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Notation

N={1,2,3,...}
7Z=1{0,£1,£2,...}
Q = field of rational numbers
R = field of real numbers
C = field of complex numbers
¢ = empty set
- 1, if pf{mandx?>=m(mod p) is solvable,
<> = Legendre symbol = ¢ —1, if p { m and x> = m (mod p) is insolvable,
p 0, ifp|m,
where m € Z and p is a prime

[x] = greatest integer less than or equal to the real number x
=binomial coefficient = L, where m and n are integers suchthat) < n < m
n (m — n)!n!
If A is a set containing O then A* = A \ {0}
Z,, = cyclic group of order n
card(S) = cardinality of the set S
0, = n X n zero matrix
I, = n x n identity matrix
O, s =1 X § zero matrix

Xiii






Introduction

This book is intended as an introductory text for senior undergraduate and beginning
graduate students wishing to learn the fundamentals of algebraic number theory. It
is based upon a course in algebraic number theory given by the second author at
Carleton University for more than thirty years. Keeping in mind that this is an intro-
ductory text, the authors have strived to present the material in as straightforward,
clear, and elementary fashion as possible. Throughout the text many numerical ex-
amples are given to illustrate the theory. Each chapter closes with a set of exercises
on the material covered in the chapter, as well as some suggested further reading.
References cited in each chapter are listed under suggested reading. Biographical
references for some of the mathematicians mentioned in the text are also given at
the end of each chapter. For the convenience of the reader, the book concludes with
page references for the definitions, theorems, and lemmas in the text. In addition
an extensive bibliography of books on algebraic number theory is provided.

The main aim of the book is to present to the reader a detailed self-contained
development of the classical theory of algebraic numbers. This theory is one of
the crowning achievements of nineteenth-century mathematics. It came into being
through the attempts of mathematicians of that century to prove Fermat’s last the-
orem, namely, that the equation x” + y” = z" has no solutions in nonzero integers
X, Yy, z, where nis an integer > 3. A wonderful achievement of the twentieth century
was the proof of Fermat’s last theorem by Andrew Wiles of Princeton University.
Although the proof of Fermat’s last theorem is beyond the scope of this book, we
will show how algebraic number theory can be used to find the solutions in integers
(if any) of other equations.

The contents of the book are divided into fourteen chapters. Chapter 1 serves as
an introduction to the basic properties of integral domains. Chapters 2 and 3 are
devoted to Euclidean domains and Noetherian domains respectively. In Chapter 4
the reader is introduced to algebraic numbers and algebraic integers. Algebraic
number fields are introduced in Chapter 6 after a discussion of algebraic extensions
of fields in Chapter 5. Chapter 7 is devoted to the study of integral bases. Minimal
integers are introduced as a tool for finding integral bases and many numerical

XV



XVi Introduction

examples are given. Chapter 8 is concerned with Dedekind domains. The ring
of integers of an algebraic number field is the prototype of a Dedekind domain.
Chapters 9 and 10 discuss the factorization of ideals into prime ideals. The structure
of the unit group of a real quadratic field is determined in Chapter 11. In Chapter
12 the classic theorems of Minkowski in the geometry of numbers are proved and
are used to show that the ideal class group is finite. Dirichlet’s determination of the
units in an arbitrary algebraic number field is presented in Chapter 13 using the
approach given by van der Waerden. Finally, in Chapter 14, the algebraic number-
theoretic tools developed in earlier chapters are used to discuss the solvability of
certain equations in integers.

The prerequisites for this book are a basic course in linear algebra (systems
of linear equations, vector spaces over a field), a basic course in modern algebra
(groups, rings, and fields including Eisenstein’s irreducibility criterion), and a basic
course in elementary number theory (the Legendre symbol, quadratic residues, and
the law of quadratic reciprocity.) No Galois theory is needed.

A possible outline for a one-semester course (three hours of lectures per week
for twelve weeks) together with an approximate breakdown of lecture time is as
follows:

Chapter 1 (excluding Theorem 1.2.2) 2 hours
Chapter 2 (excluding Sections 2.3, 2.4) 2 hours
Chapter 3 3 hours
Chapter 4 3 hours
Chapter 5 3 hours
Chapter 6 5 hours
Chapter 7 (Section 7.1 only) 3 hours
Chapter 8 3 hours
Chapter 9 3 hours
Chapter 10 (excluding Sections 10.4, 10.5, 10.6) 2 hours
Chapter 11 3 hours
Chapter 12 (excluding Section 12.7) 2 hours
Chapter 14 (Section 14.2 only) 2 hours

It is planned to provide solutions to selected questions, as well as corrections to
any errors, on the website

http://mathstat.carleton.ca/"williams/books.html
or
http://www.math.carleton.ca/"williams/books.html.

The authors would like to thank their colleagues John D. Dixon, James G. Huard,
Pierre Kaplan, Blair K. Spearman, and P. Gary Walsh for helpful suggestions in
connection with the writing of this book. The second author would like to thank the
many students who have taken the course Mathematics 70.436%/70.536 Algebraic
Number Theory with him at Carleton University over the years. Special thanks go
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to the class of 2000—1 (Yaroslav Bezverkhnyev, Joanne Charlebois, Colette Haley,
Mathieu Lemire, Rima Rahal, Fabien Roche, Tom Wiley, and Benjamin Young) for
their suggestions for improvement to the preliminary draft of this book used in class.
Finally, the authors would like to thank Austin Behne for his help in translating van
der Waerden’s paper on Dirichlet’s unit theorem from German into English.






1

Integral Domains

1.1 Integral Domains

In this chapter we recall the definition and properties of an integral domain and
develop the concept of divisibility in such a domain. We expect the reader to be
familiar with the elementary properties of groups, rings, and fields and to have a
basic knowledge of both elementary number theory and linear algebra over a field.

Definition 1.1.1 (Integral domain) An integral domain is a commutative ring that
has a multiplicative identity but no divisors of zero.

An integral domain D is called a field if for each a € D, a # 0, there exists
b € D withab = 1.

Example 1.1.1 TheringZ = {0, &1, £2, ...} of all integers is an integral domain.

Example 1.1.2 Z+ Zi ={a+bi | a,b € Z} is an integral domain. The ele-
ments of 7, + Zi are called Gaussian integers after the famous mathematician Carl
Friedrich Gauss (1777-1855), who developed their properties in his work on bi-
quadratic reciprocity. 7. + 7i is called the Gaussian domain.

Example 1.1.3 Z+ Zw ={a+ bw | a,b € Z}, where w is the complex cube
root of unity given by w = (—1 4+ /—=3)/2, is an integral domain. The elements of
Z + Zw are called Eisenstein integers after Gotthold Eisenstein (1823-1852), who
introduced them in his pioneering work on the law of cubic reciprocity. Z + Zw is
called the Eisenstein domain. The other complex cube root of unity is > = @ =
(—1 — /=3)/2. Note that 7. + 7w = 7. + Zw* as @* = —w — 1. Also Z + Zw =
z+7 (=),

Example 1.1.4 Z + Z./m = {a + by/m | a, b € 7}, where m is a positive or
negative integer that is not a perfect square, is an integral domain. As /m is a
root of an irreducible quadratic polynomial (namely x> — m), 7. + Z/m is called



2 Integral Domains
a quadratic domain. If k is a nonzero integer such that k* divides m then
Z+7ym C 7+ Z\/m/k>

with equality if and only if k* = 1. Z + Z/m is called a subdomain of 7. +
Zr/m/k* Thus 7.+ 27i C 7 + Zi.

Example 1.1.5 Z + Z (”ﬁ) —{a+b (%) | a, b € Z), where m is a non-

square integer (positive or negative), which is congruent to 1 modulo 4, is an

1+/m
2

m % 1 (mod 4) since in this case it is not closed under multiplication as

() (- (57)) - (57 (557) - e

Again as %’T’ is a root of an irreducible quadratic polynomial (namely x> — x +

(I_T’") ), Z+Z (#) is called a quadratic domain. We note that the elements of

integral domain. We emphasize that Z, + 7 ( ) is not an integral domain if

the integral domain 7. + 7. (1+5/ﬁ ) can also be written in the form %(x + yJ/m),

where x and y are integers such that x = y (mod 2). Clearly the domain Z + Z./m
is a subdomain of 7. + 7 (Hﬁ).

2

Example 1.1.6 F[x] = the ring of polynomials in the indeterminate x with coef-
ficients from a field F is an integral domain.

Example 1.1.7 Z[x] = the ring of polynomials in the indeterminate x with integral
coefficients is an integral domain.

Example 1.1.8 D[x] = the ring of polynomials in the indeterminate x with coef-
ficients from the integral domain D is an integral domain.

Example 1.1.9 F[x, y] = the ring of polynomials in the two indeterminates x and
y with coefficients from the field F is an integral domain.

Example 1.1.10 Z + Z6 + 76% = {a + b0 + ¢6? | a, b, ¢ € 7}, where 6 is a root
of the cubic equation 6° + 6 + 1 = 0, is an integral domain. It is called a cubic
domain.

Example 1.1.11 D = {a + b2+ ci +diN2 | a, c integers; b, d both integers
or both halves of odd integers} is an integral domain. ClearlyZ + 72 C D, 7 +
Zi ¢ D, 7.+ Zi/2 C D.
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Properties of an Integral Domain
Let D be an integral domain. Then the following properties hold.
(a) The identity element of D is unique, for if 1 and 1’ are two identities for D then
1 =1-1 (as I’ is an identity) = 1’ (as 1 is an identity).
(b) D possesses a left cancellation law, that is,
ab=ac, a#0=b=c(a,b,c € D)
as well as a right cancellation law
ac=bc, c#0=a=b(a,b,c € D).

(c) Itis well known that if D is an integral domain then there exists a field F, called the
field of quotients of D or the quotient field of D, that contains an isomorphic copy D’
of D (see, for example, Fraleigh [3]). In practice it is usual to identify D with D’ and so
consider D as a subdomain of F. The quotient field of Z is the field of rational numbers
Q. The quotient field of the polynomial domain F[X] (where F is a field) is the field
F(X) of rational functions in X.

Definition 1.1.2 (Divisor) Let a and b belong to the integral domain D. The element
a is said to be a divisor of b (or a divides b) if there exists an element ¢ of D such
that b = ac. If a is a divisor of b, we write a | b. If a is not a divisor of b, we write
atb.

Example 1.1.12 1+i|2inZ+Zias2 =1 4+i)(1 —1i).

Example 1.1.13 x> 4+x + 1 |x*+ x>+ 1inZ[x]asx* + x>+ 1=x>+x+1)
(x2—=x+1).

Example 1.1.14 (1 —»)* |3 in Z + Zw as 3 = (1 — w)*(1 + ) (see Example
1.1.3).

Example 1.1.15 1 +6 — 0% | —0 —20% in Z + 76 + 76% as —60 — 20> = (1 +
0 —6%)(1 — ) (see Example 1.1.10).

Example1.1.16 2+ v2{3inZ + Zv2as3/2++2) =3 - 3V2 ¢ Z+ ZV2.

Properties of Divisors

Leta, b, c € D, where D is an integral domain. Then the following properties hold.

(a) a | a (reflexive property).
(b) a | band b | cimplies a | ¢ (transitive property).
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(c) albanda | cimpliesa | xb + ycforanyx € Dandy € D.
(d) a | b implies ac | bc.

(e) ac | bc and ¢ # 0 implies a | b.

® 1]a.

(@) a0

(h) 0| aimpliesa = 0.

Definition 1.1.3 (Unit) An element a of an integral domain D is called a unit if
a | 1. The set of units of D is denoted by U (D).

Properties of Units
Let D be an integral domain. Then U (D) has the following properties.

(a) £1 € U(D).

(b) Ifa € U(D) then —a € U(D).

(c) Ifa € U(D) thena~! € U(D).

(d) Ifa e U(D) and b € U(D) then ab € U(D).
(e) Ifa € U(D) then £a" € U(D) forany n € Z.

Example 1.1.17

(@) i e U(Z+ Zi).
(b) w € U(Z + Zw) (see Example 1.1.3).
(c) 0 c U(Z+76 +76% as 1 = 0(—1 — 0?) (see Example 1.1.10).

Theorem 1.1.1 If D is an integral domain then U (D) is an Abelian group with
respect to multiplication.

Proof: U(D) is closed under multiplication by property (d). Multiplication of el-
ements of U(D) is both associative and commutative as D is an integral domain.
U (D) possesses an identity element, namely 1, by property (a). Every element of
U (D) has a multiplicative inverse by property (c). Thus U (D) is an Abelian group
with respect to multiplication. [ |

Abelian groups are named after the Norwegian mathematician Niels Henrik Abel
(1802-1829), who proved in 1824 the impossibility of solving the general quintic
equation by means of radicals.

Example 1.1.18 Let Z,, denote the cyclic group of order n.

(a) U(Z) = {x1} ~ Z,.
b) U(Z + 7Zi) = {1, i} ~ Zy.
(¢c) U(F[x]) = F*, where F is a field and F* = F \ {0}.
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) UZIx]) = {+1} ~ Z,.
(e) £(1 +2)" € UZ+ ZV?2), foralln € Z.
® %\/5 + %lﬁ € U(D), where D is defined in Example 1.1.11.

We remark that in Chapter 11 we will show that

U(Z+7ZN2) = {(£(1 +V2)" | n € Z} ~ 7, x Z.

Definition 1.1.4 (Associate) Two nonzero elements a and b of an integral domain
D are called associates, or said to be associated, if each divides the other. If a and
b are associates we write a ~ b. If a and b are not associates we write a 7 b.

Properties of Associates

Leta, b,c € D* = D \ {0}, where D is an integral domain. The following proper-
ties hold.

(a) a ~ a (reflexive property).

(b) a ~ b implies b ~ a (symmetric property).

(¢) a ~ band b ~ c imply a ~ c (transitive property).
(d) a ~ bifand only if ab~! € U(D).

(e) a ~ 1if and only if a is a unit.

Properties (a), (b), and (c) show that ~ is an equivalence relation. The equivalence
class containing a € D is just the set {ua | u € U(D)}.

Example 1.1.19

(@) InZ, a ~ b ifand only if a = %b, equivalently |a| = |b|.
() InZ +Zi wehave | +i ~ 1 —ias 3 =i e UZ+ Zi).

1—i

©) InZ + ZN2 we have 1 +3v2 ~ 5 — 232 as ;j§g=1+ﬁeU(Z+Zﬁ).

1.2 Irreducibles and Primes

In Z an integer p (> 2) that is divisible only by the positive integers 1 and p is
called a prime. Each prime p in Z has the following two properties:

p=ab (a,beZ)y=— aorb==+l (1.2.1)
and
plab (a,beZ)y=— p|aor p]|b. (1.2.2)

Our next definition generalizes property (1.2.1) to an arbitrary integral domain D,
and an element of D with this property is called an irreducible element.
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Definition 1.2.1 (Irreducible) A nonzero, nonunit element a of an integral domain
D is called an irreducible, or said to be irreducible, if a = bc, where b, c € D,
implies that either b or c is a unit.

A nonzero, nonunit element that is not irreducible is called reducible.

Example 1.2.1 2 is irreducible in 7, for if 2 = ab with a € Z and b € 7 then
eithera = £1 or b = %1.

Example 1.2.2 2 is irreducible in 7 + 7/—5. To show this, suppose that 2 =
(a + b\/—_S)(c + d\/—_S), where a, b, c,d € 7. Taking the modulus of both sides
of this equation, we obtain 4 = (a*> + 5b%)(c* + 5d?). Thus a® + 5b? is a positive
integral divisor of 4 and so we must have

a’>+ 50> =1,2, ord.
Hence we see that
(a,b) = (£1,0) or (£2,0)
so that
a+byv—5==+1or +2.

In the former case a + b~/—5 is a unit of Z + Z/—5. In the latter case

2 2
c+dv-5=——-—=— ==1
a+by/-5 2

is a unit of Z + Z~/—5. Hence 2 is irreducible in 7. + 7/ —5.

Example 1.2.3 7 + /—5 is reducible in 7. + 7~/ —5 because
T++/=5=(0++/-5Q2—+-5)
and neither 1 + /=5 nor 2 — /=5 is a unit of Z + 7.~/ —5.

Our next definition generalizes property (1.2.2) to an arbitrary integral domain, and
an element with this property is called a prime element.

Definition 1.2.2 (Prime) A nonzero, nonunit element p of an integral domain D
is called a prime if p | ab, where a, b € D, implies that p | a or p | b.

Example 1.2.4 2 is a prime in 7Z. Suppose 2 | ab, where a, b € Z, so that ab is
even. Since the product of two odd integers is odd, at least one of a and b must be
even, that is, 2 | a or 2 | b, showing that 2 is prime.



1.2 Irreducibles and Primes 7

Example 1.2.5 2 is not a prime in Z. 4+ Z~/—5 as 2 | (1 + /—=5)(1 — /—=5) yet
211+ /-5

Example 1.2.6 1+ i is a prime in Z + Zi. To show this, suppose that 1 +i |
(a + bi)(c + di), where a, b, c,d € Z. Then there exist integers x and y such that

(a+bi)c+di)=1+i)x + yi).
Taking the modulus of both sides of this equation, we obtain
(@* + b*)(c* +d*) = 2(x* + y).

As 2 is a prime in Z, we have either2 | a*> + b* or2 | ¢* + d*. Interchanging a + bi
and c + di, if necessary, we may suppose that 2 | a> + b>. Thus, either a and b are
both even or they are both odd. In the former case a = 2r and b = 2s, where r and
s are integers, and

a+bi =2(r +si) =0+ D +5)+ (—r +5)i),

so that 1 +1i | a + bi. In the latter case a = 2r + 1 and b = 2s + 1, where r and
s are integers, and

a+bi=2(r+si)+A+i)=A+i)T+s+ 1)+ (—r +5)i),

sothat1 +i | a+ bi. Hence 1 4+ i is a prime in 7, + 7Zi.
Theorem 1.2.1 In any integral domain D a prime is irreducible.

Proof: Let p € D be a prime and suppose that p = ab, where a, b € D. As ab =
p -1 we have p | ab, and so, as p is prime, we deduce that p | a or p | b, that is,
a/pe Dorb/pe D.Sincel =a/p-borl =a-b/p,eitherbisaunitoraisa
unit of D. This proves that p is an irreducible element of D. [ |

The converse of Theorem 1.2.1 is not true. From Examples 1.2.2 and 1.2.5 we
see that the element 2 of Z + Z+/—5 is irreducible but not prime.

Waterhouse [6] has recently given a class of integral domains in which every
irreducible is prime.

Theorem 1.2.2 Let D be an integral domain that has the following property:

Every quadratic polynomial in D[X] having roots in the quotient
field F of D is a product of linear polynomials in D[ X]. (1.2.3)

Then every irreducible in D is prime.
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Proof: Let p be an irreducible element in D, which is not prime. Then there exist
a, b € D such that

plab, pta, ptb.
Letr = ab/p € D, and consider the quadratic polynomial
f(X)=pX*—(@+b)X +r.
In F[X] we have
f(X)=pX —a/p)X —b/p).

We show that f(X) does not factor into linear factors in D[X]. Indeed, suppose on
the contrary that

fX)=(cX+s)dX +1)

in D[X]. Then cd = p. As p is irreducible, one of ¢ and d is a unit of D, say d, so
that c = d~! p. Then the roots of f(X)in F are —ds/p and —d~'t.But —d~'t € D,
while neither a/p nor b/p is in D. Thus no such factorization can exist. Hence
every irreducible in D is prime. [ |

1.3 Ideals

Subsets of an integral domain D that are closed under addition and under multipli-
cation by elements of D play a special role and are called ideals.

Definition 1.3.1 (Ideal) An ideal I of an integral domain D is a nonempty subset
of D having the following two properties:

ael,bel = a+bel,
acel,reD=—vracl.

Itisclear thatifay, ..., a, € I thenrija; +---+rya, € I forallry,...,r, € D.
Inparticularifa € I andb € I then —a € [ anda — b € I.Also0 € I,andif1 € [
then I = D.

Example 1.3.1 If{a,, ..., a,} is a set of elements of the integral domain D then
the set of all finite linear combinations of ay, . . ., a,

n
{Zriai | ri,...,r, € D}
i=1

is an ideal of D, which we denote by (a, ..., a,).
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Definition 1.3.2 (Principal ideal) An ideal I of an integral domain D is called a
principal ideal if there exists an element a € I such that I = (a). The element a is
called a generator of the ideal 1.

If D is an integral domain the principal ideal (a) generated by a € D is just the
set {ra | r € D}. Clearly the principal ideal (0) is just the singleton set {0} and the
principal ideal (1) is D.

Definition 1.3.3 (Proper ideal) An ideal I of an integral domain D is called a
proper ideal of D if I # (0), (1).

Thus a proper ideal of an integral domain D is an ideal / such that {0} C I C D.

Example 1.3.2 For any positive integer k, the set
kZ =A{0, £k, £2k, ...}

is an ideal of 7. Indeed kZ is a principal ideal generated by k (or —k) so that

Example 1.3.3 Let

I ={fx)eZlx]| f(0) =0}
Then 1 is an ideal of Z|x] and I = (x).

Example 1.3.4 Let
J={fx) €Zlx]| f(0) =0 (mod 2)}.

Then J is an ideal of Z[x] and J = (2, x). However, J is not a principal ideal.

Theorem 1.3.1 Let D be an integral domain and let a,b € D* = D \ {0}. Then

(a) = (b) ifand only if a/b € U(D).

Proof: If a/b € U(D) thena = bu for some u € U(D). Letx € (a). Thenx = ac
for some ¢ € D. Hence x = buc with uc € D. Thus x € (b). We have shown that
(a) € (b). Asa/b € U(D) and U(D) is a group with respect to multiplication, we
have b/a = (a/b)~' € U(D). Then, proceeding exactly as before with the roles of
a and b interchanged, we find that (b) C (a). Thus (a) = (b).

Conversely, suppose that (a) = (b). Thena = bc for some c € D and b = ad for
some d € D. Hence b = bed. As b # 0 we deduce that 1 = cd so that c € U(D).
Thus a/b = c € U(D). |
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1.4 Principal Ideal Domains

An important class of integral domains are those in which every ideal is principal.

Definition 1.4.1 (Principal ideal domain) An integral domain D is called a prin-
cipal ideal domain if every ideal in D is principal.

We begin by giving an example of an integral domain in which every ideal is
principal.

Theorem 1.4.1 7Z is a principal ideal domain.

Proof: Let I be an ideal of Z. If I = {0} then I = (0) is a principal ideal. Thus we
may suppose that / # {0}. Hence I contains a nonzero element a. As both a and
—a belong to I, we can suppose that a > 0. Hence I contains at least one positive
integer, namely a.

We let m denote the least positive integer in /. Dividing a by m, we obtain
integers ¢ and r such thata =mqg +r and 0 <r <m.Asa €l andm € I, we
have r = a — mq € I. This contradicts the minimality of m unless r = 0, in which
case a = mgq; thatis, I = (m) = mZ. |

Theorems 1.3.1 and 1.4.1 show that the set of ideals of Z is {kZ | k €
{0,1,2,...}}. Moreover, if I is an ideal of Z then it is generated by the least
positive integer in 1.

Other examples of principal ideal domains will be given in Chapter 2 where we
discuss Euclidean domains.

Theorem 1.4.2 In a principal ideal domain, an irreducible element is prime.

Proof: Let p be an irreducible element in a principal ideal domain D. Suppose
that p | ab, where a, b € D.If p t a we let I be the ideal (p, a) of D. As D is a
principal ideal domain there is an element ¢ € D such that / = (c). Asa € I and
p € I wemusthavec | aandc | p.If ¢ ~ pthen p | a, contradicting p { a. Hence
¢ # p,and as p is irreducible, ¢ must be a unit. Thus there exists d € D such that
cd = 1. Now ¢ € (a, p) so there exist x, y € D such that c = xa + yp. Hence

1 =cd =dxa+dyp,
and so
b = (dx)ab + (bdy)p.

Since p | ab this shows that p | b. Thus p | a or p | b and p is a prime element of
D. [ ]
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Theorem 1.4.3 In a principal ideal domain, an element is irreducible if and only
if it is prime.

Proof: This follows immediately from Theorems 1.2.1 and 1.4.2. [ ]

Example 1.4.1 It was noted in Section 1.2 that 2 is irreducible but not prime
in 7 + 7Z~/—5. Hence, by Theorem 1.4.3, the integral domain 7+ 7/=5 is
not a principal ideal domain. Indeed the ideal (2,1 + /=5) of Z+ Z/—5
is not principal. This can be shown directly as follows. Suppose, on the
contrary, that the ideal (2,1 + \/—_5) is principal, that is, (2,1 + \/—_5) =
(a) for some a € 7+ Zn/—5. Hence 2 € (&) and 1 + /=5 € (a) so that o | 2
anda | 1+ /—=5. From the first of these, as 2 is irreducible in 7. + 7A/—=5, it must
be the case that o ~ 1 or o ~ 2. If a ~ 2 then 2 | 1 4+ /=5, which is impossible
as 1+‘2/?5 = % + %«/—_5 & 7.+ Z/=5. Hence a ~ 1, and so (2, 1 + /=5) = (1).
This shows that 1 is a linear combination of 2 and 1 + /=5 with coefficients from
7 + 7.A/—=5; that is, there exist x, v, 2, W € Z such that

I =&+ yv=52+ (z+wv-=5)1++-=5).
Equating coefficients of 1 and /—5, we obtain

1=2x4+z—5w, 0=2y+z+ w.
The difference of these equations yields
1=2(x—y—3w),

which is clearly impossible as the left-hand side is an odd integer and the right-
hand side is an even integer. Hence the ideal (2,1 + A/—5) is not principal in

Z + 7~/ 5.

Definition 1.4.2 (Greatest common divisor) Let D be a principal ideal domain
and let {ai, ..., a,} be a set of elements of D. Then the ideal {(ay, ..., a,) is a
principal ideal. A generator of this ideal is called a greatest common divisor of
al, ..., dy.

Let D be a principal ideal domain. If @ and b are greatest common divisors of
ai,...,a, € D then

<Cl> = <a1’ . "’an> = (b),

so that, by Theorem 1.3.1, a ~ b. We write (ay, ..., a,) for a greatest com-
mon divisor of ay, ..., a,, understanding that (a,, ..., a,) is only defined up to
a unit. We note that (a;,...,a,) =0ifa;=---=a, =0. Also (a,...,a,) =
(ai, ...,a,_1)if a, = 0. Furthermore,

acla)=Ia,...,a,),
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so that
a=ra +---+ra,
for some ry, ..., r, € D. Thus if ¢ € D is such that
cla;(j=1,2,...,n)
then
c|a.
Moreover, for j = 1,2, ..., n, we have
aj € {ai,...,a,) = (a)
so that
ala;.
This justifies calling a “a greatest common divisor” of ay, ..., a,. The elements
ai, ..., a, are called relatively prime if (ay, ..., a,) is a unit, that is,

{ai,....a,) =(1) =D.
It is easy to verify that

(al’ LRI 7al’l—]van) = ((alv . "an—l)$ an)’

so that a greatest common divisor can be obtained by finding a succession of greatest
common divisors of pairs of elements, that is, if (a;, a;) = b then (ay, az, az) =
(b, a3), etc.

In the next theorem we use our knowledge of primes and irreducibles in a principal

ideal domain to give conditions under which a prime p can be expressed as u?> — mv?

or mv* — u? for some integers u and v, where m is a given nonsquare integer.

Theorem 1.4.4 Let m be a nonsquare integer such that 7. + Z+/m is a principal
ideal domain. Let p be an odd prime for which the Legendre symbol

()

Then there exist integers u and v such that
p=u’>—mv*if m <0, orifm>0,
and there are integers T, U such that T2 —mU?* = —1,

p=u®>—mv?ormv® —u®, ifm >0,

and there are no integers T, U with T2 —mU? = —1.
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Proof: As <%> = 1, there exists an integer x such that x> = m (mod p). Thus

pl(x+ V/m)x — /m)
in Z + Z/m. Clearly “5" = £ & 1 /i & 7, + Z../m so that
plx £ J/m.

Hence p is not a prime in Z + Z+/m. As Z + Z./m is a principal ideal domain, by
Theorem 1.4.3 p is not irreducible in Z + Z./m. Hence

p =+ v/m)(w + 1/m) (1.4.1)

for some u + v/m € Z + Z/m and w + t/m € 7 + Z./m, where neither u +
vy/m nor w + t/m is a unit in Z + Z./m. From (1.4.1) we deduce that

p — (uw + tvm) = (ut + vw)/m.
As m is not a square, »/m ¢ Q, so that
p— (uw + tvm) = ut +vm = 0.
Then
2 _ 2 _ 2 2
p- = (uw + tvm)” = (uw + tvm)° — m(ut 4+ vm)
so that
p? = W* — mvH)(w* — mr?). (1.4.2)

As m,u,v,w,t € Z and m € N, we see that u> — mv> € Z and w? — mt* € Z.
Moreover, u?> — mv? # 1 and w? — mt?> # %1, as u + vy/m and w + t/m are
not units in Z + Z./m. Thus, from (1.4.2), as p is a prime, we must have +p =
u?> — mv? = w? — mt?. Hence there are integers u and v such that p = u? — mv?

or —(u* — mv?).

If m < 0 then u?> — mv? > 0, so we must have p = u?> — mv>.
If m >0, p=—(u>— mv?), and there exist integers T and U such that T? —
mU? = —1 then p = u'*> — mv* withu' = Tu + mUv, v' = Uu + Tv. [ ]

In Chapter 2 we give some nonsquare values of m for which Z + Z./m is a

principal ideal domain. Then, by Theorem 1.4.4, we know that for those odd primes

p for which (%) = 1 there are integers u and v such that p = u? — mv? or mv? —

u?. For a general positive integer m it is a difficult problem to decide which primes
are expressible as u> — mv? with u, v € Z. The reader interested in knowing more
about this problem should consult Cox [2].

In the next theorem we give conditions that ensure that a prime p can
be expressed in the form u? 4 uv + %(1 —m)v? or —(u> +uv+ i(l — m)v?)
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for some integers u and v, where m is a given nonsquare integer with m =
1 (mod 4).

Theorem 1.4.5 Let m = 1(mod 4) be a nonsquare integer such that 7 +

Z ( l+§/%> is a principal ideal domain. Let p be an odd prime for which (%) =1

Then there exist integers u and v such that

2 1 2

p=u +uv+1(1—m)v ,
ifm <0, orifm > 0, and there are integers T, U such that

2 1 2

T —I—TU+Z(1—m)U =—1,
and
2 1 2 2 1 2
p=u +uv+1(1—m)v or — (u +uv+Z(l—m)v Yifm > 0,

and there are no integers T, U with

2 T —mu?= -
T2+ TU + (1 =m)U” = —1.

Proof: As (%) = 1 there exists an integer z such that z2 = —m (mod p). Set

gz if z is odd,
Y= p—2z, ifziseven,

so that y is an odd integer satisfying y> = m (mod p). Now let x = %(y -1 eZ.
Clearly 4 (x> + x + (1 —m)) = 2x + 1)> —=m = y?> —m = 0(mod p) so that
plxt4x+ 51 —m). Hence p | (x+57) (x+57) inz+2 (5.
Clearly

n 1+ /m
X 1
-2 ¢Z+Z< +‘/ﬁ>
p 2
so that
1+ /m
pix+ 2\/_.

Hence p is not a prime in Z + 7Z (%)
AsZ+ 7 (%) is a principal ideal domain, by Theorem 1.4.3 p is not irre-

ducible in Z + Z (HQM ) Hence

(e (B e () s
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2
where neither u + v (Hz*/'%) norw +t (Hz*/'%) iSaunitinZ + 7 (Hf).From
(1.4.3) we have

v t vt (vw + ut)

for some u+v(%)eZ+Zﬂ and w+t<1+ﬁ)€Z+Z(%),

As m is not a square, \/m ¢ Q, so that 1 and /m are linearly independent over Q.
Hence

(+U) FREA R fur=0
=(u+=){w+ = —m, vw+ut =0.
P 2 2) T g

(e (S e (E)

Multiplying (1.4.3) and (1.4.4) together we obtain

Thus

p? = <u2 +uv+ 3(1 — m)v2> <w2 + wr + 3(1 — m)ﬂ) (1.4.5)

since

(x+y (1+2ﬁ)> (x—i—y <1 —;ﬁ)) =x2+xy+;l(l — m)y.

Asm =1(mod 4), u> +uv + (1 —mp? € Z and w? + wt + 2(1 —m)* € Z.
Moreover u” + uv + i(l — m)v? # +1 and w? + wt + ‘1—‘(1 —m)t> £ +lasu+

v (—Hﬁ) and w + ¢ (Hﬁ) are not units in Z + 7Z (Hﬁ). Thus from (1.4.5)

2 2
we deduce that

2 1 2 2 1 2
+tp=u +uv+1(1—m)v =w +wt+Z(1—m)t
as p is a prime. Hence there are integers u and v such that
2 1 2 2 1 2
p=u +uv+Z(1—m)v or — (u +uv+Z(1—m)v ).

If m < 0 then u® + uv + 3(1 — m)v* > 0 so that p = u? + uv + ;(1 — mp?.
Ifm >0, p=— (u*+uv+ 3(1 —m)v?), and there exist integers T and U such
that 7> + TU + i(l —m)U%= —1then p =u* 4+ u'v + i(l — m)? withu' =

uT—i—%(l—m)anndv’:uU+vT+vU. -

Examples illustrating Theorems 1.4.4 and 1.4.5 are given in Section 2.5.
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1.5 Maximal Ideals and Prime Ideals

In this section we give the basic properties of maximal and prime ideals. These will
be important when we discuss Dedekind domains in Chapter 8.

Definition 1.5.1 (Maximal ideal) A proper ideal M of an integral domain D is
called a maximal ideal if whenever I is an ideal of D such that M C I C D then
I =Morl=D.

Example 1.5.1 The ideal (x> + 1) is maximal in R[x]. To show this, assume
that I is an ideal of R[x] such that (x*> +1) C I C R[x]. As (x> + 1) is properly
contained in I, there exists f(x) € I and f(x) & (x*>+1). Dividing f(x) by
x2+ 1, we obtain

@) = (" 4 Dgx) 4 r(x),
where r(x) # 0 and deg (r(x)) < 2. Thus r(x) = ax + b, wherea € Rand b € R

are not both 0, and

ax+b=r(x)= f(x)—qgx)x*+1) el

Thus
a’x? — b* = (ax + b)(ax —b) € I
and
a*(x*+ 1 el
Hence

a’? + 0> =@*x*+ 1) —(@*x*-b*) el
Thus I contains a nonzero real number, that is, I contains a unit of R[x]. This proves
that I = R[x], a contradiction. Hence no such ideal I exists, and consequently
(x2 4 1) is a maximal ideal of R[x].
Example 1.5.2 (5) is not a maximal ideal of Z. + Zi as
(5) C (1 +2i) CZ+ Zi.
Theorem 1.5.1 Let D be an integral domain. Let a € D be such that a # 0 and
a € U(D). Then
(a) is a maximal ideal of D = a is irreducible in D.

Proof: Suppose that a is not an irreducible element of D. Then, as a is neither O nor
a unit, it must be reducible. Hence there exist b € D and ¢ € D such that a = bc
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and neither b nor c is a unit or 0. Thus
(@) c by C D
so that (a) is not a maximal ideal. Hence we have shown that
(a) is a maximal ideal = a is irreducible,

as asserted. |
The next example shows that the converse of Theorem 1.5.1 is not true in general.

Example 1.5.3

(a) x is an irreducible element of Z[x] but (x) is not a maximal ideal of Z[x] as
(x) C (2, x) C Z[x].

(b) 1+ /=5 is an irreducible element of Z + Z~/—5 but (1 4+ /—5) is not a maximal
ideal of Z. + 7ZA/—5 as

(14++~-5)C(2,14++-5 CZ+Zv-5.
However, the converse of Theorem 1.5.1 is true in a principal ideal domain.
Theorem 1.5.2 Let D be a principal ideal domain. Let a € D be such that a # 0

and a & U(D). Then

(a) is a maximal ideal of D <= a is irreducible in D.

Proof: In view of Theorem 1.5.1 we have only to show that
a is irreducible = (a) is maximal. (1.5.1)

Suppose that a is irreducible but that {(a) is not a maximal ideal. Then there exists
an ideal / such that

(ay I CD.
As D is a principal ideal domain, / = (b) for some b € D. Hence
(a) C(b) C D
and so
a = bc,

for some ¢ € D. Since (b) C D, b is not a unit, and since {(a) C (b), ¢ is not a
unit. Thus a is reducible, which is a contradiction. This completes the proof of
(1.5.1). ]
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Theorem 1.5.3 Let D be an integral domain and let I be an ideal of D. Then

D/1 is a field <= I is maximal.

Proof: Suppose that D/I is a field and that J is an ideal of D with
IcJCD.

Thus there exists b € J with b & I. Then b + [ is a nonzero element of D// and
therefore, as D/ is a field, there exists an element ¢ + I € D/I such that

b+ Dc+D=1+1
Thus
bc+1=1+1
and so
bc—1el CJ.
Since b € J and ¢ € D we have
bc e J.
Hence
1=bc—(bc—1)eJ,

so that J = (1) = D. This proves that / is maximal.

Now suppose that / is maximal. To show that D/I is a field we have only to
show thatb + I # 0 + I has a multiplicative inverse, as all the other field properties
follow trivially. As b + 1 # 0+ I we have b ¢ I. Consider

B={xe D|x=>by+ wforsomey e D and some w € I}.

It is easy to check that B is an ideal of D such that I C B (Exercise 12). Since [ is
maximal we must have B = D. Thus 1 € B so that | = by’ 4+ w’ for some y’ € D
and some w’ € I. Then

b+ +Dh=by+I=1—-w+I1=1+1

so that (b 4+ I)~! exists and is equal to y' + 1. [ |

Definition 1.5.2 (Prime ideal) A proper ideal P of an integral domain D is called
a prime ideal if

a,b e Dandab € P impliesa € P orb € P.
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Example 1.5.4 The principal ideal I = (x* + 1) is not a prime ideal of C[x] as
x+ieCx], x+i)x—i)=x*>4+1elburx+idl.

Example 1.5.5 The ideal 1 = (1 + i) is a prime ideal of Z + Zi. To see this,
suppose that a + bi € 7.+ Zi and ¢ + di € 7 + Zi are such that

(a +bi)c+di)e (1+i).
Then there exists x + yi € Z + Zi such that

(a + bi)c+di)=(+i)x + yi).
Equating real and imaginary parts we obtain
ac—bd =x—y, ad +bc=x+y.

Adding these two equations, we have

ac +ad + bc — bd = 2x,
so that
(a+b)c+d)=ac+ad + bc+bd =ac+ ad + bc — bd =2x = 0(mod 2).

Hence either a + b or ¢ + d is even. Without loss of generality we may suppose
that a + b is even. Hence there exist u € 7 and v € 7Z such that a + b = 2u and
a—b=2v. Then

a+bi=w+v)+wu—v)i=>0+i)(u—vi)

and thus a + bi € (1 + i), proving that (1 4 i) is a prime ideal.
We next determine which principal ideals of an integral domain are prime.

Theorem 1.5.4 Let D be an integral domain. Let a € D be such that a # 0 and
a & U(D). Then

(a) is a prime ideal of D <= a is prime in D.

Proof: Suppose that (a) is a prime ideal of D. Let b, ¢ € D be such that a | bc so
that bc € (a). As (a) is a prime ideal, we musthave b € (a) or ¢ € (a); thatis,a | b
or a | ¢, showing that a is prime.

Now suppose that a is a prime in D. Let b € D and ¢ € D be such that bc € (a).
Hence there exists d € D such that bc = ad, so that a | bc. As a is prime we
have a | b or a | c. Without loss of generality we may suppose that a | b. Hence
there exists e € D such that b = ae and so b € (a). This proves that (a) is a prime
ideal. [ |
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Theorem 1.5.5 Let D be an integral domain and let I be an ideal of D. Then

D/I is an integral domain <= I is prime.

Proof: Suppose first that D /[ is an integral domain and that a, b € D are such that
abel. Then (a+ I)b+1)=ab+ 1 =0+ I, the zero element of the integral
domain D/I. Because an integral domain has no divisors of zero, we havea + [ =
O+ 7Torb+1 =0+ I;thatis, we have eithera € I or b € I, so that I is prime.

Now suppose that / is a prime ideal of D. As [ is a proper ideal of D, D/I is a
commutative ring with identity 1 + /. Thus we have only to check that when [ is
prime, D /I has no divisors of zero. Suppose thata +1 € D/l andb+ 1 € D/I
are such that @+ I)(b+1)=0+1. Thenab+ 1 =1,sothatab e I. As I is
prime, eithera € [ orb € [;thatis,a+ 1 =0+ 1orb+1 =0+ 1,s0 D/I has
no zero divisors. [ |

Theorem 1.5.6 Let D be an integral domain. Let I be a maximal ideal of D. Then
I is a prime ideal of D.

Proof: Let I be a maximal ideal of D. Then, by Theorem 1.5.3, D/I is a field.
But a field is always an integral domain, so D/ is an integral domain. Then, by
Theorem 1.5.5, [ is a prime ideal of D. [ ]

The next example shows that the converse of Theorem 1.5.6 is not true in general.
Example 1.5.6 (x) is a prime ideal of Z|x), but it is not a maximal ideal of Z|x].

The converse of Theorem 1.5.6 is true in a principal ideal domain.
Theorem 1.5.7 Let D be a principal ideal domain. Let I be a proper ideal of D.
Then

1 is maximal <= I is prime.

Proof: In view of Theorem 1.5.6 we have only to show that if / is a prime ideal of
D then [ is a maximal ideal.

Suppose that [ is a prime ideal of D that is not maximal. Then there exists an
ideal J of D such that

IcJcCD.

As D is a principal ideal domain, we have I = (a) and J = (b) forsome a, b € D.
As {(a) C (b) we have a = bc for some ¢ € D. Now bc =a € {(a) =1, and [ is
prime, so that either be Il orce l.If be [ then J = (b) C I C J, whichis a
contradiction. Hence ¢ € I. Thus ¢ = ad for some d € D, and so a = bda. But
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a#0sobd =1.Thusbisaunitand J = (b) = D D J, acontradiction. Hence [
is maximal. u

1.6 Sums and Products of Ideals

In this section we show how to add and multiply ideals to obtain further ideals.
First we define the sum of two ideals.

Definition 1.6.1 (Sum of ideals) Ler I and J be ideals in an integral domain D.
The sum of I and J, written I + J, is defined by

I+J={i+jliel, jelJ}

It is readily checked that I + J is also an ideal and that it is the minimal ideal
containing both / and J. The following properties are also easily checked: For
ideals /, J, K of the integral domain D

I1+J=J+1,
I+H+K=1++K),
I+(0)=1,
I+ (1) = (1).
Further, if I = (i) and J = (j) are principal ideals, then I + J = (i, j). It is easy

to extend Definition 1.6.1 to the sum of a finite number of ideals.
Next we define the product of two ideals.

Definition 1.6.2 (Product of ideals) Let I and J be ideals in an integral domain
D. The product of I and J, written 1J, is defined by

1J={xeD|x=i1j1+- - +ij forsomer € N,

someii,...,i, €I, and some ji, ..., j € J}.

Clearly 1 J is the set of all finite sums of products of elements of / and J, and it is
easily checked that 7 J is an ideal. The following properties are also easily verified:
For ideals /, J, K of the integral domain D

1J=1Jl,
(INK =I1(JK),
1{0) = (0),

1) =1.

Further, if / = (i) and J = (j) are principal ideals, then I J = (ij). We leave it to
the reader to extend Definition 1.6.2 to a product of a finite number of ideals.
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Addition and multiplication of ideals are related by the distributive law

(I+ K =IK + JK.

Example 1.6.1 Let m and n be integers that are not both zero. Set d = (m, n), the
greatest common divisor of m and n. We show that

(m) + (n) = (d).

Let a € (m) + (n). Then there exist integers r and s such that a = rm + sn. As
d = (m, n) there exist coprime integers m; and n| such that m = dmy, n = dn.
Thus a = rdm + sdny = (rmy + sny)d € (d). This shows that (m) + (n) C (d).
Now let a € (d), so that there exists an integer e such thata = de. Asd = (m, n)
there exist integers x and y such that d = xm + yn. Hence a = (xm + yn)e =
(xe)ym + (ye)n € (m) + (n). This proves that (d) C (m) + (n).
The two inclusions show that (m) + (n) = (d).

Next we give another necessary and sufficient condition for a proper ideal to be
a prime ideal.

Theorem 1.6.1 Let P be a proper ideal of an integral domain D. Then P is a
prime ideal if and only if for any two ideals A and B of D satisfying AB C P
either A C P or B C P.

Proof: Suppose that P is a proper ideal of D with the property

ABC P— AC Por B C P (A, Bideals of D). (1.6.1)

Leta,b € D be such that ab € P. Set A = (a), B = (b) so that AB = {a){(b) =
(aby € P.Hence {(a) € Por(b) C P.Thusa € P or b € P, showing that P is a
prime ideal.

Now suppose that P does not satisfy (1.6.1). Then there exist ideals A and B of
D with

AZ P, BZ P, ABC P.

Letae A,agd Pandb € B,b ¢ P.Thenabe ABC Pbutag P,b¢& P,so P
is not a prime ideal. [ |

Our final theorem of this chapter shows that a prime ideal P of an integral domain
D, remains prime when restricted to a subdomain D of D;.

Theorem 1.6.2 Let D and D, be integral domains satisfying D C Dy. Let P be a
prime ideal of Dy such that P N D # {0}, D. Then P N D is a prime ideal of D.
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Proof: We show firstthat P N D isanidealof D.Leta,b € PN D.Thena,b € P
and a, b € D. From the first of these, as P is an ideal, we see that a + b € P.
From the second, as D is an integral domain, it is closed under addition so that
a+be D.Hencea+be PN D. Now suppose thata € PN D andd € D. As
d € D,a € P and P is an ideal of D, we deduce that da € P. Asd € D, a € D
and D being an integral domain is closed under multiplication, we see thatda € D.
Thusda € P N D. This proves that P N D is anideal of D. Since P N D # {0}, D,
by assumption, P N D is a proper ideal of D.

Finally, we show that P N D is a prime ideal. Let a, b € D be such that ab €
PND.Thena,b e Dy and ab € P. As P is a prime ideal of D;, we deduce that
a € P or b € P. This completes the proof that P N D is a prime ideal of D. W

Exercises

1. Prove that U(Z + Zi) = {%1, %i}.
2. Prove that U(Z + Zw) = {£1, +o, +w?}.
3. Let m be an integer with m < —1. Prove that

U(Z + Z/m) = {£1}.

4. Let m be an integer with m = 1 (mod 4) and m < —3. Prove that

U (Z+Z (1 +2ﬂ>) = {%1}.

5. Let

D ={f(x) € Qlx]| f(0) € Z}.

Prove that D is a subdomain of Q[x].

6. Determine U(D) for D as given in Exercise 5.

7. Let D be an integral domain. Let u € U(D). Let I be an ideal of D that contains u.
Prove that I = D.

8. In Example 1.3.4 prove that J is not a principal ideal.

9. Let

S={a+bi €Z+7Zi|b=0 (mod 2)).

Is S an ideal of Z + Zi?

10. If A and B are ideals of an integral domain D, prove that A N B is also an ideal of D.

11. Give an example to show that if A and B are ideals of an integral domain D then AU B
may not be an ideal of D.

12. Prove that the set B defined in the proof of Theorem 1.5.3 is an ideal.

13. Let A and B be ideals of an integral domain D. Prove that AB C AN B.

14. Let A and B be ideals of an integral domain D. Show that (A N B)(A + B) C AB.
Give an example to show that equality does not always hold.

15. Give an example to show that an integral domain may not contain any irreducible
elements.
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16.
17.

18.

19.

20.

21.

22.

23.
24.
25.

26.
27.
28.
29.
30.
31.
32.
33.
34.

35.

36.

Integral Domains

Prove that (x) is a prime ideal of Z[x].
Let m be a positive integer that is not a perfect square. Leta = a + b/m € Z + Z./m.
Prove that if

a®> —mb® = +1

then a € U(Z + Z./m).
Let m be a positive integer with m = 1 (mod 4) that is not a perfect square. Let ¢ =
a+b (IJ’T‘/E) €EZ+Z (%) Prove that if

1 —
a’+ab+ (_m) b =+1

2
Prove that (1 — 3i, 3 — i) is a principal ideal in Z + Zi by finding a generator for this
ideal.

Prove that (2,14 /=5)=(2,1—/=5), 3, 14+/=5)# 3,1 —-/=5),2,1+
V=5)# 3,1+ /=5),and (2,1 +/=5) # (3, 1 —/=5) in Z + Z/-5.

Prove that (2, 1 + +/=5), (3, 1+ +/=5), and (3, 1 — </=5) are prime ideals of Z +
Z+/—5. Determine (2,1 ++/=5)N Z, 3,14+ +/=5)N Z,and 3,1 — /=5) N Z.
Let D be an integral domain. Let a, b, c € D be such that (a, c) = D. Prove that
(a, bc) = {a,b).

Prove that 17 — 3+/3 ~ 83 + 473 in Z + Z+/3.

Give an example of an integral domain satisfying (1.2.3).

Express 2 + 8+4/—5 as a product of irreducibles in Z + Z+/—5. In how many ways can
this be done?

Prove that «/—6 is not a prime in Z + Z+/—6.

Prove that «/—6 is an irreducible in Z + Z+/—6.

Prove that Z + Z+/—6 is not a principal ideal domain.

Give an example of an ideal in Z + Z+/—6 that is not principal.

Prove that +/10 is not a prime in Z + Z~/10.

Prove that 4/10 is an irreducible in Z + Z+/10.

Prove that Z + Z+/10 is not a principal ideal domain.

Give an example of an ideal in Z + Z+/10 that is not principal.

Let P be a prime ideal of an integral domain D. Let Ay, ..., Ay be ideals of D such
that P D Ay --- Ag. Prove that P D A; forsomei € {1,2,...,k}.

Letr € Z \ {—2, 0}. Prove that

thena € U (Z+Z (”ﬁ)

D={a+b0+cb*|a,b,cecl),
where
0} +ro64+1=0

is an integral domain. Prove that 6 € U(D).
Let p be a prime. Let m be an integer with m < —(p + 1). Prove that p is irreducible
inZ+ Zy/m.
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37. Let p be a prime. Let m be an integer with m = 1 (mod 4) and m < —(4p + 1). Prove
that p is irreducible in Z + Z (%)
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Euclidean Domains

In the proof of Theorem 1.4.1 we made use of the following property of Z: Given
a, b € Z with b > 0 then there exist g, r € Z such that

a=gb+r, 0<r <b. (2.0.1)
In fact the integers ¢ and r are uniquely determined by @ and b. We have
q =la/bl, r =a —bla/b], (2.0.2)

where [x] denotes the greatest integer less than or equal to the real number x.
The integer ¢ is called the quotient and the integer » the remainder. An important
class of integral domains are those possessing a property analogous to (2.0.1). Such
domains are called Euclidean domains. In Theorem 2.1.2 we show that Euclidean
domains are principal ideal domains.

2.1 Euclidean Domains

To define a Euclidean domain we must first define a Euclidean function.

Definition 2.1.1 (Euclidean function) Let D be an integral domain. A mapping
¢ : D — ZiscalledaEuclidean function on D ifit has the following two properties:

¢(ab) > ¢(a), foralla,b € D withb #£ 0, (2.1.1)
ifa,b € D with b # O then there exist q,r € D (2.1.2)
such that a = gb +r and ¢(r) < ¢(b).

Example 2.1.1 ¢(a) = |a| (a € Z) is a Euclidean function on Z.

Example 2.1.2 Let D = F[x], where F is a field. D is the domain of polynomials
in x with coefficients in F. Let p(x) € D. Then

deg (p(x)), if p(x) # 0,

P(p() = { e o

is a Euclidean function on D.

27
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In general the elements ¢ and r in (2.1.2) are not uniquely determined. If D is
an integral domain that is not a field and that possesses a Euclidean function ¢ for
which the quotient and remainder r in (2.1.2) are always uniquely determined by
a and b then D = F[x] for some field F. This result is due to Rhai [14]; see also
Jodeit [12].

Theorem 2.1.1 (Properties of a Euclidean function) Let D be an integral
domain that possesses a Euclidean function ¢. Let a, b € D. Then

(@) a~b= ¢(a) = ¢(),

(b) a | band ¢p(a) = p(b) — a ~ b,
(©) a e UD) = ¢la) = ¢(1),

(@) ¢(a) > ¢(0), ifa # 0.

Proof: (a) As a ~ b there exists u € U(D) such that a = ub. Then by (2.1.1) we
have ¢(a) = ¢p(ub) > ¢(b). Asu € U(D), wehaveu™" e U(D)and b = u~'a, so
again by (2.1.1) we have ¢(h) = ¢p(u~'a) > ¢(a). From these two inequalities, we
deduce that ¢(a) = ¢(b).

(b) By (2.1.2) there exist g,r € D such that a = gb +r and ¢(r) < ¢p(b) =
¢(a). Now a | b so that we have a | r. Suppose r # 0. Then by (2.1.1) we have
¢(r) > ¢(a), which is a contradiction. Hence » = 0. Thus @ = gb. But a | b so
q € U(D) and thus a ~ b.

(c¢) First we have

aclUD)=—a~1= ¢a) = ¢(1)
by part (a). Second, we have
lla, ¢(1)=¢(a@)=1~a=acU(D)

by part (b).
(d) By (2.1.2) there exist ¢, r € D such that

0=gqga+r, ¢@) < ¢(a).
Suppose r # 0. Then ¢ # 0 and by (2.1.1) we have
¢(r) = p((—=q)a) = ¢(a),

which is a contradiction. Hence r = 0 and ¢(0) < ¢(a). [ |

Definition 2.1.2 (Euclidean domain) Ler D be an integral domain. If D possesses
a Euclidean function ¢ then D is called a Euclidean domain with respect to ¢.

If D is a Euclidean domain with respect to some Euclidean function ¢ and it is not
important to specify ¢, we just call D a Euclidean domain. Before giving examples
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of Euclidean domains in the next section, we prove the fundamental theorem that
every Euclidean domain is a principal ideal domain.

Theorem 2.1.2 A Euclidean domain is a principal ideal domain.

Proof: Let D be a Euclidean domain. Hence D possesses a Euclidean function, say
¢. Let [ be an ideal in D. If I = {0} then I = (0) is a principal ideal. If I # {0}
we consider the set S of integers defined by

S={px)|xel, x#0}.

As I # {0}, S is a nonempty set. By Theorem 2.1.1(d), S is bounded below. Hence
S has a least element, say ¢(a), a € I, a # 0. If b € [ then, as ¢ is a Euclidean
function, there exist ¢, ¥ € D such that

b=gqga+r, ¢@) < pla).

Now, as I isanideal,r = b — ga € I, and so, as ¢(a) is the least element of S, we
have r = 0. Hence b = ga and so I = (a). Thus every ideal in D is principal and
so D is a principal ideal domain. [ |

The integral domain Z + Z (@) is a principal ideal domain. This will be
proved in Chapter 12 (see Example 12.6.1). However, it is not a Euclidean domain
(Theorem 2.3.8), so the converse of Theorem 2.1.2 is not true.

In a Euclidean domain D a greatest common divisor of two elements ¢ and b
of D (see Definition 1.4.2) can be obtained by means of the Euclidean algorithm.
Since (¢, 0) = (0, ¢) = ¢ for all ¢ (£ 0) € D, it suffices to consider only elements
a and b that are not zero.

Theorem 2.1.3 (Euclidean algorithm) Let a and b be nonzero elements of a

Euclidean domain D with Euclidean function ¢. Define elements q,, q2, ... and
r_1,r0, 71,72, ... of D recursively by
r.i=a, ro=>a, (2.1.3)

and

rj =qj+alj+1 +1jt2, ¢j2) < drjt1), (2.1.4)
for j =—1,0,1,2,...,k, where k is the least integer > —1 such that

rr+2 = 0.

Then

(a,b) =riq1.
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Proof: By property (2.1.2) of the Euclidean function ¢, the relations (2.1.3) and
(2.1.4) define g1, 42, ..., G2 and r_y, 79,71, ..., I'r42, and since the sequence
¢(r1), ¢(r2), ... is a decreasing sequence of integers bounded below by ¢(0) (The-
orem 2.1.1(d)) it must terminate after a finite number of steps (say k£ + 2 steps) so
that 7,4, = 0. From (2.1.4) we deduce that

(risrjv1) =A{qjwarjr1 trj42,rj41) = Fjg2s rjp1) = (Fjv1, rj2)
for j =—1,0,1,2,..., k. Hence
(a,b) = (r—1,ro) = (ro,r1) = -+ = (rs 1)
= (Fit1s Trt2) = (Fet1, 0) = (rier)
so that

(d,b):rk+]. u

2.2 Examples of Euclidean Domains

In view of Examples 2.1.1 and 2.1.2 we have

Theorem 2.2.1

(a) Zis a Euclidean domain.
(b) Let F be a field. Then F[x] is a Euclidean domain.

From Theorems 2.1.2 and 2.2.1 we see that Z and F[x] are principal ideal
domains. In the remainder of this section we investigate when the integral domains

7+ Zm(m =2,3(mod 4))and Z + 7 (%) (m = 1 (mod 4)) are Euclidean

with respect to the function that maps r + s./m to |r?> — ms?|. In this section we
denote this function by ¢,,. Later in Section 9.2 we recognize ¢,, as the absolute
value of the norm of the element r + s./m. Integral domains that are Euclidean
with respect to the absolute value of the norm are called norm-Euclidean.

Definition 2.2.1 (Function ¢,,) Let m be a squarefree integer. The function ¢, :

Q(/m) — Q is defined by
G + s3/m) = |r* — ms?|
forallr,s € Q.

The basic properties of ¢, are given in the next lemma.

Lemma 2.2.1 Let m be a squarefree integer.

(@) ¢m:Z+ Zym — NU{0}.

() Ifm = 1 (mod 4)rhen¢m;z+z(‘+2ﬁ) — NU{0).
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(©) Leta € Q(/m). Then ¢p(a) =0 < a = 0.

(d) pm(aB) = PP (B) for all o, B € Q(/m).

©) ¢m(aB) > ¢pla) forall a, B € Z + Z/m with B # 0.

6 Ifm =1 (mod 4), then ¢n(@B) > dm(c) forall a, f € 7+ 7. (‘*ﬁ) with B 0.

Proof: (a) Let « € Z + Z+/m so that « = x + y/m for some x, y € Z. Then

x2 —my? € Z and |x> — my?| > 0 so that

Gn(@) = Pu(x + y/m) = |x* — my*| € NU {0},
(b)Ifm = 1 (mod 4)thenZ + Z (HT‘/%) is an integral domain (Example 1.1.5).
Leta € Z—i—Z(HTﬁ) sothata =x +y <1+ﬁ> = (x +3) + 3/m for some

2
x,y € Z. Then

_ DANIR
bule@) = ¢ ((x+3) +3vm)
_ Yo Yo
—I(x+2) m(z) |
:|x2+xy+%(1—m)y2|eNU{0}, as %(l—m)eZ.

(¢) Let o € Q(4/m) so that « = r + si/m for some r,s € Q. Then, as m is
squarefree, we have

dm(@) =0 <> ¢(r + s4/m) =0
& |r?—ms?* =0
> r?=ms’
= r=s5s=0
= r+sym=0
— a=0.

(d) Let o, B € Q(x/m). Then o = x + y/m and B =u + vy/m for some
X,y,u,v € Z. Thus

dm(@P) = u((x + y/m)(u + v/m))
= ¢ ((xu + myv) + (xv + yu)/m)
= |(xu + myv)*> — m(xv + yu)?|
= |x%u? + m?y*v? — mx*v? — my*u?|
= |(x* — my») (W — mv?)|
= x? —my?| |u? — mv?|

= On (a)¢n1 (,8)

(e) Leta, B € Z + Z/m with B # 0. By part (c), we have ¢,,(8) # 0. Then, by
part (a), we deduce that ¢,,(«) > 0 and ¢,,(8) > 1. Thus, by part (d), we have

(@) = pn(c)pn(B) = Pm(a).
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(f) This follows in exactly the same way as part (¢) except that we use part (b) in
place of part (a). |

Our next theorem uses the properties of ¢,, given in Lemma 2.2.1 to give a
convenient necessary and sufficient condition for Z + Z./m to be Euclidean with
respect to ¢,,, that is, norm-Euclidean.

Theorem 2.2.2 Let m be a squarefree integer. Then the integral domain 7 + Z.n/m
is Euclidean with respect to ¢, if and only if for all x,y € Q there exist a,b € 7
such that

G ((x + y/m) — (a + by/m)) < 1. (2.2.1)

Proof: Suppose first that Z + Z./m is Euclidean with respect to ¢,,. Let x, y € Q.
Then x + y/m = (r + si/m)/t forintegersr, s, t with ¢ # 0. As ¢,, is a Euclidean
function on Z + Z./m there exist a + by/m, ¢ + d/m € Z + Z/m such that

r+sy/m =t(a+ bym) + (c +d/m), $u(c +d/m) < ¢u(t).

Hence

D3 + 3D) — (@ + b)) = <%ﬁ Ca+ bm>
p <r + s/m —t(a +bﬁ)>

t

o (0T

t
_ $ulc+dym)
(D)

<1,

by Lemma 2.2.1(d).

Now suppose that (2.2.1) holds. To show that Z + Z./m is Euclidean with respect
to ¢,,, we must show that (2.1.1) and (2.1.2) hold. The inequality (2.1.1) holds in
view of Lemma 2.2.1(¢). We now show that (2.1.2) holds. Let r + s/m, t +
uy/m € 7+ Z/m with t + u/m # 0. Then

r+sym
raym L

where

rt —msu St —ru

p= LT gy =
t2 — mu? Y 12

€ Q.

— mu?
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Note that ¢ + u/m # 0 ensures that t> — mu® # 0. By (2.2.1) there exists a +
b/m € Z + Z./m such that

Gn((x + yy/m) — (a+bym)) < 1.
Setc=r —at —bum € Z, d = s — au — bt € 7Z, so that
c+dym =@ +sym) — (a+b/m)t + uvm) € Z+ Z/m.
Hence
r 4 sy/m = (a +by/m)t + uy/m) + (c + d/m)

and

Pn(c + d/m) = Gu((r + 53/m) — (@ + by/m)(t + uy/m))
= Gn((x + y/m)(t + uy/m) — (a + b/m)(t + uy/m))
= P ((t + u/m)((x 4 y/m) — (a + by/m)))
= Gt + u/m)pu((x + y/m) — (a + by/m))
< Gt + u/m),

by Lemma 2.2.1(d), which completes the proof of (2.1.2). [ ]

Theorem 2.2.2 enables us to determine those negative squarefree integers m for
which Z + Z./m is Euclidean with respect to ¢,,.

Theorem 2.2.3 Let m be a negative squarefree integer. Then the integral domain
7.+ 7./m is Euclidean with respect to ¢, if and only if m = —1, —2.

Proof: First we show that Z + Z./m is Euclidean with respect to ¢,, form = —1
and m = —2. Let x, y € Q. We can choose a, b € Z such that

1
v —al =, ly—bl =

N —

Then

Pn((x + y/m) = (a + by/m)) = ¢ ((x — a) + (y — b)y/m))
= |(x —a)> —m(y — b)’|
< |x —al’ +m|ly - b?
1

1
< — 2. —
=5t

3
=-<1
4

and, appealing to Theorem 2.2.2, we deduce that Z + Z./m is Euclidean with
respect to ¢, form = —1 and m = —2.



34 Euclidean Domains

Now suppose that Z + Z./m is Euclidean with respect to ¢,,. Then, by Theorem
2.2.2, there exist a, b € Z such that

Om ((% + %M) —(a+ bﬂ)) <1

1 1

But for any integer x, we have

SO
Lol
4 4 ’

that is, |m| < 3. Hence m = —1 and m = —2 are the only possibilities. |

In an exactly similar way to the proof of Theorem 2.2.2, we can prove the
following result.

Theorem 2.2.4 Letm be a squarefree integer withm = 1 (mod 4). Then the integral
domainZ + 7 (%) is Euclidean with respect to ¢, ifand only if forall x, y € Q
there exist a, b € 7 such that

b <(x+yﬂ)— (a+b<l+ﬁ)>) < 1.

2

From Theorem 2.2.4, exactly as we proved Theorem 2.2.3, we can determine
those negative squarefree integers m = 1 (mod 4) for which Z + Z (%) is
Euclidean with respect to ¢,.

Theorem 2.2.5 Let m be a negative squarefree integer with m = 1 (mod 4). Then
the integral domain 7. + 7. (Hﬁ ) is Euclidean with respect to ¢y, if and only if
m=-3,-7,—11.

The determination of the positive squarefree integers m for which Z +

Z/m(m = 2,3 (mod 4))and Z + 7Z (1+5/m ) (m = 1 (mod 4)) are Euclidean with
respect to ¢, is much more difficult and was the culmination of the efforts of numer-
ous mathematicians including E. S. Barnes (1874-1953), H. Behrbohm, E. Berg,
A. T. Brauer (1894-1985), H. Chatland, H. Davenport (1907-1969), L. E. Dickson

(1874-1954), P. Erdos (1913-1996), H. A. Heilbronn (1908-1975), N. Hofreiter,
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L. K. Hua, K. Inkeri, J. F. Keston, C. Ko, S. H. Min, A. Oppenheim, O. Perron
(1880—1975),L.Rédei, R. Remak (1888—-1942), L. Schuster, W. T. Sheh, and H. P. F.
Swinnerton-Dyer.

The final step was taken in 1950 by Chatland and Davenport [4], who established
the following two theorems.

Theorem 2.2.6 Let m be a positive squarefree integer withm = 2, 3 (mod 4). Then
the integral domain 7, + Z../m is Euclidean with respect to ¢,, if and only if m =
2,3,6,7,11,19, 57.

Theorem 2.2.7 Let m be a positive squarefree integer with m = 1 (mod 4). Then
the integral domain 7, + 7. (HT*/E) is Euclidean with respect to ¢, if and only if

m =15,13,17,21,29, 33,37,41, 73.

We will not prove these two theorems here. We will just prove the following
result.

Theorem 2.2.8 The integral domain Z + Z./m is Euclidean with respect to ¢, for
m=2,3,6.

Proof: m =2,3. Letx,y € Q. We choose a, b € Z such that

N =

ly = bl =<

1
|x_a| S_a
2

As (x —a)* > 0 and m(y — b)?> > 0, we have

LR

|(x —a)* — m(y — b)?| < max(|x —a|*, m|y —b[*) <
Thus
Gn((x 4+ y/m) — (a + bym)) = |(x —a)* —m(y — b)*| < 1,

and the result follows by Theorem 2.2.2.

m = 6. Suppose that Z + Z+/6 is not Euclidean with respect to ¢g. Then, by
Theorem 2.2.2, there exist r, s € Q such that

P6((r + s3/6) — (x + yv/6)) > 1 forall x, y € Z;
that is,

|(r — x)* —6(s — y)*| > 1 forall x, y € Z.
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We can choose €; = £1 and u; € Z such that

1
O0<err+u < 3
and ¢; = %1 and u, € Z such that
1
0<es+u <-—.
2
Set
rm=e¢r+u €Q, x;=€x+u; €7,
si=ées+u€Q, yi=6y+u €7,
so that
0< <1 0< <1 (2.2.2)
r —~ =51 ==, e
=n=g 1=5
and
|(r1 — x1)* — 6(s1 — y1)?| > 1 forall x;, y, € Z. (2.2.3)

Taking (x1, y1) = (0, 0), (1,0), and (—1, 0) in (2.2.3), we obtain the inequalities

Iri —6s7] > 1,
(1 —rp)? — 653 > 1, (2.2.4)
|(1+7r1)? — 657 > 1.

From (2.2.2) we deduce that

3 1
—<rl—6st<-,
% 4
- <(1—r)*—6si <1, (2.2.5)
1 9
—E < (l +"])2 — 6S12 < Z
From (2.2.4) and (2.2.5), we deduce that
3
—5Sr-6si =L, (2.2.6)

5
@) (1 —r)* — 657 =1 or (i) — 1= (1—r)*—6st <—1, (22.7)

9
1<1+r)—6s7 <. (2.2.8)

N

From (2.2.6) and (2.2.8), we obtain

1< 1+2r1+(r12—6slz)§21’1,
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so that r; > % But r; < % so we must have r; = % Then (2.2.7)(i) gives % —

6s7 = 1, which is impossible, and (2.2.7)(ii) gives ; — 657 < —1, so that s7 > 2.

But from (2.2.8) we have 6512 <(1+r)P-1= %;that is,s12 < 2 sothat sl2 = 25—4,

= 24
which is impossible. This completes the proof that Z + Z+/6 is Euclidean with
respect to ¢e. |

2.3 Examples of Domains That are Not Euclidean

We begin by giving a class of values of m for which Z + Z./m is not Euclidean
with respect to ¢,,.

Theorem 2.3.1 Let m be a positive squarefree integer. If there exist distinct odd

primes p and q such that
m m
5)-(3)--
p q

and positive integers t and u such that
pt+qu=m, ptt, q1tu,
and an integer r such that
r? = pt (mod m),

then 7. + Z./m is not Euclidean with respect to ¢,,,.

Proof: Suppose that Z + Z./m is Euclidean with respect to ¢,,. Then there exist
v, 8 € Z + Z+/m such that

rvm=my +8, ¢u(8) < Gu(m).
Setting y = x + y /m (x, y € Z) we obtain

¢m(rﬂ - m(x + YM)) < ¢m(m);

that is
m?x? — m(r — my)2| < m?,
so that
mx* — (my — r)2| < m.
Since

mx? — (my — r)2 =—rl= —pt (mod m)
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and
0 < pt < pt+qu=nm,
we must have
mx? — (my —r)? = —pt orm — pt;
that is
mX? —Y*= —ptorqu

forintegers X (= x)and Y (= my — r). Suppose that mX? — Y2 = —pt. As <%> =
—1 we have p t m. Also, as p 1 t we have p || —pt. Hence p 1 X and p 1 Y. Thus

(5)=()=(5)-

p p p ’

contradicting (%) = —1. Now suppose that mX? — Y2 = qu. As ) =—1we
have g { m. Also, as ¢ 1 u we have ¢ || qu. Hence ¢ 1 X and ¢ 1 Y. Thus

(7)-()- (%)
q q q ’
contradicting (%) = —1. This proves that Z + Z./m is not Euclidean with respect
to ¢,. [ |

We next use Theorem 2.3.1 to give some explicit, small, positive, squarefree
values of m for which Z + Z./m is not Euclidean with respect to ¢,,.

Theorem 2.3.2 Z + Z./m is not Euclidean with respect to ¢,, for m = 23,47,
59, 83.

Proof: This follows immediately from Theorem 2.3.1 and the following table.

m p q t u r
23 3 5 1 4 7
47 3 5 4 7 23
59 3 7 15 2 24
83 3 5 1 16 13

The corresponding result to Theorem 2.3.1 for Z + Z (1+£/E ) (m =1 (mod 4))

is not quite so elegant.
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Theorem 2.3.3 Let m be a positive squarefree integer withm = 1 (mod 4). If there
exist distinct odd primes p and q such that

(5)-(2)--

and an odd integer r such that

1,2
p 1l Gn — 1)r —dm {u}
dm
1,2
q |l (m— 1)r2—4m [%] —4m,

thenZ + 7. (HQM ) is not Euclidean with respect to ¢p,.

m-—r

2

— 1 1
m+2rﬂ:m2r+r< +2M)EZ+Z( +2\/n_1>.

€ 7Z. Hence

Proof: As m and r are both odd, we have

2
v, 8€Z+Z (HZ—*/'W) such that

m+rm
2

Suppose that Z + Z (H‘/'T’) is EBuclidean with respect to ¢,,. Then there exist

=my + 38, ¢u(8) < pn(m).

ﬂ

As y €Z+Z<l+2‘/'%) there exist x, y € Z such that y =x +y <l+2m>, and
thus

(T o (155) o

Hence

< mz.

<m my>2 (r my)2
——mx—-——) —m|=-—-—=
2 2 2 2

Multiplying both sides of this inequality by 4/m, we obtain

Im(l —2x — y)> — (r —my)?| < 4m.
Set X =1—2x—yeZandY =r —my € Z so that
|mX2 — Y2| < 4m.
Asm = 1(mod 4) and (u + 2v)?> = u? (mod 4)) for any u, v € Z, we deduce that

mX?—¥?=(1-y)>— (1 —y)* =0(mod 4).
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Also
mX?—Y?=—-Y?= —r? (mod m).
Hence
mX? —Y? = (m — 1)r? (mod 4m).
Thus
—1)y2
mX? —Y*=(m— 1)r’* —4m [u]
dm
or

.2
mX*—Y? = (m — l)r2 —4m [u] —4m

4m

In the first case we have p || mX? — Y?. As (%) = —1wehave p f m.Thus p t X

and p 1 Y. Then
(5)-()- ()

contradicting (%) =—1.
The second case can be treated similarly. |

We now use Theorem 2.3.3 to show that Z + Z (HF) is not Euclidean with

respect to ¢s3.

Theorem 2.3.4 7 + 7Z <1+§/§> is not Euclidean with respect to ¢s3.

Proof: We choose
m=253, p=5,¢g=19, r =29.

(5)-(3)-()
(3)-63)-()-3)--

— 2 52292
U]:52.292_4.53.[ ]

Clearly

= 43732 — 212 - 206

= 43732 — 43672
=60=5-2%.3,

(m — l)r2 —4m [
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and
—1)y2
(m — 1)r? — 4m [u] —4m=60-212=—152=—19.23,
dm
so the result follows from Theorem 2.3.3 [ ]

In the next theorem we show that Z + Z./m (m = 2, 3 (mod 4)) is not Euclidean

with respect to ¢, if m is sufficiently large. The same result is also true for Z +

Z (Hﬁ ) (m = 1 (mod 4)) but the proof is more complicated and we will not

give it here.

Theorem 2.3.5 Let m be a positive squarefree integer.

(@ If m=2(mod4) and m > 42 then 7+ Z./m is not Euclidean with respect

10 .
(b) If m=3(mod4) and m > 91 then Z+ Z/m is not Euclidean with respect

to ¢p,.

Proof: (a) As m > 42 we have m > 20 + 86 = 4(v/3 4+ +/2)? so that /m >
2(+/3 4+ +/2) and thus

(55 -(5) -0

2 2 2 )M

3—42
> Lz‘f)z(ﬁ +2)=1.
Hence there exists an integer u satisfying

V2m — 1 V3m—1

<u<

2 2
Sett = 2u + 1 so that ¢ is an odd integer satisfying

2m < 12 < 3m.

Now suppose that Z + Z./m is Euclidean with respect to ¢,,. Then there exist
¥, 8 € Z + Z+/m such that

t\/’?l =my + 8, om(8) < Pn(m).
Asy € Z + Z./m there exist x, y € Z such that y = x + y./m, and
¢m(t\/% - m(x + )’\/E)) < ¢m(m)a

that is,

m2x? — m(t — my)2| <m?,
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and thus
|m)c2 —(t — my)2| < m.
Set X =my —t €ZandY = x € Z so that
X2 —mY? < m
and
X2 —mY? = X? = > (mod m).
Since 2m < t* < 3m we have
X2 —mY?=1"—2m
or
X2 —mY?=1*>—-3m.
In the first case, as > = 1 (mod 8) (since ¢ is odd) and m = 2 (mod 4), we have
X? —mY? =5 (mod 8).
Thus X is odd, so X2 = 1 (mod 8) and
mY? = 4 (mod 8).
This is clearly impossible as

2 = [0(mod 8), if ¥ =0(mod 2),
=~ 1 2@mod 4), if Y = 1 (mod 2).

In the second case, as > = 1 (mod 8), we have
X? —mY?=1-3m (mod 8).
As m is even we see that X is odd. Hence X2 = 1 (mod 8) and
m(Y? —3) =0 (mod 8).
Hence, as 2 || m, we have
Y? =3 (mod 4),

which is impossible.
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(b) Asm > 91 wehavem > 44 4 8+/30 = 4(+/6 + +/5)? sothat /m > 2(~/6 +
V/5) and thus

(@—1>_<M—1):(%—ﬁ>

2 2 2 Vm

6—+5
> Lz‘f)z(«/é +/5 =1
Hence there is an integer u satisfying

om —1 vom — 1

<u<
2 2

Set t = 2u + 1 so that ¢ is an odd integer satisfying
5m < t* < 6m.

Now suppose that Z + Z./m is Euclidean with respect to ¢,,. Then there exist
¥, 8 € Z + Z+/m such that

t\/% =my +36, ¢u(d) < Ppm(m).
As y € Z + Z./m there exist x, y € Z such that

y =x+yJm,
and
P (t/m — m(x + yv/m)) < gu(m);
that is,
m?x? — m(t — my)2| <m?,
and thus

|mx2—(t—my)2| < m.

Set X =my —t €ZandY = x € Z so that
X2 —mY? <m
and
X? —mY? = X? =+* (mod m).

Since 5m < t> < 6m we have

X2 —mY?>=1>—5m
or

X? —mY?=1¢>—6m.
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In the first case, as > = 1 (mod 8) (since 7 is odd) and m = 3 (mod 4), we have
X?—mY?’=>-5m=1-15=—14 = 2 (mod 4)
so that
X =Y =1 (mod 2).
Thus X2 = Y? = 1 (mod 8) so that
1-5m=t*~5m=X"—mY?=1-m(mod 8),

giving 4m = 0 (mod 8), which is clearly impossible. In the second case, as
t> =1 (mod 8) and m = 3 (mod 4), we have

X —mY*=t>—6m=1—-18=—17 =7 (mod 8).
If X is odd, so X% = 1 (mod 8), then
mY? =2 (mod 8),
which is impossible. If X is even, so X?> = 0 (mod 4), then —3Y? = 3 (mod 4), so
that Y2 = 3 (mod 4), which is impossible. [}

It is a consequence of Theorem 2.2.5 that the domain Z + Z (H— {19

) is not
Euclidean with respect to ¢_j9. But could it be Euclidean with respect to some
other function? In fact it is not. How do we see this? One way of showing that
an integral domain is not Euclidean with respect to any function is to show that
it does not possess certain distinguished elements called universal side divisors,
since a domain that has no universal side divisors is not Euclidean with respect to
any function. Indeed as we shall see Z + Z (Hzﬂ> has no universal divisors and
therefore is not Euclidean with respect to any function.

We now define a universal side divisor. For any integral domain D it is convenient
to set

D =U(D)U {0}
so that
D — D = ¢ if and only if D is a field.
Definition 2.3.1 (Universal side divisor) Let D be an integral domain that is not a

field so that D — D # ¢. An element u € D — D is called a universal side divisor
if for any x € D there exists some z € D such that u|x — z.

Theorem 2.3.6 Let D be an integral domain that is not a field. If D has no universal
side divisors then D is not Euclidean.
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Proof: Suppose that D is Euclidean with respect to the Euclidean function ¢ and
has no universal side divisors. Consider the set of integers defined by

S ={¢p)|veD—D}.

As D is not a field, D — D # ¢ and so S is nonempty. By Theorem 2.1.1(d),
S is bounded below. Thus S possesses a least element, say ¢(u), u € D — D. As
D is Euclidean with respect to ¢, for any x € D there exist y,z € D such that
x=uy+zand ¢(z) < ¢(u). If z=0thenx = uy and u | x. If z # 0 then by the
minimality of ¢(u), z € U(D). Thus in both cases u | x — z for some z € D, and
so u is a universal side divisor, which is a contradiction. [ |

If m is a negative squarefree integer with m = 2, 3 (mod 4) then Z + Z./m is
Euclidean with respect to ¢,, for m = —1 and m = —2 and is not Euclidean with
respect to ¢,, for m < —2 (Theorem 2.2.3). We now use Theorem 2.3.6 to show
that Z + Z+/m is not Euclidean with respect to any function for m < —2.

Theorem 2.3.7 Let m be a negative squarefree integer withm = 2,3 (mod 4) and
m < —2.Then Z + Z+/m is not Euclidean.

Proof: LetD =7 + Z/m.Asm # —1,U (D) = {1, —1} (see Exercise 3 of Chap-
ter 1) so that D = {0, 1, —1}. Suppose that u is a universal side divisor in D. Then
u must divide one of 2 —1, 240, or 2 + 1, that is, one of 1, 2, or 3. But u
being a universal side divisor is not a unit, so u { 1. Hence u | 2 or u | 3. Since
m=2,3(mod 4) and m < —2 we have m < —5 so that both 2 and 3 are irre-
ducible in D (Exercise 36 of Chapter 1). Hence the only possible universal side

divisors are 2, —2, 3, and —3. However, none of these divides any of the three
elements of Z + Z./m :

\/’%_1, \/IT/Z, \/E-i_l’

so that no such universal side divisor can exist. Hence, by Theorem 2.3.6, D is not
Euclidean. [ |

If m is a negative squarefree integer with m = 1 (mod 4) then Z + Z 1+2*/E

is Euclidean with respect to ¢,, for m = —3, —7, —11 and is not Euclidean with
respect to ¢, for m < —11 (Theorem 2.2.5). We use Theorem 2.3.6 to show that

7Z+7Z <1+Tﬁ) is not Euclidean with respect to any function for m < —11.

Theorem 2.3.8 Let m be a squarefree negative integer with m = 1 (mod 4) and
m < —11.ThenZ + 7 (%) is not Euclidean.
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Proof: Let D =7 + 7 (HQM). As m # —3 we have U(D) = {1, —1} (Exercise

4 of Chapter 1) so that D = {0, 1, —1}. Suppose that u is a universal side divisor in
D. Then u must divide one of 2 — 1, 2+ 0, or 2 + 1, that is, one of 1, 2, or 3. As
u 1s not a unit, ¥ must divide 2 or 3. Since m < —15, both 2 and 3 are irreducible

inZ+7 <l+5/'7 > (Exercise 37 of Chapter 1). Therefore the only possible side
divisors are 2, —2, 3, and —3. However, none of these divides any of the following
three elements of Z + 7 (Hﬁ ) s

1 1 1 1 1
ST V) = S (U Vi) = LS4+ Vi), 56+ v/m) = S(L+ V) + 1,

so that no such universal side divisor can exist. Hence, by Theorem 2.3.6, D is not
Euclidean. [ ]

When m is a positive squarefree integer very little is known. Clark [5] has shown
that Z + Z (H‘F) is Euclidean with respect to the function

14+769\\  [la®+ab—170%, if (a, b) # (10, 3),
¢<"+b< 2 )>_{26, if (a, b) = (10, 3).

