so
Atom and Atom are the same type

is a judgment, and we have reason to
believe it.

The Four Forms of Judgment

1. is a . 2. is the same as .

3. is a type. 4. and are the same type.

Is this a judgment?
Atom and (Pair Atom Atom) are the

same type.

31 Yes, it is a judgment, but there is no
reason to believe it.

Are
(Pair Atom Atom)

and
(Pair Atom Atom)

the same type?

32 That certainly seems believable.
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Judgments are acts of knowing, and
believing is part of knowing.

33 Aren’t judgments sentences?

Sentences get their meaning from those
who understand them. The sentences
capture thoughts that we have, and
thoughts are more important than the
words we use to express them.

34 Ah, so coming to know that
(Pair Atom Atom)

and
(Pair Atom Atom)

are the same type was a judgment?

It was.

Is 'pêche the same 'fruit as 'pêche?

35 Good question.

Is 'pêche a 'fruit?

No, it is not, because
'fruit is a type

is not believable.

Some forms of judgment only make sense
after an earlier judgment.†

†This earlier judgment is sometimes called a pre-
supposition.

36 Which are these?

To ask whether an expression is
described by a type, one must have
already judged that the supposed type is
a type. To ask whether two expressions
are the same according to a type, one
must first judge that both expressions
are described by the type.†

What judgment is necessary before
asking whether two expressions are the
same type?

†To describe the expressions, the supposed type
must also be a type.

37 To ask whether two expressions are the
same type, one must first judge that each
expression is, in fact, a type.

10 Chapter 1



Is
(car
(cons 'ratatouille 'baguette))

the same
Atom

as
'ratatouille?

38 This looks familiar. Presumably, car
finds the car of a pair, so they are the
same.

Is
(cdr
(cons 'ratatouille 'baguette))

the same
Atom

as
'baguette?

39 It must certainly be, because the cdr of
the pair is 'baguette.

So
(car
(cons
(cons 'aubergine 'courgette)
'tomato))

is a . . .

40
. . . (Pair Atom Atom),
because

(cons 'aubergine 'courgette)
is a pair whose car is the Atom 'aubergine
and whose cdr is the Atom 'courgette.

Is
(car
(cdr
(cons 'ratatouille
(cons 'baguette 'olive-oil))))

the same
Atom

as
'baguette?

41 Yes, it is.

The More Things Change, the More They Stay the Same 11



Expressions that are written differently
may nevertheless be the same, as seen in
frames 39–41. One way of writing these
expressions is more direct than the
others.

42
'baguette certainly seems more direct
than

(car
(cdr
(cons 'ratatouille
(cons 'baguette 'olive-oil)))).

The normal form of an expression is the
most direct way of writing it. Any two
expressions that are the same have
identical normal forms, and any two
expressions with identical normal forms
are the same.

43 Is 'olive-oil the normal form of
(cdr
(cdr
(cons 'ratatouille
(cons 'baguette 'olive-oil))))?

That question is incomplete.

Sameness is always according to a type,
so normal forms are also determined by a
type.

44 Is 'olive-oil the normal form of the Atom
(cdr
(cdr
(cons 'ratatouille
(cons 'baguette 'olive-oil))))?

Yes, it is.

Is
(cons 'ratatouille 'baguette)

a normal
(Pair Atom Atom)?†

†Normal is short for in normal form.

45
Yes, (cons 'ratatouille 'baguette) is
normal.

Does every expression have a normal
form?

12 Chapter 1



It does not make sense to ask whether an
expression has a normal form without
specifying its type.

Given a type, however, every expression
described by that type does indeed have
a normal form determined by that type.

46 If two expressions are the same according
to their type, then they have identical
normal forms. So this must mean that
we can check whether two expressions
are the same by comparing their normal
forms!

Normal Forms
Given a type, every expression described by that type has
a normal form, which is the most direct way of writing it.
If two expressions are the same, then they have identical
normal forms, and if they have identical normal forms,
then they are the same.

What is the normal form of
(car
(cons
(cons 'aubergine 'courgette)
'tomato))?

47 What about the type?

If the type is
(Pair Atom Atom),

then the normal form is
(cons 'aubergine 'courgette).

Nice catch!

The previous description of what it
means to be a

(Pair Atom Atom)
is incomplete. It must mean . . .

48
. . . to be a pair whose car is an Atom,
and whose cdr is also an Atom, or an
expression that is the same as such a
pair.

The More Things Change, the More They Stay the Same 13



Normal Forms and Types

Sameness is always according to a type, so normal forms
are also determined by a type.

Is
(car
(cons
(cons 'aubergine 'courgette)
'tomato))

the same
(Pair Atom Atom)

as
(cons 'aubergine 'courgette)?

49 Yes, the two expressions are the same
(Pair Atom Atom) because the normal
form of

(car
(cons
(cons 'aubergine 'courgette)
'tomato))

is
(cons 'aubergine 'courgette).

Why is
(cons 'aubergine 'courgette)

the same (Pair Atom Atom) as
(cons 'aubergine 'courgette)?

50 That seems pretty obvious.

Yes, but not everything that seems
obvious is actually obvious.†

Frame 23 describes what it means for
one expression to be the same

(Pair Atom Atom)
as another.

†In Lisp, two uses of cons with the same atoms
yield pairs that are not eq. Here, however, they
cannot be distinguished in any way.

51 Both
(cons 'aubergine 'courgette)

and
(cons 'aubergine 'courgette)

have cons at the top. 'aubergine is the
same Atom as 'aubergine, and 'courgette
is the same Atom as 'courgette.

Both expressions have the same car and
have the same cdr. Thus, they are the
same

(Pair Atom Atom).

14 Chapter 1



The First Commandment of cons
Two cons-expressions are the same (Pair A D) if their cars
are the same A and their cdrs are the same D . Here, A
and D stand for any type.

Perfect.

What is the normal form of
(Pair
(cdr
(cons Atom 'olive))

(car
(cons 'oil Atom)))?

52
It is (Pair 'olive 'oil), right?

Actually, the expression
(Pair
(cdr
(cons Atom 'olive))

(car
(cons 'oil Atom)))

is neither described by a type, nor is it a
type, so asking for its normal form is
meaningless.†

†Expressions that cannot be described by a type
and that are not themselves types are also called ill-
typed.

53 Why not?

Because Pair is not a type when its
arguments are actual atoms.

It is only an expression when its
arguments are types such as Atom.

54 Does that mean that Pair can’t be used
together with car and cdr?
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No, not at all. What is the normal form
of

(Pair
(car
(cons Atom 'olive))

(cdr
(cons 'oil Atom)))?

55 What is its type? Normal forms are
according to a type.

Types themselves also have normal
forms. If two types have identical normal
forms, then they are the same type, and
if two types are the same type, then they
have identical normal forms.

56 The normal form of the type
(Pair
(car
(cons Atom 'olive))

(cdr
(cons 'oil Atom)))?

must be (Pair Atom Atom) because the
normal form of

(car
(cons Atom 'olive))

is Atom and the normal form of
(cdr
(cons 'oil Atom))

is Atom.

Normal Forms of Types

Every expression that is a type has a normal form, which
is the most direct way of writing that type. If two expres-
sions are the same type, then they have identical normal
forms, and if two types have identical normal forms, then
they are the same type.

16 Chapter 1



That’s it. Now we know that
(cons 'ratatouille 'baguette)

is also a
(Pair
(car
(cons Atom 'olive))

(cdr
(cons 'oil Atom)))

because . . .

57
. . . the normal form of

(Pair
(car
(cons Atom 'olive))

(cdr
(cons 'oil Atom)))

is
(Pair Atom Atom),

and
(cons 'ratatouille 'baguette)

is a
(Pair Atom Atom).

Another way to say this is that
(Pair
(car
(cons Atom 'olive))

(cdr
(cons 'oil Atom)))

and
(Pair Atom Atom)

are the same type.

58 If an expression is a
(Pair
(car
(cons Atom 'olive))

(cdr
(cons 'oil Atom)))

then it is also a
(Pair Atom Atom)

because those two types are the same
type.

Similarly, if an expression is a
(Pair Atom Atom)

then it is also a
(Pair
(car
(cons Atom 'olive))

(cdr
(cons 'oil Atom)))

because those two types are the same
type.

59 And likewise for
(Pair
Atom
(cdr
(cons 'oil Atom))),

which is also the same type.
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Is '6 an Atom? 60 No. We have no reason to believe that
'6 is an Atom,

because the digit 6 is neither a letter nor
a hyphen, right?

Right. Is
(cons '17 'pepper)

a
(Pair Atom Atom)?

61
No, because the car of (cons '17 'pepper)
is '17, which is not an Atom.

It sure would be natural to have
numbers, though.

Numbers are certainly convenient.
Besides Atom and Pair, we can check
whether something is a Nat.

62 Let’s give it a try.

Is 1 a Nat?†
†Nat is a short way of writing natural number.

63 Yes, 1 is a Nat.

Is 1729 a Nat? 64 Yes, 1729 is a Nat. Not only is it a Nat,
it’s also famous!†

†Thank you, Srinivasa Ramanujan (1887–1920)
and Godfrey Harold Hardy (1877–1947).

Is −1 a Nat? 65 Hmm. Sure?

No, it isn’t. What about −23? 66 It’s not very clear.

Positive numbers are Nats. 67 Ah, then −23 is not a Nat?

18 Chapter 1



We prefer a positive point of view.

What is the smallest Nat?

68 Isn’t 0 a natural number?

Oh yeah, one can’t always be positive.†
How can one get the rest of the Nats?

†The number 1, however, is always positive.

69 One can use our old friend add1. If n is a
Nat, then (add1 n) is also a Nat, and it is
always a positive Nat even if n is 0.

How many Nats are there?

Lots! 70 Is there a largest Nat?

No, because one can always . . . 71
. . . add one with add1?

That’s right!†

Is 0 the same Nat as 26?
†Thank you, Giuseppe Peano (1838–1932).

72 Clearly not.

Is ( 0 26)† the same as 26?
†Even though we have not explained yet, use

your knowledge of addition for now.

73 That question has no meaning. But can
we ask if they are the same Nat?

Of course.

Is ( 0 26) the same Nat as 26?

74
Yes, because the normal form of ( 0 26)
is 26, and 26 is certainly the same as 26.

What does zero mean? 75 Does zero mean the same as 0?
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In Pie, zero and 0 are two ways to write
the same Nat.

Is one the same Nat as 1?

76 Well, if zero is the same Nat as 0, that
would make sense.

Actually, one has no meaning. But
(add1 zero) is another way to write the
number 1.

It is possible to make one be (add1 zero)
by defining it.

(define one
(add1 zero))

77 Why is the box around the definition
dashed?

A dashed box means that there is
something the matter with the definition,
so the definition in the dashed box is not
available for use later.

78 What is the matter with that definition?

It looks okay.

When defining a name, it is necessary to
first claim the name with a type, and one
is a Nat.
(claim one
Nat)

(define one
(add1 zero))

79 So two can be defined as
(claim two
Nat)

(define two
(add1 one))

Claims before Definitions
Using define to associate a name with an expression re-
quires that the expression’s type has previously been
associated with the name using claim.
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If 1 is another way of writing (add1 zero),
what is another way of writing 4?

80 Shouldn’t it be
(add1
(add1
(add1
(add1 zero))))?

Can’t we define four to mean that?

Of course.
(claim four
Nat)

(define four
(add1
(add1
(add1
(add1 zero)))))

Is there another way of writing 8 as well?

81 It must be
(add1
(add1
(add1
(add1
(add1
(add1
(add1
(add1 zero)))))))).

Is 8 normal? 82 It seems that way. But why is 8 normal?

8 is normal because its top,† add1 is a
constructor, and because the argument
tucked under the top add1, namely 7, is
normal.

†The top add1 in frame 81 is underlined this one
time for emphasis.

83 Why is 7, also written
(add1
(add1
(add1
(add1
(add1
(add1
(add1 zero))))))),

normal?

7 is normal for the very same reason. 84 This must mean that zero is normal, or
else (add1 zero) would not be normal.
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What is at the top of zero? 85 It must be zero.

zero is normal because the top zero is a
constructor, and it has no arguments.

Is
(add1
( (add1 zero)

(add1
(add1 zero))))

normal?

86 No, because is not a constructor.

An expression with a constructor at the
top is called a value.†

Even though
(add1
( (add1 zero)

(add1
(add1 zero))))

is not normal, it is a value.
†Values are also called canonical expressions.

87 It is not normal because
( (add1 zero)

(add1
(add1 zero)))

is not the most direct way of writing 3.

Values
An expression with a constructor at the top
is called a value.
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Here’s another expression that is not
normal.

( (add1
(add1 zero))

(add1 zero))

Is this the most direct way of writing 3?

88 No.

What exactly is a constructor?

Some expressions, such as Nat or
(Pair Nat Atom), are types.

Part of explaining a new type is to say
what its constructors are. The
constructor expressions are the direct
ways of building expressions with the
new type.

89 What are some examples of
constructors?

The constructors of Nat are zero and
add1, while the constructor of Pair is
cons.

90 What is the relationship between values
and normal forms?

In a value, the top constructor’s
arguments need not be normal, but if
they are, then the entire constructor
expression is in normal form.

Are all values normal?

91 No.
(add1
( (add1 zero)

(add1
(add1 zero))))

and
(add1
( (add1 zero) (add1 one)))

are values, but they are not normal.
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Values and Normal Forms
Not every value is in normal form. This is because the
arguments to a constructor need not be normal. Each
expression has only one normal form, but it is sometimes
possible to write it as a value in more than one way.

What expressions can be placed in the
empty box to make this expression not a
Nat value?

(add1
)

92 How about 'aubergine?

Indeed,
(add1
'aubergine)

is not a Nat value because 'aubergine is
an Atom, not a Nat.

When filling in boxes, the expectation is
that the resulting expression is described
by a type.

93 If any Nat expression is placed in the
box, however, the whole expression is a
value. The whole expression has add1 at
the top, and add1 is a Nat constructor.

Finding a value that is the same as some
starting expression is called evaluation.

94 What about the type? Sameness, after
all, requires types.

From time to time, when talking about
sameness, we do not explicitly mention a
type. Nevertheless, a type is always
intended, and can be discovered by
reading carefully.

95 Doesn’t evaluation refer to finding the
meaning of an expression, not just some
simpler expression?
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Not here. Expressions do not refer to
some external notion of meaning—in Pie,
there is nothing but expressions and
what we judge about them.†

†In Lisp, values are distinct from expressions,
and the result of evaluation is a value.

96 That is a new way of seeing evaluation.

Why is there a difference between
normal forms and values?

Everything Is an Expression

In Pie, values are also expressions. Evaluation
in Pie finds an expression, not some other kind
of thing.

A normal expression has no remaining
opportunities for evaluation. Usually,
expressions that are normal are easier to
understand. Finding a value is often
enough, however, because the top
constructor can be used to determine
what must happen next.

97 If finding a value is often enough, does
that mean we are free to find the value
and stop whenever we want?

Yes, assuming that specific information
about the constructor’s arguments is
never needed.

Is
(add1
( (add1 zero)

(add1
(add1 zero))))

the same Nat as four?

98 Here is a possible answer.

They are not the same Nat because
(add1
( (add1 zero)

(add1
(add1 zero))))

is a value, and it certainly does not look
like the variable four . Finding the value
of four does not help, because four ’s
value looks very different.
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Good try.

But they are actually the same Nat.

99 How can that be?

Two Nat expressions, that aren’t values,
are the same if their values are the same.
There are exactly two ways in which two
Nat values can be the same: one for each
constructor.

If both are zero, then they are the same
Nat.

100 What about when both values have add1
at the top?

The Commandment of zero
zero is the same Nat as zero.

If the arguments to each add1 are the
same Nat, then both add1-expressions
are the same Nat value.

Why is
(add1 zero)

the same
Nat

as
(add1 zero)?

101 Both expressions are values. Both values
have add1 at the top, so their arguments
should be the same Nat.

The arguments are both zero, which is a
value, and zero is the same Nat value as
zero.

The Commandment of add1
If n is the same Nat as k, then (add1 n) is the same Nat as
(add1 k).
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Why is
(add1 ( 0 1))

the same
Nat

as
(add1 ( 1 0))?

102 Both of these Nats have add1 at the top,
so they are values.

They are the same because
( 0 1)

is the same
Nat

as
( 1 0).

Why is ( 0 1) the same Nat as ( 1 0)? 103 These Nats are not values, so to
determine whether they are the same,
the first step is to find their values.

Both expressions have (add1 zero) as a
value, and frame 101 explains why

(add1 zero)
is the same
Nat

as
(add1 zero).

That’s right. 104 Does this mean that four could have
been defined like this?
(define four
(add1
( (add1 zero)

(add1
(add1 zero)))))

Why is that box dashed? 105 four is already defined, and can’t be
defined again.
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Definitions Are Forever
Once a name has been claimed, it cannot be reclaimed, and
once a name has been defined, it cannot be redefined.

And yes, four could have been defined
like that initially.

In fact, no other expression could tell the
difference between the two definitions of
four because both define four to be the
same Nat.

106 Is cons a constructor?

Yes, cons constructs Pairs. 107 Is it necessary to evaluate car’s argument
in order to evaluate a car-expression?

Yes. To find the value of a
car-expression, start by finding the value
of its argument.

What can be said about the argument’s
value?

108 The argument’s value has cons at the
top.

After finding the argument’s value, what
comes next?

109 The value is the first argument to cons.

What is the value of
(car
(cons ( 3 5) 'baguette))?

110 The first argument to cons is
( 3 5),

which is not a value.
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To find the value of a car-expression, first
find the value of the argument, which is
(cons a d).† The value of

(car
(cons a d))

is then the value of a.

How can the value of a cdr-expression be
found?

†Here, a is for car and d is for cdr.

111 Like car, start by evaluating cdr’s
argument until it becomes (cons a d).
Then, the value of

(cdr
(cons a d))

is the value of d .

Do all constructors have arguments?

No. Recall from frame 86 that zero is a
constructor.

What does it mean for two expressions
to be the same (Pair Atom Nat)?

112 It must mean that the value of each
expression has cons at the top. And,
their cars are the same Atom and their
cdrs are the same Nat.

Very good. 113 Are atoms constructors?

The atom 'bay is a constructor, and so is
the atom 'leaf.

114 Are all atoms constructors?

Yes. Each atom constructs itself.

Does this mean that atoms are values?

115 Yes, it does, because the explanation of
why
Atom is a type

says that atoms are Atom values.

Right.

In the expression zero, what is the top
constructor?

116 It must be zero, because zero is a
constructor of no arguments.
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In the expression 'garlic, what is the top
constructor?

117 The atom 'garlic is the only constructor,
so it must be the top constructor.

Is Nat a constructor, then?

No, Nat is not a constructor. zero and
add1 are constructors that create data,
while Nat describes data that is just zero,
or data that has add1 at its top and
another Nat as its argument.

Is Pair a constructor?

118 No, because Pair-expressions describe
expressions with cons at the top.
Constructors create data, not types.

What is Pair called, then?

Pair is a type constructor because it
constructs a type. Likewise, Nat and
Atom are type constructors.

Is
(cons zero 'onion)

a
(Pair Atom Atom)?

119 No.

Isn’t it a
(Pair Nat Atom)?

Indeed it is! But
(cons 'zero 'onion)

is a
(Pair Atom Atom).

What is the type of
(cons 'basil
(cons 'thyme 'oregano))?†

†Thank you, Julia Child (1912–2004).

120 Based on what we’ve seen, it must be a
(Pair Atom
(Pair Atom Atom)).

Indeed it is. 121 All right, that’s enough for now. My
head is going to explode!
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It might be a good idea to read this
chapter one more time. Judgments,
expressions, and types are the most
important ideas in this book.

122 Some fresh vegetables would be nice
after all this reading.

Now go enjoy some delicious
homemade ratatouille!
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How was the ratatouille? 1 Très bien, thanks for asking.

In chapter 1, there are constructors,
which build values, and type
constructors, which build types.

car, however, is neither a constructor nor
a type constructor.

2 What is car, then?

car is an eliminator. Eliminators take
apart the values built by constructors.

What is another eliminator?

3 If car is an eliminator, then surely cdr is
also an eliminator.

Constructors and Eliminators
Constructors build values, and eliminators take
apart values built by constructors.

Another way to see the difference is that
values contain information, and
eliminators allow that information to be
used.

4 Is there anything that is both a
constructor and an eliminator?

No, there is not.

It is possible to define a function that is
as expressive as both car and cdr
combined.

5 How?

It requires our old friend λ. 6 What is that? It doesn’t look familiar.
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Oops! It is also known as lambda.†
†λ can be optionally written lambda.

7 Oh, right, λ builds functions.

Does this mean that λ is a constructor?

Yes, it does, because every expression
that looks like (λ (x0 x . . . †) body) is a
value.

What is the eliminator for such values?
†The notation x . . . means zero or more xs, so

x0 x . . . means one or more xs.

8 The only thing that can be done to a
function is to apply it to arguments.

How can functions have an eliminator?

Applying a function to arguments is the
function’s eliminator.

9 Okay.

Eliminating Functions

Applying a function to arguments is the eliminator for
functions.

What is the value of
(λ (flavor)
(cons flavor 'lentils))?

10 It starts with a λ, so it is already a
value.

Right.

What is the value of
((λ (flavor)

(cons flavor 'lentils))
'garlic)?

11
It must be (cons 'garlic 'lentils), if λ
works the same way as lambda and cons
is a constructor.

But doesn’t this mean that cons’s first
argument is being evaluated, even
though the cons-expression is already a
value?
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No, it does not, but that’s a very good
question. Replacing the λ-expression’s
flavor happens because the λ-expression
is applied to an argument, not because of
the cons.†

Every flavor in the body of the
λ-expression is replaced with 'garlic, no
matter what expression surrounds the
flavor .

†Consistently replacing a variable with an ex-
pression is sometimes called substitution.

12 So this means that the value of
((λ (root)

(cons root
(cons ( 1 2) root)))

'potato)
is therefore

(cons 'potato
(cons ( 1 2) 'potato)),

right?

Why is there is no need to evaluate
( 1 2)

in the preceding frame?

13 The entire expression has cons at the
top, so it is a value.

Frame 12 contains a small exaggeration.
If the root (underlined here) in the body
of the λ-expression occurs under another
λ with the same name, then it is not
replaced.

What is the value of
((λ (root)
(cons root
(λ (root)
root)))

'carrot)?

14 It must be
(cons 'carrot
(λ (root)
root))

because the inner root is under a
λ-expression with the same name.
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λ does work the same way as lambda,
and that is indeed the right answer.

To be an
(→ Atom
(Pair Atom Atom))†

is to be a λ-expression that, applied to
an Atom as its argument, evaluates to a

(Pair Atom Atom).
†This is pronounced “Arrow atom pause pair

atom atom.” And → can be written with two char-
acters: ->.

15 What about expressions that have these
λ-expressions as their values?

Yes, these are also
(→ Atom
(Pair Atom Atom))

because they too become a
(Pair Atom Atom)

when given an Atom as an argument.

16 Are they also
(→ (car (cons Atom 'pepper))
(Pair (cdr (cons 'salt Atom)) Atom))?

Yes, because
(car
(cons Atom 'pepper))

is Atom and
(cdr
(cons 'salt Atom))

is also Atom.

17 It makes sense to ask what it means for
two expressions to be the same Nat, the
same Atom, or the same (Pair Nat Atom).

Does it also make sense to ask what it
means for two expressions to be the same

(→ Nat
Atom),

or the same
(→ (Pair Atom Nat)
Nat)?
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Yes, it does. Two expressions are the
same

(→ Nat
Atom)

when their values are the same
(→ Nat
Atom).

18 Their values are λ-expressions. What
does it mean for two λ-expressions to be
the same

(→ Nat
Atom)?

Two λ-expressions that expect the same
number of arguments are the same if
their bodies are the same. For example,
two λ-expressions are the same

(→ Nat
(Pair Nat Nat))

if their bodies are the same
(Pair Nat Nat).

19 Does this mean that
(λ (x)
(cons x x))

is not the same
(→ Nat
(Pair Nat Nat))

as
(λ (y)
(cons y y))?

What is not the same about those
expressions?

20 The names of the arguments are
different. This usually doesn’t matter,
though. Does it matter here?

Two λ-expressions are also the same if
there is a way to consistently rename the
arguments to be the same that makes
their bodies the same.†

Consistently renaming variables can’t
change the meaning of anything.

†Renaming variables in a consistent way is often
called alpha-conversion. Thank you, Alonzo Church
(1903–1995).

21 Is
(λ (a d)
(cons a d))

the same
(→ Atom Atom
(Pair Atom Atom))

as
(λ (d a)
(cons a d))?
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The Initial Law of Application

If f is an
(→ Y
X)

and arg is a Y , then
(f arg)

is an X .

The Initial First Commandment of λ
Two λ-expressions that expect the same number of ar-
guments are the same if their bodies are the same after
consistently renaming their variables.

The Initial Second Commandment of λ
If f is an
(→ Y
X),

then f is the same
(→ Y
X)

as
(λ (y)
(f y)),

as long as y does not occur in f .
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No, it is not, because consistently
renaming the variables in the second
λ-expression to match the arguments in
the first λ-expression yields

(λ (a d)
(cons d a)),

and (cons d a) is not the same
(Pair Atom Atom) as (cons a d).

22 What about
(λ (y)
(car
(cons y y)))?

Is it the same
(→ Nat
Nat)

as
(λ (x)
x)?

The Law of Renaming Variables

Consistently renaming variables can’t change the mean-
ing of anything.

First, consistently rename y to x. Now,
the question is whether

(car
(cons x x))

is the same Nat as x.

23 There are precisely two ways that two
expressions can be the same Nat. One
way is for both their values to be zero.
The other is for both their values to have
add1 at the top and for the arguments to
both add1s to be the same Nat.

These expressions are not Nat values
because they do not have add1 at the top
and they are not zero.

The value of x is not yet known, because
the λ-expression has not been applied to
an argument. But when the λ-expression
has been applied to an argument, the
value of x is still a Nat value because . . .

24
. . . because the λ-expression is an

(→ Nat
Nat),

so the argument x can’t be anything else.
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Expressions that are not values and
cannot yet be evaluated due to a variable
are called neutral.

25 Does this mean that
(cons y 'rutabaga)

is neutral?

No, it is not neutral, because
(cons y 'rutabaga)

is a value.

If x is a (Pair Nat Atom), is
(cdr x)

a value?

26 No, because cdr is an eliminator, and
eliminators take apart values.

Without knowing the value of x, there is
no way to find the value of (cdr x), so
(cdr x) is neutral.

Neutral expressions make it necessary to
expand our view on what it means to be
the same. Each variable is the same as
itself, no matter what type it has. This
is because variables are only replaced
consistently, so two occurrences of a
variable cannot be replaced by values
that are not the same.

27 So if we assume that y is a Nat, then
(car
(cons y 'rutabaga))

is the same Nat as y because the
car-expression’s normal form is y , and y
is the same Nat as y .

Yes. And, likewise,
(λ (x)
(car
(cons x x)))

is the same
(→ Nat
Nat)

as
(λ (x)
x).

28 Right, because the neutral expression x
is the same Nat as x.
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Is
(λ (x)
(car x))

the same
(→ (Pair Nat Nat)
Nat)

as
(λ (y)
(car y))?

29 One would think so. But why?

The first step is to consistently rename y
to x.

Is
(λ (x)
(car x))

the same
(→ (Pair Nat Nat)
Nat)

as
(λ (x)
(car x))?

30 Yes, assuming that
(car x)

is the same Nat as
(car x).

But (car x) is not a variable, and it is
not possible to find its value until x’s
value is known.

If two expressions have identical
eliminators at the top and all arguments
to the eliminators are the same, then the
expressions are the same. Neutral
expressions that are written identically
are the same, no matter their type.

31 So
(car x)

is indeed the same Nat as
(car x),

assuming that x is a (Pair Nat Nat).
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The Commandment of
Neutral Expressions

Neutral expressions that are written identically are the
same, no matter their type.

Is
(λ (a d)
(cons a d))

an
(→ Atom Atom
(Pair Atom Atom))?

32 What does having more expressions after
the → mean?

The expressions after an →, except the
last† one, are the types of the arguments.
The last one is the value’s type.

†The last one is preceded by a pause when pro-
nounced.

33 Okay, then,
(λ (a d)
(cons a d))

is an
(→ Atom Atom
(Pair Atom Atom)).

These expressions are certainly getting
long.

One way to shorten them is the careful
use of define, as in frame 1:77, which
allows short names for long expressions.

34 Good idea.
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Suppose that the constructor cons is
applied to 'celery and 'carrot. We can
refer to that value as vegetables.

(claim vegetables
(Pair Atom Atom))

(define vegetables
(cons 'celery 'carrot))

From now on, whenever the name
vegetables is used, it is the same

(Pair Atom Atom)
as

(cons 'celery 'carrot),
because that is how vegetables is defined.

35 Why does it say
(Pair Atom Atom)

after claim?

The Law and Commandment of define
Following
(claim name X) and (define name expr),

if
expr is an X ,

then
name is an X

and
name is the same X as expr.

Doin’ What Comes Naturally 43



(Pair Atom Atom) describes how we can
use vegetables—we know that
(car vegetables) is an Atom, and also that
(cons 'onion vegetables) is a

(Pair Atom
(Pair Atom Atom)).†

†They are a good start for lentil soup, too.

36 Ah, that makes sense.

Is
vegetables

the same
(Pair Atom Atom)

as
(cons (car vegetables)

(cdr vegetables))?

37 Yes, because the value of each expression
is a pair whose car is 'celery and whose
cdr is 'carrot.

In fact, whenever
p is a (Pair Atom Atom),

then
p is the same

(Pair Atom Atom)
as

(cons (car p) (cdr p)).

Finding the values of (car p) and (cdr p)
is not necessary.

38 That seems reasonable.

The Second Commandment of cons
If p is a (Pair A D), then it is the same (Pair A D) as
(cons (car p) (cdr p)).
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Is this definition allowed?
(claim five
Nat)

(define five
( 7 2))

39 What?

It is allowed, even though it is probably
a foolish idea.

What would be the normal form of
( five 5)?

40 It must be 10 because five plus 5 is ten.

Try again. Remember the strange
definition of five . . .

41
. . . Oh, right, it would be 14 if five were
defined to be 9.

That’s right 42 Is this definition allowed? It doesn’t
seem particularly foolish.

(claim zero
Nat)

(define zero
0)

It is not as foolish as defining five to
mean 9, but it is also not allowed.

Names that are already used, whether
for constructors, eliminators, or previous
definitions, are not suitable for use with
claim or define.

43 Okay.
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Names in Definitions
In Pie, only names that are not already used, whether
for constructors, eliminators, or previous definitions, can
be used with claim or define.

There is an eliminator for Nat that can
distinguish between Nats whose values
are zero and Nats whose values have
add1 at the top. This eliminator is called
which-Nat.

44 How does which-Nat tell which of the two
kinds of Nats it has?

A which-Nat-expression has three
arguments: target, base, and step:

(which-Nat target
base
step).

which-Nat checks whether
target is zero.

If so,
the value of the which-Nat-expression

is
the value of base.

Otherwise, if
target is (add1 n),

then
the value of the which-Nat-expression

is
the value of (step n).

45 So which-Nat both checks whether a
number is zero and removes the add1
from the top when the number is not
zero.
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Indeed.

What is the normal form of
(which-Nat zero
'naught
(λ (n)
'more))?

46 It must be 'naught because the target,
zero, is zero, so the value of the
which-Nat-expression is base, which is
'naught.

Why is n written dimly?

The dimness indicates that n is not used
in the body of the λ-expression. Unused
names are written dimly.

47 Why isn’t it used?

which-Nat offers the possibility of using
the smaller Nat, but it does not demand
that it be used. But to offer this
possibility, which-Nat’s last argument
must accept a Nat.

48 Okay.

Dim Names
Unused names are written dimly, but they do need to be
there.

What is the value of
(which-Nat 4
'naught
(λ (n)
'more))?

49 It must be 'more because 4 is another
way of writing (add1 3), which has add1
at the top. The normal form of

((λ (n)
'more)

3)
is
'more.
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The Law of which-Nat
If target is a Nat, base is an X , and step is an
(→ Nat
X),

then
(which-Nat target
base
step)

is an X .

The First Commandment of which-Nat
If (which-Nat zero

base
step)

is an X , then it is the same X as base.

The Second Commandment of which-Nat
If (which-Nat (add1 n)

base
step)

is an X , then it is the same X as (step n).
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What is the normal form of
(which-Nat 5
0
(λ (n)
( 6 n)))?

50 Is it 11 because
((λ (n)

( 6 n))
5)

is 11?

The normal form is 10 because the value
of a which-Nat expression is determined
by the Nat tucked under the target as an
argument to the step.

51 Ah, so the normal form is 10 because
((λ (n)

( 6 n))
4)

is 10.

Define a function called gauss† such that
(gauss n) is the sum of the Nats from
zero to n.

What is the type of gauss?
†Carl Friedrich Gauss (1777–1855), according to

folklore, figured out that 0+ · · ·+n =
n(n+1)

2
when

he was in primary school and was asked to sum a
long series.

52 The sum of Nats is a Nat.
(claim gauss
(→ Nat
Nat))

Right.

Now define it.

53 How?

The first step is to choose an example
argument. Good choices are somewhere
between 5 and 10—they’re big enough to
be interesting, but small enough to be
manageable.

54 How about 5, then?
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Sounds good.

What should the normal form of
(gauss 5)

be?

55 It should be 0 + 1 + 2 + 3 + 4 + 5, which
is 15.

The next step is to shrink the argument.

(gauss 4), which is 10, is almost
(gauss 5), which is 15.

A white box around a gray box contains
unknown code that wraps a known
expression. What should be in this white
box to get

(gauss 5)
from

(gauss 4)?

(gauss 4)

56 5 must be added to (gauss 4), and our
sum is 15.

( 5 (gauss 4) )

Next, make it work for any Nat that has
add1 at the top.

If n is a Nat, then what should be in the
box to get

(gauss (add1 n))
from

(gauss n)?

(gauss n)

Remember that 5 is another way of
writing (add1 4).

57
The way to find (gauss (add1 n)) is to
replace 4 with n in the preceding frame’s
answer.

( (add1 n) (gauss n) )

What about zero?
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What is (gauss zero)? 58 Clearly it is 0.

Now define gauss.

Remember the white and gray boxes.

59 Piece of cake! The name, n-1, suggests
that it represents a Nat that is tucked
under (or one less than) n.

(define gauss
(λ (n)
(which-Nat n
0
(λ (n-1)

( (add1 n-1) (gauss n-1) ) ))))

Nice try, and it would deserve a solid box
if recursion were an option, but recursion
is not an option.

60 Why not?

Because recursion is not an option. 61 Why not?

Because recursion is not an option. 62 Okay. Please explain why recursion is
not an option.

Recursion is not an option because every
expression must have a value. Some
recursive definitions make it possible to
write expressions that do not have
values.

63 What is an example of a recursive
definition and an expression without a
value?
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forever is such a definition.
(claim forever
(→ Nat
Atom))

(define forever
(λ (and-ever)
(forever and-ever)))

What is the value of (forever 71)?

64 Good question.

Why does it have a dashed box?

Recursion is not an option, so recursive
definitions (like forever) stay dashed
forever.

65 But what about definitions like gauss
that need recursion?

There is a safe alternative to recursive
definitions. This alternative allows gauss,
along with many similar definitions, to
be written without including the name
gauss.

66 Here is the start of a safe alternative
definition of gauss.

(define gauss
(λ (n)

gauss is not an option here! ))

As far as it goes, it is correct. The point
is that gauss cannot occur in its own
definition.

67 Now it is clear what is meant by
“Recursion is not an option.”

Does this mean that it is impossible to
write gauss in Pie?

It is possible to write gauss in Pie, but
which-Nat and define are not up to the
task. A different eliminator is needed,
but the time is not yet ripe.

68 Patience is a virtue.

It is also possible to define shorter names
for expressions such as (Pair Nat Nat).

69 What is the claim in this case?
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Another good question!

Expressions such as Atom, Nat, and
(Pair Atom Nat), are types, and each of
these types is a U .†

†U , pronounced “you,” is short for universe, be-
cause it describes all the types (except for itself).

70 Are types values?

Some types are values.

An expression that is a type is a value
when it has a type constructor at its top.
So far, we have seen the type
constructors Nat, Atom, Pair, →, and U .

71 Are all types values?

Type Values

An expression that is described by a type is a value when
it has a constructor at its top. Similarly, an expression
that is a type is a value when it has a type constructor
at its top.

No.
(car
(cons Atom 'prune))

is a type, but not a value, because car is
neither a constructor nor a type
constructor.

72 Which expressions are described by
(car
(cons Atom 'prune))?
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Because
(car
(cons Atom 'prune))

and
Atom

are the same type,
(car
(cons Atom 'prune))

describes the same expressions as Atom.

73 What is the difference between type
constructors and constructors?

Type constructors construct types, and
constructors (or data constructors)
construct values that are described by
those types.

Judging that an expression is a type
requires knowing its constructors. But
the meaning of U is not given by
knowing all the type constructors,
because new types can be introduced.

74
Is (cons Atom Atom) a U?

No, but
(cons Atom Atom)

is a
(Pair U U).

An atom, like 'plum, is an Atom. On the
other hand, Atom is not an Atom, it’s a
type described by U .

75
Let’s think about (Pair Atom Atom).

Is
(cons Atom Atom)

a
(Pair Atom Atom)?

No, it is not, because Atom is a type, not
an Atom.

76 Is U a U?
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No, but U is a type. No expression can
be its own type.†

†It would be possible for U to be a U1, and
U1 to be a U2, and so forth. Thank you, Bertrand
Russell (1872–1970), and thanks, Jean-Yves Gi-
rard (1947–). Here, a single U is enough because
U is not described by a type.

77 Is every expression that is a U also a
type?

Yes, if X is a U , then X is a type. 78 Is every type described by U?

Every U Is a Type

Every expression described by U is a type, but not every
type is described by U .

Every expression described by U is a
type, but not every expression that is a
type is described by U .

79 Is
(cons Atom Nat)

a
(Pair U U)?

Yes, it is.

Define Pear to mean the type of pairs of
Nats.

80 That must be
(claim Pear
U)

(define Pear
(Pair Nat Nat))

From now on, the meaning of Pear is
(Pair Nat Nat).

The name has only four characters, but
the type has fourteen.
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Is Pear the same type as (Pair Nat Nat),
everywhere that it occurs?

81 Yes, by the Commandment of define.

Is (cons 3 5) a Pear? 82 Yes, because
(cons 3 5)

is a
(Pair Nat Nat),

and
Pear

is defined to be precisely that type.

That’s a good point. 83 Is Pear a value?

No. Names defined with define are
neither type constructors nor
constructors. Thus, they are not values.

Is there an eliminator for Pear?

84 Does that mean an eliminator that takes
apart values of type Pear?

Yes.

An eliminator for Pear must allow the
information in values with type Pear to
be used.

85 What does it mean to allow the
information to be used?

An eliminator for Pear that allows the
information in any Pear to be used is one
that applies a function to the two Nat
arguments in the Pear .

86 Okay.

Which functions can be applied to two
Nats as arguments?

87 Here’s one: .
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What about an expression that
exchanges the Nats?

88 How about
(λ (a d)
(cons d a))?

Very good. What about an expression
that extracts the first Nat from a Pear?

89 That must be
(λ (a d)
a).

Very close. Actually, it would be
(λ (a d)
a).

90 Okay. But the expression is correct
except for dimness, right?

Indeed. To get a value of type X† from a
Pear , one must have an expression of
type

(→ Nat Nat
X).

What type does have?
†X can be any type at all.

91 It takes two Nats and produces a Nat, so
it must be

(→ Nat Nat
Nat).

That’s right.

What would be the type of
(λ (a d)
(cons d a)),

when both a and d are Nats?

92 Clearly it must be
(→ Nat Nat
Pear),

which is the same as
(→ Nat Nat
(Pair Nat Nat)).

How can a
λ-expression

be used with a
Pear?
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Definitions Are Unnecessary

Everything can be done without definitions, but they do
improve understanding.

Try this:

(claim Pear-maker
U)

(define Pear-maker
(→ Nat Nat
Pear))

(claim elim-Pear
(→ Pear Pear-maker
Pear))

(define elim-Pear
(λ (pear maker)
(maker (car pear) (cdr pear))))

Is there a way to write the claim of
elim-Pear without using Pear or
Pear-maker?

93 Yes, by replacing Pear-maker and both
Pears with their respective definitions.

(claim elim-Pear
(→ (Pair Nat Nat)

(→ Nat Nat
(Pair Nat Nat))

(Pair Nat Nat)))

The names Pear and Pear-maker were
never necessary. Is the name elim-Pear
necessary?

When are definitions necessary? 94 Never!

That’s right. elim-Pear is the same as the
λ-expression that is its definition.

What is the value of
(elim-Pear
(cons 3 17)
(λ (a d)
(cons d a)))?

95 How about
((λ (pear maker)

(maker (car pear) (cdr pear)))
(cons 3 17)
(λ (a d)
(cons d a)))?
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That’s a good start. But it is not yet a
value.

96
The value is (cons 17 3).

Because elim-Pear means the same thing
as the λ-expression in its definition,

(car
(cons 3 17))

is the same Nat as 3,
(cdr
(cons 3 17))

is the same Nat as 17, and
((λ (a d)

(cons d a))
3 17)

is the same Pear as
(cons 17 3).

What does it mean to add two pears? 97 Is it just adding the first and second
Nats of each pear?

Good guess.

What type does this pearwise addition
have?

98 The type is
(→ Pear Pear
Pear),

right?

How can pearwise addition be defined
using elim-Pear?

99 That’s pretty hard.

Won’t it be necessary to eliminate both
pears because both of their Nats are part
of the result?
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Indeed.

Define pearwise , so that
(pearwise
(cons 3 8)
(cons 7 6))

is the same Pear as
(cons 10 14).

100 First, split anjou and bosc into their
respective parts, then add their first
parts and their second parts.

(claim pearwise
(→ Pear Pear
Pear))

(define pearwise
(λ (anjou bosc)
(elim-Pear anjou
(λ (a1 d1)
(elim-Pear bosc
(λ (a2 d2)
(cons
( a1 a2)
( d1 d2))))))))

It might be a good idea to take a break,
then come back and re-read this chapter.

101 Yes, that does seem like a good idea.

But how can we ever get to chapter 3?

By getting to chapter 3. 102 It’s a good thing recursion is not an
option.

Go eat two tacos de nopales
but look out for the spines.
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This page is intentionally left blank.†

†Recursion can be subtle. Apologies to Guy L. Steele Jr., whose thesis inspired this joke.
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It’s time to play with Pie. 1 Isn’t it impolite to play with your food?

While pie is indeed a delicious food, Pie
is a language, and a little playing around
with it won’t hurt.

2 Let’s get started.

Using Pie is very much like a
conversation: it accepts claims,
definitions, and expressions and it replies
with feedback.

3 What sort of feedback?

For claims and definitions, the feedback
is whether they are meaningful. For
expressions, the feedback is also the
expression’s type and normal form.

4 What if they are not meaningful?

Pie explains what is wrong with them,
and sometimes adds a helpful hint.

5 What might be wrong with an
expression?

Eat your vegetables before the Pie.

Try typing
'spinach

and see what happens.

6 Pie responds with
(the Atom 'spinach).

What does the mean here?

It means that 'spinach is an Atom.

In Pie, an expression must either be a
type or be described by a type. Pie can
find the types of many expressions on its
own, including atoms.

7 What about
(car 'spinach)?
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That expression is not described by a
type because 'spinach is not a pair.

8 Can Pie always determine the type that
describes an expression?

No, sometimes Pie needs help.

In that case, use a the-expression† to tell
Pie which type is intended.

†the-expressions are also referred to as type an-
notations.

9 For example?

Pie cannot determine the type of a
cons-expression that stands alone.

10 Why not? Isn’t it obvious that
(cons 'spinach 'cauliflower)

is a
(Pair Atom Atom)?

It is obvious to us, but later, cons
becomes more magnificent, and that
increased power means that the type
cannot be determined automatically.

11 How, then, can Pie determine that
(cons 'spinach 'cauliflower)

is a pair?

Try this:
(the (Pair Atom Atom)
(cons 'spinach 'cauliflower)).

12 So a the-expression associates an
expression with its type, both in Pie’s
feedback and in the expressions we write.

The Law of the
If X is a type and e is an X , then
(the X e)

is an X .
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There are two kinds of expressions in
Pie: those for which Pie can determine a
type on its own, and those for which Pie
needs our help.

13 Are there other ways to help Pie with
types?

Yes. In chapter 1, claim is required before
its associated define, which tells Pie what
type to use for the definition’s meaning.

