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Preface

This book deals with several aspects of what is now called “explicit number
theory,” not including the essential algorithmic aspects, which are for the
most part covered by two other books of the author [Coh0] and [Cohl]. The
central (although not unique) theme is the solution of Diophantine equa-
tions, i.e., equations or systems of polynomial equations that must be solved
in integers, rational numbers, or more generally in algebraic numbers. This
theme is in particular the central motivation for the modern theory of arith-
metic algebraic geometry. We will consider it through three of its most basic
aspects.

The first is the local aspect: the invention of p-adic numbers and their
generalizations by K. Hensel was a major breakthrough, enabling in particular
the simultaneous treatment of congruences modulo prime powers. But more
importantly, one can do analysis in p-adic fields, and this goes much further
than the simple definition of p-adic numbers. The local study of equations
is usually not very difficult. We start by looking at solutions in finite fields,
where important theorems such as the Weil bounds and Deligne’s theorem
on the Weil conjectures come into play. We then lift these solutions to local
solutions using Hensel lifting.

The second aspect is the global aspect: the use of number fields, and
in particular of class groups and unit groups. Although local considerations
can give a considerable amount of information on Diophantine problems,
the “local-to-global” principles are unfortunately rather rare, and we will
see many examples of failure. Concerning the global aspect, we will first
require as a prerequisite of the reader that he or she be familiar with the
standard basic theory of number fields, up to and including the finiteness of
the class group and Dirichlet’s structure theorem for the unit group. This can
be found in many textbooks such as [Sam] and [Marc]. Second, and this is
less standard, we will always assume that we have at our disposal a computer
algebra system (CAS) that is able to compute rings of integers, class and unit
groups, generators of principal ideals, and related objects. Such CAS are now
very common, for instance Kash, magma, and Pari/GP, to cite the most useful
in algebraic number theory.
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The third aspect is the theory of zeta and L-functions. This can be consid-
ered a unifying theme! for the whole subject, and it embodies in a beautiful
way the local and global aspects of Diophantine problems. Indeed, these func-
tions are defined through the local aspects of the problems, but their analytic
behavior is intimately linked to the global aspects. A first example is given by
the Dedekind zeta function of a number field, which is defined only through
the splitting behavior of the primes, but whose leading term at s = 0 contains
at the same time explicit information on the unit rank, the class number, the
regulator, and the number of roots of unity of the number field. A second
very important example, which is one of the most beautiful and important
conjectures in the whole of number theory (and perhaps of the whole of math-
ematics), the Birch and Swinnerton-Dyer conjecture, says that the behavior
at s = 1 of the L-function of an elliptic curve defined over Q contains at the
same time explicit information on the rank of the group of rational points
on the curve, on the regulator, and on the order of the torsion group of the
group of rational points, in complete analogy with the case of the Dedekind
zeta function. In addition to the purely analytical problems, the theory of
L-functions contains beautiful results (and conjectures) on special values, of
which Euler’s formula 3, -, 1/n? = 72 /6 is a special case.

This book can be considered as having four main parts. The first part gives
the tools necessary for Diophantine problems: equations over finite fields,
number fields, and finally local fields such as p-adic fields (Chapters 1, 2, 3,
4, and part of Chapter 5). The emphasis will be mainly on the theory of
p-adic fields (Chapter 4), since the reader probably has less familiarity with
these. Note that we will consider function fields only in Chapter 7, as a tool
for proving Hasse’s theorem on elliptic curves. An important tool that we will
introduce at the end of Chapter 3 is the theory of the Stickelberger ideal over
cyclotomic fields, together with the important applications to the Eisenstein
reciprocity law, and the Davenport—Hasse relations. Through Eisenstein reci-
procity this theory will enable us to prove Wieferich’s criterion for the first
case of Fermat’s last theorem (FLT), and it will also be an essential tool in
the proof of Catalan’s conjecture given in Chapter 16.

The second part is a study of certain basic Diophantine equations or
systems of equations (Chapters 5, 6, 7, and 8). It should be stressed that
even though a number of general techniques are available, each Diophantine
equation poses a new problem, and it is difficult to know in advance whether
it will be easy to solve. Even without mentioning families of Diophantine
equations such as FLT, the congruent number problem, or Catalan’s equation,
all of which will be stated below, proving for instance that a specific equation
such as z3 +y° = 27 with z, y coprime integers has no solution with zyz # 0
seems presently out of reach, although it has been proved (based on a deep
theorem of Faltings) that there are only finitely many solutions; see [Dar-Gra]

! Expression due to Don Zagier.
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and Chapter 14. Note also that it has been shown by Yu. Matiyasevich (after
a considerable amount of work by other authors) in answer to Hilbert’s tenth
problem that there cannot exist a general algorithm for solving Diophantine
equations.

The third part (Chapters 9, 10, and 11) deals with the detailed study
of analytic objects linked to algebraic number theory: Bernoulli polynomi-
als and numbers, the gamma function, and zeta and L-functions of Dirichlet
characters, which are the simplest types of L-functions. In Chapter 11 we
also study p-adic analogues of the gamma, zeta, and L-functions, which have
come to play an important role in number theory, and in particular the Gross—
Koblitz formula for Morita’s p-adic gamma function. In particular, we will
see that this formula leads to remarkably simple proofs of Stickelberger’s con-
gruence and the Hasse-Davenport product relation. More general L-functions
such as Hecke L-functions for Grossencharacters, Artin L-functions for Galois
representations, or L-functions attached to modular forms, elliptic curves, or
higher-dimensional objects are mentioned in several places, but a systematic
exposition of their properties would be beyond the scope of this book.

Much more sophisticated techniques have been brought to bear on the
subject of Diophantine equations, and it is impossible to be exhaustive. Be-
cause the author is not an expert in most of these techniques, they are not
studied in the first three parts of the book. However, considering their impor-
tance, I have asked a number of much more knowledgeable people to write
a few chapters on these techniques, and I have written two myself, and this
forms the fourth and last part of the book (Chapters 12 to 16). These chap-
ters have a different flavor from the rest of the book: they are in general not
self-contained, are of a higher mathematical sophistication than the rest, and
usually have no exercises. Chapter 12, written by Yann Bugeaud, Guillaume
Hanrot, and Maurice Mignotte, deals with the applications of Baker’s explicit
results on linear forms in logarithms of algebraic numbers, which permit the
solution of a large class of Diophantine equations such as Thue equations
and norm form equations, and includes some recent spectacular successes.
Paradoxically, the similar problems on elliptic curves are considerably less
technical, and are studied in detail in Section 8.7. Chapter 13, written by
Sylvain Duquesne, deals with the search for rational points on curves of genus
greater than or equal to 2, restricting for simplicity to the case of hyperelliptic
curves of genus 2 (the case of genus 0—in other words, of quadratic forms—is
treated in Chapters 5 and 6, and the case of genus 1, essentially of elliptic
curves, is treated in Chapters 7 and 8). Chapter 14, written by the author,
deals with the so-called super-Fermat equation xP +y? = 2", on which several
methods have been used, including ordinary algebraic number theory, classi-
cal invariant theory, rational points on higher genus curves, and Ribet—Wiles
type methods. The only proofs that are included are those coming from alge-
braic number theory. Chapter 15, written by Samir Siksek, deals with the use
of Galois representations, and in particular of Ribet’s level-lowering theorem
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and Wiles’s and Taylor-Wiles’s theorem proving the modularity conjecture.
The main application is to equations of “abc” type, in other words, equations
of the form a + b + ¢ = 0 with a, b, and ¢ highly composite, the “easiest”
application of this method being the proof of FLT. The author of this chapter
has tried to hide all the sophisticated mathematics and to present the method
as a black box that can be used without completely understanding the un-
derlying theory. Finally, Chapter 16, also written by the author, gives the
complete proof of Catalan’s conjecture by P. Mihailescu. It is entirely based
on notes of Yu. Bilu, R. Schoof, and especially of J. Boéchat and M. Mischler,
and the only reason that it is not self-contained is that it will be necessary to
assume the validity of an important theorem of F. Thaine on the annihilator
of the plus part of the class group of cyclotomic fields.

Warnings

Since mathematical conventions and notation are not the same from one
mathematical culture to the next, I have decided to use systematically un-
ambiguous terminology, and when the notations clash, the French notation.
Here are the most important:

— We will systematically say that a is strictly greater than b, or greater than
or equal to b (or b is strictly less than a, or less than or equal to a), although
the English terminology a is greater than b means in fact one of the two
(I don’t remember which one, and that is one of the main reasons I refuse
to use it) and the French terminology means the other. Similarly, positive
and negative are ambiguous (does it include the number 0)? Even though
the expression “r is nonnegative” is slightly ambiguous, it is useful, and I
will allow myself to use it, with the meaning = > 0.

— Although we will almost never deal with noncommutative fields (which is
a contradiction in terms since in principle the word field implies commu-
tativity), we will usually not use the word field alone. Either we will write
explicitly commutative (or noncommutative) field, or we will deal with spe-
cific classes of fields, such as finite fields, p-adic fields, local fields, number
fields, etc., for which commutativity is clear. Note that the “proper” way
in English-language texts to talk about noncommutative fields is to call
them either skew fields or division algebras. In any case this will not be an
issue since the only appearances of skew fields will be in Chapter 2, where
we will prove that finite division algebras are commutative, and in Chapter
7 about endomorphism rings of elliptic curves over finite fields.

— The GCD (respectively the LCM) of two integers can be denoted by (a, b)
(respectively by [a,b]), but to avoid ambiguities, I will systematically use
the explicit notation ged(a,b) (respectively lem(a, b)), and similarly when
more than two integers are involved.
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— An open interval with endpoints a and b is denoted by (a,b) in the En-
glish literature, and by ]a, b[ in the French literature. I will use the French
notation, and similarly for half-open intervals (a,b] and [a,b), which T will
denote by ]a,b] and [a, b[. Although it is impossible to change such a well-
entrenched notation, I urge my English-speaking readers to realize the
dreadful ambiguity of the notation (a,b), which can mean either the or-
dered pair (a,b), the GCD of a and b, the inner product of a and b, or the
open interval.

— The trigonometric functions sec(z) and csc(z) do not exist in France, so
I will not use them. The functions tan(z), cot(z), cosh(z), sinh(x), and
tanh(x) are denoted respectively by tg(x), cotg(z), ch(x), sh(z), and th(x)
in France, but for once to bow to the majority I will use the English names.

— R(s) and I(s) denote the real and imaginary parts of the complex number
s, the typography coming from the standard TEX macros.

Notation

In addition to the standard notation of number theory we will use the fol-
lowing notation.

— We will often use the practical self-explanatory notation Z~o, Z>o, Z<o,
Z<o, and generalizations thereof, which avoid using excessive verbiage. On
the other hand, I prefer not to use the notation N (for Zxg, or is it Z~¢?).

— If a and b are nonzero integers, we write ged(a, b>) for the limit of the
ultimately constant sequence ged(a,b™) as n — oo. We have of course
ged(a, b)) = I, ecd(an) p* (@ and a/ ged(a, b>) is the largest divisor of a
coprime to b.

— If n is a nonzero integer and d | n, we write d||n if ged(d,n/d) = 1. Note
that this is not the same thing as the condition d? { n, except if d is prime.

— If x € R, we denote by |z] the largest integer less than or equal to x (the
floor of x), by [x] the smallest integer greater than or equal to x (the ceiling
of x, which is equal to |z] 41 if and only if = ¢ Z), and by |z] the nearest
integer to x (or one of the two if € 1/2 4+ Z), so that |z] = |« + 1/2].
We also set {z} =z — |z, the fractional part of x. Note that for instance
|—1.4] = —2, and not —1 as almost all computer languages would lead us
to believe.

— For any o belonging to a field K of characteristic zero and any k € Z>¢

we set
a\ ala—1)---(a—k+1)
k k!
In particular, if o € Z>( we have (z) = 01if k > «, and in this case we will

set (¢) = 0 also when k < 0. On the other hand, (%) is undetermined for
k<0if « ¢ Z}o.
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— Capital italic letters such as K and L will usually denote number fields.

— Capital calligraphic letters such as K and £ will denote general p-adic fields
(for specific ones, we write for instance K,).

— Letters such as E and F will always denote finite fields.

— The letter Z indexed by a capital italic or calligraphic letter such as Zg,
Zy, Zi, etc., will always denote the ring of integers of the corresponding
field.

— Capital italic letters such as A, B, C, G, H, S, T, U, V, W, or lowercase
italic letters such as f, g, h, will usually denote polynomials or formal power
series with coefficients in some base ring or field. The coefficient of degree m
of these polynomials or power series will be denoted by the corresponding
letter indexed by m, such as A,,, By, etc. Thus we will always write (for
instance) A(X) = Ag X%+ Az 1 X9 1 +...+ Ay, so that the ith elementary
symmetric function of the roots is equal to (—1)"A4_;/Aq4.
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1. Introduction to Diophantine Equations

1.1 Introduction

The study of Diophantine equations is the study of solutions of polynomial
equations or systems of equations in integers, rational numbers, or sometimes
more general number rings. It is one of the oldest branches of number theory,
in fact of mathematics itself, since its origins can be found in texts of the
ancient Babylonians, Chinese, Egyptians, and Greeks. One of the fascinations
of the subject is that the problems are usually easy to state, but more often
than not very difficult to solve, and when they can be solved, they sometimes
involve extremely sophisticated mathematical tools.

Perhaps even more importantly, mathematicians must often invent or
extensively develop entirely new tools to solve the number-theoretical prob-
lems, and these become in turn important branches of mathematics per se,
which often have applications in completely different problems from those
from which they originate.

1.1.1 Examples of Diophantine Problems

Let me give five examples. The first and most famous is “Fermat’s last the-
orem” (FLT), stating that for n > 3, the curve 2™ 4+ y™ = 1 has no rational
points other than the ones with x or y equal to 0 (this is of course equivalent
to the usual statement).!

In the nineteenth century, thanks in particular to the work of E. Kummer
and P.-G. Lejeune-Dirichlet, the theorem was proved for quite a large number

! Incidentally, this is the place to destroy the legend concerning this statement,
which has produced an enormous number of “Fermatists” claiming to have found
an “elementary” proof that Fermat may have found himself: Fermat made this
statement in the margin of his copy of the book by Diophantus on number theory
(at the place where Diophantus discusses Pythagorean triples, see below), and
claimed to have found a marvelous proof and so on. However, he wrote this
statement when he was young, never claimed it publicly, and certainly never
imagined that it would be made public, so he forgot about it. It may be possible
that there does exist an elementary proof (although this is unlikely), but we can
be positively sure that Fermat did not have it, for otherwise he would at least
have challenged his English colleagues, as was the custom at that time.
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of values of n, including all n < 100. Together with the theory of quadratic
forms initiated by A.-M. Legendre and especially by C. F. Gauss, one can
without exaggeration say that this single problem gave rise to algebraic num-
ber theory (rings, ideals, prime ideals, principal ideals, class numbers, units,
Dirichlet series, L-functions, etc.). As is well known, although these methods
were pushed to the extreme in the twentieth century, they did not succeed in
solving the problem completely. The next progress on FLT came from alge-
braic geometry thanks to the work of G. Faltings, who proved the so-called
Mordell conjecture, which in particular implies that for a fized n > 3 the num-
ber of solutions to the Fermat equation is finite. However, it was only thanks
to the work of several mathematicians starting with Y. Hellegouarch and
G. Frey, and culminating with the work of K. Ribet, then finally of A. Wiles
(helped for a crucial part by R. Taylor), that the problem was finally com-
pletely solved using completely different tools from those of Kummer (and
even Faltings): elliptic curves, Galois representations, and modular forms.
Although these subjects were not initiated by FLT, their development was
certainly accelerated by the impetus given by FLT. In particular, thanks to
the work of Wiles, the complete proof of the Taniyama—Shimura—Weil con-
jecture was obtained a few years later by C. Breuil, B. Conrad, F. Diamond,
and R. Taylor. This latter result can be considered in itself a more important
(and certainly a more useful) theorem than FLT.

A second rather similar problem whose history is slightly different is Cata-
lan’s congjecture. This states that when n and m are greater than or equal to
2, the only solutions in nonzero integers x and y of the equation 2™ —y™ =1
come from the equality 32 — 23 = 1. This problem can be naturally attacked
by the standard methods of algebraic number theory originating in the work
of Kummer. However, it came as a surprise that an elementary argument due
to Cassels (see Theorem 6.11.5) shows that the “first case” is impossible, in
other words that if a? — y? = 1 with p and ¢ primes then p | y and ¢ | «.
The next important result, due to R. Tijdeman using Baker’s theory of lin-
ear forms in logarithms of algebraic numbers, was that the total number of
quadruplets (m, n, z,y) satisfying the required conditions is finite. Note that
the proof of this finiteness result is completely different from Faltings’s proof
of the corresponding one for FLT, and in fact in the latter his result did not
imply the finiteness of the number of triples (z,y,n) with n > 3 and zy # 0
such that " +y™ = 1.

Until the end of the 1990s the situation was quite similar to that of FLT
before Wiles: under suitable conditions on the nondivisibility of the class
number of cyclotomic fields, the Catalan equation was known to have no
nontrivial solutions. It thus came as a total surprise that in 1999 P. Mihailescu
proved that if Catalan’s equation 2P — y¢ = 1 with p and ¢ odd primes has a
solution then p and g must satisfy the so-called double Wieferich condition
p?~t =1 (mod ¢?) and ¢?~! = 1 (mod p?). These conditions were known
before him, but he completely removed the conditions on class numbers. The



1.1 Introduction 3

last step was again taken by Mihailescu in 2001, who finished the proof of
Catalan’s conjecture. His proof was improved and simplified by several people,
including in particular Yu. Bilu and H. W. Lenstra. The remarkable thing
about the final proof is that it uses only algebraic number theory techniques
on cyclotomic fields. However, it uses a large part of the theory, including the
relatively recent theorem of F. Thaine, that has had some very important
applications elsewhere. It does not use any computer calculations, while the
initial proof did.

A third example is the congruent number problem, stated by Diophantus
in the fourth century A.D. The problem is to find all integers n (called con-
gruent numbers) that are equal to the area of a Pythagorean triangle, i.e.,
a right-angled triangle with all three sides rational. Very simple algebraic
transformations show that n is congruent if and only if the Diophantine
equation y? = 23 — n?z has rational solutions other than those with y = 0.
The problem was in an “experimental” state until the 1970s; more precisely,
one knew the congruent or noncongruent nature of numbers n up to a few
hundred (and of course of many other larger numbers). Remarkable progress
was made on this problem by J. Tunnell in 1980 using the theory of modular
forms, and especially of modular forms of half-integral weight. In effect, he
completely solved the problem, by giving an easily checked criterion for n to
be a congruent number, assuming a weak form of the Birch-Swinnerton-Dyer
conjecture, see Theorem 6.12.4. This conjecture (for which a prize of 1 mil-
lion U.S. dollars has been offered by the Clay foundation) is probably one of
the most important, and also one of the most beautiful, conjectures in all of
mathematics in the twenty-first century.

A fourth important example is the Weil conjectures. These have to do
with the number of solutions of Diophantine equations in finite fields. In-
deed, one of the main themes of this book is that to study a Diophantine
equation it is essential to start by studying it in finite fields. Let us give a
simple example. Let N(p) be the number of solutions modulo p of the equa-
tion y? = 2° — 2. Then |N(p) — p| can never be very large compared to p,
more precisely |N(p) — p| < 4,/p, and the constant 4 is best possible. This
result is already quite nontrivial, and the general study of the number of
points on curves culminated with work of A. Weil in 1949 proving that this
phenomenon occurs for all (nonsingular) curves and many other results be-
sides. It was then natural to ask the question for surfaces, and more generally
varieties of any dimension. This problem (in a very precise form, which in par-
ticular implied excellent bounds on the number of solutions) became known
as the Weil conjectures. A general strategy for solving these conjectures was
put forth by Weil himself, but the achievement of this goal was made possible
only by an amazing amount of work by numerous people. It included the cre-
ation of modern algebraic geometry by A. Grothendieck and his students (the
famous EGA and SGA treatises). The Weil conjectures were finally solved
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by P. Deligne in the early 1970s, exactly following Weil’s strategy, but using
all the tools developed since.

As a last example we mention Waring’s problem. One of its forms (by far
not the only one) is the following: given an integer k > 2, find the smallest
integer g(k) such that any nonnegative integer can be represented as a sum
of g(k) nonnegative kth powers. It has been known since J.-L. Lagrange that
any integer is a sum of 4 squares, and that integers congruent to 7 modulo 8
are not the sum of 3 squares, so that g(2) = 4. It was proved by D. Hilbert
that g(k) is finite (this can be proved with not too much difficulty from
Lagrange’s result, but is still not completely trivial: try it as an exercise).
However, the major advances on this problem were made by G. H. Hardy and
J. Littlewood, who invented the circle method in order to treat the problem.
One of the important aspects of the circle method is the so-called singular
series, which regroups all the arithmetic information obtained by studying
the problem modulo p for each prime p. The other major advances were
made by [.-M. Vinogradov using the theory of ¢rigonometric sums. Both the
circle method and trigonometric sums have found universal application in the
branch of number theory called “additive number theory,” and also in other
branches of number theory. To finish this example, we note that Waring’s
problem as given above (as already mentioned, there are other versions) is
completely solved. Perhaps surprisingly, when one compares it with FLT for
example, the hardest cases are not for large k but for small k: the most difficult
is k = 4, solved only in the 1980s by R. Balasubramanian, J.-M. Deshouillers,
and F. Dress, see [BDD]. For the record, we have g(2) = 4, ¢(3) = 9, and
g(4) = 19.

Additive number theory forms a large part of what is usually called “an-
alytic number theory” because many sophisticated analytic techniques come
into play. Analytic number theory will not be studied in this book, with
the exception of a few basic results such as the prime number theorem and
Dirichlet’s theorem on primes in arithmetic progression. The expression “an-
alytic methods” used in the third part of this book (Chapters 9 to 11) refer to
the study of Bernoulli polynomials, gamma and L-functions, integral trans-
forms, summation formulas, and the like. We refer for instance to [Ell] and
[Iwa-Kow] among many others for excellent expositions of analytic number
theory.

1.1.2 Local Methods

As is explicit or implicit in all of the examples given above (and in fact in
all Diophantine problems), it is essential to start by studying a Diophantine
equation locally, in other words prime by prime (we will see later precisely
what this means). Let p be a prime number, and let F), ~ Z/pZ be the prime
finite field with p elements. We can begin by studying our problem in F, (i.e.,
modulo p), and this can already be considered as the start of a local study.
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This is sometimes sufficient, but usually not. In that case, keeping the same
prime p, we will see that there are two totally different ways to refine the
study of the equation.

The first is to consider it modulo p?, p3, and so on, i.e., to work in Z/p*Z,
Z)p*Z,. .. An important discovery, made by K. Hensel in the beginning of the
twentieth century, is that it is possible to regroup all these rings with zero di-
visors into a single object, called the p-adic integers, and denoted by Z,, which
is an integral domain. Not only do we have the benefit of being able to work
conveniently with all the congruences modulo p, p?, p>,...simultaneously,
but we have the added benefit of having topological properties, which add a
considerable number of tools that we may use, in particular analytic methods
(note that this type of limiting construction is very frequent in mathematics,
with the same type of benefits). When we say that we study our Diophantine
problem locally at p, this means that we study it in Z,, or in the field of
fractions Q, of Z,. We will devote the entirety of Chapter 4 to the study
of p-adic numbers and their generalizations. The reason for the word “local”
will become clear when we study p-adic numbers.

A second way to refine the study of our equation, which is explicit for
example in Weil’s estimates and conjectures, is to study our equations in
the finite fields Fp2, Fps, etc. (Note that usually this does not bring any
information for equations over @, since in that case only local methods are
useful.) At this point, recall that the main theorem on finite fields (which
we will recall, with proof, in Chapter 2) is that for any prime power g = p™
there exists up to isomorphism exactly one finite field F,» of that cardinality,
and all finite fields have this form. They are of course not isomorphic to
7.)p*Z, 7.)p*Z,. . . since the latter are not even fields. We will come back to the
structure of finite fields in the text. Once again, we can use a limiting process
of a slightly different kind so as to put all these finite fields of characteristic
p together: this leads to F,, the algebraic closure of F,. In this case we of
course do not say that we study it locally, but simply over F,,.

Let us give simple but typical examples of all this. Consider first the Dio-
phantine equation 224y? = 3 to be solved in rational numbers or equivalently,
the Diophantine equation 22 + y? = 322 to be solved in rational integers. We
may assume that = and y are coprime (exercise). Looking at the equation
modulo 3, i.e., in the field F3, we see that it has no solution (2 and y? are
congruent to 0 or 1 modulo 3; hence 2 + y? is congruent to 0 modulo 3 if
and only if z and y are both divisible by 3, excluded by assumption). Thus,
our initial Diophantine equation does not have any solution.

We are here in the case of a quadratic Diophantine equation. It is crucial
to note that this type of equation can always be solved by local methods.
In other words, either we can find a solution to the equation (often helped
by the local conditions), or it is possible to prove that the equation does not
have any solutions using positivity conditions together with congruences as
above (or equivalently, real and p-adic solubility). This is the so-called Hasse
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principle, a nontrivial theorem (see Theorem 5.3.3) that is valid for a single
homogeneous quadratic Diophantine equation, but is in general not true for
higher-degree equations or for systems of equations.

Consider now the Diophantine equation 2% +33 = 1 to be solved in nonzero
rational numbers, or equivalently, the Diophantine equation 2% 4 ¢ = 23 to
be solved in nonzero rational integers. Once again we may assume that z, vy,
and z are pairwise coprime. It is natural to consider once more the problem
modulo 3. Here, however, the equation has nonzero solutions (for example
13 4+ 13 = 23 (mod 3)). We must go up one level, and consider the equation
modulo 9 = 32 to obtain a partial result: since it is easily checked that an
integer cube is congruent to —1, 0, or 1 modulo 9, if we exclude the possibility
that z, y, or z is divisible by 3 we see immediately that the equation does not
have any solution modulo 9, hence no solution at all. Thus we have proved
that if 23 4+ y> = 23, then one of x, v, and z is divisible by 3. This is called
solving the first case of FLT for the exponent 3. To show that the equation
has no solutions at all, even with z, y, or z divisible by 3, is more difficult
and cannot be shown by congruence conditions alone (see Sections 6.4.5 and
6.9). Indeed Proposition 6.9.11 tells us that the equation z* + 3® = 23 has a
solution with zyz # 0 in every p-adic field, hence modulo p* for any prime
number p and any exponent k (and it of course has real solutions). Thus,
the Hasse principle clearly fails here since the equation does not have any
solution in rational integers with zyz # 0. When this happens, it is necessary
to use additional global arguments, whose main tools are those of algebraic
number theory developed by Kummer et al. in the nineteenth century, and in
particular class and unit groups, which are objects of a strictly global nature.

1.1.3 Dimensions

An important notion that has come to be really understood only in the
twentieth century is that of dimension. It is not our purpose here to define
it precisely,? but to give a feeling of its meaning. We stick to the algebraic
and/or arithmetic case, since the topological or analytic case is simpler.

Consider first the classical (algebraic) situation, say over the complex
numbers C. A point is clearly of dimension 0, and more generally a finite
set of points defined by a system of algebraic equations has dimension 0.
Similarly, a curve (for example defined by a single equation in two variables
f(z,y) = 0 in affine coordinates) has dimension 1 (note however that a
complez curve has dimension 1 over C but has dimension 2 over R), and so
on with surfaces which have by definition dimension 2, or arbitrary varieties
of higher dimension.

Consider now the arithmetic situation, say over the integers Z. If f(x,y)
is a polynomial in two variables with integer coefficients, we can of course

2 in the language of schemes, it is the maximal length of an ascending chain of
irreducible subschemes.
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consider the curve f(x,y) = 0 as defining a complex curve of dimension 1.
But when we consider the Diophantine equation f(x,y) = 0, then as we have
seen, it is essential to consider it also modulo p and more generally in the p-
adic fields Q, for every prime p (including the prime “at infinity,” which gives
the field R). Thus, as a Diophantine equation, f(z,y) = 0 should not be seen
as a curve (i.e., of dimension 1), but in fact as a surface, called an arithmetic
surface. In other words, the ring Z must be considered to be of dimension
1 (its points being the prime numbers p together with 0 corresponding to
the prime at infinity), and any system of equations considered as a system
of Diophantine equations over Z should be considered to have one additional
dimension compared to its ordinary complex dimension. See Exercise 4 for
an illustration.

One of the goals of the modern theory of arithmetic geometry is to ex-
tend to arithmetic surfaces and more generally to arithmetic varieties of any
dimension results known for ordinary surfaces and varieties.

Using these notions, we can quite naturally put a hierarchy on the objects
that naturally occur in algebraic number theory.

— Finite fields. These are the simplest objects, not only because they are
finite (finite rings and groups are extremely difficult to study; see Exercise
3) but because they have a very simple structure, which we will recall in
detail in the text. They occur as residue fields (we will see the meaning of
this later, but Z/pZ is a typical example).

— Local fields. Local fields of characteristic 0 are the p-adic fields @Q,, the
real numbers R, and their finite extensions, which are the p-adic fields K,
and the field C. There are also local fields of nonzero characteristic, which
we will not consider in this book.

— Global fields, and rings of dimension 1. Global fields are the field
of rational numbers Q, its finite extensions (i.e., number fields), and in
nonzero characteristic the fields F,(X) and their finite extensions, which
are the function fields of curves. The corresponding rings of integers of
these global fields (Z, Z g, F,[X], etc.) are of dimension 1.

— Any object of higher dimension will be called a curve, surface, etc. Be
careful with the terminology: when we speak of a curve, it usually means
a variety of dimension 1 over the base field, but if we consider it over Z, it
then becomes an arithmetic surface, hence of dimension 2 = 1+ 1. Another
possible confusion is that a complex curve is a real manifold of dimension
2, i.e., a surface, here because 2 =2 - 1.

The reason and necessity of using this language cannot be clearly under-
stood without a course in modern algebraic geometry, but nevertheless it is
a good thing to have in mind, since it explains the utmost importance of the
objects that we are going to study.
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1.2 Exercises for Chapter 1

1.

4.
(a)

The following problem seems similar to the congruent number problem, but is
much simpler. Show that for any integer n there exists a (not necessarily right-
angled) triangle with rational sides a, b, and ¢ and area n (recall that the area
is given by n® = s(s — a)(s — b)(s — ¢), where s = (a + b+ ¢)/2). Try to give
a complete parametrization of such triangles (I do not know the answer to this
latter question).

Let us say that a triangle is almost equilateral if it satisfies the following two
conditions: its vertices have integer coordinates, and the lengths of its sides are
three consecutive integers a — 1, a, and a + 1. Show that such a triangle exists
if and only if @ has the form a = (24 v/3)* + (2 — v/3)" for k > 1 (you will first
need to know the solution to the Pell-Fermat equation, see Proposition 6.3.16).

This exercise is mainly to emphasize that finite fields are really simple objects.
Let G(n) (respectively R(n), F(n)) be the number of groups (respectively rings
with nonzero unit, fields) of order n up to isomorphism. Compute G(n) for
1 < n <11 (you will need a little group theory for this), F'(n) for 1 < n < 100
(using the theory recalled in the next chapter), and R(n) for as many consecutive
values of n starting at n = 1 as you can. In the same ranges compute the number
Go(n) of abelian groups, and R.(n) the number of commutative rings.

The goal of this exercise is to illustrate the fact that Z[X] has dimension 2.

Let I be a nonzero ideal of Z[X]. Prove that there exists a primitive polynomial
G(X) € Z[X] such that QI = G(X)Q[X], and that I C G(X)Z[X]. We set
J = I/G(X), which is again a nonzero ideal of Z[X], and it contains I.

Prove that there exists n € Z>; such that J NZ = nZ (you must prove that
n #0).

From now on, assume that [ is a prime ideal. Prove that either J = Z[X], or
that J is a prime ideal.

If J = Z[X] prove that G(X) is irreducible in Q[X], and conversely that if
G(X) is irreducible then I = G(X)Z[X] is a prime ideal.

Finally, we assume from now on that J # Z[X], or equivalently, that G(X) ¢ I,
hence that J is a prime ideal. Prove that J C I, hence that I = J, and deduce
that G(X) = 1.

Prove that the integer n defined above is a prime number p, and in particular
that n # 1.

Prove that there exists a polynomial H(X) € Z[X] such that I = pZ[X] +
H(X)Z[X], and that the reduction H(X) in F,[X] is either 0 or is irreducible in
F,[X]. In particular, you must show that H(X) cannot be a nonzero constant.
Conversely, if H(X) is irreducible in F,[X] prove that the above ideal T is a
prime ideal.

Conclude that the (nonzero) prime ideals of Z[X] have three types: first the
ideals I = G(X)Z[X] with G(X) € Z[X] irreducible and primitive, second the
ideals I = pZ[X] for p prime, and third the prime ideals pZ[X] + H(X)Z[X]
with H(X) irreducible in F,[X].

The ascending chains of prime ideals
{0} C pZ|X] C pZ[ X+ H(X)Z[X] and {0} C H(X)Z[X] C pZ[X]|+ H(X)Z[X]

mean that the dimension of Z[X] is equal to 2.
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2. Abelian Groups, Lattices, and Finite Fields

This chapter introduces a number of necessary tools for the rest of the book,
at different levels. The theory of finitely generated abelian groups, including
the elementary divisor theorem and the structure theorem, as well as the
theory of finite fields, should be known at the undergraduate level, but expe-
rience shows that this is not always the case, so for completeness we will give
all the important proofs. Note that the theory of finitely generated abelian
groups extends almost completely verbatim to finitely generated modules over
a principal ideal domain; we will have the occasion to use this more general
setting over the ring of p-adic integers Z,,.

At a deeper level in this chapter we will also describe important results
on the number of solutions of systems of polynomial equations over finite
fields, culminating with the Weil conjectures proved by Deligne. Finally, we
also include a section on lattices, seen mainly from the point of view of the
LLL algorithm, which will be the main tool that we will use in applications
to Diophantine equations.

2.1 Finitely Generated Abelian Groups

A set GG is an abelian group if and only if it is a Z-module. We will use
indifferently both terms, but we will usually use abelian group when we want
to emphasize group-theoretic properties, while we will use Z-module when
considering bases or generating families.

2.1.1 Basic Results

Lemma 2.1.1. Let G be a finitely generated torsion-free abelian group gen-
erated by x1, ..., %y, and assume that G cannot be generated by fewer than n
elements. Then there is no nontrivial relation Zlgign a;x; = 0 with a; € Z.

Proof. Assume the contrary, and among all sets of n generators and all
such relations on them, choose one for which }7, ;,, |a;| is the smallest. We
distinguish two cases:
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— If at least two of the a; are nonzero, then permuting subscripts and chang-
ing signs if necessary we may assume that a; > as > 0. Clearly x1, 21 + 2,
T3, ..., T, still generate GG, and the relation between these generators is
(a1 — ag)xy + as(xy + x2) + -+ 4+ apz, = 0, and the corresponding sum
of absolute values of coefficients is thus strictly smaller than the preceding
one, a contradiction.

— If only one of the a;, say ai, is nonzero, the relation is ayxy; = 0, and
since G is torsion-free 1 = 0; hence G is generated by the n — 1 elements
To,...,T,, a contradiction. a

Corollary 2.1.2. Any finitely generated torsion-free Z-module is free.

Proof. Indeed, choose a generating system (x;) having the smallest number
of elements. By the lemma, it is a Z-basis of G. a

Theorem 2.1.3 (Elementary divisor theorem I). Let G be a finitely gen-
erated torsion-free (hence free) abelian group, and let H be a subgroup of G.
There exists a basis x1,...,T, of G and strictly positive integers my,...,m,
for some r < n such that m; | m;y1 for 1 <i <r—1 and such that the m;x;
for 1 <@ < r form a basis for H. In addition, if H has finite index in G then
r=n.

Proof. We can assume H nontrivial, otherwise we can choose r = 0.
For the moment let y1,...,y, be any basis of G. For any nonzero h =
dicicn @iYi € H, set d(h) = ged(ai,...,a,). I claim that this does not
depend on the chosen basis, but only on h: indeed, any other Z-basis is given
in terms of the initial one by an n x n integral matrix P whose inverse is also
integral, in other words that has determinant 1 (the group of such matrices
is denoted by GL,(Z)). If A is the column vector of the (a;), the new coeffi-
cients are given by the vector P~'A. Clearly the GCD of the coefficients of
A divides that of P~'A, and since A = PP~ A, the converse is also true;
hence the GCD is the same, proving our claim.

