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For Cora
I hope that one day you’re interested enough to read this book,

and I hope it’s successful enough that you have to.



The Purpose of this Book

Linear algebra, more so than any other mathematical subject, can be approached in numerous ways.
Many textbooks present the subject in a very concrete and numerical manner, spending much of their
time solving systems of linear equations and having students perform laborious row-reductions on
matrices. Many other books instead focus very heavily on linear transformations and other
basis-independent properties, almost to the point that their connection to matrices is considered an
inconvenient afterthought that students should avoid using at all costs.

This book is written from the perspective that both linear transformations and matrices are useful
objects in their own right, but it is the connection between the two that really unlocks the magic of
linear algebra. Sometimes, when we want to know something about a linear transformation, the
easiest way to get an answer is to grab onto a basis and look at the corresponding matrix. Conversely,
there are many interesting families of matrices and matrix operations that seemingly have nothing to
do with linear transformations, yet can nonetheless illuminate how some basis-independent objects
behave.

For this reason, we introduce both matrices and linear transformations early, in Chapter 1, and
frequently switch back and forth between these two perspectives. For example, we motivate matrix
multiplication in the standard way via the composition of linear transformations, but are also careful
to say that this is not the only useful way of looking at matrix multiplication—for example, multi-
plying the adjacency matrix of a graph with itself gives useful information about walks on that graph
(see Section 1.B), despite there not being a linear transformation in sight.

We spend much of the first chapter discussing the geometry of vectors, and we emphasize the
geometric nature of matrices and linear transformations repeatedly throughout the rest of the book.
For example, the invertibility of matrices (see Section 2.2) is not just presented as an algebraic
concept that we determine via Gaussian elimination, but its geometric interpretation as linear
transformations that do not “squash” space is also emphasized. Even more dramatically, the deter-
minant, which is notoriously difficult to motivate algebraically, is first introduced geometrically as the
factor by which a linear transformation stretches space (see Section 3.2).

We believe that repeatedly emphasizing this interplay between algebra and geometry (i.e., between
matrices and linear transformations) leads to a deeper understanding of the topics presented in this
book. It also better prepares students for future studies in linear algebra, where linear transformations
take center stage.
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Features of this Book

This book makes use of numerous features to make it as easy to read and understand as possible.
Here, we highlight some of these features and discuss how to best make use of them.

Focus

Linear algebra has no shortage of fields in which it is applicable, and this book presents many of them
when appropriate. However, these applications are presented first and foremost to illustrate the
mathematical theory being introduced, and for how mathematically interesting they are, rather than
for how important they are in other fields of study. For example, some games that can be analyzed
and solved via linear algebra are presented in Section 2.A—not because they are “useful”, but rather
because

• they let us make use of all of the tools that we developed earlier in that chapter,
• they give us a reason to introduce and explore a new topic (finite fields), and
• (most importantly) they are interesting.

We similarly look at some other mathematical applications of linear algebra in Sections 1.B (intro-
ductory graph theory), 2.1.5 (solving real-world problems via linear systems), 3.B (power iteration
and Google’s PageRank algorithm), and 3.D (solving linear recurrence relations to, for example, find
an explicit formula for the Fibonacci numbers).

This book takes a rather theoretical approach and thus tries to keep computations clean whenever
possible. The examples that we work through in the text to illustrate computational methods like
Gaussian elimination are carefully constructed to avoid large fractions (or even fractions at all, when
possible), as are the exercises.

It is also worth noting that we do not discuss the history of linear algebra, such as when Gaussian
elimination was invented, who first studied eigenvalues, and how the various hideous formulas for the
determinant were originally derived. On a very related note, this book is extremely anachronistic—
topics are presented in an order that makes them easy to learn, not in the order that they were studied
or discovered historically.

Notes in the Margin

This text makes heavy use of notes in the margin, which are used to introduce some additional
terminology or provide reminders that would be distracting in the main text. They are most commonly
used to try to address potential points of confusion for the reader, so it is best not to skip them.

For example, if we make use of the fact that cosðp=6Þ ¼ ffiffiffi

3
p

=2 in the middle of a long calculation, we
just make note of that fact in the margin rather than dragging out that calculation even longer to make
it explicit in-line. Similarly, if we start discussing a concept that we have not made use of in the past 3
or 4 sections, we provide a reminder in the margin of what that concept is.

Exercises

Several exercises can be found at the end of every section in this book, and whenever possible there
are four types of them:
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• There are computational exercises that ask the reader to implement some algorithm or make
use of the tools presented in that section to solve a numerical problem by hand.

• There are computer software exercises, denoted by a computer icon ( ), that ask the reader
to use mathematical software like MATLAB, Octave (gnu.org/software/octave), Julia
(julialang.org), or SciPy (scipy.org) to solve a numerical problem that is larger or uglier than
could reasonably be solved by hand. The latter three of these software packages are free and
open source.

• There are true/false exercises that test the reader’s critical thinking skills and reading com-
prehension by asking them whether some statements are true or false.

• There are proof exercises that ask the reader to prove a general statement. These typically are
either routine proofs that follow straight from the definition (and thus were omitted from the
main text itself), or proofs that can be tackled via some technique that we saw in that section.
For example, after proving the triangle inequality in Section 1.2, Exercise 1.2.2.1 asks the
reader to prove the “reverse” triangle inequality, which can be done simply by moving terms
around in the original proof of the triangle inequality.

Roughly half of the exercises are marked with an asterisk (�), which means that they have a solution
provided in Appendix C. Exercises marked with two asterisks (��) are referenced in the main text and
are thus particularly important (and also have solutions in Appendix C).

There are also 150 exercises freely available for this course online as part of the Open Problem Library
for WeBWorK (github.com/openwebwork/webwork-open-problem-library, in the “MountAllison”
directory). These exercises are typically computational in nature and feature randomization so as to
create an essentially endless set of problems for students to work through. All 150 of these exercises
are also available on Edfinity (edfinity.com).

To the Instructor and Independent Reader

This book is intended to accompany an introductory proof-based linear algebra course, typically
targeted at students who have already completed one or two university-level mathematics courses
(which are typically calculus courses, but need not be). It is expected that this is one of the first
proof-based courses that the student will be taking, so proof techniques are kept as conceptually
simple as possible (for example, techniques like proof by induction are completely avoided in the
main text). A brief introduction to proofs and proof techniques can be found in Appendix A.3.

Sectioning

The sectioning of the book is designed to make it as simple to teach from as possible. The author
spends approximately the following amount of time on each chunk of this book:

• Subsection: 1 hour lecture
• Section: 1 week (3 subsections per section)
• Chapter: 4 weeks (4 sections per chapter)
• Book: 12-week course (3 chapters)

Of course, this is just a rough guideline, as some sections are longer than others (in particular,
Sections 1.1 and 1.2 are quite short compared to most later sections). Furthermore, there are numerous
in-depth “Extra Topic” sections that can be included in addition to, or instead of, some of its main
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sections. Alternatively, the additional topics covered in those sections can serve as independent study
topics for students.

Extra Topic Sections

Almost half of this book’s sections are called “Extra Topic” sections. The purpose of the book being
arranged in this way is that it provides a clear main path through the book (Sections 1.1–1.4, 2.1–2.4,
and 3.1–3.4) that can be supplemented by the Extra Topic sections at the reader’s/instructor’s
discretion.

We want to emphasize that the Extra Topic sections are not labeled as such because they are less
important than the main sections, but only because they are not prerequisites to any of the main
sections. For example, linear programming (Section 2.B) is one of the most important topics in
modern mathematics and is a tool that is used in almost every science, but it is presented in an Extra
Topic section since none of the other sections of this book depend on it.

For a graph that depicts the various dependencies of the sections of this book on each other, see
Figure H.

Lead-in to Advanced Linear and Matrix Algebra

This book is the first part of a two-book series, with the follow-up book titled Advanced Linear and
Matrix Algebra [Joh20]. While most students will only take one linear algebra course and thus only
need this first book, these books are designed to provide a natural transition for those students who do
go on to a second course in linear algebra.

Because these books aim to not overlap with each other or repeat content, some topics that instructors
might expect to find in an introductory linear algebra textbook are not present here. Most notably, this
book barely makes any mention of orthonormal bases or the Gram–Schmidt process, and orthogonal
projections are only discussed in the 1-dimensional case (i.e., projections onto a line). Furthermore,
this book considers the concrete vector spaces Rn and C

n exclusively (and briefly F
n, where F is a

finite field, in Section 2.A)—abstract vector spaces make no appearances here.

The reason for these omissions is simply that they are covered early in [Joh20]. In particular, that
book starts in Section 1.1 with abstract vector spaces, introduces inner products by Section 1.3, and
then explores applications of inner products like orthonormal bases, the Gram–Schmidt process, and
orthogonal projections in Section 1.4.
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1. Vectors and Geometry

The power of mathematics is often to change one thing
into another, to change geometry into language.

Marcus du Sautoy

This chapter serves as an introduction to the various objects—vectors, matrices,
and linear transformations—that are the central focus of linear algebra. Instead
of investigating what we can do with these objects, for now we simply focus
on understanding their basic properties, how they interact with each other, and
their geometric intuition.

1.1 Vectors and Vector Operations

In earlier math courses, focus was on how to manipulate expressions involving a
single variable. For example, we learned how to solve equations like 4x−3 = 7
and we learned about properties of functions like f (x) = 3x+8, where in each
case the one variable was called “x”. One way of looking at linear algebra
is the natural extension of these ideas to the situation where we have two or
more variables. For example, we might try solving an equation like 3x+2y = 1,
or we might want to investigate the properties of a function that takes in two
independent variables and outputs two dependent variables.

To make expressions involving several variables easier to deal with, we
use vectors, which are ordered lists of numbers or variables. We say that
the number of entries in the vector is its dimension, and if a vector

The notation a ∈ S
means that the

object a is in the
set S, so v ∈ Rn

means that the
vector v is in the set
Rn of n-dimensional

space.

has n
entries, we say that it “lives in” or “is an element of” Rn. We denote vectors
themselves by lowercase bold letters like v and w, and we write their entries
within parentheses. For example, v = (2,3) ∈R2 is a 2-dimensional vector and
w = (1,3,2) ∈ R3 is a 3-dimensional vector (just like 4 ∈ R is a real number).

In the 2- and 3-dimensional cases, we can visualize vectors as arrows that
indicate displacement in different directions by the amount specified in their en-
tries. The vector’s first entry represents displacement in the x-direction, its sec-
ond entry represents displacement in the y-direction, and in the 3-dimensional
case its third entry represents displacement in the z-direction, as in Figure 1.1.

The front of a vector, where the tip of the arrow is located, is called its
head, and the opposite end is called its tail. One way to compute the entries
of a vector is to subtract the coordinates of its tail from the corresponding
coordinates of its head. For example, the vector that goes from the point

© Springer Nature Switzerland AG 2021
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2 Chapter 1. Vectors and Geometry

v = (3,2)

x

y

0 1 2 3

0

1

2

v = (3,2) R2

x

y

z

0

1

1
2

3

1

2

v = (1,3,2)

v = (1,3,2) R3

Figure 1.1: Vectors can be visualized as arrows in (a) 2 and (b) 3 dimensions.

(−1,1) to the pointSome other books
denote vectors

with arrows like~v, or−→
AB if they wish to

specify that its tail
is located at point

A and its head is
located at point B.

(2,2) is (2,2)− (−1,1) = (3,1). However, this is also the
same as the vector that points from (1,0) to (4,1), since (4,1)− (1,0) = (3,1)
as well.

It is thus important to keep in mind that the coordinates of a vector specify
its length and direction, but not its location in space; we can move vectors
around in space without actually changing the vector itself, as in Figure 1.2.
To remove this ambiguity when discussing vectors, we often choose to display
them with their tail located at the origin—this is called the standard position
of the

When a vector is in
standard position,

the coordinates of
the point at its

head are exactly
the same as the

entries of the
vector.

vector.

v= (3,1)

x

y

-1 0 1 2 3 4

0

1

2

Figure 1.2: Three copies of the vector v = (3,1) located at different positions in
the plane. The vector highlighted in orange is in standard position, since its tail is
located at the origin.

1.1.1 Vector Addition

Even though we can represent vectors in 2 and 3 dimensions via arrows, we
emphasize that one of our goals is to keep vectors (and all of our linear algebra
tools) as dimension-independent as possible. Our visualizations involving ar-
rows can thus help us build intuition for how vectors behave, but our definitions
and theorems themselves should work just as well in R7 (even though we can-
not really visualize this space) as they do in R3. For this reason, we typically
introduce new concepts by first giving the algebraic, dimension-independent
definition, followed by some examples to illustrate the geometric significance
of the new concept. We start with vector addition, the simplest vector operation
that there is.
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Definition 1.1.1
Vector Addition

Suppose v = (v1,v2, . . . ,vn) ∈ Rn and w = (w1,w2, . . . ,wn) ∈ Rn are vec-
tors. Then their sum, denoted by v+w, is the vector

v+w def= (v1 +w1,v2 +w2, . . . ,vn +wn).

Vector addition can be motivated in at least two different ways. On the
one hand, it is algebraically the simplest operation that could reasonably be
considered a way of adding up two vectors: most students, if asked to add
up two vectors, would add them up entry-by-entry even if they had not seen
Definition 1.1.1. On the other hand, vector addition also has a simple geometric
picture in terms of arrows: If v and w are positioned so that the tail of w is
located at the same point as the head of v (in which case we say that v and w
are positioned head-to-tail), then v+w is the vector pointing from the tail of v
to the head of w, as in Figure 1.3(a). In other words, v+w represents the total
displacement accrued by following v and then following w.

If we instead work entirely with vectors in standard position, then v +
w is the vector that points along the diagonal between sides v and w of a
parallelogram, as in

Despite the
triangle and

parallelogram
pictures looking

different, the
vector v+w is the

same in each.

Figure 1.3(b).

v

w

v+w

x

y

v

w

v+w

x

y

Figure 1.3: How to visualize the addition of two vectors. If v and w are (a) positioned
head-to-tail then v+w forms the third side of the triangle with sides v and w, but if v
and w are (b) in standard position, then v+w is the diagonal of the parallelogram
with sides v and w.

Before actually making use of vector addition, it will be useful to know
some of the basic properties that it satisfies. We list two of the most important
such properties in the following theorem for easy reference.

Theorem 1.1.1
Vector Addition

Properties

Suppose v,w,x ∈ Rn are vectors. Then the following properties hold:
a) v+w = w+v, and (commutativity)
b) (v+w)+x = v+(w+x). (associativity)

Proof. Both parts of this theorem can be proved directly by making use of the
relevant definitions. To prove part (a), we use the definition of vector addition
together with the fact that the addition of real numbers is commutative (i.e.,
x+ y = y+ x for all x,y ∈ R):

v+w = (v1 +w1,v2 +w2, . . . ,vn +wn)
= (w1 + v1,w2 + v2, . . . ,wn + vn) = w+v.
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The proof of part (b) of the theorem similarly follows fairly quickly from the
definition of vector addition, and the corresponding property of real numbers,
so we leave its proof to Exercise 1.1.14. �

The two properties of vector addition that are described by Theorem 1.1.1
are called commutativity and associativity, respectively, and they basically
say that we can unambiguously talk about the sum of any set of vectors without
having to worry about the order in which we perform the addition. For example,
this theorem shows that expressions like v+w+x make sense, since there is
no need to question whether it means (v+w)+x or v+(w+x).

While neither of these properties are surprising, it is still important to
carefully think about which properties each vector operation satisfies as we
introduce it. Later in this chapter, we will introduce two operations (matrix
multiplication in Section 1.3.2 and the cross product in Section 1.A) that are not
commutative (i.e., the order of “multiplication” matters since v×w 6= w×v),
so it is important to be careful not to assume that basic properties like these
hold without actually checking them first.

Example 1.1.1
Numerical
Examples
of Vector
Addition

Compute the following vector sums:
a) (2,5,−1)+(1,−1,2),
b) (1,2)+(3,1)+(2,−1), and
c) the sum of the 8 vectors that point from the origin to the corners of

a cube with opposite corners at (0,0,0) and (1,1,1), as shown:

x
y

z

Solutions:

Even though we
are adding 8

vectors, we can
only see 7 vectors
in the image. The

missing vector that
we cannot see is

(0,0,0).
a) (2,5,−1)+(1,−1,2) = (2+1,5−1,−1+2) = (3,4,1).
b) (1,2)+(3,1)+(2,−1) = (1+3+2,2+1−1) = (6,2). Note that

this sum can be visualized by placing all three vectors head-to-tail,
as shown below. This same procedure works for any number of
vectors.

(1
,2
)

(3,1
) (2,−1)

(6,2)

x

y

0 1 2 3 4 5 6
0

1

2

3

c) We could list all 8 vectors and explicitly compute the sum, but a
quicker method is to notice

Sums with lots of
terms are often

easier to evaluate
if we can exploit

some form of
symmetry, as we

do here in
example (c).

that the 8 vectors we are adding are
exactly those that have any combination of 0’s and 1’s in their 3
entries (i.e., (0,0,1), (1,0,1), and so on). When we add them, in
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any given entry, exactly half (i.e., 4) of the vectors have a 0 in
that entry, and the other half have a 1 there. We thus conclude that
the sum of these vectors is (4,4,4).

1.1.2 Scalar Multiplication

The other basic operation on vectors that we introduce at this point is one that
changes a vector’s length and/or reverses its direction, but does not otherwise
change the direction in which it points.

