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Preface

The computation of invariants of algebraic number fields such as integral
bases, discriminants, prime decompositions, ideal class groups, and unit
groups is important both for its own sake and for its numerous applications,
for example, to the solution of Diophantine equations. The practical com-
pletion of this task (sometimes known as the Dedekind program) has been
one of the major achievements of computational number theory in the past
ten years, thanks to the efforts of many people. Even though some practical
problems still exist, one can consider the subject as solved in a satisfactory
manner, and it is now routine to ask a specialized Computer Algebra Sys-
tem such as Kant/Kash, LiDIA, Magma, or Pari/GP, to perform number field
computations that would have been unfeasible only ten years ago.The (very
numerous) algorithms used are essentially all described in A Course in Com-
putational Algebraic Number Theory, GTM 138, first published in 1993 (third
corrected printing 1996), which is referred to here as [Coh0]. That text also
treats other subjects such as elliptic curves, factoring, and primality testing.

It is important and natural to generalize these algorithms. Several gener-
alizations can be considered, but the most important are certainly the gen-
eralizations to global function fields (finite extensions of the field of rational
functions in one variable over a finite field) and to relative extensions of num-
ber fields. As in [Coh0], in the present book we will consider number fields
only and not deal at all with function fields.

We will thus address some specific topics related to number fields; contrary
to [CohO0], there is no attempt to be exhaustive in the choice of subjects. The
topics have been chosen primarily because of my personal tastes, and of course
because of their importance. Almost all of the subjects discussed in this book
are quite new from the algorithmic aspect (usually post-1990), and nearly all
of the algorithms have been implemented and tested in the number theory
package Pari/GP (see [Coh0] and [BBBCO)]). The fact that the subjects are
new does not mean that they are more difficult. In fact, as the reader will see
when reading this book in depth, the algorithmic treatment of certain parts
of number theory which have the reputation of being “difficult” is in fact
much easier than the theoretical treatment. A case in point is computational
class field theory (see Chapters 4 to 6). I do not mean that the proofs become
any simpler, but only that one gets a much better grasp on the subject by
studying its algorithmic aspects.

As already mentioned, a common point to most of the subjects discussed
in this book is that we deal with relative extensions, but we also study other
subjects. We will see that most of the algorithms given in [Coh0] for the
absolute case can be generalized to the relative case.

The book is organized as follows. Chapters 1 and 2 contain the theory and
algorithms concerning Dedekind domains and relative extensions of number
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fields, and in particular the generalization to the relative case of the round 2
and related algorithms.

Chapters 3, 4, 5, and 6 contain the theory and complete algorithms con-
cerning class field theory over number fields. The highlights are the algo-
rithms for computing the structure of (Zg/m)*, of ray class groups, and
relative equations for Abelian extensions of number fields using Kummer the-
ory, Stark’s conjectures, and complex multiplication. The reader is warned
that Chapter 5 is rather technical but contains a wealth of information useful
both for further research and for any serious implementation. The analytic
techniques using Stark’s conjecture or complex multiplication described in
Chapter 6 are fascinating since they construct purely algebraic objects using
analytic means.

Chapters 1 through 6 together with Chapter 10 form a homogeneous
subject matter that can be used for a one-semester or full-year advanced
graduate course in computational number theory, omitting the most technical
parts of Chapter 5.

The subsequent chapters deal with more miscellaneous subjects. In Chap-
ter 7, we consider other variants of the notions of class and unit groups, such
as relative class and unit groups or S-class and unit groups. We sketch an
algorithm that allows the direct computation of relative class and unit groups
and give applications of S-class and unit groups to the algorithmic solution
of norm equations, due to D. Simon.

In Chapter 8, we explain in detail the correspondence between cubic fields
and binary cubic forms, discovered by H. Davenport and H. Heilbronn, and
examine the important algorithmic consequences discovered by K. Belabas.

In Chapter 9, we give a detailed description of known methods for con-
structing tables of number fields or number fields of small discriminant, either
by using absolute techniques based on the geometry of numbers or by using
relative techniques based either on the geometry of numbers or on class field
theory.

In Appendix A, we give and prove a number of important miscellaneous
results that can be found scattered in the literature but are used in the rest
of the book.

In Appendix B, we give an updated but much shortened version of [Coh0,
Appendix A] concerning packages for number theory and other useful elec-
tronic information.

In Appendix C, we give a number of useful tables that can be produced
using the results of this book.

The book ends with an index of notation, an index of algorithms, and a
general index.

The prerequisites for reading this book are essentially the basic defini-
tions and results of algebraic number theory, as can be found in many text-
books, including [Coh0]. Apart from that, this book is almost entirely self-
contained. Although numerous references are made to the algorithms con-
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tained in [CohO], these should be considered as “black boxes” and used as
such. It would, however, be preferable at some point for the reader to study
some of the algorithms of [Coh0]; in particular, those generalized here.

WARNINGS

(1) As usual, neither the author nor Springer-Verlag can assume any respon-
sibility for consequences arising from the use of the algorithms given in
this book.

(2) The author would like to hear about errors, typographical or otherwise.
Please send e-mail to

cohen@math.u-bordeaux.fr
Lists of known errors, both for [Coh0] and for the present book, can be
obtained by anonymous ftp from the URL
ftp://megrez.math.u-bordeaux.fr/pub/cohenbook
or obtained through the author’s home page on the Web at the URL
http://www.math.u-bordeaux.fr/"cohen

(3) There is, however, another important warning that is almost irrelevant in
[Coh0]. Almost all of the algorithms or the algorithmic aspects presented
in this book are new, and most have never been published before or
are being published while this book is going to press. Therefore, it is
quite possible that major mistakes are present, although this possibility
is largely diminished by the fact that almost all of the algorithms have
been tested, although not always thoroughly. More likely it is possible
that some algorithms can be radically improved. The contents of this
book only reflect the knowledge of the author at the time of writing.
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1. Fundamental Results and Algorithms in
Dedekind Domains

1.1 Introduction

The easiest way to start studying number fields is to consider them per se, as
absolute extensions of Q; this is, for example, what we have done in [Coh0].
In practice, however, number fields are frequently not given in this way. One
of the most common other ways is to give a number field as a relative exten-
sion, in other words as an algebra L/K over some base field K that is not
necessarily equal to Q. In this case, the basic algebraic objects such as the
ring of integers Z 1, and the ideals of Z , are not only Z-modules, but also Z g-
modules. The Z g-module structure is much richer and must be preserved.
No matter what means are chosen to compute Zj, we have the problem of
representing the result. Indeed, here we have a basic stumbling block: consid-
ered as Z-modules, Z, or ideals of Z, are free and hence may be represented
by Z-bases, for instance using the Hermite normal form (HNF); see, for ex-
ample, [Coh0, Chapter 2]. This theory can easily be generalized by replacing
Z with any other explicitly computable Euclidean domain and, under certain
additional conditions, to a principal ideal domain (PID). In general, Zg is
not a PID, however, and hence there is no reason for Zj, to be a free module
over Zk. A simple example is given by K = Q(v/~10) and L = K (v-1)
(see Exercise 22 of Chapter 2).

A remarkable fact, discovered independently by several authors (see [Bos-
Poh] and [Cohl]) is that this stumbling block can easily be overcome, and
there is no difficulty in generalizing most of the linear algebra algorithms
for Z-modules seen in [Coh0, Chapter 2] to the case of Z g-modules. This is
the subject matter of the present chapter, which is essentially an expanded
version of [Coh1].

Thus, the basic objects of study in this chapter are (finitely generated)
modules over Dedekind domains, and so we will start by giving a detailed
description of the main results about such modules. For further reading, I
recommend [Fr6-Tay] or [Boul].

Note that, as usual, many theoretical results can be proved differently by
using algorithmic methods. After finishing this chapter, and in particular after
the study of the Hermite and Smith normal form algorithms over Dedekind
domains, the reader is advised to try and prove the results of the next section
using these algorithms.
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1.2 Finitely Generated Modules Over Dedekind
Domains

I would like to thank J. Martinet for his help in writing this section. For the
sake of completeness, we first recall the following definitions.

Definition 1.2.1. Let R be a domain, in other words a nonzero, commuta-
tive ring with unit, and no zero divisors.

(1) We say that R is Noetherian if every ascending chain of ideals of R is
finite or, equivalently, if every ideal of R is finitely generated.

(2) We say that R is integrally closed if any = belonging to the ring of frac-
tions of R which is a root of a monic polynomial in R[X] belongs in fact
to R.

(3) We say that R is a Dedekind domain if it is Noetherian, integrally closed,
and if every nonzero prime ideal of R is a mazimal ideal.

Definition 1.2.2. Let R be an integral domain and K its field of fractions.
A fractional ideal is a finitely generated, nonzero sub-R-module of K or,
equivalently, an R-module of the form I/d for some nonzero ideal I of R and
nonzero d € R. If we can take d = 1, the fractional ideal is an ordinary ideal,
and we say that it is an integral ideal.

Unless explicitly mentioned otherwise, we will always assume that ideals
and fractional ideals are nonzero.

We recall the following basic facts about Dedekind domains, which explain
their importance.

Proposition 1.2.3. Let R be a Dedekind domain and K its field of fractions.

(1) Every fractional ideal of R is invertible and is equal in a unique way to
a product of powers of prime ideals.

(2) Every fractional ideal is generated by at most two elements, and the first
one can be an arbitrarily chosen nonzero element of the ideal.

(3) (Weak Approzimation Theorem) Let S be a finite set of prime ideals of
R, let (ep)pes be a set of integers, and let (zp)pes be a set of elements
of K both indexed by S. There exists an element x € K such that for
adl p € S, vp(z —zp) = ep, while for all p ¢ S, vp(z) > 0, where vy(z)
denotes the p-adic valuation.

(4) IfK is a number field, the ring of integers Z g of K is a Dedekind domain.

In the context of number fields, we recall the following definitions and
results.

Definition 1.2.4. Let | | be a map from K to the set of nonnegative real
numbers.
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(1) We say that | | is a field norm on K if |z =0 <= z =0, [z+y| <
|z| + |y|, and |zy| = |z||y| for allz and y in K.

(2) We say that the norm is non-Archimedean if we have the stronger condi-
tion |z + y| < max(|z|,|y|) for all z and y in K; otherwise, we say that
the norm is Archimedean.

(3) We say that the norm is trivial if |[z| =1 for all x # 0.

(4) We say that two norms are equivalent if they define the same topology
on K.

Theorem 1.2.5 (Ostrowsky). Let K be a number field and let o; be the
n =11 + 2r; embeddings of K into C ordered in the usual way.

(1) Let p be a prime ideal of K. Set
Jel, = N (p) 7> )

ifz # 0, and |0|, = O otherwise. Then |z|, is a non-Archimedean field
norm.

(2) Any nontrivial, non-Archimedean field norm is equivalent to |z|, for a
unique prime ideal p.

(3) If o is an embedding of K into C and if we set

|zl, = lo()| ,

where | | is the usual absolute value on C, then |z|, is an Archimedean
field norm.

(4) Any Archimedean field norm is equivalent to |z|, for a unique o; with
1<i<r +r2. (Note that lem+r2 is equivalent to |z|, forrm < i <

1 +7T2.)

Definition 1.2.6. A place of a number field K is an equivalence class of
nontrivial field norms. Thus, thanks to the above theorem, the places of K
can be identified with the prime ideals of K together with the embeddmgs o;
f orl1<i<r +r2.

Finally, we note the important product formula (see Exercise 1).

Proposition 1.2.7. Letni =1 for1<i<r,n; =2ifr, <i<ry+rs.
Then, for all x € K we have

I kCI]lkl,=
p

1<i<r1+r2

With these definitions, in the context of number fields we have a strength-
ening of Proposition 1.2.3 (3) to the case of places as follows.
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Proposition 1.2.8 (Strong Approximation Theorem). Let S be a fi-
nite set of places | |; of K, let (z;)ics be a set of elements of K, and let
(€:)ies be a set of positive real numbers both indezed by S. There ezistsz € K
such that |z — z;|; < €; for dll | |; € S, while |z|; < 1 for all places | |; ¢ S
except perhaps at one place not belonging to S, which can be arbitrarily cho-
sen.

Note that, due to the product formula, it is necessary to exclude one place,
otherwise the proposition is trivially false (see Exercise 2). Clearly the weak
approximation theorem is a consequence of the strong one (we choose for the
excluded place any Archimedean one, since there always exists at least one).
The following corollary is also important.

Corollary 1.2.9. Let So be a finite set of prime ideals of K, let (ep)pes, be
a set of integers indexed by Sp, and let (s;)scs,, be a set of signs £1 indezed
by the set S of all ) Teal embeddings of K. There exists an element z € K
such that for all p € Sp, vp(z) = €y, for all 0 € S, sign(o(z)) = s,, while
for all p & So, vp(z) > 0, where vy(z) denotes the p-adic valuation.

Proof. Set S = Sp U S considered as a set of places of K thanks to
Ostrowsky’s theorem. For p € Sp, we choose

yp € p N pt! and e, =N(p)~*
while for o € S, we choose
=5, and &, = l
Yo = So c = 5 -

The strong approximation theorem implies that there exists y € K such that
ly — ypl, <ép for p € So and |y — yo|, < €, for 0 € Seo, and |y|, < 1 for all
p ¢ S except at most one such p.

The condition |y — y,,lp < gp is equivalent toy —y, € p**!; hence vp(y) =
ep by our choice of y,.

Since s, = %1, the condition |y —y,|, < 1/2 implies in particular that
the sign of y is equal to s,.

Finally, if p ¢ S, the condition |y|, < 1 is evidently equivalent to v,(y) >
0.

Thus y is almost the element that we need, except that we may have
Upo (y) < O for some po ¢ S. Assume that this is the case (otherwise we
simply take £ = y), and set v = —vp,(y) > 0. By the weak approximation
theorem, we can find an element 7 such that vy, (7) = v, vp(7r) = 0 for all
p € So, and vp(7w) > 0for p ¢ SoU {po} (we can use the weak approximation
theorem since we do not need to impose any Archimedean conditions on ).
Since a square is positive, it is immediately checked that z = 7%y satisfies
the desired properties. O
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Corollary 1.2.10. Let m be any nonzero ideal. There exists o € m such that
for every prime ideal p such that vp(m) # 0 we have vp(a) = vp(m). Such an
element a will be called a uniformizer of the ideal m.

Proof. This is an immediate consequence of Corollary 1.2.9. ]

The two most important examples are the following: if m = p is a prime
ideal, then « is a uniformizer of p if and only if @ € p\p?; if m = p~! is
the inverse of a prime ideal, then « is a uniformizer of p~! if and only if
aE€ p_l \Zkg.

Corollary 1.2.11. Let m be any (nonzero) integral ideal, and let a be an
tdeal of R. There ezxists o € K* such that aa is an integral ideal coprime to
m; in other words, in any ideal class there exists an integral ideal coprime to
any fized integral ideal.

Proof. Indeed, apply the weak approximation theorem to the set of prime
ideals p that divide m or such that v,(a) < 0, taking e, = —vp(a). Then, if
«a is such that vp(a) = ep for all such p and nonnegative for all other p, it is
clear that ca is an integral ideal coprime to m. O

In this chapter, R will always denote a Dedekind domain and K its field of
fractions. In the following sections, we will also assume that we can compute
explicitly in R (this is, for example, the case if K is a number field), but for
the theoretical part, we do not need this.

The main goal of this section is to prove the following results, which
summarize the main properties of finitely generated modules over Dedekind
domains (see below for definitions).

Theorem 1.2.12. Let M be a finitely generated module over a Dedekind
domain R.

(1) The R-module M is torsion-free if and only if M is a projective module.
(2) There exists a torsion-free submodule N of M such that

M = Miors ® N and N~ M/Mors -

(3) If M is a torsion-free R-module and V = KM, there exist (frac-
tional) ideals a; and elements w; € V such that

M=oqw ®aw @ ---Da,w, .

The ideal class of the product a = ajaz---a, in the class group of R
depends only on the module M and is called the Steinitz class of M.

(4) The module M is a free R-module if and only if its Steinitz class is equal
to the trivial class, in other words if and only if a is a principal ideal.
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(5) If M is a torsion module, there exist unique nonzero integral ideals 0; of
R and (nonunique) elements w; € M such that

M= (R/bl)wl D---D (R/an)wn

and 0,1 C0; for2<i<n.

Corollary 1.2.13. Let M be a finitely generated module over R of rank r.
There ezist fractional ideals a,, ..., a,, unique integral ideals 01, ...,0, (pos-
sibly equal to zero), and elements wy,...,w, in M such that

(1) M =(a1/0101)wy @ -+ - D (an/0nay)wn,
(2) 91 C 0 for2<i<m,
(3) 9: ={0} ifand only if 1 <i <.
We will prove these results completely in this section, and in passing we
will also prove a number of important auxiliary results.

1.2.1 Finitely Generated Torsion-Free and Projective Modules

Definition and Proposition 1.2.14. Let M be an R-module.

(1) We say that M is finitely generated if there exist o1,...,a, belonging
to M such that any element  of M can be written (not necessarily
uniquely) as ¢ = Y .., Tia; with z; € R.

(2) We define KM = K®pg M in other words,

KM= (K xM)/R ,
where R is the equivalence relation defined by

%a R z—lﬁ <= 3Jde R~ {0} such that d(bzala - azblﬂ) =0,
2 2

and with a natural definition of addition and multiplication.
(3) If M is finitely generated, then KM is a finite-dimensional K -vector
space, whose dimension is called the rank of the R-module M.

Proof. All the assertions are clear, except perhaps for the fact that R is

a transitive relation.
Assume that (a;/a2)a R (b1/b2)B3 and (b1/b2)B R (c1/c2)y. Then, by
definition, there exist nonzero elements d; and do of R such that

dl(bzala — azblﬁ) = dz(Czbl,B - bzcl’)‘) =0e M.
Set z = ceay@ — ascyy. We have

dldgbgz = d262(d1b2(lla) - dlag(dzbzcy')’)
= dyca(dyazb1B) — dyaz(d2cebr ) =0 .
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Since d; # 0, d2 # 0, b2 # 0, and R is an integral domain, it follows that R
is an equivalence relation, as desired. ]

Remark. It is easy to see that if we had defined (a;/az2)a R (b /b2)3 <—
b2a;a—asb B = 0, this would in general not have been an equivalence relation
(see Exercise 3).

Definition 1.2.15. Let M be an R-module.
(1) The torsion submodule of M is defined by

Mtors={zeM/BGGR\{O},G.’EZO} .

An element of Miors is called a torsion element.

(2) We say that M is torsion-free if 0 is the only torsion element; in other
words, if Miors = {0}.

(3) We say that M is a torsion module if all the elements of M are torsion
elements or, equivalently, if M = Mio,s.

Thus, the equivalence relation R defined above can also be given by saying
that (a;/az2)a R (b1/b2)8 if and only if ba1a — az2b1 0 is a torsion element.
In particular, if A = a; /a2, an element (A,a) of KM is equal to zero if and
only if @) is a torsion element, hence either if A = 0 or if « itself is a torsion
element.

For notational convenience, the equivalence class (A, a) in KM of a pair
(A, @) will be denoted Aa. Note that when A € R, this is equal (modulo the
equivalence relation) to the pair (1, Aa), and hence the two notations are
compatible. _

Note also that when M is torsion-free, the map a — (1, ) is injective,
and hence in this case M can be considered as a sub-R-module of K M, and
K M is simply the K-vector space spanned by M.

Definition and Proposition 1.2.16. A module P is projective if it satis-
fies one of the following three equivalent conditions.

(1) Let f be a surjective map from a module F' onto a module G. Then for
any linear map g from P to G there exists a linear map h from P to F
such that g = f o h (see diagram below).

(2) If f is a surjective linear map from a module F' onto P, there exists
a section h of f, in other words a linear map from P to F such that
foh=1idp (where idp denotes the identity map on P).

(3) There exists a module P' such that P ® P' is a free module.

N

i

¥
-
-
«

!
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Proof. Let us prove that these conditions are equivalent. (1) implies (2) is
obvious by taking G = P and g = idp. Assume (2), and let (g;)ic; be a (not
necessarily finite) system of generators of P. Let F' = R() be the set of maps
v from I to R such that v(z) = O for all but a finite number of i. Then F is
a free R-module with basis v; such that v;(¢) = 1 and vi(j) = 0 for j # .
Finally, let f be the map from F to P such that f(v;) = gi. By definition, f
is a surjective linear map. By (2), we deduce that there exists a section h of
f from P to F.

Set P, = h(P). Since f o h = idp, the map h is injective; hence P, is
isomorphic to P. In addition, I claim that FF = P, & Ker(f). Indeed, for
future reference, we isolate this as a lemma:

Lemma 1.2.17. If f is a surjective map from any module F' onto a pro-
jective module P and if h is a section of f (so that f o h = idp), then
F = h(P) @ Ker(f).

Proof. Indeed, if z € F, then y = = — h(f(z)) is clearly in Ker(f) since
foh =1idp; hence z € h(P) + Ker(f), so F' = h(P) + Ker(f). Furthermore,
if z € h(P) N Ker(f), then since x € h(P), z = h(z) for some z € P; hence
since z € Ker(f), 0 = f(z) = f(h(z)) = z, hence £ = h(0) = 0, so we have a
direct sum, proving the lemma. O

This lemma implies Proposition 1.2.16 (3).

Finally, assume that N = P @® P’ is a free module, and let F, G, f, g be
as in (1). Denote by w the projection from N to P defined by n(p+p') = p if
p € P and p' € P', denote by i the injection from P to N so that woi = idp,
let (u;); be a basis of NV, and set g' = g o 7 (see preceding diagram).

Since f is surjective, we can find elements v; € F such that f(vi) = ¢'(u;).
We arbitrarily fix such elements and set h' (21 xiui) =Y ,z;v;. Since N is
free, this is a well-defined linear map from N to F' which clearly satisfies
g = foh';hence g =¢'oi = foh'oi, and so h = h' o satisfies (1). m]

Note that the classical proof above is valid in any (commutative) ring,
and not only in a Dedekind domain, and does not need the condition that
the modules be finitely generated. Note also that the proof of (3) is essentially
the proof that a free module is projective.

Corollary 1.2.18. A projective module is torsion-free.

Proof. Indeed, the third characterization of projective modules shows that
a projective module is isomorphic to a submodule of a free module and hence
is torsion-free since a free module is evidently torsion-free. (]

The first important result of this section is the converse of this corollary
for finitely generated modules over Dedekind domains.
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Theorem 1.2.19. Let M be a finitely generated, torsion-free module of rank
n over a Dedekind domain R. Then M is a projective module. In addition,
there ezists an ideal I of R such that

M~R7'oI.
Before proving this theorem we prove some lemmas.

Lemma 1.2.20. If I and J are any fractional ideals of R, we have an iso-

morphism of R-modules:
IeJ~RolJ .

Proof. Since I ~ kI for any k € R, we can always reduce to the case where
I and J are integral ideals. By Corollary 1.2.11, in the ideal class of J there
exists an integral ideal J; coprime to I. Thus, there exists o € K* such that
Ji = aJ, and it follows that J; ~ J and IJ; ~ IJ, so we may replace J by
J1; in other words, we may assume that I and J are coprime integral ideals.

Let f be the map from I @ J to R defined by f(z,y) = z + y. Since R
is free, hence projective, and since I + J = R, f is surjective, so there exists
a map g from R to I ® J such that f o g = id. Lemma 1.2.17 says that
I®J = g(R) ® Ker(f). Since f o g = id, g is injective; hence g(R) ~ R.
Finally,

Ker(f) ={(z,-z)/z€l,—z € J} ={(z,—z)/z € INJ}~INJ = 1J
since I and J are coprime, proving the lemma. m]

Remark. We will see later how to transform this important isomorphism
into an algorithmic equality (Corollary 1.3.6 and Proposition 1.3.12).

Corollary 1.2.21. Every fractional ideal is a projective R-module.

Proof. Simply apply the preceding lemma to J = I~! and use Proposition
1.2.16 (3). O

Lemma 1.2.22. Let M be a finitely generated, torsion-free module of rank
n, set V = KM, which is a K-vector space of dimension n, and let e be a
nonzero element of V. Finally, set

I={ANeK/Xe€ M} .

Then

(1) I is a fractional ideal of R,
(2) M/Ie is a torsion-free R-module of rank n — 1.
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Proof. (1). It is clear that I is a nonzero R-module. Since M is torsion-free,
as an R-module, [ is isomorphic to Ie (send z to ze), which is a submodule of
the finitely generated module M. Since R is a Noetherian ring, a submodule
of a finitely generated module is still finitely generated, hence I is finitely
generated. It follows that I is a fractional ideal (take as denominator for
the product of denominators of generating elements of I).

(2). Let £ € M/Ie be a torsion element. Thus, there exists a € R \ {0}
such that az € Ie C Ke,so x € KeN M. It follows that £ = Ae € M, hence
XA € I, s0 z € Ie or, equivalently, z = 0, so M/Ie is torsion-free. We have
(M/Ie)K = (MK)/(Ke) and Ke is of dimension 1; hence M/Ie is of rank
n—1. 0O

Proof of Theorem 1.2.19. We prove the theorem by induction on the rank
of M. If the rank of M is zero, then M is torsion, and since M is torsion-
free, M = {0}. Assume the theorem proved up to rank n — 1, and let M
be a torsion-free module of rank n. Let e be a nonzero element of M. By
Lemma 1.2.22 above, M/Ie is a torsion-free module of rank n — 1; hence by
our induction hypothesis, M/Ie is a projective module and isomorphic to
R"~2 @ J for some ideal J (or is zero if n = 1). Lemma 1.2.17 implies that
M = g(M/Ie)® Ie for a section g of the canonical surjective map from M to
M/Ie, and since g is injective, M ~ M/Ie® Ie. Since M/Ie is projective by
induction and Ie ~ I is also projective by Corollary 1.2.21, we deduce that
M is projective. In addition, we have M ~ R""2@J@® I~ R" 1@ IJ by
Lemma 1.2.20, thus showing our induction hypothesis and finishing the proof
of Theorem 1.2.19. m]

Before finishing this section, we must study in more detail the relationship
between the module M and the ideal I such that M ~ R*~ ' @ I.

Theorem 1.2.23. Let I be a fractional ideal of R. Then R*~1 & I is a free
R-module if and only if I is a principal ideal.

Proof. If I is a principal ideal, then I ~ R; hence R" ! ® I ~ R" is
free. Conversely, assume that R"~! @ I is free. Since I is of rank 1, we have
R '@I ~ R". Let f be an isomorphism from R™ to R*~ '@ 1. Let (e:)1<i<n
be the canonical basis of R". Any element £ € K™ can be written uniquely
as T = D <;c, Tiei for some z; € K. If we set g(z) = ) ;< Tif(€i), it is
clear that g(z) € (R"~! @ I)K = K™, that g is a well-defined isomorphism
from K™ into itself such that the restriction of g to R™ is equal to f. In other
words, g can be considered as an element of GL,(K). Let M = (a; ;) be the
matrix of g on the canonical basis, so that g(e;) = f(e;) = D1 <;<n @i j€i for
all j. I claim that I is the principal ideal generated by det(M) — in other
words, that I = det(M)R.
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Note first that by definition, for all j such that 1 < j < n we have
a;; € Rfori <n and a,; € I. If we expand det(M) along the bottom row,
it immediately follows that det(M) € I, hence that det(M)R C I.

Conversely, since f is surjective, it follows that for all u € I there exists
v = Y1cjcn Vi€ € R such that f(v) = uen, which implies that u =
2 _1<j<n @n,jV;; hence the an ; generate the ideal I. Moreover, for any ¢ <n,
there exists ¥ = )°; <<, ¥i,5€; such that f(y;) = e;. Fix an index o, and let
X = (z;;) be the n x n matrix defined by z;; = y;; for j < n, z;» =0 for
i # 1o, and x;,,» = 1. It is clear that we have the block matrix equality

MX=(In_1 C ) E]

0 an,,-o

where I,,_; is the (n — 1) x (n — 1) identity matrix and C an (n — 1) x 1
column matrix. Taking determinants, we deduce that a,, ;, € det(M)R. Since
this is true for all ¢p and since the a, ;, generate the ideals I, it follows that
I C det(M)R; hence I = det(M)R, as was to be proved.

Note that this proof is valid over any integral domain, not only over a
Dedekind domain (I thank D. Bernardi for simplifying my initial proof). O

Corollary 1.2.24. If I and J are two (fractional) ideals of R and R™~! &
I~R"1@J, thenm =n and J and I are in the same ideal class (in other
words, there erists o € K* such that J = al).

Proof. Since I and J are of rank 1, it is clear that m = n. From the given
isomorphism, we deduce that

Rlelel'~R'eJel!.
Using Lemma 1.2.20, we obtain
Rn+1 :Rn®JI—l .

Thus Theorem 1.2.23 implies that JI~! is a principal ideal, whence the corol-
lary. (m]

This corollary shows that, if M ~ R*~! @ I as in Theorem 1.2.19, the
ideal class of I is well-defined and depends only on M. We will call it the
Steinitz class of M and denote it by St(M).

We can restate the above results by saying that the isomorphism class of a
finitely generated, torsion-free (or projective) module is completely classified
by its rank and its Steinitz class.

Corollary 1.2.25. Let M be a finitely generated, torsion-free module. There
erist elements wy, . ..,w, i1n M and fractional ideals a,,...,a, of R such that

M=auw® - - da,w, .

The Steinitz class of M is the ideal class of the product a, - - - a,,.



12 1. Fundamental Results and Algorithms in Dedekind Domains

Proof. From Theorem 1.2.19, we know that M is isomorphic to R"~! & I
for some ideal I whose ideal class is the Steinitz class of M. Replacing if
necessary I by I/a for some nonzero element « of I, we may assume that 1 €
I. Let f be the isomorphism from R*"' &I to M, let e; = (0,...,1,...,0) €
R™'@]I (with 1 at the ith component), and let w; = f(e;) € M. Since f is an
isomorphism, we have M = ajw; & - P a,wy,, witha; = Rfor1<i<n-1
and a, = 1.

By Lemma 1.2.20 we have

W @ B aw, ~R 1@ (a;---a,)
so the corollary follows. ]

Corollary 1.2.26. Let M, N, and P be three finitely generated, torsion-free
modules. Assume that P®@ M ~P® N. Then M ~ N.

Proof. Using Theorem 1.2.19, we have M ~ R™~! @ St(M), N ~ R* 1 @
St(N), P ~ RP~! & St(P), so that

RPY™=2 @ St(P) ® St(M) ~ RP*"~2 @ St(P) @ St(N)
or, in other words, by Lemma 1.2.20,
RPT™~1 @ St(P) St(M) ~ RP*"~! @ St(P)St(N) .
We deduce from Corollary 1.2.24 that m = n and that there exists a € K

such that St(P)St(M) = aSt(P)St(N); hence St(M) = aSt(N) ~ St(N)
since St(P) is invertible, so M ~ N. m}

We end this section with the following two propositions.
Proposition 1.2.27. Let
0—M —M-—M'-—0

be an exact sequence of finitely generated, torsion-free modules. Then
M~MeaeM' and St(M) = St(M')St(M") .

Proof. The isomorphism follows immediately from Lemma 1.2.17: if f is
the map from M to M", there exists a map h from M" to M such that
foh =1idy» and M = h(M") & Ker(f) ~ M" & M' since the sequence is
exact. The required equality of Steinitz classes now follows immediately from
Theorem 1.2.19 and Lemma 1.2.20. O

Proposition 1.2.28. If R is a Dedekind domain with only e finite number
of prime ideals, then R is a principal ideal domain.
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Proof. Let b be the product of the (nonzero) prime ideals of R, which are
finite in number. If ¢ is an ideal of R, by Corollary 1.2.11 we can find an
z € K* such that zc is an integral ideal coprime to b. But this means that
zc is not divisible by any prime ideal of R, hence z¢ = R, and so ¢ = (1/z)R
is a principal ideal, hence R is a principal ideal domain. O

1.2.2 Torsion Modules

We first show that one can split the study of finitely generated modules over a
Dedekind domain into two essentially nonoverlapping parts: the torsion-free
modules we have just studied (Corollary 1.2.25 in particular) and the torsion
modules.

Proposition 1.2.29. Let M be a finitely generated R-module, and let Miors
be the torsion submodule of M. Then there exists a torsion-free submodule N
of M such that

M= Mtors ON .

Proof. If P = M /Mjqs, then P is torsion-free. Indeed, if Y € Piors, there
exists a € R\ {0} such that ay € Miors, and hence there exists b € R \ {0}
such that bay = 0, s0 y € Miors since R is an integral domain, and so y = 0.
From Theorem 1.2.19, we deduce that P is a projective R-module. It follows
that there exists a linear map h from P to M such that f o h = idp, where
we denote by f the canonical surjection from M onto P = M/M;es. From
Lemma 1.2.17 we deduce that M = h(P) & Miors, and, since h is injective,
N = h(P) is isomorphic to P, hence is projective (or torsion-free), thus
proving the proposition. O

Thus, to finish our study of the structure of finitely generated modules
over Dedekind domains, it remains only to study torsion modules. The main
result is the following theorem.

Theorem 1.2.30. Let M be a finitely generated torsion module over a
Dedekind domain R. There exist nonzero integral ideals 0,,...,0,, different
from R, and elements w; € M such that

(1) M =(R/01)w1 @ - & (R/0,)wr,
(2) 0,21 C0; for2<i<r.

The ideals 0; are unique and depend only on the isomorphism class of M.
We first prove two lemmas that are of independent interest.

Lemma 1.2.31. Let S be a finite set of prime ideals of R and let z € K*
such that vp(z) > 0 for allp € S. There exist n and d in R such that z = n/d
and d not divisible by any p in S.
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Proof. Let x = n/d with n and d in R, for the moment arbitrary. By the
approximation theorem, there exists b € K such that

Vp € S, vp(b) = —vp(d) and  Vp ¢S, v(b) 20 .

It follows that for p € S, vp(db) =0 and for p ¢ S, vp(dd) > 0, so db € R and
is not divisible by any p in S. Since for all p € S, vp(z) > 0 or, equivalently,
vp(n) 2 vp(d), it follows that vp(nb) > vp(db) = 0 for p € S and vp(nd) > 0
for p ¢ S, hence nb € R, so x = (nb)/(db) is a suitable representation of
T. 0

Lemma 1.2.32. Let a be a nonzero integral ideal of R and set
B={zeK/Vp|a, vy(z) 20} .
Then

(1)
B={s=2/ndeR @R =1} ;

in other words, B = S™'R, where S is the multiplicative set of elements
of R coprime to a. (We write (I,J) =1 for two integral ideals I and J
to mean that they are coprime — in other words, that I + J = R.)

(2) B is a principal ideal domain.

Proof. (1). It is clear that if (dR,a) = 1, then vy(n/d) = vy(n) > 0 for
all p | a, and hence n/d € B. Conversely, let z € B. Taking for S the set
of prime ideals dividing a, it follows from Lemma 1.2.31 that one can write
z = n/d with n and d in R and d coprime to a, proving (1).

(2). It is clear that B is a ring, and it is also a domain since B C K. By
general properties of rings of fractions S~! R, we know that the prime ideals
of B are exactly the ideals S~!p for the prime ideals p such that pN S = &,
hence in our case the prime ideals dividing a, which are finite in number. Since
B = S~ 'R is also a Dedekind domain, it follows from Proposition 1.2.28 that
B is a principal ideal domain. O

Proof of Theorem 1.2.30. Let a be the annihilator of M in R, so that
a={z€eR/zM ={0}} .

Clearly, a is an R-module contained in R, hence is an integral ideal, and it is
nonzero since M is a finitely generated torsion module (it is the intersection
of the annihilators of some generators of M, hence a finite intersection of
nonzero ideals). Call B the ring defined in Lemma 1.2.32 above. Then B is a
principal ideal domain. Furthermore, if z € B, then £ = n/d with (dR, a) = 1;
hence dR+ a = R. Multiplying by M, we obtain dM = M, hence M = M/d,
and so zM =nM/d C M; hence BM C M, and so BM = M since 1 € B. It
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follows that M can be considered as a B-module instead of as an R-module.
The main advantage is that B is a principal ideal domain. Since R C B,
M is still a torsion module. Hence the structure theorem for modules over
principal ideal domain applies and we deduce that

M~B/b;&---& B/b,

for some integral ideals b; of B, not equal to {0} or B, and such that b;_; C b;
for2<i<r.

Since B = SR and b; = S~19; for some ideal 9; divisible only by prime
ideals dividing a, we have B/b; ~ R/0;, showing the existence of ideals ?;
such that M ~ € R/v;. Let f be the isomorphism from @ R/0; to M.
Then, if we let w; = f(0,...,1,...,0) (with 1 at the ith component), we
have M = @(R/0;)w; as desired. The uniqueness statement follows from the
uniqueness of the b;. ]

Thanks to Theorem 1.2.30, we can give the following definition.

Definition 1.2.33. (1) Let M be a finitely generated torsion module over a
Dedekind domain R, and let 0; be the ideals given by Theorem 1.2.30. We
will say that the 0; are the invariant factors or the elementary divisors of
M, and the ideal product a =0, - -- 0, will be called the order-ideal of the
torsion module M.

(2) Let P and Q be two finitely generated, torsion-free R-modules having the
same rank and such that P C Q. The order-ideal of the torsion module
Q/P will be called the index-ideal of P into Q and denoted [Q : P).

(3) More generally, if P and Q are two finitely generated, torsion-free R-
modules having the same rank and such that PN Q is also of the same
rank, then the (fractional) indez-ideal of P into Q is defined by the for-
mula [Q: P)=[Q:PNQ]-[P:PNnQ]™.

It is easy to see that the definition of the fractional index-ideal does not
depend on the common submodule of P and @ that is chosen, as long as it
is of maximal rank.

When R = Z, the unique positive generator of the order-ideal of a finite
Z-module M is clearly equal to the order of M. When R = Zg for some
number field K, the order-ideal of a Z g-module M is a nonzero ideal a of
Z g, and by the multiplicativity of the norm, we can recover the order itself by
the formula |M| = |Zk/a| = N(a). Thus, the order-ideal is a richer invariant
than the order.

We also have the following simple proposition.

Proposition 1.2.34. Assume that there exist nonzero ideals a; such that an
R-module M satisfies M ~ ®1Sis  R/ai. Then the order-ideal of M is equal

to ngigk a;.
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Proof. This immediately follows from the fact that the order-ideal is un-
changed by module isomorphism, and that the order-ideal of a product of
two modules is equal to the product of the order-ideals. O

We end this section with the elementary divisor theorem for torsion-free
modules, which is now easy to prove using the above techniques.

Theorem 1.2.35. Let M and N be two torsion-free (or projective) modules
of rank m and n, respectively, such that N C M (so n < m). There ezist frac-
tional ideals by,...,bn of R, a basis (e1,...,em) of V. = KM, and integral
tdeals 01,...,0, such that

M=be;® - @®bmen,, N=01b1e; ®-- - G0 bne,

and 0,1 C0; for2<i<n.
The ideals 9; (for 1 < i < n) and the ideal classes of the ideal products
by---b, and by41 -+ - by, depend only on M and N.

Proof. Let us first prove uniqueness, so let 9; and b; be ideals as in the
theorem. Since b;/0;b; ~ R/0;, we have

M/N~R/0,®---Rfo, & R™™ " |

hence (M/N)tors = R/01 @ - - - R/0,, so the uniqueness statement for the 9;
follows from the uniqueness statement of Theorem 1.2.30. Furthermore, M ~
b1 ®---®byn ~ R™"1®b; - - by by Lemma 1.2.20, and similarly N ~ R*~1@
0,---0,b;---b,. By Corollary 1.2.24, the ideal class of 9; ---0,b; --- b, is
well-defined, hence also that of b; - - - b,, since the 0; are unique. Finally, the
ideal class of b; - - - by, is well-defined, hence also that of b, 4; - - - by,.

To prove the existence statement, we first reduce to the case where m =n
by writing M/N = (M/N)tors ® M' for some torsion-free module M', which
can be done using Proposition 1.2.29. If we set M" = {z € M/ z mod N €
(M/N)tors}, then M" /N = (M/N)tors. Hence, once suitable ideals 9; and b;
are found for the pair (M", N), we add some extra ideals b; by using Theorem
1.2.19 applied to the torsion-free module M'.

Hence, we now assume that m = n, so M/N is a finitely generated torsion
module. We prove the result by induction on n. Assume that n > 1 and that
it is true for n — 1. By Theorem 1.2.30, we have M/N = @, .;, diw; for
certain ideals 0;. Using the same method as in the proof of Theorem 1.2.19,
we see that if by = {z € K/ zw) € M}, then M = byw; & g(M /b w1 ), where
g is a section of the canonical projection of M onto M/bjw;. Similarly, if
& = {z € K/ zw; € N}, then N = qqw; & ¢'(N/cywy). Since N C M, we
have ¢; C by, and in fact ¢; = b;01, and in addition ¢' can be taken to be the
restriction of g to N/cijw;. Thus, we apply our induction hypothesis to the
modules N¢yw; C M/byw; of rank n—1, and we obtain the desired result. O
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Remark. The reader will have noted that in many cases we have tried as
much as possible to give equalities between modules, and not simply isomor-
phisms, even if the isomorphisms are canonical. This is essential in algorithmic
practice.

We now have at our disposal the main theoretical results we will need
about finitely generated modules over Dedekind domains. We will always
implicitly assume that all R-modules are finitely generated.

In the next section, we will study the algorithmic aspects. The reader
will notice that many of the algorithms that will be described give alternate
proofs of the theoretical results.

1.3 Basic Algorithms in Dedekind Domains

From now on, R will denote a Dedekind domain in which it is possible to
compute efficiently. The reader can think of R = Zg, since this is the only
application that we have in mind (see [CohO, Sections 4.6.1 and 4.6.2] for
a brief overview). However, the ring R could also be a maximal order in a
global field of positive characteristic, for example.

1.3.1 Extended Euclidean Algorithms in Dedekind Domains

Proposition 1.3.1. Given two coprime integral ideals a and b in R, we can
find in polynomial time elements a € a and b € b such thata +b = 1.

Proof. Since this is a very simple but basic proposition, we give the proof
as an algorithm.

Algorithm 1.3.2 (Extended Euclid in Dedekind Domains). Let R be a

Dedekind domain in which one can compute, and let (w;)i<i<» be an inte-

gral basis chosen so that w; = 1 (it is easy to reduce to this case, and in practice

it is always so). Given two coprime ideals a and b given by their HNF matrices

A and B on this integral basis, this algorithm computes @ € a and b € b such

thata+b=1.

1. [Apply Hermite] Let C be the n x 2n matrix obtained by concatenating A
and B (we will denote this by C + (A|B)). Using one of the polynomial-
time algorithms for HNF reduction (see, for example, [CohO, Section 2.4.2)]),
compute an HNF matrix H and a 2n x 2n unimodular matrix U such that
CU = (0|H).

2. [Check if coprime] If H is not equal to the n x n identity matrix, output
an error message stating that a and b are not coprime, and terminate the
algorithm.

3. [Compute coordinates] Set Z + U, 41, the (n+ 1)st column of the matrix U,
and let X be the n-component column vector formed by the top n components
of Z.
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4. [Terminate] Let a be the element of K whose coordinate vector on the integral
basis is AX, and set b «+ 1 — a. Output a and b, and terminate the algorithm.

Indeed, the HNF of the matrix C is the HNF of the ideal a+b. Since a and
b are coprime, it is the identity matrix. It follows that CZ = (1,0,...,0)%.
If we split Z into its upper half X and its lower half Y, it is clear that AX
and BY represent on the integral basis elements a € a and b € b such that
a + b =1, and hence the algorithm is valid. ‘ m}

Implementation Remarks

(1) It was, of course, not really necessary in the proof that the ideals be given
by HNF matrices, but only by Z-bases. If we really do have HNF bases,
the first column of the matrix A of a will correspond to a generator 2, of
aNZ, and similarly the first column of B will correspond to a generator
zp of b N Z. Frequently, z, and z, will be coprime. In that case, the
usual extended Euclidean algorithm will easily find u and v such that
uzq +vzp = 1, and we can take a = uz, and b = vzs.

(2) Since the algorithm underlying this proposition will be absolutely basic
to all our algorithms on Dedekind domains, we must ensure that it gives
results that are as reasonable as possible. Indeed, the elements a and b
are not unique and can be modified by adding and subtracting from a
and b, respectively, some element of the ideal product ab. Hence it would
be nice to have an element r € ab such that a —r is “small” (and then we
replace a by a—r and b by b+r = 1— (a—r), which will also be “small”).
In Algorithm 1.4.13 we will see how this can be done reasonably well.

(3) This is the most important part of this chapter, where we specifically use
the fact that the Dedekind domain R is the ring of integers of a number
field, so as to be able to compute a and b in polynomial time.

We now come to a theorem that is trivial to prove but is the basic tool for
our algorithms. It is a generalization to Dedekind domains of the extended
Euclidean algorithm, as follows.

Theorem 1.3.3. Let a and b be two (fractional) ideals in R, let a and b be
two elements of K not both equal to zero, and set ® = aa + bb. There exist
u € ad~! and v € bd~! such that au + bv = 1, and these elements can be
found in polynomial time.

Proof. If a (resp., b) is equal to zero, we can take (u,v) = (0,1/b) (resp.,
(u,v) = (1/a,0)), since in that case we have 1/b € bd~! = R/b (resp.,
1/a € ad~! = R/a). So assume a and b are nonzero.

Set I = aad™! and J = bb0~L. By the definition of 0=, I and J are
integral ideals and we have I + J = R. By Proposition 1.3.1, we can thus find
in polynomial time e € I and f € J such that e+ f = 1, and clearly u = e/a
and v = f/b satisfy the conditions of the lemma. O
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Remark. Although this proposition is very simple, we will see that the
essential conditions v € ad~! and v € bd~! bring as much rigidity into the
problem as in the case of Euclidean domains, and this proposition will be
regularly used instead of the extended Euclidean algorithm. It is, in fact,
clear that it ¢s an exact generalization of the extended Euclidean algorithm.
Note that this lemma is useful even when R is a principal ideal domain, since
R is not necessarily Euclidean.

We also need the following.

Proposition 1.3.4. Let a, b, ¢, 0 be fractional ideals of R, and let a, b, c,

d be elements of K. Set e = ad — bc, and assume that
ab=ecd, acacl, bebc!, cead’!, debd!.

Finally, let £ and y be two elements of an R-module M, and set
@ =65 o)
Then
ar+by=cz' +0y .
Proof. We have z' = az + by and y' = cz + dy; hence
ez’ + 0y’ C (ac + cd)z + (be + dd)y C az + by .

Conversely, we have z = (dz' — by')/e and y = (—cz' + ay')/e; hence
1 -1, -1,
az + by C ;(abb ' +abc”y')
and since ab C ec?,
az + by C D@7z + ¢y ) =z’ + 0y’

thus showing the double inclusion.

Note that, although we have used only the inclusion ab C ecd in the
proof, the hypotheses on a, b, ¢, and d imply that ecd C ab, so we must have
equality. ]

Corollary 1.3.5. Let a and b be two ideals, a and b be two elements of K
not both zero, 9 = aa + bb, and u € ad~!, v € bO~! such that au +bv =1 as
gwen by Theorem 1.3.3.

Let = and y be two elements of an R-module M, and set

@ -6 (Y

Then
az + by = abd 1z’ + 0y’ .
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Proof. Since b € b~!0 and a € a~!0, this is clearly a special case of
Proposition 1.3.4 with ¢ = abd™1. o

Corollary 1.3.6. Let a, b be two ideals. Assume that a, b, c, and d are four
elements of K such that

ad-bc=1 a€a, beb ceb’l, deal.

Let x and y be two elements of an R-module M, and set
a c
(.1:' y’) = (‘T y) (b d)

Then
az + by = Rz' + aby' .

Proof. This is also a special case of Proposition 1.3.4 with ¢ = R and
0 = ab. We will see in Proposition 1.3.12 how to find a, b, ¢, and d, given a
and b. (]

Remarks

(1) The type of elementary transformation described in Proposition 1.3.4,
particularly in its two corollaries above, will be the only one we are
allowed to use. For example, if we want simply to replace z by =z — qy for
some ¢ in the field K (which is the usual elementary transformation), we
must have ¢ € ba™!, as can easily be checked.

(2) With the notation of Proposition 1.3.4, note that we also have the formal

—_ — — _ a (&

Indeed, since @ € ac™! and b € bc~!, it is clear that aa~! + bb~! C
¢~1. Conversely, since e = ad — bc, we have e € abd~! + bad~!, hence
ecd C abc + bac, and since ab = ecd, we obtain the reverse inclusion
¢! C aa~l+bb~!. The second equality 9~ = ca=! +db~! is proved in a
similar manner. We will see in Section 1.7 that the “real” reason for these
identities is that for any nonzero ideal a, the ideal a~! can be canonically
identified with the set of R-linear maps from a to R (see Exercise 6).

1.3.2 Deterministic Algorithms for the Approximation Theorem

It will also be useful (although not essential) to have some algorithms linked
to the approximation theorem in Dedekind domains. In this section, we give
straightforward deterministic versions, but in practice it is much better to
use the randomized methods that we explain in the next section.
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Proposition 1.3.7. Given ideals a; for 1 < i < k whose sum is equal to R,
we can in polynomial time find elements a; € a; such that ), a; = 1.

Proof. Same proof as for Proposition 1.3.1, except that we concatenate
the £ HNF matrices of the ideals and we split Z into k pieces at the end.
Note that the matrix U will be an nk x nk unimodular matrix, which can
become quite large. m}

Proposition 1.3.8. Let S be a finite set of prime ideals of R and let
(ep)pes € ZS. There exists a polynomial-time algorithm that finds a € K
such that vy(a) =ep, forp€ S and vp(a) >0 forp ¢ S.

Proof. We can write e, = fp —gp With f, > 0and gp, > 0. If we can find n
(resp., d) such that the conditions are satisfied with e, replaced by f, (resp.,
gp), it is clear that a = n/d satisfies our conditions. Thus, we may assume
that e, > 0 for p € S. Following the classical proof (see, for example, [Coh0,
Proposition 4.7.8]), we compute the ideal product

I = H pe,+1

peES

and we set for eachp € S

ap=1I-p7e 1.
Then the a, are integral ideals that sum to R, soby Proposition 1.3.7, we can
in polynomial time find a, € a, whose sum is equal to 1. Furthermore, we can
find b, € p® \ pe»*! (for example, by taking the epth power of an element
of p < p? which can be found in polynomial time). Then a = Zpe gapbp is a
solution to our problem. ]

Corollary 1.3.9. Given two integral ideals a and b of R such that the fac-
torization of the norm of b is known, there exists a polynomial-time algorithm
that finds z € K such that za is an integral ideal coprime to b, and similarly
finds y € K such that ya™! is an integral ideal coprime to b.

Proof. For z, apply Proposition 1.3.8 to S equal to the prime ideal factors
of b and to e, = —vp(a) for all p € S. For y, apply Proposition 1.3.8 to S
equal to the prime ideal factors of a and b and to e, = vp(a) forallpe S. O

Proposition 1.3.10. Let a be an integral ideal of R and a € a, a # 0.
Assume that the prime ideal factorization of a is known. Then there exists a
polynomial-time algorithm that finds b € a such that a = aR + bR.

Proof. Write aR = Hp p® with e, > 0. Thus, a = Hp p¥*(®) with 0 <
vp(a) < ep. By Proposition 1.3.8 we can, in polynomial time, find b € R such
that vy (b) = vp(a) for all p | a; by looking at p-adic valuations, it is clear that
a=aR +bR. 0
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Remarks
Recall that R is the ring of integers of a number field.

(1) If p is a prime ideal given by a Z-basis, the above proposition shows that
we can, in polynomial time, find a two-element generating system for
p. Indeed, we take a = p, and using the polynomial-time algorithm of
Buchmann and Lenstra (see [Coh0, Algorithm 6.2.9]), we can factor pR
into prime ideals so the condition is satisfied.

(2) To factor a it is enough to factor the absolute norm AN (a) € Z of a,
since we can use the Buchmann-Lenstra algorithm to factor into prime
ideals the prime factors of N (a), then use [Coh0, Algorithm 4.8.17] for
computing p-adic valuations, which is also polynomial-time as soon as a
two-element generating set is known for every prime ideal p, which is the
case by (1).

(3) As mentioned earlier, it is much faster in practice to perform a search
for the elements that we need in Corollary 1.2.11 and Proposition 1.3.10.
Of course, the time to perform this search is a priori exponential, but
in practice it will always be very fast (see Algorithms 1.3.14 and 1.3.15
below).

The strong form of the approximation theorem can be dealt with in the
same manner:

Proposition 1.3.11. Let S be a finite set of prime ideals of R, let (ep)pes €
ZS, and let (zTp)pes € K S. Then there ezists a polynomial-time algorithm that
finds z € K such that vy(z — zp) = ep forp€ S and vp(z) > 0 forp ¢ S.

Proof. Assume first that the e, are nonnegative and z, € R. Then we
introduce the same ideals I and a, and elements a, as in the proof of Propo-
sition 1.3.8. If we set

T = Z apTp ,

peES

it is easy to see that z satisfies the required conditions.

Consider now the general case. Let d € R be a common denominator for
the z,, and multiply d by suitable elements of R so that ey, + vp(d) > 0 for
all p € S. According to what we have just proved, there exists y € R such
that

VpeS, vp(y—dzp) =ep+rvp(d) and
Vp|d, p¢gsS, v(y—dzy)=1rp(d) .

It follows that z = y/d satisfies the given conditions. O
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Finally, we show how to find elements satisfying Corollary 1.3.6.

Proposition 1.3.12. Let a and b be two (fractional) ideals in R. Assume
that the prime ideal factorization of a or of b is known. Then it is possible
to find in polynomial time elementsa € a, b€ b, c€ b™!, and d € a™! such
that ad — bc = 1.

Proof. Multiplying if necessary a and b by an element of *, we can reduce
to the case where a and b are integral ideals. Assume, for example, that the
factorization of b is known. According to Corollary 1.2.11, we can, in poly-
nomial time, find a € R such that aa~! is an integral ideal (or, equivalently,
a € a) and coprime to b. According to Proposition 1.3.1, we can thus find
e€aa~! and f € b such that e+ f = 1. Clearly, b= f, c=—1,and d = e/a
satisfy the required conditions. O

Remark. All of the above can also be done in polynomial time without
knowing any prime ideal factorizations by using factor refinement, which we
will not explain here (see [Bac-Shal]).

1.3.3 Probabilistic Algorithms

The algorithms given above suffer from two defects. First, although they
are polynomial-time, they are rather slow; second, the size of the computed
objects will usually be unreasonably large. We have given the algorithms just
to show their existence (in any case, they are all very easy), but in practice
it is much better to use randomized algorithms, as is usually the case in
computational problems. Although we have already done so, we explicitly
specialize to R = Z .

In all these randomized algorjthms, we will have to pick at random ele-
ments from a given fractional ideal. This can be done in the following simple
way.

Algorithm 1.3.13 (Random Element in an Ideal). Let a be an ideal of a

number field K of degree m over Q given by some generating system over Z.

This algorithm outputs a small random element of a.

1. [LLL-reduce] Using an algorithm for LLL-reduction, compute an LLL-reduced
basis (@;)1<i<m for the ideal a.

2. [Output random element] For 1 < i < m, let z; be randomly chosen integers
such that |z;| < 3. Output }°, .., Tia; and terminate the algorithm.

Remarks

(1) On the one hand, it is essential to do an LLL-reduction in the first step so
as to have small elements. On the other hand, in practice this algorithm
is not used as written since we will need several random elements from
the same ideal a. Hence, we compute once and for all an LLL-reduced
basis of a, and then execute step 2 as many times as necessary.
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(2) The constant 3 used in step 2 is arbitrary but is more than sufficient for
essentially all purposes. Probably the constant 2 would also be more than
enough, and perhaps even the constant 1 for most applications. Since a
factor of 3 in the size of the coefficients is usually not too costly, the
constant 3 seems a good choice.

We now give simple-minded but efficient randomized versions of the algo-*
rithms implicit in Corollary 1.3.9, Proposition 1.3.10, and Proposition 1.3.12.

Algorithm 1.3.14 (Coprime Ideal Class). Given two integral ideals a and b

of a number field K of degree m over Q, this algorithm computes a: € K such

that aa is an integral ideal coprime to b.

1. [Compute a~!] Using [CohO, Algorithm 4.8.21], compute the HNF of the ideal
a~! on some fixed integral basis, then an LLL-reduced basis (c;) of a=!.

2. [Pick random element] Using the (a;) and step 2 of Algorithm 1.3.13, pick a
1

small random element & € a™".
3. [Check if OK] Form the m x 2m matrix M whose first m columns give the
product of a by the basis elements of a, and the last m columns gives a Z-basis
of b on the fixed integral basis. Compute the HNF of the ideal sum aa + b by
computing the HNF of the matrix M. If this HNF is not equal to the identity

matrix, go to step 2. Otherwise, output a: and terminate the algorithm.

Since a is chosen in a™!, we have aa+b = Z if and only if v, (@) = —vp(a)
for every prime ideal p dividing b. This occurs with probability leb(l -
1/(NM(p))), so the algorithm should be successful quite rapidly. m]

We leave as a (trivial) exercise for the reader to write the corresponding
algorithm for computing 3 € K such that fa™! is coprime to b (Exercise 10).
In fact, we will use it implicitly in Algorithm 1.3.16.

Remark. In this algorithm as well as in the following two, it is not really
necessary to compute the full HNF of the matrix M, only the determinant
of this HNF, which usually can be done much faster.

Algorithm 1.3.15 (Two-Element Representation). Given a fractional ideal a
in a number field K and a nonzero element a € g, this algorithm computes b € a
such that a = aZg + bZ k.

1. [Compute an LLL-reduced basis] If not given in this form, compute first the
HNF matrix A of the ideal a on a fixed integral basis. Then, using an LLL
algorithm, compute an LLL-reduced basis (a;)1<i<m of a.

2. [Compute matrix M,] Compute the matrix M, whose columns give on a fixed
integral basis the product of a by the elements of the integral basis (thus M,
will be equal to al,, if a € Q).

3. [Pick random element] Using the (a;) and step 2 of Algorithm 1.3.13, pick a
small random element b € a, and compute the matrix M} in a similar way as
the matrix M,.
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4. [Check if OK] Compute the HNF of the matrix (M,|M;) obtained by con-
catenating the matrices M, and M,. If it is not equal to A, go to step 3.
Otherwise, output b and terminate the algorithm.

A similar analysis to the one made above shows that even though the
algorithm may seem simple-minded, it is in fact rather efficient. O

Algorithm 1.3.16 (ad— bc = 1 Algorithm). Given two fractional ideals a and
b, this algorithm outputs four elements a, b, ¢, and d such that a € a, b € b,
cebl, deal andad—bc=1.

1. [Remove denominators] Let d; € Q (or even in K') be a common denominator
for the generators of a, and similarly dz for b, and set a + d;a, b « d2b.

2. [LLL-reduce] Using an LLL-algorithm, compute an LLL-reduced basis (c;) of
a.

3. [Compute a=1] Using [CohO, Algorithm 4.8.21], compute the HNF of a=! on
some fixed integral basis.

4. [Pick random element] Using the (a;) and step 2 of Algorithm 1.3.13, pick a
small random element o € a.

5. [Check if OK] Form the m x 2m matrix M whose first m columns give the
product of a by the basis elements of a~!, and the last m columns give a
Z-basis of b on the fixed integral basis. Compute the HNF of the ideal sum
aa~! + b by computing the HNF of the matrix M. If this HNF is not equal
to the identity matrix, go to step 4.

6. [Euclidean step] Using Algorithm 1.3.2, compute e € aa™! and f € b such
thate+ f =1.

7. [Terminate] Set a « a/d1, b « f/d2, ¢ « —d2, set d « ed)/a if @ # 0,
d + d,; otherwise, and terminate the algorithm.

Remarks

(1) In step 5, if we keep the unimodular transformation matrix U of the
HNF algorithm, the elements e and f necessary for step 6 can be read off
immediately as in Algorithm 1.3.2 by looking at an appropriate column
of U.

(2) The special case & = 0 can occur only if b = Z g (after step 1), and since
in that case a = 0 and bc = —1, we can choose any value of d belonging
to a~!. Since after step 1, a is an integral ideal, 1 € a~!, and hence we
may take d = d;.

1.4 The Hermite Normal Form Algorithm in Dedekind
Domains

In this section we will consider only finitely generated, torsion-free R-
modules; we refer to Section 1.7 for torsion modules.
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1.4.1 Pseudo-Objects

In view of Theorem 1.2.25, it is natural to give the following definition.

Definition 1.4.1. Let M be a finitely generated, torsion-free R-module, and
setV =KM.

(1) A pseudo-element of V is a sub-R-module of V of the form aw with
w €V and a a fractional ideal of R or, equivalently, an equivalence class
of pairs (w,a) formed by an element of V and a fractional ideal of R
under the equivalence relation (w,a) R (w',a') if and only if aw = a'uw'
as sub-R-modules of rank 1 of V. *

(2) The pseudo-element aw is said to be integral if aw C M.

(3) If a; are fractional ideals of R and w; are elements of V, we say that
(wi,ai)1<i<k is a pseudo-generating set for M if

M=aqw + -+ apwi .
(4) We say that (ws,a;)1<i<k is a pseudo-basis of M if
M=aquw & - P arwr -

Note that, according to Theorem 1.2.25, any finitely generated, torsion-
free module has a pseudo-basis.

Let (wi,di)1<i<n be a pseudo-basis of M. Then n is equal to the rank of
M. 1t is clear that, among other transformations, we can multiply a; by a
nonzero elethent of K as long as we divide w; by the same element, and we
will still have a pseudo-basis. In particular, if so desired, we may assume that
the a; are integral ideals, or that the w; are elements of M. On the other hand,
it is generally not possible to have both properties at once. For example, let
M = a be a nonprincipal, primitive integral ideal. The general pseudo-basis
of M is (a,a/a), and so to have both an element of M and an integral ideal,
we would need a € a and a/a C R, which is equivalent to a = aR, contrary
to our choice of a.

Furthermore, restricting either to elements of M or to integral ideals
would be too rigid for algorithmic purposes, so it is preferable not to choose
a pseudo-basis of a particular type.

We will systematically represent finitely generated, torsion-free R-modules
by pseudo-bases. To be able to do this, we need to know how to compute such
pseudo-bases and how to perform usual operations on these pseudo-bases. As
in the case of R = Z, the basic algorithm for doing this is the Hermite
normal form algorithm, and we will see that such an algorithm does indeed
exist. Before doing this, however, let us see how one can go from one basis to
another.



1.4 The Hermite Normal Form Algorithm in Dedekind Domains 27

The following proposition is a generalization of Proposition 1.3.4.

Proposition 1.4.2. Let (w;,a;); and (,b;); be two pseudo-bases for an R-
module M, and let U = (u; j) be the n x n matriz giving the n; in terms of
the w; (so that (1, --.,7Mn) = (w1,...,wn)U).

Seta=a;---a, and b = by ---b,. Then u;; € aibj_1 and a = det(U)b
(note that, by Theorem 1.2.25, we know that a and b are in the same ideal
class) Conversely, if there exist ideals b; such that a = det(U)b (with b =
bi---bn) and u;; € a;b; 71, then (n;,b;); is a pseudo-basis of M, where the
1, are given in terms of the w; by the columns of U.

Proof. Since

njeb"lM b'l@a,w, EBa,b w; ,

i=1

it follows that u; ; € a,-b].‘l.

It is easily proven by linearity or by induction on n that e = det(U) €
ab~!, so eb C a. Similarly, the matrix U~! expresses the w; in terms of the
ni, so det(U~!) € ba~!. But since det(U~!) = 1/e, we have a/e C b or,
equivalently, a C eb, from which it follows that a = eb.

Conversely, if U has the above properties, by looking at the adjoint matrix
of U it is easy to see that U~! is of a similar form with a and b exchanged (it
is of course essential that a = det(U)b). If X = (z,...,z,)" is the column
vector of components of an element m of M in the pseudo-basis (w;, a;);, then
m=(w1,...,wn)X = (Mm,---,M)U"LX,and U7X = (y1,...,yn)t satisfies
yi € b; for 1 < i < n. Since the y; are unique, this shows that (n;,b;); is a
pseudo-basis of M, proving the proposition. ]

It is clear that Proposition 1.3.4 is the special case n = 2 of this proposi-
tion. Since that special case is constantly used, however, we have presented
it separately.

Corollary 1.4.3. Let M be a finitely generated, torsion-free R-module to-
gether with a nondegenerate, bilinear pairing T(z,y) from M x M to R
(for example, M = Zi, where L is a number field containing K, and
T(z,y) = Trp/k(z - y)). For any pseudo-basis B = (wj,a;) of M, let
discT(B) be the ideal defined by discT(B) = det(T'(w;,w;))a?, where as usual
a=ay---a,. Then if B' = (n;,b;) is another pseudo-basis of M, we have
diSCT(B’) = diSCT(B).

Proof. Note that, since in general w; ¢ M, in the above definition we
extend the bilinear form T to V x V (where V = K M) by bilinearity.

Let U be the matrix expressing the n; in terms of the w;. We know that
a = det(U)b. By bilinearity, it is clear that if G (resp., G') is the matrix of
the T'(w;,w;) (resp., T(ni,n;)), then G' = U'GU. It follows that
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discr(B') = det(G')b? = det(G) det(U)?a?/ det(U)? = det(G)a? = disc(B).
]

Since discr(B) does not depend on the chosen pseudo-basis B, we will
denote it by 9r(M) and call it the discriminant ideal of M with respect to
the pairing T'(z,y).

Remark. We can also define det(T(wi,w;)) as an element dr(M) €
K*/K *2 since, under a change of pseudo-basis, this determinant is mul-
tiplied by det(U)? € K*2. The pair discr(M) = (07(M),dr(M)) will simply
be called the discriminant of M with respect to T'. Note that knowledge of
one of the components of the pair does not imply knowledge of the other;
hence the pair itself is useful. In the absolute case where M = Zg is the
ring of integers of a number field K considered as a Z-module and T is*the
trace, the discriminant ideal (M) gives the absolute value of the usual
discriminant, and dr(M) gives its sign (and some other information already
contained in o7 (M)).

Since we represent finitely generated, torsion-free modules by pseudo-
bases, we must also explain how to represent linear maps between such mod-
ules. This is done using the following proposition, which is, of course, similar
in nature to Proposition 1.4.2.

Proposition 1.4.4. Let (wi,ai); be a pseudo-basis for a finitely generated,
torsion-free module M, and similarly (w},a;); for a module M'. Let f be a
K-linear map from M' to M. There erists a matric A = (a; ;) such that

-1

a;; € a;a; " and

f(Zj:aéw}) = Z(;ai,ja;>wi .

i

Conversely, if A = (ai;) is such that a;; € aia;-—l for all i, j, the above
formula defines a K -linear map f from M' to M.

Proof. The (very easy) proof is left to the reader (Exercise 11). The matrix
A will of course be called the matrix of the map f on the chosen pseudo-bases
of M' and M. Note that we need only a matrix and not a pseudo-matrix (see
Definition 1.4.5) to represent a map. Thus, we will represent maps by such
matrices A. m}

1.4.2 The Hermite Normal Form in Dedekind Domains

The main theorem of this section is that the notion of Hermite normal form
can be extended to Dedekind domains. As is well known, the Hermite normal
form algorithm is a direct generalization of the extended Euclidean algorithm.
Since we now have such an algorithm available to us (Theorem 1.3.3), it is
not surprising that this can be done.
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We first introduce a definition.

Definition 1.4.5. (1) A pseudo-matrix is a pair (A,I), where A = (a; ;) is
an n X k matriz with entries in K, and I = (a;) is a list of k fractional
ideals.

(2) The map associated with this pseudo-matriz is the map f froma; x- - - X ag
to K™ defined by f(a1,...,ax) = 3 1< <k ajA;j, where the A; are the
columns of A.

(3) The module associated with this pseudo-matriz is the module M =
21<i<k 8A; C K™, or in other words the image of the map f, so that
(A;, ;) is a pseudo-generating set for M. We will also call this module
the image of the pseudo-matriz (A, I).

(4) The kernel of the pseudo-matriz (A, I) is the kernel of the associated map
f-

Theorem 1.4.6 (Hermite Normal Form in Dedekind Domains). Let
(A, I) be a pseudo-matriz, where I = (a;) is a list of k fractional ideals, and
A = (a;;) is an n x k matriz. Assume that A is of rank n (so k > n) with
entries in the field of fractions K of R (we could just as easily consider the
case of a matriz of lower rank). Let M = }.a;A; be the R-module asso-
ciated with the pseudo-matriz (A,I). There exist k nonzero ideals (b;)1<;<k
and a k x k matriz U = (u; ;) satisfying the following conditions, where we
seta=a;---ar and b =by---by.

(1) For all i and j we have u; j € aibj'l.
(2) We have a = det(U)b.
(3) The matriz AU is of the following form:

00 ... 01 =% ... x
00 ... 00 1
00 ... 00 ... 0 1

where the first k — n columns are zero (we will write this in abbreviated
form as AU = (0|H)).

(4) If we call w; the elements corresponding to the nonzero columns of AU
and ¢; = bg_nyj for 1 < j < n, then

M=qu®  ®cw, ;

in other words, (wj,cj)1<j<n 15 a pseudo-basis of the image M of the
pseudo-matriz (A, ).

(5) If we denote by U; the columns of U, then (Uj,b;)1<j<k—n i a pseudo-
basis for the kernel of the pseudo-matriz (A,I).



30 1. Fundamental Results and Algorithms in Dedekind Domains

Proof. We give the proof of the existence of the HNF as an algorithm,
very similar to [Coh0, Algorithm 2.4.5], which is the naive HNF algorithm.

Algorithm 1.4.7 (HNF Algorithm in Dedekind Domains). Given an n x k
matrix A = (a; ;) of rank n, and k (fractional) ideals a; in a number field K,
this algorithm computes & ideals b; and a k x k matrix U such that these data
satisfy the conditions of Theorem 1.4.6. We will make use only of elementary
transformations of the type given in Theorem 1.3.3 combined with Corollary
1.3.5. We denote by A; (resp., U;) the columns of A (resp., U).

1. [Initialize] Set i « n, j « k, and let U be the k x k identity matrix.

2. [Check zero] Set m + j, and while m > 1 and a;m =0, set m « m — 1. If
m = 0, the matrix A is not of rank n, so print an error message and terminate
the algorithm. Otherwise, if m < j, exchange A, with A;, a, with a;, Un,
with Uj, and set m « j.

3. [Put 1 on the main diagonal] Set A; « A;/a;;, U; + Uj/a;;, and a; +
a;;ja;. (We now have a;; = 1.)

4. [Loop] If m =1, go to step 6. Otherwise, set m + m — 1, and if a; m =0,
go to step 4.

5. [Euclidean step] (Here a;; =1 and a;, # 0.) Using the algorithm contained
in the proof of Theorem 1.3.3, set ® = a;mam + a; and find u € amd!
and v € a;07! such that a;mu +v = 1. Then set (Am,4;) + (Am —
ai,mAj,uAm+vAj), (Um,Uj) <~ (Um—ai,mUJ’,uUm+vUj), and (am,aj) «—
(ama;071,0). Finally, go to step 4.

6. [Final reductions of row i] Form = j + 1,...,n, find ¢ € ama;-'l such that
a;m —q is small (see below), and set Am + Am —qA; and Uy, + U, —qU;.

7. [Finished?] If i = 1, then output the matrix U, the modified matrix A (the
matrix AU in the notation of Theorem 1.4.6), and the modified ideals a; (or
b; in the notation of Theorem 1.4.6), and terminate the algorithm. Otherwise,
seti+i—1,7 ¢ 7—1, and go to step 2.

Proof of Theorem 1.4.6 and Algorithm 1.4.7.

Ignoring step 6 for the moment, we clearly see that this algorithm, which
is essentially identical to the one for Z, terminates with a new matrix A of
the form required by Theorem 1.4.6. Furthermore, the elementary transfor-
mations that are used are either exchanges of columns (and the correspond-
ing ideals) or transformations allowed by Corollary 1.3.5; hence the module
ajw1 + - - - + agwi stays unchanged.