Choose for h a nonzero element of H for which d(h) is as small as pos-
sible, and choose a basis yi,...,y, of G for which the corresponding sum
> i<i<n l@i] is as small as possible. If two of the a; were nonzero, as in the
proof of Lemma 2.1.1, we could decrease ), ., |a;| by modifying the basis,
a contradiction. Thus only one a; is nonzero, and after permuting subscripts
we may assume that a; = my > 0 is the only nonzero coefficient.

Now let z = Zlgign b;y; be any element of H. Then we obtain succes-
sively

— my | by since otherwise 0 < by — c¢my < my for the Euclidean quotient ¢ of
by by my would give d(z — ch) < by — emy < my = d(h), a contradiction.

— Yocic<n biti = 2 — (bi/m1)h € H clearly.

— For each i, my | b;, for otherwise t = myy; + Z2<i<n b;y; € H would have
d(t) < my =d(h).
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Finally, let G; be the group generated by ys,...,yn, let Hy = G1 N H,
and choose 1 = y;. We have proved that

G:ZwléBGl and H:Zmlxl@Hl s

and that the coefficients of the elements of Hy on ys,...,y,, hence on any
Z-basis of G, are divisible by m;.

We now repeat the process on G; and H; instead of G and H, and by
the last remark, we obtain my | mo, and we continue until H is exhausted,
proving the main part of the theorem. If r < n, then the mxz, for m € Z
belong to distinct cosets of H, so H does not have finite index in GG, proving
the last point. a

Corollary 2.1.4. With the notation of the theorem, if we denote by T the
class of an element of G in G/H, we have

G/H= P @/mi)me P 77 .

1<igr risn

Proof. Clear. Note that this is an equality, not only an isomorphism. O

Corollary 2.1.5. Any subgroup of a finitely generated free abelian group is
a finitely generated free abelian group of lower dimension.

Proof. Also clear, H being free on the m;x; for 1 <i<randr <n. 0O

In a different direction we have the following result, which can also be
proved directly (see Exercise 1).

Corollary 2.1.6. Let V € Z" be a column vector of n globally coprime in-
tegers. There exists an integral matriz A € GL,(Z) (in other words with
determinant +1) having V' as first column.

Proof. In the proposition, we let G = Z™ and H = ZV . There exists a basis
Ay,..., A, of G and d € Z3, such that dA; is a basis of H. In particular,
V' € dkA; for some k € Z, and since the coefficients of V" are globally coprime
it follows that d = 1 and k = =£1; hence £V = A; is the first column of the
matrix of the A;, which is in GL,(Z). O

We now come to the general structure theorem for finitely generated
abelian groups.

Theorem 2.1.7 (Elementary divisor theorem II). Let G be a finitely
generated abelian group. There exist elements x1, . ..,x, of G and positive in-
tegers my, ..., my for some r < n such that m; > 1 for 1 <i<r, m; | miy1
for1 <i<r—1, myz; =0 for 1 <i < r, and such that every element of
G can be written uniquely in the form Zlgign a;x; with 0 < a; < m; when
1 <@ < r. Furthermore, n, r, and the m; are unique.
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Proof. To prove existence, let y1,...,yx be any generators of G, and let
G* = ®1<i<N 7Y; ~ Z" be the free abelian group on N generators Y;.
There is a natural surjection from G* to G sending Y; to y; for all 4, and if
H* is its kernel, we have a natural isomorphism G ~ G*/H*, so under this
isomorphism we can identify G with G*/H*. Since G* is free, we can apply
the above theorem and corollary to G* and H*, obtaining generators X; and
integers M; for 1 < i < R. If we denote by z; the image of X; in G, we thus

have
G= P /Mo P Za;.
1<i<R r<i<N
We can evidently suppress from this equality all the components with M; = 1,
and if we call m; the remaining M; (in the same order), all the conditions of
the theorem are satisfied, proving existence.

To prove uniqueness, assume that we have a second such representation,
where we add ’ to all the letters. We first prove that n = n’. Indeed, assume
for instance that n > n’, and let p be a prime dividing my if 7 > 0, and let p
be any prime otherwise. Using the first representation, we have a surjection
from G to (Z/pZ)™ sending > a;z; to the vector of a; modulo p, which makes
sense since p | m; for all 4. Since the (z}) generate G, it follows that (Z/pZ)™
must be generated by the images of the x}, which is absurd since there exist
at most n’ < n such images.

Now for any m > 0, consider the group mG = {mz, z € G}. We can
obtain a representation as above by replacing the x; by the mx;, m; by
m;/ ged(m;, m), and deleting the ma; for which m; | m. It follows that for
a fixed 4, m; is uniquely defined by the property that m; is the smallest
m > 1 for which a canonical representation of mG as above uses at most
n — 1 generators. a

As in Corollary 2.1.4, we can restate the existence part of the theorem by
writing
G= P @/mz)re P Za; .

1<igr r<i<n

Corollary 2.1.8. Any subgroup of a finitely generated abelian group is finitely
generated.

Proof. Once again, we use a finitely generated free abelian group G* and
a surjective map from G* to G. If H is a subgroup of G, denote by H* the
inverse image of H by this map. By Corollary 2.1.5, H* is finitely generated,
and the images of a finite set of generators of H* generate H. ad

We now easily deduce the structure theorem for finite abelian groups:

Theorem 2.1.9. Let G be a finite abelian group. There exist unique integers
m; > 1 for 1 < i < k such that m; | mjpq for 1 < i < k, and nonunique
elements g; € G such that
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G= P (Z/miZ)g:,

1<i<k

so that in particular G ~ @, ¢, (Z/miZ).

Proof. Indeed, if G is finite it is finitely generated. We have seen above as
a consequence of Theorem 2.1.7 that any such group can be written

G= P @/mzgeo P g,

1<i<r r<i<k

for some g; € G and m; > 1 such that m; | m;4q for 1 <i <r. If r <k, then
G contains copies of Z; hence it is infinite. Thus, if G is finite we must have
r = k, proving the theorem. a

Finally, note that there is a matrix version of the elementary divisor the-
orem, called the Smith normal form. Recall that a matrix is unimodular if
it is an element of GLg(Z), i.e., an integral square matrix with determinant
equal to =1 (not only +1).

Theorem 2.1.10 (Smith normal form). Let A be a square integral ma-
triz with nonzero determinant. There exist two unimodular matrices U and V
and a diagonal integral matriz D with strictly positive diagonal entries such
that D = UAV, and 'LfD = (di,j) then di,i ‘ di+1,i+1 fO’/‘ all © < k—1.

Proof. We apply Theorem 2.1.3 to G = Z* and H the group of Z-linear
combinations of columns of A considered as elements of Z*. We leave to the
reader to check that we thus obtain the present theorem (Exercise 2). O

Note that D is unique but U and V are not (for instance if A is the
identity matrix I, then D = I and we can take any matrix U and V = U~1!).

To finish this section, recall the following.

Definition 2.1.11. Let G be a group and g € G. The set E of elements
e € 7 such that g¢ = 1 is of the form kZ for a unique k > 0. If k = 0 we say
that g has infinite order, otherwise we call k the order of g in G. It is thus
characterized by the following: g& =1, and g™ = 1 if and only if k | n.

Proposition 2.1.12. Let G be an abelian group and let g € G be an element
of finite order k = kiko with ki and ko coprime. There exist g1 and go in G
of respective orders ki and ko such that g = g1go.

Proof. Since ki and ko are coprime there exist integers u; and us such
that w1k + uske = 1. We set g1 = g“2k2 and gy = g“lkl. It is clear that
g192 = g, and furthermore by definition g7 = 1 if and only if g¥2*2" = 1 if
and only if k | ugkon if and only if &y | ugon, and since uiky + ugks = 1, ky
and ug are coprime, hence ki | n, so that g; has order kq, and similarly go
has order ks. O
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2.1.2 Description of Subgroups

Given a finite abelian group G, it is often useful to enumerate the subgroups
of G. This can easily be done using the Hermite normal form of a matrix.
Recall the following definition.

Definition 2.1.13. An n x n matriz M is said to be in (upper triangu-
lar) Hermite normal form (HNF for short) if M is upper triangular with non-
negative integral entries, the diagonal entries m;; of M are strictly positive,
and the nondiagonal entries m; ; with j > 1 are such that 0 < m; ; < m; ;.

Note that this definition can easily be generalized to nonsquare matrices
(see Definition 6.2.1), but here we do not need this generality.

It is easy to show that if A is an integral matrix with nonzero determinant,
there exists a unimodular matrix U such that H = AU is in HNF, and H
(and therefore U) is unique. More generally, if A is an n x k matrix with n < k
of maximal rank n, there exists a unimodular matrix U and a matrix H in
HNF such that AU = (H|0), concatenation of H with k — n zero columns,
and H is unique (but not U if k > n); see Exercise 3 and Proposition 6.2.2.

The HNF is useful in many contexts, essentially of algorithmic nature. Its
relevance here is the following result.

Theorem 2.1.14. Let G be a finite abelian group, and using the notation of
Theorem 2.1.9, write
1<i<k

Denote by D be the k x k diagonal matriz whose diagonal entries are the
integers m; and by E the row vector whose entries are the generators g;. The
subgroups G' of G are in one-to-one correspondence with left divisors M of
D in HNF, i.e., integral matrices M in HNF such that M~'D has integral
entries. The correspondence is as follows:

(1) If M = (my j)1<ij<k is such an HNF matriz, the subgroup G’ is generated
by E' = EM with relations given by the columns of the matriz M~ D.

(2) Conversely, if G' is a subgroup of G generated by a row of elements E’,
there exists an integer matrix P such that E' = EP, and the corre-
sponding HNF matriz M is the HNF of the matriz (P|D) obtained by
concatenation of the matrices P and D.

(3) In this correspondence, we have |G'| = |G|/det(M), or equivalently,
|G/G'| =[G : G'] = det(M).

Proof. By definition, the following sequence is exact:

k
1—>69miZ—>Zki>G—>l7
i=1

where
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d(xy,...,xp) = H Tig; -
1<i<k
Let (£i)1<i<k be the canonical basis of 7ZF, and let A be the subgroup of Z*
defined by A = @, m,e; (this is a lattice, see Section 2.3.1). We thus have a
canonical isomorphism G ~ ZF/A, obtained by sending the ith generator g;
of GG to the class of ¢;.

Subgroups of Z*/A have the form A’/A, where A’ is a lattice such that
A C N C ZF. By existence and uniqueness of the HNF of a matrix of maximal
rank, such a lattice A’ can be uniquely defined by a matrix M in HNF such
that the columns of this matrix express a Z-basis of A’ on the ;. The con-
dition A’ C Z* means that M has integer entries, and the condition A C A’
means that M ~'D also has integer entries, since it is the matrix that ex-
presses the given basis of A in terms of that of A’. In terms of generators,
this correspondence translates into the equality E' = EM. Furthermore, if
0¢ denotes the unit element of G then E’X = O if and only if EM X = Og;
hence MX = DY, or X = M~'DY, and so if G’ is the subgroup of G
corresponding to A’/A, it is given in terms of generators and relations by
(EM, M~1D), proving (1).

For (2), we note that the entries of ED are equal to Og; hence if E” =
E(P|D), we have simply added some 1¢/’s to the generators of G’. Thus,
the group can be defined by the generators E” and the matrix of relations
of maximal rank (P|D), hence also by (E”, M), where M is the HNF of this
matrix.

For (3), we know that M ~1D expresses a basis of A in terms of a basis of
A’; hence

|G'| = |\ /A| = det(M~'D) = |G| / det(M) .
O

Example. The matrix M corresponding to the subgroup {0g} of G is M =
D, and the matrix corresponding to the subgroup G of G is M = I, the
k x k identity matrix.

Remark. Thanks to the above theorem the algorithmic enumeration of sub-
groups of a finite abelian group is reduced to the enumeration of the integral
left divisors of a diagonal matrix. This is considerably more technical, and
since the present book is not primarily algorithmic in nature we refer to
[Cohl] Section 4.1.10 for complete details on the subject.

2.1.3 Characters of Finite Abelian Groups

First, an important notation. Here and in the rest of this book we use the sym-
bol ¢, for a primitive nth root of unity, either viewed as an (abstract) alge-
braic number (see Chapter 3), or as an element of C (for instance exp(2ir/n)),
or sometimes of other fields such as p-adic fields. If d | n, it is understood

that we choose (y such that (4 = d;/d.
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Definition 2.1.15. Let G be a finite abelian group. A character of G is
a group homomorphism from G to the multiplicative group C* of nonzero
complex numbers. The group of characters of G is called the dual group of
G and denoted by G. The character sending all elements of G to 1, which is
the unit element of G, is called the trivial character.

Let x € G. If |G| = n, then for every g € G we have x(g)" = x(¢") =
x(1) = 1. It follows that any character takes values in the unit circle of
complex numbers of modulus 1, more precisely in the group of nth roots of
unity, which we denote by p,.

Proposition 2.1.16. Let G be a finite abelian group. The dual group G is
noncanonically isomorphic to G (hence has the same cardinality).

Proof. By the structure theorem for finite abelian groups (Theorem 2.1.9)

we know that
G= P @z/miZ)g ~ P (Z/miZ)

1<i<k 1<i<k

for certain integers m; and g; € G. On the other hand, we clearly have
G@Q ~ (/}’\1 @(/}’\2. It follows that to prove the first part of the proposition it
is sufficient to prove it for finite cyclic groups. But such a group is isomorphic
to Z/mZ for some m, and characters of Z/mZ are simply determined by the
image of the cliss\of 1, which can be any mth root of unity. Thus we have
(canonically) Z/mZ =~ iy, and (noncanonically) p,, ~ Z/mZ, proving the
result. O

Remark. It follows from the proof that characters of a finite abelian group
G can be described very concretely. We write G = @, ;< (Z/miZ)g; as in
Theorem 2.1.9, and for each ¢ we choose some a; € Z/m;Z. We then define

E (1 — I | ;i Ti
Xal,--<7ak 'Tlgl - m; ’

1<i<k 1<i<k

where the (,,, are fixed primitive m;th roots of unity in C. Even more explic-
itly, since all the m, divide mj = m, we fix { = (,,, and choose (,,, = ¢m/mi
so that

Xaroar | D @igi | =¢5 with §= " amz;i(m/m,),
1<i<k 1<i<k
so the value of the character y can be represented by the integer S.

Corollary 2.1.17. Let G be a finite abelian group and H a subgroup of G.
Any character of H can be extended to exactly [G : H] characters of G. In
particular, the natural restriction map from G to H is surjective.
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Proof. Let f be the above restriction map. The kernel of f is the group
of characters x of G that are trivial on H, in other words the characters of
G/H. It follows by the proposition that the cardinality of the image of f is
equal to

Gl _ Gy,
G/H| 1G/H]
hence f is surjective, as claimed, and the number of preimages of a character
by the restriction map is equal to |Ker(f)| =[G : H]. O

Remarks. (1) Since we have proved surjectivity using a counting argument,
the above reasoning cannot be applied to infinite abelian groups. See
Proposition 4.4.43 for a generalization using Zorn’s lemma.

(2) The importance of the above corollary is not so much the exact number
of extensions of a character, but the simple fact that such extensions
exist. For instance:

Corollary 2.1.18. If g is not the unit element of G there exists x € G such
that x(g) # 1.

Proof. If n > 1 is the order of g we set x(¢*) = ¢¥, which defines a
character such that x(g) # 1 on the subgroup H of G generated by g, and
we extend y to G using the above corollary. ad

Corollary 2.1.19. The natural map a — (x — x(a)) gives a canonical iso-
morphism from G to the dual of its dual.

Proof. By the preceding corollary this map is injective, and since both
groups have the same cardinality it is an isomorphism. a
One of the most important properties of characters is their orthogonality

properties as follows.

Proposition 2.1.20. Let G be a finite abelian group and let K be a commu-
tative field.

(1) If x1 and x2 are distinct group homomorphisms from G to K* then

Y xi(9)xa ' (9) =0,

geG

or equivalently, if x is not the constant homomorphism equal to 1 then

> x(g)=0.

geG
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(2) In the special case K = C then if g1 and go are distinct elements of G

we have
> xlgrg') =0,
xeé

or equivalently, if g is not the unit element of G then

> xlg)=0.

xea

Proof. The two statements of (1) are clearly equivalent, as are those of
(2). Set S =3_ o x(9). Let h € G such that x(h) # 1. Then

X(M)S =" x(h)x(g) =>_ x(hg)=>_ xlg) =S5,

geG geG g'eG

hence S = 0 since x(h) # 1.

In the special case K = C, if g is not the unit element of G, Corollary
2.1.18 shows that there exists ) € G such that 1(g) # 1. The reasoning we
have just presented is thus applicable (we set S = >  x(g) and show that

P(9)S = 5). O

Note that if K # C (more precisely if K is not an algebraically closed
field of characteristic 0 or of characteristic not dividing |G|), then (2) is not
necessarily true, see Exercise 4.

2.1.4 The Groups (Z/mZ)*

We first recall that for any commutative ring R, R* denotes the group of
units of R, i.e., invertible elements in R. This is equal to R\ {0} if and only
if R is a field.

Lemma 2.1.21. Let v > 2 be an integer and a € 7.

(1) If p is an odd prime number, the following statements are equivalent:
(a) a? =1 (mod pY).
(b) a=1 (mod p¥~1).
(¢) For any w > v — 1 there exists b € Z coprime to p such that

a=p-br (mod p") .

In particular, vy,(a? — 1) = vp(a — 1) + 1 when vp(a—1) > 1.

(2) If p=2 and a =1 (mod 4) the following statements are equivalent:
(a) a® =1 (mod 2%).
(b) a=1 (mod 2v71).
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If in addition v > 4, they are also equivalent to the following statement:
¢) For any w > v — 1 there exists b € Z odd such that

a=b"" (mod 2v) .

Proof. (1). To prove that a) is equivalent to b) we set a = 1 + b. By
Fermat’s theorem we have a? = a (mod p); hence we may assume that p | b,

so that
p .
a? =1+ pb+ g <‘>bj—|—bp.
J

2<j<p—1

Since p | (?) it follows that all the terms with 2 < j < p — 1 are divisible
by pb?. Furthermore, since p > 3 and p | b, we also have pb? | bP. It follows
that all the terms after pb have p-adic valuation strictly greater than that of
pb; hence v,(a? — 1) = v,(pb) = 1 + v,(a — 1), proving that a) and b) are
equivalent.

By the Euler—Fermat theorem, if b is coprime to p we have pp—Dp"? =
e =1 (mod p¥~1); hence c) implies b). To prove the converse, we
consider the map f from (Z/p*~"*2Z)* to the subgroup G of elements of
(Z/p“Z)* congruent to 1 modulo p*~! induced by y y®P=1P" " By the
equivalence of a) and b), y = 1 (mod p®~*+2) implies y? = = 1 (mod p¥);
hence the map f is well defined. Since y(p‘l)pvfz =1 (mod p¥~ 1) its image lies
in G. Furthermore, f(7) = 1 if and only if Y= = (mod p¥) if and only
if =1 =1 (mod p¥~?*2), again by the equivalence of a) and b). Since we will
prove below that (Z/p¥~?*2Z)* is a cyclic group, the number of 7 of order
dividing p—1 in that group is equal to p—1, so that | Ker(f)| = p—1. It follows
that [Im(g)| = ¢(p¥~v"2)/p = p¥ =L, and since clearly |G| = p* =T, this
means that f is surjective, proving the equivalence of b) and c¢).

(2). If a = 1 + b with 2°=1 | b then a? = 1 +2b + b*> = 1 (mod 2V) since
v > 2. Conversely, if a? = 1 (mod 2°), then 2V | (a—1)(a+1), and since a = 1
(mod 4), va(a + 1) = 1, and therefore 2°~! | @ — 1, proving the equivalence
of the first two conditions.

If b is odd we have b%*~3 = (b2)2" " = 1 (mod 2"~!) by what we have
just shown and b? = 1 (mod 8). Conversely, we consider as above the map
f from (Z/2¥=*T3)* to the subgroup G of elements of (Z/2*Z)* congruent
to 1 modulo 2"~ induced by y — y% . Since w — v + 3 > 2, by what we
have just shown y = 1 (mod 2¥~?*3) implies 2 =1 (mod 2%); hence f
is well defined, and as above y2v_3 =1 (mod 2°71) so the image of f lies in
G. We have f(7) = 1 if and only if y> ° =1 (mod 2%) if and only if y2 =
(mod 2¥~*4) by what we have just shown. Writing y?> — 1= (y + 1)(y — 1)
and noting that w — v + 4 > 3 we see that this is equivalent to y = +1
(mod 2¥~%3); hence | Ker(f)| = 2. It follows that [Im(g)| = ¢(2¥~T3)/2 =
2w=vHl “and since clearly |G| = p¥~ UL, this again means that f is surjective,
finishing the proof. a
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Note also the following generalization, which we will need later.

Lemma 2.1.22. Let p be a prime number, s an integer such that s = 1
(mod p), and let n € Z~o. When p = 2, assume that either s = 1 (mod 4) or
n is odd. Then

(8" — 1) =v,(s — 1) +v,(n) .

Proof. Write n = p’m with p  m. We prove the lemma by induction on
v. Assume first that v = 0, so that n = m. By the binomial theorem, we have

sTo1= Y (?)(3—1)%

1<k<m

Since p 1 m, we have

o (7)) =101) = walmts = 1) = s - ).

while for 2 < k < m we have

vy <(7:>(s - 1)’@) > k(s — 1) = 2up(s — 1) .

Since vp(s — 1) > 1 by assumption it follows that v,(s™ — 1) = v,(s — 1) as
claimed.

When v > 1 we apply Lemma 2.1.21 (1) toa = s*" ™ = 1 (mod p) (since
s =1 (mod p)), hence v,(a? — 1) = v,(a — 1), so the result for p odd follows
by induction on v. Similarly the result for p = 2 follows by induction from
Lemma 2.1.21 (2). O

Corollary 2.1.23. Ifp =2 and s = 1 (mod 2) then for alln € Z~q we have

(5" —1) = vp(s —1) if nis odd,
oS (s> = 1) +vp(n/2)  if nis even.

Proof. The case n odd is given by the lemma. When n is even, since s =
(mod 4) the lemma gives v, (s" — 1) = v,((s%)"/2 — 1) = v,(s? — 1) +v,(n/2).
O

K3
its decomposition into a product of powers of distinct primes. The abelian

group structure of (Z/mZ)* is given as follows:

(1) We have

Proposition 2.1.24. Let m > 2 be an integer, and let m = ngigg pit be

(Z/mZ)* ~ H (Z/pYZ)* .

1<isy
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(2) If p =3 and v > 1, we have
(Z/p"Z)" = Z/(p"~ (p — 1)Z;

in other words the group (Z/p Z)* is cyclic.
(3) If p=2 and v > 3, we have

(Z)2°Z)* ~ 7.)2° 727 x Z.)27. .

In addition, if desired we can always take the class of 5 as generator of
the group 7./2°%7Z, and —1 as generator of Z/27.

(4) If p =2 and v < 2, then (Z/2Z)* is the trivial group and (Z/AZ)* ~
7)27.

Proof. (1). T first claim that if m = mymsy with ged(my, ms) = 1, then
(Z/mZ)* ~ (Z)miZ)* x (Z/moZ)*. Indeed, there exist integers u and v
such that um; + vmg = 1. Denoting by a + nZ the class in Z/nZ of an
integer a modulo any integer n (which is in fact the correct notation), we
consider the map f from (Z/mZ)* to (Z/m1Z)* x (Z/msZ)* defined by
fila +mZ) = (a + miZ,a + maZ), and the map f2 in the other direction
defined by fo(b+ miZ,c+ moZ) = cmyu + bmgv + mZ. Since m = myms
these maps are clearly well defined, and we immediately check that they are
group homomorphisms which are inverse to one another, proving my claim.
By induction on g, this proves (1).

(2). For any integers m and a, we will say that a is a primitive root
modulo m if the class of a modulo m generates (Z/mZ)* (so that in particular
(Z/mZ)* is cyclic and ged(a, m) = 1). By Corollary 2.4.3 below we know that
(Z/pZ)* is cyclic; in other words there exists g € Z that is a primitive root
modulo p. By Fermat’s theorem, i.e., the fact that |(Z/pZ)*| = p—1, we know
that g~' = 1 (mod p). Assume first that g? =% # 1 (mod p?). I claim that g is
a primitive root modulo p* for any v > 1. Indeed, otherwise there would exist
a prime divisor ¢ of ¢(p*) = p*~*(p — 1) such that g?®)/4 = 1 (mod p*).
Since a? = a (mod p) for all a, if ¢ | p—1 we have gP' p=D/a = glr-D/a = |
(mod p), which is absurd since g is a primitive root modulo p. If ¢ t p — 1
then ¢ = p, and since by Lemma 2.1.21, a” = 1 (mod p*) for k > 2 implies
that a = 1 (mod p*~1), the congruence g?' =1 =1 (mod p*) implies that
gP~1 =1 (mod p?), contrary to our assumption.

Assume now that g?~! =1 (mod p?). Then g + p is also a primitive root
modulo p, and since p > 3,

(g+p)P '=g" '+ (p—1)pg" > =1—pg” ? £ 1 (mod p*)

so it follows from what we have just proved that g + p is a primitive root
modulo p¥ for all v > 1, proving (2).

(3). Let H denote the subgroup of (Z/2YZ)* formed by the classes of
integers congruent to 1 modulo 4. Since any odd integer is congruent to
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+1 modulo 4, we clearly have (Z/2Z)* ~ H x Z/2Z, so that in particular
|H| = #(2¥)/2 = 272, I claim that H is cyclic, generated by the class of 5.
Since the only prime dividing 2°~2 is 5, it is enough to show that 527° Z£1
(mod 2v). If we assume the contrary, then since 5 = 1 (mod 4), using once
again Lemma 2.1.21 we would obtain that 5 = 1 (mod 23), a contradiction.
(4) is trivial. O

Corollary 2.1.25. For m > 2, the group (Z/mZ)* is cyclic if and only if
m =2, 4, p*, or 2p* for p an odd prime and k > 1.

Proof. Note that in a cyclic group the number of elements of order dividing
2 is less than or equal to 2. From the proposition it follows that the number of
such elements is exactly equal to 2<% (") +«2(m) \where w,(m) is the number of
distinct odd prime divisors of m and wo(m) = 0, 1, or 2 according to whether
va(m) < 1, va(m) = 2, or va(m) > 3 respectively. The corollary follows from
the inequality w,(m) + wa(m) < 1. O

Remark. The proofs made in this subsection sometimes use forward refer-
ences, so we must be careful to check that we do not use a circular argument.
Assume for instance p odd, the remark is the same for p = 2. The correct
order of proof (which would be less practical for presentation) is as follows:
the equivalence of (a) and (b) of Lemma 2.1.21 (1), as well as the cyclicity
of (Z/pZ)* which follows from Corollary 2.4.3, are proved directly, without
any reference to results of this subsection. From these two results we deduce
by induction as in the proof of Proposition 2.1.24 (2) that (Z/p*Z)* is cyclic
for all k£ > 1. Using this, we can finally prove the equivalence of (b) and (c)
of Lemma 2.1.21 (1).

When working in a group (Z/p’Z)* with p and odd prime and v > 2,
it is tempting to use the existence of a primitive root g modulo p¥, since
all elements a can simply be written as a = ¢g* for some = uniquely defined
modulo ¢(p¥). However, this is not always a good idea. For future reference,
we note the following lemma, which usually gives a better representation.

Lemma 2.1.26. Let p be an odd prime, let v > 2, and let g be a primitive
root modulo p¥. For any a coprime to p there exist x and y such that

0

a=g" "(1+p)? (mod p’),

and x is unique modulo p — 1, y is unique modulo p*~!.

Proof. Since g is a primitive root, we can write a = ¢* (mod p¥), so that
a?’" =g ' (mod pv), and since ¢ has order p*~1(p — 1), it is clear that =
is unique modulo p—1. Since a?’ ~1 =1 (mod p) by Fermat’s little theorem,
we must simply show that for any b = 1 (mod p) there exists y such that
b= (14p)¥ (mod p*). Indeed, the map y — (1+p)Y¥ is clearly a group homo-
morphism from the additive group Z/p”~'Z to the multiplicative subgroup of
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(Z/p*Z)* of elements congruent to 1 modulo p. The groups having the same
cardinality, and the map being injective by Lemma 2.1.22, it follows that it
is bijective, showing the existence of y and its uniqueness modulo p*~!. O

Remark. This lemma can be better understood in the context of p-adic
numbers (see Chapter 4): indeed, 1 + p is naturally called a topological gen-
erator, and the exponent y such that b = (1 4 p)¥ (mod p*) can be given
explicitly in terms of p-adic logarithms as y = log,(b)/log,(1 + p) mod p".
Note also that 1 + p is only one possible choice, and that we could just as
well choose 1+ kp for any k£ # 0 (mod p).

2.1.5 Dirichlet Characters

—

According to Proposition 2.1.16, the group (Z/mZ)* of characters of (Z/mZ)*
is (noncanonically) isomorphic to (Z/mZ)*. It is convenient to extend such a
character to the whole of Z/mZ by setting it equal to 0 outside of (Z/mZ)*,
and then to Z by composing with the natural surjection from Z to Z/mZ:

Definition 2.1.27. A Dirichlet character modulo m is a map x from Z to

s

C such that there exists a character ¥ € (Z/mZ)* such that x(n) = 0 if
ged(n,m) > 1, while x(n) = ¥(n) otherwise, where T denotes the class of n
modulo m.

Note that x is still multiplicative, and that x(m + n) = x(n) for all n, in
other words y is periodic of period dividing m. Furthermore, the values of x
are either equal to 0 or ¢(m) = [(Z/mZ)*|th roots of unity in C. By abuse
of lan% we will say that y has order n if the corresponding character
¥ € (Z/mZ)* has order n, in other words if n is the positive generator of the
group of integers k such that x* is equal to the trivial character modulo m
(see the following definition). Thus the order of a character modulo m divides

¢(m).
Definition 2.1.28. Let x be a character modulo m.

(1) If d | m we say that x can be defined modulo d if there exists a Dirichlet
character xq modulo d such that x(n) = xa(n) as soon as ged(n,m) = 1.

(2) The conductor of a Dirichlet character is the smallest (for divisibil-
ity) positive integer f | m such that x can be defined modulo f.

(3) We will say that x is primitive if the conductor of x is equal to m, in
other words if x cannot be defined modulo a proper divisor of m.

(4) The trivial character, often denoted by xo, is the character defined by
x(n) = 1 when ged(n,m) = 1 and x(n) = 0 when ged(n,m) > 1. It is
the unique character modulo m of conductor 1.

Remarks. (1) It is clear that y is primitive if and only if x cannot be defined
modulo m/p for every prime p | m.
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(2) If x can be defined modulo d | m and x4 is the corresponding character
modulo d, it is clear that x = xoXxa-

Proposition 2.1.29. The number of primitive characters modulo m is equal
to g(m), where

2 1\°
q(m):mH 1—- H 1—-=) .
p) p
pllm p*|m
In particular, there are none if and only if m = 2 (mod 4).

Proof. I refer the reader to Section 10.1 for the elementary techniques used
here. For any integer f denote by ¢(f) the number of primitive characters
modulo f. By definition we have

¢(m) = [(Z/mZ)*| = (Z/mZ)*| = q(f) -
flm
In terms of formal Dirichlet series, this means that
C(s) D qm)ym™ =" g(m)ym™* = 2——=;
m2=1 m2=1

hence °, ~, q(m)m™ = ((s— 1)/¢(s)?, and the proposition follows by look-
ing at the Euler factor at p. a

Corollary 2.1.30. Let x be a primitive character modulo m with m even.
Then for all n we have x(n 4+ m/2) = —x(n).

Proof. By the proposition we know that 4 | m. The result is thus trivial
if n is even since both sides vanish; otherwise, denoting by n~! an inverse of
n modulo m we have since n is odd

x(n+m/2) = x(n)x(1 + (m/2)n"") = x(n)x(1 +m/2) .

We have x((1+m/2)?) = x(1+m(m/4+1)) = 1, hence x(1+m/2) = £1. If we
had x(1+m/2) = 1 then we would have x(k) = x(k+ (m/2)k) = x(k+m/2)
for all k odd and evidently for all even k, so x would be defined modulo m/2,
a contradiction. Thus x(1 4+ m/2) = —1; hence x(n +m/2) = —x(n). O

A similar reasoning will lead to a useful characterization of primitive
characters. We first need a lemma which is useful in many contexts.

Lemma 2.1.31. If gced(a,b,c) =1 there exists an integer k such that

ged(a + kbyc) = 1.
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Proof. Note that this lemma would immediately follow from Dirichlet’s
theorem on primes in arithmetic progression (see Theorem 10.5.30), but it is
not necessary to use such a powerful tool. In fact, we can give k explicitly: 1

claim that
k= H P

ple
pt(a/ ged(a,b))
is a suitable value. Indeed, let p be a prime dividing ¢. We must show that
it does not divide a + kb. Assume first that p t a/ged(a,b). Thus p | k;
hence p t a/ged(a,b) + kb/ ged(a,b), and since ged(a,b,c¢) = 1, we have
pta+ kb as desired. Assume now that p | a/ged(a,b), hence p 1 k. Since
a/ ged(a, b) is coprime to b/ ged(a, b) by definition of the GCD, it follows that
p1tkb/ged(a,b); hence p t a/ ged(a, b) + kb/ ged(a, b) and once again p t a+ kb
as desired. O

The characterization of primitive characters is a consequence of the fol-
lowing lemma:

Lemma 2.1.32. Let x be a character modulo m and let d | m. Then x can
be defined modulo d if and only if for all a such that a = 1 (mod d) and
ged(a,m) = 1 we have x(a) = 1.

Proof. The condition is clearly necessary: if x(a) = xq4(a) for all a such
that ged(a,m) = 1, then if in addition a = 1 (mod d) we have x(a) = 1.
Conversely, assume the condition satisfied, and let a be such that ged(a, d) =
1. We want to define x4(a). By the preceding lemma, there exists k such
that ged(a + kd,m) = 1. We will set xq4(a) = x(a + kd). Since ged(a +
kd,m) = 1, this is nonzero, and furthermore if k&’ is another integer such that
ged(a + k'd,m) = 1, then b = (a + k'd)(a + kd)~! (inverse taken modulo m,
which makes sense since ged(a + kd,m) = 1) is such that b =1 (mod d). By
assumption it follows that x(b) = 1, in other words that x(a+k'd) = x(a+kd),
so our definition of x4(a) does not depend on the choice of k. It is then
immediate to check that x4 is a character modulo d such that xq(a) = x(a)
when ged(a,m) = 1. O

Corollary 2.1.33. Let x be a character modulo m, let d | m with d < m,

and assume that x cannot be defined modulo d.

(1) For all r we have
> xla)=0.

a mod m
a=r (mod d)

(2) If f is a periodic function of period dividing d, then

Y xl(a)f(a)=0.

0<a<m
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In particular, if x is a primitive character, these properties are true for all
d | m such that d < m.

Proof. The proof of (1) is identical to that of Proposition 2.1.20: by the
lemma, there exists b = 1 (mod d) with ged(b,m) = 1 and such that x(b) #
1. The map a — ab is clearly a bijection from the set of integers modulo
m congruent to » modulo m to itself, so that by multiplicativity we have
x(b)S = S, hence S = 0, where S is the sum to be computed. For (2) we
write a = qd + r so that

Yo x@fl@= Y fr) > x(a)=0

o<a<m o<r<d o<a<m
a=r (mod d)

by (1). O

Proposition 2.1.34. Let m € Zx1, let my and ma be two coprime positive
integers such that m = mimes, and let x be a Dirichlet character modulo m.

(1) There exist unique characters x; modulo m; such that x = x1x2, in other
words such that x(n) = x1(n)x2(n) for all n.

(2) The order of x is equal to the LCM of the orders of x1 and xa.

(3) The character x is primitive if and only if both x1 and x2 are primitive.

Proof. (1). Since the m; are coprime, there exist integers v and v such that
umi + vmsy = 1. In view of the map fy defined in the proof of Proposition
2.1.24 (1), it is natural to set x1(x) = x(@mov+myu) and x2(z) = x(ymiu+
mav). Since these maps are obtained by composing the homomorphism f;
with the natural injections of (Z/m;Z)* into (Z/m1Z)* x (Z/moZ)*, it follows
that they are group homomorphisms hence define Dirichlet characters modulo
my and msy respectively, and it is also clear that xy = x1xa2.