Definition 1.1.2
Scalar

Multiplication

Suppose v = (v1,v2, . . . ,vn) ∈ Rn is a vector and c ∈ R is a scalar. Then
their scalar multiplication, denoted by cv, is the vector

cv def= (cv1,cv2, . . . ,cvn).

We

“Scalar” just means
“number”.

remark that, once again, algebraically this is exactly the definition that
someone would likely expect the quantity cv to have. Multiplying each entry
of v by c seems like a rather natural operation, and it has the simple geometric
interpretation of stretching v by a factor of c, as in Figure 1.4. In particular,
if |c|> 1 then scalar multiplication stretches v, but if |c|< 1 then it shrinks v.
When c < 0 then this operation also reverses the direction of v, in addition to
any stretching or shrinking that it does if |c| 6= 1.

−3
4
v

2v

v
= (2,1

)

x

y

-2 -1 0 1 2 3 4

-1

0

1

2

Figure 1.4: Scalar multiplication can be used to stretch, shrink, and/or reverse the
direction of a vector.

Two special cases of scalar multiplication are worth pointing out:
• If c = 0 then cv is the zero vector, all of whose entries are 0, which we

denote by 0.
• If c = −1 then cv is the vector whose entries are the negatives of v’s

entries, which we denote by −v.
We also defineIn other words,

vector subtraction
is also performed in

the “obvious”
entrywise way.

vector subtraction via v−w def= v +(−w), and we note that
it has the geometric interpretation that v−w is the vector pointing from the
head of w to the head of v when v and w are in standard position. It is perhaps
easiest to keep this geometric picture straight (“it points from the head of which
vector to the head of the other one?”) if we just think of v−w as the vector that
must be added to w to get v (so it points from w to v). Alternatively, v−w is
the other diagonal (besides v+w) in the parallelogram with sides v and w, as
in Figure 1.5.
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v+w

v

w

v−w

x

y

Figure 1.5: How to visualize the subtraction of two vectors. If v and w are in
standard position then v−w is one of the diagonals of the parallelogram de-
fined by v and w (and v+w is the other diagonal, as in Figure 1.3(b)).

It is straightforward to verify some simple properties of the zero vector,
such as the facts that v− v = 0 and v + 0 = v for every vector v ∈ Rn, by
working entry-by-entry with the vector operations. There are also quite a few
other simple ways in which scalar multiplication interacts with vector addition,
some of which we now list explicitly for easy reference.

Theorem 1.1.2
Scalar

Multiplication
Properties

Suppose v,w ∈Rn are vectors and c,d ∈R are scalars. Then the following
properties hold:

a) c(v+w) = cv+ cw,
b) (c+d)v = cv+dv, and

Property (a) says
that scalar

multiplication
distributes over

vector addition,
and property (b)

says that scalar
multiplication

distributes over real
number addition.

c) c(dv) = (cd)v.

Proof. All three parts of this theorem can be proved directly by making use of
the relevant definitions. To prove part (a), we use the corresponding properties
of real numbers in each entry of the vector:

c(v+w) = c(v1 +w1,v2 +w2, . . . ,vn +wn) (vector addition)
= (c(v1 +w1),c(v2 +w2), . . . ,c(vn +wn)) (scalar mult.)
= (cv1 + cw1,cv2 + cw2, . . . ,cvn + cwn) (property of R)
= (cv1,cv2, . . . ,cvn)+(cw1,cw2, . . . ,cwn) (vector addition)
= c(v1,v2, . . . ,vn)+ c(w1,w2, . . . ,wn) (scalar mult.)
= cv+ cw.

The proofs of parts (b) and (c) of the theorem similarly follow fairly
quickly from the definitions of vector addition and scalar multiplication, and
the corresponding properties of real numbers, so we leave their proofs to
Exercise 1.1.15. �

Example 1.1.2
Numerical
Examples
of Vector

Operations

Compute the indicated vectors:
a) 3v−2w, where v = (2,1,−1) and w = (−1,0,3), and
b) the sum of the 6 vectors that point from the center (0,0) of a regu-

lar hexagon to its corners, one of which is located at (1,0), as shown:
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x

y

(1,0)

Solutions:
a) 3v−2w = (6,3,−3)− (−2,0,6) = (8,3,−9).
b) We could use trigonometry to find the entries of all 6 vectors ex-

plicitly, but an easier way to compute this sum is to label the vec-
tors, in counter-clockwise order starting at an arbitrary location,
as v, w, x, −v, −w, −xThis method of

solving (b) has the
nice feature that it

still works even if
we rotate the

hexagon or
change the

number of sides.

(since the final 3 vectors point in the op-
posite directions of the first 3 vectors). It follows that the sum is
v+w+x−v−w−x = 0.

By making use of these properties of vector addition and scalar multipli-
cation, we can solve vector equations in much the same way that we solve
equations involving real numbers: we can add and subtract vectors on both
sides of an equation, and multiply and divide by scalars on both sides of the
equation, until the unknown vector is isolated. We illustrate this procedure with
some examples.

Example 1.1.3
Vector Algebra

Solve the following equations for the vector x:

a) x− (3,2,1) = (1,2,3)−3x, and
b) x+2(v+w) =−v−3(x−w).

Solutions:
a) We solve this equation asThe “=⇒” symbol

here is an
implication arrow

and is read as
“implies”. It means
that the upcoming

statement (e.g.,
x = (1,1,1)) follows
logically from the

one before it (e.g.,
4x = (4,4,4)).

follows:

x− (3,2,1) = (1,2,3)−3x
=⇒ x = (4,4,4)−3x (add (3,2,1) to both sides)
=⇒ 4x = (4,4,4) (add 3x to both sides)
=⇒ x = (1,1,1). (divide both sides by 4)

b) The method of solving this equation is the same as in part (a), but
this time the best we can do is express x in terms of v and w:

x+2(v+w) =−v−3(x−w)
=⇒ x+2v+2w =−v−3x+3w (expand parentheses)
=⇒ 4x =−3v+w (add 3x, subtract 2v+2w)

=⇒ x = 1
4 (w−3v). (divide both sides by 4)

1.1.3 Linear Combinations

One common task in linear algebra is to start out with some given collection of
vectors v1,v2, . . . ,vk and then use vector addition and scalar multiplication to
construct new vectors out of them. The following definition gives a name to
this concept.
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Definition 1.1.3
Linear

Combinations

A linear combination of the vectors v1,v2, . . . ,vk ∈ Rn is any vector of
the form

c1v1 + c2v2 + · · ·+ ckvk,

where c1,c2, . . . ,ck ∈ R.

For
We will see how to

determine whether
or not a vector is a
linear combination

of a given set of
vectors in Section 2.1.

example, (1,2,3) is a linear combination of the vectors (1,1,1) and
(−1,0,1) since (1,2,3) = 2(1,1,1)+(−1,0,1). On the other hand, (1,2,3) is
not a linear combination of the vectors (1,1,0) and (2,1,0) since every vector
of the form c1(1,1,0)+ c2(2,1,0) has a 0 in its third entry, and thus cannot
possibly equal (1,2,3).

When working with linear combinations, some particularly important vec-
tors are those with all entries equal to 0, except for a single entry that equals 1.
Specifically, for each j = 1,2, . . . ,n, we define the vector e j ∈ Rn by

e j
def= (0,0, . . . ,0,1,0, . . . ,0

↑ j-th entry
).

ForWhenever we use
these vectors, the

dimension of e j will
be clear from
context or by

saying things like
e3 ∈ R7.

example, in R2 there are two such vectors: e1 = (1,0) and e2 = (0,1).
Similarly, in R3 there are three such vectors: e1 = (1,0,0), e2 = (0,1,0), and
e3 = (0,0,1). In general, in Rn there are n of these vectors, e1,e2, . . . ,en, and
we call them the standard basis vectors (for reasons that we discuss in the
next chapter). Notice that in R2 and R3, these are the vectors that point a
distance of 1 in the direction of the x-, y-, and z-axes, as in Figure 1.6.

x

y

0 1 2

0

1

2

e1 = (1,0)

e2 = (0,1)

x

y

z

0

1

2

1
2

1

2

e1 = (1,0,0)
e2 = (0,1,0)

e3 = (0,0,1)

Figure 1.6: The standard basis vectors point a distance of 1 along the x-, y-, and
z-axes.

For now, the reason for our interest in these standard basis vectors is that
every vector v∈Rn can be written as a linear combination of them. In particular,
if v = (v1,v2, . . . ,vn)

When we see
expressions like this, it

is useful to remind
ourselves of the
“type” of each

object: v1,v2, . . . ,vn
are scalars and

e1,e2, . . . ,en are
vectors.

then

v = v1e1 + v2e2 + · · ·+ vnen,

which can be verified just by computing each of the entries of the linear com-
bination on the right. This idea of writing vectors in terms of the standard basis
vectors (or other distinguished sets of vectors that we introduce later) is one
of the most useful techniques that we make use of in linear algebra: in many
situations, if we can prove that some property holds for the standard basis
vectors, then we can use linear combinations to show that it must hold for all
vectors.
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Example 1.1.4
Numerical

Examples of Linear
Combinations

Compute the indicated linear combinations of standard basis vectors:

a) Compute 3e1−2e2 + e3 ∈ R3, and
b) Write (3,5,−2,−1) as a linear combination of e1,e2,e3,e4 ∈ R4.

Solutions:
a) 3e1−2e2 +e3 = 3(1,0,0)−2(0,1,0)+(0,0,1) = (3,−2,1). In gen-

eral, when adding multiples of the standard basis vectors, the result-
ing vector has the coefficient of e1 in its first entry, the coefficient
of e2 in its second entry, and so on.

b) Just like in part (a), the entries of the vectors are the scalars in the
linear combination: (3,5,−2,−1) = 3e1 +5e2−2e3− e4.

Remark 1.1.1
No Vector

Multiplication

At this point, it seems natural to ask why we have defined vector addition
v+w and scalar multiplication cv in the “obvious” entrywise ways, but
we have not similarly defined the entrywise product of two vectors:

vw def= (v1w1,v2w2, . . . ,vnwn).

The answer is simply that entrywise vector multiplication is not par-
ticularly useful—it does not often come up in real-world problems or
play a role in more advanced mathematical structures, nor does it have a
simple geometric interpretation. There are some other more useful ways
of “multiplying” vectors together, called the dot product and the cross
product, which we explore in Sections 1.2 and 1.A, respectively.

Exercises solutions to starred exercises on page 435

1.1.1 Draw each of the following vectors in standard posi-
tion in R2:

∗(a) v = (3,2)
∗(c) x = (1,−3)

(b) w = (−0.5,3)
(d) y = (−2,−1)

∗1.1.2 Draw each of the vectors from Exercise 1.1.1, but
with their tail located at the point (1,2).

∗1.1.3 If each of the vectors from Exercise 1.1.1 are posi-
tioned so that their heads are located at the point (3,3), find
the location of their tails.

1.1.4 Draw each of the following vectors in standard posi-
tion in R3:

∗(a) v = (0,0,2)
∗(c) x = (1,2,0)

(b) w = (−1,2,1)
(d) y = (3,2,−1)

1.1.5 If the vectors v,w,x, and y are as in Exercise 1.1.1,
then compute

∗(a) v+w
∗(c) y−2x

(b) v+w+y
(d) v+2w+2x+2y

1.1.6 If the vectors v,w,x, and y are as in Exercise 1.1.4,
then compute

∗(a) v+y
∗(c) 4x−2w

(b) 4w+3w−(2w+6w)
(d) 2x−w−y

∗1.1.7 Write each of the vectors v,w,x, and y from Ex-
ercise 1.1.4 as a linear combination of the standard basis
vectors e1,e2,e3 ∈ R3.

1.1.8 Suppose that the side vectors of a parallelogram are
v = (1,4) and w = (−2,1). Find vectors describing both of
the parallelogram’s diagonals.

∗1.1.9 Suppose that the diagonal vectors of a parallelo-
gram are x = (3,−2) and y = (1,4). Find vectors describing
the parallelogram’s sides.

1.1.10 Solve the following vector equations for x:

∗(a) (1,2)−x = (3,4)−2x
(b) 3((1,−1)+x) = 2x
∗(c) 2(x+2(x+2x)) = 3(x+3(x+3x))
(d) −2(x− (1,−2)) = x+2(x+(1,1))
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1.1.11 Write the vector x in terms of the vectors v and w:

∗(a) v−x = w+x
(b) 2v−3x = 4x−5w
∗(c) 4(x+v)−x = 2(w+x)
(d) 2(x+2(x+2x)) = 2(v+2v)

∗1.1.12 Does there exist a scalar c ∈ R such that c(1,2) =
(3,4)? Justify your answer both algebraically and geometri-
cally.

1.1.13 Let n ≥ 3 be an integer and consider the set of n
vectors that point from the center of the regular n-gon in R2

to its corners.

(a) Show that if n is even then the sum of these n vec-
tors is 0. [Hint: We solved the n = 6 case in Exam-
ple 1.1.2(b).]

(b) Show that if n is odd then the sum of these n vectors
is 0. [Hint: This is more difficult. Try working with
the x- and y-entries of the sum individually.]

∗∗1.1.14 Prove part (b) of Theorem 1.1.1.

∗∗1.1.15 Recall Theorem 1.1.2, which established some
of the basic properties of scalar multiplication.

(a) Prove part (b) of the theorem.
(b) Prove part (c) of the theorem.

1.2 Lengths, Angles, and the Dot Product

When discussing geometric properties of vectors, like their length or the angle
between them, we would like our definitions to be as dimension-independent
as possible, so that it is just as easy to discuss the length of a vector in R7

as it is to discuss the length of one in R2. At first it might be somewhat
surprising that discussing the length of a vector in high-dimensional spaces is
something that we can do at all—after all, we cannot really visualize anything
past 3 dimensions. We thus stress that the dimension-independent definitions
of length and angle that we introduce in this section are not theorems that we
prove, but rather are definitions that we adopt so that they satisfy the basic
geometric properties that lengths and angles “should” satisfy.

1.2.1 The Dot Product

The main tool that helps us extend geometric notions from R2 and R3 to
arbitrary dimensions is the dot product, which is a way of combining two
vectors so as to create a single number:

Definition 1.2.1
Dot Product

Suppose v = (v1,v2, . . . ,vn) ∈ Rn and w = (w1,w2, . . . ,wn) ∈ Rn are vec-
tors. Then their dot product, denoted by v ·w, is the quantity

v ·w def= v1w1 + v2w2 + · · ·+ vnwn.

It is important to keep in mind that the output of the dot product is a number,
not a vector. So, for example, the expression v · (w ·x) does not make sense,
since w ·x is a number, and so we cannot take its dot product with v. On the
other hand, the expression v/(w ·x) does make sense, since dividing a vector by
a number is a valid mathematical operation. As we introduce more operations
between different types of objects, it will become increasingly important to
keep in mind the type of object that we are working with at all times.

Example 1.2.1
Numerical
Examples
of the Dot

Product

Compute (or state why it’s impossible to compute) the following dot
products:

a) (1,2,3) · (4,−3,2),
b) (3,6,2) · (−1,5,2,1), and
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c) (v1,v2, . . . ,vn) · e j, where 1≤ j ≤ n.

Solutions:
a) (1,2,3) · (4,−3,2) = 1 ·4+2 · (−3)+3 ·2 = 4−6+6 = 4.

Recall that e j is the
vector with a 1 in its

j-th entry and 0s
elsewhere.

b) (3,6,2) · (−1,5,2,1) does not exist, since these vectors do not have
the same number of entries.

c) For this dot product to make sense, we have to assume that the vector
e j has n entries (the same number of entries as (v1,v2, . . . ,vn)). Then

(v1,v2, . . . ,vn) · e j = 0v1 + · · ·+0v j−1 +1v j +0v j+1 + · · ·+0vn

= v j.

The dot product can be interpreted geometrically as roughly measuring
the amount of overlap between v and w. For example, if v = w = (1,0) then
v ·w = 1, but as we rotate w away from v, their dot product decreases down
to 0 when v and w are perpendicular (i.e., when w = (0,1) or w = (0,−1)),
as illustrated in Figure 1.7. It then decreases even farther down to −1 when w
points in the opposite direction of v (i.e., when w = (−1,0)).

More specifically, if we rotate w counter-clockwise from v by an angle of
θ then its coordinates become w = (cos(θ),sin(θ)). The dot product between
v and w is then v ·w = 1cos(θ)+0sin(θ) = cos(θ), which is largest when θ

is small (i.e., when w points in almost the same direction as v).

w= (cos(θ ),sin(θ ))

θ

v ·w= cos(θ)

x

y

v= (1,0)

Figure 1.7: The dot product of two vectors decreases as we rotate them away from
each other. Here, the dot product between v and w is v ·w = 1cos(θ)+ 0sin(θ) =
cos(θ), which is largest when θ is small.

Before we can make use of the dot product, we should make ourselves
aware of the mathematical properties that it satisfies. The following theorem
catalogs the most important of these properties, none of which are particularly
surprising or difficult to prove.

Theorem 1.2.1
Dot Product

Properties

Suppose v,w,x ∈ Rn are vectors and c ∈ R is a scalar. Then the following
properties hold:

a) v ·w = w ·v, (commutativity)
b) v · (w+x) = v ·w+v ·x, and (distributivity)
c) v · (cw) = c(v ·w).

Proof. To prove part (a) of the theorem, we use the definition of the dot product
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together with the fact that the multiplication of real numbers is commutative:

v ·w = v1w1 + v2w2 + · · ·+ vnwn

= w1v1 +w2v2 + · · ·+wnvn = w ·v.