Call a the initial ideal product and b the current one. All the elementary
operations are of determinant +1 (in which case b is unchanged), except in
step 3 where the determinant is 1/a;; and b is multiplied by a; ;; hence the
relation a = det(U)b is preserved throughout. We also clearly have u;; €
aib].‘l. This shows (1), (2), and (3) of the theorem.



1.4 The Hermite Normal Form Algorithm in Dedekind Domains 31

Upon termination we have a direct sum, and not simply a sum, since the
last n columns of A are then linearly independent, showing (4).

Finally, let us prove (5). Since for all ¢, j we haveu; ; € a;b;l and AU; =0
for 1 < j < k—n, it is clear that (Uj;,b;) belongs to the kernel of (A, I) for
1< j <k —n Conversely, let X € a; x --- x ar be an element of the kernel
of (A,I). Set Y = U~'X = (y1,...,y&). Since U is invertible, AX = 0 if
and only if AUU™'X = AUY = 0 and, using the special form of the matrix
AU, if and only if y; =0 for k—n+1 < j < k. Hence, AX = 0 if and only
if X =UY = 3, ¢ick_n¥iUj- By symmetry with (1), U™' = (v;,;) with
vij € biaj’, hence y; € b; 50 X € 30, ., b;jU;, as was to be proved. We
will come back to step 6 of the algorithm in Section 1.4.3. O

Remark. Note that this proof gives an algorithm to find an HNF of a
matrix, but this algorithm is certainly not polynomial-time since the cor-
responding naive algorithm for HNF over Z is already not polynomial-time
because of coefficient explosion. The existence of a polynomial-time algorithm
for HNF reduction (including finding the matrix U) is rather recent (see [Haf-
McC]). Note that in practice, n will be the relative degree of number fields
extensions, and so in many cases the naive algorithm will be sufficient.

We now consider the problem of uniqueness in Theorem 1.4.6. We first
need a definition.

Definition 1.4.8. Let (A,I) be a pseudo-matriz with I = (a;). If iy,...,ir
are r distinct rows of A and ji,...,Jr arer distinct columns, we define the
minor-ideal corresponding to these indices as follows. Let d be the determinant
of the r X v minor extracted from the given rows and columns of A. Then the
minor-ideal is the ideal daj, -- - a;

With this definition we can state the following result.

Theorem 1.4.9. With the notation of Theorem 1.4.6, for 1 < j < n, set
¢; = bi_nt;. Then the ideals ¢; are unique. More precisely, if we call g; =
9;(A) the ideal generated by all the (n + 1 — j) x (n + 1 — j) minor-ideals in
the last n + 1 — j rows of the matriz A, then ¢; = g,,+1__,~g:lj.

Proof. One easily checks that the ideals g,,(A) are invariant under the
elementary transformations of the type used in Algorithm 1.4.7. In particular,
9;(A) = g;(AU). But in the last n+1—j rows of AU there is a single nonzero
minor whose value is trivially equal to 1; hence we have g;(A) = chy1—j - * Cn,
proving the theorem. a

Proposition 1.4.10. If AU is of the form given by Theorem 1.4.6, a nec-
essary and sufficient condition for AV to be of the same form with the same
ideals bj for j > k —n is that U™V be a block matriz (8 G) with D an
n x n upper-triangular matriz with 1 on the diagonal such that for each i, j
the entry in row i and column j belongs to cic]-_l.
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Proof. Trivial and left to the reader. O

Corollary 1.4.11. For each i and j with1 <i < j < n, let S;; be a system
of representatives of K/c,-cj"l. Write AU = (0|H) as in Theorem 1.4.6. Then
in that theorem, we may assume that for every i and j such that i < j the
entry in row i and column j of the matriz H is in S; j, in which case the
matriz H is unique.

Proof. For i < j, let h; j be the entry in row ¢ and column j of the matrix
H. There exists a unique h; ; € S; ; such that

_ ! .. P |
g=h;; —hij €cic;” .

If the H; are the columns of H, then by Proposition 1.4.10 the replacement
of H; by H; — ¢gH; is a legal elementary operation that transforms h; ; into
hg_ ;» proving the existence. The uniqueness follows also from this, since there
was a unique possible g¢. O

1.4.3 Reduction Modulo an Ideal

We can now comment on step 6 of Algorithm 1.4.7. By Corollary 1.4.11, the
reduction done in step 6 is legal. Ideally, for each 7 and j, we would like to
find a system of representatives of K/ c,-c:j'l as well as an algorithm for finding
the representative of a given element of K. There are at least two different
methods for doing this, both of which have advantages and disadvantages.

The first method is to compute the (usual) HNF matrix H of c,~cj_1 on
some fixed integral basis of K. If (d;)1<i<m are the diagonal elements of H
(with m = [K : Q]), then we can take S = []; <;<,, Q/diZ (and, for example,
the interval [0,d;[ as system of representatives of Q/d;Z). If z € K, we
express Z as a column vector (with rational entries) on the integral basis and
then reduce z modulo c,-cj_1 from bottom up by subtracting from z suitable
multiples of the columns of H so that the coordinates of z fall in the interval
[0, d;[ for each 1.

We write this out explicitly as an algorithm.

Algorithm 1.4.12 (HNF Reduction Modulo an Ideal). Given an ideal a by

its m x m upper-triangular HNF matrix H = (h; ;) in some basis of K, and

an element z € K given by a column vector X = (z;) in the same basis, this

algorithm computes a “canonical” representative of £ modulo a, more precisely

an element y € K such that z — y € a and the coordinates y; of y in the basis

satisfy 0<y;: < h,‘,,‘.

1. [Initialize] Set i + m, y + z.

2. [Reduce] Set g « |yi/hiil, y + y —qH; (recall that H; is the ith column of
H).

3. [Finished?] If ¢ = 1, output y and terminate the algorithm; otherwise set
i+ i—1 and go to step 2.
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This method has the advantage of giving a unique and well-defined rep-
resentative of £ modulo Citj_l as well as an algorithm to find it. In practice,
however, it often happens that the first few rows of the HNF matrix H are
very large, and the others much smaller. Hence the resulting “reduced” ele-
ment will in fact often be quite large.

The second method consists of first finding an LLL-reduced basis L of
cic]-‘l, which will generally have much smaller entries than the HNF matrix
H. We must then find an element q € cicj—l such that z—gq is small (we already
mentioned the need for this in the remarks following Proposition 1.3.1). It
is well known that this is a difficult problem (probably NP-complete). If,
however, we write £ = 33, ... z;L; with z; € Q (where the L; are the
elements of the basis L) and choose

= > lz;lL;

1<5<m

(where |a] denotes one of the nearest integers to a), it is clear that g € cicj_1

and that = — ¢ is reasonably “small”. Note that it is essential that the basis
L be LLL-reduced before doing this operation, otherwise z — ¢ would not be
small at all in general.

We write this out explicitly as an algorithm.

Algorithm 1.4.13 (LLL-Reduction Modulo an Ideal). Given an ideal a by
an m x m matrix H = (h;;) representing a Z-basis of a in some basis of K,
and an element z € K given by a column vector X = (z;) in the same basis,
this algorithm computes a noncanonical but “small” representative of £ modulo
a, in other words an element y € K such that £ — y € a and the coordinates y;
of y in the basis are reasonably small.

1. [LLL-reduce] Using the LLL algorithm or one of its variants, let L be the matrix

of an LLL-reduced basis of a.

2. [Find coefficients] Using Gaussian elimination, find the solution Z = (2;) to
the linear system LZ = X (we have Z = L~1X, but it is faster to compute
Z directly than to invert L unless many elements are to be reduced modulo
the same ideal).

3. [Reduce] Set Y « X — ¥, <;<,. |2i]Li. output the element y corresponding
to Y, and terminate the algorithm.

The main advantage of this method is that the reduced vector will have
much smaller entries. The reduction is not unique, however, and takes more
time since the LLL algorithm is usually slower than the HNF algorithm,
although it can of course be performed once and for all for a given ideal.
Only practice can tell which method will be preferable. In the modular HNF
method explained below, however, it is essential to use this method to avoid
coefficient explosion.
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The above algorithm can be improved by using an unpublished idea due
to Peter Montgomery. Instead of doing an LLL-reduction of the ideal, which
is an expensive operation, we can perform a fast partial reduction of the
matrix (a matrix A with columns A; will be said to be partially reduced if
for any distinct columns we have ||A; £ A;|| > ||4;]])-

The resulting basis will usually not be LLL-reduced, but its entries will
be of much smaller size than the Hermite-reduced one. Furthermore, this
method is particularly well suited to matrices that have a few rows much
larger than the others, such as typical HNF matrices for ideals.

1.5 Applications of the HNF Algorithm

1.5.1 Modifications to the HNF Pseudo-Basis

It is first necessary to make a number of remarks concerning the implemen-
tation of the HNF algorithm in Dedekind domains (Algorithm 1.4.7).

Usually a torsion-free R-module M will be given by a generating set
expressed in a fixed basis B of K M. Using Algorithm 1.4.7, we can find
a pseudo-basis (w;,a;)1<j<n that has the special property of being upper-
triangular with 1 on the diagonal when expressed on B.

We can now start modifying this pseudo-basis. We can first choose to have
only integral (and even primitive) ideals a; by dividing them by suitable ele-
ments of @* and multiplying the corresponding w; by the same. Alternatively,
we can ask that w; € M, and this is done in a similar manner.

Then we can ask for a pseudo-basis such that all the ideals are equal to R
except perhaps the last, whose ideal class will then be the Steinitz class of M.
That this is possible follows from Proposition 1.2.19 together with Corollary
1.3.6. By induction, using legal elementary transformations on the matrix A,
we can replace ideal pairs (aj,a;+1) by (R,a;ja;+1), and hence at the end
of the process all ideals except perhaps the last one will be equal to R, as
desired. Note, however, that to apply Proposition 1.3.12 in a deterministic
manner, it is necessary to know the prime decompositions of the norms of the
a;. In practice, this is always the case, but of course in general this is perhaps
not a polynomial-time operation. Thus, in practice we use Algorithm 1.3.16,
which is probabilistic but much faster.

Finally, note that if we perform the above transformations on the matrix
and the ideals, the resulting pseudo-basis will no longer be represented by a
triangular matrix.

If we are still not content with this, we could, if desired, obtain an (n+1)-
element generating set of our module by replacing w,a,, with aw,+bw,,, where
a, = aR + bR is found using Algorithm 1.3.15. This will, of course, not be
a direct sum. Note that the search for a and b can be done in deterministic
polynomial time if the norm of a,, is completely factored, since a can be taken
equal to the norm of a,,.
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We may also like to know if our module M is free and find a basis. Using
the techniques developed in [Coh0, Chapter 6], once we find a relation matrix
that is sufficient to compute the class group and regulator of R, it is quite
easy to determine whether or not an ideal is principal and, if it is, to find
a generator. Note that [Coh0] assumes the GRH, but evidently the same
technique applies as long as we have obtained a relation matrix.

So we test whether a,, is a principal ideal. If not, nothing more can be
done: according to Theorem 1.2.25, M is not free, so use either the pseudo-
basis (probably the best) or the (n + 1)-element generating set. If a, = aR,
then after we replace w, by awn, (w;)1<j<n is an R-basis of M.

If we want to know only whether or not M is free, without explicitly
finding a basis, then it is not necessary to use Proposition 1.3.12 inductively:
we use the initial HNF pseudo-basis and test whether or not a;...a, is a
principal ideal.

1.5.2 Operations on Modules and Maps

As in the absolute case, the existence of an HNF algorithm (including an
essential uniqueness statement) allows us to perform all of the standard op-
erations on finitely generated, torsion-free modules. Let M and N be two
such modules, assumed to be inside a larger module.

(1) To compute M + N, we simply compute the HNF of the concatenation
of the HNF pseudo-bases of M and N.

(2) To check whether M = N, we simply check that the HNF of M and that
of N are the same (this is of course the essential place where we need a
unique HNF representative).

(3) To check whether N C M, we check that the HNF of M + N and that
of M are the same. Depending on the context, however, there may be
faster methods.

(4) To compute the product MN when this makes sense, we form all the
possible products of the generators and their corresponding ideals, and
compute the HNF of the resulting pseudo-matrix. Usually, however, there
are faster methods. For example, if M is an ideal given by a pseudo-two-
element representation (see Definition 2.3.6) and if N is given in HNF,
we must only multiply the generators and ideals of N by the two pseudo-
elements of M.

(5) To compute the image and the kernel of a map f from N to M, we
proceed as follows. Let (w},a}); and (w;,a;); be pseudo-bases of N and
M, respectively, and let A be the matrix of f in these pseudo-bases.
Since (f(w}),a); is a pseudo-generating set for the image of f (note
that the ideals a; have not changed), we compute the HNF of (4, (a}))
using Algorithm 1.4.7 and thus obtain a pseudo-basis of the image of f.
According to Theorem 1.4.6, the pseudo-matrix (Uj,b;)1<j<k—n gives a
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pseudo-basis of the kernel of f, where U is the transformation matrix
given by Theorem 1.4.6.

(6) Computing the intersection M N N of two modules is slightly more dif-
ficult. In [CohO, Exercise 18 of Chapter 4], we have given a possible so-
lution. However, the following algorithm is more elegant and useful also
over Z. (I thank D. Ford for having pointed it out to me, together with
a reference to [Zim).)

Algorithm 1.5.1 (Intersection of Modules). Let M and N be two modules of

the same rank n given by some pseudo-generating sets. This algorithm computes

an HNF pseudo-basis for M N N.

1. [Compute pseudo-bases of M and N] Using Algorithm 1.4.7, compute the
HNF (A, I) and (B, J) of the modules M and N, with I = (a;) and J = (b;)

(only a pseudo-basis is necessary, not the HNF). R
2. [Compute HNF of big matrix] Let C be the block matrix
A 0
o=(x 5)

Using Algorithm 1.4.7, compute the HNF (H, (c;)) of the pseudo-matrix
(C, (I1J)).

3. [Terminate] Let H; be the upper-left n x n submatrix of H, and let J; be
the first n ideals (c;). Output the pseudo-matrix (H;, J;) as representing a
pseudo-basis of M N N and terminate the algorithm.

Proof. The HNF reduction done in step 2 can be written in block matrix

form,
A 0\ /Uy U\ _ (H4 H
(4 8)@ u)=(7 &)
with the additional conditions u; ; € a,-c_,Tl and a = det(U)c, with notation
similar to that of Theorem 1.4.6.

This implies in particular that H; = AU, and AU; + BUs; = 0. Thus, if
V; is the jth column of U;, we have (c;V;); C a;, hence ¢;AV; C M since
(A, (a;)) is a pseudo-matrix for M. It follows that the module defined by
(Hy, J1) is a submodule of M. But since BUs = —AU,, the same reasoning
on B and U; shows that it is also a submodule of N; hence it is a submodule
of MNN.

Conversely, an element of M N N can be represented as AX = —BY
for some vectors X = (z;) and Y = (y;) such that z; € a; and y; € b;.
It follows that the vector (%) belongs to the kernel of the pseudo-matrix
((A|B), (I|J)), and Theorem 1.4.6 (5) tells us that this vector will be in the

image of (( %),Jl). In particular, X will be in the image of (U, J1); hence

our initial element will be in the image of (AU, J1) = (H;,J1), as was to be
proved. O
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Remarks

(1) We have given the algorithm for two modules of the samerank n, because
this is the only application that we have in mind (ideals in relative ex-
tensions), but the algorithm can easily be generalized to the case where
the ranks are different (Exercise 12).

(2) In step 3, if we let H4 be the lower-right n X n submatrix of H and J; the
last n ideals (b;), the same proof shows that (Hy, J2) is a pseudo-matrix
giving a pseudo-basis of M + N.

1.5.3 Reduction Modulo p of a Pseudo-Basis

Another natural question is the following. Assume that M is a finitely gener-
ated, torsion-free module, and that, thanks to the above algorithms, we have
written M = @i a;w; in terms of a pseudo-basis.

Let p be a prime ideal of R. Then M /pM is in a natural manner a vector
space over the field k = R/p, and we can ask for a basis of this vector space
over k. This can be done using the following algorithm.

Algorithm 1.5.2 (Reduction Modulo p of a Pseudo-Basis). Let (w;, a;) be

a pseudo-basis for a finitely generated, torsion-free R-module M, and let p be a

(nonzero) prime ideal of R. This algorithm outputs a basis (7;) for M /pM over

the field k = R/p.

1. [Find two-element representation] For each ¢, use Algorithm 1.3.15 to find
u; and v; in a; such that a; = u;R + v;R (one can, for example, choose
u; = N(a;), but any other choice will do), and set a; « u;.

2. [Find a;] For each i, using [CohO, Algorithm 4.8.17], compute v,(u;) and
vp(vi), and if vp(vi) < vp(u;) set a; + v; .

3. [Terminate] For each i, let 7; = a;w;. Output the 7; and terminate the algo-
rithm.

Proof. If a; = u;R + v;R, then wvp(a;) = min(vp(u;),vp(v;)); hence by
our choice of a; we have vp(a;) = vy(ai), s0 a; € a; \ pa;. This is easily
seen to imply that the map from R/p to a;/pa; sending z to za; is a group
isomorphism; hence we have

M/pM = @(ai/pai)wﬁ = @(R/p)m ,

and thus the (a;w;) form a k-basis of M/pM. O

If £ € M, we will also want to compute the coefficients of z on the
k-basis we have just computed. This is done as follows. By definition, we
have z = ) ; a;w; with a; € a;. Thus, with the notation of the algorithm,
z =) ,(ai/a;)n;. Since a; € a;,
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vp(a:) > vp(a;) = vp(ai) ;

in other words, vp(a;/a;) > 0. By an algorithmic version of the approximation
theorem (for example, Proposition 1.3.11), we can find y; € Zg such that
vp (ai/ @i —y:) > 1. Hence in M/pM we have z = Y, y;7;, which is the desired
decomposition. We will later see a more efficient algorithm for computing the
y; (Algorithm 4.2.22, see Exercise 13).

1.6 The Modular HNF Algorithm in Dedekind Domains

1.6.1 Introduction

It is well known that the usual HNF over Z suffers from coefficient explosion,
which often makes the algorithm quite impractical, even for matrices of rea-
sonable size. Since our algorithm is a direct generalizatio.n of the naive HNF
algorithm, the same phenomenon occurs. Hence, it is necessary to improve
the basic algorithm.

In the case of the ordinary HNF, there are essentially two ways of doing
this, depending on what one wants.

The first method is the “modular” method. If we can compute the deter-
minant of the lattice generated by the columns of our matrix, all computa-
tions can then be done modulo this determinant, and the final HNF matrix
can be recovered by a simple GCD procedure (see [Coh0, Algorithm 2.4.6]).
This method is polynomial-time, but it has the disadvantage of not comput-
ing directly the (unimodular) transformation matrix U. In most cases, this
is not needed anyway, but in other cases it is essential (see, for example, the
proof of Proposition 1.3.1). If we want the matrix U, it can be recovered
from the modular method, but its entries will often be large and the method
involves larger matrices (see Algorithm 1.6.3).

The other methods, due essentially to Havas (see [Hav-Majl], [Hav-Maj2],
and the references therein), are more heuristic in nature (they are not prov-
ably polynomial-time) but have the advantage of giving small transformation
matrices U. Since in our applications to relative extensions of number fields
we will often not need the matrix U, we will not consider here the general-
ization of Havas’s algorithms to the Dedekind case, although they certainly
can be generalized.

Hence, the purpose of this section is to explain how the usual modular
HNF algorithm can be modified to work over Dedekind domains. Although
quite simple, this generalization is not absolutely straightforward, so we give
some details, closely following the exposition of [Coh0] and [Coh1].

1.6.2 The Modular HNF Algorithm

We have defined above the notion of a minor-ideal of a pseudo-matrix (A4, I).
In particular, g; (M) is the ideal of R generated by all n x n minor-ideals of
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the pseudo-matrix (A, I). We will say that g;(M) is the determinantal ideal
of the module M. It is clearly a generalization of the notion of determinant
of a lattice.

Since there are (:) minors of order n, it could be a lengthy task to compute
g1 (M) explicitly, except of course when k = n or even k = n+1 (note that the
computation of each minor is an ordinary determinant computation that can
be done with the usual Gauss-Bareiss pivoting strategy, which only involves
exact divisions).

We do not, however, really need the determinantal ideal itself but only
an integral multiple of it. Furthermore, if we choose n — 1 fixed independent
columns, and consider the k£ — n + 1 order-n minors obtained by choosing
successively each of the remaining columns, we have a much more reasonable
number of minor-ideals to compute, their computation is very fast (since
n — 1 of the pivoting steps are done once and for all), and the ideal sum of
all these minor-ideals gives a reasonably sized multiple of the determinantal
ideal g; (M).

Hence, we may assume that we have computed an ideal A that is an
integral multiple (in other words, a subset) of the determinantal ideal g; (M)
of M. We now describe what modifications must be made to Algorithm 1.4.7.
We will make the computations in this algorithm modulo A, and then we will
have to recover the correct HNF pseudo-matrix by suitable ideal operations.

First, we must compute modulo A. Recall that the individual columns A;
or ideals a; are quite arbitrary and that only the rank 1 submodule a;A; of
M is a reasonable object to consider. Hence, we must reduce modulo A not
the column A; itself, but the module a;A;. In other words, we must reduce
the column A; modulo the ideal Aa;?.

Hence, we will modify step 5 of Algorithm 1.4.7 as follows. Before return-
ing to step 4, we will set A, « A, (mod Aa;!) and A; + A; (mod Aaj‘l).
Here, the reduction modulo an ideal is understood in the sense of the LLL-
reduction Algorithm 1.4.13.

Since in the inner loop of Algorithm 1.4.7, the column index j is fixed
and only m varies, it can also be argued that we should perform only the
reduction of the column A, and perform the reduction of A; only when
the m-loop is finished. Although this avoids almost half of the (expensive)
reductions, it may lead to much larger intermediate entries, so it is not clear
if this method is preferable.

Once this modified algorithm is finished, we must execute the following
supplementary algorithm to recover the true HNF pseudo-basis of M.

Algorithm 1.6.1 (Modular HNF Algorithm in Dedekind Domains). Given
an n x k matrix A = (a; ;) of rank n, and k (fractional) ideals a; in a number
field K, this algorithm computes an HNF pseudo-basis (W, I) of the module
M = 3 .a;A;, where W is an n x n upper-triangular matrix with 1 on the
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diagonal, and I = (b;,...,b,) is a list of n ideals. We assume that we have
computed a multiple A of the determinantal ideal of M.

1. [Compute HNF modulo A] Using Algorithm 1.4.7, together with the modifi-
cations that we have just described for working modulo A, let B = (b; ;) be
the n x n HNF matrix obtained by discarding the first k — n zero-columns
from the resulting matrix AU, and let b; be the corresponding ideals (we dis-
card in Algorithm 1.4.7 all the statements concerning the matrix U). Then set
B+ A i+n.

2. [Euclidean step] Set @ = b; ;b; + B, and using Theorem 1.3.3, find u € b;0~!
and v € B! such that b; ;u+v = 1. Then set W; + uB; (mod B0~!) and
b; « 0 (here again reduction is done using Algorithm 1.4.13). Set w;; + 1.
(Note that ub; ; = 1 (mod B0~!), but the reduction modulo Bd~! may not
reduce it to 1.)

3. [Finished?] If i > 1, set B « Bd~! and go to step 2 Otherwise, for i =
n—1n-2,...,1, and for j = ¢+ 1,...,n, using Algorithm 1.4.13, find
g € b;bj* such that w;; — g is small, and set W; « W; — gW;. Output the
matrix W and the ideal list I = (by,...,b,), and terminate the algorithm.

Proof. The proof of this algorithm’s validity is essentially the same as
in the classical case (see [CohO, Algorithm 2.4.6] and [Cohl]); for brevity’s
sake we do not repeat it here. The g;(A), which are defined in the classical
case as the GCD of all 7 x ¢ minors extracted from the last ¢ rows of A, are
replaced in our situation by the minor-ideal g;(M), which plays exactly the
same role (and reduces to the classical definition in the case where Z g = Z).
Note that, according to Proposition 1.3.4, for example (see also the remark
after Corollary 1.3.6), the elementary column transformations made in step
3 are legal. O

As in the absolute case, it is more efficient in practice to interleave Algo-
rithms 1.4.7 and 1.6.1 into a single algorithm, analogous to [Coh0, Algorithm
2.4.8]. The proof of this algorithm’s validity follows from the proofs given
above.

Algorithm 1.6.2 (Modular HNF Algorithm in Dedekind Domains). Given
an n x k matrix A = (a; ;) of rank n, and k (fractional) ideals a; in a number
field K, this algorithm computes an HNF pseudo-basis (W, I) of the module
M = 3 .a;A;, where W is an n x n upper-triangular matrix with 1 on the
diagonal, and I = (b;,...,b,) is a list of n ideals. We assume that we have
computed a multiple A of the determinantal ideal of M.

1. [Initialize] Set ¢ « n, j « k, and B « A.

2. [Check zero] Set m + j, and while m > 1 and @i, =0, set m « m — 1.
(Note that since we know that A is a nonzero ideal, it is not necessary to
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check that the matrix A is of maximal rank.) If m < j, exchange A, with A4;
and a,, with a;.

3. [Put 1 on the main diagonal] Set A; « Aj/ai;, a; + a;;a;, and m « j.
(We now have a; ; = 1.)

4. [Loop] If m = 1, go to step 6. Otherwise, set m «+ m — 1, and if a; m = 0,
go to step 4.

5. [Euclidean step] (Here a;; = 1 and a; m # 0.) Using the algorithm contained
in the proof of Theorem 1.3.3, set ® = a; mam + a; and find u € a,,0"! and
v € a;07! such that a; mu+v = 1. Then set in this order (Am, A;) « (Am —
aimA;, uAm+vA;), (8m,a;) < (ama;071,0), Am + A,, (mod Bay!), and
Aj + A; (mod %a;-'l), where the reduction is done using Algorithm 1.4.13.
Finally, go to step 4.

6. [Next row] Set @ « a;;a; + B and using Theorem 1.3.3 once again com-
pute u € a;07! and v € BO~! such that ua;; + v = 1. Set W; « uA;
(mod B0~!) (where the reduction is again done using Algorithm 1.4.13),
a; « 0, and w;; «+ 1. For m = j +1,...,n, using Algorithm 1.4.13 once
more, find g € ama;l such that a; » — ¢ is small, and set Am + Am — g4;.

7. [Finished?] If i = 1, output the matrix W and the modified ideals a;, and
terminate the algorithm. Otherwise, set B « B0™!, i « i—1,j« j—1
and go to step 2.

Remark. The above modular version performs well in practice, and it
seems quite plausible that, as in the case of R = Z, this algorithm is, in fact,
polynomial-time.

1.6.3 Computing the Transformation Matrix

We finish this section by giving an algorithm that shows one method of
recovering the unimodular transformation matrix by using the modular HNF
algorithm (this algorithm is, of course, applicable also in the absolute case).

Algorithm 1.6.3 (Modular HNF with Transformation Matrix). Given an
n x k matrix A = (a; ;) of rank n, and k (fractional) ideals a; in a number field
K, this algorithm computes a transformation matrix U, ideals b; for 1 < j <k,
an HNF pseudo-matrix (H,I) of the module M = 3°.a;A;, where H is an
n X n_upper-triangular matrix with 1 on the diagonal, and I = (bg_pn41,-.-,bk)
as in Theorem 1.4.6. We assume that we have computed a multiple A of the
determinantal ideal of M.

1. [Find column permutation] Using a standard linear algebra algorithm over a
field, find indices j; for 1 < ¢ < n such that the columns of index j; of the
matrix A are linearly independent. Let P be a permutation matrix sending
these indices to the integers [k — n + 1,k] so that the last n columns of the
matrix AP are linearly independent.
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2. [Apply modular HNF] Write AP = (A;|A2) in block matrix form, where A,
is an n x n matrix (which will be invertible, by step 1). Let C be the block
matrix defined by C = (’;—; ;’2). Let (H, (b;)) with H = (' £2) be the
result of applying the modular HNF algorithm (Algorithm 1.6.2) to the pseudo-
matrix (C, (ay(;))). where p(j) is the permutation of the indices induced by
the permutation matrix P.

3. [Terminate] Set Uy « Hy, Uz + Hz, Us + —A;'A1Hy, Uy « A7 (Hy —
A1Hy), H « Hy, I « (bg—nt1,-.-,bx), and U « P(g; g:) Output
(H,I), the transformation matrix U, and the ideals b; and terminate the
algorithm.

Proof. The proof is left to the reader (Exercise 14). O

1.7 The Smith Normal Form Algorithm in Dedekind
Domains

Recall the elementary divisor theorem for torsion-free modules (Theorem
1.2.35).

Theorem. Let P and N be two torsion-free modules of rank p and n, respec-
tively, such that N C P (so n < p). There exist fractional ideals by, ...,b, of
R, a basis (w1,...,wp) of V = PK, and integral ideals 9,,...,0, such that

P= blwléB---EBbpwp and N =01bjw1 ®---®0,b,w,

and such that 0;,—y C 0; for 2 <i <n.
The ideals 9; (for 1 < ¢ < n) and the ideal classes of the ideal products
by---b, and bpyq - by depend only on P and N.

In other words, this theorem says that we can find pseudo-bases of P and
N that differ only in their ideals, in a specific way. Our main goal is to give
an algorithm to find these pseudo-bases. This will be the Smith normal form
algorithm (SNF).

Before doing this, we must generalize the notion of a pseudo-matrix. If
(A,I) is a pseudo-matrix with A = (a; ;) an n x k matrix with entries in K,
and I = (a;) a vector of k ideals, it is natural to consider the linear map f
from a; x --- x a; to K™, defined by

f(ala""ak)= E ajA]' ,

1<5<k

where as usual A; denotes the jth column of A, considered as an element
of K™. The image of this map f is exactly the module M = Y ; 8jA; with
which we have worked.
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We must now consider the more general situation where the map f is a
linear map from N = a; X --- x a, to P = b; x --- x b, for some other
ideals b;. If we call 7; the jth canonical injection from a; to N (defined by
ij(a) = (0,...,0,a,0,...,0), where a is at the jth component) and p; the ith
canonical projection from P to b; (defined by p;(by,...,b,) = b;), we will set

fij=piofoi; .

This is a linear map from a; to b;. Conversely, given any family of linear
maps ¢g;; from a; to b;, we can define in a unique manner a linear map f
from N to P such that f; ; = gi ;.

Let a and b be two ideals and g an R-linear map from a to b. By tensoring
with the field K we can extend this to a K-linear map from K to K (which
we denote again by g); such a map is of the form g(z) = Az for some A € K.
Conversely, such a A gives a map from a to b if and only if Aa C b, hence if
and only if A € ba~!. This leads us to the following definition.

Definition and Proposition 1.7.1. Let N = ayjw, & --- ® a,w, and P =

bim @ --- @ bynp be two torsion-free R-modules given by pseudo-bases, and

let A= (a;;) be a pxn matriz. Let I = (by,...,bp) and J = (ay,...,a,).

(1) We will say that (A, 1, J) is an integral pseudo-matriz if for each i and
J we have a; ; € biaj'l.

(2) Given such a pseudo-matriz (A, 1,J), the map f from N to P associated
with it is the map defined by setting

f (Z ijj) = ijf(wj) = ZIJ' Zai,]’"]i = Z'h' (Z aiﬂj) J

which makes sense since a; ;x; € b;.
(3) The module M associated with (A, I, J) is the quotient module

P/f(N):(b]"h@"'@bpnp)/f(aluh@"'@ﬂnwn) .

Note that the module M associated with a pseudo-matrix (A, I, J) is a
torsion module if and only if p = n, that is, if A is a square matrix of nonzero
determinant.

We can now state the main theorem of this section. For simplicity we
state it for square matrices, but it is easily extended to the general case.

Theorem 1.7.2 (Smith Normal Form in Dedekind Domains). Let
(A,1,J) be an integral pseudo-matriz as above, with A = (a;j) an n X n

matriz and I = (by,...,b,), and J = (ay,...,a,) two vectors of n ideals
such that a;; € biaj_l.
There ezist vectors of ideals (b},...,b.) and (a},...,al) and two n x n

matrices U = (u; ;) and V = (v;;) satisfying the following conditions, where
for all i we set 0; = agbg—l, and we set a = a;---an, b = by---b,, @ =

aj---al, and b' = b} ---b].
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(1) a=det(U)a' and b' = det(V)b (note the reversal).

(2) The matriz VAU is the n X n identity matriz.

(3) The d; are integral ideals, and for 2 < i <n we have 0;_; C 0;.
(4) For alli, j we have u;; € a;a;™" and v;; € bb3 2.

Proof. Again we prove this theorem by giving an explicit algorithm for
constructing the Smith normal form. We follow closely [CohO, Algorithm
2.4.14), except that we do not work modulo the determinant (although such
a modular version of the Smith normal form algorithm is easily written).

Algorithm 1.7.3 (SNF Algorithm in Dedekind Domains). Given an invert-

ible n x n matrix A = (a; ;), and two lists of n (fractional) ideals I = (b;) and

J = (a;) in a number field K, this algorithm computes two other lists of n ideals

b; and a’; and two n x n matrices U and V' such that these data satisfy the con-

ditions of Theorem 1.7.2. We will only make use of elementary transformations
of the type given in Theorem 1.3.3 combined with Corollary 1.3.5. We denote by
Aj (resp., U;) the columhs of A (resp., U), and by A (resp., V) the rows of

A (resp., V).

1. [Initialize ] Set i + n, and let U and V be the n x n identity matrix. If
n =1, output b1, a;, U, and V, and terminate the algorithm.

2. [Initialize j for row reduction] Set j + ¢ and ¢ + O.

3. [Check zero] If j = 1, go to step 5. Otherwise, set j + j — 1. If a;; =0, go
to step 3.

4. [Euclidean step] Using the algorithm of Theorem 1.3.3, set d « a; ia;+a; ;a;
and find u € a;07! and v € a;07! such that a; ;u + a; ;v = 1. Then set
(Aj, A;) «— (ai,jA,- - ai,iAi,uA,- +'UAJ'), (Uj, Uz) «— (ai,]»U]» - a,-,,-Ui,uU,- +
vUj), (a;,a;) « (a;a;071,0). Finally, go to step 3.

5. [Initialize j for column reduction] Set j + %, and if a; ; # 1, set U; «+ U;/a; ;.
a; < a;ia;, a;; < 1.

6. [Check zero] If j =1, go to step 8. Otherwise, set j + j—1.fa;; =0, go
to step 6.

7. [Euclidean step] Using the algorithm of Theorem 1.3.3, set ? + b’ +a,~,,-b].‘1
and find u € b;'0 ' and v € bj'lb‘l such that u + a;;v = 1. Then set
(A, A1) (05545 — AL udl +vAL), (V1 V) (a53V] = Vi uV{ +oV)),
(bj,b;) « (b;b;0,071). Finally, set ¢ + ¢ + 1 and go to step 6.

8. [Repeat stage i7] If ¢ > 0, go to step 2.

9. [Check the rest of the matrix] Set b < a;b; . For 1 < k,! < 4, check whether
ar, aib; ! C b. As soon as this is not the case, set d + b;b; 1. Let d be an
element of 0 such that axd ¢ a;a,” 1 (such an element must exist and is easy
to find — for example, by looking at the Z-basis of d given by the ordinary
HNF). Set A} « A, + dAj and V/ « V; + dV}/, and go to step 2.

10. [Next stage] (Here ax a;b;" C b for all k,l < i) If i > 3, seti « i—1
and go to step 2. Otherwise, set U; + Ui/a1 1, a1 ¢+ a1,101, and ay,1 + 1,
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output the matrices U and V, the two ideal lists (b;) and (a;), and terminate
the algorithm.

Proof. Contrary to the HNF algorithm whose proof was immediate, there
are several things to be checked. First we must check that this algorithm is
valid. It is easily verified that all the elementary operations used are legal
ones and that the identities a = det(U)a' and b' = det(V)b are preserved
throughout. Furthermore, upon termmatlon the matrix A will be the identity
matrix and we will have a;;b}~ a C a;, ,b’ a; for all j < i. Hence, since
ai; = aj; = 1, we obtain from the definition of the D, that 9; C 0; for all
j<iln addltlon, it is easily checked that the ideal ¢ = ; @ij0j by is
preserved by all the elementary transformations of rows a.nd columns that
we perform. Since we have assumed that a; ; € biaj_l, it follows that ¢ is an
integral ideal. But in the final pseudo-matrix we have ¢ = ) . ajb; = ). 0; =
0, since d; C ; for j < i. Thus 3, is an integral ideal; hence all the d; are
integral ideals.

Note that we could interpret all the d; in the same way by taking the sum
of all (n — i) x (n — i) minor-ideals of the pseudo-matrix, where the minor-
ideals of an integral pseudo-matrix (A, I, J) are defined as for a pseudo-matrix
(A, I) (Definition 1.4.8), except that we must multiply the determinant d by
the product of the ideals u,[)'1 and not only by the product of the ideals a;.

We must now show that the algorithm terminates First note that the
effect of steps 2 to 8 on the triplet (a;i;,a:,b; ) is to transform it into

E a;;a;,0; +§:a]z 5 )

i< i<i

where the a;-_,. are the entries of the matrix after step 4. Hence, the product
a;;a;b;!, which is an integral ideal throughout the algorithm (since it is
included in the ideal ¢ = 9,), can only get larger. Since all the ideals are
nonzero, steps 2 to 8 can leave this product unchanged only if a; ; = 0 and
a;; = 0 for all j < i, and this implies that ¢ = 0, which is the termination
condition of the loop from steps 2 to 8. Thus, we have a strictly increasing
sequence of integral ideals, which is therefore finite. Hence we reach step 9
after a finite number of steps.

One loop from step 9 back to step 5 again transforms the triplet (1,a;, b; )

into
(1, a; + Zdak,jaj, bi‘l) .
J<i
Hence, since dax ¢ a,a,‘ : it follows that the new ideal a; is strictly larger,
and hence the new a; ;a;b ! also. We again have a strictly increasing sequence
of integral ideals, which 1s therefore finite; hence we execute step 9 only a
finite number of times, and so the algorithm terminates. O
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Remarks

(1) Considering step 7 of the algorithm, in practice it will probably be better
to keep the ideals b, ! and not the ideals b; themselves, so as to diminish
the number of ideal inversions.

(2) As mentioned earlier, it is very easy to introduce a modular version of
the SNF algorithm, as in [CohO, Algorithm 2.4.14]. Such a variant is
necessary in certain cases to avoid coeflicient explosion. In addition, the
algorithm is easily modified to deal with singular or nonsquare matrices.

(3) Note that the module M associated with the pseudo-matrix (A4, I, J) will
be isomorphic to

R/, ®---®R/0, ,

and thus this gives the complete structure of M as an R-module.

1.8 Exercises for Cha;;ter 1

1. Let K be a number field, and let £ € K*. With the notation of Proposition
1.2.7, show that

[1 =2 =1IN(@)| and I‘[|x|,, N(z)| ,

1<i<ry 472

thus proving Proposition 1.2.7.

2. Give a counterexample to Proposition 1.2.8 if one asks that |z|; < 1 for all
places | |; ¢ S.

3. With the notation of Definition 1.2.14, show that the relation

(a1/a2)aR(b1/b2)8 <= baara—azb13 =0

is not in general an equivalence relation.

4. Someone remembered the definition of a projective module P as a module such
that for every surjective map f from a module F' to P and any map g from a
module G to P, there exists a map h from G to F such that g = f o h (see
the diagrams below, where the first diagram illustrates Definition 1.2.16 and
the second the present definition). Is this definition correct? If yes, prove it;
otherwise, give a counterexample.

p G
ly lg
P h L h
F—f>G—>0 F—f>P—————>0

5. Let R be a Dedekind domain, let a and b be two fractional ideals of R, and let
a, b, ¢, and d be elements of R.

a) Show that a necessary and sufficient condition for the existence of ideals ¢
and 0 satisfying Proposition 1.3.4 is that ad—bc # 0 and (ab+ba)(cb+da) =
(ad — bc)ab.
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b) If this condition is satisfied, show that

_cb+da_a_b _ -1
c—ad_bc-aﬂb—(ab+ba) ab and
_ab+ba _a b _ 1
D—ad_bc—cﬂd—(cb+da) ab .

Let a be a nonzero fractional ideal of a Dedekind domain R. Show that there is
a canonical isomorphism between a~! and the R-module of R-linear maps from
a to R.

7. Using the Hermite and Smith normal form algorithms, give another proof of the

8.

10.

11.
12.

13.

14.

structure theorem for finitely generated modules over Dedekind domains.
Let R be a Dedekind domain with field of fractions K.
a) Foreach a, 3 in K, show that there exist « and v in R such that

ua® + v =ap .

b) Using Algorithm 1.3.2, give an algorithm to compute v and v when R = Zk
is the ring of integers of a number field.

c) Show that the result of a) can be false if R is not a Dedekind domain (take,
for example, R = Z[X] or R = Z[V3]).

d) Show that the result of a) may be true even if R is not a Dedekind domain
(take, for example, R = Z[V/5]).

e) More generally, if R=Z [\/m with D a nonsquare integer, show that the
result of a) is valid if and only if D is squarefree (which is not the same
condition as saying that R is a Dedekind domain).

. Let R be a Dedekind domain and a a fractional ideal of R. Set n = aN R and

9 = a~! N R. Show that n and 0 are coprime integral ideals such that a = n0~!.

Modify Algorithm 1.3.14 so that it instead computes a 8 € K such that Sa™!
is an integral ideal coprime to b.

Prove Proposition 1.4.4.

Write a generalization of Algorithm 1.5.1 to the case where the modules have
different ranks.

Using the ideas of Algorithm 4.2.22, write an efficient algorithm to compute the
coefficients y: such that £ = ), yin;, with the notation of Section 1.5.3.

Prove the validity of Algorithm 1.6.3.







2. Basic Relative Number Field Algorithms

Having the necessary tools for dealing theoretically and algorithmically with
modules over Dedekind domains, we are now going to study in detail rel-
ative extensions of number fields. In the first section, we emphasize the
field-theoretic properties, while in the rest of this chapter we study the ring-
theoretic properties.

2.1 Compositum of Number Fields and Relative and
Absolute Equations

2.1.1 Introduction

A number field L can be represented in many different ways, all having their
relative advantages and disadvantages. In [Coh0] we consider number fields
L to be given as L = (Y6), where 6 is a root of some polynomial T' € Q[X].
A number field L is thus explicitly considered as a finite extension of Q, in
other words as an absolute extension, with T'(X) being an absolute defining
polynomial or an absolute equation for the number field L.

In most problems of algebraic number theory, it is often more natural
to consider relative extensions L/K. In other words, we have a base field
K, and a number field L, which is given as L = K(6), where 8 is a root
of some polynomial T € K[X], called a relative defining polynomial or a
relative equation for L over K. Of course, L is still a number field in its own
right and as such can also be given by an absolute defining polynomial if so
desired (we will see in Section 2.1.5 how to achieve this), but it is usually
preferable to keep the field L given by its relative defining polynomial. There
are at least two reasons for this. First, the relative defining polynomial will
be considerably simpler than the absolute one (for instance, it will be of
much lower degree). Second, the K-structure on L gives considerably more
arithmetical information than considering L on its own.

If K = Q6,) and L = K(62), we can write L = Q(6;,02), in this case
considered as a tower of extensions L/K/Q. In the special case where the
minimal monic polynomial of 6, in K[X] has in fact coefficients in Q, we can
consider the number field K2 = Q(6;), and in this case L is a compositum of
the number fields K and K,.
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There are still other ways to represent a number field L. For example, we
can choose a Q-basis of L (or a K-basis, if we view L as a relative extension),
and represent L by the multiplication table of this basis. If n = [L : Q] (or
n = [L : K] in the relative case), this is an n x n x n array with entries in
Q (or K). Although computationally more cumbersome and expensive, this
representation can sometimes also be useful, but we will not study it here.

A completely different way is to represent a number field by a system
of polynomials in several indeterminates, assuming that the solution is zero-
dimensional. This touches upon difficult problems of computational algebraic
geometry, in particular Grobner basis computations, and we refer to the abun-
dant literature on the subject (see, for example, [Co-Li-Os] and [Bec-Wei]).

In this chapter, we fix a number field K and identify it with a subfield
of C. We will only consider number fields L that are extensions of K and
contained in the algebraic closure K of K in C. In particular, L will be a
K-vector space, and one of the embeddings of K (and L) in C is the identity.
We will say that K is the base field, and L is a relative extension, or a number
field over K. If L is a relative extension of a number field K, the dimension
n = dimg (L) will be denoted [L : K] and called the relative degree of L over
K. If M is a relative extension of L, we clearly have the transitivity relation
[M:K])=[M:L]L: K]

2.1.2 Etale Algebras

Let L = K(0) be a relative extension of number fields, where 6 is the root
of an irreducible polynomial T(X) € K[X]. As already remarked in [Coh0],
we have an isomorphism of L with K[X]/T(X)K[X] obtained by sending 6
to the class of X. A natural question is to consider the case where T is not
irreducible. If the factorization of T in K[X] is given by T(X) =[], T:(X)*,
where the T; are nonassociate, irreducible polynomials in K[X], the Chinese
remainder theorem tells us that

K[X)/T(X)K[X] = [ KIX)/T5 (X)K[X]

(see Exercise 1). If e; = 1, K[X]/T:(X)K[X] is a number field; while if
e; > 1, K[X]/T?(X)K[X] has nonzero nilpotent elements and hence is an
inseparable algebra over K. These algebras have nasty properties, and we
want to exclude them. We have the following proposition.

Proposition 2.1.1. Let K be a number field, and let A be a finite-dimen-
sional commutative K -algebra (in other words, a finite-dimensional K -vector
space with an additional commutative ring structure with unit, compatible
with the vector space structure). The following three properties are equivalent.

(1) A has no nonzero nilpotent elements;
(2) The equation z2 = 0 in A implies z = 0;
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(3) The minimal polynomial in K[X] of any element a € A is squarefree.

Proof. That (1) implies (2) is trivial. Let us prove that (2) implies (3),
so assume (2), and let a € A. The set I, of polynomials P € K[X] such
that P(a) = 0 is clearly an ideal of K[X]. Furthermore, since A is of finite
dimension n, say, the elements 1, a,...,a™ are K-linearly dependent; hence
I, is nonzero. Therefore, I, is generated by a monic polynomial P, € K[X],
which will be called as usual the minimal polynomial of a in A. Assume
that P,(X) = Q*(X)R(X) in K[X], and let b = Q(a)R(a). We have b? =
P,(a)R(a) = 0; hence by (2), b = 0. But this means that Q(X)R(X) is
a multiple of the minimal polynomial Q%(X)R(X). If follows that Q(X) is
constant, so P, is squarefree, as claimed.

Finally, if a™ = 0, the minimal polynomial of a must be a divisor of X™,
and it must be squarefree by (3), so it must be equal to X. Hence a = 0 and
so (3) implies (1). O

Definition 2.1.2. Let K be a number field, and let A be a commutative K -
algebra. We say that A is an étale algebra (or e separable algebra) over K
if A is finite-dimensional over K and satisfies the equivalent properties of
Proposition 2.1.1.

In particular, a number field L that is an extension of K is trivially an
étale algebra. We will see in Corollary 2.1.6 that in fact every étale algebra
is isomorphic to a product of number fields.

Note that the minimal polynomial of an element of an étale algebra is
squarefree but not necessarily irreducible. In fact, this is another way of
saying that the difference between étale algebras and number fields is the
existence of zero divisors.

Before stating and proving the primitive element theorem, which is one
of the main results about étale algebras, we prove the following apparently
unrelated proposition (see [Coh0, Exercise 4 of Chapter 3]).

Proposition 2.1.3. Let B be a commutative ring with unit, and let T\ and
T> be polynomials in B[X]. There ezist polynomials Uy(X) and Uz(X) in
B[X] such that

U1(X)Th(X) 4+ U2(X)T2(X) = R(Ti(X), T2(X)) € B,

where as usual R(T1(X),T2(X)) denotes the resultant of the polynomials
Tl(X) and T‘_)(X)

Proof. Let M be the Sylvester matrix associated to the polynomials 7} and
T, (see [CohO, Lemma 3.3.4]). If deg(T:) = n;, let Uh(X) = ZOSi<ﬂ2 ; X?
and Uy(X) = Eogi <ny YiX i be arbitrary polynomials of degree less than or
equal to no — 1 and n; — 1, respectively, and let

zZ= (xnz—ly---aIannl—la---ayO) and X = (Xn1+n2_la"'7X71)t .
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Then the matrix M can be defined by the equation
ZMX = Uy (X)Ti(X) + Us(X)Ta(X) .
Let M?di be the adjoint matrix of M. By definition, we have
MM = det(M) I, 10y = RTL(X), T2 (X)) nyiny -
Hence, if Z is the last row of the matrix M2%4, we have
ZMX = R(T1(X), T2(X)) = U(X)T1(X) + U2(X)T2(X)

if U;(X) and Uz(X) are related to Z as above. Since the entries of the ad-
joint matrix, hence of Z, are in the ring B, this proves the existence of the
polynomials U; (X) and Uy(X) in B[X] and also gives an algorithm to find
them. The algorithm mentioned in [Coh0, Exercise 5 of Chapter 3], based on
the subresultant algorithm is, however, much better in practice. (]

Remark. The point of this proposition is that the polynomials U; and
U, can be chosen in B[X], and not in a larger ring.

We can now prove a special case of the primitive element theorem.

Lemma 2.1.4. Let A = K[0,,0:] be an étale algebra generated by two ele-
ments. There exists § € A such that A = K[6], and 6 can be taken of the
form 6 =03 + kO, for some k € Z.

Remark. Note the use of square brackets in the expression A = K[6)].
Since A is not a field in general, we consider only polynomials in 8, and not
rational functions. On the other hand, when A is a field, it is easy to see that
K(8) = K[6], and this is the notation most commonly used in this case, to
emphasize that A is a field.

Proof. Let T} and T3 be the minimal monic polynomials of 8, and 6,,
respectively. Since A is an étale algebra, these polynomials are squarefree,
hence have distinct roots in some fixed algebraic closure K of K.

Let (GY)) (resp., (Oéj ) )) be the roots of T} (resp., T3) in K. Since in general
A is not a field, we cannot assume that 6, = OY) for some . For any fixed 1,
we can send 6, to HY) and extend by linearity and multiplicativity, and since
0§i) is a root of T}(X), this gives a K-algebra homomorphism from A to K,
which is injective if and only if A is a field. A similar statement is true for
T>.

Choose k € Z different from the finite set of values

fori #1i'

and set § = 6, + k6;. I claim that A = K[6]. Indeed, since 6, and 6, are
elements of A, we have K[6] C A. Conversely, let
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R(X) = [](x - 6 +#6{")) .
%)
By Galois theory or, equivalently, by the theorem on symmetric functions, or
by the explicit formula R(X) = Ry (T1(Y),T2(X — kY')), which we will use
below (where Ry denotes the resultant with respect to the variable Y), we
have R € K|[X]. Furthermore, our choice of k, and the fact that T} and T
are squarefree, ensure that

(i) # (.5) = 67 + k00 #6577 +kof") .
Indeed, if we had equality in the right-hand side, we would have
kOl — 6) = (6 — o)

Hence by our choice of k, we would have 05") —6%) = 6§ —g{ ") = 0.Therefore
i =1 and j' = j since the polynomials T} and T> are squarefree.
It follows that, with our choice of k, R(X) is a squarefree polynomial in
K[X].
[ LLt us come back to the elements of our algebra. By abuse of notation, set
R(X,Z)=Ry(Th(Y),T>(X — ZY)) and 08(Z) = 02 + Z6,, so that R(X) =
R(X,k) and 6 = 0(k). I claim that

R(6(2),2) =Ry (T1(Y),T2(6(2) = 2Y)) =0 .

Note that this is not completely trivial: indeed, one cannot say that this
follows from the fact that the polynomials T1(Y’) and T2(8(Z) — ZY') have
the common root Y = 6, since this implies vanishing of the resultant only
over a field.

Applying Proposition 2.1.3 to the ring B = K[X, Z], we see that there
exist polynomials U,(X,Y,Z) and U3(X,Y,Z) in K[X,Y,Z] such that

U(X,Y,2)Ti(Y) + U2(X,Y, 2)T>(X - ZY) = R(X, Z) .

Replacing Y by 6; and X by 0(Z) = 6, + Z6, gives R(6(Z),Z) = 0, as
claimed. In particular, replacing Z by k, we obtain R(6,k) = R(6) = 0.

If we take the derivative of the equality R(6(Z),Z) = 0 with respect to
the formal variable Z, and denote by Ry and R', the partial derivatives of
R(X, Z) with respect to X and Z, we obtain 6, Ry (6(Z), Z) + R%(0(Z), Z) =
0, hence in particular for Z = k the equation

61 Ry (6,k) + Ry(6,k) = 0 . (1)

Note that R'y (6, k) = R'(6). Since the polynomial R(X) = R(X, k) is square-
free, there exist polynomials U and V in K[X] such that U(X)R'(X) +
V(X)R(X) = 1, and since R(f) = 0, we obtain U(f)R'(6) = 1. Hence, mul-
tiplying the identity (1) by U(6), we obtain 6, = —U(8)R;(8,k) € K[6], and



54 2. Basic Relative Number Field Algorithms

evidently 6, = 0 — k6, € K|[6] also, so A C K[6)], thus finishing the proof of
the lemma.

Note that we have proved much more, since we have also found a square-
free polynomial of which 8 is a root, and an expression for §; and 6; in terms
of §. We will use this explicitly in the algorithms given below. The expression
for 6, comes from the implicit function theorem in an algebraic setting. O

We can now easily prove the main classical theorem about étale algebras.

Theorem 2.1.5 (Primitive Element Theorem). Let K be a number field
and A be an étale algebra of dimension n over K. There exists 6 € A (called a
primitive element) such that A = K|[6), in other words such that 1,0, ...,6™!
is a K-basis of A.

Proof. Since A is finite-dimensional over K, there exist elements 6,, ..., 0.,
such that A = K[6,,...,0,]. For example, we can take for the 6; a K-basis
of A. We prove the theorem by induction on m. It is trivial for m = 1, and
for m = 2 it is nothing else than Lemma 2.1.4. Let m > 3. By induction,
we assume that we have proved it for all ¢ < m — 1. Since the theorem is
true for m = 2, we can find o € A such that K([6,,—1,0m] = K[a). But then
A =Klby,...,0m—2,a] is generated by m — 1 elements, and we conclude by
our induction hypothesis. O

As an immediate consequence we obtain the following corollary.

Corollary 2.1.6. Let A be an étale algebra over K.

(1) There ezists a squarefree monic polynomial T(X) € K[X] (called as
above a defining polynomial for A/K) such that A is isomorphic to
K[X]/T(X)K[X].

(2) If T(X) = [l cicy Ti(X) is a decomposition of T(X) into irreducible
polynomials in K[X], then A is isomorphic to the product Ky x - - - x K,
where K; is the number field defined by K; = K[X]/T:(X)K[X].

(3) Conversely, any finite product of number fields over K (with component-
wise multiplication and addition) is an étale algebra over K.

Proof. (1). By Theorem 2.1.5, we know that A = K|[6] for some 6 € A.
If T is the minimal monic polynomial of 6 in K[X], then by definition of an
étale algebra the polynomial T(X) is squarefree, and the map sending 8 to
the class of X clearly gives an isomorphism from A to K[X]/T(X)K[X].

(2). This is simply a restatement of the Chinese remainder theorem. More
explicitly, since the polynomials U;(X) = T'(X)/T;(X) are (globally) coprime,
there exist polynomials V;(X) such that 3, .,c, Us(X)Vi(X) = 1. We set
e; = U;(9)V;(0). Then the map that sends the class of P in K[X]/T(X)K[X]
to (e1P,...,egP) in K x---x K 4 is easily seen to be an algebra isomorphism
(see Exercise 1).
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(3). A product of fields cannot have nilpotent elements, so (3) is clear. O

As we shall see below, the introduction of étale algebras in addition to
number fields is not simply a desire to generalize. First, they occur naturally
in many contexts, as we shall see immediately, when we want to compute the
compositum of number fields. Second, many, if not most, of the algorithms
that we have given for number fields do not really use the npnexistence of
zero divisors and hence are directly applicable to étale algebras. So from
an algorithmic point of view, étale algebras are almost as simple as number
fields.

Let us look at the important example of the notions of discriminant, inte-
gral basis, and the corresponding algorithms such as the round 2 algorithms
(see [CohO, Section 6.1]).

Let A be an étale algebra over K, which by Corollary 2.1.6 can be assumed
to be equal to K; x --- x K, for some number fields K; of degree n; over
K. Thus, n = [A : K] = [],¢;<,n;- We will identify each K; with the
subalgebra of A formed by elements whose components on K; for | # j are
zero. Equivalently, ife; = (0,...,1,...,0) € A, where 1 is at the jth position,
the e; form a complete family of mutually orthogonal idempotents, and we
identify K; with e;A.

If o is a K-linear field homomorphism from A into C, then on each Kj,
o restricts to some K-linear embedding o; ; of K; into C. Conversely, if for
each j we choose K-linear embeddings o; ; of K into C, it is clear that there
exists a unique K-linear field homomorphism ¢ from A to C which restricts
to o;,; for each j given by

a(Z z]-ej> = Zai,j(z]-)e]- .

Hence, as in the number field case, there exist n = [[n; K-linear ring
homomorphisms of A into C. These are no longer embeddings, however; in
other words, they are not injective since A is not a field in general. As in the
number field case, we will denote them by o;.

The notions of trace and norm and more generally of characteristic poly-
nomial now generalize without difficulty and can be expressed either directly,
for example, via resultants, or through the embeddings o;.

The definitions of discriminant and integral basis (or pseudo-basis in the
relative case; see Section 2.2.3) then go through without change. The reader
who wants to explore further is warned, however, that the separability con-
dition mentioned in [CohO, remark after the proof of Proposition 4.4.1] is
essential, although we can ignore it as long as we are in characteristic zero.

Finally, the reader can easily check that the description of the absolute
round 2 algorithm given in [Coh0, Section 6.1] is valid without modification
for étale algebras. In fact, it is applicable in even more general contexts.
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Similarly, the relative round 2 algorithm that will be given in Section 2.4 is
also valid without change.

We can also define the Galois group of an étale algebra and give algorithms
to compute it, analogous to the algorithms given in [Coh0, Section 6.3]. Note,
however, that the Galois groups are no longer transitive subgroups of Sp,;
hence their classification is usually more complex (see Exercises 5 to 7).

2.1.3 Compositum of Two Number Fields

We consider the following problem. Let L; and L, be two number fields
defined over the base field K by their relative defining polynomials T (X)
and T3(X), respectively. We would like to compute the compositum L of L,
and L, which by definition is the smallest number field containing both L,
and L.

As such, the above problem does not make any sense, for two reasons.
First, we must embed L; and L, into a fixed algebraic closure K of K. Once
this is done, the compositum does make sense, but on the other hand the
polynomial 77 alone does not in general determine the number field L; since
any root of T} can be chosen, so it is impossible to distinguish L; from its
conjugate fields over K. Thus, to determine L, we must give not only a
polynomial 7 but also some way to distinguish the root 6, of Tj such that
L, = K(6,) from the other roots of T3.

Let L = L,L, be the compositum of L, and Ls. To find a polynomial
defining L over K, we prove the following proposition.

Proposition 2.1.7. Let L, = K(6,) and Ly = K(62) be two number fields
defined over K, and let Ty (resp., Ts) be the minimal monic polynomial of 6,
(resp., 62) over K. Set

R(X,Z) « Ry (T1(Y), To(X — 2Y)) ,

where Ry denotes the resultant with respect to Y. Then we have the following.

(1) There exists an integer k € Z such that the polynomial R(X, k) is square-

free.

(2) If k& is chosen as in (1), then the compositum L = LyLy is given by
L = K(0) with 8 = 6, + k6,, and the minimal polynomial T'(X) of 0 is
one of the irreducible factors of R(X, k) in K[X].

(3) If k and 0 are as in (1) and (2), we have

!
S2(6,k), 0 =6— ko, with Ry =28 p - OF
X

br=- 92" "x = px -

Proof. By definition, L = K (6,,62). By the proof of Lemma 2.1.4, there
exists k € Z such that R(X, k) is squarefree, and if § = 62 + k6,, then
L = K(6) with 8 a root of R(X,k) = 0. Since L is a field, the minimal
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polynomial of 6 is an irreducible factor of R(X, k) in K[X]. Finally, in that
proof, we have also seen that 6, R'y (6, k) + R';(6, k) = 0, and since we are in
a field and R(X, k) is squarefree, we obtain the formula for 6, hence for 65,
given in the proposition. B]

In practice, a number field is often given only up to isomorphism, and thus
it is not possible to specify a specific root 6;, but only the polynomial T (X)
of which it is a root. In that case, all irreducible factors of the resultant
R(X, k) give a possible compositum, and it makes perfectly good sense to
consider them all. In fact, since R(X, k) is squarefree, K[X]/R(X, k)K[X] is
an étale algebra that is isomorphic to the product of all possible compositums
of the number fields L; and L2 defined by T} and T5. It is reasonable to call
this algebra the compositum of the number fields defined by T; and T5. Thus,
we are led to the following algorithm.

Algorithm 2.1.8 (Compositum of Two Number Fields). Given two irre-
ducible polynomials T} and T in K[X], this algorithm computes the relative
defining polynomials for all possible compositums L = K(0) of the number
fields determined by T} and T3, respectively, and expresses the generic roots 6
and 8, of T; and T3 in terms of 6.

1. [Compute resultant] Using, for example, the subresultant algorithm ([CohO,
Algorithm 3.3.7]) over the ring K[X, Z], compute

R(X,Z) « Ry(Ti(Y), To(X - ZY)) ,

where X and Z are formal variables. We denote as above by R'y (resp., R';)
the partial derivative of R(X, Z) with respect to X (resp., Z).

2. [Find integer k] For k = £1, £2, ..., compute s + gcd(R(X, k), Ry (X, k))
until s = 1.

3. [Compute 6,] (Here R(X,k) is squarefree.) Using the extended Euclidean
algorithm, compute polynomials U and V' in K[X] such that U(X)R'y (X, k)+
V(X)R(X,k) =1, and set A;(X) «+ -U(X)R%(X, k) mod R(X, k).

4. [Factor R(X,k)] Using, for example, [CohO, Algorithm 3.5.7] if K = Q and
[Coh0, Algorithm 3.6.4] otherwise, factor R(X,k) in K[X] as R(X,k) =
[11<icy Ri(X) (we already know that R(X k) is squarefree).

5. [Terminate] For i = 1 to i = g, output R;(X) as the irreducible relative
defining polynomial of a compositum of number fields determined by T'; and
T3, output 6; + A;(X) mod R;(X),0; + X —kA;(X) mod R;(X) as roots
of T'; and T3, respectively, and terminate the algorithm.

Remark. The polynomials R;(X) output by the above algorithm often
have large coeficients, hence it is almost always necessary to modify them
before doing further work. For this, if the base field K is equal to Q, we use a
polynomial reduction algorithm such as the one in [Coh0, Algorithm 4.4.12].
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In the general case, we have to use relative polynomial reduction algorithms
which will be described in Section 2.4.2. In any case, we obtain a polynomial
B;(X) such that the minimal monic polynomial over K of n = B;(f) is a
polynomial S;(X) that is hopefully simpler than R;(X) (up to a multiplicative
constant, we have S;(X) = Ry (Ri(Y), X — B;(Y))). Since we now work with
S;(X) and its root 1, we must express 6; and 6, in terms of 5. Using Algorithm
2.1.12 below, we can compute a polynomial B; ! such that § = B! (); hence
6, = Ci(n) and 02 = C2(n) with

Ci1(X) = A1(B; ' (X)) mod S;(X) and
C2(X) = By 1(X) — kA (B }(X)) mod S;(X) .

Another way to obtain smallet polynomials is to modify the type of ele-
ments chosen in Algorithm 2.1.8. Instead of trying elements of the form 6 =
02 + k6,, we may try more generally any polynomial in 6, and 82 with rational
coefficients. This usually leads to rather complicated computations unless
the polynomials are very simple, such as the linear polynomials we have
just chosen. But it is also reasonable to look at 8 = 6,0, + k0, + k20, for
small integers k; and k2. This means that instead of computing R(X, k) =
Ry(Ty(Y),T2(X — kY)), we compute

R(X, k1, k2) =Ry(T1(Y — k), To((X — k1Y + k1 k2) /Y)Y ™2)

with ny = deg(T:). As usual, if this polynomial is squarefree it defines the
compositum of the number fields defined by 77 and 7> as an étale algebra. We
can also recover 8; and 6, by proving a proposition analogous to Proposition
2.1.7 (see Exercise 8). It is, howevet, much better in this case to use the direct
method explained in Section 2.1.4.

Very often we can simply take k; = k2 = 0, hence § = 6,6, and in this
case it frequently happens that the polynomial R(X, 0, 0) is simpler than the
polynomial output by Algorithm 2.1.8.

We give an example. Assume that K = Q and that T7(X) = T>(X) =
X3 — 2 We apply Algorithm 2.1.8. After step 1, we find that

R(X,Z)=X°-6(Z*+1)X® +12(2° - 723 + 1) X% - 8(Z3 +1)% .

In step 2 k = 1 and k£ = —1 do not work, but both k¥ = +2 work, so we
choose k = 2, for example, so R(X,2) = X° — 54X % + 108X 3 — 5832. In step
3, we obtain A;(X) = (X7 — 63X* + 1242X)/2268. In step 4, we get the
factorization into irreducibles in Q[X] as R(X,2) = (X3 — 54)(X® +108). In
step 5, we first output R;(X) = X3 — 54, which is the trivial compositum
of the field Q(2!/3) with itself, and 6, + A, (X) mod R, (X) gives X /3 mod
R, (X), which is indeed the change of variable necessary to transform R, (X)
into the initial polynomial X3 — 2. Note that §; = X — 26, is also equal to
X /3, as it should be.
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We then output R(X) = X8 + 108, which is the nontrivial compositum
of Q(2!/3) with itself, hence its Galois closure, as well as 6, = —X*/36 +
X/2 mod Rz(X) and 8, = X*/18 mod Ry(X). Note that these formulas for
6, and 62 come immediately from the algorithm but would not have been so
simple to obtain directly. The reader can check that 83 = 63 = 2 (mod X +
108).

A polynomial reduction algorithm such as [Coh0, Algorithm 4.4.11] gives
the new polynomial Sz(X) = X% —3X5 +5X3% —3X + 1 (whose discriminant
is more than 10'° times smaller than that of R2(X)) and the polynomial
By(X) = —X5/54— X3/36+ X /3+1/2. Algorithm 2.1.12 gives us B; ' (X) =
4X% —10X* —6X3 +19X2 + 11X — 9, and so we obtain finally C;(X) =
2X% —5X*—3X34+10X2+5X —5and Co(X) =-X2 4+ X +1.

On the other hand, if we want to use 8 = 0,02 + k1601 + k202, we find that
(k1,k2) = (0,0) does not work (it will never work when T} = Ts; see Exercise
10), but (k1,k2) = (—1,0) works and gives

R(X,-1,0) = X? —6X°% +228X3 -8
=(X346X -2)(X%-6X*-4X3+36X2+12X +4) .

The third degree factor defines as usual the same number field defined by
Ty and T3, and the sixth degree factor defines its Galois closure. Although
more coefficients are nonzero, it is a slightly simpler polynomial than the
polynomial X® + 108 (for example, its discriminant is 144 times smaller),
and of course polynomial reduction leads to the same polynomial as the one
found above.

2.1.4 Computing 6, and 0,

The formula 6, = —RY%(6,k)/R'%(0,k) implicitly used in Algorithm 2.1.8
has the advantage of simplicity but is usually not the most efficient. Indeed,
although R'y(X,k) can be obtained as the derivative of the single-variable
resultant R(X ), there does not seem to be any direct way of computing

'2(0, k) without computing a two-variable resultant R(X, Z). This, however,
is a rather expensive operation if we directly use the subresultant algorithm.
It is generally better to use modular variants, which amounts to computing
R(X, k) for several values of k, which is exactly what is needed in step 2.
There are at least two ways to obtain 6, without knowing R(X,Z) as a
two-variable polynomial.

The first way is by looking more closely at the structure of the subresul-
tant algorithm ([Coh0, Algorithm 3.3.7]). This algorithm follows the steps of
an ordinary Euclidean algorithm, except that pseudo-divisions are used in-
stead of divisions. In our case, this means that we start with the polynomials
T1(Y) and T>(X — kY") considered as polynomials in Y only and essentially
perform successive Euclidean steps until we reach a constant polynomial in
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Y, which will be the desired resultant R(X) = R(X, k) if we follow the nor-
malizations of the algorithm properly. At each stage, the polynomial in Y is
a linear combination with coefficients in K[X,Y] of the polynomials T(Y)
and T5(X — kY). In particular, they will vanish when we set simultaneously
Y=01 andX:02+k01.

It can be shown that, when the final remainder R(X) is squarefree, the
degree of the preceding polynomial in the sequence will be exactly equal to 1
in the variable Y, and up to a constant, it will be equal to R'(X)Y + R’ (X, k)
(see Exercise 12). Since this will vanish when weset Y = 6; and X = 0, +k6,,
we obtain the formula 6, = —R'(X)/R%(X, k) as before, but without the
need for computing R(X, Z) explicitly.

The second way to compute 6, is direct. Let IV be the nyng x nyny, matrix
whose rows are indexed by pairs (i;,72) with 0 < 43 < n; and 0 < i3 < ng,
and whose columns, indexed by j for 0 < j < nin3, contain the coefficients
of 87 = (82 + k)7 on 663, which can easily be computed by induction
using the polynomials T, and T>. Since we know that #; belongs to K(6),
the column vector V representing 6, (whose entries are equal to 0 except for
(i1,32) = (1,0) for which V{;,0) = 1) belongs to the image of N in K™"2.
By Gaussian elimination, we can thus find a column vector W such that
V = NW, and 6, is thus equal to (1,6,...,6™"" I},

Note that if we add an (njng + 1)st column to the matrix N represent-
ing #™1 "2, the ordinary kernel of this matrix gives the polynomial R(X, k),
thus giving a way other than the subresultant to compute it. Practice shows
that, suitably implemented, these ideas lead to much better performance
than implementations based on the subresultant algorithm, even with the
improvement mentioned above (see Exercise 13).

Both of the methods just described can of course also be applied to the
case where one chooses 8 = 68,62 or more generally 8 = 6,65 + k6. Since this
case often gives simpler results, we isolate it as a formal algorithm.

Algorithm 2.1.9 (Compositum of Two Number Fields Using 6:62). Let

T1(X) and T>(X) be two monic irreducible polynomials in K[X] of degree n;

and 2. This algorithm computes a relative defining polynomial for all the pos-

sible compositums L = K(6) of the number fields determined by 77 and T,

respectively, and expresses the generic roots 6; and 02 of Ty and T3 in terms of

0.

1. [Modify 6;] By trying k = 0, £1, etc., find k such that the characteristic
polynomial of 6;(6; + k) is squarefree. Set T} (X) + T1(X — k), then write
T(X) = ZOSil <ny t1;, X" and To(X) = zosizsﬂz to,i, X ™.

2. [Set up big matrix] Set n + mning, and construct the n x (n + 1) matrix
N = (N, ,iy),;) Whose rows are indexed by pairs (i1,72) with 0 < i1 < ny
and 0 < i < ng, and whose columns are indexed by integers j such that
0 < j < n as follows. Set Ng0),0 + 1. N, ,ip),0 ¢ 0 for all (i1,32) # (0,0).
Then for j = 0,...,5 =n —1, and for all (i1,12), set
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Ny iz),i+1 ¢ Niiy=1,i2-1),5 — 81,0 N(ny—1,i2-1),j
— 12,5, N5, ~1,n2-1),5 + 81,02 82, N(n1 —1,n2-1),5 »

where N;, ;,),; is taken equal to 0 if either i; < 0 oriz <0.