(2). We have x(n)¥ = 1 for all n coprime to m if and only if y;(n)* =

x2(n)~F for all such n, hence if and only if the primitive character equivalent
to xl_k is equal to the one equivalent to x5 k¥ However, the conductor of Xi_k
divides m;, and m; and ms are coprime, so this is possible if and only if x¥
and x4 are trivial characters, hence if and only if & is a multiple of the orders
of x1 and x2, proving (2).

The proof of (3) is immediate and left to the reader (Exercise 10). O

It follows in particular from this proposition that any Dirichlet character x
modulo m can be written in a unique way as a product of Dirichlet characters
modulo the coprime prime powers dividing m.

Corollary 2.1.35. Let m =[], p¥ (™) with v,(m) = 1 be the decomposition
into prime powers of m € Zx1. The order of any primitive character modulo
m is divisible by h(m) =[], p (™= except if 8 | m in which case it is only
divisible by h(m)/2.
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Proof. Let x be a primitive character modulo m. By the above proposition
applied inductively we can write y = Hp Xp, Where X, is a primitive character

modulo p” (™ and the order of x will be equal to the LCM of the orders
of the xp. It is thus sufficient to prove that the order of y, is divisible by
p» (M =1 or by 2v2(M)=2 if y,(m) > 3. For simplicity of notation, write v
instead of v,(m). Assume first that p > 3 and let @ = 1 (mod p*~!). By
Lemma 2.1.21 (1) ¢), there exists b such that a = b®~D?" " (mod p¥), hence
Xp(a) = Xp(b)(p’l)pv_2. Since ¢(p”) = (p— 1)p®~ %, if the order of x, was not
divisible by p*~! it would divide (p —1)p*~2, hence we would have x,(a) = 1
for all a = 1 (mod p¥~!). However, by Lemma 2.1.32 this would imply that
Xp can be defined modulo p?~!, contradicting the fact that it is a primitive
character modulo p¥ and proving the result for p > 3. Assume now that
p = 2, hence that v > 2 since there are no primitive characters for m = 2
(mod 4). If v = 2 or v = 3 the only primitive characters modulo 4 or 8 are
the characters (=2), (=2), and (2) which have order 2 = h(4) = h(8)/2,
hence we may assume that v > 4. Let « = 1 (mod 2”_1). By Lemma 2.1.21
(2), there exists b such that a = b2~ (mod 2¥), and as for the case p > 3
we deduce that if the order of y» was not divisible by 2~2 it would divide
23 and we again deduce a contradiction. a

In the context of Dirichlet characters, Proposition 2.1.20 reads as follows:

Proposition 2.1.36. We have

Z x(a) = {d)(m) if x is the trivial character modulo m,

0 otherwise.
a mod m

Dually, if a € Z is such that ged(a, m) =1 then

Z (@) = {gf)(m) if a=1 (mod m),

0 otherwise.
x mod m

Corollary 2.1.37. Let x be a nontrivial character modulo m, let [ = [1,m—

1], and let
S= Y x@=- Y xa).

a€l, a even a€l, a odd

(1) If either m is even or x is an even character then S = 0.

(2) If m is odd and x is an odd character, then if in addition x is primitive
and m is not a prime power we have S =0 (mod 2), in other words S/2
is an algebraic integer.

Proof. (1). The fact that the two sums given in the corollary are opposite
follows of course from Proposition 2.1.36, and if m is even then x(a) = 0 for
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all even a, hence S = 0 trivially. On the other hand, if m is odd and y is even
we have

S= > xl@= > xtm-a)= > xb)=-5,

acl, a even a€l, a even acl, b odd

hence S = 0 also in this case, proving (1).
(2). Consider the sum Sy = ; x(a)a. We have

S = Z x(a)a =S (mod 2) ,

acl, a odd

so we must show that S; = 0 (mod 2). Since m is not a prime power we can
write m = mymso with m; > 1 coprime, and by the Proposition 2.1.34 there
exist primitive, hence nontrivial characters x; modulo m; such that x = x1x2.
Any a € [0,m — 1] can be written in a unique way as a = myag + a; with
0 <ay <mg and 0 < a; < my, hence S1 = mqTy + T7 with

Ty = > xi(a1)xz(miaz + a1)a; .
0<a1<mi, 0<az<me

Since m; and ms are coprime we have

Y xelmaztar) =xe(m) Y xelaz+aim;') =0

0<as<mea 0<as<mea

by Proposition 2.1.36 since y» is nontrivial, hence 77 = 0. On the other hand,
if we write Ty = Zahaz flay,az) with f(a1,as) = x1(a1)xe(mias + aq)as,
then since mg — 1 is even, it is clear that f(my — a1, mo —as — 1) = f(ay,as2)
(mod 2), and since this involution has no fixed points (m; being odd), we
deduce that 75 = 0 (mod 2), hence that S; = 0 (mod 2), proving (2). O

Remarks. (1) We will study sums generalizing S; in much more detail in
Section 9.5.1, and use exactly the same reasoning as above.

(2) The result of (2) is not true in general when m is a prime power, as can
easily be seen on examples.

2.1.6 Gauss Sums

We are going to meet Gauss sums in two related, but different, contexts:
first in the present section, those related to a Dirichlet character, second
in the context of finite fields, those related to additive and multiplicative
characters of finite fields. Although the results are similar we must prove
them separately.
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Definition 2.1.38. Let x be a (not necessarily primitive) character modulo
m. For a € Z we define the Gauss sum 7(x, a) by the formula

Thea) = Y x@)Gr

x mod m

It is clear that this makes sense, in other words it does not depend on the
representatives chosen for x modulo m, both in x(x) and in the exponential.

By abuse of notation we will also set 7(x) = 7(x, 1) and call it the Gauss
sum associated with the character y.

Proposition 2.1.39. If gcd(a, m) = 1 we have

7(x,a) = x(a)7(x) -

Proof. Since ged(a,m) = 1, the map multiplication by a is a bijection of
(Z/mZ)* to itself; hence setting y = ax we have

Thha) = Y x(ya )¢k

y mod m

Since x(ya—t) = x(y)x(a) because x(a) has modulus 1, the proposition fol-
lows. O

Proposition 2.1.40. Letd = ged(a, m) and assume that x cannot be defined
modulo m/d. Then 7(x,a) = 0.

Proof. Since x cannot be defined modulo m/d, by Lemma 2.1.32 we can
find b such that b =1 (mod m/d), ged(b,m) = 1, and x(b) # 1. Thus

x(b)7(x;a) = Z x(bx)(nt = Z X(y)Cfnybil.

x mod m y mod m
However, since b = 1 (mod m/d), we have
ayb™ = (a/d)dyb~' = ay (mod m)

(and not only modulo m/d, because of the factor d); hence

Xb)rha) = Y x@Ww =r(xa),

y mod m

so that 7(x,a) = 0 since x(b) # 1. O

Corollary 2.1.41. If x is a nontrivial character modulo m, then

Z x(z)=0.

z mod m
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Proof. Apply the above proposition to a = 0. ad

This corollary is of course a special case of Proposition 2.1.20.

Corollary 2.1.42. Assume that x is a primitive character. For all a (not
necessarily prime to m) we have

7(x,a) = x(a)T(x) -

Proof. If ged(a, m) = 1 this is Proposition 2.1.39, and if d = ged(a, m) > 1,
then x cannot be defined modulo m/d so the result follows from Proposition
2.1.40. O

The reader will find in Exercise 12 a general formula giving 7(x, a).

Corollary 2.1.43. Assume that x is a primitive character modulo m and
let n = km be a multiple of m. Then

2)caT 0 ifkfa
2, X {kx(a/k)T(x) ikl a

x mod n

Proof. Immediate by writing x = mq + r with » mod m and ¢ mod k and
left to the reader. O

The above results have in fact little to do with Gauss sums. Indeed, let f
be any function defined on mth roots of unity with values in some field, and

set Tr(X,0) = D0 mod m X(@) f(CAF) and 7¢(x) = 7¢(x,1). Exactly the same
proofs as above show the following (Exercise 13).

Proposition 2.1.44. Set d = ged(a,m). If d = 1 we have 7/(x,a) =
x(a)T¢(x), if x cannot be defined modulo m/d we have T¢(x,a) = 0, and

if x is a primitive character then for all a we have 77(x,a) = x(a)7r(x).

A very important result concerning Gauss sums is the following.
Proposition 2.1.45. If x is a primitive character modulo m then |7(x)| =
1/2
mt/=.

Proof. We have 7(X) = Y, nod m X(@)(,%; hence multiplying by 7(x) and
applying the above corollary we obtain

roOP = D rha)Gt = Y. D X(@)CEG”

a mod m a mod m x mod m
m m

_ a(z—1

= x(@) ¢y
x=1 a=1

The inner sum is a geometric series, whose sum is equal to 0 if m { (x —1); in
other words x # 1, and is equal to m otherwise, proving the proposition. O
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Corollary 2.1.46. Let x be a not mecessarily primitive character modulo
m, and let f be its conductor. Then |T(x)| = fY/? if m/f is squarefree and
coprime to f; otherwise 7(x) = 0.

Proof. This follows from the above proposition and the formula 7(x) =
p(m/f)xg(m/f)r(xs) proved in Exercise 12. O

Corollary 2.1.47. If x is a primitive character we have

T0)7T(X) = x(=1)m..
In particular, if x is real, in other words takes only values +1 on integers
coprime to m, we have 7(x)? = x(—=1)m
Proof. Indeed, by Proposition 2.1.39 we have

0= Y, X" =x(-)r(x),

x mod m

so multiplying by 7 () and using Proposition 2.1.45 gives m = x(—=1)7(x)7(X),
proving the corollary. ad

2.2 The Quadratic Reciprocity Law

2.2.1 The Basic Quadratic Reciprocity Law

Let p be an odd prime. We set (%) = 0if p | a, and otherwise (%) =1lifa

is congruent to a square modulo p, (9) = —1 otherwise. This is called the
Legendre symbol. We recall the following easy result.

Proposition 2.2.1. (1) The symbol (%) s a real primitive character modulo
. . b\ b
p, and in particular (%) = (%) (;).

(2)
aP=D/2 = (Z) (mod p) ,

and in particular (_71) = (=1)r=1/2,

(3) There are exactly (p — 1)/2 walues of a modulo p (called quadratic
residues) such that (%) =1, and (p — 1)/2 values of a modulo p (called
quadratic nonresidues) such that (%) =—1.

Proof. By Corollary 2.4.3 below we know that (Z/pZ)* is cyclic (of order
p—1). Let g € Z be such that the class of g modulo p is a generator. Then
if a € Z is coprime to p, there exists an exponent k uniquely defined modulo
p—1such that a = g* (mod p). We will call k a discrete logarithm of a modulo

p to base g, and write k = log,(a). It is clear that a is congruent to a square
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modulo p if and only if log,(a) is even (since p—1 is even this does not depend
on the chosen representative modulo p — 1); hence (%) = (—1)84(@) This

immediately implies that (%) is a real character, and it is primitive since it is
not defined modulo 1, i.e., trivial. Also, since g is a generator, g®~1/2 = —1
(mod p), so that

aP=1/2 = g(p=1)/210g,(a) — (_1)log,(a) — (Z) (mod p) .

In particular, when a = —1 both sides are equal to +1 and congruent modulo
p > 2, so they are in fact equal. Finally, there are exactly (p—1)/2 even values
and (p—1)/2 odd values of k = log,(a) modulo p—1, proving the proposition.

O

Remark. When a is not divisible by p and a = 2? (mod p), it is clear
that a(P~1/2 = zP=1 = 1 (mod p); hence one direction of statement (2)
is trivial. The converse statement says that if a®~%/2 = 1 (mod p) then
there exists x such that a = 22 (mod p). We have just proved this using
the cyclicity of (Z/pZ)*, and indeed the result is not entirely trivial: the
algorithmic computation of z (i.e., the square root of a modulo p) can be
done using an algorithm due to Tonelli and Shanks; see [Coh0].

We will now prove a lemma that is basic to two of the results that we
need, and in particular to the quadratic reciprocity law.

Lemma 2.2.2. Let x be a real primitive character modulo m, and let p be
an odd prime. Then

Proof. Let R = Z[(], which is a ring and a finitely generated free Z-
module since (,,, is an algebraic integer (in fact of degree ¢(m), but we do
not need this). We do not need to know that in fact R is the ring of algebraic

integers of Q(¢).

Let p be any odd prime such that p 1 m. By the binomial theorem, and
using either the fact that all intermediate binomial coefficients (i) are divis-
ible by p or the fact that in a ring of characteristic p (here R/pR) the map

x — 2P is additive, we have

()= Y XP(2)¢E (mod pR) .

x mod m

Since y is a real character and p is odd, xP(z) = x(z), so by Proposition
2.1.39 we have

7(x)” = x(p)7(x) (mod pR) .
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On the other hand, since Y is primitive, Corollary 2.1.47 tells us that 7(x)? =
X(—1)m, so that multiplying the above congruence by 7(x) we obtain

X(=D)m((x(=1)m)?~D/% — x(p)) = 0 (mod pR) .

Since (x(—1)m)®~—D/2 = (@) (mod p) and p t m, if we multiply the
above congruence by any integer u such that um = 1 (mod p) (in Z), we

obtain .
X(p) = (X(_p m

Both sides of this congruence are in fact in Z, and clearly Z N pR = pZ since
R is a free Z-module with basis 1, , ..., (! for some n. Thus the above
congruence holds not only modulo pR but modulo pZ, i.e., modulo p. Since
both sides are equal to +1 and p > 2, it follows finally that we have the

) (mod pR) .

equality
x(—l)m)
Xp)=\——
e
for p odd not dividing m. Clearly this is also true (both sides vanish) when
p divides m, proving the lemma. a

Corollary 2.2.3 (The basic quadratic reciprocity law). (1) Ifp andq
are distinct odd primes, we have

()

(2) If p is an odd prime, we have the two so-called complementary laws:

(;) _ (<1)*D/2 gng <;) -1/

Proof. Set x(n) = (%)7 which is a real primitive character modulo ¢q. We

have y(—1) = (=1)(=1/2 hence the above lemma gives

(£)- (2525) - como(s)

proving (1). We have already proved the first equality of (2). For the second,
set x(z) = (=1)@=D/8 for z odd, 0 otherwise. This simply means that
x(xz) = 1 for x = £1 (mod 8), and x(z) = —1 for x = £3 (mod 8). Tt
follows immediately from this that x is a real character modulo 8, which is
primitive, and is such that x(—1) = 1. Thus, again by the above lemma we

obtain x(p) = (%), in other words (%) = (=1)®*=1D/8 a5 desired. O
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2.2.2 Consequences of the Basic Quadratic Reciprocity Law

We define the Jacobi symbol (%) for a positive odd integer n by requiring

multiplicativity in n: if n = [[, p;" then

v;
(4 =11 <>
n o \Pi
Clearly this symbol is still multiplicative in a. Furthermore, since each (pl)
is periodic of period dividing p;, hence a fortiori dividing n, (%) is periodic
of period dividing n.

Proposition 2.2.4. If m and n are coprime positive odd integers, the same
quadratic reciprocity formula holds:

(T) (ﬁ) = (1) Dm=1)/1

In addition, if n is an odd positive integer, the same complementary laws

hold: ) )
1\ L e 2\ L _ymr-nss
(Z) =com wa (2) =

Proof. We note that if n; and ny are odd, then
nne—1=(m—1)+(ne—1)+(n1—1)(ngo—1) = (n1—1)+(n2—1) (mod 4) .

It follows that the right-hand side of the first formula is multiplicative in n,
and by symmetry it is also multiplicative in m. Since the left-hand side of
the formula is also multiplicative in m and in n, to prove equality it suffices
to prove it when m and n are coprime odd primes, and then it is simply the
basic quadratic reciprocity law.

The first complementary law follows from the same congruence for nin, —
1, and the second from

mni —1=n} —1+n3—14+ 3 —1)(n3—-1)=(ni —1)(n3—1) (mod 16) .

O

Definition 2.2.5. The Kronecker symbol (still denoted by (%)) is the exten-
sion of the Jacobi symbol to (Z\{0})? obtained by setting (%) = sign(a) and

a a

(5) = (%) for a odd ((5) =0 for a even), and extending by multiplicativity.
Note that sign(a) =1 if @ > 0 and sign(a) < 0 if a < 0.

Proposition 2.2.6. (1) For two nonzero integers m and n write m =
2v2(m) 1 and n = 22 ny with my and ny odd. Then

(B) _ (_1)((m1—1>(m—1>+<sign(m)—1)(sign<n>—1))/4(E) .
m n
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(2) If Dy and Dy are nonzero integers congruent to 0 or 1 modulo 4, we have

D2\ _ (1) (Gsien(Dn)-1)(sian(Da)-1)/a ( D1
D, Dy

Proof. We may assume that either m or n is odd; otherwise they are not
coprime and the result is trivial. Since (%) = (%), it is clear that statement
(1) follows from Proposition 2.2.4 for m, n both positive. Using the definition
of (_—1) and considering separately the cases m > 0, n < 0 (or the reverse),
we obtain (1) after a short computation. Statement (2) immediately follows
from (1) since either D7 and D5 are not coprime, or either D; or Dy is odd,

hence congruent to 1 modulo 4. a

Our aim is now to study the periodicity of the Kronecker symbol, espe-
cially when the numerator is fixed congruent to 0 or 1 modulo 4.

Lemma 2.2.7. If m is odd, for any k we have

(a + km> — (—1)(si8n(m)—1)(sign(a-+hm)—sign(a)) /4 (ﬁ) ‘

m m

Proof. When m > 0, we have periodicity because of the periodicity of the
Legendre symbol. If m < 0, by definition of the Kronecker symbol we have

k k
(CH_ m) :sign(a+km)(a+ m)
m m|
= sign(a + km) 2 ) s n(a + km)sign(a) (g>
and clearly sign(a) sign(b) = (—1)(ign(@)—sign(6))/2, 0

Remark. The symbol (%) being periodic of period 8 and not 2, it is in
general not useful to consider periodicity of the symbol (%) when m is a
fixed even integer.

Lemma 2.2.8. If m is odd, then writing n = 2°2"n; and n + km =
2v2(ntkm) (n 4 km),, we have

< - >=(—1)(’"—1><<n+km>1—n1>/4(m).

n+km n

Proof. By Proposition 2.2.6 and the above lemma, we have

m = (—1)(m=D((n+km)1—1)/4(sign(m)—1)(sign(n+km)~1)/4 n+km
n+km m

- (_1)<m—1)<<n+km)1—1)/4+(sign<m>—1>(sign(n)—l)/4(ﬁ)
m
- (_1)<m—1)<<n+km)1—n1>/4(@)
n )
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proving the lemma. d

We can finally state the main result concerning the Kronecker symbol.

Theorem 2.2.9. Ifm =0 or 1 modulo 4 is fixed, the Kronecker symbol (%)
is periodic of period dividing |m|; in other words for all k, n we have

(7 5m) - (5)-

Proof. If m = 1 (mod 4) the result follows from the above lemma since in
that case (m — 1)((n + km); — n1) =0 (mod 8). So assume m = 0 (mod 4),
and write as usual m = 220" m,;. We may of course assume that n is odd,
so that n + km is also odd. We have therefore (n 4+ km); —n; = km = 0
(mod 4), so by the above lemma

(n—fbkm) B <n+2km>u<g4r—nllcm> - <n+2km>u<%)
~ () ()

If u=2, (m)u = 1 trivially, and if v > 3, then m = 0 (mod 8); hence
n(n+km)=n?=1 (mod 8), so (m) = 1, proving the theorem. O

Proposition 2.2.10. There are exactly two extensions (%) of the Jacobi

symbol to (Z \ {0})? that are equal to O if and only if gcd(a,b) # 1, and are
multiplicative in a and b and periodic in b of period dividing |a| when a =0
or 1 modulo 4. One is the Kronecker symbol (%) defined above, the other is
(%) (_74)1)2(17)7 where it is understood that (_74)”2(17) =1 when b is odd.

Proof. Assume first that ¢« = 0 (mod 4) with a # 0, and write a =
sign(a)2*m with m odd and positive. Then we have

(2)- (1) - C2) ()
= sign(a) <2qu— 1) (2umm— 1) '

Now since u > 2, we note that for u = 2, (2“m—l
for u > 3, 2m — 1 = —1 (mod 8), hence (Wa)u = 1 once again. Thus,
applying Proposition 2.2.4 and the fact that 2%m —1 = 3 (mod 4), we obtain

(—il) = sign(a)(—1)" "1/ <%>

—signfa)(~1)" 72 (1) = siena)

m

)* =1 trivially, while
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once again by periodicity in the upper argument since m is odd and positive.
If now a # 0 is arbitrary, we must have

(%) = () (25) = (55) = smtan = s

as desired.
Let us now compute (%) If a is even, we must have (%) = 0; hence we
may assume that a is odd. Consider first the case a = 1 (mod 4). Then by

periodicity and Proposition 2.2.4, we have

(5)= (2+a|a|> N (2g+n(||)> (2f||a|>

2
_ sign(a)(la+D/2(_1y(lel=1)(lal+1)/1 (W)

e 2\ e 2
— sign(a)( +1>/2<a|) _ sign(a)( |+1>/2(a> .

Thus, when a = 1 (mod 4), if a > 0 then (%) = (%), while if @ < 0, then

la| = 3 (mod 4); hence (%) = (2) once again.
Consider now the case a = 3 (mod 4). By what we have just proved,

ay  (—1\[(—a\ _[(=1\[ 2\ [-1\/[/2
6)-)E)-G)E)-G)E)

Thus, if we choose (_71) = 1 we obtain the first extension, which is the
Kronecker symbol, and if we choose (*71) = —1 we obtain the second exten-
sion, and we have thus shown that only these two possible extensions can
exist. Conversely, by definition all the necessary conditions are satisfied, and
periodicity in the lower variable for the first extension is the statement of

Theorem 2.2.9. Note that if @ = 1 (mod 4) then (=2) = 1, while if a = 0

(mod 4), then (%) # 0 implies b odd hence (’74)”2@ = 1, so periodicity for
the second extension follows from that of the first. O

2.2.3 Gauss’s Lemma and Quadratic Reciprocity

Another approach to quadratic reciprocity, due to Gauss, deserves to be stud-
ied in detail. Although there exist nearly two hundred proofs of the quadratic
reciprocity law, it is not just for the sake of it that we will give another
proof here, but because we need the results that we will prove elsewhere (see
Theorem 11.6.14) and because it sheds some additional light on Kronecker—
Jacobi’s generalization of the Legendre symbol to composite denominators.

In this subsection,  (or r') will always denote a positive odd integer. By a
convenient and common abuse of notation, when r is implicit we will identify
integers with their class modulo r in Z/rZ.
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Definition 2.2.11. A half-system H modulo r is a subset of Z/rZ such that
Z/rZ = HU(—H)U{0}, the unions being disjoint, with the evident notation
—H={-h/ he H}.

If H is a half-system modulo r we evidently have |H| = (r — 1)/2.
Now let a be an integer coprime to r. For any j € H we have aj #Z 0
(mod 7); hence we can write uniquely

aj =ep(j)on(y) (mod r)

where e (j) = £1 and oy (j) € H. It is clear that oy is bijective: indeed,
since it is a map from the finite set H to itself, it is enough to show that it is
injective. But o (j1) = om(j2) implies that aj; = +ajs (mod r) hence that
J1 = %j2 (mod r) since ged(a, r) = 1, and since j; = —js (mod r) is excluded
by definition of a half-system, we have therefore j; = jo as claimed, so that
o is indeed a permutation of H.

Define

=[] eu(y) € {£1}.

jeEH

Proposition 2.2.12. The quantity fr(a,r) does not depend on the half-
system H.

Proof. Let H' be another half-system. Then for any j € H there exists
7(j) = %1 such that j = n(j)m(j), where 7 is a (necessarily bijective) map
from H to H'. For simplicity of notation, set 01 = 7~ Loo g o7, a permutation
of H. Then

en()on(d) = aj =n(G)an(j) = n(G)en (7 (5))on (7(5))
=n(en (7(3))m(o1(5)) = n(G)en (x(5))n(or(5))o1(d) -

Since o7 (j) and o1(j) are both in H, by definition of a half-system we must
have o1 = oy and moreover

en(j) =n()en (7(5))n(o1(4)) -

Since 7 and o7 are bijections, taking the product on j € H gives

fH(a’T) fH' a,r <H77 ) = fu(a,7),

jeH

finishing the proof. ad

Since fg(a,r) does not depend on H, we will of course drop the index H.
This proposition will thus allow us to choose the half-system as we please.
The main result of this section is the following.
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Theorem 2.2.13. As above let r be odd and positive and let a be coprime

to r. Then “
flan = (7).

Proof. Since the Kronecker—Jacobi symbol is defined by complete multi-
plicativity in the denominator, we will prove the theorem in the same way.
Note that it gives an additional justification for this generalization of the
Legendre symbol. I claim first that the theorem is true for » an odd prime.
Indeed, in that case for any half-system H we have (as usual in Z/rZ)

a" VPN i=11ei =[] entou() = fla,r) [ i
jeH jeH jeH jeH

since oy is a permutation. On the other hand, since r is a prime, HjeHj
is coprime to r and a("~1/2 = (%) by definition, proving my claim and the
theorem in the prime case.

We must now show that when « is fixed, f(a,r) is a completely multi-
plicative function of r (restricted to odd r), which will finish the proof. Thus
let 7 and 7’ be odd integers. We must show that f(a,rr’) = f(a,7)f(a,r’).

Let H and H' be half-systems modulo r and 7’ respectively. It is immediate
to check that

J={j+rk/jeH, kmodr'}U{rj'/ j € H'}
is a half-system modulo rr’. Furthermore, if a is coprime to rr’ we have
a(j+rk)=ep(f)on(j) (mod r) ;

hence a(j + rk) = ep(j)(ou(y) + rk’), and it follows that e;(a(j + rk)) =
er (7). In addition

a(rj’) =r(aj’) = r(en (7)on (i) ;
hence e, (rj") = €% (j). Thus
flarr') = fola,r)y = T[] enl) I] ew()
jeH, k mod 1/ jreH
= fula, )" fu(a,r’) = f(a,7)f(a,r")
since r’ is odd, proving multiplicativity and finishing the proof of the theorem.

O

Before stating the main corollary of this result, recall that we define (n —
1)\2 to be equal to the integer part of (n—1)/2. Furthermore, for two integers
n and m with n > 0 define

Stmm)= Y V;”J

1< < (n—1)\2
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Corollary 2.2.14. Let r be an odd positive integer and let a be any integer
coprime to r. Then

(1 )
(;) when a is odd,

(_1)S(a’r) = (2@) .
. when a is even.

(2) Assume that a > 0. Then

(71)(a*1)(’“*1)/4<g) when a is odd,
,
2
(—1)la=2)(r=1)/4 (_a) when a is even.
r

(_1)5(7",(1) —

(3) If n and m are positive odd coprime integers we have the quadratic reci-

procity law
(T) (ﬁ) = (—1)m-D(-1/4

n m

Proof. (1). Choose as half-system H modulo r the integers from 1 to
(r —1)/2 and keep the above notation. In particular, multiplication by a
defines a function ey (j) with values +1 and a permutation oy of H. For
e=1and e = —1, set

Ro= > oulj).
JjeH/ en(j)=e
We have clearly Ry + R- =3,y Jj = (r? —1)/8. On the other hand
. ) ou(j ifer(j) =1,
Jo=rbefri {r —(J)Hu’) if eHEj; - -1
Summing over j € H we obtain
a(r*=1)/8 =rS(a,r)+ Ry — R_ +1(,

where £ is the number of j € H such that ey (j) = —1. Subtracting from this
the expression for R4 + R_, we obtain

(a—1)(r* —1)/8 =rS(a,r) —2R_ +rl.

Now we have (—1)¢ = jenen(i) = fula,r) = (%) by the above theorem.
Since r is odd, we therefore obtain

(1% =)« (T).

r

where (r) = (—1)(T2_1)/8 depends only on r. We will show below that it is
indeed equal to (%) (we are not allowed to use our other proof of quadratic
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reciprocity), and up to this assumption this proves (1) upon separating the
cases a odd and a even.

(2). For simplicity write ' = (a — 1)\2, in other words ¢’ = (a—1)/2if a
is odd and @’ = (a — 2)/2 if a is even. Consider the lattice points (i, j) € Z?
such that 1 <i < a and 1 < j < (r—1)/2, which are evidently o’(r—1)/2 in
number. Since r and a are coprime, the line y = (r/a)x does not go through
any lattice point for 0 < x < a, in particular for 1 < z < d’. It is easy to see,
for instance by drawing a picture, that the number of lattice points under
that line is exactly S(r,a), while the number of lattice points above that line
is S(a,r). It follows that

(71)S(r,a) _ (_1)a’(r71)/2(_1)5(a,r) )

Using (1), this gives the desired formula when a is odd. When « is even, (1)
gives
_1)Stra) — (_1yla=2)(r-1)/4 (9) ,
(-1)50 = (-1) (8
Choosing a = 2, we see that S(r,a) = 0, and hence £(r) = (2), proving the
claim made in (1) above and finishing the proof of (2).
(3) Follows immediately from (1) and (2) using the variables m and n
instead of a and r. ad

2.2.4 Real Primitive Characters

Real primitive characters are easy to characterize. Recall that a fundamental
discriminant is 1 or the discriminant of a quadratic field, in other words
either a squarefree integer congruent to 1 modulo 4, or 4 times a squarefree
integer congruent to 2 or 3 modulo 4.

Theorem 2.2.15. If D is a fundamental discriminant, the Kronecker symbol
(%) defines a real primitive character modulo m = |D|. Conversely, if x is
a real primitive character modulo m then D = x(—1)m is a fundamental
discriminant D and x(n) = (£).

n

Proof. The definition of the Kronecker symbol and Theorem 2.2.9 show
that (%) is a character modulo | D|. To show that it is primitive, it is sufficient
to show that for any prime p | D it cannot be defined modulo D/p. Assume
first that p # 2, and let a be a quadratic nonresidue modulo p. Since D is
fundamental and p is odd we have ged(p, 4|D|/p) = 1; hence by the Chinese
remainder theorem there exists n > 0 such that n = a (mod p) and n = 1
(mod 4|D|/p), and in particular n = 1 (mod 4). Thus by Theorem 2.2.9 and
the quadratic reciprocity law for positive odd numbers we have

(2)-G)(Z)-()(22) - () - (5)
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proving that (£) cannot be defined modulo D/p. Assume now that p = 2,
so that D = 8 or 12 modulo 16, and choose n = 1+|D|/2. If D = 8 (mod 16)
we have n =5 (mod 8) and n = 1 (mod |D|/2) and so

DY (2\(P2Y_(2\ - 4

n) \n n ) \n)
since D/2 = 0 (mod 4). If D = 12 (mod 16) we have n = 7 (mod 8) and
n =1 (mod D/4) hence

D\ _ (=4\(=D/A\ _(=4\_ _,

n) \n n S \n /)
since —D/4 =1 (mod 4), proving in both cases that (£) cannot be defined
modulo D/2 hence that it is a primitive character.

Conversely, let x be a real primitive character modulo m and let p be
any odd prime such that p f m. By Lemma 2.2.2 we have x(p) = (%) with

D = x(—1)m. Since both sides are multiplicative in p, we deduce that for

any odd positive n we have y(n) = (£). In addition, by definition of the

Kronecker symbol we have (£) = sign(D) = x(—1); hence the equality

x(n) = (£) is valid for any odd n € Z.
I now claim that D = 0 or 1 mod 4. Indeed, since x is periodic of period
m = |D|, by what we have just proved and the properties of the Kronecker

symbol, we have
D
1=x(1+2D)= .
x(1+2D) <1+2D)

Thus, if we had D = 3 (mod 4) we would have

- (1;;1)) (1:LI2)D> - (_1)D(_1D> =-1

a contradiction, and if we had D = 2 (mod 4) we would have

B (1 +22D) (1-2£D> B (1 +22D) - <§> =-1,

also a contradiction.
We must now prove that x(2) = (%) We may of course assume D (or
m) odd, otherwise both sides vanish. Thus (D + 1)/2 is odd; hence

=x(D+1) =x(2)x((D +1)/2)

1
@l y) ~2(2)(2) <o (2)

showing that y(2) = (£). By multiplicativity it follows that x(n) = (7—[3) for
all n.
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Finally, since D = 0 or 1 modulo 4, we can write (uniquely) D = Dy f?,
where Dy is a fundamental discriminant. It is clear that the character (%)
takes the same values as the character (%) on integers n coprime to D; hence
(%) is primitive if and only if D = Dy, i.e., D is a fundamental discriminant,
finishing the proof of the theorem. ad

Remark. If y is a nonprimitive real character modulo m there still exists
D such that x(n) = (£) (if f is the conductor of y we can for instance take
D = x(—1)fm? by the above theorem), but we cannot in general choose D
equal to x(—1)m: as an example, choose m = 12 and let x(n) = (=2) for
ged(n,12) = 1.

2.2.5 The Sign of the Quadratic Gauss Sum

Corollary 2.1.47 gives the square of 7(x) when x is a real character, in other
words by the preceding section, when x is the Legendre-Kronecker symbol. A
more difficult result due to Gauss is that one can give the value of 7(x) itself
(Proposition 2.2.24). Before proving it, we need some results of independent
interest.

Proposition 2.2.16 (Poisson summation formula). Let f be a continu-
ous function and locally of bounded variation on some not necessarily bounded
interval [A, B]. Then

/ B .
Z fln) = Z /A f(t)exp(2irmt) dt ,

A<n<B meZ

where ZI means that the terms for n = A and n = B, if present, must be
counted with coefficient 1/2.

Proof. Let fi; be a piecewise continuous function locally of bounded vari-
ation, that tends to zero sufficiently rapidly (we will in fact have f; with
compact support, so this is no problem). Set g(z) = > ., fi(n + x). Then
g(x) is an absolutely convergent series that converges normally in any com-
pact subset of R, and clearly g(z) is periodic of period dividing 1. Thus we
may apply the standard theorem on Fourier series that tells us that for all
we have N

g@t) +9(@7) = Z Cm exp(2immax) |

2
meZ

where as usual

= li €
e—0, silgr}(e)::l:g(x * ) ’

and the Fourier coeflicients ¢, are given by
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1
cm:/ g(t) exp(—2immt) dt = Z/ fi(n +t) exp(—2irmt) dt

ne”Z
= Z/ t) exp(—2immt) dt = ﬁ(m) ,
neZ
where the Fourier transform fl(y) is defined as usual by
)= [ hes(-zinytat.
Setting in particular y = 0, we obtain

T f1(n+);f1(n_) =3 fitm).

nez meZ
Choose now f1(t) = f(t) for t € [A, B] and fi(t) = 0 elsewhere. Then

B
1(y) :/A f(t) exp(—2imyt) dt .

Furthermore, since f is continuous on |4, B[, when A < n < B we have
(filn*) + fi(n7))/2 = f(n), while if n = A (of course only when A € Z)
then (fi(n™) + fi(n7))/2 = f(n")/2 = f(n)/2, and similarly if n = B
(when B € Z), then (fi(n™) 4+ fi(n7))/2 = f(n")/2 = f(n)/2, proving the
proposition after changing m into —m. a

Corollary 2.2.17. Let f be a continuous function and locally of bounded
variation on R. Then for all x € R we have

Z f(z+n) Z f m) exp(2imma) ,

nez MEZL

where as above f(m) is the Fourier transform of f. In particular ), ., f(n) =
ZmEZ f(m) :

Proof. Apply the proposition to [A, B] = R, and note that by an evident
change of variable the Fourier transform of f(x +t) at y is f(y)e?™v*. O

Lemma 2.2.18. Let p be an odd prime number, and let x(n) = (%) be the
Legendre symbol. Then
2
> G

x mod p

Proof. This immediately follows from the trivial observation that the num-
ber of solutions modulo p to 22 = n (mod p) is equal to 1+ x(n) and the fact

that >, 04, X(1) = 0. O

We can now obtain the fundamental result on the sign of the Gauss sum.
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Theorem 2.2.19. Let p be an odd prime number, and let x(n) = (%) be the
Legendre symbol. Then

(x) = pl/? if p=1 (mod 4) ,
W= p/%  ifp=3 (mod 4) .