The proofs of parts (b) and (c) of the theorem similarly follow fairly quickly
from the definition of the dot product and the corresponding properties of real
numbers, so we leave their proofs to Exercise 1.2.13. �

The properties described by Theorem 1.2.1 can be combined to generate
new properties of the dot product as well. For example, property (c) of that
theorem tells us that we can pull scalars out of the second vector in a dot
product, but by combining properties (a) and (c), we can show that we can also
pull scalars out of the first vector in a dot product:

property (a)

property (c)

(cv) ·w= w · (cv) = c(w ·v) = c(v ·w).

Similarly, by using properties (a) and (b) together, we see that we can “multiply
out” parenthesized dot products much like we multiply out real

In particular, if you
have used the

acronym “FOIL” to
help you multiply out

real expressions like
(x+2)(x2 +3x), the

exact same method
works with the dot

product.

numbers:

(v+w) · (x+y) = (v+w) ·x+(v+w) ·y (property (b))
= x · (v+w)+y · (v+w) (property (a))
= x ·v+x ·w+y ·v+y ·w (property (b))
= v ·x+w ·x+v ·y+w ·y. (property (a))

All of this is just to say that the dot product behaves similarly to the
multiplication of real numbers, and has all of the nice properties that we might
hope that something we call a “product” might have. The reason that the dot
product is actually useful though is that it can help us discuss the length of
vectors and the angle between vectors, as in the next two subsections.

1.2.2 Vector Length

In 2 or 3 dimensions, we can use geometric techniques to compute the length
of a vector v, which we represent by ‖v‖. The length of a vector v = (v1,v2) ∈
R2 can be computed by noticing that v = (v1,0) + (0,v2), so v forms the
hypotenuse of a right-angled triangle with shorter sides given by the vectors
(v1,0) and (0,v2), as illustrated in Figure 1.8(a). Since the length of (v1,0) is
|v1| and the length of (0,v2) is |v2|, the Pythagorean theoremThe Pythagorean

theorem says that
if a right-angled

triangle has
longest side

(hypotenuse) of
length c and other

sides of length a
and b, then

c2 = a2 +b2 (so
c =
√

a2 +b2).

tells us that

‖v‖=
√∥∥(v1,0)

∥∥2 +
∥∥(0,v2)

∥∥2 =
√
|v1|2 + |v2|2 =

√
v2

1 + v2
2 =
√

v ·v.

This argument still works, but is slightly trickier, for 3-dimensional vectors
v = (v1,v2,v3) ∈ R3. In this case, we instead write v = (v1,v2,0)+ (0,0,v3),
so that v forms the hypotenuse of a right-angled triangle with shorter sides
given by the vectors (v1,v2,0) and (0,0,v3), as in Figure 1.8(b). Since the
length of (v1,v2,0) is

√
v12 + v22 (it is just a vector in R2 with an extra “0”
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entry tacked on) and the length of (0,0,v3) is |v3|, the Pythagorean theorem
tells us that

‖v‖=
√∥∥(v1,v2,0)

∥∥2 +
∥∥(0,0,v3)

∥∥2

=

√(√
v12 + v22

)2
+ |v3|2 =

√
v2

1 + v2
2 + v2

3 =
√

v ·v.

The length of a
vector is also

called its Euclidean
norm or simply its

norm.

x

(0,v2)

v
=
(v 1
,v 2
)

(v1,0)

y

v R2

x

y

z

(v1,v2,0)

(0,0,v3)
v
= (v1

,v2
,v3

)

v R3

Figure 1.8: A breakdown of how the Pythagorean theorem can be used to deter-
mine the length of vectors in (a) R2 and (b) R3.

When considering higher-dimensional vectors, we can no longer visualize
them quite as easily as we could in the 2- and 3-dimensional cases, so it’s not
necessarily obvious what we even mean by the “length” of a vector in, for
example, R7. In these cases, we simply define the length of a vector so as to
continue the pattern that we observed above.

Definition 1.2.2
Length of a Vector

The length of a vector v = (v1,v2, . . . ,vn) ∈ Rn, denoted by ‖v‖, is the
quantity

‖v‖ def=
√

v ·v =
√

v2
1 + v2

2 + · · ·+ v2
n.

It is worth noting that this definition does indeed make sense, since the
quantity v ·v = v2

1 +v2
2 + · · ·+v2

n is non-negative, so we can take its square root.
To get a feeling for how the length of a vector works, we compute the length of
a few example vectors.

Example 1.2.2
Numerical

Examples of
Vector Length

Compute the lengths of the following vectors:
a) (2,−5,4,6),
b) (cos(θ),sin(θ)), and
c) the main diagonal of a cube in R3 with side length 1.

Solutions:
a)
∥∥(2,−5,4,6)

∥∥=
√

22 +(−5)2 +42 +62 =
√

81 = 9.

b)
∥∥(cos(θ),sin(θ))

∥∥=
√

cos2(θ)+ sin2(θ) =
√

1 = 1.

c) The cube with side length 1 can be positioned so that it has one
vertex at (0,0,0) and its opposite vertex at (1,1,1), as shown below:
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x

y

z

v= (1,1,1)

The main diagonal of this cube is the vector v = (1,1,1), which has
length ‖v‖=

√
12 +12 +12 =

√
3.

We now start describing the basic properties of the length of a vector. Our
first theorem just presents two very simple properties that should be expected
geometrically: if we multiply a vector by a scalar, then its length is multiplied
by the absolute value of amount, and the zero vector is the only vector with
length equal to 0 (all other vectors have positive length).

Theorem 1.2.2
Length Properties

Suppose v ∈ Rn is a vector and c ∈ R is a scalar. Then the following
properties hold:

a) ‖cv‖= |c|‖v‖, and
b) ‖v‖ ≥ 0, with equality if and only if v = 0.

Proof. Both of these properties follow fairly quickly from the definition of
vector length. For property (a), we

In the final equality
here, we use the

fact that
√

c2 = |c|.

compute

‖cv‖=
√

(cv1)2 +(cv2)2 + · · ·+(cvn)2

=
√

c2(v2
1 + v2

2 + · · ·+ v2
n)

=
√

c2
√

v2
1 + v2

2 + · · ·+ v2
n = |c|‖v‖.

For property (b), the fact that ‖v‖ ≥ 0 follows from the fact that the square
root function is defined to return the non-negative square root of its input. It is
straightforward to show that ‖0‖= 0, so to complete the proof we just need to
show that if ‖v‖ = 0 then v = 0. Well, ifIf one of the terms

in the sum
v2

1 + v2
2 + · · ·+ v2

n
were strictly

positive, the sum
would be strictly

positive too.

‖v‖ = 0 then v2
1 + v2

2 + · · ·+ v2
n = 0,

and since v2
j ≥ 0 for each 1≤ j ≤ n, with equality if and only if v j = 0, we see

that it must be the case that v1 = v2 = · · ·= vn = 0 (i.e., v = 0). �

It is often particularly useful to focus attention on unit vectors: vectors
with length equal to 1. Unit vectors often arise in situations where the vector’s
direction is important, but its length is not. Importantly, Theorem 1.2.2(a) tells
us that we can always rescale any vector to have length 1 just by dividing the
vector by its length, as in Figure 1.9(a):

∥∥∥∥
v
‖v‖

∥∥∥∥=
1
‖v‖‖v‖= 1.

Rescaling a vector like this so that it has length 1 is called normalization.
As a result of the fact that we can rescale vectors like this, there is exactly

one unit vector that points in each direction, and we can think of the set of all
unit vectors in R2 as the unit circle, in R3 as the unit sphere, and so on, as in
Figure 1.9(b). Furthermore, we can always decompose vectors into the product
of their length and direction.

If v = 0 then we
can still write

v = ‖v‖u where u is
a unit vector, but u is
no longer unique (in

fact, it can be any
unit vector). That is, we can write every non-zero vector v∈Rn
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v

v/
‖v‖

x

y

1

v R2

x

y

1

R2

Figure 1.9: By normalizing vectors, we find that (a) there is exactly one unit vector
pointing in each direction, and (b) the set of unit vectors in R2 makes up the unit
circle.

in the form v = ‖v‖u, where u = v/‖v‖ is the unique unit vector pointing in
the same direction as v.

The unit circle is
the circle in R2 of
radius 1 centered
at the origin. The
unit sphere is the

sphere in R3 of
radius 1 centered

at the origin.

The next property that we look at is an inequality that relates the lengths
of two vectors to their dot product. The intuition for this theorem comes from
Figure 1.7, where we noticed that the dot product of the vector v = (1,0) with
any other vector of length 1 was always between −1 and 1. In general, the dot
product of two vectors cannot be “too large” compared to the lengths of the
vectors.

Theorem 1.2.3
Cauchy–Schwarz

Inequality

Suppose that v,w ∈ Rn are vectors. Then |v ·w| ≤ ‖v‖‖w‖.

Proof. The proof works by computing the length of an arbitrary linear combina-
tion of v and w. Specifically, if c,d ∈ R are any real numbers then ‖cv+dw‖2

is the square of a length, so it must be non-negative. By expanding the length
in terms of the dot product, we see that

This is the first
theorem in this

book whose proof
does not follow

immediately from
the definitions, but

rather requires a
clever insight.

0≤ ‖cv+dw‖2 = (cv+dw) · (cv+dw)

= c2(v ·v)+2cd(v ·w)+d2(w ·w)

= c2‖v‖2 +2cd(v ·w)+d2‖w‖2

for all real numbers c and d. Well, if w = 0 then the Cauchy–Schwarz inequality
follows trivially since it just says that 0 ≤ 0, and otherwise we can choose
c = ‖w‖ and d =−(v ·w)/‖w‖ in the above inequality to see that

0≤ ‖v‖2‖w‖2−2‖w‖(v ·w)2/‖w‖+(v ·w)2‖w‖2/‖w‖2

= ‖v‖2‖w‖2− (v ·w)2.

Rearranging and taking the square root of both sides of this inequality gives us
|v ·w| ≤ ‖v‖‖w‖, which is exactly what we wanted to prove. �

While we will repeatedly make use of the Cauchy–Schwarz inequality as
we progress through this book, for now it has two immediate and important
applications. The first is that it lets us prove one final property of vector
lengths—the fact that ‖v + w‖ is never larger than ‖v‖+ ‖w‖. To get some
intuition for why this is the case, simply recall that in R2 and R3, the vectors v,
w, and v+w can be arranged to form the sides of a triangle, as in Figure 1.10.
The inequality ‖v+w‖ ≤ ‖v‖+‖w‖ thus simply says that the length of one
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side of a triangle is never larger than the sum of the lengths of the other two
sides.

The triangle
inequality is
sometimes

expressed via the
statement

“stopping for
coffee on your way
to class cannot be

a shortcut”. ‖‖vv++w
‖

‖vv‖

‖w‖
v

w

v+w

x

y

Figure 1.10: The shortest path between two points is a straight line, so ‖v + w‖ is
never larger than ‖v‖+‖w‖. This fact is called the triangle inequality, and it is proved
in Theorem 1.2.4.

Theorem 1.2.4
Triangle Inequality

Suppose that v,w ∈ Rn are vectors. Then ‖v+w‖ ≤ ‖v‖+‖w‖.

Proof. We start by expanding ‖v+w‖2 in terms of the dot product:

‖v+w‖2 = (v+w) · (v+w) (definition of length)
= (v ·v)+2(v ·w)+(w ·w) (dot product properties (FOIL))

= ‖v‖2 +2(v ·w)+‖w‖2 (definition of length)

≤ ‖v‖2 +2‖v‖‖w‖+‖w‖2 (Cauchy–Schwarz inequality)

= (‖v‖+‖w‖)2. (factor cleverly)

We can then take the square root of both sides of the above inequality to see
‖v+w‖ ≤ ‖v‖+‖w‖, as desired. �

The other immediate application of the Cauchy–Schwarz inequality is that
it gives us a way to discuss the angle between vectors, which is the topic of the
next subsection.

1.2.3 The Angle Between Vectors

In order to get a bit of an idea of how to discuss the angle between vectors in
terms of things like the dot product, we first focus on vectors in R2 or R3. In
these lower-dimensional cases, we can use geometric techniques to determine
the angle between two vectors v and w. If v,w ∈ R2 then we can place v and
w in standard position, so that the vectors v, w, and v−w form the sides of a
triangle, as in Figure 1.11(a).

WeThe law of cosines
says that if the side

lengths of a
triangle are a,b
and c, and the

angle between the
sides with lengths a

and b is θ , then

c2 = a2 +b2

−2abcos(θ).

can then use the law of cosines to relate ‖v‖, ‖w‖, ‖v−w‖, and the
angle θ between v and w. Specifically, we find that

‖v−w‖2 = ‖v‖2 +‖w‖2−2‖v‖‖w‖cos(θ).

On the other hand, the basic properties of the dot product that we saw back in
Theorem 1.2.1 tell us that

‖v−w‖2 = (v−w) · (v−w)

= v ·v−v ·w−w ·v+w ·w = ‖v‖2−2(v ·w)+‖w‖2.
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v

v−
w

w

θ

x

y

x

y

z

w

v

v
−w

θ

Figure 1.11: The vectors v, w, and v−w can be arranged to form a triangle in
(a) R2 and (b) R3. The angle θ between v and w can then be expressed in terms of
‖v‖, ‖w‖, and ‖v−w‖ via the law of cosines.

By setting these two expressions for ‖v−w‖2 equal to each other, we see that

‖v‖2 +‖w‖2−2‖v‖‖w‖cos(θ) = ‖v‖2−2(v ·w)+‖w‖2.

Simplifying and rearranging this equation then gives a formula for θ in terms
of the lengths of v and w and their dot

arccos is the inverse
function of cos: if

0≤ θ ≤ π, then
arccos(x) = θ is
equivalent to
cos(θ) = x. It is

sometimes written
as cos−1 or acos.

product:

cos(θ) =
v ·w
‖v‖‖w‖ , so θ = arccos

(
v ·w
‖v‖‖w‖

)
.

This argument still works, but is slightly trickier to visualize, when working
with vector v,w ∈ R3 that are 3-dimensional. In this case, we can still arrange
v, w, and v−w to form a triangle, and the calculation that we did in R2 is the
exact same—the only change is that the triangle is embedded in 3-dimensional
space, as in Figure 1.11(b).

When considering vectors in higher-dimensional spaces, we no longer have
a visual guide for what the angle between two vectors means, so instead we
simply define the angle so as to be consistent with the formula that we derived
above:

Definition 1.2.3
Angle Between

Vectors

The angle θ between two non-zero vectors v,w ∈ Rn is the quantity

θ = arccos
(

v ·w
‖v‖‖w‖

)
.

It is worth noting that we typically measure angles in radians, not degrees.
Also, the Cauchy–Schwarz inequality is very important when defining the angle
between vectors in this way, since it ensures that the fraction (v ·w)/(‖v‖‖w‖)
is between −1 and 1, which is what we require for its arccosine to exist in the
first place.

Example 1.2.3
Numerical

Examples of
Vector Angles

Compute the angle between the following pairs of vectors:
a) v = (1,2) and w = (3,4),
b) v = (1,2,−1,−2) and w = (1,−1,1,−1), and
c) the diagonals of two adjacent faces of a cube.
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Solutions:
a) v ·w = 3+8 = 11, ‖v‖=

√
5, and ‖w‖= 5, so the angle between

v and w isWe often cannot
find an exact

values for angles,
so we either use

decimal
approximations or

just leave them in a
form like

arccos
(
11/(5

√
5)
)
.

θ = arccos
(

11
5
√

5

)
≈ 0.1799 radians (or≈ 10.30 degrees).

b) v ·w = 1−2−1+2 = 0, so the angle between v and w is

θ = arccos(0) = π/2 (i.e., 90 degrees).

Notice that, in this case, we were able to compute the angle between
v and w without even computing ‖v‖ or ‖w‖. For this reason, it is a
good idea to compute v ·w first (as we did here)—if v ·w = 0 then
we know right away that the angle is θ = π/2.

c) The cube with side length 1 can be positioned so that it has one
vertex at (0,0,0) and its opposite vertex at (1,1,1). There are lots
of pairs of face diagonals that we could choose, so we (arbitrarily)
choose the face diagonals v = (1,0,1)− (1,1,0) = (0,−1,1) and
w = (0,1,1)− (1,1,0) = (−1,0,1), as shown below.

Recall that some
values of arccos(x)

can be computed
exactly via special

triangles:
arccos(

√
0/2) = π/2

arccos(
√

1/2) = π/3
arccos(

√
2/2) = π/4

arccos(
√

3/2) = π/6
arccos(

√
4/2) = 0

x

y

z

θ

v= (0,−1,1)
w= (−1,0,1)

Then v ·w = 0+0+1 = 1, ‖v‖=
√

2, and ‖w‖=
√

2, so the angle
between v and w is

θ = arccos
(

1√
2 ·
√

2

)
= arccos

(
1
2

)
= π/3 (i.e., 60 degrees).

In part (b) of the above example, we were able to conclude that the an-
gle between v and w was π/2 based only on the fact that v ·w = 0 (since
arccos(0) = π/2). This implication goes both ways (i.e., if the angle between
two vectors is θ = π/2 then their dot product equals 0) and is an important
enough special case that it gets its own name.

Definition 1.2.4
Orthogonality

Two vectors v,w ∈ Rn are said to be orthogonal if v ·w = 0.