3. [Compute kernel] Using [Coh0, Algorithm 2.3.1], compute the kernel of N,
which will be a one-dimensional space generated by some element (1o, ..., T,)*

with 7, # 0 which we normalize so that r,, = 1. Set R(X) ¢ 3 oc;c, 5 X7

4. [Compute inverse image] Change the nth column of the matrix NV by setting
Nqi,0),n ¢ 1 and N, i5)n ¢ 0 for (i1,i2) # (1,0). Then once again using
[CohO, Algorithm 2.3.1], compute the kernel of this new matrix N, which must
again be a one-dimensional space generated by some element (ao,...,a,)
with a,, # 0 which we normalize so that a, = —1.

5. [Compute 6, and 62] Set A1(X) + Y oc;cnaiX’. Using the extended
Euclidean algorithm, compute polynomials U and V in K[X] such that
U(X)A;(X)+V(X)R(X) =1 and set A2(X) + XU(X) mod R(X).

6. [Factor R(X)] Using, for example, [CohO, Algorithm 3.57] if K = Q
and [CohO, Algorithm 3.6.4] otherwise, factor R(X) in K[X] as R(X) =
I, <i< R;(X) (we already know that R(X) is squarefree).

7. [Terminate] For i = 1 to i = g, output R;(X) as the irreducible defining
polynomial of a compositum of number fields determined by 77 and T%, output
01 + A;(X)—k mod R;(X), 82 + A2(X) mod R;(X) as roots of the initial
Ty and T3, respectively, where k has been computed in step 1, and terminate
the algorithm.

Remarks

(1) If £ = 0 does not work in step 1, we change 6, into 6; + k and hence
T1(X) into T7(X — k) for some small k. The proof of the existence of
such a k is essentially identical to the proof of the primitive element
theorem (Exercise 2). To avoid any risk of confusion, it is preferable to
do this change before using this algorithm, and forget about the initial
polynomial Tj(X) entirely, rather than handling 62(6; + k). In other
words, we could reasonably ask the algorithm also to output the new
polynomial T;(X), and set 6, + A;(X) mod R;(X) in the last step.

(2) After computing 6, + k, to recover 62 we use in step 5 the trivial formula
02 = 6/(61 + k). We can also obtain 2 directly by still another kernel
computation where we set N(g1),» + 1 and N(;, ;,)» ¢ O for (i1,i2) #
(0,1).

(3) Since we have two (or three if we use the preceding remark) matrix kernels
to compute of n x (n + 1) matrices whose first n columns are the same,
we can considerably speed up the algorithm by solving the two (or three)
linear systems at once. This is a simple modification of the algorithm for
computing a matrix inverse [Coh0, Algorithm 2.2.2], where the work is
done only on two (or three) columns instead of n. The details are left
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to the reader (see Exercise 14), but an actual implementation must use
this.

One last problem can be asked in the context of the compositum of number
fields. Let K; and K, be two extensions of K determined by the polynomials
T, and T> as above, and let L be the étale algebra compositum of K; and
K, so that a defining polynomial for L/ K is the resultant R(X, k), and 6 =
02 + k6, (if desired, instead of the full compositum L, we could also consider
one of the number fields obtained by factoring R(X, k)). We would like to
compute a relative defining polynomial for L/K; and for L/K>. The answer
to this problem is trivial but deserves to be mentioned. Since 8 = 62 + k6, we
clearly have T2 (0 — k6,) = T>(62) = 0. Hence, if we set Uy (X) = To(X —k6,),
we have Uy € K;[X] and U;(6) = 0. In addition, since L is the compositum
considered as an étale algebra, we have [L : K;] = [K> : K] = deg(T3), so
U, is the minimal polynomial of 8 over K;; hence it is a relative defining
polynomial for L/K,; (if we had taken L to be a number field associated to
an irreducible factor of R(X, k), we would have had to consider a suitable
factor of Uh).

Similarly, since k # 0, U2(X) = k98(T)T,((X — 6,)/k) is the minimal
polynomial of 8 over K5; hence it is a relative defining polynomial for L/ K.

2.1.5 Relative and Absolute Defining Polynomials

Let L; be a number field over K, defined as L, = K(6,), where 6, is a
root of the irreducible polynomial T; € K[X] of degree n;. Let Ly = L,(62)
be a relative extension, defined by a root 62 of the polynomial T, € L[ X],
irreducible over L, of degree ns = [L2 : L]. In this section, we give an
algorithm that allows us to go back and forth from the representation of
L, as an L;-extension to the representation of L, as a K-extension. (In
the case where K = Q, this of course allows us to go back and forth from
relative to absolute defining polynomials.) We will see that this is a natural
generalization of the algorithm for computing the compositum of two number
fields (Algorithms 2.1.8 or 2.1.9).

The following theorem is the analog (in fact, a generalization) of Propo-
sition 2.1.7.

Theorem 2.1.10. Let Ly = K(0;) and Ly = L,(62) be two number fields,
where 0, is a root of the irreducible polynomial T\ (X) € K[X] of degree n,,
and 62 is a root of the polynomial To(X) € Ly(X) of degree n,, assumed to
be irreducible in Ly(X). If To(X) = Y02 o Am(61)X™, we set W(X,Y) =
Yoz Am(Y)X™, which makes sense only modulo Ty(Y)K[X]. Set

Then we have the following.
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(1) There ezists an integer k € Z such that the polynomial R(X, k) is square-
free.

(2) If k is chosen as in (1), then R(X, k) is irreducible in K[X], and L, =
K (0), where 8 = 02 + kb is a root of R(X,k).

(3) If k and 8 are as in (1) and (2), we have

B

6, =
1 R,X

(6,k), 02 =0-—kb, .

Proof. The proof is very close to that of Lemma 2.1.4 and Proposition
2.1.7 (see also [Coh0, Lemma 3.6.2]).

(1). Let 2 = L, be some algebraic closure of L,. Then {2 is also an
algebraic closure of K and of L;. We denote by Ogi) (resp., 0&”) the roots
of T} (resp., T2) in {2, chosen so that 6, = 0§” and 6, = 0;1). Note that
the OY) (resp., the ()gj )) are distinct since 77 and T3 are irreducible and in
particular squarefree. Let k € Z. The roots of R(X, k) in {2 are the numbers
X such that there exists a common root of T1(Y') and W (X —kY,Y), so that
Y =6{) and W(X — k6{",6{") = 0.

Set 2

T = Y An00)x™ =W (X,60)

m=0

and let 65"% be the roots of TS in £, ordered so that 65"") = g% Thus the
roots of R(X, k) are the numbers (9 = 6{"9) + k6. Furthermore, using as
before Sylvester’s determinant, it is easy to show that R(X, k) is a polynomial
in X of degree at most equal to nyn,. If we choose k € Z different from the
finite set of values .

ogi,i) _ 9‘({; 1)

22 fori i,
6" — 61"

the niny values (%) are distinct, and hence the polynomial R(X,k) is
squarefree of degree exactly equal to nyng, proving (1).

We prove (2) and (3) simultaneously. Let k be chosen as in (1). Keeping
the notation of the proof of Lemma 2.1.4, we obtain without change that for
0 = 02 +k6,, we have 6, = —(R%/R')(8, k) and 02 = —k#6, . Since 6 is a root
of R(X,k) € K[X], it is a root of some irreducible factor Ry (X) of R(X, k) in
K[X]. But then the number field K (6) defined over K by the polynomial R;
contains L, (since 6, is a rational function of ) and hence also contains L,
since 6 = @ — k6. Since [Ls : K] = [La : Ly][L; : K] = niny = deg(R(X, k)),
it follows that deg(R;) = deg(R(X,k)); in other words, R(X,k) is irreducible
in K[X]. O

The corresponding algorithm is also essentially identical to Algorithm
2.1.8. Considering its importance it is useful to give it separately.
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Algorithm 2.1.11 (Relative to Absolute Defining Polynomial). Given an ir-
reducible polynomial 71 € K[X] defining a number field L; = K(6,) and a
polynomial T> € L;[X], irreducible in L;[X], hence defining a number field
Lo = L1(62), this algorithm computes a defining polynomial for L, over K, in
other words, an irreducible polynomial R € K[X] such that L, = K () with 0
a root of R. Furthermore, it also computes 6; and 62 as polynomials in 6, and
the small integer k such that 8 = 6, + k6.
1. [Compute resultant] If T5(X) = >, Am(61)X™ for some polynomials A,,,
set W(X,Y) « >, Am(Y)X™. Using, for example, the subresultant algo-
rithm ([CohO, Algorithm 3.3.7]) over the ring K[X, Z], compute

R(X,Z) + Ry(h(Y),W(X - ZY\Y)) ,

where X and Z are formal variables. We will denote by Ry (resp., R;) the
partial derivative of R(X, Z) with respect to X (resp., Z).

2. [Find integer k] For k = 0, £1, £2,..., compute
s + ged(R(X, k), Rx (X, k))

until s = 1.

3. [Terminate] (Here R(X k) is irreducible.) Using the extended Euclidean algo-
rithm, compute polynomials U and V' in K[X] such that U(X)R' (X, k) +
V(X)R(X,k) = 1, and set 6, « —-U(X)R%(X,k)mod R(X,k). Out-
put the defining polynomial R(X,k) for L2/K, output &, 61, 0 = X —
k6, mod R(X), and terminate the algorithm.

Again we give an example. Let K = Q, L; = K(6,), where 6, is a root of
the polynomial T3(X) = X3 — 2, and Ly = L;(62), where 8, is a root of the
polynomial T5(X) = X2 — 6, X + 1. We compute that

R(X,Z)=X%+3X*-20223+32*+3Z +1)X?
+3X2+6(22%+32%+2)X
+ (428 +122° + 122* + 423 +1) .

Here we can take k = 0 (this was never possible when computing a composi-
tum; see Exercise 16), and hence R(X) = X® +3X* - 2X3% +3X% + 1is an
absolute defining polynomial for L.. Furthermore, the computations of step
3 show that 6; = —(X® + 3X3% — 2X? — 2X) mod R(X).

"The above algorithm is used when it is necessary to have a defining poly-
nomial for Ly over K and not only over L; (although it is usually better
not to work over K, but sometimes it is impossible to do otherwise). The
results are then used as follows. If @ € L; is given as a polynomial in 6,
thanks to the formula expressing 6; in terms of § we can immediately com-
pute « in terms of # and hence consider it as an element of L2. Conversely,
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ifa= 20<i <nyna a;0* is an element of L, which for some reason is known to
belong to L, (for example, a may be the relative trace or norm of some other
element of L2), we want to express a as a polynomial in #; and not only as a
polynomial in 6. Thus, we want to find b; € K such that a =} <, ,,, ;6.
Since 6; is known as a polynomial in 6, we can compute (once and for all if this
has to be done for several a) coefficients ¢; j for 0 < i < nyjnz and 0 < j < ny,
such that 6] = 2 o<i<ning c;,;0°. Finding the b; is thus equivalent to solving
the linear system of nin; equations in ny unknowns o, . ¢ija; = b; for
0 < 7 < ning. This is done via a straightforward pivoting method (see, for
example, [Coh0, Algorithm 2.3.4]). Since there are many more equations than
unknowns in the system, this gives an excellent check of the correctness of
preceding computations. In fact, the system has a solution if and only if o
does belong to L, so it provides a new verification of this fact.

Remark. It is important to note the similarities and differences between
the two problems studied above. The computation of the compositum of two
number fields corresponds clearly to the special case of the computation of
a relative extension Ls/L; in which the defining polynomial T2(X) not only
belongs to L;[X], but in fact to K[X], or in other words, that the corre-
sponding two-variable polynomial W(X,Y) defined above does not depend
on Y. However, it is not quite a special case, since in the computation of ab-
solute defining polynomials, we assume that the polynomial T3 is irreducible
in L;(X), while for the compositum we have the weaker assumption that T
should be irreducible in K[X].

We could, however, write a common theorem and a common algorithm
by considering finite étale algebras over K instead of field extensions of K,
and in that case the polynomial T5 need not be irreducible. We leave this as
an easy exercise for the reader (Exercise 17).

Finally, note that most of the remarks made after Algorithm 2.1.8 — in
particular those about other ways of computing 6, — still apply here and
must be used in a serious implementation.

Another interesting special case of the problem of computing absolute
defining polynomials is the reversion of an algebraic number. Assume that
L, = K(6,) is a number field of degree n over K defined by an irreducible
polynomial T3, and let 82 = A(6:1), which is also known to be of degree n.
Since K(62) = K(6,), we must be able to express 6; in terms of 6. Using
Algorithm 2.1.11, we let Ly = L1(62), where 62 is a root of the polynomial
T, of degree 1 over L1(X) defined by T>(X) = X — A(6,). Clearly, L, = L;.
We have W(X,Y) = X — A(Y), and hence R(X,Z) = Ry(T1(Y),X - ZY —
A(Y)). The polynomial R(X,0) = Ry(T1(Y),X — A(Y)) is the characteristic
polynomial of @ in L; (see [CohO, Proposition 4.3.4]). Hence, since a is of
degree n, R(X,0) is irreducible and is thus equal to the minimal polynomial
of a. Theorem 2.1.10 then tells us that 6, = —R/;(62,0)/ R’ (62,0).
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We can also solve the problem directly using the following algorithm.

Algorithm 2.1.12 (Reversion of an Algebraic Number). Let L = K(6,) be

a number field of degree n over K defined by an irreducible polynomial T3, and

let 8, = A(6:) be an element of degree n. This algorithm computes a polynomial

B(X) € K[X] of degree less than n such that §; = B(6s).

1. [Compute powers of 82] For 0 < j < n, compute A;(X) + A’(X) mod
Ti(X), and let A;(X) = Y pcic, @i X

2. [Solve linear system] Let M = (a; ;) be the matrix of the a; ;. Using ordinary
Gaussian pivoting in K, find a solution B = (bo,...,bn_1)" to the linear
system M B = (1,0,...,0)%. If the system has no solution, output an error
message saying that 62 is of degree strictly less than n and terminate. If the
system has more than one solution, output an error message saying that 6, is
of degree strictly less than n and terminate.

3. [Terminate] Set B(X) « 3 ;. b;X7, output B(X), and terminate the
algorithm. -

Proof. The (easy) proof of this algorithm’s validity is left to the reader
(Exercise 18). 0

Finally, consider the following problem. Assume that we have a field ex-
tension L/K and that, in addition to the data for the base field K, we know
only an absolute defining polynomial for L (over Q or some other subfield
k of K). We want to find a defining polynomial for L/K. This is simply
the subfield problem considered in [CohO, Section 4.5]. There are thus several
methods to do this, which are equivalent to factoring the absolute polynomial
defining L in the number field K. Any such factor of the correct degree gives
a relative defining polynomial. Note, however, that if the number fields are
specified together with embeddings (in C, for example), then one must choose
among the factors of the correct degree, selecting the one that corresponds
to the given extension. The details are left to the reader (Exercise 19).

2.1.6 Compositum with Normal Extensions

We keep the situation of the preceding section, but we will specialize to
K = Q (although most of what will be said applies with essentially no change
to the general case), so we change notation.

Let K = X6;) be defined by a root of an irreducible polynomial T3 (X) €
Q[X] of degree n;, and let L = K(62) be a relative extension, defined by a root
6, of the polynomial T; € K[X], irreducible over K of degree n, = [L : K].
Recall that a special case of this situation is the compositum of two number
fields.

In the preceding section, we gave an algorithm for computing an absolute
defining polynomial T'(X) for L/Q and for expressing 6, and 2 in terms of
the generic root § of T'.
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We will want to compute arithmetical invariants of L such as its discrim-
inant and integral basis, or to perform polynomial reduction on its defining
polynomial, either relative or absolute. Later we will see how to use the rela-
tive defining polynomial (which, as usual, gives simpler results). If instead we
want to use the absolute defining polynomial alone, the first major problem is
to factor its discriminant. This is generally quite a hard task (with the tech-
nology available in 1999, factoring 100-digit numbers is already quite hard;
the records, harnessing huge amounts of computing power, are in the 170-
digit range). In the special case where L is obtained as a compositum with
a normal extension of K (and also in more general cases), we have algebraic
methods for obtaining a partial factorization, which we now explain.

Thus, let L be the compositum of K with a number field K> assumed to
be normal over Q with Galois group G. This is an important situation that
occurs, for example, when we deal with Kummer extensions (see Chapter 5),
where we first need to adjoin an nth root of unity, so that Ko = Q(¢,) and
G ~ (Z/nZ)*.

Let T5(X) be a polynomial defining K,/Q, and let 6, be a root of T3 in
K,. As we have seen in Section 2.1.3, if we set

R(X,Z) =Ry(Th(Y), T2(X — ZY)) ,

we can find k € Z such that R(X) = R(X,k) is squarefree and defines our
étale algebra L = Q6] with 6 = 6, + k6,, and we also have

/
6 =—=%(0,k), 02=0-kb .
RX

If we want to work directly with the absolute polynomial R(X), we must
begin by factoring its discriminant. Since we have introduced parasitic factors,
its discriminant is generally large and hence difficult to factor. Using the
algebraic structure present in the construction of R(X), however, we can
considerably simplify the factoring process.

To simplify the computations, we will assume that 7 and T, are monic
and with integer coefficients, since it is easy to reduce to this case. The reader
can easily modify the computations given below to the case where no such
preliminary reduction is made (see Exercise 20). Since K> is normal over Q,
we can index the roots of T2 by G, so that if Ko = X3), we can set 8, = o(3)
for any 0 € G = Gal(K>/Q), and these will be all the roots of T,. Thus, we
can write

n(X)= [ (Xx-a) and T(X)=[[(Xx-5),

0<i<ny c€G

and we let n = njn2 be the absolute degree of L.
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The definition of the resultant (see [Coh0, Definition 3.3.2]) shows that

RX,2)= J] X-(uZ+8)),

0<i<n,;,c€G
hence the formula for the discriminant ([Coh0, Proposition 3.3.5]) gives
D(Z) = discx (R(X, Z))
=)0 T (e — @) Z + (Boy = Bey))

(i2,02)#(i1,01)
— (_1)n(n—1)/2P1(Z) . Pz ,

with

P(z)= [] II (e, = )2 + (Boy = Bsy))

i2#1) 01,02
and
Bo= [ TI (Bor - Ber) = (~1)mam2m=D/2 isc(m)™

i2=1; 02#0)
where, of course, 7; and i2 vary implicitly between 0 and n; — 1, while o; and
o9 are in G. Hence,

D(Z) = (=1)"n+m2=2/2 gisc(Ty)™ Py (Z) .

The discriminant of the absolute polynomial R(X) = R(X, k) defining L is
thus equal to D(k). We will see below that up to sign P, (k) is a square, but
it is simpler to keep it in the present form for now.

Let us compute this value in the simplest possible rational terms. Here
we will use in an essential way the fact that the number field K2 is a normal
extension of Q. Grouping terms with a given s = ;' g2, we have

D(k) = (-1)""*"2=2/2 disc(T3)™ [] Ds(k) ,
sEG
with

D)= I (e =au)k+(Bos—5s)) -

c€G 0<iz#i1<m

By Galois theory, since D,(k) is invariant both by the Galois group of the
Galois closure of K/Q and by G, D,(k) is a rational integer. In addition, if
we denote by 1g the unit element of G, then

Dy, (k) = k"‘"2("‘_1)( H (ai, — ail))nz

0<iz#i1<n)
— knxnz(‘nl-l)(_l)nlnz(nx—1)/2 diSC(Tl)nz :

hence



2.1 Compositum of Number Fields and Relative and Absolute Equations 69

D(k) = (-1)%k™ "2~V disc(Ty)"2 disc(Tz)™  [[ Ds(k) ,
s€G,s#l¢g

with

nn+ny—2)+n(n,—1)  ny(ng +1)
2 2

nz2(nz +1) =0 (mod 2) .

Furthermore, it is easy to see that

Ds“(k) = H H ((aiz - a‘il)k + (ﬁas“‘ - ﬂo'))

c€G 0<iz#i1<ny

= H H ((as, — i)k + (Bs — Bos))
g€G 0<iz#1;<n)

= (=1)mm2tm=DD (k) = D, (k) .

In addition, if s2 = 1g and s # lg, let H be a system of right coset
representatives of G modulo < s >, so that G = H U Hs (disjoint union).
Then

Da(k) = T TI (e, = i)k + (Bos — Bo)) (0, — iy )k + (Bosz — Bos))

oc€H iz#1h
= E,(k)? ,

with
Es(k) = H H ((a‘ig - Qi )k + (ﬂa’s _ﬁa)) .
oc€H iz #iy
Since E,(k) is still invariant by the Galois groups, it is rational. Hence it
follows that Ds(k) is a square when s? = 1g and s # 1g.
Thus we have finally obtained the following result.

Lemma 2.1.13. With the above notation, we have

D(k) = kM "D dise(Ty)" disc(T2)™  [[  Ds(k) -
s€G,s#l¢g

Furthermore, for all s, we have D,-1 = Dy, and if s2 = 1g and s # 1g, then
D, is the square of a rational integer.

Hence, we have split our large discriminant D(k) as a product of smaller
pieces D4 (k). This already shows that D(k) must factor relatively easily. This
is still theoretical, however, since we must also give a purely algebraic way of
computing Ds(k).

To do this, we make the following observation. Let

U(X) =Ry(Ty(Y), Th(Y + X))/ X™
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be the resultant in Y of 77 with a shifted version of the same polynomial T;
divided by X™. Then

U(X)= H (a,—2—ail+X) .

0<ig#i1<ny

Hence for s # 1g,

D,(k) = [T (kDU ((Bas ~6.)/K))
c€G

= gmin2(mi-1) H U((Bss — Bo)/k) .

c€G

If we set
‘G(X) = H (X - (,Bas —ﬂa)) )

ceG

we have
Vo(X) = [] (X = a(s(8) = B)) = Cy()-5(X) ,
ceG

where C,(X) denotes the characteristic polynomial of o in the number field
K> (see [CohO, Definition 4.3.1]). Since K»/Q is a normal extension, s(3) is a
polynomial in 8 with rational coefficients, and hence we can set s(3) = A,(3)
with A, € Q[X]. Note that A, can be computed algorithmically using one of
the algorithms for the field isomorphism problem ([CohO, Section 4.5]). Thus,
using [Coh0, Proposition 4.3.4], we have

Vs(X) =Ry(T2(Y), X +Y — A,(Y)) .
Finally, coming back to Ds(k), we see that

Rx(U(X), Vi (kX)) = kmm20 =) TT U((Bos = B)/k) = Da(k) -
c€EG

We summarize what we have obtained in the following theorem.

Theorem 2.1.14. Let K; = (6,) and Ky = Q(02) be number fields of re-
spective degrees n, and ng, and let T1(X) and T2(X) be the minimal monic
polynomials of 6, and 65, respectively. Assume that K, is a normal extension
of Q with Galois group G. Let R(X) = R(X, k) be an absolute defining poly-
nomial for the compositum L of K1 and K5 as computed by Algorithm 2.1.8
(R is squarefree but not necessarily irreducible).

For s € G, s # 1g, define A;(X) to be the polynomial expressing s(62) in
terms of 02, and set Vo(X) = Ry (T2(Y), X + Y — Ay(Y)) (this depends only
on the number field K5 and on s).

Let U(X) =Ry (Th(Y),Th(Y +X))/X™ (this depends only on the number
field K1), and for s # 1g, set
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Ds(k) = Rx (U(X),Vs(kX)) .

Then

(1) for all s € G, s # 1g, we have Ds(k) € Z;
(2) we have the decomposition

disc(R(X)) = km72(m =1 disc(Ty)"2 disc(Tp)™  [[  Ds(k) ;
s€G,s#l¢g

(3) for all s € G, we have D,-1(k) = D,(k);
(4) if s> = 1g and s # 1g, then Ds(k) is the square of a rational integer.

Remarks

(1) To use this theorem in practice, we let I be the set of elements s of
G such that s> = 1g and s # 1g, and we let G; be a complete set
of representatives for the equivalence relation on G — I — {1g} whose
equivalence classes are the pairs {s, s~!}. Then

disc(R(X)) = k™"2(m=1) disc(Ty)™ disc(Tp)™ ( I Ds(k)HE,(k))2 ,
seGy sel

with E,(k) = D,(k)}/? € Z as above.

(2) If instead of choosing 8 = 62 + k6, we choose § = 6,6, (or, more generally,
0 = 6,02+k16,+k26,) as in Algorithm 2.1.9, a completely similar theorem
holds; see Exercise 9.

Let us look at an example. Let T1(X) = X* — X3 +2X + 1 and let
T5(X) = (X' —1)/(X —1) be the 11th cyclotomic polynomial, which defines
a cyclic extension of Q. An absolute defining polynomial for the compositum,
which is of degree 40, obtained by choosing 8 = 6; + 6, has a discriminant of
several hundred digits. Even after casting out small prime factors less than
500,000, say, and noting that the unfactored part is a square, the number
that remains to be factored still has 110 digits. Factoring such a number is
in general a feasible but formidable task. We know, however, that it must
factor in relatively small parts D4(k), and indeed all the D,(k) have around
34 digits, which are considerably easier numbers to factor.

If, on the other hand, we use 8 = 6,0, we are in a very favorable case.
First, the discriminant of the compositum obtained in this way has less than
half the digits of the preceding one. Second, it is divisible only by very small
primes (the largest being 1319), so factoring becomes trivial. Even if it were
not so, we could have used the analog of Theorem 2.1.14 given in Exercise 9.

The method explained above can be generalized to the case where there
exist only some nontrivial Q-automorphisms of K5, and also to the case of
relative normal extensions of K; not necessarily defined by a compositum.
The methods are completely similar, and the details are left to the reader.
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2.2 Arithmetic of Relative Extensions

The preceding section was essentially field-theoretical. In the present section,
which is mainly theoretical, we study the arithmetic of relative extensions,
in particular, the properties of the rings of algebraic integers.

We first briefly explain how the usual notions for absolute extensions ex-
tend to the relative case. We follow closely [CohO, Section 4.1.2 and following).
Let K be a base field, L = K(0) a relative extension, and T(X) € K[X] the
minimal monic polynomial of  which is irreducible in K[X]. More generally,
we could assume that L is only an étale algebra over K, in other words, that
T(X) is only squarefree.

2.2.1 Relative Signatures

We start with the following simple, but important, theorem.

Theorem 2.2.1. Let L = K(0) be an extension of number fields with T'(0) =
0 as above, and let n = deg(T) = [L : K]. Let o be an embedding (an injective
field homomorphism) of K into an arbitrary field 2 (not necessarily a number
field). Assume that the polynomial T°(X) has n roots in £2, where T denotes
the polynomial obtained from T by applying o to all the coefficients. Then o
can be extended to exactly n embeddings of L into (2.

Proof. Indeed, let a« = A(f) € L = K(0). If ¢ is an extension of ¢ to L,
we must have ¢(a) = ¢(A(0)) = A%(4(0)). Since T(0) = 0, we must have
T?(¢(0)) = 0, hence ¢(6) must be one of the n roots 5; of T in {2, so there are
at most n embeddings. Conversely, if we set ¢(a) = A%(5;) and if a = A, (6)
for some other polynomial A;, we have A,(X) — A(X) = T(X)U(X), hence

AT (B:) = A%(B:) + T (B:)U° (B:) = A” (By)

so ¢ is a well-defined embedding of L extending o. O

Corollary 2.2.2. Let k be a number field (for example, k = Q), K and K'
two extensions of k, and L/K an extension of K of relative degree n. We
assume that all our number fields are subfields of C. Any k-isomorphism of
o from K to K' extends to exactly n k-embeddings from L into C.

The following proposition gives a more precise way of stating these results.

Proposition 2.2.3. Let L = K(6) be a relative extension of number fields,
and let T be the minimal monic polynomial of 6, as above. Let m = [K : Q)
and n = [L : K], so that [L : Q] = nm. For each of the m embeddings ; of
K into C denote by T™ the polynomial obtained from T by applying 7; on
the coefficients. Then we have the following.
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(1) Each of the m embeddings T; of K into C extends to exzactly n embeddings
of L into C, given by 0 — 6; ;, where the 0;; are the roots of T™ for
1<j<n

(2) There exist exactly n embeddings oj k of L into C which are K -linear,
given by 6 — 0;, where the 6; are the roots of the polynomial T in C.

Proof. If o is an embedding of L into C, then o|k is an embedding of K
into C, so o|g = 7; for a certain i. If 0(f) = ¢, applying o to the equality
T(6) = 0 we obtain T™(6) = 0, and hence §' = 0; ; for a certain index j.
Conversely, it is clear that

o (; akek) = ; Ti(ag )8

defines an embedding of L into C, which extends ;.

This embedding will be K-linear if and only if ;(a) = a for all a € K
— in other words, if 7; is the identity map (recall that we have explicitly
embedded K into Q C C) — hence there are exactly n K-linear embeddings,
namely those that extend the identity of K. O

Definition 2.2.4. Let L/ K be a relative extension of relative degree n, and
let T be an embedding of K into C. We say that T is ramified in L if 7 is a
real embedding (that is, if 7(K) C R) and if at least one of the extensions of
7 to L is not a real embedding. It is unramified otherwise (in particular, a
nonreal embedding is unramified).

In terms of defining polynomials, if T'(X) € K[X]is a polynomial defining
the field L over K, then a real embedding 7 is unramified if and only if T
has only real roots in C.

The following is a simple consequence of this definition.

Proposition 2.2.5. Let L/K be a relative extension of relative degree n.
Denote by (r1,712) (resp., (R1, R2)) the signature of the number field K (resp.,
L). If all the embeddings 7 of K are unramified in L, we have (R;, R2) =
(nrl,nr2)'

More generally, if Ry,; (resp., 2Rz ;) is the number of real (resp., non-
real) roots of T™ for 1 < i < r1, we have the formula

(R1,Ry) = (Z Rii, nrat+ Yy Rzz) :

1<i<n 1<i<ry

Proof. If T is a nonreal embedding of K, any extension of 7 to L must
also be nonreal since L is an extension of K. On the other hand, if 7 = 7; is a
real embedding, the polynomial T"* has R;; real and 2R, ; nonreal roots for
some nonnegative integers R; ; and R ; such that R;; + 2Ry ; = n. Hence
the signature of L is equal to (R;, Rp) with
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Ry = Z Rl,i and Ry = Z Rg,,-+nr2,

1<i<ry 1<i<m

as claimed. In the special case where all the 7; are unramified, we have R; ; =
n and Ry ; = 0, proving the formulas of the proposition. ]

Note that when 7 is a nonreal embedding, the polynomial T does not
necessarily have an even number of nonreal roots, since it is not invariant by
complex conjugation.

Recall that an extension L/K of number fields is Galois (or normal) if L
is globally invariant by the [L : K] K-linear embeddings of L into C. If this
is the case, the set of such embeddings is a group, called the Galois group
of L/ K and denoted by Gal(L/K) (remember that all our number fields are
assumed to be subfields of C). If an element z € L is such that g(z) = z for
all g € Gal(L/K), then Galois theory tells us that z € K.

If L/K is a Galois extension, then Proposition 2.2.5 simplifies consider-
ably, as follows.

Corollary 2.2.6. Keep the notation of Proposition 2.2.5, and assume in
addition that L/K is a Galois extension.

(1) Ifk isthe number of ramified real places of K in L/ K, we have (Ry, Ry) =
(n(r1 — k), n(r2: + k/2)).
(2) Ifn is odd, we have k =0, so (R1, R2) = (nr1,nrz).

Proof. Let T be a real embedding of K. If 7 has a real extension to L, then
since L/ K is Galois, the roots of the defining polynomial '™ can be expressed
as polynomials with coefficients in 7(K) of any one of them. Hence if one root
is real, all of them are, and if one is nonreal, all of them are. Thus, either 7
is unramified, or all the extensions of 7 to L are nonreal. In the case where
n is odd, T™ is an odd-degree polynomial with real coefficients — hence has
at least one real root — so all real places 7 are unramified, thus proving the
corollary. 0O

Corollary 2.2.7. Keep the notation of Proposition 2.2.5. Then

(1) we have Ry + 2R2 = n(r1 + 2r2) and Ry < nry (or, equivalently, Rs >
nre), and if n is odd, Ry > ry;

(2) if L/K is a Galois extension, then in addition n | Ry (or, equivalently,
n | 2R3), and if n is odd, Ry = nr1 and Ry = nrs;

(3) conversely, if (1) is satisfied, there ezists a relative eztension L/K of
signature (Ry, R2), and if (1) and (2) are satisfied, there exists a Galois
(even a cyclic) extension L/K of signature (R, R2).

Proof. Statement (1) immediately follows from Proposition 2.2.5, and (2)
follows from Corollary 2.2.6. The cases n odd follow from the fact that a real
polynomial of odd degree has at least one real root.
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Conversely, assume (1). Since Ry < nr and Ry = nr; (mod 2), we
can find r; integers ny,...,n, such that n; < n, n; = n (mod 2), and
> L= R;. For each ¢ < r, choose a monic squarefree polynomial
P;

1<i<
(X) € IR[X ] of degree n having exactly n; real roots; for example,

rxy= [[ x-5) JI &x*+%.

1<i<n, 1<5<(n—m)/2

Write P;(X) = 2 o<j<n 3ii X 3, and let € be a sufficiently small, positive real
number. By the approximation theorem (Proposition 1.2.8), we can find ¢; €
K such that |a§.’) - ai,j] < eforall i < r;, where as usual agi) denotes the ith
conjugate of a;. Since P; is squarefree, if € is small enough, by continuity the

modified polynomials Q;(X) = Eo<,<n ;’)X J will have the same number
of real roots as P;, in other words n;. By the approximation theorem once
again, we may also modify a; so that Q;i(X) is irreducible in K[X]. Once this
is done, we take Q(X) = 5 .., @;X? and it is clear that a root of Q(X)
defines an extension L / K having the required signature.

Assume now that (1) and (2) are satisfied. Choose a large prime p > 2
such that p = 1 (mod 2n) and p { d(K). Since (,)/Q is ramified only
at p and K/Q is not, it follows that K N Q((,) = Q. Let n = ¢, + (7,
so that Q(n) is the totally real subfield of degree (p — 1)/2 of Q. Denote
by £k = Q(f) the unique totally real subfield of degree n of (), which
exists since Gal(Q(1)/Q) ~ (Z/((p—1)/2)Z) and p = 1 (mod 2n). Since
KNQ(¢) =Q, we also have KNk = Q, so K(6)/K is a cyclic extension of
degree exactly equal to n, and by construction all the conjugates of § over any
real place of K are real. Note, in addition, that the discriminant of K(8)/K
will be divisible only by prime ideals above p, since this is the case for K(({,).

If n is odd, then by (2) the signature of K(6) is equal to (nry,nrs),
so L = K(6) is a field with suitable signature. Thus assume n even. Let
G = Gal(K(6)/K), let o be a generator of G, and set s = 0™/2, which is thus
an element of order 2 in G.

Let o be any element of K* \ K*? having zero p-adic valuation for all
prime ideals p above p. It follows in particular that K (\/E) is linearly disjoint
from K (8) over K. Consider the field L = K ((6 — s(d))y/a). I claim that for
a suitable choice of a the field L will have the desired properties.

First, since K (/) is linearly disjoint from K (6) over K, L is the com-
positum of K (8 — s(f)) with K (/). In addition, the Galois conjugates of
u = (8 —s())y/a are u; = (¢°(0) —s(0*(8)))/a for 0 < i < n, since changing
v/a into —/a is equivalent to changing ¢ into i + n/2 modulo n. If we choose
0 to be a normal basis of K(6)/K, the u; are distinct and hence L/K is a
cyclic extension of degree n.

Next, let o; be a real embedding of K. Since all the embeddings of 8 above
a real embedding of K are real by assumption, it follows that o; is ramified in
L/K if and only if 0;(a) < 0. Thus, if we choose a so that o;(a) < 0 for Ry /n
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of the real embeddings of K and o;(a) > 0 for the others, the number of real
embeddings of L will be equal to R;, as desired. (I thank Bjorn Poonen for
the idea leading to this last proof.) m}

2.2.2 Relative Norm, Trace, and Characteristic Polynomial

If we denote by o; k the n K-linear embeddings of L into C, then for a € L
we define the (relative) characteristic polynomial Cq(X) of a by

CaX)= [ X -0ik(@),

1<i<n

which belongs to K[X] by Galois theory. If

Ca(X)= Y ()" 'sni(@)X",

0<i<n

then s;(a) is called the relative trace of a and denoted Trp,k(a), and s,(a)
is called the relative norm of a and denoted Nk (c). Evidently the trace is
additive and the norm is multiplicative. Note that similar statements are not
true for the other coefficients of the characteristic polynomial, which explains
the importance of these functions.

Furthermore, Proposition 2.2.3 implies immediately that the relative trace
and norm are transitive, in other words, that they satisfy

Trpjo(a) = Trg/o(Trp k(@) and Npsgla) = NgWN k(@) .

More generally, the characteristic polynomial itself (and hence all of its
coeflicients) satisfies the transitivity property (see Exercise 21). This allows
an absolute characteristic polynomial to be computed from a relative one.

As in the absolute case, a characteristic polynomial can be computed
using resultants. Let L = K(6). Then, if T is the minimal monic poly-
nomial of #, and if @ = A(f) for some polynomial A € K[X], then
Ca(X) = Ry(T(Y),X — A(Y)), where Ry denotes the resultant with re-
spect to Y. In particular, we have N/ (a) = R(T(X), A(X)).

2.2.3 Integral Pseudo-Bases

We now explain in more detail how to generalize the notions of integral basis
and discriminant. This is a little less straightforward than for the preceding
notions, and it uses most of the ideas of Chapter 1.

Asusual, let L/K be a relative extension of degree n. The ring of integers
Zy of L is not only a finitely generated free Z-module but is clearly also
a finitely generated Z g-module. The ring Z g is, however, in general not a
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principal ideal domain but only a Dedekind domain, and hence Zj is not
necessarily free (see Exercise 22 for an example). The theory developed in
Chapter 1 tells us that Z has a pseudo-basis over Zg, and any such basis
will be called a relative integral pseudo-basis, or simply an integral pseudo-
basis.

If we assume that L is given by L = K (6) with 8 an algebraic integer,
then Z k(0] C Z. Hence, as in the absolute case this implies that the relative
HNF pseudo-basis of Zj, in the K-basis (1,6,...,6""!) must satisfy some
conditions, as follows.

Proposition 2.2.8. Let M be a Z [0)-module that is projective of rank n as
a Zk-module, and let (w;,a;)1<i<n be a pseudo-basis of M in relative HNF
on the basis (1,6,...,0™"1), where 6 is assumed to be an algebraic integer.

(1) The ideals q; = a]* are divisible by q,, and we have
4 CapC--Cap ;

in other words,
qlaz|---|an -

(2) For all i < n we have w; € Zkl[f]; in other words, if (H, (a;)) is the
pseudo-matriz representing the pseudo-basis (w;,;), then the entries of
H are in Zg.

Proof. We will prove (1) and (2) simultaneously by showing by induction
on j that w; € Zk[) and a;_; C a; for j > 1. Since w; = 1, this is trivially
true for j = 1. Assume that it is true up to j — 1, and let a be any element
of a;_;. Since M is a Zk[f]-module, we have a;_10w;—; C M; hence in
particular,

abw;_; = Z T;w; with z; €aq; .
1<i<n
Since the matrix of the w; is upper-triangular with 1 on the diagonal, we
obtain z; = 0 for ¢ > j and z; = a. Since this is true for any a € a;_;, we
therefore have a;_; C a;. In addition,

awj = abw;_, — E T;Ww; .
1<i<j

Since z; € a;, and by induction we have a; C --- C aj—; and w; € Zg[6] for
1 < j, we have for all a € a;_;

a(w]- - 9(4)]'_1) € a,-_IZK[O] )

Hence
a]-_l(wj - 0&)]'_1) C a]-_lZK[O] s



78 2. Basic Relative Number Field Algorithms

from which we deduce that w; — 8wj_, € Zk[f)], hence that w; € Zk[d],
proving our induction hypothesis. Thus a; C a2 C --- C a,; hence by taking
inverses, q; D q2 D - -+ D qn, showing that all the g; are divisible by q; and
proving the proposition. ]

Corollary 2.2.9. Let (wi,a;) be an integral pseudo-basis of Z in HNF on
(1,0,...,6™ 1), where 0 is assumed to be an algebraic integer.

(1) The ideals q; = a; ' are integral ideals, a, = q; = Zg, and
Zx=q|qz2| - |qn -

(2) For all i <n we have w; € Zk[6).
(3) For every i < j, we have

9idj+1-i | 45 -

Proof. Since aj = Z; N K = Zk, we have a; = q; = Zk and (1) and (2)
are restatements of Proposition 2.2.8. The proof of (3) is very similar to the
proof of the proposition: since the leading term of w;w;41_; is #7~!, we must
have a;a;+1—; C a;, 0 qiq;+1-:i | q;. Note that (3) combined with the fact
that the g; are integral implies (1). m}

Remark. The above proposition and its corollary are generalizations to
the relative case of [CohO, Theorem 4.7.5 and Corollary 4.7.6). Using the
notation of [Coh0, Corollary 4.7.6], property (3) translates into d;d;4;—; | d;
and is not given in [Coh0).

2.2.4 Discriminants

For 1 < i < n, let 0; k be the K-linear embeddings of L into C, and let
aj,...,a, be n elements of L. Since Try k(a) = Y, <;cn 0i(@), as in the
absolute case we find that T

det(oi(a;))* = det(Trp k() -

This common quantity belongs to K and will be called the discriminant of
the a; and denoted d(ay,...,a,). We have d(a,...,a,) = 0 if and only if
the a; are K-linearly dependent (see Exercise 23).

Let B = (wj,a;) be a relative integral pseudo-basis. Then, according to
Corollary 1.4.3 and the remarks that follow, we can give two different invari-
ants that together generalize the discriminant in the absolute case. First, the

ideal
A(L/K) =d(wy,...,wn)(a1---a,)2

which we will call the relative discriminant ideal (or simply the discriminant
ideal) of L/ K. Second, the quantity
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d(L/K)=d(wy,...,wn) € K*/K*?

considered as an element of K* /K *2 in other words, modulo nonzero squares.
The pair disc(L/K) = (0(L/K),d(L/K)) will simply be called the relative
discriminant of L over K.

As mentioned in Chapter 1, each component of the pair gives (related)
information. For example, in the absolute case the discriminant ideal 9(L/K)
gives the absolute value of the discriminant, while d(L/K) gives its sign, along
with other information.

If L = K(0) and 0 is chosen to be an algebraic integer, the minimal
monic polynomial T of 6 will have coefficients in Zg. Thus Zk[f] C Z 1, and
we can consider the module M = Z1/Zk[6]. Since Zi and Zk|[6] are both
of Z k-rank equal to n = [L : K], it follows that M is a torsion Z g-module.
The order-ideal of M (in the sense of Definition 1.2.33) will be called the
indez-ideal of Z k[0] (or, by abuse of language, of 8) in Z 1, and denoted by f.

As in the absolute case, we have d(1, 6, ...,0"1) = disc(T'), where disc(T')

is the discriminant of the polynomial T, and we have the formula

disc(T)Zk = o(L/K)f* ,

where 3(L/K) is the relative discriminant ideal of L as defined above. It is
clear that in K*/K*? we have d(L/K) = disc(T).

Note also that if (w;,a;) is an integral pseudo-basis in HNF, then the
matrix of the w; on the §*~! has determinant 1; hence

d(wr,...,wn) = d(1,8,...,6" 1) = disc(T) ,

so that
(L/K) = disc(T)(ar - - an)’

Using the notation of Corollary 2.2.9, it follows that the index-ideal f is given
by
f:(al...an)_l =q1...qn .
In Section 2.4, we give an algorithm for computing relative integral
pseudo-bases and relative discriminants.

One of the main reasons for introducing the discriminant, in both the
absolute case and the relative case, is that it is an invariant of the number
field, more precisely of its ring of integers. It should be noted, however, that
we can define finer invariants, although it seems that they have not been
used in the literature. The invariance of the discriminant (or the discriminant
ideal in the relative case) comes from the invariance of the determinant of a
bilinear form by change of basis. The determinant is equal to the product of
the elementary divisors of the Smith normal form however, and each of these
is also an invariant. More precisely, we have the following proposition.
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Proposition 2.2.10. Let B = (wj,a;) be a relative pseudo-basis. Let T =
(Trp g (wiw;)), I = (a7',...,a3Y), and J = (ay,...,a,). Then (T,1,J) is
an integral pseudo-matriz. For 1 < i < n, let 0; be the elementary divisors of
this pseudo-matriz in the sense of Theorem 1.7.2. The 0; are independent of
the chosen pseudo-basis B (hence are invariants of the field extension), and
their product is equal to the relative discriminant ideal.

Proof. The proof is straightforward and left to the reader (see Exercises
24 and 25). 0

It is natural to call these ideals 0; the elementary discriminantal divisors
of the field extension. We have stated the above proposition in the relative
case, but evidently it also gives nontrivial invariants in the absolute case.

2.2.5 Norms of Ideals in Relative Extensions

As usual, let L/K be a relative extension of number fields, and let I be a
nonzero integral ideal of Zp. The absolute norm of I is the order of Zp/I,
but, as above in the case of Z,, we have a richer structure since Z/I is a
Z g-torsion module.

Definition 2.2.11. Let L/K be a relative extension, and let I be an integral
tdeal of Zr. The relative norm of I is the order-ideal of the Z k-torsion module
Zi/1, or the indez-ideal [Zy : I] in the sense of Definition 1.2.33. It is an
ideal of Zg denoted NL/K(I). In other words, if Z/I = @;(Zk/v:)a; as a
torsion Z g-module, then Ny x(I) =[], 0..

Since we can identify integral ideals of Z with positive integers, the above
definition generalizes the usual definition of the norm of an ideal, and thus
we can use the same notation. We will later give other equivalent definitions
of the norm of an ideal.

Proposition 2.2.12. (1) If I and J are two integral ideals of Z1, we have
NpxIJ) =Ny k() Nyx(J) .
(2) We have
NreW k(D) =Nip() .
(3) If a € Zy1, we have

Nik(@Zr) =Nip/k(a)Lk .

Proof. The proof of (1) is exactly as in the absolute case (see, for example,
[CohO, Proposition 4.6.8]), replacing the index [M : N] by the index-ideal
[M : N] (that is, by the order-ideal of M/N; see Definition 1.2.33).

For (2), write Zp/I = @;(Zk/0:)a;. Then N k(I) = [];0:. For each

i, write Zg/d; ~ €, Z/d;;Z, so that Nkq(9:;) = [];d;;, and hence by



2.2 Arithmetic of Relative Extensions 81

(1), Ng/qWr/k(I)) = [I;I];di;- On the other hand, we have Zp/I ~
®; ;Z/d; ;Z,s0 N =I;I1; di,; by Proposition 1.2.34, proving (2).

(3). Let (wj,a;) be a relative integral pseudo-basis of Zy over Zg, let
O1,K,---,0nk be the K-linear embeddings of L into C, and let {2 be the
matrix defined by

o1(wr) ... o1(wy)
2= : . :
On{w1) ... On(wn)

Since a € Z1, multiplication by a induces a Z g-linear map from Zy, to itself,
which can be represented by the matrix M, expressing the aw; in terms of
the w;. In other words, we have

(Wi, ..., wn)Ma = awr,...,wn) .
Applying the o; to the above equality, we deduce that

oi{a) ... 0
N-M,= : : -2 .
0 ... onfa)

Since the matrix of the o;(w;) is invertible (its square multiplied by the square
of the product of the a; is the relative discriminant ideal 9(L/K)), it follows
that the characteristic polynomial of M, is the same as the characteristic
polynomial Cy(X) of ¢; in particular, the relative norm A,k (a) is equal to
the determinant of M,.

Let I = (a;) bethe list of ideals in the integral pseudo-basis. Since a € Zp,
the pseudo-matrix (Mg, I,I) is an integral pseudo-matrix in the sense of
Definition 1.7.1, and the map f associated to it is multiplication by a. Using
Theorem 1.7.2 and the subsequent remarks, we see that

ZL/C!ZL >~ @ ZK/ai
1<i<n

for some (unique) integral ideals 9; satisfying 0;—; C 9; for 2 < 7 < n, which
can be computed using the SNF algorithm in Dedekind domains (Algorithm
1.7.3). Set ® = []; <;<n 9i- Using the formulas and notation of Theorem 1.7.2,
we have, since a = b,

Zyx = det(V)det(My) det(U)Z g = b'p~? NL/K(a)aa'_l =NL/K(a)D_1 ;

hence
Nik(@)Zg =0=Ny/k(aZy) ,

proving the proposition. 0O
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Remarks

(1) Asin the absolute case, the result of (1) (multiplicativity of the norm on
ideals) is valid only for the maximal order Zp and not for a suborder.

(2) The result of (2) above (transitivity of the norm on ideals) is the same if
we replace Q by any other number field k.

(3) We remark in [Coh0] that for an absolute extension,

Nk reloZx) = [N ksole)|
with an absolute-value sign. This is equivalent to
NK/Q(QZK)Z = NK/Q(Q)Z y

as claimed above.

(4) Thanks to the multiplicativity of the norm, as in the absolute case we
can define the norm of a fractional ideal. It is equal to the fractional
index-ideal in the sense of Definition 1.2.33.

An equivalent definition of the norm of an ideal results from the following
proposition.

Proposition 2.2.13. Let I be a fractional ideal of L. Then N,k (I) is the
ideal of K generated by all the N, /k(a) for a € I. More preczsely, there
ezist a and B in I such that Ny jx(I) = Np/k(@)Zk + Nk (B)Zk

Proof. Clearly, if a € I then N k() € Ny k(I). To prove the converse,
we proceed in two steps. First, by the approximation theorem in Dedekind
domains, we can find @ € L such that vp(a) = vp(l) for all P above the
prime ideals p of K such that vp(Np/k(I)) # 0, and vp(a) > O for all other
. With this choice of a, it is clear that a € I and that N'p/x(a) = Nk (I)a
with a an integral ideal of Z g coprime to ', /k(I). Applying once again the
approximation theorem, we can find 3 € Z such that vg(3) = vg(I) for all
B above the prime ideals p of K such that v,(N/k(a)) # 0, and v (8) > 0
for all other %B. It is clear that 8 € I and that N'p/k (8) = Ny k(I)b, where
b is an integral ideal coprime to N'p/k(a), hence in particular to a. Thus,
the ideal generated by A,k (a) and Nk (B) is equal to N/ (I), proving
the proposition. m]

We consider now the special case of prime ideals. If 3 is a prime ideal of
Zy, the ideal p = P N Z is clearly a prime ideal of Z g, and we say that B
is above p, or that p is below B. We have the usual formulas

pZL= H m? )

1<i<g

where the PB; are all the ideals above p and the e; = e(P;/p) are the ramifi-
cation indices. If
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fi = f(Pi/p) = dimz, ), (ZL/B:) ,

we call f; the residual degree of *B;, and we have the formula

> efi=n=[L:K].

1<i<yg

In Section 2.4.3 we give an algorithm for computing the PB;, e;, and f;,
generalizing the Buchmann-Lenstra algorithm [Coh0, Algorithm 6.2.9]. For
now, we note the following.

Lemma 2.2.14. Let B be a prime ideal of L above p, and let f = f(P/p)
be its residual degree. Then

Nix(B) =y .

Proof. We have Z/P ~ (Zk/p)’ as Zk/p-modules, hence also as Zk-
modules, thus we conclude by Proposition 1.2.34. Note that the elementary
divisors 0; of ZL/P are given by 9; = pfor1 < i < f and 9; = Zg for
f<i<n. m]

Remarks

(1) We can use this lemma to give still another definition of the norm of an
ideal: we define Ny k() as p’, and extend to all fractional ideals by
multiplicativity. Thanks to Proposition 2.2.12, this definition agrees with
the preceding one.

(2) We thus have seen three definitions of the relative norm of an ideal I:
first as the order-ideal of the torsion module Z/I; second as the ideal
generated by the norms of the elements of I; third as the power product of
the norms of the prime ideals dividing I with the definition given above.

(3) A fourth definition is to set

NyxD) = ([[o:D) nk

where the o; are all the embeddings of L into C and the product is
considered in the Galois closure of L/K in C (see Exercise 26).

2.3 Representation and Operations on Ideals

2.3.1 Representation of Ideals

Let L = K(6) be a relative extension of degree n, where we assume 6 to be
an algebraic integer, and let (w;,a;) be an integral pseudo-basis, which we
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may assume to be in relative HNF. This pseudo-basis is represented by a
pseudo-matrix (Hz,a;) in HNF on (1,6, ...,0™7!).

Now let I be a (nonzero) ideal of L. Since I is a torsion-free Z g-module
of rank n, it also has a Z g-pseudo-basis (7i, ¢;)1<i<n such that

I= @Ci’ﬁ,

1<i<n

and we may also assume that this pseudo-basis is given on (1,0, ...,0""!) by
a pseudo-matrix (Hy,c;) in HNF.

The following proposition gives most of the information that we need on
the ideal I. In particular, it allows us to determine whether I is an integral
ideal and to compute NV p/k(I).

Proposition 2.3.1. Keep the above notation, let H = HngI (which is the
matriz giving the v; on the basis of the w;), and write H = (h; ;).

(1) Let q; = a]' (which are integral ideals by Corollary 2.2.9). Then for all
i < we have
¢ | €iir1—i | &,
and, in particular,
Clena1 | e .

(2) For all j we have v; € Zk[6], and for all i and j we have h;; € Zk.
(3) I is an integral ideal if and only if for all i and j with i < j we have

hij; € aiCj_l, which implies in particular ¢; C a; for all j (since hj; =1).
(4) For all I (not necessarily integral) we have

NL/K I = H CJ H ciq; -

1<j<n 1<j<n

Proof. The proof of (1) is essentially identical to the proof of Corollary
2.2.9 (3): since the leading term of yiwjt1—; is #°~! and I is an ideal, we
must have ¢;aj41-; C ¢j, in other words ¢;q;+1-; | ¢;, and (1) follows since
qj+1—i is an integral ideal.

Since I is a Z-module, it is in particular a Z g[f]-module and a projective
Z g-module of rank n, so Proposition 2.2.8 (2) implies that ; € Zk[6]. This
means that the matrix H; giving the v; on the basis (1,6,...,6""!) has
entries in Zg. This is also the case for the matrix Hz, and since this matrix
has determinant 1, it follows that H = H; 1 i} also has entries in Z g, proving
(2).

The ideal I is integral if and only if for all j we have ¢;v; C Zg, if and
only if for all ¢ € ¢;

CZ h; jw; = Zl‘,’wi with z; € a; ,

i<j i>1
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hence if and only if for all ¢ € cj, ch;; € a;, hence h;; € cj_la,-, proving (3).

Let us prove (4). By the elementary divisor theorem for torsion-free mod-
ules (Theorem 1.2.35), there exists a K-basis (e;), ideals b; and 9; such that
ai | Di—l for ¢ Z 2, and

Zi = @ bie;, I= @Dibiei .

By definition, we have N'p/k(I) = []; ..

Let {2 be the matrix giving the w; in terms of the e;. Then the matrix
giving the a; in terms of the e; is equal to f2H. By Proposition 1.4.2, since
(ej,b;) and (wj,a;) are both pseudo-bases of Z, we have

[] 65 =det(2) [, -

Similarly,

[[oibs =det(RE) [] ¢; -
J J
Since det(H) = 1, it follows by dividing that

_ -1
IUES | CL
j j

proving (4) and the proposition. O

In view of this proposition, we will always assume that an ideal is repre-
sented by a pseudo-matrix (H,c;) in HNF on a basis (wy,...,ws) (although
the pseudo-matrix giving the integral pseudo-basis on (1,6, ...,6™"!) must
evidently also be kept). This has the usual advantages of the HNF, in partic-
ular the uniqueness property (see Proposition 2.3.2 below). The main disad-
vantage of the HNF representation is that it is costly, particularly for ideal
operations.

In fact, considering the above lemma, it would even be more natural to
represent the ideal by the pseudo-matrix (H,c;a; ). For this to make sense,
we would have had to define the notion of pseudo-matrix with respect to a
pseudo-basis and not only with respect to a basis as we have done up to now,
so as to take into account not only the w; but also the ideals a;. We leave the
(trivial) definitions and modifications to the reader.

To test ideals for equality (hence also for inclusion using I C J if and
only if I + J = J), we need to have uniqueness of the representation of an
ideal. The HNF representation does give uniqueness if one is careful about
the choice of the off-diagonal entries (see Corollary 1.4.11). More precisely:
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Proposition 2.3.2. Keep the above notation. Assume that I is an integral
ideal, so that in particular by Proposition 2.3.1, we have for all i, ¢; C a; (or,
equivalently, a; | ¢;). Let Si be a system of representatives of Zx [(c;a]").
For all i and j such that ¢ < j, choose c;; € a,-cj_1 such that vp(ci ;) =
v,,(a,-cj_l) for dll prime ideals p of Zk such that vp(a;) < vy(ci). Then for
i < j we may choose hi; € ci;Si, and the pseudo-matriz (H,c;) is then
uniquely determined by the ideal I.

Proof. According to Corollary 1.4.11, to obtain a unique pseudo-matrix
(H,cj) we must choose h; j € S; ;, where S;; is a system of representatives
of K /cicj_l. Since I is an integral ideal, h;; € a,-cj_l, so it is enough to
define a system of representatives of a,-cj'l / cicj_l. If c; j satisfies the conditions
of the proposition, it is easy to check that the map = — ¢; jz induces an
isomorphism from Z g/(c;a;’!) to a,-cj'l/ c,-cj'1 (see Exercise 27), proving the
proposition. Note that by Proposition 2.3.1, we have for i < j, aicj'l C

a;c; 1 ¢ Zk; hence a,-cj‘1 is an integral ideal. m]

Following this proposition, we can give an algorithm that gives a small
HNF pseudo-matrix for an integral ideal.

Algorithm 2.3.3 (Small HNF Pseudo-Matrix of an Integral Ideal). Let L/ K
be a relative extension of degree n. Given an integral ideal I by a pseudo-matrix
in HNF (H, (¢;)) with H = (h; ;) expressed on a relative integral pseudo-basis
(wi, a;), this algorithm gives another such pseudo-matrix in HNF (H',¢;) with
H' = (h; ;) having “reduced” entries.

1. [Compute the ideals ¢;'] For 1 < j < n, compute the ideal b; cj‘1 using,
for example, [Coh0, Algorithm 4.8.21). Then set i < n and H' «+ H.

2. [Loop on rows] Set i i — 1. If i = 0, output (H', ;) with H' = (h; ;) and
terminate the algorithm. Otherwise, set j « n + 1.

3. [Loop on columns] Set j + j — 1. If j = ¢, go to step 2.

4. [Main reduction step] Set a + ¢;b;. Using Algorithm 1.4.13 (with partial LLL-
reduction), compute A € ¢;b; such that h; ; — A is “small” in the sense of that
algorithm.

5. [Update column j] For 1 < k <4, set h ; « hj ; — Ah; ; and go to step 3.

Definition and Proposition 2.3.4. Let I be a fractional ideal of Zp.

(1) We will say that I is a primitive ideal if I is an integral ideal of Z1, and if
for any integral ideal a of Zy different from Zg, a='I is not an integral
ideal.

(2) If I is a fractional ideal of Zy, there exists a unique fractional ideal a
of K such that a=1I is a primitive ideal. This ideal a will be called the
content of the ideal I.
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Proof. Consider the set E of all fractional ideals a of K such that I C aZp.
This set is nonempty since if d € Z is a denominator for I, we may choose
a = (1/d)Zk. Set ¢ = [oega. Then c is an ideal of K that clearly still
belongs to E, so it is the unique minimal element of E. It follows that ¢~!T is
an integral ideal. In addition, if b is an integral ideal different from Z g such
that b=1c¢~!] is integral, then bc € E and bc is a strict subset of ¢ — which is
absurd since ¢ is minimal — so ¢~!T is primitive. Finally, if a=17 is primitive,
then a € E, hence ¢ C a, so ca™! is an integral ideal such that (ca™!)~la=1J
is integral. Hence ca™! = Z g, so a = ¢, proving uniqueness. O

Proposition 2.3.5. Keep the notation of Proposition 2.3.1, in particular
that I is an ideal of L, (7j,c¢;j) is a pseudo-basis of I, and the matriz (h; ;)
of the v; on the w; is in HNF.

(1) The content c(I) of I is given by

c(l) = Z hijcjqi = Z hi jeia;t .

1<i<j<n 1<i<ji<n

(2) The ideal I is an integral ideal of Zy, if and only if c(I) is an integral
ideal of Z k.
(3) The ideal I is primitive if and only if ¢(I) = Zk.

Proof. The proof follows immediately from Proposition 2.3.1 and is left
to the reader (Exercise 28). o

The other privileged representation of an ideal I is a two-element rep-
resentation I = aZy + BZy, which is independent of the relative structure.
Considering the definition of a pseudo-matrix, it is more natural to give the
following definition in the relative case.

Definition 2.3.6. Let I be an ideal of L. We say that ((a,a),(8,b)) isa
pseudo-two-element representation of the ideal I if a and b are ideals of Z i
(not necessarily integral) and if a and B are elements of L such that

I=oaaZp+BbZy .

In other words, a pseudo-two-element representation of I is a representa-
tion of I by two pseudo-elements in the sense of Definition 1.4.1.

When Zk is a principal ideal domain, a and b are principal ideals, so this
does give a two-element representation. In the general case, however, this
definition is more flexible than the representation I = aZ+ 8Z. Note that
if I = aaZ+ BbZ L, then aa C I and 8b C I, but we do not necessarily have
a or §in I. By abuse of language, we will sometimes talk about “two-element
representations” instead of “pseudo-two-element representations”.
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It is important to be able to go back and forth between HNF and two-
element representations. As usual, in one direction this is straightforward.
Let I = aaZ + BbZ} be a pseudo-two-element representation of I, and
let (wi,a;)1<i<n be an integral pseudo-basis. Then (aw;, Bw;,aa;, ba;); is a
2n-element pseudo-generating set for I. Hence we obtain the HNF of I by
computing the HNF of the corresponding pseudo-matrix, using one of the
HNF algorithms of Chapter 1. We see here that the introduction of the extra
data a and b has not added any complexity to the problem.

Given the HNF (=;, ¢;)1<i<n Of I, finding a pseudo-two-element represen-
tation is slightly trickier. Of course, using the approximation theorem ([CohO,
Propositions 4.7.7 and 4.7.8]), we can give a deterministic algorithm for doing
so, but this will be costly in general. A better way is to use a simple-minded
generalization of [Coh0, Algorithm 4.7.10] based on the following lemma.

Lemma 2.3.7. Let I be an integral ideal of Zy. Let a € K, let a be a frac-
tional ideal of Zk such that aa C I, and assume that

NixI) + Np(aa) N x() ' =Zk .
Then I = Nk (I)Ly + aaZy; in other words,
(1, Nk (D)), (e, a))
is a pseudo—two-element representation of I.

Proof. We have a Z g-module isomorphism

ZL/I: @ZK/O,' ,

with N,k (I) = []; 0:. Since the ; are integral ideals, we have
Ni/k() - (Zk/o;) = {0}

for all 4, hence N,k (I) - (Zr/I) = {0}, in other words N,k (I) € I. Since
aa C I and I is an ideal, it follows that Ny x(I)Zr + aaZ C I.

Conversely, let J = Ny k(I)Zg + aaZyg, let P be a prime ideal of Zp,
and let p = P N Zk be the prime ideal of Z g below PB. We will show that
vp(J) < vp(l) for all B, which will show that I C J, and hence the equality
I = J, as claimed in the lemma. If vg(J) = 0, there is nothing to prove since
I is an integral ideal, so assume that vg(J) > 0. Since

vp(J) = min(vp (N k(1)),vp(aa)) ,

we have P | Ny k(1) and hence p | N k(I). By assumption, this implies
that p { N k (aa)(Np/k(I))™", or in other words that v, (N x (eal 1)) =

0. This means that vq(aa) = 'UQ(I ) for all prime ideals  above p, and in
particular for Q = . Thus, when B | J,
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vp(J) = min(vp (N p/x(1)),vp(I)) < vp(l) ,

proving the lemma. ]

To obtain an algorithm for a pseudo-two-element representation from this
lemma, we must do two things. First, compute the ideal N’y k (I), which is
easily done from the HNF representation using Proposition 2.3.1 (4). Second,
we must look for a and a satisfying the required properties. For this, we write
a = Y <i<n ZTiYi on the pseudo-basis (7;,¢;), with z; € ¢;, and try small
coefficients z; until a suitable element « is obtained. In practice, it will be
obtained very rapidly; in fact, very frequently we can take (o, a) = (vi,¢:)
for some i. Thus, the following algorithm is reasonable.

Algorithm 2.3.8 (Pseudo-Two-Element Representation of an Ideal). Given
a relative extension L/K of degree n and an integral ideal I of L given by
a pseudo-generating set (vi,¢;)1<i<k. this algorithm computes A,k (I) and
(a,a) such that ((1, N k(I)),(c,a)) is a pseudo-two-element representation
of I. We let (w;,a;) be an integral pseudo-basis of Z .

1. [Compute HNF] If necessary, using one of the algorithms for HNF in Dedekind
domains, compute the HNF corresponding to the pseudo-generating set
(%i,¢:), and replace (vi,c;) by this HNF. Set n « [],c;c, 0" (thus
Nk (I) =n). T

2. [Check generators] For i = 1,...,n, do the following. Compute the ideal sum
n+ NL/K(')/ici)n‘l. If it is equal to Zg, output the pseudo-two-element
representation ((1,n), (i,¢;)) and terminate the algorithm.

3. [Choose random elements of ¢;] Using Algorithm 1.3.13, for i = 2,...,k
choose random elements \; € c;, and let a « ), ., Ai7vi.

4. [Check a] Compute the ideal sum n + Ny /k(a)n~!. If it is equal to Zg,
output the pseudo—-two-element representation ((1,n), (o, Z g)) and terminate
the algorithm; otherwise, go to step 3.

If I isnot an integral ideal, we simply multiply I by a suitable denominator
d to make it integral, and divide by d the pseudo-two-element representation
found by this algorithm.

In the case where I is a prime ideal, there is a simpler variant of this
algorithm which we give below (Algorithm 2.3.11). We postpone to that al-
gorithm the discussion of the above algorithm.

2.3.2 Representation of Prime Ideals

As in the absolute case, the case of prime ideals of Z is particularly impor-
tant — and also simpler.

We first note that [CohO, Theorem 4.8.13] can trivially be extended to
the relative case, and we leave the proof to the reader:
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Proposition 2.3.9. Let L/K be a relative extension, with L = K(0) and
0 an algebraic integer whose minimal monic polynomial in K [X ] is denoted

T(X), and let p be a prime ideal of Zg. Let T(X) = H1<1<g " be the
factorization of T(X ) into a product of powers of distinct, monic, zrreducible
polynomials in (Zk/p)[X). If p does not divide the indez-ideal f = [Z[ :
Z k[0)), the prime ideal decomposition of pZy, is given by

pz.= [[ B,

1<i<g

with
Bi = ((1,9), (T3(9),Zk)) = pZL + T:(0)Zy,

and f; = f(Pi/p) = deg(T).

In the general case, we have the following lemma, which gives more precise
information than Lemma 2.3.7 in the case of prime ideals.

Lemma 2.3.10. Let ‘B be a prime ideal of L above a prime ideal p of K,
let f = f(B/p) = dimz, ;,(ZL/P) be the residual degree of P, and finally
let a € L and a be a fractional ideal of K such that aa C B. Let « be any
element of pa~! such that vy(wa) = 1. Then

"p = ((lvp)a (av a)) = pZL + aaZL

if and only if v,(N /K (aa)) = f or vy(Nr/k((a+ 7)a) =

Proof. Assume first that v, (N r/k(aa)) = f. Since B | aa, we can write
aa = PI for some integral ideal I of Zy. Since N x(PB) = pf by Lemma
2.2.14, we have vp (N k(I)) = 0. This means that vg(I) = 0 for all prime
ideals 9 above p, including B. Thus vp(aa) = 1 and vg(aa) = 0 for the
other £ above p. Since vgp(p) > 1, this implies that min(vg(p),va(aa)) =0
for all prime ideals 9 different from P (and not only for those above p) and
is equal to 1 for Q = P, thus showing the equality ‘B = pZ + aaZy.

Assume now that vy(Np/k((a + 7)a) = f. Since (a + 7)a C aa + 7a C
B +p C P, we conclude as above that P = pZ + (a + 7)aZ;, and this is
equal to pZy + aaZy, since ma C p.

Conversely, assume that B = pZ; + aaZ;. This again means that for
each prime ideal 9 above p other than P we have vg(aa) = 0 and that
min(vp(aa),vp(p)) = 1. Note that vp(p) = e(P/p) is the ramification index
of PB. We consider two cases. Assume first that 9B is ramified, so that e(‘B/p) >
1. Then vp(aa) = 1, and since v (aa) = 0 for the other prime ideals £ above
p, we have

vp(N/k(aa)) =) f(Q/p)valas) = f(B/p) =

Qlp
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as claimed.

Assume now that 98 is unramified, so that e(8/p) = 1. In this case, we
can only assert that vp(aa) > 1. If vp(aa) = 1, we conclude as before that
vp(N L k(ea)) = f. So assume vy (aa) > 1. Since vyp(aa) > vp(ra), we have
vp(a + 7)a = vp(ma) = 1, and for O above p but different from B, we have

0 = vo(aa) < va(p) < va(wa) ,

hence vy ((a+7)a) = va(aa) = 0, and it follows as before that v, (N )k ((a+
m)a)) = f, as claimed. O

Thus, finding a pseudo-two-element representation of a prime ideal is
easier than in the general case (Algorithm 2.3.8). Thanks to Proposition
2.3.9 a prime ideal is, however, usually obtained directly together with a
pseudo—two-element representation. We will always assume that a prime ideal
is represented in this way. When a pseudo-two-element representation is not
known, the following algorithm allows us to compute such a representation,
using Lemma 2.3.10.

Algorithm 2.3.11 (Pseudo-Two-Element Representation of a Prime Ideal).
Given a relative extension L/K and a prime ideal P of L given by a pseudo-
generating set (vi,c¢;)1<i<k. this algorithm computes a pseudo-element (a,a)
such that ((1,p),(a,a)) is a pseudo-two-element representation of PB. We as-
sume that the relative norm p/ of ‘B is known (this is always the case in practice
and can always be obtained from the (v;,¢;)) and that 43 = 1, ¢; = p (if this
is not the case, add it to the generating set). We let p = pZg + nZ g with
vp(m) = 1 (if this is not the case, replace = by 7 + p).

1. [Check generators] For i = 1,..., k, do the following. Compute
v & vp(Np/k (vics)) -
If v = f, output (7;,c;) and terminate. Otherwise, compute
v Nk ((vi + m)ci)) -

If v = f, output (~;,c;) and terminate.

2. [Choose random elements of c;] Using Algorithm 1.3.13, for i = 2,...,k,
choose random elements \; € ¢;, and let a « > ., Aivi.

3. [Check a] Compute v + vp(N k(a)). If v = £, output (a,Zk) and termi-
nate. Otherwise, compute v « vp (N k(a + 7)). If v = £, output (a, Zg)
and terminate; otherwise, go to step 2.

Remarks (Also valid for Algorithm 2.3.8)

(1) If k > n, to speed up the algorithm, it may be worthwhile first to find
a pseudo-basis of P using one of the algorithms for HNF in Dedekind
domains, as we have done systematically in Algorithm 2.3.8.
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(2) The manner in which the random elements of ¢; are chosen is not im-
portant, since the algorithm is expected to find a result very rapidly (of
course, it is preferable to take elements that are small in some sense). In
fact, we want min(e(/p), vp(a)) = 1, and vg(a) = 0 for all other prime
ideals 9 dividing p. The probability that a random a € P satisfies these
conditions can be estimated to be

[Ia -1/ Ne9),

Dlp

LY

where the product is over all prime ideals above p if 8 is unramified, and
all prime ideals above p except P if P is ramified. This quantity is not
small, so very few trials should be necessary.