Proof. By the above lemma, we have 7(x) = Zogwgpflexp(%ﬂﬁ/p).
We apply the Poisson summation formula proved above to [A4, B] = [0, p] and

f(z) = exp(2imz?/p). Since f(0) = f(p), we have

ST = Y ) =10

o<n<p o<np—1

On the other hand,
P P
/ f(t) exp(2irmt) dt = / exp(2im(t* + pmt) /p) dt
0 0

= exp(—2impm?/4) /OP exp(2im(t + pm/2)? /p) dt

p(m+2)/2

= exp(72i7rpm2/4)/ exp(2int?/p) dt .
pm/2
Changing t into p*/?t it follows that
p “+oo
Z / f(t) exp(2immt) dt = / exp(2int? /p) dt = p*/?I |
mez, 2jm "~ 0 —o©
where

+oo
I= / exp(2int?) dt .
— 00
The value of this integral is well known, but we do not need it since it will
follow from the proof. Note that we know in advance that it converges, but
this can be checked directly for example by setting t?> = = and integrating by
parts.
Similarly we find that

P
Z / f(t) exp(2immt) dt = exp(—2imp/4)p*/*I .
meZ, 2¢m 0
Putting everything together, we thus obtain
T(0) = (L+iP)p!/2I.

We can first deduce from this the value of I: indeed, we simply choose a small
value of p, for example p = 3. Then
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T(x) = exp(2im/3) — exp(4iw/3) = i3'/?

hence I =i/(14+1i) = (1 +14)/2.

Thus ( Y )
1+4)(1 4¢P
() = ———F—'"",
proving the theorem after separation of cases. a

For simplicity of notation, when D is a fundamental discriminant we de-
note by xp the character such that xp(n) = (%) By quadratic reciprocity,
we note that the above theorem can be reformulated as 7(yp) = D'/? for
D = (—1)»=Y/2p where p is an odd prime, choosing the principal branch of
the square root, i.e., such that —w/2 < Arg(z'/?) < 7/2. We are now going
to show that this is true for any fundamental discriminant D by proving a
few lemmas.

Lemma 2.2.20. We have 7(xp) = D'/? for D = —4, D = —8, and D = 8.

Proof. Clear by direct computation. ad

Lemma 2.2.21. Let Dy and Dy be two coprime fundamental discriminants.
If7(xp,) = Dy'* and 7(xp,) = D;'*, then 7(xp,p,) = (D1D2)"/2.

Proof. First note the important fact that it is not true that (D;Dy)'/? =
D}/QD;/Z (example Dy = —3, Dy = —7).

Since Dy and Dy are coprime, by the Chinese remainder theorem a residue
modulo Dy Dy can be written uniquely in the form noD; + nq D5y, where ns
is modulo Dy and ny is modulo D;. Thus,

3 DD,
T(XDng) - (n><|nD1D2
n mod D1 Do
Z E (Dll)Q><n2D1+n1D2
| D1 D5
n1 mod D; ny mod Do no Dy +n1 D2 12

(2)(5), 2, (e 2 ()

ny1 mod D ny mod D2

= (71)(sign(D1)71)(sign(Dz)71)/4T(XDl)T(XDQ)

by Proposition 2.2.6. It is clear that (D;D;)Y/? = Di/zD;/2 except if both
D; and D, are negative, in which case (D3 Dy)'/? = —Di/2D§/2, and this is
exactly compensated by (—1)®&n(PO)=1)(sien(P2)=1)/4 " broving the lemma.

O
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Definition 2.2.22. A fundamental discriminant D is said to be a prime
discriminant if it is either equal to —4, —8, or 8, or equal to (—1)P=1/2p for
p an odd prime.

Note that all these expressions are indeed fundamental discriminants.

Lemma 2.2.23. Any fundamental discriminant D can be written in a unique
way as a product of prime fundamental discriminants.

Proof. Since D is fundamental, no odd prime can divide D to a power
larger than 1. Thus, we may write D = 2% ]_[pesp7 where S is a finite set

of odd primes. It follows that D = 2" ] q(—1)#~1/2p for some & = £1.
Note that the product over p € S is congruent to 1 modulo 4. Thus, either
u = 0, in which case we must have € = 1 (since D = 1 (mod 4)); or u = 2,
in which case we must have ¢ = —1 (otherwise D/4 is also a discriminant),
so the factor in front of the product is —4; or finally v = 3, in which case
e can be 1, giving the two factors £8. Uniqueness of the decomposition is
clear. O

The proof of the result that we are after is now immediate.

Proposition 2.2.24. Let x be a real primitive character modulo m, so that
x(n) = (%) for D = x(—=1)m a fundamental discriminant. Then

_m'? (-1 =1,
T(X)_{ V2 ifx(=1)=—1.

Proof. By Theorem 2.2.15, we know that x = xp with D = x(—1)m
a fundamental discriminant. By Lemma 2.2.23, D is equal to a product of
prime fundamental discriminants that are necessarily coprime. By Lemma
2.2.21, it is thus sufficient to prove the proposition for prime fundamental
discriminants, and this is exactly the content of Theorem 2.2.19 and Lemma
2.2.20. O

In view of the functional equation for Dirichlet L-functions that we will
study in Chapter 10 we make the following definition:

Definition 2.2.25. Let x be any primitive character modulo m. We define
the root number W (y) by the formula

W(x) = 7(x) (1) = —
s x(=1)=-1.

Thus a restatement of Proposition 2.2.24 is that when x is real we have
W (x) = 1. In the general case, since |7(x)| = m'/? we have |W(x)| = 1, and
one can show that W(x) is a root of unity if and only if x is real, in which
case W(x) =1 (see Exercise 17).
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2.3 Lattices and the Geometry of Numbers

2.3.1 Definitions
In this section, we let V' be an R-vector space of dimension n.

Proposition 2.3.1. Let A be a sub-Z-module of V. Consider the following
three conditions:

(1) A generates V' as an R-vector space.
(2) A is discrete for the natural topology of V.
(3) A is a free Z-module of rank n.

Then any two of these conditions imply the third.

Note that (3) alone does not imply (1) since A may be a free Z-module
without being a free R-module.

Proof. Assume (1) and (2). Since A generates V', by linear algebra there
exists a set of n elements by,..., b, in A that are R-linearly independent,
hence that form an R-basis of V', and let Ay be the Z-module generated by
the b;. Since A is discrete in V' there exists an integer M > 0 such that the
only element > a;b; of V' with |z;| < 1/M for all ¢ and that belongs to A
is the zero vector. It is clear that the M™ small cubes of the form m;/M <
x; < (m;+1)/M for all i, where m; are integers such that 0 < m; < M, form
a partition of the big cube C defined by 0 < z; < 1 for all . Let 31,...,0n
be some (not necessarily all) representatives of A/Ay. Translating them if
necessary by elements of Ag, we may assume that 3; € C for all j. It is then
clear that two distinct 3; cannot belong to the same small cube: indeed, if 3;
and i both belong to the same cube, then 3, — 3; would be an element of
A with coordinates |z;| < 1/M for all 4, a contradiction since by assumption
the only element of A lying in this cube is the origin. Thus the number of j3;
is less than or equal to the number of small cubes, in other words N < M™.
It follows that A/Ag is finite (since N is uniformly bounded), and since Ag is
finitely generated, A is also finitely generated.

Thus A is a finitely generated Z-module, and is of course torsion-free
since A C V; hence by the standard theorem on finitely generated torsion-
free modules (see Corollary 2.1.2 for the case of Z) we deduce that A is a free
Z-module. In addition, since A/Ag is finite, Theorem 2.1.3 implies that the
rank of A is equal to the rank of A, which is equal to n, proving (3).

Assume (1) and (3); hence let by,..., b, be a Z-basis of A. Thus they
also form an R-basis of V. If we consider the neighborhood €2 of 0 consisting
of x = E1<ign x;b; with |z;| < 1 for all , it is clear that the only element
of A belonging to Q is 0 itself, proving that A is discrete.

Finally, assume (2) and (3), and let W be the R-vector space generated
by A. Then (1) and (2) hold with V replaced by W; hence by what we
have proved, A is a free Z-module on dim(W) generators. It follows that
dim(W) = n, hence that W = V|, proving (1). O
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A Z-module A satisfying the above three conditions (or any two of them,
by the proposition) will be called a lattice in V.

From now on, we will assume that V is a Euclidean vector space, in other
words equipped with a Euclidean inner product z - y. For instance, the most
common case V' = R" will be considered as a Euclidean vector space with
the inner product z -y = Zlgign x;y; with evident notation. We also let

|z|| = (z - )"/ be the Euclidean norm.

Definition and Proposition 2.3.2. Let (b;)1< <n be a family of n vectors
mn V.

(1) The absolute value of the determinant of the matriz of the bj on some
orthonormal basis of V' is independent of that basis. It will be called
(with a slight abuse) the determinant of the family and denoted by
det(bl, RN 7bn)

(2) The Gram matriz associated with the b; is by definition the matriz of
scalar products G = (b;"b;)1<i j<n, and we have det(G) = det(b1,...,b,)%.

Proof. (1) follows from the fact that two orthonormal bases of V' differ
by a transition matrix P that is an orthogonal matrix, in other words such
that P*P = I, hence with determinant equal to 1. For (2) we note that if
B is the matrix of the (b;) on some orthonormal basis then G = B'B; hence
det(G) = det(B)2. O

Remark. This terminology is the one used by Cassels and by all the liter-
ature dealing with the LLL algorithm, which is the main reason for which
we study lattices. It is to be noted however that most modern experts in the
geometry of numbers such as Conway—Sloane [Con-Slo] and Martinet [Mar]
use a notation that is more adapted to the number-theoretic aspects of lat-
tices: to avoid square roots, they call the determinant the determinant of the
Gram matrix, hence the square of what we call the determinant.

Proposition 2.3.3. Let A be a lattice in V and let (bj)i<j<n be a Z-basis
of A.

(1) The quantity det(by,...,by,) is independent of the choice of the Z-basis
b;. It is called the determinant of the lattice and will be denoted by det(A).

(2) The determinant of the Gram matriz of the b; is equal to det(A)?.

(3) If V.=R" the volume of the set {3, xjb;/ 0 < aj < 1} (called a
fundamental parallelotope for the lattice A)is equal to det(A), hence in
particular is independent of the basis.

Thus det(A) can also be called the covolume of A.

Proof. (1). If b} is another Z-basis of A the transition matrix from the b;
to the b} is a matrix P with integral entries whose inverse also has integral
entries, hence is such that det(P) = +1, so it follows that the absolute value
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of the determinant of the matrix B of the b; on some orthonormal basis of
V' is equal to that of the b’.

(2). Clear from the preceding proposition.

(3). This immediately follows from the Jacobian formula for changing
variables in multiple integrals. In fact, it is the very reason for the existence
of this formula. ]

Corollary 2.3.4. Letby,..., b, belong to a lattice A, and let B be the matrix
of the b; on some orthonormal matriz of V. The (b;) form a Z-basis of A if
and only if | det(B)| = det(A).

Proof. Clear. O

Finally, we recall the standard Gram—Schmidt construction.

Proposition 2.3.5. Let (b;)i1<j<n be an R-basis of V. There exists a unique
orthogonal (but not necessarily orthonormal) basis (b})1<j<n of V whose ma-
trix on the b; is upper triangular with 1’s on the diagonal. It is obtained by
the inductive formulas

b, - b
b bt

bf =b;— Y pib; with p; =

1<

Proof. The transition matrix is upper triangular with 1 on the diagonal
if and only if its inverse is also of this form, hence if and only if b} = b; —
> i<j<ilijb] for some p; ; € R. The conditions by - b} = 0 for j < i give
the formulas for the 1; j, proving both existence and uniqueness. a

Remark. The coefficient ji; ; is the coefficient of column ¢ and row j of the
transition matrix, which is the opposite of the usual convention, but which
is almost always used when one is dealing with Gram—Schmidt orthogonal-
ization.

Definition 2.3.6. The Gram-Schmidt basis associated with the (bj) is the
R-basis (b}) of V' constructed above.

Corollary 2.3.7 (Hadamard’s inequality). Let (b;) be an R-basis of V
and let (b}) be the associated Gram-Schmidt basis of V. We have

n

det(by, ..., by) =det(b},....by) =[] bl < T IIbsll -
j=1 j=1

In particular, if (bj) is a Z-basis of a lattice A we have

n

det(A) = TT o5l < T Iyl -
j=1 j=1
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Proof. Since the transition matrix from the (b;) to the (b}) has deter-
minant 1, we have det(by,...,b,) = det(bf,...,b). Furthermore, since the
b’ are orthogonal, the Gram matrix of the b} is the diagonal matrix whose
diagonal entries are the [b}[*; hence det(b},...,b})* = [],¢;c, b}l
proving the first two equalities. On the other hand, the formula b; =
b} + ZK j<ili,jbj and the orthogonality of the b} implies that

bill* = b5 11> + > wf jIb5 1% = 67117
1<

so that [[,;<, P}l < [li<;j<n [IPjll; proving the inequality, and the last
statement is a trivial rephrasing. ad

Remark. This classical inequality can of course be rephrased purely in ma-
trix terms: the absolute value of the determinant of a matrix is bounded from
above by the product of the L? norm of its columns.

2.3.2 Hermite’s Inequality

We begin with a few preliminary results on orthogonal projections.

Lemma 2.3.8. Let (by,...,b,) be an R-basis of V, let W = bi be the
orthogonal supplement of by, and let bly, ... bl be the orthogonal projection
on W ofba, ..., b, respectively. Then b, ..., bl is a basis of W and we have

det(by, ..., by) = |[by| det(b),....b).

Proof. Let (ea,...,e,) be an orthonormal basis of W, so that if we set
e1 = by/||by||, (e1,...,ey) is an orthonormal basis of V. For j > 2 we thus
have b; = b’ + aje; for some a; € R; hence if B (respectively B’) denotes
the matrix of the b; on (e1,...,e,) (respectively of the b’ on (ez,...,en))
we have

[bafl 2 - an
0
B= .
: B
0
We thus have det(B) = ||by || det(B’), proving the formula and the fact that
det(B’) # 0, hence that the b’ form a basis of W. O

Corollary 2.3.9. Let A be a lattice in 'V, let by be an element of a Z-basis
of A, let W = by be its orthogonal supplement, and let A’ be the projection
of A on W. Then A is a lattice in W and det(A) = ||by|| det(A").

Proof. Applying the above lemma to a Z-basis (b1, ..., b,) of A, it is clear
that (bb, ..., b)) satisfy conditions (1) and (3) of Proposition 2.3.1; hence A’
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is a lattice, and the formula for its determinant also comes from the above
lemma. O

Since a lattice A is discrete there exists an element of A that has the
minimal nonzero Euclidean norm. We can thus set the following definition.

Definition 2.3.10. We define the minimum min(A) of a lattice A to be the
minimal norm of a nonzero element of A.

Once again, if we want to do number theory (which is not our purpose in
the present context), it would be nicer to define min(A) to be the square of
the minimal norm so as to avoid square roots.

Lemma 2.3.11. Keep the notation of the above corollary, and assume that
b1 is a nonzero vector of A with minimal norm. Then every x’ € A is the
orthogonal projection of some x € A such that ||z||* < (4/3)]]2"|).

Proof. We may of course assume that 2’ # 0. Let xg be any element of A
that projects on 2/, so that zo = 2’ — ab; for some a € R. The elements of
A that project on z’ are the vectors x = xg + mby; = 2’ + (m — a)by, and
since 2’ € W = b{- we have

lz]1* = [l2"[|* + (m — )|y ||

If we choose m = |a] to be the nearest integer to o we have (m — «a)? < 1/4,
and since by has minimal nonzero norm we have ||by||? < ||z||?, hence

1
l2l® < ll2"1* + 1l
proving the lemma. d

We are now ready to prove Hermite’s theorem, which gives an upper
bound for min(A) in terms of det(A).

Theorem 2.3.12 (Hermite’s inequality). Let A be a lattice in V. There
exists a Z-basis (b1,...,by,) of A such that

n 4 n(n—1)/4
det(A H b, < ( ) det(A) .

In particular, we have

4 (n—1)/4
min(A) < (3) det(A)Y/™ .
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Proof. The first inequality is simply Hadamard’s inequality (Corollary
2.3.7). We prove the second one by induction on n, the case n = 1 being
trivial. Let n > 2, assume the result true up to n — 1, let b; be a nonzero
vector of A with minimal norm, and keep the notation of the above lemmas
and corollary. By induction there exists a basis (b, ..., b)) of A’ such that
[Tocj<n 051 < (4/3)(n=D(=2)/4 det(A). Using the above lemma, for j > 2
each b’ is the orthogonal projection of some b; € A such that Ibj[I? <
(4/3)|0%]|?. T claim that (by,...,by,) is a Z-basis of A. Indeed, let 2 € A. By
definition its projection z’ on W is such that 2’ = 37, z;b’ for some
x; € Z. It follows that the projection of y = Z2<j<n z;b; is also equal to
z’, hence © — y € AN Rb;. But since by is a vector of minimal norm in A
it generates A N Rby, so that x is indeed a Z-linear combination of the b,
proving my claim.

By Corollary 2.3.9 we have det(A) = ||by]| det(A’), hence

n—1 n

n 4
[ < ) ( ) TTIv2
j=1 j=2

4 n—1 4 (n—1)(n—2)/2 4 n(n—1)/2
< [Iby? (3) (3) det(A’)2<(3> det(A)?

proving the first inequality by induction. The second inequality follows since
by definition min(A) < [|b;]| for all j. O

It is easy to see that the inequality for min(A)/det(A)'/™ given by this
theorem is best possible for n = 2 (see Exercise 18), and Corollary 2.3.25
below shows that it is not best possible for n > 9 (it can be shown that it is
not best possible for all n > 3. For the best known bounds see [Con-Slo] and
[Mar|. Note that the best possible bound is known only for 1 < n < 8 and
n = 24, this latter result having been proved by Elkies et al. in 2004).

An amusing very simple corollary of the above theorem is the following
important result due to Fermat.

Corollary 2.3.13 (Fermat). Every prime p =1 (mod 4) is the sum of two
squares of integers.

Proof. See Exercise 41. O

2.3.3 LLL-Reduced Bases

Hermite’s theorem clearly shows that there are good bases of A, in other
words bases that are reasonably sized as a function of det(A), and we would
like to find these bases. In principle the proof of the theorem is completely
constructive. Unfortunately the main step in the induction proof is to find a
vector of minimal nonzero norm in A. Since A is discrete this problem can
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be solved by straightforward enumeration in a suitable compact set, but the
time required will be very large. In fact it has been shown that the problem
is very close to being NP-complete (whatever that means; just consider that
it is probably impossible to solve it in polynomial time). A crucial discovery
made in the early 1980s by H. W. Lenstra, A. Lenstra, and L. Lovasz is that
even though in general it is not possible to find rapidly a basis satisfying
Hermite’s conditions, and in particular a minimal vector, it is possible to
find a very good approrimation to it in a very precise sense in polynomial
time. This LLL algorithm has become the cornerstone of many algorithms in
several parts of mathematics, computer science, and operations research.

Definition 2.3.14. Let v be a fized real number such that v > 4/3. We say
that the basis (b;) of A is v-LLL-reduced if the corresponding Gram—Schmidt
basis (b}) (see Proposition 2.5.5) satisfies the following two conditions:

(1) For all j <i we have |p; ;| < 1/2.
(2) For alli > 2 we have

. , AT
b + a2 > (24 7) I

Note that the second condition is equivalent to

1 1
il > (245 -

S g ai) bl

Proposition 2.3.15. Let (b;) be a vy-LLL-reduced basis of A, and let (b})
be the corresponding Gram—Schmidt basis of R™.

(1) For1<j<i<n wehave ||bj||*> <~ b}|>.
(2) We have

det(A) < [T bl <77~/ det(A) .
j=1

(3) We have ||by| < ™= D/4det(A)/™.

Proof. (1). Since |u;i—1] < 1/2 we have ||b}||*> > ||b;_;||*/7; hence by
induction, for j < 4 we have [[bf[[*> < ~4'7/||b;[?. By definition and the
inequalities for the |u; ;| we thus have

* * 1 j— *
12 = B30+ 3 2 lIbill® < <1+4 > k) e

1<k<j 1<k<j

Y1 (9 =~y i—j (|30 * i—1 || *
<(1+( ))v b < 4 bt 2,
ol v—1

using the fact that v > 4/3 implies 1/4 < (y — 1) /7, proving (1).
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(2). Corollary 2.3.7 (3) implies the first inequality and also that det(A) =
H1<J<n [b7l; hence applying (1) above to i = j and multiplying over all
values of j we obtain

[T 1,17 < A=V TT 57 < 47172 det(4)?

j=1 j=1

proving (2).
(3). Choosing j =1 in (1) and multiplying over all values of i we obtain

Ioalf*" <A =D TTIbE I < A D72 det(A)?

i=1
proving (3). O

We thus see from (2) and (3) that an LLL-reduced basis (whose existence
we shall prove in the next subsection) satisfies similar inequalities to those

of Hermite’s theorem with the number 4/3 replaced by v > 4/3. In addition,
we deduce the following information on min(A):

Corollary 2.3.16. Let (b;) be a y-LLL-reduced basis of A and let (b)) be
the corresponding Gram—Schmidt basis. Set

_ [
1<isn byl

(&1

Then:

(1) We have 1 < ¢ < »"~D/2,
(2) For any nonzero vector x € A we have

min(A) > x| > [bal/er = min bl

Proof. Since ||b3]|? < ||b1||? we have ¢; > 1, while by (1) of the proposition
we have [|b1]|? <" 7t||b}||? < 4" Y|b7||?, so (1) is clear. For (2), write

n n
X = g zib; = E xb;,
i=1 i=1

where z; € Z and = € R. If iy is the largest index such that a; # 0 then by
definition of the Gram—Schmidt basis we have z; = z;,; hence since it is a
nonzero integer we have [z} | > 1, and so

n
2 2
x> =D ai®Ibf* > af, 26, 2 > [Ibf, |7 > [[bal|?/ct
i=1
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by definition of ¢;. O

The final result of this subsection gives an estimate of the distance of a
vector y ¢ A to the vectors of the lattice. If u € R we will let (u) = |u — |u]]
be the distance of u to the nearest integer, so that 0 < (u) < 1/2.

Corollary 2.3.17. Let (b;) be a y-LLL-reduced basis of A, let'y ¢ A, let
Y = (y;) be the vector of coordinates of y on the basis of the (b;), and let ig
be the largest index such that (y;) # 0. Then for all x € A we have

[x =yl = Wi b1l /e,
where ¢1 is as above.

Proof. We use essentially the same proof as the preceding corollary. We
write as above

n n

X = Zl'ibi = ij‘bf )
i=1 i=1
n n

y=> ubi=> yb;,
1=1 =1

where x; € Z and y;, 2],y € R. Let i1 be the largest index such that y; # z;,
so that as above (applied to the vector y — x) we have y;, —x} = yi, — 2,
hence

ly = I = (47, — 23,27, 1* > (yi, — 2i,)?[bal?/t

by definition of ¢;. Now if iy < iy we would have y;, = z;, € Z by definition of
i+ 1, hence (y;,) = 0, contradicting the definition of i¢. If i1 = 4o then |y;, —
iy | = |Yio — Tio| = (Yiy) by definition of (u), giving the desired inequality.
Finally, if i1 > 4o then y;, € Z by definition of iy, and since y;, # x;, we have
lyi, — i, | = 1 = (yi,), proving the inequality also in this case. O

Thus the two corollaries above enable us to give an explicit lower bound
on the quantity d(A,y) defined to be the minimal distance from y to a vector
of A distinct from y (when y € A this is clearly the same as the norm of the
smallest nonzero vector of A).

2.3.4 The LLL Algorithms

I refer to my book [Coh0] for a comprehensive treatment of the LLL algorithm
and its variants, and many of its applications. In this short subsection we
mention only what the reader needs to know about it.

The basic idea is quite simple: we begin with a Z-basis and compute
its associated Gram-Schmidt basis. It is then easy to see that by simple
Z-linear transformations we can modify the initial lattice basis so that the
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Gram-Schmidt coefficients p; ; become such that |u; ;| < 1/2. We now look
at the size condition on the |[b}||%. If it is not satisfied, we ezchange the
corresponding vectors of the lattice, backtrack, then start again. We give the
algorithm in more detail.

Algorithm 2.3.18 (LLL Algorithm) Given a basis by, bs,..., b, of a lat-
tice A C R", this algorithm transforms the vectors b; so that when the algorithm
terminates, the b; form a 7-LLL-reduced basis of A.

1. [Initial Gram—Schmidt] Using the formulas given above, compute the Gram—
Schmidt basis of R™ associated with the b, and set k « 2.

2. [Reduce pg 1] Set ¢ — |pork—11, b — br — gbr_1, pk k-1 — fkk—1 — ¢,
and for all 4 such that 1 <4 <k —2, set pug i — flri — qltk—1-

3. [Test LLL condition] If ||b} + k. k—1bf_[1? < (1/7+1/4)||b}_,||?, exchange
by and by_; and update the corresponding Gram—Schmidt coefficients y; ;
and basis vectors b7, set k < max(2,k — 1) and go to Step 2. Otherwise, for
l=k—=2 k=3, ..., 1 set g« [l br — by —qby, puri — pry —q, for
all e <1 —1set pg; < pr,i — quuq, and finally set k& «— k + 1.

4. [Finished?] If & < n, then go to Step 2. Otherwise, output the LLL-reduced
basis (b;) and terminate the algorithm.

We have not given the detailed formulas for updating the Gram—Schmidt
basis in Step 3, but the reader can easily work them out (or see [Coh0]).

An easy examination of this algorithm shows that if it terminates, the
output is indeed a y-LLL-reduced basis of A. What must be shown is that
it does terminate, in a polynomial number of steps. This can easily be done
and is left as an exercise for the reader (Exercise 20).

Of course we have simply given the basic LLL algorithm, and many prac-
tical improvements are possible. However, one of the most important, due to
B. de Weger, is that if the b; have integral coordinates, or more generally if
the Gram matrix of the b; is integral, all the computations in the algorithm
(which a priori must be done with rational numbers of possibly very large
size) can in fact be done entirely in integers of polynomially bounded size;
see Exercise 21. We thus have the following theorem:

Theorem 2.3.19. There exists a polynomial-time algorithm that, given a
basis of a lattice A outputs an LLL-reduced basis of A. Furthermore, if A is
a sublattice of 7" (or more generally if the Gram matriz of a basis of A has
integral entries) all the computations can be done in integers of polynomially
bounded size.

Since we always assume that the reader has a number theory package at
his disposal, we mention that in GP the commands are qf111(B) for the gen-
eral LLL algorithm on a matrix B, and qf111(B,1) for the integral version,
which is the one which must be used in the context of Diophantine appli-
cations. The output H is the transition matrix from the initial basis to the
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LLL-reduced one, so that the matrix of the LLL-reduced basis is in fact the
matrix product BH.

Remark. We would of course like to choose the constant v > 4/3 as close
as possible to 4/3 to improve the quality of the basis. There are however two
good reasons not to do this. The first is that the analysis done in Exercise 20
shows that the algorithm will become much slower. Second, in applications
to Diophantine equations the quality of the basis is not important, as long as
it is 7-LLL reduced for some reasonable value of . As a compromise, we will
choose v = 2 and simply talk of LLL-reduced bases instead of 2-LLL-reduced
bases. This is the default in the GP function qf111.

2.3.5 Approximation of Linear Forms

One of the most spectacular applications of the LLL algorithm is to linear
forms in real or complex numbers. We can either use the algorithm to find Z-
linear (or more generally algebraic) relations, or we can use it to show that a
Z-linear form cannot be too small unless the coefficients of the form are very
large. This is explained in rough terms in [CohO], but here we need precise
quantitative statements, which will follow from the corollaries proved above.

We begin with the case where the a; are all real, and then explain the
simple modifications to be made for the general case. Let «ay, ..., a, be real
numbers, and fix a (large) positive constant C. If (e;) is the canonical basis
of R", for j < n—1 we set b; =e; + |Cajle, and b, = [Cay,|e,, so that
the matrix B of the b; is the n X n integer matrix obtained by replacing the
last row (0,0,...,1) of the identity matrix by (|Caq],..., |Cay]), and let A
be the lattice generated by the b;. Finally, set y = —|Cag]e,. Recall that
we have defined d(A,y) as the distance from y to the nearest element of A
distinct from y, and that Corollaries 2.3.16 and 2.3.17 give us lower bounds
for d(A,y).

Proposition 2.3.20. Keep the above notation, and in particular assume
that the c; are all real. Let X4, ..., X, be strictly positive integers, set @ =
Scicn 1 Xi T= (143 ¢icn, Xi)/2, and assume that d(A,y)* > T 4 Q.
If the x; are any integers such that |z;| < X; for all i, then either we have

dANy)?—Q—-T
ap + Z T | = ( y)c, @ ;
1<i<n
or we have 1 = -+ =21 =0 and z, = —|[Cog|/|Cay].

Proof. If we set

S =ag+ Z x;o; and K = |Cag] + Z x| Coy

1<ign 1<i<n
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then by definition K — CS[ < 1/2+ 37, X;/2 =T, hence
|K|=|K-CS+CS|<|K-CS|+C|S|<T+C|S|.

On the other hand, if we set x = ZKK% x;b; € A then by definition of the
b; we have

n—1 n
X = Z:cjej + (Z x; LCaﬂ)en ,
j=1 j=1

so that x —y = Zlgjgn—l zje; + Ke,. Thus either x =y or

dAy)? <|x-yI*= Y I +K*<Q+(T+C|S|).

1<j<n—1

Since by assumption d(A,y)? > T? + Q@ > Q we deduce that |S| >
(Vd(A,y)2—Q —T)/C as claimed. When x = y we deduce from the for-
mula for x —y that z; = 0 for 1 < j7 <n —1 and that K = 0, hence that
|Caol| + 2| Cavr ] = 0. O

Remarks. (1) It is usually impossible to apply the proposition directly since
d(A,y) is unknown. On the other hand, it is clear that in the proposition
we may replace d(A,y) by any lower bound ¢y such as the one given by
Corollary 2.3.17 when ag # 0 or by Corollary 2.3.16 when o = 0, as
long as ¢ > T2 + Q.

(2) This proposition is sufficient for applications to Diophantine problems.
However, it is easy to see that the bounds can be improved; see Exercise
24.

(3) To apply Corollary 2.3.17, we should choose C larger than X™, where
X = max;¢i<n Xi, for instance C' of the order of 10- X™. Indeed, for such
a choice of C' we have det(A) of the order of X™, hence by Proposition
2.3.15 ||by]|| will be of the order of X, hence by Corollary 2.3.17, if ¢; is
not too large d(A,y)? will have a lower bound also of the order of X2,
which has the same order of magnitude as Q.

Example. To illustrate the above results and remarks we give an example
presented in two different ways. We would first like to compute a lower bound
for |21 log(2) + xom + x37y| (where v = 0.577... is Euler’s constant, not the
constant used in the LLL algorithm), where the x; are integers such that
|7;] < 1030 and not all equal to 0. We have X; = X5 = X3 = 10%°, so we
choose C' > 1099, for instance C' = 10'%°, and we form the 3 x 3 matrix

1 0 0
B= 0 1 0
[Clog(2)]  [Cx] [Cy]

An application of the (integral) LLL algorithm shows that the first vector
of an LLL-reduced basis of the lattice generated by the columns of B is an
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explicit vector whose entries have 34 decimal digits, and which we need not
write explicitly. We easily compute that ||by[|/[|b3]] = 0.969 < 1 and that
IIb1]|/|Ib5]| = 0.704 < 1, so that ¢; = 1. Thus by Corollary 2.3.17 we deduce
that

d(A,0) > [[by]|/c1 = 1.5710%3 .

Replacing this lower bound and the values of Q and T in the proposition
gives |S| = 10757, We have thus proved that if |z;| < 1030 for 1 < i < 3 then
|21 log(2) + zom + x37y| > 10767,

We give the same example posed differently in a way that is much closer
to the type of applications that we have in mind. Assume that we know that
|z11og(2) + zom + 237] < e ¥ with X = max(|z;]) < 10%°. We want to
compute all possible values of the z; (they are now finite in number). We
perform exactly the same computations as above, but now we conclude that
10797 < |S| < e, hence that X < 153. As announced at the beginning,
we have thus drastically reduced the bound on X. Now we can start again
the whole process, using this much smaller value of X. We choose for in-
stance C' = 10® > 153, and apply the (integral) LLL algorithm. We obtain
by = (—148,—-243,129)*, and once again we compute that ¢; = 1, hence that
d(A,0)? > 118634, so that replacing this lower bound in the proposition gives
|S| > 3.51077, in other words X < 14. This is again substantially lower than
the preceding bound of 154. By choosing C' = 10° the reader can check that
we could again reduce the bound to X < 9. However, this is not really nec-
essary since we only need to search for 0 < z1 < 14 and —14 < x9, 3 < 14,
which is very fast, and we find that the only values of (x1,x2,x3) satisfying
the given inequality are (x1,x2,23) = (0,0,0), £(1,0,—1), +=(2,—1,3), and
+(5,0,—6).

It is very easy to modify Proposition 2.3.20 when the «; are not real. If the
R-vector space generated by the «; for 1 < i < n has dimension 1, generated
by some nonzero complex number z, say, we can apply the proposition to the
real numbers «;/z for 1 < i < n together with $(ao/z), and we can obtain
an even better lower bound if $(ag/z) # 0 (Exercise 22).

We may therefore assume that at least two of the «; for i > 1 are R-
linearly independent, and by reordering the «; we may assume that a,, 1 and
a, are R-linearly independent. The modifications to be done to the above
procedure are as follows. For 1 < j7 < n — 2 we set

b; =e; + [CR(aj)len—1 + [CS(aj)]en
and for n — 1 < j < n we set
bj = [CR(e)]en—1 + [CS(a))]en ,

so that the matrix B of the b; is the nxn integer matrix obtained by replacing
the last two rows of the identity matrix by
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([CR(a1)], ..., [CR(an)]) and (|CS(en)],- .., [CS(an)])
and let A be the lattice generated by the b;. Finally, set
y = —|CR(ap)len—1 — |[CS(ao)]en -

Then the conclusion of Proposition 2.3.20 is valid almost verbatim; in other
words, either

or we have r1 =--- =z, =0 and

Ty 1| CR(apn_1)] + 2n| CR(n)] + [CR(ap)] =0
and  zp_1|CS(n-1)] + 2 [CS(an)] + [CS(ag)] =0

The proof is essentially identical to that of Proposition 2.3.20 and is left to
the reader (Exercise 23).

2.3.6 Minkowski’s Convex Body Theorem

The aim of this subsection is to prove Minkowski’s convex body theorem and
a number of corollaries. We assume that V' = R™ and that the subsets of R™
that we consider are measurable for Lebesgue measure. In actual applications,
they will in fact be much nicer than that.

Theorem 2.3.21 (Blichfeldt). Let S be a (measurable) subset of R™ with
volume Vol(S), and let A be a lattice of R™. If Vol(S) > det(A) there exist
distinct elements a and b in S such that a —b € A.

Proof. Let by,...,b, be a Z-basis of A, let as above U = {x =
digjcn b/ 0 < x5 < 1} be a fundamental parallelotope of A, and let
X(x) be the characteristic function of S, equal to 1 on S and to 0 elsewhere.

We thus have
Vol(S):/ dx-/(Zxx-i—g)

geA

Since by Proposition 2.3.3 we have Vol(S) > det(A) = [, dx, there exists
zo € U such that >7 _\ x(zo +g) > 1. It follows that there exist distinct
elements go and g1 of A such that a = xg+¢gp € S and b = zo+ g1 € S, hence
a—b=go—g1 €A. O

We will say that a measurable set C C R™ is symmetric if a € C' if and
only if —a € C. It is convex if whenever a, b are in C the line segment
ta+(1—t)bfor 0<t<1isin C.
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Theorem 2.3.22 (Minkowski). Let C C R™ be symmetric and convez, let
A be a lattice in R™, and assume that Vol(C') > 2™ det(A). Then there exists
¢ # 0 such that ce ANC.

Proof. Let S = C/2 = {z/2, x € C} be the homothetic of C' by a factor
1/2, so that Vol(S) > det(A). By Blichfeldt’s theorem there exist ¢ and b
in S such that ¢ = a — b € A with ¢ # 0. Thus 2a and 2b belong to C,
hence —2b € C' by symmetry, so that ¢ = (1/2)(2a) + (1/2)(—2b) € C by
convexity. a

Corollary 2.3.23. With the same assumptions, if in addition C is compact,
the conclusion of the theorem still holds if we only have Vol(C) > 2™ det(A).