By Theorem 2.2.7 we know that Z + Z <1+*/7> is not Euclidean with respect

to ¢eo. This is the first example of a real quadratic domain that is Euclidean but
not norm-Euclidean. Since the 26 in the definition of ¢ can be replaced by any

integer greater than 25,7 + Z ( ““ﬁ) is Euclidean with respect to infinitely many

different functions. Samuel [16] suggests that Z + Z+/14 may be Euclidean with
respect to some function different from ¢4, and this has recently been proved by
Harper [9].

2.4 Almost Euclidean Domains

In this section we introduce the concept of an “almost Euclidean domain” and show
that such a domain must be a principal ideal domain. In Chapter 3 we show that a
principal ideal domain is an almost Euclidean domain (see Theorem 3.3.3). Thus
principal ideal domains are domains that are almost Euclidean in a certain sense.
We first define an “almost Euclidean function” analogously to that of a Euclidean
function (Definition 2.1.1).

Definition 2.4.1 (Almost Euclidean function) Let D be an integral domain. A
mapping ¢ : D — N U {0} is called an almost Euclidean function on D if it has
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the following properties:

¢(0) =0, (2.4.1)
¢(a) > 0, foralla € D witha # 0, 2.4.2)
¢(ab) > ¢(a), foralla,b € D withb # 0, 24.3)
ifa,b € D with b # 0 then either 4.4

(i) a = bq for some g € D or
(i) 0 < ¢(ax + by) < ¢(b) for some x, y € D.

It is clear from Definition 2.1.1 and Theorem 2.1.1(d) that if ¢ is a Euclidean
function satisfying ¢(0) = 0 then ¢ is an almost Euclidean function.

The concept of an almost Euclidean domain occurs in the work of Campoli [2]
and Greene [8].

Definition 2.4.2 (Almost Euclidean domain) Let D be an integral domain. If D
possesses an almost Euclidean function ¢ then D is called an almost Euclidean
domain with respect to ¢.

As for Euclidean domains, if it is not important to specify the almost Euclidean
function ¢, we just call D an almost Euclidean domain.

Theorem 2.4.1 An almost Euclidean domain is a principal ideal domain.

Proof: Let D be an almost Euclidean domain. Let ¢ be an almost Euclidean function
defined on D. Let I be a nonzero ideal of D. Among the elements x of /, let b be an
element with a minimal positive value of ¢(x). Givena € I, for any x, y € D, the
element ax + by is in /. By the definition of b, we cannot have 0 < ¢(ax + by) <
¢(b) so that as D is almost Euclidean with respect to ¢», we must have a = bq for
some g € D. Thus I = (b) and D is a principal ideal domain. [ |

For the converse of this theorem, see Theorem 3.3.3.

2.5 Representing Primes by Binary Quadratic Forms

Expressions of the type ax? + bxy + cy? (a, b, ¢ € Z) are called binary quadratic
forms. The integer 7 is said to be represented by the binary quadratic form ax? +
bxy + cy? if there are integers x and y such that n = ax? + bxy + cy?. Thus for
example 31 is represented by the form x? + xy +3y? as 31 = 12 +1-3 +3 .32,
but 2 is not represented by the form x? 4 5y2.

AsZ+ /i (m = —1, -2 and Z+Z (45 (m = =3, -7, ~11) are Eu-
clidean domains (Theorems 2.2.3 and 2.2.5), we can apply Theorems 1.4.4 and 1.4.5
to determine when an odd prime p is represented by each of the forms x? + y?,
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x2 42y, x2 4+ xy + 2, x2 + xy + 2y, and x> 4+ xy + 3y2. To do this we begin
by recalling the following Legendre symbol evaluations from elementary number
theory. For an odd prime p

(%) =1<= p=1(mod 4), (2.5.1)
(_72> =1<= p=1,3(mod 8), (2.5.2)
(_73) =1+ p=1(mod 3), (2.5.3)
(;) =1 p=1,24(mod7), (2.5.4)
<_7”> — 1< p=1,34509mod 11). (2.5.5)

Theorem 2.5.1 Let p be a prime suchthat p = 1 (mod 4). Then there exist integers
x and y such that p = x* + y?.

Proof: As p = 1 (mod 4), by (2.5.1) we have (*71) — 1. Since Z + ZJ/—1 is a
Euclidean domain, by Theorem 2.1.2 itis a principal ideal domain. Thus by Theorem
1.4.4, there are integers x and y such that p = x> + y?. [

Theorem 2.5.1 is called the Girard—Fermat theorem. Heath-Brown [10] gave
an interesting new proof of this theorem in 1984. Varouchas [18] and Williams
[20] have given presentations of Heath-Brown’s proof. Zagier [22] has given a
one-sentence proof.

Theorem 2.5.2 Let p be a prime such that p = 1,3 (mod 8). Then there exist
integers x and y such that p = x* 4+ 2y>.

Proof: The proof is the same as that of Theorem 2.5.1 except that (2.5.2) is used
in place of (2.5.1) and Z + Z+/—2 in place of Z + Z~/—1. [ |

Jackson [11] has given a short proof of Theorem 2.5.2 when p = 3 (mod 8).
Similarly using (2.5.3)—(2.5.5) and Theorem 1.4.5, we obtain the following three
theorems.

Theorem 2.5.3 Let p be a prime such that p = 1 (mod 3). Then there exist integers
x and y such that p = x* + xy + y.

Theorem 2.5.4 Let p be a prime such that p = 1,2,4 (mod 7). Then there exist
integers x and y such that p = x> + xy + 2y°.
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Theorem 2.5.5 Let p be a prime such that p = 1,3,4,5,9 (mod 11). Then there
exist integers x and y such that p = x> 4+ xy + 3y?.

In Theorem 2.2.8 we showed that Z + Z./m is Euclidean for m = 2, 3, 6. Recall
from elementary number theory that for an odd prime p

2
<—> =1<«= p=1,7(mod 8),
4

3
<_> =1 p=1,11(mod 12),
p

6
<> =1 p=1,5,19,23 (mod 24).
p

Hence, by Theorem 1.4.4, we obtain the following three theorems.

Theorem 2.5.6 Let p be a prime such that p = 1,7 (mod 8). Then there exist
integers x and y such that p = x* — 2y?.

We used the fact that T2 —2U? = —1forT = U = 1.

Theorem 2.5.7 Let p be a prime such that p = 1, 11 (mod 12). Then there exist

integers x and y such that either p = x* — 3y? or p = 3y? — x2.

In this case there are no integers T and U such that T? — 3U? = —1.

Theorem 2.5.8 Let p be a prime such that p = 1, 5, 19, 23 (mod 24). Then there

exist integers x and y such that either p = x> — 6y or p = 6y* — x2.

There are no integers T and U such that T2 — 6U? = —1.

Exercises

1. Let D be an integral domain possessing a Euclidean function ¢. Give an example to
show that

¢(a) =) (a,b € D) =5 a~b.

. Prove Theorem 2.2.4.

. Prove Theorem 2.2.5.

. Give an example to show that ¢ and r in (2.1.2) are not necessarily unique.

. Prove that Z 4 Z+/7 is Euclidean with respect to ¢ using the method of the proof of
Theorem 2.2.8.

[ - OS I \S]
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Provethat Z + Z (”Tﬁ) is Euclidean with respect to ¢s using the method of the proof
of Theorem 2.2.8.

Use Theorem 2.3.1 to show that Z + Z+/26 is not Euclidean with respect to ¢g.
Prove a modification of Theorem 2.3.1 that allows one of the primes p and ¢ to be the
prime 2.

Prove an extension of Theorem 2.3.1 that replaces p and ¢ in the equation pt + qu = m
by powers of p and ¢ with odd exponents.

Use Theorem 2.3.3 to prove that Z + Z ( 1+‘/_) is not Euclidean with respect to ¢77.
Prove that if p is a prime with p = 3 (mod 4) then there do not exist integers x and y
such that p = x? + y2.

Let p be a prime. Use Theorem 2.5.1 and Exercise 11 to deduce that

p=x’+y? < p=2o0rp=1(mod4).

Prove that if p is a prime with p = 5, 7 (mod 8) then there do not exist integers x and
y such that p = x2 4 2y2.
Let p be a prime. Use Theorem 2.5.2 and Exercise 13 to deduce that

p=x*+2y <= p=2o0rp=1, 3(mod 8).
Prove that if p is a prime with p = 2 (mod 3) then there do not exist integers x and y
such that p = x2 + xy + y2.
Let p be a prime. Use Theorem 2.5.3 and Exercise 15 to deduce that

p=x>4+xy+y> < p=3orp=1(mod3).
Prove that if p is a prime with p = 3, 5, 6 (mod 7) then there do not exist integers x
and y such that p = x% + xy + 2y>.
Let p be a prime. Use Theorem 2.5.4 and Exercise 17 to deduce that

p=x*+xy+2y2 < p=Torp=1, 2, 4(mod 7).

Prove that if m is a positive integer possessing a prime divisor ¢ = 3 (mod 4) then there
are no integers T and U such that T? — mU? = —1.
Let p be a prime with p = 1, 11 (mod 12). Deduce from Theorem 2.5.7 that

p=x2—3y2 if p = 1(mod 12),
p =3y —x% if p=11(mod 12),

for some integers x and y.
Let p be a prime with p = 1, 5, 19, 23 (mod 24). Deduce from Theorem 2.5.8 that

p—x2—6y2 if p =1, 19 (mod 24),
p_6y —x%, if p =5, 23 (mod 24),

for some integers x and y.
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Prove that the subdomain Z + 3Z+/—2 of the Euclidean domain Z + Z+/—2 is not
Euclidean.

Prove that the subdomain Z + 7Z~/2 of the Euclidean domain Z + Z+/2 is not
Euclidean.

Prove that the subdomain Z + 2Z+/3 of the Euclidean domain Z + Z+/3 is not
Euclidean.

Prove that the subdomain Z + 5Z+/6 of the Euclidean domain Z + Z+/6 is not
Euclidean.

Let m be apositive integer withm = 1 (mod 4). Show that the solvability of the equation
T>+TU + %(1 —m)U? = —1linintegers T and U (see Theorem 1.4.5) is equivalent
to the solvability of the equation X> — mY? = —4 in integers X and Y.

Let m be an integer with m = 1 (mod 4) that possesses a prime divisor ¢ = 3 (mod 4).
Prove that there are no integers T and U such that T? + TU + (1 — m)U? = —1.
Prove that if p is a prime with p = 1, 4 (mod 5) then there are integers x and y such
that p = x> 4+ xy — y®. [Hint: Use Theorems 1.4.5 and 2.2.7.]

Use Exercise 12 to show that the irreducibles in Z + Zi are 1+ i and its asso-
ciates, x =iy, where x> + y?> = p (prime) = 1 (mod 4), and their associates, and
q (prime) = 3 (mod 4) and its associates.

Use Exercise 14 to determine the irreducibles in Z + Z+/—2.

Suggested Reading

. P.J. Arpaia, A note on quadratic Euclidean domains, American Mathematical Monthly

75 (1968), 864-865.

Examples of quadratic Euclidean domains that possess subdomains that are not Euclidean are
given. For example the Gaussian domain Z + Z/—1 is Euclidean but its subdomain Z + 27Z.+/—1
is not Euclidean.

. O. A. Campoli, A principal ideal domain that is not a Euclidean domain, American

Mathematical Monthly 95 (1988), 868—871.

It is shown in an elementary fashion that Z + Z(4~=12 Vz’l()) is a principal ideal domain but not a
Euclidean domain. The idea of a domain being almost Euclidean is introduced (p. 870).

. H. Chatland, On the Euclidean algorithm in quadratic number fields, Bulletin of the

American Mathematical Society 55 (1949), 948-953.

This paper is a valuable source of references to work on the Euclidean algorithm in quadratic
domains. It should be noted that Z + Z(@) is not Euclidean, contrary to the claim by Rédei.
This was established by Barnes and Swinnerton-Dyer in 1952.

. H. Chatland and H. Davenport, Euclid’s algorithm in real quadratic fields, Canadian

Journal of Mathematics 2 (1950), 289-296.
This is where the final steps in the proofs of Theorems 2.2.6 and 2.2.7 are given.

. D. A. Clark, A quadratic field which is Euclidean but not norm-Euclidean, Manuscripta

Mathematica 83 (1994), 327-330.
It is shown that Z + Z(”z—“/@) is Euclidean but not norm-Euclidean.

. D. A. Cox, Primes of the form x* + ny?, Wiley, New York, 1989.

This book presents a comprehensive treatment of the problem of deciding which primes are
represented by x% + ny?.
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. D. W. Dubois and A. Steger, A note on division algorithms in imaginary quadratic
number fields, Canadian Journal of Mathematics 10 (1958), 285-286.
Let m be a negative squarefree integer. The authors prove that if Z + Z./m (m = 2, 3 (mod 4))
and Z + Z(Hz—‘/’%) (m = 1(mod 4)) are Euclidean they must be Euclidean with respect to ¢,,,.

. J. Greene, Principal ideal domains are almost Euclidean, American Mathematical
Monthly 104 (1997), 154—156.

The author proves that an integral domain is a principal ideal domain if and only if it is almost
Euclidean.

. M. Harper, A proof that Z[</14] is a Euclidean domain, Ph.D. thesis, McGill University,
Montréal, Canada, 2000.
It is shown that Z + Z+/14 is Euclidean.
. D. R. Heath-Brown, Fermat’s two-squares theorem, Invariant (1984), 3-5.
A beautifully simple proof of the Girard-Fermat theorem is given.
T. Jackson, A short proof that every prime p = 3 (mod 8) is of the form x> + 2y?,
American Mathematical Monthly 107 (2000), 447.
Heath-Brown'’s ideas are used to prove Euler’s result that every prime p = 3 (mod 8) is repre-
sented by x2 + 2y°.
M. A. Jodeit, Uniqueness in the division algorithm, American Mathematical Monthly
74 (1967), 835-836.

Let D be an integral domain. Suppose that ¢ is a Euclidean function on D such that the quotient
g and remainder r in (2.1.2) are always unique. Then D is either a field or a polynomial domain
F[x], where F is a field.

Th. Motzkin, The Euclidean algorithm, Bulletin of the American Mathematical Society
55 (1949), 1142-1146.
V=19
2

In this classic paper on Euclidean domains, it is shown that Z + Z(*¥=2) is a principal ideal
domain but not a Euclidean domain. Universal side divisors are introduced.

T.-S. Rhai, A characterization of polynomial domains over a field, American Mathe-
matical Monthly 69 (1962), 984-986.

Let D be an integral domain. Suppose that ¢ is a Euclidean function on D such that the quotient
g and remainder 7 in (2.1.2) are always unique. Then D is either a field or a polynomial domain
F[x], where F is a field.

K. Rogers, The axioms for Euclidean domains, American Mathematical Monthly 78
(1971), 1127-1128.

The role of the condition (2.1.1) in the definition of a Euclidean function is discussed.

P. Samuel, About Euclidean rings, Journal of Algebra 19 (1971), 282-301.

In this classic paper on Euclidean rings, the author suggests (p. 294) that Z + Z+/14 may be
Euclidean but not norm-Euclidean. This has recently been established by Harper [9].

S. Singh, Non-Euclidean domains: An example, Mathematics Magazine 49 (1976), 243.
It is shown that Z + Z./m is not Euclidean for negative squarefree integers m with m < —2 and
m =2, 3(mod 4).

Y. Varouchas, Une démonstration élémentaire du théoréme des deux carrés,LLa Caverne,
I. R. E. M. de Lorraine, France, Bulletin No. 6, février 1984, pp. 31-39.

A presentation in French of Heath-Brown’s proof of the Girard—Fermat theorem is given.

K. S. Williams, Note on non-Euclidean principal ideal domains, Mathematics Magazine
48 (1975), 176-1717.

It is shown that the domains Z + Z(HT‘/’F) (m = =19, —43, —67, —163) are not Euclidean.
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K. S. Williams, Heath—-Brown’s elementary proof of the Girard—Fermat theorem, Car-
leton Coordinates, Department of Mathematics and Statistics, Carleton University, Ot-
tawa, Ontario, Canada, January 1985, pp. 4-5.

A presentation of Heath-Brown'’s proof of the Girard—Fermat theorem is given.

J. C. Wilson, A principal ideal ring that is not a Euclidean ring, Mathematics Magazine
46 (1973), 34-38.

The author shows that Z + Z(@) is a principal ideal domain that is not Euclidean.

D. Zagier, A one-sentence proof that every prime p = 1 (mod 4) is a sum of two squares,
American Mathematical Monthly 97 (1990), 144.

A one-sentence rendition of Heath-Brown’s proof of the Girard-Fermat theorem is given.

Biographies

K. Barner, Pierre de Fermat (16017-1665)—His life beside mathematics, Canadian
Mathematical Society Notes 34 (2002), 3—4, 26-30.

The author relates an interesting account of the nonmathematical life of Fermat.

. P. Hoffman, The Man Who Loved Only Numbers, Hyperion, New York, 1998.

The story of Paul Erdos, one of the most prolific and eccentric mathematicians of the twentieth
century, is told.

. M. S. Mahoney, The Mathematical Career of Pierre de Fermat (1601-1605), Princeton

University Press, Princeton, New Jersey, 1973.

For two completely different reviews of this book, see Isis 65 (1974), 398—400 and Bulletin of the
American Mathematical Society 79 (1973), 1138-1149.

. C. A.Rogers, Harold Davenport, Bulletin of the London Mathematical Society 4 (1972),

66-99.

A memoir on the life and mathematics of Davenport is presented.
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has biographies of A. T. Brauer, L. E. Dickson, P. Erdos, H. A. Heilbronn, O. Perron,
and R. Remak.
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Noetherian Domains

3.1 Noetherian Domains

Let I; be a nonzero ideal in the domain Z. We consider ideals / such that I; C 1.
As Z is a principal ideal domain (Theorem 1.4.1), there are nonzero integers m and
n such that I} = (m), I = (n), and n | m. Now m has only finitely many divisors
n so there exist only finitely many ideals I with I; € I. Thus there cannot exist
infinitely many ideals I; (k = 2, 3, ...) such that

LchchcCcl,C.... 3.1.1)

The importance of domains such as Z that do not contain infinite ascending chains
of ideals of the type (3.1.1) was first recognized by the German mathematician
Emmy Noether (1882—1935). Such domains are now called Noetherian domains in
her honor. We note that some domains do contain infinite chains of ideals of the
type (3.1.1). For example, if F' is a field, the domain F[X,, X», ...] contains the
infinite chain of ideals

<X1> C (Xl, X2> C (Xl, X7, X3> cC....

Definition 3.1.1 (Ascending chain of ideals) An infinite sequence of ide-
als {I,:n=1,2,...} in an integral domain is said to be an ascending
chain if

L<LC...CI,C....
The chain is said to be a strictly ascending chain if

I]CIQC...CI,,C....

Definition 3.1.2 (Terminating ascending chain) An ascending chain of ideals

LCLC...CI,C...

54
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in an integral domain is said to terminate if there exists a positive integer ng such
that

I, =1, foralln > ny.

Definition 3.1.3 (Ascending chain condition) An integral domain D is said to sat-
isfy the ascending chain condition if every ascending chain of ideals in D terminates
or, equivalently, if D does not contain a strictly ascending chain of ideals.

Definition 3.1.4 (Noetherian domain) An integral domain that satisfies the as-
cending chain condition is called a Noetherian domain.

More generally we define a Noetherian ring to be a ring R in which every
ascending chain of (two-sided) ideals in R terminates.

From the remarks preceding the definitions, we have the following two examples.
Example 3.1.1 Z is a Noetherian domain.
Example 3.1.2 If F is a field, the domain F[X,, X», ...] is not Noetherian.

The next theorem gives a necessary and sufficient condition for an integral domain
to be a Noetherian domain.

Theorem 3.1.1 Let D be an integral domain. Then D is Noetherian if and only if
every ideal of D is finitely generated.

Proof: Let D be a Noetherian domain. Suppose that not every ideal of D is finitely
generated. Let I be an ideal of D that is not finitely generated. Thus / # (0), and
so there exists a; € I witha; # 0. Let A; be the ideal given by A| = (a;). Clearly
Aj C I.Moreover, I # A; as A; is finitely generated and / is not. Hence A; C 1.
Take a, € I, ar ¢ Ay, and let A, be the ideal given by A, = (a1, ap). Clearly
A; C A, C I. Continuing in this way, we obtain an infinite strictly increasing
sequence of ideals A C A, C ..., contradicting that D is a Noetherian domain.
Hence every ideal of a Noetherian domain must be finitely generated.

Now let D be an integral domain in which every ideal is finitely generated.
Let

LShChLC...

be an ascending chain of ideals in D. It is easy to check that | ;- , I, is an ideal
of D. Hence | J;2, I, is finitely generated, so there exist finitely many elements
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a, as, ..., a, of D such that

o
U In = (alvaZ’ --~7am>'
n=I1

Foreachi = 1,2,...,m,a; € \J,_, I, say,a; € I,,.Setl =max (ny, na, ..., ny).
Clearly [; C U;’il I,. As n; <[l we have I,, C I;, and thus q; € I; for i =
1,2,...,m. Hence {(ay,...,a,) C I; so that Uz‘;l I, € I;. This proves that

Uiil I, = I;, and thus I, = I, for n > [. Hence D is Noetherian. ]
From Theorem 3.1.1 we see that principal ideal domains are Noetherian.
Theorem 3.1.2 Let D be a principal ideal domain. Then D is a Noetherian domain.

Proof: As D is a principal ideal domain, every ideal in D is principal and therefore
finitely generated. Hence, by Theorem 3.1.1, D is Noetherian. |

Example 3.1.3 By Theorems 2.1.2 and 3.1.2 a Euclidean domain is always Noethe-
rian. Thus

Z. (Theorem 2.2.1(a)),
7+ 72N —1, Z+ Z~—2 (Theorem 2.2.3),

Z+Z<¥), Z+Z<¥>,

1+4/—11
7+ 7 (%) (Theorem 2.2.5),

Z+7ZN2, 7+ 73, 7+ 76 (Theorem 2.2.8)

are all examples of Noetherian domains.

Our next objective is to give another condition (called the maximal condition)
that allows us to recognize when an integral domain is Noetherian.

Definition 3.1.5 (Maximal condition) An integral domain D is said to satisfy the
maximal condition if every nonempty set S of ideals of D contains an ideal that is
not properly contained in any other ideal of the set S; that is, S possesses an ideal
I such that if J is an ideal in S with I C J then J = I.

We show that satisfying the maximal condition is equivalent to the domain being
Noetherian.

Theorem 3.1.3 Let D be an integral domain. Then D is Noetherian if and only if
D satisfies the maximal condition.
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Proof: Suppose that D is a Noetherian domain that does not satisfy the maximal
condition. Then D possesses a nonempty set S of ideals with the property that for
every ideal I of S there exists an ideal J of S with I C J. This property enables
us to construct inductively an infinite strictly ascending chain of ideals in S, which
contradicts D being a Noetherian domain. Hence every Noetherian domain must
satisfy the maximal condition.

Now let D be an integral domain that satisfies the maximal condition. Let I} C
I, € I € ...bean ascending chain of ideals of D. Set S ={I, |n =1,2,3,...}.
As D satisfies the maximal condition, S contains an ideal I,,, which is not properly
contained in any other ideal of S. As I,, C I; for j > m we must have I; = I,
for j > m. Hence the ascending chain I}, C I, C I3 C ... terminates and D is
Noetherian. [ |

A famous theorem of David Hilbert (1862—1943) asserts that if D is a Noetherian
domain then the polynomial domain D[X1, ..., X,] is also Noetherian. This is the
celebrated Hilbert basis theorem. We will not prove this theorem here; a proof can
be found for example in [8, pp. 201-202].

Example 3.1.4 7Z[X,, ..., X,]isa Noetherian domain. We can see this as follows.
By Theorem 2.2.1(a) Z is a Euclidean domain. Thus, by Theorem 2.1.2, 7Z is a
principal ideal domain. Hence, by Theorem 3.1.2, Z,is a Noetherian domain. Finally,
by the Hilbert basis theorem, Z| X1, ..., X, is a Noetherian domain.

Example 3.1.5 F[X, X5, ..., X,] (n > 1), where F is a field, is a Noetherian
domain. We can prove this as follows. By Theorem 2.2.1(b), F[X1] is a Euclidean
domain. Hence, by Theorem 2.1.2, F[X] is a principal ideal domain, and so,
by Theorem 3.1.2, is a Noetherian domain. Then, by the Hilbert basis theorem,
(FIX1DI[Xs, ..., X,] is a Noetherian domain, that is, F[X, X5, ..., X,] is a
Noetherian domain.

3.2 Factorization Domains

Let D be an integral domain that is not a field so that D contains nonzero, nonunit
elements. It may be the case that all of these elements are reducible so that D
contains no irreducibles. The next example illustrates this.

Example 3.2.1 Let D be the domain of polynomials in positive rational powers
of x over C, that is,

D={axx"+---+a,x" |neN, ay,...,a,€C, r,...,r, €Q,

O<ri<---<mrl.
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Clearly U(D) = C*. We show that D does not possesss any irreducible elements.
Suppose that

FO) = ax" 4 4 apx”

is an irreducible element of D. As f(x) is a nonzero element of D, we may suppose
that a, #0. If n =1 and r; =0 then f(x) =a; # 0 is a unit of D, a contra-
diction. If n = 1 and r; > 0 then f(x) = a;x™ = a,(x"/*)? is reducible in D, a
contradiction. Hencen > 2 and r,, > 0. Let

t = least common multiple of the ( positive) denominators of the

rationals ry, ..., r,
so that t is a positive integer such that rit, ..., r,t are integers with
0<nrt<rt<--<ryt.

Then

f&H =a x4+ +a,x™ € Clx].
Hence there exist by, . .., b, € C such that

rit rpt __
arx" + -+ apx" = a,(x —by)---(x = by,p).

Thus

f@) =ay" = b)) (V= by).
Since

v by = (xl/zz _ b}/2)(x1/21 + b;/Z)’

1/2 . . )
where x1/% 4+ bl/ are nonzero, nonunit elements of D, f(x) is reducible, a con-
tradiction.

Thus D does not possess any irreducible elements.

We show next that a Noetherian domain always contains irreducibles.

Theorem 3.2.1 Let D be an integral domain that is not a field. If D is Noetherian
then D contains elements that are irreducible.

Proof: Suppose that the integral domain D does not contain any irreducibles. As
we are assuming that D is not a field, D has nonzero, nonunit elements. Let a be
one of these. Then a is not an irreducible. Hence a is reducible. Thus there exists a
nonzero, nonunit element a; of D such that a| | a and a; 7 a. Clearly {(a) C (a;).
Asajisnotanirreducible, a, is reducible, and we can repeat the preceding argument
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to obtain a nonzero, nonunit element a, of D such that a; | a; and a; #* a;. Thus
{(a1) C {(ap).Continuing in this way we obtain an ascending chain of principal ideals

(a) C{a1) Clar) C -+,

contradicting that D is a Noetherian domain. Hence D contains irreducibles. W

By Theorem 3.2.1 the domain D in Example 3.2.1 cannot be Noetherian. This
is easily seen directly as it contains the infinite ascending chain of ideals

()C) C (X1/2> C <X1/4> C <X1/8> C---

Clearly for this domain it is not possible to express each nonzero, nonunit element
as a finite product of irreducibles. Domains in which this is possible are called
factorization domains. The main result of this section is that a Noetherian domain
is always a factorization domain; that is, in a Noetherian domain every nonzero,
nonunit element can be expressed as a finite product of irreducibles. The converse
of this result however is not true as we demonstrate in Example 3.2.2.

Definition 3.2.1 (Factorization domain) Let D be an integral domain. Then D is
said to be a factorization domain if every nonzero, nonunit element of D can be
expressed as a finite product of irreducible elements of D.

Our next result shows that a Noetherian domain is always a factorization domain.
Theorem 3.2.2 Let D be a Noetherian domain. Then D is a factorization domain.

Proof: Let D be a Noetherian domain and suppose that D is not a factorization
domain. Then D contains at least one nonzero, nonunit element that is not a finite
product of irreducible elements of D. Let A be the set of all such elements, so A is
not empty. Let

S={{a) |a e A}

Clearly S is a nonempty set of principal ideals of D. As D is a Noetherian domain,
by the maximal condition (Theorem 3.1.3), S has a maximal element, say (b). As
(b) € S, b € A sothat b is a nonzero, nonunit element of D that is not a product of
irreducibles. Hence b is not irreducible. Thus we can write b in the form b = cd,
where ¢ and d are nonzero, nonunit elements of D. Hence (b) = (cd) C (c) and
(b) = {(cd) C (d). Moreover, as d is not a unit, » and ¢ are not associates; thus
(b) # {(c), and so (b) C (c). Similarly, (b) C (d). By the maximality of (b), we
have (c) € S and (d) ¢ S. Hence ¢ and d are products of irreducible elements of
D. Thus b = cd is also a product of irreducible elements of D, contradicting our
assumption. Thus D is a factorization domain. [ |
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Example 3.2.2 From Examples 3.1.1 and 3.1.3, and Theorem 3.2.2, we
see that Z, Z+ZV=T, Z+ZJ=2, Z+Z (), z+2 (), 2+

7 (H— V{“) , 7+ Z«/E, 7 + ZA/3, and 7, + 76 are all examples of factorization
domains.

The next example shows that a factorization domain is not always a Notherian
domain.

Example 3.2.3 Let F be a field. We show that F| X, X, ...] is a factorization
domain. Let a be a nonzero, nonunit element of F[X1, X», ...]. Then a is a poly-
nomial in finitely many of the indeterminates X1, X, ... with coefficients in F.
Thus there is a positive integer m such that a € F[X1, X5, ..., Xn]. From Ex-
ample 3.1.5 we know that F[X., ..., X,,] is a Noetherian domain. Therefore, by
Theorem 3.2.2, it is a factorization domain. Hence every nonzero, nonunit element
of F[ X1, X2, ..., X,u] can be expressed as a product of irreducible elements. Thus
a is a product of irreducible elements of F[X1, X», ..., X,u]. But an irreducible
element of FIX1, X, ..., X,y] is an irreducible element of F[X1, X, ...], so a
is a product of irreducible elements of F|X1, X», ...]. Hence F[X1, X2, ...]isa
factorization domain. By Example 3.1.2, F[ X1, X5, ...] is not Noetherian.

Theorem 3.2.3 Let D be a principal ideal domain. Then D is a factorization
domain.

Proof: This result follows from Theorems 3.1.2 and 3.2.2. [ |

3.3 Unique Factorization Domains

Let D be a factorization domain. Let a be a nonzero, nonunit element of D. Then
there exist irreducible elements of D such that

a=hyhy- - hy.

If i, and h, are associates, say i, = vh;, where v is a unit of D, then
a=vhihs---hy.

Repeating this process we eventually obtain a factorization

k
a=wl' ---l,]j;”,

where w is aunit of D, the k; are positive integers, and the /; are irreducible elements
of D with no two distinct ones being associates. Suppose

m

72 r K,
a=wl"---1,
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is another such factorization of a into powers of nonassociated irreducible elements
of D. If m = m’ and after a possible rearragement of /1, . . ., [,,, we have

L~l oy~ andky =k, ... ky =K.,

we say that a has a unique factorization as a product of irreducible elements of D.

Definition 3.3.1 (Unique factorization domain) Let D be a factorization domain.
Suppose that every nonzero, nonunit element a of D has a unique factorization as
a product of irreducible elements of D. Then D is called a unique factorization
domain.

Theorem 3.3.1 Let D be a principal ideal domain. Then D is a unique factorization
domain.

Proof: Suppose that D is a principal ideal domain. By Theorem 3.2.3 D is a fac-
torization domain. Suppose however that D is not a unique factorization domain.
Then there exists at least one nonzero, nonunit element a, which has at least two
different factorizations as a product of irreducible elements of D. Let A be the set
of all such elements a, and let

S={{a)|aeA}.

As A is anonempty set, so is S. Now D is a principal ideal domain, so by Theorem
3.1.2, D is a Noetherian domain. Hence, by the maximal condition (Theorem 3.1.3),
S contains a maximal element, say (b). Thus b € A and b has two essentially
different factorizations as a product of irreducibles, say,

b=ulf" - [* = v ... h, (3.3.1)

where u and v are units of D, [y, ..., 1l,, hi, ..., h, are irreducible elements of D,
ki,....km, j1, ..., jnarepositiveintegers,[; % [; (i # j),andh; %* h; (i # j).As
ki > 0,weseethat!/; | b, and thus/; | vh‘f‘ ...h{;".As D is a principal ideal domain
and /; is irreducible, by Theorem 1.4.2, [, is prime. Thus [; | &, for some integer s
with 1 < s < n. After relabeling the /’s, if necessary, we may suppose that [} | &;.
Since [, and & are both irreducibles this means that /; ~ &y, say, h; = [;w, where
w is a unit of D. Replacing i by /;w in (3.3.1), we obtain

b/l = btl]f‘_1 . -1,11‘1’” = vwh[ll‘_1 . --h,’;".

As [ is not a unit we have (b) C (b/[). Hence, by the maximality of (b), we have
after suitable rearrangement of the %’s

ki—=1=ji—=1, ky=ja,.... k= jm, m=n,
ll"’]’ll, lz’vhz,...,lm’vhm.
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This contradicts the assumption that » has two essentially different factorizations.
This completes the proof that a principal ideal domain is always a unique factor-
ization domain. u

Clearly from Theorems 2.1.2 and 3.3.1 we see that a Euclidean domain is always
a unique factorization domain. Thus the domains listed in Example 3.1.3 are all
unique factorization domains.

Example3.3.1 Z,Z + Z~—1, Z + Z~/— Z—I—Z(”\/_) Z—I—Z(H‘/_),
L+ 7 (H\/T) 74 72, 7+ 73, and 7 + 7~/6 are unique factorization

domains.

Example 3.3.2 If F is a field then, by Theorem 2.2.1(b), F[X] is a Euclidean
domain and thus a unique factorization domain.

Itis a well-known theorem that if D is a unique factorization domain so is D[ X].
A proof is given in [2, Theorem 7, p. 305]. Appealing to this result we obtain

Example 3.3.3 Z[X] is a unique factorization domain.

Thus (Z[XD[Y] = Z[ X, Y] is a unique factorization domain and generally we
have

Example 3.34 Z[X,, ..., X,] is a unique factorization domain.
Similarly, as F[X] (F afield) is a unique factorization domain, we have
Example 3.3.5 F[Xy,..., X,] (F afield) is a unique factorization domain.
The next example shows that the converse of Theorem 3.3.1 is not true.

Example 3.3.6 The unique factorization domain Z[X] is not a principal ideal
domain as it contains the nonprincipal ideal (2, X).

Theorem 3.3.2 Let D be a unique factorization domain. Then an element of D is
irreducible if and only if it is prime.

Proof: Let p be an irreducible element of D. Suppose that p | ab, where a and b
are elements of D. Hence there exists an element ¢ of D such that ab = pc. Since
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D is a factorization domain, we have
a=pi---pub=qi-Gu c=r1-Tn,

where py, ..., pi,qis .-+ qm, "1, - .., Iy are irreducible elements of D, which are
not necessarily distinct. Then

Pr---Piq1-qm = pri---ty.

As D is a unique factorization domain, p must be an associate of one of the p; or
q;.Hence p | a or p | b, showing that p is a prime.
This completes the proof of the theorem as a prime is always an irreducible by

Theorem 1.2.1. |
Let ay, ..., a, be nonzero elements of a unique factorization domain D. Let

{m1, ..., m} be a set of irreducibles such that

(i) eachm; (i =1,2,...,k)divides at least one of ay, ..., a,,
(ii) m # 7 ifi # j,and
(iii) if 7 is an irreducible that divides at least one of ay, ..., a, then & ~ m; for some
ief{l,2,... k.
We remark that if ay, ..., a, are all units then {m1, ..., 7} = ¢. From (i), (ii), and

(ii1), we see that
k
a; =€iH7Tje"f, i=1,2,...,n,
j=1

where €; € U(D) and the ¢;; are nonnegative integers. (e;; is positive if and only if
g | a;.) Set

€; = min €ij, j=1,2,...,k,
1<i<n
and
k
a = H]T;j e D.
j=1
Clearly

ala;,i=1,2,...,n,
and if b € D is such that

bla,i=172...,n,
then

b|a.
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We call a “a greatest common divisor” of ay, . . ., a,, aquantity we had previously
defined in a principal ideal domain (Definition 1.4.2). If D is a unique factorization
domain that is also a principal ideal domain then it is easily checked that this
notion of a greatest common divisor coincides with that of Definition 1.4.2. If the
set {my, ..., m} of irreducibles is changed to any other set of irreducibles with
properties (i), (ii), and (iii) then a is changed by at most a unit. Thus a greatest
common divisor in a unique factorization domain is only defined up to a unit.

In a principal ideal domain D a greatest common divisor a of aj, ..., a, is a
linear combination of ay, ..., a, with coefficients from D. This is not necessarily
the case in a domain D that is a unique factorization domain but not a principal
ideal domain. For example in Z[x] a greatest common divisor of 2x and x?% is x but

x # f(x)2x + g(x)x?
for any f(x), g(x) € Z[x].

Theorem 3.3.3 A principal ideal domain is an almost Euclidean domain.

Proof: Let D be a principal ideal domain. By Theorem 3.3.1, D is a unique factor-
ization domain. Hence we may define a function ¢ : D — N U {0} as follows:

$(0) =0,
¢(a) =1, ifa € U(D),
¢(a)=2", ifa € D— D anda = iyiz---iy,

where iy, ..., i, are irreducibles.

Clearly ¢ satisfies (2.4.1), (2.4.2), and (2.4.3). We show that ¢ satisfies (2.4.4). Let
a,b e D with b # 0. Let I = (a, b). Since [ is an ideal in D, I = (r) for some
r € D with r £ 0. If a = bg for some g € D then I = (bq, b) = (b). Otherwise
I # (b).Sinceb € I,b = xr forsome x € D, so ¢p(b) > ¢(r). As I # (b), x is not
a unit. Thus ¢(x) > 1 so ¢(r) < ¢p(b). Now r = axg + byy for some xg, yg € D
so 0 < ¢(axg + byg) < ¢(b) and (2.4.4) is satisfied by ¢. Thus ¢ is an almost
Euclidean function on D and D is an almost Euclidean domain. [ |

From Theorems 2.4.1 and 3.3.3 we deduce Greene’s theorem [3].

Theorem 3.3.4 An integral domain is a principal ideal domain if and only if it is
almost Euclidean.

3.4 Modules

Analogous to the concept of a vector space over a field is that of a module over a
ring. All rings are assumed to possess an identity.
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Definition 3.4.1 (R-action) Let R be a ring with identity and M an additive Abelian
group. A functiona : R x M — M is called an R-action on M if o has the following
properties:

a(r +s,m) = a(r,m)+ a(s, m), 34.1)
a(r,m+n) = a(r,m) + a(r, n), 3.4.2)
a(r, a(s, m)) = a(rs, m), 34.3)
a(l,m)=m, 344

forallr,s € Randallm,n € M.

Definition 3.4.2 (R-module) Let R be a ring with identity. An additive Abelian
group M together with an R-action on M is called an R-module.

It would be more accurate to call what we have just defined a left R-module.
There is a similar definition of a right R-module in which the elements of R are
written on the right. In this book we will keep to left modules throughout.

If M is an R-module with R-action @ on M we write «(r, m) as rm to keep the
notation as simple as possible. With this convention (3.4.1)—(3.4.4) become

(r+s)m=rm++ sm, (3.4.5)
r(m+n)=rm+rn, (3.4.6)
r(sm) = (rs)m, (3.4.7)
Im =m, (3.4.8)

valid for all r,s € R, m,n € M. Takingn = 0 in (3.4.6) and s = 0 in (3.4.5), we
deduce that ¥O0 =0 (r € R) and Om = 0 (m € M). The reader can easily check
from the axioms that

(=r)m = —(rm) = r(—m)

forallr €e Randallm € M.

Example 3.4.1 If F is afield then an F-module is the same thing as a vector space
over F.

Example 3.4.2 Any additive Abelian group A can be thought of as a Z-module in
a natural way. The Z-action on A is just the map (n, a) — na from Z x A to A.

Example 3.4.3 Any ring R with identity can be thought of as a module over itself
in a natural way. We just take M to be the additive group (R, +) of R and define a
map R Xx R — R by (r, s) — rs (the product of r and s in R).

A submodule of an R-module M is just a subset N of M such that the operations
of M, when restricted to N, make N into an R-module. These operations are the
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Abelian group operations + and —, and the operation of “multiplying on the left”
by elements of R.

Definition 3.4.3 (Submodule) Let R be a ring with identity. Let M be an R-module.
A subgroup N of M is called a submodule of M ifrn € N forallr € Randn € N.

Example 3.4.4 Any R-module M has the submodules M and {0}.

Example 3.4.5 If A is an additive Abelian group considered as a Z-module, then
the submodules of A are precisely the subgroups of A.

Example 3.4.6 Let V be avector space over a field F considered as an F-module.
Then the submodules of V are its subspaces.

Example 3.4.7 If R is a commutative ring with identity, then the submodules of R
considered as an R-module are the ideals of R.

Definition 3.4.4 (Submodule generated by a set) If X is a subset of an R-module

M then the submodule generated by X is the smallest submodule of M containing
X.

This definition is a valid one because the intersection of all the submodules of
M containing X is such a submodule and is thus the smallest such module. Indeed
if X is a nonempty subset of M then it is not difficult to show that the set

n
{ZF,‘X,‘ |V,'ER, x,-eX, nZl}

i=1
of all finite sums of elements of the form rx with r € R and x € X is the smallest
submodule of M containing X, and so it is the submodule of M generated by X.

Definition 3.4.5 (Finitely generated module) An R-module M is called finitely
generated if M is generated by some finite set of elements of M.

Thus an R-module M is finitely generated if and only if there exist finitely
many elements xi, ..., x, € M such thateach x € M can be expressed as a “linear
combination” Z?:l r;x; of the x; with coefficients r; € R.

Definition 3.4.6 (Factor module) Let N be a submodule of the R-module M. Then
the factor module M /N is the quotient group M /N of cosets {m + N | m € M}
together with the R-action given by r(m + N) = rm + N for eachr € R and each
cosetm + N in M/N.
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If m + N =m’ + N then we have m — m’ € N.Hence r(m —m') € N since N
is a submodule and thus rm + N = rm’ + N. This shows that the action of R on
M /N in Definition 3.4.6 is well defined. The axioms are easily verified, so M /N
under this R-action is an R-module. We often write m for m + N.

Definition 3.4.7 (Module homomorphism) Let M and N be R-modules. A module
homomorphism from M to N isamap 6 : M — N such that

O(my + my) = 0(my) + 0(my),
O0(rm) = rf(m),

for all m,my,m, € M and r € R. A module homomorphism that is bijective is
called amodule isomorphism. Two modules M and N having a module isomorphism
between them are called module isomorphic, and we write M >~ N.

If K and L are submodules of an R-module M then K + L is a submodule
of M, K is a submodule of K+ L, KNL 1is a submodule of
Liand K+ L/K ~L/KNLsincef: K+ L/K — L/K N L defined by 6(k +
I+ K)=I4+KNL(keK,!IelL)isamodule isomorphism.

3.5 Noetherian Modules

A Noetherian domain is an integral domain in which every ascending chain of ideals
terminates. Analogously we define a Noetherian R-module to be an R-module in
which every ascending chain of submodules terminates.

Definition 3.5.1 (Noetherian module) Let R be a ring with identity. An R-
module M is called Noetherian if every ascending chain of submodules of
M terminates.

Theorem 3.5.1 Let R be a ring with identity. Let M be an R-module and let N
be a submodule of M. Then M is Noetherian if and only if both N and M /N are
Noetherian.

Proof: Suppose that M is Noetherian. Let
NiC N, C...

be an ascending chain of submodules of N. As N is a submodule of M this chain
is also a chain of submodules of M. But M is Noetherian so this chain terminates.
Hence N is also Noetherian. Now let

M, CM,C...
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be an ascending chain of submodules of the factor module M/N.Fori = 1,2, ...
let

Mi={meM|me M.
It is easy to check that M; is a submodule of M and that M; € M; ;. Hence
M, C M C...

is an ascending chain of submodules of M. As M is Noetherian this chain terminates
and thus the original chain terminates too. This proves that the R-module M /N is
Noetherian.

Now suppose that both N and M /N are Noetherian. Let

M C M, C...
be an ascending chain of submodules of M. Fori = 1,2, ... set
M,-:{ﬁhneMi}.

Again it is easy to check that M; is a submodule of the R-module M /N and that
M; € M, . Hence

M,CM,C...

is an ascending chain of submodules of M/N. As M /N is Noetherian this chain
terminates and there is a positive integer /; such that

M,’ gﬁ,l fori > [;.
Now M; N N is a submodule of N and M; "N € M;; N N so that
MiNnNCMNNC...

is an ascending chain of submodules of N. As N is Noetherian this chain terminates
and there exists a positive integer /, such that

M,-ﬂN:M,zﬂNfori > [,
Set I = max(ly, [). Thus for i > [ we have
M;=M;11, M,\NN = M;;; N N.

Suppose that the original chain M; € M, C ... of submodules of M does not ter-
minate. Then M; C M, forsomei > [. Wecanchoosem; | € M; 1, m;j11 & M,;.
Hence 7,41 € M;;; = M; and so there exist m; € M; and n € N such that
miyy =m; +n. Thus m;,1 —m; =n € N. Also as M; € M;,| we have m; | —
m; € Mi+1.ThUSmi+1 —m; € Ml‘+1 NN=MNN C M; som;41 € Mi,WhiChiS
a contradiction. Hence the chain M; C M, C ... must terminate and M is Noethe-
rian. |
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Theorem 3.5.2 If R is a Noetherian ring, any finitely generated R-module M is
Noetherian.

Proof: Let M be a finitely generated R-module. Then there exist my, my, ..., m,
€ M such that

M = Rm; + Rmy + ---+ Rm,,.

Each Rm; is an R-module.
Fork =1, 2, ..., n we define the R-module M; by

My = Rmy+---+ Rmy

sothat M, = M.
We first show that each R-module Rm; (i =1, ..., n) is Noetherian. Let

N; ={re R |rm; =0}.

Clearly »; is a submodule of R. Since the submodules of R are ideals of R and R is
a Noetherian ring, R is a Noetherian module. Hence, by Theorem 3.5.1, the factor
module R/N; is Noetherian. But R/N; >~ Rm; so Rm; is Noetherian. In particular
M; = Rm is Noetherian.

Now suppose that My, ..., My_; (2 < k < n) are Noetherian. We show that M
is Noetherian. As Rmy is Noetherian, we see by Theorem 3.5.1 that the factor
module

Rmk/Rmk N Mk,1
is Noetherian. Hence
My /M- = My—1 + Rmy/My—y = Rmy/Rmy N M,

is Noetherian. Then, by Theorem 3.5.1, M; is Noetherian. Hence M, ..., M,, are
Noetherian so M = M,, is a Noetherian module. [ |

The consequence of Theorem 3.5.2 that we use in Chapter 6 is the following
result (see Theorem 6.5.3).

Theorem 3.5.3 Let D and E be integral domains with D C E. If D is a Noetherian
domain and E is a finitely generated D-module then E is a Noetherian domain.

Proof: Let I C I, C... be an ascending chain of ideals in the
domain E. By Theorem 3.5.2, as D is a Noetherian domain and E is a
finitely generated D-module, E is a Noetherian D-module. But each [; is a
D-submodule of E so the chain I; € I, C ... must terminate. Hence we have
shown that E is a Noetherian domain. [ ]
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In Example 3.1.3 we saw that the integral domain Z + Z./m is Noetherian for
m = —1,-2,2,3, and 6. In fact this is true for an arbitrary integer m that is not a
perfect square.

Theorem 3.5.4 Let m be a nonsquare integer. Then 7. + Z\/m is a Noetherian
domain (and thus a factorization domain by Theorem 3.2.2).

Proof: We take D = Z and E = Z + Z+/m in Theorem 3.5.3. As Z is Noetherian
(Example 3.1.3) and Z + Z./m is a finitely generated Z-module (generated by 1
and /m) the theorem follows from Theorem 3.5.3. [ |

Similarly, taking D = Z and E =Z + Z (Hﬂ ), where m is a nonsquare inte-

ger with m = 1 (mod 4), in Theorem 3.5.3, we obtain

Theorem 3.5.5 Let m be a nonsquare integer with m = 1 (mod 4). Then Z +

14+/m
Z 2

3.2.2).

) is a Noetherian domain (and thus a factorization domain by Theorem

Example 3.5.1 Z + Z+/ -5 is a factorization domain by Theorem 3.5.4. However,
it is not a unique factorization domain as 6 has two different factorizations into
irreducibles in 7. + 7/ —5, namely

6=2-3=(1+/=5)(1—+-5).

The fact that 2 and 3 are irreducibles in 7. + Z~/—5 follows from Exercise 36 of
Chapter 1. To see that 1 + /=5 is an irreducible in 7. + 7/ —5 suppose that

14+ v=5 = (a + bv=53)(c +dv—=53)
for some a, b, c,d € Z. Then
6 = (a® 4 5b°)(c” + 5d%)
so that (as a® + 5b* is a nonnegative integer)
a’+5b*=1,2,3, or 6.

Clearly a* + 5b> #2,3. Ifa> + 5b> = 1 thena = +1, b =0, and a + b/—5 =
+1 is a unit of Z + Z/=5. If a* + 5b> = 6 then ¢* +5d* = 1 and ¢ + d~/—5 =
+1is a unit of Z + 7.n/—5. This proves that 1 + /=5 is irreducible in 7. + 7./ —5.
Similarly we can show that 1 — /=5 is also irreducible. The irreducibles 2,3, 1 +
V=5, and 1 — /=5 are not associates of one another because the quotient of any
two of them ¢ U(Z + 7/=5) = {—1, +1}.

Example 3.5.2 Z + Z~/10 is a factorization domain by Theorem 3.5.4. It is not a
unique factorization domain as
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10 = (v/10> =2 .5,

where 2, 5, and +/10 are nonassociated irreducibles in 7. + 7~/ 10. We just show
that 2 is an irreducible in 7 + 7./ 10. Suppose that

2 = (a + bV/10)(c + dV/10)
for some a, b, c,d € 7. Then
4 = (a* — 10b%)(c* — 10d%).
Hence, as a®> — 10b? € 7, we deduce that
a’ —10p* = —4,-2,—1,1,2, or 4.

Ifa®> — 10b* = £1 then a + b/10 is a unit of Z. + Z~/10. If a*> — 10b* = +4 then
c? —10d* = £1 and ¢ + d~/10 is a unit of Z. + Z/10. If a®> — 10b*> = 2 then
a’l=42 (mod 5), which is a contradiction as a square is congruent to 0, 1, or
4 (mod 5). Thus this case cannot occur. Hence 2 is irreducible in 7. + Zm. We
leave it to the reader to show that 5 and \/1_0 are also irreducible in 7 + Zm
and that 2, 5, and ~/10 are not associates of one another (Exercise 13).

In Example 3.5.2 we showed that the equation x> — 10y? = 2 (or —2) has no
solutions in integers x and y. Here this was very easy to do: We just considered
the equation modulo 5 and got a contradiction. In general one cannot show that
an equation of the type x> — my> = N has no solutions in integers x and y by
congruence considerations alone. We show how to determine the solvability or in-
solvability of the equation x> — my? = N (m, n € Z with m positive and nonsquare
and 0 < |N| < /m) in Section 11.7.

Exercises

1. Let F be afield. If M is an F-module prove that M is a vector space over F. Conversely
show that if M is a vector space over F then M is an F-module.
2. Considering Z as a Z-module, where the Z-action on Z is just multiplication, determine
all the Z-submodules of Z.
3. Let I; C I, C ... be an ascending chain of ideals in an integral domain D. Prove that
Uy, I is an ideal in D.
4. Let F be a field. Is the domain F[X] Noetherian?
. Prove that the ideal (2, X) in Z[X] is not principal (Example 3.3.6).
6. Prove that a subset N of an R-module M is a submodule of M if and only if
i0eN,
(ii)ny,np € N=—=ny —n, € N,and
(iii)ne N, re R=rneN.
7. Prove that the intersection of any nonempty collection of submodules of an R-module
is itself a submodule of M.

9]
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8.

10.

11.

12.

13.

15.

16.
17.

Noetherian Domains
If My, ..., M, are n(> 1) nonempty subsets of an R-module M, we define
My+ -+ My = {my 4+ m, | m € My).

If My, ..., M, are submodules of M prove that M| + - - - + M,, is a submodule of M.

. Let M and N be R-modules. Let 6 : M — N be an R-homomorphism. Define

ker0 = {m € M | 6(m) = 0},
im6 ={n e N |n=0(m)for somem € M}.

Prove the following:
(i) ker 6 is a submodule of M.
(i1) im 6 is a submodule of N.
(iii) M /ker 0 >~ im 6.
If K and L are submodules of an R-module M with K C L, prove that

M/K /L/K ~ M|/L.

Suppose that D is a unique factorization domain and a(5# 0) and b( 0) are coprime
nonunits in D. Prove that if ab = ¢" for some ¢ € D and some n € N then there is a
unit e € D such that ea and e~'b are nth powers in D.

Let D be a unique factorization domain. Give an example to show that the following
assertion is not true in general: If a is an irreducible element of D then (a) is a maximal
ideal of D.

Prove that 5 and +/10 are irreducible elements of Z + Z+/10 and that 2, 5, and /10 are
not associates of one another, as asserted in Example 3.5.2.

. Let p be a prime and m be a positive nonsquare integer such that the Legendre symbol

(%) = —1 for some odd prime factor g of m. Prove that the equation x> — my? = +p

has no solution in integers x and y. Deduce that p is anirreducible element of Z + Z./m.
Prove that Z + Z+/—6 is not a unique factorization domain by exhibiting an element
of Z + 7Z+/—6 that has two different factorizations into irreducibles.

Prove that Z + Z+/—10 is not a unique factorization domain.

Prove that Z + Z+/15 is not a unique factorization domain.
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Elements Integral over a Domain

4.1 Elements Integral over a Domain

Let A be an integral domain and let B be an integral domain containing A. We
are interested in those elements of B that are roots of monic polynomials with
coefficients in A.

Definition 4.1.1 (Element integral over a domain) Let A and B be integral do-
mains with A C B. The element b € B is said to be integral over A if it satisfies a
polynomial equation

X" ap x4+ ax +ap =0,

where ag, ay, . ..,a,_1 € A.

Note that every element a € A is integral over A asitisarootof x —a € A[x].

Definition 4.1.2 (Algebraic integer) A complex number which is integral over Z,
is called an algebraic integer.

Example 4.1.1 /2 is an algebraic integer as it satisfies the equation x> — 2 = 0.

Example 4.1.2 %(—1 +i+/3) is an algebraic integer as it satisfies the equation
xP4+x+1=0.

Example 4.1.3 /2 — /4 is an algebraic integer as it satisfies the equation
¥} +6x+2=0.

Example 4.1.4 %(1 4+ V21 + /33 — +/77) is an algebraic integer as it satisfies
the equation x* — x> — 16x> +37x — 17 = 0.

Example 4.1.5 A root of unity is an algebraic integer as it is a root of x" — 1 €
Z|x] for some n € N.

74
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Example 4.1.6 3‘/_22;“/5 € D (see Example 1.1.11) is integral over 7. + 7i as it is
a root of the polynomial x> — (4 — 3i) € (Z + Zi)[x].

Example 4.1.7 1/+/2 is not an algebraic integer. Suppose on the contrary that
1/+/2 is an algebraic integer. Then there exists a positive integer n and integers
ap, day, . .., d,—1 such that

n n—1
R
Multiplying both sides of this equation by (+/2)" we obtain
14 ap1V2 + apa(V2)* + -+ + ag(v/2)" = 0.
Thus
(1 +2ay—5 +4an_s+ )+~ 2an_1 +2ay_3+---)=0.
Ifa, 1 +2a, 3+ ---# 0then

\/5: _(1+2an—2+4an—4+"')
(an-1+2an3+--)

is the quotient of two integers and thus a rational number, a contradiction. Hence,
ap—1+2a,3+---=0andso 1+ 2a,_>+4a,_4 + --- = 0. This is a contradic-
tion as the integer 1 + 2a,_» + 4a,_4 + - - - is clearly odd.

Definition 4.1.3 (Element algebraic over a field) Let A and B be integral domains
with A C B. Suppose that A is a field and b € B is integral over A; then b is said
to be algebraic over A.

Definition 4.1.4 (Algebraic number) A complex number that is algebraic over Q
is called an algebraic number.

Example 4.1.8 1/+/2 is an algebraic number as it satisfies the equation x* —

1/2=0.

Example 4.19 Let A={a+bv2|a,beQ} and B ={x+yi+zv/2+
wiv2 | x,y,z, w € Q} so that A and B are fields with A C B. Then b = %(H—
i ++/2) € B is algebraic over A as b satisfies the equation

xz—(1+\/§)x+<1+%>20.

Definition 4.1.5 (Domain integral over a subdomain) Let A and B be integral
domains with A C B. If every b € B is integral over A we say that B is integral
over A.
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Example 4.1.10 The quadratic domain 7. + 7Z./m, where m is a nonsquare
integer, is integral over 7. as every element u + vi/m of Z + Z\/m is integral
over 7 as it satisfies the polynomial equation

x% = 2ux +u®> — mv? =0,

where —2u € 7, and u* — mv® € Z.

2
integer with m = 1(mod 4), is integral over 7 as every element o = u +

v (%) €eZ+7Z (%) is integral over 7. because it satisfies the polynomial
equation

Example 4.1.11 The quadratic domain 7. + 7 <1+ﬁ>, where m is a nonsquare

2 2 1 2
X —QRu4v)x+ (u +uv+1(l—m)v =0,
where —2u + v) € Z and u* + uv + i(l —mp? e Z

Example 4.1.12 Let A and B be integral domains with A C B. Let a € A. Let
b € B be integral over A. We show that ab is integral over A.
As b € B is integral over A there exist ay, ai, ..., a,—1 € A such that

"4 a,_b" '+ +ab+ay=0.
Leta € A. Then ab € B and
(ab)" + a,_a(ab)"™' + - + aya" " (ab) + apa" = 0.

Asay_ia,...,a1a" "', apa" € A we deduce that ab is integral over A.

Theorem 4.1.1 Let A C B C C be atower of integral domains. If ¢ € C is integral
over A then c is integral over B.

Proof: As c € C is integral over A there exist ag, a1, ..., a,—1 € A such that
" +a,_ 1"+ tacHap=0.

As A C B, ayp,ay,...,a,-1 € B and so c is integral over B. |

Theorem 4.1.2 Let A C B C C be a tower of integral domains. If C is integral
over A then C is integral over B.

Proof: Let c € C. As C is integral over A, c is integral over B. Thus c is integral
over B, so that C is integral over B. [ |
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Theorem 4.1.3 Let A and B be integral domains with A C B. Let b € B. Then b
is integral over A if and only if A[D] is a finitely generated A-module.

Proof: Suppose that b is integral over A. Then there exist ag, aj,...,a,—1 € A
such that

b" — an,lb”_l — Cln,zbn_z — s — alb —ag = 0.
Hence

b =a, b" '+ a, b+ tab+ape APV + AP+ -+ Ab + A.
Also

b = a, b+ a, b+ -+ ayb? + agh
€ AD" + Ab" '+ ...+ AD* + Ab
C AL+ 4+ Ab + A.

By induction we see that
e A" ' +...+Ab+ A

for all nonnegative integers k. This shows that the integral domain A[b] of polyno-
mials in b with coefficients in A is a finitely generated A-module.

Conversely suppose that A[b] is a finitely generated A-module. Then there exist
ui, Us, ..., u, € A[b] such that

Alb] = Au; + -+ - + Au,.

Clearly uy, ..., u, are not all zero. Now each u; € A[b] and so bu; € A[b] for
i =1,2,...,n. Thus there exista;; € A (i, j = 1,2, ..., n) such that

bu; =ayuy + -+ apuy,

bu, = anuy + - - - + aputy,.

Thus the homogeneous system of n equations in the n unknowns xy, ..., x,,
(b —a)x; —apxy — - —apx, =0,
—ayxy + (b —axn)xy — -+ —agx, =0,
—an X1 — apaxy — -+ + (b — ap)x, =0,
has a nontrivial solution (xy, x3, ..., x,) = (41, U, ..., U,) in the integral domain

A[b] and so in its quotient field. But this can only happen if the determinant of the
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coefficient matrix is zero. Hence

b—ay —ap - —aip
—ay b—ayn -+ —ay
—dp] —day2 et b — Qpn

When this determinant is expanded, we obtain an equation
b" 4+ ap 1b" '+ +arh+ag =0,

where ag, ay, ...,a,—1 € A. Hence b is integral over A. [ ]
The proof of our next theorem follows closely that of the previous theorem.

Theorem 4.1.4 Let A and B be integral domains with A C B. Let b € B. If there
exists an integral domain C such that

Alb]CCC B

and C is a finitely generated A-module then b is integral over A and A[b] is a
finitely generated A-module.

Proof: As C is a finitely generated A-module, there exist ¢y, ..., ¢, € C such that
C=Aci1+ -+ Ac,.

Clearly cy, ..., ¢, are not all zero. Now b € A[b] and A[b] C C sothatb € C.But
C is an integral domain so that bcy, ..., bc, € C. Hence there exista;; € A (i, j =
1,2, ..., n) such that

bCl =ajicy + -+ ainCn,

an =apiCc1 + -+ auuCy.

Thus the homogeneous system of n equations in the n unknowns xi, ..., X,
(b —ap)x; —apxy —---—apx, =0,
—anxy + (b —an)xy — -+ —ayx, =0,
—an1X1 — apaxy — -+ (b — ay)x, =0,
has a nontrivial solution (xy, ..., x,) = (cy, ..., ¢,) in the integral domain C and

thus in its quotient field. Hence the determinant of its coefficient matrix is zero;
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that is,
b —ay —ap —aln
—das] b—ay --- —dy
—dapl —ap2 e b — Apn

Expanding this determinant we obtain an equation
" +a, 0"+ +ab+ay=0,

where ag, ay, ...,a,—1 € A. Hence b is integral over A and, by Theorem 4.1.3,
Al[b] is a finitely generated A-module. [ |

The special case C = B in Theorem 4.1.4 shows that if A and B are integral

domains with A C B and B is a finitely generated A-module then B is integral over
A.

Theorem 4.1.5 Let A C B C C be a tower of integral domains. If B is a finitely
generated A-module and C is a finitely generated B-module then C is a finitely
generated A-module.

Proof: As B is a finitely generated A-module there exist by, ..., b, € B such that
B = Aby + -+ Aby.

As C is a finitely generated B-module there exist ¢y, ..., ¢, € C such that
C =Bci+---+ Bc,.

Letc € C. Then

n
C = E )CjCj,
j=1

where x1, ..., x, € B. Moreover, for j = 1, ..., n we have

m
Xj = E aijb;,
i=1

where ayy, ..., an, € A. Hence

n m

c = ZZaijb,-cj

j=1 i=1

so that
C =Abici +---+ Ab,c,

is a finitely generated A-module. [ |
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Theorem 4.1.6 Let A and B be integral domains with A C B. Let by, by € B be
integral over A. Then by + by, by — by, and b1 b, are integral over A.

Proof: As by is integral over A, by Theorem 4.1.3, A[b;] is a finitely generated A-
module. Moreover, b, is integral over A and so by Theorem 4.1.1 b, is integral over
Alb;]. Hence, by Theorem 4.1.3, (A[b1][b2] = Alb1, by] is a finitely generated
Albi]-module. Thus A[b, b,] is a finitely generated A-module by Theorem 4.1.5.
Let A denote any one of by + b, by — by, b1b,. Then we have

A C A[)M] C A[by, by] C B,

where the integral domain A[by, b,] is a finitely generated A-module. Hence, by
Theorem 4.1.4, A is integral over A. |

The next theorem is an immediate consequence of Theorem 4.1.6.

Theorem 4.1.7 Let A and B be integral domains with A C B. Then the set of all
elements of B that are integral over A is a subdomain of B containing A.

Taking A = Z and B = C in Theorem 4.1.7, we obtain
Theorem 4.1.8 The set of all algebraic integers is an integral domain.
The domain of all algebraic integers is denoted by €2.

Theorem 4.1.9 Let A and B be integral domains with A C B. Let by, ...,b, € B
be integral over A. Then Alb1, ..., b,] is a finitely generated A-module.

Proof: We prove the theorem by induction on n. If b, € B is integral over A then
Alb1] is a finitely generated A-module by Theorem 4.1.3, so the theorem is true
forn = 1.

Now assume that A[by,...,b,—1] (n > 2) is a finitely generated A-module,
where by, ..., b,_1 € B are integral over A. Let b,, € B be integral over A. Then,
by Theorem 4.1.1, b, is integral over A[by, ..., b,—1]. Hence, by Theorem 4.1.3,
(Alby, ..., by_1DIb,] = Alby, ..., b,]isafinitely generated A-module. This com-
pletes the inductive step and the theorem follows by the principle of mathematical
induction. |

Theorem 4.1.10 Let A and B be integral domains with A C B. If each of
by, ..., b, € Bis integral over A then A[by, ..., b,] is integral over A.

Proof: We prove the theorem by induction on #.
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Suppose first that b; € B is integral over A. Then, by Theorem 4.1.6 and Ex-
ample 4.1.12, we deduce that ap 4 a;b; + - - - 4+ a,b! is integral over A for all
ap, ai, ..., a, € A. This proves that A[b,] is integral over A.

Next let by, ..., b,_1 € B be integral over A and suppose that A[by, ..., b,_1]
is integral over A. Let b, € B be integral over A. Let f be any element of
Alby, ..., b,]. Then

f=rf+ fibn+---+ fub),,

where  fo, f1,..., fm € Alb1,...,by—1]. By the inductive hypothesis
fo, fis..., fm are all integral over A. Then, as b, is integral over A, we
deduce by Theorem 4.1.6 that fo + fib, +---+ f,b)' is integral over A. Hence
every element f of A[by, ..., b,] is integral over A, proving that A[by, ..., b,] is
integral over A. [ ]

Theorem 4.1.11 Let A € B C C be a tower of integral domains. If B is integral
over A and c € C is integral over B then c is integral over A.

Proof: As c € C is integral over B there exist by, by, ..., b,_1 € B such that
"+ by 1"+ bic+ by =0.

This shows that c is integral over A[bg, by, ..., b,—1]. Aseach b; € B and B is inte-
gral over A, each b; is integral over A. Thus, by Theorem 4.1.9, A[by, by, ..., b,—1]
is a finitely generated A-module. As c is integral over A[by, by, . .., b,—1], by Theo-
rem 4.1.3 we see that (A[by, by, ..., b,—1]D[c] = Albo, by, ..., b,_1, c]is afinitely
generated A-module. Hence, by Theorem 4.1.4, c is integral over A. [ |

We can now prove that “integral over” is a transitive relation.

Theorem 4.1.12 Let A € B C C be a tower of integral domains. If C is integral
over B and B is integral over A then C is integral over A.

Proof: Let c be any element of C. Then c is integral over B. As B is integral over
A, by Theorem 4.1.11 c is integral over A. Hence C is integral over A. [ |

4.2 Integral Closure

Let A and B be integral domains with A € B. In Theorem 4.1.7 we showed that
the set of all elements of B that are integral over A is a subdomain of B containing
A. We now give this domain a name.

Definition 4.2.1 (Integral closure) Let A and B be integral domains with A C B.
The integral closure of A in B is the subdomain of B consisting of all elements
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of B that are integral over A. The integral closure of A in B is denoted
by AB.
From Theorem 4.1.7 we have
Theorem 4.2.1 Let A and B be integral domains with A C B. Then the integral
closure A of A in B is an integral domain satisfying
AC AP CB.

Clearly A* = A for any integral domain A.
Our next theorem determines the integral closure of Z in the field Q) =

{x+yilxyeQ}h
Theorem 4.2.2 The integral closure of A =7Z in B = Qi) is
AP =7+ 7i.
Proof: We firstshow that Z + Zi € AB.Leta € Z + Zi. Thena = m + ni, where
m, n € Z. Hence « is a root of the quadratic polynomial
x2 = 2mx + (m® 4+ n? € Z[x].

This shows that « is an algebraic integer. Clearly & € Q(i). Thus @ € A® so that
Z+Zi C AB.

We now show that A? C Z + Zi. Leta € AB. Hence o € Q(i) is algebraic over
Z. As a € Q(i) we have o = r + si, where r, s € Q. We just treat the case s # 0.
The case s = 0 can be treated in a similar and easier manner. Clearly « is a root
of g(x) = x> — 2rx + (r* 4+ 5%) € Q[x]. As « is algebraic over Z, there exists a
monic polynomial f(x) € Z[x] with f(a) = 0. Since f(x), g(x) € Q[x], by the
division algorithm there exist polynomials g(x), r(x) € Q[x] such that

f(x) =q(x)g(x) +rx), degr(x) < deg g(x).
As deg g(x) = 2 we see that r(x) = ro + rx, where rg, r; € Q. Hence
fx) =q(x)g(x) +ro+rix.
Taking x = o we obtain (as f(x) = g(a) =0)
ro+ria=0
so that

(ro +rir)+irs =0.
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Equating real and imaginary parts, we obtain
ro+nrr=ris =0.
As s # 0 we deduce that r| = ryg = 0. Hence

J(x) =q)gx),

where g(x), g(x) € Q[x]. Let a be the least common multiple of the denominators
of the coefficients of ¢(x) and b the least common multiple of the denominators
of g(x). Then abf(x) = aq(x)bg(x), where aq(x) and bg(x) € Z[x]. Let c be the
content of ag(x) and d the content of bg(x). (Recall that the content of a nonzero
polynomial a,x" + --- 4+ a;x + ag € Z[x] is the greatest common divisor of the
integers ay, . . ., a;, ap and that a primitive polynomial is a polynomial of Z[x] with
content 1.) Then we have ag(x) = cq(x) and bg(x) = dg(x), where g, (x) € Z[x]
and g(x) € Z[x] are both primitive polynomials. Also abf(x) = cq(x)dg(x).
Since f(x) € Z[x] is monic the content of abf (x) is ab. By a theorem of Gauss,
the product of two primitive polynomials is primitive. Hence g1 (x)g;(x) is primitive
and the content of cq; (x)dgi(x)is cd. Thusab = cd and f(x) = g1(x)gi(x), where

b
G1(x) = %q(x) € Zlx], g1(x) = ~g(x) € Zlx]

Suppose that
f@) =x"+a,1x"" + - +ao,
q1(x) = bn—2xn_2 +---+ bO’
gi(x) = cx? + c1x + o,
where ag, ..., an—1,bo, ..., by,_2, co, 1, o € Z. Equating coefficients of x" in

f(x) =qi1(x)g1(x), we obtain b, _>cp = 1. As b,_»,cr € Zwe have b,_, = ¢, =
#1. Changing q;(x) to —¢qi(x) and g;(x) to —g;(x), if necessary, we may suppose
that ¢; = 1. Then g;(x) and g(x) are both monic so from g;(x) = (b/d)g(x), we
deduce that b = d and

X2 =2rx+(r*+5%) = gx) = gi1(x) € Z[x].

Thus 2r € Z and r?> + 52> € Z. If 2r € 2Z + 1 then 2s € 2Z + 1 and 4r% + 4s% €
47, + 2, contradicting 4r% + 4s* € 47. Hence 2r € 27 so that r € Z and s € Z,
that is, r + si € Z + Zi, proving that A3 C Z + Zi. [ ]

Theorem 4.2.3 Let D be a unique factorization domain. Let F be the field of
quotients of D. Then c € F is integral over D if and only if ¢ € D.

Proof: If ¢ € D then c satisfies the equation x — ¢ = 0 and so is integral over D.
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Conversely, suppose that ¢ € F is integral over D. Then c satisfies a polynomial
equation

" Ha x4+t ax +ap =0,

where ag, ay, ..., a,—1 € D.Asc € F we can express c in the form ¢ = r/s, where
re D, s(#+0)e D, and ged(r, s) = 1. Hence

Mt ay s+t ars” ! + aps” = 0. 4.2.1)

If s is not a unit in D then it is divisible by some prime p. From (4.2.1) we see that
p | r", and thus, as p is prime, p | r. This contradicts that ged(r, s) = 1. Hence s
must be aunitand ¢ = rs~!' € D. |

Theorem 4.2.4 QN Q = Z.

Proof: By Example 3.3.1 Z is a unique factorization domain. Choose D = Z in
Theorem4.2.3 sothat F = Q.Thenc € Q N Qifandonlyifc € Z.HenceQ N Q =
7. ]

Theorem 4.2.4 tells us that arational algebraic integer must be an ordinary integer.
We will use this result on a number of occasions.

If D is an integral domain and F its field of quotients then it may happen that
the integral closure D of D in F is equal to D. If this happens we say that D
is integrally closed. Apparently the term “integrally closed” was first defined by
Ernst Steinitz (1871-1928) in 1912, but the importance of the concept was already
known to Richard Dedekind (1831-1916).

Definition 4.2.2 (Integrally closed domain) An integral domain D is said to be
integrally closed if the only elements of its quotient field that are integral over D
are those of D itself.

Theorem 4.2.5 Let D be a unique factorization domain. Then D is integrally
closed.

Proof: Let F be the field of quotients of D. By Theorem 4.2.3 we have D = D
so that D is integrally closed. |

Example 4.2.1 Z + 7Z+/—3 is not integrally closed. The quotient field of 7.+
7 =3 is Q(/=3) = {x + yv/=3 | x,y € Q). Set o = %(1 + /=3). Clearly o €
Q(v/=3) but a € 7 + Z/—3. Moreover, « is integral over 7 as it satisfies the
equation o> —a + 1 = 0. Hence « is integral over 7. + 7./—3. This shows that
7 + 7./=3 is not integrally closed. Further, by Theorem 4.2.5, we see that 7. +
7./=3 is not a unique factorization domain. For example, 4 has two quite different
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factorizations into irreducibles in 7. + 7~/ —3, namely4 =2 -2 = (1 + /=3)(1 —
v =3).

Example 422 Z+7Z (H*/_) is integrally closed. By Example 3.3.1, 7 +

Z (#) is a unique factorization domain. The assertion then follows from The-

orem 4.2.5.

Theorem 4.2.6 Every algebraic number is of the form a /b, where a is an algebraic
integer and b is a nonzero ordinary integer.

Proof: Let ¢ be an algebraic number. Then there exist ag, ay, ..., a,_; € Q such
that

I Hap 4+ aic+ap=0. 4.2.2)
Let b be the least common multiple of the denominators of ag, ay, . .., a,—;. Thus

beNandba; € Zfori =0,1,2,...,n—1.From (4.2.2) we obtain
(be)" + (ba,_)(be) ™ + - 4+ (0" ay)(be) + (b"ap) = 0.

This shows that bc is a root of a monic polynomial in Z. Thus bc is an algebraic
integer, say a. Then ¢ = a/b, where a € Q2 and b € Z. ]

Example 4.2.3 Let

1 1
Then
s 1 1Y\ 1 11 111
=\ T3s) T3 nws TUysys 3
/1 3 /1 1y 8 1
“\3 3) 2\ 35) T g1 3°
so that

ey 3o
C 3C 31 .

Thus c is an algebraic number. The least common multiple of the denominators of the
coefficients 0/1,1/3,8/81 of ¢2, ¢, 1 respectively is b = 81. Then a = bc = 81c
is a root of

a’ +2187a + 52488 = 0.
Thus

a= 38/3 _ 310/3
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is an algebraic integer. Hence

38/3 _ 310/3
c=———
81

is the quotient of an algebraic integer and an ordinary integer.

10.
11.

Exercises

. Prove that

1

3 (141077 +10%7)

is an algebraic integer.

. Prove that

1023 —1
/=3

is an algebraic integer.

. Letm and n be distinct squarefree integers such thatm = n = 3 (mod 4). Let! = (m, n)

and setm = Imy, n = In; so that (m, ny) = 1. If xo, x1, x», x3 are integers such that
X9 = x3(mod 2), x; = x, (mod 2),

prove that

1
3 (Xo —i—xlﬂ—i-xz\/ﬁ—i-)q\/m]\/ﬂ)

is an algebraic integer.
Express the algebraic number

143 1/3 I3 1/3
9 + 9

as the quotient of an algebraic integer and an ordinary integer.
Express the algebraic number

s L 4+~17 51 —=A/17
5 + 5

as the quotient of an algebraic integer and an ordinary integer.

Let D be a principal ideal domain. Prove that D is integrally closed.

Let m be a nonsquare integer, which is congruent to 1 modulo 4. Prove that the domain
7. + 7Z../m is not integrally closed.

Let 6 be a root of x> 4 6x + 34. Prove that the domain Z + Z6 + Z6? is not integrally
closed. [Hint: Consider ¢ = (1 + 6)/3.]

Let A=Zand B =Q(+v2) = {a+bv2 | a,b e Q). Prove that A® = Z + Z+/2.
Prove that the domain Z + Zi + Zﬁ + 7Zi ﬁ is not integrally closed.

If A C B C C is a tower of integral domains, prove that A® € A¢ € BC.
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13.

14.

15.

1.
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Prove that Z + Z~/2 + Z~/5 + Z+/10is not integrally closed in its quotient field. [Hint:

Consider ( % ) ? .1

Prove that the integral closure of Z + Z~/5 in the field Q(+/5, i) = {a + bi + /5 +
div/5 | a,b,c,d € Q}is

{a+iﬂ|a,ﬁeZ+Z<1+2ﬁ)}.

Prove that the integral closure of Z + Z+/5 in the field Q(v/3, ®) = {a + bw + c/5 +
dwv/5 | a, b, c,d € Q}, where w is a primitive cube root of unity, is

{a+ﬂw|a,ﬁ€Z+Z<1+2ﬁ>}.

Let A and B be integral domains with A € B and B integral over A. If [ is a nonzero
ideal of B, prove that I N A is a nonzero ideal of A.

Suggested Reading
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. N. Bourbaki, Eléments d’histoire des mathématiques, second edition, Hermann, Paris,

1974.

On page 141 it is mentioned that Steinitz showed how a small number of abstract ideas, such
as an irreducible ideal, chain conditions, and an integrally closed ring, could be used to prove
general results characterizing Dedekind rings and that the last two of these ideas had already been
introduced by Dedekind.

Biographies

. The website

http://www-groups.dcs.st-and.ac.uk/ history/

has biographies of both Richard Dedekind (1831-1916) and Ernst Steinitz (1871-1928).
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Algebraic Extensions of a Field

5.1 Minimal Polynomial of an Element Algebraic over a Field

Let K be a subfield of the field C of complex numbers. Let o € C be algebraic
over K (see Definition 4.1.3). As « is algebraic over K, there exists a nonzero
polynomial g(x) € K[x] such that g(o) = 0. We let Ix(«) denote the set of all
polynomials in K[x] having « as a root, that is,

Ix(@) = {f(x) € K[x]| f(a) =0}. (.1.1)

Clearly the set /g (cr) contains the zero polynomial. It is easy to check that /g (c) is
an ideal of K[x]. Moreover, Ik () # (0) as g(x) € Ix(a).

As K is afield, by Theorem 2.2.1(b) we know that K [x] is a Euclidean domain
and thus, by Theorem 2.1.2, a principal ideal domain. Hence there exists p(x) €
K [x] such that

Ix (@) = (p(x)). (5.1.2)
Suppose pi(x) € K[x] is another polynomial that generates /¢ (), that is,
Ix (@) = (p1(x)).
Then
{(p(0)) = (p1(x))
and so, by Theorem 1.3.1, we have
p1(x) = u(x)p(x),
where u#(x) is a unit in K [x]. However, from Example 1.1.18(c), we have
U(K[x]) = K*,
so that

u(x) € K*.

88
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This shows that we may take the polynomial p(x) to be monic, in which case p(x)
is uniquely determined by (5.1.2).

Definition 5.1.1 (Minimal polynomial of « over K) Let K be a subfield of C. Let
a € C be algebraic over K. Then the unique monic polynomial p(x) € K[x] such
that

Ig () = (p(x))

is called the minimal polynomial of a over K and is denoted by irrg (o).

Definition 5.1.2 (Degree of o over K) Let K be a subfield of C. Let a € C be
algebraic over K. Then the degree of o over K, written degk (o), is defined by

degy (@) = deg(irrg (o).
When K = Q we write deg(a) for degQ(a).

Theorem 5.1.1 Let K be a subfield of C. Let o € C be algebraic over K. Then
irrg («) is irreducible in K[x].

Proof: Suppose that irrg () is reducible in K [x]. Then there exist nonzero poly-
nomials r(x) € K[x] and s(x) € K[x] such that
irrg (o) = r(x)s(x) (5.1.3)

with 7(x) ¢ U(K[x]) and s(x) ¢ U(K[x]). Hence r(x) ¢ K and s(x) ¢ K so that
deg r(x) > 1 and deg s(x) > 1. Thus

deg(irrg (o)) = degr(x) + deg s(x) > max(degr(x), degs(x)). (5.1.4)

As o is a root of irrg(«), from (5.1.3) we have r(a)s(o) = 0, so that either
r(a) = 0 or s() = 0. Without loss of generality we may suppose that r(ct) = O.
Hence

r(x) € Ig(a) = (irrg ()
so that
irrg () | r(x)
and thus
deg(irrg (@) < deg r(x),

which contradicts (5.1.4). Hence irrg (o) is irreducible in K[x]. |
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Example 5.1.1 o« = (1+i)/v2 € C is a root of x* +1 € Q[x]. As x* + 1 is
monic and irreducible in Q[x], we have

1 ] 1 ]
g (151 ) =t de () =4

Example 5.1.2 Let K be the field Q(V2) ={a+bv2|a,be Q). Let a =
(l—i—i)/«/ie(C. Then « is a root ofxz—\/ix—kl € K[x]. As x2—=V2x+1
is monic and irreducible in K|[x], we have

: 1+i ) 1+i

5.2 Conjugates of o over K

We define the conjugates of an element over a subfield of C.

Definition 5.2.1 (Conjugates of « over K) Let o € C be algebraic over a subfield
K of C. The conjugates of o over K are the roots in C of irrg (o).

Example 5.2.1 We have from Example 5.1.1 that

. (1+i ‘41
11‘1'@ =X .
V2
As

o= (- () - () 6+ (7)) (4 (55)
V2 V2 V2 V2
the conjugates of (1 +i)/~/2 over Q are

I14+i 1—i —1—i —1+i

V2© V2T V2T V2
Example 5.2.2 We have from Example 5.1.2 that

, 1+i
g /2) <W> =x>—V2x + 1.

As

xz_ﬁxﬂz(x_lg)(x_lg)

the conjugates of (1 + i)/\/z over Q(«/E) are
14+i 1—1i
V2T V2
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Example 5.2.3 Similarly to Example 5.2.2 we find that the conjugates of
(1 4+ 1)/~/2 over the field Q(i) = {x + yi | x, y € Q} are

L4i —1—i
V2§ V2

and the conjugates of (1 +i)/~/2 over the field Q(v/=2) = {x + yv/—=2 | x, y €
Q} are

L4+ —1+i
V2§ V2

Theorem 5.2.1 Let K be a subfield of C. Let « € C be algebraic over K. Then the
conjugates of o over K are distinct.