We think of the word “orthogonal” as a synonym for “perpendicular” in
small dimensions, as this is exactly what it means in R2 and R3 (recall that an
angle of π/2 radians is 90 degrees)—see Figure 1.12. However, orthogonality
also applies to higher-dimensional situations (e.g., the two vectors v,w ∈ R4

from Example 1.2.3(b) are orthogonal), despite us not being able to visualize
them.
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w= (2,1)

= (−1,2)
w= (1,−1,2)

v= (−1,1,1)

x

y

(−1,2) (2,1) R2

( 1,2) (2,1) = 2+2= 0

x

y

z

(−1,1,1) (1,−1,2) R3

( 1,1,1) (1, 1,2) = 1 1+2= 0

v

Figure 1.12: In 2 or 3 dimensions, two vectors being orthogonal (i.e., having dot
product equal to 0) means that they are perpendicular to each other.

Exercises solutions to starred exercises on page 436

1.2.1 Compute the dot product v ·w of each of the follow-
ing pairs of vectors.

∗(a) v = (−2,4), w = (2,1)
(b) v = (1,2,3), w = (−3,2,−1)
∗(c) v = (3,−1,0,1), w = (0,2,1,3)
(d) v = (

√
2,
√

3,
√

5), w = (
√

2,
√

3,
√

5)
∗(e) v = 0 ∈ R9, w = (8,1,5,−7,3,9,1,−3,2)

1.2.2 Compute the length ‖v‖ of each of the following
vectors v, and also give a unit vector u pointing in the same
direction as v.

∗(a) v = (3,4)
(b) v = (2,1,−2)
∗(c) v = (−2

√
2,−3,

√
10,3)

(d) v = (cos(θ),sin(θ))

1.2.3 Compute the angle between each of the following
pairs of vectors.

∗(a) v = (1,
√

3), w = (
√

3,1)
(b) v = (0,−2,2), w = (1,0,1)
∗(c) v = (1,1,1,1), w = (−2,0,−2,0)
(d) v = (2,1,−3), w = (−1,2,3)
∗(e) v = (cos(θ),sin(θ)), w = (−sin(θ),cos(θ))

1.2.4 Determine which of the following statements are
true and which are false.

∗(a) If v,w,x ∈ Rn are vectors with v ·w = v · x, then
w = x.

(b) If v,w,x∈Rn are vectors with v ·w = 0 and w ·x = 0,
then v ·x = 0 too.

∗ (c) If v,w ∈ Rn are vectors with ‖v‖+ ‖w‖ ≤ 2, then
‖v+w‖ ≤ 2 too.

(d) There exist vectors v,w ∈ R5 such that ‖v‖ = 2,
‖w‖= 4, and ‖v−w‖= 1.

∗ (e) There exist vectors v,w ∈ R3 such that ‖v‖ = 1,
‖w‖= 2, and v ·w =−1.

(f) If v,w ∈ Rn are unit vectors, then |v ·w| ≤ 1.
∗ (g) If v,w∈Rn are vectors with |v ·w| ≤ 1, then ‖v‖≤ 1

or ‖w‖ ≤ 1 (or both).

1.2.5 How can we use the quantity v ·w to determine
whether the angle between v and w is acute, a right an-
gle, or obtuse without computing ‖v‖, ‖w‖, or using any
trigonometric functions?

[Hint: Definition 1.2.1 solves the right angle case.]

∗1.2.6 Suppose v = (3,
√

3). Find all vectors w ∈R2 such
that ‖w‖= 2 and the angle between v and w is θ = π/3.

1.2.7 Let v,w,x ∈ Rn be non-zero vectors. Determine
which of the following expressions do and do not make
sense.

∗(a) v · (w−x)
∗(c) v+(w ·x)
∗(e) v2

(b) (v ·w)x
(d) v/‖v‖
(f) (v+w)/x

1.2.8 Let e j ∈Rn be the standard basis vector with 1 in its
j-th entry and 0 in all other entries.

(a) Compute ‖e j‖.
(b) Suppose 1≤ i, j≤ n. Compute ei ·e j . [Side note: You

will get a different answer depending on whether
i = j or i 6= j.]

∗1.2.9 Let v = (1,2) ∈ R2.

(a) Find a non-zero vector that is orthogonal to v.
(b) Is it possible to find a non-zero vector that is orthog-

onal to v as well as the vectors that you found in
part (a)? Justify your answer.

1.2.10 Let v = (1,2,3) ∈ R3.

(a) Find a non-zero vector that is orthogonal to v.
(b) Find a non-zero vector that is orthogonal to v and

is also orthogonal to the vector that you found in
part (a).

(c) Is it possible to find a non-zero vector that is orthogo-
nal to v as well as both of the vectors that you found
in parts (a) and (b)? Justify your answer.
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∗1.2.11 A rectangle in R3 has three of its corners at the
points (1,0,−1), (2,2,2), and (−1,2,3). What are the co-
ordinates of its fourth corner?

1.2.12 Let v ∈ Rn. Show that
(

v1 + v2 + · · ·+ vn

n

)2

≤ 1
n

(
v2

1 + v2
2 + · · ·+ v2

n
)
.

[Side note: In words, this says that the square of the average
of a set of numbers is never larger than the average of their
squares.]

∗∗1.2.13 Recall Theorem 1.2.1, which established some
of the basic properties of the dot product.

(a) Prove part (b) of the theorem.
(b) Prove part (c) of the theorem.

1.2.14 Find the coordinates of the vectors that point from
the center of a regular hexagon to its corners if it is centered
at (0,0) and has one corner located at (1,0).

∗1.2.15 If v and w are n-dimensional vectors with complex
(instead of real) entries, we write v,w ∈ Cn and we define
their dot product by

v ·w def= v1w1 + v2w2 + · · ·+ vnwn,

where a+ ib = a− ib is the complex conjugate (see Ap-
pendix A.1).

(a) Show that v ·w = w ·v.
(b) Show that v · (cw) = c(v ·w) for all complex scalars

c ∈ C, but (cv) ·w = c(v ·w).

1.2.16 Suppose that x ∈ Rn. Show that x · y = 0 for all
y ∈ Rn if and only if x = 0.

∗∗1.2.17 In this exercise, we determine when equality
holds in the Cauchy–Schwarz and triangle inequalities.

(a) Prove that |v ·w|= ‖v‖‖w‖ if and only if either w = 0
or there exists a scalar c ∈ R such that v = cw.

(b) Prove that ‖v+w‖= ‖v‖+‖w‖ if and only if either
w = 0 or there exists a scalar 0 ≤ c ∈ R such that
v = cw.

1.2.18 Let v,w∈Rn be vectors that are orthogonal to each
other. Prove that ‖v+w‖2 = ‖v‖2 +‖w‖2.
[Side note: This is the Pythagorean theorem in Rn.]

∗1.2.19 Let v,w ∈ Rn be vectors.

(a) Show that ‖v+w‖2 +‖v−w‖2 = 2‖v‖2 +2‖w‖2.
[Side note: This is called the parallelogram law.]

(b) Draw a parallelogram with sides v and w and explain
geometrically what the result of part (a) says.

1.2.20 Let v,w ∈ Rn be vectors. Prove that v · w =
1
4

(
‖v+w‖2−‖v−w‖2).

[Side note: This is called the polarization identity.]

∗1.2.21 Let v,w ∈ Rn be vectors. Prove that ‖v−w‖ ≥
‖v‖−‖w‖.
[Side note: This is called the reverse triangle inequality.]

1.2.22 In this exercise, we tweak the proof of Theo-
rem 1.2.3 slightly to get another proof of the Cauchy–
Schwarz inequality.

(a) What inequality results from choosing c = ‖w‖ and
d = ‖v‖ in the proof?

(b) What inequality results from choosing c = ‖w‖ and
d =−‖v‖ in the proof?

(c) Combine the inequalities from parts (a) and (b) to
prove the Cauchy–Schwarz inequality.

∗1.2.23 This exercise guides you through another proof of
the Cauchy–Schwarz inequality. Let v,w ∈ Rn be vectors,
and consider the function f (x) = ‖v− xw‖2.

(a) Show that this is a quadratic function in x.
(b) What is the discriminant of this quadratic? Recall

that the discriminant of the quadratic ax2 +bx+ c is
b2−4ac.

(c) Why must the discriminant from part (b) be ≤ 0?
[Hint: How many roots does f have?]

(d) Use parts (b) and (c) to prove the Cauchy–Schwarz
inequality.

1.2.24 This exercise guides you through yet another proof
of the Cauchy–Schwarz inequality.

(a) Show that if x,y ∈ R then |x+ y| ≤ |x|+ |y|. Do not
use Theorem 1.2.4.

(b) Show that if x1, . . . ,xn ∈ R then |x1 + · · ·+ xn| ≤
|x1|+ · · ·+ |xn|.

(c) Show that if x,y ∈ R then xy≤ 1
2 (x2 + y2).

(d) Show that if v,w ∈ Rn are non-zero vectors then
|v ·w|/(‖v‖‖w‖) ≤ 1. [Hint: Start by writing out
v ·w = v1w1 + · · ·+ vnwn in the fraction on the left.
Then use part (b), and finally use part (c).]

1.3 Matrices and Matrix Operations

One more concept that we will need before we start running with linear algebra
is that of a matrix, which is a 2D array of numbers like

A =
[

1 3
2 −1

]
and B =

[
3 0 2
0 −1 1

]
.

NoteThe plural of “matrix”
is “matrices”.

that every row of a matrix must have the same number of entries as every
other row, and similarly every column must have the same number of entries
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as every other column. The rows and columns must line up with each other,
and every spot in the matrix (i.e., every intersection of a row and column) must
contain an entry. For example, the following are not valid matrices:

[
1 2 3

4 5

]
and

[
2 −3 4

1 2 0

]
.

WeIn almost any kind
of matrix notation,
rows come before

columns: ai, j
means the entry in

the i-th row and
j-th column of A, a

3×4 matrix is one
with 3 rows and 4

columns, etc.

typically denote matrices by uppercase letters like A,B,C, . . ., and
we write their entries via the corresponding lowercase letters, together with
subscripts that indicate which row and column (in that order) the entry comes
from. For example, if A and B are as above, then a1,2 = 3, since the entry of
A in the 1st row and 2nd column is 3. Similarly, a2,1 = 2 and b2,3 = 1. The
entry in the i-th row and j-th column is also called its “(i, j)-entry”, and we
sometimes alternatively denote it using square brackets like [A]i, j. For example,
the (2,1)-entry of B is b2,1 = [B]2,1 = 0.

The number of rows and columns that a matrix has are collectively referred
to as its size, and we always list the number of rows first. For example, the
matrix A above has size 2× 2, whereas B has size 2× 3. The set of all real
matrices with m rows and n columns is denoted byMm,n, or simply byMn if
m = n (in which case the matrix is called square). So if A and B again refer to
the matrices displayed above, then A ∈M2 and B ∈M2,3.

1.3.1 Matrix Addition and Scalar Multiplication

We do not yet have a nice geometric interpretation of matrices like we did
for vectors (we will develop a geometric understanding of matrices in the
next section), but for now we note that we can define addition and scalar
multiplication for matrices in the exact same entrywise manner that we did for
vectors.

Definition 1.3.1
Matrix Addition

and Scalar
Multiplication

Suppose A,B ∈Mm,n are matrices and c ∈ R is a scalar. Then the sum
A + B and scalar multiplication cA are the m× n matrices whose (i, j)-
entries, for each 1≤ i≤ m and 1≤ j ≤ n, are

[A+B]i, j = ai, j +bi, j and [cA]i, j = cai, j,

respectively.

We also use O to denote the zero matrix whose entries all equal 0 (or
Om,n if we wish to emphasize or clarify that it is m× n, or On if it is n× n).
Similarly, we define matrix subtraction (A−B = A+(−1)B) and the negative of
a matrix (−A = (−1)A) in the obvious entrywise ways. There is nothing fancy
or surprising about how these matrix operations work, but it is worthwhile to
work through a couple of quick examples to make sure that we are comfortable
with them.

Example 1.3.1
Numerical

Examples
of Matrix

Operations

Suppose A =
[

1 3
2 −1

]
, B =

[
2 1
0 1

]
, and C =

[
1 0 1
0 −1 1

]
. Compute

a) A+B,
b) 2A−3B, and
c) A+2C.



22 Chapter 1. Vectors and Geometry

Solutions:

a) A+B =
[

1 3
2 −1

]
+
[

2 1
0 1

]
=
[

3 4
2 0

]
.

b) 2A−3B =

[
2 6
4 −2

]
−
[

6 3
0 3

]
=

[
−4 3
4 −5

]
.

c) This expression does not make sense; we cannot add or subtract
matrices that have different sizes (A is a 2×2 matrix, but 2C is a
2×3 matrix).

As we might expect, matrix addition and scalar multiplication satisfy the
same algebraic properties like commutativity and associativity that we saw for
vectors back in Theorems 1.1.1 and 1.1.2. For completeness, we state these
properties explicitly, but we emphasize that none of these are meant to be
surprising.

Theorem 1.3.1
Properties of

Matrix
Operations

Suppose A,B,C ∈Mm,n are m×n matrices and c,d ∈R are scalars. Then
a) A+B = B+A, (commutativity)
b) (A+B)+C = A+(B+C), (associativity)
c) c(A+B) = cA+ cB, (distributivity)
d) (c+d)A = cA+dA, and (distributivity)
e) c(dA) = (cd)A.

Proof. All five of these properties can be proved fairly quickly by using the
relevant definitions. To see that part (a) holds, we compute

We already know
that a+b = b+a

when a,b ∈ R. We
use this fact in

each of the mn
entries of this

matrix sum.

A+B =




a1,1 +b1,1 a1,2 +b1,2 · · · a1,n +b1,n

a2,1 +b2,1 a2,2 +b2,2 · · · a2,n +b2,n

...
...

. . .
...

am,1 +bm,1 am,2 +bm,2 · · · am,n +bm,n




=




b1,1 +a1,1 b1,2 +a1,2 · · · b1,n +a1,n

b2,1 +a2,1 b2,2 +a2,2 · · · b2,n +a2,n

...
...

. . .
...

bm,1 +am,1 bm,2 +am,2 · · · bm,n +am,n




= B+A,

where we used commutativity of addition of real numbers within each entry of
the matrix.

The remaining parts of the theorem can be proved similarly—just use the
definitions of matrix addition and scalar multiplication together with the fact
that all of these properties hold for addition and multiplication of real numbers
(see Exercise 1.3.19). �

Some additional properties of matrix addition and scalar multiplication that
we did not explicitly mention in this theorem, but which should be fairly clear,
are the facts that A+O = A and A−A = O for all matrices A ∈Mm,n.

1.3.2 Matrix Multiplication

While matrix addition and scalar multiplication are in a sense nothing new, we
now introduce the standard method for multiplying matrices, which is very new
and seems quite unintuitive at first.
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Definition 1.3.2
Matrix

Multiplication

If A ∈Mm,n and B ∈Mn,p are matrices, then their product AB is the
m× p matrix whose (i, j)-entry, for each 1≤ i≤ m and 1≤ j ≤ p, is

[AB]i, j
def= ai,1b1, j +ai,2b2, j + · · ·+ai,nbn, j.

In other words, the product AB is the matrix whose entries are all of the
possible dot products of the rows of A with the columns of B, as illustrated in
Figure 1.13. Before proceeding with some examples, we emphasize that the
matrix product AB only makes sense if A has the same number of columns as
B has rows.

In other words, the
inner dimensions

in a matrix product
must agree: we

can multiply an m×n
matrix by an r× p

matrix if and only if
n = r.

For example, it does not make sense to multiply a 2×3 matrix by
another 2×3 matrix, but it does make sense to multiply a 2×3 matrix by a
3×7 matrix.

A

B

AB
a1,1 a1,2

a2,1 a2,2

a3,1 a3,2



[
b1,1 b1,2 b1,3 b1,4

b2,1 b2,2 b2,3 b2,4

]

∗
∗ ∗ ∗ = a1,1b1,2+a1,2b2,2

= a3,1b1,4+a3,2b2,4

Figure 1.13: A visualization of the multiplication of a 3×2 matrix A and a 2×4 matrix
B. Each entry in the 3×4 matrix AB is the dot product of the corresponding row of
A and column of B.

Example 1.3.2
Numerical
Examples
of Matrix

Multiplication

Compute each of the matrix products indicated below (if possible) if

A =
[

1 2
3 4

]
, B =

[
5 6 7
8 9 10

]
, and C =




1 0
0 −1
2 −1


 .

a) AB,
b) AC,
c) BA, and
d) BC.

Solutions:
a) We carefully compute each entry of AB one at a time. For example,

the (1,1)-entry of AB is the dot product of the first row of A with
the first column of B: (1,2) · (5,8) = 1 · 5 + 2 · 8 = 21. Similarly
computing the other entries gives
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AB=
[
1 2
3 4

][
5 6 7
8 9 10

]

=

[
(1,2) · (5,8) (1,2) · (6,9) (1,2) · (7,10)
(3,4) · (5,8) (3,4) · (6,9) (3,4) · (7,10)

]

=
[
1× 5+ 2× 8 1× 6+ 2× 9 1× 7+ 2× 10
3× 5+ 4× 8 3× 6+ 4× 9 3× 7+ 4× 10

]

=
[
21 24 27
47 54 61

]
.

b) AC does not exist since A has 2 columns but C has 3 rows, and those
numbers would have to match for the matrix product to exist.

c) BA does not exist since B has 3 columns but A has 2 rows, and those
numbers would have to match for the matrix product to exist.

d) Again,Keep in mind that
AB’s size consists of

the outer dimensions
of A

and B: if A is m×n
and B is n× p then

AB is m× p.

we compute each entry of BC one at a time. For example,
the (1,1)-entry of BC is the dot product of the first row of B with
the first column of C: (5,6,7) · (1,0,2) = 5 · 1 + 6 · 0 + 7 · 2 = 19.
Similarly computing the other entries gives

BC =
5 6 7
8 9 10


1 0
0 −1
2 −1



=

[
(5,6,7) · (1,0,2) (5,6,7) · (0,−1,−1)

(8,9,10) · (1,0,2) (8,9,10) · (0,−1,−1)

]

=
[
5× 1+ 6× 0+ 7× 2 5× 0+ 6× −1+ 7× −1
8× 1+ 9× 0+ 10× 2 8× 0+ 9× −1+ 10× −1

]

=
[
19 −13
28 −19

]
.