Proof. Applying Minkowski’s theorem to the homothetic set (1 +¢)C' for
any £ > 0, we see that there exists c. € A\ {0} such that (1 +¢) e, € C.
By compactness, the (14 &)~ !c. have a limit point ¢ € C' when ¢ — 0%, and
¢ is also a limit point of c., hence belongs to A \ {0} since it is discrete. O

Corollary 2.3.24. For 1 < j < n, let Lj(y) = > <;<, @j,i¥i be a linear
form in the n variables y; with real coefficients, and set A = |det(a;,)|. Let
C' be symmetric and convex, and assume that Vol(C') > 2"A. There exists
a nonzero element ¢ € Z™ such that (L1(c),...,Ly(c)) € C. If, in addition,
A #0 and C is compact, the result still holds if we have Vol(C) > 2™A.

Proof. Set D = {y € R"/ (L1(y), ..., La(y)) € C}. Clearly D is symmetric
and convex (tL(y)+ (1 —¢)L(z) = L(ty + (1 — t)2) if L is a linear form), and
Vol(D) = Vol(C)/A (since A is the absolute value of the determinant of the
Jacobian of the change of variables from the y; to the L;(y)). Furthermore,
D is compact when C' is compact and A # 0. We can thus apply Minkowski’s
theorem and the preceding corollary to A = Z™ and to D, proving the result.

O

As an application of Minkowski’s theorem we now show that Hermite’s
inequality (Theorem 2.3.12) on the minimum of a lattice can be considerably
improved.

Corollary 2.3.25 (Minkowski). If A is a lattice in R"™ we have

min(A) < %F (g n 1)1/" det(A)/™ |
where I'(x) is the gamma function (see Chapter 9).
Note that
(n/2)! if n is even,

n
r(% 1) = !
(2 * ) ™ 2 ifnis odd.
2 ((n—1)/2)!
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Proof. We choose for C' = C, the closed ball centered at the origin with
radius A\, where A\ will be chosen presently. It is clear that C) is convex,
symmetric, and compact; hence if Vol(Cy) > 2™ det(A) there exists a nonzero
vector ¢ € A such that ¢ € Cy; in other words, |lc|| < A, so that min(A) < A.
Clearly Vol(Cy) = A" Vol(Cy), so if we choose A = 2(det(A)/ Vol(Cy))*/™
we have Vol(Cy) > 2" det(A) hence min(A) < 2(det(A)/ Vol(Cy))/™. Tt is a
well-known calculus exercise that the volume of the unit ball C; is given by
Vol(Cy) = n"/2/T'(n/2 + 1), proving the corollary. O

By Stirling’s formula (see Chapter 9 once again if you do not know it),
as n — oo we have I'(n/2 + 1)/" ~ (n/(2e))'/?, so that the upper bound
for min(A)/det(A)Y/™ is asymptotic to (2n/(me)) /2, which is considerably
smaller than (4/3)("~1/4 given by Hermite’s inequality. However, for 2 <
n < 8, Hermite’s bound is better, although not optimal for n > 3.

2.4 Basic Properties of Finite Fields

2.4.1 General Properties of Finite Fields

Let K be a not necessarily commutative finite division algebra (a skew field
if you prefer).! Consider the natural map s from Z to K defined by s(1) = 1
(where the “1” on the right denotes the identity of K), and extended by
additivity. By definition it is a group homomorphism, and it is easily seen
that it is in fact a ring homomorphism. Its kernel [ is therefore an ideal of Z,
i.e., has the form pZ for a certain p € Zy(, which cannot be equal to 1 since
s is not the zero map (otherwise 1 = 0 in K). It follows that s induces an
injective map from Z/pZ to K. Since K is finite, p is nonzero. Furthermore,
since K is a skew field, hence in particular has no zero divisors, Z/pZ is an
integral domain; hence p is a prime number, called the characteristic of K.
The image of s in K is thus a subfield k of K isomorphic to Z/pZ, which we
will call the prime subfield of K. Clearly any subfield of K, hence also any
field containing K, also has characteristic p.

It is trivially checked that the field (or skew field) axioms imply that when
we have a field extension such as K/k, then K is naturally a k-vector space.
In our case, this implies that as a vector space K is isomorphic to k™ for some
integer n = dimg(K). Of course K is not isomorphic to k™ as a ring, since
the latter is not even a field for n > 2. We have thus shown the following:

Proposition 2.4.1. Let K be a finite skew field. The cardinality of K has the
form p"™, where n € Z>1 and p is a prime number equal to the characteristic
of K. In addition, the additive group of K is isomorphic to (Z/pZ)™.

! Refer to the introduction for discussion on this terminology. We will see below
that K is indeed commutative.
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Theorem 2.4.2. Any finite skew field is commutative, i.e., is a field.

Proof. Let K be a finite skew field, let C' be the center of the multiplicative
group K (i.e., the set of elements of K* that commute with all elements of
K) together with 0. Note that C' is a subfield of K. We let ¢ = |C| (which is
therefore a power of the characteristic p of K) and n = dim¢(K). If we let
K™ act on itself by conjugation, the class equation for groups gives

K| =107+ Y IK

where the summation is over a system of representatives of the orbits that
are not reduced to a single point, K denotes the stabilizer subgroup of =z,
and [K* : K] denotes the finite group index. Note that the set of elements
commuting with z in K form a subfield K, = K}U{0} of K distinct from K
since z ¢ C. Thus |K,| = ¢" with n, = dim¢(K;), and since dime(K) =
dime (K, ) dimg, (K) we have n, | n and ny < n. We thus obtain an equality

of the form
" l=g-1
q + Z nT — ]_

We now use some easy properties of cyclotomic polynomials which we will
prove in Section 3.5.1. From Definition 3.5.1 and Proposition 3.5.2, since
ng, < n we know that ®,(¢q) divides each quotient (¢"™ — 1)/(¢"™ — 1) and
divides also ¢ — 1. Thus, by the above formula, it divides ¢ — 1. However,
for n > 1 there exists a primitive nth root of unity different from 1, hence if,
as in Section 3.5.1, we denote by U], the set of primitive nth roots of unity,
we have

@n(g)) = [ le—<I> J] la—1=(g—1)*™ > (q—1),

¢cevu), Ceu),

contradicting ®,,(¢) | (¢—1) (note that it is crucial to have a strict inequality
above). Thus we must have n = 1, in other words K = C, so that K is
commutative. a

Corollary 2.4.3. Any finite subgroup of the multiplicative group of a com-
mutative field K is cyclic. In particular, the multiplicative group of a finite
field is cyclic; in other words, if K is a finite field with p™ elements then

(K*,x)~(Z/(p" - 1)Z,+) .

Proof. Let G be such a finite subgroup, say of order n. For every d | n,
let p(d) be the number of x € G of order exactly equal to d in G. We clearly
have n = de p(d). On the other hand, since in a commutative field an
equation of degree d has at most d roots (trivial, and not necessarily true
in a noncommutative skew field), the equation ¢ — 1 = 0 has at most d
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solutions in K. If G has at least an element z of order exactly d, then the z*
for 0 < k < d are all the roots of the equation ¢ — 1 = 0, and among those,
¢(d) are of order exactly equal to d. Thus for every d | n, either p(d) = 0 or
p(d) = ¢(d), so that

p)=n— Y pd)=n— > é(d) =¢n),

d|n, d#n d|n, d#n

the last equality coming from the identity >_,,, #(d) = n (which can trivially
be proved directly, or obtained by taking degrees in Definition 3.5.1). In
particular, p(n) > 0, proving that the group G is cyclic, and has in fact ¢(n)
generators. O

Remark. The result would be false without the commutativity assumption.
For instance, in the field of quaternions over R, the set {1, +¢, -5, +k} (with
the usual notation) is evidently a noncommutative subgroup of order 8.

Corollary 2.4.4. Lety € F, and m € Z>;.

(1) The number of solutions in F, of the equation ™ = y is equal to the
number of solutions of 2 =y, where d = ged(m,q — 1).

(2) Ify#0 and d | (q—1), the number of solutions of v =y is equal either
to 0 or to d.

Proof. If y = 0 there is the unique solution z = 0, so we may assume that
y # 0. Since the group F} is cyclic, the image of the map z — 2™ is de,
the subgroup of dth powers, and for each y € ]F;d it is clear that there are
exactly d preimages. a

We will now see that finite fields are characterized by their cardinality.
Set I, = Z/pZ, and denote by [, an algebraic closure of I),.

Theorem 2.4.5. For any integer n > 1 there exists a finite subfield of F,,
with ¢ = p™ elements. This subfield is unique and is equal to the set of roots
m IFT, of the equation X7 — X = 0. Up to isomorphism, there exists a unique
finite field of cardinality ¢ = p™.

Proof. Assume first that a subfield F of F,, with ¢ elements exists. Since
|F*| = ¢ — 1, any element € F* satisfies the equation 2971 = 1, hence any
element © € F satisfies the equation 29 — x = 0. Conversely, set Q4(X) =
X7 — X. Note that Q(X) = —1 (since we are in characteristic p), hence the
polynomial €2, is separable. Thus, denote by F' the set of its ¢ distinct roots
in the algebraically closed field F,. For any = € F'\ {0} we have (z71)7~1 =
(297171 =1, s0 that 27! € F, and for any x and y in F, we have (zy)? =
x%y? = (zy), hence xy € F, and also since we are in characteristic p, (z+y)? =
x94y? = x+y, so that z+y € F, proving the first statement. The last follows
immediately from the uniqueness of algebraic closure up to isomorphism. 0O
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Definition 2.4.6. When q¢ = p" for n > 1, we denote by Fy the unique
subfield of cardinality q of an algebraic closure ), of F),, fized once and for
all.

Remark. It is important to distinguish between “unique up to isomorphism”
and “unique.” Here, we fiz an algebraic closure F,, of F,, so that F, is unique.
Similarly, we will see later that although number fields can be considered up
to isomorphism, they are better seen as subfields of a fized algebraic closure

Q of Q.

We end this subsection with an important remark concerning the lattice
of extensions of IF),.

Proposition 2.4.7. If n and m are in Zx then
Fpr CFpm <= n|m.
In particular, Fpn NFpm = Fpecam.m) and Fpn Fpm = Fpiemm,m) .
Proof. Left as an easy exercise to the reader. ad

Thus, note for instance that F,s is not an extension of F.. We give for
example the lattice of subextensions of Fyp9s/Fa:

F4096
2
3
Fe4
IF16 2
3
2 ]Fg
Fy
3
2

Fy
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2.4.2 Galois Theory of Finite Fields

We start by studying the automorphism group of a finite field.

Theorem 2.4.8. Let E/F be an extension of finite fields. Then E/F is a
Galois (i.e., normal and separable) extension and the Galois group Gal(E/F)
of F-automorphisms of B is the cyclic group of order [E : F| generated by the
Frobenius automorphism o, : z — z9, where ¢ = |F|.

Proof. Up to isomorphism, we may assume that we are in a fixed algebraic
closure F, of F,,, and that F = F, (with ¢ = p/ for some f) and E = F. for
s = [E : F]. Thus, by Theorem 2.4.5, E is equal to the set of roots in F, of
the separable polynomial Qs (X) = X7 - X.

Let x be a primitive element of E/F, i.e., such that E = F(z). Note that
the primitive element theorem states that such an element exists in any finite
separable extension, which is the case here, but in fact it is clear directly that
any generator x of the cyclic group E* must be a primitive element. Denote
by P,(X) the minimal polynomial of  over F. Since z € E, by definition of
the minimal polynomial, P,(X) divides Qs (X); hence all its roots belong to
E and are distinct. Since E = F(z) we may define s = [E : F] = deg(P,(X))
automorphisms of E/F by sending « to any of the roots of P,(X). It follows
that E/F is Galois with | Gal(E/F)| = s.

Since we are in characteristic p, and since F is the set of roots of ,(X) in
F,, it is immediately checked that the Frobenius automorphism o, : x ~— z¢
is an F-automorphism of E, i.e., it belongs to Gal(E/F). To complete the
proof, we must show that it has order exactly s. Indeed, if 1 < k < s, then
the fixed field of 0'5 in E is equal to Fgs NFr = Fecac.s) by Proposition 2.4.7,
and this is equal to the fixed field of the identity, i.e., to Fgs, if and only if
k = s, finishing the proof. ad

Corollary 2.4.9. Let E/F be an extension of finite fields, ¢ = |F|, and s =
[E : F]. The trace and norm from E to F are given by the formulas

Trgp(x) = Z z7

0<i<s

N p(z) = (@ =1)/(g=1)

Corollary 2.4.10. For any q = p’, the subfield F, of F, is the fized field of

UZJ:, and

Gal(Fy/F,) = ol /al? ~ 7/ {7 .

The statements are clear. Please note the subtle but essential distinction
between the first equality and the second isomorphism.

Proposition 2.4.11. Let E/F be an extension of finite fields with |F| = q.

(1) The trace map Trg/r is a surjective homomorphism from E to F.
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(2) The kernel of Trg,p is the F-vector space of elements a € E of the form
a=x%—x for some x € E.

(3) The map (x,y) — Trgp(zy) defines a nondegenerate bilinear pairing
from E X E to F.

Proof. (1). By Corollary 2.4.9 we have

TI']E/]F(J?) = Z xqi .

0<i<s

The right-hand side is a polynomial of degree ¢°~!, hence has at most ¢°~! <
q® = |E| roots in E. Therefore there exists u € E such that Trg/p(u) =
¢ # 0. By F-linearity it follows that for any a € F we have Trg/r(ua/c) =
(a/c) Trg p(u) = a, proving surjectivity.

(2). For simplicity, write V' = Ker(Trg/r). Since Trg p is surjective by (1),
it follows that dimp(V') = s—1, where as usual we set s = [E : F]. On the other
hand, since 29" = z it follows from Corollary 2.4.9 that Trg p(z? —x) =0,
so that the map f defined by f(z) = 27 — z is a map from E to V, which
is evidently linear. Its kernel is the set of x such that ¢ — z = 0, so that
dimp(Ker(f)) = 1, from which it follows that dimp(Im(f)) = s—1 = dimg(V),
so that f is surjective, as claimed.

(3). This is a general property of separable extensions: it is clear that
the pairing is bilinear, so the only thing that we need to prove is that it is
nondegenerate, but this is clear since if TrE/]F(ax) = 0 for all x € E with
a # 0 then Trg/r(y) = 0 for all y € E; in other words, the trace map would
be identically zero, contradicting its surjectivity. ad

The F-subspace of E of elements of the form z? — x is called the Artin—
Schreier subspace (or subgroup) of E, and will be used several times; see for
instance Section 3.1.8 and Exercise 2 of Chapter 7.

Proposition 2.4.12. Let E/F be an extension of finite fields. The norm map
N]E/[F is a surjective homomorphism from E* to F*.

Proof. Let g be a generator of the cyclic group E*. The subgroup F* is
the unique subgroup of cardinality ¢ — 1; hence it is the group generated by
¢ =D/la=1)_ Thus if a € F* we can write a = ¢4 ~D/(¢=1) for a unique k
defined modulo ¢ — 1, and thus N'g/r(g") = a by Corollary 2.4.9. O

Although the study of infinite topological Galois extensions goes slightly
beyond our purpose, we mention here that given the appropriate definitions,
it is immediate to deduce from the above that the infinite Galois group
Gal(F,/F,) is a profinite group isomorphic to the profinite completion Z
of Z, and topologically generated by the Frobenius automorphism o.
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2.4.3 Polynomials over Finite Fields

We begin with the following proposition.

Proposition 2.4.13. Let [F =T, be some finite field and let n > 1.

(1) In F[X] we have the decomposition into irreducibles

Qp (X)=X7" - X = 11 P(X),
P monic irreducible
deg(P)|n
where the product is over all monic irreducible polynomials of degree di-
viding n.
(2) A polynomial P of degree n is irreducible in F[X] if and only if P(X) |
X7 — X and ged(P(X), X" = X) =1 for alld | n, d > 1.

Proof. (1). Since Fy is perfect, irreducible polynomials have only simple
roots in E (see Proposition 3.1.1). Monic irreducible polynomials being pair-
wise coprime, it follows that both sides of the equation are polynomials with
only simple roots in F,. To prove equality, it is thus sufficient to show that
they have the same roots. If z is a root of X' — X, then z € Fgn, and the
minimal polynomial of = defines a subextension of Fyn /Fy, hence has degree
d | n, and is of course irreducible. Thus, x is a root of the right-hand side.
Conversely, if x is a root of an irreducible polynomial P of degree d dividing
n, then 2 belongs to the unique extension F/F, of Fy of degree d; hence
2 € Fyn,s0 xis aroot of X9 — X = 0.

(2). Assume first that P is irreducible. Then by (1), P(X) | X9" — X, and
if x is a root of P then z € Fyn, but = ¢ Fqn/d for d > 1 since otherwise the
minimal polynomial of x would be of degree strictly less than n and would
divide P, which is absurd. Thus 9"’ —2 # 0, hence ged(P(X), xa" -X)=
1. Conversely, if these conditions are satisfied and z is a root of P(X), then z
belongs to F,» and to no smaller subextension; hence the minimal polynomial
of z has degree n, and since it divides P it is equal to P, so P is irreducible.

O

We leave to the reader to show that in fact in (2), it is sufficient to test
the GCD condition for d a prime divisor of n.

Corollary 2.4.14. Let p(n) be the number of monic irreducible polynomials
of degree n in F,[X]. Then p(n) > 1 and p(n) is given by the explicit formula

pn) = = S uln/d)q"
d|n
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Proof. If x € Fyn generates Fy» over F,, then the degree of the minimal
polynomial of x is equal to n; hence p(n) > 1. Taking degrees in the decom-
position of X?" — X given in the above proposition, we obtain the equality

¢" = dp(d).
dln

The Mo6bius inversion formula (Proposition 10.1.5) gives the required equality.
O

If desired, it is immediate to show once again from this equality that
p(n) > 1, and in fact much stronger results.

2.5 Bounds for the Number of Solutions in Finite Fields

It is essential to be able to give bounds for the number of solutions (neces-
sarily finite) of a system of algebraic equations over finite fields, in particular
with reference to Diophantine equations. This is a very old, important, and
extremely difficult subject, which we consider here. In this section, we let
g = p/ be a prime power, and we will work in the field F, with ¢ elements.

2.5.1 The Chevalley—Warning Theorem

We begin with a simple lemma.

Lemma 2.5.1. (1) For 0 < m < q— 1 we have Zaqu a™ = 0.
(2) For any m € Z we have

m 0 when (¢ —1)1m,
T :{_1 (4=t

acks when (g —1) | m .

Proof. The result is clear for m = 0 since p | ¢, so assume 0 < m < g — 1.
It is clear that the map a +— a™ is a group homomorphism x from F} to
F7. Furthermore, by Corollary 2.4.3 we know that 7 is cyclic, so let g be a
generator. Since 0 < m < ¢ — 1 we have x(g) # 1, so x is not always equal to
1; hence (1) follows from the orthogonality of characters (Proposition 2.1.20
(1)), and (2) is an immediate consequence since a?~! =1 for all a € F} and
since p | q. O

See also Exercise 29.

Theorem 2.5.2 (Chevalley—Warning). (1) Let (P;(X))1<i<r be a family
of r polynomials in Fy[X1,..., X,] of respective total degrees d;, and let
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V ={(a,...,a,) €Fy, Pi(ar,...,a,) =0 for alli}

be the set of their common zeros. If n >3 ., di then |V| is divisible
by p.

(2) In particular, if P(X) € Fy[X1,...,X,] is a polynomial in n variables of
total degree d and if n > d, the number of solutions to P(ay,...,a,) =0
in Fy is divisible by p.

(3) If, in addition, P(X) is a nonconstant homogeneous polynomial, there
exists (ay,...,an) # (0,...,0) such that P(ay,...,a,) =0.

Proof. Define P(X) = [],¢;c, (1 - P;(X)471). Since 97! =1 when a €
[y, it is clear that if A = (ah?. .yap) €V then P(A) =1 and if A ¢V then
P(A) = 0. It follows that [V| =" . P(A) (mod p). Note that this makes
sense since there is a natural map from Z to F, obtained by composition of
the canonical surjection from Z to Z/pZ = F, with the canonical injection
from F, to IF,.

Let d be the total degree of P, so that d < (¢ — 1) 32, <, di, and write

P(Xy,..., Xp) =Y clma,...,mp)X]" e X

M1, My

for some coefficients ¢(my,...,m,), the sum being over certain n-tuples
mi,...,my such that my +---+m, <d(g—1) < n(g—1) by assumption. It
follows that for any such n-tuple there exists a j such that m; < ¢—1, and by
the lemma above, that > a; F, a?“ = 0. Thus every term in the expression
ZA@F;; P(A) is zero, proving (1), and (2) is a special case. For (3) we note
that if P is homogeneous then trivially P(0,...,0) = 0; hence by (1) there
exist at least p — 1 nonzero solutions to P(ay,...,a,) = 0. O

Remarks. (1) If we want to apply Hensel’s Lemma 4.1.37, the simple exis-
tence of a solution in I, is not sufficient since we also need a condition
on the derivative. The important fact is that the solution that we find
is nonsingular, in other words that it is not also a root of all the partial
derivatives of P, see Corollary 4.1.39.

(2) It has been shown by Ax and Katz that we have the following stronger
and essentially optimal statement: with the same notation, if we set

n — . di
k= ’V Zlgzgr —‘ 7

maxiyigr dz

then p* | |V]; see [Ax] and [Kat1].

2.5.2 Gauss Sums for Finite Fields

We have studied above characters associated with the multiplicative group
(Z/nZ)* and their corresponding Gauss sums. In the present section we study
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Gauss sums associated with characters on finite fields: while the notions are
closely related (and in fact almost identical if the finite field is F)) they are
different on IFy, when ¢ is not a prime. In particular the notion of primitive
character is irrelevant. I refer to [Ber-Eva-Wil] for an extensive compilation
of results on Gauss and Jacobi sums over finite fields.

Definition 2.5.3. (1) An additive character ¢ on F, is a group homomor-
phism from the additive group of Fy to the multiplicative group @*, and
a multiplicative character y is a group homomorphism from the multi-
plicative group Fy to @*

(2) The trivial additive character 1o is such that ¥o(z) = 1 for all x € Fy,
and the trivial multiplicative character € is such that e(x) = 1 for all
z € Fy.

(3) If x is a multiplicative character we extend x to Fy by setting by conven-
tion x(0) =0 if x # ¢, and £(0) = 1.

Remarks. (1) Setting x(0) = 0 for a nontrivial multiplicative charac-
ter preserves the multiplicative property of x. In addition, we have
(x Y (z) = x(x), even for x = 0, denoting by x~! the inverse of y
in the group of characters of Fy.

(2) We will always keep the notation of the definition and reserve the letter
x for multiplicative characters.

(3) If x is a multiplicative character, it is clear that the order n of y divides
q — 1. Furthermore, we note for future reference that xy(—1) = 1 if n is
odd, while x(—1) = (—1)@1/" if n is even (see Exercise 31).

(4) We will usually assume, either implicitly or explicitly, that the additive
characters that we consider are nontrivial. On the other hand, it is nec-
essary to consider the trivial multiplicative character together with the
others.

(5) Beware that we define x(0) = 0 only for x # €, while £(0) = 1. We will
see that this convention is quite useful (Lemma 2.5.21). This is the main
reason why we denote the trivial character by € and not by x( as we have
done for Dirichlet characters, since in the latter case xo(0) = 0 if xq is
the trivial character modulo m.

(6) Although very useful, the convention at x = 0 has pitfalls: for instance it
is not true that (x1x2)(0) = x1(0)x2(0) when x; is a nontrivial character
and o = xfl in the group of characters.

Let ¢, € Q be a primitive pth root of unity. If e1,...,es is an F,-basis
of F,, it is easy to see that the additive characters are given (with a slight
abuse of notation) by

w(ijej> =G
j
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for some fixed a; € I, which determine the character v (so that there are
q = p/ additive characters, as expected). However, a better description is as
follows.

Proposition 2.5.4. Let b € F, be fized. The map
b (O

is an additive character of F,. Furthermore, the map b — 1 is a group
isomorphism from the additive group F, to the multiplicative group of additive
characters.

Proof. The first statement is clear by linearity of the trace and the fact
that we are in characteristic p. For the second statement, we note that the
map b — 1y is clearly a group homomorphism from [F, to I/F;, which are two
groups with the same cardinality ¢q. Thus to prove that it is an isomorphism
it is sufficient to show that its kernel is 0. To say that v, is the trivial additive
character means that Trg,_ /r, (bz) =0in F), for all x € F,, and since the trace
is nondegenerate (Proposition 2.4.11) it follows that b = 0, as claimed. ad

We will keep the notation 1, in the sequel. Thus, any additive character
has the form 4, for a unique b € F, and ¢, (x) = 1 (bx).

Definition 2.5.5. Let x be a multiplicative character and 1 a nontrivial
additive character of F,. We define the Gauss sum attached to x and ¢ by
the formula

o) = 3 x@)(a) -

E4S]

Remarks. (1) Note that we omit z = 0 in the definition.

(2) Since v has order p and x has order dividing ¢ — 1 we have 7(x,¥) €
Q(C}ﬂ qul)‘

(3) As the reader will notice as we study Gauss sums in the sequel, almost
all of the formulas involving Gauss sums as defined above have annoying
signs in them, the simplest being Lemma 2.5.9 (2) below, which says that
7(g,1) = —1 for the trivial character. For this and many other good rea-
sons, following A. Weil it would thus be a good idea to include a minus
sign in the definition given above, as well as in the corresponding defini-
tion for Jacobi sums that we will give below. However, I have preferred
not doing so, at the price of keeping minus signs in many formulas.

(4) Independently of the sign issue, several notation are used for Gauss sums
in the literature: essentially 7, g, and G. Since we use the letter J for
Jacobi sums it would be reasonable to use the letter G, but unfortunately
this letter is too often used in connection with Gauss sums to denote
finite abelian groups. Thus we stick to 7, which is one of the traditional
notations.



76 2. Abelian Groups, Lattices, and Finite Fields

We have the following trivial lemmas.

Lemma 2.5.6. For b # 0 and any a we have 7(x,VYap) = x(b) " 17(x, Ya),
and in particular 7(x, ¥y) = x(b) "17(x, 1¥1).

Proof. This is the analogue of Proposition 2.1.39 and is proved in the
same way:

T0GYa) = Y X(@)Pa(@b) = Y x(yb™)tbaly) = x(0) ' 7(x, Ya) -
z€F; y€EF;
O
Because of this lemma and Proposition 2.5.4 it is reasonable to set the
following definition.

Definition 2.5.7. If 1 is an additive character on Fy and b is the unique
element of IFy such that 1 = 1y, for any a € Fy we set Y = 1)qp.

Note that this agrees with the usual definition when a € F, since the
trace is [F-linear.

Lemma 2.5.8. Let ¥ be a nontrivial additive character.
(1) We have 7(eg,) = —1.
(2) For any character x we have

T(x ) = x(=D7(x,¥) -
(3) If b € F, is such that 1 = 1y then

(X, 0) = X' P (0)T(x¥) = T(X, Y1) -

Proof. We have 7(e,v¢) = *¢(0)+Zaemq 1(a) = —1 by Proposition 2.1.20,

proving (1). For (2), note that 1 = ¢(0) = ¢(z)1¥(—x); hence (—x) = ¥(x)
since it is a root of unity. Since x ! (x) = y(x) we have

LY = ) x@)d) = > x(—9)ey) = x(~)7(x¥) ,
xE]F; yE]F;;

proving (2). Let us first prove (3) for ¢ = ;. We note that the map x — a? is
an automorphism of F, (the Frobenius automorphism, which is a canonical
generator of Gal(F,/F,)). Furthermore, for the same reason Trg /¢ () =

p'.
> o<i<y ®P ; hence

Trg, /¥, (zP) = Z 2P = Z 2P 2l — = Trr, /¥, (z) .
1<i<f 0<i<f

It follows that
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Trz, /w, (2) Trp, /v, ()
Pr(a?) = ¢ T =G T = (a),

hence that

6 = 3 x@ii(@) = 3 @) = 3 @) (@) = T ) |

IGIF(’; :EG]F;‘ IG]F*

proving (3) for ¥ = 1. The general case immediately follows from Lemma
2.5.6. O

One of the main elementary results concerning Gauss sums is the following
proposition, which gives their modulus.

Proposition 2.5.9. Let i be a nontrivial additive character.

(1) If x is a nontrivial multiplicative character then |7(x, )| = ¢*/?
(2) If x = ¢ then T(x, ) = —1.

Proof. Setting z = xy~!

rOe )P = 0600 ) = Y x(@)X(W)e()d(y)

=Y x(z) ) dlyz-1)

z€Fy yEF:

, we have

Now it is clear that y — t(y(z — 1)) is an additive character, and it is
nontrivial if and only if (2 —1) € F; (since in that case the map y +— y(z—1) is
a bijection of Fy onto itself). Thus by orthogonality of characters (Proposition
2.1.20), we have 3 cp ¥(y(z — 1)) =0 when z # 1, hence

OO =x(Ma-D+ Y, (Dx(z)=a— > x(2)=q,

ze]F(’I‘, z#1 ZEF;‘

once again by orthogonality, this time applied to x, proving (1), and (2) has
already been proved above. a

Corollary 2.5.10. Let ¢ be a nontrivial additive character and let b € Fy.

Then
’ > (b

z€lF,

< (ged(m, g — 1) — 1)g"/* < (m — 1)g*/?.

Proof. Set d = ged(m,q — 1). By Corollary 2.4.4 we have

S bam)y=1+d > b(by) .

z€lF, yE]F;‘d
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By the orthogonality relations in the group Fj/(F:)?, we clearly have for
ceF?
q’

S XB)x(e) = {d ite e ot

y 0  otherwise.
xi=e

Furthermore, since d | ¢ — 1, if ¢ = bax? has one solution, it has exactly d. It
follows that

ST wba™) =14 9(c) Z b)x(c) =1+ > X(b)(x;¥)

z€lF, ceFy xt=¢e

=D (@) =—¥(0) =1

zelFy

Since

by orthogonality, using the proposition and the fact that [F};/(F;)?| = d, we
obtain the corollary. O

For instance, this implies that when p {1 b and p = 1 (mod 3) (otherwise
the sum vanishes) we have |> o, e2imbe’/p| < 9pl/2 gee Exercise 33.
We give the following result as example of an application.

Proposition 2.5.11. Leta, b, and c be nonzero elements of Fy, letm > Z>1,
and set d = ged(m,q — 1).
(1) The number N of solutions (x,y,z) € Fs of the equation ax™ + by™ +
cz™ = 0 satisfies |N — ¢*| < (d —1)%(q — 1)q"/2.
(2) The number M of projective solutions (z,y,z) € P2(F,) to the equation
azx™ 4 by™ + c2™ = 0 satisfies
M —(q+1)] < (d—1)%"%.
Proof. By orthogonality, denoting as usual by ¥ the trivial additive char-
acter, we have

gN = Z Zwax + by + ez™)

(w,y,2)€F3

= ¢+ Z Z Y(az™ 4+ by™ 4 c2™) .

W#bo (2,y,2)EF3

The inner sum splits into a product of three simple sums; hence using the
corollary we obtain |¢N — ¢*| < (g —1)((d — 1)¢*/?)?, so dividing by ¢ proves
(1).

For (2) we simply note that by definition of projective space we have
N =1+ (¢—1)M, so (2) immediately follows from (1). O

Note that although not difficult, the above result is already not entirely
trivial. The bounds that we obtain below using Jacobi sums show that we
can replace (d — 1) by (d — 1)(d — 2), and this is optimal.
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2.5.3 Jacobi Sums for Finite Fields

Let ¢ be a nontrivial additive character and y a multiplicative character
on F,. We have already mentioned that 7(x,%¥) € Q((p,(4—1), where Gy,
denotes a primitive mth root of unity. This number field is quite large, and
this is one of the reasons why Gauss sums are often unsatisfactory. A second
more important reason is that Jacobi sums, which we now introduce, are an
essential tool in counting the number of solutions of diagonal forms in finite
fields, as we shall see.

Definition 2.5.12. Let x1, ..., xXx be multiplicative characters on F,.

(1) We define the Jacobi sum with parameter a € F, associated with these
characters by the formula

Jr(X15 -5 Xks0) = Z xi1(z1) - xk(wr) -
xz; €F,
T1+-+xp=a
(2) We simply write Ji(x1,-.-,Xk) instead of Je(x1,---,Xk; 1), and call it
the Jacobi sum associated with the x;’s.
(3) For notational simplicity, by abuse of notation we will often write Jy(a)
instead of Ji(x1,- .., Xk;a), the characters x; being implicit.

Remarks. (1) We have J;(x1) = 1 for any character y1, and more generally
Ji(x1;a) = x1(a).

(2) Tt is clear that the value of Jix(x1,...,Xk;a) does not depend on the
ordering of the characters ;.

(3) As desired we have Ji(x1,...,Xx; @) € Q({4—1), which is a much smaller
number field.

(4) The introduction of a parameter a is analogous to that of 7(y,a) for
Gauss sums associated with a Dirichlet character. In fact, as for Gauss
sums, the following lemma shows that there is a close link between
Ji(x1, - xks @) and Ji(xa, -, Xk)-

Lemma 2.5.13. For a # 0 we have

Je(xas - xmsa) = (xa - xw)(@) e (xas -+ Xk)
while (abbreviating as above Ji(x1, ..., Xk;0) to Ji(0)) we have

k=1 if x; =¢ forallj,
J(0) =<0 if X1 Xk F €,

Xk(=1)(g = D) Jp—1(x15 -+ Xb—1) if x1 Xk =€ and xx # € .
Proof. The formula for a # 0 is clear by setting yr = i /a, so assume

a = 0. If all the x; are equal to ¢ then Ji(0) is equal to the number of
(1,...,2) € F such that 1 + --- 4+ 23 = 0, hence to ¢"~!, which is the
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first formula, so we may assume that not all the x; are equal to €, and since
Ji(a) is invariant under permutation of the indices we assume that yj # €.
We thus have x5 (0) = 0, hence

Ji(0) = x%(0)Je—1(0) + > x1(z1) -+ xk (k)
z; €Fy, @ #0
(—z1/xp) -+ (—zp—1/zr)=1

= xk(=1) Z (X1 xe)(—2k) Z x1(y1) - Xe—1(Yk—1)
xy, €FF yi €F,
yit+typ—1=1

= xe(=1)J-1(X15- - Xk-1) Z (X1 xk) (W)

yeFy

and since |[Fy| = ¢ — 1 the result follows from Proposition 2.1.20.
The main result concerning Jacobi sums is the following close link with
Gauss sums:

Proposition 2.5.14. Let ¢ be a nontrivial additive character and let 1,
.., Xk be multiplicative characters of F,. Denote byt the number of such x;
equal to the trivial character €.

(1) If t =k then Ji(x1,---,xx) = ¢" %
(2) If1 <t <k—1 then Jp(x1,-..,xx) =0.
(3) Ift=0 and x1--- Xk # € then

T(Xla ZZJ) B 'T(lew)
(X1 Xk ¥) '

Je(X1s - XE) =
(4) Ift =0 and x1--- xx = € then

T(Xlaw) e T(Xk,’(/})
q

(X1, ) T(xk-1,9)
(X1 Xbk—1, )

= —Xk(=1)Te—1(X1s -+ Xk—1) -

Je(X1s-- s Xk) = —

= —xxr(-1)

In particular, in this case we have

7(X1,%) - T(Xk, )
q

=Xe(=1)Je—1(X15- ) Xb—1) -

Proof. (1) and (2). For k = 1 the result is trivial, so assume that & > 2.
We can write

Telxasoxe) = Y xa@) e (@ro) k(= (@4 o)

T1,...,0x —1EF,
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If t =k, in other words if all the x; are equal to ¢, this is evidently equal to
¢"~!, which is (1). If 1 <t < k—1, then since .J,, is invariant by permutation of
the characters we may assume that y; = . Thus the above sum decomposes
into a product:

Je(xa, - xk) = H Z Xi(i) -

1<i<k—1a,€F,

Since t < k — 1, at least one of the y; for ¢ < k — 1 is a nontrivial character,
hence »°, o Xi(w;) = 0, proving (2).