14 Why not just use claim and define every
time Pie can’t determine the type of an
expression?

That would work, but keeping all the
names straight might be exhausting.

15 Are there any other ways to help Pie find
a type?

There is one more way. If an expression
is used somewhere where only one type
makes sense, then that type is used.

16 What is an example of this?

While checking that
(the (Pair Atom

(Pair Atom Atom))
(cons 'spinach
(cons 'kale 'cauliflower)))

is described by a type, Pie uses
(Pair Atom Atom)

as a type for
(cons 'kale 'cauliflower).

17 Here, the inner cons doesn’t need a the
because its type is coming from the outer
cons’s type.

Are expressions with the at the top
values?

No.

The value of
(the X e)

is the value of e.

18 So what is the value of
(car
(the (Pair Atom Nat)
(cons 'brussels-sprout 4)))?
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The Commandment of the
If X is a type and e is an X , then
(the X e)

is the same X as e.

The value is one little round
'brussels-sprout.

Now try this:
U

19 Pie said:
U

Why wasn’t it
(the U U)?

U is a type, but it does not have a type.
This is because no expression can be its
own type, as seen in the note in
frame 2:77.

When an expression is a type, but does
not have a type, Pie replies with just its
normal form.

20 Are there any other types that don’t
have the type U?

Yes. (Pair U U), (Pair Atom U), and
(→ U
U)

are all types that do not have U as their
type.

21 Are there any other aspects of Pie that
would be good to know?

This is enough for now. There’s time for
more Pie later.

22 What’s the next step?

Have fun playing. 23 Sounds like a plan!
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Eat your vegetables
and enjoy your Pie.
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Here is the dashed definition of gauss
from frame 2:59.
(define gauss
(λ (n)
(which-Nat n
0
(λ (n-1)
( (add1 n-1) (gauss n-1))))))

Now, it is time to define gauss properly,
without explicit recursion.

1 Does that mean that we are about to
define gauss like this?

(define gauss
(λ (n)

. . .without gauss here? ))

Why are recursive definitions not an
option?

2 Because they are not an option.

Exactly.

But some recursive definitions always
yield a value.

3 Like gauss, right?

That’s right.

What is the normal form of (gauss 0)?

4 It is zero.

What is the value of (gauss 1)? 5 It is 1 because
1. (gauss (add1 zero)) is the same as
2. ( 1 (gauss zero)) is the same as†
3. (add1 (gauss zero))
†When expressions are vertically aligned with a

bar to their left, assume that “is the same as” follows
all but the last one. This kind of chart is called a
“same as” chart.
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Is that the value? 6

Is there more to do?
3. (add1 (gauss zero))
4. (add1 zero)

Sameness
If a “same as” chart could show that two expressions are
the same, then this fact can be used anywhere without
further justification. “Same As” charts are only to help
build understanding.

Actually,
(add1 (gauss zero))

is already a value. Why?

7 Oh, because it has the constructor add1
at the top.

Exactly.

What is the normal form of (gauss 1)?

8
It is (add1 zero).

Why does (gauss 2) have a normal form?
9

Because (gauss 2)’s normal form relies
only on the normal form of (gauss 1),
which has a normal form, and the
normal form of .

Does have a normal form?

does, once it’s defined. Assume that
does, for now.

10 All right.
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Why does (gauss 3) have a normal form?
11

Because (gauss 3)’s normal form relies
only on the normal form of (gauss 2),
which has a normal form, and the
normal form of . For now, we’re
assuming has a normal form.

Why does (gauss (add1 k)) have a
normal form for any Nat k?

12 Because
(gauss (add1 k))’s normal form

relies only on
(gauss k)’s normal form, k’s value, and

the normal form of .

k’s value must either be zero or have
add1 at the top. We already know that

(gauss 0) has a normal form,
and we just checked that

(gauss (add1 k)) has a normal form for
any Nat k.

A function that assigns a value to every
possible argument is called a total
function.

Both and gauss are total.

13 Are there any functions that aren’t
total?

Total Function
A function that always assigns a value to every possible
argument is called a total function.
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Not here. In Pie, all functions are total.†

What is an eliminator?
†Because all functions are total, the order in

which subexpressions are evaluated does not matter.
If some functions were not total, then the order of
evaluation would matter because it would determine
whether or not functions were applied to the argu-
ments for which they did not have values.

14 An eliminator takes apart values built by
constructors.

What does it mean to take apart a Nat? 15 Doesn’t which-Nat take apart a Nat?

This means that which-Nat is an
eliminator for Nat. But Nats that have
add1 at the top have a smaller Nat
tucked under, and which-Nat does not
eliminate the smaller Nat.

16 Is there a way to eliminate the smaller
Nat?

One way to eliminate the smaller Nat is
with iter-Nat.

17 What is iter-Nat?

An iter-Nat-expression looks like this:
(iter-Nat target
base
step).

Like which-Nat, when target is zero, the
value of the iter-Nat-expression is the
value of base.

18 How is iter-Nat unlike which-Nat?

Unlike which-Nat, when target is
(add1 n), the value of the
iter-Nat-expression is the value of

(step
(iter-Nat n
base
step)).

19 So each add1 in the value of target is
replaced by a step, and the zero is
replaced by base.
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The Law of iter-Nat
If target is a Nat, base is an X , and step is an
(→ X
X),

then
(iter-Nat target
base
step)

is an X .

The First Commandment of iter-Nat
If (iter-Nat zero

base
step)

is an X , then it is the same X as base.

The Second Commandment of iter-Nat
If (iter-Nat (add1 n)

base
step)

is an X , then it is the same X as
(step
(iter-Nat n
base
step)).
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That’s right.

What is the normal form of
(iter-Nat 5
3
(λ (smaller)
(add1 smaller)))?

20 It is 8 because add1 applied five times
successively to 3 is 8:

(add1
(add1
(add1
(add1
(add1 3))))).

Is the iter-Nat-expression’s type the same
as base’s type?

21 It must be, because the value of the
iter-Nat-expression is the value of base
when target is zero.

Let’s use X as a name for base’s type.

What is step’s type?

22 step is applied to base, and it is also
applied to an almost-answer built by
step. So step must be an

(→ X
X).

Just as with which-Nat in frame 2:45, the
names target, base, and step are
convenient ways to refer to iter-Nat’s
arguments.

What are the target, base, and step in
this iter-Nat-expression?

(iter-Nat 5
3
(λ (k)
(add1 k)))

23 The target is
5,

The base is
3,

and the step is
(λ (k)
(add1 k)).

74 Chapter 3



Thus far, we have referred to as if it
were completely understood, and
assumed that it has a normal form, but
there is no definition for .

What should ’s type be?

24 takes two Nats and returns a Nat.
(claim
(→ Nat Nat
Nat))

That’s right.

If recursion were an option, then this
would be a proper definition.

(define
(λ (n j)
(which-Nat n
j
(λ (n-1)

(add1 ( n-1 j) ) ))))

How can be defined with iter-Nat?

25 Defining using iter-Nat requires a base
and a step. The base is j because of this
“same as” chart:

1. ( zero j)
2. j

Is there a good way to find the step?

The step is based on the wrapper box in
the recursive version of . It describes
how to change an almost-answer, n-1,
into an answer.

Replace the gray box (which contains the
recursion) with the argument to the step
as the almost-answer. Remember the
white box.

26 Here goes.

(claim step-
(→ Nat
Nat))

(define step-
(λ ( n-1)

(add1 n-1 ) ))
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We can’t define a new name unless all
the names in both the type and the
definition are already defined.†

†If definitions could refer to each other, then
we could not guarantee that every defined function
would be a total function.

27 And refers to step- , which is now
defined. This definition deserves a solid
box!
(define
(λ (n j)
(iter-Nat n
j
step- )))

Yes, is now defined.

What is ( (add1 zero) 7)?

28 It is 8 because
1. ( (add1 zero) 7)
2. (iter-Nat (add1 zero)

7
step- )

3. (step-
(iter-Nat zero
7
step- ))

4. (add1
(iter-Nat zero
7
step- ))

5. (add1 7),
which is 8.

Can iter-Nat be used to define gauss? 29 iter-Nat shows a way to repeatedly
eliminate the smaller Nat tucked under
an add1.

Eliminating the smaller Nat . . . this
sounds like the approach that gauss
follows.
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Close, but the step doesn’t have enough
information. gauss needs an eliminator
that combines the expressiveness of both
which-Nat and iter-Nat. This eliminator
is called rec-Nat.

30 What is rec-Nat?

The step for rec-Nat is applied to two
arguments: the smaller Nat tucked under
the add1, and the recursive answer on the
smaller Nat. This is the approach used in
the definition of gauss in frame 2:59.

This is the rec-Nat pattern.†
†The rec-Nat pattern is also referred to as primi-

tive recursion. Thank you, Rózsa Péter (1905–1977),
Wilhelm Ackermann (1896–1962), Gabriel Sudan
(1899–1977), and David Hilbert (1862–1943).

31 How can gauss be defined using rec-Nat?

In this frame, there are two definitions of
gauss: the dashed box from frame 2:59
and a version using rec-Nat.

What are the differences?
(define gauss
(λ (n)
(which-Nat n
0
(λ (n-1)

( (add1 n-1) (gauss n-1) ) ))))

(define gauss
(λ (n)
(rec-Nat n
0
(λ (n-1 gaussn-1)

( (add1 n-1) gaussn-1 ) ))))

32 There are three differences:

1. which-Nat is replaced by rec-Nat,

2. the inner λ-expression has one
more variable, gaussn-1, and

3. the recursion (gauss n-1) is replaced
by the almost-answer gaussn-1.
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The names n-1 and gaussn-1 are chosen to
be suggestive of what they mean, but
they are just variable names.

The arguments to rec-Nat have the same
special names as iter-Nat: they are
always called target, base, and step.

33 How can we determine the values of
rec-Nat-expressions?

As with iter-Nat, if the target is zero,
then the value of the rec-Nat-expression
is the value of the base.

34 What about when the target has add1 at
the top?

which-Nat applies its step to the smaller
Nat tucked under the add1.

iter-Nat applies its step to an
iter-Nat-expression with the same base
and step, but with the smaller Nat
tucked under add1 as the new target.

How could these be combined?

35 Here is a guess.

The step is applied to the smaller Nat.
The step is, however, also applied to a
rec-Nat-expression with the same base
and step, but with that very same
smaller Nat as the target.

Good guess. When rec-Nat is used with
a non-zero Nat as the target, the target
shrinks by removing an add1 each time.
Once again, the base and step do not
change.

What is the value of
(rec-Nat (add1 zero)
0
(λ (n-1 almost)
(add1
(add1 almost))))?

36 It is the step applied to zero and the new
rec-Nat expression. That is,

((λ (n-1 almost)
(add1
(add1 almost)))

zero
(rec-Nat zero
0
(λ (n-1 almost)
(add1
(add1 almost))))).

78 Chapter 3



The resulting expression in the preceding
frame is not a value, but it is the same
as the original one.

What is the value?

37 It is
(add1
(add1
(rec-Nat zero
0
(λ (n-1 almost)
(add1
(add1 almost)))))),

which is a value because it has add1 at
the top.

What is its normal form? 38 It is
(add1
(add1 0)).

The target is zero and the base is 0.

A rec-Nat-expression is an expression
only if the target is a Nat.

39 What type should the base and step
have?

The base must have some type. Let’s call
it X , again. X can be any type, but the
rec-Nat-expression has the same type as
the base—namely X .

40 Is that all?

No.

If the base is an X , then the step must
be an

(→ Nat X
X).

Why is this the right type for the step?

41 The step is applied to two arguments:
the first is a Nat because it is tucked
under an add1 in a target. The second
argument is almost. almost is an X
because almost is also built by rec-Nat.
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How does this relate to the step’s type in
which-Nat and iter-Nat?

42 Like which-Nat, rec-Nat’s step accepts
the smaller Nat tucked under the target’s
add1. Like iter-Nat, it also accepts the
recursive almost-answer.

Here is a function that checks whether a
Nat is zero.
(claim step-zerop
(→ Nat Atom
Atom))

(define step-zerop
(λ (n-1 zeropn-1)
'nil))

(claim zerop
(→ Nat
Atom))

(define zerop
(λ (n)
(rec-Nat n
't
step-zerop)))†

†We use 't and 'nil as two arbitrary values. This
may be familiar to Lispers (Thank you, John Mc-
Carthy (1927–2011)), but zerop is called zero? in
Scheme (Thanks, Gerald J. Sussman (1947–) and
Guy L Steele (1954–)).

43 Why use rec-Nat, which is recursive, to
define something that only needs to
determine whether the top constructor is
zero or add1? After all, which-Nat would
have been good enough.

which-Nat is easy to explain, but rec-Nat
can do anything that which-Nat (and
iter-Nat) can do.

Why are the λ-variables in step-zerop
called n-1 and zeropn-1?

44 The name n-1 is once again chosen to
suggest one less than n because it is one
less than the target Nat, that is, the Nat
expression being eliminated. The name
zeropn-1 suggests (zerop n-1).
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The step is merely a λ-expression, so any
other unused variable names would work,
but this style of naming variables in
steps is used frequently.

Both arguments to step-zerop are
unused, which is why they are dim.
Thus, the definition only seems to be
recursive; in fact, it is not.

45 What is the point of a λ-expression that
does not use its arguments?

The step used with rec-Nat always takes
two arguments, though it need not
always use them.

What is the value of (zerop 37)?

46 Let’s see.
1. (zerop (add1 36))
2. (rec-Nat (add1 36)

't
step-zerop)

3. (step-zerop 36
(rec-Nat 36
't
step-zerop))

4. 'nil
The value is determined immediately.
The value for 36, which is (add1 35), is
not necessary, so there’s no reason to
find it.

We need not evaluate expressions until
their values actually become necessary.
Otherwise, it would take a lot of work to
evaluate the argument to step-zerop

(rec-Nat 36
't
step-zerop),

so the “same as” chart would have at
least 105 more lines.

47 Sometimes laziness is a virtue.
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Is (zerop 37) the same as (zerop 23)? 48 Yes indeed.
1. 'nil
2. (step-zerop 22

(rec-Nat 22
't
step-zerop))

3. (rec-Nat (add1 22)
't
step-zerop)

4. (zerop (add1 22))

Here is the step for gauss.

(claim step-gauss
(→ Nat Nat
Nat))

(define step-gauss
(λ (n-1 gaussn-1)
( (add1 n-1) gaussn-1)))

49 This definition uses the naming
convention from frame 44.

Yes, it does.

Another advantage of defining a step is
that its type is written explicitly, rather
than implied by its use in rec-Nat.

50 The explicit type does make it easier to
read and understand the definition.

λ-variables in a step like zeropn-1 and
gaussn-1 are almost the answer, in the
sense of frame 2:56.

51 Okay.

What is the solid-box definition of gauss?
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Here it is.
(define gauss
(λ (n)
(rec-Nat n
0
step-gauss)))

What is the base?

52 The base is the second argument to
rec-Nat. In this case, it is 0, which is a
Nat.

What is the step? 53 It is step-gauss.

Indeed it is. 54
What is (gauss zero) using this
definition?

It is 0 because
(rec-Nat zero
0
step-gauss)

is the same as the second argument to
rec-Nat, which is 0.

Here is a start for finding the value of
(gauss (add1 zero)).

1. (gauss (add1 zero))
2. (step-gauss zero

(rec-Nat zero
0
step-gauss))

3. ( (add1 zero)
(rec-Nat zero
0
step-gauss))

Now finish finding the value.

55 Here we go.
4. (iter-Nat (add1 zero)

(rec-Nat zero
0
step-gauss)

step- )
5. (step-

(iter-Nat zero
(rec-Nat zero
0
step-gauss)

step- ))
6. (add1

(iter-Nat zero
(rec-Nat zero
0
step-gauss)

step- )),

,

which is a value because it has add1 at
the top.
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Is that value normal? 56 No, but this chart finds its normal form.
7. (add1

(rec-Nat zero
0
step-gauss))

8. (add1 0),
which is indeed normal.

Why is rec-Nat always safe to use? 57 That’s a good question.

When the target has add1 at its top,
then rec-Nat is recursive. If recursion is
not an option, why is this acceptable?

If the step does not rely on the
almost-answer, as in frame 43, then a
value has already been reached. If the
step does rely on the almost-answer,
then the recursion is guaranteed to reach
the base, which is always a value or an
expression that becomes a value.

58 How do we know that?

Because every target Nat is the same as
either zero or (add1 n), where n is a
smaller Nat.

59 How do we know that n is smaller?

The only way that it could be the same
or larger is if the target Nat were built
from infinitely many add1s. But because
every function is total, there is no way to
do this. Likewise, no step can fail to be
total, because here all functions are
total, and each step applies a function.

60 So why can’t we use this style of
reasoning for any recursive definition?

84 Chapter 3



This style of reasoning cannot be
expressed with our tools. But once we
are convinced that rec-Nat with a total
step is a way to eliminate any target Nat,
we no longer need to reason carefully
that each new definition is total.†

†Loosely speaking: we can’t, but even if we were
able to, it would be exhausting.

61 Are there more interesting examples of
definitions using rec-Nat?

It can be used to define ∗† to mean
multiplication.

In other words, if n and j are Nats, then
(∗ n j)

should be the product of n and j.
†∗ is pronounced “times.”

62 ∗ takes two Nats and their product is a
Nat. So here is ∗’s type.

(claim ∗
(→ Nat Nat
Nat))

At each step, adds one to the answer
so far. What does ∗ do at each step?

63 ∗ adds j, its second argument, to the
almost-answer.

Here is make-step-∗, which yields a step
function for any j.

(claim make-step-∗
(→ Nat
(→ Nat Nat
Nat)))

(define make-step-∗
(λ (j)
(λ (n-1 ∗n-1)
( j ∗n-1))))

64 That doesn’t look like the preceding
steps.
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No matter what j is, make-step-∗
constructs an appropriate step. This step
takes two arguments because steps used
with rec-Nat take two arguments, as in
step-zerop from frame 46.

Now define ∗.

65 Okay.

The argument to make-step-∗ is j, which
is added to the product at each step.
The base is 0 because multiplying by
zero is 0.
(define ∗
(λ (n j)
(rec-Nat n
0
(make-step-∗ j))))

It may look as though make-step-∗ is
doing something new. It is a
λ-expression that produces a new
λ-expression. Instead of this two-step
process, it is possible to collapse the
nested λs into a single λ.

(claim step-∗
(→ Nat Nat Nat
Nat))

(define step-∗
(λ (j n-1 ∗n-1)
( j ∗n-1)))

make-step-∗ produces a step for any
given j. And, despite their seeming
difference, make-step-∗ and step-∗ have
the same definition.

66 That can’t be the same definition. It has
a three-argument λ-expression.
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In fact, all λ-expressions expect exactly
one argument.

(λ (x y z)
( x ( y z)))

is merely a shorter way of writing
(λ (x)
(λ (y)
(λ (z)
( x ( y z))))).

67 Does that mean that
(→ Nat Nat Nat
Nat)

is also a shorter way of writing
something?

It is a shorter way of writing
(→ Nat
(→ Nat
(→ Nat
Nat))).

68 If a function takes three arguments, it is
possible to apply the function to just one
of them.

Is it also possible to apply the function
to just two arguments?

If f is an
(→ Nat Nat Nat
Nat)

then
(f x y z)

is merely a shorter way of writing
((f x y) z),

which is a shorter way of writing
(((f x) y) z).

69 Does this mean that every function takes
exactly one argument?
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Indeed. Every function takes exactly one
argument.

Defining functions that take multiple
arguments as nested one-argument
functions is called Currying.†

†Thank you, Haskell B. Curry (1900–1982) and
Moses Ilyich Schönfinkel (1889–1942).

70 Now the definition of ∗ deserves a box.
(define ∗
(λ (n j)
(rec-Nat n
0
(step-∗ j))))

Even though step-∗ looks like a
three-argument λ-expression, it can be
given just one argument. rec-Nat expects
that its step is a function that would get
exactly two arguments.

Here are the first five lines in the chart
for the normal form of (∗ 2 29).

1. (∗ 2 29)
2. ((λ (n j)

(rec-Nat n
0
(step-∗ j)))

2 29)
3. (rec-Nat (add1

(add1 zero))
0
(step-∗ 29))

4. ((step-∗ 29)
(add1 zero)
(rec-Nat (add1 zero)
0
(step-∗ 29)))

5. ((λ (n-1 ∗n-1)
( 29 ∗n-1))

(add1 zero)
(rec-Nat (add1 zero)
0
(step-∗ 29)))

Now, find its normal form.

71 Ah, Currying is involved.
6. ( 29

(rec-Nat (add1 zero)
0
(step-∗ 29)))

7. ( 29
((step-∗ 29)
zero
(rec-Nat zero
0
(step-∗ 29))))

8. ( 29
( 29

(rec-Nat zero
0
(step-∗ 29))))

9. ( 29
( 29 0))

10. 58
Are any steps left out of this chart?
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The Law of rec-Nat
If target is a Nat, base is an X , and step is an
(→ Nat X
X)

then
(rec-Nat target
base
step)

is an X .

The First Commandment of rec-Nat
If (rec-Nat zero

base
step)

is an X , then it is the same X as base.

The Second Commandment of rec-Nat
If (rec-Nat (add1 n)

base
step)

is an X , then it is the same X as
(step n
(rec-Nat n
base
step)).
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Yes, making ( 29 0) and the resultant
( 29 29) normal.†

†This chart saves paper, energy, and time.

72 Thanks.

At first, this chart seemed like it would
be tedious.

That’s just right.

What is a good name for this definition?

(claim step-
(→ Nat Nat
Nat))

(define step-
(λ (n-1 almost)
(∗ (add1 n-1) almost)))

(claim
(→ Nat
Nat))

(define
(λ (n)
(rec-Nat n
0
step- )))

73 This function always returns 0.

Very observant.

A shortcoming of types like Nat is that
they don’t say anything about which Nat
was intended. Later, we encounter more
powerful types that allow us to talk
about particular Nats.†

†Actually, the definition in frame 73 was sup-
posed to be factorial. The oversight, however, sur-
vived unnoticed in more drafts than the authors
would like to admit. We leave the task of correcting
it to the reader.

74 So these powerful types prevent defining
five to be 9 as in frame 2:36?
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Absolutely not.

Types do not prevent foolishness like
defining five to be 9. We can, however,
write some of our thoughts as types.

75 Interesting.

Go eat (+ 2 2) bananas, and rest up.
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In frame 2:70, we defined Pear as

(claim Pear
U)

(define Pear
(Pair Nat Nat))

Pear ’s eliminator was defined using car
and cdr.

1 And . . .

What must an eliminator for Pear do? 2
An eliminator must expose (or unpack)
information in a Pear .

What about Pair’s eliminator? What
must it do?

3 An eliminator for Pair must expose
information in a Pair.

That’s close.

As seen in frame 1:22, Pair alone is not
an expression, however

(Pair Nat Nat)
is an expression and it has an eliminator.

(Pair Nat Atom)
also has an eliminator.

4 Here’s another try: an eliminator for
(Pair Nat Nat)

must expose information in a particular
(Pair Nat Nat),

and an eliminator for
(Pair Nat Atom)

must expose information in a particular
(Pair Nat Atom).

But this would imply that there are lots
of eliminators for Pair, because it is
always possible to nest them more
deeply, as in frame 2:36.

5 That sounds like lots of names to
remember.
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It would be!

As it turns out, there is a better way. It
is possible to provide an eliminator for
(Pair A D), no matter what A and D are.

6 No matter what? Even if A were
'apple-pie?

Okay, not absolutely anything.

Based on frame 1:54, (Pair A D) is not a
type unless A and D are types. That is,
A must be a type and D must be a type.

7 Whew! What does that eliminator look
like?

Here’s an example.

(claim kar
(→ (Pair Nat Nat)
Nat))

(define kar
(λ (p)
(elim-Pair
Nat Nat
Nat
p
(λ (a d)
a))))

Because elim-Pair has not yet been
defined, the definition of kar is in a
dashed box, however, nothing else is the
matter with it.

8 Why does elim-Pair have so many
arguments?
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In this definition, elim-Pair has the type
Nat as its first three arguments. The first
two specify the types of the car and the
cdr of the Pair to be eliminated.† The
third Nat specifies that the inner
λ-expression results in a Nat.

†Thus, the types of the arguments a and d in
the inner λ-expression are also Nat.

9 What does the inner λ-expression mean?

The inner λ-expression describes how to
use the information in p’s value. That
information is the car and the cdr of p.

10 Why is d dim?

The argument name d is dim because it
is declared in the inner λ-expression, but
it is not used, just as in frame 2:47.

Now define a similar function kdr that
finds the cdr of a pair of Nats.

11 It’s nearly the same as kar .

(claim kdr
(→ (Pair Nat Nat)
Nat))

(define kdr
(λ (p)
(elim-Pair
Nat Nat
Nat
p
(λ (a d)
d))))

This time, a is dim because it is not used
in the inner λ-expression, while d is dark
because it is used. Because elim-Pair is
not yet defined, kdr is in a dashed box,
just like kar .
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That’s right.

Write a definition called swap that swaps
the car and cdr of a (Pair Nat Atom).

12 Here is swap’s type.

(claim swap
(→ (Pair Nat Atom)
(Pair Atom Nat)))

Now define swap. 13 And here is swap’s definition. Once
again, it is in a dashed box, like kar and
kdr .
(define swap
(λ (p)
(elim-Pair
Nat Atom
(Pair Atom Nat)
p
(λ (a d)
(cons d a)))))

In general, elim-Pair is used like this:
(elim-Pair
A D
X
p
f),

where p is a (Pair A D) and f determines
the value of the expression from the car
and the cdr of p. This value must have
type X .

What is elim-Pair ’s type?

14 Here is a guess. It could be
(→ A D

X
(Pair A D)
(→ A D
X)

X)
because A, D, and X are the first three
arguments, the fourth argument is a
(Pair A D), and the fifth argument is a
maker for X based on an A and a D.

But what are A, D, and X in that
expression?

15 Are A, D, and X the first three
arguments to elim-Pair?
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Do they refer to types that are already
defined?

16 No. They refer to whatever the
arguments are.

Names that occur in an expression must
refer to either a definition or to an
argument named by a λ. There is clearly
no λ in that expression, and neither A
nor D nor X are defined.

17 This must mean that the expression in
frame 14 is not, in fact, a type.

Indeed.

The thought process makes sense,
however. Recall what it means to be an

(→ Y
X).

18 An
(→ Y
X)

is a λ-expression that, when given a Y ,
results in an X . It can also be an
expression whose value is such a
λ-expression, right?

Are Y and X types? 19 They must be. Otherwise,
(→ Y
X)

would not be a type.

In the proposed type for elim-Pair , are A,
D, and X type constructors?

20 No, they are not the same kind of
expression as Nat and Atom, because
they can be different each time elim-Pair
is applied, but Nat is always Nat.

In the proposed type for elim-Pair , are A,
D, and X names that are defined to
mean types?

21 No, because again, they can be different
each time elim-Pair is applied, but once a
name is defined, it always means the
same thing.
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The eliminator must be able to talk
about any types A, D, and X .

22 It sounds like → can’t do the job.

It can’t, but Π† can.
†Π is pronounced “pie,” and it can optionally be

written Pi.

23 What does Π mean?

Here’s an example.

(claim flip
(Π ((A U)

(D U))
(→ (Pair A D)
(Pair D A))))

(define flip
(λ (A D)
(λ (p)
(cons (cdr p) (car p)))))

24 Does that mean that a λ-expression’s
type can be a Π-expression?

Good question.

It can.

25 If both Π and → can describe
λ-expressions, how do they differ?

What is the value of (flip Nat Atom)?
26 It must be the λ-expression

(λ (p)
(cons (cdr p) (car p)))

because flip is defined to be a
λ-expression and it is applied to two
arguments, Nat and Atom.

What is the value of
((flip Nat Atom) (cons 17 'apple))?

27 It is
(cons 'apple 17),

which is a
(Pair Atom Nat).
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The difference between Π and → is in
the type of an expression in which a
function is applied to arguments.

(flip Nat Atom)’s type is
(→ (Pair Nat Atom)
(Pair Atom Nat)).

This is because when an expression
described by a Π-expression is applied,
the argument expressions replace the
argument names in the body of the
Π-expression.

28 How does the body of a Π-expression
relate to the body of a λ-expression?

Both Π-expressions and λ-expressions
introduce argument names, and the body
is where those names can be used.

29 What are argument names?

In this Π-expression,
(Π ((A U)

(D U))
(→ (Pair A D)
(Pair D A))),

the argument names are A and D.
Π-expressions can have one or more
argument names, and these argument
names can occur in the body of the
Π-expressions.

30 What is the body of a Π-expression?
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In this Π-expression,
(Π ((A U)

(D U))
(→ (Pair A D)
(Pair D A))),

the body is
(→ (Pair A D)
(Pair D A)).

It is the type of the body of the
λ-expression that is described by the
body of the Π-expression.

31 What do the A and the D refer to in the
Π-expression’s body?

The Intermediate Law of Application

If f is a
(Π ((Y U))
X)

and Z is a U , then
(f Z)

is an X
where every Y has been consistently replaced by Z.

The A and the D in the body refer to
specific types that are not yet known.
No matter which two types A and D are
arguments to the λ-expression that is
described by the Π-expression, the result
of applying that λ-expression is always
an

(→ (Pair A D)
(Pair D A)).

32 Does that mean that the type of
(flip Atom (Pair Nat Nat))

is
(→ (Pair Atom

(Pair Nat Nat))
(Pair (Pair Nat Nat)
Atom))?
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That’s right.

Why is that the case?

33 The variables A and D are replaced with
their respective arguments: Atom and
(Pair Nat Nat).

Are
(Π ((A U)

(D U))
(→ (Pair A D)
(Pair D A)))

and
(Π ((Lemon U)

(Meringue U))
(→ (Pair Lemon Meringue)
(Pair Meringue Lemon)))

the same type?

34 Yes, because consistently renaming
variables as in frame 2:21 does not
change the meaning of anything.

Are
(Π ((A U)

(D U))
(→ (Pair A D)
(Pair D A)))

and
(Π ((A U)

(D U))
(→ (Pair

(car
(cons A D))

(cdr
(cons A D)))

(Pair D A)))
the same type?

35 Yes, because
(car
(cons A D))

and A are the same type, and
(cdr
(cons A D))

and D are the same type.

Easy as Pie 101



Could we have defined flip this way?

(claim flip
(Π ((A U)

(D U))
(→ (Pair A D)
(Pair D A))))

(define flip
(λ (C A)
(λ (p)
(cons (cdr p) (car p)))))

36 Here’s a guess.

In this definition, the names in the outer
λ-expression are different from the names
in the Π-expression. That seems like it
should not work. A is in the wrong place,
and C is neither A nor D.

The proposed definition of flip in
frame 36 is allowed. Like defining five to
mean 9, however, it is foolish.

37 Why is it allowed?

The names in the outer λ need not
match the names in the Π-expression.
The C in the outer λ-expression matches
the A in the Π-expression because they
are both the first names. The A in the
outer λ-expression matches the D in the
Π-expression because they are both the
second names. What matters is the order
in which the arguments are named.†

What does p in the inner λ-expression
match?

†Even though it is not wrong to use names that
do not match, it is confusing. We always use match-
ing names.

38
The p matches the (Pair A D) after the
→, which gives the inner λ-expression’s
argument type.

How can the C and the A in the
definition in frame 36 be consistently
renamed to improve the definition?

39 First, the A should be renamed to D.
Then, the C can be renamed to A.

Isn’t this the definition in frame 24?
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Is it now possible to define a single
eliminator for Pair?

40 Yes. Shouldn’t the type be
(Π ((A U)

(D U)
(X U))

(→ (Pair A D)
(→ A D
X)

X))?
It looks a lot like the type in frame 14.

That’s right.

What is the definition of elim-Pair?

41 How about this?
(claim elim-Pair
(Π ((A U)

(D U)
(X U))

(→ (Pair A D)
(→ A D
X)

X)))
(define elim-Pair
(λ (A D X)
(λ (p f )
(f (car p) (cdr p)))))

Now kar deserves a solid box.
(define kar
(λ (p)
(elim-Pair
Nat Nat
Nat
p
(λ (a d)
a))))

42 And so does kdr .
(define kdr
(λ (p)
(elim-Pair
Nat Nat
Nat
p
(λ (a d)
d))))
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So does swap. 43 Right.

(define swap
(λ (p)
(elim-Pair
Nat Atom
(Pair Atom Nat)
p
(λ (a d)
(cons d a)))))

Even though a Π-expression can have
any number of argument names, it is
simplest to first describe when a
one-argument Π-expression is a type.

To be a
(Π ((Y U))
X)

is to be a λ-expression that, when applied
to a type T , results in an expression with
the type that is the result of consistently
replacing every Y in X with T .

44 Forgetting something?

It can also be an expression whose value
is such a λ-expression.

45 It is important not to forget evaluation.

Is this a complete description of
Π-expressions?

No, not yet.

Based on one-argument Π-expressions,
what does it mean to be a

(Π ((Y U) (Z U))
X)?

46 It must mean to be a λ-expression or an
expression that evaluates to a
λ-expression that, when applied to two
types T and S , results in an expression
whose type is found by consistently
replacing every Y in X with T and every
Z in the new X with S .
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Π-expressions can have any number of
arguments, and they describe
λ-expressions that have the same number
of arguments.

What expressions have the type
(Π ((A U))
(→ A
(Pair A A)))?

47 How about this one?
(λ (A)
(λ (a)
(cons a a)))?

Here is a name for a familiar expression.†

(claim twin-Nat
(→ Nat
(Pair Nat Nat)))

(define twin-Nat
(λ (x)
(cons x x)))

What is the value of
(twin-Nat 5)?
†It is familiar from frame 2:19.

48 It is
(cons 5 5).

Here is a very similar definition.

(claim twin-Atom
(→ Atom
(Pair Atom Atom)))

(define twin-Atom
(λ (x)
(cons x x)))

What is the value of
(twin-Atom 'cherry-pie)?

49 It is
(cons 'cherry-pie 'cherry-pie).

What is the matter with these
definitions? Why don’t they deserve
solid boxes?
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There is nothing specific to Nat or Atom
about

(λ (a)
(cons a a)).

Instead of writing a new definition for
each type, Π can be used to build a
general-purpose twin that works for any
type.

50 Here is the general-purpose twin.

(claim twin
(Π ((Y U))
(→ Y
(Pair Y Y ))))

(define twin
(λ (Y )
(λ (x)
(cons x x))))

What is the value of (twin Atom)?
51

(twin Atom) is
(λ (x)
(cons x x)).

What is (twin Atom)’s type?
52 Consistently replacing every Y in

(→ Y
(Pair Y Y ))

with Atom results in
(→ Atom
(Pair Atom Atom)).

What is the relationship between
twin-Atom’s type and (twin Atom)’s
type?

53 twin-Atom’s type and (twin Atom)’s type
are the same type.

Next, define twin-Atom using the
general-purpose twin.

(claim twin-Atom
(→ Atom
(Pair Atom Atom)))

54 It can be done using the technique from
frame 27.
(define twin-Atom
(twin Atom))
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Is
(twin-Atom 'cherry-pie)

the same
(Pair Atom Atom)

as
((twin Atom) 'cherry-pie)?

55 Yes, and its value, but also its normal
form is

(cons 'cherry-pie 'cherry-pie).

There’s twice as much for dessert!

Now go to your favorite confectionary shop
and share a delicious cherry Π.

Ceci n’est pas une serviette.†

†Thank you, René François Ghislain Magritte (1898–1967).
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How was that Π? 1 Delicious. A napkin would have made
eating less messy, though.

Before we begin, have you

• cooked ratatouille,

• eaten two pieces of cherry pie,

• tried to clean up with a picture of
a napkin,

• understood rec-Nat, and

• slept until well-rested?

2 That’s quite the list of expectations.

Yes, but they’re great expectations.

(claim expectations
(List Atom))

(define expectations
(:: 'cooked
(:: 'eaten
(:: 'tried-cleaning
(:: 'understood
(:: 'slept nil))))))

3 This is confusing in these ways:

• :: has not yet been described,

• the type constructor List has not
been described, and

• the atom 'nil has been used as part
of step-zerop.

Is 'nil the same as nil in frame 3? 4 No, it isn’t, because the nil in frame 3 is
not an Atom—it does not begin with a
tick mark.

Is nil an expression?

List is a type constructor. If E is a type,
then (List E)† is a type.

†Pronounced “list of entries of type E ,” or simply
“list of E .”

5
What does it mean to be a (List E),
then?
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The Law of List
If E is a type,
then (List E) is a type.

Is nil a (List Atom)?
6 nil looks like it plays the role of the

empty list in frame 3.

Yes, nil is a (List Atom).

Is nil a (List Nat)?

7
Not likely, because nil is a (List Atom).

Actually, nil is a (List Nat) as well.

Is nil a (List (List Atom))?

8
Yes, because (List Atom) is a type, so
(List (List Atom)) is also a type. What
about (List (Pair Nat Atom))?

Is nil one of those, too?

Yes, it is. 9 Does that mean that nil is a
(List 'potato)

as well?

No, it is not, because 'potato is not a
type.

10 Is it for the same reason that
(Pair 'olive 'oil)

in frame 1:52 is not a type?

Yes.

(List 'potato) is not a type, because
'potato is an Atom, not a type.

11 Okay. This means that if E is a type,
then (List E) is a type, right?
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And if (List E) is a type,
then nil is a (List E).

12 All right.

Is nil a constructor?

Yes, nil is a constructor.

Guess the other constructor of (List E).

13 Based on expectations, :: is the other
constructor.

How does ::† differ from cons?

The constructor :: builds a List . . .
†For historical reasons, :: is also pronounced

“cons” or “list-cons.”

14
. . . but the constructor cons builds a
Pair.

It is possible to have a list of pairs, or a
pair of lists.

When is (:: e es†) a (List E)?
†The plural of e is es and is pronounced ease.

es is used because the rest of a list could have any
number of entries.

15
Well, es must be a (List E). es could be
nil, and nil is a (List E).

Can e be anything at all? 16 Of course!

Of course not! Try again. 17 Here’s a guess: e must be an E because
E has not yet been used for anything
else.
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Right answer; wrong reason.

e must be an E because in order to use
an eliminator for (List E), we must know
that everything in the list is an E .

Define rugbrød† to be the ingredients of
Danish rye bread.

†Pronounced [ˈʁuˌbʁ̥œðˀ]. If this is no help, ask
a Dane.

18 What are the ingredients?

The ingredients in rugbrød are:

• whole-grain rye flour,

• rye kernels, soaked until soft,

• pure water,

• active sourdough, and

• salt.

19 What type should rugbrød have?

(List Atom), because each ingredient is
an Atom.

20 Okay, here goes.

(claim rugbrød
(List Atom))

(define rugbrød
(:: 'rye-flour
(:: 'rye-kernels
(:: 'water
(:: 'sourdough
(:: 'salt nil))))))

Very good. 21 Yes, rugbrød is quite tasty! It does need
something on top, though.
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Let’s get back to that.

How does rugbrød differ from 5?

22 They appear to have nothing in
common. 5 is made up of add1 and zero.
Also, 5 is not tasty.

How many ingredients does rugbrød
contain?

23 Five.

In addition to only requiring five
ingredients, rugbrød doesn’t even need
kneading.

24 Does :: have something to do with add1,
then?

:: makes a list bigger, while add1 makes
a Nat bigger.

Does nil have something to do with zero
as well?

25 nil is the smallest list, while zero is the
smallest Nat.

Does the eliminator for lists look like one
for Nats?

The Law of nil
nil is a (List E), no matter what type E is.

The Law of ::
If e is an E and es is a (List E),
then (:: e es) is a (List E).
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Yes, it does.

What type does
(rec-Nat target
base
step)

have?

26 The rec-Nat-expression is an X when

• target is a Nat,

• base is an X , and

• step is an (→ Nat X X).

The eliminator for (List E) is written
(rec-List target
base
step)

and it is an X when

• target is a (List E),

• base is an X , and

• step is an (→ E (List E) X X).

How does this differ from rec-Nat?

27 rec-List’s step takes one more argument
than rec-Nat’s step—it takes e, an entry
from the list.

Nicely done!

In both cases, the step accepts every
argument from the corresponding
constructor as well as the recursive
elimination of the smaller value.

28 Eliminators expose the information in
values.

The base exposes a lot of information
about the result of a rec-List. What are
two uses of rec-List that have 0 as their
base?

29 One use is to find the length of a list.
Another is to find the sum of all the Nats
in a (List Nat).
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Those are two good examples.

With this definition
(claim step-
(→ Atom (List Atom) Nat
Nat))

(define step-
(λ (e es n)
(add1 n)))

what is the value of
(rec-List nil
0
step- )?

30 It must be 0, because 0 is the base and
the value of the base must be the value
for nil.

That’s right.

A kartoffelmad is rugbrød with toppings
and condiments.
(claim toppings
(List Atom))

(define toppings
(:: 'potato
(:: 'butter† nil)))

(claim condiments
(List Atom))

(define condiments
(:: 'chives
(:: 'mayonnaise† nil)))

†Or your favorite non-dairy alternative.

31 That sounds lækkert!
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The Law of rec-List
If target is a (List E), base is an X , and step is an
(→ E (List E) X
X),

then
(rec-List target
base
step)

is an X .

The First Commandment of rec-List
If (rec-List nil

base
step)

is an X , then it is the same X as base.

The Second Commandment of rec-List
If (rec-List (:: e es)

base
step)

is an X , then it is the same X as
(step e es
(rec-List es
base
step)).
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It is!

What is the value of
(rec-List condiments
0
step- )?

32 Let’s see.
1. (rec-List (:: 'chives

(:: 'mayonnaise nil))
0
step- )

2. (step-
'chives
(:: 'mayonnaise nil)
(rec-List (:: 'mayonnaise nil)
0
step- ))

3. (add1
(rec-List (:: 'mayonnaise nil)
0
step- ))

What is the normal form? Feel free to
leave out the intermediate expressions.

33 The normal form is
(add1
(add1 zero)),

better known as 2.

The rec-List expression replaces each ::
in condiments with an add1, and it
replaces nil with 0.

What is a good name to fill in the box?

34 The name length seems about right.

(claim step-length
(→ Atom (List Atom) Nat
Nat))

(define step-length
(λ (e es lengthes)
(add1 lengthes)))
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Then this must be length.

(claim length
(→ (List Atom)
Nat))

(define length
(λ (es)
(rec-List es
0
step-length)))

35 But what about the length of
(:: 17
(:: 24
(:: 13 nil)))?

That’s easy, just replace Atom with Nat.

(claim step-length
(→ Nat (List Nat) Nat
Nat))

(define step-length
(λ (e es lengthes)
(add1 lengthes)))

36 And here’s length for a list of Nats.

(claim length
(→ (List Nat)
Nat))

(define length
(λ (es)
(rec-List es
0
step-length)))

Lists can contain entries of any type, not
just Atom and Nat.

What can be used to make a version of
step-length that works for all types?

37 It’s as easy as Π.

(claim length
(Π ((E U))
(→ (List E)
Nat)))

That claim requires a step.

(claim step-length
(Π ((E U))
(→ E (List E) Nat
Nat)))

38 At each step, the length grows by add1.

(define step-length
(λ (E)
(λ (e es lengthes)
(add1 lengthes))))
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This uses the same technique as step-∗
in frame 3:66 to apply step-length to E .

Now define length.

39 Passing E to step-length causes it to take
three arguments.

(define length
(λ (E)
(λ (es)
(rec-List es
0
(step-length E)))))

Why is e in step-length dim? 40 Because the specific entries in a list
aren’t used when finding the length.

What is the value of (length Atom)?
41 It is

(λ (es)
(rec-List es
0
(step-length Atom))),

which is found by replacing each E with
Atom in the inner λ-expression’s body.

Define a specialized version of length
that finds the number of entries in a
(List Atom).

42 This uses the same technique as the
definition of twin-Atom in frame 4:54.
(claim length-Atom
(→ (List Atom)
Nat))

(define length-Atom
(length Atom))

Lists, Lists, and More Lists 119



That is a useful technique.

Now it is time to assemble a delicious
kartoffelmad from a slice of bread,
toppings, and condiments.

Define a function that appends two lists.

43 What should be the definition’s type?

Is it possible to append a (List Nat) and
a (List (Pair Nat Nat))?

44 No.

All the entries in a list must have the
same type.

List Entry Types

All the entries in a list must have the same type.

As long as two lists contain the same
entry type, they can be appended, no
matter which entry type they contain.

What does this say about the type in
append’s definition?

45 The type must be a Π-expression.

(claim append
(Π ((E U))

))

Exactly.

What are the rest of the arguments?