When performing matrix multiplication, it is a good idea to frequently
double-check that the sizes of the matrices we are working with actually make
sense. In particular, the inner dimensions of the matrices must be equal, and the
outer dimensions of the matrices will be the dimensions of the matrix product:

A B AB
m×n n× p m× p

same

size of AB

Since matrix multiplication is so much less straightforward than the other
vector and matrix operations we have introduced, it is not immediately clear
what properties it satisfies. Keeping track of these properties is thus somewhat
more important than it was for, say, vector addition:
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Theorem 1.3.2
Properties of

Matrix
Multiplication

Let A,B, and C be matrices (with sizes such that the multiplications and
additions below make sense), and let c ∈ R be a scalar. Then

a) (AB)C = A(BC), (associativity)
b) A(B+C) = AB+AC, (left distributivity)
c) (A+B)C = AC +BC, and (right distributivity)
d) c(AB) = (cA)B.

Proof. The proofs of all of these statements are quite similar to each other, so
we only explicitly prove part (b)—the remaining parts of the theorem are left
to Exercise 1.3.20.

To this end we note that, for each i and j, the (i, j)-entry of A(B+C) is

ai,1(b1, j + c1, j)+ai,2(b2, j + c2, j)+ · · ·+ai,n(bn, j + cn, j),

whereas the (i, j)-entry of AB+AC is

(ai,1b1, j +ai,2b2, j + · · ·+ai,nbn, j)+(ai,1c1, j +ai,2c2, j + · · ·+ai,ncn, j).

It is straightforward to see that these two quantities are equal just by expanding
out parentheses and regrouping terms. Each entry of A(B+C) thus equals the
corresponding entry of AB+AC, so the matrices themselves are the same. �

Remark 1.3.1
Matrix

Multiplication
is Not

Commutative

It is worth stressing the fact that we did not list commutativity (i.e., AB =
BA) as one of the properties of matrix multiplication in Theorem 1.3.2. The
reason for this omission is simple: it’s not true. We saw in Example 1.3.2
that it’s entirely possible that BA does not even exist when AB does.

Even
An operation not

being
commutative
should be our

default assumption,
since the order in

which events occur
matters. We would
prefer to lose all of

our money and
then get a million

dollars, rather than
get a million dollars
and then lose all of

our
money.

if both AB and BA exist, they may or may not have the same size
as each other (see Exercise 1.3.15), and even if they are of the same size,
they still might not equal each other. For example, if

A =
[

1 1
0 1

]
and B =

[
1 0
1 1

]

then

AB =
[

2 1
1 1

]
and BA =

[
1 1
1 2

]
.

While we will see that AB and BA share some properties with each
other in later chapters of this book, for now it is best to think of them as
completely different matrices.

Matrix Powers
One particularly important square matrix is the one that consists entirely of 0
entries, except with 1s on its diagonal (i.e., its (1,1)-entry, (2,2)-entry, (3,3)-
entry, and so on, all equal 1). This is called the identity matrix, and if it has
size n×n then it is denoted by In (or if its size is clear from context or irrelevant,
we denote it just by I). For example, the identity matrices inM2 andM3 are

I2 =
[

1 0
0 1

]
and I3 =




1 0 0
0 1 0
0 0 1


 .
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The reason that the identity matrix is so important is that multiplying it
by another matrix does not change that other matrix (similar to how the zero
matrix “does nothing” under matrix addition, the identity matrix “does nothing”
under matrix multiplication):

Theorem 1.3.3
Multiplication

by the
Identity

Matrix

If A ∈Mm,n then AIn = A = ImA.

Proof. For the first equality, we recall that the (i, j)-entry of AIn is the dot
product of the i-th row of A with the j-th column of In. However, the j-th
column of In is e j, so it follows from Example 1.2.1(c) that the (i, j)-entry of
AIn is the j-th entry of the i-th row of A: ai, j. It follows that all entries of AIn
and A coincide, so AIn = A.

Because the second equality is proved in such a similar manner, we leave
it as Exercise 1.3.21. �

When a matrix A isRecall that a matrix
is square if it has

the same number
of rows as columns.

square, we are able to multiply it by itself and thus
obtain powers of A. That is, we define A2 = AA, A3 = AAA, and in general

Ak def= AA · · ·A︸ ︷︷ ︸
k copies

.

Matrix powers satisfy many of the nice properties that we would expect them
to, like Ak+` = AkA` and (Ak)` = Ak` for all k, `≥ 1 (see Exercise 1.3.22). We

Recall that if x ∈ R
then x0 = 1. The

definition A0 = I is
analogous. also define A0 = I so that these same properties even hold if k = 0 or ` = 0.

Example 1.3.3
Numerical
Examples
of Matrix

Powers

Compute each of the indicated matrix powers if A =
[

2 1
−1 3

]
.

a) A2,
b) A4, and
c) I7.

Solutions:
a) We just multiply A by itself:

A2 =
[

2 1
−1 3

][
2 1
−1 3

]
=

[
3 5
−5 8

]
.

b) WeFor now, matrix
powers are only

defined if the
exponent is a
non-negative

integer. We
explore how to

extend this
definition to

negative integers
in Section 2.2, and

to arbitrary real
numbers in
Section 3.4.

could multiply A by itself 2 more times, or we could use the fact
that A4 = (A2)2, so we just need to square our answer from part (a):

A4 = (A2)2 =

[
3 5
−5 8

][
3 5
−5 8

]
=

[
−16 55
−55 39

]
.

c) We can repeatedly use Theorem 1.3.3 to see that Ik = I for all non-
negative integers k, so I7 = I.

As a result of the fact that matrix multiplication is not commutative, we
have to be somewhat careful when doing algebra with matrices. For example,
when expanding the expression (A+B)2, the reader might be tempted to write
(A + B)2 = A2 + 2AB + B2. However, if we go through the calculation a bit
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more carefully then we find that the correct expression is

(A+B)2 = (A+B)(A+B)
= A(A+B)+B(A+B)

= AA+AB+BA+BB = A2 +AB+BA+B2,

and in general we cannot simplify any further by combining the AB and BA
terms in the final line above.

Example 1.3.4
Introduction to
Matrix Algebra

Suppose A,B ∈Mn. Expand and simplify the following expressions:

a) (A+ I)2(A− I), and
b) (A−A)(A+B− I)7.

Solutions:
a) We first square the A+ I and then multiply it byEven though it is

not the case that
(A+B)2 =

A2 +2AB+B2 in
general, it is the

case that
(A+ I)2 = A2 +2A+ I,

since A and I
commute.

A− I:

(A+ I)2(A− I) = (A2 +AI + IA+ I)(A− I)

= (A2 +2A+ I)(A− I)

= (A3 +2A2 +A)− (A2 +2A+ I)

= A3 +A2−A− I.

b) We could expand (A + B− I)7 (which would be ugly!) and then
multiply by A−A = O (the zero matrix), or we could simply notice
that O times any matrix is equal to O. It follows that (A−A)(A+
B− I)7 = O(A+B− I)7 = O.

Row and Column Vectors
One

We can think of
numbers as 1×1

matrices or
1-dimensional

vectors, and we
can think of

vectors as 1×n or
m×1 matrices.

Numbers are thus
special cases of

vectors, which are
special cases of

matrices.

of the most useful features of matrix multiplication is that it can be used to
move vectors around. In particular, if A∈Mm,n and v∈Mn,1 then Av∈Mm,1,
and since each of v and Av have just one column, we can think of them as vectors
(and we think of A as transforming v into Av). In fact, we call these matrices
with just one column column vectors, and similarly we refer to matrices with
just one row as row vectors. For example,

if A =
[

1 2
3 4

]
and v =

[
2
−1

]
then Av =

[
2−2
6−4

]
=
[

0
2

]
,

so we think of the matrix A as transforming v = (2,−1) into Av = (0,2), but
we have to write v and Av as columns for the matrix multiplication to actually
work out.

When performing matrix multiplication (as well as a few other tasks that
we will investigate later in this book), the difference between row vectors and
column vectors is important, since the product Av does not make sense if v is
a row vector—the inner dimensions of the matrix multiplication do not match.
However, when thinking of vectors geometrically as we did in the previous
sections, this difference is often unimportant.

To help make it clearer whether or not we actually care about the shape
(i.e., row or column) of a vector, we use square brackets when thinking of a
vector as a row or a column (as we have been doing throughout this section
for matrices), and we use round parentheses if its shape is unimportant to us
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(as we did in the previous two sections). For example,It is not uncommon
to abuse notation

slightly and say
things like

[1,2,3] ∈ R3 (even
though [1,2,3] is a

row vector and
thus technically

lives in M1,3).

v = [1,2,3] ∈M1,3 is a
row vector,

w =




1
2
3


 ∈M3,1

is a column vector, and x = (1,2,3) ∈ R3 is a vector for which we do not care
if it is a row or column. If the shape of a vector matters (e.g., if we multiply it
by a matrix) and we give no indication otherwise, it is assumed to be a column
vector from now on.

Remark 1.3.2
Why is Matrix
Multiplication

So Weird?

At this point, it seems natural to wonder why matrix multiplication is
defined in such a seemingly bizarre way. After all, it is not even commuta-
tive, so why not just multiply matrices entrywise, similar to how we add
them? Such an operation would certainly be much simpler.

The usual answer to this question is that matrix multiplication can be
used as a function v 7→Av that moves vectors around Rn. We introduce this
idea in more depth in Section 1.4, and this connection between matrices
and functions of vectors is one of the central themes of linear algebra.

1.3.3 The Transpose

We now introduce an operation on matrices that changes the shape of a matrix,
but not its contents. Specifically, it swaps the role of the rows and columns of
a matrix:

Definition 1.3.3
The Transpose

Suppose A ∈Mm,n is an m× n matrix. Then its transpose, which we
denote by AT , is the n×m matrix whose (i, j)-entry is a j,i.

Another way of thinking about the transpose is as reflecting the entries of
A across its main diagonal:

A=
1 2 3
4 5 6

=⇒ AT =


1 4
2 5
3 6


.

Example 1.3.5
Numerical
Examples

of the
Transpose

Compute each of the indicated matrices if

A =
[

1 2
3 4

]
and B =

[
−1 1 1
0 1 0

]
.

a) AT ,
b) BT ,
c) (AB)T , and
d) BT AT .

Solutions:

a) AT =
[

1 3
2 4

]
.
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b) BT =



−1 0
1 1
1 0


.

c) (AB)T =
([

1 2
3 4

][
−1 1 1
0 1 0

])T

=
[
−1 3 1
−3 7 3

]T

=



−1 −3
3 7
1 3


.

d) BT AT =



−1 0
1 1
1 0



[

1 3
2 4

]
=



−1 −3
3 7
1 3


.

Parts (c) and (d) of the previous example suggest that (AB)T = BT AT might
be a general rule about matrix transposes. The following theorem shows that
this is indeed the case (and also establishes a few other less surprising properties
of the transpose).

Theorem 1.3.4
Properties of

the Transpose

Let A and B be matrices with sizes such that the operations below make
sense and let c ∈ R be a scalar. Then

a) (AT )T = A,
b) (A+B)T = AT +BT ,
c) (AB)T = BT AT , and
d) (cA)T = cAT .

Proof. Properties (a), (b), and (d) are all fairly intuitive, so we leave their
proofs to Exercise 1.3.23. To prove that property (c) holds, weRecall that

[(AB)T ]i, j means the
(i, j)-entry of (AB)T .

compute the
(i, j)-entry of (AB)T and BT AT :

[(AB)T ]i, j = [AB] j,i = a j,1b1,i +a j,2b2,i + · · ·+a j,nbn,i,

whereas

[BT AT ]i, j = [BT ]i,1[AT ]1, j +[BT ]i,2[AT ]2, j + · · ·+[BT ]i,n[AT ]n, j

= b1,ia j,1 +b2,ia j,2 + · · ·+bn,ia j,n.

Since these two quantities are the same, we conclude that [(AB)T ]i, j = [BT AT ]i, j
for all i and j, so (AB)T = BT AT , as desired. �

The transpose also has the useful property that it converts a column vector
into the corresponding row vector, and vice-versa. Furthermore, if v,w ∈ Rn

are column vectors then we can use our usual matrix multiplication rule to see

Strictly speaking,
vT w is a 1×1 matrix,

whereas v ·w is a
scalar, but these
are “essentially”

the same thing, so
we do not care

about the
distinction.

that

vT w =
[
v1 v2 · · · vn

]




w1
w2

...
wn


= v1w1 + v2w2 + · · ·+ vnwn = v ·w.

In other words, we can use matrix multiplication to recover the dot product
(which is not surprising, since we defined matrix multiplication via taking all
possible dot products of rows and columns of the matrices being multiplied).
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1.3.4 Block Matrices

There are often patterns in the entries of a large matrix, and it might be useful
to break that large matrix down into smaller chunks based on some partition
of its rows and columns. For example, if

A =




1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1
0 0 0 2 1 −1
0 0 0 0 −2 3




and B =




1 2 0 0
2 1 0 0
−1 1 0 0
0 0 1 2
0 0 2 1
0 0 −1 1




then we can break A and B downBlocks are
sometimes called

submatrices.

into blocks that are individually rather simple
as follows:

The vertical and
horizontal bars in A
and B do not have
any mathematical

meaning—they just
help us visualize

the different matrix
blocks.

A =




1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1
0 0 0 2 1 −1
0 0 0 0 −2 3




and B =




1 2 0 0
2 1 0 0
−1 1 0 0
0 0 1 2
0 0 2 1
0 0 −1 1




.

We then recognize two of the blocks of A as I3 (the 3×3 identity matrix)
and some of the blocks of A and B as the zero matrix O. If we call the remaining
blocks

C =
[

2 1 −1
0 −2 3

]
and D =




1 2
2 1
−1 1


 ,

then we can write A and B in terms of C and D as follows:We do not need to
specify the sizes of

the zero matrices O
here, since they

are determined by
the sizes of the

other blocks.

A =
[

I3 I3

O C

]
and B =

[
D O
O D

]
.

When A and B are written in this way, as matrices whose entries are them-
selves matrices, they are called block matrices. The remarkable thing about
block matrices is that we can multiply them just like regular matrices. For ex-
ample, if we want to compute the matrix AB, instead of computing the product
the long way (i.e., computing 4 ·5 = 20 dot products of 6-dimensional vectors),
we can simply multiply them as 2×2 block matrices:

Be careful: order
matters when

multiplying block
matrices. The

bottom-right block
is CD, not DC.

AB=
[
I3 I3
O C

][
D O
O D

]

=

[
I3 D + I3 O I3 O + I3 D

O D + C O O O + C D

]
=
[
D D
O CD

]
.
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It is not difficult to compute CD =

[
5 4
−7 1

]
, so it follows that

AB =
[

D D
O CD

]
=




1 2 1 2
2 1 2 1
−1 1 −1 1
0 0 5 4
0 0 −7 1




,

which is the same answer that we would have gotten if we multiplied A and B
directly. In general, multiplying block matrices like this is valid (a fact that we
prove explicitly in Appendix B.1) as long as we choose the sizes of the blocks
so that each and every matrix multiplication being performed makes sense, in
which case we say that the block matrices have conformable partitions.

Example 1.3.6
Numerical

Examples (and
Non-Examples)
of Block Matrix

Multiplication

Suppose that

A =
[

1 2
3 4

]
and B =

[
−1 1 1
0 1 0

]
.

Either compute each of the following block matrix products, or explain
why they do not make sense:

a)
[

A B
B A

]2,

c)
[

A B
O I3

][
A A
O A

]
, andRecall that I2 and

I3 refer to the 2×2
and 3×3 identity

matrices,
respectively. For

example,

I2 =

[
1 0
0 1

]
.

b)
[

A B
O I3

]


A A
O A
I2 O




,

d)
[

A B
O I3

][
B O
I3 I3

]
.

Solutions:

a) The block matrix

[
A B
B A

]
itself makes no sense, since A has two

columns but B has 3 columns. Written out explicitly, it would have
the form

[
A B
B A

]
=




1 2
3 4

−1 1 1
0 1 0

−1 1 1
0 1 0

1 2
3 4


 ,

which is not a valid matrix since the columns do not match up.

b) The individual block matrices exist, but we cannot multiply them,
since the first matrix has 2 block columns and the second matrix
has 3 block rows (the inner dimensions must be the same).

c) TheWe can also add
block matrices in
the obvious way
(i.e., just add up
the blocks in the

same positions), as
long as the blocks

being added have
the same sizes.

individual block matrices exist and they have sizes appropriate
for multiplying (the inner dimensions are both 2), but there is another
problem this time: if we perform the block multiplication, we get

[
A B
O I3

][
A A
O A

]
=

[
A2 A2 +BA
O A

]
,
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which makes no sense since the product BA is not defined (B has 3
columns, but A has 2 rows).

d) Finally, this is a block matrix multiplication that actually makes
sense:

[
A B
O I3

][
B O
I3 I3

]
=
[

AB+B B
I3 I3

]
=




−2 4 2 −1 1 1
−3 8 3 0 1 0
1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1




.

The computation of the top-left block AB+B did take some effort,
which we leave to the reader.