Proof: Suppose that o has two conjugates over K that are the same. Then irrg (o)
has a root of order at least 2. Let 8 € C be such a multiple root. Then

irrg (o) = (x — B)*r(x), (5.2.1)
where r(x) € C[x]. Differentiating (5.2.1) with respect to x, we obtain
irrg (o) = (x = B)’r'(x) + 2(x — BIr(x).
Thus B is a root of the derivative irrg ()’ of irrg («). As irrg (o) € K[x] we have

irrg (o) € Ix(a) = (irrg ()

so that
irrg (o) | irrg (o)
and thus
deg(irrg () < deg(irrg (@)"),
which is impossible. Hence the conjugates of o over K are distinct. [ |

5.3 Conjugates of an Algebraic Integer

Theorem 5.3.1 If « is an algebraic integer then its conjugates over Q are also
algebraic integers.

Proof: As «a is an algebraic integer it is a root of a polynomial

h(x) =x" + am—lxm_l + -+ aix +ao € Zlx].
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Since h(x) € Q[x] and h(x) = 0 we have h(x) € Ig(a) = (irrg(c)) so that
h(x) = irrg(e)q (x)
for some g(x) € Q[x]. Let 8 be a conjugate of « over Q. Then g is also a root of

irrg(a). Hence h(B) = 0 and so B is also an algebraic integer. [ |

We recall that a monic polynomial f(x) =x" +ax" ' +---+a,_1x +a, €
Z[x] is said to be p-Eisenstein with respect to the prime p if

plai....plan1.plaw p*tfa.
Eisenstein’s irreducibility criterion asserts that if f(x) is p-Eisenstein for some
prime p then f(x) is irreducible in Z[x].
Example 5.3.1 Let o = /2 — /4. Then
P =2-6V2+6V4—4=-2—6(v2—4)=-2—6a

so that o is a root of the monic cubic polynomial x> + 6x + 2 € Z[x] and is thus an
algebraic integer. As x> + 6x + 2 is 2-Eisenstein it is irreducible in Z[x]. Hence

irrg(a) = x° 4 6x + 2.
The other two roots of irrg(a) are
ot/:a)32—a)234, a//:w2\3/§_a)\3/z,

where w is a complex cube root of unity. Thus o’ and o are also algebraic integers.

Theorem 5.3.2 If « is an algebraic integer then
irrg(ar) € Z[x].

Proof: Let the conjugates of the algebraic integer @ over Q be ) = o, 2, ..., .
Then

irrg(a) = (x —ap)(x —az) - (x — o)
=x"—(+ar+ - Fa)x" (g + -+ @pa,)x" 2
+--+(=D'oan - a.

As irrg(a) € Q[x], we have

o+ +a, €Q,
ooy + a0y GQ,

oo o, € Q.
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But, by Theorem 5.3.1, «y, ..., o, are all algebraic integers. Hence, by Theorem
4.1.8,

0 S i e l* AR e S0 R i il I [ o I« S To R 71
are all algebraic integers. Since they are all rational, by Theorem 4.2.4 they must
in fact be ordinary integers. Hence irrg(a) € Z[x]. [ ]
It is an immediate consequence of Theorem 5.3.2 that if @ € C satisfies a poly-
nomial of the form
X"+ x™ N+ aix +ag € Zx]

then the monic polynomial of least degree in Q[x] of which « is a root belongs to
Z[x].
We use Theorem 5.3.2 to prove the following result (compare Theorem 4.2.2).

Theorem 5.3.3 The integral closure of A =7+ 7Z~/—3 in the field B =
QW-3)={a+bs/-3|a,beQ}is

AB=Z+Z<1+7 H’)
5 .

Proof: Leta € Z+ Z (H—F) Then ¢ =m +n (H—F) for some m, n € Z.
Clearly o € B. As « is a root of the monic polynomial

x2 = 2m +n)x + (m2 + mn + n2) € Alx],
« is integral over A and thus belongs to A8, Hence Z + Z <%> C A5,

We now show that A2 C Z + 7 <%> Let o € AB. Clearly a € B so that
o =a + b/—3 for some a, b € Q. Thus « is a root of the monic polynomial

x? — 2ax + (a* + 3b%) € Q[x].
The discriminant of this polynomial is
(2a)* — 4(a* + 3b%) = —12b°
so that it is reducible in Q[x] if » = 0 and irreducible in Q[x] if » £ 0. Hence

ito(@) = X —a, if b =0,
P x2 — 2ax + (@® +3b%), ifb #0.

As o € A8, « is integral over A and thus is a root of a monic polynomial

x4, € Alx].
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Fori =1,2,...,nwehave o; € Asothato; = a; + b;j«/—3 for some a;, b; € 7.
Thus « is a root of the monic polynomial

(" Fax" 4 a,)? 3" 4+ b)) € ZLx).
Hence « is an algebraic integer and so, by Theorem 5.3.2, irrg(«) € Z[x], that is

a ez, itb =0,
2a, a®> +3b*> € Z, ifb#0.

In the former case & = a + b/—3 =a =a+0<@> € Z—I—Z(Hzﬂ). In
the latter case we have a = m /2 forsomem € Z.1f m € 2Z thena € Z and b € Z.
If m € 27 + 1 then 2b € 27 + 1. Hence, in both cases, we see that a = m /2 and
b =m/2+ n, where m, n € Z. Thus

a=%+(%+n>x/—_3=—n+(m+2n)<¥>62+2<$>.

Hence A2 CZ +7Z <1+2£>
This completes the proof that

AB=Z+Z<L _3>
> .

5.4 Algebraic Integers in a Quadratic Field

In this section we determine the algebraic integers in a field Q(«) obtained by
adjoining aroota(e C) of anirreducible quadratic polynomial x> + ax + b € Q[x]
to Q; that is, Q(w) is the smallest subfield of C containing both Q and «. We note
that o ¢ Q as x? + ax + b is irreducible in Q[x]. Clearly

ag+aa+---+auo™
Q) =
by + bia + - - - + b

| m, n (nonnegative integers),
ag, ...,am, by, ..., b, € Q, bo+b10{+--'+bn0ln;é0}.
Asa? = —b — aa, we obtain recursively that ok = cp + di (k=2,3,...),where

Ck, dk € Q Thus

Qo) = {% | eo.e1. fo. fi € Q. (fo. f1) # (O, 0)}.

As f} —afofi + bf? # 0 for (fo, f1) # (0,0) and

€o+€10t:(eofo—aeofl—l-belfl) ( e1fo—eofi )a
Jo+ fix 1§ —afofi + bft & —afofi +bft)
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we deduce that

Q) ={x +ya | x,y € Q},

where a? + aa + b = 0. The field Q(«) is called a quadratic field or a quadratic
extension of Q. Different quadratic polynomials, for example x> + x + 1 and x? +
6x + 12, can give rise to the same quadratic field K. Our next theorem gives a
unique way of representing a quadratic field.

Theorem 5.4.1 Let K be a quadratic field. Then there exists a unique squarefree
integer m such that K = Q(/m).

Proof: Suppose that K = Q(«), where « is a root of the irreducible polynomial
x% 4+ ax + b € Q[x]. Then « = «; or ay, wWhere

—a+ a2 —4b —a —~/a*>—4b
, o :

2 =

o) =

2 2
As
atay=—aecQQ
we have
Q(a1) = Qer2)
so that

K =Q(a) =Qa)) =Q = Qo),

<_a+¢m>
2

where ¢ = a®> — 4b € Q is not the square of a rational number as x> 4 ax + b is
irreducible in Q[x]. Now

c=p/q,

where p, g € 7 are such that

qg>0,(p,q =1

Let r? denote the largest square dividing pg. Then pg = r>m, where m is a square-
free integer (# 1) and

K=Q(d)=Q (@) — QU/FD) = QW/7m) = Qr /) = Q).

Now let n be another squarefree integer such that K = Q(./n). Hence

Q(/m) = Q(/n)
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and so

Vm =x+yJ/n
for some x, y € Q. Squaring we obtain
m = x% + ny? + 2xy/n.
If xy # 0 then

m — x> — ny?

«/EZT,

contradicting that ./n ¢ Q as n is squarefree. Hence xy = 0. If y = 0 then

Vm = x,
contradicting that \/m ¢ Q as m is squarefree. Thus x = 0 and /m = y./n so that
m=yn.

As m is squarefree, we deduce that y?> = 1 so that m = n. Hence m is uniquely
determined by K. [ |

We next determine the algebraic integers in the quadratic field K = Q(/m) =
{a +Dby/m | a, b € Q}, where m is a squarefree integer. The set of algebraic integers
in K is denoted by Ok.

Theorem 5.4.2 Let K be a quadratic field. Let m be the unique squarefree integer
such that K = Q(y/m). Then the set Ok of algebraic integers in K is given by

7+ Z/m, ifm 2 1 (mod 4),

Z+Z<1+2ﬁ>, ifm =1 (mod 4).

Ok =

Proof: Ttis easily checked that the elements of Z + Z./m if m # 1 (mod 4) and of

7+ 7 ( IJE/% ) if m = 1 (mod 4) are algebraic integers in K = Q(y/m). Thus

7 + ZJm, if m % 1 (mod 4),

1
+£ﬁﬁ>, it m = 1 (mod 4).

Or D
k= Z+Z(

We complete the proof by showing the inclusion in the reverse direction. Let o €
Ok.Then @ € K and so &« = a + by/m for some a, b € Q. Thus « is a root of the
monic polynomial

x2 = 2ax + (a*> — mb?) € Q[x].
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The discriminant of this polynomial is
(2a)* — 4(a* — mb*) = 4mb*
so that it is reducible in Q[x] if » = 0 and irreducible in Q[x] if » £ 0. Hence

iro(@) = X —a, ifb =0,
P A2 = 2ax + (@® — mb?), ifb£0.

As o is an algebraic integer, by Theorem 5.3.2 we have irrg(«) € Z[x] so that

a €7, if b =0,
2a, a* —mb* € 7, if b #0.

If b =0 we have @« = a € Z C Z + Z+/m. Now suppose that b # 0. If 2a € 27
then a € Z and so mb?* € 7Z. Since m is squarefree we see that b € Z. In this case
o =a+bymeZ+7Zym. If 2a € 27+ 1 then as 4(a*> — mb*) € Z we deduce
that 4mb?* € Z. As m is squarefree we have 2b € Z.If 2b € 27 then b € Z and so

a’? = (a*> — mb*) + mb* € Z,
contradicting that 2a € 2Z + 1. Hence 2b € 2Z + 1. Thus a = 2u + 1)/2 and
b= Qv+ 1)/2, where u, v € Z. Then
1
a’> —mb* = Z((2u + 1?2 —mQu+ 1%

so that
—1
mT=u2+u—m(v2—|—v)—(a2—mb2)eZ.

Hence m = 1 (mod 4) and

2 1 2v+1

a =a+bym= u2—|— + v2+ vm
14+ /m
=(u—v)+(2v+1)< > >

eZ+Z<1+ﬂ>.

2

This completes the proof of the reverse inclusion and thus the proof of the
theorem. u

The quadratic field K = Q(,/m), where m is a squarefree integer, is said to be
real if K € R and imaginary if K € R. Clearly K is real if m > 0 and imaginary
if m < 0. We close this section by determining the unit group U(Og) when K is
an imaginary quadratic field.
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Theorem 5.4.3 Let K be an imaginary quadratic field. Then

(£1, +i} =~ Zy, if K = Q(W/—1),
U(Og) = { {£], +o, +0?} ~ Zs, if K = Q(/-3),
{1} ~ Z,, otherwise,

where w = (—1 4+ /=3)/2.

Proof: If K = Q(+/—1) then, by Theorem 5.4.2, we have Ox = Z 4+ Z+/—1 =
Z + Zi,and U(Og) = {£1, i} follows from Exercise 1 of Chapter 1.

If K = Q(+/—3) then, by Theorem 5.4.2, we have Ox =Z + Z (#) =
7 + Zw, and U(Og) = {*1, £, +w?} follows from Exercise 2 of Chapter 1.

If K is an imaginary quadratic field # Q(+~/—1), Q(+/—3) then by Theorem

5.4.1 K = Q(4/m) for a unique negative, squarefree, integerm # —1, —3.1fm # 1
(mod 4) then Og = Z + Z./m and U(Og) = {£1} by Exercise 3 of Chapter 1 as

m<—1.1f m = 1(mod 4) then Og = Z + Z (%) by Theorem 5.4.2 and
U(Og) = {£1} by Exercise 4 of Chapter 1 asm < —3. n

5.5 Simple Extensions

Definition 5.5.1 (Simple extension) Ler K be a subfield of C and let o € C. Let
K(a) = ﬂ F,
F

aeF
KcFccC

where the intersection is taken over all subfields F of C, which contain both K and
a. The intersection is nonempty as C itself is such a field. Since the intersection of
subfields of C is again a subfield of C, K () is the smallest field containing both
K and a. We say that K (@) is formed from K by adjoining a single element . A
subfield L of C for which there exists a € C such that L = K () is called a simple
extension of K.

Clearly if ¢ € K then K(a) = K.

For K CCanda € C let

bo+b s+ brak
I = 0+ 10l+ + 143 |k,h GNU{O}, bOa abkaCOa achhe K? ]
co+cra+ -+ cpah cotcio+---+ca”#0

Then L is a subfield of C that contains both K and «. Moreover any subfield of C
containing both K and o must contain all the elements of L. Hence L is the smallest
subfield of C containing both K and «, so that L = K ().
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We are interested in simple extensions K («) of K when « is algebraic over K
and the minimal polynomial of « over K has degree n. By the preceding remarks,
each element 8 of K () is of the form

f(a)
IB =
g(a)
where
fx) =by+bix + -+ bx* € K[x],
gx)=co+cix+ - +epx" € K[xl,
and

gla) # 0.
This implies that irrg () 1 g(x) and, since irrg («) is irreducible in K[x], that
(irrg (@), g(x)) = K[x].
Thus we can find polynomials m(x), n(x) € K[x] such that
m(x)irrg (o) + n(x)g(x) = 1.

As irrg (o) has the root o, we see that

n(a)gla) =1
so that
1 J—
s "
and thus
B = ACH = fla)n(a).
g(@)

Hence each element 8 of K («) can be expressed as a polynomial in v with coeffi-
cients in K, say

B =dy+dia+--+dd,
where / is a nonnegative integer and dy, d;, ..., d; € K. Let
h(x) =dy+dyx + -+ dix' € K[x],

sothat 8 = h(x). As K is afield we can divide i (x) by irrg (o) to obtain polynomials
u(x) € K[x] and v(x) € K[x] such that

h(x) = u(x)irrg (o) + v(x), degv(x) < deg(irrg(e)) = n.
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Then, as irrg (o) has the root o, we have
h(er) = v(a),
and so
B = v(a).
Hence every element of K («) is of the form
ap+ aroe + -+ ap_10"
where ag, ai, ..., a,—1 € K and n = deg(irrg («)). Thus we have proved the fol-
lowing result.
Theorem 5.5.1 Let K be a subfield of C. Let « € C be algebraic over K. Let
n = deg(irrg (). Then
K(o)={ao+are~+ -+ ap_1a" ' | ao,...,a,—1 € K}.
Theorem 5.5.1 shows that K («) can be viewed as an n-dimensional vector space

over K with basis {1, , ..., a""'}. The dimension n is called the degree of the
extension K («) over K.

Definition 5.5.2 (Degree of the extension K («) over K) Let K be a subfield of C.
Let a € C be algebraic over K of degree n (so that n = degg (a) = deg(irrg («))).
The degree of the extension K («) over K, written [K (&) : K], is defined by

[K(x) : K] =n.
Example 5.5.1 Let m be a squarefree integer. Then /m € C is a root of the

polynomial x> —m € Q[x]. Now x> —m = (x — /m)(x + /m), where +/m ¢
Q as m is squarefree, so that x% — m is irreducible in Q[x], and thus

irrg(y/m) = x* —m.
By Theorem 5.5.1 we have
Q(v/m) = {ag + ai/m | ap, a € Q}

and

[Q(Wm): Q] =2,
so that Q(\/m) is a quadratic extension of Q.

Example 5.5.2 Let
a=0G+VIDP+GE-VID eR.
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Then
> =G+ V17)+ 36+ V11)P5 = V113
+ 36+ V1D'PGE = V1D + (5= V17)
=104 35+ V115 = V1135 + V1D + (5 — V17)!13)
=10+ 3((5 + V17)(5 = V17) P«
=10+3 8"
=10 + 6«,

so that a is a root of the monic polynomial x> — 6x — 10 € Z[x). Hence o is
an algebraic integer. Moreover, as x> — 6x — 10 is 2-Eisenstein, it is irreducible.
Hence

irrg(ar) = x? = 6x — 10.
Thus, by Theorem 5.5.1,
Qo) = {ao + ma + axa’ | ag, a1, a; € Q}
and
[Q(a) : Q] = deg(irrg(w)) = 3,
so that Q(«) is a cubic extension of Q.
Example 5.5.3 Let p be a prime number and let w = e*™'/? € C. Clearly

i = 1, so that w is a root of the monic polynomial x? — 1 € Z[x]. Thus @
is an algebraic integer. In Z|x] we have

ol =e

P —l=@—-D@P ' +xP2 4. . x+1).

Aswisnotarootof x — 1, it must be aroot of fp(x) = xP~1 + XP2 4 x+ L
We show that f,(x) is irreducible in Z[x]. We have

_GADP=1 o (P 2 (P 3, p
f’”(x+1)_(x+1)_1 = x? +<1>x" +<2>x" + +<p_1>.

As p is a prime the coefficients (f) i=12,....,p—1Dof f(x +1) are all di-
visible by p. Moreover, the constant term (p’il) = p is not divisible by p*. Hence
fp(x + 1) is p-Eisenstein and therefore irreducible in Z[x]. Thus f,(x) is irre-
ducible in Z[x), and thus in Q[x], proving that

irrg(@) = x"' +xP 24 x 1
and

deg(irrg(w)) = p — 1.
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Thus Q(w) is an extension of Q of degree p — 1. A field such as Q(w), which is
formed by adjoining a root of unity to Q, is called a cyclotomic field.

Definition 5.5.3 (Cyclotomic field) If K is a subfield of C such that K = Q(w)
for some root of unity w then K is called a cyclotomic field.

Example 5.5.4 The quadratic field Q(v/—3) ={a + b/—3 | a,b € Q} is a cy-
clotomic field as Q(v/—3) = Q(w), where w is a complex cube root of unity.

5.6 Multiple Extensions

We now consider the field obtained by adjoining several elements o, ..., o €
C (k = 2) to a subfield K of C. We denote this field by K(«y, ..., o). It is the
smallest subfield of C that contains both K and the «;; that is, it is the intersection
of all the subfields of C containing both K and the «;. The field K(«y, .. ., o) is
called a multiple extension of K. Clearly the order of oy, ..., o} does not matter.
The field K («y, ..., o) can be regarded as the field obtained by a succession of k
single adjunctions, namely,

K(ayp, az) = K(ap)(a2),
K(ay, az, asz) = K(ay, az)(a3),

K(ay, o, ..., 0p) = K(ay, 02, ..o, o) ().
Wheneachw; (i = 1,2, ..., k)isalgebraic over K, it is an important result that the
multiple extension K (¢, ..., &) is in fact a simple extension K («) for a suitable

a € C that is algebraic over K. We prove this in Theorem 5.6.2 after treating the
case k = 2 in Theorem 5.6.1.

Theorem 5.6.1 Let K be a subfield of C. Let « € C and B € C be algebraic over
K. Then there exists y € C that is algebraic over K such that

K(a, B) = K(y).
Proof: Let
p(x) = irrg (o), q(x) = irrg(B).
Then
px) = —a) - (x —am) € K[x],
where

o) =o,0,...,0,
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are the conjugates of @ over K, and
g(x)=(x—p1)---(x — Bu) € Klx],
where

:31::8’/327---’,311

are the conjugates of § over K. By Theorem 5.2.1 we know that the «; are distinct,
as are the B;. The set

oy — O
S:{ |r,s=1,...,m;t,u:l,...,n;t;ﬁu}
ﬂI_IBu

consists of a finite number of complex numbers. We choose a rational number ¢
different from all the members of S. With this choice the mn elements

a+cBii=1,....m;, j=1,...,n)
are all distinct. Let

y=ar+chi=a+cp

and set
Ky =K().
We also let
pi1(x) = p(y —cx) € Ky[x].
As
pi(B)=ply —cp) =pl@)=0
and

q(B)=0

we see that 8 is a common root of p;(x) and g(x). We show next that these poly-
nomials have no other common roots. Let A € C be a common root of p;(x) and
q(x) with & # B. As X is aroot of g(x) different from 8, we have A = 8, for some
j with 2 < j < n. Then, as

ply —cBj) = pi1(B;) =0,
y — c¢B; must be equal to one of a1, ..., @, say ox. Hence
ar+cBj =y =a+ch

so that
o] — O

Bi — B

CcC =

’
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contradicting the choice of c. Now let h(x) = irrg, (8). Then h(x) | pi(x)and h(x) |
q(x). Since p;(x) and g(x) have exactly one common root in C, we must have
deg h(x) = 1. Thus h(x) = x + § for some 6 € K;. Now O = h(8) = B + § so that
B=—-6€ K. Thena = y — ¢ € K;. This shows that

K(a, B) € K1 = K(y).
Since y = o + ¢ € K(a, B) we have

K(y) € K(a, B)
and thus

K(a, p) = K(y). u

Theorem 5.6.2 Let K be a subfield of C. Let a1, a3, . . ., &, be algebraic over K.
Then there exists a € C algebraic over K such that

K(a19a25 9an)= K(a)

Proof: The result is trivial if n = 1, so we may suppose that n > 2. By Theo-
rem 5.6.1 there exists B8, € C algebraic over K such that K(a, az) = K(85).
Again by Theorem 5.6.1 there exists B3 € C algebraic over K such that
K(ay, an, a3) = K(B2, @3) = K(B3). Continuing in this way, we obtain a finite
sequence B, Ba, ..., B, of complex numbers, each algebraic over K, such that

Ko, a,...,0,) = K(B2,a3,...,0,)
= K(ﬂ3va4’ N "7an)
= K(Bu—1,0tp)
:K(,Bn)- ]

If K is a subfield of C, and « € C and B € C are algebraic over K, the proof
of Theorem 5.6.1 shows how to find y € C algebraic over K such that K («, §) =
K (y). We have only to find a rational number ¢ such that the elements o’ + ¢f’
are all distinct as o’ ranges over the conjugates of « over K and B’ ranges over the
conjugates of 8 over K. Then K («, B) = K(« + c¢B). We illustrate this in the next
two examples.

Example 5.6.1 We express Q(~/2, v/3) as a simple extension. The conjugates of
V2 over Qare 2 and —/2. The conjugates of«/g over Q are /3 and —+/3. The
four numbers

V243, V23, V243, —V2-4/3
are all distinct, so by Theorem 5.6.1 we have

Q(V2,+/3) = QW2 + V3).
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Set
a=+2++3eR

Squaring a we obtain

> =5+ 2\/6,
so that

a? —5=26.
Squaring o> — 5 we get

ot —100* 425 = 24.
Thus « is a root of the monic quartic polynomial
fx)=x*—10x2+1 € Z[x].

This shows that o is an algebraic integer.

We now show that f(x) is irreducible in Z[x] and thus in Q[x]. Since f(+1) =
—8 # 0, f(x) has no linear factors in Z[x). Thus if f(x) factors in Z[x], it must
factor as a product of two quadratic polynomials in Z[x], say,

x* —10x% + 1 = (x* + ax + b)(x* + cx + d),

2

where a, b, ¢, d € 7. Equating coefficients 0fx3, x*, x, and 1, we obtain

a+c=0,
b+ac+d=-10,
bc +ad =0,
bd = 1.

From the first equation we have c = —a, so the second equation becomes
b+d+10=a’

From the last equation we have b = d = %1, so that b+ d = £2. Hence a* =8
or 12, which is impossible. This proves that x* = 10x2 + 1 is irreducible in Qlx]
and so

irrg(v2 4+ /3) = x* — 10x%2 + 1
and

[Q(v2,v/3): Q] = [QW2 ++/3): Q] = 4.

Example 5.6.2 We express Q(+/3, v/2) as a simple extension. The conjugates of
3 are /3 and —~/3. The conjugates of J2 are § 2, a)f/z and w*~/2, where w is
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a complex cube root of unity. The six numbers

V3432, =342, V34 V2,
—x/g—l—a)f/i, \/g—i-a)z\}@, —x@—i—wzf@

are all distinct, so by Theorem 5.6.1 we have

Q(W3,v2) = QW3 +V2).

We conclude this chapter by proving the very important fact that every element
of a simple extension K («) of a subfield K of C, where « is algebraic over K, is
algebraic over K.

Theorem 5.6.3 Let K be a subfield of C. Let a € C be algebraic over K. Then
every element 8 of K(«) is algebraic over K, and the degree of B over K is less
than or equal to the degree of o over K.

Proof: Let B € K(a), where « is algebraic over K. Let n = deg(irrg («)). By The-
orem 5.5.1 each of the powers ,Bj, j=0,1,...,n, of B can be written in the
form

n—1
j k
B = E ajro’”,
k=0
where each aj; € K. The homogeneous system of linear equations

D apx;=0,k=01,....n—1,

Jj=0

has a solution (xg, X, . .., x,) € K"t with not all of the x; equal to zero, as the
number of unknowns is greater than the number of equations. Then

n n n—1 n—1 n
' k k
DB =)y apd =) a"y apx; =0,
j=0 j=0 k=0 k=0  j=0
proving that g is algebraic over K and that the degree of 8 over K is less than or
equal to the degree of o over K. |
Exercises

1. Prove that the set I () defined in Section 5.1 is an ideal.
2. Prove that x* + 1 is irreducible in Q[x] (see Example 5.1.1).
3. Prove that x> — /2x + 1 is irreducible in Q(+/2)[x] (see Example 5.1.2).
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. Determine
. 141
IITQ(i) f
and
) 1+
Mowv=2\" 75 )

. Prove that [Q(+/3 4+ v/2) : Q] = 6 (see Example 5.6.2).
. Prove that Q(v/2, i) = Q(+/2 +i).
. Prove that Q(+/2, iv/2) = Q(v/2 + iv/2).

. Find the minimal polynomial of 2

173 + w over Q(2!/3), where w is a complex cube root

of unity.

. Determine o € C such that

Q(W2,v/3,+/5) = Q(a).
Prove that
[Q(W2,+/3,4/5): Q] = 8.

Determine the conjugates of 3'/3 — 32/3,

Let @ € C be aroot of x> + 11x + 4 = 0. Prove that [Q(9) : Q] = 3.

Prove that (—6 + 92)/2 is an algebraic integer in K = Q(0), where 03 +110 —4 =0.
Letd € Cbearootof x> +x + 1 =0.If 0 ¢ Q(+/—3), what is irrgf?

Let w = ¢*™/°. Prove that

w=%(\/§—1+i\/1o+2f5).

Let @ = ¢>™'/>. Show that /5 € Q(w) by expressing +/5 in the form
V5 = aw + bo* + co’® + do*

for suitable integers a, b, ¢, d.
Prove that

%(i\/10+2«/§+2i\/10—2x/§>

is an algebraic integer in Q(e?™'/3).

Determine the conjugates of
125 4 5415 _ 144155 4 648!/

over Q.
Let m be a squarefree integer = 1(mod 4). Let A =7+ Zy/m and

B = Q(y/m). Prove that
AB =747 <¥) :

Let 6 be a nonreal algebraic number. Prove that the complex conjugate 6 of 6 is one of
the conjugates of 0 over Q.
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21. Let p be an odd prime. Let a and ¢ be integers with a = 1 (mod 2) and (02%46) =—1.

Prove that x* + ax? 4+ px + c is irreducible in Z[x].
22. Use Exercise 21 to prove that [Q(9) : Q] = 4, where 0 is a root of x4+ Tx% 455 +
4=0.
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6
Algebraic Number Fields

6.1 Algebraic Number Fields

An algebraic number field is a field K that is obtained from the field of rational
numbers (Q by adjoining a finite number of algebraic numbers.

Definition 6.1.1 (Algebraic number field) An algebraic number field is a subfield
of C of the form Q(ay, ..., ay,), where ay, . .., a, are algebraic numbers.

Example 6.1.1 Q(\/Q, V3, ﬁ); QW1 +1,0), where 6 is a root of the polyno-
mial x> —x + 1; and Q(G/l +/2+ Q/l — V2,453 + «3/5) are all examples of

algebraic number fields.

By Theorem 5.6.2 an algebraic number field can be obtained by adjoining a
single algebraic number 6 to Q.

Theorem 6.1.1 If K is an algebraic number field then there exists an algebraic
number 0 such that K = Q(6).

Proof: This is the special case K = Q of Theorem 5.6.2. [ ]

In fact the algebraic number 6 in Theorem 6.1.1 can always be taken to be an
algebraic integer.

Theorem 6.1.2 If K is an algebraic number field then there is an algebraic integer
0 such that K = Q(0).

Proof: Let K be an algebraic number field. By Theorem 6.1.1 there is an algebraic
number ¢ such that K = Q(¢). By Theorem 4.2.6 we have ¢ = 6 /b, where 6 is an
algebraic integer and b is a nonzero rational integer. Thus

K = Q(¢) = Q6/b) = Q). u

109



110 Algebraic Number Fields

Example 6.1.2 We show that the algebraic number field Q(2,4/3) is QO),
where 8 = /2 + /3. This was done in a different way in Example 5.6.1. Clearly
Q) € Q(2,3). As

91,
ﬁ_—59+§9 e Q)

and

11,
«/5_?9—59 c Q),

we see that Q(x/2, v/3) € Q(v/2 + +/3). Hence Q(v/2, v/3) = Q(v/2 + V/73).

The form of the elements in an algebraic number field follows immediately from
Theorem 5.5.1. We have

Theorem 6.1.3 Let K = Q(0) be an algebraic number field, where 0 is an algebraic
number. Let the degree of the polynomial irrg(0) be n. Then every element of K is
expressible uniquely in the form

o1l + - 410"
where co, C1, ..., i1 € Q, and every such quantity co+ c160 +--- + Cp10"!

(co, €1y ..y Cho1 € Q) belongs to K .

Clearly K is an n-dimensional vector space over Q and the degree of K over Q
is n. K is called a quadratic field if n = 2, a cubic field if n = 3, a quartic field if
n = 4, and a quintic field if n = 5.

Definition 6.1.2 (The set Og) The set of all algebraic integers that lie in the
algebraic number field K is denoted by Ok, that is,

O =QNK.

Theorem 6.1.4 Let K be an algebraic number field. Then O is an integral domain.

Proof: By Theorem 4.1.8 we know that €2 is an integral domain (C C). Hence, as
K(C C)isafield, Ox = 2N K is an integral domain. [ |

Definition 6.1.3 (Ring of integers of an algebraic number field) Ok is called
the ring of integers of the algebraic number field K .

Example 6.1.3 In Theorem 5.4.2 we determined the ring of integers Ok of a
quadratic field K . Taking m = —1 and m = —3 in Theorem 5.4.2, we see that

Og=n =Z+2Zv-1
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and

1+ 3

Thus the Gaussian domain Z + Z+/—1 (Example 1.1.2) is the ring of inte-
gers of the quadratic field Q(+v/—1) and the Eisenstein domain Z + Zw = Z +

Z (‘1%@) =7Z+7 (L‘F) (Example 1.1.3) is the ring of integers of the

quadratic field Q(v/—3).

When K is not a quadratic field, it is a more difficult problem to determine O .
We determine Ok for some algebraic number fields of degree > 2 in Chapter 7.
Indeed it is an area of current research to determine Ok explicitly for certain
classes of algebraic number fields K. See the references at the end of Chapter 7 in
this connection.

Theorem 6.1.5 If K is an algebraic number field then the quotient field of Ok is
K.

Proof: Let F denote the quotient field of Ok, and let« € F. Then o = b/c, where
b e Ok and ¢ € Og withc #0. As Og € K we have b € K and ¢ € K so that,
as K isafield,« = b/c € K.Hence F C K.

Now let « € K. By Theorem 4.2.6 we have o = b/c, where b is an algebraic
integer and c is a nonzero rational integer. Clearly b = ac € K so b € Og. Thus
o =b/ce F.Hence K C F.

This proves that F = K, so the quotient field of Ok is K. u

Theorem 6.1.6 If K is an algebraic number field then Ok is integrally closed.

Proof: By Theorem 6.1.5, the quotient field of Ok is K. Let § € K be integral
over Ok. As Ok is integral over Z, by Theorem 4.1.11 8 is integral over Z, that
is, B is an algebraic integer in K. Hence 8 € Ok . This proves that Ok is integrally
closed. |

For an algebraic number field K, we showed in Theorem 6.1.2 that there is an
algebraic integer 6 such that K = Q(0). As6 € K and 0 € Q2 we see thatd € QN
K = Og.We now wish to show that 6 can be taken from any given nonzero ideal of
Ok (Theorem 6.1.8). To prove this we make use of the next result (Theorem 6.1.7),
which asserts thatif / is anonzero ideal of Ok then I N Z always contains a nonzero
integer.

Theorem 6.1.7 Let K be an algebraic number field. Then every nonzero ideal in
Ok contains a nonzero rational integer.
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Proof: Letl # {0}beanidealin Og.Choose o € I witha # 0. Asa € I C Ok, o
isan algebraic integer. Letirrg(a) = x" + bix"~' 4+ ...+ b,. We show that b, # 0.
If n =1 then irrg(a) = x + by sothate + by = 0. Hence by = —a #0.If n > 2
then b, # 0 as irrg(e) is irreducible in Q[x] by Theorem 5.1.1. By Theorem 5.3.2

we know that irrg(«) € Z[x] as « is an algebraic integer. Hence by, ..., b, € Z.
Thus b, = —a”" — bja"~! — ... — bja € I. Hence b, is a nonzero rational integer
in/. |

Theorem 6.1.8 Let K be an algebraic number field. Let I be a nonzero ideal of
Ok. Then there exists y € I such that K = Q(y).

Proof: By Theorem 6.1.2 there exists 6 € Ok such that K = Q(6). By Theorem
6.1.7 there exists c € ZN1 with ¢ #0. Set y =c6. As 6 € Ox and c € [ we
have y € I.Moreover,asc € Z \ {0}, wehave K = Q(0) = Q(c8) = Q(y), where
yel. |

6.2 Conjugate Fields of an Algebraic Number Field

Let K be an algebraic number field. In this section we begin by determining the
number of monomorphisms ¢ : K — C. For example, if K = Q(\/E) then

al(x+y«/§):x+y\/§ x,yeQ
and
(X +yV2) =x —yV2 (x,y € Q)

are two monomorphisms from K to C.

Theorem 6.2.1 Let K be an algebraic number field of degree n over Q. Then there
are exactly n distinct monomorphisms o, : K — C (k=1,...,n).

Proof: By Theorem 6.1.1 there exists an algebraic number 6 € K such that K =
Q(0). Let p(x) = irrg(#). Then

deg p(x) = deg (irrg(#)) = [Q®) : Q] = n,

so that 6 has n distinct conjugates over QQ (Theorem 5.2.1), say 6, = 6,0, ..., 6,,
and

p(x) =(x —01)(x —6) - (x —6p).

By Theorem 6.1.3 each element « of K can be expressed uniquely in the form o =
ap+ a0 +---+a,_ 16", where ap, ay,...,a,-1 € Q, so, fork =1,2,...,n,
we can define

oy : K — C
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by
on(ao +aif + - +a,_10"") = ag + a1 + - - + a6

We show that o} (k = 1,2, ..., n) is a field homomorphism.
First we show that o, (k = 1,2, ..., n) is additive. Let o, 8 € K. Then

a=ao+af+- - +a, 0"

and
B=0bo+bi0++b,_16"",
where ag, ay, ..., a,_1, by, by, ..., b,_1 € Q. Hence
o+ B = (a0 +bo) + (@1 + b0 + -+ + (@1 + by-)0"!
and so

on(a + B) = (ao + bo) + (@ + b)) + - - -+ (@n_1 + bp)O "
=@+ a6+ + an719k_1) + (o + D10 +---+ bn719,:l_1)

= or(a) + ox(B).
Thus oy, is additive.
Next we show thatoy (kK = 1, 2, ..., n) is multiplicative. With the same notation,

we let

f@)=ap+ax + - +a,_1x"" € Qlx]
and

g(xX) =bo+bix + -+ b,_1x" ' € Qlx]
so that

fO)=a, g)=8.

Dividing f(x)g(x) by p(x) in Q[x], we obtain a quotient g(x) € Q[x] and a re-
mainder r(x) € Q[x] such that

J(0)g(x) = p(x)g(x) +r(x), degr(x) < deg p(x) = n.
Hence, as p(9) = 0, we have
af = f(0)g(0) = p(0)q(0) +r(0) =r0).
Thus, as p(6;) = 0, we have
or(aB) = ox(r(0)) =) = pOr)q6r) + 1) = (68O = or(a)or(B),

so that o} is multiplicative.
Hence we have shown that oy (k = 1, 2, ..., n) is a homomorphism.
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We now show that o (k =1,2,...,n) is injective so that it is a monomor-
phism. Suppose « =ap+ a0 +---+a,_16" ' €K and B =by+ b6 + -+
b,_10""! € K are such that o;.(«) = 0%(8). Then we have

ao+aib + -+ an 100 =bo+ b6+ -+ b6
so that 6y is a root of the polynomial
(a0 — bo) + (a1 — b)x + -+ + (@u—1 — by_1)x""" € Q[x]

of degree < n. As the deg(irrgb;) = deg p(x) = n, this polynomial must be the
zero polynomial so that

ag—by=a—by=---=a,_1—b,_1 =0
that is,
ap =bo, ay =by,...,a,-1 = b,_1,
and so
a=ayp+al+ - -+a,_ 0" ' =by+b0+---+b,_10" =8,

proving that oy is injective.
Finally, let A : K — C be a monomorphism. Then

p(A(O)) = A(p(B)) = A(0) =0

so that

A0) = 6,
for some k € {1, 2, ..., n}. Thus

A(O) = or(9)
and so
Mao+ a0+ +a, 10" =ao+arb + -+ a6
=op(ag + a0 + - +a,_10"")

for all ap, ay, ..., a,—1 € Q, proving that

A = oy.
Hence {o; | k = 1,2, ..., n} comprise all the monomorphisms from K toC. H

Fork =1,2,...,n, wehave

range o = ox(K)
= {Uk(ao +a10 + e + an—len_l) | ap, Ay, ...,4a,_1 € Q}
=f{ao+aibp +---+a, 16" |ag,ai,...,a,-1 € Q}

= Q6
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so that
o+ Q) > Q)
is an isomorphism. Hence all the fields Q(6;) (k = 1, 2, ..., n) are isomorphic.
Definition 6.2.1 (Conjugate fields of an algebraic number field) Let K be an
algebraic number field. Let 6 be an algebraic number such that K = Q(6). Let
0, =0,6,,...,6,
be the conjugates of 0 over Q. Then the fields
Q1) =Q®) = K, Q02), ..., QO)
are called the conjugate fields of K .
By the remarks preceding Definition 6.2.1 each of the conjugate fields of K is
isomorphic to K.
It appears from the definition that the conjugate fields of K may depend upon

the choice of algebraic number 6 such that K = Q(6). We show that this is in fact
not the case.

Theorem 6.2.2 Let K be an algebraic number field. Let 6 be an algebraic number
suchthat K = Q(6).Let0; = 0, 0,, ..., 0, bethe conjugates of 0. Let ¢ be another
algebraic number such that K = Q(¢). Let ¢y, c1, ..., cn_1 € Q be such that

¢=co+cif+-+c,10" "
Fork=1,2,...,nset
G =co+ 1O+ + 1O
so that ¢1 = ¢. Then ¢, 2, . . ., ¢, are the conjugates of ¢ over Q, and
QOr) =Q(dr), k=1,2,...,n.

Proof: Let
fO == =]]C -+t + -+ € Kilxl.
k=1 k=1

where K is the algebraic number field given by

K =Q@0, 0, ...,6,).

Clearly Q € K C K C C. The coefficients of f(x) are (up to sign) the elementary
symmetric polynomials in co + ¢16 + - -+ + cn,10,f_l (k=1,2,...,n)andso are
polynomials with rational coefficients in the elementary symmetric polynomials in
01,6,,...,0,.Since 0, +6,+---+6,, 6,6b+---+6,_16,, ..., 616,---6, are
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(up to sign) the coefficients of irrg(f) € Q[x], they are all rational numbers, and so
the coefficients of f(x) are all rational. Hence f(x) € Q[x]. As f(¢) = 0 we have
irrg(¢) | f(x), say f(x) = irrg(¢)g(x), where g(x) € Q[x]. Then

n = deg f(x) = deg(irrg(¢)g(x)) = deg(irrg(¢)) + deg g(x).

Now deg(irrg(¢)) = [Q(¢) : Q1 = [K : Q] = n, so that deg g(x) = 0; that is,
g(x) € Q, say g(x) = c. Since f(x) = c irrg(¢) and both f(x) and irrg(¢) are
monic polynomials of degree n, we have ¢ = 1. Thus f(x) = irrg(¢). Hence
o1, P2, ..., ¢, are the conjugates of ¢ over Q.

Finally, fork = 1,2, ..., n, we have

Q) = Q(co + 16 + -+ 4+ o161 S Q6))
and
[Q(¢r) : Q1 = [Q®)) : Q] (= n)

so that

Q) =QB1), k=1,2,...,n. ]

6.3 The Field Polynomial of an Element of an Algebraic Number Field

Let K be an algebraic number field of degree n over Q. Let 6 € K be such that
K =Q6).Leto; =6, 6,,...,0, be the conjugates of 6 over Q.
For o € K there exist unique rational numbers ¢y, ¢y, ..., ¢,—1 such that

a=co+ci0+-+cy_ 6"
(see Theorem 6.1.3). Fork = 1,2, ..., n we set
oy =co+c1bp+---+ Cn_leg_l € Q6y).
Definition 6.3.1 (Complete set of conjugates of « relative to K) The set of al-
gebraic numbers {a) = o, oy, ..., o} is called a complete set of conjugates of o

relative to K . More briefly they are called the “K -conjugates of a” or the “conju-
gates of o relative to K"

Example 6.3.1 Let K = Q(0), where 8 = /2 + /3. From Example 5.6.1 we see
that

irrg(0) = x* — 10x* + 1.
As

X102+ 1= (x = V2 = VB)(x = V2+ VB + V2 = V3 + V2 +3)
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the conjugates of 6 are

912\/5-1-\/5, szﬁ—\/g, 932—\/54-\/3, 94=—ﬁ—\/§.

Let o =23 5o that o € Q(+/3) C Q(W2,+/3) = QW2 ++3) = Q) = K
(Example 5.6.1). Hence o = a + b0 + c6? + d93f0r some a,b,c,d € Q. Thus

2V3 =a+b(V2+V3) + c(v2+ V3 +d(V2 + V3
= (a +5¢)+ (b + 11d)vV2 + (b + 9d)v/3 + 2c/6.

Hence
a+5¢=0,b+11d=0, b+9d =2, 2¢ =0,
so that
a=0,b=11,c=0,d =—-1,
giving

a=110 -6
The K -conjugates of o are

ap =a =110 — 0> = 2/3,
a =116, — 63 = —2/3,
as = 1165 — 63 = 24/3,

ay =116, — 6] = —24/3.

Thus the complete set of conjugates of a relative to K is o, —a, o, —c.

The conjugates of « relative to K are obtained from « by applying the monomor-
phismso; : K - C(k=1,2,...,n)toa. Clearly oy(@) = o (k=1,2,...,n)
and o € Q(6;) (k = 1,2, ..., n). It can be shown that the conjugates of « relative
to K do not depend on the choice of 8 such that K = Q(6) (Exercise 1 of this
Chapter).

Definition 6.3.2 (Field polynomial of o over K) Let K be an algebraic number
field of degreen. Leta € K. Leto) = o, ap, . . ., &, be the K -conjugates of «. Then
the field polynomial of o over K is the polynomial

n

fldg (o) = [ [ — o).

k=1

Clearly fldg (o) € C[x]. However, much more is true as the next theorem shows.



118 Algebraic Number Fields

Theorem 6.3.1 Let K be an algebraic number field of degree n. Let « € K. Then

fldg (o) € Q[x].

Proof: Let 6 € K be such that K = Q(6). We have deg(irrg(f)) = [Q(#) : Q] =
[K : Q] =n. As @ € K, by Theorem 6.1.3 there exist ¢, ¢y, ..., c,—1 € Q such
that

a=co+c10+--Fc,_ 10"
The K -conjugates of « are o) = «, o, . . ., &,, Where
ak=C0+C19k+---+Cn_19]:l71, k=1,2,...,n.

The field polynomial of @ over K is
n n
ﬂdK(Ol) = H(x — O{k) = H(x — (CO + Clek 4.+ cn—lejg_l))-
k=1 k=1

Clearly fldg (o) € Ky[x], where K1 = Q(b4, ..., 06,). Arguing as in the proof of
Theorem 6.2.2, we deduce that the coefficients of fldg () are polynomials with
rational coefficients in the elementary symmetric polynomials in 6y, ..., 6, and so
belong to Q. Hence fldg (@) € Q[x]. [ |

Example 6.3.2 The cubic polynomial x> + 11x + 4 € Z[x] is irreducible. Let its
three roots be 6y = 0, 6,, and 03. One of these roots is real and the other two
are nonreal and complex conjugates of one another (Exercise 2 of this Chapter).
Let K = Q(0) so that [K : Q] = deg(irrg(0)) = deg(x® + 1lx +4) =3. Leta =
0 + 92)/2 € K. We determine fldg (). We have

2 2 )
g = (- D) (- G (o)
2 2 )

3 2
=X+ axx” +aix + ao,



6.3 Field Polynomial 119

where
G+ 646 (63469
2 2 2

1 L > 0
= —5(91 + 6, +63) — 5(91 + 65 +63),

a) =

1
a = (6 + 02)(0 + 62) + (62 + 0103 + 02) + (03 + 63)(61 + 6))

1
= 70010 + 0205 + 0:01) + (0105 + 076> + 0205 + 0505 + 0507 + 0560))
+ (0763 + 6307 + 636D)),
1
ao = =2 61+ DO + 63)(603 + 65)
1
= —§919203(1 + 011 + 0:)(1 + 63)

1
= —§919293(1 + (01 + 0 + 03) + (010> + 0,03 + 636,) + 016:205).

Now
X4+ 1lx+4=(x —0)x —0)(x — 63),
so that
0, +6,+6; =0,
6010, + 6,05 + 0360, = 11,
010,605 = —4.
Hence

07 + 63 + 07 = (01 + 65 + 63)* — 2(616 + 0265 + 6:36,) = —22,
0763 + 0563 + 6567 = (6102 + 6,03 4 0361)° — 26,0,05(6) + 6, + 63) = 121,
0107 + 6076, + 0207 + 0703 + 6:07 + 676,

= 0102(0; + 01) + 0,05(05 + 02) + 0501(61 + 03)

= —30,0,0; = 12, as 0, + 6, + 63 =0,

so that
a, =11, ay =36, ag = 4.
Hence
fldg (o) = x> + 11x% + 36x + 4,

showing that o € Og.

In the next theorem we relate the field polynomial of o over K to the minimal
polynomial of « over Q.
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Theorem 6.3.2 Let K be an algebraic number field of degree n. Let « € K. Then
fldg (o) = (irrg(e))’,

where s is the positive integer
n
§=——.
deg(irrg(a))

Proof: Let {¢1 = o, ap, ..., a,} be a complete set of conjugates of « relative
to K. Then

n

fidg () = [ J¢x — ) € QIx]

k=1
by Theorem 6.3.1. As fldg () has « as a root, we have
irrg(er) | fldg (@)
in Q[x]. Hence, as Q[x] is a unique factorization domain, we have
fldg (o) = (irrg(a))*h(x),

where /(x) is a monic polynomial of (Q[x], which is not divisible by the irreducible
polynomial irrg(«), and s is a positive integer. Suppose that /(x) is a nonconstant
polynomial. Then /i (c;) = O for some k € {1,2, ..., n}.

Now choose § € K suchthat K = Q). Letd; =6, 0,, ..., 6, be the conjugates
of 6 over Q. As o € K there exists a polynomial

r(x) =ao+ax + - +a,_1x"" € Qx]

such that « = r(6). Thus a; = r(0;) for j € {1,2,...,n}.
Next let

g(x) = h(r(x)) € Qlx].

Then g(6x) = h(r(6r)) = h(ax) = 0. Thus g(x) is amultiple of irrg(6;) = irrg(f) €
QI[x]. Hence g(#;) =0 for j = 1,2, ..., n. In particular g(6) = 0. Thus (a) =
h(r(0)) = g(@) = 0. Hence A(x) is a multiple of irrg(«) in Q[x], contradicting that
h(x) is not divisible by irrg(cr).

We have shown that /(x) is a constant polynomial; that is, #(x) = ¢, ¢ € Q. But
h(x) is monic so ¢ = 1. Thus

fldg (@) = (irrg(e))’
as asserted. Comparing degrees of the polynomials in this equation, we see that

n = deg(fldg (@) = s deg(irrg(er))
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so that
n
§=—.
deg(irrg(a))

Theorem 6.3.2 tells us that the conjugates of « with respect to K are the roots of
irrg(«) in C each repeated s = n/deg(irrg(c)) times.

Theorem 6.3.3 Let K be an algebraic number field. Let a € Og. Then the
K -conjugates of a are algebraic integers.
Proof: Let « € Ok. Then, by Theorem 5.3.2, we have

irrg(a) € Z[x],
and so by Theorem 6.3.2

fldg (@) € Z[x].
Thus the K -conjugates of « being the roots of a monic polynomial with rational
integer coefficients are algebraic integers. [ |

Suppose @ € Q, then
o, =or(@)=a, k=1,2,...,n,

so all of the K -conjugates of « are equal. Conversely, if all the K -conjugates of «
are equal then

fldg (@) = (x — a)".
Hence, by Theorem 6.3.2, we have
(irrg(@))’ = (x —a)".
But the roots of irrg(«) are all distinct (Theorem 5.2.1) so that
irg(a) =x —a, s =n.

As irrg(a) € Q[x] we deduce that o € Q. Hence we have shown the following
result.

Theorem 6.3.4 Let K be an algebraic number field. Let a« € K. Then all the
K -conjugates of o are equal if and only if o € Q.

If the K -conjugates of « are all distinct then fldk () is a product of distinct linear
factors and so by Theorem 6.3.2 we have s = 1 and irrg(«) = fldg (o). Hence

[Q(e) : Q] = deg(irrg(e)) = deg(fldg (@)) = n = [K : Q.
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Since Q(a) € K we deduce that K = Q(«). Conversely, if K = Q(«) then
deg(irrg(a)) = [K : Q] = n, so that by Theorem 6.3.2 s =1 and fldg(a) =
irrg(er). Hence the K -conjugates of « are distinct. We have proved the following
theorem.

Theorem 6.3.5 Let K be an algebraic number field. Let a € K. Then all the K -
conjugates of a are distinct if and only if K = Q(«).

Let K = (@) be an algebraic number field of degree n. Let8; =0, 0,,...,6,
be the conjugates of 6 over Q. Using the preceding ideas it is easy to show
that if there are exactly m distinct fields among the conjugate fields Q(6;) =
K, Q,),...,Q(,) then m divides n and each distinct field occurs n/m times
(Exercise 3 of this Chapter). If m = 1 so that Q(0;) = --- = Q(8,) = K, the field
K is said to be a normal or Galois extension of Q.

Example 6.3.3 Let K = Q(v/2, v/3) = Q(v/2 + /3). The conjugates of /2 + /3
are ++/2 + /3 and the conjugate fields of K all coincide with K as
QEV2+£/3) =Q(W2 +/3) =K.

Thus K is a normal field.

Example 6.3.4 Let K = Q(v/2) so that K C R. The conjugates of ~/2 are
V2, o2, 0*V2,
where w and w* are the two complex cube roots of unity, since
irrg(v2) = x° — 2 = (x —V/2)(x — oV2)(x — &*V2).
The conjugate fields of K are
Ki=QW2) =K, K» = QV2), K3 = Q*V2).

Clearly as K is a real field, and K,, Ks are not, we have K| # K,, K| # K3.
We show that K, # K3. Suppose K, = K5. Then 0?2 € K> and so there exist
a, b, c € Q such that

0*V2 = a + baov?2 + c(wv2)*.

Taking complex conjugates, we obtain as & = w*

V2 = a+ b’ V2 + ca)(\s/i)z.
Subtracting we deduce that

(0* — 0)V2 = —b(@* — ©)WV2 + c(* — ©)(V2)%,
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so that
V2= b2+ (V27
Hence
1+b=cv2.
Since /2 ¢ Q we must have 1 +b = ¢ = 0, so that
W2 =a— V2.
Thus
(0? + w)f/i =a;
that is (as w* + w = —1),
V2=-ae Q,

a contradiction.
Hence all the conjugate fields of Q(~/2) are distinct, and Q(~/2) is not a normal
field.

Example 6.3.5 Let K = Q({‘/E) so that K C R. The conjugates of V2 are
V2,2, =2, —iV2,
as
irmg(v2) = x* — 2 = (x — V2)(x — iV2)(x +V2)(x +iv2).
The conjugate fields of K are

QW2) =K,
QvV2) = L (say),
Q-v2) =QW2) =K,
Q=iv2) = Qiv2) = L.
Clearly K # L as K is a real field and L is a nonreal field.
Hence there are two distinct conjugate fields. Q(~/2) is not a normal field.

6.4 The Discriminant of a Set of Elements in an Algebraic Number Field

Let K be an algebraic number field of degree n. Let wy, w,, ..., w, be any n
elements of K. An important quantity defined in terms of wy, wy, . . ., ®, and their
conjugates relative to K is the discriminant D(wy, ..., ®,). As we shall see the
discriminant has some very nice properties. For example, D(w;, . . ., w,)is always a

rational number, which is nonzero if and only if wy, . . ., @, are linearly independent
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over Q. Moreover, if wy, .. ., ®, are all algebraic integers then D(w, ..., w,)is a
rational integer.

Definition 6.4.1 (Discriminant of n elements in an algebraic number field of

degree n) Let K be an algebraic number field of degree n. Let wy, ...,w, be
n elements of the field K. Let o, (k =1,2,...,n) denote the n distinct mono-
morphisms : K —> C. Fori =1,...,n let
1 2
o) = o1(w) = 0, 07 = 02(@y), ... 0" = ou(w;)
denote the conjugates of w; relative to K . Then the discriminant of {wy, . .., w,} is
2
w(ll) a)g) oD
2) (2) 2)
a)l wZ o .. wn
D(a)l9""wn):
o Wl

Example 6.4.1 Let K = Q(2, +/3) and choose
a)1=1, a)2=«/§, Cl)3=\/§, a)4=«/§+«/§.

By Example 5.6.1 we know that K is a quartic field. The four monomor-
phisms : K —> C are given by

o1(a +bV2 + /3 4+dV6) = a + bv2 + /3 + dV6,
02(a + bvV2 + V3 +dV6) = a+ bv2 — N3 — d/6,
o3(a 4+ bvV2 + cv/3 4+ dV6) = a — b2 + /3 — dV/6,
04(a+b«/§+c\/§+dx/6)=a—b\/§—c«/§+d\/6,

where a, b, c,d € Q. Hence

L VI VB VI
DAVAANIE VR =1 2 TR 2
1

V2 -3 Vi3

As the fourth column of the determinant is the sum of the second and third columns,
we deduce that

D(1,V2,3/3,v/2++/3)=0.

We can now define the discriminant D(«) of an element « of an algebraic number
field.

Definition 6.4.2 (Discriminant D(«) of an element «) Let K be an algebraic
number field of degree n. Let o € K. Then we define the discriminant D(«) of
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D()=D(,a,a>,...,a" .

Theorem 6.4.1 Let K be an algebraic number field of degree n. Let « € K. Then

p@= [] @ -ay

I<i<j<n

where oV = o, P, ..., " are the conjugates of a with respect to K .
Proof: If zy, z5, . .., z, are complex numbers we have the value of the determinant

A

A PR A

= H (zi —zj)
. ) I<i<j<n
n— n—
zn zn ceezy 1

(see, for example, [3, pp. 17-18]). Interchanging columns 1 and 7, columns 2 and
n — 1, etc., we obtain the evaluation of the Vandermonde determinant

1 z; - Z’f_z z'f_i
1 zp - oz zy
2
: :(_1)[11/] H (Zl'—Zj)
: <l
1 =z Zn—2 Zn—] =t=/=n
n n n
nn=1)
=D > H (zi —zj)
I<i<j<n
= H (zj — zi),
I<i<j<n
as
n nn—1)
H =227 " (mod 2).
2 2
Hence for any o« € K we have
1 « o? a7 !
@ @y ... @y
I o (@9) (™) _ H (@ — o)
1<i<j<n

1 a® (O[(n))2 (a(n))nfl
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so that

2

D(a) = H (Ot(j) _ O((i)) — H (a(i) _ a(j))z' -

I<i<j<n I<i<j=<n

Definition 6.4.3 (Discriminant of a polynomial) Let

f) =ax" +a, 1 x" '+ +aix +ap € Clx],

wheren € Nanda, # 0. Let xy, ..., x, € Cbethe roots of f(x). The discriminant
of f(x) is the quantity
disc(f(0)) =ay" > [[ @i-xp’eC.
1<i<j<n

Clearly f(x)has arepeated rootif and only if disc( f (x)) = 0. The discriminant is
a®"~2 times a symmetric polynomial in x1, . .., x,,. The degree of disc( f (x)) in each
X; is 2(n — 1). Thus when disc( f(x)) is expressed as a function of ay, ay, ..., a,,

it consists of terms
a 1 kl a 2 k2 aO kn
— n— n—
Caﬁn 2 < > < > o <_> ’
ail al’l aﬂ

kl+k2+"'+kn§2n_2»

where

so that disc( f(x)) is a polynomial in the coefficients of f(x).

Theorem 6.4.2 Let K be an algebraic number field of degree n. Let « € K. Then

D(a) = disc(fldg (@)).

Proof: Let oV = a, a@®, ... a"™ be the K -conjugates of «. Then the roots of
fldg (@) are ¢V, ..., ™. Hence, by Definition 6.4.3 and Theorem 6.4.1, we have
disc(fidg (@) =[] @ — o) = D(@). -

I<i<j<n

Example 6.4.2 Let K = Q(v/2) and choose a = ~/2. Then the conjugates of o
are

oq:\z/i, a2=w32, a3=w2\3/§,
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where w = (—1 + /—=3)/2. Then
o —oy=(— w)f/i,
a —az=ow(l — w)f/i,
a3 —ay = (1 — w2,

so that
(@1 — @)@ — @)@z — ) = (1 — )2,
Now
(1-w) =1-3w+30"— o =3 - o?),
so that
(1 - )’ =3(w-0’) =3 +0-2)=-3"
Hence

D(@) = (a1 — a)(er — a3)(oz — a))* = (1 — )27 = =27 . 3%,

Theorem 6.4.3 Let K be an algebraic number field of degree n. Let o € K. Then
K = Q(a) if and only if D(a) # 0.

Proof: We have by Theorems 6.3.5 and 6.4.1

K = Q(a) <= K -conjugates of « are distinct <= D(«) # 0. u

Theorem 6.4.4 Let K be an algebraic number field of degree n.

(@ Ifwy,...,w, € K then
D(wy, ..., w,) €Q
®) Ifw,...,w, € Ok then
Dy, ...,wn) €Z
©) Ifwy,...,w, € K then
D(wy,...,w,) #0ifand only if wy, ..., w, are linearly independent over Q.

Proof: (a) By Theorem 6.1.1 we have K = Q(#) for some 6 € K. Then, fori =
1,2,...,n,wehave

-1
wi =coi + 10 + -+ 0ym1i0",
where cg;, ..., cy,—1; € Q. Hence, for j = 1,2, ..., n, we have

a)l(]) = Cp; +cli0j +"'+cn—li0;l_19 (6.41)
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(1)

where 0, = 6, 0, ..., 0, are the conjugates of  over (Q and a)l(l), ..., w;  arethe
K-conjugates of w; (i =1,2,...,n). Using the expressions (6.4.1) in Definition
6.4.1, we see that any permutation of the conjugates of 6 leaves D(wy, ..., ®,)

invariant as it merely causes a permutation of the rows of the matrix of which
D(wy, ..., w,) is the square of the determinant. Hence D(w;, ..., w,) isS a sym-
metric function of the roots of the polynomial

(X=X —6) - (x —0,) =x"+a,_ 1 x"" + -+ ao,

where ag, ai, ..., a,—1 € Q. By the symmetric function theorem, D(wy, ..., ®,)
is a polynomial in the coefficients ag, a, ..., a,— and hence a rational number.
(b) If wy,...,w, € Ok then D(wy, ..., w,), being obtained from them and

their conjugates by a series of additions and multiplications, is also in Og. Since
D(wy, ..., w,) € Q, by Theorem 4.2.4 we have D(w;, ..., w,) € Z.

(c) If the set {wy, ..., w,} is linearly dependent over Q, then there exist rational
numbers ¢y, ..., ¢, not all zero such that

ciwy + -+ cpw, = 0.

Applying each monomorphism o} (k =1, ..., n) to this equation, we obtain the
following homogeneous system of # linear equations in the n quantities c, . . ., ¢,:

1

cla)i T cp'D =0,
2

Clwi ) + -4 Cna),gz) - 0:

o + - 4 o™ = 0.

As this system has a nontrivial solution (cy, ..., c,) Z (0, ...,0) € Q", its deter-
minant must be zero. Hence

D(wq,...,w,) =0.

Now suppose that the set {wy, ..., w,} is linearly independent over Q. Then
{wy, ..., w,} is a basis for the vector space K over the field Q. In particular as
1,6, ...,0" ! € K there exist rational numbers ¢ij (i, j =1, ..., n)such that

I =cpwr + -+ crywy,
0 = w1 + - -+ 2y,

0" = w1 + -+ Copn.
Hence

D®)=D(, 6,...,0" H = |det(c,-‘,-)|2D(a)1, e, Wp).
As K = Q(6), by Theorem 6.4.3 we know that D(6) # 0 so that

D(wi,...,w,) #0. |
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6.5 Basis of an Ideal

We now use our knowledge of the properties of the discriminant to show that every

ideal in the ring Ok of integers of an algebraic number field K has a finite basis

considered as an Abelian group, that is, as a Z-module. Thus Ok is Noetherian.
We first prove a preliminary result.

Theorem 6.5.1 Let K be an algebraic number field with [K : Q] = n. Let I be a
nonzero ideal in Ok . Then there exist ny, ..., n, € I such that

D(nlavnn)¢0

Proof: By Theorem 6.1.2 we have K = Q(6) for some 6 € Og. By Theorem 6.4.3
D(0) # 0. Further, by Theorem 6.1.7, as I is a nonzero ideal of Ok, there exists
c € I NZ with ¢ # 0. Hence, as [ is an ideal of Ok,

m=c, m=co,....n,=c0" el
and

D@y, ....n) =D(c,cO,...,c0" "y =c"D(1,0,...,0"") = *"D(@®) #0.
|
We are now in a position to prove that every ideal of the ring of integers of an
algebraic number field has a finite basis.

Theorem 6.5.2 Let K be an algebraic number field of degree n. Let I be a nonzero
ideal of Ok . Then there exist elements 0y, ..., n, of I such that every element o of
I can be expressed uniquely in the form

o =XM1+ Xl
where x1, ..., X, € Z.
Proof: As I is a nonzero ideal of Ok, by Theorem 6.5.1 there exists a set

{n1,...,n,} of elements of I such that D(ny,...,n,) # 0. By Theorem 6.4.4
D(ny,...,n,) € Zsothat |D(ny, ..., n,)| is a positive integer. Let

S={Dm,....n) = m,....nn €1, D(1,...,n,) # 0}

Clearly S is a nonempty set of positive integers and thus contains a least member,
say |1 DMy -5l iy ---snn € 1. As D(nq, ..., ) # 0, by Theorem 6.4.4(c)
{n1, ..., n,} is a basis for the vector space K over Q. Let o € I. Then there exist
unique rational numbers xi, ..., x, such that

Q=X+t X0
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Suppose at least one of the x; is not an integer. By permuting 1y, . . . , n,, if necessary,
we may suppose that x; ¢ Z. Then there is a unique integer / such that

l<x1<l+1.
Set
y =a—In.
Aso € [ and n; € I we see that y € I. Moreover,
y = —=Dm+xam+ -+ Xuln-
Applying each monomorphism oy (k = 1,2, ..., n) to this equation, we obtain

1 1
y D = = DY + xS + - D,

2 2
y® =@ =0 +xnf + -+ xn@,

y® = (xr = D" 4 xanS” + -4 ),

where Yy =y, y@ .. y® are the K-conjugates of y and n" =n;,
nfz), e nf") are the K -conjugates of n; (i = 1,2, ..., n). By Cramer’s rule, we
deduce that
1
y® ng; gD
e ,7<2> cg®
N L
1 — = 1 ] .
[
2
nooom ey
oy e g
Hence
D(y,n, ...,
(v — 1) = (v, m M)
D, mas - M)
so that

O < |D(V7 ’727 N "7nn)| = (.X] _1)2|D(7717 772’ c nn)l < |D(7717 ’727 N 7nn)|

This contradicts the minimality of | D (ny, 12, . .., n,)|. Hence all the x; are integers
and each element @ € I can be expressed uniquely in the form o = x1n; 4+ - - - +
XnNn- u
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Clearly, as ny, ..., n, € I and [ is an ideal, we have
I+ -+ Ly ={kim + -+ kany L ki, oo ky € ZY S
and Theorem 6.5.2 tells us that
I CSZn+---+Zn,
so that
I =Zm+ -+ Zny,

showing that / is a finitely generated Z-module.
We now use Theorem 3.5.3 and Theorem 6.5.2 to show that the ring of integers
of an algebraic number field is Noetherian.

Theorem 6.5.3 Let K be an algebraic number field. Then Ok is a Noetherian
domain.

Proof: 7 and Ok are integral domains with Z C Og. Z is a Noetherian domain
(Example 3.1.3). Og = (1) is a finitely generated Z-module by Theorem 6.5.2.
Hence by Theorem 3.5.3 Ok is a Noetherian domain.

Alternatively we can avoid the use of Theorem 3.5.3 by arguing as follows. Let /
be an ideal of Ok . If I = {0} then I = (0) is finitely generated. If / # {0} then [ is
finitely generated by Theorem 6.5.2. Hence every ideal of O is finitely generated
and thus the domain Ok is Noetherian. [ ]

Definition 6.5.1 (Basis of an ideal) Let K be an algebraic number field of degree
n. Let I be a nonzero ideal of Ok . If {n1, ..., n,} is a set of elements of I such that
every element o € I can be expressed uniquely in the form

a=xN+-+ X0 (X1,...,X, €ZL)

then {n1, ..., n,} is called a basis for the ideal I.

As the representation of each element o of a nonzero ideal / by a basis
{n1,...,n,} of I is unique, the basis elements 1y, ..., n, are linearly indepen-
dent over Q.

By Theorem 6.5.2 every ideal of the ring of integers of an algebraic number field
possesses a basis. Our next result enables us to recognize when a set of elements
{A1, ..., Ay} of an ideal in the ring of integers of an algebraic number field is a
basis for the ideal.

Theorem 6.5.4 Let K be an algebraic number field of degree n. Let I be a nonzero
ideal of Ok .
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(@) Let{n,...,n.}and {1, ..., Ay} be two bases for I. Then

D@y, ...omn) =D,y Ay)

and
n
ni = ZCU)L/‘, I = 1,2,...,}’[,
j=1
where ¢;; (i, j = 1,2, ..., n) are rational integers such that

det(ci_,-) = =+1.
(b) Let {n1,...,n,} be abasis for I and let Ay, ..., )\, € I be such that
D()\'l7"'7A‘l1)=D(nl7""nn)'

Then {Ay, ..., .} is a basis for I.

Proof: (a) As {A1, ..., A} is a basis for /, we have

[ =70+ +Zh,.

Since 1y, ...,n, € I thereexist¢;; € Z (i, j = 1,2, ..., n) such that

n
ni=Y cijhi i=1,2,....n (6.5.1)
j=1
As {ni, ..., n,}is a basis for I, we have
I =7n+ -+ Zny.
Since Ay, ..., A, € I thereexistd;; € Z (i, j = 1,2, ..., n) such that
M=) dyme, j=1.2,....n.
k=1
Thus, fori = 1,2, ..., n, we have
ni = ZCU Zdjkﬁk = Z Zcijdjk Nk -
j=1 k=1 k=1 j=1
As{ny,...,n,}isabasisfor I, ny, ..., n, are linearly independent over Q, so that

Z”:C J { 1, ifi =k,
ijdjk = iy

P= 0, ifi #£k.
We define the n x n matrices C and D by

C =lc¢jl, D =1[djl,
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so that C and D have rational integer entries. Then
CD =1,
where [, is the n x n identity matrix. Thus
det(C)det(D) = det(C D) = det({,,) = 1.
But det(C), det(D) € Z so
det(C) = det(D) = %1.
From (6.5.1) we have
D, ..., my) = (det(c;))’ DA, ..., Ay) = (det(C))*D(At, ..., Ay)
so that
D, ... ny) = (ED?DO, ..oy hy) = DO, oy hy).

This completes the proof of part (a).
(b) As{n,...,n,}isabasisfor/ and Ay, ..., A, € I, thereexistd;; € Z (i, j =
1,2, ..., n) such that

)\.,’ = Zdij)’]j, I = 1,2, ooy n.
j=1

Hence
D(A1, ...y Ay) = (det(di)*D (1, - - ., ).
As DAy, ..., Ay) = D(ny, ..., n,) we deduce that
(det(d;j))* = 1
so that
det(d;;) = £1.

Thus the matrix D = (d,;) has an inverse D7!'=C = (¢ ;) all of whose entries are
integers, and

n
}’]J = ZCU)\,] (l = 1,2, ...,”l).
j=1

Let a € I. Then, as {5, ..., n,} is a basis for /, there exist ay, ..., a, € Z such
that

n
o = E an;.
i=1
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Hence

F

n n n
o= Zai Zcij)»j = Z (Zaiczj) Ajs
; =

i=1 j:l i=1

N

where each Z:’I:l ajcij € Z(j =1,2,...,n). This proves that every element - of
I can be expressed in the form

oa=birA+- -+ b\,

for some integers by, ..., b,.
Now suppose that o can be expressed in more than one way in this form, say,

Ot=b1)»1+---+bn)»n=bikl+--'+b;kn,
where by, ..., b,, b}, ..., b, € Z. Hence
el)"1+"‘+en)"n:0’

where ¢; = b; — b, € Z (i = 1,2, ..., n). If at least one of the ¢; is nonzero then
Al, ..., A, are linearly dependent over Q and so by Theorem 6.4.4(c) we have

DAy, ..., A,) =0.
Hence

Dy, ...,n,) =0,

so that 1y, ..., n, are linearly dependent over Q, contradicting that {5, ..., n,}
is a basis for /. Hence ¢; =0 (i =1,2,...,n)and so b; =b; (i =1,2,...,n),
establishing that « is uniquely expressible in the form biA; + - -- + b, A, with
b],...,bn e 7.

This completes the proof that {A{, ..., A,} is a basis for /. [ |

Example 6.5.1 Let K = Q(\/7) so that Ox = 7.+ Z\T1 = {a + b7 | a,b € 7}
by Theorem 5.4.2. Let I be the principal ideal of Ok generated by 2 + /1. Then

[={a+bVDQ2+ V) |a,bel)
—{aQR +~T)+bT+2V7) |a,b e 7}
= Q+VDZ+ (1 +2V7)Z,

so that {2 + VI, T+27 } is a basis for 1. However, a little more effort yields
a“simpler” basis, that is, one having a rational integer as one of the basis elements.
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We have

I ={a+bv2+~7)|a,belZ}
={Qa +7b) + (a+2b)V7 | a,b € 7}
={(2(c = 2b) +Tb) + /T | b, ¢ € 7}
= (3b+cQ2+~7) | b,c € Z}
=3Z+ Q2+ V1Z,

showing that {3, 2+ /7} is a basis for I .

If {ni,...,n,}and {Aq, ..., A,} are two bases for the same nonzero ideal of the
ring of integers of an algebraic number field then we know by Theorem 6.5.4 that

D(nl"-~7nﬂ):D()"lv"°9)"n)'

Hence we can make the following definition.

Definition 6.5.2 (Discriminant of an ideal) Let K be an algebraic number field
of degree n. Let I be a nonzero ideal of Ok . Let {n, ..., n,} be a basis of I. Then
the discriminant D(I) of the ideal I is the nonzero integer given by

D(I)=D(771,---s77n)-

Example 6.5.2 We determine the discriminant of the ideal I in Example 6.5.1. As
{3, 2+ ﬁ} is a basis for 1, we have
D(I)=D@3.2+7)
13 2447
T3 2-47
=BQ -V =32+
= (—6/7)
=252,

Next we consider bases of ideals in the ring of integers of a quadratic field.

Theorem 6.5.5 Let K be a quadratic field. Let m be the unique squarefree integer
such that K = Q(/m).

(@) m #£ 1 (mod 4). Leta,b,c € Zwitha # 0and ¢ # 0. Then
{a, b+ c/m} is a basis for the ideal {a, b + c/m)
if and only if
cla, c|b, ac|b* — mc’. (6.5.2)
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(b) m =1(mod 4). Leta, b, c € Zwitha # 0, ¢ # 0,and b = ¢ (mod 2). Then

b+ cy/m b+cﬁ)

@ = 2

} is a basis for the ideal {(a,
if and only if

cla, c¢|b, 4ac | b*> — mc?. (6.5.3)

Proof: (a) Suppose first that (6.5.2) holds. Then there are integers x, y, z such that

a=cx, b=cy, b? — mc* = acz.

Hence
bx —ay =0, by —az = mc.
Leta € I = (a, b + c¢/m). Then there exist & € Ok and ¢ € Ok such that
a = 0a + ¢b + c/m).

As 6,¢ € Ok and m #£ 1 (mod 4), by Theorem 5.4.2 there exist integers r, s, t, u
such that

0 =r+sm, ¢ =t+u/m.

Hence

o = (r +sv/ma + (t +u/m)(b + c/m)
= (ra 4 tb + umc) + (sa + tc + ub)/m
= s(bx —ay) + (ra + tb + u(by — az)) + (scx + tc + ucy)/m
=(r —sy —uz)a+ (t + sx +uy)b + c/m),

proving that {a, b + c/m} is a basis for I.
Conversely, suppose that {a, b + c/m} is abasis forthe ideal I = (a, b + c/m).
As /ma € I and \/m(b + c/m) € I there exist integers x, y, u, v such that

Vma =xa + y(b + c/m),
Jm(b + c/m) = ua + v(b + c/m).

Equating coefficients of 1 and /m, we obtain

xa+ yb =0,
ye =a,
ua +vb =cm,

ve = b.
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From the second and fourth equations, we see that ¢ | @ and ¢ | b respectively. From
the third and fourth equations, we obtain

uac + b* = ’m

so that

ac | b> — me?.

(b) This case can be treated similarly to part (a). [ |

6.6 Prime Ideals in Rings of Integers

In Theorem 1.5.6 we saw that a maximal ideal of an integral domain D is always
a prime ideal. We noted that the converse is not always true but that it is true in a
principal ideal domain. In this section we show the important result that a prime
ideal is always maximal in the ring of integers of an algebraic number field.

Theorem 6.6.1 Let P be a prime ideal of the ring Ok of integers of an algebraic
number field K. Then P is a maximal ideal of Ok .

Proof: Suppose that the assertion of the theorem is false. Then there exists a prime
ideal P; of Ok that is not a maximal ideal. Let S be the set of all proper ideals of
Ok that strictly contain P;. As Pj is not a maximal ideal, S is a nonempty set. By
Theorem 6.5.3 Ok is a Noetherian domain. Hence, by Theorem 3.1.3, S contains
a maximal element; that is, there is a maximal ideal P, such that

P, C P, C Og.

By Theorem 1.5.6 P, is a prime ideal. Since every nonzero ideal in Ok contains
a nonzero rational integer (Theorem 6.1.7) we see that P, N Z # {0}. Hence, by
Theorem 1.6.2, Py N Z is a prime ideal of Z. But Z is a principal ideal domain
(Theorem 1.4.1) so P N Z = (p) for some p € Z. By Theorem 1.5.4 p is a prime.
Thus

(p)=PINZC P,NZLCZ.

Now P, NZ # Z as 1 ¢ P, soas (p) is amaximal ideal of Z (Theorem 1.5.7), we
have

PiNZ=P,NZ={p).

As P; C P, there exists @« € P, with o ¢ P;. Since o € Ok there exist a positive
integer k and ay, . .., a,_; € Z such that

o a1+ a4 ag =0,
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and so

ot —I—ak_lak_] + .- 4+aqax+ay € P
Let [ be the least positive integer for which there exist by, . .., b;_1 € Z such that

o + b+ 4 bia+ by € P (6.6.1)
Now, as o € P,, we have

o + bl_lozl_l + -+ ba= oc(oxl_1 + bl_lal_z +---4+ b)) € P,
Hence, as P; C P, and P; is an ideal,
bo=(a' +-- +ba+by) — @+ +ba)e P,
But by € Z so
bpe LNZ =P NZ
and thus by € P,. From (6.6.1) we deduce that
o +bjo T+ b€ Py
If /| = 1 then o € Py, contradicting o ¢ P;. Hence ! > 2 and
a@ '+ 4 b)) e P

Since P, is a prime ideal and « ¢ P; we deduce that

o by e P

contradicting the minimality of / since / — 1 is a positive integer as [ > 2. |
Exercises
1. Let K be an algebraic number field of degree n. Let 6 € K be such that K = Q(6).
Let6, =0,6,,...,6, be the conjugates of 6 over Q. Let « € K so there exist unique
rational numbers ¢y, c1, ..., ¢,_1 such that

a=co+c10+- - +c,_ 10"
Fork=1,2,...,nlet
ap=co+c1bp+ -+ 16

so that & = «. Prove that the set of conjugates {o, oz, .. ., o, } of « relative to K does
not depend on the choice of 6.

2. Prove that the cubic equation x34+ax +b =0, where a, b € R, has three distinct
real roots if —4a> — 27h> > 0, one real and two nonreal complex conjugate roots if
—4a’ —27b* < 0, and at least two equal real roots if —4a* — 27h* = 0.
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14.

15.

16.

17.

18.

19.

20.
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. Let K = Q(9) be an algebraic number field of degree n. Let 8; =6,6,,...,0, be

the conjugates of 6 over Q. Suppose that there are exactly m distinct fields among
Q4y), ..., Q(B,). Prove that m | n and each field occurs n/m times.

. Let m be a squarefree integer. Let K = Q(+/m). Prove that

o1(x + yv/m) =x +yJ/m (x,y € Q)

and

or(x + y/m)=x —yJ/m (x,y € Q)

are the only monomorphisms from K to C.

. Let m be a cubefree integer. Let K = Q(/m). Determine all the monomorphisms from

K to C.

. Let® = /1 +i + /1 — i. Determine all the monomorphisms from Q(#) to C.
. Let 0 be a root of the equation x® 4 2x> +2 = 0. Let K = Q(#). How many distinct

elements are there in the complete set of conjugates of oo = 62 4 6* relative to K ?

. Let 6 be a root of the equation x> +2x +2 =0. Let K = Q(f) and o = 0 — 9°.

Determine the field polynomial of « over K.

. Let K = Q(8), where 03 — 40 +2 = 0. Let a = 6 + 6% € K. Determine D(«).
10.
11.
12.

Find a basis for the ideal (+/5) in Ok, where K = Q(+/5).
Determine the discriminant of the ideal (5 + \/i 7+ 2\/5) in Ok, where K = Q(ﬁ).
Let m be a squarefree integer = 2 (mod 4). Prove that

(2, /m) =27 + /mZ.
Let m be a squarefree integer = 3 (mod 4). Prove that
2,14 /m) =2Z+ 1+ V/m)Z.

Let m be a squarefree integer = 1 (mod 4). Is

1+ /m
5 )

Prove that the discriminant D of the cubic polynomial x* + ax? + bx + ¢ € Z[x] is

a +2x/%) 79

2, =27+

D = a’bh?® — 4b® — 4a3c — 27¢* + 18abe.

Deduce that D = 0 or 1 (mod 4).
Prove that the discriminant of the quartic polynomial x* 4+ ax? + bx + ¢ € Z[x] is

D = 16a*c — 4a°b* — 128a°c* + 144ab*c — 27b* + 256¢°.

Deduce that D = 0 or 1 (mod 4).

Let K be an algebraic number field. Let « € K. Let &’ be a conjugate of « relative to
K. Prove that D(a) = D(a').

Let K be an algebraic number field. Let « € K. Let 8 be a conjugate of « relative to
K. Prove that fldg (o) = fldg (B).

Let K be an algebraic number field. Let o, 8 € K be such that fldg (o) = fldg (8). Prove
that & and B are conjugates relative to K.

Let K = Q(0), where 63 + 46 —2 =0.1s K = Q8 + 6%)?
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21. Let K = Q(8), where 6* — 492 + 8 = 0. Find a rational number ¢ such that Q(8 +
03 #K.

22. Prove that the discriminant of the trinomial polynomial x"” + ax + b € Z[x], where n
is an integer > 2, is

(_1)(n71)(1172)/2(n _ l)nflan + (—1)"(’171)/2nnbn71.

23. Prove that the discriminant of the trinomial polynomial x” + ax” + b € Z[x], where n
and r are integers satisfyingn > r > 1l and (n,r) = 1, is

(_1)(n—l)(n—2)/2(n _ r)n—rrranbr—l + (_l)n(n—l)/Znnbn—l .

Suggested Reading

1. E.T.Bell, Gauss and the early development of algebraic numbers, National Mathematics
Magazine 18 (1944), 188-204, 219-233.
Bell provides a very readable account of the early development of algebraic numbers.

2. R. L. Goodstein, The discriminant of a certain polynomial, Mathematical Gazette 53
(1969), 60-61.
The formula for the discriminant of x” + ax” + b is derived

3. L. Mirsky, An Introduction to Linear Algebra, Oxford University Press, London 1972.
The evaluation of the Vandermonde determinant is carried out on pages 17 and 18.

4. D. W. Masser, The discriminants of special equations, Mathematical Gazette 50 (1966),
158-160.

The formula for the discriminant of x” 4+ ax + b is derived.