46
There must be two (List E) arguments.
Also, the result is a (List E). From that,
append must be a λ-expression.
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Here is the claim. Now start the
definition.
(claim append
(Π ((E U))
(→ (List E) (List E)
(List E))))

47 It is a λ-expression, but the body
remains a mystery.

(define append
(λ (E)
(λ (start end)

)))

What goes in the box? 48 Some kind of rec-List.

What is the value of
(append Atom
nil
(:: 'salt
(:: 'pepper nil)))?

49 Clearly it must be
(:: 'salt
(:: 'pepper nil)).

And what is the normal form of
(append Atom
(:: 'cucumber
(:: 'tomato nil))

(:: 'rye-bread nil))?

50 It must be
(:: 'cucumber
(:: 'tomato
(:: 'rye-bread nil))).

The value of (append E nil end) should
be the value of end. Thus, append’s last
argument end is the base.

51 What about the step?

The step’s type is determined by the
Law of rec-List. It should work for any
entry type.

52 How about this one?
(claim step-append
(Π ((E U))
(→ E (List E) (List E)
(List E))))
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Using the previous frame as an example,
fill in the rest of step-append.†

(define step-append
(λ (E)
(λ (e es appendes)

)))

(define append
(λ (E)
(λ (start end)
(rec-List start
end
(step-append E)))))

†The expression (step-append E) should be a
step for append when the list contains entries of type
E . Be mindful of the Currying.

53 If appendes is
nil,

then the step-append should produce
(:: 'rye-bread nil).

If appendes is
(:: 'rye-bread nil),

then the step-append should produce
(:: 'tomato
(:: 'rye-bread nil)).

Finally, if appendes is
(:: 'tomato
(:: 'rye-bread nil)),

then the step-append should produce
(:: 'cucumber
(:: 'tomato
(:: 'rye-bread nil))).

That is good reasoning.

What is the proper definition?

54 Now append deserves a solid box.

(define step-append
(λ (E)
(λ (e es appendes)
(:: e appendes))))

(define append
(λ (E)
(λ (start end)
(rec-List start
end
(step-append E)))))

This definition of append is very much
like .

55 Is there an iter-List, like iter-Nat, and
could it be used to define append ?
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Nothing would stop us from defining
iter-List, but there is no need, because
rec-List can do everything that iter-List
could do, just as rec-Nat can do
everything that iter-Nat and which-Nat
can do.

56 Okay, let’s use the more expressive
eliminators here.

It is also possible to define append in
another way, replacing :: with something
else.

57 Is that possible?

Yes, it is. Instead of using :: to “cons”
entries from the first list to the front of
the result, it is also possible to snoc†
entries from the second list to the back
of the result.
For example, the value of

(snoc Atom toppings 'rye-bread)
is

(:: 'potato
(:: 'butter
(:: 'rye-bread nil))).

What is snoc’s type?
†Thanks, David C. Dickson (1947–)

58 snoc’s type is

(claim snoc
(Π ((E U))
(→ (List E) E
(List E))))

What must the step do?

The step must “cons” the current entry of
the list onto the result.

59 Oh, so it’s just like step-append.
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Now define snoc. 60 Here is snoc.
(define snoc
(λ (E)
(λ (start e)
(rec-List start
(:: e nil)
(step-append E)))))

Well done.

Now define concat, which should behave
like append but use snoc in its step.

(claim concat
(Π ((E U))
(→ (List E) (List E)
(List E))))

concat’s type is the same as append’s
type because they do the same thing.

61 In addition to using snoc instead of the
List “cons” ::, concat must eliminate the
second list.
(claim step-concat
(Π ((E U))
(→ E (List E) (List E)
(List E))))

(define step-concat
(λ (E)
(λ (e es concates)
(snoc E concates e))))

(define concat
(λ (E)
(λ (start end)
(rec-List end
start
(step-concat E)))))

A list can be reversed using snoc as well.

What should the type of reverse be?

62 reverse accepts a single list as an
argument.

(claim reverse
(Π ((E U))
(→ (List E)
(List E))))
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What should be done at each step? 63 At each step, e should be snoc’d onto the
back of the reversed es.
(claim step-reverse
(Π ((E U))
(→ E (List E) (List E)
(List E))))

Now define step-reverse and reverse. 64 Here they are.

(define step-reverse
(λ (E)
(λ (e es reversees)
(snoc E reversees e))))

(define reverse
(λ (E)
(λ (es)
(rec-List es
nil†
(step-reverse E)))))

†When using Pie, it is necessary to replace this
nil with (the (List E) nil).

Now it is time for something lækkert.

(claim kartoffelmad
(List Atom))

(define kartoffelmad
(append Atom
(concat Atom
toppings condiments)

(reverse Atom
(:: 'plate
(:: 'rye-bread nil)))))

What is kartoffelmad’s normal form?

65 It is
(:: 'chives
(:: 'mayonnaise
(:: 'potato
(:: 'butter
(:: 'rye-bread
(:: 'plate nil)))))).
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It’s a good thing we asked for the normal
form instead of the value. Otherwise,
you’d have to assemble all but the 'chives
while eating it!

66 Reversing lists is hungry work.

Have yourself a nice kartoffelmad,
and get ready for more delicious Π.
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RUGBRØD
Day 1

Mix about 150g sourdough, 400g dark
whole rye flour, and 1L water in a bowl
and mix until no flour clumps remain.

Add enough water to completely
cover 500g whole or cracked rye kernels
with water, and let them soak. Cover
both bowls with a cloth and let them
sit.

Day 2
Take some of the dough, and save it
in the fridge for next time. Drain the
kernels. Mix one tablespoon salt, 450g
rye flour and the soaked kernels into the
dough.

Pour the dough into a Pullman loaf
pan (or a proper rugbrød pan if you
have one) and cover with a cloth.

Day 3
Bake the bread at 180◦ C for 90 min-
utes, or for 80 minutes in a convection
oven.

Wrap the baked bread in a towel and
allow it to cool slowly before tasting it.

The Rest of Your Life
If not baking weekly, feed the saved
sourdough every week by throwing
away half and adding fresh rye flour and
water.

Make your bread your own by
adding sunflower seeds, flax seeds, dark
malt, pumpkin seeds, or whatever else
strikes your fancy.

KARTOFFELMAD
Take a thin slice of rugbrød, approximately 0.75cm. Spread it with butter.
Artfully arrange slices of cooled boiled new potato on the buttered bread, and
top with mayonnaise and chives.

LÆKKERT!
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. . . 1 After all that sandwich, some Π would go
great.

We’re glad you asked . . .
2 I’m pretty good at anticipating what you

want me to ask.

Naturally. Let’s get started.

Let’s define a function first that finds the
first entry in any List.

3 Wouldn’t that be easy to do?

Actually, it would be impossible! 4 Why would it be impossible?

It is impossible because nil has no first
entry . . .

5
. . . and therefore first would not be total.

What about a function, last that, instead
of finding the first entry, finds the last
entry in a List?

6 The function last would also not be
total, because nil has no last entry.

To write a total function first, we must
use a more specific type constructor than
List. This more specific type constructor
is called Vec, which is short for “vector,”
but it is really just a list with a length.

An expression (Vec E k)† is a type when
E is a type and k is a Nat. The Nat gives
the length of the list.

Is (Vec Atom 3) a type?
†Pronounced “list of E with length k,” or simply

“list of E length k.”

7 Can types contain expressions that
aren’t types?
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Just as types can be the outcome of
evaluating an expression (as in
frame 1:55), some types contain other
expressions that are not themselves
types.

8
Then (Vec Atom 3) is a type because
Atom is a type and 3 is clearly a Nat.

Is
(Vec
(cdr
(cons 'pie
(List (cdr (cons Atom Nat)))))

( 2 1))
a type?

9 It must be, because
(cdr
(cons 'pie
(List (cdr (cons Atom Nat)))))

and
(List Nat)

are the same type, and because
( 2 1)

is the same Nat as
3.

That means that the expression is the
same as

(Vec (List Nat) 3),
which is clearly a type.

The only constructor of (Vec E zero) is
vecnil.

10 Is this because the length of vecnil is
zero?

Precisely.

vec:: is the only constructor of
(Vec E (add1 k)).

11 What is k here?

Here, k can be any Nat.

(vec:: e es) is a (Vec E (add1 k)) when e
is an E and es is a (Vec E k).

12 If an expression is a
(Vec E (add1 k)),

then its value has at least one entry, so it
is possible to define first and last, right?
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Right. Is
(vec:: 'oyster vecnil)

a
(Vec Atom 1)?

13 Yes, because
'oyster

is an
Atom

and
vecnil

is a
(Vec Atom zero).

The Law of Vec
If E is a type and k is a Nat,
then (Vec E k) is a type.

The Law of vecnil
vecnil is a (Vec E zero).

The Law of vec::
If e is an E and es is a (Vec E k),
then (vec:: e es) is a (Vec E (add1 k)).
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Is
(vec:: 'crimini
(vec:: 'shiitake vecnil))

a
(Vec Atom 3)?

14 No, because it is not a list of precisely
three atoms.

How does this relate to frame 11? 15 It is not a
(Vec Atom 3)

because
(vec:: 'shiitake vecnil)

is not a
(Vec Atom 2).

Why is
(vec:: 'shiitake vecnil)

not a
(Vec Atom 2)?

16 If it were, then
vecnil

would have to be a
(Vec Atom 1),

based on the description in frame 11.

Why can’t that be the case? 17 Because
vecnil

is a
(Vec Atom zero),

and 1 is not the same Nat as zero.

Why is 1 not the same Nat as zero? 18 Frame 1:100 explains that two Nats are
the same when their values are the same,
and that their values are the same when
either both are zero or both have add1 at
the top.
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It is now possible to define first-of-one,
which gets the first entry of a (Vec E 1).

19 But is it possible? So far, there are no
eliminators for Vec.

Good point. Two of the eliminators for
Vec are head and tail.

20 What do head and tail mean?

(head es) is an
E

when
es

is a
(Vec E (add1 k)).

What form can the value of es take?

21 It cannot be vecnil because vecnil has
zero entries. So es has vec:: at the top.

The expression
(head
(vec:: a d))

is the same E as a.

22 What about tail?

(tail es)
is a

(Vec E k)
when
es

is a
(Vec E (add1 k)).

23 es has vec:: at the top.

Is
(tail
(vec:: a d))

the same
E

as
d?
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No, but
(tail
(vec:: a d))

is the same
(Vec E k)

as
d .

Now define first-of-one.

24 first-of-one uses head to find the only
entry.

(claim first-of-one
(Π ((E U))
(→ (Vec E 1)
E)))

(define first-of-one
(λ (E)
(λ (es)
(head es))))

What is the value of
(first-of-one Atom
(vec:: 'shiitake vecnil))?

25 It is 'shiitake.

What is the value of
(first-of-one Atom vecnil)?

26 That question is meaningless because
(first-of-one Atom vecnil)

is not described by a type, and this is
because
vecnil

is not a
(Vec Atom 1).

That’s right, the question is meaningless.

Now define first-of-two.

27 It is very much like first-of-one.

(claim first-of-two
(Π ((E U))
(→ (Vec E 2)
E)))

(define first-of-two
(λ (E)
(λ (es)
(head es))))

134 Chapter 6



What is the value of
(first-of-two Atom
(vec:: 'matsutake
(vec:: 'morel
(vec:: 'truffle vecnil))))?

28 That is quite a valuable list of
mushrooms.

The question, however, doesn’t make
sense because that valuable list of
mushrooms has three, instead of
precisely two, mushrooms.

Good point.

It is now time for first-of-three.

29 Is there a way to define a first that works
for any length?

No, there is not, because there is no first
entry when the length is zero. But it is
possible to define a first that finds the
first entry in any list that has at least
one entry.

30 That sounds difficult.

Actually, it’s not that difficult.

In fact, it’s as easy as . . .

31
. . . as Π?

Π-expressions are more flexible than we
have seen thus far.

32 What is a more flexible kind of Π?

A mushroom pot pie, for one. 33 What is a more flexible kind of
Π-expression?
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Here is first’s claim.
(claim first
(Π ((E U)

(ℓ Nat))
(→ (Vec E (add1 ℓ))
E)))

What is new here?

34 After the argument name ℓ, it says Nat.
Earlier, it always said U after argument
names in Π-expressions.

The E in
(→ (Vec E (add1 ℓ))
E)

refers to whatever U is the first
argument to first. Does this mean that
the ℓ in (add1 ℓ) refers to whatever Nat
is the second argument to first?

The Law of Π
The expression
(Π ((y Y))
X)

is a type when Y is a type, and X is a type if y is a Y .

Precisely. The (add1 ℓ) ensures that the
list that is the third argument to first
has at least one entry.

Now define first.

35 Here it is, in a well-deserved solid box.

(define first
(λ (E ℓ)
(λ (es)
(head es))))

What is the value of
(first Atom 3
(vec:: 'chicken-of-the-woods
(vec:: 'chantrelle
(vec:: 'lions-mane
(vec:: 'puffball vecnil)))))?

36 It is 'chicken-of-the-woods.

But why is the number of entries
(add1 ℓ)

instead of just
ℓ?
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There is no first entry to be found in
vecnil, which has zero entries.

No matter what ℓ is, (add1 ℓ) can never
be the same Nat as zero, so vecnil is not a
(Vec E (add1 ℓ)).

37 We avoid attempting to define a
non-total function by using a more
specific type to rule out unwanted
arguments.

Use a More Specific Type

Make a function total by using a more specific type to
rule out unwanted arguments.

The same definition could have been
written with two nested Π-expressions.

(claim first
(Π ((E U))
(Π ((ℓ Nat))
(→ (Vec E (add1 ℓ))
E))))

(define first
(λ (E)
(λ (ℓ)
(λ (es)
(head es)))))

Why would this be the same definition?

38 This would have been the same
definition because Π-expressions with
many argument names are shorter ways
of writing nested Π-expressions with one
argument name each.
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This definition could also have been
written with three nested Π-expressions.

(claim first
(Π ((E U))
(Π ((ℓ Nat))
(Π ((es (Vec E (add1 ℓ))))
E))))

(define first
(λ (E)
(λ (ℓ)
(λ (es)
(head es)))))

Why would this have been the same
definition?

39 Would it really have been the same
definition?

The previous definition had an →, while
this definition does not.

In fact, →-expressions are a shorter way
of writing Π-expressions when the
argument name is not used in the
Π-expression’s body.

40 Ah, okay.

→ and Π
The type
(→ Y
X)

is a shorter way of writing
(Π ((y Y))
X)

when y is not used in X .
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The Final Law of λ
If x is an X when y is a Y , then
(λ (y)
x)

is a
(Π ((y Y))
X).

The Final Law of Application

If f is a
(Π ((y Y))
X)

and z is a Y , then
(f z)

is an X
where every y has been consistently replaced by z.

The Final First Commandment of λ
If two λ-expressions can be made the same
(Π ((y Y))
X),

by consistently renaming their variables, then they are
the same.
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The Final Second Commandment of λ
If f is a
(Π ((y Y))
X),

and y does not occur in f , then f is the same as
(λ (y)
(f y)).

The type
(Π ((es (Vec E (add1 ℓ))))
E)

could have been written
(→ (Vec E (add1 ℓ))
E)

because es is not used in E .

We could also have written first’s claim
with a single Π-expression, and no →.

41 This last version of first could have been
written like this.
(claim first
(Π ((E U)

(ℓ Nat)
(es (Vec E (add1 ℓ))))

E))
(define first
(λ (E ℓ es)
(head es)))

This is because nested Π-expressions
could have been written as a single
Π-expression.

A more specific type made it possible to
define first, our own typed version of
head.

Is a more specific type needed to define
rest, our own version of tail?

42
Yes, it is, because (tail vecnil) is as
meaningless as (head vecnil).
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What is that more specific type? 43 The argument must have vec:: at the
top.

Because the head is not part of the tail,
the resulting Vec is shorter.

(claim rest
(Π ((E U)

(ℓ Nat))
(→ (Vec E (add1 ℓ))
(Vec E ℓ))))

Both head and tail are functions, and all
functions are total. This means that they
cannot be used with List because List
does not rule out nil.

Now define rest.

44 Here it is.
(define rest
(λ (E ℓ)
(λ (es)
(tail es))))

Save those mushrooms
the oven is hot, and it’s almost time to bake the Π.
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Our mushroom pot pie requires quite a
few peas. Now it is time to define peas,
which produces as many peas as
required.

What type expresses this behavior?

1 The type is
(→ Nat
(List Atom))

because peas should be able to produce
any number of peas.

How many peas should peas produce? 2 It depends.

What does it depend on? 3 It depends on how many peas are
required—that is, the argument.

The type in frame 1,
(→ Nat
(List Atom)),

is not specific enough. It does not
express that peas produces precisely as
many peas as were asked for.

4 The number of peas is the Nat argument.
Does this type do the trick?

(claim peas
(Π ((how-many-peas Nat))
(Vec Atom how-many-peas)))

Yes, and the type expresses that the
number of peas as the argument to peas
depends on the number asked for. Such
types are called dependent types.

Can peas be written using rec-Nat?

5 Sure.
(define peas
(λ (how-many-peas)
(rec-Nat how-many-peas
vecnil
(λ (ℓ-1 peasℓ-1)
(vec:: 'pea peasℓ-1)))))

Dependent Types

A type that is determined by something that is not a type
is called a dependent type.
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The definition of peas is not an
expression. To use rec-Nat, the base
must have the same type as the peasℓ-1
argument to the step. Here, though, the
peasℓ-1 might be a (Vec Atom 29), but
vecnil is a (Vec Atom 0).

In other words, rec-Nat cannot be used
when the type depends on the target
Nat.

6 What about iter-Nat?

rec-Nat can do anything that iter-Nat
can.

7 Is there something more powerful to use?

It is called ind-Nat, short for “induction
on Nat.”

8 What is ind-Nat?

ind-Nat is like rec-Nat, except it allows
the types of the base and the
almost-answer in the step, here peasℓ-1,
to include the target Nat.

In other words, ind-Nat is used for
dependent types.

9 There is a Nat called how-many-peas
included in

(Vec Atom how-many-peas).

Is this a dependent type?

Yes, it depends on the Nat
how-many-peas.

To work with dependent types, ind-Nat
needs an extra argument: to use ind-Nat,
it is necessary to state how the types of
both the base and the step’s
almost-answer depend on the target Nat.

10 What does this extra argument look
like?
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This extra argument, called the motive,†
can be any

(→ Nat
U).

An ind-Nat-expression’s type is the
motive applied to the target Nat.

†Thanks, Conor McBride (1973–).

11 So the motive is a function whose body
is a U .

It is. The motive explains why the target
is to be eliminated.

What is the motive for peas?

12 That’s a good question.

At least its type is clear.

(claim mot-peas†
(→ Nat
U))

†“mot” is pronounced “moat.”

Use ind-Nat for Dependent Types

Use ind-Nat instead of rec-Nat when the rec-Nat- or ind-Nat-
expression’s type depends on the target Nat. The ind-Nat-
expression’s type is the motive applied to the target.

Here is mot-peas.
(define mot-peas
(λ (k)
(Vec Atom k)))

What is the value of (mot-peas zero)?

13 It is the U , and thus also the type,
(Vec Atom zero).
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What type must the base for peas have? 14 Surely it must have the type
(Vec Atom zero),

because the value of the base is the value
when zero is the target.

What should the base for peas be? 15 It must be vecnil because vecnil is the
only

(Vec Atom zero).

This is also (mot-peas zero).

What is the purpose of a step in rec-Nat?

16 In rec-Nat, the step’s arguments are n-1
and the almost-answer, which is the
value from eliminating n-1.

Given n-1 and the almost-answer, the
step determines the value for (add1 n-1).

The step’s arguments in ind-Nat are also
n-1 and an almost-answer.

What is the almost-answer’s type?

17 The almost-answer’s type is the motive
applied to n-1 because the almost-answer
is the value for the target n-1.

What is the type of the value for the
target (add1 n-1)?

18 The type of an ind-Nat-expression is the
motive applied to the target.

If the motive is called mot, then the
step’s type is

(Π ((n-1 Nat))
(→ (mot n-1)
(mot (add1 n-1)))).

19 What is an example of a step for
ind-Nat?
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Here is the step for peas.

(claim step-peas
(Π ((ℓ-1 Nat))
(→ (mot-peas ℓ-1)
(mot-peas (add1 ℓ-1)))))

(define step-peas
(λ (ℓ-1)
(λ (peasℓ-1)
(vec:: 'pea peasℓ-1))))

20 Why does mot-peas appear twice in
step-peas’s type?

Good question.

What is the value of (mot-peas ℓ-1)?

21
It is (Vec Atom ℓ-1).

The Law of ind-Nat
If target is a Nat, mot is an
(→ Nat
U),

base is a (mot zero), and step is a
(Π ((n-1 Nat))
(→ (mot n-1)
(mot (add1 n-1)))),

then
(ind-Nat target
mot
base
step)

is a (mot target).
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The First Commandment of ind-Nat
The ind-Nat-expression
(ind-Nat zero
mot
base
step)

is the same (mot zero) as base.

The Second Commandment of ind-Nat
The ind-Nat-expression
(ind-Nat (add1 n)
mot
base
step)

and
(step n
(ind-Nat n
mot
base
step))

are the same (mot (add1 n)).

This is peasℓ-1’s type, which describes a
list containing ℓ-1 peas.

What is the value of
(mot-peas (add1 ℓ-1)),

and what does it mean?

22 It is
(Vec Atom (add1 ℓ-1)),

which describes a list containing
(add1 ℓ-1)

peas.
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Induction on Natural Numbers
Building a value for any natural number by giving a value
for zero and a way to transform a value for n into a value
for n+ 1 is called induction on natural numbers.

The step must construct a value for
(add1 ℓ-1) from a value for ℓ-1.

Look at step-peas’s type again. What
does it mean in prose?

23 No matter what Nat ℓ-1 is, step-peas can
take a

(Vec Atom ℓ-1)
and produce a

(Vec Atom (add1 ℓ-1)).
It does this by “consing” a 'pea to the
front.

The base replaces
zero

with
vecnil

because
vecnil

is the only
(Vec Atom zero).

What does step-peas replace an add1
with?

24 step-peas replaces each add1 with a vec::,
just as length in frame 5:34 replaces each
:: in a list with add1.

Now it is possible to define peas, using
mot-peas and step-peas.

25 Here is the definition.
(define peas
(λ (how-many-peas)
(ind-Nat how-many-peas
mot-peas
vecnil
step-peas)))
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What is the value of (peas 2)?

Here are the first two steps.
1. (peas

(add1
(add1 zero)))

2. (ind-Nat (add1
(add1 zero))

mot-peas
vecnil
step-peas)

3. (step-peas (add1 zero)
(ind-Nat (add1 zero)
mot-peas
vecnil
step-peas))

Now, find its value. Remember that
arguments need not be evaluated.

26 Here it is,
4. (vec:: 'pea

(ind-Nat (add1 zero)
mot-peas
vecnil
step-peas)).

And finally, we find its normal form,
5. (vec:: 'pea

(step-peas zero
(ind-Nat zero
mot-peas
vecnil
step-peas)))

6. (vec:: 'pea
(vec:: 'pea
(ind-Nat zero
mot-peas
vecnil
step-peas)))

7. (vec:: 'pea
(vec:: 'pea vecnil)),

,

which is normal.

If the motive’s argument is dim, then
ind-Nat works just like rec-Nat. Define a
function also-rec-Nat using ind-Nat that
works just like rec-Nat.

(claim also-rec-Nat
(Π ((X U))
(→ Nat

X
(→ Nat X
X)

X)))

27 The type does not depend on the target,
so k is dim.
(define also-rec-Nat
(λ (X)
(λ (target base step)
(ind-Nat target

(λ (k)
X)

base
step))))
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Just as first finds the first entry in a list,
last finds the last entry.

What type should last have?

28 The list must be non-empty, which
means that we can use the same idea as
in first’s type.

(claim last
(Π ((E U)

(ℓ Nat))
(→ (Vec E (add1 ℓ))
E)))

If a list contains only one Atom, which
Atom is the last one?

29 There is only one possibility.

What is the normal form of
(last Atom zero
(vec:: 'flour vecnil))?

30 Here is a guess. The question has no
meaning, because that list contains one
rather than zero entries.

What is (last Atom zero)’s type?

Remember Currying.

31
(last Atom zero)’s type is

(→ (Vec Atom (add1 zero))
Atom).

So the question in the preceding frame
does, in fact, have a meaning!

What is the normal form of
(last Atom zero
(vec:: 'flour vecnil))?

32 It must be 'flour.

Yes, indeed.

Using this insight, what is base-last’s
type?

33 The base is used when the Nat is zero.
(claim base-last
(Π ((E U))
(→ (Vec E (add1 zero))
E)))
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What is the definition of base-last? 34 It uses head to obtain the only entry in a
(Vec Atom (add1 zero)).

(define base-last
(λ (E)
(λ (es)
(head es))))

This is the first time that the base is a
function. According to the motive, both
the base and the step’s almost-answer
are functions.

When the base is a function and the step
transforms an almost-function into a
function, the ind-Nat-expression
constructs a function as well.

35 Are λ-expressions values?

Yes, because λ is a constructor. 36 Functions are indeed values.

The ind-Nat-expression’s type is the
motive applied to the target, which is the
Nat being eliminated.

What is the target Nat when the base is
reached?

37 It is zero. That is what it means to be
the base.

The motive applied to zero should be the
base’s type.

Find an expression that can be used for
the motive.

38 How about
(Π ((E U)

(k Nat))
(→ (Vec E (add1 k))
E))?

Filling in E with the entry type and k
with zero yields the base’s type.
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ind-Nat’s Base Type

In ind-Nat, the base’s type is the motive applied to
the target zero.

That’s close, but not quite correct.

The motive for ind-Nat should be applied
to zero, but applying a Π-expression
doesn’t make sense. The motive for
ind-Nat is a function, not a function’s
type.

39 Oh, so it must be
(λ (E k)
(→ (Vec E (add1 k))
E)),

which can be applied to the entry type
and zero to obtain the base’s type.

Now define the motive for last.
(claim mot-last
(→ U Nat
U))

40 Here it is.
(define mot-last
(λ (E k)
(→ (Vec E (add1 k))
E)))

What is the type and value of
(mot-last Atom)?

41 The type is
(→ Nat
U)

and the value is
(λ (k)
(→ (Vec Atom (add1 k))
Atom)).

What does this resemble? 42 twin-Atom from frame 4:54. Applying
mot-last to a U results in a suitable
motive for ind-Nat.
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What is the value of the base’s type,
which is

(mot-last Atom zero)?

43 It is the type
(→ (Vec Atom (add1 zero))
Atom).

What is the value of
(mot-last Atom (add1 ℓ-1))?

44 It is
(→ (Vec Atom (add1

(add1 ℓ-1)))
Atom).

What is the purpose of the step for last? 45 The step for last turns the almost-answer
for ℓ-1 into the answer for (add1 ℓ-1).

In other words, the step for last changes
a function that gets the last entry in a

(Vec E (add1 ℓ-1))
to a function that gets the last entry in a

(Vec E (add1
(add1 ℓ-1))).

Why are there two add1s?

The outer add1 is part of the type in
order to ensure that the list given to last
has at least one entry. The inner add1 is
from the (add1 ℓ-1) passed to mot-last.

46 The outer add1 makes the function total,
and the inner add1 is due to the Law of
ind-Nat.
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What is the step’s type? 47 The step’s type must be
(→ (→ (Vec E (add1 ℓ-1))

E)
(→ (Vec E (add1

(add1 ℓ-1)))
E))

because the step must construct a
(mot-last E (add1 ℓ-1))

from a
(mot-last E ℓ-1).

How can that type be explained in
prose?

48 The step transforms a
last

function for
ℓ

into a
last

function for
(add1 ℓ).

ind-Nat’s Step Type

In ind-Nat, the step must take two arguments: some Nat n
and an almost-answer whose type is the motive applied
to n. The type of the answer from the step is the motive
applied to (add1 n). The step’s type is:

(Π ((n Nat))
(→ (mot n)
(mot (add1 n))))
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Here is step-last’s claim.

(claim step-last
(Π ((E U)

(ℓ-1 Nat))
(→ (mot-last E ℓ-1)
(mot-last E (add1 ℓ-1)))))

Now define step-last.

49 lastℓ-1 is almost the right function, but
only for a list with ℓ-1 entries, so it
accepts the tail of a list with (add1 ℓ-1)
entries as an argument.

(define step-last
(λ (E ℓ-1)
(λ (lastℓ-1)
(λ (es)
(lastℓ-1 (tail es))))))

What is es’s type in the inner
λ-expression?

50 es is a
(Vec E (add1

(add1 ℓ-1))).

Why is that es’s type? 51 The whole inner λ-expression’s type is
(mot-last E (add1 ℓ-1)),

and that type and
(→ (Vec E (add1

(add1 ℓ-1)))
E)

are the same type. Thus, the argument
to the λ-expression, namely es, is a

(Vec E (add1
(add1 ℓ-1))).

Clever.

What is (tail es)’s type?

52
(tail es)’s type is

(Vec E (add1 ℓ-1)),
which is the type of a suitable argument
for the almost-ready function.
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What is lastℓ-1’s type in the outer
λ-expression in frame 49?

53 lastℓ-1 is an
(→ (Vec E (add1 ℓ-1))
E),

which is the value of (mot-last ℓ-1).

Now it is time to define last. The claim is
in frame 28 on page 151.

54 Here goes.

(define last
(λ (E ℓ)
(ind-Nat ℓ
(mot-last E)
(base-last E)
(step-last E))))

What is the normal form of
(last Atom 1
(vec:: 'carrot
(vec:: 'celery vecnil)))?

Here is the beginning.

1. (last Atom (add1 zero)
(vec:: 'carrot
(vec:: 'celery vecnil)))

2. ((ind-Nat (add1 zero)
(mot-last Atom)
(base-last Atom)
(step-last Atom))

(vec:: 'carrot
(vec:: 'celery vecnil)))

3. ((step-last Atom zero
(ind-Nat zero
(mot-last Atom)
(base-last Atom)
(step-last Atom)))

(vec:: 'carrot
(vec:: 'celery vecnil)))

55 Thanks for the help. There is more.
4. ((λ (es)

((ind-Nat zero
(mot-last Atom)
(base-last Atom)
(step-last Atom))

(tail es)))
(vec:: 'carrot
(vec:: 'celery vecnil)))

((ind-Nat zero
(mot-last Atom)
(base-last Atom)
(step-last Atom))

(tail
(vec:: 'carrot
(vec:: 'celery vecnil))))

5. (base-last Atom
(tail
(vec:: 'carrot
(vec:: 'celery vecnil))))
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Is that the normal form? 56 No, there are a few more steps.

7. ((λ (es)
(head es))

(tail
(vec:: 'carrot
(vec:: 'celery vecnil))))

8. (head
(tail
(vec:: 'carrot
(vec:: 'celery vecnil))))

9. (head
(vec:: 'celery vecnil))

10. 'celery

Excellent.

Now take a quick break and have some
fortifying mushroom pot pie.

57 That sounds like a good idea.

Guess what drop-last means. 58 Presumably, it drops the last entry in a
Vec.

Good guess!

What is (drop-last Atom 3 vecnil)?

59 It is not described by a type, for the
same reason that

(first Atom 3 vecnil),
(last Atom 3 vecnil),

and
(rest Atom 3 vecnil)

aren’t described by types.

The type must contain a Vec with an
add1 in it.
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That’s solid thinking.

What is drop-last’s type?

60 drop-last shrinks a list by one.

(claim drop-last
(Π ((E U)

(ℓ Nat))
(→ (Vec E (add1 ℓ))
(Vec E ℓ))))

What is base-drop-last? 61 The base finds the
drop-last

of a single-entry list, which is
vecnil

because the last entry is the only entry.

(claim base-drop-last
(Π ((E U))
(→ (Vec E (add1 zero))
(Vec E zero))))

(define base-drop-last
(λ (E)
(λ (es)
vecnil)))

Would this definition of base-drop-last
also work?
(define base-drop-last
(λ (E)
(λ (es)
(tail es))))

62 It always has the same value, but it does
not convey the idea as clearly.

The intention is that base-drop-last
ignores the last entry in the list.

That sounds right.

Why doesn’t it deserve a solid box?

63 Getting the right answer is worthless if
we do not know that it is correct.
Understanding the answer is at least as
important as having the correct answer.
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Readable Expressions

Getting the right answer is worthless if we do not know
that it is correct. Understanding the answer is at least
as important as having the correct answer.

Someone has been paying attention!

What is mot-drop-last?

64 mot-drop-last says that drop-last
constructs a Vec with one fewer entries.
(claim mot-drop-last
(→ U Nat
U))

(define mot-drop-last
(λ (E k)
(→ (Vec E (add1 k))
(Vec E k))))

That was fast. Please explain. 65 During ind-Nat, the motive applied to
zero is the base’s type. That means that
we can work backwards by replacing the
zeros in the base’s type with the
argument k to mot-drop-last in the base’s
type from frame 61.

That is a keen observation. This
approach does not always work, but it is
a good starting point.

Replacing a particular constant with a
variable and wrapping a λ of the variable
is called abstracting over constants, and
it is used often. Here, the motive
abstracts over zero in base-drop-last.

66 step-drop-last’s type follows the Law of
ind-Nat.
(claim step-drop-last
(Π ((E U)

(ℓ-1 Nat))
(→ (mot-drop-last E ℓ-1)
(mot-drop-last E (add1 ℓ-1)))))
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How should step-drop-last be defined? 67 step-drop-last keeps the head around.

(define step-drop-last
(λ (E ℓ-1)
(λ (drop-lastℓ-1)
(λ (es)
(vec:: (head es)
(drop-lastℓ-1 (tail es)))))))

This is the familiar pattern of induction:
step-drop-last

transforms a
drop-last

that works for
(Vec E ℓ-1)

into a
drop-last

that works for
(Vec E (add1 ℓ-1)).

How does the transformation work?

68 Just as
step-last

uses its almost-answer, namely lastℓ-1, to
find the last of its own (tail es),

step-drop-last
uses its almost-answer, drop-lastℓ-1, to
find the drop-last of its own (tail es).

Based on mot-drop-last, the function
produced by step-drop-last must add an
entry to that list. Thus, the inner
λ-expression in frame 66 “cons”es
(using vec::) the head of es onto the
(drop-lastℓ-1 (tail es)).

The claim for drop-last is in frame 60 on
page 159.

Now define drop-last.

69 It’s a matter of putting the pieces
together.

(define drop-last
(λ (E ℓ)
(ind-Nat ℓ
(mot-drop-last E)
(base-drop-last E)
(step-drop-last E))))
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Yes, drop-last is now defined.

Sometimes, it can be convenient to find a
function that can be used later. For
example, (drop-last Atom 2) finds the
first two entries in any three-entry list of
Atoms.

Show how this works by finding the
value of

(drop-last Atom
(add1
(add1 zero))).

70 Here’s the chart to find the value.
1. (drop-last Atom

(add1
(add1 zero)))

2. (ind-Nat (add1
(add1 zero))

(mot-drop-last Atom)
(base-drop-last Atom)
(step-drop-last Atom))

3. (step-drop-last Atom (add1 zero)
(ind-Nat (add1 zero)
(mot-drop-last Atom)
(base-drop-last Atom)
(step-drop-last Atom)))

4. (λ (es)
(vec:: (head es)
((ind-Nat (add1 zero)

(mot-drop-last Atom)
(base-drop-last Atom)
(step-drop-last Atom))

(tail es))))

That’s right—λ-expressions are values.
To find the normal form, more steps are
necessary. Here’s the first one.

5. (λ (es)
(vec:: (head es)
((step-drop-last Atom zero

(ind-Nat zero
(mot-drop-last Atom)
(base-drop-last Atom)
(step-drop-last Atom)))

(tail es))))
Now find the normal form.

71 In step 6, es has been consistently
renamed to ys to make it clear that the
inner λ-expression has its own variable.

6. (λ (es)
(vec:: (head es)
((λ (ys)

(vec:: (head ys)
((ind-Nat zero

(mot-drop-last Atom)
(base-drop-last Atom)
(step-drop-last Atom))

(tail ys))))
(tail es))))
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It is not necessary to rename es to ys,
because variable names always refer to
their closest surrounding λ, but it’s
always a good idea to make expressions
easier to understand.

Here are two more steps.
7. (λ (es)

(vec:: (head es)
(vec:: (head (tail es))
((ind-Nat zero

(mot-drop-last Atom)
(base-drop-last Atom)
(step-drop-last Atom))

(tail (tail es))))))
8. (λ (es)

(vec:: (head es)
(vec:: (head (tail es))
(base-drop-last Atom
(tail (tail es))))))

72 Almost there.
9. (λ (es)

(vec:: (head es)
(vec:: (head (tail es))
((λ (ys)
vecnil)

(tail (tail es))))))
10. (λ (es)

(vec:: (head es)
(vec:: (head (tail es))
vecnil)))

The normal form is much easier to
understand than the starting expression!

C’est magnifique! Bet you’re tired. 73 Indeed. And hungry, too.

Eat the rest of that pot pie,
and head to a café if you’re still hungry,

and re-read this chapter in a relaxed ambience.
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Sometimes, it is not immediately
apparent how to write a Pie expression.

1 That’s what empty boxes are for, right?

That’s right. Most keyboards, however,
do not make it particularly easy to type
empty boxes.

Instead of typing empty boxes, it is
possible to leave part of an expression to
be written later using the TODO form.

2 What is TODO?

TODO is an expression that is a
placeholder for another expression. A
TODO can have any type, and Pie keeps
track of which TODOs have which types.

3 How can TODO be used?

Each TODO comes from somewhere
specific. Here, we refer to them by frame
number; when using Pie outside of a
book, this will be somewhere else that is
appropriate.

Try typing
(claim peas
TODO)

and see what happens.

4 Pie responds with
Frame 4:2.3: TODO: U

and the TODO it’s mentioning is indeed a
U on the second line and third column of
an expression in frame 4.

Now try
(claim peas
(Pi ((n Nat))
TODO))

which is closer to the type for peas in
chapter 7.

5 Pie responds with
Frame 5:3.5: TODO:
n : Nat
--------------
U

but what does that horizontal line mean?
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When Pie replies with the type that is
expected for a TODO, it also includes the
types of the variables that can be used at
the TODO’s position.

6 The n : Nat above the line means that
the variable n is a Nat.

That’s right.

Now try
(claim peas
(Pi ((n Nat))
(Vec Atom n)))

(define peas
TODO)

where the TODO is in a definition.

7 Pie replies with
Frame 7:5.3: TODO:
(Π ((n Nat))
(Vec Atom n))

which is the type that was claimed.

How does Pie respond when provided
with a λ around the TODO?
(claim peas
(Pi ((n Nat))
(Vec Atom n)))

(define peas
(λ (n)
TODO))

8 There will be a line for n above the
horizontal line.

Try it and see. 9 That’s what happened.
Frame 8:6.5: TODO:
n : Nat
--------------
(Vec Atom n)

What’s next? 10 The number of 'peas depends on n, so
ind-Nat is needed.
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How does Pie respond to this version of
peas?
(claim peas
(Pi ((n Nat))
(Vec Atom n)))

(define peas
(λ (n)
(ind-Nat n
(λ (k)
(Vec Atom k))

TODO
TODO)))

11 Each TODO has the type that would be
expected by the Law of ind-Nat.
Frame 11:9.7: TODO:
n : Nat
--------------
(Vec Atom 0)

Frame 11:10.7: TODO:
n : Nat
--------------
(Π ((n-1 Nat))
(→ (Vec Atom n-1)
(Vec Atom
(add1 n-1))))

How should the TODOs be replaced? 12
The first TODO should be a (Vec Atom 0),
so vecnil is appropriate. The second TODO
should be a two-argument function, built
with λ, that uses vec:: to add a 'pea to
n-1 peas.

Nicely chosen. How does Pie respond to
this version?
(claim peas
(Pi ((n Nat))
(Vec Atom n)))

(define peas
(λ (n)
(ind-Nat n
(λ (k)
(Vec Atom k))

vecnil
(λ (n-1 peas-of-n-1)
(vec:: TODO TODO)))))

13 The Law of vec:: determines the type of
each TODO.
Frame 13:11.16: TODO:

n : Nat
n-1 : Nat

peas-of-n-1 : (Vec Atom n-1)
------------------------------
Atom

Frame 13:11.21: TODO:
n : Nat

n-1 : Nat
peas-of-n-1 : (Vec Atom n-1)
------------------------------
(Vec Atom n-1)
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Now replace the final TODOs. 14 Here is the final definition.

(claim peas
(Pi ((n Nat))
(Vec Atom n)))

(define peas
(λ (n)
(ind-Nat n
(λ (k)
(Vec Atom k))

vecnil
(λ (n-1 peas-of-n-1)
(vec:: 'pea
peas-of-n-1)))))
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Go eat a mushroom pot pie
that contains n peas,

one delicious bite at a time.
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How was that mushroom pot pie? 1 Delicious, though very filling. How about
something less filling here?

How about a
(sandwich 'hoagie)?

2 That should be manageable.

What is the normal form of ( 1)? 3 Let’s find out.

Let’s start.
1. ( (add1 zero))
2. (λ (j)

(iter-Nat (add1 zero)
j
step- ))

This is the value.

4 The normal form needs a bit more work.
3. (λ (j)

(step-
(iter-Nat zero
j
step- )))

4. (λ (j)
(add1
(iter-Nat zero
j
step- )))

5. (λ (j)
(add1 j))

Here is another definition.
(claim incr
(→ Nat
Nat))

(define incr
(λ (n)
(iter-Nat n
1
( 1))))

What is the normal form of (incr 0)?

5

That’s just three steps.
1. (incr zero)
2. (iter-Nat zero

1
( 1))

3. 1
It is 1, also known as (add1 zero).
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What is the normal form of (incr 3)? 6 That normal form takes a few more
steps. The first steps are to find the
value.

1. (iter-Nat 3
1
( 1))

2. ( 1
(iter-Nat 2
1
( 1)))

3. (add1
(iter-Nat 2
1
( 1)))

That is indeed the value. But what is the
normal form? Here’s a few more steps.

4. (add1
( 1
(iter-Nat (add1 zero)
1
( 1))))

5. (add1
(add1
(iter-Nat (add1 zero)
1
( 1))))

7 The normal form is 4.
6. (add1

(add1
( 1
(iter-Nat zero
1
( 1)))))

7. (add1
(add1
(add1
(iter-Nat zero
1
( 1)))))

8. (add1
(add1
(add1
1)))

What is the relationship between
( 1)

and
incr?

8 They both find the same answer, no
matter what the argument is.
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Does this mean that ( 1) is the same
(→ Nat
Nat)

as incr?

9 They are the same if they have the same
normal form.

The normal form of ( 1) is
(λ (n)
(add1 n)),

while the normal form of incr is
(λ (n)
(iter-Nat n
1
(λ (j)
(add1 j)))).

They are not the same.

That’s right.

Even though they are not the same, the
fact that they always find the same
answer can be written as a type.

10 But isn’t sameness a judgment, not a
type?

Sameness is indeed a judgment. But,
with a new type constructor, types can
express a new idea called equality.

Writing
“incr and ( 1) always find the same

answer.”
as a type is hungry work. You’d better
have this

(sandwich 'grinder)
to keep your energy up.

11 Another sandwich?

Okay.

Pick a Number, Any Number 173



An expression
( X from to)

is a type if
X

is a type,
from

is an X , and
to

is an X .

12 Is this another way to construct a
dependent type?

The Law of
An expression
( X from to)

is a type if X is a type, from is an X , and to is an X .

Yes, is another way to construct a
dependent type, because from and to
need not be types.

Because from and to are convenient
names, the corresponding parts of an
-expression are called the from and

the to.

13 Okay.

Reading from and to as Nouns

Because from and to are convenient names, the corre-
sponding parts of an -expression are referred to as the
from and the to.
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Is
( Atom 'kale 'blackberries)

a type?

14 Yes, because Atom is a type and both
'kale and 'blackberries are Atoms.

Is
( Nat ( 1 1) 2)†

a type?
†Thank you, Alfred North Whitehead (1861–

1947) and again Bertrand Russell. Page 379 of Prin-
cipia Mathematica, their 3-volume work published
respectively, in 1910, 1912, and 1913, states, “From
this proposition it will follow, when arithmetical ad-
dition has been defined, that 1 + 1 = 2.”

15 Yes, because Nat is a type and both
( 1 1) and 2 are Nats.

Is
( (car (cons Nat 'kale))
17
( 14 3))

a type?

16 Yes, it is, because
(car (cons Nat 'kale))

and Nat are the same type, and the
from and the to are both Nats.

Is
( (car (cons Nat 'kale))
15
( 14 3))

a type?

17 Yes, it is. Frame 12 requires only that
the from and the to are Nats, not that
they are the same Nat.

But what is the purpose of ?

To understand , it is first necessary to
gain a new perspective on types.