(3) We have not used the systematic backtracking method of [Coh0, Algo-
rithm 4.7.10], since this would be in general much more costly and is
essentially equivalent to using absolute instead of relative representa-
tions. In fact, even in the absolute case, it is probably preferable to use
random elements of Z instead of a systematic backtracking procedure.

(4) There is a completely different method to find a two-element represen-
tation (valid also in the absolute case), by directly using the approxima-
tion theorem in Dedekind domains. Indeed, we have P = ((1,p), (a, a))
if and only if vqa(aa) = 0 for all Q | p and different from P, and
min(e(P/p), vp(aa)) = 1, which is, for example, the case if vp(aa) = 1.
We can plug this in the deterministic version of the approximation the-
orem with a = Zg (Proposition 1.3.8), and obtain in this way a two-
element representation. In practice, however, this method is less efficient
than the random search method described above.

2.3.3 Computing Valuations

As in the absolute case, we also want to compute B-adic valuations, and for
this we proceed in a similar way. Assume that we have computed (3, b) such
that

PP~ =pZL + BbZL

(this is possible; see Algorithm 2.3.14). Let I be an integral ideal of Zp.
Then vp(I) is the largest nonnegative integer v such that =1 C Zj, or,
equivalently, (8bp~!)"I C Zr, and this can easily be tested. This is the natu-
ral generalization of [Coh0, Lemma 4.8.16]. The following lemma generalizes
[Coh0, Lemma 4.8.15] for the maximal order.

Lemma 2.3.12. We have p B~ = pZ + BbZL if and only if BbP C pZy
and fb ¢ pZy.

Proof. Assume first that pB~! = pZp + BbZ. Thus Bb C pPB~1; hence
BbP C pZy. Furthermore, if we had 8b C pZ, we would have p B~ = pZ,,
hence P~! = Z, which is impossible since B # Zr. Thus, fb ¢ pZy.
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Conversely, assume that SbP C pZy and b ¢ pZy. Then P C P +
BbPp~! C Zy, and since P is a maximal ideal, it follows that P + SoPp~!
is equal either to B or to Z. But P + SbPp~! = P implies FoPp~! C P;
hence Bb C pZy since ‘P is invertible, contrary to our assumption. Thus,
P+ PbPp~! = ZL, and hence pZ + BbZ = pP~1, as claimed. m}

Thus, as in the absolute case, we will represent a prime ideal P by
B = (p,(a,a),e, f,(B,b)), and we will be able conveniently to perform all
operations involving B. We give below algorithms for computing (3, b) and
for computing valuations using (3, b).

Algorithm 2.3.13 (Valuation at a Prime Ideal). Let I be an integral ideal of
Zy. Let (w;,a;) be a pseudo-basis in HNF of Z 1, let (v;,¢;) be a pseudo-basis of
I, and let (H, c;) be the pseudo-matrix giving this pseudo-basis on the w;, where

H is in HNF. Finally, let B = (p, (o, ), €, f, (8, b)) be a prime ideal of Z, given

as above. This algorithm computes the B-adic valuation vy (I) of I.

1. [Make integral] If I is not an integral ideal, let d € Z such that dI is integral,
set I < dI (in other words, set c; « dc; for all i), and set v « —v,(d)e(B/p),
where p is the prime number below 3 and e(*3/p) is the absolute ramification
index of ‘B. Otherwise, set v « 0.

2. [Check if pf N k (I)]  vp ([T; a:) = vp([1; ). output v and terminate the
algorithm. Otherwise, set A + H.

3. [Multiply] Set ¢; < bc; for all Z, and set A « BA in the following sense. Each
column of A corresponds to an element of L in the K-basis w;, and these
elements are multiplied by 3 and expressed again on the w;.

4. [Simple test] Using Algorithm 1.6.2, replace (A, c;) by its HNF. If for some j,
we have vp(c;j) = vp(a;), output v and terminate the algorithm.

5. [Complete test] If A = (a; ;), check whether there exist ¢ and j with i < j
such that vy (a; ;) = vp(a;) — vp(c;). If such a pair (i, j) exists, output v and
terminate the algorithm. Otherwise, for all j set ¢; + p‘lcj, setv«—v+1,
and go to step 3.

Proof. Step 1 is clear, since
v () = vgp(dl) — vp(d) = vp(dl) — e(B/p)vp(d) .

On the other hand, by Proposition 2.3.1, we have V', (I) = []; c;a; !, Thus,
if I is an integral ideal such that p { Nz k(I), we have vg(I) = 0, giving
step 2. At the end of step 3, we have replaced I by SbI, and by the definition
of (8,b), we have P | I if and only if 3bI C pZy; in other words, if and
only if 8bp~!I is an integral ideal. By Proposition 2.3.1, this will be true if
and only if for all i, ¢; C pa; and for all 7 < j, a;; € paicj_l. Since I is an
integral ideal, we have ¢; C a; and a;; € a,-cj‘l; hence P { I if and only if
there exists ¢ such that vp(c;) = vp(a;) or if there exist ¢ and j such that
vp(ai ;) = vp(a;) — vp(c;), proving the algorithm’s validity. O
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Finally, it remains to see how to compute (8, b) satisfying the conditions
of Lemma 2.3.12. This is done by using the following algorithm.

Algorithm 2.3.14 (Prime Ideal Inversion). Given a prime ideal p = pZ +
aaZy, this algorithm computes a pair (3, b) satisfying the conditions of Lemma
2.3.12 — in other words such that =1 = Z + p~18bZ — so as to be able
to compute valuations at .’

1. [Change aaq] If a is not an integral ideal, compute an integer d (for example,
the denominator of the HNF of a) such that da is integral, and set a + da and
a + a/d. Using [CohO, Algorithm 4.8.17], compute a uniformizer = of p~!
(see Corollary 1.2.10) and the vajuation v « vp(a). f v # 0, set a « 7¥aq,
o + 7 "a (now a is an integral ideal coprime to p).

2. [Find basis of Z/pZy] Using Algorithm 1.5.2 on the pseudo-basis (w;, a;)
of Zy, compute elements n; € Z, such that (n:), . is a Zk/p-basis of
ZL/pZL.

3. [Compute structure constants] Using Algorithm 1.3.2, compute a € a and
b € p such that a + b = 1 (we now know that aa: € Z, and that aa = a
(mod pa=1Zy)). Compute constants a;; € Zg such that

aan; = Z a;;n; (mod pZy) .
1<j<n

4. [Solve system] By ordinary Gaussian elimination in the field Zg/p, find a
nontrivial solution to the system of congruences >, ... a;;jz; =0 (mod p).

5. [Terminate] Set 8 « Y, <i<, Zifi, set b « aa™?, output (3,b), and termi-
nate the algorithm. T

Proof. We must show that this algorithm is valid. Step 1 is standard and
reduces a to the case of an integral ideal coprime to p. Thus, there exist a € a
and b € p such that a +b = 1,50 a = 1 (mod p). Since aa C P C Zj, we
have a € a™!Z; and so aa € Z and o — aa = ba € pa~1Zj, as claimed.
Thus, aam; € Zi, and reducing modulo p we can compute the constants a; ;.

By definition, the matrix (a; ;) is congruent modulo pZ;, (hence modulo
p since a;; € Zg) to the matrix of multiplication by aa on the basis of the
7;. Thus, its determinant is congruent modulo p to N k(aa). Since aa €
aa C B, we have pfP/?) = N/ (P) | N'L/k (ac), hence det((a: ;)) € p.

It follows that the matrix (E) is singular in Z g /p.Hence there exists a
nontrivial solution to the system of congruences of step 4. If 3 and b are chosen
as in step 5, we have aBab = aaBZ C pZr, Bb = Baa~! C BZk C Zy, and
B & pZL,so Bb ¢ pZy since b = aa~! and both a and a are coprime to p. O

2.3.4 Operations on Ideals

To add two ideals, we use both HNF's and concatenate them to form an n x 2n
pseudo-matrix M, and use one of the HNF algorithms in Z g to compute the
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HNF of M, which is the HNF of the ideal sum. Since the determinantal ideal
of the individual ideals is easily computed, we can use any one of them in the
modular HNF algorithm.

To multiply two ideals, we could use both HNFs, and form an n x (n?)
pseudo-matrix of basis element products, and HNF-reduce this matrix. This
is costly, and it is better to represent one of the ideals by its HNF and the
other one by a pseudo-two-element representation ((a,a),(3,b)). By mul-
tiplying a and B in L by each basis element of the HNF, and multiplying
the corresponding ideals of the pseudo-matrix by a and b, we obtain an
n x 2n pseudo-matrix whose columns form a pseudo-generating set of the
ideal product, and we can then obtain the HNF of this product by HNF-
reduction. When n is large, this is much faster than the use of both HNF
representations. Of course, to be able to use this method, we must be able to
go back and forth between the two types of representations, and this is done
using the methods explained in Section 2.3.1, especially Algorithm 2.3.8.

Remarks

(1) This method for computing ideal products is evidently also very useful
in the absolute case and is not stressed enough in [Coh0] since a two-
element representation was thought to be costly to compute at the time
of writing. Practice has shown that this is not the case. In fact, it is not
difficult to give complexity estimates for this problem, which show that
finding a two-element representation is rather fast (see Algorithm 1.3.15).

(2) To compute an ideal product, one could also think of using both pseudo-
two-element representations. This would involve computing only 2x2 = 4
products. Unfortunately, this is only superficially attractive since it then
becomes costly to obtain either a pseudo-two-element representation or
an HNF from this four-element representation. For example, to obtain
the HNF', one would need to multiply each of the four products by the n
pseudo-basis elements, and HNF-reducing an n x 4n pseudo-matrix. This
is twice as expensive as the method that we have suggested. Indeed, the
use of at least one of the HNF's for the ideals avoids extra multiplications
by pseudo-basis elements (see Exercise 29). It seems, however, that suit-
ably implemented, this method can be very slightly faster than the one
we suggest for very large degrees (see [Hop]).

Another important algorithm not mentioned in [Coh0], but essential for
many applications, is that of raising an ideal I to an integer power. We
could, of course, use one of the binary powering algorithms, using the method
explained above for ideal multiplication. There is, however, a much better
method based on the following proposition, whose absolute counterpart was
also not sufficiently stressed in [CohO).

Proposition 2.3.15. Let I = aaZ+ BbZ}, be a pseudo-two-element repre-
sentation of an ideal I, and let k be a nonnegative integer. Then
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I* = o*a*Z; + p*b*Z,, .
In the special case where P = pZy + aaZy is a prime ideal, we even have

k
‘,Bk =p°Zr+ aka*Zp with s= (—]
e('B/p)

Proof. The equality I = aaZ + BbZy is equivalent to
vgp(I) = min(vgp(aa), vp(Bb))
for all prime ideals 8 of L, and hence
vp(I*) = kvg(I) = min(vg (a*a*), vp(86*)) |

proving our first claim. In the case of a prime ideal p = pZ + aaZ[, we
have min(vgq(p),va(aa)) = 0 for any prime ideal 9 different from ‘B, while
min vy (p), v (aa)) = min(e(P/p), vp(aa)) = 1.

It follows that min(vg(p®),va(a*a*)) = 0 for any such prime ideal 9
and any strictly positive s. For the prime ideal B, we may assume that P is
ramified; otherwise the result is not any stronger than the general claim. If
e("B/p) > 1, we necessarily have vp(aa) = 1, and so

min(vg (p*), vp(e*a*)) = min(s - e(P/p). k) =k ¥
if and only if s > k/e(PB/p), proving the proposition. a

Thus, to compute I¥, we first compute a pseudo-two-element repre-
sentation I = aaZj + BbZp using Algorithm 2.3.8. We then compute
I* = a*a*Zp + B¥6*Z g (or P* = p*ZL + o*a*Z [ in the case of a prime
ideal) by a binary powering method. Finally, if desired we transform this into
an HNF representation as usual by doing an HNF reduction of an n x 2n
pseudo-matrix. Evidently this method is much less costly than the naive
method, since we simply have to compute powers of two ideals in the base
field K, and only powers of two elements of L.

Finally, consider the question of computing the inverse of an ideal. We
proceed essentially as in [CohO, Section 4.8.4].

Definition 2.3.16. Let L /K be an extension of number fields. The relative
different D(L/K) is the ideal of Z 1, defined as the inverse of the ideal (called
the relative codifferent)

D(L/K)_l ={z €L, TI‘L/K(IZL) CZg} .

As in the absolute case, the relative different is an integral ideal of Z
whose relative norm is the relative discriminant ideal 9(L/K’), and the prime
ideals that divide D(L/K) are exactly the prime ideals of L that are ramified.
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We will also need the following easy, but important, result.

Proposition 2.3.17 (Transitivity of the Different). Let L/K be a rela-

tive extension of number fields, and let k be a subfield of K (for example,
k=Q). Then D(L/k) =D(L/K)D(K/k).

Proof. Let a be an ideal of L. Using the transitivity of the trace, by
definition of the codifferent, we have
aCD(L/K)™' < Tryk(a) CZk

D(K/k)™ Trp k(a) C D(K/k)™
Tri/x(D(K/k)™! Trp/k(a)) C Zi
Trge/u(Trp k(DK /k) ™ a)) C Zy

Trp e (D(K/k) 'a) C Zy

D(K/k) lacCc D(L/k)™?

a CD(K/k)D(L/k)™ .

rroeee

It follows that D(L/K)~! = D(K/k)D(L/k)™1, proving the proposition. O

As we shall see in Theorem 2.5.1, an important consequence of this propo-
sition is the transitivity property for relative discriminants.

The analog of [Coh0, Proposition 4.8.19) is the following.

Proposition 2.3.18. Let (w;,a;) be an integral pseudo-basis of Zy, and let
I be an ideal of Z given by a pseudo-matriz (M,c;), where the columns of
(M,¢;) give the coordinates of a pseudo-basis (v;,c;) on the w;.

If T = (Try k(wiw;)), the pseudo-matriz (M*T)™1,¢;') represents a
pseudo-basis of the ideal I7'D(L/K)™! on the w;.

Proof. The proof is almost identical to the absolute case. By definition
of M, the entry of row i and column j in M'T is equal to Trp k(viw;)- If
V = (v;) is a column vector with v; € K, then V belongs to the image of
the pseudo-matrix ((M*T)~1,c;!) if and only if M*TV is a vector (z;) with
T; €Ec; 1. This implies that for all i,

Tro/k (’Yici (Z%‘%‘)) CZg ,

J
hence that Trp/k(zI) C Zk with = ). vw;. Since zI = zIZj, the
proposition follows. Note that, in the same way that D(L/K)~! is the dual

of Z, for the trace form, the ideal I"'®(L/K)™! is the dual of the ideal I
for the trace form. O
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The analog of [Coh0, Algorithm 4.8.21] is thus as follows.

Algorithm 2.3.19 (Ideal Inversion). Given a relative integral pseudo-basis

(wi,a;) of Zg, and an integral ideal I of Z, given by an n x n pseudo-matrix

(M, ¢;) whose columns give the coordinates of a relative pseudo-basis (v, ¢;) of

I on the w;, this algorithm computes the HNF of the inverse ideal I~!.

1. [Compute d9(L/K)D(L/K)~'] Compute the nxn matrix T = (Trp, x (wiw;))-
Let ® « det(T) [T,;<icn 02 (this is the relative ideal-determinant 9(L/K) of
L and hence is usually available with the w;). Finally, call §; the elements of
L whose coordinates on the w; are the columns of T (thus, (4;, aa].‘l) will
be a pseudo-basis of the integral ideal 9(L/K)D(L/K)™1).

2. [Find a pseudo—-two-element representation] Using Algorithm 2.3.8, compute
a pseudo-two-element representation ((a,a),(8,b)) of 3(L/K)D(L/K)™?!
corresponding to the pseudo-basis (4;, Oaj‘l) computed in step 1.

3. [Compute 9(L/K)D(L/K)~1] Let (N, b;) be the HNF of the n x 2n pseudo-
matrix whose columns are the coordinates on the integral basis of the products
via and ;8 with corresponding ideals c;a and ¢;b (this will be a pseudo-basis
of o(L/K)®D(L/K)™I).

4. [Compute I71] Set P « (N'T)~!. Output the HNF of the pseudo-matrix
(P,ob;!) and terminate the algorithm.

The proof of this algorithm’s validity is left to the reader. We have in-
cluded in this algorithm one of the remarks made after [Coh0O, Algorithm
4.8.21] to speed up step 3. The other remarks are also applicable here. In
particular, the computations in steps 1 and 2 are independent of the ideal I.

There exists a completely different and faster method for computing ideal
inverses, both in the absolute and in the relative case, that can be used when
a two-element representation is known (as we have seen in Algorithm 2.3.8,
this is in general quite easy to compute). It is based on the following easy
lemma.

Lemma 2.3.20. Let I = aaZ + BbZL be a pseudo-two-element represen-
tation of an ideal of L. Then

I"'=(a e Z) N (8710712 .

Proof. Indeed, by looking at valuations, it is clear that for any two ideals
I and J in a Dedekind domain we have (I + J)(I N J) = IJ (which is the
generalization to ideals of the formula ged(a, b) lem(a, b) = ab). Applying this
to the two ideals a~'a~'Z and 3~'b~'Z of Z; and multiplying by aBab
immediately gives the desired result. ]

The main operation which must be done is thus ideal intersection, which
is computed using Algorithm 1.5.1. This gives the following algorithm.
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Algorithm 2.3.21 (Ideal Inversion). Given a fractional ideal I of L, this al-

gorithm computes the HNF of the inverse ideal 1~!.

1. [Compute two-element] If not already in this form, using Algorithm 2.3.8 com-
pute a pseudo—two-element representation I = aaZy + BbZy.

2. [Compute inverses] Using the present algorithm in the absolute case, using
true two-element representations of a and b, compute I; «+ (a~!/a)Z and
I « (b71/B)Zy.

3. [Compute intersection] Using Algorithm 1.5.1, compute an HNF pseudo-basis
(7i, ci) for the intersection I3 « I) N I5.

4. [Terminate] For each i set a; + afv; and a; « abc;, output the HNF of the
pseudo-basis (a;, a;) of I~!, and terminate the algorithm.

2.3.5 Ideal Factorization and Ideal Lists

For future use, we describe here some algorithms for computing ideal factor-
izations and ideal lists. These algorithms have nothing to do with relative
extensions and could have been included in [Coh0].

The following is an algorithm for computing prime ideal factorizations,
whose proof is immediate.

Algorithm 2.3.22 (Ideal Factorization). Let K be a number field and I be
a fractional ideal of K. This algorithm computes the prime ideal factorization
I=][,p% of I

1. [Remove denominator] Let d be a positive integer such that dI = J is an
integral ideal (d = 1 if I was already integral). If d # 1, apply recursively
this algorithm to the ideals dZ g and J, output the prime ideal factorization
of I = Jd~! by subtraction of the exponents in the factorization of J and d,
and terminate the algorithm.

2. [Compute N = N(J)] (Here J = I is an integral ideal.) If J is not given in
HNF, perform an HNF reduction to reduce to that case, and let H be the
HNF matrix of J. Let N be the product of the diagonal entries of H (so
N =det(H) = N(J)).

3. [Factor N] Factor N as N =[] p°, with a; > 0.

4. [Compute prime ideals] Using [CohO, Algorithm 6.2.9], for each prime p such
that a, > 0, compute the prime ideal decomposition of pZk as pZx =
HP|P pee.

5. [Compute valuations] For each p such that a, > 0, and each p | p found in

step 4, use [CohO, Algorithm 4.8.17] to compute v, + v,(J). Output the
factorization I = [, p* and terminate the algorithm.
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Remarks

(1) It is essential to remove the denominator of I in step 1, since otherwise
the factorization of the norm would not include all the possible p (for
example, if p and p' are prime ideals of the same residual degree over the
same prime p, p'p~! is an ideal of norm 1).

(2) We can speed up the computation in step 5 by noticing that the factor-
ization of the norm gives us the equality a, = 3_,,vy(J)f(p/p). Since
all the coefficients are nonnegative, as soon as this equality is achieved,
we know that all the other p above p (if any remain) will not divide J.

We will also need to find the list of integral ideals of K of norm less than
or equal to some bound B, and perhaps satisfying some additional conditions.
Although easily done, there are some slightly subtle tricks involved. The basic
algorithm where no conditions are imposed is the following.

Algorithm 2.3.23 (Ideal List). Let K be a number field and B be a positive
integer. This algorithm outputs a list of lists £ such that for each n < B, £, is
the list of all integral ideals of absolute norm equal to n.

1. [Initialize] For 2 < n < B set £, + @, thenset £; + {Zk} and p « 0.

2. [Next prime] Replace p by the smallest prime strictly larger than p. If p > B,
output £ and terminate the algorithm.

3. [Factor pZ k] Using [CohO, Algorithm 6.2.9), factor pZ k as pZk =[], <;<, P§’
with e; > 1, and let f; = f(pi/p). Set j « 0. -

4. [Next prime ideal] Set j < j + 1. If j > g, go to step 2. Otherwise, set
g+ ph,n+0.

5. [Loop through all multiples of g] Set n + n + ¢. If n > B, go to step 4.
Otherwise, set L, «+ L, Up;L,/,, where p;L,/, is the list of products by
the ideal p; of the elements of £,,/, and go to step 5.

Remark. The only subtle point of this algorithm is step 5. Since we loop
by increasing multiples n of ¢, if L' denotes the list at the end of step 4, then
step 5 is equivalent to setting

Ln & U lJ;u::l/q"
1<k<Lvg(n)

for all n.

In the sequel, we will need two modifications of this algorithm. In the first
modification, we want only squarefree ideals a — in other words ideals whose
prime ideal factorization has only exponents 0 or 1. To do this, it is sufficient
in step 5 to loop through the multiples of ¢ in decreasing order, giving the
following algorithm.
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Algorithm 2.3.24 (Squarefree Ideal List). Let K be a number field and B
be a positive integer. This algorithm outputs a list of lists £ such that for each
n < B, L, is the list of all squarefree integral ideals of absolute norm equal to
n.

1. [Initialize] For 2 < n < B set L, + &, then set £; + {Zk} and p + 0.

2. [Next prime] Replace p by the smallest prime strictly larger than p. If p > B,
output £ and terminate the algorithm.

3. [Factor pZ k] Using [Coh0, Algorithm 6.2.9], factor pZ i as pZ x = ]'[1<i<g ps
with e; > 1, and let f; = f(pi/p)- Set j « 0. T

4. [Next prime ideal] Set j < j+1.If j > g, gotostep 2. Otherwise, set g + p
and set n «+ q(|B/q] +1).

5. [Loop through multiples of g] Set n + n—q. f n < 1, go to step 4. Otherwise,
set L, + L, Up; L/, and go to step 5.

Let £ be a fixed prime. In the second more technical modification, we need
the list of ideals that we will call “conductors at £” for reasons we will see in
class field theory, that is, ideals a such that v,(a) = 0 or 1 for all p { £, while
2 < wp(a) < |Le(p/f)/(€£—1) + 1] if p | £ For this, we must loop differently
depending on whether or not p | ¢, giving the following algorithm.

Algorithm 2.3.25 (Conductor at £ Ideal List). Let K be a number field, let

£ be a prime number, and let B be a positive integer. This algorithm outputs a

list of lists £ such that for each n < B, L,, is the list of all integral ideals of

absolute norm equal to n which are conductors at £ in the above sense.

1. [Initialize] For 2 < n < B set L, + @, then set £; + {Zk} and p «+ 0.

2. [Next prime] Replace p by the smallest prime strictly larger than p. If p > B,
output £ and terminate the algorithm.

3. [Factor pZ k] Using [CohO, Algorithm 6.2.9], factor pZ k as pZk = [[;<;<, 95
with e; > 1, and let f; = f(p;/p). Set j + 0. T

4. [Next prime ideal] Set j « j + 1. If j > g, go to step 2. Otherwise, set
geph,setq «—qifp#L g1+ ¢?ifp=2¢ andset n « q(|B/q1] +1).

5. [Loop through multiples of ¢;] Set n + n — ¢;. If n < 1, go to step 4.
Otherwise, do as follows. If p # ¢, set £,, + L, Up;L,/,. On the other hand,
if p=1¢, set

ks + |min(ve(n)/f;, le; /(€ — 1) +1)]

and
Ln— LU U PECo e s
2<k<k,

where pfﬁn /q~ is the list of products by the ideal pf of the elements of £,, /4x,
and go to step 5.
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2.4 The Relative Round 2 Algorithm and Related
Algorithms

Let L/ K be a relative extension. The ring of integers Zy, of L is a Z g-module
in a natural way, and thus we want to compute Zy, as a Z g-module, not only
as a Z-module. This has three advantages. First, the Z g-module structure is
richer than the Z-module structure. Second, as we shall see, it is much easier
to compute the Z g-module structure than the Z-module structure, since the
relative degree n = [L : K] is much smaller than the absolute degree. Finally,
if the Z-module structure is really desired, it is trivial to obtain it from the
Z g-module structure (see Section 2.5.1).

In case a number field L is given as a relative extension, this allows us
to compute integral bases and discriminants for much larger degrees than
would be possible otherwise. For example, in [Dab1] such computations are
made for an extension of degree 33 of a base field of degree 32, whereas
directly computing the discriminant of an absolute number field of degree
32 x 33 = 1056 is almost impossible using current algorithms.

2.4.1 The Relative Round 2 Algorithm

In this section, we explain how to generalize the round 2 algorithm to the
relative case. We assume that we know everything needed about the base
ring Zk, and we must find an algorithm for computing a Z g-pseudo-basis
of Zy, in other words a relative integral pseudo-basis. We set R = Zg, n =
[L: K], m=[K:Q)], and we assume that L is given as L = K(6) for some
algebraic integer § whose minimal monic polynomial over K is denoted by
T(X) € Zk[X).
We follow closely the exposition given in [Coh0, Chapter 6].

Definition 2.4.1. Let O C Zj, be an order in L and let p be a prime ideal

Of L.

(1) We will say that O is p-maximal if the order-ideal (see Definition
1.2.33) of the torsion module Zy/O is not divisible by the ideal p or,
equivalently, if pZ1 + O =Zy,.

(2) We define the p-radical I, of O as follows:

I,={z € O | 3m > 1 such that z™ € pO} .

Then, as in the absolute case, it is easy to prove that I, is an ideal of
O equal to the product of all distinct prime ideals of O lying above p. To
compute I, (or more precisely I,/pO) explicitly, we may use the following
proposition, which is also proved as in the absolute case.

Proposition 2.4.2. Let ¢ = Ng/q(p) = |Zk/p| and let j > 1 be such that
¢’ > n, where n = [L : K]. Then I, /pO is the kernel of the Zk /p-linear map
z - z9 from O/pO into itself.
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When p is large, however, there is a more efficient method for computing
the p-radical based on the following proposition, which should have been
included in [CohO] for the absolute case.

Proposition 2.4.3. Let p be the prime number below p, assume that p >
n=[L: K], and let a € O. The following three properties are equivalent.

(1) a€ .

(2) The characteristic polynomial Co(X) of o over K satisfies Co(X) = X™
(mod p).

(3) For all B € O we have Tr k(aB) € p.

Proof. The proof that (1) implies (2) is the same as the proof of Proposi-
tion 2.4.2 (see [Coh0], Lemma 6.1.6): if @ € I,, multiplication by a induces a
nilpotent map from the Z g /p-vector space O/pO to itself, hence its eigenval-
ues are all equal to 0, so its characteristic polynomial is equal to X™ modulo
p. Conversely, (2) implies (1) by the Cayley—Hamilton theorem (note that
the equivalence of (1) and (2) does not use the condition p > n).

Assume now that a € I,. Then for all 3 € O we have a8 € I; hence
by what we have just proved, Cos(X) = X™ (mod p), and in particular
Trp k(aB) € p.

Conversely, assume (3). If we apply (3) to 3 = a*~! for k > 1, we deduce
that Try/k(a*) € p for all k > 1. Let Co(X) = X" + 37, (—-1)a; X"
be the characteristic polynomial of o, where the a; € Z i are the elementary
symmetric functions of a. Newton’s relations between elementary symmetric
functions and sums of powers give the recursion

k
kag = (—1F'ar—; Trr k() .

J=1

Since Trp, /K(aj) € p for j > 1, it follows by induction that a; € p for k < p,
since k < p implies k ¢ p. Since p has been assumed to be larger than n, it
follows that ax € p for 1 < k < n, proving (2). O

Condition (3) can easily be transformed into an algorithm for computing
the p-radical as follows. Let (Z):)1 <icn D€ @ Zk/p-basis of O/pO. It is clear
that (3) is equivalent to Try, k(aw;) € p for 1 < i < n. Thus, if we write
@ =) <j<n Tjwj (mod p), we obtain the following linear system in Z x/p:

Y @i Trp k(ww;) =0 (mod p) ;

1<i<n

hence I, /pO is the kernel of the matrix (Trp,x(wiw;)) over Zg/p, which
can easily be found using Gaussian elimination. If p is large, the resulting
computation will be much shorter than the computation based on Proposition
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2.4.2. We leave the details of the resulting algorithm to the reader (Exercise
32).

Zassenhaus’s theorem, being a local statement, goes through without
change:

Proposition 2.4.4. Set
O'={zeLl|zl, Cl} .

Then

(1) O’ is an order in L containing O;

(2) O' =0 if and only if O is p-mazimal;

(3) if O' # O, then the order-ideal of O'/O is equal to p* for some k such
that 1 <k <n.

To compute O’ algorithmically, we use the following proposition, whose
proof is immediate.

Proposition 2.4.5. Let U be the kernel of the Zk-linear map
from O to Endg, /(I /p1,); then O' = p~1U.

Finally, we must explain how to find a Z  /p-basis of I, /pI, knowing one
of I, /pO. There are slight differences with the absolute case, so we give all
the details.

As in [CohO, Chapter 6], let By,...,0; in I, be such that (E)KKI is a
basis of I, /pO as a Z k/p-vector space. Using Algorithm 1.5.2, from a given
pseudo-basis (w;, a;) of O, we may compute a Z g /p-basis of O/pO. Thus, we
can use [CohO, Algorithm 2.3.6] to supplement the §; with Bi41,..., 8, so
that the (B;), ., form a basis of O/pO.

Let 7 € p \ p2, so that = is an element of Zx whose valuation at p is
exactly equal to 1 (if p = pZk + aZk, then « can be taken to be either «
or a + p). I claim that if we set a; = B; for 1 < ¢ <! and a; = =n8; for
1+1<i<n,then (o), is a basis of I,/pI, (by abuse of notation we
will write = for the reduction of z mod p, pO, or ply).

First, it is clear that a; € I, for all 4, since m € p and pO C I,. Further-
more, I, /pl, is a Z k/p-vector space of dimension n. Hence we must simply
prove that the a; are Z g /p-linearly independent. So assume that there exist
a; € Zk such that i a;a; = 0 or, equivalently,

n
Za,-a,- € pIp .
=1
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Since I C O and 7 € p, this implies that Z’i=1 aif; € pO; hence a; € p for
1 < i <1, since the (3; are Z g /p-linearly independent.
Hence we have n
T Z a,-ﬁ,- € pIp .
i=l+1
Since 7 ¢ p2, we can write 7Z g = pb for some ideal b prime to p. Let u € b
such that u ¢ p. Then (u/7)p C Zg. Multiplying our relation by u/m, we

obtain
u E a:f; € (u/m)pl, C I ;
I+1<i<n

hence Y, <i<n @iBi € Ip/pO since u is invertible in Z x/p. But since the

subspace generated by the §; for I + 1 < i < n is in direct sum with I, /pO,
this implies that a; € p also for « > [ + 1, thus proving our claim. (m]

Finally, an important point must be clarified. Most of the computations
are done in the residue field Z g/p. Since this is not simply Z/pZ, we must
explain how elements are represented. The way that we have chosen is based
on the following proposition.

Proposition 2.4.6. Let (wy,...,wm) be a Z-integral basis of a number field
K, let p be a prime ideal of degree f of Zk, and let A = (ai ;)1<ij<m be its
Hermite normal form on the integral basis. Let D, (resp., D,) be the set of
indices 1 € [1,m] such that ai; =1 (resp., aii =p). Then

(1) 1Dyl = f and |Dy| =m - ;

(2) ift € Dy, then a;j; = 0 for j > i (each off-diagonal entry of row i is
equal to zero);

(3) ifj € Dy, then a; j =0 for i < j (each off-diagonal entry of column j is
equal to zero).

Proof. Call a; the HNF basis elements of p given by the matrix A. The
determinant of A is equal to the index of p in Z g, hence is equal to N'(p) = p7,
so the diagonal entries of the HNF matrix must be powers of p. Assume that
a;; = p*. Since pZg C p, we have pw; = Y, ic, Tie; for some integers
z;. Since the matrix A is triangular, we deduce that z; = 0 for i > j, and
in addition p = z;a;; = z;p*, and it follows that k = 0 or k = 1, so the
diagonal entries are equal to 1 or p. Since the determinant is equal to pf, we
have f diagonal entries equal to p, proving (1). (2) is a trivial consequence of
the definition of the HNF.

For (3), let j be such that a; ; = p. Then

E Qi jwi = —pw; €P .
i<j

Let ip be the largest index ¢ in the sum (if it exists) such that a; ; # 0. Thus,
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B = aig jwio + D Gijwi € .

<10

Since a;,; # 0, by definition of the HNF we have a;; i, > 1, 50 aig,i; = P.
But then, once again writing 8 = ) z;ai, we obtain z; = 0 for i > ip and
TigQig,ip = TigP = Gig,j- Since 0 < a4, ; < p, this implies that a;, ; = 0, a
contradiction. It follows that a; = pw;, which is (3). O

Corollary 2.4.7. Keep the notation of the preceding proposition. The classes
modulo p of the w; for i € D, form an F,-basis of Zk/p.

Proof. Since |Dy| = f = dimr,(Zk/p), we must simply show that the
classes w; for i € D, are F,-linearly independent. Assume that Eie p, Tiwi =

0, in other words that Eie p. Tiwi € p, where we can assume that 0 < z; < p.
. P " .

Using the same method as 1n the proof of the proposition, letting iy be the

largest index i € D, (if it exists) such that z; # 0, the triangular form of

the HNF implies that aiy,i, | Zi. Since 0 < z;; < p and a;,,;, = p, we have

z;, = 0, which is absurd, proving the corollary. m}

We will thus represent an element of Zg/p as an m-tuple v = (v;) of
elements of Z /pZ, where v; = 0 when i € D;. If z € Z is represented as an
m-tuple on the integral basis, we can then reduce z modulo p by subtracting
z;A; to z for each i € D; (where A; is the ith column of A) and reducing
z; mod p for all other i. Since our HNF matrices are upper-triangular, the
subtraction of the z;A; must be done from bottom up. Also, by (3) above,
we may reduce z; modulo p for i € D, without subtracting a multiple of A;
from z since all the off-diagonal entries of A; are equal to zero. Note that
this is a special case of Algorithm 1.4.12.

We will also want to reduce elements that are not in Zg but in S™1Z g,
where S = Zk \ p. In this case the above procedure may not work since
some of the z; can have a denominator divisible by p (even though z itself
is in $71Z). In that case, we proceed as follows. Using Algorithm 1.3.2, we
compute an element o such that o = 1 (mod p) and a € p/p(?/P) If k is
the largest exponent of p appearing in the coefficients of z, it is clear that
za* € Zg and zaF = z (mod p) so we may apply the reduction procedure
to ra* instead of z. It is clear that the result is independent of the choice of
a.

Finally, the Dedekind criterion ([Coh0, Theorem 6.1.4]) can also be easily
generalized as follows.

Theorem 2.4.8. Let L/K be a relative extension, with L = K(0) and 6 an
algebraic integer whose minimal monic polynomial in K[X] is denoted T(X);
let p be a prime ideal of Zk, and let 8 be a uniformizer of p~!, so that
BEZKk~pl.
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Let T(X) = H1<,<kT(X) be the factorization of T(X) in (Zx/p)[X]
with the T; monic. Set

I[[ nx), wx)= [[ Tx)=t,

1<i<k 1<i<k
so that g(X)h(X) — T(X) € p[X]. Set
f(X) =B8-(9(X)h(X) - T(X)) € Zk[X] ,

and let U be a monic lift of T/(f,g,h) to Zk[X]. The order given by Zassen-
haus’s theorem starting with O = Zk[6) is equal to

O =Zk[0) +p~U(0)ZK[0] .
In particular, O is p-mazimal if and only if (f,g,h) =1 in (Zx/p)[X].

Remarks

(1) The proof of this theorem is essentially identical to the one in the absolute
case and is left to the reader (Exercise 33).

(2) The result does not depend on the uniformizer 3 that we choose.

(3) A more direct construction of O' can be obtained by generalizing [Coh0
(third printing), Exercise 3 of Chapter 6]; see Exercise 34.

(4) Because of the presence of the ideal p~1, O’ is not free in general. Using
an HNF algorithm in Dedekind domains, we can obtain a pseudo-basis
for O' if desired.

We can now give the complete relative round 2 algorithm, in a form
slightly different from that of [Coh0]. We start with a “driver” algorithm.

Algorithm 2.4.9 (Relative Round 2). Let L/K be a relative extension, with

L = K(6) and 0 an algebraic integer whose minimal monic polynomial in K[X]

is denoted T'(X). This algorithm computes a pseudo-basis (w;,a;) for Z;, and

the relative discriminant disc(L/K) = (3(L/K),d(L/K)).

1. [Factor discriminant of polynomial] Using [CohO, Algorithm 3.3.7], compute
D < disc(T), and let d(L/K) + D in K*/K*?. Using Algorithm 2.3.22,
factor DZk as DZg = []; ;i Pi*-

2. [Initialize] Set j « 0, O « Zk[f], w; + 6°~!, and a; + Zg for 1 <i < n,
and set 9(L/K) + DZg.

3. [Finished?] If j = k, output (w;,a;), disc(L/K) = (0(L/K),d(L/K)), and
terminate the algorithm. Otherwise, let j < j + 1, p « p;.

4. [Compute p-maximal order] If v; < 2, go to step 3. Otherwise, using Algorithm
2.4.11 below, compute a pseudo-basis (wip,aip) of a p-maximal order O,
containing Z k(6] as well as the integer s, such that the order-ideal of the
torsion module Op/Zk[6] (in other words, the index-ideal [0, : Zk[f]]) is
equal to p°».
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5. [Join orders] If s, # 0, use Algorithm 2.4.10 to set O + OO, let (w;,a;)
be the corresponding pseudo-basis, and set 9(L/K) + d(L/K)p~2%. Go to
step 3.

Given two orders O and @' in Zj, we define their product OO’ as the
smallest order containing both O and O'. It is clear that it is the set of linear
combinations of products of elements of O by elements of O’'. The following
trivial algorithm computes this product.

Algorithm 2.4.10 (Product of Orders). Let O and O’ be orders of L given
by pseudo-bases (w;,a;) and (n;,b;), respectively. This algorithm computes a
pseudo-basis for OO’.

1. [Form products] Let E be the list of element products w;7;, and let L be the
list of ideal products a;b;.

2. [Apply HNF] Using Algorithm 1.6.2, output the pseudo-basis for the module
whose pseudo-generating set is (E, L), and terminate the algorithm.

Remark. Contrary to the case of ideal products where the use of a two-
element representation considerably speeds up the algorithm, I do not see
how to apply a similar method here.

We can now explain the construction of a p-maximal order, which is the
essential part of the relative round 2 algorithm.

Algorithm 2.4.11 (Relative Round 2 at p). Let L/ K be a relative extension

of degree n, with L = K (#) and 6 an algebraic integer whose minimal monic

polynomial in K[X] is denoted by T'(X). Let p be a prime ideal of Zg, and let

p be the prime number below p. This algorithm computes an integral pseudo-

basis (w;, a;) for a p-maximal order Op containing Z k(6] as well as the p-adic

valuation s, of the order-ideal of Op /Z k[]. We assume given v, = v, (disc(T))

(otherwise, compute it using [CohO, Algorithms 3.3.7 and 4.8.17]).

1. [Initialize] For i = 1,...,n, set w; « '~1, a; « Zg, and sp «+ 0.

2. [Trivial case] If v, < 2, Zk[6] is p-maximal, so output (w;,a;) and s, and
terminate the algorithm.

3. [Find uniformizers of p and p~!] Using [Coh0, Algorithm 4.7.10] if necessary,
compute 7 such that p = pZk + 7Zk. if vy(x) > 1, set 7 + w + p. Then,
using steps 1 and 2 of [CohO, Algorithm 4.8.17], find 3 € Zk such that
pp~ ! = pZk + BZK, and set B + B/p (B will be a uniformizer of p~! and
7 a uniformizer of p).

4. [Factor modulo p] Using a factorization algorithm in the finite field Z gk /p,
factor T modulo p as T = [[;T;"", where the T are distinct, monic, ir-
reducible polynomials in (Zg/p)[X] and e; > 0 for all i. Set g« Hf

heT/g. f<B-(gh-T), Z + (f,9,h). U « T/Z, and z « deg(Z).
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. [Apply Dedekind] If z = 0, then Z k(6] is p-maximal, so output (w;,a;) and

sp and terminate the algorithm. Otherwise, apply Algorithm 1.6.2 to the
pseudo-generating set

(W1ye ey Wy Wy e e ey W), (G150, p 7., p7Y))

(of course at this stage we still have w; = §*~! and a; = Z ), replace (w;, a;)
by the new pseudo-basis obtained in this way, and set s, + z.

. [Finished?] If 2s, + 1 > v,, output (w;, a;) and s, and terminate the algo-

rithm.

. [Compute p-radical] If p < n, proceed as follows. Set ¢ + N (p), set g1 + ¢,

and while ¢; < n, set ¢, + q1 g. Then compute the n x n matrix A =
(ai;) over Zk/p such that w! = 37, ., a;;wi. On the other hand, if
p > n, compute the n X n matnx A =Ta; ;) over Zg/p such that a; ; =
Try/k (wiw;)- Finally, using [Coh0, Algorithm 2.3.1], compute a Z g /p-basis
Bi,- .., B of the kernel of A (this will be a basis of I, /pO).

[Compute basis of O/pO] Using Algorithm 1.5.2 on the (w;, a;), compute a
Z g [ p-basis of O/p0O.

. [Compute basis of I, /pI,] Using [CohO, Algorithm 2.3.6], supplement the 3;

found in step 7 with Bi41,..., B, so that the (E)KK" form a Zk [p-basis
of O/pO. Set a; = B; for 1 < i <land o; = 7f3; forl+1<i<n (where
7 was found in step 3), where the 3; are any lifts to O of B; € O/pO.
[Compute big matrix] Compute coefficients c; jx € Zk/p such that wra; =
3 1<icn Ciikei (mod plp). Let C be the n? x n matrix over Zk/p such
that_CT(,-,j),k = Ci,jk-
[Compute new order] Using [CohO, Algorithm 2.3.1], compute a basis 7, .. .,
v+ of the kernel of C, where the ~; are considered as elements of (Zg/p)™.
For1<i<m,setv; « wi, b « a;;forl <i <k, let v,4; be a lift of v; to
% and set b,y « p~l. Apply Algorithm 1.6.2 to the pseudo-generating
set (vi, bi)1<i<n+k. and let (w},a;) be the HNF-pseudo-basis thus obtained.
[Finished?] Let ¢t « Y, ;<. (vp(a:) — vp(al)), and for all i set (w;,a;)
(w,, al). If t = 0, output (w;, a;) and s, and terminate the algorithm; other-
wise set sp « sp + ¢ and go to step 6.

Remarks

(1) Since most computations in this algorithm must be performed in the finite

field Z i /p, it is important to note that we will represent elements of this
field as explained after Corollary 2.4.7 and not in some more abstract
manner.

(2) We need to factor polynomials in (Z g /p)[X]. Although we have not given

the algorithms explicitly, the algorithms given in [CohO, Chapter 3] for
factoring in (Z/pZ)[X] can easily be extended to the case of general
finite fields. The details are left to the reader, who can also read general
computer algebra books such as [GCL].
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(3) To compute the p-radical, we have used Proposition 2.4.2 for p < n and
Proposition 2.4.3 for p > n; this seems to be the best choice.

(4) We can, of course, present the algorithm as in [Coh0], by keeping a single
order that we enlarge for each p until Zy, is obtained, instead of computing
a p-maximal order for each p and putting the orders together only at the
end. The method given here is, however, usually faster.

2.4.2 Relative Polynomial Reduction

In most applications, it is essential to reduce polynomials defining a given
number field. When the number field is given by an absolute defining polyno-
mial, we use the Polred algorithm or one of its variants (for example, [Coh0,
Algorithm 4.4.12]). When the number field is given by a relative defining
polynomial, we have more choices. Let L/K be given by a defining poly-
nomial T5(X) € K[X]. A first possibility is the use of a relative version of
the Polred algorithm using a relative version of the LLL algorithm or of the
Fincke-Pohst algorithm. This is probably the best approach, but the neces-
sary relative lattice algorithms (see [Fie-Poh]) are for now not good enough
to provide excellent reduction, although they do help somewhat.

A second possibility is the use of the absolute Polred algorithm, but us-
ing a relative integral pseudo-basis instead of an absolute one. This method
works quite well and is far superior to the naive method consisting of apply-
ing Polred on some absolute defining polynomial. A possible algorithm is as
follows.

Algorithm 2.4.12 (Simple Relative Polynomial Reduction). Let K = Q(6, )

be a number field defined by a root 6; of an irreducible polynomial T3 (X) €

Q[X]. and let L = K(6,) be a relative extension defined by a root 6, of an

irreducible polynomial T>(X) € K[X]. We let m = [K : Q] = deg(T;) and

n = [L : K] = deg(T3). Finally, if To(X) = 3, cr<,, A (61)X* for some poly-

nomials A, we set W(X,Y) « 3, cic,, Ae(Y)X*. This algorithm computes

polynomials P(X) € Q[X] defining subfields of L, those defining L usually being

simpler than the absolute defining polynomial computed by Algorithm 2.1.11.

1. [Compute roots] Compute the complex roots 09 of the polynomial T3 (X)) for
1<i<m. Forl<i<m,set T{)(X) « W(X,6"), and let 6 be the
complex roots of TZS‘)(X) for1<j<n.

2. [Compute relative pseudo-basis] Using Algorithm 2.4.9, compute a relative
integral pseudo-basis (wj,a;). For 1 < j < n, compute an LLL-reduced
basis (ai j)i<i<m of aj. Write w; = W;(6,,62) and Qi = A,-‘j(ol) with
W;(X,Y) € QX,Y] and A; ;(X) € QX]; for 1<i<mand1l<j<n,
set Bi,j(X, Y) + W; (X,Y)Ai;(Y).

3. [Compute absolute T>-matrix] For all 4y, i, j1, j2 such that 1 < 4;,i2 <m
and 1 < j1,j2 < n, set
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Q(iz,51),(i2,52) ¢ Z Bi, i (033.13)’ 0518))31'2..1'2 (0513,13), ggiS)) .

13,73

4. [Apply LLL] Let A be the nm x nm matrix whose entries are the a;, j.) (iz.j2)
(this will be a real, positive-definite, symmetric matrix). Apply one of the LLL
algorithms (for example, [Coh0, Algorithm 2.6.3]) to this matrix, thus finding
an LLL-reduced basis by for 1 < k < nm.

5. [Compute corresponding polynomial] For 1 < k < nm, proceed as follows. The
coordinates of by are indexed by pairs (z,j) withl1<i<mand1<j<n,
so let by = (u; ;). Set

Tk & zui,jwjai,j .
2V
Using [CohO, Section 4.3], compute the characteristic polynomial Cy € Q[X]
of Yk -

6. [Terminate] For each k < nm, compute Pi(X) + Ci(X)/(Ci(X), Ci(X)).

Output the P, (X) and terminate the algorithm.

Remarks

(1) As usual in polynomial reduction algorithms, we may not be interested in
all the polynomials Py, but only in those that define the field L, in other
words those whose degree is equal to mn, and among those, in the ones
with the smallest “size”, for example in the sense of [Coh0, Algorithm
4.4.12). For this, we modify step 6 accordingly.

(2) In step 4, we only find small elements for the T, norm in the sense of
the LLL algorithm. If desired, we can strengthen the search and look for
elements having the smallest T, norm, using the Fincke-Pohst algorithm
([CohO, Algorithm 2.7.7]).

2.4.3 Prime Ideal Decomposition

The Buchmann-Lenstra algorithm for prime decomposition ([CohO, Algo-
rithm 6.2.9) can also be extended very simply as follows.

Algorithm 2.4.13 (Relative Prime Ideal Decomposition). Let L/ K be a rel-
ative extension of degree n, with L = K (0) and # an algebraic integer whose
minimal monic polynomial in K[X] is denoted T'(X). Let p = pZk + wZ be
a prime ideal of Zg, where vp(7) = 1 (change 7 into 7 + p if this is not the
case). This algorithm computes the prime ideal factorization pZ 1 = [],<;<, B;'
by giving for each i the values e; = e(;/p). f; = f(B:/p). and a two-element
representation P; = ((1,p), (a,a)) = pZL + aaZy. We assume that we have
already computed a pseudo-basis (w;,a;) of Z; and the relative discriminant
ideal 9(L/K). All the ideals I that we will use (except for the final ;) will be

represented by Zg /p-bases of I /pZj.
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. [Check if easy] If vy (disc(T')) = vy (0(L/K)), let T(X) H1<;< in

(Z k/p)[X] be the factorization of T'( X)) into dlstlnct monlc |rredquc1ble poly-
nomials over the finite field Z i /p (obtained by straightforward generaliza-
tions of the algorithms of [CohO, Section 3.4]). For each i, let f; « deg(T;).
Pi + pZy + Ti(0)ZL, output the e;, fi, Bi = ((1,p),(T:(9),ZK)), and
terminate the algorithm.

. [Compute Z g /p-basis of Z 1 /pZ ] Using Algorithm 1.5.2 on the pseudo-basis

(wi,a;), compute a Z g /p-basis (n:) of Zp/pZy.

. [Compute I, /pZ] If p < n, proceed as follows. Set ¢ +— N (p) and ¢q; +

¢, and while ¢; < n, set q; « ql - ¢. Then compute the n x n matrix
A = (ai ;) over Zk/p such that 7' = 3, ;.. a; ;n;. On the other hand,
if p > n, compute the n x n matrix A = (a; ;) over Zg/p such that ai; =
Trp,k (nin;)- Finally, using [CohO, Algorithm 2.3.1], compute the kernel I,
of A as a Z/p-vector space.

. [Initialize list] Set £ « {I,} and ¢ « 1 (£ will be a list of c ideals of

Zr/pZL).

. [Finished?] If ¢ = 0, terminate the algorithm.
. [Compute separable algebra A] Let H be an element of £. Compute a

Zk/p-basis of A = Zy/H = (Zr/pZL)/(H/pZy) in the following way.
f B1,...,B: is the given Zg/p-basis of H, set 8,11 « 1. Using [CohO, Al-
gorithm 2.3.6] and the given basis 7; of Z1/pZ, supplement this family into
a basis (E)KK" of Zr/pZy. Then set f « n—r, and for 1 < i < f set

Yi «— Br+i-

. [Compute multiplication table] (Here the ~; form a Z g /p-basis of A whose

first element is 1.) By using [CohO, Algorithm 2.3.5], compute coefficients
a; .k and b; ;& in Zg/p such that

Yv= D Giikve+ > bijb -
1<k< S 1<k<r

The multiplication table of the +; (which will be used implicitly from now on)
is given by the a; jx (we can discard the b; ; x).

. [Compute V = Ker(¢)] Let M be the matrix of the map a — a? —a from A

to A on the Z g /p-basis that we have found (where ¢ = |Zk/p| = N(p) as
above). Using [Coh0, Algorithm 2.3.1], compute a basis M; of the kernel of
M (whatever algorithm is used, ensure that the first column of M corresponds
toa=1).

[Do we have a field?] If M; has at least two elements (that is, if the kernel
of M is not one-dimensional), go to step 10. Otherwise, apply Subalgorithm
2.4.14 below, and output a two-element representation ((1,p), (a,a)), the
ramification index e, and the residual degree f corresponding to the prime
ideal H. Remove the ideal H from the list £, set ¢ + c¢—1, and go to step 5.
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10. [Find m(X)] Let @ € A be an element of M, that is not proportional to 1.
By computing the successive powers of a in A, let m(X) € (Zk/p)[X] be
the minimal monic polynomial of & in A.

11. [Factor m(X)] (We know that m(X) is a squarefree product of linear polyno-
mials.) By using [CohO, Section 3.4] or simply by trial and error if ¢ is small,
factor m(X) into linear factors as m(X) = my(X) ---me(X) in (Zk/p)[X].

12. [Split H] As above, let r = dimgz, /, (H). For 1 < i <, do as follows. Set
a; — mi(a), let M; be the n x (r + n) matrix over Zg/p whose first r
columns give the basis of H and the last express the a;n; on the n; (recall
that (n;) is a Z k/p-basis of Z/pZ, computed in step 2). Finally, let H; be
the image of M; computed using [CohO, Algorithm 2.3.2].

13. [Update list] Remove H and add Hy,...,Hy to thelist £,setc+c+k—1
and go to step 6.

The following straightforward algorithm explicitly computes the prime
ideal P from a Z g /p-basis of PB/pZy.

Subalgorithm 2.4.14 (Compute P from PB/pZy). Given an integral pseudo-
basis (wi,a;) of Zy, a prime ideal p of Zg, and a prime ideal B above p
given modulo pZy, in the foom H = H/pZy as a Zg/p-vector space, this al-
gorithm computes a pseudo—two-element representation of 3, the ramification
index e(B/p), and the residual degree f(B/p).

1. [Lift basis of B] Set s « dimgz,/,(H). let By,...,B, be lifts to Zy of a
Zk [p-basis of H, and set f = f(B/p) «n —s.

2. [Compute pseudo-generating set] Set v; + w; and ¢; « pa; for 1 < i < n,
Yitn & Bi and ciyn  Zg for 1 < i < s ((vi,ci) is now a pseudo-generating
set of B, with v, = 1 and ¢; = p if the pseudo-basis of Z, is in HNF).

3. [Compute pseudo—-two-element representation] Using Algorithm 2.3.11, com-

pute a pseudo-two-element representation P = ((1,p), (o, a)) of the prime
ideal .

4. [Compute e(3/p)] Using Algorithms 2.3.14 and 2.3.13, compute the P-adic
valuation e = e(B/p) of pZy, (note that (w;,pa;) is a pseudo-basis of pZy).
Output P, e, and f, and terminate the algorithm.

Remarks

(1) As already noted after [CohO, Algorithm 6.2.9], the method given above is
faster than the initial Buchmann-Lenstra method since it avoids costly
ideal multiplications and divisions. Apart from that, the algorithm is
essentially identical.

(2) Of course, in practice one also keeps the pseudo-element (3, b) computed
by Algorithm 2.3.14 in step 4 so as to be able to compute J-adic valua-
tions with Algorithm 2.3.13.
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2.5 Relative and Absolute Representations

In this section, we consider the problem of going back and forth from relative
to absolute representations of ideals and orders. Let the base field K be
given as K = Q(6;) (or k(6,) for some subfield k of K, but for simplicity of
exposition we will restrict to k = Q), and let L/K be a relative extension
given as L = K (05). In Section 2.1.5 we have seen how to compute an absolute
defining polynomial for L/Q, more precisely how to find a small integer & such
that 8 = 6, + k@, satisfies L = (Xf), how to find the minimal polynomial of
0 over QQ, and how to express 6; and 6, in terms of 8 (see Algorithm 2.1.11).
Although it is preferable to work systematically with relative extensions, it
is sometimes unavoidable to work also with absolute extensions, and in this
case the above data are essential. In particular, when we perform operations
between elements of K (represented as polynomials in 8; with coefficients in
Q) and elements of L (represented as polynomials in 6, with coefficients in
K = Q(6,)), it is necessary to replace the expressions of §; and #; by the
polynomials in @ as output by Algorithm 2.1.11.

To simplify the computations and to avoid many possible sources of errors,
we suggest changing the relative defining polynomial so that k =0 and 6 =
0. Indeed, since § = 02 + k6, and 0 € K, we clearly have K(0) = K(6;) = L,
and if T is the minimal polynomial of §2 in K[X], it is clear that the minimal
polynomial of  over K is T'(X) = T2(X — k6,) € K[X].

Hence, from now on we assume that 62 = 6.

2.5.1 Relative and Absolute Discriminants

Let (wi,a;) be the HNF pseudo-basis of Z; on the power basis §*~!, and
let T(X) be the minimal monic polynomial of . Since the matrix of the w;
in terms of the §"~! is upper-triangular with 1 in the diagonal, the relative
discriminant ideal 9(L/K) is given by the formula (see Section 2.2.3)

AL/K) =d(wi,-..,wn) [] o =disc(T) J] a? .

1<i<n 1<i<n

From this, it is easy to compute the absolute discriminant using the following
important theorem.

Theorem 2.5.1. Let L/K be an extension, and as usual let 9(L/K) be the
discriminant ideal of L/ K. Denote by (r1,72) (resp., (R1, R)) the signature
of K (resp., L). The absolute discriminant d(L) of L is given by the following
formula:

d(L) = (-1)F~ Kl g(K) K] iy o (0(L/K))

where Ry — [L : K]ry is given by Proposition 2.2.5.
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Proof. This theorem immediately follows from the transitivity of the dif-
ferent. Indeed, by Proposition 2.3.17, we have D(L/Q) = D(L/K)D(K/Q).
Taking norms, and using 0(L/K ) = Nk (D(L/K)) for any extension L/ K,
we obtain

d(L)Z =o(L/Q) = NL/Q(Q(L/Q)) = NK/Q(NL/K(Q(L/K):D(K/Q)))
= N x/o((L/K)D(K /QWED) = A g /o(2(L/K))d(K)EK]

It follows that d(L) = +d(K )X N g o(3(L/K)). By [Coh0, Proposition
4.8.11], we know that the sign of d(K) is (—1)" and that of d(L) is (—1)F2,
from which the theorem follows. m]

It is possible to give an alternate proof of this theorem using only the
expression of the discriminant as a determinant of traces (see [Bou2]), but the
proof given here is much more natural and directly follows [Ser]. Of course, as
in Proposition 2.3.17, we can replace the base field Q by an arbitrary number
field k.

2.5.2 Relative and Absolute Bases

Consider now the problem of the absolute integral basis of Zr. As in the
proof of Theorem 2.5.1, from an integral pseudo-basis (w;,a;) and Z-bases
(ai,;) of a;, we immediately obtain an integral basis a; jw; for Z . Although
in general it is not in HNF, it is usually not a good idea to put it in HNF
(although using an HNF reduction algorithm, this is trivially done if desired)
since an HNF is usually very badly skewed. For example, in applications such
as the polynomial reduction algorithm Polred, we want an LLL-reduced basis
for the To-norm (see Algorithm 2.4.12).

Usually the w; will be given on the relative power basis 1,65, ... ,0;‘1,
and the a; ; will be given on an absolute power basis 1,6;,...,87*! of K/Q
(or as an HNF on an absolute integral basis of Z x whose columns are easy to
transform into polynomials in ;). To perform operations such as the element
product a; jw;, we must express §; as a polynomial in @ as explained above
(or express both 6; and 62 as polynomials in 6 if we have not changed the
relative defining polynomial so that 6 = 65).

The same method applies to ideals, except that one must be careful that
the pseudo-matrix representation of the pseudo-basis (8;,b;) of an ideal is
usually given on the K-basis w; and not on the power basis §i~!, so we
must first convert the generating elements of the ideal into polynomials in 6
before performing the conversion. Once the absolute Z-basis of the ideal is
obtained, expressed as a matrix on powers on 6, by using linear algebra we
can transform this matrix so as to get the matrix on the absolute integral
basis. At this point it is very important to know which absolute integral
basis is chosen, either the absolute HNF basis or the basis we obtained above
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from the relative HNF basis, which is less skewed. The choice is not very
important, but evidently it must be consistent.

Conversely, if only an absolute integral basis (1;)1<j<mn of Z is known,
then I do not see any really better method to find a pseudo-basis of Z than
to apply Algorithm 1.6.2 to the pseudo-generating set (n;,Z k). For an ideal
I of Z, we can do as for Z[, but assuming that a pseudo-basis (w;,a;) of
Zy is known, we can do much better as follows. From some absolute Z-basis
of I, compute an absolute two-element representation (a, 8) using Algorithm
1.3.15 (in the absolute case). If we set §; = aw; and b; = a; for 1 < j < n,
Bj+n = Pwj and b, = a; for 1 < j < n, we obtain a 2n-element pseudo-
generating set of I, to which we apply Algorithm 1.6.2. This is, of course,
much less costly than applying it to an mn-element pseudo-generating set.

Considering its importance, we isolate from the above discussion an al-
gorithm to compute the relative norm of an ideal when one knows only an
absolute basis of the ideal and a relative pseudo-basis of Zj, (if one knows a
relative pseudo-basis of the ideal, the answer is given by Proposition 2.3.1).

Algorithm 2.5.2 (Relative Norm of an Ideal). Given an absolute basis of an
ideal I of L and a pseudo-basis (wj,a;) of Zp, this algorithm computes the
relative norm N p g (I).

1. [Compute two-element representation] Using Algorithm 1.3.15 for the number
field L, compute an absolute two-element representation (a, ) of the ideal I.

2. [Compute pseudo-generating set] Set §; « aw; and b; « a; for 1 < j < n,
ﬂj+n — ,Bwj and bj+n — aj for 1<j<n.

3. [Apply Hermite] By applying Algorithm 1.6.2 to the 2n-element pseudo-
generating set (3;,b;)1<j<2n, compute a pseudo-basis (7;,¢;)1<j<n Of the
ideal I (and output this pseudo-basis if desired).

4. [Terminate] Output N'p/k (I) + [l;<;<n c,-aj_1 and terminate the algorithm.

2.5.3 Ups and Downs for Ideals

An important special case of the above is when a prime ideal B of Zj is
given by an absolute two-element representation P8 = pZy + BZr. The above
method gives a pseudo-basis (3;,b;) for 8. We can then apply Algorithm
2.3.11 to find a two-element relative representation ((1,p), (o, a)). However,
we can obtain this representation more directly as follows.

Algorithm 2.5.3 (Prime Ideal Down). Given an absolute two-element repre-

sentation of a prime ideal ‘B = pZ + aZ, this algorithm computes the prime

ideal p of Z g below P (the relative two-element representation will then simply

be P =pZr + aZL).

1. [Compute N 1/ k (a)] Using the subresultant algorithm and Section 2.2.2, com-
pute a NL/K(a).
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2. [Easy case] If it is known in advance that p is unramified in K /Q (for example,
if P itself is unramified in L/Q), output p + pZ gk + aZ i and terminate the
algorithm.

3. [Difficult case] Using [CohO, Algorithm 6.2.9], compute the prime ideals p; of
Zy above p.

4. [Loop] Using [CohO, Algorithm 4.8.17], for each i compute v; « v, (a) until
v; > 0 (if no such i exists, there is an error). For this index i, set p + p;,
output p, and terminate the algorithm.

Proof. We note that for every prime ideal Q of Z; above p and different
from B, we have vn(a) = 0. It follows that the relative norm N p, g (a)
is of the form N k(a) = p“a, where a is an ideal coprime to pZg and
u = v (@) f(P/p) > 1. Thus, if we know that p is unramified, then PNZg =
p = pZLk+NL/k(a)Zk as can be seen, for example, by computing valuations
at all prime ideals, proving the validity of step 2. If p is ramified, the loop
in step 4 gives a unique index i such that vy, (N k(@) > 0, in other words
the index i for which p = p;, proving the validity of step 4. Finally, we note
that, if p = P N Zk, we have

PB=pZLr+0ZyCpLr+aZ, CP+oZy = ;

hence P = ((1,p), (a,Zk)) = pZ + aZ is a relative two-element represen-
tation of *P. o

Assume now that we have an integral pseudo-basis (w;,a;) of Z; and
an ideal I of Z [, given by a pseudo-basis (8;, b;). Computing the intersection
INZ g is very easy. If not already in this form, use Algorithm 1.6.2 to compute
the HNF of the given pseudo-basis, obtaining a new pseudo-basis (3!, b’). By
definition of the HNF we have 3] = 1, and so I N Zg = b}. This of course
assumes that the integral pseudo-basis for Zj is always chosen such that
w; = 1.

If I = B is a prime ideal given by a two-element representation P =
((1,p), (a,a)), we need not do this since PN Zg = p.

Finally, if B is a prime ideal given by an absolute two-element represen-
tation P = pZ + aZ, we apply Algorithm 2.5.3 to compute p = ‘PN Zg.

Conversely, let ¢ be an ideal of Z k. To compute the ideal ¢Z, as a relative
HNF representation is trivial thanks to the chosen representation: if (w;, a;)
is a pseudo-basis of Z, then (w;, ca;) is a pseudo-basis of ¢Z . In fact, since
this ideal is now considered as an ideal of Zp, it will be represented as a
pseudo-matrix on the w; (and not on the #~1), and the matrix component
will simply be the n x n identity matrix, and the ideals will be the ca;. If we
also want an absolute HNF' representation, we use the method explained in
Section 2.5.2. In other words, we use the following algorithm.

Algorithm 2.5.4 (Ideal Up in Absolute HNF). Let (wj,a;)1<j<n be a
pseudo-basis of Z and let () be an absolute Z-basis of Z 1, not necessarily
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coming from the pseudo-basis nor in HNF. Given an ideal ¢ of Zk, this algorithm

computes the absolute HNF representation of the ideal ¢Z, of Z with respect

to the (nk).

1. [Compute relative HNF] For all j set ¢; « a;c and let (vy; ;): be a Z-basis of
c;; then for all 7 and j set Qi & W;i%,j-

2. [Compute absolute HNF] For all 7 and j, let M(; ;) be the column vector of
the coordinates of a; ; on the n, and let M be the matrix whose columns,
indexed by pairs (¢, j), are the M(; j). Output the HNF of the matrix M and
terminate the algorithm.

Finally, if c is a prime ideal of Z g, and we want to know the prime ideals
above ¢ in Z [, or the factorization of ¢Zy, we apply Algorithm 2.4.13.

2.6 Relative Quadratic Extensions and Quadratic Forms

As its title indicates, the aim of this section is to study the special case of
relative quadratic extensions, and in particular to show that the usual theory
of binary quadratic forms can naturally be extended to the relative case. This
will give us a powerful computational tool that, as in the absolute case, we
will use in Chapter 7 for computing relative class and unit groups.

2.6.1 Integral Pseudo-Basis, Discriminant

Let K be a base field, D € K* <\ K*?, and L = K(\/D), so that L is the

general quadratic extension of K. Since K (VD) = K (/D f?) forall f € K*,
we may assume that D € Zg, and we make this assumption from now on.

In the absolute case, we can go a step further and assume that D is
squarefree (in which case D is the so-called radicand), or that D is the dis-
criminant of L (so D is squarefree congruent to 1 modulo 4 or equal to 4
times a squarefree integer congruent to 2 or 3 modulo 4). Thanks to these
reductions, there is a bijection between quadratic extensions of Q and such
integers D.

In the relative case the situation is not that easy when the base field K
has a nontrivial class group: we may, of course, assume that D is “squarefree”,
meaning that it is not divisible by the square of a nonunit of Z g, but such a
reduction is not sufficient since we can still have DZ g = f20 with a nontrivial
ideal f. In addition, such a “squarefree reduction” would in general not be
unique (see Exercise 36). We will see however, in Chapter 9 a way to do this
properly (see Lemma 9.2.2 and Algorithm 9.2.3).

Thus, the only assumption we will make is that D € Zg, and we write
DZyg = §?0 with f an integral ideal and ® a squarefree ideal, which can be
done uniquely.
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We know that Z has a pseudo-basis over Z g in HNF. Thus, in our case
Corollary 2.2.9 tells us that the corresponding pseudo-matrix on the basis

(1,v/D) is equal to
(6 ) @xa)

where § € Zk and q is an integral ideal of Z .

In addition, the definition of the ideal-discriminant shows that the rela-
tive ideal-discriminant 9(L/K) is given by the formula 9(L/K) = 4Dq™2 =
(2fq1)?0, and the index-ideal [Zp : Zx [vD]] is equal to q.

Proposition 2.6.1. Assume as above that D € Zg, and set DZg = {20
with f integral and 0 squarefree. Then

(1)
2fCcqCfCZgk

or, equivalently,
-1 1 -1
leZgkcCcf T Cq C é-f ;

(2) 6€fC 3qNZk;

(3) D-46%€q°.

Conversely, if these conditions are satisfied, then O = Zx ® q~1 (VD —6) is
an order of L containing ZK[\/D|.

Proof. Let & = a+by/D with a and b in K, not necessarily integral. Then
a € Zg if and only if 2a € Zg and a® — b2D € Z. Indeed, if a € Zj,
then o(a) = a — bV/D € Z1, where o denotes the unique nontrivial K-
automorphism of L, hence a + o(a) = 2a € Z; N K = Zg and similarly
ao(a) = a® — b?D € Zk. Conversely, if these conditions are satisfied, then a
is a root of the monic polynomial X2 —2aX + (a? — b?>D) with coefficients in
Z i, hence is an algebraic integer, proving our claim.

Thus, if @ = a + bV/D € Zg we have a € 1Zk and a® — b*D € Z, and
since 2a € Zg, we have 4b>D € Z. This means that for any prime ideal p,

20p(2b) + 2vp(f) + vp(0) 20 .

Since 0 is squarefree, vp(9) < 1; thus for all prime ideals p we have vy (2b) +
vp(f) > 0, in other words 2b € f~1. We have thus proved that Z; C 3(Zk +

f~1vD).
In the other direction, let us show that Zx + f~'v/D C Zy. For Zk, this
is trivial. Let u € f~1. Then

(uVD)? =u’Def?PococC ik,

so uv/D is an algebraic integer, hence uv/D € Zp, so f~'v/D C Zp, as
claimed. To summarize, we have shown the double inclusion
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ZK+f_l\/EC Zy C %(ZK-Ff_l\/B) .

The precise determination of Zp (or, equivalently, of the behavior at th
prime ideals dividing 2) can be achieved either by using the relative round 2
algorithm (Algorithm 2.4.9) or by using Hecke’s Theorem 10.2.9, but we will
not need it in the theoretical analysis, only in the algorithms.
Since we know that Zy = Zg ® q‘l(\/l_7 —9), it follows from the above
inclusions that f~! C 97! C 3!, or, equivalently, 2f C q C f, proving (1).
From the first inclusion above, we also deduce that

f'VDCZr=Zxk®q (VD -4) .
Thus, if u € f~!, /D = u(v/D — 6) + ud and since
w(VD-98)ef ' (VD-8) cq}(VD-98) CZ,

we deduce that ud € Z;NK = Zg for all u € {~1; in other words, that ¢ € f,
proving (2).

To prove (3), we have q~1(v/'D — 8) C Zy, so by applying the automor-
phism ¢ (which leaves K pointwise invariant) we also have q~!(—vD —§) C
Zy, and hence by multiplying we obtain q=2(6°2 — D) C ZNK = Zk, proving
(3). Note that we could hope for a stronger result such as D — 62 € 4f% or
even D — 62 € 2fq, but this is not true in general (see Exercise 37). Of course,
a stronger result can be obtained by computing q explicitly by the round 2
algorithm or by Hecke’s theorem, but the statement obtained is not simple.