Biographies
1. The website

http://www-groups.dcs.st-and.ac.uk/ history/

has a biography of A.-T. Vandermonde (1735-1796). Nowhere in his four mathematical
papers does the so-called Vandermonde determinant appear!
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Integral Bases

7.1 Integral Basis of an Algebraic Number Field

A basis of the principal ideal of the ring Ok of integers of an algebraic number
field K generated by 1, that is, O itself, is called an integral basis for K.

Definition 7.1.1 (Integral basis of an algebraic number field) Let K be an alge-
braic number field. A basis for Ok is called an integral basis for K.

In view of this definition the following theorem, which gives an integral basis
for a quadratic field, is just a restatement of Theorem 5.4.2.

Theorem 7.1.1 Let K be a quadratic field. Let m be the unique squarefree integer
such that K = Q(y/m). Then {1, \/m} is an integral basis for K if m # 1 (mod 4)
and {1, 1+ﬁ} is an integral basis for K if m = 1 (mod 4).

2

If {n1,...,n,} and {A{, ..., X,} are two integral bases for an algebraic num-
ber field K then Theorem 6.5.4 shows that D(ny, ..., n,) = D(Ay, ..., A,), and
that if {ny, ..., n,} is an integral basis for K and A, ..., A, € Ok are such that
DAy, ..., ) = Dy, ...,n,) then {Aq, ..., A,} is also an integral basis for K.
We can therefore make the following definition.

Definition 7.1.2 (Discriminant of an algebraic number field) Let K be an alge-
braic number field of degree n. Let {n1, ..., n,} be an integral basis for K. Then
D(ny, ..., ny) is called the discriminant of K and is denoted by d(K).

Clearly if K is an algebraic number field of degree n and Aq, ..., A, € Ok are
such that D(Aq, ..., A,) = d(K), then {A, ..., A,} is an integral basis for K.
We determine the discriminant of a quadratic field.

141
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Theorem 7.1.2 Let K be a quadratic field. Let m be the unique squarefree integer
such that K = Q(y/m). Then the discriminant d(K) of K is given by

4m, ifm # 1 (mod 4),

A(K) = {m ifm =1 (mod 4).

Proof: We appeal to Theorem 7.1.1. If m s 1 (mod 4), an integral basis for K is
{1, /m} so that

2

d(K) = ‘ 1 _% = (=2/m)* = 4m.
If m = 1 (mod 4), an integral basis for K is {1, Hﬁ } so that
| Ltvm ?
d(K) = 1 | | = vmt=m. _
2

Since /d(K) = y/m or 2,/m the next theorem follows immediately from The-
orem 7.1.2.

Theorem 7.1.3 Let K be a quadratic field. Then K = Q(/d(K)).

We note that the quadratic field K is a real field if and only if d(K) > O.
Next we define the norm of an ideal in the ring of integers of an algebraic number
field.

Definition 7.1.3 (Norm of an ideal) Let K be an algebraic number field of degree
n. Let I be a nonzero ideal of Ok. Then the norm of the ideal 1, written N(I), is

the positive integer defined by
D(I)
N{) =, ——.
(1) =4/ d(K)

We now justify that N (/) is indeed a positive integer.

Theorem 7.1.4 Let K be an algebraic number field of degree n. Let I be a nonzero
ideal of Ok. Then the norm N(I) of the ideal I is a positive integer.

Proof: Let {n1,...,n,} be abasis for I and let {w, ..., w,} be an integral basis
for K. Asni,...,n, € Ok thereexist¢;; (i, j = 1,...,n) € Z such that

n
ni = E cija)j, i=1,...,l’l.
j=1
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Hence
D@1, . .., ny) = (det(cij)) > D(wr, - . ., w,)
so that
D(I) = det(c;;))*d(K).

Since D(I) # 0 we have det(c;;) # 0 so that

— [PD e,
NU) = | 20y = ldet(eip)

is a positive integer. [ |

Example 7.1.1 Let K = Q(/—5). Let I be the ideal of Ok generated by 2 and
1+ /=5 thatis, I = (2, 1+ +/—5). We determine the norm N(I) of the ideal 1.
First we find a basis for I. As Ox = {x + y~/=5| x,y € Z} we have

I ={2(a+bv=5)+1+~=5)c+dv=5)|a,b,c del
={2a+c—5d)+Q2b+c+d)~-5|a,b,c,d e}
={Qa+(y—=2b—d)—5d)+ yv/=5 | a,b,d,y € 7}
={2a—-b-3d)+y+yv-5|a,b,d,yecZ}
= 2x+y+y/=5|x,yeZ)
={2x+ (1 +/=5)y|x,yeZ}

so that {2, 1+ «/—5} is a basis for I. Hence

2

D) = D@, 1 +v/=5) = ‘; ! fj::g _ (—4VT5) = —s0.
By Theorem 7.1.2 we have
d(K) = 4(=5) = —20.
Hence
_ b _ =80 o
NO=1\am) =V =20 =V4=2.

Example 7.1.2 Let K = Q(\/m), where m is a squarefree integer with m #
1 (mod 4), so that Og = {x + y/m | x,y € Z}. Let o« = a + by/m € Og. We
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determine the norm of the principal ideal (). We have

(a) = (a + b/m)
= {(x + yv/m)a +by/m) | x,y € Z}
= {x(a + b/m) + y(bm + a/m) | x, y € Z}

so that {a + b/m, bm + a\/m} is a basis for (a). Hence

_la+bym bm—i-a\/n_12
Dter)) = a—bym bm—aym

= ((a + by/m)(bm — ay/m) — (a — by/m)(bm + a/m))*.
Recalling the identity
(A+B)C—-D)—(A—B)(C+ D)=2(BC — AD),
we see that
D({@)) = 2°m(a® — mb*)*.

Now d(K) = 4m (Theorem 7.1.2) so that

2 2 232
N((a)) = \/W e I—

We now use Theorem 6.5.5 to determine the norms of a wide class of ideals in a
quadratic field.

Theorem 7.1.5 Let K be a quadratic field. Let m be the unique squarefree integer

such that K = Q(/m).
(@) m #£ 1 (mod 4). Let a, b, ¢ € Z be such that
a#0,c#0, cla, c|b, aclbz—mcz.
Then
N({a, b+ cy/m)) = |ac|.
(b) m =1(mod 4). Let a, b, ¢ € Z be such that
a#0,c#0, b=c(mod 2), c|a, c|b, 4ac|b2—mc2.

Then

b—i—c\/ﬁ>

N({a >

) = lac|.
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Proof: (a) By Theorem 6.5.5(a) {a, b + c./m}isabasis forthe ideal (a, b + c/m).
Hence

D((a, b+ c/m)) = D(a, b + c/m)

_la b+eym 2

T la b—cym

= 4a’c*m.
Asm # 1 (mod 4) we have

d(K) =4m,
by Theorem 7.1.2. Thus
4a’c’m
N({a, b+ c/m)) = im = |ac|.

(b) By Theorem 6.5.5(b) we see that {a, b+”2‘/’7} is a basis for the ideal

btc/m
(a, =57). Hence
b b
pl@treym _p(,btevm
2 2
b+cym |’
_ 2 _ 22
= b—om| = acm.
a e —
2
Asm = 1 (mod 4) we have
d(K)=m,
by Theorem 7.1.2. Thus
b+ cym a*c*m
N <(a, %)) = = lac|. [ ]
m

We remark that Example 7.1.1 is the special casea =2, b=c=1, m = -5
of Theorem 7.1.5(a).

The next theorem determines the norm of a principal ideal in the ring of integers
of an arbitrary algebraic number field, which is generated by a rational integer.

Theorem 7.1.6 Let K be an algebraic number field of degree n. Let ¢ be a nonzero
rational integer. Then the norm of the principal ideal (c) of Ok generated by c is

N({c)) = |c|".
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Proof: Let {wy, ..., w,} be an integral basis for K. Then

o € (c) <= o = ¢f for aunique B € Ok

<— o = c(xjw; + - - - + x,w,) for unique x1, ..., x, € Z
— o = xi(cwy) + - - - + x,(cw,) for unique x4, ..., x, € Z.
This shows that {cwy, ..., cw,} is a basis for the principal ideal (c). Hence

D((c)) = D(cw, ..., cw,) = ' D(wy, ..., w,) = cd(K)

so that

D
N((e)) = dg?)) — = e .

If K is an algebraic number field of degree n then by Theorem 6.1.2 there exists
0 € Ok suchthat K = Q(6). By Theorem 6.4.3 we have D(0) # 0. Letwy, ..., w,
be an integral basis for K. Then there exist ¢;; (i, j =1, ..., n) € Z such that

I =cnwi + -+ crawp,
0 =iy + -+ - + 2wy,

0" = cpwr + -+ Cunn.
Hence
D) = D(1,6,...,0"") = (det(c;)))*D(wi, . . ., ®,) = |det(c;;)|*d(K),
showing that
D®) = m*d(K)

for some positive integer m(= |det(c;;)|). The positive integer m is called the index
of 6.

Definition 7.1.4 (Index of 6) Let K be an algebraic number field. Let 6 € Ok be
such that K = Q(0). Then the index of 0, written ind 0, is the positive integer given
by

D(0) = (ind 6)°d(K).
Theorem 7.1.7 Let K be an algebraic number field of degree n. Let 6 € Ok be

such that K = Q(0). Then {1,0,02,...,6" 'Y is an integral basis for K if and
only ifind 0 = 1.
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Proof: We have
{1,6,6%,...,6" '} is an integral basis for K

<« D(1,0,...,0"") = d(K) (Theorem 6.5.4)
< D) =d(K)
<= ind 0 = 1.

|
Clearly if D(8) is squarefree then ind & =1 so that, by Theorem 7.1.7,
{1,6,...,6" '} is an integral basis.

Theorem 7.1.8 Let K be an algebraic number field of degree n. Let 6 € Ok be
such that K = Q(0). If D(0) is squarefree then {1, 6, ..., 6"} is an integral basis
for K.

To apply Theorem 7.1.8 in a particular example we need to calculate D(0). The
following result is often useful in this connection.

Theorem 7.1.9 Let 0 be an algebraic number of degree n. Let 6, = 0,0,,...,0,
be the conjugates of 6 over Q, that is, the roots of f(x) = irrg(6). Then

D©) = (=12 @)

i=1

Proof: We have

n

f) =img®) = [Jx — 6.

i=1

Differentiating f(x) using the product rule, we obtain

fo=> T[ex-6

J#i

so that

n

fey=T]®-0p. i=1.2...n
=1
ﬁ#i
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Hence
[Tren=1] []e-en
i=1 i=1 j=1
J#i
= ] @-6p J[ @-0»
I<i<j<n 1<j<i<n
=2 T @ -en [T @ -6
I<i<j<n 1<j<i<n
=2 T @-ep I @ -6p
1<i<j<n 1<i<j<n
=02 T @ -6
1<i<j<n
— (—1)"(”_1)/2D(9),
by Theorem 6.4.1. |

Clearly with the notation of Theorem 7.1.9, we have

disc(irrgf) = [[ @ —0)* = (1" £'6) = D®).

1<i<j<n i=1

in agreement with Theorem 6.4.2.
We apply Theorem 7.1.9 in the case when 6 is an algebraic integer of degree 3.

Theorem 7.1.10 Let a, b be integers such that X3+ ax + b € Z[x] is irreducible.
Let 0 € C be a root of x> + ax + b so that K = Q(0) is a cubic field and 6 € Ok.
Then

D) = —4a’ — 27b%.
Proof: Let f(x) = irrg(f) = x>+ ax +b.Let 6, =0, 05, 65 be the conjugates of
6 over QQ so that
(x —01)(x — O)(x —603) = x> +ax +b.

Equating coefficients we obtain

01 +6,+06;: =0,
0102 + 6,03 + 630, = a,
016,05 = —b.

Now

f'(x)=3x>+a
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so that

100 f 6 f(63) = (36} + a)(307 + a)(363 + a)
= a’ +3a*(6] + 67 + 63) + 9a(6765 + 6365 + 6567)
+27676565.

Next we observe that

02 + 62 + 07 = (61 + 02 + 63)> — 2610, + 626 + 6:6,) = —2a,
0707 + 0367 + 6367 = (6162 + 6205 + 6361)° — 2610:65(61 + 6> + 63) = a°,
070707 = (0,620;)* = b?,

SO
FO) (6 f'(63) = a® + 3a*(—2a) + 9a(a®) + 27b* = 4a> + 27b.
Hence by Theorem 7.1.9 we obtain
D©) = (=1)Z f'0) f'0:) f'(03) = —4a’ — 27b?,

as asserted. [ ]

In the next example we find an integral basis for a particular cubic field using
Theorems 7.1.8 and 7.1.10.

Example 7.1.3 Let K = Q(), where 0 is a root of x> + x + 1. The cubic poly-
nomial x> 4+ x + 1 is irreducible in Z[x] so that [K : Q] = 3. Also 6 € Og. By
Theorem 7.1.10 we have

D(0) = —4(1)° = 27(1)*> = =31.

As =31 is squarefree, by Theorem 7.1.8 {1, 6, 0%} is an integral basis for K.
More generally we have the following result.

Theorem 7.1.11 Let a, b be integers such that x> 4+ ax + b € Z[x] is irreducible
and —4a® — 27b? is squarefree. Let 6 be a root of x> 4+ ax + b. Then {1, 0, 6?} is
an integral basis for the cubic field Q(0).

Other values of a and b satisfying the conditions of Theorem 7.1.11 are

(a,b)=(-1,-1), 2,1), 4,1), (—1,3), and (5, 3).

Similarly to Theorem 7.1.10 we can use Theorem 7.1.9 to prove the following
result.
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Theorem 7.1.12 Let a, b be integers such that x* + ax + b € Z[x] is irreducible.
Let 6 be a root of x* + ax + b so that K = Q() is a quartic field and 6 € Ok.
Then

D(0) = —27a* + 256b°.
Appealing to Theorems 7.1.8 and 7.1.12 we obtain

Theorem 7.1.13 Let a, b be integers such that x* + ax + b € Z[x] is irreducible
and —27a* + 256b° is squarefree. Let0 be aroot ofx* + ax + b. Then {1, 6, 62, 6%}
is an integral basis for the quartic field Q(6).

The quartic polynomial x* + x + 1isirreducible and has discriminant —27(1)* +
256(1)* = 229, which is prime. Hence, by Theorem 7.1.13, the quartic field Q(9),
where % + 6 + 1 =0, has {1, 8, 62, 6} as an integral basis.

If we take K to be the cubic field Q(0), where 8% — 2 = 0, then D(6) = —108 =
—3. 6% and Theorem 7.1.11 is not applicable. As D(6)/d(K) is a perfect square
(= (ind 0)?), we have

D(0)

——==1,4,9, or 36
4K or

so that
d(K)=-108, —27, —12, or — 3,

and further information is required to determine which case actually occurs.
In some cases the following result first proved by Ludwig Stickelberger (1850-
1936) in 1897 is useful (see [18]).

Theorem 7.1.14 Let K be an algebraic number field. Then

d(K)=0o0r1 (mod 4).

Proof: Let{w;, wy, ..., w,}beanintegral basis for K. Let a)l(-l) = w;, wfz), R w,(-")
be the K-conjugates of w; (i = 1,2, ..., n). In the expansion of the determinant
o o .
6? oD . G
o o

there are n! terms, half of which occur with positive signs and half with negative
signs. Let the sum of those with positive signs be A and those with negative signs
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/L so that
det(a)gj)) =A—U.
Set
A=Xx4+un, B=2xrpu.
Then

d(K) = (det(@”))? = (A — u)* = (A + pn)* — 4Ap = A> — 4B.

Asw; € O (i = 1,2,...,n),byTheorem6.3.3eacha)l(j)(i,j =1,2,...,n) e .
Hence A, u € @ so

AeQ, BeQ.

Let 0 € Ok be such that K = Q(0). Let 8, =0, 0,, ..., 6, be the conjugates of 6
over Q. If we express each w; as a polynomial in 6 with rational coefficients, A

becomes a symmetric function of 61, .. ., 6, with rational coefficients, and so
A e Q.
Hence A € QN Q = Z. Then
A% —d(K
B = % = Q’

sothat B € Q N Q = Z. Finally, as A, B € Z, we have
d(K)=A*>—4B =0or 1 (mod 4). [

The next example illustrates the use of Theorem 7.1.14 to determine the discrim-
inant of an algebraic number field K = Q(6) when D(0) is not squarefree.

Example 7.1.4 The cubic polynomial x> — x — 2 € Z[x] is irreducible. Let  be a
root of x> — x — 2 and set K = Q(6) so that [K : Q] = 3. By Theorem 7.1.10 we
have

D) = —4(—1)> = 27(=2)* = =104 = —26 - 2.

Since D(0)/d(K) must be a square in Z, we have

D®)

—=1o0r4
d(K)

so that

d(K) = —104 or —26.
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But by Theorem 7.1.14, d(K)=0or1(mod 4) so that d(K) % —26. Hence
d(K) = —104, and {1, 0, 6%} is an integral basis for K.

The following result is a straightforward generalization of Example 7.1.4.

Theorem 7.1.15 Let a, b be integers such that x> + ax + b € Z is irreducible and
—4a® — 27b* = 4m,
where m is a squarefree integer = 2 or 3 (mod 4). Let 6 be a root of x> + ax + b.

Then {1, 6, 6%} is an integral basis for the cubic field Q(6).

In the next example we give a cubic field Q(@) for which {1, 6, #2} is not an
integral basis.

Example 7.1.5 The cubic polynomial x* + 11x + 4 € Z[x] is irreducible. Let 6
be a root of x> + 11x + 4. Set K = Q(0) so that K is a cubic field. By Theorem
7.1.10 we have

D(0) = —4(11)} = 27(4)*> = —5756 = —1439 - 22,

where 1439 is prime. As D(0)/d(K) is the square of an integer, we have

so that
d(K) = —4-1439 or —1439.

The first of these is = 0(mod 4) and the second is = 1 (mod 4), so we cannot
use Theorem 7.1.14 to distinguish between them. We recall from Example 6.3.2 that
(0 + 02)/2isaninteger of K as itis aroot of the polynomial x> + 11x* + 36x + 4 ¢
Z[x). Hence {1, 0, 6%} is not an integral basis for K. Thus

d(K) # D(1,6,6%) = D) = —1439 - 22,
so d(K) = —1439. Since
2
040 1 0 X
D|(1,6, =10 0| D(,6,6%
2 0

R— — O

D=

1 1
= —D(9) = —(—5756) = —1439,
100 = ( )

{1, 0,6 + 92)/2} is an integral basis for Q(0).
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In the next example Theorem 7.1.14 is not sufficient to distinguish between the
possible values of the discriminant and we have to carry out a more detailed analysis.

Example 7.1.6 Let 6 = /2 and set K = Q(8) = Q(~/2). Since 6 is a root of the
irreducible polynomial x> — 2 € Z[x], we have irrgp(9) = x> —2and [K : Q] =
deg(irrg(@)) = 3. By Theorem 7.1.10 we have

D) = —4(0)* —27(=2)> = —108 = —2% . 3%

As D(0)/d(K) is a perfect square, we must have

D)

=12,2%,3% or6’
d(K)

so that
d(K)=-108, =27, —12, or — 3.

Each of these possibilities is congruent to 0 or 1 modulo 4, so we cannot use
Theorem 7.1.14 to distinguish among them. We proceed instead by showing that if
X1 4 x20 + x360% € Ok, where x1, x2, x3 € Q, then x1, x, x3 € Z so that {1, 0, 62}
is an integral basis for K and d(K) = —108. Clearly Z. + 76 + 7Z6* C Ok, so we
wish to show that Ox C 7 + 7.0 + 7.6

Leta € Ok. Then o € K and thus there exist x1, x,, x3 € Q such that

o =x1+ x0 + X302.
The K -conjugates of a are

o = x| + x20 + x362,
o = x| + x00 + x30°%62,
o = x1 + X070 + x30072,

where w is a complex cube root of unity. Hence, as 1 + o + »*> = 0, we have

oa+ao +a’ =3x,
02%(a + w?a’ 4+ wa”) = 6x,,
O(a + wa’ + w*a’) = 6x3.

Asa € Ok, by Theorem6.3.3wehavea, o', o € Q;as6 € Og wehave®, 6% € Q;
andas w,* € 7.+ 7 (@) = Ogq /=3, We have w, w* € Q. Thus

a+d +a, 3o+ 0’ + wa"), O(a + we' + w’a") € Q
so that

35 €eQRNQ=2Z, x,e QNQ=2Z, 6x3€ QNQ =Z.
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Set

yi=6x;€Z, i=123,
so that
60 = y; + 20 + y36°. (7.1.1)

Before proceeding we note the following simple result. Suppose 6 | n in Ok,

where n € Z. Then n = 0w for w € Ok. Thus n® = 6°w® = 2w?. Now w® =

n’/2 € Q and w* € Og € Q so that w> € QNQ =7Z. Thus 2 | n® in Z. But 2
is a prime, so 2 | n in Z. We have shown that

0|ninOgxk =2 |ninZ.

We also note that 0, 6%, and 63 divide 2 in Ok as 2 = 3. Using these results in
(7.1.1), we see that 0 | y; so that 2 | y,. Then 6% | y,0 so 6 | y, and thus 2 | y-.
Finally, 03 | y362, 50 6 | y3 and thus 2 | y3. Set

yvi=2z,1=12,3,
so that
3a =71 + 220 + 230%, 21,22, 23 € Z.

Ifz0 =23 =0then3a = z; so thata = 7, /3 € Q. But @ € Og C Q so that o €
QNQ =7Z. Hence a € 7+ 7O + Z6? as required. If (z2, z3) # (0, 0) then o =
121 + 220 + 236%) ¢ Q since deg(irrg(h)) = 3. Hence

1
Qo) = @(5(21 + 2260 + 230%) # Q.

Now a € Q) so Qo) C Q) and thus [Q(a) : Q] | [QO) : Q] = 3; that is,
[Q(@) : Q] =10r3. But Q) # Q so [Q(a) : Q] # 1. Hence [Q(x) : Q] = 3.

Thus the minimal polynomial of a over Q is of degree 3. Now « is a root of

X2+ 1 x? + cax + 3 € Q[x],

where

cp=—(@+dod +ao")=—1z,

o=ad +ad'a" +a"a= %(z% — 22023),

3 =—ada’ = ;;(Z? + 223 + 423 — 6212223).
Hence

irrg(ar) = X2+ ex? + cox + 3.
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Since a € Q we must have x> + ¢1x* + cax + ¢3 € Z[x] so that ¢y, ¢, c3 € Z; that
is,

73 — 22523 = 0 (mod 3), (7.1.2)
73 + 223 + 423 — 6212223 = 0 (mod 27). (7.1.3)

Suppose that at least one of 71, 22, z3 is not divisible by 3. Then (7.1.2) and (7.1.3)
show that 3 does not divide any of z1, 22, z3. From (7.1.3) we have

73 + 223 + 4z3 = 0 (mod 3).
As 73 = z (mod 3) for any integer z, we have

z1 + 222 + z3 = 0 (mod 3).
Thus, as 3 { z1, 22, 23, we must have

(z1,22,23) = (1,2, ) or (2, 1, 2) (mod 3)
so that
7o = 271 (mod 3), z3 = z; (mod 3).

Define integers t and u by

2 =271+ 3t, 73 =z1 + 3u.
Then

Z? + 213 + 4z§ — 6212223
=23 +2Q2z1 + 31)° + 4(z1 + 3u)® — 621221 + 31)(z1 + 3u)
=973 + 54(12% + 2t%z) + 2 + 2uPzy + 2u® — tuz))
= 9z (mod 27)
= (0 (mod 27),

as 31z, contradicting (7.1.3). Hence z; = z; = z3 = 0(mod 3). Thus we can
define integers wi, wy, w3 by

zi=3w;, i=1,2,3.
Then
o = w; + wrf + wib* € Z + 76 + 762,

proving Og C 7 + 70 + 7.6 as required.
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We have shown that {1, 0,62} is an integral basis for K = Q(0) = Q(v/2), so
that

1 V2 W2R [
dQW2)) =11 w2 «*/2)?| =—108.
1 o*V2 w(/2)?

Richard Dedekind (1831-1916) [5] determined an integral basis for the cubic
field Q(/m) (with m a cubefree integer) in 1900 (see Theorem 7.3.2).
We conclude this section with the determination of an integral basis for the quartic

field Q(v/—1 + +/2).

Example 7.1.7 Let K be the quartic field Q(~/—1 + V2) = QW=1,v2). We
show that

OK:Z+Z\/—_1+Z\/§+Z<%(\/§+\/—_2)>

and
d(K) = 256.

It is easy to check that
1
Z+7ZV-1+7N2+7 (5(«5 + \/—2)) C O,
so we have to prove that

Ok §Z+Z«/—_1+Zf2+z<%(\f2+«/—_2)>.

Let 6 € Ok. The subfields of K are Q, Q(v/—1), Q(2), and Q(~=2). If
6 € Q then 6 eZCZ+Z«/—_1+Z\/§+Z(%(\/§+\/—_2)>. If6 e Q=1

then 6 € Og oy =Z+ZV=1 C Z+ZJ/=T+ Zv2+ Z (32 + V72)).
If 0e€QW2) then 60€Oyp=LZ~+1LN2CL+LJ—1+7V2+
Z(3W24V=D). If 0€QW=D) then 6 € Ogym=L+LV=2C
Z+IN=T1+Z2+ 7 (%(\/5 + J—_2)) Hence we may suppose that 0
does not belong to any of the subfields of K. As 0 € K we have

0 =ay+av—1+ a2 +a3v/=2, ag, a1, a3, a3 € Q.
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The conjugates of 6 over Q are

0 = ag+ a1v—1 + a2 + a3/ =2,
0" =ay— al«/—_1+a2\/§—a3\/TZ,
0" = ay+ ajv/—1 — 612\/5 — azv/=2,
0" = ay — ajv/—1 — a2 + asv/—2.

Then 0+ 6 = 2ay+ 2a:2, 040" = 2ay+ 2a;/—1, 0+0" =

2ag + 2az+/—2 must be integers of Q(v2), Q(/—1), Q(+v/=2) respec-
tively. Hence 2ay, 2a1, 2a,, 2as € Z. Define integers b; by b; = 2a; (i =0, 1,2,3)
so that

1
0 = E(bo + b =1 + byV/2 + b3/=2).
Set

c=b}+2b} e,
d = b} + b} —2b3 — 2b3 € 7,
€:b0b3—b1b2€Z,

so that 0 is a root of

d bod d* + 8¢?
Fx) = x* — 2box® + <c + 2) 2 (—2b3e - g) x+ <16€> € Qlx].

As 0 is of degree 4 over Q (since it does not belong to any of the subfields of K) the
polynomial f(x) must be the minimal polynomial of 6 over Q. Hence, as 6 € Ok,
we have f(x) € Z[x], and so d/2 € Z and (d* + 8¢*)/16 € Z. Hence

d =0 (mod 2), d?> + 8¢?> = 0 (mod 16).
From these congruences we deduce that
d =0 (mod 4), e =0 (mod 2).
Hence
by + b — 2b3 — 2b3 = 0 (mod 4) (7.1.4)
and
bobs — b1by = 0 (mod 2). (7.1.5)

If by or by is odd from (7.1.4) we see that the other is odd as well. Then
from (7.1.5) we deduce that by = bz (mod 2), and (7.1.4) gives the contradiction
2 = 0 (mod 4). Thus

by = by = 0 (mod 2) and b, = b3 (mod 2).
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Hence we can define integers cy, c1, ¢z, c3 by

by = 2co, by = 2c1, by =2¢y + ¢35, bz = cs.
Then

6 = %(bo+b1x/—_1+bzx/§+b3\/—_2)
=co+civ/—1+ V2 +c; (%(ﬁer/—_Z))
€ Z+ZJ—_1+Z«/§+Z<%(\/§+«/—_2))

as required.

Thus {1, v/—1, V2, %(«/i + /=2)} is an integral basis for K and
2

1 J=1 V2 %(«/5+ V=2

1 —/—1 2 %(ﬁ —V=2)

d(K) = . = 256.
1 V=1 -2 5(—«/5—«/—_2)
1 —V/=1 -2 %(—ﬁ+\/—_2)

An integral basis for the quartic field Q(y/m + /n) = Q(/m, \/n), where m
and n are distinct squarefree integers, was determined by K. S. Williams [19] in

1970.

Definition 7.1.5 (Monogenic number field) Let K be an algebraic number field of
degree n. If there exists an element 6 € Ok suchthat {1,0, ...,60" '} is an integral
basis for K then K is said to be monogenic and the integral basis {1,0, ...,0" "}
is called a power basis for K.

Clearly every quadratic field is monogenic. The cubic fields in Examples 7.1.4
and 7.1.6 are monogenic. Dedekind showed in 1878 that not every algebraic number
field is monogenic by proving that the cubic field

K =Q®), 0°—60*-20-8=0,
is not monogenic (see [4]).

Example 7.1.8 We show that the quartic field K = Q(v/—1, v/2) considered in

Example 7.1.7 is monogenic. Let

_N2+iV2
= =20

0
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so that
0> =i, 6° = %(—\/E-i- iv2), 6% = -1,
Then, by Example 7.1.7, we have
Ok =7 +7Zi +7ZV2+7Z (%(fzﬂfz))

=7+ 70>+ 70 — 0% + 76
=7+ 760 + 76% + 763,

so that K is monogenic with power basis {1, 6, 62, 63).

We conclude this section with a simple upper bound for the absolute value of the
discriminant of an algebraic number field as well as a theorem giving the sign of
the discriminant.

Theorem 7.1.16 Let K be an algebraic number field of degree n. Let Ay, ..., A, €

Ok be such that D(Ay, ..., ;) # 0. Then
|d(K)| < |D(A1, ..., Ap)l.
Moreover, if D(Ay, ..., \,) is squarefree then {Ay, ..., A,} is an integral basis for
Ok.
Proof: Let {ni, ..., n,} be an integral basis for K. Then there exist ¢;; (i, j =

1,2,...,n) € Z such that
Ar=cum+ -+ Cala,
Ay =coum + -+ oM,
Ap = Cnii + -+ + Canln-
Hence
DA, ...y Ay) = (detc;))*D(n1, - . ., ) = (det ¢;;)*d(K).

As D(Ay, ..., Ay) # 0 we see that det (¢;;) # 0. Thus, as det (¢;;) € Z, we have
(det cij)2 > 1 and so

|ID(A1, ..oy A = (K.

If D(Ay, ..., A,) is squarefree then from
DA, - -y Ay) = (det ¢;)*d(K),

we deduce that detc;; = £1. Hence D(Ay,...,A,) =d(K), proving that
{A1, ..., A} is an integral basis for K. [ ]

The next theorem is due to Alexander Brill (1842-1935) (see [3]).
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Theorem 7.1.17 Let K be an algebraic number field of degree n. Let 0 € Ok be
such that K = Q(0). Let 6, =60, 0,, ...,0, be the conjugates of 6. Let r be the
number of 01, . . ., 0, that are real. Then

sgn (d(K)) = (=),

Proof: Asr is the number of 6y, . .., 6, that are real, the number of 6y, . .., 6, that
are nonreal is n — r. Since the nonreal conjugates occur in complex conjugate pairs,
n—riseven,sayn —r =2s,son =r + 2s. Now let {wy, ..., w,} be an integral

basis for K. Let a)fcj) (j =1,2,...,n) be the conjugates of wy (k =1,2,...,n).
Thend(K) = det (w,ﬂj))z. Set det (a),(cj)) = A+ iBwith A, B € R. Since the change
of i into —i in this determinant is equivalent to the interchange of s pairs of rows,
we have A — i B = (—1)°det (w,Ej)). Hence A —iB = (—1)°(A +iB).If s is even
then A—iB=A+iBso B =0andd(K)=det ()2 = A2 is positive. If s is
oddthen A —iB = —(A+iB)so A = 0and d(K) = det (v\")? = (i B)* = — B>
is negative. Hence sgn (d(K)) = (—1)° = (=1)*="/2, |

7.2 Minimal Integers

Let K be an algebraic number field of degree n. Let & € Ok be such that K = Q(6).
Then every o € Ok can be expressed in the form

a=ay+a0+ - +a,_10"", (7.2.1)

where ay, a1, ..., a,—; are rational numbers uniquely determined by « and 6. If
ke{l,2,...,n— 1}is such that

ax #0, axp1=---=a,-1 =0
so that
a=ao+ a0+ -+ ab*
then « is called an integer of degree k in 6. If ay = ay =--- = a,—; = 0 so that

o = ap then « is called an integer of degree 0 in 8. The integers of degree O in 6
are precisely the rational integers.
We are going to show that the denominators of the a; are bounded. Of course if
{1,6,...,6" '} is a power basis for K then all the denominators are equal to 1.
First we prove the following result.

Theorem 7.2.1 Let K be an algebraic number field of degree n. Let wy, ..., w, €
Ok be such that

D(wy,...,w,) #0.
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Then for each a € Ok there exist unique rational integers xi, . . ., X, such that
n X
J
;D(wl,...,wp !
and

D, ....o) | x;, j=1,2,....n.

Proof: As wy, ..., w, € Ok, by Theorem 6.4.4(b) D(wy, ..., w,) is a rational in-
teger, which is nonzero by assumption. Further, as D(wy, . . ., ,) # 0, by Theorem
6.4.4(c) wy, ..., w, are linearly independent over Q and thus form a basis for K
over Q. Hence there exist unique rational numbers yy, ..., ¥, such that
n
o= Z yjwj. (7.2.2)
j=1
Let oy(= 1), 02, ..., 0, be the n monomorphisms: K —> C. Applying these to
(7.2.2), we obtain
o(@) =Y yjor(w), k=1,2,....n. (7.2.3)
j=1
Regarding (7.2.3) as a system of » linear equations in the n unknowns yy, ..., y,,

we obtain by Cramer’s rule

ol(wy)---o(wj—1) o(@) oywjqr):--o1(w,)

o on(wy) - -+ On(wj—l) on(a) Un(wj+1) - op(wy)
Yi= det(o;(w;))

for j =1,2,...,n. Hence

2
ol(wy)---o(wj—1) oi(a) o)) o1(w,)
yiD(@, ..., wp) =
on(@1) - op(wj—1)  on(e) op(wjt1) - - op(wn)
is an algebraic integer for j = 1,2,...,n and since y]zD(wl, s, wp) €Q we
deduce that y?D(wy, ..., w,) € Z. Set y; =rj/s;, where r; € Z, s; € N, and
(rj,s;) = 1.Then
r2
—JZD(wl,...,a)H)GZ, j=12,...,n.
J

As (rj, s;) = 1 we deduce that

sz‘lD(a)19~'-,a)n), j=1,2,...,n.
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Let

v
xj:ij(wl,...,a),,):S—J_D(a)l,...,wn)eZ, i=12,....n
J

Then, from (7.2.2), we obtain

Xj
o = wi.
; D(a)l £ b w}’l) !
Finally, we observe that
2
g _pDenen
D(wy, ..., w,) J 5
so that
D(wi,....0) | x7, j=1,2,....n.
This completes the proof of the theorem. [ |
We note that if D(wy, ..., w,) is squarefree then by Theorem 7.2.1 we have

D(wi,...,w,) | xj, j=1,2,...,n.

Hence, by Theorem 7.2.1, for each o € Ok there exist unique rational integers
aj =xj/D(wi, ..., w,) such that

n
o = E aja)j,
j=1

proving that {wy, ..., w,} is an integral basis for K, a result that we have seen
before in Theorem 7.1.16.
We now use Theorem 7.2.1 to bound the denominators of the a; in (7.2.1).

Theorem 7.2.2 Let K be an algebraic number field of degree n. Let 0 € Ok be such
that K = Q(0). Let o € Ok. Then there exist unique rational numbersr;/s; (j =
1,2,...,n)with(r;,s;) = 1 and s; > 0 such that

~ r
O[:E Jgi-1

S

j=1"

and

1 <s; <|D®)I, 57| D@®).

Proof: As 8 € Ok we have
1,60,6% ...,0"" € Ok,
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so by Theorem 6.4.4(b)
D)= D(,6,0% ...,6" " e Z

Further, as K = Q(0), by Theorem 6.4.3 we have

D(9) # 0.
Then by Theorem 7.2.1 there exist unique rational integers x1, ..., x, such that
n xj -
=N 2 gi
* Z D(9)
j=1
and
DO)|x;, j=1,2,....n.
For j = 1,2, ..., n we define coprime integers r; and s; (> 0) by
__se(DO)x; __|D®)
! (x;, D®) ~ 7 (x;, DO)
so that
n
rj _ X Tj it
—_— = y o = —9] ,
S; D(O) ]Z=:l §;
and

1 <5, <|DO).

Finally, for j = 1,2, ..., n we have

D@©) = -
L — c ,
s3 D(®)
sothat as (rj, s;) =1
57 | D). [ |

Theorem 7.2.2 enables us to define the concept of a “minimal integer of degree
k in 6.” Let K be an algebraic number field of degree n. Fix 8 € Ok such that
K = Q). Fork € {0, 1,2, ..., n — 1} define the set S; by

St ={a € Q|ap+af +---+ab* € Ok
for some ag, ay, ..., ar_1 € Q}. (7.2.4)

Clearly
So =72
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and
S 2%, k=1,2,...,n—1.

By Theorem 7.2.2 the denominators of the rational numbers in S; are bounded.
Hence S; has a least positive element a;. Clearly a; = 1.
Definition 7.2.1 (Minimal integer of degree k in 6) With the preceding notation
any integer of K that is of the form

ao + a1 + -+ + 10" + af 0",

where ay, ay, ..., ax—1 € Q, is called a minimal integer of degree k in 0.
The next theorem gives the structure of the set Sy.

Theorem 7.2.3 With the preceding notation
Sk = CZ;:Z.

Proof: Leta € S;. Let m be the least positive integer such that
ma € Z, ma; € N.
By the division algorithm there exist ¢ € Z and r € Z such that
ma = gma; +r, 0 <r < maj.
Hence
* r r *
a=qa; +—, 0< — <a.
m m
As a € S there exist by, by, ..., by—; € Q such that
by + b10 + -+ -+ br_10"! +ab* € Og.
Similarly, as a; € Sk, there exist cg, ci, ..., cxk—1 € Q such that
co+cf+---+ Ck_19k71 —|—a,’:0k € Og.
Then
r
(bo — qco) + (b1 — qe)f + -+ - + (b1 — qer—1)0* ™ + njek € Ok,

so that

r
—ESk.
m

If 0 < r/m < af this contradicts the minimality of a;. Hence r/m = 0 and a =
qag, proving S = a;Z. [ |

The next result gives the form of a;.
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Theorem 7.2.4 Fork =0,1,2,...,n—1

1
a; = —
dy
for some d, € N.
Proof: We prove the assertion by inductionon k € {0, 1,2, ..., n — 1}. The result
is true for k = 0 as
1
*
= 1 = —

with dy = 1. Assume now that
1
ap=—,dreN, k=0,1,...,1—1,
dy

where 1 </ < n — 1. By the definition of a;" | and the inductive hypothesis there
exist rational numbers ag, a;, . .., d;_, such that

-2 1 -1
ay+ a0+ ---+a_,0 +d79 € Og.
[—1
Then
2 -1 1 l
009+6119 +'--+a1_29 +d—9 60[(.
-1
Hence

: S,
— e85
di—

Thus, by Theorem 7.2.3, there exists m € Z such that

— =a;m.
di—
This proves that
|
a = —
)
with d; = md;_,. This completes the inductive step and the result follows by the
principle of mathematical induction. [ |
The next theorem shows that each d;_1 (k =1, 2, ..., n — 1) divides its succes-

sor dj.

Theorem 7.2.5 Fork=1,2,...,n—1
di—1 | di.
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Proof: Let k € {1,2,...,n — 1}. Exactly as in the proof of Theorem 7.2.4 we
deduce that

* %
ak—l S Sk — akZ
so that
* _ *

for some m € Z. Hence, by Theorem 7.2.4, we have

1 1
—=m—
di—1 d
so that
di = mdy_1,
proving
dk_1|dk,k=1,2,...,l’l—1. [ |

The next theorem gives the form of an integer of degree k (k =0,1,2,...,
n — 1) in 6. As an immediate consequence we obtain the form of a minimal integer
of degree k in 6.

Theorem 7.2.6 If o is an integer of degree k in 6 then there exist
ap, ai, ..., ax € Z such that

ag+af + -+ a6 + q 6%
o = .
dy

In particular if o is a minimal integer of degree k in O then there exist
ao, Ay, ..., a—1 € Z such that

ap+af + -+ a6 + 6%
di '

o =

Proof: We prove the assertion by induction on k € {0, 1,2,...,n — 1}. Let @ be
an integer of degree O in 6. Then o = ay for some ay € Z. But dy = 1 so that
o = ay/dy is of the asserted form and the result is true for k = 0.

Assume now that all integers of degree up to/ — 1 in 6 are of the specified form,
where [ € {1,2,...,n — 1}. Let o be any integer of degree / in 6. By Theorems
7.2.3 and 7.2.4 there exist rg, r1, ..., ;1 € Q and g; € Z such that

o =r0+r19+---+rl_191_1 + %91
1
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Let 8 be a minimal integer in 6 of degree [ — 1. By the minimality of 8 and the
inductive hypothesis, there exist sg, 51, ..., s;—2 € Z such that

S0+ si0 4452072+ 0!
di— .

By Theorem 7.2.5 we have d;_; | d; so that

B

d 0B € O
—o — da .
d 1 K
Thus

-1

dl dﬂ”j —apsj—1 j
TRUAD P

J=1

is an integer of degree [ — 1 in 6. Hence, by the inductive hypothesis, there exist
co, C1, ..., Ci—1 € Z such that

-1 -1

dl dﬂ‘j — Cl[Sj_l : CJ' :
PRI N B LY VY S T
di— 12_:1 di— ; di—

Equating coefficients we obtain

Co
ro = —,
0 a
T e R R
d
Define integers ay, ai, ..., a;—1 by
ap = co, a; = q;sj—1 + ¢j, j=12,...,1—1.
Then
aj .
ri=—,j=0,1,...,1—1,
J dl
and
ap+af + -+ a0 + a6
o= .

d

This completes the inductive step and the theorem follows by the principle of
mathematical induction and (for the second part) Theorem 7.2.4. [ ]

We now come to the main theorem of this section. We show that if oy (k =
0,1,...,n—1)is a minimal integer in 6 of degree k then {ag, o1, ..., ®,—1} is an
integral basis for K = Q(9).
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Theorem 7.2.7 Let K be an algebraic number field of degree n. Let 6 € O be
such that K = Q(0). Fork =0, 1,2, ...,n — 1 let ay be a minimal integer in 0 of
degree k. Then {«y, oy, . .., o,—1} is an integral basis for K.

Proof: In any integral basis for K = Q(0) at least one of the basis elements must
be of the form ag + a10 + - - - + a,_16" ! (ag, ay, ..., a,—1 € Q) with a,_; # 0;
otherwise the integral basis could not represent 8"~ !. Replacing the basis element
by its negative, if necessary, we may suppose that a,_; > 0. We choose an integral
basis {w, ..., w,} for K with

oy =ag+ a0+ -+a,_10""", a,_1 >0, a,_; least.
Letk € {1,2,...,n — 1} and suppose that
wp =bo+ b0+ +b, 10" (b, ..., b1 €Q).

Replacing w; by —wy if necessary we may suppose that b,_; > 0. Let m be the
unique nonnegative integer such that

bn—l bn—l
—1l<m<
an—1 ap—1
Then
0<b,_1 —ma,_1 < ap_.

Ifb,_1 —ma,_1 # 0 we set
W = Wk — MWy_].

Then {wy, ..., w1, W}, W1, . .., w,} is an integral basis for K. This contradicts
the minimality of a,_; as the coefficient of #”~! in wj, i b,_; — ma,_;, which
is positive and strictly less than a,_,. Hence b,,_; — ma,_; = 0, so that b,,_; is a
rational integral multiple of a,_,. Thus there exist rational integers my, ..., m,_,
such that ] = w; — mw,, W) =w| —Mmw,, ..., W, | = w,—| — M,_jw, are
integers of degrees at most n — 2 in 6. Moreover, {®], ..., ®,_,, ®,} is an integral
basis for K. Among all integral bases {wy, ..., w,} for which wy, ..., w,_ are
integers of degree at most n — 2 in 8, we choose one for which the coefficient of
6"=2 is positive and minimal, and we continue our construction until we arrive at
an integral basis «y, o1, a2, ..., ,—1, Where each «; is of degree i in 6. Let

i
k
= E a0, ajr € Q.

k=0

Then

d(K) = D(ay, ..., a,) = (aai - - 1 n_1)* D).
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Fori =0,1,...,n — 1 let §; be a minimal integer of degree i. Then

D(Bo, - - -, Pu—1) = (aia} ---a’_)*D(O).

By Theorem 7.1.16 we have
|d(K)| < |D(Bo, - - -, Bn—1I

so that
Apoail -+ An—1n—1 < Aoy -~ dy_,

and thus

a_(f.a_li...a”_:”_l < 1.

ap a a,—1
As a;€8 (i=0,1,...,n—1), by Theorem 7.23 each q;/a (i=
0,1,...,n—1)is a positive integer and so

ai=a’,i=0,1,...,n—1.

Thuseacho; (i =0,1,...,n — 1)is a minimal integer of degree i in 6. [ |

Theorem 7.2.7 gives a method of finding an integral basis for an algebraic number
field of degree n. We have only to find a minimal integer of each degree upton — 1.
This is illustrated for some cubic fields in the next section.

Our final theorem of this section gives some further useful information about the
denominators of minimal integers.

Theorem 7.2.8 Let K be an algebraic number field of degree n. Let 6 € Ok be
such that K = Q(0). Fork =0,1,2,...,n—1 let

aro + a6 + - - + a1 0571 + 6%
g = a (ako, - - ., Agk—1 € Z)

be a minimal integer in 0 of degree k, so that ag = dy = 1. Then

d()dl s dn—l =ind 0

and
"I D), i=01,....,.n—1.
Proof: By Theorem 7.2.7 {ag, o1, ..., a,—1} is an integral basis for K. Hence
D(a07 al’ cte an—l) = d(K)
However,
D) (ind 0)*d(K)
D(a()?ala'"’an*l): =

o+ dy1)? (do---dy1)*
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Hence, as dy, ..., d,—1, ind 6 are positive integers, we have
ind 0 = d()dl cee dn—l'

Further
D(0)

———=dK) e Z
(do---dy—1)?
so that

(do- -~ dp1)* | D(O).
Fori =0,1,...,n — 1 we have by Theorem 7.2.5

di ldig1 |-+ | duy
so that

4"V | D). |

7.3 Some Integral Bases in Cubic Fields

In this section we use Theorems 7.2.7 and 7.2.8 to find integral bases for some
cubic fields. The following elementary theorem will be very helpful in connection
with the calculations.

Theorem 7.3.1 Let 6 be a root of the cubic equation x> +ax +b = 0 (a, b € Q).
Then yo + y10 + 26% (Yo, y1, 2 € Q) is a root of the cubic equation x> + Ax> +
Bx + C =0, where

A = =3y + 2ay,,

B =3y +ayi +a’y; — 4ayoy: + 3by1ys,

C = —y; + by} — b*y3 — ayoyi — a’yoy; + 2ayyy2 + aby,y; — 3byoy1y,.

Proof: Let6,6',0" € C be the three roots of the cubic equation x* 4+ ax +b = 0
so that

0+6"+6" =0,
00’ +0'0" +60"0 = a,
00'0" = —b.

Then
0246 +60" =(O+6 +6")—200 +00" +0"0) = —2a,

2472 72 52 / 'nl 1" n\2 ol / " 2
676" +6"6" +60" 6°=(06 +60'60"+6"6)" —20060"(60+6 +60")=a",
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99/2 + 020/ +09//2 +929// + 9/9//2 + 9/29// — 99/(9 + 9/) + 99//(9 +9//)
+ 00" +0") = —300'0" = 3b.

Now set
@ = yo+ yi6 + 6>,
o =yo+y10' + y20’2,
o =yo+y10" + y29”2-
Then

2 2
a+a +a" =3y + i@ +0 +0")+ 07+ 6" +0") =3y, — 2ay,,

ad + @’ + oo =3y + y 00 +0'0" +0"0) + y3(0%0" +0"0" +0"°6%)
F 290010 + 6 +0") + 2y0y2(0% + 6" +6")
100" + 0% + 00" + 0% +0'0" +070")
=3y + ay; + a’y3 — dayoy, + 3by1 v
and
ad'a” = y3 + y100'0" + y3(00'0")* + yoyi(66' +6'0" +6"6)
Fy0y20%0” + 070" +07 0% + 20 + 0 +0")
3207+ 07 +07) + 20000 +0' +0")
+y1y200'0"(00' +6'0" + 0'0)
+yoy1 208" +0%0" +00" +6%0" + 600" +676")
= yg - byf + bzyg + ayoyl2 + a2y0y22 — 2ay§y2 - abylyg + 3byoy1y2.
The result now follows as @ = yy + y10 + y,62 is a root of
x—a)x—ad)x—a)=x—(@+ao +a)x*

+ (o’ +aa” +a'a”)x —ad'a”. u

Example 7.3.1 Let 6 be a root of 6° — 30 +9 = 0. In the notation of Theorem
7.3.1 we have a = =3, b = 9. We determine the polynomial of which 6%/3 is a
root. We have yo = y1 = 0, y, = 1/3. Then, by Theorem 7.3.1, we obtain

1
A=2-3) =-2,
(=3)3

C=-9"_—=-3,

and 0?/3 is a root of x> — 2x*> + x — 3 = 0. This shows that 6 /3 is an algebraic
integer of Q(9). In this case it is easy to check that 6%/3 is a root of x> — 2x% +
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x — 3 = Odirectly. Let o« = 6%/3. Then 6> = 3a. Hence
81 = (=9)* = (0% — 30)* = 6° — 66" 4 967 = 270> — 540® + 270,

so that @® — 20> +a —3 =0.

Example 7.3.2 Let 6 be a root of the cubic equation x> — x +4 = 0. Here a =
—1, b = 4. We considero. = %9 + %92, sothatyy =0, y1 = 1/2, yo = 1/2. Then,
by Theorem 7.3.1, we obtain

1
A=2(-1)7 =—-1,
=13

1
B= (-1+1+12)=3,

1
C=g@-16-4=-2

so that o is a root of x> — x*> 4+ 3x —2 = 0. This proves that (6 + 6%)/2 is an
integer of Q(0).

Example 7.3.3 Let 0 be a root of the cubic equation x> + 11x + 4 = 0. Here
a=11, b =4. We consider o = %9 + %92, sothat yo =0, y1 =1/2,y, =1/2.
Then, by Theorem 7.3.1, we obtain

1
A=2.11-- =11,
2
B =11 1+112 1+34 ! 1—36
o 22 22 2 2 77
1 , 1 1

so that « is a root of the cubic equation x> + 11x* 4 36x + 4 = 0 and thus an
integer of Q(0) (see Example 6.3.2).

Example 7.3.4 Let 0 be a root of the cubic equation x> — 21x — 236 = 0. Here
a = —-21, b =—-236. We consider o = (1 + 0)/3, sothat yo = y; = 1/3, y, =0.
By Theorem 7.3.1 we obtain

A—3l—l
= 3) =L

1 1
C = ! 2361-1—211—_216— 8
33 33 3 27 7

so that o is a root of the equation x> — x> —2x — 8 = 0. Hence (1 +6)/3 is an
integer of the cubic field Q(6).
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Example 7.3.5 Let6 be arootof x> —21x — 236 = 0. Herea = —21, b = —236.
We consider o = (=2 — 0 + 62)/18, so that

-2 —1 1
}’o=1—8, Y1 =1_8’ )’2=ﬁ-
By Theorem 7.3.1 we obtain
A= i(6—42): —36 = -2,
18
B = (12 21 4+ 441 — 168 +708) = 072 =3,
324
C= @(8 4236 — 55696 — 42 4 882 — 168 — 4956 + 1416)
_ —58320
T o583

so that « is a root of the cubic equation x*> — 2x* 4+ 3x — 10 = 0. Hence (—2 —
6 + 02)/18 is an integer of the cubic field Q(6).

In the next four examples we use Theorems 7.2.7 and 7.2.8 to give integral bases
for the following cubic fields:

Q(), 6° — 36 +9 = 0 (Example 7.3.6),
Q(), 6° — 6 + 4 = 0 (Example 7.3.7),
Q(®), 6 + 1160 + 4 = 0 (Example 7.3.8),
Q(), 6° — 216 — 236 = 0 (Example 7.3.9).

Example 7.3.6 Let K = Q8), 6° — 36 + 9 = 0. The polynomial x> —3x +9 €
Z|x] is irreducible, so K is a cubic field (n = 3). By Theorem 7.1.10 we have

D) = —4(=3) —27-9* = —2079 = —3°. 7. 11.

Let dy be the denominator of a minimal integer in 0 of degree 1. By Theorem 7.2.8
we see that d;°" | D(0), that is, d | —=3% -7 - 11, so that d, = 1. Hence 6 is a
minimal integer of degree 1. Let dy be the denominator of a minimal integer of
degree 2. By Theorem 7.2.8 we have d2(3 2 | D(®), thatis, d3 | =3° -7 - 11, so that
dy = 1 or 3. But it was shown in Example 7.3.1 that 6% /3 is an integer of K. Hence
d» =3 and 6?3 is a minimal integer in 0 of degree 2. Then, by Theorem 7.2.7,
we deduce that {1,0,0%/3} is an integral basis for K. By Theorem 7.2.8 we have
ind 6 = d0d1d2 = 3. Thus
D) —33.7.11

d(K) = - —3.7.11 = —231.
(K) (ind 6)2 32
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Example 7.3.7 Let K = Q(0), 6% —6 +4 =0. The polynomial x> —x + 4 ¢
Z[x] is irreducible, so K is a cubic field (n = 3). By Theorem 7.1.10 we have

D) = —4(=1)’ = 27-4* = =2° - 107.

Let d, be the denominator of a minimal integer in 6 of degree 1. By Theorem 7.2.8 we
see that d12(3_1) | D(O), that is, df | —22.107. But 107 is a prime, sod; = 1. Hence
0 is a minimal integer of degree 1. Let d, be the denominator of a minimal integer
in 0 of degree 2. By Theorem 7.2.8 we have d22(3_2) | D(B), that is, d22 | —22.107,
showing that dy = 1 or 2. Now %9 + %92 is an integer of K (Example 7.3.2) so it
is a minimal integer in 0 of degree 2. Hence by Theorem 7.2.7 {1, 0,0 + 92)/2}
is an integral basis for K. By Theorem 7.2.8 we have ind 60 = dyd,dy = 2. Thus
D(0) —22.107

d(K) = - — —107.
(K) (ind 0)? 22

Example 7.3.8 Let K = Q(0), 6% + 110 +4 = 0. By Theorem 7.1.10 D(0) =
—4.113 =27 - 4> = —5756 = —22 . 1439, where 1439 is a prime. By Theorem
7.2.8 we have d} | —2* 1439 and d; | —2* - 1439, so that d, =1 and d, = 1
or 2. By Example 7.3.3 (0 + 6?%)/2 is an integer of K, so that d, = 2. Thus by
Theorem 7.2.7 {1, 0,0 + 92)/2} is an integral basis for K. By Theorem 7.2.8
we have ind 6 = dyd d, = 2. Finally,

D) —22.1439

d(K) = = = —1439.
(K) (ind 6)2 22 39

Example 7.3.9 Let K = Q(0), 6> —210 —236 = 0. By Theorem 7.1.10 D(6)
= —4(=21)> — 27(—236)> = 37044 — 1503792 = —1466748 = —22 . 35. 503,
where 503 is a prime. By Theorem 7.2.8 we have d} | —2* - 35 . 503, so that d; = 1
or 3. In Example 7.3.4 it was shown that (1 4 60)/3 is an integer of K, so we must
have dy = 3. By Example 7.3.5 (=2 — 6 + 6%)/18 is an integer of K. Thus 18 | d»,
say dy =2 -3% . m, where m € N. By Theorem 7.2.8 we have

—2%.3%.503 = D(0) = d(K)(dyd,d>)* = 2% - 3° - m?d(K),
sothatm = 1, d(K) = —503, and

11+9 —2—-0+462
3 18

is an integral basis for K.

Definition 7.3.1 (Pure cubic field) A cubic field K is said to be pure if there exists
a rational integer m, which is not a perfect cube, such that K = Q(J/m).

In Example 7.1.6 we found an integral basis for the pure cubic field Q(v/2).
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Example 7.3.10 We show that the cubic field K given by
K=0Q@®), 0°+60+2=0, 0 €R,

is the pure cubic field Q(~/2). Clearly —1 < 6 < 0. Because the function x — 2/x
increases monotonically from —1 to 0 as x varies from —2 to —/2, there exists a
unique real number a with —2 < a < —/2 such that

2
0=a——.
a
Then
3 2
a——| +6la——)+2=0
a a
so that
8
ad——=+2=0
a
Hence
a=2o0r —4.
As a < 0 we must have a® = —4; that is,
a= -2,
Thus
9 —2l/3 _ 923

This shows that

K =Q6) < Q2').

Further,
0 = —4+2.213 4223
so that
0+6*=—4+43.2'5
Hence
218 = %‘ + %9 + %92,

proving that

Q2 c Qo) =K.
This completes the proof that K = Q(2'/3).
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As

440462 L _4-20467
3 ’ 3 ’
and {1, 23,2213} is an integral basis for K = Q2'/3), we see that

2173 —

14+9+924—29+92
’ 3 ’ 3
is an integral basis for K = Q(0). Since
4460+0> 4-2046>
3 3 B

0

and

446462 146462
3 37

1+6+6?
{1,9,7+ 3+ }

a simpler integral basis is

We now give an integral basis for the pure cubic field Q(/m). As we have already
mentioned this basis was first given by Dedekind [5] in 1900.

Theorem 7.3.2 Let m be a cubefree integer. Set m = hk?, where h is squarefree, so
that k is squarefree and (h, k) = 1. Set & = m'/? and K = Q(6). Then an integral
basis for K is

k
k* £ k%6 + 62
{1’9,——’_

92
{Laf—},ym2¢1mmd%,

3k
The discriminant d(K) of K is given by

}, ifm =41 (mod 9).

{ —27h%k?, ifm* # 1 (mod 9),
d(K) = 212 g
—3h%k*, ifm = £1 (mod 9).

We leave the proof of Theorem 7.3.2 as an exercise (Exercise 6). From Theorem
7.3.2 we obtain Table 1.

If K is a pure cubic field given in the form K = Q(6), 03+ab+b=0, a,be
Z, it is known that —4a® — 27b* = —3¢? for some positive integer ¢ (in Exam-
ple 7.3.10 we have a = 6, b =2, ¢ = 18), and an integral basis for K has been
given by Spearman and Williams [15].
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Table 1. Integral bases and discriminants for
QWk), 2 < k <20, k cubefree

k Integral basis (6 = 3/12) Discriminant

2 {1,0,0% —108 = —2%2.33

3 {1,6,6% —243 = —3°

5 {1,0,06% —675=-3%.52

6 {1,0,06% 972 =-22.3°

7 {1,6,6%) —1323 = —33.72

10 {1,6,(14+6+6%)/3) —300 = —22.3.52
11 {1,6,6% —3267 = =33 . 112
12 {1,0,6%/2} 972 = -2%2.3°

13 {1,6,60%) —4563 = —3%.132
14 (1,6, 6% —5202 = —2%2.33.72
15 {1,6,60%) —6075 = —3°. 52

17 {1,6,(1 —6+6%)/3) —867 = —-3-17%

19 {1,0,(1+6+6%/3} —1083 = —3-.192
20 {1,0,6%/2} —2700 = —2%.33.52

Note: Q(W4) = Q(v2), QW9 =Q3), QW16)=
Q(2), and Q(v/18) = Q(v/12).

The discriminant of an arbitrary cubic field K = Q(), 6> +af + b = 0, was
obtained by Llorente and Nart [12] in 1983, and an integral basis was first given by
Alaca [1].

We conclude this section by mentioning that Funakura [8] has given an integral
basis for a pure quartic field Q(k), where k € Z is such that x* — k is irreducible
over Q. Appealing to his results, we obtain Tables 2 and 3.

Table 2. Integral bases and discriminants for Q(vk),
x* — k irreducible in Q[x], 2 <k < 10

k Integral basis (6 = v/k) Discriminant

2 {1,0,0% 6% —2048 = —2!

3 {1,6,6% 6% —6912 = —28.33

5 {1,0,(14+6%/2,0+6%/2) —2000=—2*.53

6 ({1,0,0% 63 —55296 = —2!1. 33
7 {1,0,6% 6% —87808 = —28. 73
10 {1,6,6% 63%) —256000 = —2'1 .53

Note: Q(v/8) = Q(+/2).
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Table 3. Integral bases and discriminants for Q(v/—k),
x* + k irreducible in Q[x], 1 <k < 10

k  Integral basis (8 = /—k, arg 6 = 77/4) Discriminant

1 {1,6,60% 6% 256 =28

2 {1,0,60% 6% 2048 = 2!

3 {1,0,(1+6%/2,0+6%)/2} 432 =24.33

5 {1,6,6%6% 32000 = 2% . 5°
6 (1,60,60% 6% 55296 =211 .33
7 {1,6,(14+6%/2,(1+6+60>+6%/4} 1372=22.7°

9 {1,6,6%/3,6%/3} 2304 =28 .32
10 {1,0,6% 6% 256000 = 2'! . 53

Note: Q(/=%) = Q(i) and Q(v/=8) = Q(/=2).

7.4 Index and Minimal Index of an Algebraic Number Field

Let K be an algebraic number field of degree n over Q. An element o € Ok is
called a generator of K if K = Q(«). By Theorem 6.4.3 « is a generator of K if
and only if D(«) # 0. For a generator « of K, the index of « is the positive integer
ind o given by

D(a) = (ind @)*d(K)

(see Definition 7.1.4). We now define the index i(K) and minimal index m(K) of
the field K.

Definition 7.4.1 (Index of a field) The index of K is

i(K)=gcd{inda | ¢ a generator of K}.

Definition 7.4.2 (Minimal index of a field) The minimal index of K is

m(K) =min {ind ¢ | @ a generator of K}.

Clearly
i(K) | m(K). (7.4.1)

Theorem 7.4.1 Let K be an algebraic number field. Then m(K) = 1 if and only if
K possesses a power basis.

Proof: Suppose m(K) = 1. Then there exists a generator « of K such that
inda = 1. Hence D(1,a,...,a" ') = D(a) = (ind @)’d(K) = d(K) so that
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{1,a,...,a" !} is an integral basis for K. Hence K possesses a power basis.
Conversely, suppose K possesses a power basis, say {1, a,...,a" '}. Then
{l,a,...,a" '}isan integral basis for K and so

D, a,...,a" Y =d(K).
But
D(,a,...,a" " = D(a) = (ind «)’d(K),

soind « = 1 and hence m(K) = 1. [ ]
From (7.4.1) and Theorem 7.4.1 we obtain

Theorem 7.4.2 Let K be an algebraic number field such that K possesses a power
basis. Then i(K) = 1.

In Example 7.4.4 we give an algebraic number field K for which i(K) = 1 but
K does not possess a power basis. This shows that the converse of Theorem 7.4.2
is not true. Theorem 7.4.2 gives a convenient way of establishing that an algebraic
number field does not have a power basis; all we have to do is to show thati(K) > 2.

In the next theorem we determine the index and minimal index of a quadratic
field directly from their definitions.

Theorem 7.4.3 Let K be a quadratic field. Then i(K) = m(K) = 1.

Proof: As K is a quadratic field, by Theorem 5.4.1 there exists a unique squarefree
integer m such that K = Q(/m).

First we suppose that m = 1 (mod 4) so that {1, l+2‘/'% } is an integral basis
for K (Theorem 5.4.2) and d(K) = m (Theorem 7.1.2). Let @ € Ok. Then @ =
a+b (%) for some a, b € Z. Now

2
14+
1 a+b< +2 m)

1 —2ﬂ)

D(a) = = (=b/m)?* = b’m,

1 a+b<

so that
D(x) # 0if and only if b # 0.

Thus « is a generator of K if and only if b # 0. Further,

. | D(e) [b2m
inda = =14/ — =1b|,
d(K) m
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so that
i(K)=gcd{|b||beZ, b#0}=1
and
m(K)=min{|b| |be Z, b #0} =1.
Next we suppose that m = 2 or 3 (mod 4), so that {1, \/m} is an integral basis

for K (Theorem 5.4.2) and d(K) = 4m (Theorem 7.1.2). Let « € Og. Then @ =
a + b./m for some a, b € Z. Now

1 a+byml|

—(_ 2 2
g pm| = 2b/m)? = 4b*m,

D(x) = ‘

so that
D(a) # 0if and only if b # 0.

Thus « is a generator of K if and only if b # 0. Further,

/ 2
indo = %2\/4’%]? = |b],
d(K) 4m

so that
i(K)=gcd{|b||beZ, b#0}=1
and

m(K)=min {|b| | beZ, b+#0}=1. .

Of course we could have argued that a quadratic field clearly has a power basis
so that by Theorem 7.4.1 m(K) = 1 and then by (7.4.1) i(K) = 1.
In the next four examples we determine i(K) and m(K) for some cubic fields K.

Example 7.4.1 We determine the index i(K) and the minimal index m(K) of the
cubic field K = Q(9), where 6 is a root of f(x) = x> —3x +9. Let ' and 0"
be the other two roots of f(x), so that x> —3x +9 = (x —6)(x —0)(x —6").
By Example 7.3.6 we know that {1, 0, 02/3} is an integral basis for K, D(0) =
—3%.7.11, and d(K) = =3 -7-11. Let a € Og. Then a = a + b6 + c6?/3 for
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some a, b, c € 7. The conjugates of o are

2

0
a=a+b9+c?,

/2

/ / 9
o =a—+ b +C?,

2
4

1 1" 9
(07 =a+b9 +C?
Hence, as 6 + 0" 4+ 6" = 0, we have
¢ c
a—a'=(O-0) (b+§(9+9’)> = -0 (b— 59"),

w—a'=@—-6(b+0+67)=®—0" (b %9) ,

3
o —a' = 0" (b+ g(e’ +0) =@ —0" (b - %9) .

Thus, by Theorem 6.4.1,

D(Ot) — (Ol _ 0{/)2(05 . O[//)Z(Ol/ o a//)z

— (9 _ 0/)2(0 _ 9//)2(9/ _ 9//)2(b _ ge)Z(b _ %0/)2(19 _ %0//)2

=00 {(5)'r(2)}

—_3.7.11 (5 1"”2+C3 2
- 3 3

=—3.7-113b> = bc? + ).

Then
D 3.7 11(3b3 — be? + ¢3)?
inda = /2@ _ ( Y 3 — b+ ).
d(K) —3.7-11
Hence

m(K) = min {|30> —bc* + 3| | b,c € Z, 30> —bc* + > #0) =1
as
303 — b + ¢ =1 for (b, c) = (1, —1).
By (74.1)i(K) = 1. Asm(K) = 1, K has a power basis by Theorem 7.4.1. Now

02 /02\° 02 o 02 2 62
pl1.= (=) |=p(1.=-.Z)=D(1.=. 2 -0)=D(1,~, -0
3°\ 3 379 3’3 3

2
=D (1,9, %) =d(K),
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155

is a power basis for K. This is easily seen directly as

N

92 92 92\ °
b0 4 c— = b ——b| =
a+ +c3 a+( +c)3 <3>

foralla,b,c e Z.

Example 7.4.2 We show that m(K) = i(K) = 1 for the cubic field K = Q(6),
where 6 is a root of f(x) = x> — x + 4.
Let 0" and 6" be the other two roots of f(x) so that

f)=x>—x4+4=x—-60)x—0)x—06").
By Example 7.3.7 we know that { 1,0, # } is an integral basis for K and d(K) =

—107. Letax € Og. Theno = a + b0 + ¢ (0+T02>forsome a,b, c € Z. Exactly as
in Example 7.4.1 we find that

D(a) = —107(2b> + 3b%c + be? + ).

Then

D —10726% + 3b2c + be? + ¢3)?
inde = /2@ _ Qb7+ 307 FD TV _ 13 4 3p2e 4+ be? + ).
d(K) ~107

Hence

m(K) = min {|2b> +3b*c +bc* + 3| | b, c € Z, 20> +3b*c+bc* + > #0) = 1
as
2b% +3b%c + be? + ¢ = 1for (b, ¢) = (-1, 1).

Then, by (7.4.1), i(K) = 1.
Asm(K) = 1, K has a power basis by Theorem 7.4.1. Now, as 03 =6—4, 0% =
0% — 40, we obtain

04602 (0+6%\° 04602 6%—0
D1, + , + =D 1,+—, —2
2 2 2 2

0+6% 62—0 0 + 62
=D, + , =D, + .0
2 2 2

0 + 62
2

= D(1, 6,

) = d(K),
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(7))

Example 7.4.3 We show that

N

0 + 6?2
2

0 + 62
2

is a power basis for K.

183

m(K) = i(K) = 2 for the cubic field K = Q(0), 6° — 210 — 236 = 0.

Let 0" and 0" be the other two roots of f(x) = x> — 21x — 236 so that

fx) =x3—21x —236 = (x — O)(x — O0')(x —

—2—-046*
18

s

for some a, b, c € Z. The other conjugates of « are

By Example 7.3.9 we know that {l, %,
d(K) = —503. Let ¢ € Og. Then

(146) —2—-0+62

18

a+b

)

0"). (7.4.2)

} is an integral basis for K and

2
14+6 -2 -0 +0
o/:a—f—b( + )+c —+
18
and
2
(1+9//) _2_9//+9//
"= b _— .
o a—+ 3 +c 13

From (7.4.2) we deduce that 0 + 0’ + 0" = 0. Thus,

0> — 9’2 =0 -60N0+0)=—©6 -6,
and we obtain
/ / b c c 1
a—ad'=0-60)-—-———=0"],
3 18 18

and similarly
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Hence, appealing to (7.4.2), we obtain, as D(0) = —22 - 3% . 503 from Example
7.3.9,

D(@) = {(a — &)@ — a")a —a")}?

6 2
= {0 -0 —0")0 — 0"} = {f (% = 1)}

186
6 3 2
= D(O)— b 1Y a1 (% 1) — 36
- 206312 c c
= 5 {(6b — ¢)’ — 21c*(6b — ¢) — 236¢° }
503

= ——— {2160 — 108b%c — 108bhc? — 216¢°}?
24.36
= —503{2b> — b*c — bc? — 20°%)°.
Then

D —503(2b% — b2c — be? — 2¢3)?

indo = /2@ _ ( € b= 2N b pre— b — 23,
d(K) —503

Now

2b° — b*c — bc* — 2¢3 = 0 (mod 2)

forall b, c € Z, so that
ind @ = 0 (mod 2)

forall @ € Og. But

2b° — b*c — bc* —2¢* =2
for (b, c) = (1,0), so that
m(K) = min {|2b> — b*c —bc? — 23| | b, c € Z, 2b° —b*c —bc* —2¢3 £ 0} =2
and
i(K) = ged {|20° — b*c —bc? =263 | b, c € Z, 2b° —b*c — bc® — 2¢% # 0} = 2.

As m(K) =2, K does not possess a power basis by Theorem 7.4.1.

Dedekind [4] gave in 1878 the first example of an algebraic number field without
a power basis, namely, the cubic field L given by

L=Q@), ¢ —¢>—2¢ —8=0.

The field L is in fact the same field as the field K = Q(6), 6> — 216 — 236 =0,
in Example 7.4.3, as 6 and ¢ are related by 6 = 3¢ — 1.
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The next example gives a cubic field K for which

i(K)=1, m(K) =2, K does not possess a power basis,

which shows that the converse of Theorem 7.4.2 does not hold.

Example 7.4.4 Let K = Q(v/175). An integral basis for K is given by
{1,175'73,245'3} and d(K) = —3%-5%.7? (see Theorem 7.3.2). Let a € Ok.
Then there exist a, b, ¢ € Z such that

o =a-+bl175'3 + ¢245'73,

The other conjugates of o are

o =a+bwl75'3 + cw®245'3,
o' = a+ ba?*175'3 + cw245'3,

where w is a complex cube root of unity. As

l+o+w*=0, =1,

we obtain
a—a =1 —w)(bl75'3 — cw?245'3),
a—ao" =1 —=a>)b175'7 = cw245'3),
o —a" = (w—aH)bB175'3 = 245'3).
Hence
D(O{) — (a _ a/)Z(a _ a//)Z(a/ _ a//)Z
={(1 — w)(1 — H)(w — »)}*(175b> — 245¢3)?
= —27(175b> — 245¢3)* = —=3% . 52 . 72(5b° — 1),
Then

Thus

and

D —33.52.72 5b3 3)2
ind o = @ ( <) = 150> —7¢%).
d(K —33.

i(K) = ged {|5b° — 73| | b, c € Z, 5b° — 73 # 0}

m(K) = min {|5b> — 73| | b, c € Z, 5b°> — 7 + 0}.

Since |5-1°=7-13 | =2 and |5-13=7-0°| =5 we see that i(K) =1 and
m(K) =1 or 2. Suppose m(K) = 1. Then there exist integers B and C such that
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5B3 —7C3 = +1. Thus SB® = £+1 (mod 7), so B> = £3 (mod 7). But this is im-
possible as the only cubes modulo 7 are 0, =1. Hence m(K) = 2. By Theorem 7.4.1
K does not possess a power basis.

Llorente and Nart [12, Theorem 4, p. 585] have given a necessary and sufficient
condition for a cubic field to have index 2.

Definition 7.4.3 (Inessential discriminant divisor) Let K be an algebraic number
field of degree n over Q. A prime p is called an inessential discriminant divisor or
common index divisor if p | ind « for every generator o of K.

The inessential discriminant divisors of an algebraic number field K are precisely
the prime factors of the index i (K). Example 7.4.3 shows that the only inessential
discriminant divisor of the cubic field Q(9), 63 — 216 — 236 = 0, is the prime 2.
Indeed the set of inessential discriminant divisors of a cubic field is either the empty
set ¢ or {2}. This is a special case of the general result due to Zylifiski [20] that
a prime p can be an inessential discriminant divisor of an algebraic number field
of degree n only if p < n. Thus when K is a quartic field the set of inessential
discriminant divisors is ¢, {2}, {3}, or {2, 3}.

7.5 Integral Basis of a Cyclotomic Field

Let m be a positive integer. The number of positive integers less than or equal to
m that are coprime with m is denoted by ¢(m). The arithmetic function ¢(m) is
called Euler’s phi function. Let ¢,, be any primitive mth root of unity. There are
¢(m) primitive mth roots of unity, namely ¢,, r =1,2,...,m, (r,m)=1. Let
K, = Q(&n). It is easy to show that K, = Q(¢,) for any r € {1, 2, ..., m} with
(r,m) =1, so that K,, is independent of the primitive mth root of unity chosen.
The field K,, is called the mth cyclotomic field. For odd m the fields K,, and
Ky, coincide as —¢,, is a primitive 2mth root of unity. Clearly ¢, is a root of the
polynomial

=T -z
r=1

(r,m)=1

It is known that f,,(x) € Z[x] and that f,,(x) is irreducible, so that

irrg(&m) = fn(x).

Moreover, the degree of f,,(x) is ¢(m) so that

(K : Q] = ¢(m).
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The smallest field containing both K,, and K, is K|, »}, where [m, n] denotes the
least common multiple of m and n. Also, K, N K,, = K »). If m £ 2 (mod 4) then
K., € K, holds if and only if m | n. Thus if m and n are distinct and not congruent
to 2 (mod 4) the cyclotomic fields K,, and K, are distinct.

The next theorem gives an integral basis for K,, as well as a formula for the
discriminant d(K,,).

Theorem 7.5.1 Let m be a positive integer. Let &, be a primitive mth root of
unity. Let K,, denote the cyclotomic field Q(¢,,). Then {1, ¢, g“,%l, R {,ﬁ(’")*l} is
an integral basis for K,,. Further,

$(m)
om) M
d(Ky)=(—1)> o)
pr!
plm

where the product is over all primes p dividing m.

We refer the reader to Narkiewicz [13, Theorem 4.10, p. 169] for a proof of this
theorem.

Taking m = 3,4,5,8 in Theorem 7.5.1, we obtain d(K3) = —3, d(Ky) =
—4, d(Ks5) =125, d(Kg) = 256. The first two of these are familar to us as
K3 = Q(+/—3) and K4 = Q(+/—1) are quadratic fields. The fourth equality is also
known to us as 1(+/2 + +/=2) is a primitive eighth root of unity, so K5 = Q(v/2 +
V=2) = Q(v/2,/=2) = Q(+/2, i) and we showed that d(Q(~/2,i)) = 256 in
Example 7.1.7.

Example 7.5.1 We show that

Ks =@<i\/1o+2ﬁ>.

Let B be the primitive fifth root of unity, e*™'/3, so that

. 2 2
ﬂ:e2”’/5=cos—+isin— =c+is,
5 5
where
2 L2
C=C0S—, § =Ssin —.
5 5
Then

1 =8 =(c+is) =(c° — 10c’s* + 5¢s*) + i(5cts — 10c%s + 5°).
Hence

5¢*s —10c¢%s3 +5° = 0.
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As s # 0 and ¢> + s> = 1 we obtain

5¢* =102 =)+ (1 =cH? =0,

that is,
16¢* — 12> +1 =0,
so that
, 3E45
c = .
8
Now ¢ ~ 0.3, ¢ ~0.09, 3 —~/5)/8 ~ 0.09, so
, 3-45
cT =
8
and
3-4/5 6-2v5 J5-1
C = = = .
8 16 4
Hence
2
—1 10+2
st=1-¢c2=1- ﬁ = 0+ ﬁ,
4 16
SO
V104245
S=———————.
4

We have shown that

=
I
Q
ol
I
Bl
N
S
|
_
+
—
S
+
[\]
S
N————

52=e%=%<—ﬁ—1+i\/10—2«/§),
V5—1
\/10 =245 = > \/ 10 + 2+/5.

,33252:%(—«/5—1—1'\/10—2\/5),
ﬁ“:Bz%(«@—l—i\/lO—kZﬁ).

as

Further,
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Hence
B—B= %i\/m,
w0
Q <i\/ 10+ zﬁ) = Q@B - 28%) C Q(P).
Also,
B = ; <—12+2 (i\/10+2«/§) - (i\/10+2ﬁ)2> ,
w0

Q(B) € Q (i\/lO—i— 2\/3) .

This shows that

Ks=Q <i\/10—|—2\/§>

and

d (Q <i\/ 10 + 2«/5)) = d(Ks) = 125.

Integral bases for quartic fields like Q(i /10 + 2+/5), which contain a quadratic
subfield, have been given by Huard, Spearman, and Williams [10].

The final theorem of this chapter is immediate from Definition 7.1.5 and Theorem
7.5.1.

Theorem 7.5.2 The cyclotomic field K,, = Q(¢,,) is monogenic for every positive
integer m.

Exercises
1. Let D denote the discriminant of
f@) =x"+a, 1 x"" +---+ax +a € Zlx].
Prove that
D =0or1(mod 4).

2. Using the method of Example 7.1.6, prove that {1, ~/3, (+/3)?} is an integral basis for
Q(+/3). What is the discriminant of Q(~/3)?
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3.

10.
11.
12.
13.

14.
15.

16.

17.

18.

19.

20.

Integral Bases

Prove that

{1 1++5 1+V13 1+\/§+\/ﬁ+\/6}
b 2 9 2 9 4

is an integral basis for K = Q(\/g, +/13). What is d(K)?

. LetK = Q(\/g, +/13). Use Exercise 3 to prove that

1
Ok = {7 +yV5+ VB3 +wv6s) | x,y, 2w € Z,
x=y=z=w(mod2), x —y —z+ w = 0(mod 4)}.

. Let K = Q(#), where 8% — 96 — 6 = 0. Prove that {1, 6, 62} is an integral basis for

K and that d(K) = 23 - 3.

. Prove Theorem 7.3.2.
. Let K =Q(), where 6°>—66 +36=0. Prove that 62/6 € Og. Show that

{1,6,6%/6} is an integral basis for K and that d(K) = —22-3 - 79.

. Let K = Q(8), where 63 — 36 4+ 56 = 0. Prove that (§ — 1)/3 € Ok and (9> +6 —

2)/9 € Og. Show that {1, 93;1, 92*#} is an integral basis for K and that d(K) =
—22.29.

. Let K; = Q(6)), where 6; + 276, + 240 = 0, and K, = Q(6,), where 65 + 276, +

72 = 0. Prove that d(K;) = d(K») = =3°.Is K| = K»?

Let K = Q(0), where 6* — 176% — 346 — 17 = 0. Prove that d(K) = 17°.

Let K = Q(+/2). Prove that d(K) = —2!1.

Prove from first principles that K = Q(6), 03 4+3004+90=0,0 cR,isa pure cubic
field, and express K in the form K = Q(m'/?) for some cubefree integer m.

Let K = Q(6), where 6% — 40 4+ 2 = 0. Prove that {1, 6, 62} is an integral basis for K
and that d(K) = 22 - 37.

Prove that Ks = QG v/5 + 2v/5).

If p is an odd prime prove that

[Q(eZﬂi/p + e—271i/p) . Q] = p— 1'

2
Suppose that x> + ax + b € Z[x] isirreducible. Prove that K = Q(9), 63 +ab + b =
0, 6 € R, is a pure cubic field if and only if —4a® — 27b> = —3¢? for some positive
integer c.

Let K be an algebraic number field. Let L be a conjugate field of K. Prove that
d(K)=d(L).

Let K be an algebraic number field. Let o be a monomorphism: K —> C. Let L be the
conjugate field o (K). Let {wy, . . ., w,} be anintegral basis for K .Is {o (@), . . ., o (w,)}
an integral basis for L?

Determine an integral basis for

K =Q(), 6% +300 + 15 = 0.

If K and L are algebraic number fields with K € L prove that d(K) | d(L).
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Let K be an algebraic number field of degree n over Q. Let 6§ € Ok be such that
K = Q). Let ¢ € Ok. Express « in the form

n—1
o = Zyjé’f,
j=0
where yo, yi, ..., yo—1 € Q. Prove that

yDO)€Z, j=0,1,....n—1.

Let K be an algebraic number field of degree n. Is it possible to find Ay, ..., A, € Ok
such that D(Aq, ..., A,) = —d(K)?
Let K be an algebraic number field. Prove from first principles that an integral basis

for K can always be chosen to include 1.
Prove that

3 3 )
{LC/E, 1+¢T03+(«/ﬁ) }

is an integral basis for Q/10) using Theorem 7.2.7.

Prove that {1, v/2, (+/2)2, (+/2)*} is an integral basis for QW2) using the ideas of
Example 7.1.6.

Prove that

42N 4 4/2\3
{1’%’1+(2ﬁ) ’\/§+2(ﬁ)}

is an integral basis for Q(v/5) using Theorem 7.2.7.
Use Brill’s theorem to show that

B(m)
2 .

sgn(d(Kyn)) = (=1)

Letm be apositive integer. Let ¢,, be a primitive mth root of unity. Whatis sgn(d(Q(¢,, +
& N?
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Society 126 (1998), 1949-1953.
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. S. Alaca, p-integral bases of algebraic number fields, Utilitas Mathematica 56 (1999),

97-106.