Types can be read as statements.†

†Thank you Robert Feys (1889–1961), Nicolaas
Govert de Bruijn (1918–2012), and again Haskell
B. Curry. Thanks William Alvin Howard (1926–).
Statements are sometimes called propositions.

18 How can
( Atom 'apple 'apple)

be read as a statement?
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The type
( Atom 'apple 'apple)

can be read:
“The expressions 'apple and 'apple are

equal Atoms.”

How can
( Nat ( 2 2) 4)

be read as a statement?

19 Does
“Two plus two equals four”

make sense?

Yes, it does. 20 In what way do
“Three plus four equals seven”

and
( 3 4) is the same Nat as 7

differ?

The statement
“Three plus four equals seven”

is another way of writing the type
( Nat ( 3 4) 7),

which is an expression, but
( 3 4) is the same Nat as 7

is a judgment about expressions.

Frame 1:12 describes judgments. A
judgment is not an expression—rather, a
judgment is an attitude that a person
takes when thinking about expressions.

21 Here’s a judgment:
“Three plus four equals seven” is a

type.

Well-spotted.

-expressions are not the only types that
can be read as statements.

22 What are some others?

176 Chapter 8



A Π-expression can be read as “for
every.” Consider this example,

(Π ((n Nat))
( Nat ( 1 n) (add1 n)))

can be read as
“For every Nat n, ( 1 n) equals

(add1 n).”

23 Okay. But what is the point of reading
types as statements?

If a type can be read as a statement,
then judging the statement to be true
means that there is an expression with
that type. So, saying

“( n 0) and n are equal Nats.”
means

“There is an expression with type
( Nat ( n 0) n).”

24 Does this mean that truth requires
evidence?

It goes further. Truth means that we
have evidence.† This evidence is called a
proof.

†Thank you, BHK: L. E. J. Brouwer (1881–
1966), Arend Heyting (1898–1980), and Andrey Kol-
mogorov (1903–1987).

25 Can every type be read as a statement?

In principle, they could be, but many
types would be very uninteresting as
statements.

26 What makes a statement interesting?

A person does, by being interested in it.
But most interesting statements come
from dependent types. Nat is not an
interesting statement because it is too
easy to prove.

27 How can Nat be proved?
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Pick a number, any number. 28 Okay,
15.

Good job. You have a proof. 29 That isn’t very interesting.

Right. 30 That explains it.

Another way to think about statements
is as an expectation of a proof, or as a
problem to be solved.

31 Having seen a claim, it makes sense to
expect a definition.

Frame 12 describes when an -expression
is a type, but it says nothing about what
the values of such a type are.

32 Here, “values” means the same thing as
“proofs,” right?

Exactly right.

There is only one constructor for , and
it is called same. same takes one
argument.

33 How is same used?

The expression
(same e)

is an
( X e e)

if e is an X .

34 What is an example of this?

The Law of same
The expression (same e) is an ( X e e) if e is an X .
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The expression
(same 21)

is an
( Nat ( 17 4) ( 11 10)).

35 That doesn’t seem right.

In frame 34, same’s argument as well as
the from and to arguments of have
to be identical, but here, 21,

( 17 4)
and

( 11 10)
look rather different.

Both
( 17 4)

and
( 11 10)

are the same Nat as 21, so they are the
same.

36 Does this mean that
(same (incr 3))

is an
( Nat ( 2 2) 4)?

Yes,
(same (incr 3))

is a proof of
( Nat ( 2 2) 4).

The Law of same uses e twice to require
that

the from is the same X as the to.
With the type constructor and its
constructor same, expressions can now
state ideas that previously could only be
judged.†

†Creating expressions that capture the ideas be-
hind a form of judgment is sometimes called inter-
nalizing the form of judgment.

37 Why is this so important?
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Expressions can be used together with
other expressions.

By combining Π with , we can write
statements that are true for arbitrary
Nats, while we could only make
judgments about particular Nats. Here’s
an example:

(claim +1=add1
(Π ((n Nat))
( Nat ( 1 n) (add1 n))))

38 The definition of +1=add1 clearly has a λ
at the top because its type has a Π at
the top.

(define +1=add1
(λ (n)

))

That’s a solid start. What goes in the
box?

39 Following the Law of λ,
( Nat ( 1 n) (add1 n))

is the type of the body of the
λ-expression.

Right, the box should contain an
( Nat ( 1 n) (add1 n)).

What is the normal form of the box’s
type?

40 The normal form of the box’s type is
( Nat (add1 n) (add1 n))

because the normal form of
( 1 n)

is
(add1 n).

Okay, so the expression in the box in
frame 38 is

(same (add1 n)).

That’s right.

Now finish the definition.

41 Here it is.
(define +1=add1
(λ (n)
(same (add1 n))))
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What statement does +1=add1 prove? 42 The statement is
“For every Nat n, ( 1 n) equals

(add1 n).”

Here is another statement.
“For every Nat n, (incr n) is equal to

(add1 n).”

Translate it to a type.

43 Let’s call it incr=add1.
(claim incr=add1
(Π ((n Nat))
( Nat (incr n) (add1 n))))

Now define incr=add1. 44 Isn’t it just like +1=add1?

(define incr=add1
(λ (n)
(same (add1 n))))

Not quite. What is the normal form of
(incr n)?

45

1. (incr n)
2. (iter-Nat n

1
( 1))

The normal form is not the same Nat as
(add1 n).

That’s right. This normal form is
neutral.

What is a neutral expression?

46 Neutral expressions are described in
frame 2:24 on page 39.

Neutral expressions are those that
cannot yet be evaluated.

Why is
(iter-Nat n
1
( 1))

neutral?

47 Because iter-Nat chooses the base when
the target is zero, or the step when the
target has add1 at the top. But n is
neither.
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A more precise way to define neutral
expressions is to start with the simplest
neutral expressions and build from there.

Variables are neutral, unless they refer to
definitions, because a defined name is the
same as its definition (see page 43).

48 Okay.

Also, if the target of an eliminator
expression is neutral, then the entire
expression is neutral.

49 So,
(iter-Nat n
1
( 1))

is neutral because iter-Nat is an
eliminator and its target, n, is a variable.

Is every expression that contains a
variable neutral?

Neutral Expressions

Variables that are not defined are neutral. If the target of
an eliminator expression is neutral, then the eliminator
expression is neutral.

No.

The body of the λ-expression
(λ (x)
(add1 x))

contains the variable x, but λ-expressions
are values, not neutral expressions.

50 But if the whole expression were just
(add1 x), then it would be neutral
because it would contain the neutral x.

Are neutral expressions normal?
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Not always.

Some types have ways of making neutral
expressions into values, and in these
cases, the neutral expression is not
considered normal, because it can be
made into a value.

51 Which types work this way?

A neutral expression whose type has Π
at the top is not normal. This is because
a neutral expression f is the same as

(λ (x)
(f x)),

which is a value.

52 Why does this mean that f is not
normal?

What does it mean for an expression to
be normal?

53 The big box on page 13 states that if two
expressions are the same, then they have
identical normal forms.

By the Second Commandment of λ† on
page 140, f is the same as

(λ (x)
(f x)),

but they are not written identically.
†Commandments such as this one are often

called η- (pronounced “eta”) rules. These normal
forms in which all possible η-rules have been applied
to make values are called η-long normal forms.

54 One is wrapped in a λ, the other is not.

At most one of them can be the normal
form. The one wrapped in λ is the
normal form. Because expressions with λ
at the top are values, they are not
neutral. Neutral expressions do not have
a constructor at the top.

55 Are there any others?
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Yes.

Because of the Second Commandment of
cons from page 44, if p is a

(Pair A D),
then p is the same as

(cons (car p) (cdr p)).
For the very same reason, the only
normal forms for pairs are expressions
with cons at the top, so there are no
neutral pairs that are normal.

56 Where do neutral expressions come
from?

Neutral expressions, like (incr n)’s
normal form in frame 45, occur
frequently when -expressions mention
argument names in Π-expressions.

57 How can we find a definition for
incr=add1? same does not do the job,
after all, and incr=add1’s type has a
neutral expression in it.

Judgments, like
(incr n) is the same Nat as (add1 n),

can be mechanically checked using
relatively simple rules. This is why
judgments are a suitable basis for
knowledge.

Expressions, however, can encode
interesting patterns of reasoning, such as
using induction to try each possibility for
the variable in a neutral expression.

58 Does this mean that induction can be
used to prove that (incr n) and (add1 n)
are equal, even though they are not the
same?
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Yes, using ind-Nat because the type
depends on the target.

(define incr=add1
(λ (n)
(ind-Nat n
mot-incr=add1
base-incr=add1†
step-incr=add1)))

What is the type of base-incr=add1?
†Names like base-incr=add1 should be read “the

base for incr=add1,” not as “base-incr equals add1.”

59 The base’s type in an ind-Nat-expression
is the motive applied to zero. (incr zero)
is not neutral, and its normal form is
(add1 zero) as seen in frame 5, so it is
the same Nat as (add1 zero).

(claim base-incr=add1
( Nat (incr zero) (add1 zero)))

(define base-incr=add1
(same (add1 zero)))

Now abstract over the constant zero in
base-incr=add1’s type to define
mot-incr=add1.

60 Each zero becomes k.
(claim mot-incr=add1
(→ Nat
U))

(define mot-incr=add1
(λ (k)
( Nat (incr k) (add1 k))))

Following the Law of ind-Nat, what is
step-incr=add1’s type?

Use a dashed box for now.

61 It is found using mot-incr=add1. But
why is it in a dashed box?

(claim step-incr=add1
(Π ((n-1 Nat))
(→ (mot-incr=add1 n-1)
(mot-incr=add1 (add1 n-1)))))

Solid boxes are used when the final
version of a claim or definition is ready.
Even though this is the correct type, it
can be written in a way that is easier to
understand.

62 What is that easier way of writing it?
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Here is another way to write
step-incr=add1’s type.

(claim step-incr=add1
(Π ((n-1 Nat))
(→ ( Nat

(incr n-1)
(add1 n-1))

( Nat
(incr
(add1 n-1))

(add1
(add1 n-1))))))

63 Why is that the same type?

Because
(mot-incr=add1 n-1)

and
( Nat
(incr n-1)
(add1 n-1))

are the same type.†

What is the value of
(mot-incr=add1 (add1 n-1))?
†This uses the fourth form of judgment.

64 The value is
( Nat
(incr
(add1 n-1))

(add1
(add1 n-1))),

which is the other type in the
→-expression in frame 63.

How can that type be read as a
statement?

65 Hard to say.

How can →-expressions be read as
statements?
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The expression
(→ X
Y)

can be read as the statement,
“if X , then Y .”

This works because its values are total
functions that transform any proof of X
into a proof of Y .

66 Here goes.

The step’s type is a Π-expression, which
means that the statement starts with
“every.” After that is an →, which can
be read as “if” and “then.” And can be
read as “equals.”

“If” and “Then” as Types

The expression
(→ X
Y)

can be read as the statement,
“if X then Y .”

How can step-incr=add1’s type be read as
a statement?

67 “For every Nat n,
if

(incr n) equals (add1 n),
then

(incr (add1 n))
equals

(add1 (add1 n)).”
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Unlike previous statements, to prove this
statement, we must observe something
about incr .

What is the normal form of
(incr
(add1 n-1))?

68 The iter-Nat gets stuck on n-1, but an
add1 does make it to the top.

1. (incr
(add1 n-1))

2. (iter-Nat (add1 n-1)
1
( 1))

3. ( 1
(iter-Nat n-1
1
( 1)))

4. (add1
(iter-Nat n-1
1
( 1)))

5. (add1
(iter-Nat n-1
1
(λ (x)
(add1 x))))

In other words,
(incr
(add1 n-1))

is the same Nat as
(add1
(incr n-1))

because (incr n-1) is the same Nat as
(iter-Nat n-1
1
(λ (x)
(add1 x))).

This is the observation.

69 Okay, so the type of step-incr=add1 can
also be written this way. There is a gray
box around the part that is different
from the version in frame 63.
(claim step-incr=add1
(Π ((n-1 Nat))
(→ ( Nat

(incr n-1)
(add1 n-1))

( Nat
(add1
(incr n-1))

(add1
(add1 n-1))))))
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The box is now solid because it is easy to
see why this type makes sense. If two
Nats are equal, then one greater than
both of them are also equal.

70 Okay. But how can it be made true with
a proof?

Observation about incr
No matter which Nat n is,
(incr (add1 n))

is the same Nat as
(add1 (incr n)).

Here’s the start of a definition of
step-incr=add1.
(define step-incr=add1
(λ (n-1)
(λ (incr=add1n-1)

incr=add1n-1 )))

71 The almost-proof for n-1 is an
( Nat
(incr n-1)
(add1 n-1)).

What can be used in the white box to
turn an almost-proof into a proof of

( Nat
(add1
(incr n-1))

(add1
(add1 n-1)))?

cong† is an eliminator for that is
useful here.

†Short for “congruence.”

72 What is a cong-expression?

First things first. It’s time to sit back
and have a

(sandwich 'submarine).

73 Another sandwich?

This is a bit too much to eat.
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Returning to the problem at hand,
(cong target f)

is used to transform both expressions
that target equates using f .

If f is an
(→ X
Y)

and target is an
( X from to),

then
(cong target f)

is an
( Y (f from) (f to)).

74 Is there another way to look at cong?

This diagram shows how cong is used.

X ( X from to )

Y ( Y (f from) (f to) )

f (cong f)

75 How can cong be used to complete the
definition of step-incr=add1?

The Law of cong
If f is an
(→ X
Y)

and target is an ( X from to),
then (cong target f) is an ( Y (f from) (f to)).
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In this case, X is Nat, Y is Nat, and
target is incr=add1n-1.

What are from and to?

76 incr=add1n-1’s type is
( Nat (incr n-1) (add1 n-1)),

so from is (incr n-1) and to is (add1 n-1).

What function f transforms
(incr n-1) into (add1 (incr n-1))

and
(add1 n-1) into (add1 (add1 n-1))?

77 In each case, an add1 is added to the top.
How about using add1 for f ?

add1 is a constructor, but it is not an
expression when it is not used as the top
of a Nat tucked under it.

An add1-expression must have an
argument.

78 How about using incr for f ?

While incr does indeed add one to its
argument, it does not result in an add1
immediately when its argument is
neutral.

79
How about using ( 1) for f ?

An excellent choice. There is now an
expression for the white box.

(cong incr=add1n-1 ( 1))

80 Okay.

(define step-incr=add1
(λ (n-1)
(λ (incr=add1n-1)
(cong incr=add1n-1 ( 1)))))
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It is now possible to define incr=add1. 81 The motive, the base, and the step are
now defined, so the previous definition of
incr=add1 in frame 59 is now solid.
(define incr=add1
(λ (n)
(ind-Nat n
mot-incr=add1
base-incr=add1
step-incr=add1)))

It’s time for another sandwich:
(sandwich 'hero).

82 Another one!

Yes, another one.

Why is ind-Nat needed in the definition
of incr=add1, but not in the definition of
+1=add1?

83
Because the normal form of (incr n) is
the neutral expression in frame 45, but
based on the definition of , the normal
form of ( 1 n) is (add1 n).

Neutral expressions are those that
cannot yet be evaluated, but replacing
their variables with values could allow
evaluation.

What is the type of
(incr=add1 2)?

84 The expression
(incr=add1 2)

is an
( Nat (incr 2) (add1 2)).

In other words, it is an
( Nat 3 3)

because (incr 2) is not neutral.
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What is the normal form of
(incr=add1 2)?

85 Here’s the start of the chart.
1. (incr=add1 2)
2. (ind-Nat (add1 1)

mot-incr=add1
base-incr=add1
step-incr=add1)

3. (step-incr=add1 1
(ind-Nat 1
mot-incr=add1
base-incr=add1
step-incr=add1))

4. (cong (ind-Nat (add1 0)
mot-incr=add1
base-incr=add1
step-incr=add1)

( 1))

How is a cong-expression evaluated?

Like other eliminators, the first step in
evaluating a cong-expression is to
evaluate its target. If the target is
neutral, the whole cong-expression is
neutral, and thus there is no more
evaluation.

86 What if the target is not neutral?

If the target is not neutral, then its value
has same at the top because same is the
only constructor for -expressions.

The value of
(cong (same x) f)

is
(same (f x)).

87 Okay, the next step in finding the normal
form is to find the value of cong’s target.
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ind-Nat’s target has add1 at the top, so
the next step is to use the step.

5. (cong (step-incr=add1 0
(ind-Nat zero
mot-incr=add1
base-incr=add1
step-incr=add1))

( 1))

88 The next ind-Nat’s target is zero.
6. (cong (cong base-incr=add1

( 1))
( 1))

7. (cong (cong (same (add1 zero))
( 1))

( 1))
8. (cong (same (( 1) (add1 zero)))

( 1))
9. (cong (same (add1 (add1 zero)))

( 1))
10. (same

(( 1)
(add1
(add1 zero))))

11. (same
(add1
(add1
(add1 zero))))

The Commandment of cong
If x is an X , and f is an
(→ X
Y),

then (cong (same x) f) is the same
( Y (f x) (f x))

as
(same (f x)).
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The interplay between judging sameness
and stating equality is at the heart of
working with dependent types. This first
taste only scratches the surface.

89 But what about my stomach? There’s
really only space for one sandwich.

Today’s your lucky day!

(claim sandwich
(→ Atom
Atom))

(define sandwich
(λ (which-sandwich)
'delicious))

90 Oh, what a relief! There is just one
sandwich:

(same 'delicious)
is a proof that

(sandwich 'hoagie),
(sandwich 'grinder),
(sandwich 'submarine), and
(sandwich 'hero),

are all equal.

Enjoy your sandwich, but
if you’re full, wrap it up for later.

This page makes an excellent sandwich wrapper.
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In chapter 8, there is only one eliminator
for , called cong.

But cong has one key limitation.

1 What is that?

What is the type of a cong-expression? 2 By the Law of cong, if target is an
( X from to)

and f is an
(→ X
Y),

then
(cong target f)

is an
( Y (f from) (f to)).

That’s right.

How is this different from eliminators
such as ind-Nat?

3 An ind-Nat-expression can have any
type—it all depends on the motive. But
a cong-expression’s type always has at
the top.

cong is a special-purpose eliminator. But
there is also a more general eliminator,
called replace.

4 What does replace mean?

If two expressions are equal, then
whatever is true for one is true for the
other. We call this principle Leibniz’s
Law.†

†Leibniz’s Law is also used to refer to the prin-
ciple that if whatever is true for one is true for the
other, then they are equal. Thank you, Gottfried
Wilhelm Leibniz (1646–1716).

5 What does this have to do with replace?
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replace is more powerful than cong
because any use of cong can be rewritten
to a use of replace, just as any use of
which-Nat, iter-Nat, or rec-Nat can be
rewritten to a use of ind-Nat.

6 How does replace differ from cong?

Like cong, replace’s target is an
( X from to).

Unlike cong, however, replace has a
motive and a base.

7 Is a replace-expression’s type determined
by applying the motive to the target?

That is how the motive works in ind-Nat,
but not in replace.

In replace, the motive explains what is
true for both expressions in Leibniz’s
Law. It is an

(→ X
U)

because it explains how to find a U (and
therefore a statement) from an X .

8 What about the base?

The base is evidence that (mot from) is
true. That is, the base’s type is

(mot from).

9 What about the whole
replace-expression?

The whole replace-expression is evidence
that (mot to) is true. In other words, its
type is

(mot to).

10 So replace replaces from with to.

Take a look at step-incr=add1 in
frame 8:80 on page 191.

11 Okay. It is defined using cong.
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The Law of replace
If target is an
( X from to),

mot is an
(→ X
U),

and base is a
(mot from)

then
(replace target
mot
base)

is a
(mot to).

That’s right.

But it could also be defined using replace.

What is the claim again?

12 Using the observation about incr in
frame 8:68, the add1 is already on the
outside of the incr as if it were ready for
cong.

(claim step-incr=add1
(Π ((n-1 Nat))
(→ ( Nat

(incr n-1)
(add1 n-1))

( Nat
(add1
(incr n-1))

(add1
(add1 n-1))))))
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Here is the start of a definition using
replace.
(define step-incr=add1
(λ (n-1)
(λ (incr=add1n-1)
(replace incr=add1n-1

))))

The target is incr=add1n-1, which is the
only available proof of equality here.

13 The target, incr=add1n-1, is an
( Nat
(incr n-1)
(add1 n-1)).

The whole replace-expression should be
an

( Nat
(add1
(incr n-1))

(add1
(add1 n-1))).

To find the motive, examine the
replace-expression’s type.

Look for the to of the target’s type.

14
The to is (add1 n-1), which is certainly
in the replace-expression’s type.

( Nat
(add1
(incr n-1))

(add1
(add1 n-1) ))

The motive is used to find the types of
both the base and the whole
replace-expression. The base’s type is
found by placing the target’s type’s
from in the gray box, while the entire
expression’s type is found by placing the
target’s type’s to in the gray box.

( Nat
(add1
(incr n-1))

(add1
))

15 An expression that is missing a piece can
be written as a λ-expression.
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To find the motive, abstract over the to
of the target’s type with a λ.

16 That gives this expression:
(λ (k)
( Nat
(add1
(incr n-1))

(add1
k))).

But if replace replaces the from with
the to, why should we abstract over the
to, rather than the from?

The base’s type is found by applying the
motive to the from of the target’s type.
So, in this case, it is

1. ((λ (k)
( Nat
(add1
(incr n-1))

(add1
k)))

(incr n-1))
2. ( Nat

(add1
(incr n-1))

(add1
(incr n-1)))

17 Applying the motive to an argument is
like filling in the gray box.

( Nat
(add1
(incr n-1))

(add1
(incr n-1) )).
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Now that we know the base’s type, what
is the base?

18 The base is
(same
(add1
(incr n-1))),

and leads to
(define step-incr=add1
(λ (n-1)
(λ (incr=add1n-1)
(replace incr=add1n-1

(same (add1 (incr n-1)))))))

Now define the motive. 19 The motive takes n-1 as an argument,
just as step-∗ takes j as an argument.

(claim mot-step-incr=add1
(→ Nat Nat
U))

(define mot-step-incr=add1
(λ (n-1 k)
( Nat
(add1
(incr n-1))

(add1
k))))

Finally, complete the definition from
frame 17.

20 Because step-incr=add1 is already defined
in chapter 8, this remains in a dashed
box.
(define step-incr=add1
(λ (n-1)
(λ (incr=add1n-1)
(replace incr=add1n-1
(mot-step-incr=add1 n-1)
(same (add1 (incr n-1)))))))
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Yes, only one definition for each claim.

Now, define double to be a function that
replaces each add1 in a Nat with two
add1s.
(claim double
(→ Nat
Nat))

21 This is a job for iter-Nat. The step is
( 2) because the normal form of ( 2) is

(λ (j)
(add1
(add1 j))).

(define double
(λ (n)
(iter-Nat n
0
( 2))))

(double n) is twice as big as n. What is
another function that finds the same
answer? Call it twice.
(claim twice
(→ Nat
Nat))

22 How about this?
(define twice
(λ (n)
( n n)))

It happens to be the case that,
“For every Nat n, (twice n) equals

(double n).”

How can this statement be written as a
type?

23 Because this statement is likely to get a
proof, it gets a name.

(claim twice=double
(Π ((n Nat))
( Nat (twice n) (double n))))

Very perceptive.

Why is this claim true?

24 Every Nat value is either zero or has
add1 at the top. Both (twice zero) and
(double zero) are zero.
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What about add1? 25 For add1,
(twice (add1 n-1))

is the same Nat as
( (add1 n-1) (add1 n-1)),

but
(double (add1 n-1))

is the same Nat as
(add1 (add1 (double n-1))).

Is
( (add1 n-1) (add1 n-1))

the same Nat as
(add1 (add1 ( n-1 n-1)))?

26 No, it isn’t.

But surely they must be equal.

That’s right.

To prove twice=double, an extra proof is
needed. While an add1 around ’s first
argument can be moved above , an
add1 around ’s second argument cannot
be—at least not without a proof.

27 Right, because only the first argument is
the target of iter-Nat in ’s definition.

Even though
( n (add1 j))

is not the same Nat as
(add1 ( n j)),

they are equal Nats.

28 They are not the same, but one can be
replaced with the other.
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The statement to be proved is
add1+=+add1.
(claim add1+=+add1
(Π ((n Nat)

(j Nat))
( Nat
(add1 ( n j))
( n (add1 j)))))

29 This looks like a job for ind-Nat.

(define add1+=+add1
(λ (n j)
(ind-Nat n
(mot-add1+=+add1 j)
(same (add1 j))
(step-add1+=+add1 j))))

The motive and the step both need j,
just like step-∗. The base is

(same (add1 j)).

Why is the base
(same (add1 j))?

30 Because
(add1 ( zero j))

is the same Nat as
(add1 j)

and
( zero (add1 j))

is also the same Nat as
(add1 j).

What is mot-add1+=+add1? 31 It is the type of the ind-Nat-expression,
abstracted over the target. In other
words, every occurrence of n in the claim
add1+=+add1 becomes k.
(claim mot-add1+=+add1
(→ Nat Nat
U))

(define mot-add1+=+add1
(λ (j k)
( Nat
(add1 ( k j))
( k (add1 j)))))
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Here is step-add1+=+add1’s type.

(claim step-add1+=+add1
(Π ((j Nat)

(n-1 Nat))
(→ (mot-add1+=+add1 j

n-1)
(mot-add1+=+add1 j
(add1 n-1)))))

What is a more explicit way to write
(mot-add1+=+add1 j
(add1 n-1))?

32 Applying mot-add1+=+add1 gives
( Nat
(add1 ( (add1 n-1) j))
( (add1 n-1) (add1 j))).

That type and
( Nat
(add1 (add1 ( n-1 j)))
(add1 ( n-1 (add1 j))))

are the same type. This is because the
first argument to is the target of
iter-Nat.

Now define step-add1+=+add1. 33 It uses cong.

(define step-add1+=+add1
(λ ( j n-1)
(λ (add1+=+add1n-1)
(cong add1+=+add1n-1
( 1)))))

What role do cong and ( 1) play in the
definition?

34 add1+=+add1n-1 is an
( Nat
(add1 ( n-1 j))
( n-1 (add1 j))),

so using ( 1) with cong wraps both the
from and the to with add1, which gives
the type from frame 32.
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The definition of add1+=+add1 now
deserves a solid box because every name
that it mentions is now defined.

35 Here it is.
(define add1+=+add1
(λ (n j)
(ind-Nat n
(mot-add1+=+add1 j)
(same (add1 j))
(step-add1+=+add1 j))))

Because of frame 35, it is true that, for
all Nats n and j,

(add1 ( n j))
equals

( n (add1 j)).

36 Right.

This also means that
(add1 ( n-1 n-1))

equals
( n-1 (add1 n-1))

because n and j can both be n-1.

What expression has the type
( Nat
(add1 ( n-1 n-1))
( n-1 (add1 n-1)))?

37 The expression
(add1+=+add1 n-1 n-1)

is an
( Nat
(add1 ( n-1 n-1))
( n-1 (add1 n-1))).

Now, use the fact that
( n-1 (add1 n-1))

equals
(add1 ( n-1 n-1))

to prove twice=double.

38 The statement in frame 24 suggests an
ind-Nat-expression.

(define twice=double
(λ (n)
(ind-Nat n
mot-twice=double
(same zero)
step-twice=double)))
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What is mot-twice=double? 39 It follows the usual approach of
abstracting over the target.

(claim mot-twice=double
(→ Nat
U))

(define mot-twice=double
(λ (k)
( Nat
(twice k)
(double k))))

What about step-twice=double? 40 step-twice=double’s type is built the
same way as for every other step.

(claim step-twice=double
(Π ((n-1 Nat))
(→ (mot-twice=double n-1)
(mot-twice=double (add1 n-1)))))

Here’s the beginning of the definition.

(define step-twice=double
(λ (n-1)
(λ (twice=doublen-1)

)))

What is twice=doublen-1’s type?

41 twice=doublen-1 is an
( Nat
(twice n-1)
(double n-1)).
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The box’s type is
( Nat
(twice (add1 n-1))
(double (add1 n-1))),

and that type and
( Nat
(add1
( n-1 (add1 n-1)))

(add1
(add1 (double n-1))))

are the same type.

42 Frame 24 explains why
(double (add1 n-1))

is the same Nat as
(add1
(add1 (double n-1))).

Why is
(twice (add1 n-1))

the same Nat as
(add1
( n-1 (add1 n-1)))?

An observation about comes in handy.
No matter which Nats j and k are,

1. ( (add1 j) k)
2. (iter-Nat (add1 j)

k
step- )

3. (step-
(iter-Nat j
k
step- ))

4. (add1
(iter-Nat j
k
step- ))

5. (add1
( j k)).

43 This is very much like the observation
about incr on page 189.
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Observation about
No matter which Nats j and k are,
( (add1 j) k)

is the same Nat as
(add1
( j k)).

Using this observation about ,
1. (twice (add1 n-1))
2. ( (add1 n-1) (add1 n-1))
3. (add1

( n-1 (add1 n-1)))

Can cong do the job?

44 The expression
(cong twice=doublen-1
( 2))

is an
( Nat
(add1
(add1 ( n-1 n-1)))

(add1
(add1 (double n-1)))),

which is not the same type.

It is not the same type, but it is nearly
the same type.

45 Replacing
(add1 ( n-1 n-1))

with
( n-1 (add1 n-1)),

in the type would do the trick.

Because
(add1 ( n-1 n-1))

equals
( n-1 (add1 n-1)),

replace can move the add1 from the
second argument of to the outside.

46 Right, because replace is used when the
type of something nearly fits, and the
part that doesn’t is equal to something
that would make it fit.
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In this case, which part of the type of
(cong twice=doublen-1
( 2))

fits?

47 Everything but this gray box fits just
fine.

( Nat
(add1

)
(add1
(add1 (double n-1))))

Now define the motive.

mot-step-twice=double needs an extra
argument, just like step-∗.
(claim mot-step-twice=double
(→ Nat Nat
U))

48 The empty box becomes a λ-expression’s
variable.
(define mot-step-twice=double
(λ (n-1 k)
( Nat
(add1
k)

(add1
(add1 (double n-1))))))

What is the target of the
replace-expression?

49 The expression
(add1 ( n-1 n-1))

should be replaced by
( n-1 (add1 n-1)),

so the target should be
(add1+=+add1 n-1 n-1).

Here is the definition so far.
(define step-twice=double
(λ (n-1)
(λ (twice=doublen-1)
(replace (add1+=+add1 n-1 n-1)
(mot-step-twice=double n-1)

))))

50 The base is the expression whose type is
nearly right, which is

(cong twice=doublen-1
( 2)).
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What is the complete definition of
step-twice=double?

51 The function that is one of the
arguments to cong is ( 2).

(define step-twice=double
(λ (n-1)
(λ (twice=doublen-1)
(replace (add1+=+add1 n-1 n-1)
(mot-step-twice=double n-1)
(cong twice=doublen-1
( 2))))))

And, finally, twice=double deserves a
solid box.

52 So far, the type of each
replace-expression has at the top.

(define twice=double
(λ (n)
(ind-Nat n
mot-twice=double
(same zero)
step-twice=double)))

Good point. replace is useful because by
writing an appropriate motive, it can
have any type.

Find two proofs that,
“(twice 17) equals (double 17).”

(claim twice=double-of-17
( Nat (twice 17) (double 17)))

(claim twice=double-of-17-again
( Nat (twice 17) (double 17)))

53 If a statement is true for every Nat, then
it is true for 17. One way to prove it is
to apply twice=double to 17.

(define twice=double-of-17
(twice=double 17))

This is similar to twin-Atom in
frame 4:54.
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What’s the other proof? 54
(twice 17) is already the same Nat as
(double 17), so same can also be used.

(define twice=double-of-17-again
(same 34))

In fact, (same 34) is even the value of
twice=double-of-17 .

Define a function called twice-Vec that
duplicates each entry in a Vec. For
example, the normal form of

(twice-Vec Atom 3
(vec:: 'chocolate-chip
(vec:: 'oatmeal-raisin
(vec:: 'vanilla-wafer
vecnil))))

is
(vec:: 'chocolate-chip
(vec:: 'chocolate-chip
(vec:: 'oatmeal-raisin
(vec:: 'oatmeal-raisin
(vec:: 'vanilla-wafer
(vec:: 'vanilla-wafer
vecnil)))))).

55 What should the type be?

As the name suggests, the function
makes a Vec with twice as many entries.

(claim twice-Vec
(Π ((E U)

(ℓ Nat))
(→ (Vec E ℓ)
(Vec E (twice ℓ)))))

56 This sounds difficult.
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Why is that? 57 Because the type depends on a Nat, the
function suggests using ind-Nat with a
step that uses vec:: twice.

To use vec::, the desired length must
have add1 on top. The length of this Vec,
however, will have only one add1 on top.

Why is there only a single add1 at the
top of the length?

58 Based on observation about from
page 210,

(twice (add1 n-1))
is the same
Nat

as
(add1 ( n-1 (add1 n-1))).

Here’s a more direct way to state the
problem.

(claim double-Vec
(Π ((E U)

(ℓ Nat))
(→ (Vec E ℓ)
(Vec E (double ℓ)))))

59 That is easier to define with ind-Nat.
Here’s the base.
(claim base-double-Vec
(Π ((E U))
(→ (Vec E zero)
(Vec E (double zero)))))

(define base-double-Vec
(λ (E)
(λ (es)
vecnil)))

That’s right—doubling an empty Vec is
still empty. What about the motive?

(claim mot-double-Vec
(→ U Nat
U))

60 It can be found by abstracting over zero
in the base’s type.

(define mot-double-Vec
(λ (E k)
(→ (Vec E k)
(Vec E (double k)))))
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How about the step?

(claim step-double-Vec
(Π ((E U)

(ℓ-1 Nat))
(→ (→ (Vec E ℓ-1)

(Vec E (double ℓ-1)))
(→ (Vec E (add1 ℓ-1))
(Vec E
(double (add1 ℓ-1)))))))

61 The step transforms a doubler for a Vec
with ℓ-1 entries into a doubler for a Vec
with (add1 ℓ-1) entries. And

(double
(add1 ℓ-1))

is the same Nat as
(add1
(add1
(double ℓ-1))),

so the two uses of vec:: are expected.

(define step-double-Vec
(λ (E ℓ-1)
(λ (double-Vecℓ-1)
(λ (es)
(vec:: (head es)
(vec:: (head es)
(double-Vecℓ-1
(tail es))))))))

What is the definition of double-Vec? 62 All of its parts are defined, so it deserves
a solid box.
(define double-Vec
(λ (E ℓ)
(ind-Nat ℓ
(mot-double-Vec E)
(base-double-Vec E)
(step-double-Vec E))))

Even though it is true that (double n)
equals (twice n) for all Nats n, it is not
equally easy to define dependent
functions that use them. double-Vec is
easy, while twice-Vec is not.

63 That’s right.
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The proof that (double n) equals
(twice n) for all Nats n can be used to
define twice-Vec using double-Vec.

64 That certainly saves a lot of effort.

Solve Easy Problems First

If two functions produce equal results, then use the easier
one when defining a dependent function, and then use
replace to give it the desired type.

The type of
(double-Vec E ℓ es)

is
(Vec E (double ℓ)).

The (double ℓ) needs to become (twice ℓ).

What is the target?

(define twice-Vec
(λ (E ℓ)
(λ (es)
(replace
(λ (k)
(Vec E k))

(double-Vec E ℓ es)))))

65
What about (twice=double ℓ)?

That’s very close, but
(twice=double ℓ)

is an
( Nat (twice ℓ) (double ℓ)),

which has the to and the from in the
wrong order.

66 Does this mean that we need to prove
double=twice now?
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Luckily, that’s not necessary. Another
special eliminator for , called symm†,
fixes this problem.

If target is an
( X from to),

then
(symm target)

is an
( X to from).

†Short for “symmetry.”

67 Okay, it’s possible to define twice-Vec.

(define twice-Vec
(λ (E ℓ)
(λ (es)
(replace (symm

(twice=double ℓ))
(λ (k)
(Vec E k))

(double-Vec E ℓ es)))))

That’s right. 68 Whew!

The Law of symm
If e is an ( X from to), then (symm e) is an ( X to from).

The Commandment of symm
If x is an X , then
(symm (same x))

is the same
( X x x)

as
(same x).

Now go eat all the cookies you can find,
and dust off your lists.
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Before we get started, here are three
more expectations. Have you . . .

1. figured out why we need induction,

2. understood ind-Nat, and

3. built a function with induction?

1 More expectations! Here are all the
expectations from frame 5:2, together
with these three new expectations. The
expectations are to have

• cooked ratatouille,

• eaten two pieces of cherry pie,

• tried to clean up with a
non-napkin,

• understood rec-Nat, and

• slept until well-rested; as well as

1. figured out why we need induction,

2. understood ind-Nat, and

3. built a function with induction.

It seems that these lists are mismatched.
The lists from chapter 5 don’t have
obvious lengths, while these lists do.

(claim more-expectations
(Vec Atom 3))

(define more-expectations
(vec:: 'need-induction
(vec:: 'understood-induction
(vec:: 'built-function vecnil))))

2 But append can’t mix a List and a Vec.

No, it can’t. That is a job for
vec-append, which is not yet defined. To
use vec-append on a List, we must
transform it into a Vec.

3 But to build a Vec, don’t we need a
number of entries?
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There is another possibility.

Previous definitions that used Vec
accepted the number of entries as
arguments. But with a new twist on an
old type, it is possible to build the Vec
and its length together.

4 What is that new twist?

What does it mean for a value to be a
(Pair A D)?

5
A value is a (Pair A D) if

1. it has cons at the top,

2. its car is an A, and

3. its cdr is a D .

If
(cons a d)

is a
(Σ † ((x A))
D),

then a’s type is A and d ’s type is found
by consistently replacing every x in D
with a.

†Σ is pronounced “sigma;” also written Sigma.

6 When is
(Σ ((x A))
D)

a type?
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The expression
(Σ ((x A))
D)

is a type when

1. A is a type, and

2. D is a type if x is an A.†

Is
(Σ ((bread Atom))
( Atom bread 'bagel))

a type?
†Another way to say this is “D is a family of

types over A.” This terminology is also used for the
body of a Π-expression.

7 Yes, because Atom is a type, and
( Atom bread 'bagel)

is a type when bread is an Atom.

What expression has the type
(Σ ((bread Atom))
( Atom bread 'bagel))?

8
How about (cons 'bagel (same 'bagel))?

Indeed.

Is
(Σ ((A U))
A)

a type?

9
U is a type, and A is certainly a type
when A is a U .
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The Law of Σ
The expression
(Σ ((x A))
D)

is a type when A is a type, and D is a type if x is an A.

The Commandment of cons
If p is a
(Σ ((x A))
D),

then p is the same as
(cons (car p) (cdr p)).

Name three expressions that have that
type.

10 Nat is a U and 4 is a Nat, so
(cons Nat 4)

is a
(Σ ((A U))
A).

Two more expressions with that type are
(cons Atom 'porridge),

and
(cons (→ Nat

Nat)
( 7)).
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Is
(cons 'toast
(same (:: 'toast nil)))

a
(Σ ((food Atom))
( (List Atom)
(:: food nil)
(:: 'toast nil)))?

11 Yes, it is, because consistently replacing
food with 'toast in

( (List Atom)
(:: food nil)
(:: 'toast nil))

is
( (List Atom)
(:: 'toast nil)
(:: 'toast nil)),

so (same (:: 'toast nil)) is acceptable.

What is the relationship between Σ and
Pair?

(Pair A D) is a short way of writing
(Σ ((x A))
D)

where x is not used in D .

12 This is similar to how some
Π-expressions can be written as
→-expressions, from frame 6:40.

How can Σ combine a number of entries
with a Vec?

Like this:
(Σ ((ℓ Nat))
(Vec Atom ℓ)).

13 What values have that type?

Here are seventeen 'peas:
(cons 17 (peas 17)).

Now give another.

14 How about a nice breakfast?
(cons 2
(vec:: 'toast-and-jam
(vec:: 'tea vecnil)))
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It’s good to start the day off right.

Types built with →, Π, and can be
read as statements, and expressions of
those types are proofs. Similarly, types
built with Pair and Σ can be read as
statements.

15
How can (Pair A D) be read as a
statement?

A (Pair A D) consists of both evidence
for A and evidence for D , with cons at
the top. This means that (Pair A D) can
be read

“A and D ”
because to give evidence for an “and” is
to give evidence for both parts.

How can
(Pair ( Nat 2 3)
( Atom 'apple 'apple))

be read as a statement?

16 It is the statement
“2 equals 3 and 'apple equals 'apple.”

There is no evidence for this statement,
because there is no evidence for

“2 equals 3.”
and thus nothing to put in the car.

Evidence for
(Σ ((x A))
D)

is a pair whose car is an A and whose cdr
is evidence for the statement found by
consistently replacing each x in D with
the car.

17 What does that mean for Σ’s reading as
a statement?
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A Σ-expression can be read as
“there exists.”

For example,
(Σ ((es (List Atom)))
( (List Atom)
es
(reverse Atom es)))

can be read as
“There exists a list of atoms that is

equal to itself reversed.”

18 Is that statement even true?

Here’s a proof: (cons nil (same nil)). 19 Of course, because reversing the empty
list is the empty list.

Are there any other proofs? 20 Yes, many lists are equal forwards and
backwards.† Here is another proof:

(cons (:: 'bialy
(:: 'schmear
(:: 'bialy nil)))

(same (:: 'bialy
(:: 'schmear
(:: 'bialy nil))))).

†These lists are called palindromes.

How can this expression be read as a
statement?

(Σ ((es (List Atom)))
( (List Atom)
(snoc Atom es 'grape)
(:: 'grape es))).

21 “There exists a list of atoms such that
adding 'grape to the back or the front
does the same thing.”
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Now prove it. 22 Adding 'grape to the back or front of nil
does the same thing:

(cons nil
(same (:: 'grape nil))).

That’s a proof.

Is there any other proof?

23 Any list of only 'grapes works.

Here’s another one:
(cons (:: 'grape

(:: 'grape
(:: 'grape nil)))

(same (:: 'grape
(:: 'grape
(:: 'grape
(:: 'grape nil)))))).

There’s no way to tell one 'grape from
another, so front or back does not
matter.

Great job.

What is the type of a function that
transforms a List into a Vec?

24 Won’t list���vec’s type need to use Σ?

(claim list���vec
(Π ((E U))
(→ (List E)
(Σ ((ℓ Nat))
(Vec E ℓ)))))

That’s correct, at least for now.

Here is part of the definition. What goes
in the box?
(define list���vec
(λ (E)
(λ (es)

)))

25 The expression in the box must check
whether es is nil or has :: at the top.
rec-List does that, and the target is es.
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That’s correct.

What is the base?

26 The base is the value when es is nil.
That should clearly be vecnil, and vecnil
has 0 entries.
(define list���vec
(λ (E es)
(rec-List es
(cons 0 vecnil)

)))

Why is
(cons 0 vecnil)

a
(Σ ((ℓ Nat))
(Vec E ℓ))?

27 Because the car is a Nat, specifically 0,
and the cdr is a (Vec E 0).

step-list���vec adds one entry to a
(Σ ((ℓ Nat))
(Vec E ℓ)).

What is the longer Vec’s type?

28 How about
(Σ ((ℓ Nat))
(Vec E (add1 ℓ))),

because the Vec is one entry longer?

A better type is
(Σ ((ℓ Nat))
(Vec E ℓ))

because the point of using Σ is to have a
pair whose car is the entire length of the
cdr. Making the car larger does not
change the type.

Define the step.

29 The type follows the usual approach for
rec-List.
(claim step-list���vec
(Π ((E U))
(→ E (List E) (Σ ((ℓ Nat))

(Vec E ℓ))
(Σ ((ℓ Nat))
(Vec E ℓ)))))

To define step-list���vec, an eliminator for
Σ is needed. Do car and cdr eliminate Σ,
too?
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Yes. If p is a
(Σ ((x A))
D),

then (car p) is an A.

30
That is just like (Pair A D).

But cdr is slightly different.

If p is a
(Σ ((x A))
D),

then (cdr p)’s type is D where every x has
been consistently replaced with (car p).

31 If there is no x in D , then isn’t this the
way Pair from chapter 1 works?

Indeed.

If p is a
(Σ ((ℓ Nat))
(Vec Atom ℓ)),

then what is (car p)’s type?

32
(car p) is a Nat.

If p is a
(Σ ((ℓ Nat))
(Vec Atom ℓ)),

then what is (cdr p)’s type?

33
(cdr p) is a (Vec Atom (car p)).

So Σ is another way to construct a
dependent type.
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Here is step-list���vec.
(define step-list���vec
(λ (E)
(λ (e es list���veces)
(cons (add1 (car list���veces))
(vec:: e (cdr list���veces))))))

Please explain it.