Sometimes, partitioning matrices in multiple different ways can lead to
new insights about how matrix multiplication works. For example, although
we defined matrix multiplication via every entry of AB being the dot product
of the corresponding row of A and column of B, we can use block matrix
multiplication to come up with some additional (equivalent) characterizations
of matrix multiplication. For example, our first result in this direction tells us
that the matrix-vector product Av is a linear combination of the columns of A:

Theorem 1.3.5
Matrix-Vector
Multiplication

Suppose A ∈Mm,n has columns a1,a2, . . . ,an (in that order) and v ∈ Rn

is a column vector. Then

Av = v1a1 + v2a2 + · · ·+ vnan.

Proof. We simply perform block matrix multiplication:

Av =
[

a1 | a2 | · · · | an
]



v1
v2
...

vn


= v1a1 + v2a2 + · · ·+ vnan,

where the final equality comes from thinking of A as a 1×n block matrix and
v as an n×1 matrix. �

Of course, we could just directly compute Av from the definition of matrix
multiplication, but it is convenient to have multiple different ways of thinking
about and computing the same thing. In a similar vein, we can use block matrix
multiplication to see that the matrix multiplication AB acts column-wise on
the matrix B:

Theorem 1.3.6
Column-Wise

Form of Matrix
Multiplication

Suppose A ∈ Mm,n and B ∈ Mn,p are matrices. If B has columns
b1,b2, . . . ,bp (in that order), then

AB =
[

Ab1 | Ab2 | · · · | Abp
]
.

Proof. Again, we simply perform block matrix multiplication:

AB = A
[

b1 | b2 | · · · | bp
]
=
[

Ab1 | Ab2 | · · · | Abp
]
,

where the final equality comes from thinking of A as a 1×1 block matrix and
B as a 1× p block matrix. �
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In other words, the matrix AB is exactly the matrix that is obtained by
multiplying each of the columns of B on the left by A. Similarly, the matrix
multiplication AB can also be thought of as multiplying each of the rows of A on
the right by B (see Exercise 1.3.26). Furthermore, combining Theorems 1.3.5
and 1.3.6 shows that the columns of AB are linear combinations of the columns
of A (and similarly, the rows of AB are linear combinations of the rows of
B—see Exercise 1.3.27).

Example 1.3.7
Multiple Methods of
Matrix Multiplication

Suppose A =
[

1 2
3 4

]
and B =

[
−1 1 1
0 1 0

]
. Compute AB via

a) the definition of matrix multiplication, and
b) Theorem 1.3.6.

Solutions:
a) If we perform matrix multiplication in the usual way, we getFor part (a), we

compute the
matrix product
using the same

method as
Example 1.3.2.

AB=
[
1 2
3 4

][
−1 1 1
0 1 0

]

=


 (1,2) · (−1,0) (1,2) · (1,1) (1,2) · (1,0)
(3,4) · (−1,0) (3,4) · (1,1) (3,4) · (1,0)




=
[
−1 3 1
−3 7 3

]
.

b) The columns of B are

b1 =
[
−1
0

]
, b2 =

[
1
1

]
, and b3 =

[
1
0

]
.

Multiplying each of these columns by A gives

Ab1 =
[
−1
−3

]
, Ab2 =

[
3
7

]
, and Ab3 =

[
1
3

]
.

Finally, placing these column into a matrix gives us exactly AB:

AB =
[
−1 3 1
−3 7 3

]
.

Exercises solutions to starred exercises on page 437

1.3.1 Suppose

A =

[
2 −1
0 3

]
and B =

[
−1 1
−2 0

]
.

Compute the following matrices:

∗(a) A+B
∗(c) A−B

(b) 2B−3A
(d) 2(A+B)−A

1.3.2 Let A and B be as in Exercise 1.3.1, and let

C =

[
1 2 −1
1 0 1

]
and D =

[
0 −2 1
2 2 0

]
.

Compute the following matrices:

∗(a) AB
∗(c) AC
∗(e) A2

∗(g) BD
∗(i) (A+B)(C +D)

(b) CDT

(d) CT D
(f) (CT D)2

(h) (C−D)T (A−BT )
(j) DT (AT +B)TC
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1.3.3 Determine which of the following statements are
true and which are false.

∗(a) If A and B are matrices such that AB is square, then
A and B must be square.

(b) The matrices AT A and AAT are always defined, re-
gardless of the size of A.

∗(c) The matrices AT A and AAT are always square, re-
gardless of the size of A.

(d) If A and B are square matrices of the same size then
(A+B)2 = A2 +2AB+B2.

∗(e) If A and B are square matrices of the same size then
(AB)2 = A2B2.

(f) If A and B are matrices such that AB = O and A 6= O,
then B = O.

∗(g) If A is a square matrix for which A2 = I, then A = I
or A =−I.

(h) If A is a square matrix for which A2 = A, then either
A = I or A = O.

∗(i) If A ∈Mn,m and b ∈ Rm is a column vector, then
Ab is a linear combination of the rows of A.

1.3.4 Suppose A ∈M2,2,B ∈M2,5, and C ∈M5,2 are
matrices. Determine which of the following expressions
do and do not make sense. If they do make sense, what is
the size of the resulting matrix?

∗(a) AB
∗(c) AC
∗(e) A−B
∗(g) ABC
∗(i) A+BC

(b) A7

(d) B2

(f) BBT

(h) BT B+CTC
(j) (A+CTC)(B+CT )

∗∗1.3.5 Let A =

[
0 1
−1 0

]
. Compute A1000.

[Hint: Start by computing A2,A3, . . . , and see if you notice
a pattern.]

1.3.6 Let B =

[
1 2
2 −1

]
. Compute B1000.

[Hint: Start by computing B2,B3, . . . , and see if you notice
a pattern.]

∗1.3.7 Let A =

[
1 1
0 1

]
.

(a) Compute A2.
(b) Compute A3.
(c) Find a general formula for Ak (where k ≥ 0 is an

integer).

1.3.8 Let B =




1 1 1
0 1 1
0 0 1


.

(a) Compute B2.
(b) Compute B3.
(c) Find a general formula for Bk (where k ≥ 0 is an

integer).

1.3.9 Let C =

[
1 −1
−1 1

]
.

(a) Compute C2.
(b) Compute C3.
(c) Find a general formula for Ck (where k ≥ 0 is an

integer) and prove that this formula is correct. [Hint:
Use induction.]

§ 1.3.10 Let h ∈ R and

A =

[
0.8 0.6
0.2 h

]
.

Use computer software to compute A2500 when h = 0.39,
h = 0.40, and h = 0.41. What do you think happens as
you take larger and larger powers of A in each of these
three cases? What do you think is special about h = 0.40
that leads to this change in behavior?

∗1.3.11 Suppose Jn is the n×n matrix all of whose entries
are 1. For example,

J2 =

[
1 1
1 1

]
and J3 =




1 1 1
1 1 1
1 1 1


 .

Compute J2
n .

1.3.12 Suppose A ∈M2,2,B ∈M2,3, and C ∈M3,4 are
matrices. Determine which of the following block matrix
multiplications do and do not make sense.

∗(a)

[
A A
A A

]2

(b)

[
C I3

I4 O

][
O I3

I4 CT

]

∗(c)

[
A B

BT I3

][
O CT

BT I3

]

(d)

[
A B

O CT

][
I2 B

BT O

]

1.3.13 Compute the product AB using block matrix mul-
tiplication, using the partitioning of A and B indicated.

∗(a) A =
[

1 0 1 0
0 1 0 1

]
, B =




1 2 2 1
2 1 1 2
2 1 1 2
1 2 2 1




(b) A =




1 2 0
3 1 0
0 0 2


 , B =



−1 1 0 0
2 2 0 0
0 0 1 1




∗(c) A =




1 0 0 1
0 1 0 1
0 0 1 1
0 0 0 2


 , B =




1 2 3
2 3 4
3 4 5
1 2 3






1.4 Linear Transformations 35

1.3.14 Consider the 7×7 matrix

A =




1 0 0 0 1 1 1
0 1 0 0 1 1 1
0 0 1 0 1 1 1
0 0 0 1 1 1 1
1 1 1 1 0 0 0
1 1 1 1 0 0 0
1 1 1 1 0 0 0




.

Compute A2. [Hint: Partition A as a block matrix to save
yourself a lot of work.]

∗∗1.3.15 Suppose A ∈Mm,n and B ∈Mr,p are matrices.

(a) What restrictions must be placed on m,n,r, and p to
ensure that both of the products AB and BA exist?

(b) What additional restrictions must be placed on
m,n,r, and p to ensure that AB and BA have the
same size as each other?

1.3.16 Let A,B ∈Mm,n. Show that vT Aw = vT Bw for
all v ∈ Rm and w ∈ Rn if and only if A = B.

[Hint: What is eT
i Ae j?]

∗∗1.3.17 Suppose that A ∈Mm,n.

(a) Show that x · (Ay) = (AT x) · y for all x ∈ Rm and
y ∈ Rn. [Side note: This is actually why we care
about the transpose in the first place—it gives us a
way of moving a matrix around in a dot product.]

(b) Show that if x · (Ay) = (Bx) ·y for all x ∈ Rm and
y ∈ Rn then B = AT .

∗∗1.3.18 Let ei be the standard basis vector with 1 in its
i-th entry and 0 in all other entries, and let A,B ∈Mm,n.

(a) Show that Aei is the i-th column of A.
(b) Show that eT

i A is the i-th row of A.
(c) Use parts (a) and (b), together with Theorem 1.3.6,

to give an alternate proof of Theorem 1.3.3.
(d) Use part (a) to show that Av = Bv for all v ∈ Rn if

and only if A = B.

∗∗1.3.19 Recall Theorem 1.3.1, which established some
of the basic properties of matrix addition and scalar multi-
plication.

(a) Prove part (b) of the theorem.
(b) Prove part (c) of the theorem.

(c) Prove part (d) of the theorem.
(d) Prove part (e) of the theorem.

∗∗1.3.20 Recall Theorem 1.3.2, which established some
of the basic properties of matrix multiplication.

(a) Prove part (a) of the theorem.
(b) Prove part (c) of the theorem.
(c) Prove part (d) of the theorem.

∗∗1.3.21 Prove the second equality of Theorem 1.3.3.
That is, show that if A ∈Mm,n then ImA = A.

∗∗1.3.22 Suppose A ∈Mn and k and ` are non-negative
integers.

(a) Show that Ak+` = AkA`.
(b) Show that

(
Ak)` = Ak`.

∗∗1.3.23 Recall Theorem 1.3.4, which established some
of the basic properties of the transpose.

(a) Prove part (a) of the theorem.
(b) Prove part (b) of the theorem.
(c) Prove part (d) of the theorem.

1.3.24 Suppose that A1,A2, . . . ,Ak are matrices whose
sizes are such that the product A1A2 . . .Ak makes sense.
Prove that (A1A2 · · ·Ak)T = AT

k · · ·AT
2 AT

1 .

[Hint: Use induction.]

1.3.25 Suppose that A ∈Mn. Show that (An)T = (AT )n

for all integers n≥ 0.

∗∗1.3.26 Suppose A∈Mm,n and B∈Mn,p are matrices,
and let aT

j be the j-th row of A. Show that

AB =




aT
1 B

aT
2 B
...

aT
mB


 .

[Hint: Try mimicking the proof of Theorem 1.3.6.]

∗∗1.3.27 Suppose A∈Mm,n and B∈Mn,p are matrices.

(a) Show that the columns of AB are linear combina-
tions of the columns of A.

(b) Show that the rows of AB are linear combinations
of the rows of B.

1.4 Linear Transformations

The final main ingredient of linear algebra, after vectors and matrices, are
linear transformations: functions that act on vectors and that do not “mess
up” vector addition and scalar multiplication. Despite being the most abstract
and difficult object to grasp in this chapter, they are of paramount importance
and permeate all of linear algebra, so the reader is encouraged to explore this
section thoroughly.
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Definition 1.4.1
Linear

Transformations

A linear transformation is a function T : Rn → Rm that satisfies the
following two properties:

a) T (v+w) = T (v)+T (w) for all vectors v,w ∈ Rn, and
b) T (cv) = cT (v) for all vectors v ∈ Rn and all scalars c ∈ R.

For example,The notation
T : Rn→ Rm means

that T is a function
that sends vectors
in Rn to vectors in

Rm. More generally,
f : X → Y means

that the function f
sends members of

the set X to the set Y .

it follows fairly quickly from Theorem 1.3.2 that matrix
multiplication is a linear transformation—if A ∈Mm,n then the function that
sends v ∈Rn to Av ∈Rm preserves vector addition (i.e., A(v+w) = Av+Aw)
and scalar multiplication (i.e., A(cv) = c(Av)).

Geometrically, linear transformations can be thought of as the functions
that rotate, stretch, shrink, and/or reflect Rn, but do so somewhat uniformly.
For example, if we draw a square grid on R2 as in Figure 1.14, then a linear
transformation T : R2→ R2 can rotate, stretch, shrink, and/or reflect that grid,
but it will still be made up of cells of the same size and shape (which in general
will be parallelograms rather than squares). Furthermore, if a vector v is located
in the x-th cell in the direction of e1 and the y-th cell in the direction of e2,
then T (v) is located in the x-th cell in the direction of T (e1) and the y-th cell
in the direction of T (e2) (again, see Figure 1.14).

v

e2

e1

T (v)

TT (ee2)

TT (((ee11)))x

y

T−−→

x

y

Figure 1.14: A linear transformation T : R2→R2 transforms a square grid into a grid
made up of parallelograms, and it preserves which cell of the grid each vector
is in (in this case, v is in the 2nd square to the right, 3rd up, and T (v) is similarly in
the 2nd parallelogram in the direction of T (e1) and 3rd in the direction of T (e2)).

Alternatively, we can also think of linear transformations as the functions
that preserve linear combinations. That is, a function T : Rn→ Rm is a linear
transformation if and only if

T (c1v1 + c2v2 + · · ·+ ckvk) = c1T (v1)+ c2T (v2)+ · · ·+ ckT (vk)

for all v1,v2, . . . ,vk ∈ Rn and all c1,c2, . . . ,ck ∈ R (see Exercise 1.4.9).

Example 1.4.1
Determining if a

Transformation
is Linear

Determine whether or not the following functions T : R2→ R2 are linear
transformations. Also illustrate their effect on R2 geometrically.

a) T (v1,v2) = (1+ v1,2+ v2),
b) T (v1,v2) = (v1− v2,v1v2), and
c) T (v1,v2) = (v1− v2,v1 + v2).

Solutions:
a) This

In general, if T is a
linear transformation

then it must be the
case that T (0) = 0

(see Exercise 1.4.8).

transformation is not linear. One way to see this is to notice
that 2T (0,0) = 2(1,2) = (2,4), but T (2(0,0)) = T (0,0) = (1,2).
Since these are not the same, T is not linear. The fact that T is not
linear is illustrated by the fact that it translates R2, rather than just
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rotation, stretching, shrinking, and/or reflecting it:

x

y

e2

e1

T−−→

T (e2)

T (e1)

x

y

b) This transformation is not linear. One way to see this is to notice
that 2T (1,1) = 2(0,1) = (0,2), but T (2(1,1)) = T (2,2) = (0,4).
Since these are not the same, T is not linear. Geometrically, we
can see that T is not linear by the fact that it stretches and shrinks
different parts of R2 by different amounts:

Any function that
multiplies the

entries of the input
vector by each

other is not linear.
Functions like sin,

cos, ln, and the
absolute value also
cannot be applied

to entries of the
vector in linear
transformations.

x

y

e2

e1
T−−→ x

y

T (e1)

T (e2)

c) This transformation is linear. To see this, we check the two defining
properties of linear transformations:

T (v+w) = T (v1 +w1,v2 +w2)
= ((v1 +w1)− (v2 +w2),(v1 +w1)+(v2 +w2))
= (v1− v2,v1 + v2)+(w1−w2,w1 +w2) = T (v)+T (w),

and

T (cv) = T (cv1,cv2) = (cv1− cv2,cv1 + cv2)
= c(v1− v2,v1 + v2) = cT (v).

Geometrically, we can see that this is a linear transformation since
it just rotates and stretches R2 by a uniform amount. Specifically,
T rotates R2 counter-clockwise by 45 degrees and stretches it by a
factor of

√
2:
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x

y

e2

e1

T−−→ T (e1)T (e2)

x

y

To justify our geometric intuition for linear transformations, first recall that
for every vector v = (v1,v2, . . . ,vn) ∈Rn,Recall that e j is the

vector with 1 in its
j-th entry and 0

elsewhere.

we can write v = v1e1 +v2e2 + · · ·+
vnen, where e1,e2, . . . ,en are the standard basis vectors. By using the fact that
linear transformations preserve linear combinations, we see that

T (v) = T (v1e1 + v2e2 + · · ·+ vnen) = v1T (e1)+ v2T (e2)+ · · ·+ vnT (en),

which is exactly what we said before: if v ∈ R2 extends a distance of v1 in
the direction of e1 and a distance of v2 in the direction of e2, then T (v) ex-
tends the same amounts in the directions of T (e1) and T (e2), respectively (and
similarly for e3, . . . ,en in higher dimensions). We thus learn the very impor-
tant fact that linear transformations are completely determined by the vectors
T (e1),T (e2), . . . ,T (en): if we know what T does to the standard basis vectors,
then we know everything about T .

Example 1.4.2
Determining a

Linear
Transformation

from the
Standard

Basis Vectors

Suppose T : R2→ R2 is a linear transformation for which T (e1) = (1,1)
and T (e2) = (−1,1).

a) Compute T (2,3), and
b) Find a general formula for T (v1,v2).