(3) and (4). We therefore assume that all the x; are nontrivial characters.
For simplicity, write 7(x) instead of 7(x, ), since in the present proof the
additive character ¢ does not change. Thus 7(x;) = >, ek, Xi (i) (x;),
where we may include x; = 0, since x;(0) = 0, x; being nontrivial. Hence
grouping terms with given x; + - -+ + 2, = a and using the above lemma we
have

() T0m) = Y xa(@n) - xe(@)p (@ + -+ ax)

z; €F,
=Y v Y xalen)-xe(a)
a€lF, z; €F,

T1+-+xp=0a

= Jk(0)+ > w(a)(x1 - xu) @) Je(x1,- - Xk)

aGF;
= Jk(0) +7(x1 - Xk) T (X5 - -5 XE) -

If x1 -+ xx # € the lemma tells us that J;(0) = 0, proving (3). If x1 -+ xx =
e then on the one hand by the lemma we have J;(0) = xx(—1)(¢ —
DJk—1(x15- -+, Xk—1). However, since y; # € while x1---xx = € we have
X1 Xk—1 # € (and all the x; still different from €), so by (3) and Proposi-
tion 2.5.8 we have
7— DR T _ 7— DR T _
Je (Xt Xh1) = (x1) 71(Xk ) _ (=1 (x1) - 7(xk—1)
(X5 ) 7(Xk)
_ Xk;(_l)T(Xl) T T(;(k:l)T(Xk:)

by Proposition 2.5.9, so J;(0) = (1 —1/q)7(x1) - - - 7(x%). On the other hand,

again by Proposition 2.5.9 since x1---xx = € we have 7(x1 -+ xx) = —1, so
putting this in the above formula gives the first formula of (4), and the others
follows from Lemma 2.5.8 and from (3). ad

Corollary 2.5.15. If x is a character of order dividing m then 7(x,¢¥)™ €
Q(Gm)-
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Proof. This is trivial if y or ¢ is a trivial character. Otherwise we apply
the last formula of the above proposition to k = m and x; = x for all ¢, and
we deduce the result since evidently Ji(x,...,x) € Q((m). ad

Corollary 2.5.16. As above, denote by t the number of indices i such that
Xi = €. Then

q}‘“’1 ift==~k,
Ji(0) = 0 : fl1<t<k—Tlorifxi - xp#e,
(1—q) ) 7O )  ift =0 and xa - xi =< .

Proof. By Lemma 2.5.13, the result is clear for ¢t = k and when 1 - - - x #
€. Otherwise, we may assume by symmetry that xx # X0, and the lemma
gives Ji(0) = xk(—1)(¢—1)Tk—1(X1, -, Xp—1)- Since x1 -+ Xx—1 = X = # &,
the proposition shows that Ji(0) =0 for 1 <t < k— 1, and for ¢ = 0, the
desired result follows from Lemma 2.5.8. o

Remark. Gauss sums are the finite analogue of the gamma function de-
fined in Section 9.6.2. This can be better seen in the context of Gauss sums
attached to Dirichlet characters by comparing Proposition 9.6.35 with Defi-
nition 2.1.38. The Jacobi sums for k = 2 are then the finite analogues of the
beta function defined in Proposition 9.6.39, and the above corollary is the
exact analogue of that proposition. We will see in Section 3.7 that there also
exists an exact analogue of the distribution formula for the gamma function
(Proposition 9.6.33) called the Hasse-Davenport product relation.

2.5.4 The Jacobi Sums J(x1, x2)

Because of their importance, for simplicity we will usually write J(x1, x2) in-
stead of Ja(x1, x2). We first note that the special case k = 2 of the proposition
is the following;:

Corollary 2.5.17. Let v be a nontrivial additive character of Fy.

(1) If x1 and x2 are two multiplicative characters we have

T(x1, ¥)7(x2,¢)

if X1X2 7é €,
J - T(X1X27¢>
(X1, x2) = xi(—1) if xix2 =€ but x1 # ¢,
q ifxi=x2=¢.

(2) In particular, if none of x1, x2, and x1X2 is the trivial character we have
|T(x1, x2)| = ¢*/2, and if xo is nontrivial we have J(g, x2) = —1.
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(3) If q is odd and p is a multiplicative character of order 2 then

7(p,0)? = p(—1)g = (—1)1=D/2q .

We will also need to identify more precisely the Jacobi sums in certain
cases. For this we give some equalities and weak congruences in the following
sense: if «, 3, and  are algebraic integers we will write &« = 8 (mod =) if
(o — )/~ is an algebraic integer. In the following, all the characters that
occur are nontrivial multiplicative characters.

Proposition 2.5.18. For any n > 2 denote as usual by (, a primitive nth
root of unity.

(1) Assume that q is odd. If x is a character of order n > 2 and p is the
character of order 2 we have the identity

xX(4)J(x; x) = J(x: p) -

(2) Fori=1, 2, let x; be characters of order n; > 1. We have

J(X17X2) =—-q (mOd (1 - Cﬂl)(l - an)) .

(3) Fori=1, 2, let x; be characters of odd order n; > 1, and let nz be the
order of the character x1x2. We have the more precise congruence

J(x1,x2) = =1 (mod (1 = Gn, )(1 = G, ) (1 = Cny)) 5

except if ny = ngy =ng =3 (hence ¢ = 1 (mod 3)), in which case

J(x1,x2) = ¢ =2 (mod (1 —Gn, ) (1 = Guy)(1 = Cny)) -

Proof. (1) is an easy exercise left to the reader (Exercise 40). For (2) we
note that since the x; are nontrivial we have by orthogonality

Y. (I—xa@)(I—xo(1=2)) = ¢=2+1+14+J(x1, x2) = ¢+ (x1, X2) -
2€F,\{0,1}

On the other hand, y;(x) is an n;th root of unity for = # 0; hence (1 —(,,) |
(1 — xi(x)), proving (2). Generalizing this method, set

Telx-oxe) = . [ 0=xi(x)
1+ tr=11<i<k
and  Sk(x1,...,xkK) = Z H (1 —xi(zi)) -

As in (2), we easily find by expanding that

Tk(Xh LR >Xk) = qk_l + (_1)ka(X17 DR an:) B
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and on the other hand, if we denote by n; the order of y; we have

Sk(x1,-- o xk) =0 (mod [ (1-¢a))-

1<i<k

If x is nontrivial it is clear that Si(x) = 1 — x(1) = 0; hence finally the
inclusion—exclusion principle shows that if all the x; are nontrivial and if we
set K ={1,2,...,k} then

To(xt,xe) = Y, S((xg)ies)

JCK, |J]|>2

with evident notation.
Specializing to k = 2 and k = 3 we obtain that

So(x1:x2) = To(x1,x2) = ¢+ J(x1, Xx2)

(which was in fact used in (2)), and

@ — J3(x1, X2, x3) = T3(x1, X2, X3)
= S3(x1, X2, x3) + S2(x1, x2) + S2(x1, x3) + S2(x2,X3) ;

hence

J3(x1,X2:x3) = ¢© — 3¢ — J(x1,x2) — J(x1:x3) — J(x2, X3)
(mOd (1 - C’I’Ll)(l - <n2)(1 - C’ﬂ3)) .

The proof of (3) is now immediate. First note that since the n; are odd then
Xi(—1) = 1. Next, if x1x2 is the trivial character, then by Corollary 2.5.17 we
have J(x1,x2) = —1, so the result is trivial. In the above formula we choose
x3 = (x1x2) "}, which we may therefore assume to be nontrivial of order ns.
By Proposition 2.5.14 (4) and the symmetry of Jacobi sums we have

J3(x1, X2, x3) = —J (X1, x2) = —J(x2, x3) = —J (X1, X3) -

Thus, if we set = J(x1, x2) the above congruence reads

2z = q2 - 3(] (mOd (1 - <n1)(1 - an)(l - Cns)) :

Furthermore, it is well known (and will be proved in Chapter 3) that 1 — ¢,
is a unit if n is not a prime power, and otherwise (1 — Cn)¢(”) divides n;
hence using again the fact that the n; are odd we may divide the congruence
by 2. Finally, again since n; > 1 is odd, we have ¢(n;) < 2 if and only if
n; = 3, in which case ¢(n;) = 2. Thus (1 — (,,)(1 — Cny)(1 — py) divides
q — 1, hence (¢ —1)/2, unless (ny,n2,n3) = (3,3,3). Since (¢> — 3q)/2 = —1
(mod (g—1)/2), the result follows except in that special case. In that case we
have ¢ = 1 (mod 3) and = = ¢(q¢—3)/2 (mod (1—¢3)?), and since (1—¢3)% | 9
and ¢(q¢ —3)/2=¢q— 2 (mod 9) when ¢ =1 (mod 3) the result follows. O
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Corollary 2.5.19. (1) Assume that q is odd. If x is a character of order
n > 2 then

J(x:x) = —x"'(4)q (mod 2(1 - () .

(2) Let £¥ be an odd prime power such that ¢¥ | (g — 1), let x be a character
of order (¥, and let a and b be integers such that £ ab(a +b). We have

J(Xa»Xb) =-1 (mOd (]' - C@k)?)) )
except for (¥ =3, in which case

J(x*,x") = ¢ —2 (mod (1 —¢3)*).
Proof. By (1) and (2) of the proposition we have

X(4)J(x; x) = J(x; p) = —q (mod 2(1 — 7))

since (o = —1. Since £ { ab(a +b), the characters x?, x°, and x*** have order
/%: hence (2) is a special case of statement (3) of the proposition. O

An important application of Jacobi sums is in the explicit representation
by binary quadratic forms. For instance, we have the following:

Proposition 2.5.20. (1) Let g be a prime power such that ¢ = 1 (mod 4),
let x be one of the two characters of order 4 on Fy, and write J(x,x) =
a+bi. Then a®>+b*>=q, 2| b, and a = —1 (mod 4). In particular, every
prime p =1 (mod 4) is a sum of two squares.

(2) Let q be a prime power such that ¢ =1 (mod 3), let x be one of the two
characters of order 3 on ¥y, and write J(x,x) = a + bp, where p is a
primitive cube root of unity. Then a®—ab+b* = q, 3 | b, a = —1 (mod 3),
and a+b=p—2 (mod 9). In particular, every prime p =1 (mod 3) has
the form a®> — ab + b>.

(3) If p is a prime such that p = 1 (mod 3), there exist ¢ and d in Z such
that 4p = ¢® + 27d>.

(4) If p is a prime such that p = 1 (mod 3) then p itself has the form p =
u? + 2702 if and only if 2 is a cube in IF, in other words if and only if 2
18 a cubic residue modulo p.

Proof. (1). Since the group of characters of [ is isomorphic to Fy, hence
is cyclic of order g — 1, for any n | ¢ — 1 there exists a character of order
exactly equal to n. Thus, when ¢ = 1 (mod 4) let y be a character of order
4. By uniqueness of the character p of order 2 (coming from the fact that F
is cyclic) we have x? = p; hence x(4) = p(2) = (%), where (%) is equal to 1
if 2 is a square in F; and to —1 otherwise. Since J(x,x) € Z[¢] = Z[i] we
can write J(x,x) = a + bi, and the first congruence of the corollary means
that b is even and that b —a = (%) (mod 4). On the other hand, we know

that |J(x, x)|? = ¢ = a® + b%, hence since a is odd that > = ¢ — 1 (mod 8).
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By separating the cases ¢ = 1 (mod 8) and ¢ = 5 (mod 8) and using the
quadratic character of 2 (which is easily seen to be valid also in this more
general context), we see that we always have a = —1 (mod 4).

For (2) the proof is simpler: if  is a character of 3 we have J(x, x) € Z[p]
and |J(x, x)|? = |a+bp|* = a® —ab+b* = p, and by Corollary 2.5.19 we have
J(x,x) = q¢—2 (mod (1—p)?), in other words J(x,x) = ¢—2 (mod 3(1—p))
since 3/(1 — p)? = —p? is a unit. Since ¢ = 1 (mod 3) this last congruence
considered modulo 3 gives 3 | b and a = —1 (mod 3), and the full congruence
is easily seen to give the congruence modulo 9. Thus, if we set b = 3d we have
4p = 4a? — 12ad + 36d? = (2a — 3d)? + 27d?, proving (3).

For (4), we note that in (3) we have simply shown in an explicit manner
that a prime p = 1 (mod 3) is split in the field K = Q(p) = Q(v/-3)
as p = 77w, with m = (¢ + 3dv/=3)/2. It is clear that 7 is unique up to
conjugation and multiplication by a unit, in other words by a power of —p,
and it is immediate to check that only conjugation, or multiplication by —1,
or both, preserve the fact that the coefficient of v/—3 is divisible by 3. Thus
p has the form u? + 27v? if and only if J(x,x) = a + bp with b = 3d even,
and since a? — ab +b? = p is odd, if and only if J(x,x) = 1 (mod 2). Now by
Corollary 2.5.19 (1) we have in particular

J(x:x) = —x"*(2) = —x(2) (mod 2) .

Thus p has the given form if and only if x(2) = 1 (mod 2), and since neither
(p—1)/2 nor (p? —1)/2 is an algebraic integer, this is equivalent to x(2) = 1.
As in the case of quadratic residues, by writing 2 = ¢* (mod p) for some
primitive root g modulo p, it is immediate to see that this is equivalent to 2
being a cubic residue modulo p. ad

Remarks. (1) Although Jacobi sums give nice explicit formulas for the in-
tegers a and b such that p = a® + b? or p = a® — ab + b?, they are not
at all efficient for computing @ and b in practice, since their execution
time is linear in p. For this one uses instead Cornacchia’s algorithm (see
Exercise 41 and Algorithms 1.5.2 and 1.5.3 of [Coh0]), whose execution
time is the same as that of the Euclidean algorithm, hence polynomial in

log(p).
(2) All the identities that we have given for Gauss and Jacobi sums, such

as |7, 0)| = g2 and J(x1, x2) = T(x1, )7 (X2 ¥)/7(x1 X2, ) for non-
trivial characters, are quite elementary in nature. Gauss’s computation of
quadratic Gauss sums (Proposition 2.2.24) lies slightly deeper, but is still
reasonably simple. On the other hand, there exist further relations be-
tween Gauss sums associated with finite fields, due to Hasse-Davenport,
which are considerably more difficult (see Theorems 3.7.3 and 3.7.4). In
fact, although they deal only with explicit finite sums, nobody knows
of an “elementary” proof except in special cases, so we will delay till
Chapter 3 the statement and proofs of these relations. Note, however,
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that they are not exotic identities but fundamental results that are used
for instance in Weil’s proof of the rationality of the zeta function of cer-
tain varieties that we will mention below. We will in fact give such an
application in Section 3.7.3.

2.5.5 The Number of Solutions of Diagonal Equations

We will now use Jacobi sums to count the number of solutions in IF, of
diagonal equations. Let k and m; for 1 < ¢ < k be strictly positive integers,
and let aq,...,a; be nonzero elements of F,. We want to count the number
N(q) of solutions (z1,...,zx) € FX to the equation

arx]" + - agz™ =0.

When all the m; are equal, we will immediately deduce from the result the
number of projective solutions. We first note that by Corollary 2.4.4 the
number of solutions to ™ = y is the same as that of 2? = y for d =
ged(m, g — 1). Thus we set d; = ged(m;,q¢ — 1), and N(gq) is equal to the
number of solutions to alzz:fl 4+ 4+ akxi" = 0. We may thus replace m; by
d;, so that d; | (¢ —1).

Lemma 2.5.21. Letd | (¢—1), and denote by G4 the group of multiplicative
characters x on F, such that x? = . Then |G4| = d, and if y € F, we have

0 if % =y has no solution,
doxw) =41 ify=0,
x€Ga d if y # 0 and 2% =y has a solution.

In particular, the number of solutions in F, of % = y is equal to ercd X(y).

Proof. The group G4 is canonically isomorphic to the group of characters
of the abelian group Fy /F;d; hence the lemma is an immediate consequence
of the orthogonality of characters (Proposition 2.1.20). O

Note that the result for y = 0 comes from the convention £(0) = 1, and
it is the main reason for this choice.

Theorem 2.5.22. (1) For any nontrivial additive character 1) we have

_ 1 a ay
N =+ (1) 3 et rl ).
Xi €Ga; \{e}
X1 Xk =¢
(2) We have the inequality
IN(q) — ¢" ' < (1-1/q)g"? > 1.

1<y <d; —1
T rcier ((4-1)/d)y: =0 (mod q—1)
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(3) In particular, if all the d; are equal to d then

_ 1)k 1k (d —
|N(q)—qk_l‘ < (d 1) +(d 1) (d 1) <1_é> qk/Q.

(4) If all the m; are equal to m and d = ged(m, ¢ — 1), the number M(q) of
projective solutions in P*=(F,) to the equation a1x7* + -+ + apz =0
satisfies

MG - P2y < L CVNED oyre.

Proof. (1). By the above remark we have
No= > I > xwi/a)
yieF,  1<i<k x€Gq,

Y1y =0

= > (alan) - xulan) 7 Te(xas - Xk 0) -

Xi €Ga;

By Corollary 2.5.16 we know that J;(0) = 0 if either x7---xx # € or if at
least one (but not all) of the x; is equal to e. In addition, J;(0) = ¢"*~! when
all the x; are equal to €. Thus again by the corollary we have

N =¢""+ > (ale)-xular)  Telxi, -5 xx:0)

Xi €Ga; \{e}
X1 Xk =€
_ 1 _
=q¢" '+ (1 - —) Z (xa(a1) -+ xnlar) ~ r(x1, ) - 7(xk )
XzeGdi\{E}
X1 Xk =€
_ 1 a a
—A e (1-0) X vl
a4 Xi €Ga; \{e}
X1 Xk =€

by Lemma 2.5.8, proving (1).

(2). By Proposition 2.5.9, since all the additive characters )% are still
nontrivial, we have |7(x;, ¥ )| = ¢'/2, hence

IN(q) — "' < (1= 1/q)¢*?S(dy, ... dy)

where S(dy,...,dy) is the number of k-tuples of characters x; € Gy, different
from ¢ whose product is equal to . By duality, this is equal to the number
of k-tuples of nonzero elements x; in ((¢ — 1)/d;)Z/(q — 1)Z that sum to 0,
so (2) follows by setting x; = ((¢ — 1)/d;)y;.

(3). The proof of (3) is of course purely combinatorial. We must compute
the number S(d,...,d) = S(d) defined above, in other words the number of
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k-tuples (y1,...,yx) € Z/dZ such that y; # 0 for all i while Y-, ;v = 0 in
Z/dZ. We proceed by induction. For 0 < j < k, define fx(j) to be the number
of k-tuples summing to 0 in Z/dZ such that y; # 0 for 1 < i < j. We want to
compute f;,(k). We start the induction by noting that evidently f5(0) = d*~!
for k > 1, since y;, is uniquely determined by y; for 1 < ¢ < k — 1. Now for
0<j<k—1andk > 2 we have

K@= > 1+ Y 1=/ + fali),

>, ¥i=0 > vi=0
y; #0 for i<j+1 y; #0 for i<y
Yyj+1=0

while for £ = 1 and j = 0 we evidently have f;(1) = 0, leading to the
convention that fo(0) = 1 if we want the above recurrence to be valid.

Since fix(0) = d*~! for k > 1, it is now clear by induction that for k >
j + 1 the solution to the above recurrence is fi(j) = d*~971(d — 1)7. On
the other hand, set u; = (—1)7 f;(j), so that u; = 0. The above recurrence
applied to k = j + 1 gives for j > 2, fj11(J) = fj+1( + 1) + f;(J), in other
words, since fj41(j) = (d —1)7, (=1)T'uj1q = (d — 1)7 + (—1)7T u;; hence
uj41 = u; — (1 —d)7. Since u; = 0, this gives

S -an (1—dyi—(1—d) (-1)3(d—1Y+d—1

d B d ’

Uj:

n=1

so that f;(j) = (=1)7u; = ((d — 1)7 4+ (=1)(d — 1)) /d, proving (3).
(4). This is immediate since by the definition of projective space we have
N(q) =1+ (¢ —1)M(q) and in particular ¢*~1 =1+ (¢ — 1)|P*=2(F,)|. O

Note that when the d; are not all equal it is still possible to obtain an
explicit formula for S(dy,...,dy). For instance, if k = 3 we have shown above
that S(d,d,d) = (d —1)(d — 2) = d*> — 3d + 2, but the general formula is

S(dy,dz,ds) = ged(didz, dids, dad3)
- (ng(dh d2) + ng(dla d3) + ng(d27 dg)) +2 ;

see Exercise 42.

Corollary 2.5.23. Let a, b, and c be nonzero elements of Fy, let m > Z,,
and set d = ged(m,q—1). The number M (q) of projective solutions in P?(F,)
to the equation ax™ + by™ + cz™ = 0 satisfies

|M(q) — (¢ +1)] < (d—1)(d —2)g"/>.

This is a stronger result than Proposition 2.5.11, and it can be shown that
the bound is optimal.
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Corollary 2.5.24. Assume that m; = m for all i and that the a; are all
nonzero, and as usual set d = ged(m, q —1). The number M(q) of projective
solutions in PE=1(F,) to the equation a1z + - - + axx = 0 is given by the
exact formula
qk—l -1
M(q) = -1 + Z H Xi(—ak/ai)Jk—1(X15- -5 Xk—1) -
X1,--5Xk—1€Gq \{e} 1<i<k—1
1<i<k—1 Xi 7€

Proof. This immediately follows from Theorem 2.5.22 and Proposition
2.5.14, using as above the fact that M(¢) = (N(¢) — 1)/(¢ — 1), and

X;Zl(—ak) = H1<i<k71 Xi(—ax) when H1<i<k Xi = €& U

Corollary 2.5.25. Assume that ¢ = 1 (mod 6), and let x be a character
of order 3 on F,. The number M(q) of projective solutions in P*(F,) to the
equation 3 + > + 22 = 0 is equal to ¢ + 1 + ¢, where ¢ is the unique integer
such that 4q = ¢ + 27d* with ¢ =1 (mod 3).

Proof. This immediately follows from the above corollary and Proposition
2.5.20 and is left to the reader (Exercise 43 (1)). O

2.5.6 The Weil Bounds

We will place ourselves in the context of plane projective geometry. In this
context, a (plane projective) curve is an equation P(X,Y, Z) = 0, where P is
a homogeneous polynomial, and a point on the curve is any projective point
(x :y: z) such that P(z,y, z) = 0 (this makes sense since P is homogeneous).
The affine equation corresponding to P is the equation P(z,y,1) = 0.

A curve has a genus g, which is a nonnegative integer. Although not
difficult to define, we simply give a few examples.

— If the total degree of P is equal to d, then g < (d — 1)(d — 2)/2. In fact,
if the plane curve is nonsingular, that is if the partial derivatives with
respect to x, y, and z never vanish simultaneously, then in fact we have
g=(d—1)(d—2)/2.

— If P(z,y,1) = y*> — f(z), where f has no multiple root and is of degree
d>2, then g = [(d—1)/2].

The fundamental results of Weil, which we will not prove, are the follow-
ing:
Theorem 2.5.26 (Weil). Let C be a nonsingular absolutely irreducible pro-

jective curve defined on a finite field F,. Denote by Nc(q™) the number of
progective points on C' that are defined over Fyn, and set

Co(T) =exp [ Y N(J(CI")ﬂ

n
n>1
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(this is called the Hasse—Weil zeta function of the curve C'). Then
(1) ¢e(T) is a rational function of T' of the form

P2g (T)

where Poy(T') is a polynomial of degree 2g with integral coefficients,
constant term 1, leading term q9T?9, and such that Pyy(1/(qT)) =
qIT 29 P, (T).
(2) The roots of Pay(1/T) all have modulus ezactly equal to q*/%; in other
words,
Py (T) = H (1—o,T) with |aj|=q"?.

1<i<29

Remarks. (1) Terminology: recall that a plane curve defined by some ho-
mogeneous equation F' = 0 is nonsingular if the partial derivatives of
F do not all vanish simultaneously on the curve. A similar definition
applies for nonplane curves. A curve is absolutely irreducible if it is irre-
ducible as a curve over the algebraic closure of the field of definition. For
a plane curve, it means that the homogeneous polynomial F' defining it
is irreducible over the algebraic closure.

(2) Note that since the constant term of Py(T') is known and since it satisfies
a functional equation, the polynomial Ps,(T) is entirely determined by
the knowledge of Na(g™) for 1 < n < g¢. For instance, if ¢ = 1, the
number of points over F, determines the number of points over Fg» for
all n (see Exercise 45).

(3) Statement (2) (known as the Riemann hypothesis for curves) is the most
difficult, and also the most useful part of the theorem.

Example. If C is the projective line, then trivially N¢(g™) is the number of
points of the projective line over Fgn, in other words ¢™ 4+ 1. An immediate
computation thus gives in this case

1

= TEna-m

in accordance with Weil’s theorem, since the projective line has genus 0.

Corollary 2.5.27. With the above notation and assumptions, we have the
formula

Ne(d")=q"+1~ Y af.

1<5<2g

In particular, the number N (q) of projective points on a curve of genus g
defined over Fy satisfies

INc(q) — (¢ +1)| < 2942
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Proof. Expanding into power series log({c(T)) and replacing by the for-
mula given by Weil’s theorem immediately gives the first result. The second
follows from |a;| = ¢!/2. O

It is to be noted that although the above bound is not always optimal, it
is usually very close to the truth. As mentioned above, the genus of the curve
az?+by?+cz? = 0is equal to (d—1)(d—2)/2, and this is still true over F, if ¢ is
coprime to abed, so the Weil bound gives | N (q) — (¢+1)| < (d—1)(d—2)q"/?,
which is exactly the bound of Corollary 2.5.23. In fact, it was the study of
this example that led Weil to the general case.

2.5.7 The Weil Conjectures (Deligne’s Theorem)

The Weil bounds are limited to curves. It is natural to ask for the same kind
of results for higher-dimensional algebraic varieties. These results were put
forward as conjectures by Weil himself, together with a vast plan for solving
them, but it took twenty years to achieve that goal. The Weil conjectures
were stated around 1949, and the plan to solve them was put into extremely
detailed form by A. Grothendieck and his school between 1956 and 1968. It
culminated with Deligne’s proof of the Weil conjectures in 1969, using all the
tools developed for that goal (but of course his added genius was necessary!).

Although they have been Deligne’s theorem for more than thirty years,
they are still called the Weil conjectures. This is the case for other famous
results in mathematics, in particular, in number theory Ramanujan’s conjec-
ture about bounds for the Ramanujan 7 function (see Section 10.1.3), also
proved by Deligne, and Mordell’s conjecture on the finiteness of the number
of rational points on a curve of genus g > 2, proved by G. Faltings in the
1980s.

Essentially, what the Weil conjectures assert is that the results of Theorem
2.5.26 and its corollary can be generalized to higher dimensions. It would
carry us too far to state them (although it is not difficult). We will prove
them in Section 3.7.3 in the special case of diagonal hypersurfaces. For now
we simply note one of the corollaries, analogous to Corollary 2.5.27 above.

Theorem 2.5.28. There exist constants c(n,d,r) such that if V is an alge-
braic variety defined over F, of dimension r and degree d in n-dimensional
projective space, then the number N of points of V' defined over F, satisfies

IN —q¢"| < (d—1)(d—2)¢""/*+c(n,d,r)g" " .

Since we have seen that the genus of a general curve of degree d is bounded
by (d—1)(d—2)/2, we see that the above theorem exactly generalizes (without
specifying ¢(n,d,r)) Corollary 2.5.27.
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2.6 Exercises for Chapter 2

1. Give a direct proof of Corollary 2.1.6 as follows. Let m be the minimum absolute
value of the nonzero entries of V. Show first that by exchanging rows we may
assume that this minimum is attained for the first entry. Then prove the result
by induction on m, directly for m = 1, and using Euclidean division by the first
entry for m > 1.

2. Fill in the details of the proof of Theorem 2.1.10.

3. Prove the existence and uniqueness of the HNF of an integral matrix of maximal
rank (see [Coh0] Algorithm 2.4.4 for help).

4. Let G be a finite abelian group of cardinality m, and let K be a commutative
field.

(a) Show that Proposition 2.1.20 (2) is still true if we assume only that the equation
z™ —1 = 0 has m distinct roots in K, and in particular if K is an algebraically
closed field of characteristic 0 or not dividing m, where G is to be interpreted
as the group of morphisms from G to K*.

(b) Give two counterexamples to the above result, the first with K not algebraically
closed but of characteristic 0, the second with K algebraically closed with
nonzero characteristic.

5. Let p be a prime number, v € Z>1, and a € Z coprime to p.

(a) Assume first that p > 3, and let g be a primitive root modulo p?, hence modulo
p* for all v by the proof of Proposition 2.1.24. Set u = p/(¢g?~' — 1) mod p,
b= a"! mod p’, and let z; be a discrete logarithm of a to base g modulo p,
in other words such that g“! = a (mod p). Show that if we define z) for k > 2
by the inductive formula

Tk =xp—1 — (p— 1)u97 mod p"~
p

then z, is a discrete logarithm of a to base g modulo p”.

(b) Assume now that p = 2 and that v > 3 (otherwise the problem is trivial). By
Proposition 2.1.24, there exist unique ¢ = +1 and « defined modulo 2°~2 such
that a = €5” (mod 2"), and ¢ = (=2) = (—1)©@=Y/2_ Show that if we define
b=-¢ca ' mod?2”, 23 =0if b =1 (mod 8), and z3 = 1 if b = 5 (mod 8), and
define x, for k > 4 by the inductive formula

¥ —1p —1

Tk = Tp—1 — 1 mod

then z, = x is such that a = 5% (mod 2").

—2
2k=2

6. The aim of this exercise is to study Carmichael numbers. A Carmichael number
is an integer N > 2 that is not a prime number and is such that a¥ 7' = 1
(mod N) for all a such that ged(a, N) = 1.

(a) Recall that the ezponent of a group G is the least integer e > 1 such that
g¢ =1 for all g € G. Show that for any integer N > 1 (Carmichael number or
not), the exponent of the group (Z/NZ)* is equal to A(N), where

AN) = lem (272 emy, |y, 5500 (i — 1))

with f(v) =v—2ifv >3, flv) =v—111 < v <2, and f(0) = 0. The
function A\(N) is called Carmichael’s function.
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(b) Show that N > 2 is a Carmichael number if and only if N is not prime and
A(N) | N —1.

(¢) Show that a Carmichael number N is odd, and then that it is squarefree, i.e.,
that v; = 1 for all 4.

(d) Prove that a Carmichael number has at least three distinct prime factors.

(e) Prove that if IV is a Carmichael number, then for all a (not necessarily coprime
with N) we have a” = a (mod N).
Note: The Carmichael numbers under 10000 are 561, 1105, 1729, 2465, 2821,
6601, and 8911. In 1994 R. Alford, A. Granville, and C. Pomerance [AGP]
succeeded in proving that there are an infinite number of them, in fact asymp-
totically more than ¢- X% 7 up to X for some strictly positive constant c.

7. Let p > 5 be a prime number.

(a) Prove that when p =1 (mod 6) then 77 — 67 — 1 is divisible by 77658 p, while
when p =5 (mod 6) then 77 — 67 — 1 — 1806p is divisible by 77658 p.

(b) Prove further that when p = 1 (mod 6) then 77 — 67 — 1 — 12943p(p — 1) is
divisible by 3339294 p, and find the corresponding property for p = 5 (mod 6).

8. (Apostol-Saias.) Let f be a nonzero arithmetic function satisfying f(mn) =
f(m)f(n) for all m, n and such that there exists m € Zx1 such that f(z+m) =
f(x). Prove that f is a Dirichlet character modulo some divisor d of m.

9. Forr € Zand m > 1let S,(m) = ZX mod m, x primitive
S1(m) is the number of primitive characters modulo m.

x(r), so that for instance

(a) Itis clear that S,(m) = 0 when r is not coprime to m. Generalizing Proposition
2.1.29 show that when r is coprime to m we have

m

Sp(m) = p (m) q(ged (m, (r —1)7)) ,

where (a,b%) =[[,, p* (@) (see the notation introduced in the preface).

(b) Let D(m) be the difference between the number of even and odd primitive
characters modulo m. Deduce that D(m) = p(m) if m is odd, and otherwise
D(m) = 2" 2u(m/2"), with v = va(m) > 2.

10. Prove Proposition 2.1.34 (3).

11. Recall that for any commutative ring R, SL2(R) denotes the group of 2 x 2
matrices with determinant 1 and coefficients in R. Using Lemma 2.1.31, show
that for any N > 2, the natural projection map from SLy(Z) to SL2(Z/NZ) is
surjective. (Hint: first show that if ged(a,b,c,d) = 1, there exist u and v such
that ged(au+bv, cu+dv) = 1.) See Lemma 6.3.10 for the proof of the analogous
statement for SL, (Z/NZ).

12. (Study the Mobius inversion formula (Proposition 10.1.5) and its uses before
solving this exercise.) Let x be a Dirichlet character modulo m, let f be its
conductor, and let xs be the character modulo f equal to x on numbers prime
to m. Prove the following general formula:

=) X () (F5) % (5)
dlged (% 0)

For this, note that



13.
14.

15.

16.

17.

18.

19.
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Z X(:I:)e2i7ram/m _ Z X7 (:L,)eQiTraz/m ,

x mod m ged(z,m/ f)=1
z mod m
replace the condition ged(z,m/f) = 1 by a sum of Mobius functions (see

Proposition 10.1.5), and finally write 2/d = fz1 + 2. In particular, we have

T(x) = w(m/f)x;(m/f)m(x;)-

Prove Proposition 2.1.44.

Let p be an odd prime, and set S = (14 )”. Noting that S = 144" (mod pZ|[i])

and S = (1 + i)i(”_l)/z(g) (mod pZli]), give another proof of the formula for
2

(7)-

Generalizing the computation made in Theorem 2.2.19, show that if m > 1 and

a # 0, then

2im(az?+bx)/m __ 1+1 m —2iwb?/(4am) —2im(ma?42bx)/ (4a)
S Ly fE, s -

x mod m x mod 2a

(H. Stark.) Let x be a real primitive character modulo m > 0, and let Q
be a positive definite quadratic form of discriminant d < 0. Assuming that
ged(m, d) = 1, prove the following reciprocity formula: for all y and z in Z we

have
m

> X(@Qy)e” ™™ =3 X(Q(w, 2)e T
r=1 r=1

(Hint: use Corollary 2.1.42.)

Let x be a primitive character modulo m, and let W(x) be as in Definition
2.2.25, so that |W(x)| = 1 by Proposition 2.1.45. If y is real, we know by
Proposition 2.2.24 that W (x) = 1. Prove that if W (x) is a root of unity then x
is real, hence W(x) = 1.

Show that there exists a 2-dimensional lattice L in R? which reaches the upper
bound for min(L)/ det(L)"/? given by Theorem 2.3.12.

(a) Give the detailed formulas for updating the Gram—Schmidt basis in Step 3 of

the LLL algorithm.

(b) Show that after this update the LLL condition is satisfied for the new vectors

20.

b;_; and bj.

With the notation of the LLL algorithm, let d; be the determinant of the Gram
matrix of the b; for j <k and D =], ,, ; dk-

(a) Show that dr =[], ;< b7 ]|* and that D stays fixed in the algorithm except

(b)
(c)

21.

in Step 3, where it is multiplied by a factor at most equal to 1/v + 1/4.
Using Hermite’s Theorem 2.3.12, show that dj is bounded from below by a
strictly positive constant depending only on L.

Deduce from this that Step 3 will be executed only a finite number of times,
hence that the LLL algorithm will terminate after a number of steps polynomial
in n and max(||b;||?). How does this number of steps vary in terms of the
constant v > 4/37

Note that it is unknown whether the LLL algorithm is still polynomial time for
v =4/3.

Assume that the Gram matrix of the b; is integral, and as in the preceding
exercise let dj, be the determinant of the Gram matrix of the b; for j < k.
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(a) Prove that for all k& we have dix_1||b}||*> € Z, for all j < i we have d2,-u7;,]- € 7,
and for all m such that j < m <7 we have d; 37, ;< i kbm & [|PL]]" € Z.

(b) Deduce from this a modification of the LLL algorithm that works entirely with
integers.

(c) Show that these integers will be bounded by a polynomial in 2" and max(||b;|?).

22. Let ao,...,a, be complex numbers, and assume that there exists z € C* such
that a;/z € R for 1 < ¢ < n. Using Proposition 2.3.20 give a lower bound for
lao+3, <ign Z; ;| in terms of the same quantities occurring in the proposition
together with (/).

23. Prove the generalization to complex numbers of Proposition 2.3.20 given in the
text.

24.