34 Here goes.

1. The body of the inner λ-expression
has cons at the top because it must
construct a Σ.

2. The car of the inner λ-expression’s
body is

(add1 (car list���veces))
because step-list���vec builds a Vec
with one more entry than

(cdr list���veces).

3. The cdr of the inner λ-expression’s
body has one more entry than the
cdr of list���veces , namely e. vec::
adds this new entry.

Now, give a complete definition of
list���vec.

35
The box is filled with (step-list���vec E).

(define list���vec
(λ (E)
(λ (es)
(rec-List es
(cons 0 vecnil)
(step-list���vec E)))))

How might this version of list���vec be
summarized?

36 This list���vec converts a list into a pair
where the car is the length of the list and
the cdr is a Vec with that many entries.

For nil, the length is 0 and the Vec is
vecnil. For ::, the length is one greater
than the length of the converted rest of
the list, and vec:: adds the same entry
that :: added.
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What is the value of
(list���vec Atom
(:: 'beans
(:: 'tomato nil)))?

37

Let’s see.
1. (list���vec Atom

(:: 'beans
(:: 'tomato nil)))

2. (rec-List (:: 'beans
(:: 'tomato nil))

(cons 0 vecnil)
(step-list���vec Atom))

3. (step-list���vec Atom
'beans
(:: 'tomato nil)
(rec-List (:: 'tomato nil)
(cons 0 vecnil)
(step-list���vec Atom)))

4. (cons
(add1
(car
(rec-List (:: 'tomato nil)
(cons 0 vecnil)
(step-list���vec Atom))))

(vec:: 'beans
(cdr
(rec-List (:: 'tomato nil)
(cons 0 vecnil)
(step-list���vec Atom)))))

What is the normal form? The “same-as”
chart can be skipped.

38 The normal form is
(cons 2
(vec:: 'beans
(vec:: 'tomato vecnil))).

The definition of list���vec is in a dashed
box.

Why?

39 That means that there is something the
matter with it?
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The type given for list���vec is not specific
enough.

The whole point of Vec is to keep track
of how many entries are in a list, but
wrapping it in a Σ hides this information.
In chapter 7, specific types were used to
make functions total. But specific types
can also rule out foolish definitions.

40 But this definition is correct, isn’t it?
The starting expression

(:: 'beans
(:: 'tomato nil))

appears to be the expected normal form.
Here it is with its length:

(cons 2
(vec:: 'beans
(vec:: 'tomato vecnil))).

Use a Specific Type for Correctness

Specific types can rule out foolish definitions.

Here is a foolish definition that the type
of list���vec permits.

(define list���vec
(λ (E)
(λ (es)
(cons 0 vecnil))))

41 Applying this list���vec to any type and
any list yields (cons 0 vecnil).

That’s correct.

What might another incorrect, yet still
type-correct, definition be?

42 list���vec could be a function that always
produces a Vec with 52 entries.
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Almost.

Can it produce 52 entries, each of which
has type E , when es is nil?

43 We don’t know ahead of time which U is
to be the E that is the argument to the
λ-expression. So there is no way to find
an entry with that type when es is nil.

list���vec could be a function that
produces a Vec with 52 entries when es
has :: at the top, or 0 entries when es is
nil, right?

Yes, it could.

Writing vec:: 52 times would be tiring,
though.

44 A definition similar to peas would help
with that.

Good idea. Call it replicate. Just as with
peas, the definition of replicate requires
the use of ind-Nat.

Why?

45 The definition of replicate requires the
use of ind-Nat because, in replicate’s
type, the Nat ℓ is the target.

(claim replicate
(Π ((E U)

(ℓ Nat))
(→ E
(Vec E ℓ))))

The body of the Π-expression depends on
ℓ, and ind-Nat is used when a type
depends on the target.

Even though it is now time for breakfast,
chapter 7 was not spent in vain!

What is the base?

46 The base is a
(Vec E 0),

so it must be
vecnil.
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Here is mot-replicate’s type.

(claim mot-replicate
(→ U Nat
U))

Now define mot-replicate.

47 The definition of mot-replicate follows a
familiar approach, abstracting over zero
as in frame 7:66.
(define mot-replicate
(λ (E k)
(Vec E k)))

The next step is to define step-replicate. 48 At each step, step-replicate should add
an entry to the list.

Where does that entry come from?

Just as E is an argument to
mot-replicate, both E and e are
arguments to step-replicate.

This is similar to the way step-∗ is
applied to j in frame 3:66.

49 Here is step-replicate’s definition.

(claim step-replicate
(Π ((E U)

(e E)
(ℓ-1 Nat))

(→ (mot-replicate E ℓ-1)
(mot-replicate E (add1 ℓ-1)))))

(define step-replicate
(λ (E e ℓ-1)
(λ (step-replicateℓ-1)
(vec:: e step-replicateℓ-1))))

Now define replicate using the motive,
the base, and the step.

50 The components are all available.

(define replicate
(λ (E ℓ)
(λ (e)
(ind-Nat ℓ
(mot-replicate E)
vecnil
(step-replicate E e)))))
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In frame 49, mot-replicate is applied to
two arguments, but here, it is applied to
one. Also, step-replicate is applied to
four arguments, but here, it is applied to
only two.

Why?

51 Every motive for ind-Nat has type
(→ Nat
U).

Because of Currying, (mot-replicate E)
has that type.

Similarly, every step for ind-Nat is
applied to two arguments. Because of
Currying, applying the first two
arguments to the four-argument
step-replicate produces the expected
two-argument function.

replicate is intended to help write an
alternative definition of list���vec that
produces a Vec with 52 entries when es
has :: at the top, or 0 entries when es is
nil.

52 Here, cons in the definition of
copy-52-times is the constructor of Σ,
used to associate the length with the Vec.

(claim copy-52-times
(Π ((E U))
(→ E

(List E)
(Σ ((ℓ Nat))
(Vec E ℓ))

(Σ ((ℓ Nat))
(Vec E ℓ)))))

(define copy-52-times
(λ (E)
(λ (e es copy-52-timeses)
(cons 52 (replicate E 52 e)))))

(define list���vec
(λ (E)
(λ (es)
(rec-List es
(cons 0 vecnil)
(copy-52-times E)))))
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The type can be made more specific by
making clear the relationship between
the List and the number of entries in the
Vec.

What is that relationship?

53 The number of entries in the Vec is the
length of the List.

Exactly. Here is a more specific type.

(claim list���vec
(Π ((E U)

(es (List E)))
(Vec E (length E es))))

54 How can list���vec be defined?

Some of it should be predictable. 55 Yes, the type of list���vec predicts some of
list���vec’s definition.
(define list���vec
(λ (E es)

. . . but what goes here? ))

What is the type of the box? 56 The type of the box is the body of the
Π-expression in the type of list���vec,
which is

(Vec E (length E es)).
If es were a Nat, then ind-Nat would
work. But es is a (List E).

Is there an ind-List?

Good thinking.

ind-Nat requires one more argument than
rec-Nat, the motive.

57 Does ind-List also need a motive?
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ind-List requires one more argument than
rec-List, and this argument is also a
motive:

(ind-List target
mot
base
step).

58 What is that expression’s type?

First, target is a (List E).
59 Of course.

Otherwise, ind-List would not be
induction on List.

Just as in ind-Nat, mot explains the
reason for doing induction. In other
words, it explains the manner in which
the type of the ind-List-expression
depends on target.

What type should mot have?

60 mot finds a type when applied to a list,
so it is an

(→ (List E)
U).

What type should base have? 61
base is a (mot nil) because nil plays the
same role as zero.

The constructor :: plays a role similar to
add1, except :: has two arguments: an
entry and a list.

62 Does the step for ind-List have a type
that is similar to the step for ind-Nat?

236 Chapter 10



Just like the step for ind-Nat transforms
an almost-answer for n into an answer
for (add1 n), the step for ind-List takes
an almost-answer for some list es and
constructs an answer for (:: e es).

step’s type is
(Π ((e E)

(es (List E)))
(→ (mot es)
(mot (:: e es)))).

63 Here, adding an entry e to es with :: is
like adding one with add1 in ind-Nat.

The Law of ind-List
If target is a (List E),
mot is an
(→ (List E)
U),

base is a (mot nil), and step is a
(Π ((e E)

(es (List E)))
(→ (mot es)
(mot (:: e es))))

then
(ind-List target
mot
base
step)

is a (mot target).
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The First Commandment of ind-List
The ind-List-expression
(ind-List nil
mot
base
step)

is the same (mot nil) as base.

The Second Commandment of ind-List
The ind-List-expression
(ind-List (:: e es)
mot
base
step)

is the same (mot (:: e es)) as
(step e es
(ind-List es
mot
base
step)).

Nat and List are closely related.

Thus, an ind-List-expression’s type is
(mot target).

64 As expected.
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The box in frame 55 should be filled by
an ind-List-expression.

65 The target is es.

(define list���vec
(λ (E es)
(ind-List es
mot-list���vec
base-list���vec
step-list���vec)))

Could → have been used to write the
Π-expression in the type of list���vec in
frame 54?

66 No, because the type
(Vec E (length E es))

depends on both E and es.

What is base-list���vec’s type? 67 When es is nil,
(Vec E (length E es))

and
(Vec E 0) are the same type.

What is the base, then? 68
The only (Vec E 0) is vecnil, so there is
no point in defining base-list���vec.

(define list���vec
(λ (E es)
(ind-List es
mot-list���vec
vecnil
step-list���vec)))
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Now, working backwards from the type
of the base, what is the motive?

69 Abstracting over the zero in the base
does not immediately work because the
argument to the motive is a (List E), not
a Nat.

But length transforms Lists into Nats,
and appears in the body of the
Π-expression in list���vec’s type in
frame 54.

That is well-spotted. Abstracting over
constants often works, but in this case, it
requires a little fine-tuning with length.

Here is mot-list���vec’s type.

(claim mot-list���vec
(Π ((E U))
(→ (List E)
U)))

Now define mot-list���vec.

70 Here is the definition of mot-list���vec.
(define mot-list���vec
(λ (E)
(λ (es)
(Vec E (length E es)))))

For example, the value of
(mot-list���vec Atom nil)

is
(Vec Atom 0),

as expected.

What is step-list���vec’s type? 71 No surprises here.

(claim step-list���vec
(Π ((E U)

(e E)
(es (List E)))

(→ (mot-list���vec E es)
(mot-list���vec E (:: e es)))))

Now define step-list���vec. 72 Here it is.
(define step-list���vec
(λ (E e es)
(λ (list���veces)
(vec:: e list���veces))))
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What is the almost-answer list���veces ’s
type?

73 It is
(mot-list���vec E es).

Also,
(mot-list���vec E es)

and
(Vec E (length E es))

are the same type.

(length E es) is a Nat, even though it is
neither zero nor does it have add1 at the
top.

74
The normal form of (length E es) must
be neutral because the target of rec-List
in length is es, which is a variable.

What is the type of
(vec:: e list���veces)?

75 list���veces ’s type is
(Vec E (length E es))

so the type of
(vec:: e list���veces)

is
(Vec E (add1 (length E es))).

Why are
(Vec E (add1 (length E es)))

and
(mot-list���vec E (:: e es))

the same type?

76 Because all these expressions are the
same type.

1. (mot-list���vec E (:: e es))
2. (Vec E (length E (:: e es)))
3. (Vec E (add1 (length E es)))

It Also Depends On the List 241



Now define list���vec. 77 list���vec finally deserves a solid box.

(define list���vec
(λ (E es)
(ind-List es
(mot-list���vec E)
vecnil
(step-list���vec E))))

This more specific type rules out our two
foolish definitions.

Unfortunately, there are still foolish
definitions that have this type.

78 Oh no!

What is the first foolish definition that
the new type rules out?

79 The first foolish definition, in frame 41,
always produces

(cons 0 vecnil).

What is the other? 80 The foolish definition in frame 52 makes
52 copies of the first entry in the list.
The new type demands the correct
length, so it rules out this foolish
definition.

What other foolishness is possible?

Here is a possible, yet foolish, step.
Would the definition of list���vec need to
be different to use this step?

(define step-list���vec
(λ (E e es)
(λ (list���veces)
(replicate E (length E (:: e es))
e))))

81 No, the same definition would work.

(define list���vec
(λ (E es)
(ind-List es
(mot-list���vec E)
vecnil
(step-list���vec E))))

242 Chapter 10



Using this foolish definition, what is the
normal form of

(list���vec Atom
(:: 'bowl-of-porridge
(:: 'banana
(:: 'nuts nil))))?

82 The name list���veces is dim, so the
definition is not actually recursive.

The normal form is three bowls of
porridge,

(vec:: 'bowl-of-porridge
(vec:: 'bowl-of-porridge
(vec:: 'bowl-of-porridge vecnil))).

The first is too hot, the second is too
cold, but the third is just right.†

Nevertheless, the definition is
foolish—'banana and 'nuts make a
breakfast more nutritious.

†Thank you, Robert Southey (1774–1843).

83 Is there an even more specific type that
rules out all of the foolish definitions?

Yes, there is. 84 And what about appending Vecs?

Coming right up! But finish your
breakfast first—you need energy for
what’s next.

85 Can’t wait!

Go have toast with jam and a cup of tea.
Also, just one bowl of porridge with a banana and nuts.
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After all that porridge, it’s time for an
afternoon coffee break with Swedish
treats!

1 Yes! Fika.

Here is a list of treats for our fika.

(claim treats
(Vec Atom 3))

(define treats†
(vec:: 'kanelbullar
(vec:: 'plättar
(vec:: 'prinsesstårta vecnil))))

†Kanelbullar are cinnamon rolls, plättar are
small pancakes topped with berries, and a prins-
esstårta is a cake with layers of sponge cake, jam,
and custard under a green marzipan surface.

2 Sounds great! But how can treats be
combined with drinks?
(claim drinks
(List Atom))

(define drinks
(:: 'coffee
(:: 'cocoa nil)))

That’s right—there are some loose ends
from the preceding chapter. One loose
end is a version of append for Vec, and
the other is ruling out more foolish
definitions of list���vec.

3 Okay.

If es has ℓ entries and end has j entries,
then how many entries do they have
together?

4
Surely they have ( ℓ j) entries together.

That’s right.

(claim vec-append
(Π ((E U)

(ℓ Nat)
(j Nat))

(→ (Vec E ℓ) (Vec E j)
(Vec E ( ℓ j)))))

5 This looks very much like append’s type.
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How does vec-append’s type differ from
append’s type?

6 This more specific type makes clear how
many entries are in each list.

Exactly.

To define vec-append, what is missing?

7 An eliminator for Vec.

Actually, it is possible to define
vec-append in the same style as first,
rest, last, and drop-last, using ind-Nat,
head, and tail.

The definition that uses ind-Vec, however,
expresses its intent more directly.

8 Can every operation on Vec that can be
written using ind-Nat also be written
using head and tail?

No.

In all of the definitions that can be
written using head and tail, the type
depends only on the length, which is a
Nat. Sometimes, though, a type depends
on a Vec, and then ind-Vec is necessary.

9 Is ind-Vec like ind-List?

Yes, ind-Vec is much like ind-List. An
ind-Vec-expression

(ind-Vec n es
mot
base
step)

has two targets:

1. n, which is a Nat,

2. and es, which is a (Vec E n).

10 So n is the number of entries in es.

Are there any other differences between
ind-List and ind-Vec?
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Each part of the ind-Vec-expression must
account for the number of entries in es.

mot’s type is
(Π ((k Nat))
(→ (Vec E k)
U))

because it explains why any target Nat
and Vec are eliminated.

11 Why isn’t E also an argument in the
Π-expression?

Excellent question. This is because the
type of entries in a list plays a very
different role from the number of entries.

In any individual list, the type of entries
is the same throughout, but the number
of entries in the tail of a list is different
from the number of entries in the list.

12 Why does that matter?

The entry type E is determined once,
and it is the same for the entire
elimination. But the number of entries
changes with each of ind-Vec’s steps.

How is a motive used for the type of a
step?

13 The type of a step uses the motive in the
type of the almost-answer and the type
of the answer.

This means that the motive is used for
different numbers of entries. That is why
the number of entries is an argument to
the motive.

These two varieties of arguments to a
type constructor, that either vary or do
not vary, have special names. Those that
do not vary, such as the entry type in
Vec and List, are called parameters, and
those that do vary are called indices.

14 So the number of entries in a Vec is an
index.
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The Law of ind-Vec
If n is a Nat, target is a (Vec E n), mot is a
(Π ((k Nat))
(→ (Vec E k)
U)),

base is a (mot zero vecnil), and step is a
(Π ((k Nat)

(h E)
(t (Vec E k)))

(→ (mot k t)
(mot (add1 k) (vec:: h t))))

then
(ind-Vec n target
mot
base
step)

is a (mot n target).

Yes, it is.†

Whenever a type constructor has an
index, the index shows up in the motive
for its eliminator, and therefore also in
the step.

†A family of types whose argument is an index
is sometimes called “an indexed family.”

15 What is base’s type in ind-Vec?

base’s type is
(mot zero vecnil).

In ind-Vec, mot receives two arguments,
rather than one.

16 Doesn’t mot-replicate in frame 10:47
receive two arguments as well?
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No, though it does appear to.

Remember that mot-replicate is Curried.
Applying mot-replicate to its first
argument, which is the entry type,
constructs a one-argument motive to be
used with ind-Nat.

17 What is step’s type?

step transforms an almost-answer for
some list t into an answer for (vec:: h t),
so it is a

(Π ((k Nat)
(h E)
(t (Vec E k)))

(→ (mot k t)
(mot (add1 k) (vec:: h t)))).

Why is mot applied to (add1 k) as its
first argument in the answer type?

18 The step transforms the almost-answer
for t into the answer for (vec:: h t),
which has one more entry than t.

Why are the head and tail called h and t,
rather than the usual e and es?

The name es is already taken to refer to
the second target.

Now it is time to use ind-Vec to define
vec-append. Please start the definition.

19 Just like append, the base is end.

(define vec-append
(λ (E ℓ j )
(λ (es end)
(ind-Vec ℓ es
mot-vec-append
end
step-vec-append))))

Why is end’s type
(Vec E ( ℓ j))?

20

In the base, es is vecnil. This means that
the number of entries ℓ in es is zero, and
( zero j) is the same Nat as j.

1. (Vec E ( zero j))
2. (Vec E j)

end’s type is (Vec E j), which is exactly
what we need.
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Now define mot-vec-append. 21 The definition can be found by
abstracting over the number of entries
and the list in the base’s type.

(claim mot-vec-append
(Π ((E U)

(k Nat)
( j Nat))

(→ (Vec E k)
U)))

(define mot-vec-append
(λ (E k j)
(λ (es)
(Vec E ( k j)))))

With mot-vec-append in frame 21,
vec-append would need a λ-expression as
its motive. Why?

(define vec-append
(λ (E ℓ j es end)
(ind-Vec ℓ es
(λ (k)
(mot-vec-append E k j))

end
step-vec-append)))

22 Because the two arguments to the motive
are the two targets, ℓ and es. But the
last two arguments to mot-vec-append do
not match, so the λ-expression swaps k
and j.

The First Commandment of ind-Vec
The ind-Vec-expression
(ind-Vec zero vecnil
mot
base
step)

is the same (mot zero vecnil) as base.
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The Second Commandment of ind-Vec
The ind-Vec-expression
(ind-Vec (add1 n) (vec:: e es)
mot
base
step)

is the same (mot (add1 n) (vec:: e es)) as
(step n e es
(ind-Vec n es
mot
base
step)).

Consider this definition of
mot-vec-append, instead.

(claim mot-vec-append
(Π ((E U)

( j Nat)
(k Nat))

(→ (Vec E k)
U)))

(define mot-vec-append
(λ (E j k)
(λ (es)
(Vec E ( k j)))))

How does this change vec-append?

23 The λ-expression for the motive is no
longer necessary.

(define vec-append
(λ (E ℓ j)
(λ (es end)
(ind-Vec ℓ es
(mot-vec-append E j)
end
step-vec-append))))

When writing a Curried motive, base, or
step, it pays to carefully consider the
order of arguments.

24 It’s certainly easier to re-order
mot-vec-append’s arguments than it is to
write an extra λ-expression.
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Now define step-vec-append.

What is step-vec-append’s type?

25 This time, j is before k in the arguments.

(claim step-vec-append
(Π ((E U)

(j Nat)
(k Nat)
(e E)
(es (Vec E k)))

(→ (mot-vec-append E j
k es)

(mot-vec-append E j
(add1 k) (vec:: e es)))))

Keen observation.

What is the definition?

26

(define step-vec-append
(λ (E j ℓ-1 e es)
(λ (vec-appendes)
(vec:: e vec-appendes))))

This use of vec:: is justified because
( (add1 ℓ-1) j)

is the same Nat as
(add1 ( ℓ-1 j)).

This relies on the observation on
page 189.

All of the pieces of vec-append are ready. 27 Here is the definition, in a well-earned
solid box.
(define vec-append
(λ (E ℓ j)
(λ (es end)
(ind-Vec ℓ es
(mot-vec-append E j)
end
(step-vec-append E j)))))
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The first loose end has been tied up.

What is a good name for
(vec-append Atom 3 2 treats drinks)?

28 That expression is not described by a
type because drinks is a (List Atom).

But how about fika for this version?
(claim fika
(Vec Atom 5))

(define fika
(vec-append Atom 3 2
treats
(list���vec Atom drinks)))

This fika is foolish if list���vec is foolish.
In frame 10:81, a list���vec is defined that
is foolish, but this foolish definition has
the right type.

(define step-list���vec
(λ (E e es)
(λ (list���veces)
(replicate E (length es) e))))

(define list���vec
(λ (E es)
(ind-List es
mot-list���vec
vecnil
(step-list���vec E))))

29 Using this definition, the normal form of
(list���vec Atom drinks)

is
(vec:: 'coffee
(vec:: 'coffee vecnil)),

but some prefer 'cocoa to 'coffee.

How can we rule out this foolishness?

Thus far, we have used more specific
types to rule out foolish definitions.
Another way to rule out foolish
definitions is to prove that they are not
foolish.†

†Sometimes, using a more specific type is called
an intrinsic proof. Similarly, using a separate proof
is called extrinsic.

30 What is an example of such a proof?
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One way to rule out foolish definitions of
list���vec is to prove that transforming
the Vec back into a List results in an
equal List.

This requires vec���list. Here is the
motive.
(claim mot-vec���list
(Π ((E U)

(ℓ Nat))
(→ (Vec E ℓ)
U)))

(define mot-vec���list
(λ (E ℓ)
(λ (es)
(List E))))

What is the step?

31 The step replaces each vec:: with a ::
constructor, just as step-list���vec replaces
each :: with a vec:: constructor.
(claim step-vec���list
(Π ((E U)

(ℓ-1 Nat)
(e E)
(es (Vec E ℓ-1)))

(→ (mot-vec���list E
ℓ-1 es)

(mot-vec���list E
(add1 ℓ-1) (vec:: e es)))))

(define step-vec���list
(λ (E ℓ-1 e es)
(λ (vec���listes)
(:: e vec���listes))))

The definition of vec���list is also very
similar to the definition of list���vec.
(claim vec���list
(Π ((E U)

(ℓ Nat))
(→ (Vec E ℓ)
(List E))))

(define vec���list
(λ (E ℓ)
(λ (es)
(ind-Vec ℓ es
(mot-vec���list E)
nil
(step-vec���list E)))))

What is the normal form of
(vec���list Atom 3 treats)?

32 It is
(:: 'kanelbullar
(:: 'plättar
(:: 'prinsesstårta nil))).
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So is it clear how to find the value of an
ind-Vec-expression?

33 Yes, it is just like finding the value of an
ind-List-expression, except the step is
applied to both targets.

How can the statement,
“For every List, transforming it into a

Vec and back to a List yields a list that is
equal to the starting list.”
be written as a type?

34 The term every implies that there should
be a Π. How about this type?

(claim list���vec���list=
(Π ((E U)

(es (List E)))
( (List E)
es
(vec���list E
(list���vec E es)))))

That is very close, but the second
argument to vec���list is the number of
entries in the Vec.

How many entries does
(list���vec E es)

have?

35 Oh, right, can’t forget the length.

(claim list���vec���list=
(Π ((E U)

(es (List E)))
( (List E)
es
(vec���list E
(length E es)
(list���vec E es)))))

What is an appropriate target for
induction?

36 The target of induction is es. The
definition has the usual suspects: a
motive, a base, and a step.

(define list���vec���list=
(λ (E es)
(ind-List es
(mot-list���vec���list= E)
(base-list���vec���list= E)
(step-list���vec���list= E))))
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What is the base? 37 The base’s type is
( (List E)
nil
(vec���list E
(length E nil)
(list���vec E nil))),

also known as
( (List E) nil nil).

That is the base’s type.

But what is the base?

38
(same nil), of course.

Once again, there’s no need to define
base-list���vec���list=.

Here is the motive’s type.

(claim mot-list���vec���list=
(Π ((E U))
(→ (List E)
U)))

Define mot-list���vec���list=.

39 Abstracting over nil in the base’s type in
frame 37 leads directly to the definition.

(define mot-list���vec���list=
(λ (E es)
( (List E)
es
(vec���list E
(length E es)
(list���vec E es)))))

The only thing left is the step.

What is an appropriate type for the
step?

40 Follow the Law of ind-List.
(claim step-list���vec���list=
(Π ((E U)

(e E)
(es (List E)))

(→ (mot-list���vec���list= E
es)

(mot-list���vec���list= E
(:: e es)))))
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Here is the beginning of a definition.

(define step-list���vec���list=
(λ (E e es)
(λ (list���vec���list=es)

list���vec���list=es )))

What can be put in the box to transform
the almost-proof for es into a proof for
(:: e es)?

41 The almost-proof, list���vec���list=es , is an
( (List E)
es
(vec���list E
(length E es)
(list���vec E es))).

This is an opportunity to use our old
friend cong from chapter 8 to eliminate
list���vec���list=es .

Remember, cong expresses that every
function produces equal values from
equal arguments.

42 Equal in, equal out!

How would we use cong here?

What is the type of
(cong (same 'plättar)
(snoc Atom (:: 'kanelbullar nil)))?

43 snoc does not yet have the new entry to
be placed at the end of the list.
Because

(same 'plättar)
is an

( Atom 'plättar 'plättar),
and that new entry will be 'plättar, so
the type is

( (List Atom)
(:: 'kanelbullar
(:: 'plättar nil))

(:: 'kanelbullar
(:: 'plättar nil))).

Prove that
“consing 'plättar onto two equal lists of

treats produces equal lists of treats.”

44 This proof can be used in the box.
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First, how can the statement be written
as a type?

45 “Two equal lists of treats” can be written
as a Π-expression with two (List Atom)
arguments and a proof that they are
equal.

(claim Treat-Statement
U)

(define Treat-Statement
(Π ((some-treats (List Atom))

(more-treats (List Atom)))
(→ ( (List Atom)

some-treats
more-treats)

( (List Atom)
(:: 'plättar some-treats)
(:: 'plättar more-treats)))))

Proving this statement is easier with this
definition.
(claim ::-plättar
(→ (List Atom)
(List Atom)))

(define ::-plättar
(λ (tasty-treats)
(:: 'plättar tasty-treats)))

Use this with cong to prove
Treat-Statement.

46 Here is the definition of treat-proof .
(claim treat-proof
Treat-Statement)

(define treat-proof
(λ (some-treats more-treats)
(λ (treats=)
(cong treats= ::-plättar))))

Great!

What can be said about the lengths of
equal lists?

47 Every two equal lists have equal lengths.

258 Chapter 11



Now prove that
“Every two equal treat lists have equal

lengths.”
using cong.

48 length-treats= is similar to treat-proof .

(claim length-treats=
(Π ((some-treats (List Atom))

(more-treats (List Atom)))
(→ ( (List Atom)

some-treats
more-treats)

( Nat
(length Atom some-treats)
(length Atom more-treats)))))

(define length-treats=
(λ (some-treats more-treats)
(λ (treats=)
(cong treats= (length Atom)))))

Returning to the matter at hand, it is
now possible to fill the box in frame 41
with a cong-expression.

The almost-proof, list���vec���list=es , is an
( (List E)
es
(vec���list E
(length E es)
(list���vec E es))).

What is the box’s type in frame 41?

49 The box’s type is
( (List E)
(:: e es)
(vec���list E
(length E (:: e es))
(list���vec E (:: e es)))).

Now it is time for an observation about
list���vec, similar to the observation
about on page 210.

What is the value of
1. (vec���list E

(length E (:: e es))
(list���vec E (:: e es)))?

50 Let’s see.
2. (vec���list E

(add1 (length E es))
(vec:: e (list���vec E es)))

3. (:: e
(vec���list E
(length E es)
(list���vec E es)))
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When in Doubt, Evaluate

Gain insight by finding the values of expressions in types
and working out examples in “same-as” charts.

How is this new observation similar to
the observation about ?

51 The preceding observation is that we can
pull out an
add1

from ’s first argument and put the add1
around the whole expression.

This new observation is that we can
similarly pull out a
::

from list���vec’s second argument, putting
a vec:: around the whole expression.

When using cong, the same function is
applied to both the from and the to of
an -expression.

What function transforms
es

into
(:: e es)

and
(vec���list E
(length E es)
(list���vec E es))

into
(:: e
(vec���list E
(length E es)
(list���vec E es)))?

52
(:: e), right?
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That is very close. But the constructor
of functions is λ. Other constructors
construct different types.

53 Here is a function that does the trick.
(claim ::-fun
(Π ((E U))
(→ E (List E)
(List E))))

(define ::-fun
(λ (E)
(λ (e es)
(:: e es))))

Now complete the box in frame 41 to
define step-list���vec���list=.

54 Here it is.
(define step-list���vec���list=
(λ (E e es)
(λ (list���vec���list=es)
(cong list���vec���list=es
(::-fun E e)))))

It’s time to put the pieces together, using
the motive, the base, and the step.
Remember the claim in frame 35 on
page 255.

55 Here is another well-built solid box.
(define list���vec���list=
(λ (E es)
(ind-List es
(mot-list���vec���list= E)
(same nil)
(step-list���vec���list= E))))

This proof rules out the foolish definition
from frame 29 on page 253.

Why?

56 Because, using the foolish definition,
(vec���list Atom
(length Atom drinks)
(list���vec Atom drinks)),

is not equal to drinks.
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Why not? 57 Because
(:: 'coffee
(:: 'coffee nil))

is not equal to
(:: 'coffee
(:: 'cocoa nil)).

Where would the proof go wrong? 58 It would go wrong in frame 54 because
the new observation in frame 50 would
no longer be the case.

Exactly. This proof has ruled out many
foolish definitions.

59 Many?

At some point, it becomes necessary to
trust that enough specific types have
been used to avoid the foolishness one
might be prone to. This requires
hard-won self-knowledge.

If vec���list could remove the foolishness
introduced by list���vec, then it would
remain undetected.

60 How could that be?

Imagine that vec���list and list���vec both
reversed the order of the list.

61 Coffee and cake are good for the
imagination.

In this imaginary world, the proof would
work, but both vec���list and list���vec
would be foolish.

62 If they also reversed lists, then that
should have been part of their names!
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Now, go and enjoy a cozy fika
with either an even or an odd number of friends.
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What is an even number? 1 It is a number that can be split into two
equal halves.

What does it mean for a number to be
split into two equal halves?

2 It means that,
“There is some number that, added to

itself, yields the original number.”

How can that definition be written as a
type?

3 According to frame 10:18, a Σ-expression
does the trick.

A “there is” statement has two important
parts: the type of the thing that exists,
and a property that it has.

Here, the type of thing that exists is Nat,
and its property is being half of the even
Nat. These are the respective car and cdr
of the evidence for a “there is” statement.

4 What does Even look like?

The definition of evenness can be written
as a function that returns a type.

(claim Even
(→ Nat
U))

(define Even
(λ (n)
(Σ ((half Nat))
( Nat n (double half )))))

What is the value of (Even 10)?

5 The value of
(Even 10)

is
(Σ ((half Nat))
( Nat 10 (double half ))).
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What are the values in (Even 10)? 6
The values look like (cons a d), where
a

is a Nat and
d

is an
( Nat 10 (double a)).

Find a and d so that
(cons a d)

is an
(Even 10).

7 a is clearly 5 because 5 is half of 10.
And

(same 10)
is an

( Nat 10 (double 5)).

This is what is needed to prove that 10 is
even.

What is the proof?

8 The proof is
(cons 5
(same 10)).

That’s right. What about 0? 9 Half of 0 is 0.
(claim zero-is-even
(Even 0))

(define zero-is-even
(cons 0
(same 0)))

What is another way that Even could
have been defined?

10 Wouldn’t do the trick?

(define Even
(λ (n)
(Σ ((half Nat))
( Nat n ( half half )))))
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That would certainly work, because
“For all n, (twice n) equals (double n).”

Although two functions always return
the same answer, sometimes one of them
is easier to use because it more quickly
becomes a value. In particular, and
thus twice leave an add1 on the second
argument, while double puts both add1s
at the top immediately.

11 As seen in the proof of twice=double in
frame 9:52.

How can the statement,
“Two greater than every even number

is even.”
be written as a type?

12 Good question.

It can be useful to use more descriptive
prose when translating a statement into
a type.

Here’s another way to say the same
thing:

“For every natural number n, if n is
even, then 2 + n is even.”

13 “Every” sounds like Π.

(claim two-even
(Π ((n Nat))
(→ (Even n)
(Even ( 2 n)))))

Now prove it. 14 Clearly, the proof uses ind-Nat because
the type depends on a Nat.

It can actually be done without
induction.

But first, how much of the definition can
be written now?

15 Here’s a start . . .
(define two-even
(λ (n en)

. . .but what goes here? ))
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Good question.

If 5 is half of 10, then what is half of
( 2 10)?

16
( 2 10) is the same Nat as 12, and half
of 12 is 6.

If 6 is half of 12, then what is half of
( 2 12)?

17
( 2 12) is the same Nat as 14, and half
of 14 is 7.

There is a repeating pattern here.

Yes, there is a repeating pattern. This
pattern can be used to fill the box.

If a is half of n, then what is half of
( 2 n)?

18
It is (add1 a).

But where is that a in the empty box?

It is (car en) because en is an (Even n).

This means
(car en)

is half of n, and
(cdr en)

proves this.

19 Right, because car and cdr work with
expressions described by Σ.

If p is a
(Σ ((x A))
D),

then (car p) is an A, and (cdr p)’s type is
found by consistently replacing each x in
D with (car p).

20 That follows directly from the
description in frame 10:6 on page 220.
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It’s possible to go a bit further with the
definition of two-even now.

21 The body of the λ-expression has cons at
the top because it must be an

(Even ( 2 n)).

(define two-even
(λ (n en)
(cons (add1 (car en))

)))

And the car is (add1 (car en)) because
(car en) is half of n.

So far, so good.

What is (cdr en)’s type?

22
(cdr en) is an

( Nat
n
(double (car en))).

There is an equality proof available, and
it is almost correct . . .

23 How can an
( Nat
n
(double (car en)))

be transformed into an
( Nat
( 2 n)
(double (add1 (car en))))?

This is where the choice of double over
shows its value, just as it did when
defining double-Vec in frame 9:59.

(double (add1 (car en)))
is the same Nat as

(add1
(add1
(double (car en)))).

24 And if the cdr’s type had been claimed
with or twice, then this Nat would
have been

(add1
( (car en)

(add1 (car en)))),
and more work would have been required
to bring both add1s to the top.

Even Numbers Can Be Odd 269



Carefully Choose Definitions

Carefully-chosen definitions can greatly sim-
plify later proofs.

In frame 21’s empty box,
(cdr en)

is an
( Nat
n
(double (car en))).

Find an expression that is an
( Nat
( 2 n)
(add1
(add1
(double (car en))))).

25 The expression
(cong (cdr en) ( 2))

has that type because
( 2 n)

is the same Nat as
(add1
(add1 n)).

That is precisely what is needed to
complete the proof.

26 Thanks for the hints.
(define two-even
(λ (n en)
(cons (add1 (car en))
(cong (cdr en) ( 2)))))

Is two even? 27 Yes, it is.

270 Chapter 12



Prove it, using two-even. 28 To use two-even, we need evidence that
0 is even. This evidence is in frame 26.
(claim two-is-even
(Even 2))

(define two-is-even
( two-even 0 zero-is-even))

Here is the value of two-is-even.
1. two-is-even
2. ( two-even 0 zero-is-even)
3. (cons (add1 (car zero-is-even))

(cong (cdr zero-is-even) ( 2)))

Now find the normal form.

29 The normal form takes just a few more
steps.

4. (cons (add1 zero)
(cong (same zero) ( 2)))

5. (cons 1
(same ( 2 zero)))

6. (cons 1
(same 2))

What is an odd number? 30 An odd number is not even.

Is there a more explicit way to say that? 31 Odd numbers cannot be split into two
equal parts. There is always an add1
remaining.

How can that description be written as a
type?

Hint: use the definition of Even as a
guide.

32 Isn’t this an odd definition?
(claim Odd
(→ Nat
U))

(define Odd
(λ (n)
(Σ ((haf Nat))
( Nat n (add1 (double haf ))))))
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No, but it is an Odd definition.

What does haf mean?

33 It is pretty close to half . It is half of the
even number that is one smaller than n.

Here is a claim that 1 is odd.
(claim one-is-odd
(Odd 1))

Prove it.

34 Here is the proof:

(define one-is-odd
(cons 0
(same 1))).

Here, the cdr is
(same 1)

because
(same 1)

is an
( Nat 1 (add1 (double 0))).

Now prove that,
“13 is odd.”

35 “Haf” of a baker’s dozen is 6.
(claim thirteen-is-odd
(Odd 13))

(define thirteen-is-odd
(cons 6
(same 13)))

If n is even, what can be said about
(add1 n)?

36 Would this statement do the trick?
“If n is even, then (add1 n) is odd.”

Yes.

How can that be written as a type?

37 It uses a Π-expression and an
→-expression, because the n means “for
every n,” and if-then statements are
translated to →-expressions.
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Now translate the statement. 38 Here it is.
(claim add1-even���odd
(Π ((n Nat))
(→ (Even n)
(Odd (add1 n)))))

Is that claim true? 39 Yes.

What is the evidence? Remember, truth
is the same as having evidence, yet no
evidence has been provided.

40 So the statement is false?

No.

There is neither evidence that the
statement is true, nor evidence that the
statement is false. For now, it is a
mystery.

41 Better solve that mystery then.

To solve the mystery, think about the
relationship between half of n and “haf”
of (add1 n) when n is even.

42 They are the same Nat.

Why are they the same Nat? 43 Because the extra add1 is “used up” in
the to side of the equality in the
definition of Odd.

Now use this important fact to prove the
mystery statement and make it true.

44 Et voilà!
(define add1-even���odd
(λ (n en)
(cons (car en)
(cong (cdr en) ( 1)))))
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Definitions should be written to be
understood.

Why is this definition correct?

45 In the body of the λ-expression, there is
a cons-expression. This expression is the
proof of (Odd (add1 n)) because the
value of (Odd (add1 n)) has Σ at the top.

What about the car of the proof? 46
The car is (car en) because “haf” of an
odd number is half of the even number
that is one smaller.

And what about the cdr of the proof? 47 The cdr is built with cong, because
(cdr en)

is an
( Nat
n
(double (car en))),

but the definition of (Odd (add1 n))
demands that the cdr be an

( Nat
(add1 n)
(add1 (double (car en)))).

The statement is now true. Take a bow.

If n is odd, what can be said about
(add1 n)?

48 Clearly,
“If n is odd, then (add1 n) is even.”

That’s quite the claim . . .
49 Indeed.

(claim add1-odd���even
(Π ((n Nat))
(→ (Odd n)
(Even (add1 n)))))
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Now it’s time to make that claim true.

What is “haf” of 25?

50 It is 12 because
(add1 (double 12))

is the same Nat as 25.

What is half of 26? 51 It is 13 because
(double 13)

is the same Nat as 26.

Following this template, what is the
relationship between “haf” of some odd
number n and half of (add1 n)?

52 If a is “haf” of the odd number n, then
half of the even (add1 n) is (add1 a).

Now start the definition, using this “haf.” 53 Here it is.
(define add1-odd���even
(λ (n on)
(cons (add1 (car on))

)))

The box needs an
( Nat
(add1 n)
(double (add1 (car on)))).

Where did that type come from? 54 It came from the definition of Even
combined with the Commandment of
cdr.

Even Numbers Can Be Odd 275



What type does (cdr on) have?
55 In the box,

(cdr on)
is an

( Nat
n
(add1 (double (car on)))).

How can (cdr on) be used to construct
evidence that

( Nat
(add1 n)
(double (add1 (car on))))?

56 cong does the trick, because
(double (add1 (car on)))

is the same Nat as
(add1
(add1
(double (car on)))).

(define add1-odd���even
(λ (n on)
(cons (add1 (car on))
(cong (cdr on) ( 1)))))

That definition deserves a solid box. 57 Whew! It’s time for another fika.

Go eat a haf a baker’s dozen muffins
and get ready to divide by two.
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Behold! Ackermann!
(claim repeat
(→ (→ Nat

Nat)
Nat

Nat))
(define repeat
(λ (f n)
(iter-Nat n
(f 1)
(λ (iter f,n-1)
(f iter f,n-1)))))

(claim ackermann
(→ Nat Nat
Nat))

(define ackermann
(λ (n)
(iter-Nat n
( 1)
(λ (ackermannn-1)
(repeat ackermannn-1)))))
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Is every natural number either even or
odd?

1 They might be.

But where’s the evidence?

Writing
“Every natural number is either even

or odd.”
as a type requires a new type
constructor: Either, which is used to
write “or” as a type.

2 That seems reasonable.

When does Either construct a type?

(Either L R) is a type if L is a type and
R is a type.

3
What are the values of (Either L R)?

The Law of Either
(Either L R) is a type if L is a type and R is a type.

There are two constructors. If lt is an L,
then (left lt) is an (Either L R). If rt is
an R , then (right rt) is an (Either L R).

When are two (Either L R) values the
same?

4 Here’s a guess based on earlier types.

(left lt1) and (left lt2) are the same
(Either L R) if lt1 and lt2 are the same L.

So far, so good. Anything to add? 5
Yes, one more thing. (right rt1) and
(right rt2) are the same (Either L R) if
rt1 and rt2 are the same R .
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The Law of left
(left lt) is an (Either L R) if lt is an L.

The Law of right
(right rt) is an (Either L R) if rt is an R .

Any other possibilities? 6 Probably not.

That is indeed all of the possibilities.

The eliminator for Either is called
ind-Either.

7 That’s not a surprise.

ind-Either has two bases, but no step.

Why is that?

8 It is because there are two ways to
construct an (Either L R), but neither
left nor right has an (Either L R) as an
argument.

So can ind-Either introduce recursion? 9 No, because neither left nor right, Either’s
two constructors, are recursive.

In an ind-Either-expression
(ind-Either target
mot
base-left
base-right),

target is an (Either L R).

10 Does mot explain why target is being
eliminated?
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As usual, it does. mot’s type is
(→ (Either L R)
U).

base-left explains how the motive is
fulfilled for every left. That is, base-left’s
type is

(Π ((x L))
(mot (left x))).

11 Is base-right’s type built the same way?

Yes, it is. base-right explains how the
motive is fulfilled for every right.

What is base-right’s type?

12 base-right’s type is
(Π ((y R))
(mot (right y)))

because “every” becomes a Π-expression
when written as a type.

What is the value of
(ind-Either (left x)
mot
base-left
base-right)?

13
It is the value of (base-left x), which is
the only available expression with the
correct type.

What is the value of
(ind-Either (right y)
mot
base-left
base-right)?

14
It is the value of (base-right y), for the
same reason.
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The Law of ind-Either
If target is an (Either L R), mot is an
(→ (Either L R)
U),

base-left is a
(Π ((x L))
(mot (left x))),

and base-right is a
(Π ((y R))
(mot (right y)))

then
(ind-Either target
mot
base-left
base-right)

is a (mot target).

The First Commandment of ind-Either
(ind-Either (left x)
mot
base-left
base-right)

is the same (mot (left x)) as (base-left x).
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The Second Commandment of ind-Either
(ind-Either (right y)
mot
base-left
base-right)

is the same (mot (right y)) as (base-right y).

Now we know how to write,
“Every natural number is even or odd.”

as a type.

(claim even-or-odd
(Π ((n Nat))
(Either (Even n) (Odd n))))

15 This is a claim about all Nats. Does the
proof use ind-Nat?

Yes, it does.

mot-even-or-odd describes the purpose of
the elimination. Try to define it without
finding the base first.

(claim mot-even-or-odd
(→ Nat
U))

16 Abstracting over n in frame 15 does it.

(define mot-even-or-odd
(λ (k)
(Either (Even k) (Odd k))))

Good choice.