The properties of p-integral bases of an algebraic number field K are developed and used to
show how an integral basis of K can be obtained from its p-integral bases.
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Dedekind Domains

8.1 Dedekind Domains

In Chapter 6 it was shown that the ring of algebraic integers Ok of an algebraic
number field K has the following three properties:

Ok is a Noetherian domain (Theorem 6.5.3),
Ok is integrally closed (Theorem 6.1.6), and
each prime ideal P of Ok is a maximal ideal (Theorem 6.6.1).

An integral domain with these properties is called a Dedekind domain after Richard

Dedekind, the creator of the modern theory of ideals.

Definition 8.1.1 (Dedekind domain) An integral domain D that satisfies the fol-
lowing three properties:

D is a Noetherian domain, (8.1.1)
D is integrally closed, and (8.1.2)
each prime ideal of D is a maximal ideal, (8.1.3)

is called a Dedekind domain.

In view of the remarks before Definition 8.1.1, we have

Theorem 8.1.1 Let K be an algebraic number field. Let Ok be the ring of integers
of K. Then Ok is a Dedekind domain.

The next theorem gives another class of integral domains that are Dedekind
domains.

Theorem 8.1.2 Let D be a principal ideal domain. Then D is a Dedekind domain.

Proof: Let D be a principal ideal domain. By Theorem 3.1.2 D is a Noetherian
domain, so (8.1.1) holds. By Theorem 3.3.1 D is a unique factorization domain and

194
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thus, by Theorem 4.2.5, D is integrally closed, so (8.1.2) holds. By Theorem 1.5.7
each prime ideal of D is maximal so that (8.1.3) holds. Hence D is a Dedekind
domain. [ ]

Our main objective in this chapter is to show that every ideal 1(# (0), (1)) of a
Dedekind domain can be expressed uniquely as a product of prime ideals. We also
show that every ideal of a Dedekind domain is generated by at most two elements.

8.2 Ideals in a Dedekind Domain

The first step toward our objective of proving that in a Dedekind domain every
proper ideal is a product of prime ideals is to show that every such ideal contains a
product of prime ideals. This is actually true in a Noetherian domain.

Theorem 8.2.1 In a Noetherian domain every nonzero ideal contains a product of
one or more prime ideals.

Proof: Suppose that D is a Noetherian domain that possesses at least one nonzero
ideal that does not contain a product of one or more prime ideals. Let S be the set
of all such ideals. By assumption § is not empty. As D is Noetherian, by Theorem
3.1.3 S contains a (nonzero) ideal A maximal with respect to the property of not
containing a product of one or more prime ideals. Clearly A itself is not a prime
ideal. Hence, by Theorem 1.6.1, there exist ideals B and C such that

BCCA BZA, CZA.
Define the ideals B; and C; of D by

Bi=A+B, Ci=A+C.

Clearly
A C By, ACCy,
sothat B; ¢ S, C| € S. Hence there exist prime ideals Py, ..., P; such that
Bi2P Py, Ci 2 Ppyr--- P
But
BiCi=(A+B)A+C(C)CA,
SO

AQPlka

contradicting that A € §. [ ]
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As a Dedekind domain is a Noetherian domain, the next theorem is an immediate
consequence of Theorem 8.2.1.

Theorem 8.2.2 In a Dedekind domain every nonzero ideal contains a product of
one or more prime ideals.

Our next step is to obtain an inverse of a prime ideal P in a Dedekind domain.
To do this, we extend the notion of an “ideal” to that of a “fractional ideal.”

Definition 8.2.1 (Fractional ideal) Ler D be an integral domain. Let K be the
quotient field of D. A nonempty subset A of K with the following three properties:

) aeA Bec A= a+p A,
i) e A, re D= ra €A, and
(i) there exists y € D with y # 0 such that yA C D

is called a fractional ideal of D.

Condition (iii) means that the elements of a fractional ideal have y as a “common
denominator.”

Example 8.2.1 Let

A:{;—5|nez}

so that A is a nonempty subset of Q. Clearly A has properties (i) and (ii). Also,
25A = 7Z so that (iii) holds. Hence A is a fractional ideal of Z.

Example 8.2.2 Let
A:{Sim IneZ, meNu{O}}.

Clearly A is a nonempty subset of Q having properties (i) and (ii). However, there
is no nonzero integer k such that kA C Z, so (iii) does not hold. Thus A is not a
fractional ideal of Z.

A fractional ideal of D thatis a subset of D is clearly an ideal of D in the ordinary
sense. Moreover, an ideal of D is a fractional ideal of D that is a subset of D. We
often refer to the ideals of D in the ordinary sense as integral ideals. If A is a
fractional ideal of D and y is a common denominator for A then y A is an integral
ideal of D.

It follows immediately from Definition 8.2.1 that if A is a fractional ideal of D
then
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where y € D \ {0} and [ is an integral ideal of D. This representation is not unique
as

1
A=—(1
M()

forany § € D \ {0}.
If D is a Noetherian domain each integral ideal / of D is finitely generated.
Hence

I:<a1""7ak>’
for some «y, ..., oy € D, and thus
1 1 o (073
A=—I=—(ag,...,0) =(—,...,—);
14 14 14 14

that is, every fractional ideal A of D is also finitely generated.

It is easily verified that if A and B are fractional ideals of D so are A + B and
AB. We note that if y and § are common denominators for A and B respectively,
then y§ is a common denominator for both A + B and AB.

Definition 8.2.2 (The set P for a prime ideal P) Let D be an integral domain
and let K be the quotient field of D. For each prime ideal P of D we define the set
P by

P={aeK:aP C D}.

Theorem 8.2.3 Let D be an integral domain and let P be a prime ideal of D. Then
P is a fractional ideal of D.

Proof: Ifa. € Pand B € PthenaP € Dand BP C D.Hence (@ + B)P C aP +
BP C D,sothata + 8 € P.

Ifo € Pandr € D thenwP C D and thus ra P C D, so that ra € P.

Take € P\ {0}. Foranya € P wehavea P C D so thatin particular azr € D.
Hence 7 P C D.

Thus the three properties in Definition 8.2.1 hold, showing that P is a fractional
ideal of D. u

Theorem 8.2.4 Let D be a Dedekind domain. Let P be a prime ideal of D. Then
PP =D.

Proof: We first show that

PP=DorPP=P
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As P and P are both fractional ideals of D so is P P. Clearly PP C D so that
P P is an integral ideal of D. As 1 € P we have P C P P. Since P is a prime ideal
and D is a Dedekind domain, P is a maximal ideal. Thus PP = P or PP = D.

Next we show that D ¢ P.Ife € Dthena P C Dsothata € P.Hence D C P.
To prove that D C P we show that P contains an element y of K that does not lie in
D.Let B € P\ {0}. By Theorem 8.2.2 there exist prime ideals Py, ..., P, (k > 1)
with

(B) 2 P+ Pr.
We choose k to be the least positive integer for which such an inclusion holds. Since
PP C(B)CP
and P is a prime ideal, we have
P, C P, forsomei € {1,2,...,k}
Relabeling P; as P; and P; as Py, if necessary, we may suppose that
P CP.
But as D is a Dedekind domain, P; is a maximal ideal, and so
P =P.
We now consider two cases according ask = 1 or k > 2. If k = 1 then
P =P =(B).
As B # Owecandefiney = 1/8 € K. Suppose y € D. Then f is a unit of D and
P = (B) = D, contradicting that P is a prime ideal. Hence y ¢ D. Also,

1
P=—(B)=(1)=D,
Y ﬁ<ﬂ> (1)

sothat y € P.Hence y € P\ D in this case. If kK > 2 then by the minimality of k
we have

Py P Z (B).

Hence thereexists§ € P, --- P butd & (B8). As B # Owecandefiney =46/ € K.
Asé & (B), weseethat y = §/8 & D. However,

P(8) = Pi(8) S P~ P S (B),
SO
Py =P§/BC D
and thus ¥ € P. Hence y € P \ D in this case. This completes the proof that
DcCP.
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Finally, we show that

PP =D.

Recall that we have shown that PP = P or PP = D. We show that PP # P, so
that we must have P P = D. Suppose that PP = P. We show that P is closed under
multiplication. Leta € P and B € P. ThenaP € PP = P and BP C PP = P.
Thus

afP CaP C P,

showing that ¢ € P.Hence P is closed under multiplication. This proves that P is
an integral domain, which strictly contains D. As D is a Noetherian domain, all its
ideals (integral or fractional) are finitely generated. Hence P is a finitely generated
fractional ideal of D. Thus P is a finitely generated D-module. Hence, by the
remark following Theorem 4.1.4, P is integral over D. However, D is integrally
closed in its quotient field (since D is a Dedekind domain) so that D = P. This
contradicts that P O D. Hence PP = D. [ ]

Example 8.2.3 Let
D =7Z+Z6.

As D is the ring of integers of K = Q(~/6), D is a Dedekind domain with quotient
field K. Let

P = (2,6).
It is easily checked that P is a prime ideal of D with P = 27+ 7/6. Then
P={aeK|aP C D)
={x+yV6|x,y€Q, (x +yV6)(2,V6) CZ + ZV6)
={x+yvV6 | x,y€Q, 2(x + yvV6) € Z + ZN6, (x + yVO)W6 € Z + 76}
={x+yV6|2x€Z, 2y€eZ, x€Z, 6y € 7}
={x+yV6|x €Z 2y cZ}
:{m+gmm,neZ}
2m+n\/6|
2
(2m +nv6 | m,n € 7}

m,n € 7}

_

(2Z + 7/6)

o

N =] =1
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8.3 Factorization into Prime Ideals

We now use Theorem 8.2.4 to prove the fundamental property of a Dedekind domain
D, namely, that every proper integral ideal of D can be expressed uniquely (up to
order) as a product of prime ideals.

Theorem 8.3.1 If D is a Dedekind domain every integral ideal (# (0), D) is a
product of prime ideals and this factorization is unique in the sense that if

PPy Pe= 01020,
where the P; and Q j are prime ideals, then k = | and after relabeling (if necessary)
P=Q;,,i=12,... k.
Proof: Suppose there exist integral ideals (# (0), D) of D that are not products of
prime ideals. As D is a Dedekind domain, it is Noetherian, and so by the maximal
principle (Theorem 3.1.3) there is an ideal A(£ (0), D) of D maximal with respect

to the property of not being a product of prime ideals. By Theorem 8.2.1 there exist
prime ideals Py, ..., Py (k > 1) of D such that

PP CA.

Let k be the smallest positive integer for which such a product exists. If k = 1 then
P, € A C D. As P; is a prime ideal, it is a maximal ideal since D is a Dedekind
domain. Thus A = P;. This is impossible as A is not a product of prime ideals.
Hence k£ > 2. By Theorem 8.2.4 we have PP, = D so that

P,P,P,---P.=DP,---P,.
Hence
PLADP\P,---P.=P,-- P,

From the proof of Theorem 8.2.4 we have D C Pysothat AC PiA.IfA=P,A
then

which contradicts the minimality of k as k — 1 > 1. Hence A C P,A. Since P A
is an ideal of D, by the maximality property of A, we have

PiA= 0y 0
for prime ideals Q5, ..., Q. Then
A=AD=AP,P,=P Qs - 0Oy

is also a product of prime ideals, which contradicts the way A was chosen. Hence
every ideal (£ (0), D) of D is a product of prime ideals.
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Suppose now that factorization of ideals as products of prime ideals is not always
unique. By the maximal principle we may choose B to be an ideal (£ (0), D)
maximal with respect to the property of having at least two distinct factorizations
as the product of prime ideals, say,

B=P---P=0Q;-- 0,
where Py, ..., P, Oy, ... Q; are prime ideals. Then, as
Py--- P C Qy,

and Q) is a prime ideal, by Theorem 1.6.1 we have

P < 0
for some i € {1, 2, ..., k}. Relabeling P; as P; and vice versa, we may suppose
that

P C 0.

Since P, is a prime ideal, it is a maximal ideal as D is a Dedekind domain, and thus
Py = 0.
Therefore
BP,=P,PP,---P,=P,--- P
and
BP1=B01 =001 Qy= 02 Q.
If BP, = B then BP,; P, = BP;, so B = BP,. Define the fractional ideal B of D
by
B=P, - P;.
Then
BB=P - PP - Py=PP - PP,=D
so that
D=BB=BP,B="r,

which is false as P; (being a prime ideal) is a proper ideal of D. Hence BP| # B.
As D C P, wehave B C BP,.But BP, # B, so we must have
B C BP,.

Since BP, is an ideal of D strictly containing B, by the maximality of B,
BP; has exactly one factorization as a product of prime ideals. Thus from
BP,=P,--- P, = Q- Q) we deduce that k — 1 = h — 1 (that is, k = h) and



202 Dedekind Domains

after relabeling, we obtain P; = Q; (i = 2, ..., k). This implies that the two fac-
torizations of B into prime ideals are the same, which is a contradiction.
This completes the proof of the theorem. |

Theorem 8.3.2 Let K be an algebraic number field. Then every proper integral
ideal of Ok can be expressed uniquely up to order as a product of prime ideals.

Proof: This follows immediately from Theorems 8.1.1 and 8.3.1. |

Example 8.3.1 Let
={a+bv—-5\a,belZ}.

As D = Ok, where K = Q(v/=5), D is a Dedekind domain. D is not a unique
factorization domain as

6=2-3=(++=501—+-5),

where 2,3, 1 4+ /=5, and 1 — /=5 are nonassociated irreducibles of D. We show
how the use of prime ideals restores unique factorization. We let

P=(2,14V=5),
P = (3,1++/-5),
= (3,1 —/=5).

Then

P=02,1+vV-5=2,1++V-52-1+V-5)
=2, 14/-5,1=-+/=35)=2,2—(1=+-5),1—+/=5)
=(291_\/__5>7

= (2, 14+/=52=(2,1+/=5)(2,1 — /=5)
= (4,2(1 + v/=5),2(1 — ¥/=5), 6)

= (2)2,1++/=5,1—+=5,3)

= (2)(1) = (2),

(3,14++v/=3)(3,1 —/=5)

= (9,3(1 + v/=5),3(1 —+/=5),6)
=33, 1++/=5,1-+/-5,2)
= (3)(1) = (3),

PP =

2,14+ /=5)(3, 14+ +/=5)

= (6,2(1 + +/=5),3(1 + v/=5), (1 + v/=5))
<+«/_1—J_231+«/_

= (1 +/=5)(1) = (1 +/=5),

PP =
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PPy =(2,1++/=5)(3,1—+/-5)
=(2,1=v/=5)(3,1-+/=5)

= (6,2(1 — v/=5),3(1 = V/=5), (1 — v/=5)%)
(1 —+/=5)( +J_231—J—_5>
(1—+/=5)(1

(1 —/=5).

Ul

Hence
(2) = P% (3)= PPy, (1+~/=5)=PP, (1 —+/-5) = PP,
and
(6) = (2)(3) = (1 +V=5)(1 —v/=5) = P’P, P».

It is known from Exercises 20 and 21 of Chapter I that P, Py, and P, are distinct
prime ideals.

If A is a proper integral ideal of a Dedekind domain D then Theorem 8.3.1 tells
us that we can express A uniquely (apart from order) in the form

A= Q- O,
where Q1, ..., Q) are prime ideals. Let Py, ..., P, denote the distinct prime ide-
als among Q1, ..., Qp. Suppose that P; (i = 1,2, ..., n) occurs g; times among
01, ..., Qpsothateachq; > 1(G =1,2,...,n)anda; +ar + --- + a, = h.Then
A=Po...ph,
where ay, ..., a, are positive integers. Clearly this representation of A is unique.
We extend the factorization A = P} - - - P to allow the possibility A = (1) = D
by taking a; = - - - = a, = 0 in this case; that is, D = (1) is regarded as the unique

empty product of prime ideals. With this convention every nonzero integral ideal
of a Dedekind domain can be expressed uniquely as a product of powers of prime
ideals.

Let A and B be nonzero integral ideals of a Dedekind domain D. Then AB is a
nonzero integral ideal of D. Let Py, ..., P, denote the distinct prime ideals of D
that occur in the prime ideal factorizartions of at least one of A, B, and AB. Then

A= ﬁpff, B = ﬁP}’", AB = ﬁPf",
i=1 i=1 i=1
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where we have grouped together all equal prime ideal factors so thata;, b;, ¢; (i =
1,2, ..., n) are nonnegative integers. Hence

f[PiCi — AB = f[Piai ﬁ Pl'bi — ﬁ Piai+bi,
i=1 i—1 i Pl

so that by Theorem 8.3.1
ci:ai—i-b,-, i=1,2,...,n.
Hence, if A = [[/_, P and B = [[_, P, then AB = [[/_, P"*".
Definition 8.3.1 (Divisibility of integral ideals) Let D be a Dedekind domain. Let

A and B be nonzero integral ideals of D. We say that A divides B, written A | B,
if there exists an integral ideal C of D such that B = AC.

IfA=]]/_, P and B =[]|_, P”, where Py, ..., P, are distinct prime ideals
and ay, ..., a,, by, ..., b, are nonnegative integers, then

A|B<a, <b;, i=1,2,...,n.

We now wish to extend the representation of integral ideals as products of prime
ideals to fractional ideals; in this case negative as well as zero and positive exponents
of the prime ideals will occur.

Let A be a nonzero fractional ideal of the Dedekind domain D. Let«a € D \ {0}
and 8 € D \ {0} be any two common denominators for A. Then

()A =B, (B)A=C,

where B and C are nonzero integral ideals of D. Suppose that

(o) = ﬁP{i, B= ﬁ P,
i=1 i=1

By =1[r" c=]]r"
i=1 i=1

where Py, ..., P, are distinct prime ideals and r;, s;, t;,u; (i =1,2,...,n) are

nonnegative integers. Then as

we have
n n
ritui __ Sitt;
| | P = | | P,
i=1 i=1

so that by Theorem 8.3.1

ritu=s;+t, i=1,2,...,n.
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Hence we can define the prime ideal factorization of the fractional ideal A to be

A= H P
i=1

and this definition is a valid one since it is independent of the choice of common
denominator of A. With this notation, as P P = (1) for any prime ideal P of D, we
have

P=prL
If Py, ..., P, are prime ideals such that
n n
[z =112
i=1 i=1
where a;, b; (i = 1,2, ..., n) are integers (positive, negative, or zero), then mul-

tiplying both sides by [];_, PM, where M is an integer such that ¢; + M > 0

and b; + M > 0 for all i, and appealing to Theorem 8.3.1, we deduce that

a+M=b;+M(@(=1,2,...,n),thatis, aq; = b; (i =1,2,...,n). Hence the

representation of a nonzero fractional ideal as a product of prime ideals is unique.
The following result is now clear.

Theorem 8.3.3 The set of all nonzero integral and fractional ideals of a Dedekind
domain D forms an Abelian group with respect to multiplication. The identity
element of the group is (1) = D and the inverse of A = [[;_, P\, where Py, ..., P,
are distinct prime ideals and ay, . . ., a, are integers (positive, negative, or zero),
is

n
AT =TT P
i=l

Theorem 8.3.4 Let K be an algebraic number field. Let Ok be the ring of integers
of K. Then the set of all nonzero integral and fractional ideals of Ok forms an
Abelian group 1(K) with respect to multiplication.

Proof: This follows immediately from Theorems 8.1.1 and 8.3.3. ]

Example 8.3.2 With the notation of Example 8.2.3 we have
P =(2,V6)

and

o
Il

|
~
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Thus

We check this directly. We have

oy L1 1 2
P<2P> =P _2(2,\/8>

= %(4, 2\/6, 6) = (29 \/67 3) = <1>’

as1 =3 —2 € (2,6,3). This shows that P~' = 1 P.

1
2
Example 8.3.3 Let D = 7 + 7Z+/6. We determine the inverse A~" of the ideal
A = (/6) of D, illustrating the ideas of this section. Let

P =(2,7/6), 0 = (3,V6).
P and Q are distinct prime ideals of D such that

PQ = (6,2:/6,3v6,6) = (+/6)(+6,2,3) = (+/6) = A.

Thus A = P Q is the prime ideal factorization of A and so

Al=plp,
where
Pl=p= %P (Example 8.3.2)
and
0'=0=30
Thus
- (37) () - b=
2 3 6
This is clear as A(zA) = $A* = 1(6) = (1)

8.4 Order of an Ideal with Respect to a Prime Ideal

Let A be a nonzero fractional or integral ideal of a Dedekind domain D. Then A
can be written uniquely in the form

i=1
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where the P; are distinct prime ideals and the a; are integers (positive, negative, or

ZEero).

Definition 8.4.1 (Order of an ideal with respect to a prime ideal) With the
preceding notation, the order of the nonzero ideal A of the Dedekind domain D
with respect to the prime ideal P; (i =1,2,...,n), written ordp,(A), is defined
by

Ordp[ (A) =da;.
For any prime ideal P # Py, ..., P, we define

ordp(A) = 0.
Clearly ordp((1)) = 0 and ordp(P*) = k for all prime ideals P.

Example 8.4.1 Let D = 7 + 7Z+/6. Let B be the ideal (12, 6+/6). Then, with the
notation of Example 8.3.3, we have

B = (12,6v6) = (6)(2, V6) = (v6)2(2, v/6)
= A’P = (PQ)*P = P30?,

so that
ordp(B) = 3, ordp(B) = 2.

We now extend the concept of divisibility from integral ideals (Definition 8.3.1)
to fractional ideals.

Definition 8.4.2 (Divisibility of fractional ideals) Let D be a Dedekind domain.
Let A and B be nonzero fractional ideals of D. We say that A divides B, written
A | B, if there exists an integral ideal C of D such that B = AC.

Clearly if A and B are nonzero fractional or integral ideals of a Dedekind domain,
we have

A | B <= ordp(A) < ordp(B) for all prime ideals P.

Example 8.4.2 Let D = 7 + 7Z+/6. Let A and B be the fractional ideals of D
given by

3 ‘/6>, B=3, §¢8>.

A:<_7—
22 2
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We show that A | B.Let P = (2, +/6) and Q = (3, /6). P and Q are distinct prime
ideals of D (Example 8.3.3). We have, as P> = (2) and Q* = (3),

_1 I P
A—2<3,d6>—2Q—P 0

and
3

B=3(2 V6) = P71 Q%

Since ordpA = -2 < —1 =ordpB and ordgA =1 < 2 =ordgB, we see that
A | B. Indeed B = AC with C = PQ.

The next theorem gives a necessary and sufficient condition for an ideal A to
divide an ideal B. It is usually remembered as “To contain is to divide.”

Theorem 8.4.1 Let D be a Dedekind domain. Let A and B be nonzero integral or
fractional ideals of D. Then

A | Bifandonlyif A D B.

Proof: As A is anonzero integral or fractional ideal of D, A~! is a nonzero integral
or fractional ideal of D. Thus BA~! is a nonzero integral or fractional ideal of D.
Then

AD B <<= AA™' D BA™
& DD BA™!
&= BA™!is an integral ideal of D
&= BA~! = C for some integral ideal C of D
&= B = AC for some integral ideal C of D
<= A | B. |

The two basic properties of the function ordp(A) are given in the next theorem.

Theorem 8.4.2 Let D be a Dedekind domain. Let P be a prime ideal of D. Let A
and B be nonzero integral or fractional ideals of D. Then

(a) ordp(AB) = ordp(A) + ordp(B),

(b) ordp(A + B) = min(ordp(A), ordp(B)).

Proof: (a) We have

A= H POI”dP(A)’ B = H POI”dP(B)’
P P
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where the products are taken over all prime ideals P of D, so that

H Pordp(AB) — AB = H POl’dP(A)JrOI‘dP(B)'
P P

Of course only finitely many of the exponents in the products are nonzero. Hence,
by the uniqueness property, we have

ordp(AB) = ordp(A) + ordp(B)

for all prime ideals P of D.
(b) Set C = A + B. As A and B are nonzero ideals, so is C. Then

AC'+BCc'=4a+B)Cc'=cc™!'=D.

Hence AC' CTAC'+BC'=DandBC' CTAC '+ BC™'=D.SoAC™!
and BC~! are both integral ideals of D. Suppose AC~! € P and BC~! € P.Then

D=AC'+BCc'cpP+P=rP,

which is impossible. Thus either AC~! ¢ P or BC~! ¢ P; that is, by Theorem
8.4.1, Pt AC  or Pt BC™!, 50

min(ordp(AC ™), ordp(BC™")) = 0.
Finally, by part (a), we obtain

min(ordp(A), ordp(B)) = ordp(C) = ordp(A + B). ]
We next define the order of a nonzero element with respect to a prime ideal.

Definition 8.4.3 (Order of a nonzero element with respect to a prime ideal) Le?
D be a Dedekind domain with quotient field K. For « € K, a # 0, we define

ordp(a) = ordp({a))

for any prime ideal P of D.

The next theorem allows us to recognize when an element « belongs to an ideal
A of D in terms of the orders of @ and A with respect to prime ideals P.

Theorem 8.4.3 Let D be a Dedekind domain with quotient field K. Let A be a
nonzero ideal of D. Let o € K, o # 0. Then

o € A ifand only if ordp(a) > ordp(A) for all prime ideals P of D.
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Proof: We have

aeA= () C A
<= A | («) (by Theorem 8.4.1)
<= ordp(A) < ordp({«)) for all prime ideals P of D
<= ordp(a) > ordp(A) for all prime ideals P of D.
|

The next theorem gives the basic properties of the order of an element with
respect to a prime ideal.

Theorem 8.4.4 Let D be a Dedekind domain with quotient field K. Let P be a
prime ideal of D.

(a) Fora € K* and p € K*
ordp(aB) = ordp(ar) + ordp(B).
(b) Fora,p,a+ B € K*,
ordp(a + B) = min(ordp(a), ordp(B)).
(©) Ifa, B, o+ B € K* are such that ord p() # ordp(B) then
ordp(a + B) = min(ordp(e), ordp(B)).

Proof: (a) We have for any prime ideal P of D

ordp(af) = ordp({(aB))
= ordp((a)(B))
= ordp({a)) + ordp((B))
= ordp(ar) + ordp(B).

(b) Asa + B € () + (B) we have by Theorems 8.4.2(b) and 8.4.3

ordp(a + B) > ordp({a) + (B))
= min(ordp({@)), ordp({(B)))
= min(ordp (), ordp(B)).

(c) Without loss of generality we may suppose that
ordp(a) > ordp(B).
Then by part (b) we have

ordp(a + B) > ordp(B).



8.4 Order of an Ideal 211

Thus
ordp(B) = ordp((@ + B) — @)
> min(ordp(a + B), ordp(a))
=ordp( + B) (asordp(a) > ordp(B))
> ordp(B).
Hence
ordp(a + B) = ordp(B) = min(ordp(a), ordp(B)). u

Example 8.4.3 We give a simple example to show that if ordp(a) = ordp(f)
then ordp(a + B) may actually be larger than ordp(a). Take D =7, o = 1, B =
4, P = (5). Then

ordp(a) =0, ordp(B) =0, ordp(a + B) = 1.
Theorem 8.4.5 Let D be a Dedekind domain with quotient field K . Given any finite

set of prime ideals Py, ..., P; of D and a corresponding set of integers ay, . . ., ay
then there exists o € K such that

OI‘dpl.(Ol) =a;, i = 1,2, ...,k,
and

ordp(a) > 0, for any prime ideal P # Py, ..., Py.

Proof: As

k k
ai a;+1 aj+1 ai+1
8 U R | R
i=2 i=2

by Theorem 8.4.1 we have

k k

Plal H PiaiJrl ) P1611+1 H Pia[+1'
i=2 i=2

By the uniqueness property we have
k k
Pllll H Pl_ai+1 £ Pldl-H H Piai"rl,
i=2 i=2

so that

k k

i 1 i 1

i P o PP P
i=2 i=2
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Hence there exists

k k

i+1 1 i1

ar e PUT PO an g PP PO
i=2 =2

Thus
ordp (1) = a;
and
ordp (o¢;) > a; + 1 fori # 1.
Similarly we can define «; € K for j =2, ..., k such that
ordp (o)) = a;
and
ordp,(aj) > a; + 1 fori # j.
Now set

a=o;+ar+---+o, K.
Then, by Theorem 8.4.4(b), we have
ordp (ca + - - - 4+ o) > min(ordp, (@2), . .., ordp (cx)) > a; + 1 > ordp (o),
so that

ordp (o) = ordp, (o + (2 + - - - + ax))
= min(ordp (ay), ordp, (erz + - - - + )
= OrdPl (al)a

that is,
ordp () = ay.
Similarly,
ordp (@) =a;, j=2,..., k.
Finally, for P # Py, ..., P, we have
ordp(e;) >0, i =1,2,...,k,

so that
ordp(a) > 0. [ ]

If D is a Dedekind domain with quotient field K, A is a nonzero fractional or
integral ideal of D, and a, b, ¢ € A, then we write

a =b(mod A)if and only if A | (a — b).
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We observe that

Alla—b)<—= (a—-b)CA<—a—-beA<a+A=b+A.
The properties

a=a(mod A),
a=b(mod A) = b =a (mod A),
a=b(@mod A), b=c(mod A) = a = c (mod A),
a=>b(mod A) = ac = bc (mod A)

are easily proved.

Theorem 8.4.6 (Chinese remainder theorem) Let D be a Dedekind domain.

(a) Let Py, ..., Py be distinct prime ideals in D. Let ay, ..., a; be positive integers. Let
a1, ..., 0 be elements of D. Then there exists o € D such that

a=a;(mod P), i =1,2,... k.

(b) Let Iy, ..., I} be pairwise relatively prime ideals of D. Let a1, ..., ay be elements of
D. Then there exists @ € D such that

(XEOl,‘(mOdI,‘), i=1,2,...,k.

Proof: (a) Consider the ideal
Q=P+ PP
of D. Suppose P is a prime ideal such that
P10
Now
P' € Q1 P+ P C 0,

so, by Theorem 8.4.1, we have

Q1| P, Q1| P P
Hence

P|P", P| P P,
From the first of these we deduce that P | P, so that P = P;. Hence

P | PZ“Z---P“",
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which contradicts that P is a prime ideal distinct from Ps, ..., P;. Thus there is
no prime ideal dividing Q. Hence Q| = D; that is

P+ P PR =(1).

Hence there exist x; € P} and y; € P5” - -- P* such that

x1+yr=1
Thus
y1 =1(mod P"), yy =0(mod P"), i =2,... k.
Similarly, for j = 2, ..., k we can find y; such that
yj = 1(mod P;"), y; =0(mod P{"), i # j.
Now let

a=oy+---+ayr €D.
Then as aay; + - - - + axyx € Py we have
a =ayy; =« (mod PM).
Similarly,
a=aj(mod P’), j=2,... k.

This completes the proof of part (a).

(b) Part (b) follows from part (a) by observing that any congruence of the form
x =« (mod ) is equivalent to the system of congruences x = « (mod P/"), i =
1,2,...,r,where I = P/" .- P%. [ |

Example 8.4.4 Let D = Z[x]. D is not a Dedekind domain as the prime ideal {x)
is not a maximal ideal (Example 1.5.6). Consider the pair of congruences

o = 0 (mod (2)),
o =1 (mod (x)).

The moduli (2) and (x) are distinct prime ideals. However, the congruences are not
simultaneously solvable in D, since any solution of o = 0 (mod (2)) has an even
constant term, whereas any solution of « = 1 (mod (x)) has a constant term equal
to 1. This shows that the Chinese remainder theorem does not necessarily hold in
an integral domain that is not a Dedekind domain.
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8.5 Generators of Ideals in a Dedekind Domain

In this section we show that every fractional or integral ideal of a Dedekind domain
is generated by at most two elements.

Theorem 8.5.1 Let D be a Dedekind domain. Let A be a fractional or integral
ideal of D. Then A is generated by at most two elements.

Proof: If A ={0} then A = (0), and if A = D then A = (1), so that we may
suppose that A # {0}, D.Let 8 € A, § # 0, and § # unit. Then (8) C A so that
A | (B). Hence there exists a nonzero integral ideal B of D such that

(B) = AB.
Let P, ..., P, be the set of distinct prime ideals for which either
ordp. (A) # 0 or ordp, (AB) # 0 (or both).

This set is nonempty as A % D. By Theorem 8.4.5 there exists ¢ € K (the quotient
field of D) such that

ordp (o) = ordp(A), i =1,2,...,n,
ordp(e) >0, P# Py,..., P,.

For P # Py, ..., P, we have ordp(A) = 0 so that
ordp(a) > ordp(A) for all prime ideals P.

Hence

Fori =1,2,...,n we have
ordp. (A) = min(ordp,(A), ordp, (AB)) (as B is an integral ideal)
= min(ordp,(«), ordp,(AB))
= min(ordp,({«)), ordp.(AB))
= ordp ({a) + AB),
by Theorem 8.4.2(b). For P # Py, ..., P, we have ordp(A) = ordp(AB) = 0, so
that
ordp(A) = min(ordp(w), ordp(AB))
= min(ordp({e)), ordp(AB))
=ordp({a) + AB)
by Theorem 8.4.2(b). Hence

ordp(A) = ordp({e) + AB) for all prime ideals P.
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Hence
A= (a)+ AB.
Finally,
A= (a) +(B) = (a, B). u
Exercises
1. Let D be a Dedekind domain. Let A and B be integral ideals of D with A £ D, B # D.

10.

11.

12.

Prove from first principles that AB # D.

. Let D be a Dedekind domain. Let A be a nonzero integral ideal of D. Let P be a prime

ideal of D. If P does not divide A prove that ordp(A) = 0.

. Determine all fractional ideals of Z + Z+/—1.
. Find all ideals in Z + Z+/—6 that contain 6.
. Let D be a principal ideal domain with quotient field K. Prove that every fractional

ideal of D is of the form {d« | d € D} for some o € K.

. Let K be an algebraic number field of degree n. Let a be a nonzero rational integer.

Prove that a belongs to at most a” integral ideals of Ok.

. Show that (3, 1 + 2/—5) | (1 4+ 2+4/—5) in Ok, where K = Q(+/—5). Determine an

integral ideal A such that

(14+2v-5) = (3,1 + 24/=53)A.

. Determine the fractional ideal (3, 1 + 2+/=5)"! of Ok, where K = Q(/=5).
. Let K be an algebraic number field. Let / be an integral ideal of Ok . Leta € I. Prove

that there exists an integral ideal I’ of Ok such that (a) = I1'.
Let K be an algebraic number field. Let / be a nonzero integral ideal of Og. Leta € K
have the following property:

ael — aa el.

Prove that @ € Ok.

Let I be the ideal of Z + Z+/—5 generated by 1 4+ /=5, 3 4+ /=5, and 19 + 94/-5.
Determine «, B € Z + Z+/—5 such that [ = («, 8).

Let I and J be nonzero integral ideals of a Dedekind domain D. Let Py, ..., P, be the
distinct prime ideals dividing either I or J (or both) so that

[=P". .. P% J=pP)...PYX,

for nonnegative integersay, . .., ax, by, . .., by. The greatest common divisor ged (Z, J)
and the least common multiple lem (/, J) of I and J are defined by

ged(, J) = leil'l(al,b]) . Pkmin(a‘“b"),
Iem(I, J) = leax(a],h,) o Plgnax(“k»/’k).

Prove that

ged(I,))=1+1J



13.

14.

15.

16.

17.

18.

19.

20.
21.

1.
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and
Iem(I,J)=1NJ.

Prove that a Dedekind domain is a unique factorization domain if and only if it is a
principal ideal domain.

Let D be a Dedekind domain. Let A, B, C be ideals of D with A # (0) and AB = AC.
Prove that B = C.

Let D be a Dedekind domain. Let A and B be nonzero integral ideals of D. Prove that
there exists a € A such that gcd (AB, (a)) = A.

Let D be a Dedekind domain. Let A and B be nonzero integral ideals of D. Prove that
there is an integral ideal C of D such that AC is a principal ideal and ged (B, C) = D.
Let D be a Dedekind domain. Let A be a nonzero integral ideal of D. Prove that there
exist only finitely many integral ideals of D that divide A.

Let D be a Dedekind domain. A nonzero integral ideal I of D is said to be primary if
the following condition holds:

a,be D, abel, agl = b" eI forsomem € N.

Prove that a primary ideal must be a power of a prime ideal.

Let K be an algebraic number field. Prove that Ok contains infinitely many prime
ideals.

Determine the prime ideal factorization of (54) in Z + Z/—6.

Let D be a Dedekind domain. Let I be an ideal of D with I # (0), (1). Prove that

D/I ~D/P" x --- x D/ P,

where
=P P"
is the factorization of [ into distinct prime ideals Py, ..., P,.
Suggested Reading

F. T. Howard, A generalized Chinese remainder theorem, The College Mathematics
Journal 33 (2002), 279-282.

An extension of the Chinese remainder theorem that allows the moduli of the linear congruences
to have common factors is proved.

. O. Zariski and P. Samuel, Commutative Algebra, Volume 1, van Nostrand, Princeton,

New Jersey, 1958.

Chapter 5 of this classic book on algebra is devoted to Dedekind domains and the classical theory
of ideals.
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Norms of Ideals

9.1 Norm of an Integral Ideal

We have already defined (Definition 7.1.3) the norm N(A) of a nonzero integral
ideal A in the ring Ok of integers of an algebraic number field K by

[ D(A)
N(A) = 4K (9.1.1)

where D(A) is the discriminant of the ideal A (Definition 6.5.2) and d(K) is the
discriminant of the field K (Definition 7.1.2). Two main results of this chapter are
the following:

N(A) = card(Og/A), 9.1.2)
where Ok /A is the factor ring of Ok by A, and
N(AB) = N(A)N(B) 9.1.3)
for any two nonzero integral ideals A and B of Ok.
We require a couple of preliminary results to establish (9.1.2).
Theorem 9.1.1 Let C be an n x n matrix with rational integer entries. Then, by
applying to C a finite sequence of elementary operations of the types

(1) interchange of two rows or two columns,
(2) addition of an integral multiple of one row (or column) to another row (or column),
we can transform C into a diagonal matrix

d 0 -~ 0

0 d& --- 0

0 0 --- d,
where the integers d,, dy, . .., d, are such that

|det C| = |dy] - |dyl.

218
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Proof: The proof is by induction on the size n of the matrix C. If n = 1 the result
is clearly true. Now suppose that it is true for all (n — 1) x (n — 1) matrices with
rational integer entries. Let C be a given n x n matrix with rational integer entries.
If C is the zero matrix there is nothing to prove, so we may suppose that C # O,,.
Let k denote any one of the nonzero entries in C. By means of elementary operations
of type 1 we can transform C into a matrix B = (b;;) in which by; = k. If k does
not divide all the remaining entries in the first row and first column we can find an
integer j (2 < j < n) such that by; or bj; = gk +r with 0 < r < |k|; then by an
elementary operation of type 2, subtracting g times the first row or column from the
jthrow or column, we obtain a matrix with an entry r < |k|. Applying elementary
operations of type 1 we can move r to the (1, 1) position and repeat the process.
After a finite number of operations we obtain a matrix in which the (1, 1) entry
divides all the entries in the first row and column. Thus by means of a finite number
of operations of types 1 and 2 we can transform the matrix into one of the form

rd, 0 --- 0 1

0
m—1)xm-1)
submatrix with
integer entries

0

Applying the inductive hypothesis to the (n — 1) x (n — 1) submatrix we finally
get a matrix of the required diagonal type.

Clearly, elementary operations of types 1 and 2 at most change the sign of the
determinant so that

det C| = [d1]- - - |d]. =

It can be shown that dy, d5, . .., d, in Theorem 9.1.1 can be arranged to satisfy
dy|dr | ---|d,, in which case the matrix is said to be in Smith normal form.

Theorem 9.1.2 Let G be a free Abelian group with n generators wy, . .., @y, SO
that each element of G is uniquely expressible as

xjwy + -+ X0, X1, ..., %X, € Z.
Let H be the subgroup of G generated by the n elements ny, ..., n, so that

H={ym+ -+ Y| y1,....n € Z}.

As eachn; € H C G we have

n
ni = E c,-jwj, i=1,2,...,l’l,
Jj=1
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where each c;; € Z. Let C be the n x n matrix whose (i, j) entry is c;;. Then

) __J|detC|, ifdetC #0,
[G'H]_{ 00, ifdet C = 0.
Proof: We wish to transform the matrix C into the form given in Theorem 9.1.1 by
means of elementary operations of types 1 and 2.

An elementary operation of type 1, that is, interchanging rows or columns of C,
corresponds to rearranging the order of the generators 5y, ..., n,of Horwy, ..., o,
of G, and it so leaves [G : H] unchanged.

The elementary operation of type 2, which adds k times the ith row to the /th row,
corresponds to replacing ¢;; by ¢;; + kc¢;; (j = 1,2, ..., n) and hence replaces

n
ni = g Cijw;j
j=1

n
n; + km = Z(Cij + kclj)wj.
j=1
Butitis clear that {5y, ..., n,}and {ny, ..., n; +kni, ..., 0, ..., n,} generate the
same subgroup so that again [G : H] is unaltered.
Finally, the elementary operation of type 2, which adds k times the /th column

to the jth column, corresponds to replacing ¢;; by ¢;; +kc;; i =1,2,...,n) and
thus is equivalent to replacing the generators wy, . . ., @, of G by the equivalent set
{wi, ..., 0 — koj, ..., w,} since

n
ni = E Cinp
h=1

n
= E Cinwyp + Cijw; + Cijw;
h=1
h# il

= E cinwn + (cij +keidwj + ci(w — kw;)
h=1
h#jl

n
_ / /
= Cin®@p»
h=1
where

Cin =

r_ Cih, h ?é j7
cij + ke, h =],
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and

’ {wh, h;él,

=\ — kej, h=1.

Thus [G : H] remains unchanged.

Hence transforming C into diag(dy, ..., d,), where |d;|---|d,| = |det C|, by
elementary operations as in Theorem 9.1.1, we obtain a set of generators for G,
namely,

G = (o, ..., o),
such that
H = (dioy, ..., d,o,).
Clearly

Xio1 + -+ x,0, € H
= 01 + -+ X0, = y1dio] + - + Ypd©,
forsomey, e Z(i=1,2,...,n)
— xi=yd (i=12,...,n)
<—d |x,(i=12,...,n).

Suppose now that det C # 0. Hence d, ---d, # 0 so that each d; #0 (i =

1,2,...,n). Then a complete set of coset representatives for G modulo H is
rior+ -+ x0, | x; =0, 1,....|di| = 1;...5x0, =0, 1,..., |dy| — 1},
and thus

[G: H]=|di|--|d,| = |det C].
Finally, suppose that det C = 0. Hence d; - - - d, = 0 so that d; = 0 for some
ie{l,2,...,n}. Thenkw; + H (k=0,1,2,...)are distinct cosets of H in G so
that [G : H] = 0. [ |

‘We can now prove (9.1.2).

Theorem 9.1.3 Let K be an algebraic number field with [K : Q] = n. Let Ok be
the ring of integers of K. Let A be a nonzero integral ideal of Ok. Then

N(A) = card(Og /A).

Proof: Let{n,...,n,} be abasis for A and {w, ..., w,} an integral basis for K.
Then

n
ni = E c,-ja)j, i:1,2,...,n,
j=l1
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forc;j e Z (i, j=1,2,...,n). Thus

N(A) = \/ DA \/ DI () = [0k A1 = card(Ox /),

d(K) D(wy, ...
by Theorem 9.1.2. ]

9.2 Norm and Trace of an Element

If K is an algebraic number field of degree n and « is an element of K then there
are two very important quantities associated with ¢, namely,

oi(@) + o2(@) + - - - + o) and o1 ()02 () - - - 04 (@),
where
or: K—C, k=1,2,...,n,
are the n distinct monomorphisms from K to C. These quantities are called the

trace and norm of « respectively.

Definition 9.2.1 (Norm and trace of an element) Let K be an algebraic number
field of degreen. Leta € K. Leta) = o, ta, . . ., &y, be the K -conjugates of a. Then
the trace of o is denoted by tr(«) and is defined by

tr(e) = o) + o + - - +

and the norm of «a is denoted by N («) and is defined by

N(@) = ooy - -y

If « € Q then by Theorem 6.3.4 we know that all the K-conjugates of « are all
equal to «. Hence for ¢ € QQ we have
tr(@) =a+---+o =na

and

Na)=o---a=a".

If K is a quadratic field then K = Q(4/m) for some squarefree integer m.
Let « € K. Then o« = r + s/m for some r, s € Q. The K-conjugates of « are
a=r+sy/manda’ =r — s/m. The trace of « is

trle) =a + o =2r
and the norm of « is
N(o) = ad’ =r?* — s’m.

Recalling Definition 2.2.1 we observe that ¢, () = |N ().
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From Definitions 6.3.2 and 9.2.1, we see that
fldg (o) = x" — tr(e)x" ' + - + (—=1)"N(a).
In particular when K is a quadratic field (so that n = 2) we have
fldg (@) = x* — tr(@)x + N(@).
From Theorem 6.3.1 we deduce that for an arbitrary algebraic number field K
tr(x) € Q and N(x) € Q.

Further, if « € Ok then, by Theorem 6.3.3, oy = «, o3, . . ., o, are algebraic inte-
gers so that fld(«) € Z[x] and thus

tr(e) € Z and N(a) € Z.

In the next theorem we show that the trace is additive and the norm is multiplica-
tive.

Theorem 9.2.1 Let K be an algebraic number field of degree n. Let o, B € K.
Then

tr(oe 4+ B) = tr(a) + tr(B)

and
N(aB) = N(@)N(B).
Proof: Leto, : K — C(k =1, 2, ..., n)be the n distinct monomorphisms from
K to C. Then
e+ B) =Y owla+p) =Y (0x(@) + oi(B))
k=1 k=1
= @)+ ou(p) = tr(e) + t(p)

k=1 k=1

and

N@p) = [[orep) = [ [(or(@)on(B)
k=1 k=1

= (Hok(oo) (Hokw)) = N@N(B). u
k=1 k=1

The next theorem tells us about the norm of a unit.
Theorem 9.2.2 Let K be an algebraic number field of degree n.

(a) If o is a unit of Ok then N(o) = £1.
() Ifa € Ok and N(a) = *£1 then « is a unit of Ok.
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Proof: (a) Let o € Ok be a unit. Then there exists 8 € Ok such that o = 1.
Taking norms we obtain by Theorem 9.2.1

N(@)N(B) = N(ap) = N(I) = L.

As N(a) € Z and N(B) € Z we deduce that N(«) = £1.
(b) Let @ € Ok be such that N(w) =+1.Leto, : K — C(k=1,2,...,n)
be the n distinct monomorphisms from K to C with o7 = 1. Then

Hak(oz) = N(a) = %1.
k=1

Set
n
B ==]]ox@,
k=2
so that
aff = 1.

Asa € Og,eachoy(a) € Og (k=1,2,...,n)by Theorem 6.3.3, sothat 8 € Ok.
Hence « is a unit of Og. ]

The next theorem is often useful in showing that an algebraic integer is an
irreducible.
Theorem 9.2.3 Let K be an algebraic number field. If « € Ok is such that
N(a) = %p,
where p is a rational prime, then « is an irreducible.
Proof: Suppose that @ € O is such that N(«) = £p, where p is a prime. Clearly
o # 0as N(0) = 0. Moreover, « is not a unit as the norm of a unit is &1 by Theorem

9.2.2. Thus if « is not irreducible then there exist nonzero, nonunit elements 8 and
y of Ok such that

o= fBy.
Then, by Theorem 9.2.1, we have
+p = N(o)=N(By) = N(BN().
As N(B) € Z, N(y) € Z, and p is a prime, we must have

N(B) or N(y) = 1.
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Hence, by Theorem 9.2.2(b), § or y is a unit, which is a contradiction. This proves
that « is irreducible. [ ]

We emphasize that the converse of Theorem 9.2.3 is not true. To see this take
K = Q(v/-5) and & = 1 + +/—5. Then « is an irreducible in Og but N(a) =
(1 +/=5)(1 — /=5) = 6 is not prime.

In the next theorem we use Theorems 9.2.2 and 9.2.3 to give a condition that,
when satisfied by an element o of a cubic field, guarantees that « is a unit, and we
give a similar condition for « to be an irreducible.

Theorem 9.2.4 Let a and b be integers such that the cubic polynomial x> + ax + b
is irreducible in Z[x). Let

K = Q(8), where 6> +ab +b =0,
so that K is a cubic field.

(a) Ifr, s, t are integers such that
r3 — bs® + b2 + ars® + a*rt* — 2ar*t — abst® + 3brst = +1

then r + s6 + 162 is a unit in Ok.
(b) Ifr, s, t are integers such that

3 — bs® + b2 + ars* + a*rt* — 2ar*t — abst® + 3brst = +p,

where p is a prime then r + s6 + t02 is an irreducible in O.

Proof- Let 6, 0’,6" be the roots of x> + ax + b = 0 so that

0+6 +6"=0,
00’ +60'0" +0"6 = a,
06'0" = —b.

Then

02+0" +0" =©O+0 +0"Y—200 +0'0" +0"0) = —2a,
020" +0"0" +070> = (00 +0'0" +0"07 —200'0"(0 + 0 +6") = a,
00" +0%0' + 600" +0%0" +0'0" +0"0"

= (04 60)00"+ (0 +0"606" + (0" +0")0'0"

— _00'0" —06'0" — 00'0" = —300'6" = 3b.
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Hence

NG+ 50 +10%) = (r + 50 + 102 + 50" + 16" )(r + 56" +10")

=7’ +5°00'0" +17(00'0") +rs* (00’ +60'0" +0"0)
r20%0 +070" +6070%) + 10+ 0 +0")
F 202+ 60" +07) +5200'0"(6 + 6" +6")
+51%00'0"(06" +0'0" +0"0)
Frst(00” + 0% + 00" +0%0" + 00" +00")

=3 — bs® + b + ars® + a*rt* — 2ar’t — abst* + 3brst.

The assertions of the theorem now follow from Theorems 9.2.2 and 9.2.3. [ |

Example 9.2.1 Let K be the cubic field given by K = Q(0), where
03 — 46 4+ 2 = 0. We show that 6 — 1 is a unit of Ok. This is the special case

a=—4b=2,r=—-1,s=1,t=0
of Theorem 9.2.4(a) as

3 —bs® + b3 + ars® + a*rt* — 2ar*t — abst® + 3brst
=73 —bs® +ars®
=—1-24+4=1.

Similarly, we can show that 20 — 1 is a unit of Ok since in this case
a=—-4b=2,r=—-1,5s=2,1t=0
and

P —bs® + bt + ars® + a’rt*> — 2ar’*t — abst® + 3brst
=73 —bs® +ars?
=—-1—-164+16 = —1.

In the next theorem we relate N({«)) and N ().

Theorem 9.2.5 Let K be an algebraic number field of degree n. Let Ok be the ring
of integers of K. Let « € Ok. Then

N((a)) = [N(a)I.

Proof: Let {w,...,w,} be an integral basis for K. Then {awy,...,aw,} is a
minimal basis for the principal ideal (). Hence
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ol(awy) -+ o(aw,) ’
o(awy) - oraw,)
D(e) =| L
Un(awl) s On(aa)n)
where oy : K — C (k= 1,2, ..., n) are the n distinct monomorphisms from K
to C. Thus
si@oi(@) - ol@oi(@,) [
o (a)or(wy) - oa(a)oa(wy,)
D((a)) =
on(@)oy(wy) -+ ox(a)on(w,)
Gi@) - oi@) ]
, |02(@1) - oa(wy)
= (o1(x)or(@) - - - o, () :
O'n(wl) cee Un(wn)
= N(@)*d(K),
so that

D
N({a)) =4/ d((%) = VN(@)* = N(@)|. u

We see that Example 7.1.2 and Theorem 7.1.6 are special cases of Theorem 9.2.5.
We also observe that if & € Ok, where K is an algebraic number field, then

card(Ok /(o)) = N({a)) = [N ().
Next we determine the norm of the principal ideal (&) in terms of the constant term
of the minimal polynomial of & over Q.
Theorem 9.2.6 Let K be an algebraic number field of degree n. Let o« € K. Let
irrg(ar) = x™ + b1 x™ -+ by € QLx].
Then
N((@)) = [bol"™.
Proof: By Theorem 6.3.2 we know thatm | n. Leta; = o, oy, . . ., o, be the roots
of irrg(a) so that

X" A by X" by = (x— o) (x — ) - (= o)
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and thus
bo=(—D"ajay - ay,.
Again by Theorem 6.3.2 a complete set of conjugates of « is
Oy ey O, 00, ey Oy ey Oy e e ey Oy
where each «; is repeated n/m times. Hence

N(x) = o[;l/ma;/m ... o{”;/m = (ajay - - am)"/m
= ((=1)"bo)""™ = (=1)"by/"

and thus by Theorem 9.2.5
N({@)) = [N(@)| = [(=1)"bg™| = |bo|"™. =

Example9.2.2 Let K = Q(+/2 + +/3). We determine N((~/2)). The minimal poly-
nomial of ~/2 over Q is x* — 2. Hence in the notation of Theorem 9.2.6 we have
n=4 m =2, by =0, by = —2. Thus by Theorem 9.2.6 we obtain

NV2) = | =21"* =22 = 4.

9.3 Norm of a Product of Ideals

In this section we prove the multiplicative property (9.1.3) of norms of ideals.
We will need the following result, the proof of which closely resembles that of
Theorem 8.5.1.

Theorem 9.3.1 Let D be a Dedekind domain. Let A be a fractional or integral
ideal of D with A # (0), (1). Let B be an integral ideal of D with B # (0), (1).
Then there exists y € A such that

A= (y)+ AB.

Proof: Let Py, ..., P, be the set of distinct prime ideals for which either
ordp. (A) # 0 or ordp, (AB) # 0 (or both).

This set is nonempty as A # D. By Theorem 8.4.5 we can find an element y of the
quotient field of D such that

ordp (y) =ordp(A), i =1,2,...,n,
OrdP(V)ZO, P#Ph""Pn-

Thus

ordp(y) > ordp(A) for all prime ideals P,
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and so
y € A.
Now fori =1, 2,...,n we have
ordp, ((y) + AB) = min(ordp,({y)), ordp, (AB))
= min(ordp,(y), ordp. (AB))
= min(ordp,(A), ordp.(AB))
= ordp,(A),
as B is an integral ideal. For a prime ideal P # Pj, ..., P, we have ordp(A) =

ordp(AB) = 0 so that

ordp({y) + AB) = min(ordp({y)), ordp(AB))
= min(ordp(y), 0)
=0
=ordp(A).
Hence

ordp({y) + AB) = ordp(A)
for all prime ideals P, and so
A= (y)+ AB. u
Theorem 9.3.2 Let K be an algebraic number field. Let A and B be nonzero
integral ideals in D = Ok. Then
N(AB) = N(A)N(B).
Proof: If A or B = D then the result is trivially true as N(D) = card(D/D) = 1.

Hence we may assumethat A # Dand B # D.Letk = N(A)and! = N(B). Then,
by Theorem 9.1.3, the ring D /A has k elements, say,

o+ A, ..., 0+ A.
Also, D/B has [ elements, say,
Bi+B,....,0+B.
By Theorem 9.3.1 there is an element y of A such that
A= (y)+ AB.

If y =0 then A = AB so that B = D, contradicting B # D. Hence y # 0. Let
8 € D. Then there is a unique integer i (1 < i < k) such that

8 = «a; (mod A).
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Clearly,
§—a; € A=(y)+ AB

so there exist 0 € D and T € AB such that

d—a, =0y +r.
Similarly, there is a unique integer j (1 < j <) such that

o = B; (mod B),
that is,

o —Bj €B.

Asy € A we have

(o0 — Bj)y € AB.
Hence

d=ai+oy+1t=0a;+Bjy+(—B))y +17=a; + By (mod AB).

This shows that the set of kl elementso; + B;y + AB (i =1,...,k;j=1,...,1])
is a complete set of representatives of D/AB. We must still show that they are
distinct. Suppose

O(l'+,3j)/+AB:0(p+,3q]/+AB.

Then

a; + Bjy =a, + B,y (mod AB)
and thus

o —ap = (By — Bj)y (mod AB).
Buty € A so

a —a, €A.
Thus i = p and
Bjv = Byy (mod AB).

Hence

(Bj — By)y € AB.
Now let B = Hff:l Pib" (b; > 0) be the prime ideal decomposition of B. Then
ordp,(A) = ordp,({y) + AB)

= min(ordp,({(y)), ordp,(AB))
= min(ordp,(y), ordp (A) + ordp,(B))
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and it follows that
ordp(A) =ordp(y), i =1,..., h. 9.3.1)

If B; — B, # Othen(B; — B,)y is anonzero element of AB sothatfori =1,...,h
we have

ordp,((B; — By)y) = ordp,(AB)
and thus
ordp,(B; — B,;) + ordp,(y) > ordp,(A) + ordp,(B).
Then, appealing to (9.3.1), we deduce that
ordp(B; — By) = ordp(B), i =1,...,h,

which shows that

ﬁj_ﬂqEB,

and hence j = ¢, contradicting B8; — B, # 0. This proves that 8; — B, = 0 so that
Jj=gq.Hence{o; +Bjy +AB|i=1,...,k; j=1,...,1}is a complete set of
distinct representatives of D/AB and so

N(AB) = card(D/AB) = kl = N(A)N(B). u

9.4 Norm of a Fractional Ideal

The multiplicative property of the norm (Theorem 9.3.2) allows us to extend the
definition of the norm of an integral ideal (of the ring of integers of an algebraic
number field) to the norm of a fractional ideal.

Definition 9.4.1 (Norm of a fractional ideal) Let K be an algebraic number field.
Let Ok be its ring of integers. Let A be a nonzero fractional ideal of Ok. Then there
exists a nonzero integral ideal I of Ok and a nonzero element a of Ok such that

1
A=—1.
o
We define the norm N(A) of the fractional ideal A by
N
N(A) = L’
N({a))

where N(I), N({a)) are the norms of the integral ideals I and ().

Definition 9.4.1 is valid for if / and J are nonzero integral ideals of Ok and «
and B are nonzero elements of Ok such that
1 1

A=—-1=—J
a P
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then
Bl =ualJ,
so that we have the equal products of integral ideals
(B)M = (a)J,
and thus by Theorem 9.3.2
N(B)ONU) = N(B)I) = N((a)J) = N((a))N(J),

so that
N()  NUJ)
N((er) — N((B))
When the fractional ideal A of Definition 9.4.1 is actually an integral ideal the two
definitions of the norm coincide.

The next theorem shows that the multiplicative property of the norm carries over
to fractional ideals.

Theorem 9.4.1 Let K be an algebraic number field. Let Ok be its ring of integers.
Let A and B be nonzero fractional ideals of Ok. Then

N(AB) = N(A)N(B).

Proof: As A and B are nonzero fractional ideals of O there exist nonzero integral
ideals I and J of Ok and nonzero elements o and 8 of Ok such that

1 1
A=—-I, B=—/J.
o B
Then

1
AB=—1J
ap

so that
NJ)
N((aB))
_ NUJ)
~ N((@)(B))
_ NW)N(U)
~ N(@)N({B))
N() N({J)

T N(@) N({B)
= N(A)N(B). |

N(AB) =

(Definition 9.4.1)
(Definition 1.6.2)

(Theorem 9.3.2)

Example 9.4.1 Let K = Q(v/6) so that Ox = {a + b\/6 | a, b € Z}. Let A be the
Jfractional ideal of Ok given by
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Then

where I is the integral ideal (2, /6). Now

12 = (2,V6)2 = (4,2:/6,6) = (2)(2,v/6,3) = (2)

(as1=3—2¢€ (2,4/6,3)) so that

N(I)*» = N(I*) = N({2)) = 2

and thus
N{) =2.
Hence
N(A) = N(LT) = N(I) . 2 1
SNy 2 Y
Exercises
1. Let p be a prime such that p = 3 or 5 (mod 8). Prove that there does not exist an element

10.

(VS OQ(ﬁ) such that N(«) = 2.

. Let p be aprime such that p = 5 or 7 (mod 8). Prove that there does not exist an element

(VS OQ(ﬁ) such that N(a) = —2.

. Let K be an algebraic number field and Oy its ring of integers. If I is an integral ideal

of Ok such that N(7) is a prime, then [ is a prime ideal.

. Let K be an algebraic number field and Oy its ring of integers. If I is a nonzero integral

ideal of Ok, prove that I | (N(I)).

. Let K be an algebraic number field. Let n be a given positive integer. Prove that there

are only finitely many integral ideals I of O such that N(/) = n.

. Let K = Q(8), where 63 — 8 — 1 = 0. Prove that (23,3 — ) isa prime ideal in Og.
. Let K = Q(v/=23). Let I = (2, 1(1 + v/=23)).

(a) Prove that N(I) = 2.
(b) Prove that I® = (=3 + +/—23)/2).
(c) Use each of (a) and (b) to prove that [ is not a principal ideal.

. Let K be an algebraic number field and Oy its ring of integers. Let I be an integral

ideal of Ok such that N(I) = |N(a)| for some a € I. Prove that I = (a).

. Let K be an algebraic number field and Oy its ring of integers. Let P be a prime ideal

of Ok. Prove that G ={a+ P |a € Ok, a ¢ P} is a cyclic group with respect to
multiplication. What is the order of G?

Let K be an algebraic number field and Oy its ring of integers. Let P be a prime ideal
of Ok . Prove that P N Z = (p) for some prime p.
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11.

12.
13.

14.
15.

16.
17.

18.
19.
20.
21.
22.
23.

24.

25.
26.

1.

2.

Let K be an algebraic number field and Oy its ring of integers. Show that
a’ =a(mod P) < a = m (mod P) for some m € Z,

where P N Z = (p) (see Exercise 10).

Determine the fractional ideals of Z + Zi.

Let K be an algebraic number field and Oy its ring of integers. Let m € Z \ {0}. Prove
that there exist only finitely many integral ideals of Ok to which m belongs.

Find all the ideals of Z + Z+/—35 that contain 6.

Find all the ideals of Z + Z+/2 with norm 12.

Determine the set of positive integers that are not norms of ideals of Z + Zi.

Let K be an algebraic number field. Let Ok be its ring of integers. Let P be a prime
ideal of Ok. Leta € Ok be such that P 1 (a). Prove that

aV® — 1 =0(mod P).

Give an example of an algebraic number field K and an integral ideal I = (a, b, c¢) of
Ok such that I # (a, b), (a,c), (b,c).

Determine all complex quadratic fields K for which Ok possesses elements of norm
38 and trace 11.

Let K be an algebraic number field. Let o, 8 € Ok \ {0}. Prove that N (a)tr(8/«) € Z.
Solve 3x = 5(mod A) in Z + Z+/—5, where A = (34/—5, 10 4+ 10/=5).

Let K be an algebraic number field. Let / be an integral ideal of Ok . Let m be the least
positive integer in /. Prove that m | N(I).

Let K be an algebraic number field. Let / be an integral ideal of Ok such that pg | N(1),
where p and ¢ are distinct primes. Prove that [ is not a prime ideal.

Let K be a quadratic field. Let « € Ok be such that |N(«)| = ab, where a and b are
coprime positive integers. Prove that

(a, a)(b,a) = (a).

Prove thatdy, d,, ..., d, in Theorem 9.1.1 can be arranged to satisfy d; | d> | - - - | d,.
Let K be an algebraic number field. Prove that Ok is a principal ideal domain if and
only if for every pair («, B) € Og x Ok such that

a#0, B#0, Bta, IN(@)|=[N(B)I,
there exist y € Ok and 6 € Ok such that

0 < |N(ay = Bd)| < IN(B)I.
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Factoring Primes in a Number Field

10.1 Norm of a Prime Ideal

We begin by showing that each prime ideal in the ring of integers of an algebraic
number field is associated with a unique rational prime.

Theorem 10.1.1 Let K be an algebraic number field. Let P be a prime ideal of
Ok. Then there exists a unique rational prime p such that

P | (p).
Proof: As P is a prime ideal in Ok, P N Z is a prime ideal in Z (Theorem 1.6.2).
Hence, by Theorems 1.4.1 and 1.5.4, we have
PNZ={p)
for some rational prime p. Thus
P 2 (p)
and so by Theorem 8.4.1 we have
P {p).
Suppose g is another rational prime such that
P {q).
Then P 2 (p) and P 2 (g) so that
P 2(p.q).

As p and ¢ are distinct primes we have gcd(p, g) = 1 so that there are integers
a and b such that ap +bg = 1. Hence 1 € (p, g) € P. Thus O € P, which is
impossible.

Hence the prime p is uniquely determined by P | (p). [ |
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The rational prime p in Theorem 10.1.1 is called the prime lying below P as
P 2 (p). Given a rational prime p, any prime ideal P such that P | (p) is said to
be a prime ideal lying over p.

Next we relate the norm of the prime ideal P to the prime p lying below P.

Theorem 10.1.2 Let K be an algebraic number field with [K : Q] = n. Let P be
a prime ideal of Ok. Let p be the rational prime lying below P. Then

N(P) = p’
for some integer f € {1,2,...,n}.

Proof: As p lies below P we have P | (p). Hence (p) = P Q for some integral
ideal Q of Og. By Theorem 9.3.2 we have

N(p)) = N(PQ) = N(P)N(Q).

As the K-conjugates of p comprise p repeated n times (Theorem 6.3.4), we have

N(p) = p",
so that, by Theorem 9.2.5,

N((p)) = IN(p)| = p".
Hence we have
p" = N(P)N(Q)

so that

N(P) = p’
for some f € {1,2,...,n}. [ ]

Definition 10.1.1 (Inertial degree) Let K be an algebraic number field with

[K : Q] = n. Let p be the rational prime lying below P. Then the positive integer
f such that

N(P) = p’

is called the inertial degree of P in Ok and is denoted by fx(P).

From Theorems 9.1.3 and 10.1.2 we see that
card(Og /P) = p’
so that Ok /P is a finite field with p/ elements. Consider the elements

a+ P(acl)
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of Og/P.If a,a’ € Z are such that a = a’ (mod p) then p | a — a’ so that (p) |
(a—a').But P | (p)so P | {a—d') and thus a = a' (mod P), thatis, a + P =
a’ + P. Conversely suppose thata + P =a'+ P (a,a’ € Z). Thena —a’' € P,
(a—ay< P,and P | {a—a’'),so

(a—d)="PQ
for some integral ideal Q of Og. Taking norms we obtain
la —d'|" = N({a —d)) = N(PQ) = N(P)N(Q) = p/ N(Q),

so that p | (a — a’)" and thus, as p is a prime, p | a — a’ and so a = a’ (mod p).
We have shown that fora, a’ € Z

a+P=d+ P <<= a=ad (mod p).

Hence the cosetsa + P (a € {0, 1, ..., p — 1}) are distinct and the prime field of
OK/P is

F={a+Pla=0,1,....,p—1}=Z/(p).
The inertial degree f = fx(P) is given by
Jk(P)=1[Ok/P: F1=[0g/P : Z/(p)].
If fx(P)=1then [Ok/P : F] =1sothat Ox/P = F;thatis,
Ok/P={a+Pla=0,1,...,p—1}.

Let ¢ € Ogx. Then o+ P € Og/P so that « + P =a+ P for some a €
{0,1,..., p—1}. Hence @ = a (mod P) for some a € Z, when fx(P) = 1.
Theorem 10.1.3 Let K be an algebraic number field with [K : Q] = n. Let p be
a rational prime. Suppose that the principal ideal {p) factors in Ok in the form

(p) = P{"--- Pg*, (10.1.1)

where Py, ..., P, are distinct prime ideals of Ok and ey, ..., e, are positive in-
tegers. Suppose that f; is the inertial degree of P; i = 1,2, ..., g) in K, that is,
Ji = fx(P;). Then

eitfi+---+egfe=n.

Proof: As f;istheinertial degree of P;in K,wehave N(P;) = p/i (i =1,2,...,8)
so that
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p"=N({p)) = N(P" - Pg*)
= N(pl)el ... N(pg)eg

=(pMy" - (p!)*
— pelfl‘i"”“"egfg .

Hence

elf1+"'+egfg:n- .

It follows immediately from Theorem 10.1.3 that
e e{l,2,...,n}, fie{l,2,...,n}, i=1,2,...,g, (10.1.2)
and that
P" | {p) (for some prime ideal P) —> (p) = P". (10.1.3)
Definition 10.1.2 (Decomposition number) With the notation of Theorem 10.1.3,

the positive integer g defined in (10.1.1) is called the decomposition number of
p in K and is written gg(p).

Theorem 10.1.4 Let K be an algebraic number field of degree n. Let p be a rational
prime. Then

gx(p) = n.
Proof: With the notation of Theorem 10.1.3, as ey, ..., eg, fi,..., f, are positive
integers, we deduce that
n=efi+--tefe=l+---+1=g. n

Thus in an algebraic number field of degree n, the principal ideal (p) (with p a
rational prime) cannot split into a product of more than n distinct prime powers.

Definition 10.1.3 (Ramification index) Let K be an algebraic number field of
degree n. Let P be a prime ideal of Ok. Let p be a rational prime lying below P.
Then the unique positive integer e such that

P [ {p), P 1 (p)

is called the ramification index of P in K and is written ex (P). From (10.1.2) we
see that ex (P) < n.

In the notation of Theorem 10.1.3 we have

ex(P) =ei, fx(P)=fi, gk(p) = g.



240 Factoring Primes in a Number Field

Definition 10.1.4 (Ramification) Let K be an algebraic number field of degree n.
Let p be a rational prime. Let P\, ..., Pg be the prime ideals of Ok lying above p.
Then

(p) = P P,
where
e, =ex(P),i=12,...,g.
If e; > 1 for some i € {1,2,..., g} then p is said to ramify in K. If e; =1 for

i=1,2,..., g then p is said to be unramified in K.

The following theorem of Dedekind, which we shall not prove here, enables us
to recognize when a rational prime p ramifies in an algebraic number field K.

Theorem 10.1.5 (Dedekind) Let K be an algebraic number field. Then the rational
prime p ramifies in K if and only if p | d(K).

In the next section we examine the factorization of a rational prime p into prime
ideals in Ok, when K is a quadratic field.
We conclude this section by proving the following simple but useful result.

Theorem 10.1.6 Let K be an algebraic number field. Let 1(# (0)) be an ideal of
Ok.
(@) If N(I) = p, where p is a prime, then I is a prime ideal.

(b) N(I)eI.

Proof: (a) Clearly I # (1) as N(I) # 1. By Theorem 8.3.1 [ is a product of prime
ideals. If there exist prime ideals P and Q such that P Q divides I/ (where P and
Q may or may not be distinct) then / = P QA for some integral ideal A of Og.
Hence, by Theorem 9.4.1, we have

p=N{U)=N(PQA) = N(P)N(Q)N(A),

which contradicts that p is a rational prime as N(P), N(Q), and N(A) are positive
integers with N(P) > 1 and N(Q) > 1. Thus [ is a prime ideal.
(b) By Theorem 9.1.3 we have

N(I) =card (Og/I).
Hence

NU)x+1)=0+41, forallx € Og;



10.2 Factoring Primes in a Quadratic Field 241
that is,
N(I)x €I, forall x € Og.
Taking x = 1 € Ok we obtain
N{)el

as asserted. u

From Theorems 10.1.6(b) and 8.4.1 we deduce that
(N(D) €1
and
I (N(D)

for all ideals I of the ring of integers of an algebraic number field.

10.2 Factoring Primes in a Quadratic Field

Let p be a rational prime and let K be a quadratic field. By Theorem 10.1.4 we
have

g =2g8k(p) =2
so that
g=1or2.
If g = 2 by Theorem 10.1.3 we have
etfitefr=2
so that
er=fi=e=fr=1
If g = 1 we have
e1fi =2
so that
(er, fi) =2, Dor(l,2).
Thus in the case of a quadratic field there are just three possibilities:
Wg=2 ea=fi=ea=fH=1
(ig=1 e =2, fi=1,
Giyg=1,e =1, fi=2.
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In other words,

(@) (p) = PiP>, N(P\) = N(P,) = p, Pi # P,
(i) (p) = P%, N(P)= p,
(iii) (p) = P, N(P) = p’,
where Py, P,, P denote prime ideals of Og. In case (i) we say that p splits in K,
in case (ii) that p ramifies in K, and in case (iii) that p is inert (or remains prime)
in K. In cases (i) and (iii) p is unramified in K.
Our next theorem gives necessary and sufficient conditions for each of (i), (ii),

(iii) to occur. As usual (%) denotes the Legendre symbol of the integer m modulo
the odd prime p.

Theorem 10.2.1 Let K be a quadratic field so that there exists a squarefree integer
m such that K = Q(y/m). Let p be a rational prime.
@ Ifp>2, (%) —lorp=2 m=1(mod8) then

(p) = PP,

where Py and P, are distinct prime ideals with N(Py) = N(P,) = p.
®) Ifp>2, plmorp=2 m=2or3(mod 4) then

(p) = P?,
where P is a prime ideal with N(P) =
© Ifp>2, (%) — —lorp=2, m=5(mod 8) then

(p) is a prime ideal of Ok .

Proof: As m is squarefree we have m = 0 (mod 4) sothatm = 1, 2, or 3 (mod 4).
We consider seven cases.
@):p > 2, (%) =1.As (%) = 1 thereexistsa € Zsuchthata® = m (mod p).

As ptm wehave pta.Let Py = (p,a+ +/m)and P, = (p,a — \/m).
We show first that P; # P». Suppose on the contrary that P; = P,. Then
2a = (a + /m)+ (a — /m) € Py.
But2a € Z so

2a € PiNZ = (p).

Hence p | 2a. This is impossible as p is odd and p 1 a.
Next we show that (p) = P; P,. We have

(p.a+~/m)(p,a—/m)

= (p%, pla++/m), pla—/m), a*—m)
= (p){(p, a+~/m, a—/m, (a*—m)/p)
= (p)1,

PP, =
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where [ is the ideal
I=(p, a+m, a—/m, (@ —m)/p).
As ged(2a, p) = 1 there exist integers x and y such that
xp+yQRa)=1.

Thus

l=xp+yla+v/m)+ya—m)el
and so I = (1). This proves that (p) = P; P,, showing that this case falls under (a).

(ii): p > 2, (%) = —1. Suppose that
(p) = P1P, (P, # Py) or P,

In each case we have N(P;) = p so that fx(P;) = 1. Hence, as /m € Oy, there
exists a € Z such that

/m = a (mod Py)
and so

m = a” (mod P)).
But,as m € Z, a*> € Z and Py | (p), we must have

m = a” (mod p),
contradicting (%) = —1. Thus (p) is a prime ideal in Ok, and this case falls
under (¢).

(iii): p > 2, p | m.Set P = (p, /m). Then
P? = (p, V/m)(p, v/m) = (p*, pv/m,m) = (p)1,

where [ is the ideal

I =(p,/m,m/p).

As m is squarefree, we have gcd(p, m/p) = 1, so that there exist integers x and y
such that

xp+yim/p)=1.
Hence
l=xp+y(m/p) el
so I = (1), that is, (p) = P2, and this case falls under (b).
(iv): p =2, m =2 (mod 4). Set P = (2, \/m). Then
P? = (2, V/m) (2, /m) = (4,2J/m,m) = (2)1,
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where [ is the ideal
I =(2,V/m,m/2).
Asm/21s odd, say m/2 = 2k + 1, then
1=(=k2+)m/2€el,
so I = (1), and P? = (2). This case falls under (b).
(V): p=2, m=3(mod4). Let P= 2,1+ /m). As 1 — /m =
J/m) we see that P = (2,1 — \/m). Then

P*= (2, 1+ V/m)(2,1 - /m)
= (4,21 + V/m), 2(1 — /m), 1 — m)
=21,

where [ is the ideal

I=2,14/m, 1 —ym, (1 —m)2).

2—(1+

As m =3 (mod 4), (1 —m)/2 is an odd integer, and I = (1). Hence (2) = P2

and this case falls under (b).

(vi): p =2, m =1 (mod 8). Let

1 1—
+2ﬁ) and P, = (2, v

P = (2,

Thus

PP = <4,2<1 +2ﬂ>,2<1 _2ﬁ), L=my _ oy,

where [ is the ideal

I+ym 1—/m 1—m

I =2, .
( 2 2 8 )
Now
1 1—
1= *ym + Vm el
2 2
so that I = (1) and thus (2) = P P>. If P, = P, then
1 1—
- +2ﬁ N zﬁ c P,

which is impossible, so P} # P,, and this case falls under (a).

(vii): p =2, m = 5(mod 8). Suppose that (2) = P; P, (P, # P,) or P}. Then
in both cases N(P;) = 2 so that fx(P;) = 1. Hence, as (1 + /m)/2 € Ok, there
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exists a rational integer a such that

1+ /m
2

= a (mod Py).

Thus

1—@21_(1+\/rﬁ

> > >zl—a(m0dP1)

and so

1—m:<1+ﬁ><1—ﬁ

1 5 5 > =a(l —a) (mod P).

Since (1 —m)/4 € Z, a(l —a) € Z, and P, | (2), we have

1—m
1 =a(l — a) (mod 2).

Thus
I=m = 0 (mod 2)
—_— = mo
4

so that m = 1 (mod 8), contradicting m = 5 (mod 8). Hence (2) is inert in O and
this case falls under (c). |

From the proof of Theorem 10.2.1 we see that we can express the factorizations
of the principal ideal (p) (with p prime) into prime ideals of Ok, where K is the
quadratic field Q(y/m) (m squarefree), as follows:

(2), if m = 5 (mod 8),
(2)_ < % +\/—) ,z(l—ﬁ)),ifmzl(mod 8),
2,1+ /m)?, if m = 3 (mod 4),
(2, /m)?, if m = 2 (mod 4),
and for p > 2
(p), if p { m and x> = m (mod p)

is insolvable,
(p) = { (p.x + m){p,x — /m) if ptm and x> = m (mod p)

is solvable,
(p, V/m)?, if p | m.

Recalling that for a squarefree integer m

_fm, ifm=1(mod 4),
d(Q(v/m)) = {4m, ifm = 2,3 (mod 4),
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we see from Theorem 10.2.1 that

p ramifies in Q(v/m) <= p | d(Q(v/m)),

in agreement with Theorem 10.1.5.

We next simplify the statement of Theorem 10.2.1 by introducting the Kronecker
symbol, which is an extension of the Legendre symbol from an odd prime to the
prime 2.

Definition 10.2.1 (Kronecker symbol) Let d be a nonsquare integer with d =
0 or 1 (mod 4). The Kronecker symbol (%) is defined by

0, ifd=0(mod 4),

<i>: 1, ifd =1 (mod 8),
—1, ifd =5 (mod 8).

Thus (‘74> =0, (%) =1, <_73> = —1, and (_76) is not defined. Making use
of the Kronecker symbol, Theorem 10.2.1 can be reformulated as follows:

Theorem 10.2.2 Let K be a quadratic field. Let d = d(K). Let p be a rational
prime. Then

@) (p) splits <— (%) =1,

(ii) (p) ramifies <— (%) =0,
. d
(iii) (p) is inert < <;> = —1,

where (%) is the Legendre symbol for p > 2 and the Kronecker symbol for p = 2.
Example 10.2.1
(a) (11) is inert in Q(+/—163) as

—163\ (2 .
(50)- (&)=
(b) (23) is inert in Q(v/37) as

)+ (3)- (3)(3) o=

(c) (2) ramifies in QW) as

Indeed (2) = (2,1 + +/7)%.
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3)-0)-

Indeed as x* = 7 (mod 3) has the solution x = 1, we have

(3)= 3.1+ 3,1 - 7).

(d) (3) splits in Q(W7) as

(©) (7) ramifies in Q(v/7) as (%) — 0. Indeed (7) = (V7)2.

Let K be the quadratic field Q(/m), where m is a squarefree integer. There are
exactly two monomorphisms : K — C, namely, 1 and o given by

l(a+bym)=a+bym,
o(a + bym) =a — by/m,

for all a, b € Q. Let I be an ideal of Og. By Theorem 8.5.1 we know that [ is
generated by at most two elements. Hence I = () or I = (¢, 8) and we define the
conjugate ideal o (/) of I by

o(I) = {o(a)) or (o (), o(B))

respectively. It is customary to write «’ for o(a) and I’ for o(I). Clearly
(@) =o0%(a) =« so that (I’Y = 1. Thus if [ = (2++/3,1 —2+/3) then I' =
(2 — /3,1 + 24/3). We note that

(@+p) =c@+p) =c@+aoB)=a +p
and
(@p) =o(@p) =o(a)o(B) =a'p’

for all @« and B in K. From these properties it is easy to show that if [ =
(o1, ..., o) then I" = (af, ..., a)).
The basic property of conjugate ideals is given in the next theorem.

Theorem 10.2.3 Let I and J be ideals of the ring of integers of a quadratic field
K. Then
ayn =1r1J.
Proof: As () = (o, o) we may suppose that both I and J are generated by two
elements, say,
I'=A{a, B), J =(y,6).
Then
1J = (O[’ ﬂ)()/, 5) = <Ol)/, IBV’ ad, :38}
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so that
(1) = {(ay), (By), (@8), (B8)) = («'y', By, '8, B'S')
— (a/’ ﬂ/)()//, 8/) — I/J/

as asserted. |

If I is an ideal of the ring of integers of an arbitrary algebraic number field K,
we have already observed that / | (N(I)). In the case of quadratic fields, we can
say something stronger.
Theorem 10.2.4 Let K be a quadratic field. Let I be an ideal of Ok. Then

(N())y =11'.

Proof: The assertion of the theorem is trivial if / = (0) or (1), so we may suppose
that 7 # (0), (1). Let

b1

I=PUP" - POP Qo QR R
be the prime ideal decomposition of /, where Py, ..., P, are distinct prime ideals
such that
PP = (p), N(P)=N(P)=p, P#P,
01, ..., Qy are distinct prime ideals such that
Q=0"=(q). NQ=¢q"
Ry, ..., R, are distinct prime ideals such that

R=R, R =(r), NR)=r,
and p, g, r denote rational primes. Then, by Theorem 10.2.3, we have

r _ pl pb " pb, A€ ¢ pdi d,
I'=P PP PrQ ... Q“R{...R%.

r

Hence

ay+bg ar+byr

! __ pai+bi p/ a,+b, p/ 2¢c) 2¢c, p2d; 2d,
Il _P1 P1 "‘Pr Pr Q1 "'stRl ...Rtr

= (p1) TP ()T ()2 (g ) ()
a C d t
= <p]1+bl pf’+brq12aq52 “rll l"ld>

Further, by Theorem 9.3.2, we have

N(I) = N(P)“N(P) - - N(P)" N(P)" N(Q1)" - - -

N(Q) N(R)™ --- N(R)*

__ ar b a, b, 2ci 2¢, .d d,
_plpl...prprql qs rl...rt'.
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Thus
11" = (N(I))

as asserted. [ ]

By Theorem 10.2.4 we have for a nonzero ideal I of Og
(N(Dy=11'=1'") = (N(I"))
so that
N(I)=¢eN(")

for some unite € Og.But N(I) and N(I’) are both positive integers so that e = +1
and thus

N(I) = N(I').