(a) In Proposition 2.3.20 show that one can replace the value of T by T' = (Cav) +
> Xi(Ca;) (where we recall that (u) is the distance of u to the nearest integer),
which may be considerably smaller especially if we make a little search on C.

(b) Using this improved value and making C' vary in a reasonable range, compute
a lower bound for |z log(2)+x2m+x37|, where the z; are integers not all equal
to 0 such that |z;| < 100.

(¢) Make a systematic search for 0 < z; < 100 and —100 < 2,23 < 100 to find
the exact minimum of the above expression, and compare with the bound that
you have found.

25. As in Proposition 3.5.2, denote by U, (respectively U),) the set of nth roots of
unity (respectively primitive nth roots of unity) in C. Using cyclotomic poly-

nomials, compute > ., 1/(z — (), ZCEU& (=0 Xier, ¢/(1— ¢)?, and
Seews ¢/(1— 02,

26. Let p > 3 be a prime number. Prove that there exists a unique value of £ modulo
2p such that ZQGU;; (—=0)*/(1 = ¢) =0, and compute k explicitly.

27. Let E/F be an extension of finite fields, and set ¢ = |F| and s = [E : F].

(a) Generalizing Proposition 2.4.11 (2), show that if k € Z>; with ged(k,s) = 1,

the kernel of Trg,p is equal to the set of a € E of the form a = 27—z for some
z € E.
(b) Assume that ged(gk,s) = 1. Show that for any a € E there exist u € F and
xTr =

k
z € E such that z¢ — a + u. For instance, if a € E = Fas with s odd, one
of the two equations #? — 2 = a or 2 — 2 = a + 1 has a solution = € E.

28. Prove that the polynomial X™ + X"~ ' 4 ... 4+ X + 1 is irreducible in F,[X] if
and only if n 4+ 1 is a prime different from p and the order of p modulo n + 1 is
equal to n.

29. Give another proof of Lemma 2.5.1 using the identity
X -X=]] (X-a)

aclky

and the Newton relations between elementary symmetric functions and power
sums.
30. Let p be a fixed prime number and define integers aj by the polynomial identity

I x-5= > ax*.

1<i<p—1 0<k<p—1
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(a) Using the field F, show that p | ay for 1 <k < p—2.

(b) Compute explicitly ag and a;.

(c) Assume that p > 5. Setting X = p in the polynomial identity defining the ag,
prove that p? | a.

(d) Deduce Wolstenholme’s congruence: if p > 5 is prime then

Z lz modp2);
1<j<p ]

in other words, the numerator of the left-hand side is divisible by pZ.
(e) Prove that if p > 5 is prime then

7 =0 (mod p) .
1<j<p—1

(f) More generally, prove that p? | ay, for every odd k such that 1 < k < p—3, and
show that if p > k + 3 then

1 )
E — =0 (mod p"),
; J
1<j<p—1

where v = 2 if k is odd and v = 1 if k is even.
(g) Deduce from (d) and (e) that if p > 5 and n > 1 we have

((n+1)p— 1) _ 1 <(”+ 1)p> =1 (mod n(n + 1)p%) .

np n+1 np

Note that this is a special case of a general congruence that we will prove in
Chapter 11 (Theorem 11.6.22).
See Exercise 50 of Chapter 11 for a sequel to this exercise giving stronger con-
gruences.

31. Let x be a multiplicative character of order n on F,. Prove that x(—1) =1if n
is odd and x(—1) = (=1)~Y/" if n is even.

32. This exercise follows closely the exposition of Section 2.1.6 of [Cohl]. Let F, be
a finite field of odd order, let P € F,[X]| be a monic irreducible polynomial of

degree n, let o be a root of P in some algebraic closure of Fy, let o denote the
Frobenius automorphism x +— z? of L = F,(«), and finally for k € Z set

Di = (1" ] (" (a) =o'(a)).
0o<j<n
Show that disc(P) = [, cyc,, 1 Di-
Show that Dy, is invariant by Gal(L/F,), hence that Dy € F,.

Show that D,,_, = Dy.
Assume that n is even and set

E= [ (/") ~o'(a).

0<j<n/2

[="<IR=>
NN

Prove that D,, /o = E.
(e) Let a be a nonsquare in F,. Show that E/\/a € F,.
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(f) By abuse of notation write (£) for the value at @ of the unique nontrivial

33.

34.

character of order 2 on ;. Conclude from the above

<dlL(P)) - (_1)n—1 )

q

See Exercise 2 of Chapter 10 for a sequel to this exercise.

Let P(z) be an integer-valued polynomial of degree m whose values are not
always divisible by a prime p. Generalizing Corollary 2.5.10, it seems that ex-
perimentally we always have | ZIEFP W(P(x))| < (m—1)p"/2. Prove or disprove,
and if true, generalize to all finite fields (the Weil bounds give KpY? with a
constant K larger than m — 1 in general).

Using the method of finite Fourier series, show the following.

(a) The number M of projective solutions z, y, z in F, of the equation y22? =

(b)

(c)

35.

36.

37.

38.

az® 4+ bz* with a, b in F} satisfies |[M — (¢ + 1)] < Cq'/?, for an absolute
constant C'.

The number M of projective solutions z, y, z in F, of the equation Y2z =
2% 4+ b%2% with b in F} satisfies |M — (¢ + 1)| < Cq'/?, for an absolute constant
C.

Using Jacobi sums instead of finite Fourier series, show that in both cases one
can choose C' = 2 (this is a special case of a theorem of Hasse that we will
prove in Chapter 7).

In the text we have defined and studied Gauss sums attached both to Dirich-
let characters and to characters on finite fields, and we have only studied Ja-
cobi sums attached to finite fields. It is of course immediate to define Jacobi
sums attached to Dirichlet characters, for instance in the case of two charac-
ters modulo m by J(x1,X2) = 2. medm X1(Z)x2(1 — ). Prove that if x1x2
is a primitive character modulo m then, as in the finite field case, we have
J(x1,x2) = T(x1)7(x2)/T(x1x2)-

Let p be a prime such that p =1 (mod 4), let g be a primitive root modulo p,
let x be a character of order 4 on Iy, and write J(x, x) = a+14b. By Proposition
2.5.20 we know that a®> 4% = p, 2 | b, and a = —1 (mod 4), so that a and b are
uniquely determined apart from a possible sign change of b, which is natural
since there are two possible choices for x. If g is a primitive root modulo p such
that x(g) = 4, show that a + bg®1/* = 0 (mod p), which thus determines b
uniquely. Similarly, show that if p = 1 (mod 3), x is a character of order 3 such
that x(g) = p, and J(x, x) = a + bp, then a + bgP~V/3 =0 (mod p).

(Jacobstahl.) Let p be a prime such that p = 1 (mod 4), and let r be a quadratic
residue and s be a quadratic nonresidue modulo p. Prove that p = a? + b? with

N L I C =

i= i=1 p

(]

Let ¢ be such that ¢ = 1 (mod 6) and let x be a character of order exactly
equal to 6 on F,. By Proposition 2.5.20 we can write J(x?, x?) = a + bp with
a®> —ab+b*>=¢q,3|b,and a = —1 (mod 3).

(a) Separating cases, compute explicitly J(x",x™) for 0 < n,m < 5 both even.
(b) Generalizing the results of Section 2.5.4, compute these sums for all n, m.
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39. Let p be a prime such that p = 1 (mod 3). Proposition 2.5.20 tells us among
other things that if we write 4p = ¢® + 27d? then 2 is a cubic residue modulo
p if and only if 2 | d. Show similarly that 3 is a cubic residue modulo p if and
only if 3 | d.

40. Let x be a nontrivial character on F, and let p be a character of order exactly
equal to 2 (so that ¢ is odd).

(a) Prove that the number of solutions of #*> = @ in F, is equal to 1 + p(a), and
deduce that ZIEFQ x(qg —2%) = J(x, p)-
(b) Prove that for any m € F; we have Ezqu x(x(m —x)) = x(m?/4)J(x, p).

(c) If x* # ¢, deduce that for any nontrivial additive character + we have the
following formulas:

T(x,¥)? =
J(x,x) = ,
TO6U)T(xp ) = X2 @)T(E, ¥)T(0,) -

Note that this last formula is the special case m = 2 of the Hasse-Davenport
product relation, which we will prove in Section 3.7.

41. Let p be a prime such that p =1 (mod 4).

(a) Prove that there exists an integer i such that i> = —1 (mod p), and explain
how to find one efficiently using a probabilistic algorithm.

(b) Using Hermite’s inequality on the lattice A in R? generated over Z by the
columns of the matrix (’0’ i), prove that p is a sum of two squares of integers.

(¢) Using the LLL algorithm, give a fast algorithm for finding these two squares.

(d) Show that in this special case the LLL algorithm reduces to a partial Euclidean
algorithm, and write this algorithm explicitly (the resulting algorithm is called
Cornacchia’s algorithm; see Section 1.5.2 of [Coh0]).

42. Prove the formula for S(d1,d2,ds) given in the text after the proof of Theorem
2.5.22. More generally, find an expression for S(di,...,dr).

43. Let g be such that ¢ =1 (mod 6) and let x be a character of order 3 on F,.

(a) Using Corollary 2.5.24 and Proposition 2.5.20, prove Corollary 2.5.25, in other
words that the number of projective solutions to z* 4+ ¢ + z* = 0 is equal to
q+1+c, where 4¢ = ¢® +27d* and ¢ =1 (mod 3).

(b) Prove that J(x, x, x%) = q.

(c) Using once again Corollary 2.5.24, prove that the number of (affine) solutions
to the equation 2 + y® + 2® = 1 in F, is equal to ¢*> 4+ 6¢ — ¢, where ¢ is as
above.

44. Let K = Fy. be a finite field of characteristic 2.

(a) Show that when k is odd the equation 2 + 2 4+ 1 = 0 has no solutions in K.

(b) Using the fact that, when k is even K™ contains a subgroup of order 3, count
the number N (2%) of projective solutions of z° + y* + 2% = 0 in Pa(K).

(c) Compute the Hasse-Weil zeta function of the projective curve x® +y* 4 2% = 0
over Fs.

45. Let FE be a curve of genus 1 defined over a field Fy, and let N = N(q) be
the number of points of E defined over F,. Give an explicit formula for the
number N (g") of points of E defined over F» (see Theorem 2.5.26 and remarks
following).
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46. The goal of this long exercise is to study some elementary properties of Kloost-

(a)
(b)

erman sums. Let p be an odd prime, a and b in Z, and set S(a,b;p) =
> r mod p €¥P(2im(az + bz~ ") /p), where from now on ) " means that the sum
is restricted to elements coprime to p.

Show that S(a,b;p) = S(b,a;p) and that if p t+ n we have S(an,b;p) =
S(a,bn;p).
For k > 1, set Vi(p) = 327 10a, S(a, 1;p)*. Show that if p { b we have Vi (p) =
> ed ,S(a,b; p)*, and deduce that
p-DVip) = > S@bp)—@-1)"-2(-1)"@p-1).
a,b mod p
Compute (p—1)Vi(p) in terms of the number Ny (p) of solutions (z1,...,zx) €

((Z/pZ)*)]c of the system Z1g¢gk T = Z1<igk :ci_l =0.

Deduce from this the values of Vi (p) and Va(p).

Let M(u,v) be the number of solutions (z,y) € ((Z/pZ)*)* of the system
z4y=u, ' +y ' =v. Compute M(0,0), M(0,v) for p{v, and show that
for p t uv we have M (u,v) =1+ (14(1;%1)

Deduce from this and the nontriviality of the Legendre symbol the value of
N4(p), hence of Vi(p).

Deduce from the values obtained that if p { ab we have |S(a, b;p)| < 2p
that there exists a # 0 (mod p) such that [S(a,1;p)| > v/2p — 2.

Note that it has been shown by Weil that if p t ab we have in fact S(a,b;p) <
2p1/ 2,

3/1 and



3. Basic Algebraic Number Theory

In this chapter, we recall (sometimes without proof) the main definitions
and results that we need from basic algebraic number theory. These can be
found in many books, for example [Sam], [Bor-Shal, [Coh0], [Marc], [Fr6-Tay],
[Ire-Ros].

3.1 Field-Theoretic Algebraic Number Theory

3.1.1 Galois Theory

We begin by recalling (with proof) the main results concerning Galois theory
of finite extensions of perfect fields.

Let K be a commutative field. We fix an algebraic closure K of K and we
assume implicitly that all algebraic extensions and all elements are chosen
in this algebraic closure. For simplicity, we will assume that our base field
K is perfect: this means that either K has characteristic 0, or that K has
characteristic p > 0 and the map x +— 2P from K to K is surjective. The
reason for this hypothesis is the following proposition.

Proposition 3.1.1. Let K be a perfect field and « an element that is alge-
braic over K. Then the minimal polynomial of o in K[X] is separable; in
other words, it is coprime to its derivative, or equivalently, it has no multiple
roots in K.

Proof. First, it is easy to check and left to the reader that over any field
K a polynomial is coprime to its derivative if and only if it has no multiple
roots in K. Now assume that K is perfect, and let A € K[X] be the min-
imal polynomial of «. Since K is a field, it is clear that A is irreducible in
K[X] (otherwise one of the factors would have « as a root, contradicting the
minimality of A). Since the GCD of A and A’ is in particular a divisor of
A, it must thus be equal to 1 or A. Assume that it is equal to A. Then A
divides A’, and since A’ has degree strictly less than that of A this means
that A = 0. If the characteristic of K is 0, this means that A is constant,
which is impossible. If the characteristic of K is equal to p > 0, looking at the
coefficients, we see that this means that A(X) = > <, ap XP* for some
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ap € K. But since K is perfect, there exist by with a = b}, and since K
has characteristic p we have A(X) = B(X)? with B(X) = > <, b Xk,
contradicting the irreducibility of A. We thus have a contradiction, showing
that ged(A, A’) = 1, hence the proposition. ad

Fields of characteristic 0 are by definition perfect, as are all finite fields
(Exercise 1). An important example of a field that is not perfect is K’ = F,(T):
it has characteristic p, but 7' € K is not a pth power. In fact, if o = T/?,
the minimal polynomial of o is A(X) = X? — T, and A’'(X) =0, so A is not
separable.

Definition 3.1.2. Let K be a perfect field and let L/K be a finite field ex-
tension (in other words, L is a field containing K as a subfield, and L is
finite-dimensional as a K-vector space). A map o from L to L is called a
K-automorphism of L if o is a field isomorphism that leaves K pointwise
fized. A map o from L to K is called a K-embedding of L into K if o is a
field homomorphism (necessarily injective) that leaves K pointwise fized.

In other words, a K-automorphism ¢ must be a bijection that preserves
the field structure and such that o(a) = a for all @ € K. In particular, o is
a K-endomorphism of L. Since L is finite-dimensional over K it follows that
the bijectivity of o is equivalent to its injectivity or its surjectivity.

Proposition 3.1.3. Let K be a perfect field, and let L/K be an extension
of degree n.

(1) Any embedding of K into K extends to exactly n K-embeddings of L into
K.

(2) There exist at most n K -automorphisms of L, which are the K -embeddings
o of L into K such that o(L) C L.

Proof. By the primitive element theorem (which is true because we have
assumed K to be perfect) we can write L = K(«) for some o € L. Let
A(X) € K[X] be the minimal polynomial of v, which is therefore of degree n
(a K-basis of L is given by 1, a, o2, ..., a"~1). Any element of L is therefore
of the form U(«a) with U(X) € K[X], and U(X) is unique modulo A(X).

For (1), let 7 be an embedding of K into K. To extend 7 to an embedding
of L, for any U € K[X] we must define 7(U(e)) = U™ (7(x)), where U7 is
the polynomial obtained from U by applying 7 to all the coefficients. For this
to make sense we must have 0 = 7(A(«)) = A™(7(«)); hence 7(«) must be
one of the roots of the polynomial A7, which has degree n, and since K is
algebraically closed, A™ has exactly n roots in K; this proves (1).

Furthermore, it is clear that if o is a K-automorphism of L then o is in
particular a K-embedding of L into K, and conversely, such an embedding
is an automorphism if and only if o(L) = L if and only if o(L) C L (since
[L: K] < o), proving (2). O
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Definition 3.1.4. Let o € K and let A(X) € K[X] be its minimal monic
polynomial over K. The roots of A(X) = 0 in K are called the conjugates
of a in K. In other words, two elements o and 3 of K are conjugate if they
have the same minimal monic polynomial over K.

Thus, if deg(A4) = d, « has exactly d conjugates. The elements o(«) in
the above proof are the conjugates of «.

Proposition 3.1.5. Let K be a perfect field and L/K a finite extension. The
following three properties are equivalent:

(1) L is closed under conjugation over K (i.e., if « € L, every conjugate of
a also belongs to L).

(2) There exist exactly n = [L : K| K-automorphisms of L.

(3) If o is a K-embedding of L into K, then o(L) C L.

Proof. By the proof of the above proposition, if L is closed under conju-
gation then all the roots of the minimal polynomial A(X) of « belong to L;
hence there are indeed n K-automorphisms, so (1) implies (2). The equiva-
lence of (2) and (3) is clear from Proposition 3.1.3. Assume (3), let a € L,
let 3 be a conjugate of « over K, and denote by A(X) € K[X] their common
minimal monic polynomial. As above, we can define a field isomorphism o
from K(a) to K(8) by the formula o(U(«)) = U(f3), and this makes sense
only because [ is a conjugate of «. In particular, ¢ is an embedding of K («)
into K (a) = K. By Proposition 3.1.3 (1), o can be extended to an embedding
of L into K (in fact, to [L : K(a)] such embeddings, but we do not need more
than one). By (3) it follows that o () = § € L; hence (3) implies (1). O

Definition 3.1.6. Let K be a perfect field. We say that an extension L/K is
normal or Galois if one of the three equivalent conditions of the proposition is

satisfied. The set of K -automorphisms of L forms a group under composition,
called the Galois group of L/K and denoted by Gal(L/K).

Note that this is the definition of a normal extension. A Galois extension
is one that is normal and separable. Since we have assumed that K is perfect,
this last condition is unnecessary, so the two notions coincide.

We will say that an extension is Abelian (respectively cyclic) if it is Ga-
lois and its Galois group is abelian (respectively cyclic). Since the simplest
finite groups are the groups Z/¢Z with ¢ prime, clearly the simplest Galois
extensions are the cyclic extensions of prime degree. In that case we use the
letter ¢ for the cardinality of the Galois group so that the letter p (and p,
etc.) is still available for prime numbers or places.

Proposition 3.1.7. If L = K(«y,...,ax) and L contains the conjugates of
all the av;, then L/ K is Galois.
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Proof. Any element x € L has the form » = U(a,...,ax), where U has

coefficients in K. If o is a K-embedding of L into K, then the coefficients of
U are fixed by o; hence

o(x) =U(o(a1),...,0(o)),

and since the o(a;) are conjugates of «;, by assumption they belong to L,
and hence o(z) € L. It follows from Proposition 3.1.5 that L is Galois over
K. O

Corollary 3.1.8. If L/K is a finite extension, there exists a finite extension
N of L that is Galois over K, and any such N will also be Galois over L.

Proof. Write L = K(«), and let aq,...,a; be the conjugates of « in
K. Then by the above proposition, N = K(ay,...,q;) is a finite Galois
extension of K. Furthermore, if o is an L-embedding of N into L = K, then
it is also a K-embedding; hence it is a K-automorphism of N, hence an L-
automorphism of V. O

From now on, we use the following standard notation. If L is a field and
H is a group of automorphisms of L, then L¥ denotes the fized field of L
under H, in other words, the set of elements of L that are fixed by all the
elements of H. It is clear that L is a subfield of L.

The following proposition is the key result that we need before proving
the main theorem of Galois theory.

Proposition 3.1.9. Let L/K be a Galois extension with Galois group G and
let H be a subgroup of G. Then L* = K if and only if H = G.

Proof. We have clearly L > K for all H. Choose first H = G, assume
that * € LY and set K; = K(z). Then L/K; is a field extension, and
by assumption every ¢ € G is a Kj-automorphism of L. It follows from
Proposition 3.1.3 that n = |G| < [L : K] < [L : K] =n, so that [L : K1] = n.
In other words, K| = K, proving that LY = K. Now let H be any subgroup,
and assume that L = K. Write L = K(a), and consider

AX) =[] (X =o(a)).
occH

The coefficients of the polynomial A are the elementary symmetric functions
of the o(«a), hence are fixed by H, so A(X) € K[X]. Since «a is a root of A,
it follows that |H| = deg(A) > [L : K] = |G/, so that H = G as claimed. O

We can now state and prove the fundamental theorem.

Theorem 3.1.10 (Fundamental theorem of Galois theory). Let K be
a perfect field, let L/K be a finite Galois extension, and set G = Gal(L/K).
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There exists a one-to-one reverse-ordering correspondence between on the
one hand subfields L1 of L containing K and on the other hand, subgroups
H of G. The correspondence is as follows: if H is a subgroup of G, the
corresponding subfield is L™ . Conversely, if L, is a subfield of L containing
K, the corresponding subgroup is Gal(L/Ly). In other words Gal(L/L*) = H
and LGNL/Ly) — [,

Furthermore, the extension L™ /K is Galois if and only if H is a normal
subgroup of G, and in this case we have a natural isomorphism G/H ~
Gal(L" /K).

Proof. Let Ly be a subfield of L containing K. Since L/K is Galois, any
K-embedding of L into K is a K-automorphism; hence any L;-embedding of
L into L; = K is an automorphism, hence an Lj-automorphism, so L/L; is
Galois by Proposition 3.1.5.

Thus, for each subextension Ly of L/K the group Gal(L/L;) exists, and
we denote by L] the fixed field of L by Gal(L/L;). Applying Proposition 3.1.9
to the Galois extension L/L;, we obtain LGaL/L) = [, Now let H be a
subgroup of G and L; = L. By Proposition 3.1.9 once again, L; = L if and
only if H = Gal(L/Ly). Thus the two maps H ~— L and L, — Gal(L/L,)
are indeed inverse maps, proving the first part of the theorem.

For the second part, let H be a subgroup of G and L; = L the extension
corresponding to H under the above correspondence. Clearly, for each 0 € G
the field corresponding to s Ho ! is o(L1). Now, L1 /K is Galois if and only
if 0(L1) = Ly for each K-embedding o of L; into K, and such an embedding
extends to a K-embedding of L, hence to an element of G since L/ K is Galois.
Thus L,/K is Galois if and only if o(Ly) = L; for all o € G, hence by the
correspondence if and only if cHo~! = H for all ¢ € G, in other words if
and only if H is a normal subgroup of G. Finally, if this is the case, we have
a natural group homomorphism from G to Gal(L,/K) whose kernel is equal
to H. We therefore obtain an injective group homomorphism from G/H to
Gal(Ly/K), and since

|G/H| =|G|/|H|=[L: K]/[L:Li|=[L: K] =Gal(L/K) ,

both groups have the same order; hence the homomorphism is an isomor-
phism. a

Another important result is the following.

Theorem 3.1.11. Assume that L/K is Galois, and let M/K be any finite
extension. Then the extension LM /M is also Galois, and Gal(LM /M) can
be considered as a subgroup of Gal(L/K) by restriction of automorphisms.
Furthermore, we have Gal(LM /M) ~ Gal(L/K) if and only if M and L are
linearly disjoint over K, or equivalently in the present case, M N L = K.
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Proof. Write L = K(«) for some « € L. Clearly LM = M («), and since
the conjugates of a belong to L, hence to LM, Proposition 3.1.7 implies that
LM /M is Galois.

The restriction of an M-automorphism of ML to L gives an embedding
of L into K, hence a K-automorphism of L since L/K is Galois, so we
have a natural map from Gal(ML/M) to Gal(L/K). Furthermore, if o €
Gal(ML/M) is the identity on L, then since it is an M-automorphism it
is also the identity on M, hence on LM, so our map is injective, showing
that Gal(LM /M) can be considered as a subgroup of Gal(L/K). Finally, let
H be the image of Gal(LM/M) in Gal(L/K). Since the fixed field of LM
under Gal(LM /M) is M, the fixed field of L under H is M N L (in detail:
re M iff r € Land o(x) =z forall 0 € H iff v € L and x € M). The
fundamental theorem of Galois theory that we have just proved shows that
H=Gal(L/(MNL)),sothat H=Gal(L/K)ift MNL =K. a

3.1.2 Number Fields

Recall that a number field is a finite extension of the field Q of rational num-
bers, i.e., a commutative field of characteristic 0 that is a finite-dimensional
Q-vector space (note that any field of characteristic 0 is a Q-vector space).

If K is a number field and x € K, then x is an algebraic number; in other
words, it is a root of a nonzero polynomial equation with rational coefficients.
The monic polynomial P,(X) of lowest degree of which x is a root is called
the minimal (monic) polynomial of . If Q(X) is any polynomial with rational
coefficients such that Q(z) = 0, then P, | @; in other words, P, is a generator
of the principal ideal of polynomials in Q[X] that vanish at « (note that Q[X]
is a principal ideal domain (PID) since Q is a commutative field).

We can thus view K as a subfield of an algebraic closure of QQ, which will
often be chosen to be the algebraic closure Q of Q in C.

The Q-dimension of the vector space K is denoted by [K : Q] and called
the degree of K.

Proposition 3.1.12. Let K be a number field and let Q) be an algebraically
closed field containing K. If L/K is an extension of degree n, there exist
exactly n K-embeddings of L into ), i.e., injective field homomorphisms from
L to Q that leave K pointwise fixed. In particular, for K = Q, any number
field of degree n has exactly n embeddings into an algebraically closed field of
characteristic zero.

Proof. The proof is essentially the same as that of Proposition 3.1.3 and
is left to the reader (Exercise 2). O

Remark. The proofs of the above proposition and of Proposition 3.1.3 are
naturally based on the primitive element theorem, in other words, on the
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representation of K as Q(«). It is easily shown (see Exercise 3) that any ra-
tional function in o with rational coefficients is in fact a polynomial of degree
less than or equal to n — 1 with rational coefficients. Thus, 1,c,...,a" ! is
a Q-basis for K, and of course this basis is not at all canonical since any
a € K of degree n satisfies the conditions. Although this is rarely mentioned
in texts, note that this kind of basis, called a power basis, is not always the
most convenient type of basis. For instance, in M. Bhargava’s work on the
enumeration of quartic number fields ([Bhal] and especially [Bha2]), such
fields are viewed as defined by two quadratic equations is two unknowns,

instead of one quartic equation in one unknown.

Proposition 3.1.13. Let K be a number field of degree n. The number of
embeddings of K into C whose image is not contained in R (we will simply
say nonreal embeddings, or sometimes complex embeddings) is even.

Proof. If ¢ is such an embedding and if ¢ denotes complex conjugation,
it is clear that c o ¢ is also such an embedding, and we have co o # o since
otherwise the image of o would be contained in R. ad

Definition 3.1.14. Let K be a number field of degree n. The signature of
K is the pair (r1,r2), where ry is the number of real embeddings and 2ry is
the number of complex embeddings, so that n = ry + 2rs.

Remark. although the notation (rq, ) is the most common, note that some
authors also use (r, ¢) (for real and complex), (r,i) (for real and imaginary),
or (r,s) (for real and the letter after r).

When 7y = n (hence ro = 0) we say that K is totally real, and when
ro =n/2 (hence r; = 0) we say that K is totally complex (of course in this
case n is even).

The signature of a number field K can easily be found by looking at the
proof of Proposition 3.1.12: Using the primitive element theorem, we write
K = Q(a), and we let A € Q[X] be the minimal monic polynomial of & (which
will in fact then be also the characteristic polynomial of « in K). Then rq
(respectively 2r3) is equal to the number of real (respectively nonreal) roots
of A in C. This number can be found using Sturm’s algorithm if desired; see
for example [CohO].

An important remark concerning signatures is that Galois theory often
forbids certain signatures. The following are two examples, but of course we
could give as many as we like.

— If K/Q is a Galois extension of degree n, then either (r1,72) = (n,0) or,
if n is even, (ri,72) = (0,n/2). Indeed, in that case the images of all the
embeddings of K into C are the same, so either they are all real, or they
are all nonreal.
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— If K/Q is an extension of degree n such that the Galois group of the Galois
closure of K/Q is isomorphic to a transitive subgroup of the alternating
group A,, then ro must be even. Indeed, the discriminant of such an ex-
tension is a square, and it is easily shown that the sign of the discriminant
is (=1)™ (see Definition 3.3.12). For example, if n = 4 the only possible
signatures for A4 are (4,0) and (0, 2).

A purely topological property of embeddings that we will need is the
following.

Proposition 3.1.15. Let o be a continuous field homomorphism from R or
C into C. Then either o is the identity or it is complex conjugation.

Proof. We have o(1) = 1; hence for any positive integer n, by induction
we have o(n) = n, hence o(—n) = —n, so that o(n) = n for all n € Z, and
o(p/q) = o(p)/o(q) = p/q hence o(x) = x for all x € Q. If z € R, we can find
a sequence of rational numbers z,, tending to x, hence by continuity o(z) is
the limit of o(x,,) = z,, hence o(x) = z for all € R. Of course continuity
is essential here. Finally, if i = /=1 we have o(i)> = o(—1) = —1, hence
o (i) = ei for some fixed e = £1. Thus, for any z = x + iy € C we have

o(z) =o(x) +o(i)o(y) == + iy,
proving the proposition. O

Note that if ¢ is any field homomorphism from R to R, then o is necessarily
continuous, hence equal to the identity by the above result; see Exercise 4.

3.1.3 Examples

The simplest number field is of course Q. Apart from Q, the simplest number
fields are quadratic fields, i.e., number fields K that are of degree n = 2 over
Q. Such a number field has the form K = Q(v/d) for some d € Q, d not
a square (see Exercise 7). Because Q(v/d;) is isomorphic to Q(v/dz) if and
only if do/dy is a square, it follows that we can always assume that d is a
squarefree integer different from 1. Thus quadratic number fields are exactly
the fields Q(v/d) for d squarefree integers different from 1.

When d > 0, then Q(v/d) has 2 real embeddings and 0 nonreal ones, so
that r; = 2, ro = 0. We then say that it is a real quadratic field. When
d < 0, then Q(\/;i) has no real embeddings and 2 complex conjugate nonreal
embeddings, so that r; = 0, 7o = 1. We then say that it is an imaginary
quadratic field.

In degree three, new phenomena appear. First of all, since 1 +2r = 3, we
have either r; = 3, ro = 0 (so that K is totally real), or 4 = 1, 7o = 1 (then
K is neither totally real nor totally complex, and is simply called a complex
cubic field). However, there are important subclasses of fields among cubic
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fields. First of all the pure cubic fields, which are the analogues of quadratic
fields: they are the fields of the form K = Q(+/d) for some d € Q not a cube.
We may once again assume that d is a cubefree positive integer different from
1. Contrary to the case of quadratic fields, this does not guarantee uniqueness.
More precisely, two such fields corresponding to cubefree positive integral d;
and dy are isomorphic if and only if d; = ds or dids is a cube.

Second, there are the cyclic cubic fields, i.e., cubic fields K such that the
extension K/Q is a Galois extension, necessarily cyclic. For example, consider
the field K = Q(6), where 0 is a root of the polynomial

T(X)=X>+X?-2X —1.

Then one easily checks that the three roots of this polynomial are 6, 62 — 2,
and —02? — 0 + 1. The fact that they are polynomials in 6 is exceptional, and
characterizes Galois extensions. In contrast, if K = Q(#) with § = V/2 a root
of T(X) = X3 — 2, the other roots of T are §(—1 & /—3)/2, which cannot
be expressed as polynomials in 6 since they are not real (it is thus clear that
a Galois extension is either totally real or totally complex). Note that Galois
extensions are rare: any degree-2 extension is of course Galois (change v/d
into —v/d), but in higher degrees, Galois extensions can be shown to have
density zero in a suitable sense.

3.1.4 Characteristic Polynomial, Norm, Trace

Let a be an algebraic number and let T" be its monic minimal polynomial. The
roots a; of 1" in some algebraic closure of Q are by definition the conjugates
of a. By definition, the absolute trace of o is equal to the sum of the ay,
and the absolute norm is equal to the product of the ;. If we write T'(X) =
X" 4+ a1 X" P4+ 4 ag, the trace is thus equal to —a,_; and the norm
is equal to (—1)"ag.

However, these notions are not very useful as such: indeed, we would
naturally like the trace to be additive, and the norm to be multiplicative, but
this is in general not the case. For example, if &« = v/2 and 3 = v/3, the norm
of a is equal to —2 and that of 3 is equal to —3, while that of a8 = /6 is
equal to —6, different from (—2) - (—3).

The reason for this lack of additivity or multiplicativity is that we must
stay in a fixed number field. This leads to the following definitions.

Definition 3.1.16. Let L/K be an extension of number fields of degree n,
and let o € L. The characteristic polynomial Cp, i o(X) of o with respect to
this extension is the characteristic polynomial of the K -linear map multiplica-
tion by a from L to itself. If we write Cpx o(X) = X" +cp 1 X" 1+ 0,
we set Trp, /i () = —cp_1 (the relative trace of o) and N'p /i (a) = (—=1)"co
(the relative norm of ).

The following proposition is then immediate and left to the reader.
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Proposition 3.1.17. Let L/K be an extension of number fields of degree n.

(1) If a« and 8 are in L, we have Trp, /(o + ) = Trp g (o) + Trp i (B) and
Nik(aB) =N k(@) Nk (B).

(2) Ifa € L and a € K, then Trp /g (ac) = aTrp k(o) and N g (an) =
a” NL/K(Oé).

(3) If o; for 1 <i < n arethen K-embeddings of L into an algebraic closure
of K, then Trr r(a) = 301 i, 0i(@) and N'pyie(@) =[], cic, 0i(@).

(4) If a« € L and T,,(X) is the minimal monic polynomial of «, of degree m,
say, then m divides n, Cp, /i o(X) = T.(X)™™ and hence Trp/k(a) =
(n/m)Tr(e) and N x(a) = N(a)"/™, where Tr and N denote the
absolute trace and norm.

One of the most important properties of the trace is the following propo-
sition. It is a general property of separable extensions, and we have already
seen it in the context of finite fields (Proposition 2.4.11). In characteristic
zero the proof is even simpler.

Proposition 3.1.18. Let K be a number field of degree n. The map (x,y) —
Trg/q(zy) defines a nondegenerate Q-bilinear form on K x K with values in

Proof. The above proposition shows immediately that this map is a Q-
bilinear form. If x is such that Trg q(zy) = 0 for all y € K, then if  # 0 we
can choose y = 1/, so that 0 = Trg/g(1) = n, a contradiction because we
are in characteristic zero, proving that the map is nondegenerate. a

3.1.5 Noether’s Lemma

Lemma 3.1.19 (Noether). Let L/K be a Galois extension with Galois
group G, and let ¢ be a map from G to L*. We will say that ¢ salisfies
the cocycle condition if for all g, h in G we have

d(gh) = ¢(g) - g(o(h)) -

Then ¢ satisfies the cocycle condition if and only if there exists a € L* such

that
«

Vg € G, ¢(9)=@~

Proof. If ¢(g) = a/g(a), we have

o) 9(0(0) =~ () = s = otah)

so ¢ satisfies the cocycle condition. Conversely, assume that ¢ satisfies the
cocycle condition. For x € L, set
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o(z) =Y ¢(h)h(z) .

heG

Then ¢ is an additive map from L to L. Applying Corollary 3.2.2, which we
will prove below, to the distinct homomorphisms h € G, we deduce that o is
not identically zero (recall that ¢(h) # 0 for all h by assumption). Hence let
x € L be such that o = o(x) # 0. We have

g(a) = 9(2 ¢><h>h<x>> =Y g(b(h)gh(x) ;

heG heG

hence by the cocycle condition

gla) = ¢(9)™" > dlgh)gh(z) = ¢(9)™" Y d(h)h(z) = d(g) '

heG heG

proving the lemma. a

3.1.6 The Basic Theorem of Kummer Theory

Let K be a commutative field, K a fixed algebraic closure of K. We will
assume as usual that all algebraic extensions of K are in K. Let n > 1 be
an integer, and denote by (, a primitive nth root of unity. In this section,
we make the fundamental assumptions that n is not divisible by the charac-
teristic of K (or that K has characteristic 0) and that ¢, € K. What this
last statement means is that the equation X™ —1 = 0 (which has no multiple
roots in K since the characteristic of K does not divide n) has exactly n
roots, which are then powers of a single one, which we denote by (,.