Solutions:
a) Since (2,3) = 2e1 + 3e2, we know that T (2,3) = T (2e1 + 3e2) =

2T (e1)+3T (e2) = 2(1,1)+3(−1,1) = (−1,5).

b) We can mimic the computation from part (a): (v1,v2) = v1e1 +v2e2,
so

T (v1,v2) = T (v1e1 + v2e2)
= v1T (e1)+ v2T (e2)
= v1(1,1)+ v2(−1,1) = (v1− v2,v1 + v2).

In other words, this is exactly the same as the linear transformation
from Example 1.4.1(c).

1.4.1 Linear Transformations as Matrices

One of the easiest ways to see that a function T : Rn→ Rm is indeed a linear
transformation is to find a matrix whose multiplication has the same effect as
T . For example,

If A ∈Mm,n is a
matrix, then a

function that sends
v to Av is sometimes

called a matrix
transformation. if A =

[
1 −1
1 1

]
then Av =

[
1 −1
1 1

][
v1
v2

]
=
[

v1− v2
v1 + v2

]
,
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which shows that multiplying a column vector by the matrix A has the same
effect as the linear transformation T : R2→ R2 defined by T (v1,v2) = (v1−
v2,v1 +v2) (i.e., the linear transformation from Examples 1.4.1(c) and 1.4.2(b)).
One of the most remarkable facts about linear transformations is that this proce-
dure can always be carried out—every linear transformation can be represented
via matrix multiplication, and there is a straightforward method for constructing
a matrix that does the job:

Theorem 1.4.1
Standard Matrix

of a Linear
Transformation

A function T : Rn → Rm is a linear transformation if and only if there
exists a matrix [T ] ∈Mm,n such that

T (v) = [T ]v for all v ∈ Rn.

Furthermore, the unique matrix [T ] with this property is called the stan-
dard matrix of T , and it

In other words, [T ]
is the matrix with
the vectors T (e1),

T (e2), . . ., T (en) as its
columns.

is

[T ] def=
[

T (e1) | T (e2) | · · · | T (en)
]
.

Proof. It follows immediately from Theorem 1.3.2 that if [T ] ∈Mm,n then the
function that sends v to [T ]v is a linear transformation. We thus only have to
prove that for every linear transformation T : Rn→ Rm, the matrix

[T ] =
[
T (e1) | T (e2) | · · · | T (en)

]

satisfies [T ]v = T (v), and no other matrix has this property.
To see that [T ]v = T (v), we use the block matrix multiplication techniques

that we learned in Section 1.3.4:

This theorem says
that linear

transformations
and matrix

transformations are
the same thing.

[T ]v =
[
T (e1) | T (e2) | · · · | T (en)

]



v1
v2
...

vn


 (definition of [T ])

= v1T (e1)+ v2T (e2)+ · · ·+ vnT (en) (block matrix multiplication)
= T (v1e1 + v2e2 + · · ·+ vnen) (since T is linear)
= T (v). (v = v1e1 + v2e2 + · · ·+ vnen)

To verify that [T ] is unique, suppose that A ∈Mm,n is any matrix with
the property that T (v) = Av for all v ∈ Rn. Then T (v) = [T ]v and T (v) = Av,
so [T ]v = Av for all v ∈ Rn as well. It follows from Exercise 1.3.18(d) that
A = [T ], which completes the proof. �

TheBecause of this
one-to-one

correspondence
between matrices

and linear
transformations, they
are often thought of

as the same thing.

above theorem says that there is a one-to-one correspondence between
matrices and linear transformations—every matrix A ∈Mm,n can be used to
create a linear transformation T : Rn → Rm via T (v) = Av, and conversely
every linear transformation T : Rn → Rm can be used to create its standard
matrix [T ] ∈Mm,n. This bridge between matrices and linear transformations is
one of the most useful tools in all of linear algebra, as it lets us use geometric
techniques (based on linear transformations) for dealing with matrices, and
it lets us use algebraic techniques (based on matrices) for dealing with linear
transformations.
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Example 1.4.3
Representing

Linear
Transformations

Via Matrices

Find the standard matrix of the following linear transformations.
a) T (v1,v2) = (v1 +2v2,3v1 +4v2), and
b) T (v1,v2,v3) = (3v1− v2 + v3,2v1 +4v2−2v3).

Solutions:
a) We use Theorem 1.4.1, which tells us to compute T (e1) = (1,3)

and T (e2) = (2,4) and place these as columns into a matrix, in that
order:

[T ] =
[

1 2
3 4

]
.

Notice that the entries of [T ] are just the coefficients in the definition
of T , read row-by-row. This always happens.

b) WeBe careful: if
T : Rn→ Rm then its

standard matrix is
an m×n matrix; the
dimensions are the

opposite of what
we might expect

at first.

could explicitly compute T (e1), T (e2), and T (e3) and place
them as columns in a matrix like we did in part (a), or we could
simply place the coefficients of v1,v2, and v3 in the output of T , in
order, in the rows of a matrix, as we suggested at the end of part (a):

[T ] =
[

3 −1 1
2 4 −2

]
.

Notice that T maps from R3 to R2, so [T ] is a 2×3 matrix.

Example 1.4.4
Representing

Matrices
Geometrically

Interpret the following matrices as linear transformations and represent
them geometrically (in the same way that we represented linear transfor-
mations in Figure 1.14).

a) A =
[

2.1 0.3
0.2 1.2

]
b) B =




2 1
1 2
1 1




Solutions:
a) Since Ae1 (i.e., the first column of A) equals (2.1,0.2) and Ae2 (i.e.,

its second column) equals (0.3,1.2), we can think of this matrix
as the linear transformation that sends e1 and e2 to (2.1,0.2) and
(0.3,1.2), respectively:

x

y

e2

e1

A−−→

x

y

Ae2 = (0.3,1.2)

Ae1 = (2.1,0.2)

b) Since Be1 (i.e., the first column of B) equals (2,1,1) and Be2 (i.e.,
its second column) equals (1,2,1), we can think of this matrix as
the linear transformation that sends e1 and e2 from R2 to (2,1,1)
and (1,2,1), respectively, in R3:
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Be careful: B is 3×2,
so it acts as a linear
transformation that

sends R2 to R3.

x

y

e2

e1

B−−→

yy

BBBBee1 == ((22,,11111,1))))
BBeee22 === ((1,,2222,11))

x

z

Remark 1.4.1
Modifying Linear
Transformations

Just like we can add and subtract matrices and multiply them by scalars,
we can also add and subtract linear transformations and multiply them by
scalars. These operations are all defined in the obvious ways: if
S,T : Rn→ Rm and c ∈ R then S +T : Rn→ Rm and cT : Rn→ Rm are
the linear transformations defined by

(S +T )(v) = S(v)+T (v) and (cT )(v) = cT (v) for all v ∈ Rn,

respectively.
We do not spend any significant time discussing the properties of these

operations because they are all fairly intuitive and completely analogous
to the properties of addition and scalar multiplication of matrices. In par-
ticular, the standard matrix of S + T is [S + T ] = [S]+ [T ] and similarly
the standard matrix of cT is [cT ] = c[T ] (see Exercise 1.4.11), so we can
think of addition and scalar multiplication of linear transformations as the
addition and scalar multiplication of their standard matrices.

1.4.2 A Catalog of Linear Transformations

In order to get more comfortable with the relationship between linear trans-
formations and matrices, we construct the standard matrices of a few very
geometrically-motivated linear transformations that come up frequently.

TheGeometrically,
the identity

transformation
leaves Rn

unchanged,
while the zero
transformation

squishes it down
to a single point

at the origin.

two simplest linear transformations that exist are the zero transfor-
mation O : Rn → Rm, defined by O(v) = 0 for all v ∈ Rn, and the identity
transformation I : Rn→ Rn, defined by I(v) = v for all v ∈ Rn. It is perhaps
not surprising that the standard matrices of these transformations are the zero
matrix and the identity matrix, respectively. To verify this claim, just notice
that if O ∈Mm,n and I ∈Mn are the zero matrix and the identity matrix, then
Ov = 0 and Iv = v for all v ∈ Rn too.

Diagonal Matrices
The next simplest type of linear transformation T : Rn→ Rn is one that does
not change the direction of the standard basis vectors, but just stretches them
by certain (possibly different) amounts, as in Figure 1.15. These linear trans-
formations are the ones for which there exist scalars c1,c2, . . . ,cn ∈ Rn such
that T (v1,v2, . . . ,vn) = (c1v1,c2v2, . . . ,cnvn).
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x

y

e2

e1

A =

[
2.1 0

0 0.8

]

−−−−−−−−−−→

x

y

Ae2 = (0,0.8)

Ae1 = (2.1,0)

Figure 1.15: The linear transformation associated with a diagonal matrix stretches
Rn in the direction of each of the standard basis vectors, but does not skew or
rotate space. The transformation displayed here stretches the x-direction by a
factor of 2.1 and stretches the y-direction by a factor of 0.8.

The standard matrix of this linear transformation is

[T ] =
[

c1e1 | c2e2 | · · · | cnen
]
=




c1 0 · · · 0
0 c2 · · · 0
...

...
. . .

...
0 0 · · · cn




.

Matrices of this form (with all off-diagonal entries equal to 0An off-diagonal
entry of a matrix A is

an entry ai, j with
i 6= j.

) are called diago-
nal matrices, and they are useful because they are so much easier to work with
than other matrices. For example, it is straightforward to verify that the product
of two diagonal matrices is another diagonal

Similarly, a
diagonal linear
transformation

is one whose
standard matrix is

diagonal.

matrix, and their multiplication
just happens entrywise:



c1 0 · · · 0
0 c2 · · · 0
...

...
. . .

...
0 0 · · · cn







d1 0 · · · 0
0 d2 · · · 0
...

...
. . .

...
0 0 · · · dn


=




c1d1 0 · · · 0
0 c2d2 · · · 0
...

...
. . .

...
0 0 · · · cndn


 .

Slightly more generally, if D is a diagonal matrix and A is an arbitrary
matrix, then the matrix multiplication DA simply multiplies each row of A by
the corresponding diagonal entry of D. Similarly, the product AD multiplies
each column of A by the corresponding diagonal entry

The identity and
zero matrices are

both diagonal
matrices.

of D (see Exercise 1.4.10).
For example,




1 0 0
0 2 0
0 0 3






1 1 1
1 1 1
1 1 1


=




1 1 1
2 2 2
3 3 3


 and




1 1 1
1 1 1
1 1 1






1 0 0
0 2 0
0 0 3


=




1 2 3
1 2 3
1 2 3


 .

Projections
The next type of linear

In R2, we can
imagine shining a

light down
perpendicular to the

given line: the
projection of v

onto that line is the
shadow cast by v.

transformation that we look at is a projection onto a
line. If we fix a particular line in Rn then the projection onto it sends each vector
to a description of how much it points in the direction of that line. For example,
the projection onto the x-axis sends every vector v = (v1,v2) ∈ R2 to (v1,0)
and the projection onto the y-axis sends them to (0,v2), as in Figure 1.16(a).

More generally, given any vector v, we can draw a right-angled triangle with
v as the hypotenuse and one of its legs on the given line. Then the projection
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onto that line is the function that sends v to this leg of the triangle, as in
Figure 1.16(b). To make this projection easier to talk about mathematically,
we let u be a unit vector on the line that we are projecting onto (recall that we
think of unit vectors as specifying directions) and let Pu denote the projection
onto the line in the direction of u.

v = (v1,v2)(0,v2)

(v1,0)

(v1,0)

θ

u

v

Pu(v)

‖‖vv‖‖cos
cos(θ)

x

y

x

y

Figure 1.16: The projection of a vector v onto the line in the direction of u is
denoted by Pu(v), and it points a distance of ‖v‖cos(θ) in the direction of u, where
θ is the angle between v and u.

To see that Pu is indeed a linear transformation, and to find a formula
for computing Pu(v), we use many of the same geometric techniques that we
used in previous sections. Since v and Pu(v) form the hypotenuse and leg of
a right-angled triangle, respectively, we know that Pu(v) points a distance of
‖v‖cos(θ) in the direction of u, where θ is the angle between v and u. In other
words, Pu(v) = u(‖v‖cos(θ)).

We then recall from Definition 1.2.3 that cos(θ) = u · v/(‖u‖‖v‖). By
plugging this into our formula for Pu(v) and using the fact that ‖u‖= 1, we
see that

Pu(v) = u
(
‖v‖(u ·v)/‖v‖

)
= u(u ·v).

Finally, if we recall from Section 1.3.3 that u ·v = uT v, it follows thatBe careful: uT u is a
number (in

particular, it equals
u ·u = ‖u‖2 = 1), but

uuT is a matrix!
Since u is n×1 and

uT is 1×n, uuT is
n×n.

Pu(v) =
u(uT v) = (uuT )v. In other words, Pu is indeed a linear transformation, and it
has standard matrix [

Pu
]
= uuT .

It is worth noting that even though Figure 1.16 illustrates how projections
work in R2, this calculation of Pu’s standard matrix works the exact same way
in Rn, regardless of the dimension.

Example 1.4.5
Standard Matrices

of Projections

Find the standard matrices of the linear transformations that project onto
the lines in the direction of the following vectors, and depict these projec-
tions geometrically.

a) u = (1,0) ∈ R2, and
b) w = (1,2,3) ∈ R3.

Solutions:
a) Since u is a unit vector, the standard matrix of Pu is simply

[
Pu
]
= uuT =

[
1
0

][
1 0

]
=
[

1 0
0 0

]
.

We note that this agrees with observations that we made earlier,
since u points in the direction of the x-axis, and multiplication by
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this matrix indeed has the same effect as the projection onto the
x-axis:

[
Pu
]
v =

[
1 0
0 0

][
v1
v2

]
=
[

v1

0

]
.

We can visualize this projection as just squashing everything down
onto the x-axis (in particular, [Pu]e1 = e1 and [Pu]e2 = 0):

x

y

e2

e1

Pu−−→

x

y

Pu(e2) = 0

Pu(e1) = e1

b) Since w is not a unit vector, we have to first normalize it (i.e., di-
vide it by its length) to turn it into a unit vector pointing in the
same direction. Well, ‖w‖=

√
12 +22 +32 =

√
14, so we let u =

w/‖w‖= (1,2,3)/
√

14. The standard matrix of Pu is then

[
Pu
]
= uuT =

1
14




1
2
3


[1 2 3

]
=

1
14




1 2 3
2 4 6
3 6 9


 .

This projection sends each of e1, e2, and e3 to different multiples of
w. In fact, it squishes all of R3 down onto the line in the direction
of w:

x

y

z

e1

e2

e3

Pu−−→

x

y

z

Pu(e3)
Pu(e2)

Pu(e1)

As a bit of a sanity check, we note that
In general, if u ∈ Rn

is a unit vector
then Pu(u) = u: Pu

leaves everything
on the line in the

direction of u
alone.

this matrix leaves w (and
thus u) unchanged, as the projection Pu should:

[
Pu
]
w =

1
14




1 2 3
2 4 6
3 6 9







1
2
3


=




1
2
3


= w.

Reflections
The

The “F” in Fu stands
for flip or reflection.

function Fu : Rn → Rn that reflects space through the line in the direc-
tion of the unit vector u is also a linear transformation. To verify this claim
and determine its standard matrix, we note that Fu(v) = v+2(Pu(v)−v), as
demonstrated in Figure 1.17.
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Fu(v)
Pu(v)−v

Pu(v)−v

Pu(v)

v

x

y

Figure 1.17: The reflection of a vector v across the line in the direction of u is
denoted by Fu(v) and is equal to v+2(Pu(v)−v).

By simplifying,

Just like before,
even though this

picture is in R2, the
calculation of Fu’s

standard matrix
works the same way

in all dimensions.

we see
Be careful when
factoring in the

final step here. It is
tempting to write

2(uuT )v−v

= (2uuT −1)v,

but this is wrong
since uuT is a
matrix, so we

cannot subtract 1
from it.

that

Fu(v) = v+2(Pu(v)−v) (by Figure 1.17)
= 2Pu(v)−v (expand parentheses)

= 2
(
uuT )v−v (since Pu(v) = (uuT )v)

=
(
2uuT − I

)
v. (factor carefully)

The standard matrix of the reflection Fu is thus
[
Fu
]
= 2uuT − I.

Example 1.4.6
Standard Matrices

of Reflections

Find the standard matrices of the linear transformations that reflect through
the lines in the direction of the following vectors, and depict these reflec-
tions geometrically.

a) u = (0,1) ∈ R2, and
b) w = (1,1,1) ∈ R3.

Solutions:
a) Since u is a unit vector, the standard matrix of Fu is simply

[
Fu
]
= 2uuT − I = 2

[
0
1

][
0 1

]
−
[

1 0
0 1

]
=
[
−1 0
0 1

]
.

Geometrically, this matrix acts as a reflection through the y-axis:

x

y

e2

e1

Fu−−→

x

y

Fu(e2) = e2

Fu(e1) =−e1

We can verify our computation of [Fu] by noting that multiplication
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by it indeed just flips the sign of the x-entry of the input vector:

[
Fu
]
v =

[
−1 0
0 1

][
v1
v2

]
=
[
−v1
v2

]
.

b) Since w is not a unit vector, we have to first normalize it (i.e., divide
it by its length) to turn it into a unit vector pointing in the same di-
rection. Well, ‖w‖=

√
12 +12 +12 =

√
3, so we let u = w/‖w‖=

(1,1,1)/
√

3. The standard matrix of Fu is then

[
Fu
]
= 2uuT − I = 2




1
1
1


[1 1 1

]
/3−




1 0 0
0 1 0
0 0 1




=
1
3



−1 2 2
2 −1 2
2 2 −1


 .