This result is trivially true if 7 = (0).

We close this section by noting that (in the notation of Theorem 10.2.2): If (%)
=1 then {p) = PP’ for some prime ideal P with P # P’, N(P) = N(P') = p;
if (%) = 0 then (p) = P? for some prime ideal P with P = P’, N(P) = p; and

if <%) = —1 then (p) = P for some prime ideal P with P = P’, N(P) = p*.
An ideal I such that I = I’ is called self-conjugate.

10.3 Factoring Primes in a Monogenic Number Field

Let K be an algebraic number field. Recall that K is said to be monogenic (Definition
7.1.5) if there exists 8 € Ok such that

Ok =Z+7Z0+---+726"",
where [K : Q] = n. The next theorem shows how to factor {p) (with p a rational
prime) into prime ideals in a monogenic number field. It was originally proved by
Dedekind [3] in 1878.
Theorem 10.3.1 Let K = Q(0) be an algebraic number field of degree n such that

Ok =Z+760+---+ 20"
Let p be a rational prime. Let

f(x) =1irrgf € Z[x].

Let ~— denote the natural map : Z[x| — Zp|x], where Z, = 7./ pZ. Let

Fx)=gi(x)" -+ g (),
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where g1(x), ..., g-(x) are distinct monic irreducible polynomials in 7Z,[x] and
ei, ..., e are positive integers. Fori = 1,2, ..., r let f;(x) be any monic polyno-
mial of Z[x] such that f; = g;. Set

P, ={(p, fi®),i=12,...,r
Then Py, ..., P, are distinct prime ideals of Ok with
(p)=P{"-- P
and
N(P)=p*eli i=1,2,...,r
Proof: Fori =1,2,...,r let 6; be aroot of g; in a suitable extension field of Z,.

This extension field is the finite field Z,[6;] >~ Z,[x]/(gi(x)). Let v; : Z[0] —
Z,16;] be the surjective homomorphism given by

vi(h(0)) = h(6)).
Then
Z[0]/ker v; >~ vi(Z[0]) = Z,[6;]

is a field, so that ker v; is a prime ideal of Z[0] = Ok.

Clearly
vi(p) =0, vi(fi(0) = fi(6) = gi(6:) =0,
so that
p € kerv;, fi(0) € ker v;,
and thus

(p, fi(8)) < ker v;.
If g(#) € ker v; then
80;) =vi(g(®) =0
so that g;(x) | g(x) in Z,[x]. Thus
g(x) = fi(x)h(x) for some h € Z,[x].
Hence (g — fi;h)(x) € Z[x] has coefficients that are divisible by p so that

g(0) = (g(0) — fi(6)h(9)) + fi(O)n(6)
€ {p) + (fi(®))
= (p, fi(0)),
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proving
kerv; € (p, fi(9)).
We have shown that
P, ={(p, fi(®) =kerv;, i=1,2,...,r.

Thuseach P; (i =1,2,...,r)is aprime ideal of Og.
Next we show that the prime ideals P; (i = 1, 2, ..., r) are distinct. Suppose that
P; = Pj forsome i, j € {1,2,...,r}. Then (p, f;(0)) = (p, f;(6)). Hence

1i(0) = pg0) + fi(0)h(0)
for some g(x), h(x) € Z[x]. Applying v; we obtain
gj(6) = f;0;) = fi(Bh®;) = gi(0:)h(®;) =0,
so that g;(x) | g;(x) in Z,[x]. Hence
gj(x) = gi(x)l(x)

for some I(x) € Z,[x]. As g;(x) and g;(x) are both monic polynomials, which are
irreducible in Z,[x], we have [(x) = 1 so that g;(x) = g;(x) and thus i = j.
We show next that

(p) =P P
For any ideals A, B, B, we have

(A+ Bi)(A+ By) C A+ BB,,

so that
P{' - P7 = (p, i) - (p, [r(0)*
= ({p) + (1O ---Up) + (O
C(p)+ (@) - (f,O)N"
= (p) +(1(O)" --- £, (O)")
= (p)+ (f(0))
=(p)
and so

(p) | P{"--- Pfr.
Now P; = (p, fi(8)) 2 (p), so

P (p),i=12,...,r
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Hence
(p) =P P,
where
kie{l,2,...,¢e},i=1,2,...,r (10.3.1)
Now
Ok /P; = Z[0)/ P; = Z[0]/ker v; = v (Z[0]) = Z,[6;],
so that
N(P;) = card(Ok / P;) = card(Z,[6;]) = p*,

where

di = deg g; = deg f;.
Hence we have

p"=N((p)) = NP - P*)
= N(P)" - NP

=M (pM"
— pd1k1+"'+drkr

so that
diky+---+dk. =n. (10.3.2)
Comparing degrees in
fO) = fro)® - frx)®
we obtain
diey +---+de =n. (10.3.3)
From (10.3.1)-(10.3.3) we deduce that
ki=e,i=1,2,...,r,
so that
(p) =P P,

as asserted.
Finally, we observe that

N(Pi)=pdi:pdegf_i:pd6gﬁyi=1,2,---,r. [
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Theorem 10.3.1 relates the factorization of a monic irreducible polynomial
f(x) € Z[x] modulo a prime p to the factorization of p into prime ideals in the
algebraic number field K defined by a root of f(x) when K is monogenic. Primes
p for which the congruence f(x) = 0 (mod p) is solvable, so that f(x) has at least
one linear factor modulo p, are called prime divisors of f and the set of prime
divisors of f is denoted by P(f). Thus

P(x? + 1) = {2, p (prime) = 1 (mod 4)}.

The set P(f) is discussed in the beautiful article by Gerst and Brillhart [4].

If f(x) factors modulo p into a product of distinct linear factors, we say that
f(x) splits completely modulo p. The set of all primes p such that f(x) splits
completely modulo p is denoted by Spl( f). This set is discussed by Wyman in his
classic article [7]. Thus for example

Spl(x® — 31x + 62) = {p (prime > 2) = 1, 2,4, 8, 15, 16, 23, 27, 29, 30
(mod 31)}

(see [3]).
The next section will be devoted to numerical examples illustrating Theorem
10.3.1.

10.4 Some Factorizations in Cubic Fields

Example 10.4.1 We factor (5) as a product of prime ideals in Ok, where K =
@(\3/5). Set § = ~/2. We have seen in Example 7.1.6 that {1, 0, 0%} is an integral
basis for K = Q(0) so that K is monogenic. The minimal polynomial of 6 over Q
is x> — 2. We have

X2 =2 =(x+2)(x*+3x +4) (mod 3),

where x + 2 and x* + 3x + 4 are irreducible (mod 5). Hence, by Theorem 10.3.1,
we have

(5)=PrQ,
where
P=(50+2), 0=(50"+30+4)
are distinct prime ideals with

N(P)=5, N(Q) = 5*=25.

As a check on the calculation in Example 10.4.1 we compute P Q directly.
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‘We have

0 +2)(5,6%+ 30 +4)
25,50 +2), 5(6% + 36 + 4), 0> + 50% + 100 + 8)

PQ = (5,
= {
= (25,5(0 +2), 5(6% + 36 + 4), 56% + 100 + 10)
= {
=

5)(5,0 +2,0% +30 +4,0%+20 +2)
5)

as
1=1-5+20+2)0+2)—20>+30 +4).

Example 10.4.2 Let K = Q(0), where 63 —90 — 6 = 0. It is known that [K :

Ql=3, {1,0,60% is an integral basis for K, and d(K)=12-3° (see Ex-

ercise 5 of Chapter 7). As 2| d(K) and 3| d(K), both 2 and 3 ramify in

K by Dedekind’s theorem (Theorem 10.1.5). We determine their prime ideal

decompositions.
We have

P —9x —6=x(x + 1)* (mod 2)
so that by Theorem 10.3.1 we have
(2) = PO,
where
P=(2,60), 0=2,06+1)

are distinct prime ideals with N(P) = N(Q) = 2. In fact P and Q are both prin-
cipal ideals as we now show. From

6’ -9 —6=0,
we deduce that
©@+1)°=30+1)°-60+1)+2=0,
so that
6+1]2.
Hence

0=(2,6+1)=(6+1)
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and

P=(207
2
={er 1
60+ DH30+ 12— O+ 1)
=1 0 + 1)?

2
=(36+30+1)— @+ 1% +2-0)

= (26 4 26 — 36?).

)

As a check on this calculation we note that

PQ* =

26 426 — 36%)(1 + 6)?

(26 + 260 — 36%)(1 + 26 + 6%))
26 + 5460 + 276° — 46° — 36%)
=(2),

o~ o~~~

as 6% =90 + 6 and 6* = 90* + 66.
Turning to the prime 3 we have

x> = 9x — 6 = x> (mod 3),

so that by Theorem 10.3.1 we obtain

where R = (3, 0) is a prime ideal with N(R) = 3. We show that R is a principal
ideal. We have

R = (2,60)(3,0) = (6,20,30,0%) = (6,0) = (6> — 96, 0) = (§),

so that
R= (P!
= (9)Q*(P Q!
0(6 + 1)
= <T>
03 +20%+0 202 4+ 100 + 6
= ( > ) =( > )

= (3456 +6%).
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We now verify directly that R* = (3). We have

(3 + 50 + 6% =9+ 300 + 316% + 100> + 6*
= 69 + 1260 + 4062,

(B +50 + 602> = (34560 + 6%)(69 + 1260 + 400?)
=207 4 7236 + 8196% + 3266° + 400*
= 2163 + 38976 + 11796
= 3(721 + 12996 + 3936?).

To complete the verification of R® = (3) we must show that 721 4+ 12996 + 39362
is a unit of Og = 7 + 7.6 + 7.6 so that

R? = (3450 4+ 6%)% = (3)(721 + 12996 + 3930%) = (3).
We do this by seeking a, b, ¢ € 7 such that
(721 + 129960 + 3936%)(a + b0 + c62) = 1.

Multiplying out the left-hand side, replacing 6° and 6* by 90 + 6 and 99° + 66
respectively, and equating the coefficients of 1,6, 6%, we are led to the three linear
equationsina, b, c :

721a 4 2358b + 7794c =1,
1299a + 4258b 4 14049¢ = 0,
393a + 1299b + 4258¢ = 0.

Using the program MAPLE we find that
a = —119087, b = —9885, ¢ = 14007,
which is easily checked directly. Hence
(721 + 12996 + 3936%)~" = —119087 — 98856 + 1400767,
so that 721 + 12996 + 39362 is a unit. Alternatively, we could have used Theorem

9.24.

This example was considered in [2: p. 230]. However, the value of N(6 + 1) is
given there incorrectly as —4 (see Eq. (7.16)). Its correct value is

NO+D=@+DE + DO +1
=00'0" +(00'+ 00" +0"0)+ O +0" +0")+1
=6-9+0+1
= -2,
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where 6, 0’, 6" are the roots of x> — 9x — 6. The factorization into prime ideals of
the principal ideals considered in [2] are

(2)=PQ* (3)=R’, (9)=PR, (0+1)=0Q, (6 —1)= QS,
where

(2,0) = (26 +20 —360%), 0 =(2,0 +1) = (8 + 1),
(3,0) = (3450 +6%), S=(7+6—0%.

P
R

10.5 Factoring Primes in an Arbitrary Number Field

Theorem 10.3.1 was actually proved by Dedekind in the following slightly stronger
form. For all but at most a finite number of primes, Theorem 10.5.1 gives the
factorization of a prime into prime ideals in an arbitrary algebraic number field.

Theorem 10.5.1 Let K = Q(0) be an algebraic number field with 6 € Og. Let p
be a rational prime. Let

f(x) =1rrg@) € Z[x].
Let ™ denote the natural map : Z[x] —> Z,[x], where Z.,, = 7./ pZ.. Let
Fx)=gi(x)" -+ g (x),

where gi(x), ..., g-(x) are distinct monic irreducible polynomials in Z,[x] and
ei, ..., e are positive integers. Fori = 1,2, ..., r let f;(x) be any monic polyno-
mial of Z[x) such that f; = g;. Set

P, ={(p, fi®),i=1,2,...,r
Ifind(0) # 0 (mod p) then Py, ..., P, are distinct prime ideals of Og with
(p) =P P
and
N(P)=p*/ i=12,..,r
We leave the proof of Theorem 10.5.1 as an exercise (Exercise 2) since it can

be modeled on the proof of Theorem 10.3.1. We note that Theorem 10.3.1 is the
special case ind 6 = 1 of Theorem 10.5.1.

Example 10.5.1 Let K be the cubic field Q(0), where 6° — 6 + 4 = 0. An integral
basis for K is {l, 0, + 92)/2} (Example 7.3.7). This basis is not a power basis
and at this stage we do not know whether K is monogenic or not. As ind 6 = 2
we can apply Theorem 10.5.1 to obtain the prime ideal factorization of any prime
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p # 2in Ok. The prime 107 ramifies in Ok as d(K) = —107 (Example 7.3.7) and
we make use of Theorem 10.5.1 to find its precise prime decomposition. We have

x? —x+4=(x—6)(x +12) (mod 107),
so that
(107) = P?Q,

where P and Q are the distinct prime ideals given by

P =(107,0 — 6), N(P)=107,
and

0 =(107,60 +12), N(Q) = 107.

We next show that K is monogenic. Let a = (0 + 6%)/2. Then

) <9+92>2 62 4 20° + 0
o = e EE—

2 4
0% +2(0 —4)+ (9% — 40 0 + 62
_ 720 -+ ) a0t ’
4 2
so that
0=-2+a—a’.
Hence

0 + 62

OK:Z+Z(9+Z< ):Z+Z(—2+a—a2)+Z(x:Z+Za+Za2,

proving that {1, a, o} is an integral basis for K. This basis is clearly a power
basis, so K is monogenic.

As K is monogenic we can apply Theorem 10.3.1 to factor the prime 2 in Og.
By Example 7.3.2 we know that o = (8 + 6%)/2 is a root of x> — x* + 3x — 2 = 0.
Thus K = Q(a), where a® — a® + 3a — 2 = 0. Now

¥ = x4 3x —2=x(x>+x+ 1) (mod 2),
where x> 4+ x + 1 is irreducible (mod 2), so by Theorem 10.3.1 we have
(2) = P10y,
where P; and Q| are the distinct prime ideals given by

6 + 62
P1=(2’a>=<2’T>’ N(P)Zz’

01=0214+a+a’)=(2,-146%, NQ) =4
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If we had in error applied Theorem 10.3.1 directly to the prime 2, we would have
obtained the incorrect factorization

(2) = (2,6)(2, 14 6)7,
as
x> —x 4+ 4=x(x+1)*(mod 2),
showing that the condition p tind(0) is essential in Theorem 10.5.1.
If K is an algebraic number field of degree n and p is a rational prime such that
(p) = P" for some prime ideal P of Ok, then we say that p is completely ramified

in K. If K = Q(0) with 6 € Ok and the polynomial irrg 6 is p-Eisenstein then p
completely ramifies.

Theorem 10.5.2 Let K = Q(0) be an algebraic number field of degree n with
0 € Og. Let x" 4+ a,_1x" ' + .-+ aix + ag € Z[x] be the minimal polynomial
of 0 over Q. If p is a prime such that

pllao, plai,....,pla,—

then
(p)=P"

in Ok for some prime ideal P.

Proof: Let P be a prime ideal of Ok that divides (p). As

" = —a,,_10"_1 — e — 6119 — Ay,
and each of ag, ay, . .., a,—; is divisible by p, we see that
P | (6)".

As P is a prime ideal, we deduce that
P | (0).
Thus we can define positive integers r and s by
Pl (p), P* | (0).
Then, from
ao+ 0" = —a,_ 10" ' — ... —q,6,
aseachofay, ..., a,_; is divisible by p, we obtain

P {ag + 6") = (ao) + (0)".
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But p || ag,so P" || {ap) and thus P" || (#)".Hencer = sn andso P*" || (p). Thus
P" | {(p) and by (10.1.3) we have (p) = P" as asserted. |

Example 10.5.2 Let K be the cubic field Q(6), where 03 — 20 + 2 = 0. Asirrg 6 =
x3 — 2x + 2 is 2-Eisenstein, by Theorem 10.5.2, we have (2) = P? for some prime
ideal P. Indeed P = (2, 0) as

(2,0)° = (8,40, 20%, 0% = (8,40, 20% 20 — 2)
= (2)(4,20,6%,0 — 1) = (2) = P°,

as1=6>— @+ 1)0 —1) e (4,20,0%,6 — 1).

10.6 Factoring Primes in a Cyclotomic Field

Letm be a positive integer and let ¢,,, be a primitive mth root of unity. The cyclotomic
field Q(¢,,) is denoted by K,,. We give (without proof) the decomposition of a
rational prime p into prime ideals in Ok, .

Theorem 10.6.1 Let m = p"my, where r e NU {0}, my € N, and p{ m,. Let h
be the least positive integer such that p" = 1 (mod m,). Then h | ¢(m,) and

(p) = (P1Py- -+ Pyu,yyn)* ",
where Py, P, ..., Pyon,) n are distinct prime ideals with

NP)=p" i=1,2,...,¢(m))/h.

We refer the reader to Mann’s book [6] for a proof of this theorem.
Example 10.6.1 We determine the prime ideal decomposition of (3) in Og,. Here
p=3, m=9, ¢(m)=6, r =2, my = 1,and h = 1 so that by Theorem 10.6.1
where P is a prime ideal with N(P) = 3.
Example 10.6.2 We determine the prime ideal decomposition of (2) in Og,. Here
p=2 m=5 r=0, m =5, ¢(m) =4, ¢(p")=1,and h =4 so that by
Theorem 10.6.1
where P is a prime ideal with N(P) = 2%,

Example 10.6.3 We determine the prime ideal decomposition of (2) in Ok,. Here
p=2 m=7 r=0, m =7, ¢(m;) =6, ¢p(p")=1,and h = 3 so that by
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Theorem 10.6.1

(2) = P Py,

where Py and P, are distinct prime ideals with

N(P)) = N(P,) = 2°.

By Theorem 7.5.2 the cyclotomic field K7 is monogenic so we can apply Theorem
10.3.1 to obtain Py and P, explicitly. We have

and

. x' =1
irrg(g7) = 1 =x0 X+t x4

xR+ x+ 1=+ x+ D+ 22+ 1) (mod 2),

so that
Pi=2,14+5+8) Po=Q2.1+6+5).
Exercises
1. In Example 10.4.2 show that 721 + 12996 + 39362 is a unit by finding its norm.
2. Factor (2) into prime ideals in Oqa)
3. Factor (6) into prime ideals in Og(v366)-
4. Factor (2) into prime ideals in OQ( I3y
5. Factor (2) into prime ideals in OQ( 3y
6. Factor (2) into prime ideals in O /3+v=T)-
7. Prove (10.1.2) and (10.1.3).
8. Is Q(~/10) monogenic?
9. Modify the proof of Theorem 10.3.1 to prove Theorem 10.5.1.
10. Let K = Q(+/3). In O we have (3) = P3, where P = (v/3) is a prime ideal of norm
3. Are there any rational primes p # 3 such that (p) = Q% in O for some prime ideal
Q?
11. Determine all rational primes p that ramify in Q(~/6) together with their prime ideal
factorizations.
12. Determine the prime ideal decomposition of the prime 47 in Q(+v/2, v/3).
13. Let K = Q(8), where 8% — 0 + 4 = 0. The ideal I = (2, 6) is principal in Ok . Find a
generator of 1.
14. Factor (5) into prime ideals in Ok..
15. Factor (3) into prime ideals in Ok, .
16. As ¢, is a unit of Ogy,,), we know that N({,,) = £1. Show that the + sign holds.
17. Provethat 1 + &, + ¢2 + -+ + 5~ Visaunitof Ogy,) if k is a positive integer coprime
with m.
18. Let K and K be algebraic number fields. Suppose that the prime p is totally ramified

in Ok, and unramified in Ok,. Prove that K| N K, = Q.
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22.

23.

24.
25.
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. Let K = Q(9), where 63 — 6 — 1 = 0. Prove that /8 ¢ Q().
. Let Q(0;) and Q(6,) be algebraic number fields. Prove that

[Q(O:, 62) : QI = [Q(6) : QIQ(62) : QI.

If [Q(6)) : Q] and [Q(65) : Q] are coprime, prove that equality holds in the inequality
in Exercise 20.
Let p be an odd prime. Prove that

A= =5

are real units of Og,).
Let

a=14Cx+05+ 8+ + 05+
and
B =1+ 0054035+ 5+ 8oy + Loy + o1

Prove that 2 is not a prime in Ogq,,) by considering the divisibility of af by 2.
Prove that 2 is an irreducible in Ogq,,).
What can you deduce from Exercises 23 and 24 about Og,,)?
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Units in Real Quadratic Fields

11.1 The Units of Z + Z+/2

In Theorem 5.4.3 we determined the unit group U(Ok) for an imaginary quadratic
field K. The objective of this chapter is to determine the structure of the unit group
U(Og) for an arbitrary real quadratic field K. We show that

U(Og) ~7s x 7.

(see Theorems 11.5.1 and 11.5.2). This is accomplished by showing that there exists
a unit € in Ok such that every unit is of the form +¢" (n € Z). We show further
that there exists a unique unit € > 1 of O with this property. This unit is called the
fundamental unit of Ok (or of K). In Section 11.6 we show how continued fractions
can be used to determine the fundamental unit. In Chapter 13 we prove Dirichlet’s
unit theorem, which gives the structure of U (O ) for an arbitrary algebraic number
field K.
To illustrate some of the ideas that will be involved, we begin by determining

U(Ogya) = U(Z + ZV2).
Theorem 11.1.1 All the units of Z + Z~/2 are given by £(1 + +/2)" (n € Z), so
that

UZ + ZN2) ~ 7y x Z.

Proof: We begin by showing that there does not exist a unit A of Z + Z~/2 satisfying
l<i<l1++2. (11.1.1)

Suppose on the contrary that such a unit A exists having property (11.1.1). By
Theorem 6.2.1 there are exactly two monomorphisms o] and o, : Q(ﬁ) — C.
These monomorphisms are given by

o1(x + y«/i) =x+ y\/i, or(x + y\/i) =x— y\/i,

264
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for all x, y € Q. As A is a unit we have A | 1 so that
1 = Ap for some p € Z + Z~/2. (11.1.2)
Set A’ = 02(1) and i’ = o,(w). Applying o, to (11.1.2) we obtain
1 = 0o(1) = 02(Ap) = o2(M)oa(p) = A"
Hence
1= Q) ().
But A\ € Z and uu’ € Z so that
AL = =£1.

We consider two cases: (i) AL’ = 1 and (i) AM = —1.

Case (i): AA" = 1. In this case by (11.1.1) we have

1
V2-1= <A <1
142
so that
V2<ri+ N <242
and thus
0.7 ! AA 1—1—1 1.8
JT< ——=<——< — < 1.8.
V2 2 V2

As (A +1)/2 € Z we must have (A +1/)/2=1. From AA =1and A+ =2
we deduce that A = A’ = 1, contradicting A > 1.

Case (ii): AA" = —1. In this case by (11.1.1) we have
—1<N<1=-+2
so that
O<A+ M <2

that is,

A+

0< < 1.

This is a contradiction as (A + 1')/2 € Z.
This completes the proof that there are no units of Z + Z+/2 between 1 and

1+ /2.
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Now let 77 be any unit > 1. Since there is no unit between 1 and 1 + +/2 we must
have n > 1 4+ +/2. Then there exists a unique positive integer n such that

(1 +V2)" <n < +v2y
Thus
1<n+vV2)" <1++2
As (1 + /—2)"" is a unit of Z + 72, we have
n=(0++2" neN. (11.1.3)

IfpisaunitwithO < n < 1then1/nisaunitwith1/n > 1. Hence, from (11.1.3)
we have

%=(1+f2)”

for some n € N, so that
n=>14++v2)", neN.

If n is a unit with —1 < n < 0 then —1/# is a unit with —1/n > 1. Hence, by
(11.1.3), there exists n € N such that

%=(1+f2)",

so that
n=—(1+~2)", neN.

If n is a unit with » < —1 then —» is a unit with —n > 1. Hence, by (11.1.3),
there exists n € N such that

—n=(1+2),
so that
n=—(14+~2)" neN.
Clearly
+1 = £(1 + v/2)°.
Hence every unit 7 is given by
n=+(1+2F, k e Z.
This completes the proof that
U(Z + ZN2) = 7y x Z. u
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11.2 The Equation x> — my* =1

In this section we show that there exist integers x and y with (x, y) # (£1, 0) such
that x> — my? = 1, where m is a positive integer that is not a perfect square. This
result tells us that

x + y/m (# £1) € U(Ok),

where K = Q(y/m).

Euler (1707-1783) attributed to the English mathematician John Pell (1611-
1685) a method of solving the equation x> — my? = 1 in integers x and y. Thus
the equation has become known as the Pell equation. However, this method had
been found by another English mathematician, William Brouncker (1620-1684),
in a series of letters (1657-1658) to Pierre Fermat (1601-1665). Lagrange (1736—
1813) was the first mathematician to prove that the equation x>
infinitely many solutions in integers x and y.

—my? =1 has

Theorem 11.2.1 Let m be a positive integer that is not a perfect square. Then there
exist integers x and y with (x, y) # (£1, 0) such that

x2—my? =1.

Proof: Let N be a positive integer. We show first that there exist integers x and y
such that

1
O<|x—yﬂ|<ﬁ,0<y§N. (11.2.1)

We divide the interval 0 < x < 1 into N subintervalsr/N < x < (r +1)/N, r =
0,1,..., N — 1, each of the same length 1/N. Fori =0, 1, ..., N we define the
integers x; and y; by

xp =[i/ml+1, y =i.

Now
[iv/m] <ivm < [iv/m] + 1
so that
xi —1 < yi/m < x;;
that is,

0<x,~—y,-\/%§1, i=0,1,...,N.

Thus we have N + 1 numbers x; — y;+/m lying in the interval 0 < x < 1. Hence
at least two of these numbers lie in the same subinterval (r/N, (r 4+ 1)/N]; that is,
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there exist integers i and j withi # j, 0 <i < N, 0 < j < N such that

r/N < x; —yis/m < (r + 1)/N
and

r/N <x; — yj\/E <(r+1)/N.
Interchanging i and j, if necessary, we may suppose that

xi — yin/m > Xj — y‘iﬂ,
so that
0 < (xi — yi/m) — (x; — yjs/m) < ]1,

We note that y; — y; =i — j # 0. We define the integers x and y by

(x,y) = {(xi =X, yi = yj), ifyi —y; >0,
’ (xj —xi, yj — yi), if y; —y; <O.

Thus

and

y=Iyl=lyi—yjl=1i —jl| = N.

This completes the proof of (11.2.1).
Next we show that there exist infinitely many pairs of integers (x, y) with y # 0
such that

0 < |x? —my?*| < 142Vm. (11.2.2)
Let N; be any positive integer. By (11.2.1) there exist integers x; and y; such that

1
O<|x1—y1«/n_1|<ﬁ,0<y1§N1.
|

Now let N, be any positive integer > 1/|x; — y;/m|. By (11.2.1) there exist inte-
gers xp and y; such that

1
0<|x2—y2\/m|<ﬁ, 0<y <N
2

Continuing in this way, after obtaining N,, x,, y, (r = 1,2, ...,k — 1), we choose
Ny to be any integer > 1/|x;—; — yi—14/m| and integers x; and y; (> 0) such that

1
0<|xk—)’k\/m|<ﬁ, 0 < yx < N;.
k
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Clearly

1
0 < |xx — yen/m| < [ IXe—1 — ye—14/m| < < |Xk—2 — Yr—2n/m|
k

N1
1

<< |xp— y/m| < N X1 — yi/m|
p

so that (xg, yx) (k = 1, 2, ...) is an infinite sequence of pairs of integers satisfying

1 1
0< ka—ykﬂl < — < —.
Ne = w

Hence, as m is not a perfect square and y; > 0, we have

1
0 < |xx + ev/m| < |xx — yev/m| + 2yp/m < y_ + 2ypA/m.
k
Then, as

|x,f — my,f| = |xx — ye/m||xp + yr/ml,

we deduce that
1 1 1
0 < |xg —myg| < y—(y— + 2y/m) = 2t 2J/m < 1+2m,
k Yk k

fork =1, 2, ..., proving that there are infinitely many pairs of integers (x, y) with
y > 0 satisfying (11.2.2), namely, (x, y) = (xg, y) (k=1,2,...).

From (11.2.2) we see that there is an integer 7 with 0 < |7| < 1 + 2,/m for which
the equation

x2—my* =t (11.2.3)

has infinitely many distinct solutions in integers x and y. Replacing x by —x and
y by —y if necessary we see that (11.2.3) has infinitely many distinct solutions in
positive integers x and y. Let ¢ be such that (11.2.3) has infinitely many solutions
in positive integers x and y, with || minimal. As m is not a perfect square we see
that |7] > 0. We show next that (¢, y) = 1 for infinitely many (indeed, for all but
finitely many) of these solutions. Suppose on the contrary that (¢, y) > 1. As t has
only finitely many prime factors, there exists at least one prime divisor p of ¢ for
which Eq. (11.2.3) has infinitely many solutions in integers x and y with p | y. For
each such solution we have p | x so that p? | ¢ and we conclude that the equation

2omy=1/p?
has infinitely many solutions in positive integers x and y, contradicting that |¢] is
the least such integer with this property.

Let (x, y) be one of the solutions of (11.2.3) in positive integers so that (¢, y) = 1.
Let u be the unique integer such that

uy=1(modt), 0 <u < |t|.
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Since there are |¢| residue classes modulo ¢, we can find two such solutions, say
(x1, y1) and (x3, ¥2), such that

U1X1 = Urxy (mod 1).

Then we have

X1+ /myt (x4 /my) — /my2)

X2 4+ /my; B x% - my%
_ (rixa — my1y2) + /mxyr — x1y2)
t
=x + /my,

where

X = (x1x2 —my1y2)/t, y=(x2y1 — x1y2)/t.

Clearly x € Q and y € Q. We show that x € Z and y € Z. We have

uiuz(xoyr — yaxi) = (ury1)(uaxz) — (u2y2)(u1x1)
= UpXy) — U X

= 0 (mod ?).
Now (uju;, t) = 1 so that
x2y1 — y2x1 = 0 (mod 1),

proving that y € Z. Similarly, we have (as u;x; = upx;(mod t) and u;y; =
uzy2 (mod 1))

uiu(x1xy —myry2) = (u1x1)(uzx2) — m(uyy)(u2y2)
= (u1x1)* — m(uiy)?
= uj(x} — my})

= ujt

= 0 (mod ?),
so that as (uju,, t) = 1 we have
x1x2 — my1y, =0 (mod 1),
proving that x € Z. Hence

x1 4 v/myr = (x2 + /my)(x + /my)
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and so
t = xl2 — myl2 = (x22 — my%)(x2 —my?) = t(x? — my?)
so that
x2—my? =1.
Now if (x, y) = (£1, 0) then

x1 + /my; = £(x3 + /myy)

so that

(x1, y1) = £(x2, y2).

Butx; > Oand x; > 0,s0(x, y1) = (x2, y2), contradicting that (x;, y;) and (x2, y2)
are distinct solutions of (11.2.3).

Hence we have shown the existence of a pair of integers (x, y) # (£1, 0) such
that x> — my? = 1. |

11.3 Units of Norm 1

Let m be a positive squarefree integer. Theorem 11.2.1 tells us that there exist
positive integers x and y such that x> — my? = 1. Hence A = x + y./m is a unit
of Ok, where K = Q(4/m), such that A > 1 and N(A) = 1. Since A" — o0 as
n — 00, Ok has infinitely many units of norm 1, namely {A" | n € Z}. All of these
units are of the form u + v/m, where u and v are integers such that u> — mv?* = 1.
However, whenm = 1 (mod 4), there may be units in Og of the form (u + v/m)/2,
where u and v are both odd integers. For example (3 + +/5)/2 is a unit of norm 1 in
Og(y3)- In contrast, O, /77, does not contain any units of the form (u + v/17)/2,
where u and v are both odd integers, since u> — 17v?> = 44 cannot hold modulo 8
for odd integers u and v.

Let A = x + ys/m be a unit of Og (K = Q(y/m)) of norm 1 with x and y
both integers or possibly in the case m = 1 (mod 4) both halves of odd integers.
We now show how the signs of x and y determine to which of the four intervals
(=00, —1), (—1,0), (0, 1), or (1, c0) A belongs.

Theorem 11.3.1 Let m be a positive squarefree integer. Let x and y both be integers
or both halves of odd integers such that x> — my> = 1. Then

X+yJ/m>1=x>0,y>0, (11.3.1)
O<x+yJ/m<lex>0,y<0, (11.3.2)
—l<x4+y/m<0x<0,y>0, (11.3.3)

Xx+y/m<—-1x<0,y<D0. (11.3.4)
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Proof: First we prove (11.3.1). We have

x>0,y>0=>x2%,y2%=>x+yﬂz1+2ﬂ21+2\/§>1.
Conversely, as (x + y/m)(x — y/m) = x> —my* = 1, we have
X+y/m>1=0<x—yJ/m<1
x=%«x+ym>+(x—y\/:71))>%>o,
= yzzjm((x+yﬁ)—(x—y«/n7))>%=0-
This proves (11.3.1).
Next we prove (11.3.2). We have
x>0,y<0=>x>0,—y>0=>x2%, —yzé
=>x_y\%21+2\/%21+2«/§>1
= 0<x+yJm<1,
as (x — y/m)(x + y/m) = 1. Conversely,
O<x+ys/m<1l=x—yJm>1
x:%((X+Yﬂ)+(x—yﬂ))>%>0,
- y=2jm((x+yﬁ)—(x—yﬂ))<;;\/%=0-

This proves (11.3.2).
Finally, (11.3.4) follows from (11.3.1) and (11.3.3) follows from (11.3.2) by
changing x to —x and y to —y. [ |

Definition 11.3.1 (Fundamental unit of norm 1) Let m be a positive squarefree
integer. Let

Sm={(x,y) |xeN, yeN}, ifm=2,3(mod 4),
and

Sm={(§,§)|xeN, yeN,x=y(mod?2)}, ifm=1(mod 4).

Let (a,b) € S,, be the solution of a> — mb*> =1 for which a is least. (Theorem
11.2.1 guarantees that (a, b) exists.) Let € = a + by/m so that € is a unit of Ogy /m
of norm 1. The unit € is called the fundamental unit of norm 1 of Og /m)-
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We note that

14+ /m>1++2, ifm=2,3(mod 4),
. 1+2\/%z 1+2J§

)
(%

, if m = 1 (mod 4),
so that
€ > 1.
Our next theorem shows how the units of norm 1 in Oy Jm) are related to the
fundamental unit of norm 1.
Theorem 11.3.2 Let m be a positive squarefree integer. Let € be the fundamental
unit of norm 1 of Og /my- Then

(@) € is the smallest unit in Og m) of norm 1 that is greater than 1,

(b) every unit in Og sm) of norm 1 is of the form x€" for some integer n, and

(¢) if T is a unit of norm 1 in Og /m) such that T > 1 and every unit in Og sm) of norm 1
is of the form £1* for some integer k then T = €.

Proof: (a) As € is the fundamental unit of O sm of norm 1, we have by Definition
11.3.1

€ =a+bym, (a,b) e S,, a’> —mb®* =1, aleast.

Suppose that €; is a unit of Og /m) of norm 1 with 1 < €; < €. Then, by Theorems
5.4.2 and 11.3.1, we have

€1 = a +b1\/l’l_’l, (al,bl) S Sm, af —mb% =1.

By the minimality of @ we have

a < a
so that
2 2
, a-—1 ay — 1 5
b- = < = by,
m m
and thus
b < b].
Hence

E=a+b\/ﬁ<al+b1ﬁ:61,

contradicting €; < €. Thus no such unit €, exists, proving that € is the smallest unit
of Ogm) of norm 1 that is greater than 1.
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(b) Let n be a unit of Og ) of norm 1. Let n* be the unit of Og, ) of norm 1
defined by

n, iftn>1,
1/n, if0<n<l,
n* = (11.3.5)
—1/n, it —1<n<0,
so that
n* > 1.

Let k be the unique nonnegative integer such that

Gk < 77* < €k+l.

k

Then n*e™" is a unit of Og ) of norm 1 satisfying

1 <ne*<e.

By part (a) there is no unit in Og /) of norm 1 strictly between 1 and €. Hence

n*e—k =1
and so
n* = ek,
Then, from (11.3.5), we obtain
n=*te"

for some choice of sign and some integer #.
(c) By assumption we have

€ =1,
for some integer /, and by part (b) we have
T = +€",
for some integer n. Hence
€ = t(de") = £
so that
"=+l

and thus

2n=1) _ |
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If In — 1 # 0 then € is a root of unity in Og /). But Q(y/m) is a real field so the
only roots of unity in Og ) are £1. Hence € = %1, contradicting € > 1. Thus
In—1=0andso

[ =n==l1,

showing that

T=2dcor £e L.

Since T > 1 and € > 1 we deduce that

T =¢. u

11.4 Units of Norm —1

Let m be a positive squarefree integer. We have already observed that the ring
Oqym) of integers of the real quadratic field Q(,/m) may or may not contain units
of norm —1. Indeed O3, has units such as 1 + V2 of norm —1 whereas Oq3)
does not contain any units of norm —1. We suppose that Og_ ) contains units of
norm —1 and show that there exists a unique unit o > 1 in Og( ) of norm —1
such that all units in Oq(ym) of norm —1 are given by +o 2+ (k =0, +1,42,...)
and all units in OQ(ﬁ) of norm 1 are given by +o2k (k=0,=%1,=£2,...).

Theorem 11.4.1 Let m be a positive squarefree integer. Suppose that Og_ /) con-
tains units of norm — 1. Then there exists a unique unito > 1 of norm —1in Og /m)
such that every unit in Og ) is of the form =" for some integer n.

Proof: Let p be a unit in Og_ ) of norm —1. Let p’ denote its conjugate. Then
pp' = N(p)=—1
so that
pp* = 1.
Thus p? is a unit of Oq(m) of norm 1. Hence, by Theorem 11.3.2(b), we have
p* = +e",

for some integer n, where € is the fundamental unit of Og /) of norm 1. Clearly
p> > 0and " > 0 so that

If n is even, say n = 2k, then
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so that
p = +ek.
Hence
N(p) = N(xe") = N(e)' = 1,

contradicting N(p) = —1. Thus n must be odd, say n = 2/ 4 1, and so

p? = 2t
Hence
€ = (,oe*l)2.
Set
o= ,oe*l

so that o is a unit of norm —1 such that

EIO'Z.

If w is a unit of Ogy /) of norm —1 then wp !

thus by Theorem 11.3.2(b)

18 a unit of OQ( ) of norm 1 and

po~' = +e

l 2

for some k € Z. Hence, as p = €'0 and € = o°, we deduce that

k+1 2(k+)+1

w==ep =+eftlo = +o

However, if u is a unit of Og_ /) of norm 1 then by Theorem 11.3.2(b)

,u=:i:ek

2

for some k € 7Z. Hence, as € = 0“, we deduce that

n= +ek = +o2*.
Thus every unit of Og_ /) is of the form
+o" (n € 7).

Note that n even gives the units of norm 1 and »n odd the units of norm —1.

Replacing o0 by 1/0 if 0 <o <1, by —1/0 if =1 <0 <0, and by —o if
o < —1, we may suppose that o > 1. We show that o is uniquely determined: For
suppose o and T are two units > 1 of norm —1 in Og /) such that every unit is
of the form 0" (n € Z) and of the form £t7 (¢ € Z). Then there exist integers k
and / such that

o= irk, 7T =40l
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Hence
o = to¥
and so
Py
giving
o2k=1 _ |

Suppose kI — 1 # 0. Then o is aroot of unity. But Og /) being areal field contains
no roots of unity except =1. Thus ¢ = %1, a contradiction. Hence kl — 1 = 0 and
SO

k=1==+1.
Thus
oc=4tor +7°L

Buto > landt > 1 so

proving that o is unique. n

Definition 11.4.1 (Fundamental unit of norm —1) Let m be a positive squarefree
integer such that Og /my contains units of norm —1. The unique unit o > 1 of
norm —1 such that every unit in Og /m) is of the form £o" (n € Z) is called the
Jundamental unit of Og /m) of norm —1.

We next relate the fundamental unit € of norm 1 and the fundamental unit o of
norm —1 when O ) contains units of norm —1.

Theorem 11.4.2 Let m be a positive squarefree integer such that Og s, contains
units of norm —1. Then the fundamental unit € of norm 1 and the fundamental unit
o of norm —1 are related by

€=O'2.

Proof: By Theorem 11.4.1 we have € = 0% forsome k € Z. Ase > lando > 1

the plus sign must hold so that

for some k € Z. Then

1 = N(e) = N(o¥) = N(o)k = (=1},
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so that k is even, say k = 2g, g € Z. Hence
€ =02, (11.4.1)
Now
N@?) =N@©)} =(-1)Y’=1

so that o2 is a unit of norm 1 and thus, by Theorem 11.3.2(b), we have 0> = ¢/
forsome !/ € Z. Aso > 1 and € > 1 the plus sign must hold so that

ot =¢ (11.4.2)
for some [ € Z. From (11.4.1) and (11.4.2) we deduce that
e =¥
so that
s =1,
As € is not a root of unity, we deduce that gl — 1 = 0, so that
e=oc’oro %

Ase > 1and o > 1 we have

as asserted. [ ]

11.5 The Fundamental Unit

Theorems 11.3.2 and 11.4.1 show that all the units of Og_ ) are given by €" (n €
Z) or by £0" (n € Z) depending on whether Og( /) has only units of norm 1 or
not. This enables us to define the “fundamental unit” of Og_/m).-

Definition 11.5.1 (Fundamental unit) Let m be a positive squarefree integer. The
Jundamental unit n of Oq /m) is defined to be o if Og /m) contains units of norm
—1 and to be € otherwise. We note that n > 1.

By Theorems 11.3.2 and 11.4.1 we have

Theorem 11.5.1 Let m be a positive squarefree integer. Then every unit of Ogy /m)
is of the form £n" (n € Z), where 1 is the fundamental unit of Og /m)- If O /m)
contains units of norm —1 these are given by £n" with n odd and the ones of norm
1 by £n" with n even.

From Theorem 11.5.1 we have immediately
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Theorem 11.5.2 Let K be a real quadratic field. Then
U(Okg) =7y X 7.

The following analogue of Theorem 11.3.2(a) is a simple consequence of The-
orem 11.5.1.

Theorem 11.5.3 Let K be a real quadratic field. The fundamental unit of Ok is
the smallest unit of Ok greater than 1.

Proof: Let n be the fundamental unit of Og and suppose that there exists a unit 6
of Ok with

1 <6 <n.
By Theorem 11.5.1 we have
0 =+n"

for some n € Z. As 6 and n are both positive, the positive sign must hold and we
have

6 =n".
If n > 1 then
6=n"=n,
contradicting 8 < n. If n < 0 then
0=n"<1,

contradicting 8 > 1. Hence no such 6 can exist, proving that 5 is the smallest unit
greater than 1. [ ]

Before proceeding to find the norm of the fundamental unit n of Og ) for
certain special values of m, we present in Table 4 the values of €, o, and 7 for
squarefree positive integers m < 40.

We next determine the norm of the fundamental unit of Og /) when m is an
odd prime p. First we consider the case p = 1 (mod 4).

Theorem 11.5.4 Let p be a prime with p = 1 (mod 4). Then the fundamental unit
of Oq(p) has norm —1.

We give two proofs of this theorem, the first due to Hilbert and the second due
to Peter Gustav Lejeune Dirichlet (1805-1859).
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Table 4.  Fundamental units of Oq S 2 <m < 40, m squarefree

Fundamental unit of Fundamental unit of

norm 1 norm —1 Fundamental unit Norm
m (e) (o) (m N(n)
2 3422 14+42 14+42 —1
3 243 2+4/3 1
5 (3 ++/5)/2 (1 ++5)/2 (1452 -1
6 5+26 5426 1
7 8 +37 8 + 347 1
10 19 + 64/10 3+4/10 3+4/10 —1
11 10 + 34/11 10 +34/11 1
13 (11 +34/13)/2 (34 +/13)/2 (3++/13)/2 —1
14 15+ 414 15+ 414 1
15 44415 44+ /15 1
17 33 + 817 4417 4417 —1
19 170 4+ 39419 170 + 394/19 1
21 (5+21)/2 (5 +21)/2 1
22 197 + 424/22 197 + 42422 1
23 24 +523 24 +523 1
26 51 + 10426 54426 54426 —1
29 (27 + 5v/29)/2 (5++/29)/2 (54 +/29)/2 —1
30 11 42430 11+ 230 1
31 1520 + 273+/31 1520 + 27331 1
33 23 +44/33 23 +4/33 1
34 35+ 6434 35+ 6434 1
35 6+ /35 6 + /35 1
37 73 4+ 124/37 6+ /37 6 + /37 -1
38 37 + 64/38 37 + 64/38 1
39 25 +44/39 25 + 439 1

First proof: Suppose that the fundamental unit i of Og( /5 has norm 1. Then

N =nn =1.

Asn > 1wehave 0 < n’ < 1 sothat 1 + 5" # 0. Hence

I+n

n=

Let m be the largest positive integer such that

m|1+n m|l+n

=T



11.5 The Fundamental Unit 281

in OQ(ﬁ). Set

1+7n
Yy = € Oq.yp)
and
1+7
"= €0
Y m QW/p)
so that
Y
=y
and
kly, k|y,keN=k=1. (11.5.1)
Now
y =ny,

where 7 is a unit of Og_/5), so that

(v) =" (11.5.2)
Let Q be any prime ideal of Oq( /5 such that
o1l (y). (11.5.3)
Then, by (11.5.2), we have
Q1. (11.5.4)
Taking conjugate ideals in (11.5.4), we obtain
Q" (y). (11.5.5)

As Q is a prime ideal, and the discriminant of Og( /5 is p, by Theorem 10.2.2 we
have

0 = Q' = (q), where ¢ is a rational prime with (g) =—1,

or

0 # Q', Q0" = (q), where g is a rational prime with <£> =1,
q
or

0=0, Q2 = (gq), where ¢q is a rational prime with <§> =0.
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In the first case, from (11.5.3) and (11.5.4), we deduce thatg | ¥, ¢ | ¥/, con-
tradicting (11.5.1).

In the second case we have by (11.5.3) and (11.5.5) as Q and Q' are distinct
prime ideals

(@) =00 | (y)= ().

Hence ¢ | y and ¢ | ¥/, contradicting (11.5.1).
In the third case we have ¢ = p and Q = (,/p). Hence (,/p) is the only prime
ideal that can divide (y). Thus

for some nonnegative integer j. If j > 2 then p |y and p | y’, contradicting
(11.5.1). Hence j = O or 1. If j = O then

and so
y=h
for some unit A of Og( /7). As AA" = &1 we have

YA A
=y TN T

contradicting that 7 is the fundamental unit of Og( 5. If j = 1 then

so that

for some unit A of Og /5. Hence

AN A s
L N S
again contradicting that 7 is the fundamental unit of Og( /7).

This completes the proof that the fundamental unit of Og /5 (p (prime) = 1

(mod 4)) must have norm —1. |

= :F)\,z,

Second proof: Suppose that the fundamental unit  of Og( /) has norm 1. Then

_x—l—yﬁ
"=
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where x and y are positive integers such that
x>2, x=y(mod?2), x> - py*=4.

We first treat the case when x = y = 0(mod 2). Setx = 2X, y = 2Y so that X
and Y are positive integers such that
n=X+Y/p, X*—p¥*=1, X > 1.
As p =1(mod 4), X is odd and Y is even, so that XT_I, XT“, and % are positive
integers such that

X—-1) X+ [(Y\’
2 2 _p<5>‘

A} Xl ;‘T_ll =1, tl}(e integers X=1 and X! are coprime. Since p | X1 . £
either p | 4 or p | 5.
If p| ! then
X-1 X+1) (YY)
2p 2 \2
and thus there are positive coprime integers A and B such that
X -1 X+1 Y
Aol A Ly
2p 2 2
so that
X =2pA*+1=2B>—1, Y =2AB.
Hence

B> — pA*=1
so that B + A,/p is a unit of norm 1 in Og /5. Now
1<B<B*<2B’-1=X
and
1<A<2AB=Y
so that

l<B+A/p<X+Y/p=n,

contradicting that 7 is the fundamental unit of Oq( /p)-

If p | £ then

X-1) X+1 _ (Y>2

2 2p 2
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and thus there are integers A and B such that

%:AZ, Xz—;l:B% ngB,
so that

X =2A+1=2pB*>—1, Y =2AB
Hence

A’ — pB*=—1

so that A + B, /p is aunit of norm —1 in Og /5, contradicting that all the units of
Oq(p) have norm 1.

Now we turn to the case when x = y = 1 (mod 2). Reducing x> — py? =4
modulo 8 we see that p = 5 (mod 8). Now x — 2, x + 2, and y are positive odd
integers such that

(x —2)(x +2) = py*.

As (x +2)—(x —2) =4 the integers x —2 and x + 2 are coprime. Since
pl(x—2)(x+2)eitherp|x —2o0rp | x+2.
If p | x — 2 then

O =y

and there exist positive coprime odd integers A and B such that
x—2
p

=A% x+2=B? y=AB,

so that
x=pA*+2=B>-2, y=AB.
Hence
B2 — pA*=4

so that (B 4+ A,/p)/2 is a unit of norm 1 in Og(p). From B* — pA? = 4 we see
that B # 1. Thus, as B is odd and positive, we must have B > 3. Hence

l<B<B*—2=x
and
1<A<AB=y

so that

B+ A
| < +2\/ﬁ<x+;\/ﬁ’
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contradicting that (x + y,/p)/2 is the fundamental unit of norm 1 in Og 5 by
Theorem 11.3.2(a).
If p | x 4+ 2 then

(x _2)(x+2) =y2

and thus there are positive coprime odd integers A and B such that

2
x—2=A2 *T2 g2y _ap
p

so that
x=A>+2=pB*>—2, y=AB.
Hence
A’ — pB*=—4

so that (A + B,/p)/2 is a unit of norm —1 in Oq( /), contradicting that the fun-
damental unit of Oq( /5 has norm 1.
This completes the proof of Theorem 11.5.4 using Dirichlet’s method. [ ]

When m is a prime p = 3 (mod 4) the fundamental unit of Og( /) has norm 1.
This is a special case of the following theorem.

Theorem 11.5.5 Let m be a positive squarefree integer. If there exists a prime g = 3
(mod 4) dividing m then the fundamental unit of Og s, has norm 1.

Proof: Suppose that the fundamental unit  of Og /m) has norm —1. Then

X+ yJm
nN=—F=
2
where x and y are integers such that

{x — y=0(mod 2), ifm=2,3(mod 4),

x =y (mod 2), if m = 1 (mod 4),
and
x? — my?
——— =N(n) =-1
1 ()
Hence
x* —my? = —4.

As g | m we deduce that

x> = — 4 (mod q).
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(5)-(7)

e = e = 1

q q

so that ¢ = 1 (mod 4), contradicting that ¢ = 3 (mod 4). This proves that n must
have norm 1. |

Thus

The following two theorems can be proved using Dirichlet’s method in a similar
manner to the second proof of Theorem 11.5.4.

Theorem 11.5.6 Let p be a prime with p = 5 (mod 8). Then the fundamental unit
of Oq(yzp) has norm —1.

Theorem 11.5.7 Let p and q be distinct primes such that

p=g=1(mod4), <£> S
q

Then the fundamental unit of Og( /pg) has norm —1.

Up to this point we have said almost nothing about calculating the fundamental
unit  of Og( ) for a particular value of m. We address this problem in the next
section.

11.6 Calculating the Fundamental Unit

Let m be a positive squarefree integer. The standard method of calculating the
fundamental unit  of Og_ /) is by means of the continued fraction expansion of
/m. We assume that the reader is familiar with the basic properties of continued
fractions as found for example in Chapter 7 of the book on elementary number
theory by Niven, Zuckerman, and Montgomery [2]. We just recall the basic facts
that we shall need and refer the reader to [2] for proofs.

Given a positive squarefree integer m, we define a sequence «g, o, a2, ... of
real numbers by

g = /m (11.6.1)
and

Ops1 = ———, n=0,1,2,.... (11.6.2)
oy _[an]
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Example 11.6.1 If m = 31 we find that

Ol():\/31,
1 1 54+ 4/31
o = = = s
' g — lao] V31 =5 6
1 1 1+ /31
O = = = ,
2T a—[wl 54431 1 5
6
1 1 44 /31
o3 = = = R
T —laal 14431 1 3
5
1 1 5+ 4/31
oy = = = s
YT —lasl 44431 3 2
3
1 1 5+ 4/31
o5 = = = s
> g — o] 5+ 31 s 3
2
1 1 4 4 /31
g = = = ,
o as —[as] 54+ 4/31 3 5
3
1 1 1+ 4/31
o7 = = = ,
’ ag —[ag] 4+ 4/31 | 6
5
1 1 5+ /31
oy = = = ,
; o7 — [o7] 1+ +/31 . 1
6
1 1 54+ +/31
g = = = :O[’
’ ag —[ag]l  544/31 =10 6 l
o =0, Q1] =03, .. ..
Clearly each «,, > 1 and
P,
an=M, n=0,1,2,..., (11.6.3)

On

where Py =0, Qo =1, and P,, O, are positive integers for n > 1. Moreover,
it is known that there exists a positive integer / such that o;; = «y. It follows
from (11.6.2) that ;42 = @2, @43 = @3, ... so that the sequence {c, },> is purely
periodic. We set

an :[an], n:07172$-"9 (116'4)
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so that {a, },>1 is a sequence of positive integers. Since {o,},>1 1s a purely periodic
sequence so is the sequence {a,},>1.

Example 11.6.1 (continued) For m = 31

{an}ns0 = {5.1,1,3,5,3,1,1,10,1,1,3,5,3,1,1, 10, .. }.

Next we define two further sequences of integers {%,},>_1 and {k,},>_; by
h_y =1, ho =a9, hy =ayhy_1 +hy2, n=172,... (11.6.5)
and
k1=0,ko=1, ky =anky_1 +kyo, n=1,2,.... (11.6.6)

All of the h,, and k,, are positive except for k_; = 0.

Example 11.6.1 (continued) For m = 31

{hy}n>—1 =1{1,5,6, 11, 39, 206, 657, 863, 1520, 16063, 17583, .. .},
{kntn=—1 =10,1,1,2,7,37, 118, 155, 273, 2885, 3158, .. .}.

It is easily shown that (4,, k,) = 1 and

h, n 1
1
K a +

,n=0,1,2,.... (11.6.7)

a+
anfl"i__

ay

To save space we abbreviate the fraction on the right-hand side of (11.6.7) by the

space-saving flat notation [ay, a1, az, . . ., a,] so that (11.6.7) becomes
hy
k—:[ao,al,az,...,an], n=0,1,2,.... (11.6.8)

n

It is known that lim,,_, » /1, /k, exists and is equal to  /m.
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Example 11.6.1 (continued) For m = 31 we have to seven decimal places

h h 6 h 11 h 39
D5, o6, 2= — =55 =2 =55714285,
ko ki 1 ko 2 k3 7
h 206 h 657 h 863
= = T = 55675675, — = —— = 5.5677966, > = —- = 5.5677419,
ky 37 ks 118 ke 155
h 1520 h 16063
T = = 55677655, — = — — = 5.5677642,
k7 273 kg 2885
h 17583
2= 20 55677644,
ko 3158
and v/31 = 5.5677643 . ...
We write [ag, ai, az, . ..] for lim,_,  [ag, a1, az, . . ., a,], and we say that /m
has the infinite continued fraction expansion
vm =lag, ay, az, .. .]. (11.6.9)

The convergents of the infinite continued fraction [ay, a1, az, . ..] are the rational
numbers h,/k, (n =0,1,2,...). As we have already mentioned, the sequence
{on}u>1 1s purely periodic. Let [ be the least positive integer such that 4, = o
(equivalently, Py, = P,, Qi+n = Q,) for all positive integers n. The integer / is
called the period of the continued fraction expansion of v/d. Then

Jm =lag,ay,...,a;,ay,...,4;,41,...,4,...]
and we abbreviate this by

\/ﬁ:[ao,al,...,al]. (11.6.10)

Example 11.6.1 (continued) For m = 31 we have [ = 8 and
v31=15,1,1,3,5,3,1,1,10,1,1,3,5,3,1,1,10,1, .. ]
=[5,1,1,3,5,3,1,1,10].

Clearly ap = [/m] and it is further known that @; = 2ay. Putting

P, + /m Py 1+ /m
Oy = ——", 1= ———»
Qn Qn—l
and [an—l] =dap—1 in
1
a, = (n>1),
Qp—1 — [an—l]
we obtain
Pn + A/ m _ anl

Qn B (Pn—l _an—lQn—l)'i‘\/%‘
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Cross-multiplying and equating coefficients we see that

Py(Py—1 — ap_1 Qn—l) +m=0,0,1,
Py, + P,y —ay anl =0.

Thus o, = (P, + v/m)/Q, (n > 1) is determined recursively by

Pn:_ n—1+an—1Qn—la
0 _m—Pn2
" anl ’
[Pn—i—ﬁ]
apn = | — | »
Qn

with Py =0, Qo =1, qy = [ﬁ]
The central result that allows us to determine the fundamental unit of a real
quadratic field is the following theorem.

Theorem 11.6.1 Let m be a positive squarefree integer. Let h, [k, (n = 0,1,2,...)
be the convergents of the infinite continued fraction expansion of \/m. Let | be the
period of the expansion.

If | is even then x* — my?> = —1 has no solutions in integers x and y and the
solution of x> —my* =1 in positive integers x and y with x least is (x,y) =
(hi—1, ki—1).

Iflis odd then x> — my*> = —1 has solutions in integers x and y and the solution
of x2 —my? = —1 in positive integers x and y with x least is given by (x,y) =
(hi—1, ki—1).

If m =2, m=3(mod 4), or m = 1(mod 8) all the units of Og_ s, are of the
form x + y./m with x and y integers, so that by Theorems 11.5.3 and 11.6.1 we
see that the fundamental unit n of Og( /) is given by

n=h_y+k_im, N =(—1).

If m =5 (mod 8) there may or may not be units of Og /) of the form %(x +
y+/m) with x and y odd integers. If there are no such units then n € Z + Z./m and,
as in the previous case, we have

n=hi_1+k_1v/m, N =(=1).

If there are such units then 1 ¢ Z + Z./m and it can be shown that n’ € Z +
Z./m. In this case n* = x + y+/m, where x and y are positive integers satisfying
x2 — my* = £1 with x least so that by Theorems 11.5.3 and 11.6.1

' =hioy +kii/m, N = (=1)'.
If n = (A + B\/m)/2, where A and B are odd positive integers, then

3
A+ B/m
<%) = hi_1 + ki—1/m,
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and so
A +3AB*m = 8h;_,
3A’B + B’m = 8k;_;.
Hence
1/3
Alh_, 1<A<2n;
and

ki 1/3
B|k,_1,153<2<“> :
m

This gives the following algorithm for determining the fundamental unit n of
Oq(m) for a positive squarefree integer m.

Stepl: h_y1 =1, k_;y =0.
Py=0, Qo =1, ay = [/m], ho=[Vm], ko= 1.

Step 2: Determine P,, Q,, a,, h,, k, (n =1,2,...) recursively by means of

Pl’l:_ n—l+an—lQn—lv n:1727"'7
0 m—Pn2 12
n — vn: ’ LI ]
anl
P, + /m
a, = T ,n=1,2,...,

hn = anhn—l + hn—27 n= 11 2» ey
k, =ayk,_1 +koio,n=1,2,....
Stop at the first integer N > 1 such that
Py =P, Oy = 0.

Step 3: 1 =N — 1.

Step 4: If m = 2 (mod 4), m = 3 (mod 4), or m = 1 (mod 8) then
n=h_1+k_1v/m, N =(-1).

Step 5: If m = 5 (mod 8) determine all positive odd divisors A of h;_; less than

2h, / 31 and all positive odd divisors B of k;_; less than 2 (k;_;/m)'/3. If for some
pair (A, B) we have

A% +3AB*m = 8h;_,, 3A’B + B’m = 8k,_,

then

A+ BYm

—(—1)-
> s N(p) = (=1);
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otherwise
N =hi_i +k_1v/m, N = (=1).
We present several examples.
Example 11.6.1 (continued) m = 31 = 3 (mod 4). Starting with
hoy=1,k1=0,Ph=0,00=1,a0=5,hy=5,ky =1,
we obtain successively the values of

an ananvhrhknvn:lvzv""

as in Step 2.

n P, Qn a, hn kn
—1 1 0

0 0 1 5 5 1
1 5 6 1 6 1
2 1 5 1 11 2
3 4 3 3 39 7
4 5 2 5 206 37
5 5 3 3 657 118
6 4 5 1 863 155
7 1 6 1 1520 273
8 5 1 10 16063 2885
9 5 6 1 17583 3158

As
Py= P =5,09= 01 =6,

we see that

N=9,1=N-1=8, iy =hy; =1520, k,_; = k7 = 273,
n="h_y+k_iv/m=1520+273v31, N(n) = (-1)) = 1.

The fundamental unit of Oy s7, is 1520 + 2734/31 of norm 1.

Example 11.6.2 m =41 = 1 (mod 8). Here

n P)’l Q}’l an h}’l kn

—1 1 0
0 0 1 6 6 1
1 6 5 2 13 2
2 4 5 2 32 5
3 6 1 12 397 62
4 6 5 2 826 129
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Py=P =6,0,=01=5,
we have

N=4,1=N—-1=3, hi_1=hy =32, ki_1 =k, =5,

n=h_i+k_jvJm=232+5V41, Nip) = (-1) = —1.

The fundamental unit of O y /a7, is 32 + 5+v/41 of norm —1.

Example 11.6.3 m = 82 = 2 (mod 4). Here

n Pl’l Ql’l al’l hn kl’l

1
0
1 9 1 18 163 18
2 9 1 18 2943 325

P,=P=90,=01=1,
we have

N=2,l=N-1=1, hhy_1=hy=9, ki_i=ky =1,
n=nh_1+k_i1v/m=9++82, N(n)=(—1)l=_1.

The fundamental unit of Oy /g5, is 9 + ~/82 of norm —1.

Example 11.6.4 m = 13 = 5(mod 8). Here

n Pn Qn Ay hn kn

-1 1 0
o o0 1 3 3 1
1 3 4 1 4 1
2 1 3 1 7 2
3 2 3 1 11 3
4 1 4 1 18 5
5 3 1 6 119 33
6 3 4 1 137 38

Ps= P =3,06=01=4,

we deduce that

N=6,l=N—-1=5, hi_1=hy4 =18, ki_1 = ks =5.

293
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Next,

Aodd, Alh_, 1<A<2h? = A9, 1<A<53=A=1o0r3,

o\ 13
Bodd,B|kl_1,1gB<2<L> — B|5 1<B<15=B=1.
m

Of the pairs (A, B) = (1, 1), (3, 1) only the latter satisfies the pair of equations
A’ +39AB* = 144, 3A%B + 13B° = 40.
Hence the fundamental unit n(>1) of O3 18

_3+V13

> N(n) = -1

n

Example 11.6.5 m = 37 = 5(mod 8). Here

n P, 0, a, h, k,

6 1 12 73 12
6 1 12 882 145

Pb=P=60=01=1,

we have
N=2I=N-1=1, -y =ho=6, ki_1 =ky= 1.
Clearly the pair of equations
A3+ 111AB> = 48, 3A’B +37B° =8

has no solutions in positive integers, and so the fundamental unit n(>1) of
Op(va7) i

n=6++37, N(n) = —1.

11.7 The Equation x> — my> = N

Let m be a positive squarefree integer. The following theorem from the theory
of continued fractions assists us in finding the solutions (if any) of the equation
x> —my? = N when N is a nonzero integer satisfying |N| < /m.

Theorem 11.7.1 Let m be a positive nonsquare integer. Let {h,},>_1 and {k,},>_1
be defined as in (11.6.5) and (11.6.6). Let g, = hi — mk,zl, n=-1,0,1,.... Let
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[ be the period of the continued fraction expansion of \/m. Let N be an integer
satisfying 0 < |N| < /m. Then the equation x> — my?> = N is solvable in coprime
integers x and y if and only if N = g, for some r € {0, 1,2, ...,sl — 1}, where
s = 1iflisevenands =2 ifl is odd in which case a solution is (x, y) = (h,, k;).

Example 11.7.1 We choose m = 31. Here /31 = 5.567 . ... Thus the integers N
satisfying 0 < |N| < /m are

N=-5-4,-3,-2,-1,1,2,3,4,5.

From Example 11.6.1 we havel = 8, so that s = 1 and sl — 1 =7, and the values
of g, n=0,1,...,7) are given in the following table:

n hy ke gn=h2—31k2
0o 5 1 —6
1 6 1 5
2 11 2 -3
3039 7 2
4 206 37 -3
5 657 118 5
6 863 155 —6
7 1520 273 1

By Theorem 11.7.1 the equation x* — 31y> = N (0 < |N| < +/31) is solvable in
coprime integers x and y for

N=-31,2,5
and is not solvable in coprime integers for

N=-5-4,-2,-1,3,4.

Example 11.7.2 We saw in Example 11.7.1 that the equation x* —31y* = -3
has the solutions (x, y) = (11, 2) and (206, 37). We now determine all solutions of
x? —31y? = =3 inintegers x and y. (Notice that if x and y are integers satisfying
x? —31y? = =3 then x and y are necessarily coprime as —3 is squarefree.) Let
(x,y) € Z? be a solution of x> — 31y*> = —3. Thus, as (x, y) = (11, 2) is a solution
of this equation, we have in Og sy,

(x + yv/31) (x — yv/31) = (11 + 2+/31)(11 — 23/31).

As (11 +2+/31) and (11 — 2+/31) are prime ideals of Og /57, by Theorem 10.1.6(a)

since

N({(11+42+/31)) = IN(11 +2v/31)| = | — 3| = 3 (a prime),
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appealing to Theorem 8.3.2 we see that

(x + yv/31) = (11 £+ 24/31).
Hence by Theorem 1.3.1 we obtain

x + yv/31 = u(11 £+ 24/31),

where u € U(OQ(m)). The fundamental unit of OQ(«/ﬁ) is 1520 + 273+/31 (Ex-
ample 11.6.1) so that by Theorem 11.5.1

u = £(1520 + 273+/31)"
for some n € Z. Hence all the solutions of x> — 31y> = —3 are given by
X 4+ y~/31 = £(1520 + 273+/31)* (11 £ 2+/31), n =0, £1, £2, ....

It is easily checked that these are solutions of x* — 31y* = —3. In particular the
solution (x, y) = (206, 37) is given by

—(1520 + 2734/31)(11 — 24/31).

Example 11.7.3 We answer the question “Is the equation x> — 41y> = 2 solvable
in integers x and y?”

As 2 < /41 we can apply Theorem 11.7.1. From Example 11.6.2 we have | = 3,
so that s =2 and sl — 1 =5, and the values of g, (n =0,1,2,3,4,5) are as
follows:

n hn ky &n
0 6 1 =5
1 13 2 5
2 32 5 —1
3 397 62 5
4 826 129 -5
5 2049 320 1

As2 #g,(n=0,1,2,3,4,5) the equation xz— 41y2 = 2 has no solution in co-
prime integers x and y and thus (as 2 is squarefree) no solution in integers x
and y.

Example 11.7.4 We determine all the solutions in integers x and y of the equation
x2 — 10y? = 10. In this case we cannot apply Theorem 11.7.1 directlyasm = N =
10 and |N| £ /m. Thus we proceed differently.

Let (x,y) € Z* be a solution of x* —10y*> = 10. Then 10 | x*> and as 10 is
squarefree we deduce that 10 | x. Setting x = 10z in the equation we obtain
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y? — 102> = —1. Thus y + z+/10 is a unit of Oqvio) of norm —1. As the fun-
damental unit of O 1, is 3 + ~/'10 (of norm —1), we have by Theorem 11.4.1

y 4 z+/10 = £(3 + +/10)>**!

for some n € Z. Hence all the solutions of x> — 10y> = 10 are given by

x 4+ yv/10 = £33 + V10110, n € Z.

It is easily verified that these are solutions of x> — 10y = 10.

O 00 1 N Lt A W N =

—
N = O

13.
14.

15.

16.

17.

18.
19.

Exercises

. Prove Theorem 11.5.6.

. Prove Theorem 11.5.7.

. Determine the fundamental unit of Og /7).

. Determine the fundamental unit of Og /77,

. Prove that the fundamental unit of OQ( /o) isn = 2143295 + 221064+/94.

. Prove that the fundamental unit of O, /g3, is 7 = 64080026 + 5019135+/163.
. Prove that the fundamental unit of O, /g3 is n = (13 + V165)/2.

. Show that +/1790 = [42, 3, 4, 8, 4, 3, 84].

. Show that +/925 = [30, 2, 2, 2, 2, 60].

. Determine the length of the continued fraction expansion of /850.

. Determine the norm of the fundamental unit of Og /137g)-

. Let m be a positive squarefree integer such that O /) contains units of norm —1. Let

o be the fundamental unit of Og_/m, of norm —1. Prove that o is the smallest unit > 1
of norm —1 in Og /).

Let n be the fundamental unit of Og,/33,- Determine o € Og /133, such that 2n = o’
Let p be a prime = 3 (mod 8). Let 7 + u,/p be the fundamental unit of Og( /7, which
necessarily is of norm 1. Starting from > — pu? = 1, and using Dirichlet’s method of
proving Theorem 11.5.4, prove that the equation x> — py? = —2 is solvable in integers
x and y.

Let p be a prime = 7 (mod 8). Prove that the equation x> — py? = 2 is solvable in
integers x and y.

Let p be a prime = 9 (mod 16) for which the congruence x* = 2 (mod p) is insolvable.
Prove that the norm of the fundamental unit of Og ;) is —1.

Let p and ¢ be distinct primes with p = ¢ = 1 (mod 4) and (g) = 1(so that (%) =1
by the law of quadratic reciprocity). Suppose that the congruences x* = p (mod ¢) and
y* = g (mod p) are insolvable. Prove that the norm of the fundamental unit of N
is —1.

Is the equation x*> — 82y? = 2 solvable in integers x and y?

Determine all solutions of x> — 96y? = 161.
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20. Prove that all solutions of x> — 10y? = 10 (see Example 11.7.1) are given recursively
by %(xz, yx), where

X1 = 19x¢ + 60yk, yip1 = 06x, + 19y, k=0,£1,£2,...,

and xo = 10, yo = 3.
21. Let m be a positive integer such that m — 1 and m are not perfect squares but 4m + 1
is a perfect square. Prove that the equation x> — my? = —1 is insolvable in integers x

and y.
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12
The Ideal Class Group

12.1 Ideal Class Group

We have already seen that the nonzero integral and fractional ideals of the ring Og
of integers of an algebraic number field K form a group /(K ) under multiplication
(Theorem 8.3.4). The principal ideals in I (K) are of the form («) = {ro | r € Ok}
for some o € K* and they form a subgroup P(K) of I(K) as

(@) (B)" = (@B™") € P(K).

The group I(K) is an Abelian group so P(K) is a normal subgroup of /(K) and
the factor group I(K)/P(K) is well defined and Abelian.

Definition 12.1.1 (Ideal class group) Let K be an algebraic number field. Let
I (K) be the group of nonzero fractional and integral ideals of Ok. Let P(K) be the
subgroup of principal ideals of 1(K). Then the factor group 1(K)/P(K) is called
the ideal class group of K and is denoted by H(K).

It is an important result that H(K) is always a finite group. This is proved in
Section 12.5 as a consequence of some theorems of Hermann Minkowski (1864—
1909) in the geometry of numbers.

Definition 12.1.2 (Class number) Let K be an algebraic number field. The order
of the ideal class group H(K) is called the class number of K and is denoted by
h(K).

If two nonzero ideals A and B of Ok are in the same class of H(K) =
I(K)/P(K), we say that they are equivalent and write A ~ B. Clearly
A~ B <= AP(K)= BP(K)
<~ A"'B e P(K)
< A"'B = (&) forsome @ € K*
<= B = A{a) forsome o € K*
<= (a)A = (b)B for some a, b € Ok \ {0}.

299
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Example 12.1.1 In Q(/—5) we have
(2,1 —~/=5)~ 3,14+ /-5)

as

(3)(2, 1 — /=5) = (6,3(1 — /=5))
(1 4+ /=5)(1 = /=5),3(1 —/=5))
= (1 —V=5)(1 4+ v=5.3).

Theorem 12.1.1 Let K be an algebraic number field. Then

h(K) =1 <= Ok is a principal ideal domain

<= Ok is a unique factorization domain.

Proof: If h(K)=1 then [I(K): P(K)] =card({(K)/P(K)) = card H(K) =
h(K) =1 so that P(K) = I(K). Hence every ideal of Ok is principal and so Og
is a principal ideal domain, and thus a unique factorization domain, by Theorem
3.3.1.

Conversely, if Ok is a unique factorization domain, since it is a Dedekind domain,
it is a principal ideal domain (Exercise 13 of Chapter 8). Hence every ideal of Ok
is principal and so I(K) = P(K) and thus

h(K) = card H(K) = card(I(K)/P(K)) = [I(K) : P(K)] = 1. -

Leonard Carlitz (1907-1999) has shown that #(K) = 1 or 2 if and only if when-
ever a nonzero nonunit & € Ok can be written o« = um; - - -7, = u'my - - - 7/ with
u, u' units and 7y, ..., 7, 7y, ..., 7/ prime elements of Ok then s =t [2].

In the next three sections we prove three theorems of Minkowski from which we
can deduce that the class number is always finite.

12.2 Minkowski’s Translate Theorem

Let R" denote the vector space of all n-tuples (xy, x2, ..., x,) withx;, xo, ..., x, €
R. We let Z" be the subset of R" given by

7" ={(x1,...,x,) € R" | x1,...,x, € Z}.

The elements of Z" are called lattice points and Z" is called a lattice. Clearly Z" is
a group under addition. For « = (ay, ..., a,) € R" we set

lla]l = max |a;| (€ R).
1<i<n
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Definition 12.2.1 (Translate) If S is a subset of R" and o € R" we let
Se =f{a+B]|BeS}

The set S,(C R") is called a translate of S in R".
Clearly Sy = S, where 0 = (0, ..., 0).

Definition 12.2.2 (Magnification) If S is a subset of R" and a € R™ we let
aS=1{ap | B € S}.

The set aS (C R") is called a magnification of S in R".

Definition 12.2.3 (Bounded set) A subset S of R" is said to be bounded if there

exists B € RY such that

lle|| < B foralla € S.

Definition 12.2.4 (Closed set) Let o € R". Let r € R™. The set
{BeR"||la—Bll <r}

is called a neighborhood of a. The point « is called a limit point of the subset S of
R" if every neighborhood of a contains a point 8 # « such that § € S. The set S
is said to be closed if every limit point of S is a point of S.

Definition 12.2.5 (Convex set) A subset S of R" is said to be convex if

tB+ (1 —t)yyeSforall B,y € Sandallt e Rwith0 <t < 1.

Clearly S is convex if it contains the line segment joining 8 and y for all points
B and y in S.

Definition 12.2.6 (Convex body) A closed, bounded, convex subset of R" is called
a convex body.

If S is a convex body so are S, (¢ € R") and a$ (a € RT). Moreover, aS C bS
if0<a <b.

A theorem of Minkowski asserts that every convex body § has a volume, which
we denote by V(S) and which has the following properties:

1) 0 < V(S) < o0,
@) if S; G =1,2,...,k) are disjoint convex bodies with S; € S (i =1, 2,..., k) then
ST VS < V(S),
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(i) V(S) = V(S,) forall « € R",
(iv) V(aS) =a"V(S)foralla € R*.

If S, ..., S are disjoint convex bodies we define
k
V(SIUS U= US) =) V(S
i=1

The volume V (S) of a convex body § is defined by means of the multiple integral

V(S) = /---/dxl---a’x,,.
S

Definition 12.2.7 (Hypercube H,) The hypercube H; (t € R") in R" is defined by
H ={peR"|IBll <1}.

It is easy to check that the hypercube H; is a convex body. Its volume is given by

V(Hf>=/ / dﬂl---dﬂn=</ dﬂ) — .
\=—t Bu=—t B=—1

Theorem 12.2.1 (Minkowski’s translate theorem) Let S be a convex body in
R" that contains the origin 0 = (0,0, ...,0). If V(S) > 1 then for at least one
a € 7"\ {0}

SNS, # .

Proof: We first treat the case V(S) > 1. Suppose on the contrary that
SNS, =¢foralla € Z" \ {0}.
First we prove that
SgNS, =¢forall B,y € Z", B #vy. (12.2.1)

Letx € SgNS,. Thenx € Sgandx € §,. Hence x —y € Sg_, and x — y € §.
Thus x — y € S5, N §, contradicting our assumption. This proves (12.2.1).
Now let N be an arbitrary positive integer, and let

T ={aeZ"||lal| =N}
Clearly
card T = (2N + 1)".

Our second step is to show that

Vv (U Sa> = 2N+ D"V(S). (12.2.2)

aeT
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We have

VOJ%>=§:W&”W“ZM»

aeT aeT

=) V()

aeT

= V(S)card T
= (2N + 1)"V(S),

as asserted.
As S is a bounded set, we can define the diameter d € R of S by

d = max ||s; — $5]].
51,568

We let H be the hypercube Hy .4, that is,
H=Hyys={BeR"||Bll =N +d}.
Clearly
V(H) = (2N + 2d)".
Our third step is to show that
Se CHforalla € T. (12.2.3)

Lete e TandB € S,.Then 8 = o + s, wheres € S.Asa € T wehave ||a|| < N.
AsOe Swehavea =a +0 € S, sothats = 8 — «, where «, B € S,. Thus

lIs|l =118 —all = max ||t — || = max ||(«+s1) — (« + 52)]|
l[,leSa 51,5€8
= max ||s; — s2|| =d.
S1,52€8

Hence
Bl = lla +s|| < [lall +|Is]| =N +d

sothat 8 € H.Hence S, € H forx € T.
We are now in a position to complete the proof. From (12.2.3) we have

USagH

aeT
so that
v(U&>5wm
aeT
and thus

2N + 1)"V(S) < (2N +24d)".
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Therefore
14+ 4\
2N +2d\" N
v = (o) = [ 2
2N +1 ! +L
2N

As d and n are fixed, letting N — oo we obtain V(§) < 1, contradicting V (S) > 1.
Hence there is at least one « € Z" \ {0} with S N S, # ¢.

We now turn to the case V(S) = 1. Let k be a positive integer. We consider the
convex body

1
Sk) = (1+k> S

obtained by magnifying the convex body S by a factor 1 + 1/k. As S contains 0 so
does S(k). The volume of S(k) satisfies

1 1\" 1\"
V(S(k)):V<<1+E> S>=<1+%> V(S)=<l+%> > 1.

Thus the first part of the theorem applies to the convex body S(k). Hence there
exists a translate (S(k)),, (o € Z" \ {0}) of S(k) such that

S(k) N (S(k))ay, # b

Let xx € S(k) N (S(k))q,-
Next we consider the set

A ={Br € Z"\ {0} | xx € S(k) N (S(K))gp, }-
Clearly A, # ¢ as o € Ai. For B, € A, we have
xx € S(k) < S(1)
and
Xk € (S(k))g, 80 xp — Pr € S(k) < S(D).
Let d; denote the diameter of S(1). Then

Bl = [lxx — (i — BN =< x| + [1xx — Bl
= [lxx — Ol + [1(xx — Br) — Ol
<d+d
= 2d,,

as 0 € S(1). Thus By lies in a bounded set, namely,

Bx € Haa,,
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so that
A © Hag,.
But
A, C7"
o)
Ax C Hyy NZ".

Thus every Ay is contained in the finite set H,y, N Z". Hence we can find a subse-
quence of the sequence {x;} for which the corresponding Sy € Ay is constant, say,
equal to «. After relabeling we may therefore assume that

xip € Stk) N (Sk))y-

As each x; € S(1), the infinite sequence {x;} is bounded. Hence, by the Bolzano—
Weierstrass theorem, the sequence {x;} has at least one limit point, say x. Let / be
an arbitrary positive integer. We have

x € SQ),
X1 € SU+1) C SWU)
X142 € SA+2) C SU+1) C S(),

so that the infinite sequence {x;}>; lies in S(/). As x is a limit point of {x;};>; and
S(l) is closed, we deduce that x € S(/) for every positive integer /. Thus

xeﬂS(l)=ﬂ<l+;>S=S.

=1 =1

Similarly,
x €(SW)e = Sa-
=1
Hence
xeSNS,
sothat SN S, # ¢ fora € Z" \ {0}. |

12.3 Minkowski’s Convex Body Theorem

Minkowski’s famous convex body theorem asserts that if the volume of a convex
body, which is symmetrical about the origin, is large enough then the convex body
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must contain at least one lattice point different from the origin. We begin by making
the notion “symmetrical about the origin” precise.

Definition 12.3.1 (Centrally symmetric set) A subset S of R" is said to be cen-
trally symmetric if

—a € Sforalla € S.

We note that a subset S of R”, which is both centrally symmetric and convex, must
contain the origin 0 = (0, 0, .. ., 0). To see this take any @ € S. As S is centrally
symmetric, we have —a« € S. Then, as § is convex, we have %(a) + %(—oz) IS
thatis, 0 € S.

We now use Minkowski’s translate theorem to prove his convex body theorem.

Theorem 12.3.1 (Minkowski’s convex body theorem) Let S (C R") be a centrally
symmetric convex body of volume V (S) > 2". Then S contains a lattice point # Q.