Theorem 3.1.20. Letn > 1 be an integer, and let K be a commutative field
of characteristic not dividing n and such that (, € K. There is a natural
bijection between finite subgroups of K*/K*" and finite Abelian extensions
of K whose Galois group has exponent dividing n. This bijection is obtained
as follows. If B is a finite subgroup of K*/K*", the corresponding Abelian
extension is obtained by adjoining to K all nth roots of lifts of elements of
B. If L is a finite Abelian extension of K whose Galois group has exponent
dividing n, then B = (L*"NK*)/K*". In addition, under this correspondence
the Galois group Gal(L/K) is isomorphic to B.

Proof. Let B be a finite subgroup of K*/K*™, and let S = {s1,...,s;} be
a set such that the classes of elements of S in K*/K*" generate the group B
(for example, representatives of all the elements of B). Note that conversely,
if S is a finite set, the subgroup of K*/K*" generated by the classes of the
elements of S is also finite, since it has at most n/°! elements. We let

Kp =K (/31,..., /57) -
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This makes sense since ¢, € K (it could also be made to make sense oth-
erwise). Note for future reference that for all b € K* such that b € B, the
equation 2™ — b = 0 has a solution in K} (and, in fact, n solutions since
(n € K). Indeed, if b = ™[], 5% for some integers a, and some w € K*,
then x = w [[;(1/5;)* is a solution.

We are going to prove that the map B — Kp is the desired bijection. Note
first that K /K is a finite Abelian extension. Indeed, it is the compositum
of the extensions K ({/s;)/K, and these are Abelian extensions since ¢, € K,
and so all the roots of the polynomial X™ —s; = 0 belong to K( {/s;) for any
choice of the root. In fact, all these extensions are cyclic extensions of degree
dividing n; hence the Galois group of their compositum is isomorphic to a
subgroup of (Z/nZ)*, hence in particular has an exponent dividing n.

Let G be the Galois group of Kp/K, and denote by u, = u, (K) the
subgroup of K* of nth roots of unity. We define the following pairing ( , )
from G x B to p,, as follows. Let o € G and b € B. As we have seen, there
exists # € Kp such that " = b. We will set

First, note that this is indeed an nth root of unity. In fact, (o(8)/8)" =
o(b)/b = 1 since b € K*. Second, the definition does not depend on the
choice of (3. Indeed, if 5’ is such that 8" = by" for some v € K*, then for
some j we have 3'/3 = (v € K*, and so o(8') /8 = o(8)/B-

Furthermore, we evidently have

(o,b0) = {(0,b)(0,b') and
or(B

) _oTONTB) _ i 000y

(or,b) =2

B T(B) B

and since 7 acts trivially on K, hence on u,,, we have
(o7,b) = (0, b)(7,D) .

This means that ( , ) is a Z-bilinear pairing. In other words, the map o —
{,-) is a group homomorphism from G to Hom(B, p,,), and the map b + (-, b)
is a group homomorphism from B to Hom(G, u,,). We are going to compute
the kernels of these two homomorphisms.

First, fix 0 € G, and assume that (0,b) = 1 for all b € B. Thus, if
8™ = b, then o(8) = £. This implies that for all our generators s; we have
o(y/51) = {/5i, and so o(x) = x for all z € Kp; hence 0 = 1, so the left
kernel is trivial.

Second, fix b € B, and assume that (o,b) = 1 for all o € G. If 3" = b,
we thus have o(3) = f for all ¢ € G, and hence by Galois theory, 8 € K*.
Thus, b € K*", s0 b =1 in B, and the kernel is again trivial. Therefore, we
obtain what is called a perfect pairing between G and B.
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Thus, the two maps we deduce from the pairing are injective, and in
particular we obtain

G| < [Hom(B,p,)| and |B| < [Hom(G, p,)| -

On the other hand, if A is a finite abelian group of exponent di-
viding n then Hom(A, p,) ~ A noncanonically (see Exercise 5). Hence
|Hom(G, p,,)| = |G| and |Hom(B, w,,)| = |B|, so both our injective homo-
morphisms are also surjective, from which we deduce that

B ~ Hom(G, p,,) ~G .

Thus, with each finite subgroup B of K*/K*" we have associated a fi-
nite Abelian extension Kp of K whose Galois group G has exponent n and
isomorphic to B.

Conversely, let L be such an Abelian extension. We must show that L =
K for a suitable B. Let G be the Galois group of L/ K. We are going to show
that B = (L*" N K*)/K*" is such that L = Kp. Clearly, B is a subgroup
of K* of exponent dividing n. Let us show that B is finite. Using the same
pairing ( , ) as before, we see that the proof of the injectivity of the map
B — Hom(G, p,,) did not use the finiteness of B. Thus this map is still
injective, and since G is a finite group, we deduce that B is finite.

Lemma 3.1.21. Any homomorphism from G to u,, has the form

o +— (0,b)
for some b € B.

Assuming this lemma, it follows that the map B — Hom(G,p,,) is a
bijection and hence that |B| = |G|. By definition of B we have K C Kp C L.
Since Gal(Kp/K) ~ B, Gal(L/K) = G, and |B| = |G|, it follows that
[Kp: K] =[L:K]and so L = Kp, as claimed.

To prove the lemma, let ¢ be a homomorphism from G to p,,. Recall that
@, C K, hence that any element of G = Gal(L/K) fixes p,, pointwise. Thus,
for all 0 and 7 in G we have

$(o7) = $(0)d(7) = (o) (¢(T)) -

Thus the map ¢ considered as a map from G to L* satisfies the conditions
of Noether’s theorem (Lemma 3.1.19); therefore there exists a € L* such
that ¢(o) = o(a)/a for all o € G. Since we also have ¢(0)™ = 1, we obtain
o(a)® = a™ for all ¢ € G. Hence by Galois theory o™ € K*, and so a™ €
L*™ N K*. Tt is clear that b = a” is such that ¢(c) = (o,b), proving the
lemma and hence the theorem. O
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Corollary 3.1.22. Let K be a commutative field and n > 1 an integer not
divisible by the characteristic of K such that (, € K.

(1) An extension L/K is a cyclic extension of degree n if and only if there
exists o € K* such that @ is exactly of order n in K*/K*" and such that
L= K(ya),

(2) The cyclic extensions L1 = K(y/ay) and Ly = K(y/az) are K-
isomorphic if and only if there ewists an integer j coprime to n and
v € K* such that ag = arjy™.

Proof. (1) Let L/K be a cyclic extension of degree n. By Theorem
3.1.20, there exists a subgroup B of K*/K*" such that L = K and B ~
Gal(L/K) ~ Z/nZ. If @ is a generator of B, it is clear that Kp = K({/«).
Conversely, if L = K({/«) with a € K*, then L/K is a cyclic extension of
degree n if and only if @ generates a subgroup of order n of K*/K*".

(2) Since L; and Ly are cyclic extensions contained in K, L and Lo
are isomorphic if and only if they are equal, hence if and only if By = By,
where B; is the cyclic subgroup of K*/K*" corresponding to L;. Let @; be
a generator of By, so that L; = K(3/a;). Then By = By if and only if there
exist integers j and k such that @ = a7’ and @y = a” , hence arl =1,
Since aj is a generator of By it follows that kj =1 (mod n), hence that j is
coprime to n, as claimed. a

Definition 3.1.23. Let K be a commutative field and n > 1 an integer not
divisible by the characteristic of K such that (, € K. Let ay; and ag be
elements of K* of order exactly equal to n in K*/K*". We will say that
ay and as are n-Kummer equivalent (or simply Kummer equivalent if n
is understood) if K(y/oq) is K-isomorphic to K(y/az), hence by the above
corollary, if there exists an integer j coprime to n and v € K* such that
as = ajy".

Since any finite Abelian extension of K can be obtained as a compositum
of cyclic extensions of prime-power degree, to build finite Abelian extensions
it suffices to build cyclic extensions of prime-power degree. In turn, these
extensions can be built as towers of extensions of prime degree (although
this is not a nice way to look at such extensions).

3.1.7 Examples of the Use of Kummer Theory

Let K be a commutative field with characteristic 0 or strictly larger than
the degrees of the extensions that we will consider. Using Kummer theory,
we want to construct explicitly up to K-isomorphisms all finite Abelian ex-
tensions L of K of small degree n (we can even do this more generally for
non-Galois extensions, but it is beyond the scope of this book; see [Cohl]).
We are going to see that this can be done quite explicitly in small cases. We
denote by C,, the cyclic group of order n.
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— For n = 2, we must have G = C5. The condition (, € K is always satisfied,
and hence the above results imply that the general Cs-extension is L =
K((le/2) for some o € K*\ K*?, Kummer equivalence being simply o /o €
K*=.

— For n = 3 and G = C3, we have two cases. If (3 € K the situation is as in
the Cy case: L = K(a'/?) for some o € K* \ K**, Kummer equivalence
being either o/ /o or o/cv in K*3.

If (3 ¢ K, we may still apply Kummer theory, but we first have to adjoin
(3 to K: We set K, = K((3), which is an extension of degree 2, and we
denote by 7 the generator of Gal(K,/K). The compositum L, of K, and L
is an Abelian extension of K with Galois group Cg, and this is easily seen
to imply that L. = K. () with = o'/3 for some a € K*\ K**, and that
7(0) = 0~ (otherwise we do not have o = o6, where o is a generator of
Gal(L/K) ~ Gal(L./K.)); hence ar(a) = Nk, /k(a) = 1, and hence by
Hilbert’s Theorem 90 (which is trivial for quadratic extensions) « = 7(5) /3
for some 3 € K, which is 3-Kummer equivalent to a = 3%7(3). It can then
be shown that L = K (0 + 6~1). To find an equation for L/K, we write
B = (u+vv=3)/2, e = (u? +3v?)/4, and the equation satisfied by § +6~!
is

X3 —3eX —eu=0.

The reader can fill in the details in the above construction, and also
consider the cases Cy, Cs5, and Cy x Cs.

3.1.8 Artin—Schreier Theory

In the case that the characteristic of K divides n, we must replace Kummer
theory by another one called Artin—Schreier theory. Although not more diffi-
cult than Kummer theory, and in some sense easier, we will not consider it in
detail in this book, but look only at the special case n = p, where the prime
p is the characteristic of K. We begin with n = p = 2, which is especially
simple.

Proposition 3.1.24. Let K be a perfect field of characteristic 2. Quadratic
extensions L of K have the form K(0), where 6 is a root of an Artin—Schreier
polynomial X2 — X — a for some a € K not of the form x?> — z for x € K.
Furthermore, a and o' define K-isomorphic extensions if and only if ' — a
has the form x? — x for some x € K.

Proof. Since K is perfect, the extension is separable, and hence by the
primitive element theorem, L = K (), where 6 is a root of X? —bX —c¢ =0
for some b and ¢ in K. Since K is perfect we cannot have b = 0, otherwise
X? —c would be the square of a polynomial in K[X]. Thus if we set Y = X /b,
we obtain the equation (bY)? —b(bY) — ¢ = 0; in other words, Y2—Y —a =0
with @ = ¢/b?, as desired. Such an equation defines a quadratic extension
if and only if it is irreducible, if and only if it has no roots, meaning that
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a ¢ G, where G is the additive subgroup of K formed by the x? — x (note
that 22 —x + 9> —y = (v +y)?> — (x + y)). For the last statement, let ¢
be an isomorphism from K to K’ with evident notation. Then ¢ is entirely
determined by ¢(#), which must be of the form v’ 4+ v with u, v in K and
u # 0. Therefore

0=¢(0?—0—a)=u20"+0>—ub —v—a=(u®—u)f +u?d +v°—v—a.

Since 1 and 0" are K-linearly independent and u # 0, we must have u = 1,
hence a — a’ = v? — v as claimed. 0

The general result for n = p > 2 is essentially the same (compare it with
Corollary 3.1.22), but we must work a little more.

Proposition 3.1.25. Let K be a perfect field of characteristic p. An exten-
sion L/K is a cyclic extension of prime degree p if and only if L = K(«),
where a is a root of an Artin—Schreier polynomial X? — X — a for some
a € K not in the Fp,-vector space G of elements of the form z —x for x € K.
The conjugates of a are then the a + k for k € Fy,. Furthermore, a and o
define K-isomorphic extensions if and only if there exists j € ¥} such that
a —jaed.

Proof. Let o be a generator of Gal(L/K). By the normal basis Theorem
3.2.12, which we will prove below, there exists § € L such that the o%(6)
for 0 < i < p—1 form a K-basis of L. We can thus write in particular
1 =3 ocicpi a;0'(0) for some a; € K. Since 1 is stable by o, applying o
we deduce that a; = a;_1 for all 4, in other words that all the a; are equal to
some nonzero u € K, say. Since uf is still a normal basis, replacing 6 by u8,
we may assume that « = 1, in other words that 1 =37, a'().

Now choose @ = —> ;190" (f). Then
o(@)—a=—(p-1)0— Y  (-1o'O)+ Y ic'®)= Y  o0)=1
1<i<p—1 0<i<p—1 0<i<p—1

so that o(a) = a + 1, and hence o”*(a) = a + k for all k. It follows that the
characteristic (and minimal) polynomial of « is

[I x-c'e)y= ] X-(a+i)=][[X-a-i)

0<i<p—1 0<i<p—1 icF,
=X-af-X-a)=XP-X—(a —a),

hence is indeed an Artin—Schreier polynomial. Note that, although this is
automatic from the proof, a = o — « € K by Galois theory, since o(a) =
(a+1)P—(a+1)=a?+1—(a+1)=a.

A necessary condition for X? — X — a to be irreducible in K[X] is that
it have no roots in K, in other words that a ¢ G, where G is the additive
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subgroup of the elements of K of the form P — = for x € K. This condition
is in fact sufficient. Indeed, let P(X) be a nonconstant irreducible factor of
XP — X — a of degree d < p, say. Fix some root a of P in K. Then all the
o+ k for k € F), are roots of X — X — a, and exactly d among them are
roots of P. Furthermore, the set of £ € ), such that a + k is a root of P
forms an additive subgroup of F), since if P(a+ k) = 0 for some « root of P,
then P(X + k) is divisible by, hence equal to, P(X), so the set in question is
the set of k € [, such that P(X + k) = P(X), which is clearly an additive
group. Since the cardinality of this group is d, we have d | p, hence d = 1 or
d = p. The case d = 1 is excluded since we assume that a ¢ G, so that d = p.
In other words X? — X — a is irreducible, as claimed.

Finally, let L = K(«) and L' = K (o) be K-isomorphic cyclic extensions
defined by roots of Artin—Schreier polynomials X? — X —a and X? — X — o’
respectively, and let ¢ be a K-isomorphism from L’ to L. Thus ¢(a') is a
polynomial in « of degree d such that 1 < d < p — 1, so write ¢(a’) =
Eogkgd apa® for some ap € K with ag # 0. Since we are in characteristic p
and o = a + a we have

0=0¢(” —a' —d)= Z al kP — Z ara® —a’

0<k<d 0<k<d
= g ak o+ a g akoz —ad
0<k<d 0<k<d

The right-hand side is now a polynomial of degree less than or equal to
d < p—1in a, hence must be the zero polynomial since « has degree p.
Identifying the coefficients of degree d, we see that a!, — aq = 0. Identifying
now the coefficients of degree d — 1 and assuming that d > 1, we obtain
al,_| — agq—1 + daal; = 0. Since by assumption aq # 0, and since d # 0 also
satisfies d? — d = 0 in characteristic p, it follows that a = xP — z, where
x = —ag—1/(dag), which is absurd since by assumption « is not of this form.
It follows that we must have d = 1. In that case since a] = a; we can set
J = ay as an element of 7, and the identification of the coefficients of degree
0 gives af) — ag + ja — a’ = 0, in other words a’ — ja € G, as claimed. O

3.2 The Normal Basis Theorem

3.2.1 Linear Independence and Hilbert’s Theorem 90

In this section, all fields that are considered are commutative (thus corre-
sponding to the usual English meaning). We begin with the Dedekind inde-
pendence theorem.

Lemma 3.2.1 (Dedekind independence). Let G be a group, L a field,
and let o1,...,0p, be distinct group homomorphisms from G to L*. Then
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they are L-linearly independent. In other words, if there exist a; € L and a
relation 2 <., @ioi(h) =0 for all h € G, then a; =0 for all i.

Proof. Assume that there exists a nontrivial relation. Choose such a rela-
tion of minimal length, so that, up to reordering of the o,

VheG Y aioi(h) =0 (1)

1<i<k

with & minimal. For any g € G, we have for all h, >3, ;< a;oi(gh) = 0.
Multiplying relation (1) by o1(g) and subtracting, we obtain that for all g
and h in G we have

Y ailoilg) = or(9)ai(h) .

1<i<k

and since the first coefficient vanishes, this is a relation of length k—1 between
the characters. By the minimality of &, this must be the trivial relation, and
again by minimality the a; are nonzero; hence 0;(g) = o1(g) for all i < n and
all g € G. Since the characters are distinct, this implies n = 1, hence o1 = 0,
which is absurd. a

Corollary 3.2.2. Let K and L be fields, and let o1, ...,0p, be distinct field
homomorphisms from K to L. Then the o; are L-linearly independent in the
vector space of linear maps from K to L.

Proof. Clear by applying the above lemma to G = K*. O

Corollary 3.2.3. Let E/F be a finite extension of commutative fields of de-
gree n. The elements of Gal(E/F) form an E-basis of the space Lp(E) of
F'-linear maps from E to E. In other words, we have the direct sum decom-
position

[:F(E) = @ Eo .

oc€Gal(E/F)

Proof. Indeed, Lr(FE) is an F-vector space of dimension n?, hence an
E-vector space of dimension n, so any family of n FE-linearly independent
elements form an FE-basis. O

The next result is valid for finite cyclic extensions of commutative fields,
hence it applies in particular to extensions of finite fields, since finite fields
are commutative and extensions of finite fields are cyclic generated by the
Frobenius automorphism.

Proposition 3.2.4 (Hilbert’s Theorem 90). Let E/F be a finite cyclic
extension of commutative fields of degree n and let o be a generator of the
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Galois group G = Gal(E/F). If a € E* is such that [ [, ., 0’ (o) = 1, there
exists 3 € E* such that o = 3/o(B). In other words, for the action of the
group algebra Z[G] on E*, we have Ker(3 o<y 07) =1Im(1 — o).

Proof. Consider the map ¢ from G to E* defined for k > 0 by ¢(c%) =
[To<j<k o’ (). Since [To<j<n 0’(a) and o has order n, the map ¢ is well
defined, in other words depends only on £ modulo n. It is immediately checked
that ¢ satisfies the cocycle condition of Noether’s lemma:

oMot (0(0) = ] o’(@)o"( [] o'(a))

0<j<k 0<i<t

I[ 7@ JI @

0 <k k<j<k+t

I[I o/(e)=e(").

0<j<k+t

It thus follows from Noether’s Lemma 3.1.19 that there exists € E* such
that ¢(c*) = B/0"(3), and the proposition follows by taking k = 1 since
o(o) = a. O

Remarks. (1) There is an additive version of Hilbert’s Theorem 90, as well
as a version for ideals. The modern way of looking at this theorem is to
say that a certain 1-cohomology group vanishes; see Section 4.4.4.

(2) If B € L* is such that « = §/0(8), then by Galois theory all other
possible 3 have the form ~ for v € K*.

(3) Even though Hilbert’s Theorem 90 is not true as written for an arbitrary
Abelian extension E/F, there exist suitable generalizations to this case.
Note that Noether’s lemma has no cyclicity assumption.

3.2.2 The Normal Basis Theorem in the Cyclic Case

The following theorem can be called the fundamental theorem of linear alge-
bra.

Theorem 3.2.5. Let F' be a commutative field, let o be an endomorphism
of a finite-dimensional F-vector space E, let P be its minimal polynomial
over F, and let s be the degree of P. There exists 0 € E such that the
minimal polynomial of the restriction of o to the vector space generated by
0,0(0),...,0°71(0) is still equal to P.

Proof. First, let A and B be coprime polynomials in F[X]. We leave as
an easy exercise for the reader (Exercise 10) to show that

Ker((AB)(0)) = Ker(A(o)) ® Ker(B(0)) .
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Thus, let P = [[, P/ be the factorization into irreducibles in F[X] of P, and
set E; = Ker(P/" (0)). Using the above remark, since the P;" are pairwise
coprime, we obtain by induction £ = Ker(P(c)) = @, E;. The subspaces E;
are clearly stable under o, and the minimal polynomial of the restriction o;
of o to E; must be equal to P/* since otherwise P would not be the minimal
polynomial of o. Thus there exists §; € E; such that P/ "' (0)(6;) # 0. Thus
the minimal polynomial of the restriction of o; to the vector space generated
by i, 0:(6;),. .. divides P and does not divide P/" ~', hence is equal to P/
It is now clear that § = ), 0; satisfies the required conditions. O

We can now state and prove the normal basis theorem in the cyclic case.
Since extensions of finite fields are always cyclic, this proves in particular the
normal basis theorem for finite fields.

Theorem 3.2.6. Let E/F be a finite cyclic extension of commutative fields
of degree n and let G = Gal(E/F) be its Galois group. There exists an element
0 € E whose conjugates under the action of G form an F-basis of E, in other
words E is a free F[G]-module of dimension 1.

Proof. Let o be a generator of G (in the case of finite fields, we have seen
that we can choose for o the Frobenius automorphism corresponding to F').
Since the n elements o! for 0 < i < n — 1 are distinct, they are F-linearly
independent by Corollary 3.2.2; hence the minimal polynomial of o over F'
is equal to X™ — 1 (and since it has degree n this is also its characteristic
polynomial). By the above theorem, it follows that there exists § € E such
that the minimal polynomial of the restriction of o to the subspace generated
by 0,0(0),...,0"1(0) is still equal to X™ — 1. In particular, they are F-
linearly independent, proving the theorem. a

The goal of the next subsections is to prove that this theorem is still valid
in the noncyclic case. In particular, we will assume that the field F' is infinite.
This more general result will not be used in the rest of this book, so can be
skipped at first. We follow closely [Lan0].

3.2.3 Additive Polynomials

From now on, let F' be an infinite commutative field. In this case, we note the
important fact that if P € F[Xy,..., X,,] is a polynomial in n variables, then
the formal polynomial P can be identified with the function that it induces
from F™ to F. In other words, if P(x1,...,2,) =0 for all (z1,...,z,) € F™,
then P is the zero polynomial (evidently this is not true when F is finite;
consider X? — X over ).

Definition 3.2.7. We say that a polynomial P is an additive polynomial if
it satisfies one of the following two equivalent conditions:
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(1) The function corresponding to P from F™ to F is an additive homomor-
phism.

(2) If X = (X1,...,X,) and Y = (Y1,...,Y,) then P(X +Y) = P(X) +
P(Y) as formal polynomials.

The equivalence of the above two conditions comes from the above remark.

Proposition 3.2.8. A polynomial P € F[Xy,...,X,] is additive if and only
if it has the form 3, <, Pi(X;), where the P;i(X;) are additive polynomials
in one variable. Furthermore,

(1) When F has characteristic 0 the additive polynomials in one variable are
the polynomials aX with a € F.
(2) When F has characteristic p > 0, the additive polynomials in one variable
are the polynomials
PX)= Y ax?
0<k<m
with the ay € F.

Proof. We can write

(le"'7X7l): Z (03"'aXi7"'7O)a

and so by definition of additive polynomials we have

P(Xy,....Xn) = Y Pi(Xi),

1<i<n

where P;(X;) = P(0,...,X;,...,0) is clearly an additive polynomial in one
variable. Thus let now P(X) be an additive polynomial in one variable, and
let a,. X" with a,, € F* be a nonzero monomial. The monomials of total degree
rin P(X+Y)— P(X)— P(Y) are thus given by a, (X +Y)" — X" —=Y"),
which must therefore be identically zero. This is indeed the case if r = 1. If
r > 1 it contains the term r X"~ 'Y, so that » = 0. In other words, F has
positive characteristic p dividing r. Furthermore, if we write r = pFs with
p1s, then

(X+Y) = X" =Y = (X + Y7 )" — (XP')s — (v?')s

and the same reasoning shows that s = 1, so that the nonzero monomials
have degree r = p¥, as claimed. a

3.2.4 Algebraic Independence of Homomorphisms

Definition 3.2.9. Let A be an abelian group (written additively), and let
01,-..,0, be additive homomorphisms from A to F. We say that the o; are
algebraically dependent over F' if there exists a monzero polynomial P €
F[Xy,...,X,] such that P(oy(z),...,0n(x)) =0 for all x € A. If such a P
does not exist, we say that the o; are algebraically independent.
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The main result that we need is the following.

Theorem 3.2.10 (Artin). If the o; are algebraically dependent as above,
we can choose P to be a (nonzero) additive polynomial.

Proof. For simplicity, we will write 3(z) instead of (o1(z),...,on(2)).
Let P(Xy,...,X,) be the polynomial of lowest possible total degree that is
nonzero and is such that P(X(z)) = 0 for all z € A. We will prove that P is
additive. Set Q(X,Y)=P(X +Y)— P(X) — P(Y), so that for all z, y in A
we have

Q(E(x),%(y) = P(E(z +y)) — P(5(z)) — P(X(y)) = 0

since the o; are additive. Assume by contradiction that @ is not the zero
polynomial, hence (since F' is infinite) that @ is not identically zero on F™ X
F". We consider two cases.

Case 1: We have Q(v,X(y)) = 0 for all v € F™ and all y € A. By assumption
there exists v/ € F™ such that P;(Y) = Q(v/,Y") is not the zero polynomial.
By definition of @ the degree of P, in Y is strictly less than that of P. On
the other hand, P (X(y)) = Q(v',X(y)) = 0, so we obtain a contradiction
with the minimality of the degree of P.

Case 2: There exist v € F™ and y € A such that Q(v,X(y)) # 0. Here we
set P1(X) = Q(X,%(y)). Then Pj is not the zero polynomial, P;(X(z)) =0
for all z € A by the defining property of ), and the degree of P; is strictly
less than that of P, again a contradiction.

We have thus shown that @ is identically 0, hence is the zero polynomial,
so P is additive. ad

Theorem 3.2.11. As above, let F' be an infinite field, and let o+, ...,0, be
distinct elements of a finite group of automorphisms of F'. Then the o; are
algebraically independent over F.

Proof. By Theorem 3.2.10, there exists a nonzero additive polynomial
P such that P(X(z)) = 0 for all x. If F' has characteristic 0, by Theorem
3.2.8 such a polynomial is simply a linear form, and hence the result follows
from linear independence (Corollary 3.2.2). Thus assume now that F has
characteristic p > 0. By Theorem 3.2.8 we can thus write

Z Z ai7kai(a:)pk=O

1<i<n 1<km

for all x € F, and at least one coefficient a;j not equal to 0. Denote by
¢ the map = — zP from F to itself. Since F' has characteristic p, ¢ is a
homomorphism of F into F', and 0(917)1’1c = 0o ¢*(z). Note that a(a:)pk is not
equal to o?" (z). The above relation is thus a nontrivial linear dependence
relation between the homomorphisms ¢; o ¢*. By Corollary 3.2.2 once again,
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it follows that these homomorphisms cannot be distinct. In other words, there
exist distinct pairs (i, k) and (4, ¢) such that o; o ¢¥ = 0 0 ¢*, so that

for all x € F. Now note that in characteristic p we have (x — y)P = 2P — yP;
hence it follows that P = P implies that x = y. Thus if we assume for
instance that k < £, we obtain

oi(z) = oj(a? ")

forallz € F. If weset o = aj_lai, this means that o(z) = a? " forallz € F.
Since o belongs to a finite group of automorphisms of a certain order r, say,

o" is the identity. In other words,

for all x € F'. But such an equation has only a finite number of roots in the
commutative field F', unless £ — k = 0 (and r = 1). Since F is infinite, it
follows that ¢ = k, hence o; = o, hence ¢ = j (since the o; are distinct), in
contradiction to the fact that (i, k) # (4, ). O

Remark. Do not confuse oP(x) with o(x)P, for instance. Indeed, oP(x)
means that we compose o with itself p times, and apply to z, while o(x)? =
o o ¢(x) with the above notation. Similarly, the fact that ¢” = o1, where o
is the identity automorphism does not mean that o and oy are algebraically
dependent, the polynomial P being P(X,Y) = X" — Y. Indeed,

P(o(z),01(x) = o(2)" —2 = o(a”) —

and this has no reason to be equal to 0 for all = since ()" is not in general
equal to 0" (x).

3.2.5 The Normal Basis Theorem

We are now in a position to prove the normal basis theorem in complete
generality.

Theorem 3.2.12. Let E/F be a finite Galois extension of commutative
fields of degree n, and let G = Gal(E/F) be its Galois group. There exists an
element 0 € E whose conjugates under the action of G form an F-basis of
E, in other words E is a free F|G|-module of dimension 1.

Proof. If F is a finite field, then E/F is a cyclic extension, so that the
result is Theorem 3.2.6. We can therefore assume that F' is infinite.

Let 01,...,0, be the (distinct) elements of G, numbered so that oy is the
identity. We can write
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_1 .
0; 05 = Ot(ij5)

for some function ¢ from [1,n] x [1,n] to [1,n]. Set
P(Xy, .., Xp) = det((Xoi ) hr<ij<n) -

Since Xy(; ;) = X if and only if o; = o; if and only if ¢ = j, it follows
that P(1,0,...,0) = 1, since it is equal to the determinant of the identity
matrix, so that P is a nonzero polynomial. By Theorem 3.2.11, it follows
that there exists § € F' such that P(o1(6),...,0,(0)) # 0. Since by definition
04(,5)(0) = o; '(0j(0)), this can be written

det(a; }(0;(6))) #0 .

I claim that 6 is the desired element. Indeed, assume that there exists a
nontrivial linear dependence relation ZKK” a;o;(0) = 0. Applying O'i_l to
this relation for all i shows that

Z ajo; toij(0) =0,

1<j<n

which is a nontrivial linear dependence relation between the columns of the
matrix (o; '0,(6)):;, contradicting the fact that its determinant is nonzero.
O

3.3 Ring-Theoretic Algebraic Number Theory

The field-theoretic properties seen in the preceding sections are evidently
essential for any further study. However, the most interesting part of algebraic
number theory deals with the ring-theoretic properties, which we summarize
in this section.

3.3.1 Gauss’s Lemma on Polynomials

Definition 3.3.1. Let A € Z[X] be a nonzero polynomial. We define the
content of A and denote by c¢(A) the GCD of all the coefficients of A.

Proposition 3.3.2 (Gauss’s lemma). If A and B are two nonzero poly-
nomials in Z[X], we have ¢(AB) = ¢(A)c(B).

Proof. Let us say that a polynomial A € Z[X] is primitive if its con-
tent is equal to 1. Since A = ¢(A)A; with A; primitive, it is clear that the
proposition is equivalent to the statement that the product of two primitive
polynomials A and B is primitive. Assume the contrary, so that there exists a
prime number p that divides all the coefficients of AB; in other words AB = 0
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where, for any P € Z[X], P € (Z/pZ)[X] denotes the polynomial obtained by
reducing the coefficients of P modulo p. Since we evidently have AB = AB
and since (Z/pZ)[X] is an integral domain, it follows that A = 0 or B = 0,
in other words that p divides all the coefficients of A or all the coefficients of
B, in contradiction with the fact that A and B are primitive. O

Corollary 3.3.3. Let C € Z[X] be a monic polynomial and assume that
A € Q[X] is a monic polynomial such that A | C in Q[X]. Then in fact
A € Z[X].

Proof. Write C' = AB with B € Q[X]. Let da (respectively dg) be the
smallest integer such that d4 A (respectively dpB) is in Z[X], in other words,
the LCM of the denominators of the coefficients of A (respectively B). We
can write dadgC = (daA)(dpB). By the minimality assumption, we have
c(daA) = ¢(dpB) = 1, hence by Gauss’s lemma ¢(dadpC) = 1, and in
particular d4 = 1, hence A € Z[X]. O

3.3.2 Algebraic Integers

We begin with the following basic proposition.

Proposition 3.3.4. Let « be an algebraic number. The following four prop-
erties are equivalent.

(1) The number « is a oot of a monic polynomial with coefficients in Z.

(2) The minimal monic polynomial of o has coefficients in Z.

(3) The ring Zla] of polynomials in « with integer coefficients is a finitely
generated Z-module.

(4) There exists a commutative ring with unit R that is a finitely generated
Z-module and such that o € R.

Proof. (1) = (2): Assume that P(a) = 0 with P € Z[X] monic, and
let T be the minimal monic polynomial of a. By definition, T divides P in
Q[X], and T is monic, so we conclude by Corollary 3.3.3.

(2) = (3): Let T(«) = 0, where T is the minimal monic polynomial
of a, hence with integral coefficients, and set n = deg(T). If L is the Z-
module generated by 1,a',...,a” !, then by assumption a” € L; hence by
induction o € L also for any k > n. Thus L = Z[a], so that the elements
1,al, ..., a" ! form a generating set of Z[a]; hence Z[a] is a finitely generated
Z-module.

(3) = (4): Simply choose R = Z[a].

(4) = (1): This is the only really amusing part of the proof. Since
R is a finitely generated Z-module, there exist w1, ...,w, that generate R
as a Z-module. Since R is a ring and o € R, there exist a; ; € Z such that
for 1 g j g n we have aw; = Zlgign g, 5Wi. If A= (aivj)lgl',jgn is the
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matrix of the a; ;, if we set M = al,, — A with I,, the n x n identity matrix,
and finally if B = (w1,...,wy) is the row vector of the w;, then this can
be written BM = 0. If M was invertible as a matrix with coefficients in
the field Q(«), then multiplying by M1, we would obtain B = 0, hence
R = {0}, contradicting the fact that 1 € R (unless &« = 0, but in that case
the implication is trivial). Thus M is not invertible, so that det(M) = 0. This
means that « is a root of det(XI,, — A), the characteristic polynomial of the
matrix A, and this is clearly a monic polynomial with integral coefficients.
O

Note that we could not use directly the Cayley-Hamilton theorem since
R is not necessarily a free Z-module, and even so the w; are not necessarily
Z-linearly independent.

Definition 3.3.5. (1) An algebraic number satisfying one of the above equiv-
alent properties is called an algebraic integer.

(2) A nonzero algebraic integer whose inverse is also an algebraic integer is
called a unit.

By Proposition 3.3.4, when « is not an algebraic integer, Z[«a] is not
finitely generated. The simplest example is with a = 1/2: the ring Z[1/2] is
the subring of elements of Q whose denominator is a power of 2. This ring
is also not free (although it has no torsion), since two rational numbers are
always Z-linearly dependent.

Proposition 3.3.6. If o and § are algebraic integers, then so are a+ (3 and
af. In other words, algebraic integers belonging to a fixed algebraic closure

of Q form a ring.

Proof. Consider R = Z|«, ], the ring of polynomials in v and (. Since «
and [ are algebraic integers, of respective degree m and n, say, it is clear that
the (a"ﬂj)ogkm o<j<n form a finite set that generates R as a Z-module, and
since a + J and «af belong to R we conclude by Proposition 3.3.4. ad

It is possible to give a direct (but less elegant) proof of this proposition
that directly uses the fact that o and ( are roots of monic integral polynomi-
als. This uses the notion of resultant, and gives an algorithm for computing
the minimal polynomials of o 4+ 3 and of af3; see FExercise 12.

Proposition 3.3.7. Let P(X) be a monic polynomial whose coefficients are
algebraic integers, and let a be such that P(a) = 0. Then « is an algebraic
integer.

Proof. Write P(X) = X" + 37, ;<1 BiX". Since the j; are algebraic
integers, it follows that Z[01,. .., 3,—1] is a finitely generated Z-module. Let
Y1,-..,7yn be a finite generating set, and let R = Z[o, 31, ..., 0n—1]. As in
the proof of the implication (2) = (3) of Proposition 3.3.4, it is clear that
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the ;07 for 1 <i < N and 0 < j < n — 1 form a finite generating set for R.
We conclude by Proposition 3.3.4. a

When an algebraic number « is not necessarily an algebraic integer, we
can still obtain finitely generated free Z-modules as follows.

Proposition 3.3.8 (Dedekind). Let a be an algebraic number and let T €
Z[X] be a nonzero polynomial such that T(«) = 0. Write T(X) = a, X" +
Ap 1 X" 1+ +a1 X +ag, letwg =1, and for 1 <j <n—1, set

. -
wj = ane’ +ap_10d7 4 Fan_; .

The finitely generated Z-module R