What is the base?

17 The base is an
(Either (Even zero) (Odd zero))

and zero happens to be even.
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Sound familiar? 18 Yes, it does.

The base is
(left zero-is-even).

It is.

What is the type of the step?

19 The type of the step is found using the
motive.
(claim step-even-or-odd
(Π ((n-1 Nat))
(→ (mot-even-or-odd n-1)
(mot-even-or-odd (add1 n-1)))))

Now define step-even-or-odd. 20 Here’s a start . . .
(define step-even-or-odd
(λ (n-1)
(λ (e-or-on-1)

. . . but what goes here? )))

What is e-or-on-1’s type? 21 The type comes from the step’s claim.
1. (mot-even-or-odd n-1)
2. (Either (Even n-1) (Odd n-1))

What is the eliminator for Either? 22 ind-Either, of course.
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So eliminate it. 23 Here’s a version with empty boxes in it,
at least.
(define step-even-or-odd
(λ (n-1)
(λ (e-or-on-1)
(ind-Either e-or-on-1

))))

Good start.

What is the motive?

24 According to step-even-or-odd’s claim,
the elimination produces a

(mot-even-or-odd (add1 n-1)).

Instead of defining a separate motive, try
writing a λ-expression this time. The
argument to the motive is the target, but
this elimination is not producing a type
that depends on the target. So the
motive’s argument can be dim.

25 That’s a lot shorter than defining it
separately.

(define step-even-or-odd
(λ (n-1)
(λ (e-or-on-1)
(ind-Either e-or-on-1
(λ (e-or-o)
(mot-even-or-odd (add1 n-1)))

))))

Yes, it is shorter. But shorter is not
always easier to read. Compare the two
styles and decide which is easier to
understand in each case.

When n-1 is even, what is the evidence
that (add1 n-1) is odd?

26 The evidence can be constructed with
add1-even���odd.
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The first empty box in frame 25 is an
(→ (Even n-1)
(Either
(Even (add1 n-1))
(Odd (add1 n-1)))).

27 The Law of ind-Either states that the
base for left is a

(Π ((x L))
(mot (left x))),

so why doesn’t the empty box’s type
have Π at the top?

The type has Π at the top. Because →
is another way of writing Π when its
argument name is not used, → is
sufficient, as seen in frame 6:40.

28
Because (add1 n-1) is odd, the expression
uses right:

(λ (en-1)
(right
(add1-even���odd n-1 en-1))).

That’s right.

What about the last box?

29
In that box, n-1 is odd. Thus, (add1 n-1)
is even and the expression uses left:

(λ (on-1)
(left
(add1-odd���even n-1 on-1))).

Now assemble the definition of
step-even-or-odd.

30 The boxes are filled in.
(define step-even-or-odd
(λ (n-1)
(λ (e-or-on-1)
(ind-Either e-or-on-1
(λ (e-or-on-1)
(mot-even-or-odd
(add1 n-1)))

(λ (en-1)
(right
(add1-even���odd
n-1 en-1)))

(λ (on-1)
(left
(add1-odd���even
n-1 on-1)))))))
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Now, define even-or-odd. 31 The pieces are ready.

(define even-or-odd
(λ (n)
(ind-Nat n
mot-even-or-odd
(left zero-is-even)
step-even-or-odd)))

even-or-odd is a proof that
“Every natural number is even or odd.”

But it is more than just a proof—it is a
λ-expression that produces a value when
it gets an argument.

32 It always produces a value because all
functions are total.

Is this value interesting?

Let’s find out.

What is the value of (even-or-odd 2)?

33 That’s an interesting question.

Get ready for a long “same-as” chart.
Here’s the beginning.

1. (even-or-odd 2)
2. ((λ (n)

(ind-Nat n
mot-even-or-odd
(left zero-is-even)
step-even-or-odd))

2)
3. (ind-Nat 2 . . . )
4. (step-even-or-odd

1
(ind-Nat 1 . . . ))

In this chart, . . . , an ellipsis, stands for
the arguments to ind-Nat or ind-Either
that don’t change at all.

34 Here’s the next one.
5. ((λ (n-1)

(λ (e-or-on-1)
(ind-Either e-or-on-1
(λ (e-or-on-1)
(mot-even-or-odd
(add1 n-1)))

(λ (en-1)
(right
(add1-even���odd
n-1 en-1)))

(λ (on-1)
(left
(add1-odd���even
n-1 on-1))))))

1 (ind-Nat 1 . . . ))
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At each step, look for the parts of
expressions that change and those that
don’t.

Try to identify motives, bases, and steps
that appear multiple times.

35 What about targets?

Targets are rarely repeated, but worth
watching.

6. ((λ (e-or-on-1)
(ind-Either e-or-on-1
(λ (e-or-on-1)
(mot-even-or-odd 2))

(λ (en-1)
(right
(add1-even���odd 1 en-1)))

(λ (on-1)
(left
(add1-odd���even 1 on-1)))))

(ind-Nat 1 . . . ))
7. (ind-Either (ind-Nat 1 . . . )

(λ (e-or-on-1)
(mot-even-or-odd 2))

(λ (en-1)
(right
(add1-even���odd 1 en-1)))

(λ (on-1)
(left
(add1-odd���even 1 on-1))))

36 Ah, because as soon as a target’s value is
found, a base or step is chosen.

8. (ind-Either
(step-even-or-odd
0
(ind-Nat 0 . . . ))

(λ (e-or-on-1)
(mot-even-or-odd 2))

(λ (en-1)
(right
(add1-even���odd 1 en-1)))

(λ (on-1)
(left
(add1-odd���even 1 on-1))))

9. (ind-Either
((λ (n-1)

(λ (e-or-on-1)
(ind-Either e-or-on-1 . . . )))

0 (ind-Nat 0 . . . ))
(λ (e-or-on-1)
(mot-even-or-odd 2))

(λ (en-1)
(right
(add1-even���odd 1 en-1)))

(λ (on-1)
(left
(add1-odd���even 1 on-1))))
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10. (ind-Either
((λ (e-or-on-1)

(ind-Either e-or-on-1
(λ (e-or-on-1)
(mot-even-or-odd 1))

(λ (en-1)
(right
(add1-even���odd 0 en-1)))

(λ (on-1)
(left
(add1-odd���even 0 on-1)))))

(ind-Nat 0 . . . ))
(λ (e-or-on-1)
(mot-even-or-odd 2))

(λ (en-1)
(right
(add1-even���odd 1 en-1)))

(λ (on-1)
(left
(add1-odd���even 1 on-1))))

37

11. (ind-Either
((λ (en-1)

(right
(add1-even���odd 0 en-1)))

zero-is-even)
(λ (e-or-on-1)
(mot-even-or-odd 2))

(λ (en-1)
(right
(add1-even���odd 1 en-1)))

(λ (on-1)
(left
(add1-odd���even 1 on-1))))

12. (ind-Either
(right
(add1-even���odd 0 zero-is-even))

(λ (e-or-on-1)
(mot-even-or-odd 2))

(λ (en-1)
(right
(add1-even���odd 1 en-1)))

(λ (on-1)
(left
(add1-odd���even 1 on-1))))

13. ((λ (on-1)
(left
(add1-odd���even 1 on-1)))

(add1-even���odd 0 zero-is-even))

38

14. (left
(add1-odd���even
1
(add1-even���odd
0
zero-is-even)))

The last expression in the chart is a
value.

Whew!
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Indeed,
(left
(add1-odd���even
1
(add1-even���odd
0
zero-is-even)))

is a value.

What can we learn from this value?

39 From this value, it is clear that 2 is even,
because the value has left at the top.

In this case, there is still more to be
learned.

Find the normal form of
(left
(add1-odd���even
1
(add1-even���odd
0
zero-is-even))).

40 The first step in finding the normal form
is to replace add1-odd���even with its
definition.

That’s right.
15. (left

((λ (n on)
(cons (add1 (car on))
(cong (cdr on) ( 1))))

1
(add1-even���odd
0
zero-is-even)))

What is next?

41 The next step is to replace n with 1 and
add1-even���odd with its definition.

16. (left
((λ (on)

(cons (add1 (car on))
(cong (cdr on) ( 1))))

((λ (n en)
(cons (car en)
(cong (cdr en) ( 1))))

0
zero-is-even)))
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The next step is to drop in the definition
of zero-is-even.

17. (left
((λ (on)

(cons (add1 (car on))
(cong (cdr on) ( 1))))

((λ (en)
(cons (car en)
(cong (cdr en) ( 1))))

zero-is-even)))
18. (left

((λ (on)
(cons (add1 (car on))
(cong (cdr on) ( 1))))

((λ (en)
(cons (car en)
(cong (cdr en) ( 1))))

(cons 0 (same 0)))))
What’s next?

42 Next, find the car and cdr of en.
19. (left

((λ (on)
(cons (add1 (car on))
(cong (cdr on) ( 1))))

(cons 0
(cong (same 0) ( 1)))))

It looks like the next step is to find the
value of

(cong (same 0) ( 1)),
and by the Commandment of cong, that
value is

(same 1).

Here’s the next step.
20. (left

((λ (on)
(cons (add1 (car on))
(cong (cdr on) ( 1))))

(cons 0
(same 1))))

What remains?

43 There is one more cong-expression that
can be made more direct.
21. (left

(cons 1
(cong (same 1) ( 1))))

22. (left
(cons 1
(same 2)))

What can be learned from this normal
form?

44 From the value, we see that 2 is even.
The normal form also has the proof that
2 is even tucked under left.

Each step in the “same as” chart is the
same as the previous step, so the value
also contains the proof.

45 Normal forms, however, are often easier
to understand, and this one is no
exception.
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What can be learned from such a proof? 46 Not only that 2 is even, but also that 1 is
half of 2.

Definitions like even-or-odd play two
roles. In the first role, even-or-odd is a
proof that every Nat is either even or
odd.

47 What is the other role?

In the second role, even-or-odd is a
function that can determine whether a
Nat is even or odd. To do so, it finds
either half or “haf” of the Nat.

48 even-or-odd is interesting both as
evidence for a statement and for the
results that it finds.

Exactly. Now, it’s time to go for a nice
relaxing walk in the woods.

49 Sounds good.
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Every number is even or odd,
and some are smaller than others.

Get ready.
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Please select a dish from this menu:

• ratatouille,

• kartoffelmad,

• hero sandwich, or

• prinsesstårta.

1 The fourteenth, please.

There are only four dishes on the menu,
so you don’t get anything.

2 That’s unfortunate.

In order to pick a specific entry from a
list, we must know what to do when
there are not enough entries.

3 One might say that there may be an
entry, but there also may not be.

To represent the case when there is no
entry, we need a new type, called Trivial.†

†Sometimes called the unit type.

4 What is Trivial?

Trivial is a type, and sole is a Trivial.

Every Trivial expression is the same
Trivial as sole.

5 What about neutral Trivial expressions?

Yes, neutral Trivial expressions are the
same as sole. And that’s all there is to
say about Trivial.

6 This type is appropriately named.
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The Law of Trivial
Trivial is a type.

The Law of sole
sole is a Trivial.

The Commandment of sole
If e is a Trivial, then e is the same as sole.

That an entry may or may not be in a
list can be represented using Maybe.

(claim Maybe
(→ U
U))

7 How can Maybe represent presence or
absence?

There is either an X or a Trivial.
(define Maybe
(λ (X)
(Either X Trivial)))

8 Okay.
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Absence is indicated using (right sole).

(claim nothing
(Π ((E U))
(Maybe E)))

(define nothing
(λ (E)
(right sole)))

9 Presumably, presence uses left.

Indeed it does. Here is the claim.
(claim just
(Π ((E U))
(→ E
(Maybe E))))

10 In order to use left, an E is necessary.

(define just
(λ (E e)
(left e)))

Using Maybe, it is possible to write a
total version of head for List.
(claim maybe-head
(Π ((E U))
(→ (List E)
(Maybe E))))

11 Following the type, the definition begins
with λ.
(define maybe-head
(λ (E es)

))

What should we expect from
(maybe-head Atom nil)?

12
It should be (nothing Atom) because the
empty list has no head.

What should we expect from
(maybe-head Atom
(:: 'ratatouille
(:: 'kartoffelmad
(:: (sandwich 'hero)
(:: 'prinsesstårta nil)))))?

13
It should be (just Atom 'ratatouille).
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This is enough information to find the
base and step for rec-List in the empty
box.

14 Plenty of information.

(define maybe-head
(λ (E es)
(rec-List es
(nothing E)
(λ (hd tl headtl)
(just E hd)))))

What type should maybe-tail have? 15 It is similar to maybe-head, except that
it (maybe) finds a list.

(claim maybe-tail
(Π ((E U))
(→ (List E)
(Maybe (List E)))))

The definition of maybe-tail is also very
similar to the definition of maybe-head.
Only the type in the base and the step’s
type and value need to change.

16

(define maybe-tail
(λ (E es)
(rec-List es
(nothing (List E))
(λ (hd tl tailtl)
(just (List E) tl)))))

maybe-head and maybe-tail can be used
to define list-ref , which either finds or
does not find a specific entry in a list.

17 What is list-ref ’s type?
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list-ref accepts an entry type, a Nat, and
a list. It may or may not find an entry.

(claim list-ref
(Π ((E U))
(→ Nat (List E)
(Maybe E))))

What should we expect from
(list-ref Atom 0 nil)?

18 We should expect nothing, because nil
has no entries.

Or, rather, we should expect
(nothing Atom).

What about
(list-ref Atom
zero
(:: 'ratatouille
(:: 'kartoffelmad
(:: (sandwich 'hero)
(:: 'prinsesstårta nil)))))?

19 That’s just 'ratatouille, or rather,
(just Atom 'ratatouille).

In other words, when the Nat is zero,
list-ref acts just like maybe-head.

(define list-ref
(λ (E n)
(rec-Nat n
(maybe-head E)

)))

20 That’s why maybe-head is the base.

What is the step?

The base is an
(→ (List E)
(Maybe E)).

What is the step’s type?

21 It should work for any entry type E .

(claim step-list-ref
(Π ((E U))
(→ Nat

(→ (List E)
(Maybe E))

(→ (List E)
(Maybe E)))))
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The step takes as its argument a list-ref
for some smaller Nat, which is almost a
list-ref for this Nat.

How can a list-ref for n-1 be transformed
into a list-ref for n?

22 The list-ref for n-1 can be applied to the
tail of the list.

Complete this definition.

(define step-list-ref
(λ (E)
(λ (n-1 list-ref n-1)
(λ (es)

))))

23 list-ref n-1 can be used when maybe-tail of
es finds a (List E). When maybe-tail
finds nothing, the step finds nothing.

(define step-list-ref
(λ (E)
(λ (n-1 list-ref n-1)
(λ (es)
(ind-Either (maybe-tail E es)
(λ (maybetl)
(Maybe E))

(λ (tl)
(list-ref n-1 tl))

(λ (empty)
(nothing E)))))))

Now define list-ref . 24 Here it is.
(define list-ref
(λ (E n)
(rec-Nat n
(maybe-head E)
(step-list-ref E))))

Take a short break, and maybe eat
some delicious ratatouille.
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Please select a dish from this menu:

1. ratatouille,

2. kartoffelmad,

3. hero sandwich, or

4. prinsesstårta.

25 The fourteenth, please.

What does “fourteenth” mean? 26 Ah, there are precisely four entries.

What is the difference between a Vec and
a List?

27 In a Vec, the type states how many
entries there are. This second menu must
be a Vec.

That’s right.

(claim menu
(Vec Atom 4))

(define menu
(vec:: 'ratatouille
(vec:: 'kartoffelmad
(vec:: (sandwich 'hero)
(vec:: 'prinsesstårta vecnil)))))

28 That’s one 'delicious hero sandwich.

To define vec-ref , a new type is needed:
one that represents only numbers smaller
than the length of the Vec.

This type is called (Fin ℓ), where ℓ is the
length.

29 Why is it called Fin?

Fin is a very finite way of writing “finite.” 30 Another abbreviation.
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How many natural numbers are smaller
than zero?

31 There are no such numbers.

This requires a new type constructor,
named Absurd.†

†Absurd is sometimes referred to as the empty
type.

32 That’s an absurd name.

When is Absurd a type?

Absurd is always a type, just like Atom,
Nat, U , and Trivial are always types.

33 That’s easy enough.

What are the values of Absurd?

The Law of Absurd
Absurd is a type.

There are none, but all of them are the
same.

34 If there are no values of Absurd, how can
they be the same?

In fact, every expression that is an
Absurd is the same as every other
expression that is an Absurd.

35 But there are no Absurd values.

If there are no values, then there is no
way to tell any of them apart.

36 If there are no Absurd values, then how
can there be expressions of type Absurd?

302 Chapter 14



Neutral expressions can have type
Absurd.

What is the type of x in the body of
similarly-absurd’s definition?

(claim similarly-absurd
(→ Absurd
Absurd))

(define similarly-absurd
(λ (x)
x))

37 x is an Absurd.

The Commandment of Absurdities
Every expression of type Absurd is neutral, and all of them
are the same.

Even though there is no way to construct
an Absurd value, there is an eliminator
for Absurd.

One way to view an eliminator is as a
means of exposing the information inside
a constructor. Another way to view it is
as a way of picking some new expression
for each of a type’s values.

38 length picks a new Nat for each List, and
peas picks a (Vec Atom ℓ) for each Nat ℓ.

By picking a new expression for each
value, the eliminator expression itself has
a type given by the motive.

To use the eliminator for Absurd, provide
a new expression for each Absurd value.

39 There are no Absurd values.
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Precisely.

The eliminator for Absurd, called
ind-Absurd, has neither bases nor steps
because there are no Absurd values.

40 How can that be?

There is only a target and a motive.

The expression
(ind-Absurd target
mot)

is a mot when target is an Absurd and
and when mot is a U .

41 Why isn’t mot a function?

There are no Absurd values to provide as
targets to the motive.

Other eliminators’ motives take
arguments so that the type of the
eliminator expression can mention the
target. This is not necessary because
there never will be a target.

42 If target can never be a value, what use
is ind-Absurd?

The Law of ind-Absurd
The expression
(ind-Absurd target
mot)

is a mot if target is an Absurd and mot is a U .

It is used to express that some
expressions can never be evaluated, or in
other words, that the expression is
permanently neutral.

43 And neutral expressions cannot yet be
evaluated because the values of their
variables are not yet known.
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For each Nat n, (Fin n) should be a type
with n values.
(claim Fin
(→ Nat
U))

What should the value of (Fin zero) be?

44
(Fin zero) should have zero values, so
Absurd is appropriate.

Here is the beginning of Fin’s definition.

(define Fin
(λ (n)
(iter-Nat n
Absurd

)))

What goes in the empty box?

45 The step for Fin, which goes in the
empty box, should transform a type with
n-1 values into a type with n values.

How many values have the type
(Maybe Absurd)?

46 There is just one,
(nothing Absurd),

which has the normal form
(right sole).

What about Either’s constructor left? 47 That would require an Absurd value, and
there are no Absurd values.

How many values have the type
(Maybe
(Maybe Absurd))?

48 There are two possibilities:
(nothing (Maybe Absurd)),

and
(just (Maybe Absurd)
(nothing Absurd)).
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Based on these examples, if a type X has
n values, how many values does

(Maybe X)
have?

49
It has (add1 n) values because Maybe
adds one value, which is (nothing X).

This means that Maybe is a suitable step
for Fin.

Indeed it is. 50 Here is the definition.
(define Fin
(λ (n)
(iter-Nat n
Absurd
Maybe)))

What is the normal form of (Fin 1)? 51

1. (Fin 1)
2. (Maybe Absurd)
3. (Either Absurd Trivial)

This type has 1 value.

What is the normal form of (Fin 2)? 52 It is
(Maybe
(Maybe Absurd)),

better known as
(Either (Either Absurd

Trivial)
Trivial),

which has 2 values.
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To use Fin to pick out entries in a Vec, it
is necessary to determine which Fin
points at which entry.

The first entry in a Vec is found using
(fzero n) when the Vec has (add1 n)
entries.
(claim fzero
(Π ((n Nat))
(Fin (add1 n))))

53 This is because there are no entries when
the length is zero.

Take another look at the definition of Fin
in frame 50. What is another way of
writing fzero’s type?

54 iter-Nat applies the step when the target
has add1 at the top, so fzero’s type and

(Π ((n Nat))
(Maybe (Fin n)))

are the same type.

In that type, what are (Fin n)’s values?
55 That depends on n’s values.

This means that a good choice for fzero’s
definition is . . .

56
. . . (nothing (Fin n)), even though it is
something rather than nothing.

Good choice. Now define fzero. 57 Here it is.
(define fzero
(λ (n)
(nothing (Fin n))))
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Just as (fzero n) points at the head of a
(Vec X (add1 n)), fadd1 points
somewhere in its tail.
(claim fadd1
(Π ((n Nat))
(→ (Fin n)
(Fin (add1 n)))))

58 Why do the two Fins have different
arguments?

Take a look at frame 48. There are two
values for (Fin 2). The first is

(nothing (Maybe Absurd)),
also known as (fzero 1).

What is the other?

59 The other is
(just (Maybe Absurd)
(nothing Absurd)).

For each layer of Maybe in the type,
there is a choice between either stopping
with fzero (also known as nothing) and
continuing with just a value from the
smaller type.

Now define fadd1.

60 It adds the extra just.

(define fadd1
(λ (n)
(λ (i-1)
(just (Fin n) i-1))))

Now it’s time to define vec-ref , so that
there’s always something to eat from the
menu.
(claim vec-ref
(Π ((E U)

(ℓ Nat))
(→ (Fin ℓ) (Vec E ℓ)
E)))

61 Here, there is no Maybe.
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There are three possibilities:

1. the length ℓ is zero,

2. the length ℓ has add1 at the top
and the Fin is fzero, or

3. the length ℓ has add1 at the top
and the Fin is fadd1.

62 It depends first and foremost on ℓ. The
motive is built by abstracting the rest of
the type over ℓ.

(define vec-ref
(λ (E ℓ)
(ind-Nat ℓ
(λ (k)
(→ (Fin k) (Vec E k)
E))

)))

Good start. What is the base’s type? 63 Apply the motive to zero.

(claim base-vec-ref
(Π ((E U))
(→ (Fin zero) (Vec E zero)
E)))

The only constructor for (Vec E zero) is
vecnil, but vecnil does not contain any Es.

What is the value of (Fin zero)?

64
The value of (Fin zero) is Absurd.

Because there are no Absurd values, the
base can never be applied to its second
argument’s value.

Use ind-Absurd to take advantage of this
fact.

65 Okay.

(define base-vec-ref
(λ (E)
(λ (no-value-ever es)
(ind-Absurd no-value-ever
E))))
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Now it is time to define the step.

What is the step’s type?

66 Once again, it is found by the Law of
ind-Nat.
(claim step-vec-ref
(Π ((E U)

(ℓ-1 Nat))
(→ (→ (Fin ℓ-1)

(Vec E ℓ-1)
E)

(→ (Fin (add1 ℓ-1))
(Vec E (add1 ℓ-1))

E))))

There are now two possibilities
remaining:

1. the Fin is fzero, or

2. the Fin is fadd1.

What is the value of (Fin (add1 ℓ-1))?

67 The value has Either at the top.
1. (Fin (add1 ℓ-1))
2. (Maybe (Fin ℓ-1))
3. (Either (Fin ℓ-1) Trivial)

What can be used to check which Either
it is?

68 The only eliminator for Either is
ind-Either.

If the Fin is fzero, then it has right at the
top, and if it is fadd1, then it has left at
the top.

If the Fin has left at the top, then there
should be recursion to check the Vec’s
tail. If it has right at the top, then find
the Vec’s head.

69 ind-Either is used to distinguish between
Either’s constructors.
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Indeed it is. Define the step. 70 Here goes.

(define step-vec-ref
(λ (E ℓ-1)
(λ (vec-ref ℓ-1)
(λ (i es)
(ind-Either i
(λ (i)
E)

(λ (i-1)
(vec-ref ℓ-1
i-1 (tail es)))

(λ (triv)
(head es)))))))

Now define vec-ref . 71 The boxes are all filled.
(define vec-ref
(λ (E ℓ)
(ind-Nat ℓ
(λ (k)
(→ (Fin k) (Vec E k)
E))

(base-vec-ref E)
(step-vec-ref E))))

Now that it’s clear how to find entries in
menu, which one do you want?

72 The second one.

The second one? 73 Pardon me.

The
(fadd1 3
(fzero 2))nd one,

please.
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Let’s find it. Here’s the first few steps.
1. (vec-ref Atom 4

(fadd1 3
(fzero 2))

menu)
2. ((λ (E ℓ)

(ind-Nat ℓ
(λ (k)
(→ (Fin k) (Vec E k)
E))

(base-vec-ref E)
(step-vec-ref E)))

Atom (add1 3)
(fadd1 3
(fzero 2))

menu)
3. ((ind-Nat (add1 3)

(λ (k)
(→ (Fin k) (Vec Atom k)
Atom))

(base-vec-ref Atom)
(step-vec-ref Atom))

(fadd1 3
(fzero 2))

menu)
4. ((step-vec-ref Atom (add1 2)

(ind-Nat (add1 2)
(λ (k)
(→ (Fin k) (Vec Atom k)
Atom))

(base-vec-ref Atom)
(step-vec-ref Atom)))

(fadd1 3
(fzero 2))

menu)

74 The motive, base, and step in the
ind-Nat-expression do not change, so
they are replaced with an ellipsis, just
like in frame 13:34.

5. (((λ (E ℓ-1)
(λ (vec-ref ℓ-1)
(λ (f es)
(ind-Either f
(λ (i)
E)

(λ (i-1)
(vec-ref ℓ-1
i-1 (tail es)))

(λ (triv)
(head es))))))

Atom (add1 2)
(ind-Nat (add1 2) …))
(fadd1 3
(fzero 2))

menu)
6. (((λ (vec-ref ℓ-1)

(λ (f es)
(ind-Either f
(λ (i)
Atom)

(λ (i-1)
(vec-ref ℓ-1
i-1 (tail es)))

(λ (triv)
(head es)))))

(ind-Nat (add1 2) …))
(fadd1 3
(fzero 2))

menu)
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That’s a good start.
7. ((λ (f es)

(ind-Either f
(λ (i)
Atom)

(λ (i-1)
((ind-Nat (add1 2) …)
i-1 (tail es)))

(λ (triv)
(head es))))

(fadd1 3
(fzero 2))

menu)
8. (ind-Either (fadd1 3

(fzero 2))
(λ (i)
Atom)

(λ (i-1)
((ind-Nat (add1 2) …)
i-1 (tail menu)))

(λ (triv)
(head menu)))

9. (ind-Either (left (fzero 2))
(λ (i)
Atom)

(λ (i-1)
((ind-Nat (add1 2) …)
i-1 (tail menu)))

(λ (triv)
(head menu)))

10. ((ind-Nat (add1 2) …)
(fzero 2) (tail menu))

75

11. (step-vec-ref Atom (add1 1)
(ind-Nat (add1 1) …)
(fzero 2)
(tail menu))

12. ((λ (E ℓ-1)
(λ (vec-ref ℓ-1)
(λ (f es)
(ind-Either f
(λ (i)
E)

(λ (i-1)
(vec-ref ℓ-1
i-1 (tail es)))

(λ (triv)
(head es))))))

Atom
(add1 1)
(ind-Nat (add1 1) …)
(fzero 2)
(tail menu))

13. ((λ (vec-ref ℓ-1)
(λ (f es)
(ind-Either f
(λ (i)
Atom)

(λ (i-1)
(vec-ref ℓ-1
i-1 (tail es)))

(λ (triv)
(head es)))))

(ind-Nat (add1 1) …)
(fzero 2)
(tail menu))
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Almost there!
14. ((λ (f es)

(ind-Either f
(λ (i)
Atom)

(λ (i-1)
((ind-Nat (add1 1) …)
i-1 (tail es)))

(λ (triv)
(head es))))

(fzero 2)
(tail menu))

15. ((λ (es)
(ind-Either (fzero 2)
(λ (i)
Atom)

(λ (i-1)
((ind-Nat (add1 1) …)
i-1 (tail es)))

(λ (triv)
(head es))))

(tail menu))

76

16. (ind-Either (fzero 2)
(λ (i)
Atom)

(λ (i-1)
((ind-Nat (add1 1) …)
i-1 (tail (tail menu))))

(λ (triv)
(head (tail menu))))

17. (head (tail menu))
18. 'kartoffelmad

Finally, my 'kartoffelmad is here.

Enjoy your smørrebrød
things are about to get subtle.
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Turner’s Teaser
Define a function that determines whether another function that accepts any number
of Eithers always returns left. Some say that this can be difficult with types.† Perhaps
they are right; perhaps not.

(claim Two
U)

(define Two
(Either Trivial Trivial))

(claim Two-Fun
(→ Nat
U))

(define Two-Fun
(λ (n)
(iter-Nat n
Two
(λ (type)
(→ Two
type)))))

(claim both-left
(→ Two Two
Two))

(define both-left
(λ (a b)
(ind-Either a
(λ (c)
Two)

(λ (left-sole)
b)

(λ (right-sole)
(right sole)))))

(claim step-taut
(Π ((n-1 Nat))
(→ (→ (Two-Fun n-1)

Two)
(→ (Two-Fun (add1 n-1))
Two))))

(define step-taut
(λ (n-1 tautn-1)
(λ (f )
(both-left
(tautn-1
(f (left sole)))

(tautn-1
(f (right sole)))))))

(claim taut
(Π ((n Nat))
(→ (Two-Fun n)
Two)))

(define taut
(λ (n)
(ind-Nat n
(λ (k)
(→ (Two-Fun k)
Two))

(λ (x)
x)

step-taut)))

†Thanks, David A. Turner (1946–).
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We have proved that many different
expressions are equal.

1 That’s right.

Not every pair of expressions are equal,
however. Clearly,

“39 is not equal to 117.”

2 Can that statement also be written as a
type?

A statement is true when we have
evidence that it is true. False statements
have no evidence at all.

3 This sounds like Absurd.

It does.

The eliminator ind-Absurd corresponds to
a principle of thought.

4 What principle is that?

If a false statement were true, then we
might as well say anything at all.

5 Sounds reasonable enough.

That principle† is induction for Absurd.

Here is the type that captures the
meaning of the statement from frame 2.

(→ ( Nat 39 117)
Absurd)

†Also known as the Principle of Explosion or ex
falso quodlibet, which means “from false, anything.”

6 Why does
(→ X
Absurd)

capture the meaning of “not X?”

It says,
“If there were a proof that 39 equals

117, then there would be a proof of
Absurd.”

7 Providing evidence that 39 equals 117 as
an argument to the function, whose type
is in the preceding frame, would result in
a proof of Absurd. And we know that no
such proof exists.
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There is no proof of Absurd, so there
can’t be a proof of ( Nat 39 117).

8 But if there are no Absurd values, then
how can a “not” statement have a proof?

What could be in the body of the
λ-expression?

The key is to carefully avoid having to
write the body of the λ-expression.

9 How can that be achieved?

With attention to detail and an open
mind.

First, we define what the consequences
are of the fact that two Nats are equal.

10 What are the consequences?

It depends on which Nats they are.

(claim =consequence
(→ Nat Nat
U))

11 Okay. What is the definition of
=consequence?

If zero equals zero, nothing interesting is
learned. This can be represented using
Trivial.

12 What does Trivial mean as a statement?

To understand Trivial as a statement,
consider how to prove it.

13 There is sole.

That’s the proof. 14 Rather trivial.

Is there an eliminator for Trivial?
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There could be, but it would be
pointless.

There is only one Trivial value, so nothing
is to be learned from eliminating it.

15 So Trivial is a boring statement that can
always be proved.

Just like Π and Σ, normal expressions
with type Trivial are always values.

16 This is because every expression with
type Trivial is the same as sole.

The fact that Trivial is not an interesting
statement makes it a perfect type to
represent that nothing is learned from

( Nat zero zero).

17 What else can be learned if two Nats are
equal?

If
( Nat (add1 n-1) zero)

or
( Nat zero (add1 j-1))

is true, then anything at all can be true.
So the consequence is Absurd.

18 That makes sense.

Finally, if
( Nat (add1 n-1) (add1 j-1))

is true, what is the consequence?

19 It must be that n-1 and j-1 are equal
Nats.

This table represents the four
possibilities.

zero (add1 j-1)
zero Trivial Absurd

(add1 n-1) Absurd ( Nat n-1 j-1)

20 The function is not recursive, so
which-Nat is enough.
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Here is =consequence’s definition.

Check that each part of the table
matches.
(define =consequence
(λ (n j)
(which-Nat n
(which-Nat j
Trivial
(λ (j-1)
Absurd))

(λ (n-1)
(which-Nat j
Absurd
(λ (j-1)
( Nat n-1 j-1)))))))

21 Each does.

If =consequence tells us it is true about
two equal Nats, then it should certainly
be true when the Nats are the same.

How can this goal be written as a type?

22 n is clearly the same Nat as n.

(claim =consequence-same
(Π ((n Nat))
(=consequence n n)))

That’s right. 23 Here’s the start of a proof.

The motive is built by abstracting the
ind-Nat-expression’s type over n.

(define =consequence-same
(λ (n)
(ind-Nat n
(λ (k)
(=consequence k k))

)))
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What is the base’s type? 24 As usual, the base’s type is the motive
applied to zero, which is
Trivial.

So the base is
sole.

What about the step? 25 The step’s type is
(Π ((n-1 Nat))
(→ (=consequence n-1 n-1)
(=consequence
(add1 n-1)
(add1 n-1)))),

which is also found by applying the
motive.

The step has λ at the top. What type is
expected in the empty box?

(λ (n-1 almost)
)

26 The value of
(=consequence (add1 n-1) (add1 n-1))

is
( Nat n-1 n-1).

n-1 and n-1 are the same Nat, so
(same n-1) fits in this box.

Now fill in the boxes and define
=consequence-same.

27 Like zerop, the step’s second argument is
dim because the function is not recursive.
(define =consequence-same
(λ (n)
(ind-Nat n
(λ (k)
(=consequence k k))

sole
(λ (n-1 =consequencen-1)
(same n-1)))))

Imagine That ... 321



Could =consequence-same have been
defined with which-Nat?

28 No. Because the type of the
ind-Nat-expression depends on the target,
ind-Nat is needed.

Now comes the tricky part.

The proof of =consequence for Nats that
are the same can be used to prove
=consequence for any two equal Nats.

29 If two Nats are equal, aren’t they the
same?

Not necessarily. Using types, it is
possible to assume things that may or
may not be true, and then see what can
be concluded from these assumptions.

How can the type
(→ ( Nat 0 6)
( Atom 'powdered 'glazed))

be read as a statement?

30 That type can be read,
“If zero equals six, then powdered

donuts are glazed donuts.”
Because there is no evidence that

“Zero equals six,”
there are no suitable arguments for this
function.

This is fortunate for those who have
discriminating taste in desserts.

31 Donuts can be part of a mid-afternoon
fika as well as dessert.

Imagine That ...

Using types, it is possible to assume things that may or
may not be true, and then see what can be concluded
from these assumptions.
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Sameness is not a type, it is a judgment,
as seen in frame 8:21.

Either two expressions are the same, or
they are not the same, but there is no
way to provide evidence of this sameness.
Types, such as -expressions, can have
evidence.

32 Are more things equal than are the
same?

Indeed. There is a good reason that
more things are equal than are the same.
The fact that any two expressions either
are or are not the same means that we
are freed from the obligation to provide a
proof because sameness can be
determined by following the Laws and
Commandments.

Equality requires proof, and therefore is
more expressive. Recognizing a proof
requires only the Laws and
Commandments, but constructing a
proof may require creativity, ingenuity,
and hard work.

33 How is this expressive power useful?

Types can occur in other types. It is
possible to assume that two Nats are
equal, and then use that assumption to
prove the consequences from frame 20.

34 Even the Absurd consequences?

Sameness versus Equality

Either two expressions are the same, or they are not. It
is impossible to prove that they are the same because
sameness is a judgment, not a type, and a proof is an
expression with a specific type.
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Even the Absurd consequences.

It is not possible to prove Absurd, but it
is possible to exclude those two Absurd
cases using the equality assumption.

35 So the statement to be proved is
“If n and j are equal Nats, then the

consequences from frame 20 follow.”

Here is that statement as a type that
explains how a proof that n and j are
equal can be used.

(claim use-Nat=
(Π ((n Nat)

(j Nat))
(→ ( Nat n j)
(=consequence n j))))

36 The proof definitely has λs at the top.

(define use-Nat=
(λ (n j)
(λ (n=j)

)))

Here comes the trick.

replace can make n the same as j, which
allows =consequence-same to prove
use-Nat=.

37 But what if they are not the same?

Then there is no need to worry.

If there is no evidence that n equals j,
then there are no suitable arguments.

38 Here is the definition with replace in the
box.
(define use-Nat=
(λ (n j)
(λ (n=j)
(replace n=j

(=consequence-same )))))

The target is n=j.

Should n or j be the argument to
=consequence-same?
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What is the from and what is the to in
n=j’s type?

39 The from is n and the to is j. This
means that the base’s type is the motive
applied to n.

What about the entire
replace-expression’s type?

40 It is the motive applied to j.

The base must be
(=consequence-same n)

because the from is n.

What should the motive be? 41 The whole replace-expression is an
(=consequence n j),

so the motive should abstract over j.

The n in the base’s type is replaced by j.

Now finish the definition.

Remember that
(=consequence-same n)

is an
(=consequence n n).

42 That was quite the trick!

(define use-Nat=
(λ (n j)
(λ (n=j)
(replace n=j
(λ (k)
(=consequence n k))

(=consequence-same n)))))

Is use-Nat= useful?

It can be used to prove
“If zero equals six, then powdered

donuts equal glazed donuts.”

43 How does that proof work?
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The first step is to prove
“zero does not equal any Nat that has

add1 at the top.”†

†This statement is sometimes called no confu-
sion or disjointness.

44 That statement can be written as a type.

(claim zero-not-add1
(Π ((n Nat))
(→ ( Nat zero (add1 n))
Absurd)))

Use the table in frame 20 to find the
consequences of zero being equal to
(add1 n).

45 That’s Absurd.

What happens if use-Nat= is applied to
zero and (add1 n)?

46 The type of
(use-Nat= zero (add1 n))

is
(→ ( Nat zero (add1 n))
(=consequence zero (add1 n))),

and
(=consequence zero (add1 n))

and
Absurd

are the same type.

Voilà! The proof. 47 Oh, it is.

(define zero-not-add1
(λ (n)
(use-Nat= zero (add1 n))))
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Now prove donut-absurdity .

(claim donut-absurdity
(→ ( Nat 0 6)
( Atom 'powdered 'glazed)))

48 If there were evidence that
“0 equals 6,”

then there would be evidence for
anything at all, including strange facts
about donuts.
(define donut-absurdity
(λ (zero=six)
(ind-Absurd
(zero-not-add1 5 zero=six)
( Atom 'powdered 'glazed))))

What are the consequences if two Nats
with add1 at the top are equal?

49 According to the table, the Nats tucked
under the add1s are also equal.

This means that,
“If
73 equals 73,

then
72 equals 72.”

Prove this statement:
“For every two Nats n and j,

if
(add1 n) equals (add1 j),

then
n equals j.”

50 It is called sub1=. Because it is part of
the table, use-Nat= is enough!

(claim sub1=
(Π ((n Nat)

(j Nat))
(→ ( Nat (add1 n) (add1 j))
( Nat n j))))

(define sub1=
(λ (n j)
(use-Nat= (add1 n) (add1 j))))
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Now prove that 1 does not equal 6.

(claim one-not-six
(→ ( Nat 1 6)
Absurd))

51 Does the proof use induction?

No.

Induction is used to prove something for
every Nat. For these specific Nats, it is
not necessary. Just use zero-not-add1
and sub1=.

52 sub1= can be used to show that,
“If 1 equals 6, then 0 equals 5.”

zero-not-add1 can be used to show that 0
does not equal 5.

That’s a good strategy.

Define one-not-six.

53 Here it is.
(define one-not-six
(λ (one=six)
(zero-not-add1 4
(sub1= 0 5 one=six))))

Absurd is useful for more than just
statements involving “not.”

Just as ind-List can do anything that
rec-List can do, ind-Vec can do anything
that head can do. Sometimes, however,
Absurd is a necessary part of such
definitions.

54 If that’s the case, then a function that
behaves very much like head can be
defined using ind-Vec.

(claim front
(Π ((E U)

(n Nat))
(→ (Vec E (add1 n))
E)))
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The direct approach used in previous
invocations of ind-Vec does not work
here.

What is the type of the expression that
could fill the box?
(define front
(λ (E ℓ es)
(ind-Vec (add1 ℓ) es
(λ (k xs)
E)

(λ (k h t frontys)
h))))

55 It would be E , but no E is available
because vecnil is empty.

There is no way to fill this box, but this
bad definition of front provides no
evidence of that fact in the base.

The solution is to change the motive so
that the base’s type contains this
evidence.

56 So the motive isn’t boring, is it?

ind-Vec can eliminate any Vec, but front
only works on Vecs whose length has
add1 at the top. Because ind-Vec is too
powerful for this task, it must be
restricted to rule out the need for a base.
This is done by carefully choosing the
motive.

57 What motive can be used here?

What is the purpose of the motive in
ind-Vec?

58 The motive explains how the type of the
ind-Vec-expression depends on the two
targets.
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mot-front has a type like any other
motive.
(claim mot-front
(Π ((E U)

(k Nat))
(→ (Vec E k)
U)))

59 This is no different from other uses of
ind-Vec.

That’s right.

The definition of mot-front, however, is
quite different.

(define mot-front
(λ (E)
(λ (k es)
(Π ((j Nat))
(→ ( Nat k (add1 j))
E)))))

60 Please explain that definition.

The argument k is a target of ind-Vec.
Both the base and the step now have two
extra arguments: a Nat called j and a
proof that k is (add1 j).

In the base, k is zero. Thus, there is no
such j.

61 If there were such a j, then zero would
equal (add1 j). But zero-not-add1 proves
that this is impossible.

Exactly.

zero-not-add1 can be used with
ind-Absurd to show that no value is
needed for the base.

62 What about the step?
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What is the step’s type? 63 The step’s type follows the Law of
ind-Vec.
(claim step-front
(Π ((E U)

(ℓ Nat)
(e E)
(es (Vec E ℓ)))

(→ (mot-front E
ℓ
es)

(mot-front E
(add1 ℓ)
(vec:: e es)))))

Here is the start of step-front. What
belongs in the box?

(define step-front
(λ (E ℓ e es)
(λ (frontes)

)))

64 The box is a
(mot-front E
(add1 ℓ)
(vec:: e es)).

What is the purpose of the expression
that goes in the box?

65 front is not really recursive—like zerop,
the answer is determined by the top
constructor of ind-Vec’s target. The
answer is e, which is the first entry under
vec:: in the list.

What is the normal form of the empty
box’s type

(mot-front E
(add1 ℓ)
(vec:: e es))?

66 The normal form is
(Π ((j Nat))
(→ ( Nat (add1 ℓ) (add1 j))
E)).
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What does this type mean? 67 It means that the step builds a function
that takes a Nat called j and evidence
that (add1 ℓ) is (add1 j), and then
produces an E . The only E here is e.

In the base’s type, the motive requires
that zero has add1 at the top, so no base
is needed. A step, however, can be
written because (add1 ℓ) does have add1
at the top.

What is the purpose of step-front? 68 step-front finds the value of front for
non-empty Vecs, which is the first entry
in the Vec.

Define step-front. 69 Because front is not recursive, frontes is
dim. Similarly, the specific length is not
important, because it is not zero. The
empty box is filled with a function that
ignores its arguments, resulting in e.

(define step-front
(λ (E ℓ e es)
(λ (frontes)
(λ ( j eq)
e))))

Because the value of mot-front is a
Π-expression, the ind-Vec-expression in
front has a function type.

70 That’s not right. front should find the
first entry in a Vec, not a function.

The function type found by mot-front
expects two arguments: a new Nat called
j and evidence that the length of the Vec
is (add1 j).

71 How does that help?
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According to front’s type, the Vec’s
length already has add1 at the top.

72 So the new Nat is ℓ because the length of
the Vec is (add1 ℓ).

Yes.

And, proving that
“(add1 ℓ) equals (add1 ℓ)”

does not require a complicated
argument.

73 Right.

Because (same (add1 ℓ)) does it.

Now, define front. 74 Because the ind-Vec-expression’s type is
a Π-expression, it can be applied to ℓ
and (same (add1 ℓ)).

(define front
(λ (E ℓ es)
((ind-Vec (add1 ℓ) es

(mot-front E)
(λ (j eq)
(ind-Absurd
(zero-not-add1 j eq)
E))

(step-front E))
ℓ (same (add1 ℓ)))))

Congratulations!