Proof: Let T be the magnification of S given by
1 1
T=-S={-a]|aeS}
2 2

As S is a centrally symmetric convex body sois 7. As T is both centrally symmetric
and convex it contains 0. Moreover,

V(T =VGS) =5V = 1,

omn

so that by Minkowski’s translate theorem (Theorem 12.2.1) there exists o € Z" \
{0} such that

TNT, #¢.
Letx e TNT,. Thenx € T, and thus x — « € T. Since T is centrally symmetric,
wehave o —x = —(x — «) € T. Hence, as x € T and T is convex, we have

1 1
E(oz—x)—i-ixeT,

so that /2 € T and thus « € §. This proves that S contains the lattice point
o #0. |

12.4 Minkowski’s Linear Forms Theorem

Let n be a positive integer and let » and s be nonnegative integers such that » + 2s =
n.Letaj, (j,k=1,2,...,n)be n? complex numbers with det aj; # 0 and

ajgeRforj=1,2,....r; k=1,2,....n, (12.4.1)
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foreach j =r+1,...,nthereexistsk; € {1,2,...,n}
such thataj, € C\ R, (12.4.2)

and
Ajpse=aforj=r+1,...,r+s; k=1,2,...,n. (12.4.3)

Here 7z denotes the complex conjugate of the complex number z. Set

Li=L;i®0=> apx. j=12.....n, (12.4.4)
k=1
sothat Ly, ..., L, are linear forms such that L, ..., L, are real,
Lyyi,...,Ly—piosarenonreal, and L, 411 = Loy, ..., Lyyog = L.
Theorem 12.4.1 (Minkowski’s linear forms theorem) Let 3y, ..., 8, ben positive

real numbers such that
2 S
818, > (—) |det(a )l (12.4.5)
b4
where the aji are defined in (12.4.1)-(12.4.3), and

8)=8jpss j=r+1,.c,r 4. (12.4.6)

Then there exist integers yi, . .., yn, not all zero, such that

n
ZajkYk

k=1

58], j=1,2,...,n.

Proof: We define n real linear forms M; = M;(x) (j = 1,2, ..., n)interms of the
Lix)(j=1,2,...,n) by

Lj,j:1,2,...,r,
Mj=¢ XL;+ L), j=r+1,...,r+s, (12.4.7)
(Lj—s—Ly, j=r+s+1,....n.

From (12.4.7) we see that the n x n matrix (%) is given by

I r Or, K Or, s

IM;
=lo,, rr, L1 |,
(52) = |0 s

1 =1
Os,r ZIS _-Is

where I; denotes the / x [ identity matrix and Oy, denotes the [ x m zero matrix.

Adding the (r 4+ s + k)th column to the (» + k)th column in the matrix (%) for
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k=1,2,...,s, we obtain the upper triangular matrix

Ir Or,s Or,s
A= OS,r Is % Is s
O,r Oy S

where O; = Oq . The determinant of a triangular matrix is the product of its diag-

onal entries so that
_ 1 S l~ S
detA = - =\ = .
2i 2

As the elementary column operations used to obtain A do not change the value of
the determinant of the matrix, we have

oM ; AN
det [ —2L ) = detA = L .
oLy 2

The quantity det (%) is the Jacobian of the M; with respect to the L so that

8(M1,...,Mn)_(i>s
a(Ly,...,L,) \2/)°

From (12.4.4) we deduce that

oL; .
aTl;l:ajk’ J,k=1,2,...,i’l,
so that
o(Ly,...,L, aL;
Ly, n B e (LS = det(ajy).
(X1, ..., Xn) 0xk
Hence
AMy, ..., My) _ d(My, ..., Mp)d(Ly, ..., Ly) _ <£>Sdet(a'k)
(X1, ..., Xp) oLy, ..., Ly 0(xq,...,x,) 7
so that
‘ o(x1, ..., Xp) . 2° (12.4.8)
oMy, ..., M,) |det(ai)| o

Now let S be the subset of R” given by

S={xeR"||L;®|=<6;, j=1,2,....r +s}.
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It is easily checked that S is a centrally symmetric convex body. The volume of S

is given by
V(S)=/---/dx1---dxr+s.
IL1(0)] <6
L (O] < 8,
Now, as
ILrJrj(X)l = |Lr+j(§)| = |Lr+s+j(§)|v J=12,...s,
and

Srqj =06rg5tj, J=1,2,...,5,
we deduce that
1L j | < 8,4 = L@ <874
> |LrsjOLrpsy ;O <87
= (M (0 + My j )My j () — i My j () < 87
= My j (X7 + My (%) < 5r+]

forj=1,2,...,s. Hence

V(S)z/ /dx1-~-dx

[Mi1(0)] < 8

M, (X)] <8,
M1 X 4 My (x)? < 82,1

My (02 + M < 32,
Making the change of variable
Mj :Mj(ﬁ), _] = 1,2,...,n

in the integral, we obtain

a(xlv" xn)
V(s M, ---dM,.
()= / /’8<M1,.. M|
M| <&
\M|:<5
Mr+| M <8

M2+ M2 <8

n = “r+s
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Appealing to (12.4.8), we have

V(S) = dM
) |det(ajk>|/ / b

M| < 8

M| <5,
2 > 2
M+ My <6

41
M, M2 <3,
Expressing the integral in terms of repeated integrals, we deduce that

2
V()= —— dM, 1 dM, .,
) |det(a,-k)|jr:[l (/_ ) / / HE T

»+x+k

Now
s
/ dM = 26
-5
and
/- . /dM dN = area of a circle of radius § = 782,
M2 4+ N? <42
so that

YO = e i H H”8

B 2”‘”7[351 w8, (8pyy v 8r+s)2

|det(aji)l
2r+s 5851-.-8
_ 2 OO by (12.4.6))
|det(aji)l
2r+s N

2 N
~ Jdetta,0] ( ) det(az)| (by (12.4.5)

— 2r+25 — "

Hence, by Minkowski’s convex body theorem (Theorem 12.3.1), S contains a lattice
pointy = (y1, ..., yn) # (0, ..., 0). Thus

|L](y)|§8]’ j=172’---,r+s9

from which the asserted result follows by (12.4.3), (12.4.4), and (12.4.6). |
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12.5 Finiteness of the Ideal Class Group

In this section we use Minkowski’s linear forms theorem to show that every class
in the ideal class group H(K) of an algebraic number field K contains an integral
ideal of Ok with norm less than a certain bound, called the Minkowski bound,
that depends only on the degree of the field K and the discriminant of K. For a
particular algebraic number field K these ideas give a method of determining the
ideal class group H(K).

Theorem 12.5.1 Let K = Q(0) be an algebraic number field of degreen = r + 2s,
where 6 has r real conjugates and s pairs of nonreal complex conjugates. Let A
be an integral or fractional ideal of Ok. Then there exists an element o (# 0) € A
such that

2 s
IN(2)] = (;) N(A)V/d(K)I.

Proof: Let 6y, 0,, ...,6, be the conjugates of 8. We reorder 0y, 0, ..., 6, in such
awaythat0y,6,,...,0, e Rand 6,,1, 6,42, ...,0, € C\ R. As the complex con-
jugate of any conjugate of 6 is also a conjugate of 6 (Exercise 20 of Chapter 5), we

can further order 6,1, 6,42, ...,6, sothat 6, ;1 = 0,41, ...,0, = Oy 425 = Orpy,
where r 4+ 2s = n. Let 0y, ..., g, be the n monomorphisms : K — C chosen so
that 0;(0) = 6;. Hence 0,451, = 0,1, (t = 1,...,5).

Let {aj,...,a,} be a basis for A. We define n linear forms L;(x) (j =
1,2,...,n) by

Li®)=> ojla)x.
k=1

These forms satisfy (12.4.1)-(12.4.4) withaj; = oj(ox)(j, k = 1,2, ..., n).More-
over,

|det(ax)| = |det(o(ar)| = v/ [D(A)] = N(A)/|d(K)| # 0.

Let
2 s/n
%= <> NA" A, j=1,2,....n.
T
Then

2 s 1/2 2 N
88y = (—) NAd(K)|'* = (—) |det(a i)l
T 4
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so, by Minkowski’s linear forms theorem (Theorem 12.4.1), there exist integers
Y1, ..., Y, not all zero, such that

s/n
IL;(y)| < (—) N A&V, j=1,2,...,n.
T

Choosem € {1, 2, ..., n}suchthato,, = 1, where 1 denotes the identity monomor-
phism from K to K. Set

n n
o =Ln(=>_ onl@)y =Y %,
k=1 k=1
so that o € A and a # 0. The conjugates of « are

oj@) =Y o)y =Ly, j=12....n
k=1

Hence
loj(e)] < (;)W N, j=1.2,.. 0,
and so
IN(@)| = lo1(a) - - - on(e)] < <73>SN(A)ICI(K)I”2
as asserted. [ |

Theorem 12.5.2 Let K = Q(0) be an algebraic number field of degreen = r + 2s,
where 6 has r real conjugates and s pairs of nonreal complex conjugates. Let
C € H(K). Then C contains an integral ideal B # (0) with

2 s
N(B) = (;) VId(K)I.

Proof: Let A be an ideal in the class C~! of H(K). Then A~! € C. By Theorem
12.5.1 there exists @ (% 0) € A such that

2 N
IN ()| < <;> N(A)/|d(K).

Asa € A wehave (@) C A so that, by Theorem 8.4.1, A | («). Hence B = () A~!
is an integral ideal of Og. As o # 0 we have B # (0). Also, B € C as A~! € C.
Finally,

N(B) = N(()A™") = N({@))N(A™)

2
= [N(@)|N(A)™" < (;) 1d(K)|. -



12.5 Finiteness of the Ideal Class Group 313
We next establish that there are only finitely many integral ideals in the ring of

integers of an algebraic number field having a given norm.

Theorem 12.5.3 Let K be an algebraic number field. Let k be a positive integer.
There are only finitely many integral ideals A of Ok with N(A) = k.
Proof: Let A be an integral ideal of Og with N(A) = k. By Theorem 9.1.3
card(Og/A) = N(A) = k.
Hence
k+A=k(1+A)=0+4+A

so that k € A. Thus (k) € A and so A | (k). By Theorem 8.3.1 there exist distinct
prime ideals Py, ..., P, and nonnegative integers ay, .. ., a, such that

(ky = P"--- P,
Hence, as A | (k), we have

A=P .- P,
where

¢ ef0,1,...,aq;}fori =1,2,...,r.
Thus there are at most
(ai +D@a+1---(ar+1)

possibilities for A. [

We now use Theorems 12.5.2 and 12.5.3 to show that the ideal class group of an
algebraic number field is finite.

Theorem 12.5.4 Let K be an algebraic number field. Then the ideal class group
H(K) of K is a finite group (so that the class number h(K) = card H(K) is finite).

Proof: By Theorem 12.5.3 there are only finitely many integral ideals B of Og
with N(B) < (%)s J1d(K)]. It follows from Theorem 12.5.2 that each ideal class
is represented by an integral ideal of Ok from a finite set. Thus there are only
finitely many ideal classes. Hence H(K) is a finite group and 4(K) is finite. [ |

The quantity on the right-hand side of the inequality in Theorem 12.5.2 is called
the Minkowski bound for the number field K.



314 The Ideal Class Group

Definition 12.5.1 (Minkowski bound) Let K = Q(0) be an algebraic number
field of degree n. Let r denote the number of real conjugates of 6 and s the number
of complex conjugate pairs of nonreal conjugates of 6 so that r + 2s = n. The
Minkowski bound for K is denoted by Mg and is given by

2 N
Mg = <;> V1d(K)].

The significance of the Minkowski bound M is that Theorem 12.5.2 guarantees
that every ideal class of K contains a nonzero integral ideal with norm less than or
equal to Mg. In fact by more detailed reasoning it can be shown that every ideal
class contains a nonzero integral ideal with norm less than or equal to

4\* n!
(n> ”1L 1d(K)], (12.5.1)

but we will not prove this here. As the norm of a nonzero integral ideal is at least
1, we have the inequality

n

d(K)| > (Z) % (12.5.2)

4

n
Now s < 2 and ’;—, > 2"~ g0 for n > 2 we have

2
/2 1
VId(K)| = (z) P L
4 2 2
so that
|d(K)| > 1 for K # Q.

12.6 Algorithm to Determine the Ideal Class Group

The results of the previous section give us a method of determining all the ideal
classes of a given algebraic number field K. To determine representatives of the
ideal classes, we need only look at the integral ideals of Ok with norm less than
or equal to the Minkowski bound M. If A is such an ideal then N(P) < Mg for
every prime ideal P dividing A. Now N(P) = p/ for some rational prime p and
some positive integer f so the prime ideals occurring in the prime factorizations of
the various integral ideals A are all factors of rational primes p < M. Thus if we
take each rational prime p < Mk, determine the prime ideal factorization of (p)
in Ok, and form all possible products of the prime ideal factors of these various
rational primes that yield ideals with norm < Mg then we are sure to have at least
one representative of every ideal class.

In particular, if every rational prime < My factors into a product of prime ideals
of Ok, each of which is a principal ideal, then K has class number 4#(K) = 1. For
in this case every ideal of the type described here will also be principal.



12.6 Algorithm to Determine the Ideal Class Group 315
Algorithm to find the ideal class group H(K) of an algebraic number field K :

Input. Algebraic number field K = Q(0).

Step 1. Determine n = [K : Q].

Step 2. Determine r the number of real conjugates of 6. Then s = %(n —r).

Step 3. Determine d(K).

Step 4. Compute the Minkowski bound Mg = (2/7)* \/|d(K)|.

Step 5. Determine all rational primes p < M.

Step 6. Determine the prime ideal factorization of each principal ideal (p) in O with p as
in Step 5.

Step 7. Determine all products of these prime ideals having norm < M.

Step 8. Determine the generators of H(K) from the classes of these products.

Output. H(K).

We illustrate this algorithm by finding the ideal class group of several algebraic
number fields.

We denote the class containing the ideal A by [A] and the class of principal ideals
by 1.

Example 12.6.1 We show that K = Q(/—19) has class number h(K) = 1. Here
n=2r=0,s=1, dlK)=—19.

The Minkowski bound is

2\* 2 2
MK:<—> \/|d(K):—v19<§-5<4,
T T

so that the primes p < Mg are p = 2 and 3. As

2)-()--

the principal ideals (2) and (3) are both prime ideals in Ok. This is the situation
described just before the algorithm and so h(K) = h(Q(v/—19)) = 1. Hence the

ring of integers 7. + 7. (H— V2—19) of Q(V/—19) is a principal ideal domain and thus
a unique factorization domain.

Example 12.6.2 We show that K = Q(+/—163) has class number h(K) = 1. Here
n=2r=0,s=1, d(K)=—163.

The Minkowski bound is

My = (%) VId(K)| = (%) V163 < % 13 <9,
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so that the primes p < Mg are p =2,3,5, and 7. As

—163\ (—163\ (—163\ [/ —163\ !
2 ) \3 ) \s5 /) \171 ) 7
the principal ideals (2), (3), (5), (7) are all prime ideals in Og. Hence h(K) =

h(Q(v/—163)) = 1. Thus the ring of integers 7. + Z(Hi V;l“) of Q(v/—163) is a

principal ideal domain and so a unique factorization domain.

Example 12.6.3 We show that K = Q(~/23) has class number h(K) = 1. Here
n=2r=2,s=0, d(K)=92.

The Minkowski bound is

Mg = <%> VId(K)| =92 < 10,

so that the primes p < Mg are p =2,3,5, and 7. As
92 —1
—_— = _— :—1’
(5)-(5)

(3) is a prime ideal in Og. As
92 2
—_— = — =—l’
(3)-()

(5) is also a prime ideal in Ok . As

(2) ramifies in Og. Indeed
2) = (2, 14 +/23)%
The prime ideal (2, 1+ ~/23) is principal as

2, 14++23) = (2, 54++/23) (as5++23=2-2+ (1 ++/23))
= (54 +/23) (as 5+ /23 | 2).

3)-6)-

(7) = (7, 3+ ~/23)(7, 3 —+/23).

Finally, as

(7) splits in Og. We have
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The prime ideal (7, 3 + ~/23) is principal as

(7, 3+ /23y = (7, 4 —+/23) (as4— /23 =7—(3++/23)
=(4—+23) (as4—~23]7).

Similarly, (7, 3 — +/23) = (4 + +/23).
Hence every prime ideal in Ok dividing a rational prime < My is principal and
so Ok is a principal ideal domain, that is,

h(Q(v23)) = 1.

Before continuing we expand on that part of the calculation in Example 11.6.3
that shows that the prime ideal P = (2, 1 + +/23) is principal. We must find @ € P
such that P = («). By Exercise 8 of Chapter 9 it suffices to find an o € P such
that | N ()] = N(P) = 2, equivalently, N(«) = £2. As « is an integer of Q(+/23)
we have o = x + y~/23 (x, y € Z) so we wish to solve x> — 23y? = £2. This can
be done by means of Theorem 11.7.1. However, in this case x =5, y =1 is an
obvious solutionand o =5 4+ /23 = (2)2 + (1)(1 + +/23) € P.Thus P = () =
(5 4+ +/23).

Example 12.6.4 We show that
H(Q(vV—14)) >~ Z4.
Here
K=QW-14), n=2,r=0, s =1, d(K) = —-56.
The Minkowski bound is

Mg = (;) V0d(K)| = @) V56 < §\/224 <5.

The rational primes p < Mg are p =2 and 3. As
-56 —56
— | =0and | — ) =1,
2 3

(2) = P?, (3) = P\ P,

we have

where the prime ideals P, Py, P, are given by
P=2,v-14), PL=03,14++/=14), P, = 3,1 —+/—14).
The norms of these ideals are

N(P)=2, N(P)) = N(P,) =3.
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Clearly2 — \/—14 € P and 2 — /—14 € P,. Hence (2—+/—14) C P and (2 —
~—=14) C Py. Thus P | (2 — «/—1 Yand Py | 2 — v/ —14 .AsPandPl are dis-

tinct prime ideals, we have P Py | (2 — A/—14). Hence there exists an integral ideal
B of Ok such that

—+/-14)=PPB

Taking norms we obtain

18 = N((2 — v/—14)) = N(P)N(P,)N(B) = 6N(B),
so that N(B) = 3. Hence B = Py or P>. If B = P, then

— /=14 = PP,P, = P(3),
so that (3) | (2 — ~/—14), which is impossible. Hence B = P, and
(2 —+/—14) = PP
Thus
[PILP) =[PP =[(2—v—14)]

As [P]* = [P?] = | we deduce that [P] = [P]* and [P\]* = 1. Also, [P{][P»] =
[PiP,] =1 =[P]*sothat [P,] = [P,]. Thus 1, [Py], [P,]%, and [ P\’ comprise
all the ideal classes. We show that these four ideal classes are in fact distinct. We
do this by proving that [P]? # 1. Suppose that [P,]> = 1. Then[P] = 1 so that the
ideal P = (2, «/—14) is principal, say P = (x + y/—14), where x, y € Z. Then

2 = N((2,V—=14)) = N((x + y~/—14)) = x> + 14y,

which is impossible. This proves that H(Q(«/—14)) is a cyclic group of order 4
generated by the class of P;.

It is often useful when determining the ideal class group of an algebraic number
field K = Q(0) to calculate N(k + 0) fork = 0, 1, 2, ... and use those values that
only involve the primes p < Mg to find relations among the ideal classes.

This is illustrated in the next example.

Example 12.6.5 We show that
H(Q(\/ —65)) ~ Zz X Z4.
In this example we have

K=QW=65), n=2,r=0,s=1, d(K)=—260.
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The Minkowski bound is
2\* 2
Mg = <n> v ]d(K)| = (> /260 < 11.
T

The primes p < Mg are p =2,3,5, and 1. As
—260 —260 1
| = 0’ — )= =] = 1,
2 3 3
—260 -2 —
_— = O, — 60 = _1 =—1 )
5 7 7

(2) = P}, (3) = 0101, (5) = P5, (1) = prime ideal,

we have

where

P =(2,14+4-65), 01 = (3,14 +/—65),
0,=(3,1—-+v—=65), P, =(5,+/—065)

are distinct prime ideals. Thus
[P =1, [Q1][Q2] =1, [P =1.

Next we calculate the values of N(k 4+ «/—65) fork =0, 1,2, ..., retaining those
that only involve the primes 2, 3, and 5, until we have enough values to find all the
relations between [ P], [Q1], [Q2], and [ P,]. The first relevant value is

N4 4+ +/—65) = 81 = 3*.

We have
4+ /=65=3+(14++/—65) € 0,
so that
4+ +/—65) € 0,
and thus

Q1| 4+ +/-65).
Suppose that Q, | (4 + «/—65); then
(3) = 0102 | (4+v—65),

which is impossible. Hence Q1 (4 + +/—65). Let r be the unique positive integer
such that

O Il (4 + v—65).



320 The Ideal Class Group

Then
{4+ v/—65) =

for some integral ideal B of Ok with Q11 B and Q21 B. As Q1 B and 0,1 B
we see that N(B) is not a power of 3. Taking norms we obtain

3* =81 = N((4 + v/—65)) = N(Q'B) = N(Q1)' N(B) = 3’ N(B),

so thatr =4 and N(B) = 1. Hence B = (1) and

(4++/—65) = 0,
showing that
[0 =1.
Then, from [Q11[Q2] = 1 = [Q1]*, we deduce that
[02] =011,
Next we find that
NG5 ++/—65=90=2.3%.5,
We have
54 v/—65=2(2)+ 1(1 + v/—65) € Py,
54+ V/=65=203) - 1(1 — v/=65) € 0s,
5+ /=65 =1(5) + 1(+/=65) € P,
so that

Py | (54+V—=65), Q2| (5§4++/—65), P, | (54 —65)
Hence
(5+/=65) = P{ Q3 P}B,

for positive integers r, s, t and an integral ideal B of Og with Pyt B, 021 B, P> 1
B. We show next that Q1 1 B. Suppose that Qy | B. Then

(3)= 01021 (5++—65),

which is impossible. Hence Q1 1 B. Since Q1 1 B and Q, 1 B the norm of B cannot
be a power of 3. Taking norms we obtain

2-32.5=90= N({5++/—65)) =2"-3'-5'N(B),
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sothatr =1, t =1, and N(B) = 3*°. As N(B) is not a power of 3, we have
s =2, N(B)=1, B={(1). Hence

(5+ +/—65) = PLQ3P,.
Thus
[P[Q.)[P2] = 1.
Hence
[P,] = [P[Q:1 [P = [P1Q1]° = [PIQ1]
Thus all the ideal classes of K lie among
1, [01], [Q11% [Q1F, [P, [PILQ1], [PLQ1T, [P,
We claim that all these classes are distinct. We show first that

1, [01], [Q1)% (O

are distinct. As [Q11* = 1 it suffices to show that [Q 11> # 1. If [Q1]* = 1 then Q%
is a principal ideal, say,

07 = (x + yv/=65), x,y € Z.
Taking norms we deduce that
9 = x? + 65y,
so that x = £3, y = 0. Then
0t =(3)=0:10

and so Q1 = Q», contradicting that Q| and Q, are distinct ideals.

Thus H = {1, [Qil, [Q:i1>, [0:i1%} is a subgroup of order 4 of G =
H(Q(/—65)), so by Lagrange’s theorem, 4 | |G|. If |G| < 8 then |G| = 4 and so
G = H. Hence [P]] =1, [Q1], [Q:1]% or [Q:1]. Now [P] # 1 as 2 # x* + 65y?
for integers x and y. Thus ord[ P;] = 2. Asord[ Q] = ord[Q:1® = 4 we must have
[Pi]=[0Q:1]> Hence [P, Q%] = 1 so that PQ% = (x + y/—065) for integers x and
y. Then

18 = N(P, Q%) = x> + 65y,
which is impossible. This proves that

HQ(=65) = {1,[011, [Q11%, [0, [Pi], [PI[Q1], [PILQ1 1, [PLO1 T},

where

[0 =[P =1,
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so that

The Ideal Class Group

Table 5. Nontrivial ideal class groups
H(Qk)), =30 < k < 0, k squarefree

k H(Qk))
-5 {1, A} ~ A=[2,1+/-5)1 A2 =1
—6 {1, A} ~ =[<2,J_>] AT =1
—10 {I,A}: A=1[(2,/-10)], A2=1
—-13 {l,A}:Z A=[(2,14+/-13)], A2=1
—14  {1,A, A%, Ay~ 74, A=[3,1+/—14)],
A2 =[(2,/—=14)], A3 =[(3,1 —+/—14)], A* =1
—15  {1,A}~7Z,, A=[(2, %(3+\/—15)>], A2 =1
—17 {1, A, A% A3 }~Z4, _[3 1+ /=17)1,
A2 =[2, 14 /—17) [(3,1—+/—17)], A* =1
—21  {1,A,B,AB} ~17, sz A_ [(2,1++/=21)],
=[(3,~/—21)], AB =[(5,3 ++~/—21)],
A*=B*=(AB) =1
—22  {l,A} =7y, A=1[(2, J——zz)], A2 =1
23 {1,A, A% > 73, A=[(2, 301 +/=23))],
A2_[ L2 —/=23)], AP =1
—-26 {1,A, A2 A3, A4, A5}~Z6, A =[(5,2+\/—26)],
A% =1[(3, 1—«/—26)] [(2, /=2
A* =[(3, 14 /—26)], A5—[5 2— «/—2 6)], A°=1
—29 {1, A, A%, A3 A, AP ~Zs, A=1[(3,1++/-29)]
A2 =1[(51+ «/—29)], A3 =[(2,14+/-29)],
A*=1[(5,1—+/=29)], A5 =[(3,1 —/=29)], A® =1
—30 {1,A,B,AB} ~7, x Zy, A =1[(2,+/=30)],

=13, v=30)], AB = [(5, V—=30)],
A’=B?=(AB)y =1

Note: Excluded fields have class number 1.

H(Q(v—65)) >~ Zy X Zs.

Using the method illustrated in Examples 12.6.1-12.6.5 we can construct Tables
5 and 6 of class groups.

For a quadratic field K, Dirichlet has given an explicit formula for A(K). We
refer the reader to [1, p. 342] for a proof.

Theorem 12.6.1 Let K be a quadratic field of discriminant d. Then

|d|—1
nK) =~ r<d
1

— |, ifd <0,
21d] r> gd <
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Table 6. Nontrivial ideal class groups
H(QWk)), 2 < k < 100, k squarefree

k H(QWk))

10 {1,A)~Z,, A=1[(2,4/10)], A2=1

15 {1,A)~ ZZ,A=[<21+J_] A?=1

26 {1,A} ~ ZZ,A=[<2J_]A2—1

30 {1,A}~7Z,, A=[(2,30)], A2 =1

34 {1,A) ~ Zz, A=[(3,14++/34)], A>=1

35 {1,A)~7Z,, A=[(2,1++35)], A2=1

39 {1, A}~ ZZ,A=[<2,1+J_>] A2 =1

42 {1,A)~7,, A=[(2,V42)], A2=1

51 {1,A)}~ Zz, A=[(3,4/51)], A2=1

55 {1,AY~7Z, A=1[{2,1++55)], A2=1

58 {1,A}~7Z,, A=[(2,/58)], A2 =1

65 {1, A}~ Zz, A =[(5,/65)], A2=1

66 {1,A}>Z,, A=[(3,4/66)], A>=1

70 {1, A}~ Zz, A =[(2,/70)], A?=1

74 {1, A) ~ Zz, A =[(2,V/74)], A?=1

78 {1,A}~7Z,, A=1[(2,V/78)], A>=1

79 {1, A, A2}~Zq A=[3,1+V791,

A2=1[(3,1-+79)], A*=1

82 {1AA2 A%}~ 74, A=1[(3,24/82)],

[(2,v/82)], A* =1[(3,2 - /382)],

A4:1
85 {1,A)~7, A=

[(5,V/85)], A> =1
87 {1,A}~7,, A=]

[

[

5

(2,14++/87)], A2=1
(2,14+4/01)], A2=1
(2,14++95)], A2=1

91 {1,A}~7,, A=
95 {1,A}~7,, A=

Note: Excluded fields have class number 1.

and

h(K) = -1 Z (f)logsm , ifd > 0.

10g n 1<r<d/2

Here w(d) denotes the number of roots of unity in Og /7, (d < 0) so that

6, ifd = —
wd) =1 4, ifd =—4,
2, ifd < —4,

where (%) (n € N) is the Kronecker symbol and 5 is the fundamental unit of
Oqya) (d > 0).
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Example 12.6.6 We use Dirichlet’s formula to show that h(Q(x/—15)) = 2. Here
d = —15, w(d) = 2, and Theorem 12.6.1 gives

r

1 & /-15
hQW=15) = —1% :(——)
r=1

~1

= (1) +2(1) + 3(0) + 4(1) + 5(0) + 6(0) + 7(~1) + 8(1)
+ 9(0) + 10(0) + 11(—=1) + 12(0) + 13(=1) + 14(—1))

= %(1-1—2-1—4—7-1—8—11—13— 14)

-1
= —(-30)=2.
15( )

Example 12.6.7 We use Dirichlet’s formula to show that h(@(«/g)) = 1. In this
cased =5, n=1+ \/5)/2, and Theorem 12.6.1 gives

h(Q(5)) =

&

r=1

2
) Z log sin ?

2
log sm — — logsin 5

log — log — 1
<3+\/§)
log 7
=1.

B 1 log 10425
N C+ﬁ> 10— 2V5 C+ﬁ>_
2log 2log >

)
1+f5>
o (157)

2

Tables 7 and 8, which give the class numbers of quadratic fields Q(v/k) with k
squarefree between —195 and 197, can be constructed using Dirichlet’s formula.

We conclude this section by determining the ideal class group for two cubic fields
and a quartic field.
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Table 7. Class numbers of imaginary quadratic fields
K = Q(\/E), — 195 <k < 0, k squarefree

ko K| kK mK)| kK wK)| k kK| k  hK)
—1 1 | -38 6 | —78 4 | =115 2 | -158 8
) 1 | =39 4 |-79 5 [ —118 6 | —159 10
-3 1 | —41 8 | —82 4 | =119 10 | —161 16
-5 2 | —42 4 | -83 3 | —-122 10 | —163 1
—6 2 | —43 1 | =85 4 | —123 2 | -165 8
-7 1 | —46 4 | -8 10 | —-127 5 |—166 10
~10 2 | -47 5 | -87 6 | —129 12 | —167 11
~11 1 | =51 2 | -89 12 | —-130 4 | -170 12
~13 2 | -53 6 | -91 2 | =131 5 | 173 14
—14 4 | -55 4 | -93 4 | —133 4 | -174 12
~15 2 | =57 4 | -94 8 | —134 14 | —177 4
—17 4 | -58 2 | -95 8 | -137 8 |-178 8
-19 1 |-59 3 | -97 4 | -138 8 | =179 5
21 4 | -6l 6 | —101 14 | —139 3 | —181 10
—22 2 | -62 8 | —-102 4 | —141 8 | —182 12
23 3 | -65 8 | —-103 5 | —142 4 | —183 8
26 6 | —-66 8 | —105 8 |—143 10 | -185 16
—29 6 | —-67 1 | —106 6 |—145 8 |-—186 12
30 4 | -69 8 | —-107 3 | —146 16 | —187 2
31 3 | -70 4 | -109 6 |—149 14 |-190 4
33 4 |71 7 | =110 12 | =151 7 | =191 13
34 4 | =73 4 | -111 8 | -154 8 | —193 4
35 2 | -74 10 | -113 8 | —155 4 |-194 20
37 2 | -77 8 | —-114 8 | —157 6 | —195 4

Example 12.6.8 We show that H(K) is trivial for the cubic field K = Q(0), where
63 +6 + 1 = 0 (see Example 7.1.3). Thus Oy is a principal ideal domain and so
is a unique factorization domain. Here

DB)=—-4-1°>-27-12=-31
is negative so that x> + x + 1 = 0 has one real root and two nonreal roots. Thus
r=1, s=1.
As D(0) is squarefree, K = 7.+ 7.6 + 76* and
d(K)= D) = -31.

The Minkowski bound is
2\° 2 2
MK=<—> v/ d(K) =(—> «/31<§-6=4,
b4 b4

so that the primes p < Mg are p =2 and 3. The polynomial x> +x + 1 is
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Table 8. Class numbers of real quadratic fields
K = Q(k), 0 <k <197, k squarefree

k hK)| k mK)| kK hK)| k& RhK)| k hK)
2 1 39 2 79 3 118 1 159 2
3 1 41 1 82 4 119 2 161 1
5 1 42 2 83 1 122 2 163 1
6 1 43 1 85 2 123 2 165 2
7 1 46 1 86 1 127 1 166 1
10 2 47 1 87 2 129 1 167 1
11 1 51 2 89 1 130 4 170 4
13 1 53 1 91 2 131 1 173 1
14 1 55 2 93 1 133 1 174 2
15 2 57 1 94 1 134 1 177 1
17 1 58 2 95 2 137 1 178 2
19 1 59 1 97 1 138 2 179 1
21 1 61 1 101 1 139 1 181 1
22 1 62 1 102 2 141 1 182 2
23 1 65 2 103 1 142 3 183 2
26 2 66 2 105 2 143 2 185 2
29 1 67 1 106 2 145 4 186 2
30 2 69 1 107 1 146 2 187 2
31 1 70 2 109 1 149 1 190 2
33 1 71 1 110 2 151 1 191 1
34 2 73 1 111 2 154 2 193 1
35 2 74 2 113 1 155 2 194 2
37 1 77 1 114 2 157 1 195 4
38 1 78 2 115 2 158 1 197 1

Gauss conjectured that Q(v/k) has class number 1 for infinitely many
squarefree k € N. It is still not known whether this conjecture is true or
false.

irreducible (mod 2), so that the principal ideal (2) is prime in Og. The factor-
ization of x> + x + 1 into irreducibles (mod 3) is
X Hx+1=x—DE*+x—1)(mod 3),

so that by Theorem 10.3.1 the factorization of (3) into prime ideals in Ok is

(3)=PO0,
where
P=(3,0—-1), N(P)=3,
Q=(3,0+6—1), N(Q) =3%
Now

@ —1°+306-1)+46-1)+3=0,
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so that
0 —1]13,
and thus
P=3,0-1)=(-1).
Further,
3 2 2
ﬁ=—4—3(9—1)—(0—1) =-2—-0-90
so that
Q=3P ' =03)0-1)"= (93_1)

=(=2—-0—0%=(2+06+6>.

Hence all the prime ideals dividing the principal ideals (p) (p (prime) < Mg) are
principal so that the ideal class group H(K) is trivial.

Example 12.6.9 We show that H(Q(~/2)) is trivial. Let 0 = /2 and K = Q(0) =
Q(f/i). Clearly, irrg 6 = x3 — 2, which has one real root (namely 6) and two
nonreal roots (namely w8 and w*0, where w is a complex cube root of unity). Thus

r=1, s=1.

It was shown in Example 7.1.6 that {1, 6, 6%} is an integral basis for K and d(K) =
—108. The Minkowski bound is

My = (%) VId(K)| = %«/108 <

Thus the primes p < Mg are p = 2,3, and 5. Clearly,

21
=7

Wi

(2) = P?,

where P = (0) is a principal prime ideal of norm 2. Also,

where Q = (0 + 1) is a principal ideal of norm 3. This is clear as

Q = +1)°=(0+1°) =(0>+30>+30+1) = (3430 +36%)
= (3(1 + 6 + 6%)) = (3),

since 1 4+ 6 + 67 is a unit of Ok as

(1+6+6)(—14+60)=—-1+6°=1.
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Finally, as
X =2=(x~+2)x*>=2x —1)(mod 5),
by Theorem 10.3.1 we have
(5)=Pr0,
where P and Q are distinct prime ideals with

P=(52+6), N(P)=35,
0 =(5—-1-20+6%, NQ) =5

Now
5=441=04+1=0>+ 1O —0>+1)= 0>+ 1)(1 +20 — 62,
so that 1 + 26 — 02 | 5 and thus
0= (1+20—6%

and
P=030"=5)(1+20—-06%"
= (S +20—6%)")y = (501 +20 — 677"
5 _ 2
T —e) =T

Since all the prime factors of 2, 3, and 5 are principal, H(Q(~/2)) is trivial. Hence
h(Q(W2)) = 1.

The class numbers of Q(v/k) for cubefree positive integers k up to 101 are given

in Table 9. Note that Q(v/—k) = Q(+/k) and Q(v/k2) = Q(V/k).

Example 12.6.10 We show that the ideal class group H(K) of the quartic field
K = Q2 + i) is trivial. We have already observed that K is a cyclotomic field,
namely, K = Q(¢3) = Kg. Thus, by Theorem 7.5.2, K is a monogenic field. Indeed
Ok =7+ Ty + 752 + 7,83, by Theorem 7.5.1. Set 0 = &g = (V2 + ~/—2)/2.

The minimal polynomial of  is irrg 6 = x* + 1, which has four nonreal roots,
namely, %(:I:\/E + iﬁ). Thus r =0, s = 2. It was shown in Example 7.1.7 that
d(K) = 256. Thus the Minkowski bound My satisfies

2\* 2 2\/_ 64

Hence the primes p < Mg are p = 2,3, and 5.
The factorization of x* + 1 into irreducible polynomials modulo 2 is given by

x*4+1= @+ D* (mod 2)
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Table 9. Class numbers of
QWk), 2 <k <101, k cubefree

k h@QWk) | Kk hQWk) | k hQWk)
2 1 37 3 69 1
3 1 38 3 70 9
5 1 39 6 71 1
6 1 41 1 73 3
7 3 42 3 74 3
10 1 43 12 76 6
11 2 44 1 77 3
12 1 45 1 78 3
13 3 46 1 79 6
14 3 47 2 82 1
15 2 51 3 83 2
17 1 52 3 84 3
19 3 53 1 85 3
20 3 55 1 86 9
21 3 57 6 87 1
22 3 58 6 89 2
23 1 59 1 90 3
26 3 60 3 91 9
28 3 61 6 92 3
29 1 62 3 93 3
30 3 63 6 94 3
31 3 65 18 95 3
33 1 66 6 97 3
34 3 67 6 99 1
35 3 68 3 101 2

so that by Theorem 10.3.1 the factorization of the principal ideal (2) into prime
ideals in Ok is

(2) = P},
where
Pi=(2,146), N(P)=2.
Now
(146 —4(1 460 +6(1+6)> —4(1+6)+2=0,
so that 1 + 6 | 2. Hence
Pi=(2,146)=(1+6)

is principal.
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The factorization of x* 4 1 into irreducible polynomials modulo 3 is given by
x4+ 1= +x— DE*—x — 1) (mod 3),

so that by Theorem 10.3.1 the factorization of the principal ideal (3) into prime
ideals in Ok is

(3) = P,P5,

where
P,=(3,1-0—-6%, P;y=3,14+60—06%, N(P,) = N(P3) =3, P, # P;.
As 0% + 1 = 0 we see that 6 | 1, so that 0 is a unit of Og. Further, as

(1—6—6%(1+6—6%=-36
we deduce that

1—0—6%|3and1+6—067]3,
so that the ideals

P=(1-60—-06%, Ps=(1+6—06%

are principal.
The factorization of x* + 1 into irreducible polynomials modulo 5 is given by

x4+ 1=+ 2)(x* = 2) (mod 5),

so that by Theorem 10.3.1 the factorization of the principal ideal (5) into prime
ideals in Ok is

(5) = Py Ps,
where
Py = (52467, Ps= (5 —2+406%, N(Py) = N(Ps)=5% P, +# Ps.
Now
Q+60°)(—2+6%) = —4+06* = -5,
so that
24+6%15 —2+67]|5.
Hence the ideals
Py=(246%), Ps=(-2+67

are principal.
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Table 10. Class numbers of
cyclotomic fields K,,, 3 <m <485,

m % 2 (mod 4)

m h(K,) | m hK, | m K,
3 1 17 1 32 1
4 1 19 1 33 1
5 1 20 1 35 1
7 1 21 1 36 1
8 1 23 3 37 37
9 1 24 1 39 2
11 1 25 1 40 1
12 1 27 1 41 121
13 1 28 1 43 211
15 1 29 8 44 1
16 1 31 9 45 1

Note: K,, = K, for n odd.

We have shown that all the prime ideals dividing the principal ideals
(p), where p is a prime < My, are principal so that the ideal class group H(K) is
trivial. Hence h(Kg) = 1.

We conclude this section with a short table of class numbers of cyclotomic fields
(Table 10).

12.7 Applications to Binary Quadratic Forms

Let m be a squarefree integer. Let K be the quadratic field Q(y/m). The discriminant
d(K) is given by

d(K) =2"m, 12.7.1)
where
. 0, if m =1 (mod 4),
5= { L it =2 013 (mod 4) (12.7.2)
Let p be an odd prime such that
d(K
( ( )> =1 (12.7.3)
p

We observe that (12.7.3) is equivalent to (%) = 1as p # 2. Then

(p) = P1 P,
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where P; and P, are distinct conjugate prime ideals of Og. Let & denote the class
number 4(K). Then

(r") = (p)" = PI'Py.
As[P1] € H(K) and card(H(K)) = h, we have

[PI]=[P]" = L.
Thus Plh is a principal ideal, say,

X+ yJ/m

Pl ={ 21-3

)

where x and y are rational integers with x = y (mod 2) if m = 1 (mod 4). As ch
is the conjugate ideal of Plh, we have

X —ym
Pl = {5
so that
x% — my?
(P" = (5
Thus
2 2
B X° —my
p=o ()
for some 6 € U(Og). But
41—5ph
0= €
x2 — my? Q
sothat 0 € U(Z) = {£1}. Hence
A3 ph = 4(x? — my?), (12.7.4)

showing that 4'=% p" is represented by one or both of the binary quadratic forms
x2 —my? and —x? 4+ my>.
We prove that

G y) = {1, if m =2 or 3 (mod 4), (12.7.5)

lor2, ifm =1 (mod 4).

Suppose that g is an odd prime with ¢ | (x, y). Then x = ¢x; and y = gy, for
integers x; and y; withx; = y; (mod 2)ifm = 1 (mod 4). From (12.7.4) we deduce
that g2 | 4! =% p". As ¢ # 2 we must have ¢ = p. Thus

X1 +y1Jn7 X1 +y1\/ﬁ

Pl = (=) = PP ),
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so that P, | Plh, contradicting that P; and P, are distinct prime ideals. Hence there
are no odd primes dividing (x, y) and so

(x,y)=2"

for some nonnegative integer w. From (12.7.4) we deduce that 22 | 22(1=% o that
O<w<l-6Ifm=2o0or3(mod4)thend=1and w=0.If m =1(mod 4)
then§ = 0and w =0 or 1.

If m is negative then x> — my> > 0, so the plus sign holds in (12.7.4). If m is
positive and there exist integers T and U such that T?> — mU? = —1 then

—(x? —my?) = (T?* — mU>(x*> — my?) = (Tx + mUy)> —m(Ty + Ux)?

and the plus sign holds in (12.7.4).
If m = 1 (mod 8) then 6 = 0 (by (12.7.2)) and (12.7.4) gives

x? —y? = x> — my? = £4p”" = 4 (mod 8),

so that x = y = 0 (mod 2). Setting x = 2u, y = 2v (u, v € Z), we obtain from
(12.7.4)

ph = :i:(u2 — mvz).

From (12.7.5) we deduce that (i, v) = 1.
If m = 5 (mod 8) then § = 0 (by (12.7.2)) and x = y (mod 2). Set

x=v+2u, y=v,
where u, v € Z. Then (12.7.4) becomes
:i:4ph =x>— my2 = (v + 2u)> — mv® = 4u® + 4uv + (1 — my?
so that
p" =+’ +uv + (2.
From (12.7.5) we have
Qu,v) =W+ 2u,v)=(x,y)=1or2,

so that (1, v) = 1 or 2. But (u, v)? | p”, so that (u, v) = p' for some nonnegative
integer ¢. Hence t = 0 and (u, v) = 1. We have proved the following result.

Theorem 12.7.1 Let m be a squarefree integer. Let p be an odd prime with
(%) = 1. Let h denote the class number of the quadratic field Q(\/m).
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If m is negative or m is positive and there are integers T and U such that
T? — mU? = —1 then there exist coprime integers u and v such that

u> — mv?, ifm=1(mod 8) orm = 2,3 (mod 4),

h
1
u? +uv + Z(l —m)v?, ifm =5 (mod 8).

p:

Otherwise there exist coprime integers u and v such that

i u?> —mv? or —u®>+mv?, ifm =1 (mod 8) or m = 2,3 (mod 4),
= 1 1
p u? + uv + Z(l —mlor —u? —uv — Z(l — mn?, ifm =5 (mod 8).

The reader should compare this theorem with Theorems 1.4.4 and 1.4.5.
In the opposite direction to Theorem 12.7.1 we have the following simple result.

Theorem 12.7.2 Let ax? 4 bxy + cy? be an integral binary quadratic form of
discriminant d. Let p be an odd prime with p 1 a. Let k be a positive integer.

If <%) = —1 then there do not exist coprime integers u and v such that
p* = au® + buv + cv>. (12.7.6)
Proof: Suppose on the contrary that (%) = —1 and there are coprime integers u

and v satisfying (12.7.6). Then, as d = b? — 4ac, we have
4ap* = Qau + bv)> — dv?. (12.7.7)
From (12.7.7) we see that
plv= p|2au +bv=— p|u, aspf2a,

contradicting that («, v) = 1. Hence p 1 v. Then there exists an integer w such that
vw = 1 (mod p). Thus

(Qau + bv)w)* = dv*w? = d (mod p),

so that (%) =0 or 1, contradicting that (%) = —1. This proves that no such
integers u and v exist. [ |

In the next three examples we apply Theorems 12.7.1 and 12.7.2 in the cases
m = —1, —2, and —3. We recover Theorems 2.5.1, 2.5.2, and 2.5.3 respectively
(see Exercises 12, 14, and 16 of Chapter 2).

Example 12.7.1 m = —1. Here h = h(Q(~/—1)) = 1. If p is an odd prime with

(%) =1, by Theorem 12.7.1 there exist (coprime) integers u and v such that

p = u® 4+ v2. Conversely, by Theorem 12.7.2, if there exist integers u and v such
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that p = u* 4+ v? (so that (u, v) = 1) then (774) =0 or 1, that is, (%) =1 as
p # 2. Since (%) =1 <= p=1(mod 4), and2 = 1> + 12, we deduce that for
a prime p

p=u’+1vP < p=20rp=1(mod4)

(see Theorem 2.5.1 and Exercise 12 of Chapter 2).

Example 12.7.2 m = —2. Here h = h(Q(~/—2)) = 1. Let p be an odd prime. If
(‘72) =1, then, by Theorem 12.7.1, there exist (coprime) integers u and v such
that p = u® + 2v2. Conversely, by Theorem 12.7.2, if there exist integers u and
v such that p = u® + 2v? then (778) =0 or 1, so that (%2) =1 as p is odd.
Since (772) =1<= p=1,3(mod 8), and2 = 0> + 2 - 12, we deduce that for a
prime p

p=u’+20" < p=20rp=1,3(mod 8)

(see Theorem 2.5.2 and Exercise 14 of Chapter 2).

Example 12.7.3 m = —3. Here h = h(Q(+~/—3)) = 1. Let p be an odd prime. If
(‘73) =1, then, by Theorem 12.7.1, there exist (coprime) integers u and v such

that p = u® + uv + v2. Conversely, by Theorem 12.7.2, if there exist integers u and
v such that p = u*> 4+ uv + v? then (%3) =0or 1, so that p =3 or (%3) =1
Since(’f’) — 1= p=1@mod3),2#u’>+uv+viand3=12+1-1+12
we have for a prime p

p=u’4+uv+v’ < p=3orp=1(mod3)

(see Theorem 2.5.3 and Exercise 16 of Chapter 2).
We now give an example with 2(Q(y/m)) > 1.

Example 12.7.4 m = —5. Here h = h(Q(v/=5)) = 2. If p is an odd prime with
(‘75) =1, by Theorem 12.7.1 there exist coprime integers u and v such that p> =
u® + 5v%. Conversely, by Theorem 12.7.2, if there exist coprime integers u and v
such that p* = u® 4 5v%, where p is an odd prime, then (775) =0 or 1. Hence
p=>50rp=1,3,7, 0r9 (mod 20). Clearly 2%, 5% # u? + 5v* with (u, v) = 1, so
that for a prime p

pP=u*+50% (u,v)=1<= p=1,3,7,9 (mod 20).



336 The Ideal Class Group

We note that

292 = 11> +5-12%2and 29 = 3> +5 .22,
32=224+5-1% but 3 # u* + 50v°.

We return to the representability of p by the form u® + 5v? in Example 12.7.5.
Theorem 12.7.1 is concerned with the representability of p” by a binary quadratic
form of discriminant m or 4m. But what about the representability of p itself by

such a form? To tackle this problem we must use our knowledge of the generators of
the ideal class group of Q(+/m). We illustrate the ideas involved with two examples.

Example 12.7.5 The ideal class group of K = Q(v/=5) is
H(K) = HQW=5) = {1,[Q]} = Z,,
where [ Q] is the class of the ideal Q given by
0= (2,1++/=5), , N(Q)=2
(see Table 5). Let p # 2,5 be a prime such that (%) =1, so that
(p) = P1 P,

where P; and P, are distinct conjugate prime ideals of Ok. Hence [P;] =1 or
[P1] = [Q]. In the first case P is a principal ideal, say, Pi = (x + y+/—5), where
X,y € Z, so that

p = N(P) = N({x + yv/=53)) = IN(x + yv/=5)| = x* + 5y*.

In the second case [P1Q] = [P11[Q] = [Q]> = [Q%] = [(2)] = 1, so that P,Q is
a principal ideal, say, P\Q = (x + y«/—5), where x, y € Z, and

2p = N(P))N(Q) = N(PQ) = N({x + y~/=5)) = x* + 5y~

Hence we have shown that for a prime p # 2,5

-5
<—> = 1= p or2p = x* + 5y for integers x and y.
p

Conversely, if p # 2,5 is a prime with p or 2p = x*> + 5y for some integers x
and y then p 1 y so that yz = 1 (mod p) for some integer z and thus, as x> = —5y?
(mod p), we have

(xz)* = — 5(yz)* = —5 (mod p),

so that <_7S> =0orl. Asp#Swehave(p) = 1. Hence, for a prime p # 2,5,
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we have shown that
por2p =x’+5y’ (?) =1.
Now suppose that p = x*> + 5y°. Working modulo 4, we obtain
p=x*+5y"= p=x*+y*(mod 4) = p =1(mod 4) = (;) =1

and modulo 5, we obtain
p=x2+5y2 =>pzx2(m0d5)=>pz 1,4 (mod 5) = <§> = 1.
However, if 2p = x* + 5y? then modulo 8 we deduce

-1
2p =x*+5y> = 2p =6(mod 8) = p =3 (mod 4) = (—) = -1
p

and modulo 5 we get

2p =x> 45y = 2p = x> (mod 5) = 2p = 1 or 4 (mod 5)

— p=2,3(mod 5) — (%) "

By the law of quadratic reciprocity, we have

HO-R)0)-6)

Hence, for a prime p # 2,5, we have proved that

—1
p:x2+5y2<:) <—) = <£> =1,
P 5

-1
2p =x*+5y* & <—> = <£> = -1
p 5
When p is a prime such that

-6~

(for example a prime p = 3 (mod 20)) 2p is represented by a binary quadratic form
of discriminant —20, namely x> + 5y?. But what about the representation of p itself
by a binary quadratic form of discriminant —20? It cannot be the form x> + 5y?
but maybe there is some other form of discriminant —20 that represents p. We show
that this is indeed the case and that the form can be taken to be 2x* + 2xy + 3y>.
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Suppose that p £ 2, 5 is a prime such that

—1
)-()--
P 5
Then there exist integers y and z such that 2p = z*> + 5y%. Clearly z = y (mod 2).
Thus we can define an integer x by z = y + 2x. Then
2p = (y +2x)? + 5% = 4x? + 4xy + 6y°
so that
p = 2x% 4 2xy + 3y°.

The form 2x?* + 2xy + 3y? has discriminant = 2> — 4 - 2 - 3 = —20. Conversely, if
p = 2x% 4 2xy + 3y forintegers x and y, then2p = X> + 5Y> with X =2x +y
and Y = y. Hence p satisfies

)-()--

We have shown that for a prime p # 2,5

-1
p=x> 45y <—> = (g) =1+ p=1,9(mod 20),
P
-1
p=2x"4+2xy + 3y’ = <—> = <§> = —1 <= p=3,7 (mod 20).
P

This result provides a refinement of Example 12.7.4. Note that

p=x>+5y" = p* =u®+ 5%, (u,v) =1,
withu = x> — 5y2, v =2xy,

and

p=2x"4+2xy+3y = p? =u’*+ 57 (u,v)=1,
with u = 2x% 4+ 2xy — 2y%, v = 2xy + y*.

We conclude by noting that the prime 2 is represented by 2x* + 2xy + 3y?* but
not by x> + 5y? and that 5 is represented by x* + 5y? but not by 2x* + 2xy + 3y>.

Example 12.7.6 The ideal class group of K = Q(v/—21) is
H(K) = H(Q(v-21)) = {1, [A], [B], [Al[B]} =~ Z, x Za,
where [ A] is the class of the ideal A given by

A=(2,1++/=21), A2=(2), N(A) =2,
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[B] is the class of the ideal B given by
(3, v/-21), , N(B) =3,
and
[AI[B] =[AB] = [{5,3+ v—=21)],[A]* = [B) = [AB* = |

(see Table 5).
Let p £ 2,3,7 be a prime such that (_721) = 1. By the law of quadratic reci-

procity we have
SYHVIOIS
p /) \3)\7)\p
so that
(<3>, <£>, <_—1>> = (1.1.1). (=1, 1. —=1), (1, =1, 1), or (=1, —1, 1),
3 7 p

As (_721) = 1 we have
(p) = PP,
where Py and P, are distinct conjugate prime ideals in Og. Hence
[Pl =1, [A], [B], or[AB].

If[P1] = 1 then P is a principal ideal, say, Py = (x + y~/—21), where x,y € Z,
so that

p = N(P)) = N((x + yv/=21)) = x? + 21y%.

If[P)] = [A] then [AP,] = [A][P,] = [A)? = 1, so that AP, is a principal ideal,
say, AP) = (x + y~/—21), where x, y € Z, so that

2p = N(AP)) = N({x + yv/—=21)) = x* + 21y>.

Similarly, if[P1] = [B]wefindthat3p = x2+ 21y2 (x,y € Z)and if| P1] = [AB]
then 5p = x* +21y% (x, y € 7).
Next if p = x> 4 21y? then we have

(5)-(252)- ()
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Similarly,
2p = x* 421y = <

3p=x2+21y2:>(

-1
5p=x*+21y" = <£> = -1, ) =1, <_> =
3 p

However, if p # 2, 3,7 is a prime such that (72> = —1 then p,2p,3p,5p #
x2 4+ 21y2, so we have proved the following: If p # 2,

2 2 p p
- 2y = () =1, (2
pereant e (5) =1 (7)
—1
=421y e () =1, (B) =1, (22) = -1,
3 7 p
~1
(@)= ()
7 p
~1
()= (5) -
7 p

2p = x? 4+ 21y? &< p = 2u® + 2uv + 11v°,
3p = x> +21y? & p = 3u® + Tv°,
5p = x> 421y? < p = 5u® + 4uv + 50,

3,7 is a prime then

—1
OR
p

3p =x*+21y? = §>
2 2 P
5p=x +21y — <§>

Easy calculations show that

Thus, for a prime p # 2, 3,7, we have
p=x>+21y* < p =1,25,37 (mod 84),
p=2x*+2xy+ 11y* &< p = 11,23,71 (mod 84),
p =3x> +7y* < p =19, 31,55 (mod 84),
p=5x4+4xy +5y* < p =5,17,41 (mod 84).

We leave it to the reader to determine which forms represent the primes 2, 3, and 1.

These examples suggest a theorem of the following type: If ax?> + bxy + cy*isa
form of discriminant D then there exist positive integers s, ay, . . . , d;, m (depending
on a, b, ¢) such that for a prime p # 2 not dividing D

p=ax’+bxy+cy’ < p=ay,...,a, (mod m).



Exercises 341

However, such aresult does not hold for every form ax? + bxy + cy?. This is proved
in [6], where it is shown that every arithmetic progression either contains no primes
of the form x? + 14y? or contains primes of both forms x? + 14y? and 2x? + 7y?,
proving that congruences cannot be used to distinguish the representability of a
prime by x? + 14y? from that by 2x? 4+ 7y2. By the methods used in Examples
12.7.5 and 12.7.6 we can prove that for a prime p # 2,7

2
p=x>+14y? or 2x* + 7y? = (g) = (—) =1
p
< p=1,9,15,23,25,39 (mod 56)

and

2
p=3x>4+2xy +5y* = (g) = <_> =1
p
< p =3,5,13,19, 27,45 (mod 56).

Muskat [5] has shown how to distinguish the representations p = x? 4 14y?
and p = 2x% + 7y2 as follows. Let p be a prime with p =1,9, 15, 23, 25,
39 (mod 56). Then, as in Example 12.7.1, we can show that p = u? + 7v? for some
integers u and v. If p = 1 (mod 8) then u is odd and v = 0 (mod 4), and replacing
u by —u if necessary we may suppose that u = 1 (mod 4); if p = 7 (mod 8) then
u = 0(mod 4) and v is odd, and replacing v by —v if necessary we may suppose
that v = 1 (mod 4). Thus in both cases we have

2p +u+v=3(mod4)
and Muskat has proved that

p=x>414y> < 2p+u+ v =3 (mod 8),
p=2x>+7y> <= 2p+u+v="7(mod 8).

Exercises

. Prove that H(Q(+/—6)) = {1, [(2, v/=6)1} =~ Z,.
. Prove that H(Q(+/—=7)) = 1.

. Prove that H(Q(+v/—11)) = 1.

. Prove that H(Q(v/—13)) ~ Z,.

. Prove that H(Q(v/—15)) >~ Z,.

. Prove that H(Q(v/—17)) =~ Z.

. Prove that H(Q(+~/—23)) ~ Zs.

. Prove that H(Q(v/—26)) ~ Zs.

. Prove that H(Q(+/—30)) ~ Z, X Z,.
. Prove that H(Q(v/—47)) ~ Zs.

. Prove that H(Q(v/6)) = 1.

. Prove that h(Q(v/10)) = 2.

O 00 1 O D AW N~

— =
N = O



342 The Ideal Class Group

13. Prove that H(Q(15)) = {1, [(2, | + V/15)]} ~ Z,.

14. Let K = Q(0), where 6% — 40 + 2 = 0. Prove that #(K) = 1.
15. Prove that A(Q(+v/3)) = 1.

16. Prove that A(Q(v/3)) = 1.

17. Determine h(Q(~/2)).

18. Let p be a prime # 2, 5. Prove that

p=x>410y?> < p=1,9, 11, 19 (mod 40),
p =2x>+5y% < p =17,13,23,37 (mod 40).

19. Let p be a prime # 3, 13. Prove that

p=2x"+xy+5y (g) = <£> =—1.

20. Let p be a prime # 3, 5. Prove that

p=x*+xy+4y? = <§> = (?) =1,

p=2x% +xy 42y = (g) - (£> -1

21. Determine exactly which primes p are represented by x> + xy + 5y°.
22. Determine exactly which primes p are represented by x> + xy + 11y
23. Let p be a prime # 2, 31. Prove that
2 2 5,2 2 2 2 2 p
p=x"4+62y", 2x~+31y°, or Tx" +2xy+ 9y = | — | = 31 =1
p
and
2 2 2 2 2 p
p=3x"+2xy+2ly-orllx"+4xy+ 6y << | — | = i) = —1.
p

24. Let K be a quadratic field. Let / be an ideal of Ok If I? is a principal ideal prove that

[ is a equivalent to its conjugate ideal I’.

25. Let K be an imaginary quadratic field with discriminant d < —4. Use Dirichlet’s class
number formula to prove that

h(K):;Z g.
Y

1=<r(d

26. Let p be a prime = 3 (mod 4). Use Dirichlet’s class number formula to prove that

h(Q(/=p)) = 1(mod 2).
27. Let K = Q(4/n), where n is a squarefree integer > 1 with n = 1 (mod 4). Let m be a
positive integer dividing . Prove that

m+ /n
2

(m, /n) = (m, )

in O](.
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28. Let p be a prime with p = 3 (mod 4). It is known that 2(Q(,/p)) is odd. Use this fact
to prove that there exist integers a and b such that

a? — pb* = (=P,

[Hint: Consider the ideal (2, 1 + ,/p).]

Suggested Reading

1. Z. 1. Borevich and I. R. Shafarevich, Number Theory, Academic Press, New York and
London, 1966.
Dirichlet’s formula for the class number of a quadratic field is proved in Chapter 5.

2. L. Carlitz, A characterization of algebraic number fields with class number two, Pro-
ceedings of the American Mathematical Society 11 (1960), 391-392.
It is proved that an algebraic number field K has class number #(K) < 2 if and only if whenever
a nonzero, nonunit @ € Ok can be written as o« = um; ---mw, = u'my - - - ] with u, u" units and
My, ..., Ts, T}, ..., ] are primes in Ok then s = 1.

3. D. A. Marcus, Number Fields, Springer-Verlag, New York, Heidelberg, Berlin, 1977.
Chapter 5 contains a proof of (12.5.1).

4. J.M. Masley and H. L. Montgomery, Cyclotomic fields with unique factorization, Journal
fiir die reine und angewandte Mathematik 286/287 (1976), 248-256.
The authors prove that there are precisely 29 distinct cyclotomic fields K, (m # 2 (mod 4)) with
h(K,,) = 1, namely those given by

m=23,4,57,8,9,11,12,13, 15, 16, 17, 19, 20, 21, 24, 25, 27, 28, 32, 33, 35, 36,
40,44, 45, 48, 60, 84.

5. J. B. Muskat, On simultaneous representations of primes by binary quadratic forms,
Journal of Number Theory 19 (1984), 263-282.
It is shown how the representability of primes by the forms x> 4+ 14y? and 2x? + 7y? can be
distinguished.

6. B. K. Spearman and K. S. Williams, Representing primes by binary quadratic forms,
American Mathematical Monthly 99 (1992), 423-426.

It is shown that the representability of primes by the forms x? + 14y? and 2x2 + 7y? cannot be
decided by congruence considerations alone.

7. H. M. Stark, A complete determination of the complex quadratic fields of class number
one, Michigan Mathematical Journal 14 (1967), 1-27.

The author shows that A(Q(+/k)) = 1, where k is a negative squarefree integer, if and only if
k=-1,-2,-3,-7,—-11,-19, —43, —67, —163.

Biographies
1. J. V. Brawley, In memoriam: Leonard Carlitz (1907-1999), Finite Fields and Applica-
tions 6 (2000), 203-206.
A brief biography of Carlitz is given.
2. F. T. Howard, In memoriam—Leonard Carlitz, Fibonacci Quarterly 38 (2000), 316.
Another brief biography of Carlitz is given.



13
Dirichlet’s Unit Theorem

13.1 Valuations of an Element of a Number Field

Let K be an algebraic number field of degree n > 2 over Q. Let {0y, ..., 0,} be
the set of all monomorphisms : K — C. If 0;(K) € R we say that o; is a real
embedding; otherwise o; is said to be a complex embedding. As usual & denotes
the complex conjugate of @ € C. We define for all @ € K

Gi(a) = oi().

Since complex conjugation is an automorphism of C, ¢; is amonomorphism: K —
C. Hence 6; = o} for some j. Now o; = &; if and only if o; is real, and ¢; =
o; so that complex monomorphisms occur as conjugate pairs. We enumerate the
monomorphisms in such away thato, ..., o, arereal, 0,41, ..., 0,4, are complex,
and 0,441 = Oy11, ..., 0y = Or42 = O,45. The conjugate fields of K are K¢) =
0;(K), i =1,2,...,n. Ther conjugate fields KV, ..., K" arereal and the n — r
fields KUtV ..., K™ are nonreal with KU +s+D) = go+D_ KO — go+2) —
K (+5) We note that

n=r-4+2s (13.1.1)
and

1
r+s2§(r+2s)= > 1.

NS

If s = O then all the conjugate fields of K are real and K is said to be a totally
real field. If » = O then K and all its conjugate fields are nonreal and K is said to be
a totally complex or totally imaginary field. If K is a normal field then K is either
totally real or totally complex, since all the conjugate fields of K coincide.

Example 13.1.1 The cubic polynomial x> — 6x + 2 € Z[x] is 2-Eisenstein and has
discriminant —4(—6)> — 27(2)? = 756 > 0. Thus it is irreducible and has three real

344



13.1 Valuations of an Element of a Number Field 345

roots. Thus the cubic field
K = Q(0), where 6> —60 +2 =0,

is a totally real field.

Example 13.1.2 The field Q(~/2 + i) is totally complex as the conjugates of
V24iare 24i, V2 —i, —V2+i, —V2-i.

We next define the valuations of an element of an algebraic number field.

Definition 13.1.1 (Valuations of a field element) For a € K we define
Bi(a) = loi(a)|, i =1,2,...,r +s.

The r + s quantities B;(a) (i = 1,2, ...,r + s) are called the valuations of a.

Clearly 0;(a) € K® and [K® : Q] = [K : Q] = n, so that 0;(a) is an algebraic
number of degree at most n. Thus o;(a) is also an algebraic number of degree at

most n. Hence o;(a)o;(a) is an algebraic number of degree at most n2. This proves

Bi(a) = loi(a)| = 1/ oi(a)o;(a)

is a nonnegative real algebraic number of degree at most 2n°.

that each valuation

Example 13.1.3 Ler K = Q(v/2). Heren = 3, r = 1, s = 1. The three monomor-
phisms : K — C are given by

o1(a +bv2 4+ c(V2)?) = a + bv/2 + c(V2)?,
oy(a + bv2 + c(éfz)z) = a -+ bov2 + sz(s/i)z’
o3(a +bV2 + c(V2)?) = a + ba*V2 + cao(¥2)?,

where w = €™/ = (=1 + i~/3)/2 is a complex cube root of unity, so that o3 = 3.
Then

BIV2+ (V) = o1(V2+ (VD)) = W2+ (V2P| = V2 + (V2
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and
Br(V2 + (V2)%) = |0a(V2 + (V2)D)| = |oV2 + 0*(V2)?]

QR I

I b R S NI, B

2 2
_ \/ W2+ (VDD +3(2 - (VD
B 4

= 24292+ W22

In the next section we develop the properties of the valuations of an element of
an algebraic number field K. Using these properties we prove later in the chapter
the famous theorem of Dirichlet concerning the units of Ok.

Theorem 13.1.1 (Dirichlet’s unit theorem) Let K be an algebraic number field
of degree n. Let r be the number of real conjugate fields of K and 2s the number of
complex conjugate fields of K so that r and s satisfy (13.1.1). Then Ok contains

r+s — lunitse, ..., €45—1 such that each unit of Ok can be expressed uniquely
in the form pe;" - - -efj:;:‘l, where p is a root of unity in Og andny, ..., n,1s_| are
integers.

13.2 Properties of Valuations

In this section we develop the properties of valuations that we shall need to prove
Dirichlet’s unit theorem. We fix once and for all an integral basis {wy, ..., ®,} for
K. If a € Ok the coordinates of a are the uniquely determined rational integers
c1, ..., Cy glven by

a=cw;+ -+ cw,.

We set
M = lgllz})én loj(w;)] (13.2.1)
and
D = det(o;(w))). (13.2.2)
As{wy, ..., w,} is an integral basis for K, we have

D?> =d(K)
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so that

|D| = |d(K)|'? (13.2.3)
and

D #0. (13.2.4)

Lemma 13.2.1 Ifm € Z then

Bim)=1Im|, i =1,2,...,r +s.

Proof: Fori =1,2,...,r +s, each 0; : K — C is a monomorphism so that
o;(a) = a for all a € Q. Hence for m € Z we have

pi(m) = loy(m)| = |m|, i =1,2,...,r +s. u

Lemma 13.2.2 Ifa, b € K then

Bi(a)Bi(b) = Bi(ab), i =1,2,...,r +5.

Proof: Fori =1,2,...,r+sanda, b € K we have

Bi(ab) = |oi(ab)| = |oi(a)o;(D)| = loi(a)l|o:(D)| = Bi(a)Bi(D). u
Lemma 13.2.3 If a € Ok is such that its coordinates c¢; (i = 1,2, ..., n) satisfy
|ci| < C then

Bi(a) <nCM, i=1,2,...,r+s.

Proof: We have
a=cw;+---+cpwy
sothatfori =1,2,...,n
oi(a) = c1oi(wy) + - - - + cy0i(wy)
and thus fori =1,2,...,r + s we have

Bi(a) = |oi(a)| = |c10i(w1) + - - - + cpoi(wy)|
< leilloi(@D)| + - - - + |enlloi(wn)]
<CM+---+CM
=nCM. |

Lemma 13.2.3 tells us that the integers of K with bounded coordinates have
bounded valuations.
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Lemma 13.2.4 Ifa € Ok is such that
Bitay<L,i=12,....r+s,

then the coordinates c; (i = 1,2, ..., n) of a satisfy
n!LM"!
Gl < ———,i=1,2,...,n.
el = |d(K)['/?

Proof: We have
a=cw+--+cw,
so that
oi(a) = cioi(w)) + - - -+ cpoi(wy), i =1,2,...,n.
Hence, by Cramer’s rule, we have
ci=—,i=1,2,...,n, (13.2.5)

where the determinant D is defined in (13.2.2) and the determinant N; is
formed from D by replacing the ith column by the column consisting of
oi(a), or(a), ..., o,(a). Expanding N; by its ith column we obtain

Ni = oula) (=D Ay,

k=1
where each Ay is an (n — 1) x (n — 1) determinant whose entries € {o,(w,) |
p.g=12,...,n}. As|op(wy)| < M forall p,q € {1,2,...,n}, we see that
Akl < (0= DM,

sothatfori =1,2,...,n

NIl <) Be@|Ael < LntM". (13.2.6)
k=1
Finally, from (13.2.5), (13.2.6), and (13.2.3), we deduce that
IN;|  n!LM"!
< —, 1
ID| ~ |d(K)|'/?

=1,2,...,n. n

lci| =

Lemma 13.2.4 tells us that the integers of K with bounded valuations have
bounded coordinates. The next lemma is an immediate consequence of this fact.

Lemma 13.2.5 There are only finitely many a € Ok, all of whose valuations
Bi(a) (i =1,2,...,r +s) lie below a given limit.

Proof: Leta € Ok besuchthat 8;(a) <L, i=1,2,...,r +s. Then, by Lemma
13.2.4, we have

a=cwy+ -+ cwp,
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whereeachc; € Z and|c;| <n !LM"_1/|d(K)| 172 The number of possible choices

for each ¢; is
n!LM"!
2| —1 +1,

ld(K)|'/2
so the number of a € Og with 8;(a) < L (i =1,2,...,r +s)is at most
n!LM"! "
2 | ——— 1] . |
( LﬂKﬂm]+ )

Lemma 13.2.6 Leta € K. Then
r+s

a)) =[] B:i@*,
i=1

where

1,i=1,...,r
di_{Z,i:r—{—l,...,r—f—s. (13.2.7)

Proof: We have
N({a)) = |N(a)l

=[] oi@
i=1

rts r+2s
= Hal(a) H O_l(a)
i=r+4s+1
r+s r+s
= Hal(a) H 61+s(a)
r+s lr':srl
= Ho*l(a) H Ul(a)
i=r+1
r+s
= Hol(a) H oi(a)oi(a)
ey
= HO’Z(G) H |61(a)| ’
i=r+1
r+s
= H|al(a)| H |Ut(a)|
i=r+1
r+s

=[[ 8@,
i=1

where d; is given by (13.2.7). [ ]
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Lemma 13.2.7 If € is a unit of Ok then

r+s

[ =1.
i=1
where d; is defined in (13.2.7).

Proof: This result follows immediately from Lemma 13.2.6 as N({¢)) = N({1)) =
1. [ |

Lemma 13.2.8 Let p;,q; (i = 1,2, ..., r + s) be rational numbers such that
O0<pi<gqg,i=12,....,r+s.
Then there exists a € K such that

pi<Bita)<gqi,i=1,2,...,r+s.

Proof: Fori =1,2,...,r + s choose h; = %(p,--l—q,-)e@so that p; < h; < q;.
Fori=r+s+1,...,r +2s set

h; = hi_.
Thus h; is defined for i =1,2,...,n and h,yyyj =h,4; for j=1,2,...,5s.
Consider the system of n linear equations in the n unknowns by,..., b,
given by
bioj(w)) + -+ byoi(w,) =h;, i =1,2,...,n. (13.2.8)

All the constant terms in this system are real. The determinant of the coefficient
matrix of this system is D # 0 (see (13.2.2)), so that the system has a unique
solution (by, ..., b,) € C". The first r equations in the system (13.2.8) have real
coefficients and the last n — r = 2s equations occur in complex conjugate pairs.
Hence (b4, ..., b,) € R".

Now let
. qi — Di
6 = min ,
1§i§r+s< 2Mn >
so that
0<8§q;]‘_/15i,i=1,2,...,r+s. (13.2.9)

Next choose ¢; € QQ such that

|bi—C,'|<5, i:l,Z,...,n.
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Set
a=cw +---+cw, € K.
Then
oi(a) = cioi(w) + -+ cpoi(wy), i =1,2,...,n,
so that
oi(a) — h; = (cy — by)oj(w) + -+ (¢, —byoi(w,), i =1,2,...,n.
Hence fori =1,2,...,r + s we have
loi(a) — hi| < |cr — Dilloi(w)| + -+ + [en — byl|oi(w,)|

fM(lcl_bl|+"'+|Cn_bn|)

< Mné

< qi —Pi,

- 2
so that

=GP <t BT o s
2 2
that is,
pi<PBila)<qi,i=12,....r+s. u

Lemma13.2.9 Letk be apositive integer. Let A be anonzero (integral or fractional)
ideal of Ok with N(A) < k". Then A contains an element a # 0 with B;(a) <
nMk(i=1,2,...,r +5).

Proof: First we consider the case when A is an integral ideal. Let

S={beOx|b=bw +-+bywy, bi,....,by €{0,1,2,... k}}.

Clearly card S = (k + 1)" > k" > N(A), so that there exist b’ € S, b” € S, b’ #
b” such that

b’ =b" (mod A).

Seta=b"—b"sothata #0, a € Ok, and a = 0 (mod A). The latter condition
is equivalent to a € A. The coordinates ay, .. ., a, of a satisfy

la;| = b, = b]| <k, i =1,2,...,n,

b” the coordinates of b”, so

’Yn

where b}, ..., b), are the coordinates of b’ and b7, . ..
that by Lemma 13.2.3

Bi@) <nkM, i=1,2,....r+s.
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Now we treat the case when A is a fractional ideal of Ok satisfying N(A) < k".
Let y be a common denominator for A. Let y; = y, y», ..., ¥» be the conjugates
of ysothat N(y)=y1---y, € Z\ {0} and N(y)A = y»-- - ya(y A) is an integral
ideal of Og. Setm = |N(y)|. Then m is a positive integer such that B = m A is an
integral ideal of Ok with

N(B) = N(mA) =m"N(A) < (mk)".
By the previous case there exists b(# 0) € B such that
Bi(b) <mknM, i =1,2,...,r +s.
As b € B there exists a € A such that b = ma. Clearly a # 0 and

o ﬁ _ Bi(b) mknM
Bi(a) = B <m> = B.(m) = m

by Lemmas 13.2.1 and 13.2.2. |

=knM, i=1,2,...,r +s,

Lemma 13.2.10 There exists a fixed bound B > 0 such that for each numbera € K
with % < N({a)) < 1 there exists a unit € € Ok such that

Bjea) < B, j=1,2,...,r +s.
Proof: Leta € K satisfy 1 < N((a)) < 1. Set I = (a) so that < N(I) < 1. Let

S be the set of all such distinct principal ideals /. By Lemma 13.2.9, for each
I = (a) in § there exists b(£ 0) € I such that

Bib) <nM,i=1,2,...,r +s.

As b € {(a) we have b = ga for some g(# 0) € Ok. Then

N
U < N(@nN ) = N(aDN(a) = Nelg)a)
r+s
= N({ga)) = N((b)) = [ ] B:(b)*

i=1
r+s

< [[em)® = mmy*

i=1

so that
N({q)) <2(mM)".

Hence among the principal ideals (g) there are only finitely many different ones,
say,

(q1), ..., (qs).



13.2 Properties of Valuations 353

Thus each g = €g; for some unit € of O and some j € {1,2,...,}. Set
I= max Big;")
i=1,..., K
i=1..., t
Then, fori =1,...,r+sand j =1,...,¢, we have

1= B(1) = Bila;q; ) = BilapBila;") < 1Bia)).

Thus

Bi(ea) < IBi(q;)Bi(ea) = IBi(q;jea) = IBi(qa) = IB;(b) < InM,
thatis Bj(ea) < B(i=1,2,...,r +s)with B =1InM. [ ]
Lemma 13.2.11 For each j € {1,2,...,r + s — 1} there exists a € K with % <

N({a)) < 1 such that

Bia)>B,i=1,2,....,r+s, i #].
Proof: If r + s = 1 there is nothing to do so we may suppose that r 4+ s > 2. By
Lemma 13.2.8 there exists a € K such that

B < Bia)<2Y"B, i=1,2,....,r+s,i#J,

1 1 .
Spnt < Bil@) < Py — e{l,2,...,r},
1 .
=) <ﬁj(a)<ﬁ’ jelr+1,...,r+s—1}.
n 2

Clearly,
Bia)>B,i=1,2,....,r+s, i #].
Ifje{l,2,...,r}then

Bu@)- B (@) ar(@l - Bras(@P > B — (B?) LA
s Py P s Prag > _ = — = —
ila Dbr+1(d +5\@ 2871 281 2
and

n r—1 1 n 2s

Br@)- - fr@P (@’ fras@? < 2VB)T S (217B)
2—’*2;’1 Br+2s71
= 21—%Bn—l = 1,

so that by Lemma 13.2.6

% < N({a)) < 1.
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Ifje{r+1,...,r+s— 1} then

Br+2v -2

ﬁl(a)"'ﬂr(“)ﬂ”rl(a) ,Br—i-s(a) > Br <21/23 )
1
T2

- 23112

and

, - 1 2
Bi(@)- - Br(@)B+1(@) - Bris(@)® < (2'/"B)" (27" B?) I(Tng)

22"« B7
2”2’1“’2 Brt2s-2
2-ipn-2
so that by Lemma 13.2.6
1
3 < N({a)) < 1. u
Lemma 13.2.12 For each j € {1,2,...,r +s — 1} there exists a unit €; € Ok

such that

ﬂi(e.i)<1’ i:1’27""r+s7 l#]?
,Bj(éj)>1.

Proof: If r +s =1 there is nothing to do so we may suppose that r + s > 2.
By Lemma 13.2.11, for each j € {1,2,...,r + s — 1}, there exists a € K with
IN({a)) < 1 such that

Bia)>B,i=1,2,...,r+s, i #].
By Lemma 13.2.10 there exists a unit €; € Ok such that
Bieja) < B,i=1,2,...,r +s.
Hence by Lemma 13.2.2

,3i(ej):’3/;$;‘;) <§=1, i=1,2, ... r+s, i %

Then, by Lemma 13.2.7, we obtain

r+s

1=]]Bien® < Bitep)®

i=1

so that B(e;) > 1. [ ]

Definition 13.2.1 (Independent units) Let K be an algebraic number field. Let
€1,...,€ (k= 1) be units of Ok. The units €1, ..., € are said to be independent
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if and only if

€' et =10, ....€L)y=r=--=r=0.

Our next lemma shows that the units €, €;, ..., €., constructed in Lemma
13.2.12 are independent.

Lemma 13.2.13 The units €1, . .., €,45—1 of Lemma 13.2.12 are independent.

Proof: If r + s = 1 there is nothing to do so we may suppose that » + s > 2. We

suppose that there exist integers py, ..., pr+s—1, not all zero, such that
r+s—1
I] ¢/ =1 (13.2.10)
j=1
As
r+s—1
—0j _
I« =1
j=1
we canreplace (o1, ..., Pr4rs—1) by (—p1, ..., —pr1s—1), if necessary, to ensure that
at least one of py, ..., pr4y—1 is positive. Relabeling €1, ..., €141, if necessary,
we may suppose that py, ..., or (k > 1) are positive and ppyq, ..., Or4s—1 are
nonpositive. From the valuations By, ..., B we form the product
d d
B=pB" B
and from the remaining valuations we form
d dris
B =Bt B

By Lemmas 13.2.1 and 13.2.2 we have

p) = p'(1) =1, B(@p(b) = Blab), B'(a)B'(b) = B'(ab), (13.2.11)
for all @ and b in K. By Lemma 13.2.7 we obtain

B(e)B'(€) =1,

and thus
Ble)=p""e) (13.2.12)
for every unit € of Og.For j = 1,2, ..., k we have
B'e)) = /glf—k:l] ---ﬁfljj;(ej) = Brr1 (€)™ -+ Brys(e))™,
so that

B'ej) <1, j=1,2,...k,
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by Lemma 13.2.12. For j =k +1,...,r +s5 — 1 we have
Blej) =B Bit(e)) = Pile ) -~ Brle )™,
so that
Bej) <1, j=k+1,....,r+s5s—1,
by Lemma 13.12.12. Next, by (13.2.10) and (13.2.11), we obtain
r+s—1 r+s—1
1=pm=p| [[ | = [] B
j=1 j=1

so that by (13.2.12)

k r4s—1
[18E) I] Bep™ =1.
j=1 j=k+1

However, all of the factors on the left-hand side are < 1, and the first k£ of them are

< 1. This is the required contradiction.

Forj=1,2,...,r+s—1weset
aj = Bj(e)),
so that by Lemma 13.2.12 we have

aj>1, j=12,...,r+s—1

Lemma 13.2.14 For each unit € € Ok with

Ble)y<1l,v=1,2,...,r+s—1,

there exist integers p, ..., Pris—1 Such that the unit
— P1 Pr+s—1
nN=c¢€€ €5
satisfies

l<Bm<a,v=12,....r+s—1, B+(n) <1.

Proof: If r + s = 1 then by Lemma 13.2.7 we have

Bras(m)¥+ =1

for any unit n of Ok, so that

,Br—&-s(n) =1,
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and this is all we require in this case. Thus we may suppose that r +s > 2. Let €
be a fixed unit of Ok satisfying

Be)<l,v=12,....,r+s—1.

We consider all units 1 of Ok of the form

_ ki krs—1
nN=¢€€ €

with
k,>0,v=1,2,....r+s—1,
and
B(m<a,,v=12,....,r+s—1.

We note that € is such a unit in view of (13.2.14). For these units we have by Lemma
13.2.12

Bris(m) = ,3r+s(661f1 T Gfr;:ll)
r4s—1
=B [ Broste)
i=1
=< ,Br+s(6)y

so that all the valuations 8,(n) (v = 1, 2, ..., r + s) are bounded. Thus, by Lemma
13.2.5, there are only finitely many 7 of the type considered. Among these finitely
many 1, we choose 7 to be such that §,,(n) is least. For this  we must have

1<B,(m),v=1,2,...,r+s—1.
Otherwise, for some vy € {1,2,...,r +s — 1} we have
L= B, (n).
Then, forv=1,2,...,r +s — 1, v # vy, we have
Bu(€vn) = Bu(€)Bu(n) < Bu(n) < av;
for v = vy we have

:31)0(611077) = ,Bvo(evo)ﬁv()(n) =< ,Bvo(évo) = Ay,

and for v = r + s we have

,3r+s(€v077) = :8r+s(6vo),3r+s(n) < ,Br—i-s(n)’

contradicting the minimality of 7. [ |
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Lemma 13.2.15 There exists a unit

Op 45—
€ =¢€]"€. 27 € Ok

with
1 <Be), v=1,2,...,r+s5s—1.
Proof: This is the special case € = 1 of Lemma 13.2.14. |
Lemma 13.2.16 For each unit e € Ok there exist integers Ty, . . ., T,1s—1 Such that
the unit
p=eel e
satisfies
1<B8m<a,,v=12,....,r+s—1,

and

:3r+s(77) = 1.