Conversely assume that these conditions are satisfied and let O = Zg @
9~ (VD - ¢). Since 1 € q7, Zx[VD] C O. Furthermore, let ¢ € q77,
and let a = ¢(vD — 8) = —¢é + ¢V D. By conditions (2) and (3) we have
—2¢6 € 29716 € Zk and

(-96)* - ¢*D =¢*(8* - D) € "%(6* — D) € Zx ;

hence by the necessary and sufficient condition proved above, we have a € Z.
This shows that Z K[\/D C O C Zj. Hence, to show that O is an order, it
is sufficient to show that O is a ring. Since it is trivially stable by addition
and since 1 € O, we must simply show that O is stable by multiplication.
This is of course equivalent to showing that q‘2(\/5 —6)2 C O. For this,
note that
~2(\/D = 6)2 = q~2(D — 62 VD
qg (VD -6)*=q7°(D—-6+24(6 D))
Cqa*(D-&)+q97'(29716)(6 - VD)
CZk+q ' (6-VvVD)=0

by conditions (2) and (3), finishing the proof of the proposition. m}
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Remarks

(1) Corollary 2.2.9, which only uses the Z K[\/m -module structure, tells us
only that q C Zg and that 6 € Zk.

(2) The general integral pseudo-basis of the form Zy = Zx ® q~1(vVD —¢)
is obtained with € = § + 5 for an arbitrary n € q, see Exercise 38.

2.6.2 Representation of Ideals

We assume that q and § are known (obtained, for example, by the relative
round 2 algorithm), and we now want to work with ideals in the relative
extension L/ K. The following proposition gives the result that we need.

Proposition 2.6.2. Let I be a fractional ideal of L. There exist unique ideals
n and a and an element b € Z g such that

I=n(a®q (VD -b)) .

In addition, we have the following:

(1) the ideal a is an integral ideal;
(2) we have 6 — b € q, and in particular b € f;
(3) the ideal ¢ = (b2 — D)(aq?)™! is an integral ideal.

Conversely, if these conditions are satisfied, then I = n(a ® q~1(vV/D — b)) is
an ideal of L.

Proof. By Proposition 2.3.1, I has a pseudo-basis in HNF of the form
((1,v/D = b),(c1,¢2)) with b € Zg and c2q | ¢;. Set a = ¢1(c29)”! and
n = c3q = a~!. Then a is an integral ideal and

I=ne®q (VD -b),

proving (1). o

Set J = In"! = a® q (VD — b). We must express the fact that I
(or, equivalently, J) is an ideal of Zy = Zg ® q~1(v/D — §). This is clearly
equivalent to ~1(v/D —8)J C J, hence to 4~ (vD —é8)a C J and q~1(vD -
8)qa Y (vD-b) C J.

The first condition is equivalent to ag(v'D —6) € J for all @ € a and
g € q~1. We have

aq(v'D - 8) = aq(V'D — b) + aq(b - 6) ,

and since a is an integral ideal, ag(v/'D — b) € J, so the first condition is
equivalent to aq(b — &) € J, hence to ag(b—J) € aforalla € a and g € g~ 1.
This is in turn equivalent to b— 4 € q, which implies that b€ d+q C f+f =7
by Proposition 2.6.1, proving (2). Conversely, it is clear that if (1) and (2)
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are satisfied (more precisely, (1) and b — § € q), then the first condition is
satisfied.

Multiplying by q, the second condition on J means that for all ¢ € q~
we have

1

q(D +b6— (b +6)VD) € aq® Zxg(vVD —b) .

This implies that q~1(b+68) C Zg, hence b+§ € q. However, b+6 = b—35+26 €
q by (2) and Proposition 2.6.1, so this condition is already satisfied. Thus,
we write

q(D +b6 — (b+ 8)VD) = —q(b+8)(VD — b) + g(D — b%) .

We have —q(b+ 8)(v/D —b) € Jgq, so the second condition on J is equivalent
to g(D — b?) € aq for all ¢ € 71, hence to D — b2 € aq?. This proves (3),
and since we have considered only necessary and sufficient conditions, this
finishes the proof of the proposition. (]

Proposition 2.6.3. Let I = n(a®q~'(vD — b)) as in Proposition 2.6.2.

(1) The content of I in the sense of Definition 2.3.4 is the ideal n.

(2) The ideal I is an integral ideal of Zj, if and only if n is an integral ideal
Of ZK.

(3) The ideal I is primitive in L/K if and only if n = Zg.

(4) Np/k(I) = an®.

Proof. Note that with the notation of Proposition 2.3.5 we have hy o =
d — b, hence by that proposition ¢(I) = (n,na, (§ — db)ng~!) = n since by
Proposition 2.6.2, a is an integral ideal and 6 — b € g, proving (1), and
(2) and (3) are immediate consequences. Statement (4) is a restatement of
Proposition 2.3.1 (4). O

Definition 2.6.4. A pseudo-quadratic form associated to the ideal I is the
quadruple (a,b, ¢;n) of ideals and element satisfying the conditions of Proposi-
tion 2.6.2. When possible, we will often call (a, b, c) itself the pseudo-quadratic
form associated to I.

Remarks

(1) The element b is not unique but is clearly defined modulo addition of an
arbitrary element of aq. Thus there is not a single pseudo-quadratic form
associated to I, but an equivalence class under the action of a group
generalizing the group of integer translations I, used in the absolute
case. The equivalence relation says that for all u € aq we have

(a,b,(b* = D)(g*a)"};m) ~ (a,b +u, (b +u)® - D)(g*a)"};n) .
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(2) Inthe classical case K = Qand L = Q( \/5), we may choose D to be the
discriminant of the quadratic field (a choice we almost always make in
[Coh0]). When D =1 (mod 4) we have f = Z, q = 2Z, and § = 1, while
when D =0 (mod 4) we have f = 2Z, q = 2Z, and § = 0. Thus, an ideal
I can be written I = n(aZ & (—=b+v/D)/2)Z), and the conditions of the
proposition say that I is an ideal if and only if a € Z, b = § (mod 2),
and 4a | (b — D), which are well-known results in the absolute case.
The quadratic form associated to the ideal I is the form (a,b,c) with
c = (b2 — D)/(4a), so the above definition is a perfect generalization to
the relative case (the number n is not preserved in the absolute case but
could be if desired).

(3) There is, however, one important difference between the relative and ab-
solute cases. Since we could work with primitive ideals, we could discard
the number n. In the relative case, the fact that n may not be a principal
ideal of Z g forbids us to discard it when doing class group computations.
This is the main reason for which, instead of simply writing a form as
(a, b, ¢), we have written it as (a, b, ¢; n). We will however, omit the n when
it is not necessary or when it is equal to Zg. We will come back to the
use of n later.

(4) The ideal Zy = Zk & q~'(V/D — ) is represented by the unit form
(Zk, 6, (62 — D)a~2 Z).

(5) Although we use the word “pseudo”-quadratic form, there really is a
quadratic form here, which is the form

z? + 2bzy + (b> — D)y? with (z,y) En(axql) .

Since we will not need this explicitly, I leave to the reader the study of
this form and the generalizations of the correspondence between classes
of ideals and classes of forms seen in [Coh0, Chapter 5] (see Exercise 39).

2.6.3 Representation of Prime Ideals

Let p be a prime ideal of Z g, and assume first that p remains inert in Zp.
Then the quadratic form associated to the ideal P = pZy is

(Zk,5,(8° = D)q™%;p) .

This is already one instance where it is important to keep the fourth com-
ponent; otherwise all inert prime ideals in L/K would be represented by the
same form.

Assume now that p is not inert in L/ K and let ‘B be one of the prime ideals
above p. Thanks to the existence of a pseudo-two-element representation, we
know that there exist 8 € L and an ideal b of K such that P = pZ + BbZ.
Since B is not inert, 3 ¢ K (otherwise P = (p + b)Z = mZ[, hence m = p
and so B = pZy), and since L = K (v/D), we can write fb = (v'D —cp)a for
some cp, € L and some ideal a of K, so that
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P=pZy+a(vD - c)Zg

(this is, of course, not a direct sum).
We want to represent this as a pseudo-quadratic form. This is done by
the following proposition.

Proposition 2.6.5. Let p be a prime ideal of Z that is not inert in L/ K,
and let P = pZy + a(vD — cp)Zi be a prime ideal above p. Then p + aq +
a(6+cp) =Zk. Letu € p, v € aq, and w € a such that u+v+w(d+¢cp) =1
(recall that such elements can be found algorithmically by Algorithm 1.3.2).
Then

P=p&q (VD - (ud + vep, — w(D + ¢,0))) ;

in other words, if we set by, = ué+vc, —w(D +cpd), a pseudo-quadratic form
associated to B is the form (p, by, (b2 — D)(4?p)™1; Zk).

Proof. By Proposition 2.6.2, we can write = n(a @ q~*(vD — b)) for
unique ideals a and n. Since ‘B is an integral ideal, n is integral, and since
B is not inert, n must be equal to Zg. In addition, a = PN K = p. Thus,
we know a priori that 9 = p ® q~1(vD — bp) for some element b,, and any
element b such that v/D — b € Pq will be suitable.

Replacing Zy by Zg ® q~1(v/D —6), we have

Pa = pq +p(VD — ) + aq(vD - ¢;) + a(vVD — ¢,)(VD - §) .

Since we know that Pq = pq@ZK(\/ﬁ—bP), we have p+aq+a(d+cp) = Zk.
Thus, let u € p, v € aq and w € a be such that u + v + w(d + ¢;) = 1. Then

w(VD = 8) +v(VD —¢p) —w(D + ¢p6 — (cp + 6)VD) € Bq ,

hence v'D — (ué + vep — w(D + cpd)) € Pq, so we can take by = ud + vep —
w(D + cpé), proving the proposition. m]

Remark. In most cases, the ideals p and aq are already coprime. This is in
particular the case when p does not divide the index-ideal [Z L:Z K[@] =
q, since in that case Proposition 2.3.9 tells us that we can take a = Zg. It
can also occur even when p | q. If this happens, the formulas simplify since
we can choose w = 0.

We now consider the problem of computing valuations with respect to
a prime ideal ‘B. In the quadratic case, this is much simpler than applying
Algorithms 2.3.13 and 2.3.14. Let I = n(a ® q~1(v/D — b)) be an ideal and
B a prime ideal of L. If P = pZ_ is inert, we clearly have vp(I) = vp(n).
Otherwise, we still have v (I) = vp(n)+vgp(In~!) and vp(n) = e(P/p)vy (n).
Thus, we may assume that n = Z g, so that [ is a primitive ideal.



2.6 Relative Quadratic Extensions and Quadratic Forms 125

If p is ramified, so that pZy = P2, then vp(I) = vp(N /(1)) = vp(a).

Consider finally the case where p = PP’ is split. If I = P* - ‘13'"' -J
with J coprime to P and P', we have v (a) = vy(N,k(I)) = v +'. Since
I is primitive, we cannot have p | I, so v and v' cannot be simultaneously
nonzero. Hence we have v = 0 or v = vy(a). Assume that vy(a) > 0 (otherwise
v = vg () =0). Then v = vy(a) if and only if I C P. Since a C P, v = vp(a)
if and only if

T (VD-bCcPB=p®q (VD -b,) .

This condition says that for all ¢ € q~! we have ¢(vD —b) = ¢(vD — bp) +
g(b, — b) € P, hence that g(b, — b) € p, so that b, — b € pq. Thus we test if
this condition is satisfied. If it is, vp(I) = vy(a); otherwise, vep(I) = 0.

We can write this down as a formal algorithm.

Algorithm 2.6.6 (Valuation at P for a Relative Quadratic Extension). Let

B be a prime ideal of L above p and let I = n(a® q~1(v/D — b)) be an ideal of

L given as explained in Proposition 2.6.2. This algorithm computes the B-adic

valuation vy (). All p-adic valuations in the base field K are computed using

[CohO, Algorithm 4.8.17].

1. [Inert case] If pZ 1, = P is inert, output v + vp(n) and terminate the algorithm.

2. [Ramified case] If pZ 1 = P2, output v + 2v,(n) + vp(a) and terminate the
algorithm.

3. [Split case] (Here pZy = PP'.) If vy(a) = 0 or if vy(by —b) < wvp(q) set
v + vp(n); otherwise, set v « vp(n) + vp(a). Output v and terminate the
algorithm.

2.6.4 Composition of Pseudo-Quadratic Forms

We now consider the problem of computing the compositum of two pseudo-
quadratic forms, of course defined as the product of the corresponding ideals.
The result is completely analogous to the absolute case, as follows.

Proposition 2.6.7. Fori =1, 2, and 3, let I, = ni(a; ® q_l(\/ﬁ— b:)) be
three ideals of L, and assume that Is = L1 I>. Then ns, as, bz are given by
the following formulas. Set ® = a; + ag + q~1(b1 + b2) and let a; € a,07!,
az € 0207, and ¢ € 707! such that a1 + a2 +q(by +b2) = 1. Then

ng =o0npng, ag= 01020_2, b3 =by + az(bl - bg) +q(D - b%) .
(We may, of course, reverse the roles of 1 and 2 in the formula for bs.)

Proof. The proof is identical to that of the absolute case. We have I I =
nyngJ with

J = a1ap + 19 (VD —by) + 29~ (VD —by) +q (D +b1by — (by +b2)VD) .
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The ideal of coefficients of v/D is
q (a1 + a2 +q7 (b1 +b2)) = 9710 = (ng/(mmy))q ™",
hence ng = nyn2d, and by multiplicativity of the norm we know that
Ni/k(J) = a1a; = 0%as, so a3 = 64,8202, as claimed.
Finally, if a; € a;071, a2 € a20~! and ¢ € 4~ 107! are such that a; + a3 +
g(by + b2) = 1, then
a1(VD = bs) + az(VD — by) — g(D + byby — (by + b2)VD) € Jq ,
which is equal to VD — b3 with
bs = a1bs + azb; + q(D + b1b2)
= by(1 — a2 — g(by +b2)) + azby + q(D + byb2)
= by +a2(b1 - b2) +q(D - bg) ,

proving the proposition. ]
In view of this proposition, it is reasonable to set the following definition

(keeping in mind that a pseudo-quadratic form is really defined only modulo
the equivalence relation mentioned in Remark (1) above).

Definition 2.6.8. We define the compositum of two forms (ay,by,¢1;n;)
and (ag, bz, c2;nz) by the following formulas. Set ® = a; +az + q~1(b; + b2),
leta; € a;071, a3 € a207! and g € q107! be such that a; +az+q(b1 +b2) =1,
and, finally, b3 = by + az(by — b2) + g(D — b2). Then

(a1, b1, c15m1) - (a2, b2, c2; 1) = (@102072, b3, (b3 — D)q~20% (a102) 5 0mymy) .
Corollary 2.6.9. If I = n(a ® q~1(vVD — b)), then I"! = n~la"Y(a @
q‘l(\/ﬁ +b)). In other words, in terms of pseudo-quadratic forms we have
(a,b,¢;n)"! = (a,=b,¢;n"la7l) .
Proof. By the above proposition, we have
@®q (VD - b))(a®q ' (VD +b)) =d(as @ 4" (VD — bs))

with 9 = a+a+(b—b)q~! = a, a3 = a?0~2 = Zg. In addition, we may choose
a1 =1€adl,a; =0, ¢g=0,sothat b3 = by = § (mod q) by Proposition
2.6.2; hence

(60q ' (VD -b)(a®q (VD +b) =a(Zk ®q (VD - b)) = aZy ,

and the first formula of the corollary follows. The second follows from the
trivial observation that (—b)? = b2. n]

Note that it is essential to keep the additional factor a~! occurring in this
corollary, which is discarded in the absolute case.



2.6 Relative Quadratic Extensions and Quadratic Forms 127

2.6.5 Reduction of Pseudo-Quadratic Forms

Up to now, the analogy with the absolute case has been perfect. The situation
breaks down when we consider the problem of reduction of pseudo-quadratic
forms.

In any reduction procedure for forms of two variables, there are two com-
pletely distinct kinds of reduction steps. First are the translations, corre-
sponding essentially to changing z into z + ky while leaving y unchanged. In
the absolute case over the integers, this corresponds to using the group I's
already mentioned above and in [Coh0, Chapter 5] of integer translations.

The second type is the inversions, corresponding essentially to the ex-
change of the variables z and y, perhaps with sign or similar harmless changes.

A third kind can also occur, multiplication of z or y by elements of K.

To take a very typical example, the LLL algorithm, as described in [CohO,
Section 2.6], operates in its primitive form only on pairs of vectors and hence
is a succession of translations (Subalgorithm RED) and exchanges (Subalgo-
rithm SWAP).

We first consider translations. In the case of ordinary quadratic forms
over Z, they correspond to transformations not changing the corresponding
ideal. In our case, if I = n(a®q~'(v/D —b)), a translation b — b+ k will not
change the ideal if and only if k£ € aq. We then need to define what we mean
by translation-reduced; in other words, we need to choose a “small” value of
b modulo aq representing the ideal.

As we have seen in Section 1.4.3, there are two ways to do this. One gives
a canonical representative, using the HNF of the ideal aq (see Algorithm
1.4.12). Although not too large (the coefficients are at most equal to the
absolute norm of aq), this can still be large enough to create problems later
on. It does have an advantage, which must be used in any implementation,
since it allows us to test ideals for equality since this representation is unique.

The second method, using an LLL basis of aq (see Algorithm 1.4.13),
gives much smaller coefficients and so should be used for practical reduction.
It has two disadvantages. The first one is that we lose uniqueness. This does
not matter much, since for the rare times that we want to test ideal equality,
we can always perform an HNF-type reduction. The second, more subtle
disadvantage is that it is slow, since LLL is quite a sophisticated algorithm.
Of course, we are dealing with rather small matrices here (of the size the
absolute degree of the base field), but we are talking about an absolutely
basic operation that may be performed several thousand times or more. As
already mentioned after Algorithm 1.4.13, a good compromise is to use the
notion of partial reduction introduced by P. Montgomery.

The second type of operations, corresponding to inversions, is simply
a swap. We want to transform the pseudo-quadratic form (a, b, c;n) into
(¢, —b, a;m) for some m. This is indeed possible, as the following proposition
shows.
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Proposition 2.6.10. Let (a,b,c;n) be a pseudo-quadratic form and I =
n(a ® q~1(VD — b)) the corresponding ideal. We have the equality

nag(c® g~ (VD + b)) = (VD + b)I .

In particular, the ideal class in CI(L) of the ideal corresponding to (a,b, c; n)
is equal to ideal class of the ideal corresponding to (¢, —b,a;naq).

Proof. This follows trivially from the equality
c®q Y (VD +b) = (VD + b)(aq) Ha® q (VD - b))

]

This is the exact analog of the classical swap operation on ordinary
quadratic forms except that, as usual, the behavior of the fourth component
is important.

The problem starts to become difficult when we want to define what
we mean by a swap-reduced pseudo-quadratic form. The closest analog of
the classical case is the CM-case where the base field K is totally real (for
example, a real quadratic field) and D is totally negative. Ideally, as in the
imaginary quadratic case, one would like a definition of reducedness that
would ensure that each ideal class contains exactly one reduced form. It
seems that such a definition is difficult to find, and it would be very nice if
one could be given.

If we stupidly copy the definition of the imaginary quadratic case, we can
set the following unpleasant definition (but this is all I can offer at present).

Definition 2.6.11. We say that a form (a,b,c;n) is pseudo-reduced if b is
LLL-reduced modulo aq in the sense of Algorithm 1.4.13 as ezxplained above
(partially LLL-reduced suffices in practice) and if we have the inequality

N(a) SN (o) = [N(t* - D)| / N(aq?)

Although it is mathematically unpleasant, experiment has shown that it
is usually sufficient for practical applications.

The reduction algorithm of a pseudo-quadratic form is, of course, imme-
diate and need not be written formally: we partially reduce (or LLL-reduce
if we agree to spend more time, but this is not a good practical choice) the
element b modulo aq. If V'(a) > N(c) = |V (b2 — D)| / N(ag®) — in other
words, if [N (6% — D)| < M(aq)> — we swap a and ¢ and change b in —b
and modify the fourth component as explained in Proposition 2.6.10, and we
iterate this process until the form is reduced.

In Section 7.3.2, we will see a relative ideal reduction method that gener-
alizes the above to arbitrary relative extensions.



2.7 Exercises for Chapter 2 129

2.7 Exercises for Chapter 2

1

10.

11.

Let
T(X)= [[ Tx)"

1<i<g

be a decomposition of T in K[X] into nonassociate irreducible factors. Using
the Chinese remainder theorem, show that

KIX)/T(X)K[X]~ [[ KIX)/T:(X)"K[X] .

1<i<yg

. Prove the following variant of the primitive element theorem. If K; = Q(6:) and

K, = (62) are two number fields, there exists a (small) integer k such that
K, K> = K(6102 + k62).

. Let A be a ring. Show that A has no nonzero nilpotent elements if and only if

z? = 0 implies z = 0 in A.

. Let A be an étale algebra over K. Show that A is an integral domain if and

only if A is a field.

. Compute the Galois group of the separable but reducible polynomials P;(X) =

(X -2)(X3=X-1), Py(X) = (X*-2)(X?-3), and P3(X) = (X% -2)(X*-38).
Compute also the discriminants of the corresponding étale algebras.

. Classify up to conjugacy (and not only up to abstract isomorphism) all non-

transitive subgroups of S, for n = 2, 3, 4, and 5. For each of these groups, give
an example of a polynomial in Z[X] whose Galois group is isomorphic (as a
subgroup of S») to the given group.

. Write a complete algorithm for computing the Galois group of separable but

not necessarily irreducible polynomials over Q{X] in degree up to 5, generalizing
the algorithms of [Coh0, Section 6.3).

. Let T and T be two monic irreducible polynomials in Q[X] of degree m; and

ng, respectively, and let 6, (resp., #2) be a root of T (resp., 82). If 6 = 6,62 +
k161 + k262, show that 0 is a root of R(X, ki1,k2) = 0, where R(X,Z:,2>) =
Ry(Ti(Y — Z,),Y™"2To((X — Z\Y + Z:1Z5)]Y)). Assuming that R(X, ki, k2)
is squarefree, express 6, and 62 in terms of 6 using the partial derivatives of
R(X, Z\, Z5).

. Continuing the previous exercise, show that the exact analog of Theorem

2.1.14 for R(X) = R(X,0,0) (assuming it is squarefree) is true with V,(X) =
Ry (T2(Y), XY — A,(Y)) and

Ry (T1(Y), X" T1(Y/X))
(X —1)17y(0) ’

U(X) =

except that the result must also be multiplied by 73(0)"2("2= DT, (0)"1(»1 -1,
Give the corresponding formulas for V,; and U when R(X) = R(X, ki, k2).

If T is an irreducible polynomial of degree n, show that Ry (T'(Y),Y"T(X/Y))
is never squarefree.

At the end of the example given after Algorithm 2.1.8, 6, and 6> are two cube
roots of 2 in the number field defined by the polynomial Rz2(X) = X® 4 108.
Compute the third cube root of 2 in this field. Do the same for the reduced
polynomial Sp(X) = X% —3X5 +5X% - 3X +1.
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12.

13.

14.

15.

16.

17.

18.
19.

20.

21.

22.

23.
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Show that, as claimed in the text, when the resultant in Y of two squarefree
polynomials T1(Y) and T2(X — kY) is squarefree, the next-to-last polynomial
in the polynomial remainder sequence given by the subresultant algorithm is
of degree equal to 1 and equal to R'(X)Y + R%(X,k) up to a multiplicative
constant.
Implement the computation of the compositum of two number fields, including
the computation of 61 and 63, both by using the subresultant algorithm, and by
using the other methods mentioned after Algorithm 2.1.8, and compare their
relative speed.
Let M be an n x n invertible square matrix, and for 1 < 7 < d let B; be a
column vector with n entries.
a) Show how to modify [Coh0, Algorithm 2.2.2] so as to compute the d solu-
tions to M X; = B; simultaneously.
b) Estimate the running time of this algorithm, and compare it with the
running time of [Coh0, Algorithms 2.2.1 and 2.2.2].
c) Modify Algorithm 2.1.9 so that it uses the above method to compute si-
multaneously R(X), 61 and 6,.

(D. Simon) Let T1(Y') be a polynomial of degree n1, let W(X,Y) be a polynomial
of degree n2 in X, and let R(X) = Ry (T1(Y), W(X,Y)) (so that in the context
of Theorem 2.1.10, R(X) is the defining polynomial of the extension L2 /K if Z
can be taken equal to 0).
a) Show that T2 divides Rx (R(X), W(X,Y)).
b) If, in addition, W(X,Y) is of the special form W(X,Y) = A(X)Y + B(X),
show that

Rx(R(X), W(X,Y)) = TW(Y)"*R(A(X), B(X))™* .

Show that, in Algorithm 2.1.8, the choice of k¥ = 0 in step 2 always leads to a
nontrivial GCD when deg(T1) > 1.

Write a common generalization to Algorithms 2.1.8 and 2.1.11 in the context of
étale algebras.

Prove the validity of Algorithm 2.1.12.

Let L/K be an extension of number fields, and assume that, in addition to the
data for the base field K, we know only an absolute defining polynomial P(X)
for L/Q. Write an algorithm for computing a relative defining polynomial for
L/K.

Generalize Theorem 2.1.14 to the case where T1 and T> are not necessarily
monic and have only rational (as opposed to integral) coefficients.

Show that the characteristic polynomial is transitive in the following sense. If
L/K is a relative extension, if a € L, and if Ca,k (X) (resp., Ca,o(X)) denotes
the relative (resp., absolute) characteristic polynomial of a, then

Ca,o(X) = Nkso(Cox)(X)

where the norm of a polynomial is obtained by computing the product of all
the polynomials obtained by applying the [K : Q] embeddings of K into C.
Let K = Q(v10) and L = K(v/—1). Using the relative round 2 algorithm, show
that Z is not a free Z x-module.

Let L/ K be arelative extension of number fields of degree n, and let oy, ..., an
be n elements of L. Show that, as claimed in the text, d(a1,...,as) = 0 if and
only if the a; are K-linearly dependent.



24.
25.

26.

27.

28.
29.

30.

31.

32.

33.

34.

35.

36.

37.

38.
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Prove Proposition 2.2.10.
Using the explicit parameterization of cyclic cubic fields given in [Coh0, Section

6.4.2], compute the elementary discriminantal divisors of cyclic cubic fields over
Q. Do the same for pure cubic fields Q( ¥/m).

If I is an ideal of L, show that, as claimed in the text, N'z/x(I) = ([1,, o:(1))N
K, where the o; are the n K-embeddings of L into C and the product is con-
sidered in the Galois closure of L/K in C.

Let b be an integral ideal and a any ideal of Zx. Let @ € a be such that
vp(a) = vp(a) for all p | b. Show that the map = — az induces a Zx-module
isomorphism from Z /b to a/ab.

Prove Proposition 2.3.5.

Let I = (ai,a;) be an ideal of Z1 given by a pseudo-basis (not necessarily
in HNF), and let J = ((, a), (53,b)) be an ideal of Z; given by a pseudo-two-
element representation. Show that, as claimed in the text, ((aia, i), (a:a, aib))
is a 2n-element pseudo-generating set of the ideal product IJ.

Let K = Q(vD) be a quadratic field of discriminant D, and let p be a prime
number that splits in K as K = pp. Compute explicitly the HNF of the ideal p*
on the usual integral basis (1, w) of K, where w = (§+vD)/2 with § = D mod 2.
In addition, express your result using the truncation of a p-adic number (note
that the corresponding exercise for inert or ramified primes is trivial).
Generalize Algorithm 2.3.24 to compute the list of all nth power free ideals of
norm less than or equal to B — in other words, ideals not divisible by any nth
prime power.
Write and implement an algorithm for computing the p-radical based on Propo-
sition 2.4.3, and compare its efficiency with the corresponding algorithm based
on Proposition 2.4.2 when p is large.
Prove Theorem 2.4.8, following closely the proof given in the absolute case given
in [Coh0, Section 6.1.2].
(F. Diaz y Diaz) With the notation of Theorem 2.4.8, show that the Dedekind
criterion can be restated as follows. Let ri(X) € Zk[X] be the remainder of
the Euclidean division of T(X ) by ti(X). We evidently bave r; € p[X]. Set
d; =1if e; > 2 and r; € p*[X], di = 0 otherwise. Then we can take U(X) =
1<i<k f'_d' In particular, Zk[6)] is p-maximal if and only if r; ¢ p?[X] for
every ¢ such that e; > 2.
Let L = K(a) be a relative extension of number fields, and let (wi,a:) be an
integral pseudo-basis of Z1. Let 8 = B(a) with B € K[X] be an element of L,
and let N = K(8) be the subfield of L generated by 3. Write an algorithm that
directly computes an integral pseudo-basis of Zy using the polynomial B(X)
and the pseudo-basis (w;, a;).
Consider K = Q(+v/-23), w = (-1 + v/-23)/2, and D = 8w + 12. Show that
D = 2%(2w+3) = w?(w+3) and that this gives two essentially distinct squarefree
decompositions of D (thus showing that when the class number is larger than
1, this notion does not make sense for elements).
By simply cons1dermg the case K = Q, show that, as claimed in Section 2.6, we
do not have D — § € 2fq in general

Let L = K(v/D) be a quadratic extension with D € Zg.

a) Show 2direct:ly that there exists an integral ideal q such that 3(L/K) =
4Dq~
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b) Show that Z, = Zx @ q~'(VD — §) if and only if § € 19N Zx and
D —6? € %, and that two such elements & can only differ by an arbitrary

element of q.
c) Can the condition 4 € %q N Zk be replaced by the condition 6 € %q?

39. Generalize the correspondence between classes of ideals and classes of forms
seen in [Coh0, Chapter 5] to the relative case, as suggested in Remark (5) after

Definition 2.6.4.



3. The Fundamental Theorems of Global Class
Field Theory

In this chapter, we give the main results of global class field theory for the
case of number fields. We refer the reader to [Art-Tat], [Gras], [Has1], [Jan], or
[Mart4] for more detailed statements and proofs. We present the results “a la
Hasse”, without using ideles. This is more suitable for algorithmic treatment.
For an idelic treatment, we refer to [Neu]. I have largely benefited from the
notes of J. Martinet [Mart4] in writing this chapter.

This chapter is entirely theoretical, and we defer all algorithms until Chap-
ters 4, 5, and 6. However, as the reader will see, the presentation of the
material is very concrete.

Class field theory is one of the most remarkable and important theories in
number theory. In fact, a large part of the current trends in number theory
(for example, the Langlands program) can be thought of as an attempt to
generalize class field theory.

One of its remarkable aspects is that it gives a canonical bijection between
rather different objects: on the one hand, classes of congruence subgroups (see
definitions below), which are nothing more than certain groups of ideals in
a base field K; on the other hand, K-isomorphism classes of finite Abelian
extensions of K. There are two parts to this theorem (in fact, three, as we
shall see), the injectivity and the surjectivity, but what is truly spectacular
is certainly the surjectivity since it predicts a priori the existence of certain
number fields, and it gives their discriminant and signature. Finding these
number fields in practice is another matter (although in some sense we will
simply follow the proof of the theorem), and we will explain in Chapters 5
and 6 how this is done.

3.1 Prologue: Hilbert Class Fields

Before explaining the general theory, we start with a special case that already
embodies a large part of the theory. It will be generalized in the subsequent
sections.

We will say that an extension L/K of number fields is unramified if there
are no places of K that ramify in L. This means the following: for every prime
ideal p of K, we have a decomposition
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pZ =[] B .
B.lp

and we want p to be unramified, in other words, we want all e; to be equal
to 1. This must be true for every prime ideal of K. Since the ramified prime
ideals are exactly those that divide the relative discriminant, this is equivalent
to asking that 9(L/K) = Zg. In addition, we also require the embeddings
o; (or, equivalently, the places at infinity) to be unramified (see Definition
2.2.4).

We are concerned with finite Abelian unramified extensions L of a fixed
base field K. There are several reasons for the restriction to the case of
Abelian extensions, but perhaps the most important one is that very little is
known in the non-Abelian case (see [Yam] and Exercise 1).

Hilbert and Furtwingler showed that there exists a mazimal unramified
Abelian extension of K (denoted by K (1)) in a strong sense: every Abelian
unramified extension of K is isomorphic to a subextension of K(1). This field
K (1) is called the Hilbert class field of K and has remarkable properties. First
and foremost, the Galois group of K(1)/K is isomorphic to the class group
Cl(K), hence in particular [K (1) : K] = h(K), the class number of K. This
isomorphism is explicitly given (all of this will be described in a more general
setting below).

Second, the decomposition in K (1) of a prime ideal of K can easily be
described: if p is a prime ideal of K, and if f is the least power of p such that
pf is a principal ideal of K, then p splits into A(K)/f distinct prime ideals
of K(1) of degree f.

By Galois theory, the subextensions of K(1)/K (and thus all unramified
Abelian extensions of K up to isomorphism) correspond in a one-to-one way
to subgroups of the Galois group, hence to subgroups of the class group C!(K)
or, equivalently, to subgroups C of the group I(K) of fractional ideals of K
containing the group P(K) of principal ideals of K.

Note once again that we are talking about Abelian extensions. The study
of general unramified extensions is much more difficult (see, for example,
[Yam]).

When there is ramification, the situation is completely analogous, except
that we must replace the ordinary class group by a more general class group
called the ray class group, which we study in the next section.

The Hilbert class field extension K(1)/K also possesses the capitulation
property: every ideal of K becomes principal in K (1); in other words, if a is
an ideal of K, then aZ ) is a principal ideal of Z ;) (this is a theorem
due to Furtwingler). This does not mean that K (1) is itself principal (see
Exercise 1). In fact, in the 1960s Golod and Shafarevitch proved that there
exist infinite class field towers, meaning that there exist number fields Hy
such that if we define H, to be the Hilbert class field of H,_; for n > 1,
then H,, is never equal to H,_; (or, equivalently, H,_; has a nontrivial class
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group). This implies that there exist number fields that are not subfields of
a number field whose ring of integers is a principal ideal domain.

The capitulation property was initially one of the main motivations for
the study of class fields, but the further development of class field theory by
Artin and Takagi has shown that this is more of an additional property than
a basic one. We will come back to the study of capitulation in Chapter 7.

3.2 Ray Class Groups

3.2.1 Basic Definitions and Notation

The following definitions summarize most of the notions we will need to study
ray class groups.

Definition 3.2.1. (1) A modulus m in K is a pair (mp, ms,), where mg is
an integral ideal and mo, is a set of real embeddings of K into C. We
will write this formally as m = mym.

(2) If m = mgmy, and n = ngny, are two moduli, we say that n divides m
(and write n | m)if ng | mo (or, equivalently, ng D mg) and Ny C M.

(3) We define

(Zk/m)" = (Zk/mo)* x Fy'>= .

(4) If a is a nonzero fractional ideal of K, we say that a is coprime to m if
vp(a) = 0 for all p | mg or, equivalently, if we can write a = b/c with b and
¢ integral ideals coprime to my in the usual sense (b+mp = c+mg = Zg).
The set of ideals coprime to m is a group and is denoted by I,(K) (or
I, if the field K is understood). If a € K*, we say that a is coprime to
m if the principal ideal oZ i is coprime to m.

Remark. When a is not an integral ideal of K, the condition that a is
coprime to m is of course not equivalent to a + mg = Zk, since this equality
implies that a is integral.

We have a natural group homomorphism p from the elements of K* co-
prime to m into (Z g /m)* defined as follows. Any a coprime to m in the above
sense can be written as @ = 3/~ for 8 and « in Zg and coprime to m (see
Algorithm 4.2.22 for an algorithmic way of finding 8 and 7). Thus, we can
define the class a € (Zg/mg)* by setting o = B/7, and it is clear that this
does not depend on the choice of 3 and . We then define p by setting

p(a) = (a’ (Sign(ai(a))a,Emm)) )

where sign(z) is set equal to 0 or 1 in F2 according to whether z is positive
or negative. The strong approximation theorem in Dedekind domains (more
precisely, Corollary 1.2.9) tells us that p is surjective. Thus, any element of
(Z g/m)* can be represented as p(a) for some a € Zg.
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In algorithmic practice, this is not the nicest way to represent an element
of (Zg/m)*. We will see that it is much better simply to keep the initial
definition and to represent an element as (E, (s1,---, s|m°°|)), where a is the
class of @ modulo mg and s; € F, (see Sections 4.2.4 and 4.3.2).

Definition 3.2.2. Let m be a modulus in K.

(1) Ifa € K* is coprime to m and the modulus m is understood, we write o
instead of p(a) as defined above.
(2) If @ € K*, we say that
a =1 (mod *m)

if for all p dividing my we have vp(a — 1) > vp(myp), and if for all em-
beddings o; € my, we have o;(a) > 0. We will write K}, for the group of
such a.

(3) Ifa and B are in K*, we say that @ = 3 (mod *m) if @ and B are coprime
tom and if /B =1 (mod *m).

Remarks

(1) The condition & =1 (mod *my) is equivalent to @ =1 (mod myp) only if
we restrict to a € Z g, which would not be usable for our needs.

(2) If @ and 8 are coprime to m, the condition & = 8 (mod *m) is clearly
equivalent to o = 8, where a is defined above. When mo, is nonempty,
this is not a property of the number o — 3 alone.

We will write Py(K) (or Py if the field K is understood) for the set of
all (fractional) principal ideals of Zg that can be generated by an element o
such that @ = 1 (mod *m); in other words, ideals of the form aZ g for such
an a. It is clear that Py(K) is a subgroup of I, (K), sometimes called the
ray group of m.

Let a € Py(K). It is clear that a = aZk = 8Zk with o and 8 in K}, if
and only if 8/a is a unit u such that u € K. These units form a subgroup
of the unit group U(K), which we will denote by Un(K) = U(K) N K.
From the definitions, it is clear that we have the following exact sequence,
which generalizes the corresponding exact sequence for the trivial modulus
m, where mg = Zg and my, = &:

1—>Un(K) — K, — Pa(K) —1.

Finally, we define the ray class group Cln(K) by the formula Cln(K) =
I.(K)/Px(K), so that we also have the exact sequence

1— Pu(K) > In(K) — Clp(K) — 1.

The following proposition will be crucial for us in the sequel. By abuse of
notation, we write again p for the restriction of p to the unit group U(K).
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Proposition 3.2.3. We have the following five-term ezact sequence
1 — Un(K) — U(K) =5 (Zx/m)* -5 Clu(K) -2 CI(K) — 1

(recall that Un(K) = U(K) N K} is the group of units congruent to 1
(mod *m)).

All the maps are essentially clear, except perhaps for ¥ which sends an
element p(a) € (Zg/m)* to the ideal class of aZk in Cly(K) (which is
usually not the trivial class, since @ ¢ K in general). Note that this is
not the map (which could be considered more natural from the algorithmic
representation; see Sections 4.2.4 and 4.3.2) that sends (a, s1,. .., $|m.|) tO
the ideal class of aZ k. In fact, this map would not even be well-defined.

Proof. The kernel of p is by definition the set of units congruent to 1
(mod *m) and so is equal to Uy (K). Furthermore, the map 1 that we have
just described is well-defined (for the other maps this is clear). Indeed, if
p(a) = p(B), this means that @ = 3 (mod my), that @ and 8 are coprime to
mp, and that sign(oi(a)) = sign(o;(8)) for o; € my. These conditions mean
precisely that a/8 =1 (mod *m), and so the principal ideals aZ g and BZ g
are in the same ideal class modulo Pn(K) or, equivalently, have the same
image in Cly(K).

Assume now that p(a) € (Zg/m)* is sent to the unit element of Cln(K).
This means that aZ g € Pn(K), so there exists 3 = 1 (mod *m) such that
aZk = BZk, hence u = a/f is a unit; in other words, it belongs to U(K).
Since 8 = 1 (mod *m), we have u = a in (Zg/mp)*, but also sign(c;(u)) =
sign(oi(a)). Thus, p(u) = p(a), and so the kernel of 1 is indeed equal to the
image of p.

Now let a be an ideal class in Cln(K) which is sent to the trivial class
in CI(K). This simply means that a = aZg is a principal ideal coprime to
m, hence a is also coprime to m, and this shows that the kernel of ¢ is the
image of .

Finally, the surjectivity of ¢ follows from the approximation theorem in
Dedekind domains, more precisely from Corollary 1.2.11, since one can choose
as representative of an ideal class an ideal coprime to m. O

As in the case of ordinary integers, we can define the Euler ¢-function
for moduli by ¢(m) = |(Zg/m)*|. If mg = [1;m, p°*, we have the following
immediate generalization of the usual formula over Z (Exercise 4):

g(m) =2!m=l T M(p)*» 1V (p) — 1) = 2™=I N(mo) [T (1 - N (p) ") .

plmo p|mo

Corollary 3.2.4. The ray class group is finite. Its cardinality, which we will
denote by hn(K) (or simply by hy when the field is understood), is given by
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¢(m)

oK) = M) TR - U]

In particular,

h(K) | he(K) | H(K)$(m) .

Proof. The proof is clear from the proposition. ]

This corollary can be seen as a first approach in computing the ray class
group, but later we shall see a method that gives the full result (including
the structure, as we have done for the ordinary class group). Of course, even
if we want only the cardinality, the main problem is the computation of the
index [U(K) : Un(K)).

3.3 Congruence Subgroups: One Side of Class Field
Theory

In this section, the field K is fixed, so we write I, instead of I,(K), Pn
instead of Py (K), Cly, instead of Cl,(K), and so on.

3.3.1 Motivation for the Equivalence Relation

We will ultimately want a bijection between two sets: the two “sides” of class
field theory. We must describe both sets, and we start with the easy side.

Recall that to describe unramified extensions we used subgroups of the
group of fractional ideals containing the group of principal ideals. In our more
general situation, we do exactly the same. We will say that C is a congruence
subgroup modulo m if C is a group of fractional ideals such that

PocCcCl, .

(Some authors call such a C an ideal group modulo m.)

We can also consider the set of classes C = C /Py C Cly; so if desired
we can consider a congruence subgroup as a subgroup of the ray class group
Clyn. To indicate the modulus to which C corresponds, we will usually write
(m, C) for a congruence subgroup modulo m.

Keeping in mind the example of Hilbert class fields, we want to introduce
an equivalence relation between congruence subgroups, so that subgroups
in the same equivalence class define the same number field. We proceed as
follows: if (m,C) is a congruence subgroup, one of the main results of class
field theory will tell us that, exactly as in the Hilbert class field situation, there
exists a generalized Hilbert class field K (m) (which we will call the ray class
field for the modulus m) such that, among other properties, Gal(K(m)/K) ~
Cln. Let L be the Abelian extension corresponding to (m,C); in other words

L = K(m)C is the fixed field of K (m) by C, so that
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Gal(L/K) ~ Cly/C ~ I,/C .

The subextensions of K(m) are in one-to-one correspondence with the con-
gruence subgroups C by Galois theory.

If m is a multiple of n, class field theory tells us that K(n) can be con-
sidered as a subfield of K(m). Thus, if m; and m, are any moduli, we can
consider K(m;) and K (mg) as subfields of a single K (m), for example, with
m = mym; (in fact any common multiple of m; and my will do). We can then
say that two congruence subgroups (m1,C;) and (mg,C2) are equivalent if
they define the same number field or, equivalently, if K(m;)¢* = K(my)°2,
considered as subfields of K(m) (see diagram below). Note that we ask that
the fields be identical, not only isomorphic, and this is why we need to embed
the whole situation in a single number field K (m). From this definition, it is
clear that it is an equivalence relation.

Clm

Let us transform this definition into one that does not involve the field
K (m), since after all we do not yet know the results of class field theory.
Let L = K(m)©* = K(m2)“2. By Galois theory, L = K(m)® for some
congruence subgroup C of m. The equivalence relation means that the natural
maps from Cly,/C to Cly, /C; are isomorphisms for i = 1 and i = 2. It can
easily be shown as a consequence of the approximation theorem for Dedekind
domains that the maps in question are always surjective (see Exercise 5).
Thus, we have (m;,C;) ~ (m2,Cs) if and only if the maps are injective, and
this is easily seen to be equivalent to Iy, N C; = C for i = 1 and i = 2. Now
choose m = myma. Since C; C I, , we clearly have Iy, m, NC1 = In,NCi, and
similarly for Cy. Thus, (m;,C}) ~ (mg,C?) if and only if Iy, NCy = Iy, NCs.
This does not involve any extraneous number fields or moduli, so we can
forget about the motivation coming from class field theory and start from
scratch the study of the relation ~ between congruence subgroups.

3.3.2 Study of the Equivalence Relation

We begin with the following lemma, which is an immediate consequence of
the strong approximation theorem.
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Lemma 3.3.1. Let m; and my be two arbitrary moduli, and let a € I,.
There ezists o = 1 (mod *m;) such that aa is an integral ideal coprime to

mpms.

Proof. For the infinite places, we of course simply ask that o(a) > 0 for
all o | m;. For the finite places, let p be a prime ideal. If p | m;, we ask that
vp(a — 1) > vy(my). Then, since a € I, we necessarily have vy(a) = 0 =
—vp(a). If pt my and p | my, we ask that v,(a) = —vy(a). Finally, if p { mym,,
we ask that vp(a) > —vp(a). Thus, the conditions are compatible. The strong
approximation theorem (more precisely, Corollary 1.2.9) shows the existence
of an o with the desired properties, and it is clear that such an a satisfies
the conditions of the lemma. O

Corollary 3.3.2. Let m; and my be two arbitrary moduli.

(1) We have Iy, C Imy Pn, (and, of course, also Iy, C Iy Pn,)-
(2) If mg | my and C2 is a congruence subgroup modulo my (for example,
C2 = Pn,), then we have the equality I, = I, Co.

Proof. If a € I'n,,, by the above lemma, we can find & = 1 (mod *m;) such
that aa € I, . Since aZk € Py,, we thus have a € Iy, Pn,, so

Im2 C Iml ng C Imlc2

for any congruence subgroup C; modulo m;. If my | m;, then I, C I, and
C2 C In,, so the reverse inclusion is also valid, thus proving the corollary. O

Referring to the discussion of the preceding section, we can now set the
following definition.

Definition 3.3.3. We will say that two congruence subgroups (m;,C;) and
(m2,C2) of K are equivalent, and write (my,C1) ~ (mg,C2), if

I, NCy =1, NC, .
The following proposition is essential for this definition to make sense.

Proposition 3.3.4. (1) The relation ~ defined above between congruence
subgroups is an equivalence relation.

(2) If (m1,Cy) ~ (m2,C2), then I, /Cy ~ I, /Cs; in other words, we have
Clu, /C1 = Cly, [Co.

Proof. (1). The reflexivity and symmetry are trivial, so the only thing
to prove is the transitivity. Assume that (m;,C}) ~ (mg,C>) and (m3,C2) ~
(mg3, C3); in other words, that I, NC} = Iy, NC2 and In,NC2 = I,,NC5. We
must prove that (m;,C;) ~ (ms, C3) or, equivalently, that In,NCy = Iy, NC3.

Let a € I'n; N Cy. Since a € C1 C Iy, we must only show that a € Cj.
By Lemma 3.3.1, since a € I, m,, we can find & = 1 (mod *m;mg) such that
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aa is an integral ideal coprime to mymamg. Since aZk € Py, C C; and C4
is a group, it follows that ca € C, and since aa is coprime to m; we have
aa € I, NCy = Iy, N Ca, so aa € C,. But since aa is also coprime to mg,
we have aa € I, NC2 = Iy, NC3, so aa € Cs. Finally, since aZg € Py, and
Cj is a group containing Pn,, we deduce that a = aaa~! € Cj3, as was to be
proved. We have proved the inclusion I'mn; N Cy C Iy, N C3, and the reverse
inclusion follows by symmetry.

(2). Once again by Lemma 3.3.1, for any a € Iy, there exists a = 1
(mod *m;) such that (aa,my) = 1. Although « is not unique, the class of aa
modulo C; is well-defined since if & and o' are two such elements, o'/« is
coprime to mg and is in Py, C C; and hence belongs to C; NI, = C2 N Iy,
and hence to Cs.

The same reasoning shows that the map thus defined induces a well-
defined map from Iy, /C; to I, /C2 and that this map is an isomorphism.

O

Note that the isomorphism between I, /C; and In,/C: is canonical,
meaning that it does not depend on any special choices we have made.

The following proposition explains what happens in the important special
case when one of the moduli divides the other.

Proposition 3.3.5. (1) Let (m;,C)) be a congruence subgroup, and let my
be a divisor of my (see Definition 3.2.1). There exists a congruence sub-
group C2 modulo my such that (my,Cy) ~ (mg,C2) if and only if

Im, NPy, CCy .

If this condition is satisfied, we necessarily have Cz = C) P, .

(2) Conversely, if (mg,C3) is a congruence subgroup and m; is a multiple of
mg, there erists a unique congruence subgroup C; modulo m; such that
(my,Cy1) ~ (mz,C2) given by C; = C2 N Iy, .

Proof. (1). If mz | my, we have (my,Cy) ~ (mg, C?) if and only if In, NC2 =
C). Thus, since Pp, C Ca,

I, NPry, CIny, NC,=0C) .
Furthermore,
C1Pm; = (I, NC2) Py C CoPry =C .

Set C4 = Cy Pn,. Then I claim that (m;,C;) ~ (mg, C3). Indeed, this means
that C; = Im, NCy = Iy, NC1 Pr, or, equivalently (since the other inclusion
is obvious), that I, N C1Pn, C Ci. But this follows from the inclusion
In, N Py, C C; by multiplying both sides by the group C}.
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Thus, since our equivalence relation is transitive, we have (mg,C3) ~
(mg, C}4), which of course means that C2 = Cj, and so that C; = C} Py, as
claimed.

Conversely, if we assume I, N Pn, C C; and C; = C1Py,, then by
multiplication by C) we get as above Iy, N\C'2 C C1; since the reverse inclusion
is trivial, we have equality, proving (1).

Statement (2) is a trivial consequence of the definition. O

Notation. The following notation will be very useful. If (m,C) is a con-
gruence subgroup, we will write hm,c = |In/C| = |Clm/C|.

Proposition 3.3.6. Let m1 and my be two moduli such that mp | m;, and
let C, and C2 be two congruence subgroups modulo m; and mq, respectively,
such that Cy C C,.

(1) We have a canonical isomorphism

Im1 /Cl

Ina G2 = 75 5707

In particular, we have

h’mly 1
PR = (I, N C) /G
mz,C2

(2) We have b, ¢, = hmy,c, if and only if (my,Cy) ~ (mg, C2).
Proof. Applying Corollary 3.3.2, we have

{_r_nl ~ Imlc2 ~ Im1 ~ Iml/Cl
Co~ Cp ~ InnNCy ™ (Im;yNCo)/CL°

proving (1).

(2). We have already seen in Proposition 3.3.4 that if (m;,C}) ~ (mg, Cs),
then Am,,c; = Am,,c, even when my does not divide m;. Conversely, assume
that we have this equality. By (1) we have Iy, N C2 = C1, and in particular

I, N Py, C C}, so by Proposition 3.3.5 we deduce that (m;,C}) ~ (m2,C2).
O

Note that this proposition is clearly not true if we do not assume that
mg | mp.

Corollary 3.3.7. Let my and mz be two moduli such that my | my, let C; be
a congruence subgroup modulo m;, and let Cy = C} P, .
Then |(Im, N C2)/C1| = hm,,cy/hmy,c, divides $(my)/d(mz).
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Proof. By the above proposition and Corollary 3.2.4, we have

_ hmecy _ 9(m) 1
hm,,ca ¢(m2) Uy (K) : Umy (K)](|ﬁ1| / |C_2|) ’

I, N Co
Ch

where C; = C;/Pu, for i = 1 and i = 2. Using the same proof as in (1) of
the above proposition and the hypothesis C2 = C1 Py, instead of Corollary
3.3.2, we find a canonical isomorphism

Cl/Pm1 C—l

2 = Col s = (G A ) [Py~ (C1\ P[Py

showing in particular that |@| divides |Fl|, and the corollary follows. O

The next important result we will need about congruence subgroups is the
existence of a GCD. Note first that if m; and my are two moduli, gcd(m;, ms)
is well-defined: we take the sum of the corresponding integral ideals and
the intersection of the places at infinity. This is clearly the largest modulus
dividing m; and m,.

Before giving the result, we need a lemma.

Lemma 3.3.8. Let m; and my be two moduli, and let a; and as be elements
of K*. A necessary and sufficient condition for the existence of 3 € K* such
that

B=a; (mod *m;) aend B =a (mod *my)

is that a; = a2 (mod *n) with n = gcd(my, my).

Proof. Recall that 8 = a (mod *m) means that for all finite places p
dividing m, we have vy (3/a — 1) > vp(m), and for infinite places o dividing
m we have sign(o(8/a)) > 0. The condition of the lemma is clearly neces-
sary. Conversely, assume that it is satisfied. In particular, it implies that
vp (a1 /az) =0 for every p | n.

For each finite p dividing m; or my, we set the following approximation
conditions on 8. If p | my and p { my (resp., p | mz and p 4 m;), we ask that
vp(B— 1) > vp(a1) +vp(my) (resp., vp(B — a2) > vp(az) +vp(mg)). If p | my
and p | my or, equivalently, if p | n, assume first that v,(m;) < vp(m2). We
ask that vp (8 — a2) > vp(a2) + vp(ms), which implies

vp(B —a1) =vp(B — a2 + a2 — 1) > min(vy (B — a2), vp(az — a1))
> min(vy (az2) + vp(m2), vp(a2) + vp(my))
= vp(az) +vp(m1) = vp(a1) + vp(my)
since vp(01) = vp(az2) in this case.

If vp(m2) < vp(my)), we ask that vp(B — @1) > vp(ai1) + vp(m,), and in
the same way this implies v, (8 — a2) > vp(az) + vp(m2).
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Finally, for the infinite places, we ask that sign(o(83)) = sign(o(a;)) if o
divides m;. These conditions are compatible when o divides both m; and m,
since in that case sign(o(a;/az)) > 0.

Thus, we can apply the strong approximation theorem (more precisely,
Corollary 1.2.9) to show the existence of 3 satisfying our conditions, and we
will have 8 = a3 (mod *m;) and 3 = a2 (mod *my). m]

This lemma allows us to prove the last statement that we will need about
congruence subgroups.

Proposition 3.3.9. Let (m;,C)) and (m2,C2) be two congruence subgroups
such that (my,C1) ~ (mg, C2), and let n = gcd(my, m2). There exists a unique
congruence subgroup C modulo n such that (n,C) ~ (m1,C)) ~ (mg,C2), and
C is given by C = C1P, = CyP,. The congruence subgroup (n,C) will be
called the GCD of the congruence subgroups (my,C1) and (mz2, C2) (note that
the GCD is defined only when the congruence subgroups are equivalent).

Proof. Set m = mymo. By Proposition 3.3.5 (2),if weset D = I, N C; =
I, N C2, we have (my,C1) ~ (mg,C2) ~ (m,D). Applying part (1) of the
same proposition, we deduce that

PaNIoCD and PoyNI,CD .

By the same proposition, to show the existence of C, we must show that
P,NI, C D. Thus, let a € P, N I,. Since a € P,, there exists a = 1
(mod *n) such that a = aZ k. By Lemma 3.3.8, this implies the existence of
B € K* such that 3 = a (mod *m;) and 8 = 1 (mod *my3). Since a € I, a
is coprime to m; hence 3 is coprime both to m; and to mz and hence to m.
It follows that (3/a)Zk € Pn, NI C D. Since fZ g € Pmy; NI C D and D
is a group, we obtain aZk = (BZk)((8/a)Zk)~! € D, as was to be proved.
Proposition 3.3.5 thus shows the existence of a unique congruence subgroup C
modulo n such that (n,C) ~ (m, D), hence by transitivity (n,C) ~ (m;,C}) ~
(mg,C3), and the uniqueness statement of the same proposition implies that
C =CP, =CsP,. O

Corollary 3.3.10. Let C be an equivalence class of congruence subgroups.
There ezists a congruence subgroup (f, Cs) € C (called the conductor of the
class) such that C consists exactly of all congruence subgroups of the form
(m,Cs N Iy) for all multiples m of f.

Proof. This immediately follows from the proposition by taking for f the
GCD of all moduli in the class C (which will, in fact, be the GCD of only a
finite number of moduli) and applying the proposition inductively. (]
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Definition 3.3.11. (1) We say that f is the conductor of a congruence sub-
group (m,C) if there exists a congruence subgroup C; modulo f (neces-
sarily equal to CFy) such that (f, Cs) is the conductor of the equivalence
class of (m,C).

(2) A modulus § is called a conductor if there erists a congruence subgroup
of conductor equal to f.

Proposition 3.3.12. (1) If a modulus f is equal to the conductor of (f,C),
then for all congruence subgroups D C C modulo f, the conductor of
(f, D) is also equal to f§.

(2) A modulus f is a conductor if and only if the conductor of (f, P;) is equal
to f.

Proof. (1). Assume that f is equal to the conductor of (f,C), let D C C,
and let n be the conductor of (f, D), so that n | f. By Proposition 3.3.5, we
have Iy N P, C D C C. Thus, (n,CP,) ~ (f,C), and since f is the conductor
of (f,C) and n | f, we must have n = f, proving (1).

(2). If f is the conductor of (f,F), then f is a conductor, while if f is
a conductor — that is, if f is the conductor of (f,C) for some congruence
subgroup C — then f is the conductor of (f, ;) by (1). m}

Corollary 3.3.13. A modulus f is the conductor of the equivalence class of
(f,C) if and only if for any n | f, n # f, we have hycp, < hj,c. In particular,
f is a conductor if and only if for alln | f, n # f, we have hy < h;.

Proof. This is an immediate consequence of Proposition 3.3.6 and the
above proposition. m]

3.3.3 Characters of Congruence Subgroups

We now study the notion of characters modulo a modulus, or associated to
a congruence subgroup.

Definition 3.3.14. (1) Let m be a modulus. A character x modulo m is a
group homomorphism from I, to C* such that Pn C Ker(x).

(2) Let (m,C) be a congruence subgroup. We say that x is a character of
(m,C) if x is a character modulo m such that C C Ker(x).

Remarks

(1) We can clearly identify characters x modulo m with characters x of the
finite Abelian group Cly, = I,/ Pqy. In particular, there are hy, such char-
acters. Similarly, we can identify characters x of the congruence subgroup
(m,C) with characters x of the finite Abelian group I,/C =~ Cln/C;
hence, there are hy, c such characters. This is analogous to the possi-
bility of identifying congruence subgroups C with their quotients C' by
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Py, and for similar reasons it is preferable to give the basic definitions
without taking quotients.

(2) Since hy = Cly, is finite, the values of x, hence of x, are roots of unity
of order dividing hm.

Definition 3.3.15. Let x be a character modulo m.

(1) The conductor of x, denoted f(x), is the conductor of the congruence
subgroup (m,Ker(x)).
(2) The character x is said to be primitive if f(x) =

If ¢ is a character modulo some modulus mg, and if m; is a multiple
of my, we have a canonical homomorphism sy, m, from Iy, to In,, and
X = ¥ 0 Sm;,m, 1S a character modulo m; canonically associated to 1.

Conversely, if x is a character modulo m;, and if there exists a character
1 modulo my such that x = ¥ o Sm;,m,, We will say that x can be defined
modulo my (see diagram).

C*
Proposition 3.3.16. Let x be a character modulo m,;.

(1) If mg | my, then x can be defined modulo my if and only if Iy, N Py, C
Ker(x), if and only if there exists a congruence subgroup Co modulo my
such that (mg, C3) ~ (my, Ker(x)).

(2) The conductor of x is equal to f if and only if x can be defined modulo §
and if for every n | f and different from f, x cannot be defined modulo n.

(3) In particular, x is primitive if and only if for every mg | m; with my # my,
we have I'n, N Pn, ¢ Ker(x).

Proof. By Proposition 3.3.6, we have the following exact sequence:
1— (Imy N Puy)/Pmy — Clyy — Cly, — 1.

Thus, if x can be defined modulo my, then ; factors through Cln,; hence
it is trivial on the kernel of the map from Clyn, to Cly,, that is, on (Im, N

Pr,)/Pr,. Conversely, if x is trivial on this kernel, then clearly x can be
lifted to a map from Cly, to C*; hence x can be defined modulo ms.

Since Pn, C Ker(x), we see that X can be defined modulo m;y if and only
if Iy, NPy, C Ker(x). By Proposition 3.3.5, this is equivalent to the existence
of a congruence subgroup C's modulo my such that (mg,C2) ~ (my, Ker(x)).
Statements (2) and (3) are trivial consequences of (1) and of the definitions.

(]
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Proposition 3.3.17. Let (m,C) be a congruence subgroup, and let § be the
conductor of (m,C). Then

(1) we have C = [, Ker(x), where the intersection is taken over the char-
acters of the congruence subgroup (m,C);
(2) we have
f =lem{f(x)/ C C Ker(x)} -

In other words, the conductor of (m,C) is the LCM (or the intersec-
tion) of the conductors of the characters of the congruence subgroup

(m,C).

Proof. (1). By assumption, C is included in the intersection. Conversely,
if C was not equal to the intersection, we could find an a € Iy, a ¢ C, such
that x(a) =1 for all characters x of the congruence subgroup (m,C). But in
the finite quotient group I /C, this means that x(a) = 1 for all characters
of the group, hence that a = 1, so that a € C, a contradiction.

(2). If x is a character of the congruence subgroup (m,C), then C C
Ker(x). By definition of the conductor of a congruence subgroup, we have
I.NP; C C C Ker(x). Hence by Proposition 3.3.16, x can be defined modulo
f, and so f(x) | f-

Conversely, let n be a multiple of all the f(x) for x a character of the
congruence subgroup (m,C). Let x be such a character. Then by Proposition
3.3.16, since x can be defined modulo f(x), we have I'm N Py(,) C Ker(x)-
Therefore, since f(x) | n, we have in particular I, N P, C Ker(x), so

InNP, C ﬂKer(x) .

X

Thus, by (1) we have I, N P, C C, so by Proposition 3.3.5, there exists a
congruence subgroup C' modulo n such that (n,C") ~ (m,C), and hence f | n,
proving the proposition. O

3.3.4 Conditions on the Conductor and Examples

The following proposition gives a number of necessary conditions a conductor
must satisfy.

Proposition 3.3.18. Let f be a conductor (in other words, the conductor of
some equivalence class of congruence subgroups). Then f satisfies the follow-
ing properties.

(1) Ifp|f and N(p) = 2, then p* | .

(2) If f = p? with N'(p) = 2, then p is ramified in K/Q.

(3) We cannot have f = foo with |foo| = 1 and fo = Zg (in other words f
cannot be reduced to a single real place).

(4) We cannot have N (f) = 3.
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Proof. (1). Assume p | f, N(p) = 2, and p? { f. Then f/p and p are coprime

ideals, so
o(f) = (f/p)d(p) = ¢(f/p)(N (p) — 1) = 6(f/p) -

However, Uy(K) C Uyp(K), so [U(K) : Uy(K)] > [U(K) : Up(K))]. Thus,
Corollary 3.2.4 implies that hg/, > hs (and, since hy/, | hg, that hy/, = hy),
so by Corollary 3.3.13 we deduce that f is not a conductor.

(2), (3), and (4). First note that —1 = 1 (mod *m) for a modulus m if and
only if mo, = @ and vp(2) > vp(m) for all p | m, hence if and only if m | 2Z k.
It follows that if m { 2Z gk, we have [U(K) : Un(K)] > 2. Thus, if m { 2Zk
and ¢(m) = 2, then ¢(f)/[U(K) : Un(K)] =1, so hy = h = hz,, and f is not
a conductor.

If f = p? with A(p) = 2, we have ¢(f) = 2; and if p is unramified, then
ft2Zg, and so f is not a conductor.

If f = foo With |foo| = 1, or if N(f) = 3, we have ¢(f) = 2 and 1 2Z, so
f is not a conductor. O

We now specialize to the case where K = . Denote by co the unique
place at infinity of Q.

Proposition 3.3.19. The moduli 0o, 3Z, 4Z, and mZ and (mZ)oo for m =
2 (mod 4) are not conductors. All other moduli are conductors.

Proof. This is an easy consequence of Proposition 3.3.18 and the properties
of the ¢-function, and the details are left to the reader (Exercise 8). m}

For the case of imaginary quadratic fields, the result is as follows.

Proposition 3.3.20. Denote by p, (resp., pe and p}) the prime ideal(s) above
£ when £ is ramified (resp., split) in a quadratic field K. If K is an imaginary
quadratic field, all moduli are conductors with the following exceptions, given
in completely factored form:

(1) IfK = Q(\/j); the moduli p3, ZZK; p7, p,7: pg’ 2p3;

(2) if K = Q(vV-1), the moduli p3, p3, ps, p§, and pan, where n is not
divisible by po;

(3) in all other cases, the excluded moduli are ezactly those given by Propo-
sition 3.8.18: in other words, p2 and ph® if py and pl are the unramified
ideals of degree 1 above 2 when d(K) = 1 (mod 8), p3 when d(K) =0
(mod 4), p3 or p3 and pjy if p3 and p} are ideals of degree 1 above 3 when
d(K) # 2 (mod 3), and pan, where n is not divisible by p2, where py is
an ideal of degree 1 above 2, when d(K) Z 5 (mod 8).

Proof. Once again the proof is left to the reader (Exercise 9). O
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Note that for real quadratic fields, or for more general number fields, the
situation is more complicated because of the presence of an infinite group of
units (see Exercise 10).

If we fix the cardinality of the ray class group Ir,/C, the conductor must
satisfy more conditions.

Proposition 3.3.21. Let (m,C) be a congruence subgroup, let f be its con-
ductor, let n = hy, ¢, let p be a prime ideal dividing f, and finally let £ be the
prime number below p.

(1) If vp(f) > 2, we necessarily have £ | n. In other words, if £ { n, then
v (f) = 1.

(2) Conversely, if vp(f) = 1, then ged(n, N (p) — 1) > 1, or stated otherwise,
if ged(n, N (p) — 1) = 1, and in particular when n is a power of £, then
vp(f) 2 2.

Proof. Since hs cp, = hm,c, replacing (m,C) by the equivalent congruence
subgroup (f, CF;), we may assume that f = m.

For (1), let p be such that v,(m) > 2, and assume that £ { n. If we set
n = m/p, it follows in particular that I, = I,. Set G = CP,/C. We have

GccCl,/C=1,/C~Cl,/C ,

50 |G| | hm,c =n.

On the other hand, P, C Iy = In, so I, N CP, = CP,. Hence Corollary
3.3.7 tells us that |G| = hm,c/hncp, divides ¢(m)/p(n). Since p? | m, we
have ¢(m)/p(n) = N(p), and since we have assumed that £ { n, it follows
that |G| divides ged(n, NV (p)) = 1.

It follows that CP, = C,so P, ¢ C. Thus In.NP, = P, C C, so
Proposition 3.3.5 shows that the conductor divides n = m/p, which is absurd
since we have assumed that m is the conductor.

For (2), assume that vp(m) = 1 and set n = m/p. Then once again by
Corollary 3.3.7, we know that d = hy ¢/hn cp, divides ¢(m)/p(n) = N (p)—1
since p { n. On the other hand, since m is the conductor, we have d > 1, and of
course d divides n = hy ¢. It follows that d | (n, N'(p)—1), so (n,N'(p) —1) >
1, as claimed. ]

In particular, we deduce from this proposition that if n is a power of a
prime £, then for any prime ideal p such that p | f, we have vy (f) = 1 if p is
not above ¢, while vy (f) > 2 if p is above £ (of course, some ideals above ¢
may have vp(f) = 0). In addition, if p | f is above ¢, we see from Proposition
3.3.21 that (n,N(p) — 1) = 1 implies £ | n.

The conductor must also satisfy upper bounds. For example, we have the
following proposition, which is in fact most easily proved using the “other
side” of class field theory; see Corollary 10.1.24.
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Proposition 3.3.22. Keep the notation of Proposition 3.3.21. If n = £ is
prime and p is a prime above £ dividing §, then

2<u(f) < [%J‘Fl,

and these bounds are the best possible.

This terminates the description of the “easy” side of class field theory.
Although we have used some results of class field theory to motivate the
definition of equivalence, the definition itself as well as the proofs that we
have given are completely self-contained.

In this section on congruence subgroups, we have given complete proofs
and details since they are not difficult. In the next section on Abelian exten-
sions and Takagi’s theorem, we will omit almost all proofs since they form
books by themselves, and we instead refer to [Art-Tat], [Gras], [Has1], [Jan],
or [Neu].

3.4 Abelian Extensions: The Other Side of Class Field
Theory

We now consider the other — more important — side of class field theory:
finite Abelian extensions. The equivalence relation is trivial to define here. We
will say that two extensions L/K and L'/K are equivalent (or K-isomorphic)
if there exists a K-linear field isomorphism between L and L'; in other words,
a field isomorphism from L to L' that leaves K pointwise fixed. If L and L' are
K-isomorphic, they are isomorphic as number fields over Q, but the converse
is not necessarily true (see Exercise 2 of Chapter 9).

From now on, we let L/K be some (finite) Abelian extension of K of
degree n and Abelian Galois group G, and we let m be a modulus of K that is
assumed always to contain the places of K that ramify in L, that is the prime
ideals of K ramified in L/K as well as the real places of K that ramify (see
Definition 2.2.4). We will, in fact, need the slightly stronger condition that
m is a multiple of the conductor of L/ K (see Definition 3.4.1 below). We are
going to define in two completely different ways two congruence subgroups
attached to m (and L, of course, which for the moment is assumed to be
fixed). One of the important theorems of class field theory is that these two
groups are equal.

3.4.1 The Conductor of an Abelian Extension

We first define the conductor of an Abelian extension L/ K. For this, it is use-
ful, although not strictly necessary, to use some undefined p-adic terminology
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(see, for example, Definition 4.2.5). Let p be a prime ideal of K and let B be
some prime ideal of L above p. We will say that an element z € K} is a local
norm modulo p if there exists y € Ly such that 2 = N, /k, (y) (this does
not depend on the chosen ‘B above p). If z € K*, this is equivalent to the
requirement that for all n > 0 there exists y, € L* such that 2 = Nk (yn)
(mod *p™), or even £/ Ny /k(yn) =1 (mod *p™).

We define a nonnegative integer ky to be the smallest £ > 0 such that
any element z = 1 (mod *p*) coprime to p (this is, of course, necessary only
for k = 0) is a local norm modulo p. It can be shown that k, exists and that
k, = 0 if and only if p is unramified in L/K.

Definition 3.4.1. With the above notation, let

fo(L/K) = Hp’““ :

and let foo(L/K) be the set of real places of K ramified in L. We define
the conductor of the Abelian extension L/K to be the modulus f(L/K) =

fo(L/K )foo (L/K).

The definition of fo(L/K) involves only a finite number of prime ideals
since kp # 0 only for the ramified primes. Thus, the prime ideals that divide
the conductor are the ramified primes, and we will see in Theorem 3.5.10
that the finite part of the conductor divides the relative discriminant ideal
o(L/K).

3.4.2 The Frobenius Homomorphism

In this subsection, we recall some basic facts of algebraic number theory (see
Section 10.1.2 and [Marc]).

Let L/K be a normal extension of degree n with Galois group G =
Gal(L/K) (for the moment, not necessarily Abelian), and let p be an ideal of
K, possibly ramified. Then p decomposes in L as a product of prime ideals
pZy = ]—Il<,< <9 B<. Since the extension is normal, the §; are permuted tran-
sitively by the Galois group G and hence all have the same ramification index
e = e(Pi/p) and residual degree f = f(Pi/p). Thus, efg = n (Proposition
10.1.3).

Let B be one of the ideals ‘B; above p. Recall that the decomposition
group D(B/p) of P is the group of elements o € G fixing P globally, in other
words such that o() = P (see Definition 10.1.4). We have |D(B/p)| = ef
and the fixed field L of L by D(B/p) is an extension of K of degree g.

Recall also that the inertia group I(B/p) of P is the group of elements o €
G such that o(z) = z (mod P) for all z € Z. We have I(PB/p) C D(B/p),
and D(B/p)/I(P/p) is canonically isomorphic to Gal((Zr/R)/(Zk/p))- This
has a number of important consequences. First, we have |I(/p)| = e, and
the fixed field LT of L by I(B/p) is an extension of K of degree fg, and
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it is the largest subextension of L/K in which p is unramified. Since G is
not necessarily Abelian, the extension L?/K is not necessary normal. On
the other hand, the extensions L!/LP and L/L! are normal. When G is
Abelian, we can say in colorful terms that p acquires its splitting behavior in
the extension LP /K of degree g, its residual degrees in the extension Lf/LP
of degree f, and its ramification properties in the extension L/L’ of degree
e, all these extensions being Abelian.