Being able to design appropriate motives
for definitions such as front is very
important. A similar technique is used to
write drop-last or rest using ind-Vec.

75 This sounds like a valuable skill.
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Finding values is a valuable skill as well.
What is the value of

1. (front Atom 2
(vec:: 'sprinkles
(vec:: 'chocolate
(vec:: 'maple vecnil))))?

76 The first step is to apply front to its
arguments.

2. ((ind-Vec (add1 2)
(vec:: 'sprinkles
(vec:: 'chocolate
(vec:: 'maple vecnil)))

(mot-front Atom)
(λ (j eq)
(ind-Absurd
(zero-not-add1 j eq)
Atom))

(step-front Atom))
2 (same (add1 2)))

What’s next? 77 ind-Vec’s targets have add1 and vec:: at
the top, so step-front is next.

3. ((step-front E 2
'sprinkles
(vec:: 'chocolate
(vec:: 'maple vecnil))

(ind-Vec 2 (vec:: 'chocolate
(vec:: 'maple vecnil))

(mot-front Atom)
(λ (j eq)
(ind-Absurd
(zero-not-add1 j eq)
Atom))

(step-front Atom)))
2 (same (add1 2)))

4. ((λ ( j eq)
'sprinkles)

2 (same (add1 2)))
5. 'sprinkles

Take a cozy break for fika if you feel the
need.

78 See you in half an hour.
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How was the coffee and donuts? 79 Läckert!

Is every statement true or false? 80 Clearly.

“Every statement is true or false.” is
called the Principle of the Excluded
Middle.†

†Sometimes, the Principle of the Excluded Mid-
dle is called the “Law” of the Excluded Middle. It
is also sometimes written tertium non datur, which
means “there is no third choice.”

81 Let’s prove it.

Write the statement
“Every statement is true or false.”

as a type.

82 Statements are types. How can “is false”
be written as a type?

If a statement is false, it has no evidence.
This can be written as an “if-then”
statement.

“X is false” is written
(→ X
Absurd).

83 “Every statement is true or false.” is a
Π-expression.

(claim pem
(Π ((X U))
(Either X
(→ X
Absurd))))

There is no evidence for pem. 84 Why not?

What would count as evidence for pem? 85 Evidence for pem would be a function
that determines the truth or falsity of
every statement that can be written as a
type.
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Every single statement? 86 Every single statement, because Π means
“every.”

This would mean that there are no
unsolved problems.

87 Great! No more problems.

Life would be boring if we had no
problems left to solve.

88 So pem isn’t true, but it can’t possibly
be false!

That’s right. 89 It’s not true, but it can’t be false?

That’s right. It can’t possibly be false.

Write
“ ‘Every statement is true or false’

can’t possibly be false.”
as a type.

90 In other words,
“ ‘ “Every statement is true or false” is

false’ is false.”
(claim pem-not-false
(Π ((X U))
(→ (→ (Either X

(→ X
Absurd))

Absurd)
Absurd)))

That’s right. Now prove pem-not-false. 91 How?

What counts as evidence for a
Π-expression?

92 A λ-expression.

(define pem-not-false
(λ (X)

))
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What is the empty box’s type? 93 The empty box is an
(→ (→ (Either X

(→ X
Absurd))

Absurd)
Absurd),

so it should also be filled with a
λ-expression.

That’s right.

Continue the proof.

94 This new λ-expression accepts evidence
that the Principle of the Excluded
Middle is false for X as its argument.

(define pem-not-false
(λ (X)
(λ (pem-false)

)))

What can be done with pem-false? 95 pem-false’s type has → at the top, so it
can be eliminated by applying it. The
empty box’s type is Absurd, and
pem-false would produce evidence of
Absurd if it were applied to a suitable
argument.

What is the type of suitable arguments?

(define pem-not-false
(λ (X)
(λ (pem-false)
(pem-false ))))

96 The box’s type is
(Either X
(→ X
Absurd)).
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There are two ways to construct one of
those.

Is left relevant?

97 No, left is not relevant because there is
no evidence for X available.

What about right?

(define pem-not-false
(λ (X)
(λ (pem-false)
(pem-false
(right

)))))

What is the empty box’s type now? 98 The box’s type is
(→ X
Absurd).

What is evidence for an →? 99 A λ-expression. This new box’s type is
Absurd.
(define pem-not-false
(λ (X)
(λ (pem-false)
(pem-false
(right
(λ (x)

))))))

What can be used to make an Absurd? 100 pem-false can.
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Give it a try. 101 Again? Okay.

(define pem-not-false
(λ (X)
(λ (pem-false)
(pem-false
(right
(λ (x)
(pem-false )))))))

This box’s type is
(Either X
(→ X
Absurd)).

102 Isn’t this getting a bit repetitive?

The difference is that there is now an X
available.

103 This means that left can be used.
(define pem-not-false
(λ (X)
(λ (pem-false)
(pem-false
(right
(λ (x)
(pem-false
(left x))))))))

Nice proof. 104 But if the Principle of the Excluded
Middle is not false, why isn’t it true?

Very funny.

If pem were true, then we would have
evidence: a magical total function that
solves every problem that we can write
as a type.

105 So evidence that a statement is not false
is less interesting than evidence that it is
true?
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Exactly.

There are, however, some statements
that are either true or false. These
statements are called decidable because
there is a function that decides whether
they are true or false.

106 Can “X is decidable” be written as a
type?

It certainly can.

(claim Dec
(→ U
U))

(define Dec
(λ (X)
(Either X
(→ X
Absurd))))

107 That looks a lot like pem.

Another way to phrase pem is
“All statements are decidable.”

108 So pem’s claim could have been written
using Dec.

(claim pem
(Π ((X U))
(Dec X)))

Some statements are decidable, even
though not all statements are decidable.

109 How about deciding that this has been
enough for today?

Sure. Tomorrow, we encounter a
decidable statement.

110 It’s a good thing there are more donuts.

Enjoy your donuts
you’ll need your energy for tomorrow’s decisions.
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Remember zerop from chapter 3? 1 Refresh my memory.

If n is a Nat, then (zerop n) is an Atom.
2 Which Atom is it?

Good question.

The type
(→ Nat
Atom)

is not particularly specific.

3 No, it isn’t. But, based on frame 3:43 on
page 80,

(zerop n)
is 't when n is zero, and 'nil otherwise.

The specific type that describes checking
for zero can be written using Dec.

(claim zero?
(Π ((j Nat))
(Dec
( Nat zero j))))

4 That type says,
“For every Nat j, it is decidable

whether j equals zero.”

What would count as evidence for that
statement?

5 A function that, given some j, decides
whether j equals zero.

If the value of (zero? n) has left at the
top, what is tucked under left?

6 Evidence that n equals zero, because
(Dec
( Nat zero n))

and
(Either
( Nat zero n)
(→ ( Nat zero n)
Absurd))

are the same type.
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If the value of (zero? n) has right at the
top, what is tucked under right?

7 Evidence that n is not equal to zero.

In other words, the type of zero? says
that not only does it determine whether
a number is zero, it also constructs
evidence that it is the correct choice.

8 zero? is a function, so it has λ at the top.

(define zero?
(λ (j)

))

The empty box’s type is
(Dec
( Nat zero j)).

Should it be filled with left or right?

9 That depends on j. Because the empty
box’s type mentions the target j, ind-Nat
must be used.

What about the motive? 10 The motive can be found by abstracting
over the target.

(define zero?
(λ (j)
(ind-Nat j
(λ (k)
(Dec
( Nat zero k)))

)))

Why not abstract over zero in the base’s
type?

11 There are two zeros in the base’s type,
but only one of them is the target.

What is the base? Its type is
(Dec
( Nat zero zero)).

12 So,
(left
(same zero))

does the trick.
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What about the step? 13 The step’s type is
(Π ((j-1 Nat))
(→ (Dec

( Nat zero j-1))
(Dec
( Nat zero (add1 j-1))))).

Is zero ever equal to a Nat with add1 at
the top?

14 No.

Prove that
“zero is not equal to (add1 j-1).”

15
The proof is (zero-not-add1 j-1).

That’s right.

Use this to define the step.

16 zero? is not really recursive, so zero?n-1 is
dim. The proof that (add1 j-1) is not
equal to zero is tucked under a right
because Dec is defined to mean Either.
(define zero?
(λ (j)
(ind-Nat j
(λ (k)
(Dec
( Nat zero k)))

(left
(same zero))

(λ (j-1 zero?n-1)
(right
(zero-not-add1 j-1))))))
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zero? is both a proof that equality with
zero is either true or false and a function
that decides whether any given Nat is
equal to zero.

In fact,
“For every two natural numbers n and

j, it is decidable whether n equals j.”

17 That’s a bold claim.
(claim nat=?
(Π ((n Nat)

(j Nat))
(Dec
( Nat n j))))

A claim requires a proof.

(define nat=?
(λ (n j)
((ind-Nat n

)
j)))

18 That’s a strange way to start the proof.

What is the reason that the
ind-Nat-expression is applied to j ?

The definition of front uses a more
informative motive to make apparent
that the base is unnecessary.

19 Is nat=?’s base also unnecessary?

No, nat=? needs a base because it makes
sense to apply it to zero as an argument.

But a more informative motive is needed
here in order to write the step, or else
the almost-proof does not prove a strong
enough statement.

20 Please point out where this is necessary.
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Gladly.

What is the motive’s type?

21 Every motive used with ind-Nat has the
same type.

(claim mot-nat=?
(→ Nat
U))

The more informative motive, read as a
statement, says

“For every Nat j, it is decidable
whether j is equal to the target.”

Write this as a function from the target
to a type.

22 The every means that there is a Π, and
the target is the argument to the motive.

(define mot-nat=?
(λ (k)
(Π ((j Nat))
(Dec
( Nat k j)))))

Compare mot-nat=? to mot-front in
frame 15:60 on page 330.

23 Both of them give Π-expressions, so the
base and step accept arguments.

These arguments, however, serve
different purposes.

The extra arguments in front are used to
make the types more specific to rule out
the base. On the other hand, the extra
argument in nat=? is used to make the
type more general so that the
almost-proofs can decide equalities with
every Nat, instead of only the second
argument to nat=?.

24 Neither motive is found by just
abstracting over some constant, though.

Sometimes, the “motive” is more
complicated than just “what” the base is.

Speaking of the base, what is its type?

25 The base is a
(Π ((j Nat))
(Dec
( Nat zero j))).
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What has that type? 26 zero? has that type.

(define nat=?
(λ (n j)
((ind-Nat n

mot-nat=?
zero?

)
j)))

The step is still an empty box. What is
its type?

27 For ind-Nat, the type of the step is found
using the motive.

(claim step-nat=?
(Π ((n-1 Nat))
(→ (mot-nat=? n-1)
(mot-nat=? (add1 n-1)))))

The types of the step and the motive are
determined by the Law of ind-Nat. Their
definitions, however, may both require
insight.

Define step-nat=?.

28 Here’s a start.
(define step-nat=?
(λ (n-1)
(λ (nat=?n-1)
(λ (j)

))))

step-nat=?’s type has a Π and an →, but
that definition has three λs.

Why is the innermost λ present?

29 The innermost λ-expression is there
because

(mot-nat=? (add1 n-1))
and

(Π ((j Nat))
(Dec
( Nat (add1 n-1) j)))

are the same type.
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Now it is time to decide whether
(add1 n-1) equals j.

30 If j is zero, then they are certainly not
equal.

Checking whether j is zero requires an
eliminator.

31 ind-Nat is the only eliminator for Nat
that allows the type to depend on the
target, and j is in the type.

(define step-nat=?
(λ (n-1 nat=?n-1 j)
(ind-Nat j
(λ (k)
(Dec
( Nat (add1 n-1) k)))

)))

In this definition, the base is much easier
than the step. What is the base’s type?

32 The base’s type is
(Dec
( Nat (add1 n-1) zero)).

The base has right at the top because
(add1 n-1) certainly does not equal zero.

Prove it. 33 Prove what?

Prove that
“(add1 n-1) does not equal zero.”

34 Again?
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zero-not-add1 is not a proof that
“(add1 n-1) does not equal zero.”

35 Ah.
(claim add1-not-zero
(Π ((n Nat))
(→ ( Nat (add1 n) zero)
Absurd)))

(define add1-not-zero
(λ (n)
(use-Nat= (add1 n) zero)))

What is the base? 36 The base has right at the top, and uses
add1-not-zero.
(define step-nat=?
(λ (n-1 nat=?n-1 j)
(ind-Nat j
(λ (k)
(Dec
( Nat (add1 n-1) k)))

(right
(add1-not-zero n-1))

)))

What is the step’s type? 37 The step is a
(Π ((j-1 Nat))
(→ (Dec

( Nat (add1 n-1) j-1))
(Dec
( Nat (add1 n-1) (add1 j-1))))).

If mot-nat=? didn’t produce a
Π-expression, we would be unable to
write the step.

38 Why is that?
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In order to decide whether
(add1 n-1) equals (add1 j-1),

is it useful to know whether
(add1 n-1) equals j-1?

39 4 does not equal 3, but 4 certainly equals
(add1 3).

On the other hand, 4 does not equal 9,
but 4 also does not equal (add1 9).

This means that the second argument to
this step is dim.

40 How can the decision be made?
(define step-nat=?
(λ (n-1 nat=?n-1 j)
(ind-Nat j
(λ (k)
(Dec
( Nat (add1 n-1) k)))

(right
(add1-not-zero n-1))

(λ (j-1 nat=?n-1)
))))

nat=?n-1 is able to decide whether n-1 is
equal to any Nat.

41 And that is the reason why mot-nat=?
must have a Π-expression in its body.
Otherwise, nat=?n-1 would just be a
statement about j that is unrelated to
(add1 j-1).

What type does
(nat=?n-1 j-1)

have?

42 It is a
(Dec
( Nat n-1 j-1))

but the empty box needs a
(Dec
( Nat (add1 n-1) (add1 j-1))).
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If we can decide whether
n-1 and j-1 are equal,

then we can also decide whether
(add1 n-1) and (add1 j-1) are equal.

(claim dec-add1=
(Π ((n-1 Nat)

(j-1 Nat))
(→ (Dec

( Nat
n-1
j-1))

(Dec
( Nat
(add1 n-1)
(add1 j-1))))))

43 If n-1 equals j-1, then cong can make
(add1 n-1) equal (add1 j-1). And if they
are not equal, then working backwards
with sub1= is enough to be Absurd.

Checking both cases means ind-Either.

Start the definition.

44 The motive in ind-Either ignores its
argument because the type does not
depend on the target.

(define dec-add1=
(λ (n-1 j-1 eq-or-not)
(ind-Either
(λ (target)
(Dec
( Nat
(add1 n-1)
(add1 j-1))))

)))

What goes in the first empty box? 45 The first empty box needs an
(→ ( Nat n-1 j-1)
(Dec
( Nat (add1 n-1) (add1 j-1)))).
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That’s the type.

What about the contents of the box?

46 The left is used because the answer is
still, “Yes, they’re equal.” And cong with
( 1) transforms evidence that

“n-1 equals j-1”
into evidence that

“(add1 n-1) equals (add1 j-1).”
The box should contain

(λ (yes)
(left
(cong yes ( 1)))).

Indeed. What goes in the second box? 47 The second box’s type is
(→ (→ ( Nat n-1 j-1)

Absurd)
(Dec
( Nat (add1 n-1) (add1 j-1)))).

The contents of that second box will
have right at the top. Why?

48 Because if n-1 and j-1 are not equal, then
(add1 n-1) and (add1 j-1) are also not
equal.

In that box, right requires an
(→ ( Nat (add1 n-1) (add1 j-1))
Absurd).

That box has a variable available named
no, with type

(→ ( Nat n-1 j-1)
Absurd).

49 no proves Absurd when its argument is an
( Nat n-1 j-1),

which can be found using sub1= like this:
(λ (n=j)
(no (sub1= n-1 j-1 n=j))).
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Now complete the definition. 50 dec-add1= is a bit long.

(define dec-add1=
(λ (n-1 j-1 eq-or-not)
(ind-Either eq-or-not
(λ (target)
(Dec
( Nat (add1 n-1) (add1 j-1))))

(λ (yes)
(left
(cong yes ( 1))))

(λ (no)
(right
(λ (n=j)
(no
(sub1= n-1 j-1
n=j))))))))

Finish step-nat=?. 51 Here it is.
(define step-nat=?
(λ (n-1 nat=?n-1 j)
(ind-Nat j
(λ (k)
(Dec
( Nat (add1 n-1) k)))

(right
(add1-not-zero n-1))

(λ (j-1 nat=?n-1)
(dec-add1= n-1 j-1
(nat=?n-1 j-1))))))
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Now that the motive, the base, and the
step are completed for nat=?, it can be
given a solid box.

52 It is decidable whether two natural
numbers are equal.

(define nat=?
(λ (n j)
((ind-Nat n

mot-nat=?
zero?
step-nat=?)

j)))

Just like even-or-odd, nat=? is both a
proof that makes a statement true and a
function that determines whether any
two numbers are equal. Because nat=? is
total and because it provides evidence,
there is no way that it can find the
wrong value.

53 Why was there no food in this chapter?

Numbers nourish our minds, not our
bodies.

54 But a weak body leads to a weak mind.

Go enjoy a banquet
you’ve earned it!
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Pie is a small language—small enough to
be understood completely. Now, it may be
time to continue with more sophisticated
dependently typed languages.1

In addition to type constructors like Π
and Σ, these languages include five exten-
sions: infinitely many universes, the ability
to define new type constructors and their
associated data constructors, the ability to
define functions through pattern matching,
the ability to leave out expressions that the
language can find on its own, and tactics
for automating proof construction.

A Universe Hierarchy
In Pie, there is a single universe type,
called U . While U is a type, U does not de-
scribe itself nor any type that can contain a
U , such as (List U). While more universes
are not needed for any of the examples
in this book, it is sometimes necessary to
have a type that describes U (and some-
times even a type that describes the type
that describes U). By including infinitely
many universes, each describing the pre-
vious ones, more sophisticated languages
ensure that there are always sufficient uni-
verses to solve each problem.

Inductive Datatypes
Some types that one might propose do
not make sense. Restricting Pie to a
fixed collection of types ensures that no
type can undermine the system as a
whole. Some problems, however, cannot
be easily expressed using the tools in this
book. More sophisticated languages allow
for adding new datatype type construc-

tors.2 These new types are called inductive
datatypes because their eliminators express
the mathematical idea of induction.

If Pie did not already feature lists, then
adding them could require the following
declaration: if E is a U , then (List E) is a U .
In addition, there are two constructors: nil,
which is a (List E), and ::, which needs two
arguments. The name for an eliminator
is also needed. The Laws and Command-
ments for the eliminator are based on the
provided constructors.

(data List ((E U)) ()
(nil ()
(List E))

(:: ((e E) (es (List E)))
(List E))

ind-List)

These new inductive datatypes might have
both parameters, which do not vary be-
tween the constructors, and indices, which
can vary between them (as discussed in
frame 11:14). For Vec, the first argument
is a parameter, while the length varies be-
tween vec:: and vecnil.

(data Less-Than () (( j Nat) (k Nat))
(zero-smallest ((n Nat))
(Less-Than zero (add1 n)))

(add1-smaller ((j Nat)
(k Nat)
(j<k (Less-Than j k)))

(Less-Than (add1 j) (add1 k)))
ind-Less-Than)

As an example of an indexed family,
the datatype Less-Than is evidence that one
number is smaller than another. Because
the constructors impose different values on

1Examples include Coq, Agda, Idris, and Lean.
2Thanks, Peter Dybjer (1953–).
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each Nat, the Nats are indices. The Law of
ind-Less-Than follows a pattern that should
be familiar from other types: if target is a

(Less-Than j k),
mot is a

(Π ((j Nat)
(k Nat))

(→ (Less-Than j k) U)),
base is a

(Π ((k Nat)
(lt (Less-Than zero (add1 k))))

(mot zero k lt)),
and step is a

(Π ((j Nat)
(k Nat)
(j<k (Less-Than j k)))

(→ (mot j k j<k)
(mot (add1 j) (add1 k)
(add1-smaller j k j<k)))),

then (ind-Less-Than target mot base step)
is a (mot j k target).

The ability to define new datatypes
makes it much more convenient to do com-
plicated things in these other languages.
Furthermore, using eliminators directly, as
we have in Pie, is not particularly conve-
nient for larger problems.

Recursive Functions with
Pattern Matching
The basic principle of eliminators is that
for each constructor, we need to explain
what must be done to satisfy the motive
using the information inside the construc-
tor. Recursion is made safe by having each
eliminator be responsible for ensuring that
recursive computation is performed only
on smaller values.

An alternative way to define functions
is with pattern matching and a safe form of
recursion.3 More sophisticated languages
also allow recursive functions to be defined
by directly explaining what action to take
with each possible value. For instance,
length could have been written as follows:

(claim length
(Π ((E Nat))
(→ (List E) Nat)))

(define length
(λ (E es)
(match es
(nil zero)
((:: x xs) (add1 (length xs))))))

While recursion is not an option in
Pie, sophisticated languages have addi-
tional checks to ensure that recursion is
only used safely, and can thus allow it.

While front’s definition in frame 15:74
requires a more informative motive to rule
out the vecnil case, as well as extra argu-
ments to satisfy the motive, a definition
with pattern matching is more direct. Not
only does it work, but it is also more un-
derstandable and more compact.

(claim front
(Π ((E U)

(n Nat))
(→ (Vec E (add1 n)) E)))

(define front
(λ (E n es)
(match es
((vec:: x xs) x))))

Sometimes, we only care that we have
evidence for a statement, not which ev-
idence it is. In such situations, writing
the evidence out explicitly is not always
appealing—especially when that evidence

3Thanks, Thierry Coquand (1961–).
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consumes many pages. Truly verbose evi-
dence can even require a whole bookshelf,
while being repetitive and tedious rather
than pithy and interesting.

Implicit Arguments
Programs written with dependent types
have a tendency to grow quickly. For in-
stance, length requires not only a list, but
also the type of entries in that list, and
vec-append requires the type of entries and
the respective lengths of the vectors being
appended. This information, however, is
already available in the types of later ar-
guments, so it would be convenient to be
able to omit some of it.

More sophisticated languages provide
a mechanism called implicit or hidden ar-
guments.4 These arguments are to be dis-
covered by the system, rather than the re-
sponsibility of the user.

Pie could be extended with implicit ar-
guments. One way to do this would be to
add three new syntactic forms:

1. an implicit Π, say Π∗, that works just
like the ordinary Π, except that its
arguments are marked implicit,

2. an implicit λ, say λ∗, that works just
like the ordinary λ, except that its
arguments are marked implicit, and

3. an implicit function application, say
implicitly, that marks its arguments
as filling an implicit rather than ex-
plicit role.

With these features, length could be
written so that the type of entries is hid-
den, and automatically discovered.

(claim length
(Π∗ ((E U))
(→ (List E) Nat)))

(define length
(λ∗ (E)
(λ (es)
(rec-List es
0
(λ (e es ℓ)
(add1 ℓ))))))

Then, the expression
(length (:: 'potato (:: 'gravy nil)))

would be the equivalent of having written
(length Atom (:: 'potato (:: 'gravy nil)))

in Pie using the definition of length from
chapter 5. Similarly,

(implicitly length Atom)
would be an

(→ (List Atom) Nat).
Implicit arguments allow definitions to be
just as concise as the built-in constructors
and eliminators.

Proof Tactics
Here is another way to define even-or-odd.
Instead of directly constructing the evi-
dence that every natural number is either
even or odd, this version uses proof tactics5
to automate the definition.

A tactic is a program in a special lan-
guage that is provided with a desired type
(called a goal) that either succeeds with
zero or more new goals or fails. Further
tactics can then be deployed to solve these
new goals until all tactics have succeeded
with no remaining goals. Then, evidence
for the original goal is the result of the

4Thanks, Randy Pollack (1947–).
5Thank you, Robin Milner (1934–2010).
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tactic program. If Pie had tactics, then ev-
idence for even-or-odd could be constructed
with a tactic script instead of being written
as an expression.

(claim even-or-odd
(Π ((n Nat))
(Either (Even n) (Odd n))))

(define-tactically even-or-odd
(intro n)
(elim n)
(apply zero-is-even)
(intro n-1 e-or-on-1)
(elim e-or-on-1)
(then
right
(apply add1-even���odd)
auto)

(then
left
(apply add1-odd���even)
auto))

Here, intro is a tactic that succeeds
when the goal type has Π at the top, bind-
ing the name given as an Atom using λ.
elim uses an appropriate eliminator, here
ind-Nat and ind-Either, respectively. apply

uses an expression to solve the goal, but
leaves behind new goals for each argument
needed by the expression. then causes each
tactic in sequence to be used in all of the
new goals from the preceding tactic. When
used as tactics, right and left succeed when
the goal has Either at the top, and provide
Either’s respective argument types as new
goals. auto takes care of simple evidence
completely on its own. The result of these
tactics is the same as the even-or-odd de-
fined in chapter 13.

Tactics can be combined to create new
tactics, which allows even very complicated
and tedious evidence to be constructed us-
ing very small programs. Furthermore, it
is possible to write one tactic that can solve
many different goals, allowing it to be used
again and again.

Each sophisticated language for pro-
gramming and proving has some mix of the
useful, yet more complicated, features de-
scribed here. Do not be concerned—while
these languages have features that make
programs easier to write, the underlying
ideas are the familiar ideas from Pie. We
wish you the best in your further explo-
ration of dependent types.
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Gödel’s Proof
by Ernest Nagel and James R. Newman. NYU Press, 1958.

Grooks
by Piet Hein. MIT Press, 1966.

Gödel, Escher, Bach: An Eternal Golden Braid
by Douglas R. Hofstadter. Basic Books, 1979.

To Mock a Mockingbird and Other Puzzles
by Raymond Smullyan. Knopf, 1985.

Sophie’s World: A Novel About the History of Philosophy
by Jostein Gaarder. Farrar Straus Giroux, 1995.

Logicomix
by Apostolos Doxiadis, Christos H. Papadimitriou, Alecos Papadatos, and

Annie Di Donna. Bloomsbury USA, 2009.
Computation, Proof, Machine: Mathematics Enters a New Age
by Gilles Dowek. Cambridge University Press, 2015.
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This appendix is for those who have some background in the theory of programming
languages who want to compare Pie to other languages or who want to implement Pie
from scratch. Three good books that can be used to get this background are Harper’s
Practical Foundations for Programming Languages, Pierce’s Types and Programming
Languages, and Felleisen, Findler, and Flatt’s Semantics Engineering with PLT Redex.

When implementing dependent types, there are two questions to be answered: when
to check for sameness, and how to check for sameness. Our implementation of Pie uses
bidirectional type checking (described in the section Forms of Judgment) to decide
when, and normalization by evaluation (described in the section Normalization) as
the technique for checking sameness.

Forms of Judgment
While Pie as described in the preceding chapters is a system for guiding human judg-
ment, Pie can also be implemented in a language like Scheme. In an implementation,
each form of judgment corresponds to a function that determines whether a particular
judgment is believable by the Laws and Commandments. To make this process more
straightforward, implementations of Pie have additional forms of judgment.

Although chapter 1 describes four forms of judgment, this appendix has additional
details in order to precisely describe Pie’s implementation. In the implementation, ex-
pressions written in the language described in the preceding chapters are simultaneously
checked for validity and translated into a simpler core language. Elaboration into Core
Pie can be seen as similar to macro expansion of Scheme programs.

Only the simpler core language is ever checked for sameness. The complete gram-
mars of Pie and Core Pie are at the end of the appendix, on pages 392 and 393. When
the distinction between them is important, e is used to stand for expressions written in
Pie and c is used to stand for expressions written in Core Pie.

The forms of judgment for implementations of Pie are listed in figure B.1. When a
form of judgment includes the bent arrow ;, that means that the expression following
the arrow is output from the elaboration algorithm. All contexts and expressions that
precede the arrow are input to the elaboration algorithm, while those after the arrow

Γ ctx Γ is a context.
Γ ⊢ fresh ; x Γ does not bind x.
Γ ⊢ x lookup ; ct Looking up x in Γ yields the type ct.
Γ ⊢ et type ; ct et represents the type ct.
Γ ⊢ c1 ≡ c2 type c1 and c2 are the same type.
Γ ⊢ e ∈ ct ; ce Checking that e can have type ct results in ce.
Γ ⊢ e synth ; (the ct ce) From e, the type ct can be synthesized, resulting in ce.
Γ ⊢ c1 ≡ c2 : ct c1 is the same ct as c2.

Figure B.1: Forms of Judgment
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are output. When there is no ; in a form of judgment, then there is no interesting
output, and the judgment’s program can only succeed or fail.

When a form of judgment includes a turnstile ⊢, the position before the turnstile
is a context. Contexts assign types to free variables. In Pie, the order of the variables
listed in a context matters because a type may itself refer to variables from earlier in the
context. Contexts are represented by the variable Γ,1 and are described by the following
grammar:

Γ ::= • Empty context
| Γ, x : ct Context extension

In Scheme, contexts can be represented by association lists that pair variables with their
types.

Forms of judgment occur within inference rules. An inference rule consists of a
horizontal line. Below the line is a conclusion, and above the line is any number of
premises. The premises are either written next to each other or on top of each other,
as in figure B.2. The meaning of the rule is that, if one believes in the premises, then
one should also believe in the conclusion. Because the same conclusion can occur in
multiple rules, belief in the premises cannot be derived from belief in the conclusion.
Each rule has a name, written in Small Caps to the right of the rule.

premise0 . . . premisen
conclusion [Name]

premise0
...

premisen
conclusion [Name]

Figure B.2: Inference Rules

When reading the rules as an algorithm, each form of judgment should be imple-
mented as a function. When an expression occurs in input position in the conclusion of
an inference rule, it should be read as a pattern to be matched against the input. When
it is in output position, it should be read as constructing the result of the algorithm.
When an expression occurs in an input position in a premise, it represents input being
constructed for a recursive call, and when it occurs in the output position in a premise,
it represents a pattern to be matched against the result returned from the recursive call.
Italic variables in patterns are bound when a pattern matches, and italic variables in a
construction are occurrences bound by patterns, in a manner similar to quasiquotation
in Scheme. If any of the patterns do not match, type checking should fail because the
rule is not relevant. If all the patterns match, type checking should succeed, returning
the constructed result after the bent arrow. If there is no bent arrow, then type checking
should indicate success by returning a trivial value, such as the empty list in Scheme or
the element of the unit type in some other language.

1Γ is pronounced “gamma.”
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Γ ctx None
Γ ⊢ fresh ; x Γ is a context.
Γ ⊢ x lookup ; ct Γ is a context.
Γ ⊢ et type ; ct Γ is a context.
Γ ⊢ c1 ≡ c2 type Γ is a context, and c1 and c2 are both types.
Γ ⊢ e ∈ ct ; ce Γ is a context and ct is a type.
Γ ⊢ e synth ; (the ct ce) Γ is a context.
Γ ⊢ c1 ≡ c2 : ct Γ is a context, ct is a type, c1 is a ct, and c2 is a ct.

Figure B.3: Presuppositions

Each form of judgment has presuppositions that must be believed before it makes
sense to entertain a judgment. In a type checking algorithm, presuppositions are
aspects of expressions that should have already been checked before they are provided as
arguments to the type checking functions. The presuppositions of each form of judgment
are in figure B.3.

When matching against a concrete expression in a rule, the algorithm must reduce
the expression enough so that if it doesn’t match, further reduction cannot make it
match. Finding a neutral expression or a value that is the same as the expression being
examined is sufficient. A concrete implementation can do this by matching against the
values used in normalization rather than against syntax that represents these values.
This also provides a convenient way to implement substitution by instantiating the
variable from a closure instead of manually implementing capture-avoiding substitution.

Input Output
Conclusion Pattern Construction

Premise Construction Pattern

There are two putative rules that govern Γ ctx: EmptyCtx and ExtCtx.

• ctx [EmptyCtx] Γ ctx Γ ⊢ ct ≡ ct type
Γ, x : ct ctx

[ExtCtx]

Rather than repeatedly checking that all contexts are valid, however, the rest of the
rules are designed so that they never add a variable and its type to the context unless
the type actually is a type in that context. This maintains the invariant that contexts
contain only valid types. Thus, Γ ctx need not have a corresponding function in an
implementation.

From time to time, elaboration must construct a variable that does not conflict
with any other variable that is currently bound. This is referred to as finding a fresh
variable and is represented as a form of judgment Γ ⊢ fresh ; x. This form of judgment
can either be implemented using a side-effect such as Lisp’s gensym or by repeatedly
modifying a name until it is no longer bound in Γ.

Because the algorithmic system Pie is defined using elaboration that translates Pie
into Core Pie, it does not make sense to ask whether a Core Pie expression is a type
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or has a particular type. This is because the translation from Pie to Core Pie happens
as part of checking the original Pie expression, so the input to the elaboration process
is Pie rather than Core Pie.2 The rules of sameness have been designed such that only
expressions that are described by a type are considered the same, and only types are
considered to be the same type. This means that sameness judgments can be used
to express that one expression describes another, or that an expression is a type. An
example of this approach can be seen in ExtCtx, where ct being a type under Γ is
expressed by requiring that it be the same type as itself under Γ.

Normalization
The process of checking whether the judgments Γ ⊢ c1 ≡ c2 type and Γ ⊢ c1 ≡ c2 : ct
are believable is called conversion checking. To check for conversion, the Pie imple-
mentation uses a technique called normalization by evaluation,3 or NbE for short. The
essence of NbE is to define a notion of value that represents only the normal forms of the
language, and then write an interpreter from Core Pie syntax into these values. This
process resembles writing a Scheme interpreter, as is done in chapter 10 of The Little
Schemer. Then, the value’s type is analyzed to determine what the normal form should
look like, and the value itself is converted back into syntax. Converting a value into
its normal form is called reading back the normal form from the value.

The notion of value used in NbE is related to the notion of value introduced in
chapter 1, but it is not the same. In NbE, values are mathematical objects apart
from the expressions of Pie or Core Pie, where the results of computation cannot be
distinguished from incomplete computations. Examples of suitable values include the
untyped λ-calculus, Scheme functions and data, or explicit closures.

Evaluation and reading back are arranged to always find normal forms. This means
that the equality judgments can be decided by first normalizing the expressions being
compared and then comparing them for α-equivalence. While the typing rules are
written as though they use only the syntax of the surface and core languages, with
capture-avoiding substitution to instantiate variables, an actual implementation can
maintain closures to represent expressions with free variables, and then match directly
on the values of types rather than substituting and normalizing.

Here, we do not specify the precise forms of values, nor the full normalization proce-
dure. Indeed, any conversion-checking technique that respects the Commandments for
each type, including the η-rules, is sufficient. Additionally, there are ways of comparing
expressions for sameness that do not involve finding normal forms and comparing them.
The Commandments are given here as a specification that the conversion algorithm
should fulfill. See Andreas Abel’s habilitation thesis Normalization by Evaluation:
Dependent Types and Impredicativity for a complete description of NbE.

2It would be possible to write a separate type checker for Core Pie, but this is not necessary.
3Thanks, Ulrich Berger (1956–), Helmut Schwichtenberg (1942–), and Andreas Abel (1974–).
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The Rules
The rules use italic letters to stand for arbitrary expressions, and letters are consistently
assigned based on the role played by the expression that the letter stands for. Letters
that stand for other expressions are called metavariables. Please consult figure B.1 to
see which positions are written in which language, and figure B.4 to see what each
metavariable stands for.

When one metavariable stands for the result of elaborating another expression, the
result has a lower-case letter o (short for output) as a superscript. So bo is the result
of elaborating an expression b. When the same metavariable occurs multiple times in
a rule, each occurrence stands for identical expressions; if there are multiple metavari-
ables that play the same role, then they are distinguished via subscripts. Sometimes,
subscripts indicate a sequence such as x1 . . . xn. Otherwise, the subscripts 1 and 2
or 3 and 4 are used for expressions that are expected to be the same. Even though
two metavariables have different subscripts, they may nevertheless refer to the same
expression; the subscripts allow them to be different but do not require them to be
different.

The most basic rules are those governing the interactions between checking and
synthesis. Changing from checking to synthesis requires an equality comparison, while
changing from synthesis to checking requires an annotation to check against.4 Annota-
tions are the same as the annotated expression.

Γ ⊢ X type ; Xo Γ ⊢ expr ∈ Xo ; expro
Γ ⊢ (the X expr) synth ; (the Xo expro) [The]

Γ ⊢ expr synth ; (the X1 expro) Γ ⊢ X1 ≡ X2 type
Γ ⊢ expr ∈ X2 ; expro [Switch]

To read these rules aloud, take a look at the labeled copy of The below. Start
below the line, in the conclusion, and identify the form of judgment. In this case, it
is type synthesis. Begin at the position labeled A. If the input matches (that is, if
the current task is to synthesize a type for a the-expression), proceed to the premises.
Identify the form of judgment used in the first premise B: that X is a type. Checking
that X is a type yields a Core Pie expression Xo as output, at position C. This Core Pie
expression is used as input to the next premise, at position D, which checks that expr
is an Xo, yielding an elaborated Core Pie version called expro at position E. Finally,
having satisfied all of the premises, the result of the rule is constructed at position F.

B Γ ⊢ X type ; C Xo D Γ ⊢ expr ∈ Xo ; E expro

A Γ ⊢ (the X expr) synth ; F (the Xo expro)
[The]

4Thanks, Benjamin C. Pierce (1963–) and David N. Turner (1968–).
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A the-expression is the same as its second argument. Try reading this rule aloud.

Γ ⊢ expr1 ≡ expr2 : X

Γ ⊢ (the X expr1) ≡ expr2 : X
[TheSame]

Aside from [The], [Switch], and one of the rules for U , the rules fall into one of
a few categories:

1. formation rules, which describe the conditions under which an expression is a type;

2. introduction rules, which describe the constructors for a type;

3. elimination rules, which describe the eliminators for a type;

4. computation rules, which describe the behavior of eliminators whose targets are
constructors;

5. η-rules, which describe how to turn neutral expressions into values for some types;
and

6. other sameness rules, which describe when sameness of subexpressions implies
sameness of whole expressions.

Formation, introduction, and elimination rules correspond to the Laws, while the re-
maining rules correspond to the Commandments. The names of rules begin with an
indication of which family of types they belong to. For instance, rules about Atom
begin with Atom, and rules about functions begin with Fun. Formation, introduction,
and elimination rules then have an F, I, or E, respectively. Computation rules include
the letter ι (pronounced “iota”) in their names, with the exception of [FunSame-β] and
[TheSame]. The η-rules contain η in their names, and the other sameness rules are
named after the syntactic form at the top of their expressions.

Sameness

Sameness is a partial equivalence relation; that is, it is symmetric and transitive.
Additionally, the rules are arranged such that, for each type, the expressions described
by that type are the same as themselves. It is important to remember that rules whose
conclusions are sameness judgments are specifications for a normalization algorithm,
rather than a description of the algorithm itself. Algorithms for checking sameness do
not typically include rules such as [SameSymm] on page 370 because it could be applied
an arbitrary number of times without making progress.
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Meta Role Mnemonic
a car of a pair car
A Type of car of a pair CAR
arg Argument to a function argument
Arg Type of argument to a function Argument
b Base b is for base
B Type of base B is for base
d cdr of a pair cdr
D Type of cdr of a pair CDR
e Entry in a list or vector e is for entry
E Type of entries in a list or vector ENTRY
es Entries in a list or vector Plural of e
expr Any expression expr is an expression
from from
f A function expression function
ℓ Length of Vec ℓ is for length
lt Evidence for left type in Either lt is short for left

mid Middle of transitivity
m Motive m is for motive
n A natural number n is for natural
P Left type in Either The Port is on the left
pr A pair pr is for pair
r Result of a function r is for result
R Type of result of a function R is the type of the result
rt Evidence for right type in Either rt is short for right
s Step s is for step
S Right type in Either The Starboard is on the right
t Target t is for target
to to
x, y Variable names x and y are frequently unknown

X,Y , Z Any type X, Y , or Z can be any type

Figure B.4: Metavariables
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Γ ⊢ expr2 ≡ expr1 : X

Γ ⊢ expr1 ≡ expr2 : X
[SameSymm]

Γ ⊢ expr1 ≡ expr2 : X Γ ⊢ expr2 ≡ expr3 : X

Γ ⊢ expr1 ≡ expr3 : X
[SameTrans]

Variables

The form of judgment with fewest rules is Γ ⊢ x lookup ; ct. It has two rules:
LookupStop and LookupPop.

Γ, x : X ⊢ x lookup ; X
[LookupStop]

x ̸= y Γ ⊢ x lookup ; X

Γ, y : Y ⊢ x lookup ; X
[LookupPop]

Read aloud, LookupStop says:

To look up x in a context Γ, x : X, succeed with X as a result.

and LookupPop says:

To look up x in a context Γ, y : Y , make sure that x and y are not the
same name, and then recursively look up x in Γ.

Together, these rules describe looking up a name in an association list using Scheme’s
assoc to find a name-type pair. Looking up a variable is used in the rule Hypothesis,
which describes how to synthesize a type for a variable.

Γ ⊢ x lookup ; X

Γ ⊢ x synth ; (the X x)
[Hypothesis]

To read Hypothesis aloud, say:

To synthesize a type for a variable x, look it up in the context Γ. If
the lookup succeeds with type X, synthesis succeeds with the Core Pie
expression (the X x).
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The conclusion of HypothesisSame rule below is a judgment of sameness, so it is
a specification for the normalization algorithm.

Γ ⊢ x lookup ; X

Γ ⊢ x ≡ x : X
[HypothesisSame]

HypothesisSame says:

If a variable x is given type X by the context Γ, then conversion
checking must find that x is the same X as x.

As you read the rest of this appendix, remember to read the rules aloud to aid under-
standing them.

Atoms

In these rules, the syntax ⌈sym⌉ stands for a literal Scheme symbol that satisfies the
definition of atoms in chapter 1: namely, that they consist of a non-empty sequence of
letters and hyphens.

Γ ⊢ Atom type ; Atom [AtomF]
Γ ⊢ Atom ≡ Atom type [AtomSame-Atom]

Γ ⊢ '⌈sym⌉ synth ; (the Atom '⌈sym⌉)
[AtomI]

Γ ⊢ '⌈sym⌉ ≡ '⌈sym⌉ : Atom [AtomSame-tick]

Pairs

Γ ⊢ A type ; Ao Γ, x : Ao ⊢ D type ; Do

Γ ⊢ (Σ ((x A)) D) type ; (Σ ((x Ao)) Do) [ΣF-1]

Γ ⊢ A type ; Ao

Γ, x : Ao ⊢ (Σ ((x1 A1) . . . (xn An)) D) type ; X

Γ ⊢ (Σ ((x A) (x1 A1) . . . (xn An)) D) type ; (Σ ((x Ao)) X) [ΣF-2]
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Γ ⊢ A type ; Ao Γ ⊢ fresh ; x Γ, x : Ao ⊢ D type ; Do

Γ ⊢ (Pair A D) type ; (Σ ((x Ao)) Do) [ΣF-Pair]

Γ ⊢ A1 ≡ A2 type Γ, x : A1 ⊢ D1 ≡ D2 type
Γ ⊢ (Σ ((x A1)) D1) ≡ (Σ ((x A2)) D2) type

[ΣSame-Σ]

The second premise in ΣI below contains the expression D[ao/x]. The brackets
mean that capture-avoiding substitution should be used to consistently replace every
x in D with ao. This can be implemented by using values with closures rather than
explicit substitution.

Γ ⊢ a ∈ A ; ao Γ ⊢ d ∈ D[ao/x] ; do

Γ ⊢ (cons a d) ∈ (Σ ((x A)) D) ; (cons ao do) [ΣI]

Try reading ΣI aloud.