Proof: The caser + s = 1 follows as in the proof of Lemma 13.2.14. Thus we may
suppose that 7 + s > 2. Let € be a unit of Og. Set
X = max B,(e).
I<v<r+s—1

By Lemma 13.2.15 there exists a unit €y = €' - - - €, of Ok satisfying

1 <B(e), v=1,2,....,r+s—1.

Set
Y= _min_ f(e)
so that
Y > 1.
We may choose k € N so that
Yk > Xx.

Then
Bu(eo) = Bu(e), v=1,2,....,r +s5s—1.

Hence the unit A = €€, * of O satisfies

pule) <l,v=12,...,r+s—1.

_ —ky _
Bu() = Bu(e€y”) = B =
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Thus, by Lemma 13.2.14, there exist integers py, . .., pr+s—1 such that the unit
=l €T

satisfies

1<B8m<a,,v=12,....,r+s—1.
We observe that

n=eeyel €L = €€l
with

T, =pj—koj, j=1,2,...,r+s5s—1.

Finally,as 8,(n) > 1forv =1,2,...,r +s — 1, wededuce from Lemma 13.2.7
that

:3r+s (77) = 1. |

Lemma 13.2.17 There exist finitely many units ny, ..., ny of Ok such that every
unit € of Ok is of the form

€= el
forsome j € {1,2,..., h}and some py, ..., pris—1 € Z.

Proof: By Lemma 13.2.16 each unit € of Ok can be expressed in the form
- —Trgs—
e=ne e, T
for some integers 1y, ..., T,45—1 and some unit n € Ok satisfying

B <a,, v=12,...,r+s—1,
lgr+s(77) = 1.
Hence, by Lemma 13.2.5, there are only finitely many such 5, say ny, ..., 5. Thus
e=mjef! el
for some j € {1, 2, ..., h} and some integers p1, ..., Oris—1- |

We are now in a position to complete the proof of Dirichlet’s unit theorem in the
next section.

13.3 Proof of Dirichlet’s Unit Theorem
By Lemma 13.2.17 the unit group U(Of) is generated by the units

€l v s €rqs—15 M5 -+ o5 Nhs
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that is,
U(Ok) = (€1, ..., €q5—1. M5+, M)
Let H be the subgroup of U(Og) given by
H=(e,...,€15-1).

By Lemma 13.2.17 there are h distinct cosets of H in U(Og), so that the factor
group U(Og)/H has order h. Hence for € € U(Og) we have

(eH)' =H,
so that
e" e H.
Thus for each € € U(Og) there exist ay, ..., a,,_1 € Z such that
= e,
Let Xy, ..., A, bem units of Ok, where m > r + s. By the previous observation

there exist integers ajq, ..., a1 r4s—1s---»>dmls - - - » Am r+s—1 SUch that

)\']il = 6?” e 6:}-1"-,:1711 ’

=

Consider the homogeneous system of r 4+ s — 1 integral linear equations in the m
unknowns xi, ..., X,,:

anxy+ -+ amix, =0,

alr4+s—1X1 + - tay r+s—1Xm = 0.

As m>r+s—1 this system has a solution (xi,...,x,) € Q" with
(X1, ..., xm) # (0, ...,0). Multiplying each x; by the least common multiple of
the denominators of xi, ..., x,,, we may suppose that (xi, ..., x,) € Z™. Then
hx h mo — a ayr4s—1 hxl am A r4s—1 th
)\‘1 1...)me _(61““'61‘4’;71) "'(61 ]...€r+st1 )
__h@anxi+-+amixm) h(ay yys—1X1++am r45—1Xm)
=€ S r4s—1
0 0
=€ €45
=1.

This proves that any m units of Og with m > r + s are not independent. Therefore
there are no more than r + s — 1 independent units in Og. But by Lemma 13.2.13
ther +s — 1 units €y, ..., €,4,— are independent. Hence, by the main theorem of
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finitely generated Abelian groups, U(Of) is the direct product of cyclic groups,
r 4+ s — 1 of which have infinite order and the remaining ones finite order. The
elements of a cyclic group of finite order however are roots of unity. This proves
that every unit of Ok can be expressed in the form nej' - - -ef;:;:‘p where 7 is a
root of unity and xi, ..., x,45—1 € Z. Finally, we show that this representation is

unique. Suppose

X1 Xrps—1  __ Yoo Vst
nep -6l =0 €rps—10

where n, 6 are roots of unity and xy, ..., X;45-1, Y1, - -+ Yr4s—1 € Z. Then
-1 _ _n—x Yrts—1—Xr4s—1
e R :

As 1, 6 are roots of unity so is 6! and thus there is a positive integer k such that
(n@’l)k = 1. Hence

Ei‘(}’l_xl) o G;Ii(i:‘;ixl—l_xr-%—x—l) 1.
Ase€q, ..., €151 are independent we deduce that
k(yi —x1) =+ = k(Yr4s—1 — Xr45-1) =0
so that
XL =Yoo Xrs—1 = Yr4s—15
and thus n = 6. |

13.4 Fundamental System of Units

Definition 13.4.1 (Fundamental system of units) Ler K be an algebraic number
field of degree n with r real embeddings and 2s complex embeddings (so that
r+2s =n).Ilfe,..., €151 arer + s — 1 units of Og such that

€1,...,€ 151 areindependent (13.4.1)
and

every unit € of Ok can be expressed in the form

€ =ne' €7\, where 1 is a root of unity in K, (13.4.2)

then {€1, ..., €15_1} is called a fundamental system of units of Ok.

Theorem 13.1.1 guarantees that Ok always possesses a fundamental system
of units for any algebraic number field K. By the final argument in the proof of
Dirichlet’s unit theorem, we see that the representation (13.4.2) of a unit in terms
of a fundamental system of units is unique.
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If r + s = 1 the fundamental system of units is empty and every unit of Ok is a
root of unity. Our next theorem tells us for which fields K this occurs.

Theorem 13.4.1 Let K be an algebraic number field. Then every unit in Ok is a
root of unity if and only if K = Q or K is an imaginary quadratic field.

Proof: Let K be of degree n. Let r be the number of real embeddings of K and 2s
the number of complex embeddings so that r + 2s = n. By Theorem 13.1.1 every
unit in O is a root of unity

r+s=1
—r=1s5s=0o0rr=0 s=1
<= K = Qor K = imaginary quadratic field. u

This theorem is consistent with what we already know, namely,
U(Oqg) =U(Z) = {£1}
and for m squarefree and negative (Theorem 5.4.3)

{£1, i}, iftm=-1,
U(Oqgiymy) = § {1, T o, + w?}, if m = =3,
{£1}, otherwise,

where w is a complex cube root of unity.
If » + s = 2, a fundamental system of units consists of exactly one unit.

Definition 13.4.2 (Fundamental unit) Letr K be an algebraic number field with
r + s = 2. Then any unit € € Ok such that {€} is a fundamental system of units for
Ok is called a fundamental unit.

If € is a fundamental unit of Ok then every unit of O is expressible uniquely
in the form ne*, where 7 is a root of unity in Ok and k € Z. Moreover, if € and €,
are two fundamental units for O, then either €, = A€ or €; = Ae~! for some root
of unity A in Ok.

Our next theorem tells us exactly which fields possess a fundamental unit.

Theorem 13.4.2 Let K be an algebraic number field. Then K possesses a funda-
mental unit if and only if K is a real quadratic field, a cubic field with exactly one
real embedding, or a totally imaginary quartic field.

Proof: Let K be of degree n. Let r be the number of real embeddings of K and
2s the number of complex embeddings, so that » 4 2s = n. By Theorem 13.1.1



13.5 Roots of Unity 363

U(Ok) possesses a fundamental unit

< r+s=2
= r=2,5s=0,n=2
or
r=1,s=1, n=3
or

r=0 s=2 n=4
<= K = real quadratic field
or
K = cubic field with one real embedding
or

K = totally imaginary quartic field. u

13.5 Roots of Unity

The theorems of this section give us some information about which roots of unity
can belong to the ring of integers Ok of an algebraic number field K.
We recall that if ¢ is a primitive kth root of unity then

[Q) : Ql = k), (13.5.1)
where Euler’s phi function ¢ is defined by

¢(k) = number of integers m satisfying (13.5.2)
1 <m <k with (m, k) = 1.

It is shown in texts on elementary number theory (see, for example, [3, Theorem
2.19, p. 69]) that ¢ is multiplicative; that is,

d(kl) = p(k)p(1) (13.5.3)

whenever k and [/ are coprime positive integers. If p is a prime there are p* — 1
positive integers less than p* (a > 1) of which p¢~! — 1 are multiples of p and the
remainder coprime with p. Hence

p(pH =@ =D - =D=p'—pt=p(p-1. (1354

Thus if k = p}'--- p% is the factorization of k into powers of distinct primes
pi, ..., pr then by (13.5.3) and (13.5.4) we deduce that

¢y =pi" - i pr =D (pr— D), (13.5.5)

Using the prime power decompositions of the positive integers up to 40 in conjunc-
tion with (13.5.5), we obtain the following table of values of ¢(k), k = 1,2, ..., 40.
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ko) | k ¢k) | k ¢k) | k  $k)
11 |11 10 {21 12 |31 30
21 |12 4122 10 [32 16
302 |13 12 |23 22 (33 20
4 2 |14 6 |24 8 |34 16
5 4 |15 8 |25 20 |35 24
6 2 |16 8 |26 12 |36 12
7 6 |17 16 |27 18 |37 36
8 4 |18 6 |28 12 [38 18
9 6 |19 18 |29 28 |39 24
10 4 [20 8 |30 8 |40 16

In the next six lemmas we prove elementary results about ¢ (k) that will be used
in the proofs of our theorems giving information about the roots of unity in the ring
of integers of an algebraic number field (Theorems 13.5.1-13.5.4).

Lemma 13.5.1 For all positive integers n

p(n) > \/g

Proof: If p is an odd prime and k is a positive integer then

sy PP itk =1,
pFlp—1) > pt1 > pt2, ifk > 2,

so that
$(p") = v/ p".

Hence, if N is an odd positive integer, as ¢ is multiplicative we have
¢(N) > +/N.

Let n be a positive integer. Set n = 2* N, where « is a nonnegative integer and N
is an odd positive integer. If « = 0 or 1 then

$(n) = $(N) = VN > \/g
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and if @ > 2
$(n) =2°"'$(N) = 2°2p(N) = 2*/*VN = /n
so that
b(n) > \/E
n —
V2
for all positive integers 7. n

Lemma 13.5.2 Let n be a positive integer. If ¢(k) < n then k < 2n>.

Proof: By Lemma 13.5.1 we have

so that

Lemma 13.5.3 ¢(k) = 1 if and only ifk = 1, 2.

Proof: By Lemma 13.5.2
Py =1=—=k <2
and since ¢(1) = ¢(2) = 1 the result follows. [ ]

Lemma 13.5.4 ¢(k) = 2 if and only ifk = 3, 4, 6.

Proof: By Lemma 13.5.2
pk)y=2=—k <8

andsince ¢(1) =1, ¢(2) =1, ¢3) =2, ¢(4) =2, ¢(5) =4, ¢(6) =2, ¢(7) =
6, and ¢(8) = 4 the result follows. [ ]

Lemma 13.5.5 ¢(k) = 4 if and only ifk = 5, 8, 10, 12.

Proof: By Lemma 13.5.2
ok)=4 =k <32

and the result follows by appealing to the table of values of the Euler phi function
preceding Lemma 13.5.1. [ ]
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Lemma 13.5.6 Ifn > 3 then ¢(n) is even.

Proof: If n > 3 then either there exists an odd prime p dividing n or n = 2% with
o > 2. In the former case n = p’gn], where 8 > 1 and n; is not divisible by p, so
that

¢(n) = p"~'(p — Dg(m1) = 0 (mod 2),
as 2 | p — 1. In the latter case
¢(n) =2*"" =0 (mod 2),

aso > 2. [ |

We now use Lemma 13.5.2 to show that the ring of integers of an algebraic
number field can only contain finitely many roots of unity.

Theorem 13.5.1 Let K be an algebraic number field. Then Ok contains only
finitely many roots of unity.

Proof: Let[K : Q] = n. Let {; be a primitive kth root of unity in Og. Then §; € K
so that

Q) € K,
and thus
[Q) : QI = [K : QI,
that is,
¢(k) < n.
Hence, by Lemma 13.5.2, we have
kefl,2,...,2n%,

proving that there are only finitely many roots of unity in Og. [ |

If K has odd degree then we can say exactly which roots of unity are in Ok.

Theorem 13.5.2 Let K be an algebraic number field of odd degree n. Then the
only roots of unity in Ok are %1.

Proof: Let ¢ be a primitive kth root of unity in Og. Then Q(¢) € K and so
[Q(&r) : Q] | [K : Q], thatis, ¢p(k) | n. But n is odd so that ¢(k) is odd. By Lemma
13.5.6, we must have k < 2, thatis, k = 1, 2. Clearly ¢; = 1 and & = —1 belong
in OK. |

Taking n = 3 in Theorem 13.5.2 we obtain immediately the following result.
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Theorem 13.5.3 The only roots of unity in the ring of integers of a cubic field are
+1.

The situation is much more complicated when n is even. We just determine the
roots of a unity in the ring of integers of a quartic field.

Theorem 13.5.4 Let K be a quartic field. Then the only possible roots of
unity # %1 in Og are

$3, €4, &5, C6» €8, C10, G2,

and their powers. Moreover,

G € Og & K D Q(v=3),
{s € Ok — K 2 Q(/-1),
ts € Ox & K = Q(\/ —10 — 2/5),

Lo € Ox < K 2 Q(v/=3),
ts € Ox &= K = Q(2,v/—1),

Ci0 € Ox < K = Q(\/ =10 — 2v/5),

{1 € Og < K = Q(+/3,v—1).

Proof: Let ¢ be a primitive kth root of unity in Og. Then Q(¢;) € K and thus
[Q(z) : Q1 | [K : Q], that is, ¢(k) | 4. Hence ¢(k) = 1,2, or 4. Thus, by Lem-
mas 13.5.3-13.5.5, wehave k = 1,2,3,4,5, 6, 8, 10, or 12. Hence the only possi-
ble roots of unity in Ok are & =1, & = —1, &3, &, &, L6, £8, C10, {12, and their
powers.

As ¥ = (=1 +i~/3)/2, we have Q(£3) = Q(¢**) = Q(+v/=3), so that
$3€ Ok <= K 2Q(5) <= K 2 QvV-3).
Similarly, we can show that ¢4 € Og <= K D Q(v/—1)and g € O <= K 2

Q)

Next, as

Q2S5 — ZI;(*/E —1+4i\/10425),

we have

Q(gs) = Q™) = Q(\/ =10 — 24/5),
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so that

{s € Og <= K 2 Q(¢s)
= K =Q(¢) (as [K : Q] =[Q(¢5) : Q1 =4)

= K =Q(\/—10 — 2v/5).

Similarly, we can show that

Cio € O & K = Q(\/ —10 — 2v/5).

Finally,
P28 — 1+
ﬁ b
so that
, 141
— 2mi/8 — — 2’ —1 .
Q(zg) = Q¥ = Q (—ﬁ ) QW2,V/-1)
Thus
{g € Og <= K 2 Q(¢s)
= K =Q() (as [K : Q] =[Q(s) : Q] =4)
= K =Q\2,V-1).
The corresponding result for ¢, can be shown similarly. [ ]

Example 13.5.1 There are infinitely many quartic fields K such that ¢4 € Ok.
Let

P=1{23,5711,13,17,...)

be the set of prime numbers. It is a theorem going back to Euclid that P is an infinite
set. For p € P let

K, =QW~-1,p).
An easy calculation shows that
[K,:Ql=4forall p €P.
Moreover, the only quadratic subfields of K, (p € IP) are

QW=1), Q/p), Q/=p).

Let p,q € P with p # q. Then Q(,/q) is a quadratic subfield of K, but not of
K, as Q(/9) # QW=1), Q(/P), Q(/=p). Hence K, # K,. This shows that
{K, | p € P} is an infinite set of distinct quartic fields. The ring of integers of each
K, (p € P) contains {4 by Theorem 13.5.4.
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Example 13.5.2 There are infinitely many quartic fields K such that the only roots
of unity in their rings of integers Ok are 1. Let

P34 =1{3,7,11,19,23,31,...}

be the set of prime numbers = 3 (mod 4). For p € P34 let

0, =\/1+ P K, =Q(0,).

Clearly 0, is a root of the polynomial
fr(x) = xt—2x2+ (1 — p) € Zx].

As2 || 1 — pfor p € P34, fp(x)is2-Eisenstein and thus irreducible in Z|x]. Hence
fp(x) is the minimal polynomial of 6, over Q and so

(K, : Q] =4.

If q € P34 is such that g # p then an easy calculation shows that \/q ¢ K. But
J4q € K, so that K, # K,. Hence, as there are infinitely many primes p =3
(mod 4), {K, | p € P34} is an infinite set of distinct quartic fields. As K, C R,
none of the roots of unity ¢, k € {3,4,5,6, 8, 10, 12}, belongs to Ok, Thus, by
Theorem 13.5.4, the only roots of unity in Ok, are 1.

13.6 Fundamental Units in Cubic Fields

Let K be a cubic field with exactly one real embedding. By Theorem 13.4.2 we
know that K possesses a fundamental unit 5. Suppose further that K is a real field.
Then n € R. By Theorem 13.5.3 the only roots of unity in K are 1. Hence the only
fundamental units are 41 and £ ~!. Exactly one of these four units is greater than
1. Thus K has a unique fundamental unit n > 1. We determine n for K = (@(«3/5)
and K = Q(f/g). The main tool is Theorem 13.6.3, which gives a lower bound for
the fundamental unit in terms of the discriminant of the field K.

We first prove two elementary inequalities needed in the proof of Theorem 13.6.3.

Lemma 13.6.1 Forallx e Rand all 0 € R

sin®@(x — 2cos0)? < x> + 4.

Proof: For all 6 € R we have

1 —sin’6 cos?> @ — sin* @ = 1 — sin® B(cos® 6 + sin’ 0)

=1—sin’0 =cos’H >0
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with equality if and only if 6 = (2k + 1)7r/2, k € Z. Thus, for all x € R and all
0 € R, we have

(x cos @ + 2sin?0)> + 4(1 —sin>H cos’@ —sin*6) >0  (13.6.1)

as

X cos (@) + 25sin® (@) =2
Expanding the square in (13.6.1), we obtain
x2cos?0 + 4x sin® O cos O + 4 — 4sin® 6 cos’> O > 0,
so that
—4xsin’ 6 cos @ + 4sin’ 6 cos> O < x?cos? 6 + 4.

Thus

sin’ 6(x — 2cos 9)2 = x2sin? 0 — 4x sin” 6 cos 0 + 4 sin” 6 cos’ O

< x%sin®0 + x2cos? 0 + 4 = x* + 4. |

Lemma 13.6.2 For x > 33

Proof: We have

x > /x 15\* 3 /x 27 3
8 8 4 4\4 4 4

so that
X 2 X 15\
(5-3) _1>(8_4)
and thus
X 2 X 15
——3) = 1> == —. [ |
(8 ) 8 4

Theorem 13.6.1 Let K be a real cubic field with two complex embeddings. Let
n > 1 be the fundamental unit of Ok. If |d(K)| > 33 then

3 |d(K)| =27
n > — 4



13.6 Fundamental Units in Cubic Fields 371

Proof: Let n, pe'?, pe? be the conjugates of n, where p € R*. Then, as 5 is a
unit, we have N(n) = %1 so that (recalling Definition 9.2.1)

npeiepe—ie — Z*:l,
that is,
np? = +1.

Asn > 0and p?> > 0 we must have np?> = 1 so that

n=p
Next we determine D(n). We have
2
I n >
D(T’) = D(la n, nZ) == 1 ,Oele p2€210
1 pe i ple2f
Next
1 77 772‘ 1 .IO—Z p—4
1 peze ,026219 =10 peZQ _ p—2 ,026219 _ /0_4
1 pe i p2 2 |0 peif — p=2 pe20 _ p—4
= (pe" = p)(p%e ™ — p™) = (pe™ — p7)(p%e* — p™)

3 —if 6 -6

— ple e 20 _ p7360 4 h=6 _ 3610 4 Q20 | 53,10 _
— _p3(ei9 _ e—i@) 4 (e2i9 _ e—2i9) - p—3(ei9 _ e—i9)
= —p32isin@ + 2i sin20 — p~>2i sin O
= —2isinf(p> + p~> —2cosh),
so that
D(n) = —4sin®0(p> + p—> — 2cos6).
Hence, by Lemma 13.6.1, we obtain
|D(n)| = 4sin®0(p> + p~> — 2cos 0)?
<4+ o7 +4)
=4(p°+p°+6)
=407 + 17> +6).

Now, as K is a cubic field, by Theorem 7.1.16 we have
ld(K)| = |D(a, B, y)I
for any «, B, y € Ok with D(«, B, y) # 0, so that in particular we have
[d(K)| < 1D(1, 1, n*)| = | D).



372 Dirichlet’s Unit Theorem

Hence
d(K)| < 4(7* + 07" +6).
Thus
7 > L
and so

d(K
n6—<|(4—)|—6>n3+1>0.

Completing the square, we obtain, as |d(K)| > 33,

2 2 2
<n3— <|d(K>| _3>> _ <|d<K>| _3> - <|d(1<>| _g) ’
8 8 8 4

so that
3 |d(K)| ld(K)| 15
n”w——-=-3)>——-—.
8 8 4
If
d(K
n3_<| ( )|_3> o
8
then
|d(K)| ,  ldK) 15
8 8 4
so that
3<E_3_§
Ty Ty

contradicting n > 1. Hence
d(K
o (| (8 >|_3> -

so that

=27 3 -,
8 4

3 (Id(K)I > ld(K)| 15
n - > -
8
which gives
3 _ 1K) =27
"

We next use Theorem 13.6.1 to determine the fundamental unit > 1 of the ring
of integers of QW/2).
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Theorem 13.6.2 The fundamental unit > 1 of O, 35, is 1 + V2 4+ (V2)%

Proof: We set a = ~/2 and K = Q(«). The ring of integers of K is

Ok = Z + Zo + Zat?,
and the discriminant of K is

d(K)=—108
(see Table 1). For the field K, we have n =3, r =1, s =1, so, by Theorems
13.4.2 and 13.5.3, K possesses a unique fundamental unit n > 1. We show that
n=1+oa+ o

Set

u=14+a+a®e 0.
Clearly, as 0 < « < 2 and 7° = 343 < 400 = 20?, we have

l<u<1+4+2+4=7<20"".

Moreover, u is a unit of Ok as

1 1 -1+« -1+« -1+«

lI+a+ad)(—1l+a) —1+a3 —1+2

u=1+a+a2_
=—1+4+uoa e O.

Appealing to Theorem 13.6.1, we obtain, as |[d(K)| = 108 > 33,
3 108—-27 8l

n > —4 =7 > 20
so that
n > 20'3,
Hence we have shown that
l<u< nz. (13.6.2)

Since 7 is a fundamental unit of Ok, and the only roots of unity in Ok are £1, we
have by Dirichlet’s unit theorem

u= :I:nk, for some k € Z. (13.6.3)
As n > 1 we deduce from (13.6.2) and (13.6.3) that the plus sign holds in (13.6.3)

and k = 1; that is, u = 7 as asserted. [ ]

In the next theorem we determine in a similar manner the fundamental unit > 1
of the ring of integers of Q(f/?).
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Theorem 13.6.3 The fundamental unit of O y3, is 4 + 33/3 + 2(V/3).

Proof- We set @ = ~/3 and K = Q(«). The ring of integers of K is
Ok = 7 + Zo + Zo?
and the discriminant of K is
d(K)= —243

(see Table 1). For the field K wehaven = 3, r = 1, s = 1, so, by Theorems 13.4.2
and 13.5.3, Ok possesses a unique fundamental unit > 1. We show that

n=4+3a+2a’
Set
u=4+3a+2a° € 0.

As 0 < o < 3/2 we have
3 3
l<u<4+435)+25)7°=13.
2 2
Next we show that u is a unit of Og. We seek r, s, t € Z such that

(4 + 3a + 20°)(r + sa + ta?) = 1.

Multiplying out the left-hand side and making use of the relations «® = 3, a* = 3a,
we obtain

(4r + 65 +91) + 3r + 4s + 6t)a + 2r + 3s + 41)a* = 1,
so that

4dr +6s +9r =1,
3r +4s + 61 =0,
2r +3s + 4t = 0.

Solving this system of linear equations, we obtain
r=-2,5s=0,1r=1.

Hence

1
4 + 3a + 202

so that 4 + 3a + 2a? € U(Og). By Theorem 13.6.1 we have

= -2+a’ e O,

;24327

54,
>
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Table 11. Fundamental unit (> 1) of
Q(/m) for a few values of m € N

m Fundamental unit > 1 of Q(J/m)

1+ 32+ /22

4+ 373 4+ 2(v/3)?

41 + 245 + 14(¥/5)?
109 + 60/6 + 33(v/6)?
44297 + (V1)

89 + 40v/11 + 18(/11)2
55 + 24712 + 3 (V12)?

NS RN B o) NV BRVS B \S]

—_

so that
n® > 542 = 2916 > 2744 = 14°
and thus
172 > 14.
Hence we have shown that
l<u< 172.
Then, exactly as in the proof of Theorem 13.6.2, we deduce that u = 7. ]

Table 11 gives the fundamental unit > 1 for a few pure cubic fields Q(/m), m €
N.

Table 12 gives the fundamental unit of the first thirty cubic fields K with exactly
one real embedding arranged in order of increasing |d(K)|.

Table 13 gives a fundamental system of units {e;, €} of Ok for the first thirty
cubic fields K = Q(0) having three real embeddings arranged in order of increasing
d(K).

In Chapter 14 we make use of our knowledge of the units of O, where K = Q(6),
63 — 40 + 2 = 0, to determine all the solutions in integers of the equation

Yo+ 1D =x(x+Dx+2).

In the next example we determine a fundamental system of units for O.

Example 13.6.1 The polynomial x> — 4x + 2 € Z[x] is 2-Eisenstein and so is
irreducible. Hence K = Q(0), where 60> —46 +2 =0, is a cubic field. The
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Table 12. Fundamental unit of cubic fields K with
exactly one real embedding and —268 < d(K) < 0

d(K) K = Q) Fundamental unit
-23 B 4+x2-1 0 + 62
-31 3 —xr—-1 6

—44 3 —xt—x—1 0

-39 X422 -1 2 + 62
—-76 x3—2x=2 1+6
—83 X —x24x-2 1+6?
—87 Xy —1 2460462
—104 x3—x-2 146+ 62
—107 X3 —x243x -2 34062
—108 x3=2 146 +062
—116 X —x*=2 146462
—135 X +3x -1 3462
—139 44 x-2 3420462
—140 X 42x -2 34604062
—152 xX3—xT—2x =2 14+6+62
—172 3 4+x2—x-3 2426 + 6?2
—175 X—x242x -3 2 + 62
—199 X3 —xr4+4x —1 4-—0+62
—200 4 x242x -2 9 + 56 + 362
—204 3 —xT4x-3 446+ 202
—211 x> —2x-3 2420462
—212 X3 —x?44x -2 15 — 260 + 462
—216 X 4+3x =2 17 + 36 + 562
—231 3 4+x2-3 2420462
—239 3 —x=3 2420+ 62
—243 X3 =3 4 430 + 202
—244 X 4+x2—4x—6 5460 + 202
—247 X +x-3 246462
—255 x3—x=-3 246 + 62
—268 B 4+x2-3x-5 34360 +062

discriminant of x> — 4x + 2 is

—4(—4) —27(2)* = 148 = 2% . 37,
which is positive, so that K has three real embeddings. Furthermore, we have
d(K) =148 or 37.

But the smallest discriminant of a cubic field with three real embeddings is 49
(see Table 13). Hence d(K) # 37 and so d(K) = 148. Thus K must be the third
field listed in Table 13. Hence K = Q(¢), where ¢> +¢> —3¢p —1 =0. The
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Table 13. Units of totally real cubic fields K with 0 < d(K) < 1101
d(K) K =Q(®) €] €

49 BHxt—2x—1 —146+062 2 — 62

81 x3—3x—1 246 — 62 —6

148 X 4+x2-3x—-1 0 2 — 92
169 x3—x?2—4x—1 2420 — 62 —6

229 x3—dx —1 0 2+6
257 x> —5x—3 446 — 02 5460 —62
316 X4 xt—4x -2 —34+6+062 —546+62
321 B Hxt—4x—1 -0 —1420+4062
361 x34+x2—6x—7 446 —62 562
404 3 —x2—5x—1 -6 1—6—92
469 X 4+x2—5x—4 —1-0 —1420+62
473 x3—5x—1 —0 -2 -0
564 X 4+x2-5x-3 246 —1—-6+862
568 —xt—6x-2 —5—-0+02 —7 — 40 + 202
621 x> —6x—3 —2-9¢ 1426
697 x3—x2—-8x—-5 6+ 20 — 62 7420 — 62
733 BHx2—7x -8 146 —-5-120
756 x3—6x—2 5— 62 1146 —202
761 x3—x2—6x—1 0 246
785 > 4+x2—6x-5 146 —446+4062
788 3 —x2—7x =3 246 —1-26
837 x3—6x—1 -6 —3—60 — 202
892 x4+ x2—-8x—10 34+60—62 1436 + 62
940 xX3—Tx—4 —11 —20 4262 3404062
961 34+ x2—10x —8 —1 426 + 262 3440 — 262
985 X 4+xr—6x—1 0 240
993 X 4+xr—6x-3 5—0—062 5— 062
1016 X3 4x2—6x—2 7—6 — 62 —11 — 6 + 62
1076 x3—8x—6 146 -7 —136
1101 B4 xr—ox—12 5420 —62 —7 — 40 + 2062

relationship between 6 and ¢ is given by
1
¢ 0—1"

From Table 13 we see that a fundamental system of units for Ok is

In terms of 0, we deduce that

{6 —1,20% — 46 + 1}

{6,297

377
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Table 14. Fundamental unit of some

pure quartic fields Q(/—m)

m  Fundamental unit of Q(0), 0 = /—m

0 —06%+6°
—14+6%-63
—2 420 —6?

1 + 46 — 46% 4+ 263
—27 4+ 120 — 6% — 363

SN~

is a fundamental system of units for Ok. Finally, as

(20 — 1)(26% — 460 + 1) = 46° — 100> + 60 — 1
=0(0° —40 +2) — (0* —46° + 607 —40 + 1)
=—— D",

we see that
{6 —1,20 — 1}

is a fundamental system of units for Ok.

Table 14 gives a fundamental unit for a few pure quartic fields Q(y/—m), m € N.
Such fields are totally imaginary quartic fields.

13.7 Regulator

Let{e, ..., €451} and {€],..., €.} beany two fundamental systems of units
for the ring of integers Ok of an algebraic number field K. As {€}, ..., €451} 18
a fundamental system of units, we have

e =l et =12 s — L, (13.7.1)
where ¢ is a root of unity in K and a;;, b; € Z. Similarly, as {e], ..., €} 1is

also a fundamental system of units, we have

!
ray; 1 s—1 j

€ =ple M =12, s — 1, (13.7.2)
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where a{j,b} € Z. Hence, for j =1,2,...,r +s — 1, we have by (13.7.1) and

(13.7.2)

r+s—1 r+s—1 r+s—1 Akj
I b @i b, b, 1y,
e=c" [[a”=c" ] (¢ I] «
k=1 k=1 =1
] r4s—1 reml
_ é.bj+2237 ajby H E[’Zk:l @A
=1

By the uniqueness of the representation of units, we have

r+s—1 . .

, 1, ifl =,

kz_; ajag; = {0’ i1 (13.7.3)

Next we define the (r +s — 1) x (r +s — 1) matrices A and A’ by
A =lay), A = la];]
From (13.7.3) we see that
A'A = r+s—1-
Thus
det A"-det A =det(A’A)=det I, ;, | = 1.

As the matrices A and A’ have integral entries, both det A and det A’ are integers
so that det A" = det A = %1 and hence

|det A| = |det A'| = 1. (13.7.4)
Letoy (k=1,2,...,n)bethen = [K : Q] distinct monomorphisms: K — C with
o1,...,0, real, 0,41, ...,0,4, complex, and 0,511 = Or11, ..., 05 = Opa2s =
0r4s.-For j,k=1,2,...,r +s5s — 1 we have

r+s—1 r+s—1
ox(e}) = o (c”f I1 eé‘”) = o) [ onten™

1=1 =1

so that
r+s—1 r+s—1 r+s—1
b . b . .
low(epl = |ow@)" ] owte)™| = low@)” ] lowenl® = [] loten|®
=1 =1 =1
and thus

r+s—1

log low(e) = Y ajlog |ow(e). (13.7.5)
=1
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Let E and E’ denote the (r +s — 1) x (r +s — 1) matrices [log |oi(¢;)|] and
[log |o; (e})l] respectively. Then, from (12.7.5), we deduce that

E' = AE,
and so
det E' = det (AE) =det A - det E.
Finally,
|det E'| = |det A - det E| = |det A||det E| = |det E],
by (13.7.4).

We have shown that the nonnegative real number
|det (log |o;(€;)D)I

is independent of the choice of fundamental system of units {€;, ..., €45_1} of
Ok . We can therefore introduce the following concept.

Definition 13.7.1 (Regulator) Ler K be an algebraic number field of degree n
over Q. Let r be the number of real embeddings of K and 2s the number of non-
real embeddings of K so thatn =r +2s. Let 0; (i = 1,2, ...,n) be the n dis-
tinct monomorphisms : K — Cwithoy, ..., o, real, 0,11, ..., 0,15 complex, and
Ortstl = Orils---,0r40s = Op1g. Let {€1, ..., €,15_1} be any fundamental system
of units of Ok. Let E denote the (r +s — 1) x (r +s — 1) matrix whose entry in
the (i, j) place is

log |oj(epl, i, j=1,2,...,r+s—1.
Then the nonnegative real number
R(K) = |det E|

is called the regulator of K.

If K is either (Q or an imaginary quadratic field then r + s — 1 = 0 and the set
comprising a fundamental system of units of Ok is empty. In this case we understand
R(K) to be zero. Otherwise R(K) > 0. We now determine the regulator of a real
quadratic field.

Theorem 13.7.1 Let K be a real quadratic field. Then
R(K) =logn,

where 1 is the fundamental unit (> 1) of K.
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Proof: As K is areal quadratic field we haven = r =2 and s = Osothatr + s —
1 = 1. Thus a fundamental system of units of Ok is {n} and

R(K) = |det (log |n])| = [log |n|| = [log n| = log 1,

as 1 > 1 ensures log n > 0. |

Example 13.7.1 The fundamental unit of Og, where K = Q(+v/2), isn =1+ /2
so that R(K) = log(1 + +/2).

Example 13.7.2 Let K be the cubic field given by
K =Q@0), 6> —40+2=0.
The discriminant of the polynomial x> — 4x + 2 is positive as
—4(—4)> —27(2)* = 148,
so that the three roots 6, 0, 0" of x3 — 4x +2 = 0 are all real. Hence
n=r=3,5s=0,r+s—1=2.

Thus a fundamental system of units of Ok comprises two units, and it was shown
in Example 13.6.1 that these can be taken to be 6 — 1 and 26 — 1.
We choose the roots 0, 0', 6" of x> —4x +2 = 0so that 6 < 0’ < 6". Thus

0 ~ —2.2143, 9’ ~ 0.5391, 60" ~ 1.6751.

Then
|0 — 1| >~ 3.2143, log |6 — 1| =~ 1.1676,
20 — 1] =~ 5.4286, log |20 — 1] ~ 1.6916,
|6 — 1] ~ 0.4609, log |6’ — 1| >~ —0.7745,
20" — 1] >~ 0.0782, log |20 — 1| =~ —2.5484,
0" — 1] ~ 0.6751, log |0” — 1] >~ —0.3928,
260" — 1] >~ 2.3502, log |20” — 1] ~ 0.8545.

Hence

log|6 — 1| logl6 — 1| |
log 260 — 1] log |26 — 1]

= |log |6 — 1|log |20" — 1] —log |6’ — 1]log |20 — 1]|
~ |(1.1676)(—2.5484) 4 (0.7745)(1.6916)|

>~ | —2.9755 + 1.3101]

=|—1.6654| = 1.6654.

R(K) = |det
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It should be noted that we also have

log |0 — 1] log|0” — 1] |
log |20 — 1| log 20" — 1]

= |log |6 — 1|log |20 — 1] —log |8" — 1]log |26 — 1]|
~ [(1.1676)(0.8545) + (0.3928)(1.6916)|

~10.9977 + 0.6644|

= 1.6621

R(K) = |det

and

log|0’ — 1]  logl6” — 1] |
log|20" — 1| log|260” — 1]

= |log|®’ — 1]log|20” — 1| — log|0” — 1|log|20" — 1|
>~ | — (0.7745)(0.8545) — (0.3928)(2.5484)|

~ | —0.6618 — 1.0010]

= |1.6628| = 1.6628.

R(K) = |det

We close by remarking that some authors use a slightly different definition of
the regulator.

Exercises

1. Prove that there do not exist a, b, ¢ € Z such that

\/—2+2«"/§+(Cf2)2=a+b«"/§+c(€f2)2

(see Example 13.1.3).

2. Show that if 6 is a root of a monic polynomial f(x) € Z[x] and n € Z is such that
f(m)==x1then 0 —n € U(Q()).

3. Prove that x* — 2x — 2 has only one real root # and that 6 satisfies

1.7<6 < 1.8.

Use Theorem 13.6.1 to show that the fundamental unit (> 1) of Og) is 1 + 6.
4. Prove that x> — x — 2 has only one real root # and that @ satisfies

1.5 <6 < 1.6.

Use Theorem 13.6.1 to prove that 1 + 6 + 62 is the fundamental unit (> 1) of Oq)-
5. Prove that x> — x2 + x — 2 has only one real root @ and that 6 satisfies

13<6 <14
Use Theorem 13.6.1 to show that the fundamental unit (> 1) of Og) is 1 + 62.
6. Prove that 41 4 24+/5 + 14(+v/5)? is the fundamental unit (> 1) of OQ( V3

7. Prove that 109 + 60+/6 + 33(v/6)” is the fundamental unit (> 1) of O -
8. Prove that 4 4+ 2/7 + (v/7)? is the fundamental unit (> 1) of O@( Iy
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11.

12.

13.

14.

15.
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. Prove that

K =Q@0), 6°+6>—20—-1=0,

is a totally real field. Prove that —1 + 6 + 6 and 2 — 6? are independent units of K.
Prove that

1 4+ 2v/34 — (v/34)% and 35 — 6(~/34)?

are independent units in Q(v/34).
Prove that

{1+ﬁ,ﬁ+ﬁ,§(ﬁ+ﬁ)}

is a fundamental system of units for Ok, where K = Q(W2, V3).

Let K be an algebraic number field such that U(Ok) contains a nonreal root of unity.
Prove that N(«) > O forevery a € K \ {0}.

Let K = Q(¢,,), where ¢, is a primitive mth root of unity, m > 3. Determine r and s
for K.

Let K be atotally imaginary quartic field containing a real quadratic field k. By Theorem
13.4.2 K possesses a fundamental unit. Give conditions under which this fundamental
unit can be taken to be the fundamental unit of k.

Prove that

142,14+ 2%

is a fundamental system of units for Ok, where K = QW/2).

Suggested Reading

H. Cohen, A Course in Computational Number Theory, Springer-Verlag, Berlin,
Heidelberg, New York, 1996.

This book describes 148 algorithms that are fundamental for number theoretic computations.
Algorithms 4.9.9 and 4.9.10 calculate the roots of unity in the ring of integers of an arbitrary
algebraic number field. Algorithm 6.5.8 computes a fundamental system of units.

. C. Levesque, Systemes fondamentaux d’unites de certains composes de deux corps

quadratiques, 1, Canadian Journal of Mathematics 33 (1981), 937-945.

The author determines a fundamental system of units for certain quartic fields Q(y/m, /n), where
m and n are positive integers.

. L. Niven, H. S. Zuckerman, and H. L. Montgomery, An Introduction to the Theory of

Numbers, fifth edition, Wiley, New York, 1991.
A proof that Euler’s phi function ¢(n) is multiplicative can be found on page 69.

. B. L. van der Waerden, Ein Logarithmenfreier Beweis des Dirichletschen Einheiten-

satzes, Abhandlungen aus dem Mathematischen Seminar der Universitit Hamburg 6
(1928), 259-262.

The proof of Dirichlet’s unit theorem given in this chapter is based upon the approach in this paper.
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Applications to Diophantine Equations

An equation that is to be solved in integers is called a Diophantine equation in
honor of Diophantus (ca. 200—ca. 284), who proposed in his chief work Arithmetic
many problems to be solved in rational numbers or integers. Not much is known
about Diophantus. He lived in Alexandria, probably was not a Greek, and likely
did most of his work during the latter half of the third century.

In this chapter we apply algebraic number theory to solve some Diophantine
equations. We will be principally interested in the Diophantine equation

y2:X3+k,

where k is a given integer. This equation is often called Bachet’s equation, after
the French mathematician Claude Gaspard Bachet de Méziriac (1581-1638), who
showed how to find solutions of y?> = x3 — 2 in rationals x and y from the solution
(x,y) =(3,5).In 1917 Axel Thue (1863-1922) showed that for any given nonzero
integer k, Bachet’s equation has at most finitely many solutions in integers x and
y. Deep estimates from transcendental number theory give bounds for the sizes
of the solutions x and y. Hence the problem of finding all solutions in integers
of Bachet’s equation for a given nonzero integer k is reduced to a finite search.
In Section 14.1 we use elementary congruence considerations to give classes of k
for which Bachet’s equation has no solutions in integers. In Section 14.2 we use
the arithmetic of quadratic fields to determine all the solutions in integers (if any)
of Bachet’s equation for certain classes of k. In particular when kK = —2 we show
that (x, y) = (3, 5) are the only solutions in integers of y> = x> — 2, a result first
stated by Fermat. In Section 14.3 we find all the solutions in integers x and y of
the equation y(y + 1) = x(x + 1)(x + 2).

14.1 Insolvability of y?> = x? + k Using Congruence Considerations

In this section, using only simple congruence arguments, we give four classes of
integers k for which Bachet’s equation y?> = x> + k has no solutions in integers x
and y.

385
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Theorem 14.1.1 Let M and N be integers such that

M =3 (mod 4), N =2 (mod 4),
p (prime) | N/2 = p =1 (mod 4).

Set
k=M — N
Then the equation y*> = x* + k has no solutions in integers x and y.
Proof: Suppose that (x, y) € 72 is a solution of y?> = x> + k. Ask = —1 (mod 4)
we have
y? =x? — 1 (mod 4). (14.1.1)

Now y? = 0 or 1 (mod 4) for every integer y, so (14.1.1) cannot be satisfied if x is
even or x = 3 (mod 4). Hence we must have x = 1 (mod 4). Ask = M> — N? we
see that

V2 4+ N2 =x3+ M? = (x + M)(x> — Mx + M?). (14.1.2)
Since x = 1 (mod 4) and M = 3 (mod 4) we deduce that
x? — Mx + M? =3 (mod 4). (14.1.3)

Hence x> — Mx 4+ M?is odd and (14.1.3) shows that it has at least one prime factor
p =3 (mod 4). Thus y> = —N? (mod p). By assumption p { N. Hence

)-6)-()-

contradicting p = 3 (mod 4). This proves that the Diophantine equation y? =
x3 + k has no solutions |

The following table gives some values of k (with |k| < 100) covered by Theorem
14.1.1.

M -1 15 3 3
N 2 58 2 10
kK =5 11 23 =73

Theorem 14.1.2 Let M and N be integers such that

M =2 (mod 4), N =1 (mod 2),
p (prime) | N = p =1 (mod 4).
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Set

k=M>— N>
Then the equation y> = x> + k has no solutions in integers x and y.
Proof: Suppose that (x, y) € Z?isasolution of y> = x> + k. Considering the equa-
tion modulo 4, we obtain
y? = x> — 1 (mod 4).

Hence, as in the proof of Theorem 14.1.1, we must have x = 1 (mod 4). As k =
M3 — N? we have

VE4+ N =X+ M = (x + M)(x> — Mx + M?).
Since x = 1 (mod 4) and M = 2 (mod 4) we obtain
x* — Mx + M* =3 (mod 4).
The rest of the proof is the same as that of Theorem 14.1.1. [ |

The following table gives some values of k (|k| < 100) for which Theorem
14.1.2 applies.

M 2 -2 2 -2 6 14 6
N 1 1 5 5 13 53 17
kK 7 -9 —-17 =33 47 —-65 -73

Theorem 14.1.3 Let M and N be integers such that

M =4,6(mod 8), N =1 (mod 2),
p (prime) | N = p = %=1 (mod 8).

Set
k=M’ + 2N
Then the equation y*> = x> + k has no solutions in integers x and y.
Proof: Suppose that (x, y) € Z*isasolutionof y> = x> + k. Ask = M? + 2N? =
2 (mod 4) we have
y? = x> + 2 (mod 4).
Hence x s 0 (mod 2), x % 1 (mod 4), and so x = 3 (mod 4). Next
v —2N? =3 4+ M3 = (x + M)(x* — Mx + M?).
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If x = 3 (mod 8) then
x> = Mx+M?>=1-3M+ M? =43 (mod 8).

Hence x> — Mx + M?is odd and at least one of its prime factors p is = 43 (mod 8).
Thus p f N, y*> = 2N? (mod p), and so

p p p ’
contradicting p = #£3 (mod 8).
If x = 7 (mod 8) then

x+M=T74+ M = 43 (mod 8).

Hence x + M is odd and at least one of its prime factors p is = £3 (mod 8). Thus
p1 N, y?> =2N?(mod p), and so

3)-()-()-

contradicting p = #£3 (mod 8).
This proves the insolvability of y?> = x* + k in integers x and y. |

The following table gives some values of k (|k| < 100) for which Theorem 14.1.3
applies.

M -2 —4 —10 -4 4 -2
N 1 7 23 117
k —6 34 58 —62 66 90

Theorem 14.1.4 Let M and N be integers such that

M =4 (mod 8), N =1 (mod 2),
p (prime) | N = p =1, 3 (mod 8).

Set
k= M>—2N>.

Then the equation y*> = x> + k has no solutions in integers x and y.

Proof: Suppose that (x, y) € Z*isasolutionof y*> = x> + k. Ask = M?® —2N? =
2 (mod 4) we have

y? = x* + 2 (mod 4).
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Hence x £ 0 (mod 2), x £ 1 (mod 4), and so x = 3 (mod 4). Further, as k = —2
(mod 8), we have

y* =x* — 2 (mod 8)
so that x £ 7 (mod 8). Hence x = 3 (mod 8). Next
y2 +2N? =+ M? = (x + M)()c2 — Mx + MZ).

As x =3 (mod 8) and M = 4 (mod 8), we see that x + M = 7 (mod 8). Hence
x + M is odd and has at least one prime factor p =35 or 7 (mod 8). Thus
p1N, y*=—2N?(mod p), and so

(2)-(2)- ()

contradicting p = 5 or 7 (mod 8). |

The following table gives some values of k (|k| < 100) for which Theorem 14.1.4
applies.

M 4 4 -4 —4 4
N 3 1 1 3 9
k 46 62 —-66 —82 —98

14.2 Solving y? = x3 + k Using Algebraic Numbers

In this section we make use of results from algebraic number theory to determine
all the solutions in integers x and y of y*> = x3 4 k for certain classes of integers k.
The principal results that we use are the following two theorems.

Theorem 14.2.1 Let D be a Dedekind domain. Let A, B, C be nonzero integral
ideals of D such that A and B are coprime and

AB =C",
where n is a positive integer. Then there exist ideals A and By of D such that

A=A", B=B' C=AB,.

Proof: As D is a Dedekind domain, every nonzero integral ideal of D can be
expressed uniquely as a product of prime ideals (Theorem 8.3.1). Thus

C=P"...P%



390 Applications to Diophantine Equations

where P, ..., P, are r(> 0) distinct prime ideals and ay, . . ., a, are positive inte-
gers. Hence

AB = P/ ... P,

As A and B are coprime ideals, each prime power Pl-"“" (i =1,...,r)divides either
A or B but not both. Hence by relabeling if necesssary we have

_ nap nas _ nas+1 na,
A_Pl Pv ’B_PS+1 Pr ’

for some integer s with 0 < s <r.Set Ay = P{"--- P and B = P} --- P%;

then A = A, B = B}, and C = A, B, as asserted. [ ]

As the ring of integers of an algebraic number field is a Dedekind domain (The-
orem 8.1.1), Theorem 14.2.1 applies in this case.

Theorem 14.2.2 Let K be an algebraic number field. Let h denote the class number
of K. Let A be an integral ideal of Ok such that A* is a principal ideal for some
positive integer k coprime with h. Then A is a principal ideal.

Proof: Let [A] denote the class of A. As the order of H(K)is h, we have [A]" = I
so that A" is a principal ideal. Since (/, k) = 1 there exist integers r and s such that
rh + sk = 1. Then, as A is a principal ideal, so is

A — Ar/’l-‘rsk — (Ah)r (Ak)s

as asserted. [ ]

We now sketch the ideas involved in using Theorems 14.2.1 and 14.2.2 to obtain
classes of rational integers k for which we can find the solutions (if any) of the
Diophantine equation y? = x> + k.

We begin by supposing that the equation y?> = x3 4 k has a solution in integers
x and y, so that

=+ Vi - vk,

where y + Vk and y — Vk are integers of the quadratic field K = Qk). We
assume that k is squarefree and that k = 2 or 3 (mod 4) so that Ox =Z + ZVk.
(The latter condition avoids 2’s in the denominators of the integers of K = Q(k).)
Passing to ideals, we obtain

(x)* = (y + Vk)(y — Vk).

If the values of k are chosen so that the principal ideals (y + +/k) and (y — v/k)
are coprime, then we can deduce from Theorem 14.2.1 that

(y + Vk) = A®
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for some ideal A of Og. Further, if the class number of K is not divisible by 3, we
know by Theorem 14.2.2 that A is a principal ideal, say

A = (a + bVk)
for some integers a and b. Thus
(y + Vk) = (a + bVk)* = ((a + bVk))
and so by Theorem 1.3.1

y + vk = e(a + bVk),

where € is a unit of Og. Two cases arise depending on whether &k is negative
or positive. If k is negative then there are only finitely many possibilities for €.
Indeed if k 2 —1thene = £1 andif k = —1thene = +1, =i (Theorem 5.4.3).
Since cubes can be absorbed into (@ + bvk)?, and —1 = (—1)%, i = (—i)?, and
— i = i3, the equation becomes

y + vk = (a + bVk) .
Equating coefficients of v/k, we obtain
1 =3a’b + kb® = b(3a® + kb?),

so that b = %1. It is now an easy matter to determine the possibilities for a, and
then the solutions x, y in integers of y?> = x3 4 k (see Theorem 14.2.3). If k is
positive then there are infinitely many possibilities for €. Indeed € = %5/, where
n =T + U~k (> 1) is the fundamental unit of O and [ € Z (Theorem 11.5.1).
Absorbing the cubes —1 = (—1) and " = (¢)? into (a + bv/k) we see that we
have only to examine the three equations

y+«/%=(a+b\/§)3,
y + vk = na + bvk)*,

and
y + vk =n’(a + bVk) .

The first of these equations can be treated as in the case k < 0. For the other two
equations it is convenient to impose congruence conditions on k, 7, and U to
ensure that they do not have any solutions. This is illustrated in Theorem 14.2.4. It
should be noted that absorbed cubes must be taken into account when seeking all
solutions of y? = x* + k.
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Theorem 14.2.3 Let k be an integer such that

k< —1,

k is squarefree,
k=2,3 (mod 4),
h(@Q(k)) # 0 (mod 3).

(a) If there exists an integer a such that
k=1-3a’
then the only solutions in integers of y*> = x> + k are
x =4a> -1, y =+QBa — 8a%).
(b) If there exists an integer a such that
k=—1-3a’
then the only solutions in integers of y?> = x> + k are
x =4a®+1, y = =%@Ga + 84%).

(©) If k # 1 — 3a? for any integer a then y* = x> + k has no solutions in integers x
and y.

Proof: We suppose that y?> = x3 + k has a solution in integers x and y and show
that either case (a) or case (b) holds. (We note that in case (a) k = 1 (mod 3) and
in case (b) k = 2 (mod 3), so that cases (a) and (b) are exclusive.)

First we show that x = 1 (mod 2). As y?> = 0, 1 (mod 4) and k = 2, 3 (mod 4),
we see that x> = y> —k = 1,2, 3 (mod 4). But x> % 2 (mod 4) so x = 1 (mod 2).

Next we prove that (x, k) = 1. Suppose not. Then there exists a prime p such
that p | x and p | k. As k is squarefree we have p || k. Hence p || x> + k and so
p || ¥%, a contradiction.

From x = 1 (mod 2) and (x, k) = 1 we deduce that (x, 2k) = 1 so that there are
integers / and m such that

Ix +m2k) =1. (14.2.1)

Now let K = Q(+vk) so that K is an imaginary quadratic field. As
k = 2,3 (mod 4) the ring Ok of integers of K is {u + vk | u, v € Z}. We now
show that the principal ideals (y + +v/k) and (y — v/k) of Ok are coprime. Suppose
not. Then there exists a prime ideal P such that

P {y++k), P|(y— k).
Hence

y++vkeP, y—vkeP.
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Thus
Wk=@+vk)—(y—-vk)eP
and so
2k = Vk(2Vk) € P. (14.2.2)
Now
O+ VR =k =y = k) = (&) = (x)?
so that

P (x)3.
As P is a prime ideal, we deduce that
P (x).
Thus
x e P. (14.2.3)

From (14.2.1)-(14.2.3), we see that 1 € P, contradicting that P is a prime ideal.

We have shown that (y + Vk) and (y — Vk) are coprime ideals of Ok with
(y + Vk)(y — vk) = (x)?. As K is an algebraic number field, Ok is a Dedekind
domain by Theorem 8.1.1, and thus by Theorem 14.2.1 there exists an ideal A of
Ok such that

(v +vk) = A3

Thus A3 is a principal ideal and, as h((@(«/%)) # 0 (mod 3), by Theorem 14.2.2, A
is a principal ideal, say,

A = (a + bVk),
where a, b € Z. Hence
(y + Vk) = (a + bVk)* = ((a + bVEk)).
By Theorem 1.3.1 there exists a unit € € Ok such that
y+ vk = e(a + bVk) . (14.2.4)

Ask < —1and k = 2, 3 (mod 4) by Theorem 5.4.3 we have € = *1. Taking con-
jugates in (14.2.4), we obtain

y — vk =e(a —bvVk) . (14.2.5)
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Thus

=y —k=+ Vo - Vi = @+bvk’a - bvk)
= ((a + bVk)a — bVK) = (a* —kb?)’

so that
x =a’ — kb (14.2.6)
Adding and subtracting (14.2.4) and (14.2.5), we obtain
2y = e((a + bvVk)® + (a — bVk)?)
and
Wk = e((a + bvVk)? — (a — bVk)),
so that
y = e(@® + 3kab?), 1 = e(3a’b + kb>).
From 1 = eb(3a® + kb?) we see that b = +1, so that b = F€. If b = € then
x=a*—k, y =6(a3+3ka), 1 =3a® +k,

so that
k=1-3a>
and
x=4a*> -1, y==x03a - 8a°).
Clearly

X +k=4a> =1+ (1 —3a®) = 64a° — 48a* + 9a*> = (8a’ — 3a)2 =y

If b = —¢ then
x=a*—k, y=e(@® +3ka), 1 = —=3a> —k,
so that
k=—1—3a?
and
x =4d>+ 1, y = £(3a + 84>).
Clearly

4k = (4a® + 1)) — 1 — 3a> = 64a® + 484" + 94> = (8d> + 3a)’ = ).

This completes the proof of the theorem [ |
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Example 14.2.1 The integer k = —2 = 1 — 3 - 12 satisfies the conditions of The-
orem 14.2.3(a) as h(Q(~/—2)) = 1, so that the only solutions in integers of the
equation y* = x> — 2 are (x, y) = (3, 5). This result was first stated by Fermat.

The values of k in the range —200 < k < —2 that satisfy the conditions of The-
orem 14.2.3(a) are k = =74 =1 —3 - 5% (h(Q(+/—74)) = 10) and k = —146 =
1 — 3. 7% (h(Q(+/—146)) = 16). Hence, by Theorem 14.2.3(a), the only solutions
in integers of y? = x> — T4 are (x, y) = (99, +985) and the only solutions in inte-
gers to y? = x> — 146 are (x, y) = (195, £2723).

Example 14.2.2 The smallest integer k in absolute value satisfying the conditions
of Theorem 14.2.3(b) is k = —13 = —1 — 322 as h(Q(+/—13)) = 2. Hence, by
Theorem 14.2.3(b), the only solutions in integers x and y of the equation y*> =
x3 =13 are (x,y) = (17, £70). In the range —200 < k < —1 there is only one
other value of k that satisfies the conditions of Theorem 14.2.3(b), namely, k =
—193 = —1 — 3. 8% (h(Q(+~/—193)) = 4). The only solutions in integers of the
equation y* = x> — 193 are (x, y) = (257, £4120).

Example 14.2.3 The integer k = —5 satisfies the conditions of Theorem 14.2.3(c)
as h(Q(+/=5)) = 2. Hence the equation y* = x> — 5 has no solutions in integers.
We note that k = —5 was also covered by Theorem 14.1.1.

Similarly, we find that y> = x3 + k is not solvable in integers x and y for

k=-6,-10, —14, —17, =21, =22.

In the next theorem we find a result similar to that of Theorem 14.2.3(c) in the
case when k is positive.

Theorem 14.2.4 Let k be an integer such that

k>0,

k is squarefree,
k=2,3(mod 4),
hQ(/k)) # 0 (mod 3).

Let T + U~/k be the fundamental unit of K = Q(~/k) of norm 1. If
k=4 (mod9), U=0(mod?9)
or

k=7(@mod9), U ==+3(mod 9)
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or
k=4 (mod 7), U =0 (mod 7)

then the equation y> = x> + k has no solutions in integers x and y.

Proof: Exactly as in the proof of Theorem 14.2.3 we obtain
y+x/E=6(a+b\//;)3,
where € is a unit of Og. Let n be the fundamental unit of Ok so that
€= :I:nl

forsome! € Z. As the cubes —1 = (—1)% and n*" = (n™)? can be absorbed into the
cube (a + bvk)?, wehave y + vk = e(a + bv/k)?, where € = 1, n, or n2. Further,
as n = n°/n* and n* = n*/n, we have

1 1
y+ vk =e(a+bvk)y’, wheree € {1,7, ~}or {1, =, n°}.
n n

We choose € € {1, 7, 1/n}if n hasnorm 1 and € € {1, 1/1?, »?} if n has norm —1.
Thus in both cases

ee{l,T+UVk, T — Uk},

where T + U +/k is the fundamental unit (> 1) of O of norm 1. If € = 1, equating
the coefficients of v/k we obtain 1 = 3a®b + kb>, so that b | 1 and thus b = 1.
Hence +1 = b = 3a?b* + kb* = 3a®> + k > k > 1,acontradiction. Thuse = T +
U+/k. Then

y + vk = (T £ UVk)a + bvk)?
= (T £ UVK)((@ + 3kab?) + (3a*b + kb*)Vk)
= (T(a® + 3kab®) + Uk(3a>b + kb?))
+ (T(3a?b + kb%) £+ U(a® + 3kab®))Vk

so that
1 = TBa?b + kb*) £ U(a® + 3kab?®). (14.2.7)

Case (i):k = 4 (mod 9), U = 0(mod 9). AsU = 0 (mod 9), from T? — kU? =
1 we obtain 7 = +1 (mod 81), say

T = € (mod 81), ¢ = £1.
Then from (14.2.7) modulo 9, we deduce that

1 = €(3a’b + 4b*) (mod 9). (14.2.8)
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Clearly this congruence implies that b # 0 (mod 3). Hence b = +1 (mod 3), say

b= X (mod 3), A = £1.
Thus

b? = A (mod 9).

Then from (14.2.8) we deduce that

1 =er(3a® + 4) (mod 9),
so that

3a* + 4 =er = £1 (mod 9),
giving
3a* =4 or 6 (mod 9),
both of which are impossible.
Case (ii): k=7 (mod 9), U = 43 (mod 9). In this case we have U =0

(mod 9). Then from T2 — kU? = 1 we deduce that 7% = 1 (mod 9), so that

T =€ (mod9), e = +1.
Next, from (14.2.7) modulo 3, we obtain

1 = eb? (mod 3),
so that
b =€ (mod 3), b> = € (mod 9).
Then from (14.2.7) modulo 9 we have
1 = 3a% 4+ 7 £ 3a> (mod 9).

Clearly this implies a 2 0 (mod 3), so a = £1 (mod 3), a?> =1 (mod 3), and

a® = a (mod 3). Hence

1 =1 = 3a (mod 9),

giving a = 0 (mod 3), a contradiction.

Case (iii): k = 4 (mod 7), U = 0 (mod 7). From
y + vk = (T £ UVk)a + bVk)?

we deduce that

y — vk = (T F UVk)a - bVk)?,
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so that
=y —k= 0+ Vo -V

= (T £ UVk)a + bV (T F UVk)(a — bVk)?

= (T* — kU (d* — kb?)’

= (a® — kb*)’
and hence

x =a® — kb*.
Now
x*=0,1,6(mod 7)
and
y2=0,1,2,4 (mod 7),
SO
vy} —x3 =k =4 (mod 7)
gives
y? =4 (mod 7), x* =0 (mod 7).
Thus
x =0 (mod 7)
and so
a’ — 4b* = 0 (mod 7);

that is,

a ==+ 2b (mod 7).
From U = 0(mod 7) and T? — kU? = 1 we deduce that
T? =1 (mod 49)
so that
T =+ 1 (mod 49).
Then from (14.2.7) we obtain
1 = + 2b° (mod 7),

which is impossible.
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This completes the proof that y> = x* + k is insolvable in integers x and y in all
three cases. [ ]

Example 14.2.4 We choose k=58 so that k=2(mod4) and k=
4 (mod 9). In this case h(Q(+/58)) = 2 and the fundamental unit of Q(~/58) is
99 + 13+/58 of norm —1. Thus the fundamental unit of norm 1 is

(99 + 13v/58)% = 19603 + 2574+/58
so that
U = 2574 = 0 (mod 9).

Thus, by Theorem 14.2.4, the equation y*> = x> + 58 is not solvable in integers x
and y. We note that this equation is also covered by Theorem 14.1.3.

Example 14.2.5 We choose k=7. Here k=3(mod4) and k=
7 (mod 9). Also, h(Q(+~/7)) =1 and the fundamental unit of Q(~7) of norm
lis8+3v7sothatU =3 =3 (mod 9). Hence, by Theorem 14.2.4, the equation

y? = x3 4 7 has no solutions in integers x and y. This equation is also covered by
Theorem 14.1.2.

Example 14.2.6 We choose k =158. Here k=2(mod4) and k=
4 (mod 7). Also, h(Q(+/158)) =1 and the fundamental unit of Q(v/158) of
norm 1 is 7743 4+ 616+4/158 so that U = 616 = 0 (mod 7). Thus, by Theorem
14.2.4, the equation y* = x> + 158 has no solutions in integers x and y.

We conclude this section by giving an example where h(Q(vk)) =
0 (mod 3).

Theorem 14.2.5 The equation
yr=x*-31 (14.2.9)

has no solutions in integers x and y.

Proof: Suppose that y> = x> — 31 has a solution in integers x and y.

First we note that 311 y, for if 31 | y then 31 | x and so 31% | x* — y?> =31, a
contradiction.

Next we show that x must be even. Suppose that x is odd. If
x = 1(mod 4) then x*> = 1(mod 4) so that y?> = 2 (mod 4), which is impos-
sible. If x =3 (mod 4) then x* +3x +9 = 3 (mod 4). Also x*+3x +9 > 1.
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Hence x> + 3x +9has a prime factor p = 3 (mod 4). Now
yi4+4=x-27=(x—-3)x*+3x+9),

so that y?> +4 = 0 (mod p), which is impossible. This proves that x is even and y
is odd.
An integral basis for K = Q(+/—31) is {1, 1+y-31 VZ’“} The prime ideal factor-

ization of 2 in Ok is given by

3—1—«/—31)(2 3—4/-31

(2)=1(2 > : 7

) (14.2.10)

(see Theorem 10.2.1). We show that (2, 2+¥=31 3_31) is not a principal ideal. Suppose on

the contrary that (2, 3+¥=31 }‘31) is a principal ideal. Then there exist rational integers
a and b such that

R 3PV, (1+ 5—31),

2

Taking norms we obtain

2=N ((2, H# ”31>> =N ((a +b (H# ”“) >>

2a +b +b«/—31) — (2a + b)* + 31b*
2 B 4

=| N(
so that
(2a + b)*> + 31b* = 8,

which is clearly impossible.
Next, appealing to (14.2.9) and (14.2.10), we deduce that

y++/-31 y—+-31 3+ /31 3—+/-31 x4
) ) = (2, )2, W)
2 2 2 2 2
We show that the two ideals (2 s =31y and (2= 5‘31 ) are coprime. If not, then there
exists a prime ideal P such that

(

(14.2.11)

y+ /=31 y—+/—31
P|{(———), P|{(————).
2 2
Then
/=31 — /=31
u e P’ u = P,
2 2
SO

37— (L 3—31> _ (L ;—31> cP.



14.3 The Equation y(y + 1) = x(x + 1)(x + 2) 401

Thus
P | (v=31).
But P and (/—31) are both prime ideals so that
P = (v/=31).
Hence

—31
(V31| <<y+fv>>

so that HT V=3l o (+/—31). This shows that there exist integers u and v such
that

=31 =31
R (vav> |
Hence u = 1 and y = —31v, contradicting 311 y. This proves that the ideals
(=t 3’31 yand (( I——= {“)) are coprime. Thus, replacing y by —y if necessary,
we see from (14.2.11) that there exists an ideal A of Ok such that

( V=31 3+ 4/=31

<<%>> = 2w,

( y—+-31 )= (2 3_“/_31>A3 (14.2.12)
2 ’ 2 ’

Y= AA

<§>— ,

where A denotes the conjugate ideal of A. Since h2(Q(+/—31)) = 3 the ideal A3
is principal. Then, from the first equality in (14.2.12), we deduce that the ideal

(2, 3ty=31 3’3]) is principal, a contradiction. This completes the proof that the equation
y? = x* — 31 has no solutions in integers x and y. [

We conclude this section by giving two short tables (Tables 15 and 16) of solutions
of y2 = x3 + k.

14.3 The Diophantine Equation
Yo +1=x(x+Dx +2)

In this section we use the arithmetic of the cubic field

K =Q(®), 6°—46+2=0, (14.3.1)
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Table 15. Solutions (x, y) € Z? of
y2=x3—|—k, —-20<k <0

k  Solutions (x, y) of y> = x> + k

—1 (1,0)

-2 (3, £5)

-3 insolvable

—4 (2, £2), (5,£11)
-5 insolvable

-6 insolvable

-7 (2, £1), (32, £181)
—8 2,0

-9 insolvable

—10 insolvable

—11 (3, £4), (15, £58)
—-12 insolvable

—13 (17, £70)

—14 insolvable

—-15 4, +7)

—16 insolvable

—-17 insolvable

—18 (3, £3)

-19 (7, £18)

-20 (6, =14)

to determine all the solutions in integers x and y of the equation
Yo+ 1D =x(x+Dx+2); (14.3.2)

that is, we determine all those integers that are simultaneously a product of two
consecutive integers and a product of three consecutive integers. This problem was
proposed by Edgar Emerson to Burton W. Jones (1902-1983) and was first solved
by Louis J. Mordell (1888-1972) in 1963. We follow the solution given by Mordell
in his paper [6].

We need the following facts about the field K and its ring of integers O:

Ok =7+ 76 + 78, (14.3.3)
Ok is a unique factorization domain, (14.3.4)
a fundamental system of units of Ok is{e, n},

wheree =0 — 1l and n =26 — 1. (14.3.5)

Result (14.3.3) is Exercise 13 of Chapter 7. Result (14.3.4) is Exercise 14 of Chapter
12. For result (14.3.5) see Example 13.6.1. By Dirichlet’s unit theorem every unit
of Ok is given by +€™n" for integers m and n.
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Table 16. Solutions (x, y) € Z? of
y2=x3+k, 0<k<?20

=

Solutions (x, y) of y? = x3 + k

(—1,0), (0,£1), (2,£3)

(=1, £1)

(1, £2)

0, £2)

(—1,+£2)

insolvable

insolvable

(=2,0), (1,£3), (2,%4), (46, £312)

(=2, £1), (0, £3), (3, £6), (6, x£15), (40, +253)

10 (—1,+3)

11 insolvable

12 (=2, %2), (13, £47)

13 insolvable

14  insolvable

15 (1, +£4), (109, £1138)

16 (0,+4)

17 (=2, %3), (—1,%4), (2,£5), 4, 19), (8, £23),
(43, £282), (52, £375), (5234, £378661)

18 (7,%19)

19 (5, x£12)

20 insolvable

O 0NN A W~

If we set
X=2x+2,Y=2y+1, (14.3.6)
the equation (14.3.2) becomes
2Y2 = X3 —4X + 2. (14.3.7)

Clearly any solution of (14.3.7) must have X even and Y odd. We will show that
the only solutions of (14.3.7) are

(X, Y)=(=2,£1), (0,£1), (2, £1), (4,£5), (12, £29).
Thus all the solutions of (14.3.2) are

(X, )’) = (0’ O)s (09 _1)’ (_1’ O)s (_la _1)’ (_2s O)’ (_2’ _1)’ (lv 2)a
(1, =3), (5,14), (5, —15).

This proves that the only integers that are simultaneously a product of two consec-
utive integers as well as a product of three consecutive integers are 0, 6, and 210.
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All such solutions are given by

0 = (=D(0) = O)1) = (=2)(=1)(0) = (=D(O)(T) = (0)(1)(2),
6 =(2)3) = (=3)(=2) = (HDR)B),
210 = (14)(15) = (—15)(—14) = (5)(6)(7).

We let 0, 6’, 8” € C be the three roots of x> — 4x + 2 = 0 so that

0+6"+0"=0,
06" + 00" +0"60 = —4, (14.3.8)
06'6" = —2.

We need a number of lemmas.
Lemma 14.3.1 6 is a prime in Ok.

Proof: From (14.3.8) we deduce that |[N(0)| = |06’0”| = 2, which is a rational
prime, so that 0 is a prime in Og. |

Lemma 14.3.2 46 — 3 is a prime in Ok.

Proof: We have by (14.3.8)

N(46 — 3) = (40 — 3)(40" — 3)(40" — 3)
= 6400'0" — 48(00' + 600" +0"0) +36(0 + 0’ +0") — 27
= 64(—2) — 48(—4) 4+ 36(0) — 27
= —128 +192 — 27
= 37,

which is a rational prime, so that 40 — 3 is a prime in Ok. |
Lemma 14.3.3 2 = p6>, where p € U(Ok).

Proof: From 63 — 40 + 2 = 0 we deduce that

93
— =20 —1 € O.
> K
Further,
93 N 3 ) 3
V(O VO
2 8 8
Hence

93
— e U(Og).
2 (Ok)
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Thus
2
3 € U(Ok)
and so
2
@ =p
for some p € U(Ok). |

Lemma 14.3.4 If (X, Y) € Z? is a solution of (14.3.7) then

(X —0)X*+ 60X + (6% —4)) = po°Y>.

Proof: We have by (14.3.1), (14.3.7), and Lemma 14.3.3

(X —0)(X>+0X+0>—4)=X>—4X — 0>+ 46
=X>—4X+2
=2Y?
=,093Y2. |

Lemma 14.3.5 The only possible primes in Ok dividing both X — 0 and X* +
0X + (0% — 4) are 6 and 46 — 3.

Proof: Letm be aprime of O dividing both X — 6 and X? + 6 X + (6> — 4). Then
7 divides

(X2 4+ 60X + (0> —4) — (X +20)(X — 0)
30°—40 340 —2)—40 80 —6

=302 —4 = =
0 0 0
2 2
= 5(49 —3) = p46 — 3)6°,
by (14.3.1) and Lemma 14.3.3. As p is a unit this shows that the only possibilities
form arem =60 and m = 46 — 3. [ ]

Lemma 14.3.6 6 is a common factor of X — 0 and X*> + X6 + (6% — 4) such that
6>t X —0.

Proof: By Lemma 14.3.3 we have 6° | 2in Ok . Hence, as X is even, we deduce that
63| Xin Og.Hence 6 | X andso 6 | X — 0 and 6 | X> + X6 + (0> — 4). Finally,
as 6% | X and 6% 10, we have 02 1 X — 6. ]

We are now ready to prove the main result of this section.
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Theorem 14.3.1 The solutions in integers X and Y of the equation
2 =X —4X +2

are

(X,Y)=(-2,%1), (0,£1), (2,%1), (4,£5), (12,+£29).

Proof: We define the nonnegative integer n by
(40 —3)" | X —6, (40 =3y 4 X — 0. (14.3.9)

Then, as Ok is a unique factorization domain, from (14.3.3), (14.3.5), Lemma
14.3.4, Lemma 14.3.5, and (14.3.9), we deduce that

X — 6 = +6(46 — 3)€e'n"™(a + bO + c6%)? (14.3.10)

for some integers [, m, a, b, c. By absorbing squares into the square
(a + bO + c92)2, we may rewrite (14.3.10) as

X — 6 = 4040 — 3)Ve"n™ (A + BO + CO%), (14.3.11)
where
L,M,N e{0, 1}. (14.3.12)
Taking norms of both sides of (14.3.11), we obtain
X —4x+42=42.37V.7° (14.3.13)

for some Z € Z. As X is even we may set X = 2X, where X| € Z, in (14.3.13),
and obtain

4X3 —4X, +1 =437V . 7% (14.3.14)
Reducing (14.3.14) modulo 8, we obtain
1 = £5" (mod 8),
showing that N # 1. Hence by (14.3.12) we have N = 0. Thus (14.3.11) becomes
X — 60 = +0e"n™ (A + BO + C0%), (14.3.15)

where L, M € {0, 1}. Expanding the square in (14.3.15) and making use of #° =
460 — 2, we obtain

X — 0 = +0elnM(A? —4BC) + (2AB + 8BC — 2C%)0
+ (2AC + B? +4C?)6%). (14.3.16)

We now consider each of the four possibilities

(L, M)=(0,0), (0,1), (1,0), and (1, 1).
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(1): (L, M) = (0, 0). In this case (14.3.16) becomes

X —0 = +0((A> —4BC) + RAB 4+ 8BC —2C*)0
+ (QAC + B% +4C*H0%). (14.3.17)

Using 03 =46 — 2, and equating terms in 1, 6, and 62 on both sides of (14.3.7),
we obtain

4AC +2B* +8C* = FX, (14.3.18)
A? —4BC +4B* + 8AC + 16C* = F1, (14.3.19)
AB +4BC —C?*=0. (14.3.20)

Taking the Eq. (14.3.19) modulo 4, we see that the plus sign holds. Then (14.3.18)—
(14.3.20) can be written as

X =4AC +2B* +8C?, (14.3.21)
(A+4C)* +4B> —4BC =1, (14.3.22)
B(A +4C) = C>. (14.3.23)

When B =0, (14.3.23) gives C = 0. Then from (14.3.21) we obtain X = 0. If
B # 0, from (14.3.22) and (14.2.23) we deduce that

C4
=t 4B* —4BC =1. (14.3.24)

Now for all x € R we have
(x — B)*((x + B)* + 2B%) > 0.
Hence
x*>4B%x —3B*

and so

x4
~_ 4+ 4B? —4Bx > B>

B2
Taking x = C in this inequality, and appealing to (14.3.24), we deduce that
1> B2,
so that B = %1. Then from (14.3.24) we have
C*+4F4C =1,

so that C = £1. Hence from (14.3.23) we obtain A = C?/B — 4C = F3. Finally,
from (14.3.21) we obtain

X=2-124+8=-2.
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(ii): (L, M) = (0, 1). In this case (14.3.15) becomes
X —60=40020—1)(A+ B0+ C6)°.

Multiplying by 6, and absorbing 6 into the square, we obtain with a slight change
of notation

F(X0 — 6% = (1 —20)((A*> —4BC) + (2AB + 8BC — 2C%)0
+ (2AC + B? +4C?)6?),

and so equating coefficients of 1, 6, % we have

0= A> —4BC 4+ 4(2AC + B* +4C?), (14.3.25)
FX =2AB +8BC —2C? —2(A%> —4BC) — 8(2AC + B* + 4C?), (14.3.26)
+1 =2AC + B> +4C? —2(2AB + 8BC — 2C?). (14.3.27)

From (14.3.25) we see that A is even and from (14.3.27) that B is odd. Then,
considering (14.3.27) modulo 4, we deduce that the + sign holds in (14.3.27).
Hence the — sign holds in (14.3.26). Thus (14.3.25)—(14.3.27) become

0=(A+4C)*+4B(B — (), (14.3.28)
1 = AQ2C —4B) + B> — 16BC + 8C?, (14.3.29)
X =2A%+8B? +34C* —2AB + 16AC — 16BC. (14.3.30)

Suppose first that C = 2B. Then from (14.3.29) we obtain B> = 1. Since solu-
tions (A, B, C) and (—A, —B, —C) give the same value for X, we need only
take B = 1. Hence C = 2. Then from (13.3.28) we obtain (A + 8)? = 4 so that
A = —6, —10. Then from (14.3.30) with (A, B, C) = (—6, 1, 2) we obtain X =4
and with (A, B, C) = (—10, 1, 2) we obtain X = 12.
Suppose next that C # 2B. Then from (14.3.29) we have
B> —16BC +8C? — 1

A= . (14.3.31)
4B - 2C

Thus
B> -1

A+4C = ————.
+ 4B —2C

(14.3.32)

Then, from (14.3.28), we deduce that

B -1 2+4B(B C)=0
4B —2C 7
so that

B*—2B?>+ 1+ 16B(2B — C)*(B — C) = 0. (14.3.33)

This shows that B | 1,sothat B = £1. Then (14.3.33) gives(asC # 2B)C = B =
+1. Next from (14.3.32) we obtain A = —4C = F4 and finally from (14.3.30)
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X = 2. All solutions of 2Y2 = X3 — 4X + 2 have now been found.
(iii): (L, M) = (1, 0). In this case (14.3.16) becomes

F(X —60)=(0 —0*)(A> —4BC) + (2AB + 8BC —2C*)8
+(2AC + B?> 4+ 4C?)9?).

Equating coefficients of 6 and 62, we obtain

+1 = (A2 —4BC) + 6(2AC + B> +4C?) — 4(2AB + 8BC — 2C?),
0= (QAB +8BC —2C?) — (A> —4BC) — 4QAC + B> + 4C?).

The first equation shows that A is odd and the second that A is even. This case
cannot occur.
@av): (L, M) = (1, 1). In this case (14.3.15) becomes

+(X — 6) = 6(1 — 0)(1 —26) (A + BO + C6%).

On multiplying by #, and absorbing 6 into the square, we obtain with a slight
change of notation

+0(X — 6) = (1 — 30 +26%)((A*> —=4BC) + 2AB + 8BC — 2C>)0
+ (2AC + B> +4C%0%).

Equating coefficients of 1 and 62, we obtain

0= (A% —4BC)+ 6(2AC + B> +4C?% — 4(2AB + 8BC — 2C?),
F1 =9Q2AC + B> +4C?) — 32AB + 8BC — 2C*) + 2(A*> —4BO).

The first equation shows that A is even and then that B is even since
6B% = 0 (mod 4). The second equation shows that B is odd. This case cannot
occur.

This completes the proof of the theorem. [ |

As an immediate consequence of Theorem 14.3.7 we have the main result of this
section.

Theorem 14.3.2 The only solutions in integers x and y of the equation
Yo+ D =x(x+Dx+2)
are

(x,y)=1(0,0), (0, =1),(=1,0), (=1, =1),(=2,0), (=2, =1), (1, 2), (1, =3),
5, 14), (5, —15).
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Proof: This follows immediately from Theorem 14.3.1 by using the transformation
(14.3.6). |

Exercises

. Determine all integers k in the range |k| < 200 to which Theorem 14.1.1 applies.
. Determine all integers k in the range |k| < 200 to which Theorem 14.1.2 applies.
. Determine all integers k in the range |k| < 200 to which Theorem 14.1.3 applies.
. Determine all integers k in the range |k| < 200 to which Theorem 14.1.4 applies.
. Let M and N be integers such that

DN AW N =

M =4 (mod 8), N = 1(mod 2),
p (prime) | N = p =1 or 3(mod 8).
Set
k= M>—2N>2.

Prove that the equation y> = x> + k has no solutions in integers x and y.
6. Determine all integers k in the range |k| < 200 to which the result of Exercise 5 applies.
7. Let M and N be integers such that

M = 3(mod 4), N = 42 (mod 6),
p (prime) | N = p = %1 (mod 12).
Set
k=M’ +3N".
Prove that the equation y> = x* + k has no solutions in integers x and y.
8. Determine all integers k in the range |k| < 200 to which the result of Exercise 7 applies.
9. Formulate and prove a result analogous to that of Exercise 7 when k has the form
M3 —3N2
10. Determine all integers k in the range |k| < 200 to which the result of Exercise 9 applies.
11. Prove that the equation

y2=x3+45

has no solutions in integers x and y.
12. Determine a class of integers k containing k = 45 for which the equation

y2:X3+k

has no solutions in integers x and y.
13. Let M and N be integers such that

M = 2(mod 6), N = %1 (mod 6),
p (prime) | M = p = 2(mod 3).

Set
k=4M>? —3N>.

Prove that the equation y> = x* + k has no solutions in integers x and y.
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15.

16.

17.

18.
19.

1.
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Determine all integers k in the range |k| < 200 to which the result of Exercise 13
applies.

Show that the condition M = 2 (mod 6) can be replaced by M = 0 (mod 6), M # 0
in Exercise 13 without affecting the result.

Determine all integers k in the range |k| < 200 to which the result of Exercise 15
applies.

Formulate and prove an analogous result to that of Exercise 13 for k of the form
4M> 4+ 3N

Prove that y?> = x3 4 13 has no solutions in integers.

Prove that y?> = x3 4 51 has no solutions in integers.
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