Finally, recall the existence (and uniqueness up to conjugation by an
element of I(P/p)) of a Frobenius homomorphism op € D(P/p) such that
for all z € Z, we have og(z) = zV®) (mod 9P) (see Proposition 10.1.5).

If ' is some other ideal of Z, above p, by transitivity of the Galois action
we have P’ = 7(B) for some 7 € G, and we have D(P'/p) = 7D(B/p)r!
and I(P'/p) = 7I(P/p)T~! (see Section 10.1.2). In particular, if L/K is
Abelian, then D(B/p) and I(PB/p) are independent of the choice of P above
p.

Let us come back to the situation where L/K is an Abelian extension,
and now assume that p is unramified in L/K, hence that I(PB/p) = {1¢}
for all 8 above p. The above discussion shows that there exists a canonical
element op € G, called the Frobenius homomorphism and characterized by
the congruence

op(z) = zV®) (mod P) forall z € Zy .

This homomorphism is of order exactly equal to the residual degree f(PB/p).
Since our group G is Abelian, op only depends on p and hence will be denoted
op. It is characterized by the congruence

op(z) = #V®) (mod pZ;) forall z€Zy .

3.4.3 The Artin Map and the Artin Group Ay, (L/K)

Definition 3.4.2. Let L/K be an Abelian extension and m a modulus of K.
We say that m is a suitable modulus for the extension L/K if m is a multiple
of the conductor of L/K .

Let m be a suitable modulus of K, so that in particular m is divisible by
all ramified places. We will now define a group homomorphism from I,, the
group of fractional ideals coprime to m, into G, the Galois group of L/ K. If
a € I, we can write

a= H p”v(ﬂ) ,

pla
where the prime ideals p do not divide m and in particular are unramified in
L/K. We set

ArtL/K(a) = Ho-";p(ﬂ) ,
pla
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where the product is of course taken in the group G. It is clear that this map
is well-defined and is a group homomorphism. This map is called the Artin

reciprocity map, and Artp g (a) is often denoted by (%5) (and called the

Artin symbol) since it generalizes the Jacobi symbol (%) (see Exercise 11).
Note that, strictly speaking, we should write Arty/x m(a) to indicate that the
Artin map is defined on I, but since clearly Arty, kx m(a) does not depend
on m as long as it is a multiple of the conductor and coprime to a, we will
omit m. In fact, we shall see in Proposition 3.5.6 that we can even omit the
explicit mention of L/K if desired.

The first important theorem of class field theory (called Artin’s reciprocity
law since it implies more or less easily all the usual reciprocity laws) is the
following.

Theorem 3.4.3 (Artin reciprocity). (1) The Artin reciprocity map is a
surjective group homomorphism from I, to G = Gal(L/K).

(2) The kernel of the Artin reciprocity map is a congruence subgroup modulo
m; in other words, it contains Py,.

Thanks to this theorem, we can also view the Artin reciprocity map as a
surjective map from Cly, = Iy /Pn, to G.

We will denote by An(L/K) the kernel of the Artin reciprocity map,
which, by this theorem, is a congruence subgroup modulo m, and call it the
Artin group attached to the modulus m and the extension L/K.

3.4.4 The Norm Group (or Takagi Group) T (L/K)

We now define another congruence subgroup attached to m as follows. Denote
by Im, the group of fractional ideals of L that are coprime to m, more
precisely to the extended ideal mgZy, (in other words, Iy, = Imz,(L)). The
relative norm N i of an ideal belonging to I, is clearly an ideal of K
coprime to m; hence it belongs to I'r,. Thus, the image group N, Jk(Im,L) is
a subgroup of I,. However, it is not necessarily a congruence subgroup since
it need not contain P, (see Exercise 12). Thus, we will set

To(L/K) = PoNp/k(Im,L)

and this is now a congruence subgroup modulo m that we will call the norm
group (or Takagi group) for the modulus m and the extension L/K.
The following theorem gives an easy way to compute the norm group.

Theorem 3.4.4. Let p be a prime ideal of K not dividing m.

(1) If f is the least positive integer such that p¥ € Tn(L/K), then f =
f(B/p) is the residual degree of P, and hence p splits into g = n/f
prime ideals of degree f in L/K.
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(2) The norm group Tn(L/K) is generated by the ideals p’ = N ;g (P) (with
f = f(B/p)), and in fact simply by the ideals of degree f equal to 1.

The second very important, and difficult, theorem of class field theory is
the following theorem.

Theorem 3.4.5. Let m be a suitable modulus for L/ K (see Definition 3.4.2).

Then
An(L/K) =Tn(L/K) .

The main point of this theorem (apart from its intrinsic beauty and in-
terest, and its consequences) is that the Artin group Ay (L/K) is not easy to
compute directly, while the norm group Ty (L/K) is easy to compute thanks
to Theorem 3.4.4 (see Algorithm 4.4.3).

Another important result is the following.

Theorem 3.4.6. (1) If m and n are two suitable moduli for L/ K, the con-
gruence subgroups (m, A (L/K)) and (n, An(L/K)) are equivalent in the
sense of Definition 3.5.5.

(2) The conductor of the equivalence class of the family of congruence sub-
groups (m, An(L/K)) is equal to the conductor f(L/K) of the Abelian
ectension.

3.5 Putting Both Sides Together: The Takagi Existence
Theorem

3.5.1 The Takagi Existence Theorem

We now state the most important — and most difficult — theorem of classical
global class field theory, due to Takagi.

Theorem 3.5.1. (1) The map that sends an equivalence class of Abelian
extensions L/K to the equivalence class of the congruence subgroup
(m, An(L/K)) for any suitable m for the extension L/K is a bijection
(by Theorem 8.4.6, this equivalence class is independent of m).

(2) More precisely, if (m,An(L/K)) is equivalent to (m',An(L'/K)) in
the sense of Definition 3.5.3, then the number fields L and L' are K-
isomorphic.

(3) Conversely, if (m,C) is any congruence subgroup, there erists an Abelian
extension L/ K, unique up to K-isomorphism, such that m is a suitable
modulus for L/K and C = An(L/K) = Tn(L/K).

The proof that the map is injective is not very difficult. However, the proof
of the surjectivity is an ezistence proof and is very hard, like almost all such
existence proofs in mathematics. In fact, we will see that this phenomenon
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is also reflected in algorithmic practice. The difficulty with the proof lies
mainly in the very few tools that we have available to construct Abelian
extensions. The known proofs all rely on the method of Kummer extensions
(see Chapter 10), which is elementary but heavy to use, and we will do the
same in algorithmic practice in Chapter 5.

Thus, given a modulus m and a congruence subgroup C' modulo m, we
know thanks to Takagi’s existence theorem that there exists an Abelian ex-
tension L/K corresponding to (m, C) under the Takagi map. This extension
L/K has the following additional properties (and is uniquely characterized
by the first two).

Proposition 3.5.2. With the above notation, we have the following.

(1) The Artin reciprocity map induces a canonical isomorphism from Cly,/C
to Gal(L/K); so in particular, n = [L : K] = |Cln/C| = hmc-

(2) C= PmNL/K(Im,L)-

(3) The conductor f = f(L/K) of the Abelian extension is equal to the con-
ductor of the corresponding congruence subgroup (this is Theorem 3.4.6).

(4) The places of K that ramify in L are ezactly the divisors of f.

The splitting behavior in L/K of the prime ideals of K is completely
described by the following theorem, which generalizes Theorem 3.4.4 (1).

Theorem 3.5.3. Let L/K be an Abelian extension of degree n corresponding
to a congruence subgroup (m,C) under the Takagi map (with m a multiple of
the conductor of (m, C) but not necessarily equal to it), and let p be a prime
ideal of K. Let n = mp~v»(™) be the prime to p part of the modulus m. If we
let pZ; = HISng PBs be the prime ideal decomposition of p in the extension
L/K, we have

I.NCP,
c

In NP,
CNnP,

€= e(mt/p) = |I“/ZP“| =

I

f = f(Bi/p) is the order of the class of p in I,/C P, (equivalently, it is the
least positive integer f such that pf € CP,), hence g = n/ef is equal to the
indez of the cyclic subgroup generated by the class of p in the group I,/CP,.

In particular, if p is unramified in L/ K, then the common residual degree
f is the smallest positive integer such that pf € C, and g = n/f.

Definition 3.5.4. Let (m,C) be a congruence subgroup modulo m. The field
extension (or more precisely the equivalence class of field extensions) L/K
corresponding to (m,C) by Takagi’s theorem is called the ray class field for
(m,C). In particular, we denote by K(m) the ray class field for (m, Pn) and
call K(1) = K(Zk) the Hilbert class field of K.

As mentioned in the prologue, Proposition 3.5.2 shows in particular that
the Hilbert class field is the maximal unramified Abelian extension of K and
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that Gal(K(1)/K) ~ Cl(K). In addition, the ray class field for (m,C) is
clearly equal to K (m)Art(C),

Another easy result we will need is the behavior of class fields under
extensions.

Proposition 3.5.5. As above, let L/K be the Abelian extension of K corre-
sponding to the congruence subgroup (m, C). Let K' be any (finite) extension
of K. Then LK'/K' is an Abelian extension of K' corresponding to the con-
gruence subgroup (mZK:,NI—{}/K(C')).

Note that if f is the conductor of L/ K, then {Z - is usually not equal to
the conductor of LK'/K' but is only a multiple of it.

Finally, the following proposition gives the behavior of the Artin map
under restriction.

Proposition 3.5.6. Let N/K be an Abelian extension and let L/K be a
subeztension of N/K.

(1) If m is a suitable modulus for the extension N/K, then m is a suitable
modulus for L/ K and the restriction of Art /K to the ideals of L coprime
to m is equal to Artp k.

(2) If m is a suitable modulus for the extension N/L, then N'p x(m) is a
suitable modulus for the extension N/K.

Thus it is reasonable to drop completely the index L /K from the notation
Art; k. We will usually do this, except when we really want to insist on the
specific extension considered.

3.5.2 Signatures, Characters, and Discriminants

This section is taken almost verbatim from joint work of the author with
F. Diaz y Diaz and M. Olivier (see [Co-Di-O12]).

In this section, we let (m,C) be a congruence subgroup, and let L/K
be the Abelian extension corresponding to the equivalence class of (m,C)
by class field theory (well-defined up to K-isomorphism). We do not neces-
sarily assume that m is the conductor. We want to compute the signature
(R1, R2) of L, the relative discriminant ideal 9(L/K), as well as the absolute
discriminant.

As before, we denote by hn, ¢ the cardinality of the quotient group In /C ~
Cly/C. For simplicity, if n | m, we write hnc instead of h, cp,. Note that
by the approximation theorem the natural map $m,, from Cly to Cl, is
surjective and smn (5) =CP,.

A reformulation of Corollary 3.3.13 is as follows.

Proposition 3.5.7. A modulus m is the conductor of L/ K if and only if for
all places p | m (including the places at infinity) we have hw/p c < hm c-
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Proof. Indeed, by Corollary 3.3.13 the condition is necessary; but con-
versely, if this condition is satisfied and if n | m, n # m, then if p | m/n, we
have hnc < hm/p,c < hm,c, s0 we conclude again by Corollary 3.3.13. O

The signature of L is given by the following proposition.

Proposition 3.5.8. Let (R1, R2) be the signature of L, so that Ry + 2R =
[L:Q]=[K:Q]" hm,c. Write Mo for |moo|. We have

R, = hm,C (Tl — Moo + E 6(hm,C - hm/v,C)) )

VEMoo

where §(z) =1 if x =0 and 6(z) = 0 otherwise.
In particular, if m is the conductor of L/K andn = [L: K| = hn,c, we
have
Ry = (r1 —moo)n and Rz = (T2 + Mmoo /2)n .

In particular, if Mmoo is odd, then n = hy c is even.

Proof. Since L/K is normal, R; is equal to [L : K] = hm,c times the
number of real places of K unramified in L. By definition of the ray class
group, the 11 — Mmoo, real places not in the modulus m are unramified. On
the other hand, let v € me. If hyjy,c = hm,c, then v does not divide the
conductor of L, hence v is unramified in L. On the contrary, if hyy,c < bm,c,
then v divides the conductor of L, so v is ramified in L. This gives the first
formula of the proposition. The second follows immediately. O

Using the theory of characters of congruence subgroups developed in Sec-
tion 3.3.3, we now introduce the notion of character associated to an Abelian
extension.

Definition 3.5.9. Let L/K be an Abelian extension of conductor (m,C) (so
that m is the conductor of the extension and C is the corresponding norm
group). A character x of the extension L/ K is a character of the congruence
subgroup (m,C) in the sense of Definition 3.5.14.

Remark. By class field theory (Proposition 3.5.2) the Galois group
Gal(L/K) is canonically isomorphic to Cly,/C, so we can also consider a
character of the extension L/K as being a character of its Galois group. The
set of characters of an Abelian extension L/K forms a group of cardinality
n = [L : K], isomorphic to I',/C =~ Cly/C ~ Gal(L/K).

The following result, due to Hasse, is essential for computing discrimi-
nants.

Theorem 3.5.10. Let L/K be an Abelian extension, and denote by G the
group of characters of L/ K in the sense of Definition 3.5.9.
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(1) The conductor of L/K is given by f(L/K) = lem, (5(f(X)), where f(x)
is the conductor of the character x (see Definition 3.3.15).

(2) The discriminant ideal is given by 9(L/K) = eré f(x)o, where as usual
f(x)o denotes the finite part of the modulus f(x).

(3) We have f(L/K) | o(L/K), and both ideals are divisible by ezactly the
same prime ideals: the prime ideals of K ramified in L/ K.

Note that (1) is a reformulation of Proposition 3.3.17, once we know that
f(L/ K) is the conductor of the associated congruence subgroup.

We now give a formula for the relative discriminant ideal 9(L/K) and
hence for the absolute discriminant d(L) of L (see [Co-Di-012)).

Theorem 3.5.11. Let (m,C) be a congruence subgroup, and let L /K be the
Abelian extension associated to (m,C) by class field theory (defined up to
K -isomorphism). Set n = [L : K| = hp,
(1) The relative discriminant ideal D(L/ K) is given by 9(L/K) = le per

with

ap =vp(Mhmc— D huprc -
1<k<vp (m)

(2) Let f = fofoo be the conductor of the congruence subgroup (m, C) (or of

L/K), and set foo = |foo|. The absolute discriminant of L is given by

d(L) = (-1)~""2d(K)" N k/o(0(L/K)) .

Proof. (1). Theorem 3.5.10 tells us that 3(L/K) = [, g5 f(x)o- Set
D(L/K) = [],¢a f(x), so that d3(L/K) is the finite part of D(L/K). Note
that this can also be taken as the definition of an extended discriminant ideal
if desired. Since it is just as simple, we will in fact compute a formula for
D(L/K).

For each n | m, denote by a(n) the number of characters of the congruence
subgroup (m,C) of conductor exactly equal to n. Since the total number of
characters is equal to the order of the group, we have the equation

> a(n) =|Clw/C|=h
njm
By Moébius inversion, it follows that
a(n) =Y p(n/q)hec ,
q|n

where p(n) is defined as in the case of ordinary integers (this is valid since a
modulus can be written as a product of finite or infinite primes in essentially
only one way).
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Thus, we have

DL/K)=]] [] 0 =™ =[] nEanrr/atec

n|m f(x)=n njm njm
hq_c
=H< II <cq>““’) = [Jer(@pa(@)tec
qlm \c|(m/q) qm

where
p@)= [ @ and p(a)= ] ¢+ .
c|(m/q) c|(m/q)
The product p2(q) is trivial to compute: we have

P2(CI) — qZ:l(m/q) u(c) ,

and by definition of the p-function, this exponent is equal to zero unless
m/q = Zk. Hence p2(q) = Zk if ¢ # m, and p2(m) = m.

The product p;(q) is computed as follows. Set L(c) = p if ¢ = p* is a
nontrivial prime power (including infinite primes, in which case k¥ = 1), and
L(c) = Zk otherwise. The existence and uniqueness of the decomposition
of n into prime powers imply the equality [].,, L(c) = n. By multiplicative
Moébius inversion, this gives

L(n) = [[(n/e)*© = ] o/ T .

¢|n ¢|n ¢|n

¢[n

By definition of 1 the numerator is equal to Z g; hence we obtain the formula

[[e#@ =L .

¢|n

The reader will certainly have recognized that the function L(n) is the
ideal-theoretic analog of the function eA(™ of elementary prime number the-
ory.

Using this result in our above formulas, we obtain p;(q) = L(m/q)~};
hence,

D(L/K) = m*=c [] L(m/q)~h+¢ = mhmc II pPmiek.c

q|m p*|m
= HP"’("')"“"C‘&S&S%(M Pmpprc
plm

and (1) follows by taking the finite part.
Note that the infinite part of D(L/K) is equal to

H vhm‘c_hm/‘,_c ,

vEM
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which is a restatement of Proposition 3.5.8.

To prove (2), weuse the formula giving the absolute discriminant in terms
of the relative discriminant ideal (Theorem 2.5.1). Thus,

d(L) = (-1)Re~ LKl d(K)" N 1o(d0(L/K)) -

Since by Proposition 3.5.8 we know that Ry = nr2 + foon/2 with n = [L : K],
the theorem is proved. We could have given the result without using the
conductor f, replacing foon/2 by

(moon - Z 6(hm,C - hm/u,c))/2 )

vEMo

but of course this would have been ugly. O

Corollary 3.5.12. Assume that (m,C) is the conductor of the Abelian ex-
tension L/K and that £ = [L : K] is prime.

(1) We have o(L/K) = m{™', where my is the finite part of m.
(2) Ifpisa prime ideal dividing m (i.e., if p ramifies in L/ K), then v, (m) > 2
if and only if p is above €.

Proof. (1). We always have hyc | hm,c for all n | m, and when m is the
conductor, we also have h, ¢ < hm,c for all n | m different from m. Thus,
when £ = hn ¢ is prime, we must have hy, ¢ = 1 for all n | m other than m,
and (1) easily follows from the theorem. Note, however, that it can also easily
be proved directly (see Exercise 14).

Statement (2) is simply a reformulation of Proposition 3.3.21. m]

To conclude, we see that we have quite a good hold on the Abelian ex-
tension L/ K, except that we do not know an explicit description of L —
for example, by a relative defining polynomial. This is the difficult part of
Takagi’s theorem, so it is not surprising. We will see in Chapters 5 and 6 how
this problem is solved in algorithmic practice.

3.6 Exercises for Chapter 3

1. The aim of this exercise is to construct explicitly a non-Abelian unramified
extension of a number field. You will need the techniques of Chapters 5 and 6,
as well as a package such as Pari/GP, Kant/Kash, or Magma, to perform the
computations.

a) Let K = Q(v/458). Show that the class number of K is equal to 2 and
that the Hilbert class field of K is the field H, = K (\/5)

b) Show that the class number of H: is equal to 3 and that the Hilbert class
field H; of H, is the field Hi(a), where a is a root of the polynomial
z3 -4z — 1.



11.

12.

13.
14.

15.
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c) Show that H: is an unramified extension of K, show that Hy/K is not
Abelian, and compute relative and absolute defining polynomials for Hj
over K.

. Perform similar computations with the imaginary quadratic field K = Q( v=30).
. Let L/ K be a Galois extension of number fields, and denote as usual by L(1) the

Hilbert class field of L. Show that L(1)/K is a Galois extension. More generally,
let m be a modulus of L stable by Gal(L/K) (in other words, such that o(m) = m
for all 0 € Gal(L/K)) and let C be a congruence subgroup modulo m also stable
by Gal(L/K). If N/L denotes the ray class field corresponding to (m, C) by the
Takagi correspondence, show that N/K is a Galois extension.

. Prove the formula for ¢(m) given in the text.
. Let (m1,C1) and (m2,C2) be two congruence subgroups such that m; | m; and

Cz = C1Pn,. Show that there is a natural map from Clm, /C} to Clm,/C2 and
that this map is surjective.

. Show that if C; and C2 are two classes of congruence subgroups, one can sensibly

define the intersection C; N C2 and product C,C; of these two classes.

. Denote by §(C) the conductor of a class C of congruence subgroups. Show the

following.

a) If C; C Ca, then §(C2) | f(C1).

b) §(C1 N C2) = lem(§(C1), f(C2))-

) f(C1C2) | ged(f(Ch), f(C2))-

d) Show that, even in the case K = Q, equality does not necessary hold in
this last result.

. Prove Proposition 3.3.19.
. Prove Proposition 3.3.20.
10.

Give the complete list of possible moduli m such that A/(mg) < 50 for the real
quadratic field Q(\/i) Do you see a pattern?
Let K = Q, D a fundamental discriminant, L = Q( VD), and p a prime number
such that p{ D. Denote by 7 the unique nontrivial field automorphism of L.
a) Show that the Frobenius homomorphism o, is equal to the identity if p is
split and is equal to 7 otherwise.
b) Deduce that Art(nZ) = (L"/ x ) is the identity if (2) =1 and is equal to
T if (%) =-1.
c) Express Artin’s reciprocity law (more precisely, Theorem 3.4.3 (2)) using
the Jacobi symbol (%), and deduce the quadratic reciprocity law.

Show that N p;x(Im,.) does not necessarily contain Pn. In fact, is it possible
that ML/ (Im,L) contains Pm when L # K?

Prove Theorem 3.5.3 using Theorem 3.4.4.

Let (m,C) be the conductor of an Abelian extension L/K of prime degree ¢£.
Compute f(x) for all the characters of the extension L/K (or, equivalently, of
the congruence subgroup (m,C)) and conclude that 9(L/K) = m{™'.
Let (m,C) be the conductor of the Abelian extension L/K, where we assume
that [L : K] = €™ with £ prime.

a) Generalizing Corollary 3.5.12, show that

" _yyyr—1
mé@) = @D 2K
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b) Show that d(L/K) is always the (£ — 1)st power of an ideal.
r—1
c) Give an example where m((,t_l) T o(L/K).

16. Let K be a number field, and let m = 4Z g be the modulus whose finite part is
the principal ideal generated by 4 and with no infinite part.

a) Assume that K is a quadratic field. Show that |Clm(K)| is odd if and
only if K is a real quadratic field of discriminant equal to 8 or to a prime
number p (necessarily congruent to 1 modulo 4).

b) Assume that |Cln(K)| is odd. Show that K is necessarily totally real. (I
do not have a complete answer to this question.)



4. Computational Class Field Theory

In Chapter 3 we gave the main theoretical results concerning global class
field theory over number fields. We are now going to study this subject from
the algorithmic point of view. In the present chapter, we give efficient algo-
rithms for computing ray class groups of number fields and for computing
the conductor and norm group of the Abelian extensions corresponding to
congruence subgroups of these ray class groups by Takagi’s Theorem 3.5.1.
Thanks to Proposition 3.5.8 and Theorem 3.5.11, this allows us to compute
their signature and discriminant.

In the next two chapters, we will explain how to solve the more difficult
problem of explicitly constructing relative or absolute defining polynomials
for these Abelian extensions, and we will give some applications, particularly
to the construction of number fields of small discriminant.

The following exact sequence associated to the ray class group correspond-
ing to a modulus m is an immediate consequence of Proposition 3.2.3:

1 — (Zg/m)*/Im(U(K)) — Cln(K) — CUK) — 1 .

To compute the ray class group Cln(K) from this exact sequence, there
are three problems that a priori may seem difficult. First, the exact sequence
may not split. Hence, although it may be easy to compute the cardinality hn
of Cl(K), it may not be easy to compute its structure. Second, we will need
to compute the structure of the group (Zx/m)*, and again this may not be
simple. Finally, we need to compute the image of the units in this group and
compute the quotient.

When doing this by hand, one gets the impression that these tasks are
not easy. In fact, this is quite a false impression, and we are going to see that
suitable systematic use of the (ordinary) Smith and Hermite normal forms
will lead to a nice and complete algorithmic solution to all of the above
problems. Using the same tools, we can also compute the group Um(K),
which also enters in Proposition 3.2.3 (see Exercise 1). Thus, the basic tools
we will need are algorithms to compute with Abelian groups.

This chapter is divided as follows. In Section 4.1, we describe the tools
necessary for dealing with finitely generated Abelian groups (usually finite).
In Section 4.2, we apply these tools to the algorithmic computation of the
groups (Zk/m)* for an arbitrary modulus m. In Section 4.3, we give a com-
plete algorithm for computing ray class groups of number fields and give the
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corresponding principal ideal algorithms. In Section 4.4, we explain how to
perform a number of additional explicit computations in class field theory.
We defer to Chapters 5 and 6 for algorithms to compute explicit polynomials
and for examples.

4.1 Algorithms on Finite Abelian groups

4.1.1 Algorithmic Representation of Groups

In this section, which is an expanded version of [Co-Di-Ol7], we consider
finitely generated (in fact, usually finite) Abelian groups, which in view of our
applications will be written multiplicatively. When we use the word “group”,
we will always mean a finitely generated Abelian group.

Even though we will work with Abelian groups, we will denote the group
operation multiplicatively since the groups we will consider are, for example,
class and unit groups or the group (Zg/m)*, which are all written multiplica-

tively.
We will systematically use the following matrix notation. If A is a group
and (aj,...,a,) are elements of A, we let A be the row vector of the a;. If

X is a column vector with integer entries z;, we denote by AX the element
[I;ai* of A. More generally, if M is a matrix with r rows having integer
entries, we denote by AM the row vector of the elements 8; = AM;, where
M; denotes the jth column of M.

Since the group operation is written multiplicatively, it is necessary to get
used to this notation (which is, of course, more natural when the group is
written additively), but it is extremely practical.

We will use the following additional notation. If A and B are row vectors,
or matrices with the same number of rows, we denote by (A|B) the (horizon-
tal) concatenation of A and B. If X and Y are column vectors, or matrices
with the same number of columns, we will denote by (%) the (vertical) con-
catenation of X and Y.

We will always use row vectors to represent lists of elements in some
Abelian group, while column vectors and matrices will always have integer
(or sometimes rational) entries.

Finally, if A is a group, we will denote by 14 the unit element of .4 and
by 14 a row vector of unit elements of A.

Definition 4.1.1. Let A be a group, G = (91,..-,9-) be elements of A, and
M be an r x k integral matriz. We say that (G, M) is a system of generators
and relations for A if the g; are generators and if any relation between the g;
is a linear combination with integer coefficients of the columns of the matriz
M. In matriz terms, this can be written concisely as follows:

a€A <<= 3IXeZ,GX=a ,
GX=14 < ez X=MY .
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In particular, we have GM =1 4.

A reformulation of the above definition is the existence of the following
exact sequence (called a presentation of A):

zk Moz o451,

Definition 4.1.2. Let A be a group. We say that (A, D 4) is a Smith normal
form for A if (A,D4) is a system of generators and relations for A, if D4 is
a diagonal matriz in Smith normal form (in other words, the diagonal entries
a; are nonnegative and satisfy a;y1 | a; for i < r), and if no diagonal entry
is equal to 1 (if A is infinite of rank n, this implies that a; =0 for 1 <i<n
anda; >0 forn <i<r).

The elementary divisor theorem tells us that there exists a Smith normal
form and that the matrix D4 is unique. However, the generators A are not
unique.

The following algorithm, although immediate, will be of constant use.

Algorithm 4.1.3 (SNF for Finite Groups). Let (G, M) be a system of gener-
ators and relations for a finite group .A. This algorithm computes a Smith normal
form (A, D 4) for A. It also outputs a matrix U, that will be essential for discrete
logarithm computations.

1. [Apply HNF] Let H be the Hermite normal form of the matrix M obtained by
applying an HNF algorithm. If H is not a square matrix (equivalently, if M is
not of maximal rank), output an error message saying either that M cannot
be a complete system of relations or that 4 is an infinite group, and terminate
the algorithm.

2. [Apply SNF] Using a Smith normal form algorithm, compute unimodular ma-
trices U and V and a diagonal matrix D in Smith normal form such that
UHV =D.Set A' «+ GU™L.

3. [Remove trivial components] Let n be the largest ¢ such that D;; # 1 (0 if
none exist). Let D 4 be the matrix obtained from D by keeping only the first n
rows and columns, let A be the row vector obtained by keeping only the first
n entries of A', and let U, be the (not necessarily square) matrix obtained by
keeping only the first n rows of U. Output (A, D 4), output U,, and terminate
the algorithm.

This algorithm’s validity is clear. Note the important relation AU, = G.
O

The reason for keeping the matrix U, is also clear: if an element o of A
is known on the generators G as @ = GX, then on the new generators A
we have a = A(U, X), so the matrix U, allows us to go from one system of
generators to another.
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The following two definitions are rather imprecise but useful.

Definition 4.1.4. Let A be a group. We say that we have effectively com-
puted the group A if we have done the following.

(1) We have computed a system (G,M) of generators and relations for
the group A or, equivalently, by Algorithm 4.1.3, a Smith normal form
(Aa DA) .

(2) We have found an efficient algorithm that, given an element o € A, finds
a column vector X with integer entries such that o = GX (or a = AX
if we have the SNF). The column vector X will be called the discrete
logarithm of a on the given generators.

When we say that we have computed an Abelian group, or that a group
is known, we will always mean that we have effectively computed it in the
above sense. Note that this definition is not really a mathematical one since
we have not said what we mean by an efficient algorithm.

A similar definition applies to maps.

Definition 4.1.5. Let A and B be two groups and ¢ a homomorphism from
A to B. We say that v is effective or if the following properties are true. If
B has been computed, then if a € A, we can compute () ezpressed on the
generators of B. Similarly, if A has been computed, then if 8 € Im(v)), we
can compute a € A such that 8 = (o).

4.1.2 Algorithmic Representation of Subgroups

A subgroup of a known group can of course be represented abstractly as
(A,D,) as for any other group, but this is often not convenient since it
forgets the subgroup structure. There is an alternate, richer representation,
based on the following proposition.

Proposition 4.1.6. Let B = (B, Dp) be a finite Abelian group given in SNF,
where B = (Bi)1<i<n- There is a natural one-to-one correspondence between
subgroups A of B and integral matrices H in Hermite normal form satisfying
H 'pge M,.(Z). The correspondence is as follows.

(1) The subgroup A associated to such a matriz H is the group given by gen-
erators and relations (not necessarily in SNF), as A= (BH,H 'Dp).

(2) Conversely, if A is a subgroup of B and B' is a row vector of generators of
A, we can write B' = BP for some integer matriz P. The corresponding
matriz H is the Hermite normal form of the matriz (P|Dp).

(3) Let H be a matriz in HNF, and let A be the corresponding subgroup.
Then |A| = |B|/ det(H) or, equivalently, |B/A| = [B : A] = det(H).

Proof. Let B = (i)1<i<n and let Dp = diag((b;)1<i<n), where diag((b;):)
denotes the diagonal matrix whose diagonal entries are the b;. By definition,
the following sequence is exact:
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1—)@b,~Z—>Z"i>B—>1,

i=1

where

Bar,-za) = ] 87 .

1<i<n

Let (ei)1<i<n be the canonical basis elements of Z™, and let A be the lattice
defined by A = @, bie;. We thus have a canonical isomorphism B ~ Z"/A,
obtained by sending the ith generator §; of B to the class of ;.

Subgroups of Z™/A are of the form A'/A, where A' is a lattice such that
A C A C Z™. Such a lattice A' can be uniquely defined by a matrix H in
Hermite normal form so that the columns of this matrix express a Z-basis of
A" on the €;. The condition A' C Z™ means that H has integer entries, and
the condition A C A' means that H-!Dp also has integer entries, since it is
the matrix that expresses the given basis of A in terms of that of A'. In terms
of generators, this correspondence translates into the equality B = BH.
Furthermore, B'X = 1p if and only if BHX = 1p, hence HX = DgY, or
X = H™'DpgY, and so if A is the subgroup of B corresponding to A'/4, it
is given in terms of generators and relations by (BH, H~! Dg), proving (1).

For (2), we note that BDg = 15, hence if B = B(P|Dpg), we have simply
added some 14’s to the generators of 4. Thus, the group can be defined by
the generators B" and the matrix of relations of maximal rank (P|Dpg), hence
also by (B", H), where H is the Hermite normal form of this matrix.

For (3), we know that H~!Dp expresses a basis of A in terms of a basis
of A’; hence

|Al = |A'/A| = det(H™'Dg) = |B| / det(H) .

]

Example. The matrix H corresponding to the subgroup {1p} of B is
H = Dp, and the matrix corresponding to the subgroup B of Bis H = I,,.

A matrix H in HNF such that H=1D € M,,(Z) will be called a left divisor
of D. We will implicitly assume that all left divisors are in HNF, since if H is
a left divisor of D, then for any unimodular matrix U, HU is also a left divisor
of D. The above proposition states that subgroups of B are in canonical one-
to-one correspondence with left divisors of Dg. Hence, it is usually better to
represent a subgroup A of B by the matrix H.

If we really want a Smith normal form for A, we simply apply Algorithm
4.1.3 to the system of generators and relations (BH, H—!Dg) for the group
A.

Conversely, if we are given a subgroup A by an SNF (A, D 4) together
with an injective group homomorphism v from A to B, we can compute the
HNF matrix H associated to (. A) as follows. Using the discrete logarithm



168 4. Computational Class Field Theory

algorithm in B, we compute an integral matrix P such that ¥(A) = BP,
and H is simply the Hermite normal form of the matrix (P|Dpg). This is a
restatement of Proposition 4.1.6 (2).

Finding a discrete logarithm algorithm for a subgroup is done as follows.
If A is represented as a subgroup of B by a matrix H, then to compute the
discrete logarithm of 8 € A, we first apply the discrete logarithm algorithm in
the full group B, thus obtaining an integer vector X such that 3 = BX. Hence
B =BH(H'X),so H™'X is the discrete logarithm on the generators BH
(it is an integer vector if and only if 3 € A). We can of course left-multiply
by the matrix U, output by Algorithm 4.1.3 to give the discrete logarithm
on the SNF (A, D ,) if we have explicitly computed it.

In rest of this section, we are going to give a number of algorithms for
computing with Abelian groups, such as computing kernels, inverse images,
images, quotients, extensions, and so forth. In each case, we will choose the
most suitable representation for the result, either as an abstract group given
in SNF or as a subgroup by an HNF matrix H which is a left divisor of an
SNF matrix D as above. Going back and forth between these representations
is done as we have just explained. All the algorithms are easy but technical,
hence the reader is advised at first to skim through the rest of this section,
and to read it carefully only for an actual computer implementation.

4.1.3 Computing Quotients

Let
AL B5Hc—1

be an exact sequence of Abelian groups. In this section, we assume that .4 and
B are known (in the sense of Definition 4.1.4) and that we want to compute
C. We assume also that the maps 1 and ¢ are effective. We do not necessarily
assume that 1 is injective. Let (A, D4) (resp., (B,Dp)) be a Smith normal
form of A (resp., B) (it is only necessary for these to be generators and
relations, but usually they will be in SNF).

Since ¢ is surjective, it is clear that if we set B' = ¢(B), B’ is a system of
generators of C. We must find all the relations between them. Let V' be such
a relation, expressed as a column vector. Then

B'V=1¢ « ¢(BV)=1¢c <> BV € Im(y) <= BV =(4)X

for a certain integer vector X.
Since the group B is known, we know how to compute algorithmically a
matrix P such that ¥(A) = BP. Hence
B'V =1, < BV = BPX < B(V-PX)=1p
< V-PXelm(Dg) <= V € Im(P|Dp) .

It follows that (¢(B), (P|Dp)) is a system of generators and relations for
C, and we finish using Algorithm 4.1.3. Formally, this gives the following.
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Algorithm 4.1.7 (Quotient of Groups). Given two groups A = (A, D 4) and

B = (B,Dpg) in SNF and an exact sequence A % B % ¢ — 1, this
algorithm computes the SNF of the group C.

1. [Compute P] Using the discrete logarithm algorithm in B, compute a matrix
P such that y(A) = BP.

2. [Compute SNF] Apply Algorithm 4.1.3 to (¢(B), (P|Dg)). output the SNF
(C, D) of the result and the auxiliary matrix U,, and terminate the algorithm.

To obtain a corresponding discrete logarithm algorithm, we proceed as
follows. Let v € C. Since ¢ is surjective and is effective, we can find 8 € B
such that v = ¢(3). Since we know how to compute discrete logarithms in B,
we can find X such that 3 = BX. Hence

7=¢(BX)=¢(B)X =CU.X ,

where U, is the auxiliary matrix output by Algorithm 4.1.3. It follows that
the discrete logarithm of v on the generators C is given by the vector U, X.

Remark. If the group Ais given as a subgroup of B by a left HNF divisor
H of Dpg, and the map v is the natural injection, the algorithm simplifies
considerably since the HNF of (P|Dpg) is equal to H, since P = H is a
left divisor of Dg. Thus we simply apply Algorithm 4.1.3 to the system of
generators and relations (¢(B), H).

4.1.4 Computing Group Extensions

Let A= (A,D,4) and C = (C, D¢) be two groups given in SNF, and assume
now that we have an exact sequence

1 A-5B50-—1.

We want to compute the SNF (B, Dp) of the group B.

Let B’ be arbitrarily chosen such that ¢(B') = C. If 3 € B then for some
vector Y, we have ¢(8) = CY = ¢(B')Y = ¢(B'Y), hence 3—B'Y € Ker(¢),
so 8 — B'Y = ¢(AX) for some integer vector X. Thus 8 = ¢¥(A)X + B'Y =
(¥(A)|B')R, where R = (%) It follows that (y(A)|B') forms a generating
set for B (this is, of course, trivial, but we prefer to do everything in matrix
terms).

Let us find the relations between these generators. If R = (%) is such
a relation, we have ¥(A)X + B'Y = 1p. If we apply ¢ to this relation, we
obtain ¢(B')Y = CY = 1¢, hence Y € ImD¢, so that Y = D¢Y; for some
integral vector Y;. Thus we have ¥(A)X + B'D¢cY; = 15.

Set B" = B'D¢c. Then ¢(B") = ¢(B')Dc = CD¢c = 1¢, hence the
entries of B" are in Ker(¢) = Im(v), and since we have a discrete logarithm
algorithm in A, we can find a matrix P such:that B" = ¢¥(AP) = y(A)P.
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So finally, the equation for our relation is

Y(A)X +(A)PY1 =15 <= Y(A)(X + PY}) =13
< AX+PY1)=14 < X +PY;) €ImDy
< X + PY, = DT

for some integer vector T' (note that here we have used the injectivity of ).
In other words, R = (%) is a relation if and only if we have

_(Da -P\ (T
= (% o) ()
for some integer vectors T' and Y;. We then obtain the SNF as before by
applying Algorithm 4.1.3. Formally, this gives the following.

Algorithm 4.1.8 (Group Extensions). Given two groups A = (A4, D4) and

C = (C,D¢) in SNF, and an exact sequence 1 — A 4 B-% ¢ — 1 with
¥ and ¢ effective, this algorithm computes the SNF (B, Dg) of the group B.

1. [Compute generators] Compute B’ such that ¢(B') = C' (which can be done
since ¢ is effective), and compute (A).

2. [Compute P] Set B" + B'Dc, and let A" be such that B" =(A"). (B" is
in the image of ¢ and A" can be found since 1 is effective.) Using the discrete
logarithm algorithm in A, compute an integral matrix P such that A” = AP.

3. [Terminate] Set G + (¥(A)|B') and M « (5 5F). Apply Algorithm 4.1.3

to the system of generators and relations (G, M), output the SNF (B, Dg)
of B and the auxiliary matrix U,, and terminate the algorithm.

It is easy to obtain a corresponding discrete logarithm algorithm. Let
B € B. Using the discrete logarithm algorithm in C, we can find Y such that
¢(B8) = CY = ¢(B")Y, hence ¢(8 — B'Y) = 1¢, so § — B'Y € Im()). Using
the discrete logarithm algorithm in 4, we obtain 8 — B'Y = ¢(A)X for some
X, s0 B = (¥(A)|B')(%). Finally, this gives 3 = BU,(%); hence U, (%) is
our desired discrete logarithm.

Remark. From the above discussion, it is clear that the matrix —P mea-
sures the obstruction to the fact that the exact sequence is split. More pre-
cisely, if —P = 0, the sequence splits; conversely, if the sequence splits, then
one can find generators such that —P = 0 (see Exercise 2).

4.1.5 Right Four-Term Exact Sequences

In view of our application to ray class group computations, we will also use
right four-term exact sequences (we will see left four-term exact sequences in
Section 4.1.7). More precisely, assume that we have an exact sequence of the
form
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e z5hB 5051,

We assume that we know the groups £ = (E,Dg), Z = (Z,Dz), and C =
(C,D¢), and we want to compute B. In the application we have in mind, £
is in general infinite, in which case the diagonal entry of D is equal to O for
each infinite cyclic component. This could be treated as a three-term exact
sequence by introducing the quotient group Z/p(£), but it is more elegant
and just as easy to treat it directly as a right four-term exact sequence.

We proceed essentially as in Section 4.1.4. Let B’ be suchthat ¢(B') = C,
and let 8 € B. We have ¢(8) = CY for some Y, hence ¢(3 — B'Y) = 1¢,
hence 8 — B'Y € ¢(Z2). It follows that 8 — B'Y = ¢(Z)X for some X; in
other words, (¢(Z)|B’) is a generating set for B.

Let us find the relations between these generators. If R = (%) is such
a relation, we have ¥(Z)X + B'Y = 1g. If we apply ¢ to this relation, we
obtain ¢(B')Y = CY = 1¢. Hence Y € ImDg, so that Y = D¢Y; for some
integral vector Y;. Thus we have ¥(Z)X + B'D¢cY; = 15.

Set B” = B'D¢. Then ¢(B") = ¢(B')Dc = CD¢c = 1¢. Thus all the
entries of B" are in Ker(¢) = Im(¢). Since 1 is assumed to be effective,
we can find Z' such that ¥(Z') = B". Since we have a discrete logarithm
algorithm in Z, we can find a matrix P such that Z' = ZP.

Thus, R = (%) is a relation if and only if ¥(Z)X + ¢(Z)PY; = 1, or in
other words Z (X + PY;) € Ker(¢)) = Im(p). Thus there exists a vector T such
that Z(X + PY1) = p(E)T. Using again the discrete logarithm algorithm in
Z, we can find a matrix @ such that p(F) = ZQ. Hence we get Z(X + PY; —
QT) = 1z or, equivalently, X + PY; — QT = DzT' for still another integer
vector T".

In other words, R = (%) is a relation if and only if we have

T
R= (Q bz —F > T
0 0 D¢ Y,
for some integer vectors T, T', and Y;. We then obtain the SNF as before by
applying Algorithm 4.1.3. Formally, this gives the following,.

Algorithm 4.1.9 (Right Four-Term Exact Sequences). Given three Abelian

groups £ = (E,DEg), Z = (Z,Dgz), and C = (C,D¢) in SNF and an exact

sequence £ - Z 2 B2 ¢ — 1 with p, ¥, and ¢ effective, this algorithm

computes the SNF (B, D g) of the group B.

1. [Compute generators] Compute B’ such that ¢(B') = C (which can be done
since ¢ is effective), and compute (Z).

2. [Compute P] Set B" «+ B' D¢, and let Z' be such that B" = ¢(Z') (B" is

in the image of ¢ and Z' can be found since v is effective). Using the discrete
logarithm algorithm in Z, compute a matrix P such that Z' = ZP.
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3. [Compute Q] Using the discrete logarithm algorithm in Z, compute a matrix
Q such that p(E) = ZQ.
Q Dz

. , -P
4. [Terminate] Set G « (¢¥(Z)|B') and M « (0 0 Dc)' Apply Algo-

rithm 4.1.3 to the system of generators and relations (G, M), output the SNF
(B,Dpg) of B and the auxiliary matrix U,, and terminate the algorithm.

In our application to ray class group computations, the group £ will be
the group of units of a number field, hence finitely generated but not finite in
general. As can be seen from step 3, however, only a finite set of generators is
needed. Apart from this group, all of the other groups we will use are finite.

It is again easy to obtain a corresponding discrete logarithm algorithm.
Let 8 € B. Using the discrete logarithm algorithm in C, we can find Y
such that ¢(38) = CY = ¢(B')Y, hence ¢(8 — B'Y) = 1¢c so 8 — B'Y €
Im(v). Since Z has been computed and © is effective, using the discrete
logarithm algorithm in Z we obtain 8 — B'Y = 9%(Z)X for some X, so
B = (¥(2)|B')({£). Finally, this gives 8 = BU,(%); hence U, (%) is our
desired discrete logarithm.

4.1.6 Computing Images, Inverse Images, and Kernels

Let B = (B,Dg) and C = (C, D¢) be two known Abelian groups, let ¢ be
an effective group homomorphism from B to C, and let A be a subgroup of
B given by an HNF matrix Hpg that is a left divisor of Dp as explained in
Proposition 4.1.6. We can easily compute the image of ¢ using the following
algorithm.

Algorithm 4.1.10 (Image of a Subgroup). Let B = (B,Dg) and C =

(C, D¢) be two known Abelian groups in SNF, let ¢ be an effective group homo-

morphism from B to C, and let A be a subgroup of B given by a left divisor Hg

of Dp. This algorithm computes the image ¢(.A) as a subgroup of C; in other

words, it outputs a left divisor Hc of D¢ that represents the subgroup ¢(.A)

according to Proposition 4.1.6.

1. [Compute matrix P] Using the discrete logarithm algorithm in C, compute an
integer matrix P such that ¢(B) = CP.

2. [Terminate] Let M « (PHpg|Dc) be the horizontal concatenation of PHp
and D¢. Let Hc be the HNF of the matrix M (which is a left divisor of D¢).
Output Hc and terminate the algorithm.

Proof. By definition of Hg, B' = BHp is a system of generators for 4, and
¢(B') = ¢(B)Hp = C(PHpg). Hence, by Proposition 4.1.6 (2), the desired
matrix Hc is the HNF of the matrix (PHpg|Dc¢). m]

Once again, let B = (B,Dp) and C = (C,D¢) be two known Abelian
groups, let ¢ be an effective group homomorphism from B to C, but now let
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A be a subgroup of C, given by an HNF matrix Hc that is a left divisor of
Dc. We want to compute ¢~1(A) as a subgroup of B. This is done as follows.

Algorithm 4.1.11 (Inverse Image of a Subgroup). Let B = (B,Dpg) and

C = (C,D¢) be two known Abelian groups in SNF, let ¢ be an effective group

homomorphism from B to C, and let A be a subgroup of C given by a left divisor

Hc of De. This algorithm computes the inverse image ¢~!(A) as a subgroup

of B; in other words, it outputs a left divisor Hg of Dpg that represents the

subgroup ¢~!(A) according to Proposition 4.1.6.

1. [Compute P] Using the discrete logarithm algorithm in C, compute an integral
matrix P such that ¢(B) = CP.

2. [Compute U;] Apply an HNF algorithm to the matrix (P|H¢), and let U =
(U1 Ue ) be a unimodular matrix and H an HNF matrix such that (P|H¢)U =

Us U.
(Olil)f We can discard the matrices Us, U3, Uy, and H.

3. [Terminate] Let Hg be the HNF of the matrix (U;|Dpg). Output Hg and
terminate the algorithm.

Proof. Let X be an integer vector representing an element of B on the
generators B. We have

BX € "1 (A) <= ¢(B)X € A <= CPX =CH¢Y
<= C(PX-HcY)=1c

for some integer vector Y, so BX € ¢ 1(A) < PX — H¢Y = Dc¢Z for
some integer vector Z. We know, however, that H¢ is a left divisor of D¢, so
D¢c = HcHy, for some integer matrix Hg. Hence X represents an element
of 71 (A) on B if and only if there exist integer vectors Y and Z such that
PX —-Hc(Y +HpZ) = 0, hence if and only if there exists an integer vector T
such that PX + HcT = 0. (Indeed, T = —(Y + HZ) exists, but conversely
if T is given, we can choose Z =0and Y = -T.)
We now use [Coh0, Proposition 2.4.9], which tells us that if

U Uz
(Pitc) (7 12) = o1m)
is the HNF decomposition of the matrix (P|H¢), a Z-basis of the kernel
of (P|Hc¢) is given by the columns of the matrix (%) In other words,
PX + HeT = 0 if and only if there exists a column vector X; such that

-

Hence X represents an element of ¢! (A) if and only if it is in the image of
U, hence a generating system of $~1(A) is given by BU;, and we conclude
by Proposition 4.1.6 (2). O
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Remarks

(1) To compute the kernel ¢~!({lc}) of the map ¢, we apply the above
algorithm to the matrix Hc = D¢, which is the matrix representing
{1¢} in the subgroup representation.

(2) It is easy to write an algorithm for computing the cokernel C/Im(¢) of
¢; see Exercise 4.

Finally, note the following lemma, which gives an important property of
the matrix U; used in the above algorithm.

Lemma 4.1.12. Assume that we have a matriz equality of the form
(P|H1)U = (0|H) ,

where U is invertible and H, is a square matriz with nonzero determinant. Let
T be the number of columns of P or, equivalently, the number of 0 columns
on the right-hand side. Then the upper-left v x r submatriz Uy of U has
nonzero determinant equal to +det(H;)/ det(H), where the sign is equal to
the determinant of U.

Proof. Write U = (g; gi ). One easily checks the block matrix identity

H, 0 Uy U\ _(Hy O Uy, U

-P H/\O0O I/ \0 H)\Us Us
Since det(H;) # 0, it follows that det(U;)det(H) = +det(H;), where the
sign is equal to det(U). This proves the lemma. m}

Note that it is easy to write the inverse of U; in GL,(Q) in terms of the
block matrix decomposition of U~1; see Exercise 5.

4.1.7 Left Four-Term Exact Sequences

In Chapter 7, we will also use left four-term exact sequences. More precisely,
assume that we have an exact sequence of the form

1S A58 5C.

We assume that we know the groups £ = (E,Dg), B = (B,Dpg), and C =
(C,Dc¢), and we want to compute A. In the application we have in mind,
£, A, and B will in general be infinite, and in that case the diagonal entries
of the corresponding SNFs are equal to O for each infinite cyclic component,
but apart from this everything that we have done remains valid.

The above left four-term exact sequence could as usual be treated as a
concatenation of shorter exact sequences, but we prefer to treat it directly as
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a left four-term exact sequence. We will combine the ideas of Sections 4.1.6
and 4.1.4.

We first compute the kernel of ¢, which is equal to the image of ¢, by using
Section 4.1.6. Following Algorithm 4.1.11 (with A = {1¢}), we first compute
an integral matrix P such that ¢(B) = CP. Using an HNF algorithm, we
compute a unimodular matrix U = ({! J?) such that (P|D¢)U = (0|H) is
in HNF. We let Hg be the HNF of the matrix (U:1|Dp), so that Hp is a left
divisor of Dp such that BHp is a generating system for Ker(¢) = Im(¢)).

We now follow Section 4.1.4. Let A’ be such that ¢(A') = BHp, which
is possible since the entries of BH g are in Im(t). Then as in Section 4.1.4,
(p(E)|A') forms a generating set for A. Let us find the relations between
these generators. If R = (-’}é) is such a relation, we have p(E)X + A'Y =
1 4. Applying ¢ to this relation, we obtain ¢(A')Y = BHgY = 1p, hence
HgY = DpgY; for a certain integer vector Y;. Since Hp is a left divisor of
Dp, this gives Y = Hg'DgY;. Thus, we have p(E)X + A'Hg'DgY; = 14.

Set A" = A'Hg'Dp. Then ¢(A") = ¢(A')Hg'Dg = BDg = 1p. Thus
the entries of A" are in Ker(¢)) = Im(p), and since we have a discrete log-
arithm algorithm in £, we can find a matrix @ such that A" = p(EQ) =
p(E)Q. Thus, the equation for our relation is

P(E)X +p(E)QY1 =14 <= p(E)(X +QY1) =14
< E(X+Q%)=1¢
< X+QY, €ImDg < X+ QY1 =DgT

for some integer vector T (note that here we have used the injectivity of p).
In other words, R = (%) is a relation if and only if we have

= (% aips) ()

for some integer vectors T' and Y;. We then obtain the SNF as before by
applying Algorithm 4.1.3. Formally, this gives the following.

Algorithm 4.1.13 (Left Four-Term Exact Sequences). Given three Abelian

groups £ = (E,Dg), B = (B,Dpg), and C = (C,D¢) in SNF and an exact

sequence 1 — £ -2 A %5 B -2 C with p, 4, and ¢ effective, this algorithm

computes the SNF (A, D 4) of the group A.

1. [Compute P] Using the discrete logarithm algorithm in C, compute an integral
matrix P such that ¢(B) =

2. [Compute Ker(¢)] Apply an HNF algorithm to the matrix (P|D¢), let U =
(& §?) be a unimodular matrix and H an HNF matrix such that (P|D¢)U =
(0|H) and finally let Hp be the HNF of the matrix (U;|Dpg). We can discard
all the matrices computed up to now except Hp.

3. [Compute generators] Compute A’ such that ¥)(A') = BHp (which can be
done since 1) is effective), and compute p(E).
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4. [Compute Q] Set A" « A'Hg'Dp and let E" be such that A" = p(E")
(A" is in the image of p and E" can be found since p is effective). Using the
discrete logarithm algorithm in £, compute an integral matrix @ such that

E" = EQ.
5. [Terminate] Set G « (p(E)|A') and M « (DOE H;_‘%a ) Apply Algorithm

4.1.3 to the system of generators and relations (G, M), output the SNF
(A, D4) of A and the auxiliary matrix U,, and terminate the algorithm.

Asusual,itiseasy toobtain a corresponding discrete logarithm algorithm.
Let @ € A. Using the discrete logarithm algorithm in B, we can find Y
such that ¢(a) = BY. Since 1(a) € Ker(¢), the vector Z = Hg'Y has
integral entries (see Exercise 6). Thus, ¢(a — A'Z) = BY — BHgZ = 0, so
a — A'Z € Ker(¢) = Im(p), and hence we can find an integral vector T such
that a — A'Z = p(E)T. Hence a = p(E)T + A'Z = G(%), and the discrete
logarithm of a with respect to the generators A is equal to U c,(%)

4.1.8 Operations on Subgroups

It is easy to modify the preceding algorithms so that they perform oper-
ations on subgroups, represented as explained in Section 4.1.2. Thus, let
B = (B, Dp) be a fixed Abelian group in SNF, and let A; and A; be sub-
groups of B given by HNF left divisors H; and H; of Dg. We want to compute
their intersection and their sum, which by definition is the subgroup gener-
ated by A; and A;. We leave the easy proof of the following algorithm to the
reader (Exercise 7).

Algorithm 4.1.14 (Intersection and Sum of Subgroups). Given an Abelian

group B = (B, Dg) in SNF and two subgroups A; and A given by HNF left

divisors H; and H; of Dp, this algorithm computes the HNF left divisors of Dg

giving the intersection A; N A2 and the sum A; + A, of A; and As;.

1. [Compute HNF] Let (H,|H2) (Z; gf) = (0|H) be the HNF decomposition of
the matrix (H;|H>).

2. [Terminate] Let H3 be the HNF of (H,U1|D g) (or, equivalently, the HNF of
(H2Us|Dpg)). Output Hs as the HNF of the intersection and H as the HNF
of the sum, and terminate the algorithm.

If we want the intersection or the sum of more than two subgroups, we
can either apply the above algorithm recursively or directly use the HNF of
the concatenation of all the matrices. The first method is clearly preferable
since it is better to compute k — 1 times the HNF of an n x 2n matrix than
the HNF of a single n x kn matrix.

There is, however, another natural problem, which we will encounter be-
low. As above, let A; and A2 be subgroups of B given by HNF divisors H,
and H,. We would like to compute the intersection of these two subgroups
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as a subgroup of A,, in other words as a left divisor of the SNF of A, and
not of B. This is easily done using the following algorithm, whose easy proof
is again left to the reader (Exercise 8).

Algorithm 4.1.15 (Intersection of Subgroups in a Subgroup). Given an

Abelian group B = (B, D) in SNF and two subgroups A; and A; given by HNF

left divisors H; and H, of Dpg, this algorithm computes the SNF (A2, D4,) of

A2 and the left HNF divisor of D 4,, giving A; N A2 as a subgroup of A,.

1. [Compute SNF of A;] Using Algorithm 4.1.3 (except that one should skip step
1, which is not necessary) applied to the system of generators and relations
(BH,, H;' Dg), compute the SNF (A3, D 4,) of the group A, and the matrix
U,, and output this SNF.

2. [Compute HNF of intersection] Let (H;|H2) (g; gj) = (0|H) be the HNF
decomposition of the matrix (H;|Hs).

3. [Terminate] Output the HNF of the matrix (UsUs|D4,) as left HNF divisor
of Dy, representing A; N Az, and terminate the algorithm.

4.1.9 p-Sylow Subgroups of Finite Abelian Groups

Let C = (C, D¢) be a group, and let p be a prime number. We would like to
compute the p-Sylow subgroup Cp of C. Recall that by definition, this is the
subgroup of C consisting of all elements g € C whose order is a power of p.

We will use the following convenient notation, which should be standard
in number theory. If m € Z, m # 0, we will denote by (p®°,m) the limit as
k — oo of (p¥,m). Of course, this sequence stabilizes for k large enough, so
the limit exists; more precisely, (p>,m) = p*(™) where as usual v,(m) is
the p-adic valuation of m. The following proposition gives the answer to our
question.

Proposition 4.1.16. Let C = (C,D¢) be a group given in SNF, with C =
(7i)1<i<n and D¢ = diag((ci)1<i<n), and let p be a prime number. Let . be
the largest indez i < n such that p | ¢; (rc = 0 if none exist). Then C, is
given in SNF by C, = (Cp, Dc,p), where

Cp=(77*"")1cicr. and Dc,p = diag((p™, ci)igicr.) -

Proof. Let g € Cp. There exists a > 0 such that g?° = 1. Let g =
[Ticicn - Thus, ¢; | p®zi, hence (ci/(p®,ci)) | i, which implies that

(ci/(p™,c;)) | ;. Hence, if we set vip = v=/®7%) the 7ip are genera-

tors of Cp, and we can restrict to ¢ < 7., since otherwise the v; , are equal
to 1. It is clear that the matrix of relations between the v;, is given by
D¢ p, = diag((p™, c;)), and since this is already in SNF, this proves the propo-
sition. o

Since this proposition gives explicitly the SNF of Cp, it is not necessary
to give a formal algorithm. If we want to consider C, as a subgroup of C,
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the corresponding HNF left divisor of D¢ is evidently the diagonal matrix
diag((ci/(p*, ¢i))1<i<n)-

Consider now a more theoretical problem, which may be useful in certain
cases. Assume that we have an exact sequence of Abelian groups. What
happens when we take p-Sylow subgroups? The answer to this question is
as follows. Taking p-Sylow subgroup is a left exzact functor in the category of
Abelian groups, and it is even an ezact functor in the subcategory of finite
Abelian groups. This means that we have the following proposition.

Proposition 4.1.17. (1) Let1 — A 23 B -2 C be an ezact sequence of
Abelian groups, which are exceptionally not assumed to be finite. Then

1— A, &) B, &> Cp is also an exact sequence, where the maps are
simply the restrictions of the corresponding maps.

(2) Let---— A—> B —C — --- be an ezact sequence of finite Abelian
groups of any length. Then --- — A, — B, — Cp, — --- is again
an ezact sequence.

Proof. For (1), we first note that if ¢ is a group homomorphism from A to
B, then clearly ¥(Ap) C By, so the restricted maps are well-defined. Exactness
at A is also clear since the restriction of an injective map is injective. In
addition, the identity ¢ o 1¢p = 0 is preserved by restriction. Thus, we must
simply show that Ker(¢p) C Im(¢),). Let € Ker(¢p). This means first that
¢(z) = 1in C, hence by the exactness of the initial sequence, that z = ¢(y) for
some y € A. It also means that zP* = 1 for some a > 0. But then ¢(y?*) = 1,
hence y?* = 1 since 1 is injective, and so y € Ap, and z € Im(t),) as desired.

Since any exact sequence is made up of short exact sequences of the type

1—A5B5c— 1, it is enough to prove (2) for short exact sequences
of this type, the general result following by induction. By (1), we already know
that the sequence of p-Sylow subgroups is exact at A, and at B,. We must
show that it is exact at C, or, equivalently, that ¢, is surjective. For this, we
use in an essential way the fact that the groups are finite by using a counting
argument. Let |A| = p°k, |B| = p’m, and |C| = p°n, where p { kmn. By
the exactness of the initial exact sequence, we have p®m = p®kp°n, hence in
particular b = a + c. By the structure theorem for finite Abelian groups, we
have | 4;| = p*, |B,| = p*, and |Cy| = p°, and hence |Cy| = Byl /| 4p|. But
since we already know exactness at A, and By, we have |¢p(Bp)| = |Bp| / |45,
hence |¢,(B,)| = |Cp|, thus showing that ¢, is surjective, as claimed. O

Remark. It is easy to see that (2) is false when the groups are not
necessarily assumed to be finite. For example, consider the following exact
sequence

0—zBz Sz —0,
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where [p] denotes multiplication by p and s is the canonical surjection. The
sequence of p-Sylow subgroups is 0 — 0 — 0 — Z/pZ — 0, which
clearly is not exact.

4.1.10 Enumeration of Subgroups

In Chapter 3, we saw that Abelian extensions correspond to equivalence
classes of congruence subgroups or, equivalently, to equivalence classes of sub-
groups of ray class groups Cly(K), which are finite Abelian groups. Thus, it
is important to be able to enumerate these groups. We consider this problem
here.

Let C = (C, D¢) be a fixed Abelian group given in SNF. By Proposition
4.1.6, enumerating subgroups of C is equivalent to enumerating HNF matrices
H that are left divisors of D¢ (two matrices M and M' that differ only by
right multiplication by a unimodular matrix U defining the same subgroup).

The question of finding these divisors in an efficient manner is not imme-
diate (see Theorem 4.1.18 below). In the context of class groups, however,
it is reasonable to assume that C will often be cyclic or close to cyclic (see
[CohO, Section 5.10]). Hence, we can proceed as follows. Let n be the number
of cyclic components of C as above, and let D¢ = diag(cy,...,cn).

If n =1, H divides D¢ if and only if H = (e;), where €; | ¢; and e; > 1;
hence, we simply look at all (positive) divisors of c;.

If n = 2, then an immediate computation shows that H = ("01 f . ) divides
D¢ if and only if for i = 1 and i = 2, e; is a positive divisor of ¢;, and
f1 = key/ ged(er,ca/e2) with 0 < k < ged(er, cz/e2) (see Exercise 9).

If n > 3, we can try all possible HNF matrices H = (e; ;) with e;; | c;
and

eii+1 =0 (mod e;;/ged(eis, Cit1/€it1,i+1))

which are easily seen to be necessary conditions (see Exercise 9).

However, this is wasteful, since we need to examine many more HNF
matrices than there are subgroups. Thus, we need a method that enables us
to construct the HNF matrices that correspond to subgroups only (in other
words, the left divisors of D¢).

We first make an important reduction. As in the preceding section, let
C, be the p-Sylow subgroup of C, generated by the 77*/(*~) I claim that
it suffices to enumerate the subgroups of C, for each p. Indeed, let B be a
subgroup of C given by an HNF matrix H. The p-Sylow subgroup B, of B is,
of course, equal to BN C,. We want to consider it as a subgroup of C,, and
as such it can be computed as a left divisor H,, of the matrix D¢, given by
Proposition 4.1.16, by using Algorithm 4.1.15 (note that in that algorithm U,
is the identity matrix in our case). Conversely, if for each p we are given a left
divisor of H, of D¢, corresponding to a subgroup B, of Cp, then it is clear
that DCDE.,lpHp is a left divisor of D¢ corresponding to B, considered as a
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subgroup of C, and hence we can reconstruct the subgroup B by summing
these subgroups using Algorithm 4.1.14.

Although the above may sound like useless nitpicking, it is essential for a
correct implementation.

Once this reduction is made, we may assume that our group C is a p-
group, in other words that its order is a power of p. In this case, the complete
answer to our problem has been given by G. Birkhoff (see [Bir], [But]).

I give the theorem as stated by L. Butler (slightly modified for our pur-
poses) and refer to [Bir] and [But] for details and proof.

Theorem 4.1.18. Let C = (C, D¢) be an Abelian p-group in SNF, and write
D¢ = diag((p*)1<i<s)- Consider all the matrices M obtained as follows.

(1) We choose an integer t such that 0 < t < s and a family of integers
(yi)1<i<t such that yip1 < y; for i <t and such that y; < z;. We set by
convention y; =0 fort <i <s.

(2) We choose a permutation o of [1,s] such that for all i < t, y; < z,(f
and for all i < s such that y; = Yit1, then 0(i) > o(i+1). Set Tt =0

(3) We choose integers c; ; for 7(i) > j, 1 <i < s, 1 < j <t, satisfying the
following:

(@) i<a())

() i>0(j)

() i>0() andz; >y; = 1<c¢;; <pw v~
(4) We define the s x t matrizc M = (m; ;) by setting

- 1] S Cij S pyJ Y1) :
and 7; <y; = 1<¢; <pm ¥

p* if (i) <
pTY if (1) =

mi; =4 ¢i;p™ ™Y if (i) > j in case (a)
Ci,j if 7(¢) > j in case (b)

ci;p5 ¥t if 7(i) > j in case (c).

To each subgroup A of C is associated a unique such matriz M, where
the SNF of A is (CM,diag((p¥*)1<i<t)) and conversely each such matriz M
gives rise to a subgroup whose corresponding left HNF divisor of D¢ is the
HNF of the matriz (M|D¢).

Using this theorem and the algorithmic reductions to p-groups that we
have made above, we can now easily write a complete algorithm for the
enumeration of subgroups of a finite Abelian group, but we will not do this
formally (see Exercise 10). Note that it may be more efficient to first choose
the permutation and then the y;.

Let us give an example. Assume that we want to describe all subgroups
of C = (Z/p°Z) x (Z/pZ) using Birkhoff’s theorem. We find the following
matrices M and the corresponding left HNF' divisors obtained as the HNF' of
(MlDC)a where D¢ = diag(p2’p)'
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(1) For t =0, M is the 2 x 0 matrix and
2
_p.—(P 0
H=be= (0 p)
(2) Fort =1, y1 =1, and o the identity,

=) 1)

(3) For t =1, y1 =1, and o the transposition,

2
_[{¢apP _ (P Caap
M—(P)’ H_(O 1)’

where c;,; takes every integer value such that 1 < ¢;; < p.
(4) For t =1, y; =2, o is necessarily the identity,

_(1 _(p i
M—(Cz,l)’ H—(O 1
10
H_<0 P)

if p | c2,1. Here, c2; takes every integer value such that 1 < c3; < p, and

when ptez, o } is the inverse of c3 ; modulo p such that 1 < Cy. } <p.
(5) Fort =2, 1 = y2 =1, o is necessarily the transposition,

_(p P _(p O
vt ). n-( )
(6) For t =2, y; =2, y2 =1, o is necessarily the identity,

(1 p? (1 0
w=(0) 7= %)

This gives a total of 1 subgroup of order 1, p + 1 subgroups of order p,
p + 1 subgroups of order p?, and 1 subgroup of order p®.

ifp{cz,l,

The situation simplifies considerably if we want to enumerate not all sub-
groups, but only subgroups of given indez. (By class field theory, in the ray
class field case, computing congruence subgroups of given index is equivalent
to computing Abelian extensions of given degree.) In particular, if the degree
is prime, we have the following proposition.

Proposition 4.1.19. Let C = (C,D¢) be an Abelian group given in SNF,
with Dc = diag((c;):), and let £ be a prime number. Let r. be the largest
indez i such that £ | ¢; (r. = 0 if none exist), so that r. is the £-rank of C.

The subgroups of C of index £ correspond under Proposition 4.1.6 to
matrices H = (h;j) such that there exists a row index k (necessarily
unique) satisfying the following properties.
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(1) We have k <r..

(2) Fori#k, then h;;j =0 for j #1 and h;; = 1.

(3) We have hiep = £, hyj =0ifj < korj>re, and0 < hyj < € if
k<j<re.

In particular, there are (€< —1)/(€—1) subgroups of indez £ (this is, of course,
a well-known and easy result).

Proof. The proof of this proposition is easy and is left to the reader (Ex-
ercise 11). O

This proposition leads to the following algorithm.

Algorithm 4.1.20 (Subgroups of Index £). Given an Abelian group C =

(C,Dc) in HNF with D¢ = diag((ci)i1<i<n) and a prime number ¢, this al-

gorithm computes the list C of all subgroups of C of index £ as HNF left divisors

of Dc.

1. [Initializations] Let C + &, let r. be the largest index i (O if none exist) such
that £ | ¢;, and set k « 0.

2. [Loop on k] Set k « k+ 1. If k > r., output C and terminate the algorithm.
Otherwise, set A « —1.

3. [Loopon A] Let A « A+ 1.1f A > €771 go to step 2. Otherwise, let
H « I, be the identity matrix of order n, set Hyx «+ ¢, set j « k and
a+ A

4 [Loopon j]Setj« j+1 Ifj>r,setC«+ CU{H} and go to step 3.
Otherwise, let a = £q + r be the Euclidean division of a by £ with 0 < r < ¢,
set Hy j < r, a + ¢, and go to step 4.

4.1.11 Application to the Solution of Linear Equations
and Congruences

It is easy to apply the above techniques to the solution of a system of lin-
ear equations in integers or to a system of linear congruences. For the first
problem, we can use the following algorithm (which should be in [Coh0]).

Algorithm 4.1.21 (Solving Linear Systems in Integers). Given an m x n
matrix P with integer entries and an m-component integral column vector B,
this algorithm either says that the system of linear equations PX = B has no
integral solution, or gives the general solution as a particular solution together
with the general solution of the homogeneous system.

1. [Compute HNF] Using an HNF algorithm, compute a unimodular n x n matrix
U and a (not necessarily square) HNF matrix H such that PU = (0|H), let
k be the number of columns equal to 0 in the right-hand side, and write
U = (U1|U;), where Uy is an n x k and U, is an (n — k) x n matrix.
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2. [Compute inverse image] Using [CohO, Algorithm 2.3.4], check whether there
exists an inverse image Z; of Y by H (if it exists it will be unique). If it does
not exist or if it does not have integral entries, the system has no solution, so
terminate the algorithm.

3. [Solve system] Output X, + Uz Z; as a particular solution of our linear system,
the columns of the matrix U; as a Z-basis of the homogeneous system, and
terminate the algorithm.

Proof. The easy proof is left to the reader (Exercise 13). O

Consider now the similar problem with congruences. Let P = (p; ;) be
an m X n matrix with integer entries, let (di,...,d,,) be a set of positive
integers, and let B = (b,...,bm)" be an integral column vector. We want to
solve the system of m linear congruences in the n unknowns z;

Z PijZTi =b; (mod d;) for 1<i<m .
1<j<n

We must first give a meaning to the problem. Let

c= P @/dz),

1<i<m

and, if V is an integer column vector with m components, denote by V the
image of V in C by the natural surjection from Z™ to C. The matrix P defines
a natural map from Z" to C which sends X to PX. Since C is a finite group,
the kernel of this map is a lattice in Z™ that can therefore be represented as
an HNF matrix H. If X is a particular solution of our system (if it exists),
the set of solutions to our system of congruences is then equal to Xo + HZ
for any integer vector Z.

This solution is not completely satisfactory, however. Since we are dealing
only with finite groups, we really want a finite solution set. Let d be the lowest
common multiple (LCM) of the d;, in other words the exponent of the group
C. Then clearly we can ask for solution vectors modulo d; in other words, we
introduce B = (Z /dZ)™ and consider P as a map from B to C. The kernel of
this map can now be computed by Algorithm 4.1.11 as a subgroup of (Z /dZ)",
and we can then compute its SNF in its own right, giving the solution set
of the homogeneous system as a group (A, D4), where the generators A are
elements of (Z/dZ)™ and D4 = diag(a,...,a,) is a diagonal matrix in SNF
such that a; | d for all i.