Γ ⊢ a1 ≡ a2 : A Γ ⊢ d1 ≡ d2 : D[a1/x]

Γ ⊢ (cons a1 d1) ≡ (cons a2 d2) : (Σ ((x A)) D) [ΣSame-cons]

Γ ⊢ pr synth ; (the (Σ ((x A)) D) pro)
Γ ⊢ (car pr) synth ; (the A (car pro)) [ΣE-1]

Γ ⊢ pr1 ≡ pr2 : (Σ ((x A)) D)
Γ ⊢ (car pr1) ≡ (car pr2) : A

[ΣSame-car]

Γ ⊢ a1 ≡ a2 : A Γ, x : A ⊢ d ≡ d : D

Γ ⊢ (car (cons a1 d)) ≡ a2 : A
[ΣSame-ι1]

Γ ⊢ pr synth ; (the (Σ ((x A)) D) pro)
Γ ⊢ (cdr pr) synth ; (the D[(car pro)/x] (cdr pro)) [ΣE-2]

Γ ⊢ pr1 ≡ pr2 : (Σ ((x A)) D)
Γ ⊢ (cdr pr1) ≡ (cdr pr2) : D[(car pr1)/x]

[ΣSame-cdr]

Γ ⊢ a1 ≡ a2 : A Γ, x : A ⊢ d1 ≡ d2 : D

Γ ⊢ (cdr (cons a1 d1)) ≡ d2 : D[a2/x]
[ΣSame-ι2]

Γ ⊢ pr1 ≡ pr2 : (Σ ((x A)) D)
Γ ⊢ pr1 ≡ (cons (car pr2) (cdr pr2)) : (Σ ((x A)) D) [ΣSame-η]
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Functions

Γ ⊢ Arg type ; Arg o Γ, x : Arg o ⊢ R type ; Ro

Γ ⊢ (Π ((x Arg)) R) type ; (Π ((x Arg o)) Ro) [FunF-1]

Γ ⊢ Arg type ; Arg o

Γ, x : Arg o ⊢ (Π ((x1 Arg1) . . . (xn Argn)) R) type ; X

Γ ⊢ (Π ((x Arg) (x1 Arg1) . . . (xn Argn)) R) type ; (Π ((x Arg o)) X) [FunF-2]

Γ ⊢ Arg type ; Arg o Γ ⊢ fresh ; x Γ, x : Arg o ⊢ R type ; Ro

Γ ⊢ (→ Arg R) type ; (Π ((x Arg o)) Ro) [FunF→1]

Γ ⊢ Arg type ; Arg o

Γ ⊢ fresh ; x
Γ, x : Arg o ⊢ (→ Arg1 . . . Argn R) type ; X

Γ ⊢ (→ Arg Arg1 . . . Argn R) type ; (Π ((x Arg o)) X) [FunF→2]

Remember to read the rules aloud! To read FunF→2, say:

To check that an →-expression with more than one argument type is
a type, first check that the first argument type Arg is a type. Call its
Core Pie expression Arg o. Then, check that a new →-expression with
the remaining argument types Arg1 . . .Argn is a type, and call the
resulting Core Pie expression X. Find a fresh variable name x that is
not associated with any type in Γ, and then the result of elaboration
is (Π ((x Arg o)) X).

Γ ⊢ Arg1 ≡ Arg2 type Γ, x : Arg1 ⊢ R1 ≡ R2 type
Γ ⊢ (Π ((x Arg1)) R1) ≡ (Π ((x Arg2)) R2) type

[FunSame-Π]

Γ, x : Arg ⊢ r ∈ R ; ro

Γ ⊢ (λ (x) r) ∈ (Π ((x Arg)) R) ; (λ (x) ro) [FunI-1]

Γ, x : Arg ⊢ (λ (y z . . . ) r) ∈ R ; ro

Γ ⊢ (λ (x y z . . . ) r) ∈ (Π ((x Arg)) R) ; (λ (x) ro) [FunI-2]
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Γ, x : Arg ⊢ r1 ≡ r2 : R

Γ ⊢ (λ (x) r1) ≡ (λ (x) r2) : (Π ((x Arg)) R) [FunSame-λ]

Γ ⊢ f synth ; (the (Π ((x Arg)) R) fo) Γ ⊢ arg ∈ Arg ; argo
Γ ⊢ (f arg) synth ; (the R[argo/x] (fo argo)) [FunE-1]

Γ ⊢ (f arg . . . argn−1) synth ; (the (Π ((x Arg)) R) fo)
Γ ⊢ argn ∈ Arg ; argon

Γ ⊢ (f arg . . . argn−1 argn) synth ; (the R[argon/x] (f o argon))
[FunE-2]

Γ ⊢ f1 ≡ f2 : (Π ((x Arg)) R) Γ ⊢ arg1 ≡ arg2 : Arg
Γ ⊢ (f1 arg1) ≡ (f2 arg2) : R[arg1/x]

[FunSame-apply]

Γ, x : Arg ⊢ r1 ≡ r2 : R Γ ⊢ arg1 ≡ arg2 : Arg
Γ ⊢ ((λ (x) r1) arg1) ≡ r2[arg2/x] : R[arg2/x]

[FunSame-β]

In FunSame-η, the premise x ̸∈ dom(Γ) states that x is not bound by Γ. The
reason that Γ ⊢ fresh ; x is not used in this rule is that the rules for sameness
are a specification that the conversion checking algorithm must fulfill rather than the
algorithm itself. It would be inappropriate to use an algorithmic check in a non-
algorithmic specification.

x ̸∈ dom(Γ) Γ ⊢ f1 ≡ f2 : (Π ((x Arg)) R)
Γ ⊢ f1 ≡ (λ (x) (f2 x)) : (Π ((x Arg)) R) [FunSame-η]

Natural Numbers

Γ ⊢ Nat type ; Nat [NatF]
Γ ⊢ Nat ≡ Nat type [NatSame-Nat]

Γ ⊢ zero synth ; (the Nat zero) [NatI-1]

Γ ⊢ zero ≡ zero : Nat [NatSame-zero]
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Γ ⊢ n ∈ Nat ; no

Γ ⊢ (add1 n) synth ; (the Nat (add1 no)) [NatI-2]

In these rules, ⌈n⌉ stands for a literal Scheme natural number.

Γ ⊢ ⌈0⌉ synth ; (the Nat zero) [NatI-3]

Γ ⊢ ⌈k⌉ ∈ Nat ; n

Γ ⊢ ⌈k + 1⌉ synth ; (the Nat (add1 n)) [NatI-4]

Γ ⊢ n1 ≡ n2 : Nat
Γ ⊢ (add1 n1) ≡ (add1 n2) : Nat

[NatSame-add1]

Γ ⊢ t ∈ Nat ; to

Γ ⊢ b synth ; (the B bo)
Γ ⊢ s ∈ (Π ((x Nat)) B) ; so

Γ ⊢ (which-Nat t b s) synth ; (the B (which-Nat to (the B bo) so)) [NatE-1]

In the next rule, a sameness judgment is written on multiple lines. The following
two ways of writing the judgment have the same meaning:

Γ ⊢
c1
≡
c2

: c3 and Γ ⊢ c1 ≡ c2 : c3

In addition to allowing wider expressions, this way of writing the judgment can also
make it easier to visually compare the two expressions that are the same.

Γ ⊢ t1 ≡ t2 : Nat
Γ ⊢ B1 ≡ B2 type
Γ ⊢ b1 ≡ b2 : B1

Γ ⊢ s1 ≡ s2 : (Π ((x Nat)) B1)

Γ ⊢
(which-Nat t1 (the B1 b1) s1)

≡
(which-Nat t2 (the B2 b2) s2)

: B1

[NatSame-w-N]

Γ ⊢ b1 ≡ b2 : B Γ ⊢ s ≡ s : (Π ((x Nat)) B)
Γ ⊢ (which-Nat zero (the B b1) s) ≡ b2 : B

[NatSame-w-Nι1]
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Γ ⊢ n1 ≡ n2 : Nat
Γ ⊢ b ≡ b : B
Γ ⊢ s1 ≡ s2 : (Π ((x Nat)) B)

Γ ⊢ (which-Nat (add1 n1) (the B b) s1) ≡ (s2 n2) : B
[NatSame-w-Nι2]

Γ ⊢ t ∈ Nat ; to

Γ ⊢ b synth ; (the B bo)
Γ ⊢ s ∈ (Π ((x B)) B) ; so

Γ ⊢ (iter-Nat t b s) synth ; (the B (iter-Nat to (the B bo) so)) [NatE-2]

Γ ⊢ t1 ≡ t2 : Nat
Γ ⊢ B1 ≡ B2 type
Γ ⊢ b1 ≡ b2 : B1

Γ ⊢ s1 ≡ s2 : (Π ((x B1)) B1)

Γ ⊢
(iter-Nat t1 (the B1 b1) s1)

≡
(iter-Nat t2 (the B2 b2) s2)

: B1

[NatSame-iter-Nat]

Γ ⊢ b1 ≡ b2 : B
Γ ⊢ s ≡ s : (Π ((x B)) B)

Γ ⊢ (iter-Nat zero (the B b1) s) ≡ b2 : B
[NatSame-it-Nι1]

Γ ⊢ n1 ≡ n2 : Nat
Γ ⊢ B1 ≡ B2 type
Γ ⊢ b1 ≡ b2 : B1

Γ ⊢ s1 ≡ s2 : (Π ((x B1)) B1)

Γ ⊢
(iter-Nat (add1 n1) (the B1 b1) s1)

≡
(s2 (iter-Nat n2 (the B2 b2) s2))

: B1

[NatSame-it-Nι2]

Try comparing the rules for which-Nat and iter-Nat with each other, and keep them
in mind when reading the rules for rec-Nat aloud.

Γ ⊢ t ∈ Nat ; to

Γ ⊢ b synth ; (the B bo)
Γ ⊢ s ∈ (Π ((n Nat)) (Π ((x B)) B)) ; so

Γ ⊢ (rec-Nat t b s) synth ; (the B (rec-Nat to (the B bo) so)) [NatE-3]
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Γ ⊢ t1 ≡ t2 : Nat
Γ ⊢ B1 ≡ B2 type
Γ ⊢ b1 ≡ b2 : B1

Γ ⊢ s1 ≡ s2 : (Π ((n Nat)) (Π ((x B1)) B1))

Γ ⊢
(rec-Nat t1 (the B1 b1) s1)

≡
(rec-Nat t2 (the B2 b2) s2)

: B1

[NatSame-rec-Nat]

Γ ⊢ b1 ≡ b2 : B Γ ⊢ s ≡ s : (Π ((n Nat)) (Π ((x B)) B))
Γ ⊢ (rec-Nat zero (the B b1) s) ≡ b2 : B

[NatSame-r-Nι1]

Γ ⊢ n1 ≡ n2 : Nat
Γ ⊢ B1 ≡ B2 type
Γ ⊢ b1 ≡ b2 : B1

Γ ⊢ s1 ≡ s2 : (Π ((n Nat)) (Π ((x B1)) B1))

Γ ⊢
(rec-Nat (add1 n1) (the B1 b1) s1)

≡
((s2 n2) (rec-Nat n2 (the B2 b2) s2))

: B1

[NatSame-r-Nι2]

Γ ⊢ t ∈ Nat ; to

Γ ⊢ m ∈ (Π ((x Nat)) U) ; mo

Γ ⊢ b ∈ (mo zero) ; bo

Γ ⊢ s ∈ (Π ((k Nat)) (Π ((almost (mo k))) (mo (add1 k)))) ; so

Γ ⊢ (ind-Nat t m b s) synth ; (the (mo to) (ind-Nat to mo bo so)) [NatE-4]

Γ ⊢ t1 ≡ t2 : Nat
Γ ⊢ m1 ≡ m2 : (Π ((x Nat)) U)
Γ ⊢ b1 ≡ b2 : (m1 zero)
Γ ⊢ s1 ≡ s2 : (Π ((k Nat))

(Π ((almost (m1 k)))
(m1 (add1 k))))

Γ ⊢
(ind-Nat t1 m1 b1 s1)

≡
(ind-Nat t2 m2 b2 s2)

: (m1 t1)

[NatSame-ind-Nat]
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Γ ⊢ m ≡ m : (Π ((x Nat)) U)
Γ ⊢ b1 ≡ b2 : (m zero)
Γ ⊢ s ≡ s : (Π ((k Nat))

(Π ((almost (m k)))
(m (add1 k))))

Γ ⊢ (ind-Nat zero m b1 s) ≡ b2 : (m zero) [NatSame-in-Nι1]

Γ ⊢ n1 ≡ n2 : Nat
Γ ⊢ m1 ≡ m2 : (Π ((x Nat)) U)
Γ ⊢ b1 ≡ b2 : (m1 zero)
Γ ⊢ s1 ≡ s2 : (Π ((k Nat))

(Π ((almost (m1 k)))
(m1 (add1 k))))

Γ ⊢
(ind-Nat (add1 n1) m1 b1 s1)

≡
((s2 n2) (ind-Nat n2 m2 b2 s2))

: (m1 (add1 n1))

[NatSame-in-Nι2]

Lists

Γ ⊢ E type ; Eo

Γ ⊢ (List E) type ; (List Eo) [ListF]

Γ ⊢ E1 ≡ E2 type
Γ ⊢ (List E1) ≡ (List E2) type

[ListSame-List]

Γ ⊢ nil ∈ (List E) ; nil [ListI-1]

Γ ⊢ nil ≡ nil : (List E) [ListSame-nil]

Γ ⊢ e synth ; (the E eo) Γ ⊢ es ∈ (List E) ; eso
Γ ⊢ (:: e es) synth ; (the (List E) (:: eo eso)) [ListI-2]

Γ ⊢ e1 ≡ e2 : E Γ ⊢ es1 ≡ es2 : (List E)
Γ ⊢ (:: e1 es1) ≡ (:: e2 es2) : (List E) [ListSame-::]
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Γ ⊢ t synth ; (the (List E) to)
Γ ⊢ b synth ; (the B bo)
Γ ⊢ s ∈ (Π ((x E)) (Π ((xs (List E))) (Π ((almost B)) B))) ; so

Γ ⊢ (rec-List t b s) synth ; (the B (rec-List to (the B bo) so)) [ListE-1]

Γ ⊢ t1 ≡ t2 : (List E)
Γ ⊢ B1 ≡ B2 type
Γ ⊢ b1 ≡ b2 : B1

Γ ⊢ s1 ≡ s2 : (Π ((x E))
(Π ((xs (List E)))

(Π ((almost B1))
B1)))

Γ ⊢ (rec-List t1 (the B1 b1) s1) ≡ (rec-List t2 (the B2 b2) s2) : B1
[ListSame-rec-List]

Γ ⊢ nil ≡ nil : (List E)
Γ ⊢ b1 ≡ b2 : B
Γ ⊢ s ≡ s : (Π ((x E))

(Π ((xs (List E)))
(Π ((almost B))

B)))

Γ ⊢ (rec-List nil (the B b1) s1) ≡ b2 : B
[ListSame-r-Lι1]

Γ ⊢ e1 ≡ e2 : E
Γ ⊢ es1 ≡ es2 : (List E)
Γ ⊢ B1 ≡ B2 type
Γ ⊢ b1 ≡ b2 : B1

Γ ⊢ s1 ≡ s2 : (Π ((x E))
(Π ((xs (List E)))

(Π ((almost B1))
B1)))

Γ ⊢
(rec-List (:: e1 es1) (the B1 b1) s1)

≡
(((s2 e2) es2) (rec-List es2 (the B2 b2) s2))

: B1

[ListSame-r-Lι2]
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Γ ⊢ t synth ; (the (List E) to)
Γ ⊢ m ∈ (Π ((xs (List E))) U) ; mo

Γ ⊢ b ∈ (mo nil) ; bo

Γ ⊢ s ∈ (Π ((x E))
(Π ((xs (List E)))

(Π ((almost (mo xs)))
(mo (:: x xs))))) ; so

Γ ⊢ (ind-List t m b s) synth ; (the (mo to) (ind-List to mo bo so)) [ListE-2]

Γ ⊢ t1 ≡ t2 : (List E)
Γ ⊢ m1 ≡ m2 : (Π ((xs (List E))) U)
Γ ⊢ b1 ≡ b2 : (m1 nil)
Γ ⊢ s1 ≡ s2 : (Π ((x E))

(Π ((xs (List E)))
(Π ((almost (m1 xs)))

(m1 (:: x xs)))))
Γ ⊢ (ind-List t1 m1 b1 s1) ≡ (ind-List t2 m2 b2 s2) : (m1 t1)

[ListSame-ind-List]

Γ ⊢ m ≡ m : (Π ((xs (List E))) U)
Γ ⊢ b1 ≡ b2 : (m nil)
Γ ⊢ s ≡ s : (Π ((x E))

(Π ((xs (List E)))
(Π ((almost (m xs)))

(m (:: x xs)))))
Γ ⊢ (ind-List nil m b1 s) ≡ b2 : (m nil) [ListSame-i-Lι1]

Γ ⊢ e1 ≡ e2 : E
Γ ⊢ es1 ≡ es2 : (List E)
Γ ⊢ m1 ≡ m2 : (Π ((xs (List E))) U)
Γ ⊢ b1 ≡ b2 : (m1 nil)
Γ ⊢ s1 ≡ s2 : (Π ((x E))

(Π ((xs (List E)))
(Π ((almost (m1 xs)))

(m1 (:: x xs)))))

Γ ⊢
(ind-List (:: e1 es1) m1 b1 s1)

≡
(((s2 e2) es2) (ind-List es2 m2 b2 s2))

: (m1 (:: e1 es1))

[ListSame-i-Lι2]
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Vectors

Γ ⊢ E type ; Eo Γ ⊢ ℓ ∈ Nat ; ℓo

Γ ⊢ (Vec E ℓ) type ; (Vec Eo ℓo) [VecF]

Γ ⊢ E1 ≡ E2 type Γ ⊢ ℓ1 ≡ ℓ2 : Nat
Γ ⊢ (Vec E1 ℓ1) ≡ (Vec E2 ℓ2) type

[VecSame-Vec]

Γ ⊢ vecnil ∈ (Vec E zero) ; vecnil [VecI-1]

Γ ⊢ vecnil ≡ vecnil : (Vec E zero) [VecSame-vecnil]

Γ ⊢ e ∈ E ; eo Γ ⊢ es ∈ (Vec E ℓ) ; eso
Γ ⊢ (vec:: e es) ∈ (Vec E (add1 ℓ)) ; (vec:: eo eso) [VecI-2]

Γ ⊢ e1 ≡ e2 : E Γ ⊢ es1 ≡ es2 : (Vec E ℓ)
Γ ⊢ (vec:: e1 es1) ≡ (vec:: e2 es2) : (Vec E (add1 ℓ)) [VecSame-vec::]

Γ ⊢ t synth ; (the (Vec E (add1 ℓ)) to)
Γ ⊢ (head t) synth ; (the E (head to)) [VecE-1]

Γ ⊢ es1 ≡ es2 : (Vec E (add1 ℓ))
Γ ⊢ (head es1) ≡ (head es2) : E

[VecSame-head]

Γ ⊢ e1 ≡ e2 : E Γ ⊢ es ≡ es : (Vec E ℓ)
Γ ⊢ (head (vec:: e1 es)) ≡ e2 : E

[VecSame-hι]

Γ ⊢ t synth ; (the (Vec E (add1 ℓ)) to)
Γ ⊢ (tail t) synth ; (the (Vec E ℓ) (tail to)) [VecE-2]

Γ ⊢ es1 ≡ es2 : (Vec E (add1 ℓ))
Γ ⊢ (tail es1) ≡ (tail es2) : (Vec E ℓ) [VecSame-tail]

Γ ⊢ e ≡ e : E Γ ⊢ es1 ≡ es2 : (Vec E ℓ)
Γ ⊢ (tail (vec:: e es1)) ≡ es2 : (Vec E ℓ) [VecSame-tι]

In VecE-3 below, there is a premise stating that ℓo and n are the same Nat, rather
than using the same metavariable for both lengths. This is because both Nats are
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output, bound on the right of a ;. The Core Pie Nats are independently produced by
elaboration, so they must be checked for sameness in another premise. This pattern
occurs in [EqI], as well.

Γ ⊢ ℓ ∈ Nat ; ℓo

Γ ⊢ t synth ; (the (Vec E n) to)
Γ ⊢ ℓo ≡ n : Nat
Γ ⊢ m ∈ (Π ((k Nat)) (Π ((es (Vec E k))) U)) ; mo

Γ ⊢ b ∈ ((mo zero) vecnil) ; bo

Γ ⊢ s ∈ (Π ((k Nat))
(Π ((e E))

(Π ((es (Vec E k)))
(Π ((almost ((mo k) es)))

((mo (add1 k)) (vec:: e es)))))) ; so

Γ ⊢ (ind-Vec ℓ t m b s) synth ; (the ((mo ℓo) to) (ind-Vec ℓo to mo bo so)) [VecE-3]

Γ ⊢ ℓ1 ≡ ℓ2 : Nat
Γ ⊢ t1 ≡ t2 : (Vec E ℓ1)
Γ ⊢ m1 ≡ m2 : (Π ((k Nat)) (Π ((x (Vec E k))) U))
Γ ⊢ b1 ≡ b2 : ((m1 zero) vecnil)
Γ ⊢ s1 ≡ s2 : (Π ((k Nat))

(Π ((e E))
(Π ((es (Vec E k)))

(Π ((almost ((m1 k) es)))
((m1 (add1 k)) (vec:: e es))))))

Γ ⊢
(ind-Vec ℓ1 t1 m1 b1 s1)

≡
(ind-Vec ℓ2 t2 m2 b2 s2)

: ((m1 ℓ1) t1)

[VecSame-ind-Vec]

Γ ⊢ m1 ≡ m2 : (Π ((k Nat)) (Π ((x (Vec E k))) U))
Γ ⊢ b1 ≡ b2 : ((m1 zero) vecnil)
Γ ⊢ s ≡ s : (Π ((k Nat))

(Π ((e E))
(Π ((es (Vec E k)))

(Π ((almost ((m1 k) es)))
((m1 (add1 k)) (vec:: e es))))))

Γ ⊢ (ind-Vec zero vecnil m1 b1 s) ≡ b2 : ((m2 zero) vecnil)
[VecSame-i-Vι1]
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Γ ⊢ ℓ1 ≡ ℓ2 : Nat
Γ ⊢ e1 ≡ e2 : E
Γ ⊢ es1 ≡ es2 : (Vec E ℓ1)
Γ ⊢ m1 ≡ m2 : (Π ((k Nat)) (Π ((x (Vec E k))) U))
Γ ⊢ b1 ≡ b2 : ((m1 zero) vecnil)
Γ ⊢ s1 ≡ s2 : (Π ((k Nat))

(Π ((e E))
(Π ((es (Vec E k)))

(Π ((almost ((m1 k) es)))
((m1 (add1 k)) (vec:: e es))))))

Γ ⊢

(ind-Vec (add1 ℓ1) (vec:: e1 es1) m1 b1 s1)
≡

((((s2 ℓ2) e2) es2)
(ind-Vec ℓ2 es2 m2 b2 s2))

:
((m2 (add1 ℓ1))
(vec:: e1 es1))

[VecSame-i-Vι2]

Equality

Γ ⊢ X type ; Xo Γ ⊢ from ∈ Xo ; fromo Γ ⊢ to ∈ Xo ; too
Γ ⊢ ( X from to) type ; ( Xo fromo too) [EqF]

Γ ⊢ X1 ≡ X2 type Γ ⊢ from1 ≡ from2 : X1 Γ ⊢ to1 ≡ to2 : X1

Γ ⊢ ( X1 from1 to1) ≡ ( X2 from2 to2) type
[EqSame-=]

Γ ⊢ mid ∈ X ; mid o Γ ⊢ from ≡ mid o : X Γ ⊢ mid o ≡ to : X

Γ ⊢ (same mid) ∈ ( X from to) ; (same mid o) [EqI]

Γ ⊢ from ≡ to : X

Γ ⊢ (same from) ≡ (same to) : ( X from from) [EqSame-same]

Γ ⊢ t synth ; (the ( X from to) to)
Γ ⊢ m ∈ (Π ((x X)) U) ; mo

Γ ⊢ b ∈ (mo from) ; bo

Γ ⊢ (replace t m b) synth ; (the (mo to) (replace to mo bo)) [EqE-1]
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Γ ⊢ t1 ≡ t2 : ( X from to)
Γ ⊢ m1 ≡ m2 : (Π ((x X)) U)
Γ ⊢ b1 ≡ b2 : (m1 from)

Γ ⊢ (replace t1 m1 b1) ≡ (replace t2 m2 b2) : (m1 to) [EqSame-replace]

Γ ⊢ expr ≡ expr : X
Γ ⊢ m ≡ m : (Π ((x X)) U)
Γ ⊢ b1 ≡ b2 : (m expr)

Γ ⊢ (replace (same expr) m b1) ≡ b2 : (m expr) [EqSame-rι]

The Core Pie version of cong takes three arguments, rather than two, as can be
seen in the grammar on page 393. The first argument in the Core Pie version is the
type of the expressions being equated, and it is needed in order for a sameness checking
algorithm to take types into account.

Γ ⊢ t synth ; (the ( X1 from to) to)
Γ ⊢ f synth ; (the (Π ((x X2)) Y ) fo)
Γ ⊢ X1 ≡ X2 type

Γ ⊢ (cong t f) synth ; (the ( Y (fo from) (fo to)) (cong X1 to fo)) [EqE-2]

Γ ⊢ X1 ≡ X2 type
Γ ⊢ f1 ≡ f2 : (Π ((x X1)) Y )
Γ ⊢ t1 ≡ t2 : ( X1 from to)

Γ ⊢ (cong X1 t1 f1) ≡ (cong X2 t2 f2) : ( Y (f1 from) (f1 to)) [EqSame-cong]

Γ ⊢ expr1 ≡ expr2 : X Γ ⊢ f1 ≡ f2 : (Π ((x X)) Y )

Γ ⊢
(cong X (same expr1) f1)

≡
(same (f2 expr2))

: ( X (f1 expr1) (f1 expr1))

[EqSame-cι]

Γ ⊢ t synth ; (the ( X from to) to)
Γ ⊢ (symm t) synth ; (the ( X to from) (symm to)) [EqE-3]

Γ ⊢ t1 ≡ t2 : ( X from to)
Γ ⊢ (symm t1) ≡ (symm t2) : ( X to from) [EqSame-symm]
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Γ ⊢ expr1 ≡ expr2 : X

Γ ⊢ (symm (same expr1)) ≡ (same expr2) : ( X expr1 expr1)
[EqSame-sι]

Pie contains two eliminators for equality that are not discussed in the preceding
chapters: trans and ind-=. trans allows evidence of equality to be “glued together:” if the
to of one equality is the same as the from of another, trans allows the construction of
an equality connecting the from of the first equality to the to of the second.

Γ ⊢ t1 synth ; (the ( X from mid1) to1)
Γ ⊢ t2 synth ; (the ( Y mid2 to) to2)
Γ ⊢ X ≡ Y type
Γ ⊢ mid1 ≡ mid2 : X

Γ ⊢ (trans t1 t2) synth ; (the ( X from to) (trans to1 to2))
[EqE-4]

Γ ⊢ t1 ≡ t2 : ( X from mid) Γ ⊢ t3 ≡ t4 : ( X mid to)
Γ ⊢ (trans t1 t3) ≡ (trans t2 t4) : ( X from to) [EqSame-trans]

Γ ⊢ expr1 ≡ expr2 : X Γ ⊢ expr2 ≡ expr3 : X

Γ ⊢
(trans (same expr1) (same expr2))

≡
(same expr3)

: ( X expr3 expr3)

[EqSame-tι]

The most powerful eliminator for equality is called ind-=: it expresses induction on
evidence of equality. ind-= is sometimes called J5 or path induction. Pie’s ind-= treats
the from as a parameter, rather than an index;6 this version of induction on evidence
of equality is sometimes called based path induction.

Γ ⊢ t synth ; (the ( X from to) to)
Γ ⊢ m ∈ (Π ((x X)) (Π ((t ( X from x))) U)) ; mo

Γ ⊢ b ∈ ((mo from) (same from)) ; bo

Γ ⊢ (ind-= t m b) synth ; (the ((mo to) to) (ind-= to mo bo)) [EqE-5]

5Thanks again, Per Martin-Löf.
6Thanks, Christine Paulin-Mohring (1962–)
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Γ ⊢ t1 ≡ t2 : ( X from to)
Γ ⊢ m1 ≡ m2 : (Π ((x X)) (Π ((t ( X from x))) U))
Γ ⊢ b1 ≡ b2 : ((m1 from) (same from))
Γ ⊢ (ind-= t1 m1 b1) ≡ (ind-= t2 m2 b2) : ((m1 to) t1)

[EqSame-ind-=]

Γ ⊢ expr ≡ expr : X
Γ ⊢ m ≡ m : (Π ((x X)) (Π ((t ( X expr x))) U))
Γ ⊢ b1 ≡ b2 : ((m expr) (same expr))

Γ ⊢ (ind-= (same expr) m b1) ≡ b2 : ((m expr) (same expr)) [EqSame-i-=ι]

Either

Γ ⊢ P type ; P o Γ ⊢ S type ; So

Γ ⊢ (Either P S) type ; (Either P o So) [EitherF]

Γ ⊢ P 1 ≡ P 2 type Γ ⊢ S1 ≡ S2 type
Γ ⊢ (Either P 1 S1) ≡ (Either P 2 S2) type

[EitherSame-Either]

Γ ⊢ lt ∈ P ; lto
Γ ⊢ (left lt) ∈ (Either P S) ; (left lto) [EitherI-1]

Γ ⊢ lt1 ≡ lt2 : P

Γ ⊢ (left lt1) ≡ (left lt2) : (Either P S) [EitherSame-left]

Γ ⊢ rt ∈ S ; rto
Γ ⊢ (right rt) ∈ (Either P S) ; (right rto) [EitherI-2]

Γ ⊢ rt1 ≡ rt2 : S

Γ ⊢ (right rt1) ≡ (right rt2) : (Either P S) [EitherSame-right]

Γ ⊢ t synth ; (the (Either P S) to)
Γ ⊢ m ∈ (Π ((x (Either P S))) U) ; mo

Γ ⊢ bl ∈ (Π ((x P )) (mo (left x))) ; bol
Γ ⊢ br ∈ (Π ((x S)) (mo (right x))) ; bor

Γ ⊢ (ind-Either t m bl br) synth ; (the (mo to) (ind-Either to mo bol bor))
[EitherE]
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Γ ⊢ t1 ≡ t2 : (Either P S)
Γ ⊢ m1 ≡ m2 : (Π ((x (Either P S))) U)
Γ ⊢ bl1 ≡ bl2 : (Π ((x P )) (m1 (left x)))
Γ ⊢ br1 ≡ br2 : (Π ((x S)) (m1 (right x)))

Γ ⊢
(ind-Either t1 m1 bl1 br1)

≡
(ind-Either t2 m2 bl2 br2)

: (m1 t1)

[EitherSame-ind-Either]

Γ ⊢ lt1 ≡ lt2 : P
Γ ⊢ m ≡ m : (Π ((x (Either P S))) U)
Γ ⊢ bl1 ≡ bl2 : (Π ((x P )) (m (left x)))
Γ ⊢ br ≡ br : (Π ((x S)) (m (right x)))

Γ ⊢
(ind-Either (left lt1) m bl1 br)

≡
(bl2 lt2)

: (m (left lt1))

[EitherSame-i-Eι1]

Γ ⊢ rt1 ≡ rt2 : S
Γ ⊢ m ≡ m : (Π ((x (Either P S))) U)
Γ ⊢ bl ≡ bl : (Π ((x P )) (m (left x)))
Γ ⊢ br1 ≡ br2 : (Π ((x S)) (m (right x)))

Γ ⊢
(ind-Either (right rt1) m bl br1)

≡
(br2 rt2)

: (m (right rt1))

[EitherSame-i-Eι2]

Unit

Γ ⊢ Trivial type ; Trivial [TrivF]

Γ ⊢ Trivial ≡ Trivial type [TrivSame -Trivial]

Γ ⊢ sole synth ; (the Trivial sole) [TrivI]
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It is not necessary to have a rule stating that sole is the same Trivial as sole because
every Trivial is the same as every other by the η-rule.

Γ ⊢ c ≡ c : Trivial
Γ ⊢ c ≡ sole : Trivial [TrivSame -η]

Absurdities

Γ ⊢ Absurd type ; Absurd [AbsF]

Γ ⊢ Absurd ≡ Absurd type [AbsSame-Absurd]

Γ ⊢ t ∈ Absurd ; to Γ ⊢ m type ; mo

Γ ⊢ (ind-Absurd t m) synth ; (the mo (ind-Absurd to mo)) [AbsE]

Γ ⊢ t1 ≡ t2 : Absurd Γ ⊢ m1 ≡ m2 : U
Γ ⊢ (ind-Absurd t1 m1) ≡ (ind-Absurd t2 m2) : m1

[AbsSame-ind-Absurd]

Γ ⊢ c1 ≡ c1 : Absurd Γ ⊢ c2 ≡ c2 : Absurd
Γ ⊢ c1 ≡ c2 : Absurd [AbsSame-η]
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Universe

The rules for U work differently from other types. There is a formation rule and a number
of introduction rules, but there is not an elimination rule that expresses induction the
way that there is for types such as Nat and families such as Vec.

Instead of an elimination rule, a U is used by placing it in a context where a type is
expected, because one way to check that an expression is a type is by checking that it
is a U . Similarly, to check that two expressions are the same type, one can check that
they are the same U .

Γ ⊢ e ∈ U ; ct
Γ ⊢ e type ; ct

[El] Γ ⊢ X ≡ Y : U
Γ ⊢ X ≡ Y type [El-Same]

The formation rule for U is akin to types that take no arguments: Atom, Nat, Trivial,
and Absurd.

Γ ⊢ U type ; U
[UF]

Γ ⊢ U ≡ U type [USame-U ]

Γ ⊢ Atom synth ; (the U Atom) [UI-1]
Γ ⊢ Atom ≡ Atom : U

[USame-Atom]

Γ ⊢ A ∈ U ; Ao Γ, x : Ao ⊢ D ∈ U ; Do

Γ ⊢ (Σ ((x A)) D) synth ; (the U (Σ ((x Ao)) Do)) [UI-2]

Γ ⊢ A ∈ U ; Ao Γ, x : Ao ⊢ (Σ ((x1 A1) . . . (xn An)) D) ∈ U ; Z

Γ ⊢ (Σ ((x A) (x1 A1) . . . (xn An)) D) synth ; (the U (Σ ((x Ao)) Z)) [UI-3]

Γ ⊢ A ∈ U ; Ao Γ ⊢ fresh ; x Γ, x : Ao ⊢ D ∈ U ; Do

Γ ⊢ (Pair A D) synth ; (the U (Σ ((x Ao)) Do)) [UI-4]

Γ ⊢ A1 ≡ A2 : U Γ, x : A1 ⊢ D1 ≡ D2 : U
Γ ⊢ (Σ ((x A1)) D1) ≡ (Σ ((x A2)) D2) : U

[USame-Σ]

Γ ⊢ X ∈ U ; Xo Γ, x : Xo ⊢ R ∈ U ; Ro

Γ ⊢ (Π ((x X)) R) synth ; (the U (Π ((x Xo)) Ro)) [UI-5]
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Γ ⊢ X ∈ U ; Xo Γ, x : Xo ⊢ (Π ((x1 X1) . . . (xn Xn)) R) ∈ U ; Ro

Γ ⊢ (Π ((x X) (x1 X1) . . . (xn Xn)) R) synth ; (the U (Π ((x Xo)) Ro)) [UI-6]

Γ ⊢ X ∈ U ; Xo Γ ⊢ fresh ; x Γ, x : Xo ⊢ R ∈ U ; Ro

Γ ⊢ (→ X R) synth ; (the U (Π ((x Xo)) Ro)) [UI-7]

Γ ⊢ X ∈ U ; Xo

Γ ⊢ fresh ; x
Γ, x : Xo ⊢ (→ X1 . . . Xn R) ∈ U ; Ro

Γ ⊢ (→ X X1 . . . Xn R) synth ; (the U (Π ((x Xo)) Ro)) [UI-8]

Γ ⊢ X1 ≡ X2 : U Γ, x : X1 ⊢ Y 1 ≡ Y2 : U
Γ ⊢ (Π ((x X1)) Y 1) ≡ (Π ((x X2)) Y2) : U

[USame-Π]

Γ ⊢ Nat synth ; (the U Nat) [UI-9]
Γ ⊢ Nat ≡ Nat : U [USame-Nat]

Γ ⊢ E ∈ U ; Eo

Γ ⊢ (List E) synth ; (the U (List Eo)) [UI-10]

Γ ⊢ E1 ≡ E2 : U
Γ ⊢ (List E1) ≡ (List E2) : U

[USame-List]

Γ ⊢ E ∈ U ; Eo Γ ⊢ ℓ ∈ Nat ; ℓo

Γ ⊢ (Vec E ℓ) synth ; (the U (Vec Eo ℓo)) [UI-11]

Γ ⊢ E1 ≡ E2 : U Γ ⊢ ℓ1 ≡ ℓ2 : Nat
Γ ⊢ (Vec E1 ℓ1) ≡ (Vec E2 ℓ2) : U

[USame-Vec]

Γ ⊢ X ∈ U ; Xo Γ ⊢ from ∈ Xo ; fromo Γ ⊢ to ∈ Xo ; too
Γ ⊢ ( X from to) synth ; (the U ( Xo fromo too)) [UI-12]
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Γ ⊢ X1 ≡ X2 : U Γ ⊢ from1 ≡ from2 : X1 Γ ⊢ to1 ≡ to2 : X1

Γ ⊢ ( X1 from1 to1) ≡ ( X2 from2 to2) : U
[USame-=]

Γ ⊢ P 1 ≡ P 2 : U Γ ⊢ S1 ≡ S2 : U
Γ ⊢ (Either P 1 S1) ≡ (Either P 2 S2) : U

[USame-Either]

Γ ⊢ P ∈ U ; P o Γ ⊢ S ∈ U ; So

Γ ⊢ (Either P S) synth ; (the U (Either P o So)) [UI-13]

Γ ⊢ Trivial synth ; (the U Trivial) [UI-14]

Γ ⊢ Trivial ≡ Trivial : U [USame-Trivial]

Γ ⊢ Absurd synth ; (the U Absurd) [UI-15]

Γ ⊢ Absurd ≡ Absurd : U [USame-Absurd]
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The Grammar of Pie
e ::= (the e e) Type annotation

| x Variable reference
| Atom Atom type
| '⌈sym⌉ Atom literal
| (Pair e e) Non-dependent pair type
| (Σ ((x e)+) e) Dependent pair type
| (cons e e) Pair constructor
| (car e) First projection
| (cdr e) Second projection
| (→ e e+) Non-dependent function type
| (Π ((x e)+) e) Dependent function type
| (λ (x+) e) Functions
| (e e+) Application
| Nat Natural number type
| zero Zero
| (add1 e) Successor
| ⌈n⌉ Natural number literal
| (which-Nat e e e) Case operator on natural numbers
| (iter-Nat e e e) Simply-typed iteration on natural numbers
| (rec-Nat e e e) Simply-typed recursion on natural numbers
| (ind-Nat e e e e) Induction on natural numbers
| (List e) List type
| nil Empty list
| (:: e e) List expansion
| (rec-List e e e) Simply-typed list recursion
| (ind-List e e e e) Induction on lists
| (Vec e e) Length-indexed vector type
| vecnil Empty vector
| (vec:: e e) Vector extension
| (head e) Head of a vector
| (tail e) Tail of a vector
| (ind-Vec e e e e e) Induction on vectors
| ( e e e) Equality type
| (same e) Reflexivity of equality
| (symm e) Symmetry of equality
| (cong e e) Equality is a congruence
| (replace e e e) Transportation along equality
| (trans e e) Transitivity of equality
| (ind-= e e e) Induction on equality
| (Either e e) Sum type
| (left e) First injection
| (right e) Second injection
| (ind-Either e e e e) Eliminator for sums
| Trivial Unit type
| sole Unit constructor
| Absurd Empty type
| (ind-Absurd e e) Eliminator for empty type (a.k.a. ex falso quodlibet)
| U Universe
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The Grammar of Core Pie
The main differences between Pie and Core Pie are that Core Pie does not have some
of the features found in Pie: digits for natural numbers, the type constructors → and
Pair, and functions that can be applied to more than one argument. Additionally, non-
dependent eliminators require extra type information in Core Pie, because they do not
have a motive. In this grammar, gray highlights indicate modifications from Pie.

c ::= (the c c) Type annotation
| x Variable reference
| Atom Atom type
| '⌈sym⌉ Atom literal
| (Σ ((x c)) c) Dependent pair type
| (cons c c) Pair constructor
| (car c) First projection
| (cdr c) Second projection
| (Π ((x c)) c) Dependent function type
| (λ (x) c) Functions
| (c c) Application
| Nat Natural number type
| zero Zero
| (add1 c) Successor
| (which-Nat c (the c c) c) Case operator on natural numbers
| (iter-Nat c (the c c) c) Simply-typed iteration on natural numbers
| (rec-Nat c (the c c) c) Simply-typed recursion on natural numbers
| (ind-Nat c c c c) Induction on natural numbers
| (List c) List type
| nil Empty list
| (:: c c) List expansion
| (rec-List c (the c c) c) Simply-typed list recursion
| (ind-List c c c c) Induction on lists
| (Vec c c) Length-indexed vector type
| vecnil Empty vector
| (vec:: c c) Vector extension
| (head c) Head of a vector
| (tail c) Tail of a vector
| (ind-Vec c c c c c) Induction on vectors
| ( c c c) Equality type
| (same c) Reflexivity of equality
| (symm c) Symmetry of equality
| (cong c c c) Equality is a congruence
| (replace c c c) Transportation along equality
| (trans c c) Transitivity of equality
| (ind-= c c c) Induction on equality
| (Either c c) Sum type
| (left c) First injection
| (right c) Second injection
| (ind-Either c c c c) Eliminator for sums
| Trivial Unit type
| sole Unit constructor
| Absurd Empty type
| (ind-Absurd c c) Eliminator for empty type (a.k.a. ex falso quodlibet)
| U Universe
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Afterword
Well, that was fun, and now I’m full, and so are you. I was a Little Lisper once; now I’m
a Typer, too. Types provide the means to put the meaning on machines, to program
computation as an act of explanation. How is doing doing good? (How is lunch made
out of food?) When are lurking loop instructions struck from structural inductions? A
strong introduction, a sweet reduction, rich and warm: the chefs are on joyous normal
form.

Pairs and atoms made my cradle. Pattern matching filled my youth. Now my
kitchen’s rich with Σ, poaching pairs of things with truth. Cookery: it’s not just flattery.
Who’s the pudding kidding without the proof? It takes Π to make a promise and a
promise to make trust, to make windows you can see through and build gates that do
not rust. Here is Pie for Simple Simon: the faker at the fair went bust. I would serve
Pie to my father, but he’s dust.

Atoms offer difference in the act of giving name. transubstantiates two types
which mean the same. Absurd is just another word for someone else to blame. Time
flies like an →. Pairs share out space. A Universal type of types unites the human race.
But what on earth do we think we’re doing in the first place? What’s our game? We
have the ways of making things, but things are evidence. Perhaps, one day, the thing
we’ll make is sense.

Conor McBride
Glasgow
February, 2018
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step-front, 331, 332
step-gauss, 82

step-incr=add1, 188, 189, 191, 199, 200,
202

step-last, 156
step-length, 118
step-list���vec, 227, 229, 240
step-list���vec���list=, 256, 261
step-list-ref , 299, 300
step-nat=?, 348, 354
step-peas, 147
step-replicate, 233
step-reverse, 125
step-taut, 315
step-twice=double, 208, 211, 212
step-vec���list, 254
step-vec-append, 252
step-vec-ref , 310, 311
step-zerop, 80
sub1-=, 327
substitution

capture-avoiding, 372
Sudan, Gabriel, 77
Sussman, Gerald J., 80
swap, 96, 104
symm, 217
synthesis, type, 363

tactics, 359
tail, 133
target, 78
taut, 315
tertium non datur, 335
the, 63, see also type annotation
thirteen-is-odd, 272
thirty-seven-entries, 234
tick mark, 3
to, 174
TODO, 165
toppings, 115
Total Function, 71
total function, 71
trans, 385
treat-proof , 258
Treat-Statement, 258
treats, 245
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Trivial, 318
sole, 318

Turner’s Teaser, 315
Turner, David A., 315
Turner, David N., 367
twice, 203
twice-Vec, 213, 216, 217
twice=double, 203, 207, 212
twice=double-of-17 , 212
twice=double-of-17-again, 212, 213
twin, 106
twin-Atom, 105, 106
twin-Nat, 105
Two, 315
two, 20
two-is-even, 271
type, 8

checking, 363
dependent, 143
equality, 174
identity, 174
synthesis, 363

type annotation, 64
type checking, bidirectional, 363
type constructor, 30, 54
Type Values, 53

U , 53
unit type, 295
universe, 53
universes, hierarchy of, 357
Use a More Specific Type, 137

for Correctness, 231
Use ind-Nat for Dependent Types,

145
use-Nat=, 324, 325

value, 22
Values, 22
Values and Normal Forms, 24
variable

fresh, 365
Vec, 129

head, 133
ind-Vec, 246
tail, 133
vec::, 130
vecnil, 130

vec���list, 254
vec-append, 245, 252
vec-ref , 308, 311
vec::, 130
vecnil, 130, 132
vegetables, 43

When in Doubt, Evaluate, 260
which-Nat, 46, 72
Whitehead, Alfred North, 175

zero, 19
zero-is-even, 266
zero-not-add1, 326
zero?, 343, 345
zerop, 80
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