To transform this into an algorithm, let D = diag(ds,...,dn) be the
diagonal matrix of the d; (which is not in SNF in general). Using the tech-
niques of Section 4.1.6, we proceed as follows. Let U be an (m +n) x (m + n)
unimodular matrix such that (P|D)U = (0|H) with H in HNF, and write
U= (g; g: ) If X = (z1,...,%,)" is a column vector representing a so-
lution to our system of congruences, there exists another column vector
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Y such that (P|D)(X) = B or, equivalently, (P|D)U(§;) = B if we set
(gx) = U~'(Z). Since (PID)U = (0|H), we obtain HZ, = B. Thus, our
system has a solution if and only if H™!B is an integral vector. The gen-

eral solution to our system is thus (%) = (g&p) for an arbitrary integral
vector Zy; hence (&) = U(5&5), so

X = U1Z1 + UzH_lB

is the general solution in Z™ of our system of congruences.

The vector Uy H ™! B represents a particular solution to our system, while
U, Z, is the general solution of the homogeneous system. To obtain the solu-
tion as a subgroup of B = (Z/dZ)™, as in the final step of Algorithm 4.1.11
we compute the HNF Hpg of (Uy|dI,).

Putting all this together gives the following algorithm.

Algorithm 4.1.22 (Linear System of Congruences). Let ZISan PijT; = b;
(mod d;) for 1 < i < m be a system of m linear congruences in the n unknowns
z;, and let d be the LCM of the d;. This algorithm either says that the system
has no solution, or gives the general solution as a particular solution together
with the general solution of the homogeneous system, considered in (Z /dZ)™.
We will denote by P the m x n matrix of the p; j, by D the diagonal matrix of
the d;, by B the column vector of the b;, and represent solutions to our system
by column vectors X with n components.
1. [Compute HNF of (P|D)] Apply an HNF algorithm to the matrix (P|D), and
let U = (g; gj) be a unimodular matrix and H an HNF matrix such that
(P|D)U = (0|H). We can discard the matrices Us and Uy.

2. [Test if solution] Let Z, « H~!B. If Z, is not an integral vector, the system
has no solution, so terminate the algorithm. Otherwise, set X « U,Z, (this
is a particular solution to our system).

3. [Terminate] Let Hg be the HNF of the matrix (U;|dI,). Output Hg and
terminate the algorithm (the general solution to our system in B = (Z /dZ)™
will be Xo + HgZ for an arbitrary vector Z € B).

Note in particular that the number of solutions of our system modulo d
is either 0 (if H~1B is not integral) or equal to d"/ det(Hp).

If we want the solution of the homogeneous system as a group in its own
right, we apply Algorithm 4.1.3 to the system of generators and relations
(EHp,dHg"), where E is the canonical basis of (Z/dZ)".

Finally, consider the problem of a combined system of linear congruences
and linear equations. This simply corresponds to the choice of some d; equal
to 0 in the congruences. We cannot directly use Algorithm 4.1.22 since the
matrix D = diag(d;) is not of maximal rank. We call such a system a mized
linear system.
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There are two ways to solve the problem. The first oneis to start by solving
the linear system using Algorithm 4.1.21, finding (if it exists) a particular
solution plus the general solution of the homogeneous system. We then plug
this into the system of congruences, giving a new system of congruences in
new variables, which we can then solve using Algorithm 4.1.22. We leave the
details to the reader (Exercise 14).

The second method is direct and gives the following algorithm, which is
only a slight modification of Algorithm 4.1.22, and we leave its proof to the
reader (Exercise 15).

Algorithm 4.1.23 (Mixed Linear System). Let 3, ., pi;z; = bi for 1 <
i <myand 3, cic, PiT; = b; (mod d;) for my <4 <m=m +mybea
system of m; linear equations and mg linear congruences in the n unknowns z;,
and let d be the LCM of the d;. This algorithm either says that the system has
no solution, or gives the general solution as a particular solution together with

the general solution of the homogeneous system. We will denote by P the m x n

matrix of the p; ;, by D the diagonal matrix of the d;, by B the m-component

column vector of the b;, and represent solutions to our system by column vectors

X with n components. We assume that there do exist linear equations, in other

words, that there exists (i, j) with 1 <i <m; and 1 < j < n such that p; ; # 0

(otherwise, use Algorithm 4.1.22).

1. [Compute HNF of (P|Do)] Let Do « (3) be the m x m, matrix obtained
by vertically concatenating an m; x mg zero matrix with the diagonal matrix
D. Apply an HNF algorithm to the matrix (P|Dy), and let U = (! [2) be
a unimodular matrix and H an HNF matrix such that (P|Do)U = (0|H).
We can discard the matrices Us and U;. Note that the matrix H will not
necessarily be square, but its columns are independent.

2. [Test if solution] Using [CohO, Algorithm 2.3.4], check whether there exists an
inverse image Z, of B by H (if it exists, it will be unique). If it does not exist
or if Z; is not an integral vector, the system has no solution, so terminate
the algorithm. Otherwise, set X¢ + U2Z, (this is a particular solution to our
system).

3. [Compute integer kernel] Let P, = (pij)1<i<m,;,1<j<n be the matrix of the
linear system (obtained by extracting the first m; rows of P). Using an integer
kernel algorithm (for example, [CohO, Algorithm 2.4.10]), compute a matrix
J whose columns give a Z-basis for the integer kernel of P;.

4. [Terminate] Let Hg be the HNF of the matrix (U;|dJ). Output Hp and
terminate the algorithm (the general solution to our system in Z™ will be
Xo + HpZ for an arbitrary integer vector Z).

4.2 Computing the Structure of (Zg/m)*

Let K be a number field and m a modulus of K. In this section, we explain
how to compute the group (Z x/m)* in the sense of Definition 4.1.4, using
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the tools we developed in the preceding section. The theoretical answer to
this question is solved, in principle, in [Nak2]. This is, however, not suited
to algorithmic purposes and, in addition, is much more complicated than the

solution we present below.

We give two answers to this question. The first answer gives a theoretical
and practical answer valid in many, but not all, cases (Section 4.2.2). The
second answer is slightly more complex, but gives a complete algorithmic
answer to the problem (Section 4.2.5). These solutions are complementary.

4.2.1 Standard Reductions of the Problerﬁ

Let m = momo, with mg = [], p*». An element of (Zx/m)* will be written
as a pair (a,w), where @ € Zg is coprime to mg, and w € (Z/2Z)™.
Note that, although the natural map from the elements of Zgk coprime to
m into (Z x/m)* is surjective (as a consequence of the strong approximation
theorem), it is not a good idea to represent elements of (Z x/m)* as (a, s()),
where s(a) € (Z/2Z)™ is the vector of signs of a at all the places of my,.
The main reason for this will be seen in Section 4.3.2.

For each 0 € m, let e, denote the corresponding canonical basis ele-
ment of (Z/2Z)™= (all its coordinates are equal to 0 except at o, where the
coordinate is equal to 1). By definition, we have

(Zk/m)* = (Zx/mo)* ® €D (Z/2Z)e, ,

ocEM

so we are reduced to computing (Zg/mp)*. The reader may wonder why I go
to such pains in writing what is, after all, a trivial isomorphism, but I recall
that isomorphisms must be proscribed in algorithmic practice.

We now have a similar problem. We know theoretically that

(Zx/mo)* = [[(Zx/p**)* ,
p

but this is not usable in algorithmic practice, since we must absolutely have
an equality and not an isomorphism. This is obtained by using the following
lemma.

Lemma 4.2.1. Let a and ¢ be two coprime integral ideals of K, and set
b =ac.

(1) We can find in polynomial time elements a and ¢ such that a € a, c € ¢,
anda+c=1.
(2) We have a split exact sequence

1 — (Zx/a)* <% (Zx/b)* -2 Zx/o)* — 1,
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where w(a) = ca +a, ¢(E) = B, and a section o of ¢ is given by
aﬁ) =av +c. (Here ~ denotes the classes in the respective groups, but
using the same notation for each will not lead to any confusion as long

as we know in which group we work_.) .
(3) Assume that (Zk/a)* = @(Z/a:L)a; and (Zk/c)* = @(Z/c;Z)Y;. Then

(Zk/b)* = P(Z/aiZ)(ca; + a) & P(Z/c;Z)(av; +c) .

(Note that this is not quite a representation in SNF, but it can easily be
transformed into one.)

Proof. The proof is a little tedious but straightforward.

(1). This is a restatement of Proposition 1.3.1.

(2) a). The map 1 is well-defined: if & = o/, then o' — a € a; hence,
(ca' +a)— (ca+a) =c(a' —a) €ac=bsincec€ .

b). The map 9 is a group homomorphism. Indeed, this follows from the
fact that a and c are orthogonal idempotents modulo b; in other words, that

ac € b and
a>—a=-a(l-a)=-ac=—-c(l—-c)=c*—c€b .

Hence,

Y(a)y(e) = (ca +a)(ca’ +a) =cae’ +a=1y(ad) .
c). The map ¥ is injective. Indeed,

Y(@) =1 < ca+a=1 (mod ac) => ca =1 (mod a)
= a =1 (mod a) = a=1

since ¢ =1 (mod a).

d). The map ¢ is clearly well-defined and is a group homomorphism.

e). By symmetry with a), b), and c¢), the map o is well-defined and is an
injective group homomorphism. Furthermore, since a = 1 (mod ¢), ¢ o o is
the identity map, which implies that o is a section of ¢ and in particular that
¢ is surjective.

Statement (3) is an immediate consequence of (2). m}

Remarks

(1) This lemma can easily be generalized to the case where a and ¢ are
coprime moduli (meaning that ag + ¢ = Zg and A N co = &). The
proof of this is left to the reader (see Exercise 16).

(2) This lemma is simply the Chinese remainder theorem for ideals (or, more
generally, for moduli).
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(3) In Section 4.1.4 we mentioned that the matrix P introduced there
measures the obstruction to an exact sequence being split. Let 4 =
(Zk/®)* = (A,Da), B = (Zk/b)*, and C = (Zk/c)* = (C,Dc). If
we follow Algorithm 4.1.8, we must first choose lifts B’ of C. Since our
sequence is split, we will take B' = ¢(C) = aC + clz,. Since o is a
homomorphism, we have B'D¢c = 0(CDc¢) = o(1¢) = 1p, hence P =0,
as claimed (see also Exercise 2).

By induction, it follows from this lemma that to compute the structure of
(Z k/m)* it is enough to compute the structure of (Z k/p*)* for prime ideals
p. Hence, we can proceed in one of two ways. Either use Lemma 4.2.1 (3)
recursively or, preferably, we can use the following more global algorithm.

Algorithm 4.2.2 (Nonrecursive Chinese for Ideals). Let mo =[], p*» be an
integral ideal, and assume that we are given the SNF of (Zk/p**)* = (G,, D).
This algorithm computes the SNF of (Z x/mg)*.

1. [Compute ap and B;] For each p | mg, do as follows. Using Algorithm 1.3.2,
compute o, and G, such that a, € mo/p*®, B, € p*®*, and ap + B = 1.

2. [Terminate] Let G be the concatenation of the 3,1z, + a, G, and let D be
the diagonal concatenation of the SNF matrices D,. Using Algorithm 4.1.3 on
the system of generators and relations (G, D), output the SNF of the group
(Zg/mo)* and the auxiliary matrix U,, and terminate the algorithm.

Proof. If Gy = (i), it is clear that if we set 7} = By + ap7: then 4! = ;
(mod p®?); hence the 4! are also generators of (Zg/p?)* with the same
matrix of relations Dp. In particular, the y; are coprime to p*?, but on the
other hand ! = 1 (mod mg/p*?), so the 4} are also coprime to mgy/p®?, hence
to my, so if we concatenate all the ] we clearly obtain a generating system
for (Zk/mo)* whose matrix of relations is the diagonal concatenation of the

D,. O

Note that, as usual, the matrix U, allows us to obtain a corresponding
discrete logarithm algorithm.

We have thus reduced the problem to the computation of (Zx/p*)*. For
this, we first introduce a definition.

Definition and Proposition 4.2.3. Let a and b be (nonzero) ideals. As-
sume that a | b | a* for some positive integer k. We denote by (1+a)/(1+b)
the quotient set of 1+ a by the equivalence relation R defined by (1+z) R (1+
y) < =z =y (mod b). Multiplication in K induces a multiplication in
(1 +a)/(1 + b), which makes this set into an Abelian group.

Proof. It is clear that R is an equivalence relation. Since a is an ideal,
1+ a is stable by multiplication, and since b is an ideal, R is compatible with
multiplication. Thus (1+a)/(1+b) has a natural commutative multiplication,
and the class of 1 is the unit element. We need only to show that any element
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has an inverse. But if = € a, then by assumption z* € b. It follows that for
any T € a we have

k-1
(1+z) (1 + Z(~1)"z"> =14 (=1)F1zF ;
=1

hence, if we set y = Zf;ll(—l)izi, theny €aand (1+z)(1+y)—1€b,so

the class of 1 + y is an inverse of the class of 1 + z. Thus (1 +a)/(1 + b) is
in a natural way an Abelian group.

It is easy to prove that this group is also finite. This will, in fact, follow
from the results proven in the rest of this section. ]

Proposition 4.2.4. Let p be a prime ideal of degree f, and let ¢ = pf =
|Z K [p|. Set G = (Zk [p*)*. Let

W={zeG/2z9' =1} and Gp,=(1+p)/(1+pF) .

Then

(1) W ~ (Zk/p)*, and in particular W is a cyclic subgroup of order q — 1
of G. More precisely, if go is a generator of (Z/p)*, then [log,(k)]
iterations of g + g — (g7 —1)/((g—1)9?72) mod p* applied to go gives
a generator of W.

(2) G, is a p-subgroup of G of order gF~*.

(3) G=W xG,.

Proof. (1). All nonzero elements of Zg/p are roots of the polynomial
equation X9-! —1 = 0; hence this equation has exactly ¢—1 distinct solutions
in the field Z i /p. Thus

x7'—1= [ (X-a)(modp) .
a€(Zx/p)*

It follows from Hensel’s lemma that this factorization can be lifted to a fac-
torization modulo any power of p. Thus there exists a group isomorphism
between (Zx/p)* and solutions to X97! —1 = 0 (mod p*); in other words,
between (Zg/p)* and W.

It follows that W is a cyclic group of order ¢ — 1 = pf — 1 and that a
generator of W can be obtained by Hensel lifting a generator of (Z k/p)*.
This is done using the Newton-Hensel iteration given in the proposition.

(2). If we send the class of 1 + z to the class of z, it is clear that, as a
set, G is isomorphic to p/ p*. In fact, as we will see in more detail below, the
whole difficulty of the structure problem for (Zg/p*)* comes from the fact
that this is only a set isomorphism, and not always a group isomorphism.
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In any case, it follows that
Gl = [p/p*| = N(p*) /N (p) =",

so Gy is a p-subgroup of G of order ¢k~ = pf(k=1),

(3). Consider the map ¢ from W x G}, to G defined by ¢((z,y)) = z-y. It
is clearly a group homomorphism, and it is an isomorphism since an element
of W is characterized by its residue modulo p, and each nonzero residue is

attained. ]

It follows from this proposition that to compute the structure of (Z g/m)*
it is sufficient to compute the structure of G, which is of course the p-Sylow
subgroup of G.

4.2.2 The Use of p-adic Logarithms

To compute Gy, a natural idea is the use of p-adic logarithms. This is indeed
useful but cannot be applied in complete generality. We study it in detail

here.
We first recall some basic notions about p-adic numbers. We refer to [Ami],
[Bac], [Kob], and many other textbooks on the subject.

Definition 4.2.5. Let p be a prime ideal of Zk. A p-adic integer is a se-
quence (ax)k>0, where ax € Zk/[p* is such that aryy = ar (mod p*). The
set of p-adic integers is an integral domain denoted Zk p, and its field of
fractions, denoted Ky, is called the p-adic completion of the number field K.

In practice, although we will always work with elements modulo some
fixed power p* of p, it is much more convenient to consider this as the trun-
cation at level k of a p-adic number.

Definition 4.2.6. Let p be a prime ideal of Zx and x an element of K. We
define the p-adic logarithm of 1 + = by the ezpansion

oo . .’Bi
log, (1+2) = > (-1 % .

=1

We define the p-adic exponential of z by the expansion

exp,(z) = Z % .

i=0
The basic properties of these p-adic functions are as follows.

Proposition 4.2.7. Let p be a prime ideal above a prime number p, and let
e = e(p/p) = vp(p) be its ramification index.
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(1) The ezpansion for log,(1+z) converges p-adically if and only if vy(z) > 1.

(2) The ezpansion for exp,(z) converges p-adically if and only if vy(z) >
e/(p— 1) or, equivalently, if and only if vy(z) > 1+ |e/(p—1)].

(3) We have

log, (1 +z)(1+y)) = log, (1 + ) +log,(1+y)

whenever this makes sense — more precisely, whenever vp(z) > 1 and
vp(y) 2 1.

(4) We have exp,(z +y) = exp,(z) exp,(y) whenever this makes sense —
more precisely, whenever vy(z) > e/(p— 1) and vp(y) > e/(p—1).

(5) We have log,(exp,(z)) = z and exp,(log,(1 + z)) = 1+ z whenever
vp(2) > e/(p - 1).

Proof. (1). It is easily shown that a series ), u; converges p-adically if
and only if u; tends to zero p-adically; in other words, if and only if the p-adic
valuation vp(u;) tends to infinity as ¢ — oo.

We have

vp <1;-) = ivp(z) — vy (4) = vy (z) — evy(i) -

Thus, if vp(z) > 1, we have vy (z /i) > i—euv,(i) > i —elog(i)/ log(p) — oo as
i — 00; hence the series converges p-adically. On the other hand, if vp(z) < 0,
then vy (z* /i) < —ewvp(i), which does not tend to +oo as ¢ = oo.

(2). We have .
wit) = | 5| |

i1

hence v,(i!) <i/(p— 1), so v(i!) < (i — 1)/(p — 1) with equality if and only
if i is a power of p (see Exercise 17).
Thus

Vp <%) = v (z) — evp(il) > i (v, (z) - I—)—E—l) — o0

asi — oo when vy (z) > e/(p—1) or, equivalently, when vy (z) > 1+ |e/(p—1)].

Conversely, if v,(z) < e/(p — 1), then when 7 is a power of p we have
vp(z*/i!) = ivp(z) —e(i —1)/(p— 1) < e/(p—1), and this does not tend to
infinity as ¢ — 00, so the series does not converge in this case.

(3), (4), (5). The identities themselves are purely formal and are equiv-
alent to standard combinatorial identities on binomial coefficients, which in
turn can be proved via the properties of the usual (complex) logarithm and
exponential functions. We must, however, also find their domain of validity.
For (3), the result is clear since the functions log,(1+ ) and log,(1+y) must
be defined; hence v,(z) > 1 and vp(y) > 1, but then vy(z +y + zy) > 1 also.
The proof of (4) is similar.
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Let us prove (5). For log, (exp,(z)) to be defined, we must have at least
vp(z) > e/(p — 1). Conversely, assume that this is satisfied. I claim that
vp (expy(z) — 1) > 1, and so the logarithm will be defined.

Indeed, for all ¢ > 0, we have

vp (%) =ivp(z) —e) L}%J > ivp(z) — p’fl >0,

i>1

proving our claim.
Conversely, if vp(z) > e/(p — 1), then for all i we have

T

w (£) = 0o@) = (= Dyta) = vyl

so if ¢ = p®m with p { m, we have

.’Bi

Up (7) —vp(z) = (p*m — 1)vp(z) —ea .
If we set f(a) = (p® — 1)vp(z) — ea, we have, for all a > 1,

fl@) - fla=1) = p*(p— 1)vp(z) —e > (p— Lvp(z) —e > 0 ;

hence for all a > 1 we have f(a) > f(0) = 0. From this it follows that
vy (zt/i) — vp(z) > 0 for a > 0, and for a = 0, vp(z'/i) — vp(z) = (i —
1)vp(z) > 0 when @ > 1. So for i > 1, we have v,(z*/i) > vy(z); hence
vp(log, (1 + z)) = vy(z). It follows that the exponential is defined, and the
identity follows. O

Corollary 4.2.8. Let p be a prime ideal above a prime number p, let e =
e(p/p) = vp(p) be its ramification indez, and set ko = 1+ |e/(p — 1)]. For
any integers a and b such that b > a > ko, the functions log, and exp, induce
inverse isomorphisms between the multiplicative group (1 + p°)/(1 + p®) and
the additive group p®/p®. In particular, ife < p—1 and k > 2, they induce
inverse isomorphisms between Gy = (1 + p)/(1 + p*) and p/p*.

Proof. Set v = vy(z). We have seen above that if v > e/(p — 1), then
vp(log, (1 + z)) = vy(z) = v. Hence log, sends (1 + p*)/(1 + p®) to p*/p?,
and it is a group homomorphism because of the additive property of the
logarithm.

On the other hand, since v > e/(p — 1), the function exp, () converges
for = € p°. Furthermore, since vp(i!) < (i — 1)/(p — 1), when v = vy(z) > ko

we have
z* . . . e
Up (7) =iw—ev(i) >2v+(i-1) <v-p—l>
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Therefore, if i > 1, we have vp(z*/i!) > v; hence vp(exp,(z) — 1) = v. It
follows that exp, sends p?/p® to (1 +p)/(1 + p®), and it is the inverse map
of log, by the proposition, proving the corollary. O

If p is an unramified prime ideal above a prime p > 3, then ko = 1,
and so we have an explicit isomorphism G, ~ p/p*. Hence, apart from a
small finite number of prime ideals, this corollary reduces a relatively difficult
multiplicative problem to a much easier additive one, as we will now see.

We first have the following easy lemma.

Lemma 4.2.9. Let a and b be (nonzero) integral ideals of Z k. The additive
group b/ab is isomorphic to the additive group Zk /a.

Proof. By the approximation theorem for Dedekind domains, there exists
o € Zk such that vp(a) = vy(b) for all p dividing a and vp(a) > vy(b)
for all p dividing b. In particular, & € b. Thus the map =z — az induces a
well-defined additive group homomorphism from Z g /a to b/ab. Since

az =0 < az€ab < Vp vy(a)+vy(z) > vp(a) + vp(b) ,

it follows from our choice of @ that, for all p dividing a, we have vp(z) > vy(a),
and hence z € a so z = 0. Thus our map is an injective group homomorphism.
Since the norm is multiplicative in Z g, we have

|b/ab| = M(ab)/ N(b) = N(a) = |Zk/a] .,
and hence our map is also surjective, proving the lemma. O

Coming back to our original problem, by Corollary 4.2.8 we know that if
b>a>e/(p—1), the multiplicative group (1 +p2)/(1 + p®) is isomorphic to
p®/p® and hence, by the above lemma, to Z g /p®~°.

The structure of these additive groups can be completely described as
follows.

Theorem 4.2.10. Let p a prime ideal above p, with ramification index e =
e(p/p) and residual degree f = f(p/p), and let k > 1 be an integer. Write

k+e—1=eq+r with 0<r<e.

Then ; (emr—1)f
(Zk/p*) = (Z/p"2)" x (2 /p*'2) :

Proof. We have |Zk/p*| = N'(p*) = p*/, hence Zk/p* is a p-group of
cardinality p*f, so we can write

Zx/v* ~ [[(@/p'2)", with Y ia;=kf .

i>1 i>1
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Since p* € p*, we must have a; = 0 for ¢ > k. Let us assume that we have

computed ak, @k—1,.--,a;j4+1 (initially with j = k). We want to compute a;.
Note that ' o
P @k /e") = [[@/p 7 2)™
i>j
hence

|~ (Zk/p*)| =p* with s=3 (i—j+1)a .

i>j
On the other hand, we have
P HZk/p") = (0 2k + M) 6

The ideal b = p~1Z i + p* is an integral ideal that contains p* and hence is
a power of p. Furthermore,

vp(b) = min(vp(Pj_l),vp(pk)) = min(e(j — 1), k) ,
so b = pmin(e(i=1).k)

Since the ideal norm is multiplicative and (Z x/p®)/(p®/p°) =~ Z/p®, we
have [p®/p®| = M(p)2~?, from which it finally follows that

[P~ (Zk/v*)| = p* with s' = (k—min(e(j—1),k))f = max(k—e(j—1),0)f .
Comparing the two expressions, we obtain the recursion formula
Y (i -5+ 1)a; = max(k — e(j — 1),0)f . (1)
i>j

Since a; = 0 for ¢ > k, it follows by induction that a; = 0 for e(j — 1) > k;
in other words, a; = 0 for j > [k/e] (this is clear anyhow since pl*/¢l € pk).
Let k+e—1=eq+r with 0 <r < e be the Euclidean division of kK + e — 1
by e, so that ¢ = [(k + e — 1)/e] = [k/e]. Since a; = 0 for ¢ > ¢, applying
the above recursion with j = ¢ gives us

ag=(k—elg-1)f = (r+1)f .
Applying the recursion with j = ¢ — 1 gives us
ag-1 = (k—e(g—2))f —2a, = (e~ 1-1)f .
Finally, since
gag+(g—1)ag—1 = (gr+q+ge—qg—gqr—e+1+r)f = (eq—e+r+1)f = kf ,

we must have a; = 0 for ¢ < ¢ — 1, proving the theorem. ]

As the following corollary shows, we can now obtain the multiplicative
structure of (Zx/p*)* in most cases.
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Corollary 4.2.11. Let p be a prime ideal above p, with ramification index
e = e(p/p) and residual degree f = f(p/p), and let k > 2 be an integer. Write

k+e—2=eq+r with 0<r<e.

Assume that p > min(e + 2,k). Then

(Zx/o*)" = (Z/( - VZ) x @/p2)+ x (2/pr—12)c

Proof. Assume first that kK > e + 2. Then p > e + 2 or, in other words,
e < (p —1). We can thus apply Corollary 4.2.8, and Lemma 4.2.9, Theorem
4.2.10, together with Proposition 4.2.4, imply the result in this case.

Assume now that k < e+ 1. Thene< k+e—2<2e—1 henceqg=1
and r = k — 2. Thus, we must prove that

(1+9)/(1+p") = (@ /p2)* V7,

and since these groups have the same cardinality, we must simply show that
(1 + p)/(1 + p*) is killed by p. Since

A+z)P=1+2P+ Y, (Zi’)z" ,

1<i<p-1

when z € pand 1 < ¢ < p-1, we have

Vp ((l;):c’) =e+ivp(z) >e+12k,

and vy (2zP) = pup(z) > p > k by assumption. Hence, if £ € p, we have
(1 + z)? = 1 (mod p*), and so (1 + p)/(1 + p*) is killed by p, as claimed,
proving the corollary. ]

This gives the solution for the structure problem in all but a finite number
of cases, but it seems hopeless to have a general nonalgorithmic answer to
the problem which is valid in every case. Even in [Nak2], the given answer is
algorithmic, although not very usable.

To illustrate this complexity, we give the following supplementary propo-
sition, which covers some more cases (the theorem can be extended at will if
desired; see Exercise 19).

Proposition 4.2.12. Let p be a prime ideal above p, of ramification index
e = e(p/p) and degree f, and let k > 1 be an integer. We have

k-1
(Zx/p*)" = 2/ - 1)2) x Gy , where Gy = [[(2/p'T)™

i=1

for certain nonnegative integers a;. For 2 < k < 4, they are given by the
following table.
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(1) If k=2, then (a1) = (f).

(2) If k =3, then (a1,a) is given by
(0, f) ifp>3 ande=1;
(2f,0) ifp>3ande> 2
(2,f-1)ifp=2ande=1;

0, f) ifp=2ande> 2.

(3) If k=4, then (a1, a2, a3) is given by

(0,0, f) ifp>5ande=1;
(f,£,0) ifp>5ande=2;
(3f,0,0) ifp>5ande>3;
(0,0, f) ifp=3ande=1;
(f+2a,f—a,0) ifp=3ande=2;
(f,£,0) ifp=3ande>3;
(1,1,f-1) ifp=2ande=1;
(f, £,0) ifp=2ande>?2.

In the above, a = 1 if there exists x € Zk such that x2 = —3 (mod p3),
and a = 0 otherwise.

(Note that in this proposition, we have, as usual, mixed multiplicative and
additive notation.)
Proof. We must first prove that Gy, is killed by p*~!; in other words, that

(1 +ar;)1"k_1 =1 (mod p*) for all z € p. We prove this by induction on k. The
statement is trivially true for k = 1, so assume that it is true for k. Thus

1+ :z)”k-1 =1+ y with y € p*. Hence

L+z) =(1+yP=1+ Y (§>y1+yp _

1<j<p-1

Since p | (;’) for 1 < j <p-—1, we have
Up ((?)y]) =e+jvp(y) 21+k .

On the other hand,
vp(y?) = pup(y) 2 pk >k +1

since p > 2, from which our assertion follows by induction. Note that one can
prove a much more precise statement than this (see Exercise 20).
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Corollary 4.2.11 gives us directly a number of special cases. Specifically,
it givesthe cases k=2, k=3 andp>3;k=4and p> 5; and k =4, p =3,
and e = 1.

Let uslook at the remaining cases. The easiest way is probably to use the
following lemma, similar to the proof of Theorem 4.2.10.

Lemma 4.2.13. With the notation of the above proposition, let p*» be the
cardinality of the kernel of the map z — =P from Gy into itself. The expo-
nents a; are given by a; =0 fori > k and the following backwards recursion:

k-1

aj = (k— l)f— Z (i—j+1)ai— j—1-
i=j+1
The reader is invited to compare this with recursion (1).
Proof. Since G, = (1 + p)/(1 + p*) is killed by p*~!, we can write Gp =~
[Ti<ick_1(Z/pZ)*. Let K ; be the kernel of the map z +— z? from G into

itself, and let p*¥s = |K;| be its cardinality (it will be a power of p since K
is a subgroup of the p-group Gy). Then

ki~ [[ @z~ [ Gz/pz),

1<i<s JH1<i<k-1

from which it follows that

k=Y dai+j Y, a.

1<i<5 JH1<i<h-1

Since G, = p*~1)/, we have ", ;) _; iai = (k—1)f,and so kj = (k—1)f —
> j+1<i<k—1 (1 — J)ai. Changing j into j — 1 gives the backwards recursion of
the lemma. m]

Resuming the proof of the corollary, we look at the cases not covered by
Corollary 4.2.11.

Assume first that k = 3, p = 2. We have K; = {1+z€Gp, 1+2)2=1
(mod p®)}, so

Ki={T+z€Gy, PPz +2)} ={T+z€Gyp, p? |z orp? |z +2} .

Hence, if e > 2, these two conditions are equivalent, so K; = (1+p?)/(1+p3)
and 2% = N(p) = 2/, whileife = 1, K; = £(1 + p?)/(1 + p®), and 2% =
2 N (p) = 2f*!. From the backwards recursion, it follows that a; = f, a; = 0
when e > 2, while a2 = f — 1, @ = 2 when e = 1 (note that ko = 0). A
similar reasoning left to the reader gives the formulas for k = 4, p = 2.

Assume now that k = 4, p = 3, e > 2 (the case e = 1 follows from
Corollary 4.2.11). By definition,
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Ky, ={1T+z€Gy, (1+2)° =1 (mod p*)} .
Since e > 2, when z € p, we have
(1+2)° =1+ 9z +36z% + 84z° = 1 (mod p*) ,

and so K2 = G, and hence 32 = 33/ and a3 = 0.
Similarly,

Ki={1+z€Gy, (1+2)°=1 (mod p*)} .

Since e > 2, when z € p, wehave (1 +z)3 =143z +322 + 23 =1+ 3z + 28
(mod p*), and so

K1 ={1+z€Gy, p*|zB8+2%)} .

Ife > 3, this is equivalent to p? | z; hence K; = (1+p?)/(1+p?), so 3k = 32/,
and the recursion formula gives a2 = f and a, = f.

If e = 2, then either p? | z or z2 = —3 (mod p3), these two conditions
being exclusive. If this last congruence has no solution (if a = 0), then we
again have 3** = 3%/ and a; = a; = f. If the congruence has a solution zo,
we have vy(zo) = 1, and since z(3 + z2) = z(z — 70)(z + 7o) (mod p3), it
follows that

K, = {1 +z € Gy, £ =0,20, —70 (mod pz)} ’

and so 3% = 3.3%f = 32! The recursion formula gives a; = f — 1 and
a1 = f + 2, as desired. O

Note that in the above cases, we have given only the abstract structure of
the groups (Z g /p*)* and not a complete algorithmic description in the sense
of Definition 4.1.4, but this can also easily be done if desired (see Algorithm
4.2.15 below and the discussion that precedes it).

We see that the use of p-adic logarithms gives a satisfactory answer to our
structure problem in most cases (see Exercise 21 for still another possibility
of the same nature). However, it is not complete, and we must therefore look
for another idea to be able to treat the general problem. We shall see that
this idea indeed leads to a complete algorithmic and satisfactory solution to
the problem, but not to a theoretical formula of the same nature as the one
given by Proposition 4.2.12.

4.2.3 Computing (Zx/p*)* by Induction

We now explain how to algorithmically compute the groups (Z k/p*)* in all
cases. The method is based on an induction procedure using the following
proposition.
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Proposition 4.2.14. (1) Let a < b < c¢ be integers. We have the ezact
sequence

1— (1+p°)/(1+49°) — (1+p%)/(1+p°) — (1+p°)/(1+p?) — 1 .

(2) Assume that b < 2a. Then the map from the multiplicative group (1 +
p%)/(1 4 p®) to the additive group p®/p®, which sends the class of 1 +
modulo 1 + p® to the class of x modulo p®, is well-defined and is a group
isomorphism.

Proof. The existence of the exact sequence is trivial. For (2), the definition
of (1 +p®)/(1 + p®) (Definition 4.2.3) shows that the map I+ z +— z is a
bijection. However, it is not a group homomorphism in general (otherwise, Gy
would always be isomorphic to p/p¥, and we have seen in Proposition 4.2.12
that this is not always the case). If, however, b < 2a and z and y belong to
p®, we have p® | p?° | zy, and hence (1 +z)(1+y) =14z +y+zy=1+zx+y
(mod p®), and so the map is a group homomorphism. O

Assume that we can algorithmically compute p2/p® for a < b < 2a. Using
the explicit isomorphism above, we thus compute (1 + p®)/(1 + p?). Then
using Proposition 4.2.14 (1) and Algorithm 4.1.8, we inductively compute
L+p)/(1+p2), A +p)/(1+pY),...,A+9)/1+9>"), Gp = (1 +p)/(1+¥),
where m = |log,(k — 1)].

Thanks to Lemma 4.2.9 and Theorem 4.2.10, we know the structure of
p®/p® as an abstract Abelian group. Although everything is explicit, it is
not very convenient to deduce from the proof of Theorem 4.2.10 a system of
generators and relations for p®/p®.

To compute p°®/p® algorithmically, the simplest is perhaps to proceed as
follows. Let p = pZ x + nZ g be a two-element representation of p, where we
may assume 7 chosen so that vy (7) = 1 (if this is not the case, then vy (p) = 1,
so p is unramified and we replace 7 by 7 + p).

Then for all m, if ¢ = [m/e] = [(m + e —1)/e| as above, by Proposition
2.3.15 (or directly), we have p™ = pIZ g + 7™ Z .

From this, it is easy to compute the Hermite normal form of p™ on some
fixed integral basis of Zg: construct the n x 2n matrix obtained by con-
catenating p? times the identity matrix with the n x n matrix giving the
endomorphism multiplication by 7™ on the integral basis, and then apply a
Hermite normal form algorithm to obtain the desired HNF.

Let A and B be the Hermite normal form of p® and p®, respectively.
Since p® C p°, the matrix A~!B, which expresses the HNF basis of p® on
the HNF basis of p®, has integer entries. If we apply the Smith normal
form algorithm to this matrix, we will find unimodular matrices U and V
such that UA™1BV = D¢ is a diagonal matrix in Smith normal form. If
D¢ = diag((ci):) and we set C = AU™!, then the columns of C give the
coordinates on the chosen integral basis of elements v; € p®, and we have
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p®/p® = @(Z/ciZ)v;, where v denotes the class of v modulo pb. If, in addi-
tion, b < 2a, it follows from Proposition 4.2.14 that

1+9%)/1+9") =P @/cZ)T+7) -

Note that the above is simply a rephrasing of the method explained in
Section 4.1.3.

We can now give formal algorithms for computing (Zg/p*)*. We begin
with a basic subalgorithm corresponding to Proposition 4.2.14.

Algorithm 4.2.15 (Computation of p®/p® and (1+p2)/(1+p®)). Let K be a
number field, let p be a prime ideal given by a two-element representation, and let
a and b be two positive integers such that b > a. This algorithm computes inte-
gers cq ; and elements v, ; € p® such that p°/p® = B(Z/caiZ)7a: and Ca,it1 |
Ca,i- Hence, if in .addition b < 2a, (1 +p2)/(1 +p®) = B(Z/ca;Z)(1+ Ya,i)-
Furthermore, it outputs an additional matrix U,, which will be needed for discrete
logarithm computations.

1. [Compute HNF matrices] By using the method explained above, compute the

Hermite normal forms A and B of p°® and p®, respectively.

2. [Apply Smith] Apply the Smith normal form algorithm to the integral matrix
A~1B, thus obtaining unimodular matrices U and V such that UA"!BV =
D¢ is a diagonal matrix in Smith normal form.

3. [Terminate] Let D¢ = diag((ca,i)i). For each i, let v, ; be the element of Z k
(in fact of p®) whose coefficients on the given integral basis are the entries
of the ith column of the matrix AU™!. Output p®/p® = P(Z/caiZ)7a .
and if b < 2a, (14 p2)/(1 +p®) = B(Z/ca Z)(1+ 7a ;). For future use set
U, + UA™!, output the matrix U,, and terminate the algorithm.

We could clean up the trivial components as we did at the end of Algo-
rithm 4.1.3. Since this is essentially going to be used only as a subalgorithm
of the complete algorithm for computing (Zx/m)*, we will clean up at the
very end.

The corresponding discrete logarithm algorithm is essentially trivial. In-
deed, since a < 2b, Proposition 4.2.14 tells us that

H(l + %) =1+ Zﬂ:i%,i (mod 1+ p®) .

Hence, if B € (1 + p*)/(1 + p?), we want to solve 3 ziv.; = B — 1, or
in matrix terms on the integral basis, AU™'X = B — 1k, where B is the
column vector representing (8 on the integral basis, and 1k is the column
vector representing 1 (equal to (1,0,...,0)* since we chose an integral basis
starting with 1). It follows that X = UA™Y(B — 1) = U,(B - 1k) is the
desired discrete logarithm, and this is the reason we have kept the matrix
U..
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The second basic subalgorithm we need is the following.

Algorithm 4.2.16 (Discrete Logarithm in (1 + p)/(1 + p*)). Let K be a

number field, p a prime ideal and & an integer, which we can assume to be greater

than or equal to 2; otherwise the problem is trivial. For each a > 1 such that

22 < k, we assume that we have computed the ¢, ;, 7,,;, and U, corresponding

to b = min(2a, k) by Algorithm 4.2.15. Finally, let 3 € (1 + p), where 3 is given

by a column vector B on the integral basis. This algorithm computes the discrete
logarithm of B in (1 + p)/(L + p*) with respect to the T+ 7, ;; more precisely,
it computes integers y, ; such that 8 =[], ; (1 + Yai) " in (14 p)/(1 + pk).

(The 7a,; and c,,; do not give a Smith basis of (1 + p)/(1 + p*), but this is

not necessary. In addition, a will always be a power of 2.) As above, we let 1k

denote the column vector representing 1.

1. [Initialize] Set a + 1.

2. [Main step] Set Z « U.(B — 1k). If Z = (z;), for each i set y,;
—((—2;) mod ¢, ), where we choose the smallest nonnegative residue of —z;.
Finally, set B8 BT;(1+~,:{*"). Note that this product should be reduced
modulo p* (see Section 4.3.2) and that the exponents are nonnegative.

3. [Loop and terminate] Set a + 2a. If a < k, let B be the column vector
whose entries are the coefficients of 3 on the integral basis, and go to step 2.
Otherwise, output the y, ; and terminate the algorithm.

There is a little trick in the main step of this algorithm. We could have
simply set Y, + zi mod c;. We would then have to set 3 « B/[[;(1 +
73:'1.") mod p*, and although division modulo an ideal is not too difficult, it is
slower than multiplication, hence we prefer to use the above trick (see Section
4.3.2).

We are now ready to give the algorithm for computing (Zg/p*)*.

Algorithm 4.2.17 (Computation of (Zx/p¥)*). Let K be a number field, let
p be a prime ideal of degree f above p given by a two-element representation,
and let k be a positive integer. This algorithm computes integers d; and elements
d; of Z g such that (Zg/p*)* = @(Z/d:iZ)6; with diy; | d;. It also outputs a
number of other quantities that will be needed in other algorithms.

1. [Initialize] If k = 1, go to step 4. Otherwise, set a < 1 and b + 2.

2. [Compute (1 + p2)/(1 + p®)] Using Algorithm 4.2.15, compute the quantities
Cai 1 + 7ai, and U, giving the structure of (1 + p2)/(1 + p®). Call n, the
number of cyclic components ¢, i (Or 7,,i). For future use, output all these
quantities.

3. [Loop] Set a « 2a. If a < k, set b + min(2b, k) and go to step 2.

4. [Prime to p part] Set ¢ + p/. By choosing elements at random in Zk \ p
(essentially by using Algorithm 1.3.13), find go € Zk such that go mod p is
of order exactly ¢ — 1 in (Zg/p)* (so that the class of gy is a generator of

(Zk/p)).
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5. [Start computation of big matrix] Set co1 + ¢—1, v%,1 + go— 1, np « 1. In
the next step, we will compute a square h x h matrix H, where h = 3" . n,.
It is very convenient to index the rows and columns of H by the pairs (a, 1)
as for the generators, and we will consider these pairs to be lexicographically
ordered, so that (a,i) < (b,j) ifandonly ifa <bora=bandi < j.

6. [Compute big matrix H] For each pair (a,1), do the following. Set H, ; + V,
where V' = (vs ;) is the column vector computed as follows. Set vs; « 0
for (b,j) < (a,7), set vg; ¢ Ca,i- Let B « (1 + 7,,3)°**. Using Algorithm
4.2.16, compute the discrete logarithm (y; ;) of 8 (we will have y; ; = 0 for
(b,7) < (a,7)). Finally, for (b,5) > (a,z), set vy ; «— —ys ;.

7. [Terminate] Let G be the row vector of the 1+ v, ; (here ~— is modulo p*),
and let H be the matrix whose columns are the H, ;. Apply Algorithm 4.1.3
to the system of generators and relations (G, H), output the SNF (P, Dp),
the auxiliary matrix Up, = U, obtained in that algorithm, and terminate the
algorithm.

The corresponding discrete logarithm algorithm is the following.

Algorithm 4.2.18 (Discrete Logarithm in (Zg/p*)*). In addition to the data
given in Algorithm 4.2.17, we are given an element 3 € Zg coprime to p* (or,
equivalently, to p). This algorithm computes the discrete logarithm of 8 with
respect to the J; output by Algorithm 4.2.17.

1. [Compute discrete log modulo p] Using, for example, Shanks's baby-step,
giant-step method or a more sophisticated method, compute the discrete
logarithm o1 of 3 with respect to go in (Zk/p)* (this may be the most
time-consuming part of the algorithm if ¢ = |Zk/p| is large). Then set
B+ B/g5"" mod p*.

2. [Use Algorithm 4.2.16] (Here 3 € (1 + p).) Compute the discrete logarithm
(¥a:) of B in (1 + p)/(1 + p¥) in the sense of Algorithm 4.2.16, and let
Y = (ya,:) be the column vector of the y, ; (always in lexicographic order,
and including yo.1).

3. [Terminate] Using the matrix U, output in Algorithm 4.2.17 (whose columns
are indexed by the pairs (a, 1), but whose rows are indexed normally), compute
X < UpY, output X, and terminate the algorithm.

Remark. Using the result of Exercise 21, we have at our disposal at least
three methods for computing the structure of (1 + p)/(1 + p*).

(1) The use of p-adic logarithms. This method gives the result in one step
if e < p — 1; otherwise one needs to use other methods to compute the
structure of (1 + p)/(1 + pko) with ko =1+ |e/(p—1)].

(2) The use of the map 1+z — z as we have done above. This method needs
to be applied recursively since it is applicable only for (1 + p®)/(1 + p®)
when b < 2a, and the number of iterations is roughly log k/ log 2.
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(3) The use of the Artin—Hasse logarithm explained in Exercise 21, in other
words the map 1+ z = 3, ;. (~1)""'z*/i modulo p®. This method
also needs to be applied recursively (unless k < p) since it is applicable
only for (1 + p®)/(1 + pb) when b < pa, and the number of iterations
is roughly log k/ log p. Thus, this method always needs fewer iterations
than the previous method, at the expense of the computation of a more
complicated function. It is not clear which method is the fastest.

The computation of (Zg/p¥)* by the recursive method explained above
has the advantage of working in all cases, but it is rather heavy and can lead
to quite large generators. In the next section we will see how to reduce the size
of these generators. We can, however, usually improve the above algorithm by
using a combination of p-adic logarithms and exponentials, with the recursive
method. Indeed, by Corollary 4.2.8, we know that if ko = 1+ |e/(p — 1)],
then the p-adic logarithm and exponential give isomorphisms between (1 +
p¥)/(1 + p*) and p*o/p*. Thus, we can use Algorithm 4.2.17 to compute
explicitly (1 4 p)/(1 + p*0), p-adic techniques to compute (1 + p*¥)/(1 + p*),
and Proposition 4.2.14 and Algorithm 4.1.8 to put both structures together.
The details are left to the reader, but a serious implementation should use
this approach (see Exercise 22).

One important special case of this that deserves mention is when e = p—1,
which is of frequent use in explicit constructions of Kummer theory (see
Chapter 5). In this case, we have the following proposition.

Proposition 4.2.19. Assume p is a prime ideal above p of ramification in-
dez e and residual degree f, and assume that e = p— 1. Let w; be such that
(Zk/[v) = D D,,(Z /pZ)w; with the notation of Proposition 2.4.6 and Corol-
lary 2.4.7, and let 7 be a uniformizer of p (in other words, ™ € p~p?). Finally,
let 7, as output by Algorithm 4.2.15 be such that p? /p?P = @(Z [p®iL)~; with
cj > 1 (after removing the trivial components).

Then for all j we have ¢c; =1, (1 +p)/(1 + pP) is a Z/pZ vector space
of dimension ef = (p — 1)f, and a basis for this vector space is given by the
classes of 1 + nw; for i € Dy, together with the classes of the exp,(v;). In
other words,

1+p)/(1+9°) = P @/pD)A+7w;) P (Z/pL)exp,(v;) -

i€D, 1<5<(p-2)f

Proof. Since 7 is a uniformizer of p, we have p/p? = ®ieD,, (Z | pZ)7ws;
hence
(L +p)/(1+9%) = D @/pL)(1 + 7wi) .
i€Dp
Note that these are equalities, and not only isomorphisms.
On the other hand, p?/p? is clearly killed by p, so ¢; = 1 for all j such
that c; > 0. Since e = p — 1, by Corollary 4.2.8, we also have
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L+p))/A+p)= D (2/pL)exp,(;) -

1<5<(p-2)f
Finally, I claim that the exact sequence
1— (1+9°)/(1+p7) — (1 +p)/(1+p") — 1 +p)/(1+p°) —1

is split, which will prove the proposition. To prove this, instead of giving a
direct proof (which is easy; see Exercise 23), we will use Algorithm 4.1.8.
Using the same symbol  to mean the class modulo different subgroups,
we have A = (expp('yj))j, Dy =plfe-1),C = (1 + Tw; ’iED,,’ and D¢ = ply
(where I, always denotes the n x n identity matrix). Thus, following the
algorithm, we take B' = (1 + 1rw,-)iEDp and ¥(A) = (exp,(7v;))-
Set @ =1 + ww;. By the binomial theorem, we have

af =1+ Z (i)rkwf + 7Pl .
1<k<p-1

Now vy (7Pw?) > pvy(m) = p, whilefor 1 <k <p -1,

Vp <<:)7rkwf> >vw(p)+k=e+k>p

since e = p — 1. It follows that B" = B'D¢ is made only of unit elements of
(14 p)/(1 + p?); hence we can take A" also made of unit elements, so we can
take P = 0. Thus,

G = (Y(A)|B') = ((expp(’h'))]-,(1 + m‘}i)ier)

and M = pl.ys, which is already in SNF, so we have proved both our claim
and the proposition. m]

Remark. If we use the Artin-Hasse exponential exp, (see Exercise 21),
we have also

1+p)/A+p")= P (@/pZ)exp, () ,
1<5<(p-1)f

where the §; are the generators of the additive group p/pP. This may seem
simpler than the formula given by the above proposition, but it is not clear
if it is really any faster since the computation of the exp,(d;) is longer than
that of the mw;.

4.2.4 Representation of Elements of (Zx/m)*

We are now ready to give a complete algorithm for computing (Z x /m)* and
the corresponding discrete logarithm algorithm. Before doing this, we must
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first explain how to represent elements of (Z g/m)*. The immediate idea that
comes to mind is to represent them as classes of elements of Zx modulo
the equivalence relation defining (Zg/m)*. In fact, this idea is almost forced
upon us by the notation used.

This has two closely related flaws. First, the surjectivity of the map going
from the subset of Z g of elements coprime to m to (Zx/m)* is not completely
trivial, since it is a consequence of the strong approximation theorem in
Dedekind domains. Second, the elements of Zk we will have to choose to
represent elements of (Z x/m)* will have to be quite “large” since they must
have specific signatures.

There is, however, a better representation. If m = mgms,, we represent
an element in (Zg/m)* as a pair (a,v), where a € (Zx/mp)* and v € Fg'>
considered as a column vector. This is simply the definition of the group
(Z g /m)*, but the whole point is that it is much simpler to handle these pairs
than directly elements of Zg together with their signatures. Note that even
when m is an ideal — in other words, when m,, = @ — we still consider
pairs (E, v), where v is the unique vector in 0-dimensional space over F;.

If (o, v) € (Zk/m)*, we will say that o is the finite part and v the infinite
part, or the Archimedean part. The group law in (Zk/m)* corresponds to
multiplying the finite parts and adding the infinite parts.

In all the algorithms that we will present, the above representation is
sufficient and simpler than the one-element representation. In some cases,
however, it may be desirable to obtain such a one-element representation.
For this, the following naive algorithm works well.

Algorithm 4.2.20 (One-Element Representation in (Zg/m)*). Let m =

mom., be a modulus and (c,v) a pair representing an element of (Zk/m)*,

with v = (v;)jem.. - Call s the sign homomorphism from K* to F5 = . This algo-

rithm computes an element 3 € Z i such that 8 = a (mod *mg) and s(8) = v.

1. [Initialize] If it has not already been done, compute a Z-basis 71, ..., v, of
the ideal mg and set k « |mq|.

2. [Find elements] By considering small linear combinations of the ~;, find k
elements (3, ..., Bk in mg such that the matrix A over F, whose columns are
the s(1 + ;) is invertible.

3. [Multiply] Set w + A~'v, and let w = (w;)1<;j<k- Set B « c, and for each j
such that w; # 0, set 8 « B(1+ 3;). Output 3 and terminate the algorithm.

Evidently, if several conversions of this sort must be done, steps 1 and 2
should be done once and for all. The final 3 may be large, and it is desirable
to reduce it. This cannot be done too rashly, however, since we must preserve
the signature of 3. We will discuss this in Section 4.3.2.

Warning. As we have already mentioned, the map from (Zg/m)* to
Cln(K) used in Proposition 3.2.3 is not the map coming from the algorith-
mically natural representation (E, v) but the map coming from the above
one-element representation.
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4.2.5 Computing (Zg/m)*

Using Algorithm 4.2.2, we can now put everything together and obtain the
algorithmic description of the group (Z x/m)*, in the sense of Definition 4.1.4.
Thanks to the representation explained above, the algorithms are very easy
to implement (they would be much more painful if we used the one-element
representation).

Call s the signature homomorphism from K* to ;= defined by

s(@) = (sign(v(a)))veme, -

Denote by 0 the zero vector in F5'>. We will apply our exact sequence tech-
niques to the split exact sequence

0 — Fy> — (Zg/m)* — (Zg/mo)* — 1 .

For 1 < j < |msl, set £; = (1,e;) € (Zk/m)*, where e; denotes the jth
canonical basis element of Fj'= . The ¢ form a generating set for F = , and the
matrix of relations between them is clearly equal to twice the identity matrix
of order k = |my|. If (C, D¢) are generators and relations for (Z x/mp)* with
C = (%), we lift the v; to v = (7:,0) (this is the reason the sequence is
split). The v} together with the &; form a generating set for (Z x/m)* whose
relation matrix is equal to (£° 2(}k ) and we conclude as usual with a Smith

normal form computation.
Combining all this with the methods of Sections 4.1.3 and 4.1.4, we obtain
the following algorithm for computing (Z g /m)*.

Algorithm 4.2.21 (Computation of (Z /m)*). Given a modulus m = mpmo,,
this algorithm computes the SNF (Zg/m)* = (Z, Dz). The entries (; of Z will
be represented as pairs (i, v:), where 7; denotes the class modulo mg of an ele-
ment coprime to mg and v; € Fj>. The algorithm also outputs some additional
information necessary for computing discrete logarithms.

1. [Factor mg] Using Algorithm 2.3.22, find distinct prime ideals p and exponents
vp such that mg = [, p**.

2. [Compute the (Z g /p»)*] For each p dividing mo, apply Algorithm 4.2.17,
thus finding integers dp; and elements 6p; of Zk coprime to p such that
(Zk/p**)* = @D,(Z/dp L), and let n, be the number of cyclic compo-
nents in this sum. For future use output the auxiliary matrix Up also given by
this algorithm.

3. [Modify generators] For each p dividing mg do the following. Using Lemma
4.2.1 applied to a = p*» and ¢ = mp/a, compute elements a, € a and ¢, € ¢
such that ap + ¢, = 1. Then for all 3, set &y ; + (cpdp,i + ap,0) € (Zx/m)*
(these generators are coprime to mg, and they are still congruent to the initial
dp,; modulo p*»).

4. [Deal with my] Set no, + |Moo|, and for i =1 to i = ne set doo,s + 2 and
Eoco,i (T, e,-), where e; is the jth canonical basis vector of 3 .



4.2 Computing the Structure of (Zx/m)* 207

5. [Compute big matrix M] Let S be the set formed by all prime ideals dividing
mp and the symbol co. In this step, we will create a square h x h matrix M,
where h = 3 s 7yp. It is convenient to index the rows and columns of M by
the pairs (p, %) as for the generators. Then set M(;, ;) (q.5) «+ 0if (q, 5) # (p, ),
Mp.i),(p,5) ¢ dp,: otherwise.

6. [Terminate] Let G be the row vector of the €, ;, and let M be the matrix
whose columns are the M, ;. Apply Algorithm 4.1.3 to the system of generators
and relations (G, M), output the SNF (Z, Dz) and the auxiliary matrix U,
obtained in that algorithm, and terminate the algorithm.

It will be useful to compute discrete logarithms for elements of K* coprime
to m which are not necessarily in Zg (see Definition 3.2.1). For this, we need
the following subalgorithm.

Algorithm 4.2.22 (Coprime Representative Computation). Given a nonzero
integral ideal a and an element 8 of K* coprime to a, this algorithm computes
elements a and v of Zg coprime to a such that 3 = a/v. We assume 3 given
by its coordinates on an integral basis of K.

1. [Trivial case] Let d be the lowest common multiple of the denominators of the
coordinates of 3, and set b «— dZk + a. If b = Zg, set v + d, set a + df,
and terminate the algorithm.

2. [Compute exponent] Let b = [], p*» be the prime ideal decomposition of b.
Denote by e(p) the ramification index of p. Compute

k SITplvp(d)e(p)/va +1,
plb
where v, (d) denotes the ordinary exponent of p in d and p is the prime number
below p.

3. [Compute 1] Using standard ideal operations, compute the ideal 0 + dZ x+
b* and the inverse ideal 971

4. [Terminate] (Here do~! and b*0~! are coprime integral ideals.) Using Algo-
rithm 1.3.2, compute a and c such that a e do~!, c € b*2~!, anda+c=1.
Output & + af and v + a, and terminate the algorithm.

We leave to the reader the (easy) proof of this algorithm’s validity (Ex-
ercise 24). Note that steps 3 and 4 are applications of Theorem 1.3.3. (]

In the important special case where a = mZ is a principal ideal gener-
ated by an element of Z, we have the following proposition whose proof can
of course be immediately made into an algorithm (compare also with Lemma
1.2.31).

Proposition 4.2.23. Let 3 € K* be such that vy(8) > 0 for all p | mZg
(this is the case, in particular, if B is coprime to mZyg). Then the least
common multiple of the denominators occurring in the representation of
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on an integral basis is coprime to m. In other words, there exist d € Z and
a € Zk such that 8 = a/d and (d,m) = 1.

Proof. Write 3 = a/dp for a9 € Zk and dy € Z,for the moment arbitrary.
Let
9=(do,m®)= [[ p* .

pldo, plm

By definition, we have (dp/g,m) = 1. On the other hand, let p be a prime
ideal and p be the prime number below p. Then either p { g, in which case
vp(ao/9) = vp(ao) > 0, or p | g, in which case we have p | dp, p | m, and
vp(9) = vp(do); hence vy(g) = vp(do) = vp(g)e(p/p), so

vp (%) = vp(ao) — vp(do) = vp (Zj) =vp(B8) >0 .

It follows that ag/g € Zk, so B = (ao/9)/(do/g) is a suitable representation,
proving the proposition. ]

The discrete logarithm algorithm in (Zg/m)* applied to elements of K*
coprime to m is as follows.

Algorithm 4.2.24 (Discrete Logarithm in (Zg/m)*). Given a modulus m =
MoMy, the structure (Zg/m)* = @,(Z/z;Z)(; found by Algorithm 4.2.21, and
an element 3 of K* coprime to m, this algorithm computes the discrete logarithm
of 3 with respect to the (;. We assume 3 given by its coordinates on a fixed
integral basis. We let my = Hp pv? and, as in Algorithm 4.2.21, S is the set of
prime ideals dividing mg union the symbol oo.

1. [Check if integral] If 3 € Zk (in other words, if the coordinates of 3 on the
integral basis are all integers), go to step 2. Otherwise, using Algorithm 4.2.22,
compute a and v in Zg coprime to m such that 8 = a/~. Let L, (resp.,
L) be the discrete logarithm of a (resp., v) obtained by applying the present
algorithm. Output L, — L, (where each coordinate can be reduced modulo
the respective z;), and terminate the algorithm.

2. [Compute modulo p*#] (Here 8 € Zk.) Using Algorithm 4.2.18, compute the
discrete logarithm (zp,;) of B in (Zk/p*®)*. Compute the vector V = (v;)
of the signature of 3, and for 1 < i < |meo| Set Tooi + vi, where v; is any
lift of v; to Z (for example, in {0,1}). Finally, let X = (z ;) be the column
vector indexed by the pairs (p,i) forp € S.

3. [Terminate] Set W « U,X, where U, is the matrix output in step 6 of
Algorithm 4.2.21. Reduce each component w; of W modulo the corresponding
z; (for example, in the interval [0,z; — 1]), output W, and terminate the
algorithm.

This terminates the algorithmic computation of the group (Zg/m)*.
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4.3 Computing Ray Class Groups

4.3.1 The Basic Ray Class Group Algorithm

Let m be a modulus. Recall the exact sequence coming from Proposition
3.2.3:
U(K) 25 (Zg/m)* 5 Cln(K) 25 CI(K) — 1 .

To apply the techniques that we have developed, we need to verify a number
of things. First, the groups C!(K) and U(K) must be known in the sense of
Definition 4.1.4. This can be done using either the techniques of [Poh-Zas] or
those of [Coh0]. Note that [CohO] assumes the GRH, but in fact in practical
situations it is rather easy to remove the GRH condition by certifying the
result unconditionally. We refer to [Zan] and [Dia-Oli] for details. Note also
that we need a discrete logarithm algorithm in CI(K) (in U(K') the problem
is ordinary linear algebra; see Algorithm 5.3.10). The solution to this is also
given in [Coh0], where, in fact, even more information is obtained as part of
the principal ideal algorithm: if an ideal is principal, the algorithm also gives
a generator. More precisely, if the g; are ideals such that the g; are the given
generators of Cl(K), then if g is an ideal of K, we can find (v;) such that
g=T];9: ,but the same algorithm gives also @ € K such that g = o []; g}*.
We will also do this in the context of ray class groups.

The group (Z g /m)* has been dealt with extensively in Section 4.2.

Finally, we must show that the maps are effective, in the sense of Defi-
nition 4.1.5. This is not completely trivial. First, consider the map 1 from
(Z g /m)* to Cly(K). Since Cly(K) is not yet known, to say that ¢ is effec-
tive means that if g € Cly (K) is of the form w(a, we can find a € Z g. But
then g is an ideal of K coprime to m that is a principal ideal in the ordinary
sense, hence by using the principal ideal algorithm mentioned above, we can
algorithmically find a such that ¢ = aZ k. Since g is coprime to m, a will
also be coprime to m. Using Algorithm 4.2.22, we can find 3 and v such that
a = /v, and B and v are integral and coprime to m, hence we can take
a=B/yin (Zg/m)*.

Consider now the map ¢ from Cln(K) to CI(K). Since Cln(K) is not
yet known, to say that ¢ is effective means that if ¢ € Cln(K), we can
compute qb(E) € CI(K), which is of course trivial, but it also means that if
g9 € CI(K) = Im(¢), we can find an ideal g’ coprime to m such that ¢(g') = g.
This follows from Algorithm 1.3.14.

We can now put everything together. We consider the above ray class
group exact sequence as a right four-term exact sequence and apply the re-
sults of Section 4.1.5, giving the following algorithm for computing the ray
class group Cln(K).

Algorithm 4.3.1 (Computing Ray Class Groups). Let m = mom, be a
modulus. This algorithm computes ideals h; coprime to m such that the SNF of
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Clu(K) is (B,Dp), where B = (h;), and h; denotes the ideal class of h; in

Cln(K). It also outputs some extra information necessary for computing discrete

logarithms. We assume that we have already computed U(K) = (E, Dg) with

E = (ei)o<i<r, CI(K) = (C,Dc¢) with C = (v;) = (gi) (using [Poh-Zas] or

[Coh0]), and (Zk/m)* = (Z,Dz) with Z = ((;) (using Algorithm 4.2.21). We

denote by 1) the map from (Z g/m)* to Cln(K).

1. [Find new g;] Using Algorithm 1.3.14, for each i compute a; € K* such that
g; = ajg; is an integral ideal coprime to m. Let G' be the row vector of the
g:, and let A’ be the row vector of the a. For future use, output the elements
al.

2. [Find principal ideals] For each ideal g;, compute g;* (where D¢ = diag((c;);)).
and using the principal ideal algorithm (see [CohO, Algorithm 6.5.10]), find
a; € L such that g;* = o;Z.

3. [Compute P] (Here the a’“ a; are elements of Z i coprime to m.) Using Algo-
rithm 4.2.24, compute the matrix P whose columns are the discrete logarithms
of the o/“ a; with respect to the (;.

4. [Compute Q] Again using Algorithm 4.2.24, compute the matrix @ whose
columns are the discrete logarithms of the &; with respect to the (; for 0 <

j<r.
5. [Terminate] Let B' « (¥(Z)|G') and M « (g DOZ BIC')) Apply Algo-

rithm 4.1.3 to the system of generators and relations (B', M), and let (B, Dp)
be the Smith normal form of Cly,(K) thus obtained. If B = (;), for each i
let h; be an ideal (coprime to m) belonging to the class ;. Output the h;,
Dg, the auxiliary matrix U, output by Algorithm 4.1.3, and terminate the
algorithm.

To end this section, we give a corresponding discrete logarithm algorithm
in Cln(K). As in the case of Cl(K) itself, we will actually solve a stronger
problem and write a principal ideal algorithm in ray class groups.

Algorithm 4.3.2 (Principal Ideal Algorithm in Ray Class Groups). Let m

be a modulus and let (Zg/m)* = (Z,Dz) and Cln(K) = (B,Dpg) be as

computed by Algorithms 4.2.21 and 4.3.1, respectively. Write B = (h_,)l and let

H denote the row vector of ideals h;. Given a fractional ideal a coprime to m,

this algorithm computes a column vector V' and an element 8 € K such that

a=FHV and 8 =1 (mod *m).

1. [Work in Cl(K)] Applying the principal ideal algorithm in Cl(K), find a col-
umn vector W and v € K such that a = yGW (where G is the row vector of
the ideals g; whose classes are the given generators of Cl(K)).

2. [Work in (Zg/m)*] Set a « v/A'W, where the A’ = (a;}) is the row vector
of elements computed in step 1 of Algorithm 4.3.1 (a will be coprime to m).
Using Algorithm 4.2.24, compute Y such that & = ZY (mod *m), and let
a' « ZY as an element of Z .
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3. [Terminate] Let U, be the matrix output by Algorithm 4.3.1. Output V «

U.(%) and B ¢+ a/a’, and terminate the algorithm.

Remark. It is essential that the generators Z of (Z x/m)* used in this
algorithm be the same as those used in Algorithm 4.3.1.

This finishes the description of the algorithmic computation of the ray
class groups Cly (K). It should be emphasized that although many algorithms
and subalgorithms are involved, the basic computations are rather simple and
the main bottlenecks will be in two places. The first will be in the computation
of discrete logarithms in (Zg/p)*. For this, considering the vast amount of
effort spent on the problem, we have nothing more to say.

The second bottleneck will be the size of the generators. Indeed, several
times we have to multiply a given set of generators by a unimodular matrix
U~!, or multiply generators by elements to make them coprime to certain
ideals. All this makes the coefficients of the generators grow in size. Since this
can rapidly make the algorithms completely useless in practice, we would like
to give a few indications on how to get down to generators of manageable
size.

4.3.2 Size Reduction of Elements and Ideals

The main place where size reduction is necessary is in Algorithm 4.1.3, that
is, in the SNF algorithm for Abelian groups. Recall that in this algorithm, a
system of generators and relations (G, M) is given, and after reducing M to its
HNF H, which is generally a harmless process, we use the SNF algorithm to
compute unimodular matrices U and V such that UHV = D (and afterwards
we remove the trivial components). The main difficulty comes from the fact
that the new generators are given essentially by GU™!, and these may be
large objects if U~! has large entries.

There are several complementary ways to improve this situation, and all
should be applied.

(1) The matrix U~! is not unique in general; hence, it is worthwhile to find a
matrix U~! that is as small as possible. This can be done using the tech-
niques of [Hav-Maj2]. In many cases this just cannot be done, however,
and all possible matrices U~! have large entries.

(2) Another idea is to observe that GM = 1 in the Abelian group; hence, if
we add to the columns of U~! any Z-linear combination of the columns of
M (or of H), the resulting generators GU ! are unchanged. The simplest
way for doing this reduction is probably as follows. Let X be a column
vector that we want to reduce modulo the columns of H. First compute
the matrix L obtained by applying the LLL algorithm to the columns of
H. Then replace X by X — L|L~! X1, where |A] denotes the result of
rounding each entry of a matrix to the nearest integer. This should now
be rather small.
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We should try to avoid divisions as much as possible, since they are
generally expensive operations. For this, instead of computing a product
of the form []; g;* in the naive way, we write

o= 1T o/ I s

i, u, >0 i, 4, <0

so that we need to perform only one division.

In the (very frequent) case where the group consists of classes of elements

of a set modulo some equivalence relation, the elements of the group are

usually given by the classes of some representatives, but the latter should
be chosen with care. In other words, we should try to reduce modulo the
equivalence relation as much as possible.

Let us look in detail at the two cases of importance to us; that of (Z g /m)*

and that of Cln (K).

a) Recall that elements of (Zx/m)* are represented by pairs (E, v) with
a € Zk coprime to mg and v € Fy . To reduce such a pair, we
consider a represented by a column vector X on a fixed integral
basis. As in (2) we compute an LLL-reduced basis L of the ideal
mp, and set Y < X — L|L7'X] (see Algorithm 1.4.13). This will
be a reasonably small vector giving an element 3 congruent to a
modulo mo. We can then replace (a,v) by (8,v). This is where the
two-element representation is the most useful since we do not have
to worry about the signature of 3.

b) A simple but very important remark is that if m is the smallest pos-
itive integer belonging to mg (the upper-left entry in the HNF rep-
resentation), we can reduce all the coefficients of 3 modulo m. This
can easily be done because we use the two-element representation of
elements of (Z/m)*; if we had used the one-element representation,
it could not have been done so easily.

c) To reduce an ideal representing some ideal class in Cl(K), we pro-
ceed as follows. First, exactly as in the case of (Zg/m)*, instead of
representing ideal classes as classes of ideals coprime to my modulo
P,,, we will represent them as pairs (a,v), where a € I, is an ideal
coprime to mg and v € F5° as usual. The equivalence relation R on
these pairs is defined by (a',v') R (a,v) if and only if there exists
B =1 (mod *mg) such that v' = v+ s(83). As in the case of (Zg/m)*,
this representation avoids annoying problems due to signatures.

We will use the following basic algorithm.

Algorithm 4.3.3 (Reduction of an Ideal). Let a and b be coprime integral
ideals. This algorithm computes an element v € a such that 4 = 1 (mod b) and
a/~v an LLL-reduced ideal, in the sense of [Coh0, Section 6.5.1].
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1. [LLL-reduce] Let a be the first element of an LLL-reduced basis of the ideal
product ab for the quadratic form ) |cf,~(a)|2 (see step 2 of [Coh0, Algorithm
6.5.5]). If b = Z g, output o and terminate the algorithm.

2. [Use Algorithm 1.3.2] Using Algorithm 1.3.2, compute a € a and b € b such
thata +b=1.

3. [Terminate] Compute the element @' + a/a, and let g be the element obtained
by rounding to the nearest integer the coefficients of o’ on the integral basis.
Output v « a — ga and terminate the algorithm.

Using this algorithm, we can now write an algorithm for reducing a rep-
resentative of an ideal class modulo m.

Algorithm 4.3.4 (Reduction of the Representative of a Ray Ideal Class).
Given a modulus m = mgm, and an element of Cly,(K) represented by a pair
(a,v) as above, this algorithm computes another representative (a',v') of the
same class in Cl(K) such that a’ is an “almost-reduced” integral ideal.

1. [Use Algorithm 4.3.3] Using Algorithm 4.3.3 applied to aand b = mg, compute
v € a such that v = 1 (mod mg) and a/+ is an LLL-reduced ideal.

2. [Use Algorithm 4.3.3 again] Again using Algorithm 4.3.3, but this time applied
to v/a and mg (which are integral coprime ideals), compute § € «/a such that
4 =1 (mod myg) and (v/a)/é is an LLL-reduced ideal. Set & + 6/7.

4. [Terminate] Set a' « aa and v' « v + s(a), output the pair (a',v'), and
terminate the algorithm.

The proof of these algorithms’ validity is trivial and is left to the reader
(Exercise 25). O

4.4 Computations in Class Field Theory

Thanks to the above algorithms, we have complete control on the ray class
groups Cln(K). Let us look at what remains to be done to put the main
results of class field theory in algorithmic form.

4.4.1 Computations on Congruence Subgroups

First of all, we must enumerate congruence subgroups C modulo m or, equiv-
alently, subgroups C of Cly (K). This is, of course, done by enumerating HNF
left divisors of the SNF of Cl(K), as explained in Section 4.1.10. Usually,
Cln(K) does not have too many cyclic components, so this computation is
not difficult in practice. In addition, if we are interested only in subgroups
of given index, corresponding to Abelian extensions L/K of given degree,
the enumeration is much simpler in general, as can be seen, for example, in
Algorithm 4.1.20.
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Thus, if the SNF of Cly(K) is equal to (A, D 4) and the HNF left divisor
of D, corresponding to the subgroup C is equal to H,, we will represent
the congruence subgroup (m,C) by the triplet (A, D4, H4). The following
algorithm, which is a reformulation in our special case of Algorithm 4.1.10,
shows how to go from a modulus to a divisor.

Algorithm 4.4.1 (Computation of CP,). Let (m,C) be a congruence sub-
group, and let n be a divisor of m such that I, N P, C C, so that by
Proposition 3.3.5 we have (m,C) ~ (n,CP,). Let Cln(K) = (A,D4) and
Cl,(K) = (B,Dp) be the respective SNFs, with A = (E) and let Hy4 the
HNF left divisor of D 4 representing the subgroup C of Cl,(K). This algorithm
computes the HNF left divisor Hg of Dp representing the subgroup CP, of
Cl,(K).
1. [Compute matrix P] Using Algorithm 4.3.2, compute the discrete logarithms of
the ideals a; in Cl,(K), thus obtaining a matrix P such that sy n(A) = BP,
where sp, q is the canonical surjection from Cly, (K) to Cly(K).

2. [Compute Hg] Let M « (PH 4|Dpg). Compute the HNF Hg of M, output
Hp, and terminate the algorithm.

We also need to compute the conductor of the congruence subgroup
(m, C). This is done by applying Corollary 3.3.13 as follows.

Algorithm 4.4.2 (Conductor of a Congruence Subgroup). Let (m,C) be a

congruence subgroup. This algorithm computes the conductor f of (m, C). Recall

that for any congruence subgroup (n, D) we denote by hy, p the cardinality of

the group Cl,/D.

1. [Initialize] Set f <+~ m, D «+ C, h « h; p.

2. [Loop] For each p | f (finite or infinite), compute D, < DPj/, using Algorithm
4.4.1, compute hy < hy/p p,. and test whether hy = h. If this is true for some
p. set f < §/p, D « Dy, h « hy, and go to step 2.

3. [Terminate] Output f (and D = CP; if desired) and terminate the algorithm.

Proof. If hyyy pp,,, = hy,D, then fis not the conductor by Corollary 3.3.13,
and by Proposition 3.3.6 we have (f/p, DF;/p) ~ (f, D), so we can replace f by
f/p. Conversely, if for all p we have hy/y pp, ,» < hs,p, then Corollary 3.3.13
tells us that f is the conductor. O

Remark. If we do not need to compute the conductor but simply need
to check whether or not m is equal to the conductor, we exit the algorithm
as soon as we find some p | m such that h, = h.

4.4.2 Computations on Abelian Extensions

Consider now the other side of class field theory: in other words, isomorphism
classes of Abelian extensions L/K.
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We first want to compute the norm group, that is, the Artin or Takagi
group corresponding to a modulus m. This is done using Theorem 3.4.4 as
follows.

Algorithm 4.4.3 (Computation of the Norm Group). Let L/ K be an Abelian
extension defined by an irreducible monic polynomial T' € Z k[X], and let m be a
modulus of K known to be a multiple of the conductor of L/ K. We assume that
the SNF of the ray class group Cl,(K) = (C, D¢) has already been computed.
This algorithm computes the norm group Ty (L/K) = A (L/K) as a subgroup
of Cl(K); in other words, it outputs an HNF matrix that is the left divisor of
D¢ corresponding to this subgroup.

1. [Initialize] Set n «— [L : K], M « D¢, ® « disc(T), p+ 0, g+ 0,7 « 0.
2. [Finished?] If det(M) = n, output M and terminate the algorithm.

3. [Next p] If ¢ < g, set i « i + 1. Otherwise, replace p by the smallest prime
number strictly greater than p. Using [CohO, Algorithm 6.2.9], factor pZ g into
a power product of prime ideals (p;)1<i<g (the exponents e; are irrelevant),
and set ¢ « 1. Finally, set p « p;,.

4. [Factor pZy) f p | @ or p | m, go to step 3. Otherwise, let T(X) =
[Ticj<o T;(X) be the factorization of T'(X) into distinct, monic, irreducible
polynomials in (Z g /p)[X]. There will be no repeated factors, and all the T;
will have the same degree; call it f.

5. [Compute discrete logarithm] Let L be the discrete logarithm of p on the given
generators of Cl,(K), computed using Algorithm 4.3.2. Set M equal to the
Hermite normal form of the horizontal concatenation (M|fL) of M with the
one-column matrix (fL), and go to step 2.

Proof. We note that fL as computed in step 5 is the discrete logarithm of
pf on the generators C. Hence by Theorem 3.4.4, it corresponds to an element
of the norm group Tiw (L/ K) expressed on the generators. Thus, the successive
matrices M represent successively larger subgroups of Cly,(K) (equivalently,
det(M) decreases), all contained in the norm group. Since we know that the
norm group is generated by the pf, we will obtain the norm group after a
finite number of steps, characterized by det(M) = [L : K] = n by Proposition
4.1.6 (3). O

Remark. In step 4, we have removed prime ideals p such that p |  and
p | m. This has two purposes. First, it removes prime ideals dividing m and in
particular ramified prime ideals, which is necessary for Theorem 3.4.4. But
also, p will not divide the index (vp(d) = vy (0(L/K)) = 0), so we are in
the easy case of Algorithm 2.4.13, where we simply need to factor T(X) in
(Z k/p)[X]. In fact, since we need only to compute the common degree f of
the irreducible factors of T, we can simply use the distinct degree factorization
algorithm [Coh0, Algorithm 3.4.3], where we replace p by ¢ = |Z g /p| without
actually finding the factors.
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It is now easy to compute the conductor of a finite Abelian extension
L/K.

Algorithm 4.4.4 (Conductor of an Abelian Extension). Let L/K be an

Abelian extension defined by an irreducible monic polynomial T' € Zk[X]. This

algorithm computes the conductor f(L/K) and the corresponding norm group

Ty(L/K) = A{(L/K).

1. [Compute ?(L/K)] Using Algorithm 2.4.9 and its subalgorithms, compute the
relative discriminant ideal 9(L/K).

2. [Compute ramified real places] Set my, + @, and for each real embedding o;
of K, using Sturm's algorithm ([CohO, Algorithm 4.1.11]) test whether T'?* has
only real roots. For each ¢ for which this is not the case, set mq, + m, U{0;}.

3. [Compute norm group] Set m « d(L/K)m,. Using Algorithm 4.4.3 above,
let C « T (L/K).

4. [Compute conductor] Using Algorithm 4.4.2, compute the conductor (f, CF;)
of (m,C), output f(L/K) « f, T{(L/K) + CPF;, and terminate the algo-
rithm.

Proof. Since m as defined in the algorithm is a multiple of the conductor,
the algorithm’s validity is a simple consequence of the (deep) result asserting
that the conductor of a congruence subgroup (m, C) is equal to the conductor
of the corresponding Abelian extension L/K (Theorem 3.4.6). o

Remark. We could modify the algorithm by taking disc(T) instead of
9(L/K), which avoids the round 2 algorithm, at the cost of more class group
computations in step 4. Hence, it is not clear whether this gives any improve-
ment.

It is interesting to note that the above algorithms can also be used as an
efficient test to determine whether or not an arbitrary extension of number
fields L/ K is Abelian. For this, we must first modify Algorithm 4.4.3 so that
it can still work for an arbitrary extension.

Algorithm 4.4.5 (Norm Group or Non-Abelian Extension). Let L/K be
an extension of number fields defined by an irreducible monic polynomial T' €
Zk[X]. Let m be a modulus of K known to be a multiple of the conductor of
L?*? /K, where L® is the maximal Abelian subextension of L/ K. We assume that
the SNF of the ray class group Cln(K) = (C, D¢) has already been computed.
This algorithm either outputs a failure message indicating under the GRH that
L/K is not Abelian or unconditionally computes the norm group T (L/K) =
An(L/K) as a subgroup of Cly,(K). In other words, it outputs an HNF matrix
that is a left divisor of D¢ corresponding to this subgroup.

1. [Initialize] Set n «— [L : K], M « D¢, ® « disc(T), p+ 0,9 < 0,i+ 0
and B « (4log(|d(L)|) + 2.5[L : Q] + 5)2.
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2. [Finished?] If p > B, do as follows. If det(M) # n, output a failure message
(L/K is not an Abelian extension), while if det(M) = n, output M. In either
case, terminate the algorithm.

3. [Next p] If i < g, set i « @ + 1. Otherwise, replace p by the smallest prime
number strictly greater than p. Using [CohO, Algorithm 6.2.9], factor pZ g into
a power product of prime ideals (p;)1<i<, (the exponents e; are irrelevant),
and set ¢ + 1. Finally, set p « p;.

4. [Factor pZy) f p | D or p | m, go_to step 3. Otherwise, let T'(X) =
[1,<;<, T5(X) be the factorization of T'(X) into distinct, monic, irreducible
polynomials in (Z g /p)[X]. There will be no repeated factors. If all the T; do
not have the same degree, then output a failure message (L/K is not a nor-
mal extension) and terminate the algorithm. Otherwise, let f be the common
degree of the T}.

5. [Compute discrete logarithm] Let L be the discrete logarithm of p on the given
generators of Cl,(K), computed using Algorithm 4.3.2. Set M equal to the
Hermite normal form of the horizontal concatenation (M|fL) of M with the
one-column matrix (fL). If det(M) < n, output a failure message (L/K is
not an Abelian extension) and terminate the algorithm; otherwise go to step
2.

Proof. As this algorithm is essentially identical to Algorithm 4.4.3, we
need only to discuss the cases of failure. If the failure occurs in step 4 or
in step 5, then we can unconditionally assert that the extension L/K is not
Abelian (and even not normal if the failure is in step 4). If the failure occurs
because p > B in step 2, the situation is different.

A result of Bach and Sorenson [Bac-Sor| implies that, under the GRH,
the norm group will be generated by prime ideals of norm less than or equal
to the bound B computed in step 1. Thus, if the GRH is true, the primes
up to the bound B are sufficient, and hence the algorithm is correct as is
(and the extension is Abelian if det(M) = n). Thus, the correctness of the
algorithm is unconditional for the failure in steps 4 and 5 and is valid only
under the GRH for step 2. If we do not want to assume the GRH, we can
increase the bound B, but as usual we will have a much larger bound, of the

order of |d(L)|*/%. u]

The modification of Algorithm 4.4.4 is now immediate.

Algorithm 4.4.6 (Is an Extension Abelian?). Let L/K be an extension of

number fields defined by an irreducible monic polynomial T € Zg[X]. This

algorithm determines under the GRH whether or not L/ K is an Abelian extension.

If it is, it computes the Galois group G(L/K), the conductor f(L/K) and the

corresponding norm group T{(L/K) = A;(L/K).

1. [Compute ?(L/K)] Using Algorithm 2.4.9 and its subalgorithms, compute the
relative discriminant ideal 9(L/K).
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2. [Compute ramified real places] Set my, + &, and for each real embedding
o; of K, using Sturm’s algorithm ([CohO, Algorithm 4.1.11]) test whether
T°: has only real roots. For each ¢ for which this is not the case, do as
follows. Test whether all the roots are nonreal. If at least one root is real,
L/K is not a normal extension, so terminate the algorithm. Otherwise, set
Moo Moo U {0}

3. [Compute norm group] Set m + 3(L/ K )myo. Using Algorithm 4.3.1 compute
the ray class group Cl,(K), then execute Algorithm 4.4.5 above. If the al-
gorithm fails, L/K is not an Abelian extension, so terminate the algorithm.
Otherwise, set C «+ T,(L/K) as computed by the algorithm.

4. [Compute conductor] Using Algorithm 4.4.2, compute the conductor (f, C F;)
of (m,C), output a message saying that L/K is Abelian with Galois group
isomorphic to Clwm(K)/C, output f(L/K) « f and T;(L/K) + CP;, and
terminate the algorithm.

This algorithm thus gives an answer to the question of whether or not
L/K is Abelian, sometimes unconditionally (steps 4 and 5 of Algorithm 4.4.5
or step 2 of the above algorithm), and sometimes conditionally under the
GRH (step 2 of Algorithm 4.4.5). Since we can have good confidence in the
validity of the GRH, if the result is conditional, we can assume that the
conclusion of the algorithm is probably true and then proceed to prove it
using other methods.

Finally, recall that Proposition 3.5.8 and Theorem 3.5.11 give us efficient
formulas allowing us to compute the signature and the relative or absolute
discriminant of L/K. Thus, by far the most important point that we have
not solved is the computation of an explicit relative (or absolute) defining
polynomial for the Abelian extension L/K corresponding to the (equivalence
class of the) congruence subgroup (m, C). This will be considered in Chapters
5 and 6.

4.4.3 Conductors of Characters

The formulas given in Theorem 3.5.11 have the great advantage that we do
not need to compute the conductors of individual characters. In this subsec-
tion, we explain how to do this if these conductors are really needed.
Let
Clun(K) = (G,Dg) = P (2/diZ)g;
1<i<k
be the SNF of Cln(K). Denote by (,, the specific primitive nth root of unity
exp(2im/n) and let ¢ = (4, (recall that d; divides d; for all ¢). A character x
is uniquely defined by a vector (a1, ...,ax) with a; € Z/d;Z, so that

x(H o) = [[m = @i
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By definition, the conductor of x is equal to the conductor of the congruence
subgroup C = Ker(x). Since this is a congruence subgroup, we can use the
above methods to compute its conductor. The only problem is to put this
group into an algorithmic form, in other words to compute the matrix H
associated to C' by Proposition 4.1.6.

We have X(]'[i 97 ) = 1 if and only if there exists an integer y such that

zj—iail‘i +diy=0.

This is an instance of the integer kernel problem. We have seen in [CohO,
Section 2.4.3] and in Section 4.1.6 how to solve it. In the present case, this
gives the following.

Set b; = (d1/di)ai, and let B = [by,...,bk,d1], considered as a one-row
matrix. Using the Hermite normal form algorithm, we can compute a uni-
modular matrix U such that BU = [0,..., 0, d] for some d (equal to the GCD
of the entries of B). Write in block matrix form U = (tﬁ ) where U is
a k x k matrix, V is a one-column matrix, and R is a one-row matrix. The
column vectors X = (z;) such that there exists a y satisfying our equality
above are then exactly the Z-linear combinations of the columns of the ma-
trix U;. This means that the kernel of x is defined by the matrix Uy, or if we
want it in normalized form, by the HNF of (U;|Dg). We can then compute
the conductor as usual.

Formally, this can be written as follows.

Algorithm 4.4.7 (Conductor of a Character). Let

Cln(K) = (G,Dg) = P (2/diZ)g:

1<i<k

be the SNF of the ray class group Cl,(K), and let x be a character defined by

x(IT; ¢7*) =I1;¢3:™*- This algorithm computes the conductor of x (which is a

modulus of K).

1. [Apply HNF] For all ¢ < k, set b; + (d1/di)ai, and set B « (by,...,bk,d1),
considered as a one-row matrix. Using the HNF algorithm, find a unimodular
matrix U such that BU = (0,...,0,d).

2. [Compute H] Let U; be the upper-left k x k submatrix of U, let H be the
HNF of (U1|Dg). and call C the corresponding congruence subgroup.

3. [Terminate] Using Algorithm 4.4.2, compute the conductor f of the congruence
subgroup (m, C), output f, and terminate the algorithm.

4.5 Exercises for Chapter 4

1. Using Algorithm 4.1.11, give an algorithm for computing the group Um(K) of
units congruent to 1 (mod *m) as a subgroup of U(K).
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2.
3.

0o

10.

11.
12.

13.
14.

15.
16.

17.

18.

Prove the validity of the remark made after Algorithm 4.1.8.

Let B = (B,Dg) and C = (C, D¢) be two known Abelian groups in SNF, let A
be a subgroup of C given by a left divisor Hc of D¢, and let ¢ be an effective
group homomorphism from B to C/A. Show that we can use Algorithm 4.1.11
to compute Ker(¢) ifin step 1 we simply replace ¢(B) = C P by ¢(B) = n(C)P,
where 7 denotes the canonical surjection from C to C/A.

. Let B= (B, D) and C = (C, D¢) be two known Abelian groups and let ¢ be an

effective group homomorphism from B to C. Give an algorithm for computing
the cokernel of ¢, in other words the quotient C/¢(B).

. With the notation of Lemma 4.1.12, give an explicit formula for U ! in terms

of the block matrix decomposition of U™".

. With the notation of the proof of Algorithm 4.1.13, show that if ¥(a) = BY,

the vector Hg'Y has integral entries.

. Prove the validity of Algorithm 4.1.14.
. Prove the validity of Algorithm 4.1.15.
. Let D¢ = diag(cy,-..,cn) be a diagonal matrix in SNF, and let H = (e;,;) be

an n X n matrix in HNF.
a) If n = 2, show that H is a left divisor of D¢ if and only if e;,; | ¢i for
i=1and i = 2, and if e1,2 = kei1,1/gcd(e1,1,c2/e2,2) with 0 < k <

gcd(el,1,02/62,2).
b) If n > 3, show that for all i < n we must havee;; |ci, and for alli < n

eii+1 = 0 (mod eii/ ged(eii, Cit1/€it1,i41))
but that these conditions are not sufficient.

Write and implement a formal algorithm for computing all subgroups of a given
algorithm using Birkhoff’s Theorem 4.1.18. In particular, determine whether it
is more efficient to choose first the y; and then the permutation, as written in
the text, or to do the reverse.

Prove Proposition 4.1.19.

Give a complete description of the subgroups of index n of a given Abelian group,
in the style of Proposition 4.1.19, for n = 4 and n = 6, and more generally for
n = p? and n = pg when p and g are primes, and write the corresponding
algorithms analogous to Algorithm 4.1.20.

Prove the validity of Algorithm 4.1.21.

Write an algorithm for solving a mixed system of linear equations and linear
congruences by first solving the linear equations, and plugging the result into
the linear congruences, instead of using Algorithm 4.1.23 given in the text.
Compare the efficiency of both algorithms.

Prove the validity of Algorithm 4.1.23.

Extend Proposition 1.2.11 and Lemma 4.2.1 to the case where a and ¢ are
coprime moduli, in other words to thecase where ap+¢p = Zk and 4Nt = 2.
Show that v,(3!) < (i —1)/(p — 1), and determine exactly the cases where there
is equality.

Let a be an integral ideal of a number field K.

a) Show that Zk/a is cyclic if and only if every prime ideal p dividing a has
residual degree equal to 1, every prime ideal p such that p® | a is unramified
and if p and q are distinct prime ideals dividing a, then p and q are not
above the same prime number of Z.



b)

<)

d)
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If K is a quadratic field, show that Zx/a is cyclic if and only if a is
a primitive ideal (in other words, an integral ideal not divisible by an
element of Z other than +1).

Let p be a prime ideal of K, let p be the prime ideal below p, and let
e = e(p/p) and f = f(p/p). Show that (Zx/p*)* is cyclic if and only if
eitherk=1;ork=2and f=10ork>3 e=f=1,andp>3;0rk =3,
f=1e>2,andp=2.

Deduce from this a necessary and sufficient condition for (Zx/a)* to be
cyclic, and specialize to the quadratic case.

19. Extend the table of Proposition 4.2.12 up to k = 9.

20. Let p be a prime ideal above a prime p, of ramification index e = e(p/p) and de-
gree f = f(p/p), and let k > 1 be an integer. Denote by log,(z) = log(z)/ log(p)
the ordinary logarithm of = to base p. Prove the following strengthening of the
first statement of Proposition 4.2.12: the group (1 +p)/(1 + p*) is killed by p*,
where the integer s is given as follows.

a)

o)

Ife<p—1, then
=]
s =
e
If
p-1<e<(p—1)pl* |
then

k— pflos,,(e/(p—n)] : e
°= e +[°g’<p—1)]

Ife > (p — 1)pl°8 *! | then

s = [log, k]

21. Let p be a prime. Define the Artin-Hasse logarithm log, by the formula

a)

p-1 k
log, (1 +z) = Z(—1)‘°'1ik- .
k=1

Using combinatorial identities, show that formally

log, ((1+z)(1+y)) — loga (1 +z) —log,(1 +)

is a polynomial whose nonzero monomials are of the form z™y"™ with m +
n2>p.

Define in a similar manner the Artin-Hasse exponential exp, and prove
its basic properties and relations with log, .

Deduce from this that if a < b < pa and p is an ideal above p, the map
(1 + =) — log,(z) induces a group isomorphism from the multiplicative
group (1+p®)/(1+p®) to the additive group p®/p®, and in particular from
(14+p)/(1+4p?) to p/p” (note that this gives an alternate proof of Corollary
4.2.11 when p > k).

22. Write and implement an algorithm for computing the group (Zx/m)* using
a combination of p-adic logarithm techniques and the induction method, as
suggested after Algorithm 4.2.17.
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23. Assume that e(p/p) = p — 1 as in Proposition 4.2.19. Prove directly that the
exact sequence

1— (14p%)/(L+9") — (1+p)/(L+P") — (L+p)/(1+p") — 1

is split.

24. Prove the validity of Algorithm 4.2.22.

25. Prove the validity of Algorithms 4.3.3 and 4.3.4.

26. Let (m1,C1) and (m2,C2) be two equivalent congruence subgroups represented
by triplets (Gi, D1, H1) and (G2, D2, H2) as explained in the text. Give an
algorithm that computes the GCD (n, C) of these two congruence subgroups in
the sense of Proposition 3.3.9.



5. Computing Defining Polynomials Using
Kummer Theory

Class field theory deals with Abelian extensions of base fields. It gives com-
plete answers to the existence of Abelian extensions with given relative or
absolute discriminants. However, the algorithmic construction of these ex-
tensions is not completely straightforward. There are several ways to do this,
but at present the most efficient general method is the use of Kummer exten-
sions. In the next chapter, we will describe two other methods using analytic
techniques, one using Stark units and Stark’s conjecture, the other using com-
plex multiplication. Both of these methods impose restrictions on the base
field, but when they are applicable they are much more efficient.

5.1 General Strategy for Using Kummer Theory

If we look at the main theorem of Kummer theory (Theorem 10.2.5), we
see that we have at our disposal a powerful tool to construct all Abelian
extensions of a base field with given Galois group G, assuming that this base
field contains sufficiently many roots of unity (more precisely contains (;,,
where n is the exponent of G). To be able to use this, we must in general
adjoin ¢, to the base field K, hence take as new base field K, = K({,), and
use Kummer theory over K,. Once the desired Abelian extension L. /K, is
obtained, we must then come back to the desired Abelian extension L/K,
which can be done using several methods. The aim of this chapter isto explain
all this in great detail.

5.1.1 Reduction to Cyclic Extensions of Prime Power Degree

Let K be a number field, and let (m, C) be a congruence subgroup modulo m,
where we need not assume for the moment that m is the conductor. The aim
of this chapter is to find an explicit defining polynomial for the extension
L/K corresponding to (m,C) by Takagi’s existence theorem in class field
theory. We can easily compute Cly,(K)/C in SNF as

Cln(K)/C =P (Z/cil)ci .

k3
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It is, however, often useful (and, in fact, essential if we use Kummer theory)
to split this group even more into its cyclic components of prime power order.
This is easily done by using the following equality. If d = [], ;< d; with the
d; pairwise coprime, then T

(z/dZ)g= P (Z/d:L)g**
1<i<k

(see Exercise 1), from which it follows that we can write

Cla(K)/C =P P @/pz)c"" .

i p"P ||c,

With a suitable change of notation, we will write this as

Clu(K)/C= P (Z/b;2)b; ,

1<j<s
where the b; are (not necessarily distinct) prime powers.

Proposition 5.1.1. Keep all the above notation. Let C; be the congruence
subgroup modulo m generated by C and by the b; for i # j, and let L; be the
subfield of K(m) corresponding to the congruence subgroup (m,C;) under the
Takagi correspondence.

(1) The group Gal(L;/K) is isomorphic via the Artin map to Cly(K)/C; =
(Z /b;Z)b;, and in particular L;/K is a cyclic extension of prime power
degree b;.

(2) The compositum in K(m) of the L; is equal to the class field L corre-
sponding to the congruence subgroup (m,C).

Proof. By Galois theory we have L; = K (m)A™(C:) hence via the Artin
map, Gal(L;/K) is isomorphic to Clw/C; = (Z/b;Z)bj, so L;/K is a cyclic
extension of prime power degree b;, proving the first statement. Furthermore,
by Galois theory the compositum of the L; in K(m) corresponds to the
congruence subgroup (m, () ; Cj)- But since the only relations satisfied by the

b; in Cln(K)/C are b_,b =1, it follows that b; ¢ C;, hence that N;C;=¢C,
proving the proposition. ]

This proposition can be translated into the following algorithm.

Algorithm 5.1.2 (Splitting Class Field Extensions). Let K be a number field
and let (m,C) be a congruence subgroup modulo m. This algorithm computes a
list of congruence subgroups (m;, C;) of conductor m; dividing m such that the
compositum in K(m) of the class fields L; corresponding to (m;, C;) is equal
to the class field L corresponding to (m,C) and such that the L;/K are cyclic
extensions of prime power degree.
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1. [Initializations] Using Algorithm 4.3.1, compute the SNF (A, D 4) of the ray
class group Cln(K), and let Hc be the HNF matrix defining the congruence
subgroup C on the generators A. Using an SNF algorithm, compute unimod-
ular matrices U; and V; such that Uy Ho Vi = diag(cy,...,cs) is a diagonal
matrix in SNF, possibly with ones on the diagonal, and let r be the largest
index ¢ such that ¢; > 1. Finally, let U be the matrix obtained by keeping
the first 7 columns of Ul‘1 (thus, the ith column U; of U expresses the ith
generator ¢; of Cln(K)/C on the generators A of Cln(K)).

2. [Split the Galois group] For each i < r and each pU#||c;, do as follows.
Let U; , be the matrix obtained from U by replacing the ith column U; by
p*U; mod c;. Compute the HNF H;, of (H¢c|U; p), which corresponds to a
congruence subgroup (m,C} ;) modulo m. Then, using Algorithm 4.4.2, com-
pute the conductor m; , of (m, C] ) and the congruence subgroup (m; », C;,p)
equivalent to (m,Cj ), output the (m; 5, C; p), and terminate the algorithm.

Proof. Write A = (Ef,...,m). Using the remark following Algorithm
4.1.7, we see that the computation done in step 1 gives

Cln(K)/C = P (Z/c)e: ,

1<i<r

where ¢; is given on A by the ith column U; of the matrix U. Since

Z/cZ)= P (@/p*T)'*"

PP ||c,

we see that if we set ¢;, = ¢/ then ¢;p is given on A by (c;/p*)Us.
Thus, as a subgroup of Cly,, the subgroup generated by C' and by all the c; 4
except ¢; p is defined by the HNF of the concatenation of the matrix Hc with
the column vectors U; for j # %, as well as the column vectors (c;/q"*)U;
for ¢ # p. But the GCD of the c¢;/q" for ¢ # p is clearly equal to p'r,
hence the subgroup generated by the column vectors (c;/q"?)U; for q # p is
equal to the subgroup generated by the single vector p*»U;. Thus, the HNF
matrices H; , computed in step 2 correspond to the desired subgroups given
in Proposition 5.1.1, proving the algorithm’s validity. We perform additional
conductor computations at the end, since in most class field computations
it is simpler to start with a congruence subgroup of known conductor, and
since these conductor computations are in any case much faster than the ray
class field computations themselves. O

Remarks

(1) Thanks to this algorithm, we see that we can always reduce to the case
where the desired ray class field extension L/K is cyclic of prime power
degree p", so that the corresponding congruence subgroup (m,C) has
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conductor m with Cly(K)/C cyclic of prime power order. We will make
this assumption when using Kummer theory, but not necessarily when
using other methods.

(2) It is easy to modify the above algorithm if we want a coarser splitting: for
example, if we want to split only according to the c;, instead of the U; p,
for each 7 we use the single matrix U; ¢ obtained from U by removing the
ith column (see Exercise 2).

5.1.2 The Four Methods

From now on, we have a base field K, a congruence subgroup (m,C) of
conductor m such that Cln(K)/C is a cyclic group of order n = ¢" for
some prime number £ Our goal is to use Kummer theory to compute a
defining polynomial for the Abelian extension L/K corresponding to (m, C)
by Takagi’s theorem. We refer to Section 10.2 for detailed proofs of the results
that we will use.

To be able to use Kummer theory, the base field K must contain (,, a
primitive nth root of unity. Thus, we will proceed in two steps. We begin
(if necessary) by adjoining ¢, to K; in other words, we set K, = K((,), we
“lift” the problem to K., and as a first step we must construct a suitable
extension L,/K,. As a second step, we must come back down from L./K,
to the desired extension L/K.

For both steps, there are essentially two methods. Let L/K be a cyclic
extension of degree n = £” for some prime £ corresponding to a congruence
subgroup (m, C) of conductor m, and assume that (, € K. Then by definition
L/K is a Kummer extension. The main theorem of Kummer theory (Theorem
10.2.5) tells us that L = K (@) with ™ = a for some a € Zg. To apply class
field theory to this situation, we have two possibilities.

A first possibility is to use information on the ramification of prime ideals
in L/K and the relative discriminant 3(L/K). Indeed, using Theorems 3.5.3
and 3.5.11, we can easily compute such information from the congruence
subgroup (m, C). To be able to find a suitable a, we need to compute similar
information if the field L is given as L = K(f) as above, using only the
base field K, the degree n = £", and the element @ € Zg. This is quite
a bit harder and in fact can be done in practice only for r = 1, that is,
for cyclic extensions of prime degree. This is exactly the content of Hecke’s
theorem (Theorem 10.2.9). Although any cyclic extension of prime power
degree can be considered as a tower of cyclic extensions of prime degree, the
need to compute in number fields of much larger degree makes this method
unfeasible if £" > 10, say.

A second method, introduced by C. Fieker (see [Fie]), is to use directly
the properties of the Artin map to construct the needed extension L/ K. Of
course, the Artin map contains the ramification and discriminant informa-
tion, but it is in fact richer both in theory and in algorithmic practice. In-
deed, Fieker’s method has several advantages compared to the method using
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Hecke’s theorem. The first and most important one is that it is not limited
to extensions of prime degree, and the second is that it is not difficult to
describe and to implement.

For performing the second step (coming down from the extension L,/K,
to the extension L/K), there are also two methods. Oneisthe use of so-called
Lagrange resolvents, and the other one, also due to C. Fieker, is once again
the explicit use of the Artin map. Since both steps are mostly independent,
the methods may be mixed if desired.

The main disadvantage of Fieker’s methods is the necessity to introduce
large moduli and the corresponding ray class groups (but fortunately not
explicitly the corresponding ray class fields). Thus, although his method for
the first step is usually superior, in some cases and also for the second step
the other methods can be better; hence it is interesting to study all the
methods. In addition, this study introduces some interesting new concepts
such as f-virtual units and the £-Selmer group of a number field.

5.2 Kummer Theory Using Hecke’s Theorem When
¢e€EK

Let £ be a prime number, and let K be a number field such that (; € K.
Hecke’s theorem (see Section 10.2.3) gives us complete information on the
ramification and relative discriminant for cyclic extensions of K of degree £.
In this section, we will show how Hecke’s theorem allows us to find explicitly
the Abelian extension L/K corresponding to a given congruence subgroup
(m,C) by Takagi’s existence theorem and gives us a complete algorithm for
this as long as the degree of L/K is equal to ¢ (see, in particular, Algorithm
5.2.14).

5.2.1 Characterization of Cyclic Extensions of Conductor m and
Degree £

Let m be a modulus, and let C be a congruence subgroup modulo m such
that _
hm,c = |Clw(K)/C| = In/C| = ¢ ,

so that the Abelian extension L/K corresponding to (m,C) by class field
theory is cyclic of degree £.
Definition 5.2.1. For a prime ideal p dividing £, denote by z(p,£) the quan-
tity (
_ ,ep/f)

z(p,ﬁ)--éz_1 +1
(see Theorem 10.2.9). We divide the prime ideals p of K into siz sets, as
follows.
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(1) The set Sm,e,1 (Tesp., Sm,e,2; T€SP., Sm,e,3) is the set of all prime ideals p
of K dividing both m and € and such that vy (m) = 2(p, €) (resp., vp(m) <
z(p)e); resp., 'Up(m) > z(p,ﬁ))

(2) The set Sy (resp., Sm) is the set of all prime ideals p of K dividing £ and
not m (resp., m and not £).

(3) The set Sg is the set of all prime ideals p of K not dividing m or £.

The main result, which is an easy consequence of Hecke’s theorem, is as
follows.

Theorem 5.2.2. With the above notation, the field L = K(/a) with a €
K* ~ K** is a cyclic extension of K of conductor equal to m and degree £ if
and only if the following ten conditions hold.

(1) Sm,l,a =g2.

(2) Ifp € Sm,e,2, then vy(m) # 1 (mod £) and, in particular, vp(m) > 2.
(3) If p € S, then vy(m) = 1.

(4) Ifp € Sme,1, then £ vp(a).

(5) Ifp € Sm,e,2, then €| vy() and the largest k such that the congruence

o = z° (mod p¥»(M+F)

has a solution must be equal to z(p,€) — vp(m).
(6) Ifp € S, then £ | vp(a) and the congruence

o =zt (mod prr(+2(p.0-1)

has a solution.
(7) If p € Sm, then €{vy(a).
(8) Ifp € Sz, then £ | vp(a).
(9) If 0 € meo, then o(a) < 0.
10) If o is a real embedding that is not in me, then o(a) > 0.

Remarks

(1) The first three conditions are only on the modulus m, while the others
are on a.

(2) The last two conditions are used only if £ = 2, since otherwise the condi-
tion (, € K implies that K is totally complex.

Proof. Assume first that L/K is of conductor equal to m. Then by Corol-
lary 3.5.12 (1), we know that 9(L/K) = m{~!, where as usual my is the finite
part of m. By Theorem 10.2.9, we thus have the following.

(1) If £{ vpy(e), then vp(m) = z(p, £).
(2) Ifpf€and €| vy(c), then vp(m) =0.
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(3) Ifp| ¢ p|m, and €| vy(a), then vy(m) =0if a > 2(p,f) — 1, vy(m) =
2(p,€) —a if a < z(p,£), where a is the largest value of k for which the

congruence
z* = o (mod pFtve(e))

has a solution.

By Theorem 10.2.9, we also know that a > 1 and £ { a. Since we want
all the places of K dividing m, and only those, to ramify, this implies im-
mediately all the necessary conditions on a. It also implies that Sy 3 = @.
Finally, the two other conditions (2) and (3) on the modulus m are immediate
consequences of Corollary 3.5.12 (2).

Conversely, let m and o be such that the conditions of the theorem are
satisfied. Let 0’ be the relative discriminant ideal of L/ K, where L = K (/).
Theorem 10.2.9 allows us to compute ¥’ as ' = P, P, P3, where

P = H ple-Dz(p.0) — H ple=Dvs(m)

PESm,e1 PESm,e1
P = H p(l—l)(z(p,l)—(z(p,l)—v,,(m))) - H p(l—l)u,,(m) ,
PESm,e,2, vp(m)22 PESm,e,2, vp(m)>2
P3 — II pl—l .
pESm

The restriction vy(m) > 2 in the product P comes from the fact that, if
vp(m) = 1, then by Theorem 10.2.9, p is unramified.
After simplifications, we obtain ?' = mf)‘l/ P, Ps with

P = H pl~De(M-1)  4nd P = H ptt .
PESm PESm,e,2, vp(m)=1

Conditions (2) and (3) on the modulus imply that Ps = Zg, Py = Zg,
respectively; hence o' = m§~. Since, by Corollary 3.5.12 (1), we also have
o= fé’l, where f is the conductor, we deduce that mg = fo. Finally, the last
conditions on the signatures imply that the ramified real places are exactly
those in m,, so we have my, = foo, hence m = § as desired. 0

5.2.2 Virtual Units and the £-Selmer Group

To use this theorem in practice, we must introduce some notation and defi-

nitions. Let .
CUK)= P (z/diL)a;

1<i<ge

be the SNF of the class group of K, where the a; are ideals of K. If r. is the
largest index such that £ | d;, then we clearly have
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CUK)/CUK) = D (@/tD)a;

1<i<r,

hence r. is the f-rank of the group CI(K). It follows that if I is an ideal of
K, we can wnte I = [lici<r. a; " for 0 < z; < £, where ~ denotes the class
in CI(K)/CI(K)*. Lifting to CI(K), then to the ideals of K themselves, it
follows that any ideal can be written in the form

[[ of with 0<zi<e,
1<i<r,

and the z; are unique.

Note that, thanks to Corollary 1.3.9, we could assume that the represen-
tatives a; of the ideal classes a; are chosen in such a way as to be coprime
with anything in sight, here coprime to £ and m. However, this would be in-
efficient for algorithmic purposes, especially since we will see that we do not
need this hypothesis, so we do not assume that the a; are necessarily coprime

with £ and m.
We define elements a;, 8, of K* and integers p;, for 1 < i < r. and

p €S =S5nUSn,e1 by the following formulas:

Iaf‘:a,-ZK for 1<i<r,.,

p = fByaf H al® forpes .

1<ikr,

We will see in the next section how to compute such elements, but for now
simply note their existence. We may, of course, assume if desired that 0 <
Pip < {for all 4.

Proposition 5.2.3. Let v € K*. The following two properties are equiva-
lent.

(1) There exists an ideal q such that vZk = q°.
(2) The element ~ belongs to the group generated by the units, the a; defined
above for 1 < i <., and the €th powers of elements of K*.

Proof. Since for i < h, we have a;Z k = (a; d/t )¢, it is clear that if y belongs
to the group mentioned in the proposition, then ¥Z g is the £th power of an
ideal. Conversely, assume that YZgx = q°. Then, if q = Bllicicy. 05> we
have yZg = B* 1"[1<1< af®*, hence d; | £z; for all 4, so d; | z; for i > r,
while (d;/£) | z; for ¢ < rc. It follows that

Zx=p" J[ e J[ o
1<i<r, re<i<gc

with n; = z;/d; for i > r. and n; = z;/(d;/{) for i < r, thus proving the
proposition. O
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Note that we have set a;Zg = a:-i' also for ¢ > r., but these a; do not
occur in any of the definitions, only in proofs or in algorithms. In particular,
they are not virtual units in the sense of the following definition. O

Definition 5.2.4. (1) An element v € K* satisfying one of the two equiv-
alent conditions of the above proposition will be called an ¢-virtual unit,
or more simply a virtual unit if there is no risk of confusion.

(2) The set of virtual units forms a multiplicative group, which we will denote
by Ve(K).

(3) The quotient group Vy(K)/K** will be called the £-Selmer group of the
number field K and denoted Si(K).

Proposition 5.2.5. Let r, =11 + 12 — 1 be the rank of the torsion-free part

of U(K). Recall that we denote by r. the €-rank of CI(K). We denote by

(ej)1<j<r. @ system of fundamental units, and by €0 a generator of the group

of roots of unity in K of order w(K).

(1) The quotient group U(K)/U(K)! is a Z/€Z-vector space of dimension
Ty + 1, a basis consisting of the classes of the €; for 0 < j < ry.

(2) The quotient group Ve(K)/K** is a Z/€Z-vector space of dimension 1, =
T. + 714+ 1, a basis consisting of the classes of the ; for 0 < j <ry, and
of the a; for 1 <i<r,.

Proof. Since V;(K) is generated by the o, the €;, and K *¢ we must simply
find the dependencies between the a; and ¢; in V,(K)/K*! as a Z /#Z-vector
space. Hence assume that

0 & I o=
0<j<ru 1<i<rc
for some v € K*. By definition of «;, this implies

din, _ ¢ ;
Hain—7ZK7

1<ilr,

hence b¢ = +*Z = (yZk)* with
b= T[ /o
1<i<re

Thus, b = vZ is a principal ideal; hence d; | (d;/€)n; for 1 < i < r. or,
equivalently, n; = 0 (mod £), so the virtual units ¢; do not enter into our
dependency. Thus, it is enough to prove (1).
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So assume that
[T & =<
J
0<j<ry
for some € € K*. Since € is a root of the monic polynomial X¢ — e = 0 with
coeflicients in Z g, it follows that it is an algebraic integer (see, for example,
[Coh0, Corollary 4.1.5]), and since € € K*, we have € € Zg. Furthermore,
the absolute norm of € is in Z, and its £th power is equal to £1, from which
it follows that A/(¢) = %1, hence ¢ is a unit of K. For future reference, we
isolate this as a lemma.

Lemma 5.2.6. We have U(K)N K** = U(K)".

Thus, if € = [[o<;<,, E?’, we have z; = fy; for j > 1, while 2o = fyo
(mod w(K)). Thus, for j > 1, z; = 0 (mod £) so the fundamental units €; do
not enter into our dependency. Furthermore, since ; € K, we have £ | w(K),
so we also have o = 0 (mod £), proving the proposition. O

Remark. In the case where {; ¢ K which is not considered here, we have
£+ w(K). Hence a primitive w(K)th root of unity is an £-power, so the rank
of U(K)/U(K)! is only equal to ., and that of V,(K)/K*" is equal to r. +7,.

Definition 5.2.7. We will write v; = o; for1 <i<re, and viy,, = €i-1
for 1 < i < ry+ 1. Thus, the v; form a Z/€Z-basis for the €-Selmer group
Ve(K)/K*.

Proposition 5.2.8. We have the following exact sequence:

L w(K) — U(K) 1 o) — )
) (4 CI(K)

Here, p,(K) is the group of £th roots of unity in K, [£] denotes the map that

raises to the (th power (in CI(K) or U(K)), and ¢ is the map that sends the

class of a virtual unit v to the ideal class of the ideal q such that vZg = q°.
In particular, we have the following short exact sequence:

U(K) Ve(K) 2 UK —1 ,

1
- U(K)l - K*l

where CI(K)[€] denotes the subgroup of CI(K) of ideal classes killed by €.

Proof. The proof is straightforward and is left to the reader (Exer-
cise 3). Note also that this proposition shows once again that the £-rank
of Vi(K)/K** is equal to the sum of the f-ranks of U(K)/U(K)* and of
CI(K)/CI(K)*. O
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Remark. We have a very similar situation in the case of elliptic curves
over some fixed number field, say Q. The group of units U(K) is analogous to
the Mordell-Weil group E(Q), the rank r, + 1 of U(K)/U(K)* is analogous
to the rank of E(Q)/¢E(Q), and the rank r. of the ¢-part of the class group
is analogous to the rank of the f-part of the Tate-Shafarevitch group of the
curve. Irefer to [Sil2] for these notions. Thus, it is perfectly reasonable to call
Ve(K)/K** the ¢-Selmer group of the number field K as we have done above.
The above exact sequences are analogs of the corresponding exact sequences
for £-Selmer groups of elliptic curves.

5.2.3 Construction of Cyclic Extensions of Prime Degree
and Conductor m

The following theorem is the basis of our explicit Kummer algorithms when
(e € K.

Theorem 5.2.9. Keep the above notation, and in particular recall that we
write z(p,?) = Le(p/€)/(£—1)+1 and S = S U Sm,e,1-

Let L/K be a cyclic extension of K of degree £ and of conductor equal
to m. Then m satisfies conditions (1), (2), and (3) of Theorem 5.2.2, and up
to Kummer-equivalence, we can choose L = K({/a) with a of the following
form:

ret+rutl
z N,
o=l II .
peES i=1

with the following additional conditions.
(1) Forallpe S, we have 1 < xp <€ —1; for all i, we have 0 <n; < € —1.
(2) Forp € Sm,¢,2, the largest k such that the congruence

zt = o (mod pF+r())

has a solution must be equal to z(p,£) — vp(m).

(3) If S is not empty, we may fix any one (but only one) of the z, equal to
1.

(4) For each p € Sy, the congruence

=a (mod pz(p,l)—1+v,,(¢:\t))

has a solution.
(5) For each i < r., we must have

Z Zppip =0 (mod £) .
peS

(6) For each 0 € my,, 0(a@) < 0, while for each real embedding o ¢ m,, we
have o(a) > 0.
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Conversely, if m satisfies conditions (1), (2), and (3) of Theorem 5.2.2, if
the above conditions are satisfied, and if a # 1, then L = K({/a) is a cyclic
extension of degree £ and of conductor m.

Proof. Since by Theorem 5.2.2, we have Sy ¢3 = &, we can write

oZx=[[v> I v II¥= II ¥ -

peS PESm,e,2 pES: pESS

By Theorem 5.2.2, when p € Spe2, p € Se, or p € Sz, we must have
¢ | vp(a) = zp. By the approximation theorem, we can find v € K* such
that vp(y) = —zp/L for p € Sme2 and p € Se, vp(y) = —|zp/€] for p €
S = Sm U Sm,e,1, and no special conditions for p € Sp. Since a is Kummer-
equivalent to ay¢, we may thus replace a by av%, hence for this new a we
will have z, =0 forp € Sme2andp € Sg, andalso1 <z, <€—1forpe S
(since by Theorem 5.2.2 we must have £ { vp(a) for p € S). To summarize,
up to Kummer-equivalence, we have

aZkx =4 [ p> ,
pes

where q is an ideal coprime to m and £.
Replacing the prime ideals p € S by their expressions in CI(K)/CIl(K)¢,

we obtain
z )
aZx=af [[8° [ o .

peS 1<i<r,

Yi = Z TpPip

peES

with

and some other ideal q; (this time not necessarily coprime to m and £).
In the quotient group CI(K)/CI(K)*, we thus have

H a,-':l,

1<i<r,

and since the a; form a Z /€Z-basis, we have £ | y; for each i such that
1 <1 < r.. Thus, we have shown that

aZk = a5 [[ 87

pes

for some ideal q5.
Since q4 is both a principal ideal and the £th power of an ideal, by Propo-
sition 5.2.3 it is of the form vZ g for v € V;(K), showing that « is of the form

given in the theorem.
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We have seen that 1 <z, < £—1 and that for 1 <i < r., we must have

peS

Up to Kummer-equivalence, we may of course also choose 0<n; < ¢— 1.

Finally, in the condition of Kummer-equivalence, we are allowed another
degree of freedom in addition to multiplying by an £th power: we may also
raise a to some power coprime to £. If S is nonempty, this can be used to
fix one (and only one) of the x, equal to 1, since we know that they are not
divisible by £.

The other conditions of the corollary follow immediately from Theorem
5.2.2, and hence we have proved that all the conditions of the corollary are
necessary.

Let us prove the converse. Assume that all the conditions are satisfied.
Since by definition,
£ i,
p = ﬂp% H a-xj) ° I

1<ilr,

it follows that for any prime ideal q, we have

Vq(Bp) = 0p,q — Z PipVp(a;) (mod ¢) ,

1<i<r,

where dp 4 is the Kronecker symbol. In addition, for 1 < ¢ < 7., we have
vg(a;) = divg(a;) = 0 (mod £). Thus, for any prime ideal q we have

vg(@) =D 2pUq(B) = D Tpbpa— Y vp(a:) D Tppip (mod £ ;

peS pES 1<i<r. peS

hence by condition (5), we have vq(a) = 0 (mod £) if q ¢ S, while vg(a) =
zq # 0 (mod ¢) if q € S by condition (1). This and the other conditions imply
that all the conditions of Theorem 5.2.2 are satisfied. To finish the proof, we
must show that a ¢ K *!_Indeed, if @ is an £th power, then S = & (otherwise
zp = 0 (mod ¢)); hence a is a virtual unit that is equal to an th power of
an element. It follows from Proposition 5.2.5 that n; = 0 for all 7, hence that
a = 1, contrary to the assumption of the theorem. O

The conditions of the theorem already restrict a to a finite set of cardi-
nality at most equal to (£ — 1)!Sl¢m. If o belongs to this finite set, we will
know that L, = K(/a) is a cyclic extension of degree ¢, conductor m, hence
relative discriminant 9(L/K), and correct signature. Of course, there may be
several fields L, satisfying all these conditions. To terminate, we compute
the norm group for each of the possible a in our finite set, and exactly one
will be equal to (m,C). The a we find are in one-to-one correspondence with
congruence subgroups (m,C) such that m is the conductor of (m,C).
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5.2.4 Algorithmic Kummer Theory When ¢, € K Using Hecke

In this section, we simply put in formal algorithmic form the results of the
preceding sections. We assume as above that K is a number field and that ¢
is a prime number such that {, € K.

We keep the notation of the preceding section. In particular, if

CiK)= P (z/dZ)a;

1<i<ge

is an SNF for the class group CI(K), we set a* = a;Z, and 7. denotes the
largest index such that £ | d;, in other words the ¢-rank of Cl(K).

The elements a; that are needed to use Theorem 5.2.9 are found by di-
rectly using the principal ideal algorithm ([Coh0, Algorithm 6.5.10]). For the
integers p; , and the elements (3, we use the following general algorithm.

Algorithm 5.2.10 (Decomposition of an Ideal in CI(K)/CI(K)*). Keep the
above notation and let b be an ideal of K. This algorithm computes 8 € K* and
integers b; such that there exists an ideal q (which is not computed) such that

b=23q" [[ o

1<i<r,

1. [Use principal ideal algorithm] Using [CohO, Algorithm 6.5.10], compute a and
integers b; such that b = o[, ;,. abi.

2. [Compute a; for i > 7] Using the same algorithm, for each ¢ such that
re. <1< g., compute a; € K such that af‘ = a;Zk.

3. [Compute 3] For each i such that r. < i < g (equivalently, such that £ d;),
using Euclid’s extended algorithm, compute an integer u; such that u;d; = 1

(mod £), set
ﬂ “—a H a?,u.modl ,
re<i<gc

output 3 and the b; for i < 7., and terminate the algorithm.

Proof. Note that for i > . we have (d;, £) = 1; hence by Euclid’s extended
algorithm, we can find u; and v; such that u;d; + v;€ = 1. It follows that for
1 > T, we have

b, _ _ub, £ . L b,
a =a;°q; with g; =aqa; ,

which shows the algorithm’s validity. O

Remark. Since we will in practice apply this algorithm for many ideals
b, we compute the a; and u; once and for all. Please recall once again that
the a; for ¢ > r. are not ¢-virtual units.

When we apply this algorithm to b = p, we obtain an element 3, = 3,
exponents p; , = b;, and an ideal qp = q. Since the ideals q, play no practical
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role (although we must keep them for the theoretical analysis), while the 3,
are essential, it is useful to choose 3, as simple as possible. Indeed, we have
some freedom in choosing §,. By definition, we may replace 8, by any 3,
such that 3,/8p is the £th power of an ideal and not only of an element
(since this simply changes the ideal qp); in other words, we may multiply 5,
by any virtual unit if desired. This can be done in several ways, which are
rather technical, so we will not give any details here, but simply note that in
practice this reduction should be attempted.

To be able to give an algorithm corresponding to Theorem 5.2.9, we must
explain how to check whether or not a congruence of the form

z* = o (mod pktvr(®))

has a solution, where it is known that £ | vy(a). For this, it is useful to gen-
eralize the notion of discrete logarithm in (Z g/m)* to elements not coprime
to m.

Definition 5.2.11. Let m = mgm, be a modulus and let mg = H p*e be the
factorzzatmn of mg into prime ideals. For each p | mg, let mp be an element
of p \ p? not belonging to q for any prime ideal q | mg different from p, and

let
(Zx/m)" = D (@/ciT)g:
1<i<s
be the SNF of (Zx/m)*. If o € K*, we say that ((vp),(a1,---,as)) is a
discrete logarithm for a with respect to the generators g; and the uniformizers

mp if
a=8[[=" I o
b

1<i<s
with 8 =1 (mod *m).
Remarks

(1) A discrete logarithm always exists. Indeed, we must take v, = v,(c)
for all p | m. Then /], m,” is coprime to m; hence its usual discrete
logarithm in (Z g/m)* is well-defined.

(2) It is also clear that if ((vy),(a3,.-.,a;)) is another discrete logarithm,
then v, = vy = vy(a); hence for all i we have a; = a; (mod c;).

(3) If m = p*, we evidently have

a=m’ H g2 (mod pF+ve(®)y
1<i<s
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The following proposition easily answers our congruence problem.

Proposition 5.2.12. Let p be a prime ideal, let k > 1 be an integer, and let
(Zk/p*)* = @1<ics(Z/ciZ)g; as above. Let t be the largest indez i such that
€| ci. If a € K*, the congruence

z° = a (mod *pFtve(®))
has a solution if and only if
(vp,(a1,--.,a¢)) =0 (mod ¥¢) ,
where (Vp, (a1,...,as)) s the discrete logarithm of a as defined above.

Proof. Write & = 8mp” [11cic, 95" and @ = ym)’ [, i, 95 as above.
Since k > 1, ¢ = a (mod p""“TP) implies that v, = w¢, hence that vp =0
(mod £). In addition, since 3 = v = 1 (mod *p*), we must have a; = £z;
(mod ¢;) for all 7. For i < ¢, the existence of z; is equivalent to £ | a;, while
for i > ¢, z; always exists since ¢; is coprime to £, proving the proposition. 0O

This leads us to introduce the following notation.

Definition 5.2.13. Let m be a modulus, let (Zx/m)* = @, c;c,(Z/ciZ)g;
be in SNF, let o € K*, and let ((vp),(a1,--.,as)) be the discrete logarithm
of @ with respect to the generators g; and the uniformizers mp, as defined
above. If t is the largest index (possibly 0) such that £ | c; (so t is the £-rank
of (Zk/m)*), then we set Ly(a) = (ai,...,a:) and call it the short discrete

logarithm of a.

Thus, if we know that £ | v,(a), the above proposition tells us that the
congruence z¢ = a (mod p¥+»(®)) has a solution if and only if Lyx(a) =0
(mod ¢).

Remarks

(1) To compute the short discrete logarithm, we use Algorithm 4.2.24, or
Algorithm 4.2.18 if m is the power of a prime ideal. An important special
case, however, is case (4) of Theorem 5.2.9. We frequently have e(p, £) =
£ — 1, hence z(p,£) —1 = £, and so we may apply Proposition 4.2.19
instead of the general algorithm.

(2) It is important to use the short discrete logarithm in order to find suit-
able elements satisfying our congruence conditions (see steps 6 to 8 of
Algorithm 5.2.14 below). If, however, we only need to test whether a con-
gruence ¢ = a (mod p*+v#(%)) has a solution for a given a, it is probably
faster to use the methods explained in Section 10.2.4.

We can now give the complete algorithm for computing explicitly the
Abelian extension L/K using Hecke’s theorem when (; € K.
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Algorithm 5.2.14 (Kummer Extensions of Prime Degree When (; € K
Using Hecke). Let K be a number field and £ be a prime number such that
(¢ € K. We assume that the groups CI(K) and U(K) have been explicitly
computed, as well as the a; for 1 < i < r. (using the above notation). As above,
let (vi)i<i<rc+r.+1 be a generating set for the group of virtual units V,(K)
(modulo fth powers) generated by U(K) and the ;. Let m be an arbitrary
modulus of K. This algorithm outputs defining polynomials for all the Abelian
extensions L/ K of degree £ and of conductor equal to m.

1. [Factor m and £] Using Algorithm 2.3.22 (in the absolute case), find the prime
ideal factorization of the finite part of the modulus mg = lemo p"v(“‘f’), and

using [Coh0, Algorithm 6.2.9], compute the prime ideal factorization of £Z k.

2. [Compute sets of prime ideals] Compute the finite sets Sy, Se, and S ¢, for
i = 1,2, 3 according to Definition 5.2.1.

3. [Test conditions on m] If S 3 # @, or if there exists p € Sm ¢,2 such that
vp(m) =1 (mod £), or if there exists p € Sy, such that vy (m) > 2, there are
no suitable Abelian extensions L/ K, so terminate the algorithm.

4. [Compute 3, and p; p] Using Algorithm 5.2.10, for eachp € S = S USm 2,1,

compute B, € K* and integers p;, such that for some ideal q, we have
— /4 Di,p
P = Bpa, 1<i<rc % -

5. [Introduce notation] (This is a notational step, not really anything to be

done.) To ease notation, set r, — 7. +r,+ 1, and for 1 < j < r, let v;
be virtual units such that the (v; 1<j<r, fOrm a Z/#Z-basis of Vi(K)/K**
as in Definition 5.2.7. For 1 < j < s, let p; be the prime ideals in S, set
Vjgr, & Bp, for 1 <j <s, and set ry, + s+, (this will be the number of
columns of a matrix that we will construct).
On the other hand, let (m;);<i<m be the following moduli (in any order):
p= PO~ (™) for p € S o2, p?PD 1 for p € Sp; and in the case £= 2, m/_,
complement of m, in the set of real places. Finally, set R + m + r., where
m is the number of moduli just computed (this will be the number of blocks
of rows).

6. [Compute discrete logarithms] Using Algorithms 4.2.17 and 4.2.18, compute
the SNF of (Zx/m;)* as well as Ly, (v;) and L, (By,,) for all i such that
1<i<m,forall jsuchthat1 < j <r,, and for all j' suchthat1 < j' <s.

7. [Create big matrix] Construct a matrix M as follows. Let M; be the jth col-
umn of M. Then M; is obtained by concatenating the Ly, (v;) for 1 <i <m
(considered as column vectors), together with the zero vector with r. com-
ponents if j < r,, or with the r.-component column vector (p;p,_,. )i<i<r.
if ry < j < Tw. Finally, denote by M the matrix M reduced modulo ¢,
considered as a matrix with entries in Z /£Z.

8. [Compute kernel] Using [CohO, Algorithm 2.3.1], compute the kernel K of the

matrix M as a Z /€Z-vector space. If this kernel is reduced to {0}, there are
no suitable Abelian extensions L/K, so terminate the algorithm. Otherwise,
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let dg + dim(K’) be the dimension of this kernel, and denote by (K;)1<j<d,
a Z/{Z-basis of K, where the K; are considered as r,,-component column
vectors. Finally, set ¢ « dx.

9. [Compute more discrete logarithms] Let (m;);<i<m’ be the following moduli
(in any order): p*(P:9=v(m+1 for n € S, 4 5: and in the case £ = 2, my,. As
in step 6, compute the SNF of (Zx/m;)* as well as L (v;) and Lm:(By )
for1<i<m'’ 1<j<r,,and1<j <s. Forl<i<m, let M]bethe
matrix with r,, columns, each column containing L (v;) and Lw (B, ,) as
above. Do not put the matrices M/ together by rows as above.

10. [Initialize backtracking] (In what follows, ¢ > 1 and y will be a row vector
with ¢ — 1 components.) Set y « (0, ...,0) (vector with ¢ — 1 components).

11. [Compute trial vector] Let X K.+ ) <;..¥;K;. Apply Subalgorithm
5.2.15 below to see if X corresponds to a suitable Abelian extension L /K. If
it does, set & = [], <<y, v;’ (Where X = (z1,...,2,,)"), and output the
defining polynomial X¢ —a = 0 (do not terminate the algorithm).

12. [Backtracking I] Set i + c.

13. [Backtracking Il Set ¢ « i — 1. If i > 0, go to step 14. Otherwise, set
c+c—1. If ¢ >0, go to step 10; otherwise, terminate the algorithm.

14. [Backtracking Ill] Set y; « y; + 1,andif i <c—1, set y;4y «+ 0. If y; > ¢,
go to step 13; otherwise, go to step 11.

Subalgorithm 5.2.15 (Is X Suitable?). Given a vector X = (z,...,z,,)*
found in step 11 of Algorithm 5.2.14, this subalgorithm determines whether X
corresponds to a suitable Abelian extension L/K. We use all the quantities
computed in the main algorithm.

1. [Test conditions on z;] If any of the z; for r, < ¢ < 7, is equal to zero
modulo ¢, X is not suitable, so terminate the subalgorithm.

2. [Test m!] For 1 < i < m/, compute Y; « M/X. If for any ¢ we have Y; =0
(mod ¢), then X is not suitable. Otherwise (in other words, if for all z < m’
we have Y; # 0 (mod £)), X is suitable. Terminate the subalgorithm.

Proof. Although the algorithm looks complicated, it is very little else than
the exact algorithmic translation of Theorem 5.2.9. Thus, we simply make a
few comments. We first want the modulus to satisfy conditions (1), (2), and
(3) of Theorem 5.2.2. This is ensured by step 3. If

_ n; Tp
a= H ] Hﬂv )

1<j<ry pES

we want a number of congruences and noncongruences to be satisfied, as well
as conditions on the z,. If we set X = (ny,...,nr,,Zp,,...,Tp,)", then it is
easily seen that X € Ker (H) is equivalent to the congruences that a must
satisfy, together with the conditions v, (a) = 0 (mod £) for p € S, and so to
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condition (5) of Theorem 5.2.9. Thus, at the end of step 8, all the elements
X of the kernel K correspond to elements «a satisfying the congruences.

We must now add some negative conditions: the noncongruences satis-
fied for prime ideals p € Sn,e,2, for o € my, and the conditions z, # 0
(mod ¢£) for p € S. Instead of leading to the intersection of subspaces as be-
fore, this corresponds to the intersection of complements of subspaces. This
is no longer linear algebra, and there does not seem to be any better method
than complete enumeration, which at this stage should be rather short.

This is achieved by a standard backtracking procedure (steps 10 to 14),
and the negative conditions for each trial vector are tested in Subalgorithm
5.2.15. Note that condition (3) of Theorem 5.2.9 (the possibility of setting
some zp, = 1 if S # &) was included only to make the search faster by deho-
mogenizing the solution to the congruences, which is allowed up to Kummer-
equivalence. In the above algorithm we proceeded differently (and more ef-
ficiently if S = @): if X = ), ;.. ¥:Ki, we ask that y; = 1 for the largest
index i such that y; # 0 (see also remark (3) below).

In Subalgorithm 5.2.15, we must also ensure that a ¢ K*‘. By Theorem
5.2.9, it is sufficient to ensure that a # 1, and this is indeed excluded by our
backtracking procedure. ]

Remarks

(1) By Proposition 3.3.12, we know that m must be a modulus for the con-
gruence subgroup Pr, hence we can begin by checking that hy/p < Am
for all places p dividing m, since if this not the case, there are no suitable
extensions L. Computing hy and all the hy/, may, however, be costly,
so it is not certain that this is worthwhile.

(2) Instead of putting all the discrete logarithm data into a big matrix, we
could also consider computing the product of all the prime ideal powers
modulo which congruences have to be taken, and compute a single dis-
crete logarithm. This would almost certainly be slower than the method
given above.

(3) The algorithm given in [Coh0, Algorithm 2.3.1] gives a basis of the kernel
in column echelon form. If S # &, the last coordinate of the vector X is
one of the z, and hence must be nonzero, so in step 13, when ¢ gets down
to zero it is not necessary to continue the backtracking with ¢ « ¢ — 1,
since all subsequent vectors X will be excluded by the subalgorithm.
We could have included this remark explicitly in the algorithm, but its
validity would then have been dependent on the algorithm chosen for
computing the kernel in step 8.

We thus have finished our description of algorithmic Kummer theory when
¢e € K using Hecke’s theorem.
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5.3 Kummer Theory Using Hecke When {, ¢ K

In this section, we no longer assume that {;, € K (in fact, we explicitly
assume that ¢, ¢ K), and we want to give an algorithmic description of
cyclic extensions L/K of degree £ and given conductor m.

Our first problem is simply to be able to describe them, in other words,
to give explicit defining polynomials for cyclic extensions of degree £ of K. If
(¢ € K, Kummer theory tells us that any such extension is of the form K (/a)
for some a, but here the situation is less simple. Even after this problem is
solved, we need to control the ramification of prime ideals, and this is difficult
to do directly.

Thus, the only method used in practice is to adjoin to K a primitive £th
root of unity (;, thus obtaining a larger field K, = K({;). We then apply
Kummer theory to the field K, obtaining a cyclic extension L, of K,, of
degree ¢ and having suitable properties, and we finally must go back down
from L, to the desired extension L. We will see in detail how this is done.
Before doing this, however, we recall some basic facts about idempotents.

5.3.1 Eigenspace Decomposition for the Action of 7

We first need a well-known result in Galois theory, which we state as follows
(recall that since we are in characteristic 0, the notions of normal and Galois
coincide).

Proposition 5.3.1. Let L be a number field, let L, and L2 be two exten-
stons of L included in a ﬁzed_ algebraic closure L of L, and let Ly Lo be the
compositum of Ly and L, in L.

(1) If L1/L and Ly /L are normal extensions, then L1Ly/L is also a normal
extension.

(2) IfLy/L and Ly/L are Abelian extensions, then Ly Lo /L is also an Abelian
extension.

(3) Assume only that L /L is a normal extension with Galois group G1. Then
L,Ly /L, is a normal extension whose Galois group Hy can be canonically
identified with a subgroup of G,. Furthermore, H, is isomorphic to G, if
and only if LyN L, = L.

Proof. Let N be the normal closure of Ly L, (or any field containing N
and normal over L), and let G = Gal(N/L) be the Galois group of N/L.
For i = 1,2, let G; = Gal(N/L;) so that G; is a normal subgroup of G with
Gal(L;/L) ~ G/G;. By Galois theory, subfields of N containing both L; and
L, are in one-to-one correspondence with subgroups of G contained in G; NG,
hence Gal(N/L;L;) = G; NG>. Since G; NG, is the intersection of two normal
subgroups, it is also a normal subgroup, hence L; L2 /L is normal with Galois
group isomorphic to G/G; N G, proving (1).
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For (2), note that L;/L is Abelian if and only if zyz—1y~1 = T1in G/G;
for all z, y in G, hence if and only if [G, G] C G1, where [G, §] is the commu-
tator subgroup of G (in other words, L; is a subfield of the maximal Abelian
extension of L included in N). Thus, if L; /L and Ly /L are both Abelian, we
have [G,G] C G1 NGy, so Gal(L;Ls/L) is Abelian, proving (2).

For (3), since G; is a normal subgroup of G, G1 NG, is a normal subgroup

of G3, so
Ga :g1+g2 ngGl 7
G1NGy G G1
showing the result. In addition, we have the isomorphism H; ~ G; if and
only if G; + G2 = G, hence if and only if L; N Ly, = L, as claimed.

More directly, let o € H; and let 7 = 0~ . If s (resp., t) is the restriction
of o (resp., 7) to L1, then sot =tos = Id, hence s and ¢ are automorphisms
of L;. Since o and 7 fix L, pointwise, s and ¢ fix L pointwise, so s € G1, and
thus this defines a canonical map from H;j to G;. If s = Id, then o is the
identity on L; and on L, by assumption, so ¢ is the identity on L, L., hence
o = Id, showing that the map is injective, so H; can indeed be considered
as a subgroup of G;. If, in addition, L; and L. are linearly disjoint over L,
then o can be defined (uniquely) from the knowledge of s and ¢, so our map
is also surjective, and the converse clearly also holds. O

H, ~

We now come back to our specific situation. Let £ be a prime number, let
K be a number field such that {; ¢ K (hence, in particular, £ > 2), and set
K, = K((¢). In the rest of this chapter we choose once and for all a primitive
root go modulo £.

Proposition 5.3.2. The estension K,/K = K(()/K is a cyclic extension
of degree d = (£ — 1)/m for some divisor m of £ — 1 such thatm < £ — 1.
The Galois group Gal(K,/K) is generated by the automorphism 1 of order d
defined by 7({e) = ¢} and 7(x) =z for z € K, where g = g7".

Proof. We apply Proposition 5.3.1 (3) to the case L = Q, L; = Q({e¢), L2 =
K, hence L1L2 = K({¢) = K,. Thus K, /K is normal, and its Galois group
can be identified with a subgroup of Gal(Q({;)/Q) ~ (Z/¢Z)*. Since this is a
cyclic group of order £—1, Gal(K, /K) is a cyclic group of order dividing £—1,
hence of order (£ — 1)/m for some m < £ — 1, since we have assumed (; ¢ K.
Since (Z/£Z)* has a unique subgroup of given order (£ — 1)/m, generated by
g = gg°, the proposition follows. ]

We will denote by G the Galois group of K,/K, so that G = (r) is a
cyclic group generated by T of order d = (£ — 1)/m. The diagram of fields is
as follows:
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L.

/

L £[ (o)

(o) | € K,
d
%:m
K

Let W be an F,-vector space (not necessarily finite dimensional) on which
the group G operates. With our applications in mind, the Abelian group law
of W will be written multiplicatively.

Then 7 € G acts as an endomorphism ¢ of W, of order dividing d. Since
d | (£ = 1) hence is coprime to £, X?¢ — 1 is a squarefree polynomial in F,[X],
hence t is diagonalizable. Furthermore, the eigenvalues of ¢ (in ;) are among
the roots of X¢ — 1 = 0, hence are among the elements of F; which are roots
of this polynomial, and these are the powers of g = gg*. Therefore, we can
write W = @g<rqg Wk, where W, is the eigenspace corresponding to the
eigenvalue g* of T acting on W.

For 0 < k < d, set

er = % Z g"‘“’r“ =-m z g_k“r“ € R[G] .

0<a<d 0<a<d

Lemma 5.3.3. The ex for 0 < k < d form a complete set of orthogonal
idempotents for the action of G. In other words:

(1) if k1 # ko, then ex,ex, =0;

(2) € =ex;

(3) we have ZOSk(d er =1;

(4) we have Texr = gFex.

Proof. The proof is a trivial direct verification: we have

ekl ek, = d2 Zg—(k1a+k2b)7_a+b

a,b

=d2 Z 4 Zg—(k10+k2(14—°))
A a

— Z rhgmhad $° galka=k)
A a

and the inner sum is a geometric series that vanishes if k; # k; and is equal
to d if ks = k;, showing (1) and (2). Statement (3) also follows immediately
by summing a geometric series. Finally,
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Ter = —m Zg"‘“r“‘” =-m Zg‘k(“_l)r" = gker |
a a

proving (4). O

Recall that it is common usage, and very useful, to use exponential no-
tation for the action of group rings, so that if € W and e = ) . 00,

then
zt = H o(z)® .
ceG

Corollary 5.3.4. With the above notation, the eigenspace Wy is equal to
exW ={z*/ z € W}.

Proof. We have
r(z®) =27 = 9 er — peed”

Thus, z¢ € Wy; hence e, W C Wy. It follows that

P ewec P wi=w.

0<k<d 0<k<d

Since the e form a complete set of orthogonal idempotents, we have W =
@Do<rcaerW (since z = [[jcrcq2°*), and so we must have the equality
exW = W, for all k, proving the corollary. o

We will use these results mainly for W = K*/K**, W = U(K.)/U(K.)",
W = Vi(K.)/K:*, and W = CI(K,)/CI(K.,)*. All these groups are F,-
vector spaces that are stable by 7, and hence by G. Indeed, this is clear for
K, the units, and the class group, while for the virtual units it follows from
the characterization of virtual units given in Proposition 5.2.3 as elements
generating the £th power of an ideal.

The basic theorem we will use is the following.
Theorem 5.3.5. Let K be a number field, and let L be a cyclic extension of
K of degree €. Assume that K does not contain (¢, and let K, = K((;) and

L, = L({¢). Let go be a primitive root modulo ¢, letd = [K, : K] = (£—1)/m,
and g = g§* as above. Finally, let W = K} /K:*.

(1) Any a such that L, = K,({/a) belongs to the eigenspace e W = W1 of
W (and such o ezist by Kummer theory).
(2) If L, = K,(6) with 8 = {a as in (1), then L = K(n) with

n="Trr,,L(0)= Z () ,

0<a<d

where T is any extension to L, of the K -automorphism 7 of K ,.
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(3) A defining polynomial for L/ K is given by the polynomial

rpx)= ] (X— Y cgg“ra(o)) € K[X] .

0<j<¢e 0<a<d

(4) We have

E Jai(n) -

0<J<l

(5) Conversely, if we are given a cyclic extension L of K of degree £ by
L = K(n) and if we define 0 by the above formula, then o = 6 € K(()
and a € W1.

Proof. The extensions K,/K and L/K are cyclic and have coprime
degrees, hence by Proposition 5.3.1 L,/K is an Abelian extension and
Gal(L,/L) ~ Gal(K,/K) = (r), and Gal(L./K,) ~ Gal(L/K) = (o) for
some o of order £. For any K-automorphism s of L and K-automorphism ¢
of K,, there exists a unique K-automorphism of L, that extends both s and
t, and it is defined in a natural way.

By a natural abuse of notation, we will denote by 7 the unique K-
automorphism of L, that extends the K-automorphism 7 of K, and is the
identity on L, and similarly we will denote by o the unique K-automorphism
of L, that extends the K-automorphism o of L and is the id