This reflection is a bit more difficult to visualize since it acts on R3

instead of R2, but we can at least try:

x

y

z

e1
e2

e3

w= (1,1
,1)

Fu−−→

x

y

z

Fu(e1)
Fu(e2)

Fu(e3)

w= (1,1
,1)

As a bit of a sanity
In general, if u ∈ Rn

is a unit vector
then Fu(u) = u: Fu
leaves the entire

line in the direction
of u alone.

check, we can verify that this matrix leaves w
(and thus u) unchanged, as the reflection Fu should:

[
Fu
]
w =

1
3



−1 2 2
2 −1 2
2 2 −1






1
1
1


=




1
1
1


= w.

In general, to project or reflect a vector we should start by finding the
standard matrix of the corresponding linear transformation. Once we have that
matrix, all we have to do is multiply it by the starting vector in order to find
where it ends up after the linear transformation is applied to it. We illustrate
this technique with the following example.

Example 1.4.7
Reflecting a Vector

Find the entries of the vector that is obtained by reflecting v = (−1,3)
through the line going through the origin at an angle of π/3 counter-
clockwise from the x-axis.

Solution:
Our first goal is to compute [Fu], where u is a unit vector that points

in the same direction of the line that we want to reflect through. One such
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unit vector is u = (cos(π/3),sin(π/3)) = (1,
√

3)/2, so

[
Fu
]
= 2uuT − I =

1
2

[
1√
3

]
[
1
√

3
]
−
[

1 0
0 1

]
=

1
2

[
−1

√
3√

3 1

]
.

The reflected vector that we want is Fu(v), which we can compute simply
by multiplying v by the standard matrix [Fu]:

[
Fu
]
v =

1
2

[
−1

√
3√

3 1

][
−1
3

]
=

1
2

[
3
√

3+1

3−
√

3

]
≈
[

3.0981
0.6340

]
.

We can visualize this reflection geometrically asWe should have
probably reflected
the square grid on

the right through
the line in the

direction of u too,
but we find Fu

easier to visualize as
is.

follows:

y

v= (−1,,3)

uu
/3

x

Fu−−→
Fu(v)≈
(3.0981,0.6340)uu

x

y

θ =ππ

Rotations in Two Dimensions
As one final category of frequently-used linear transformations, we consider
(counter-clockwise) rotations by an angle θ , which we denote by Rθ : R2→
R2.Using a superscript

(rather than a
subscript) for the

angle θ in Rθ might
seem strange at

first—we will
explain why it

makes sense in
Remark 1.4.2.

In order for these transformations to be linear, they must be centered at the
origin so that Rθ (0) = 0. To see that Rθ then is indeed linear, we simply note
that it is geometrically clear that Rθ (v+w) = Rθ (v)+Rθ (w) for all v,w ∈R2,
since this just means that adding two vectors and rotating the result is the same
as rotating the two vectors and then adding them (see Figure 1.18(a)). Similarly,
the requirement that Rθ (cv) = cRθ (v) for all v∈R2 and all c∈R follows from
the fact that if we scale a vector and then rotate it, we get the same result as if
we rotate and then scale, as in Figure 1.18(b).

θ

v

w

v+w

Rθ (v)

Rθ (w)
Rθ (v+w) =

Rθ (v)+Rθ (w)

x

y

θ

cv

v

Rθ (cv) =

cRθ (v) Rθ (v)

x

y

Figure 1.18: A visualization of the linearity of the rotation function Rθ .

Since Rθ is linear, to find its standard matrix (and thus an algebraic descrip-
tion of how it acts on arbitrary vectors), it is enough to compute Rθ (e1) and
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Rθ (e2). By regarding Rθ (e1) and Rθ (e2) as the hypotenuses (with length 1) of
right-angled triangles as in Figure 1.19, we see that Rθ (e1) = (cos(θ),sin(θ))
and Rθ (e2) = (−sin(θ),cos(θ)).

Recall that linear
transformations are

determined by
what they do to

the standard basis
vectors.

cos(θ )

sin(θ )

−sin(θ )

θ

θ

x

y

e1

e2

Rθ(e2) = (−sin(θ ),cos(θ ))

Rθ (e1) = (cos(θ ),sin(θ ))

cos(θ )

Figure 1.19: Rθ rotates the standard basis vectors e1 and e2 to Rθ (e1) = (cos(θ),sin(θ))
and Rθ (e2) = (−sin(θ),cos(θ)), respectively.

It then follows from Theorem 1.4.1 that the standard matrix of Rθ is

[
Rθ
]
=
[

Rθ (e1) | Rθ (e2)
]
=

[
cos(θ) −sin(θ)
sin(θ) cos(θ)

]
.

Example 1.4.8
Standard Matrices

of Rotations

Find the standard matrix of the linear transformation that rotates R2 by

a) π/4 radians counter-clockwise, and
b) π/6 radians clockwise.

Solutions:
a) We compute

[
Rπ/4]=

[
cos(π/4) −sin(π/4)
sin(π/4) cos(π/4)

]
=

1√
2

[
1 −1
1 1

]
.

b) A rotation clockwise by π/6 radians is equivalent to a
Recall that

sin(−x) =−sin(x)
and cos(−x) = cos(x)

for all x ∈ R.

counter-
clockwise rotation by −π/6 radians, so we compute

[
R−π/6]=

[
cos(−π/6) −sin(−π/6)
sin(−π/6) cos(−π/6)

]
=

1
2

[√
3 1

−1
√

3

]
.

Example 1.4.9
Rotating Vectors

Rotate each of the following vectors by the indicated amount.

a) Rotate v = (1,3) by π/4 radians counter-clockwise, and
b) rotate w = (

√
3,3) by π/6 radians clockwise.

Solutions:
a) We saw in Example 1.4.8(a) that the standard matrix of this rotation
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is

[
Rπ/4]=

1√
2

[
1 −1
1 1

]
, so

[
Rπ/4]v =

1√
2

[
1 −1
1 1

][
1
3

]
=

[
−
√

2

2
√

2

]
.

We can visualize this rotation as

Recall that π/4
radians and π/6
radians equal 45
degrees and 30

degrees,
respectively.

follows:
y

π/4(v) = (((((−
√√√√√
2,,2

√√√
2)) v= (1,3)

x
θθθ =ππ //44

b) Similarly, we computed the standard matrix of this rotation in Ex-
ample 1.4.8(b), so we can simply compute Rπ/6(w) via matrix mul-
tiplication:

[
R−π/6]w =

1
2

[√
3 1

−1
√

3

][√
3

3

]
=

[
3√
3

]
.

We can visualize this rotation as follows:

y

R−π /6(w) = (3,
√
3)

x
θ ==−ππ /6

w= (
√
3,3)

Rotations in Higher Dimensions
While projections and reflections work regardless of the dimension of the space
that they act on, extending rotations to dimensions higher than 2 is somewhat
delicate. For example, in R3 it does not make sense to say something like
“rotate v = (1,2,3) counter-clockwise by an angle of π/4”—this instruction is
under-specified, since one angle alone does not tell us in which direction we
should rotate.

In R3, we can get around this problem by specifying an axis of rotation
via a unit vectorWe show how to

construct a
rotation around a

particular line in R3

in Exercise 1.4.24.

(much like we used a unit vector to specify which line to
project onto or reflect through earlier). However, we still have the problem
that a rotation that looks clockwise from one side looks counter-clockwise
from the other. Furthermore, there is a slightly simpler method that extends
more straightforwardly to even higher dimensions—repeatedly rotate in a plane
containing two of the coordinate axes.

To illustrate how to do this, consider the linear transformation Rθ
yz that

rotates R3 by an angle of θ around the x-axis, from the positive y-axis toward
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the positive z-axis. It is straightforward to see that rotating e1 in this way
has no effect at all (i.e., Rθ

yz(e1) = e1), as shown in Figure 1.20. Similarly,
to rotate e2 or e3 we can just treat the yz-plane as if it were R2 and repeat
the derivation from Figure 1.18 to see that Rθ

yz(e2) = (0,cos(θ),sin(θ)) and
Rθ

yz(e3) = (0,−sin(θ),cos(θ)).

x

y

z

e1 e2

e3
Rθ

yz−−−→ θ

x

y

z

Rθ
yz(e1) = e1

Rθ
yz(e2)Rθ

yz(e3)

Figure 1.20: The linear transformation Rθ
yz rotates vectors by an angle of θ around

the x-axis in the direction from the positive y-axis to the positive z-axis. In particular,
it leaves e1 unchanged and it rotates e2 and e3 (and any vector in the yz-plane)
just as rotations in R2 do.

It follows that the standard matrix of Rθ
yz is

[
Rθ

yz
]
=
[

Rθ
yz(e1) | Rθ

yz(e2) | Rθ
yz(e3)

]
=




1 0 0
0 cos(θ) −sin(θ)
0 sin(θ) cos(θ)


 .

A similar

We list [Rθ
zx] here

instead of [Rθ
xz] to

keep −sin(θ) in the
upper triangular
part. [Rθ

xz] is the
same but with the

signs of the
off-diagonal terms

swapped.

derivation shows that we can analogously rotate around the other
two coordinate axes in R3 via the standard matrices

[
Rθ

zx
]
=




cos(θ) 0 −sin(θ)
0 1 0

sin(θ) 0 cos(θ)


 and

[
Rθ

xy
]
=




cos(θ) −sin(θ) 0
sin(θ) cos(θ) 0

0 0 1


 .

Example 1.4.10
Rotating Vectors
in 3 Dimensions

Rotate v = (3,−1,2) around the z-axis by an angle of θ = 2π/3 in the
direction from the positive x-axis to the positive y-axis.

Solutions:
Since our goal is to compute R2π/3

xy (v), we start by constructing the
standard matrix of R2π/3

xy :

[
R2π/3

xy
]
=




cos(2π/3) −sin(2π/3) 0
sin(2π/3) cos(2π/3) 0

0 0 1


=

1
2



−1 −

√
3 0√

3 −1 0
0 0 2


 .
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All that remains is to multiply this matrix by v = (3,−1,2):

[
R2π/3

xy
]
v =

1
2



−1 −

√
3 0√

3 −1 0
0 0 2







3
−1
2


=

1
2




√
3−3

3
√

3+1
4


≈



−0.6340
3.0981
2.000


 .

We can visualize this rotation as

The z-entry of

R2π/3
xy (v) is of course

the same as that of
v, since we are
rotating around

the z-axis.

follows:

v= (3,−1,2)

R2π/3
xy (v)≈

(−0.6340,3.0981,2.0000)

θ = 2π /3

x

y

z

By applying rotations around different coordinate axes one after another,
we can rotate vectors in R3 (and higher dimensions) however we like. Applying
linear transformations in a sequence like this is called composition, and is the
subject of the next subsection.

1.4.3 Composition of Linear Transformations

As we mentioned earlier, there are some simple ways of combining linear
transformations to create new ones. In particular, we noted that if S,T : Rn→
Rm are linear transformations and c ∈R then S+cT : Rn→Rm is also a linear
transformation.

We now introduce another method of combining linear transformations
that is slightly more exotic, and has the interpretation of applying one linear
transformation after another:

Definition 1.4.2
Composition

of Linear
Transformations

Suppose T : Rn→ Rm and S : Rm→ Rp are linear transformations. Then
their composition is the function S◦T : Rn→ Rp defined by

(S◦T )(v) = S(T (v)) for all v ∈ Rn.

That is, the composition S◦T of two linear transformations is the function
that has the same effect on vectors as first applying T to them and then ap-
plying S. In other words, while T sends Rn to Rm and S sends Rm to Rp, the
composition S◦T skips the intermediate step and sends Rn directly to Rp, as
illustrated in

Be careful: S◦T is
read right-to-left: T
is applied first and

then S is applied.
This convention was

chosen so that S
and T appear in the

same order in the
defining equation
(S◦T )(v) = S(T (v)).

Figure 1.21.
Even though S and T are linear transformations, at first it is not particularly

obvious whether or not S◦T is also linear, and if so, what its standard matrix is.
The following theorem shows that S◦T is indeed linear, and its standard matrix
is simply the product of the standard matrices of S and T . In fact, this theorem
is the main reason that matrix multiplication was defined in the seemingly
bizarre way that it was.
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Rn Rm Rp

T S

S◦T

v T (v)
S(T (v)) =
(S◦T )(v)

Figure 1.21: The composition of S and T , denoted by S◦T , is the linear transfor-
mation that sends v to S(T (v)).

Theorem 1.4.2
Composition of

Linear
Transformations

Suppose T : Rn→ Rm and S : Rm→ Rp are linear transformations with
standard matrices [T ] ∈Mm,n and [S] ∈Mp,m, respectively. Then S◦T :
Rn→ Rp is a linear transformation, and its standard matrix is

[S◦T ] = [S][T ].

Proof. Let v ∈ RnNotice that
[S◦T ] = [S][T ] is a

p×n matrix.

and compute (S◦T )(v):

(S◦T )(v) = S(T (v)) = S([T ]v) = [S]([T ]v) = ([S][T ])v.

In other words, S◦T is a function that acts on v in the exact same way as matrix
multiplication by the matrix [S][T ]. It thus follows from Theorem 1.4.1 that
S◦T is a linear transformation and its standard matrix is [S][T ], as claimed. �

By applying linear transformations one after another like this, we can con-
struct simple algebraic descriptions of complicated geometric transformations.
For example, it might be difficult to visualize exactly what happens to R2 if
we rotate it, reflect it, and then rotate it again, but this theorems tells us that
we can unravel exactly what happens just by multiplying together the standard
matrices of the three individual linear transformations.

Example 1.4.11
Composition of

Linear
Transformations

Find the standard matrix of the linear transformation T that reflects R2

through the line y = 4
3 x and then stretches it in the x-direction by a factor

of 2 and in the y-direction by a factor of 3.

Solution:
We compute the two standard matrices individually and then multiply

them together. A unit vector on the line y = 4
3 x is u = (3/5, 4/5), and the

reflection Fu has standard matrix

[
Fu
]
= 2

[
3/5
4/5

]
[
3/5 4/5

]
−
[

1 0
0 1

]
=

1
25

[
−7 24
24 7

]
.

The diagonal
Recall that when
composing linear

transformations,
the rightmost

transformation is
applied first, so the
standard matrix we

are after is [D][Fu],
not [Fu][D].

stretch D has standard matrix

[
D
]
=
[

2 0
0 3

]
.

The standard matrix of the composite linear transformation T = D◦Fu is
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thus the product of these two individual standard matrices:

[
T
]
=
[
D
][

Fu
]
=

1
25

[
2 0
0 3

][
−7 24
24 7

]
=

1
25

[
−14 48
72 21

]
.

We can visualize this composite linear transformation T as a sequence
of two separate distortions of R2—first a reflection and then a diagonal
scaling—or we can think of it just as a single linear transformation that
has the same effect:

Keep in mind that
the diagonal

scaling D scales in
the direction of the

x- and y-axes, not
in the direction of

the reflected
square grid, so the

grid at the
bottom-right is

made up of
parallelograms

instead of
rectangles.

x

y
yy== 4

33x

uuu= (((3//3 5,44//4 5))e2

e1

Fu−−→

x

y

Fu(e2)

FuFF ((ee1))

T
=
D◦Fu

D

x

y

D◦Fu
)
(e2)

D◦◦FuuuFF
))
((ee1))

Example 1.4.12
Composition of

Rotations

Explain why, if θ and φ are any two angles, then Rθ ◦Rφ = Rθ+φ . Use
this fact to derive the angle-sum trigonometric identities

sin(θ +φ) = sin(θ)cos(φ)+ cos(θ)sin(φ)

and
cos(θ +φ) = cos(θ)cos(φ)− sin(θ)sin(φ).

Solution:
The fact that Rθ ◦Rφ = Rθ+φ is clear geometrically: rotating a vec-

tor v∈R2 by φ radians and then by θ more radians is the same as rotating it
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by θ +φ radians:

θ +φ

φ
θ v

Rφ (v)

Rθ +φ (v)
= Rθ Rφ (v)

)

x

y

To see the second claim, we just write down the standard matrix of each
of Rθ ◦Rφ and Rθ+φ :

[
Rθ ◦Rφ

]
=
[
Rθ ]
[
Rφ ] =

[
cos(θ) −sin(θ)
sin(θ) cos(θ)

][
cos(φ) −sin(φ)
sin(φ) cos(φ)

]

=

[
cos(θ)cos(φ)− sin(θ)sin(φ) −cos(θ)sin(φ)− sin(θ)cos(φ)
sin(θ)cos(φ)+ cos(θ)sin(φ) −sin(θ)sin(φ)+ cos(θ)cos(φ)

]
.

On the other hand,

[
Rθ+φ

]
=

[
cos(θ +φ) −sin(θ +φ)
sin(θ +φ) cos(θ +φ)

]
.

The matrices [Rθ ◦Rφ ] and [Rθ+φ ] must be equal (since they are standard
matrices of the same linear transformation), so it follows that

If we choose φ = θ

then these
identities tell us

that sin(2θ) =
2sin(θ)cos(θ) and

cos(2θ) =
cos2(θ)− sin2(θ).

all of their
entries must be equal. By looking at their (2,1)-entries, we see that

sin(θ +φ) = sin(θ)cos(φ)+ cos(θ)sin(φ),

and their (1,1)-entries similarly tell us that

cos(θ +φ) = cos(θ)cos(φ)− sin(θ)sin(φ).

The (1,2)- and (2,2)-entries of these matrices give us no additional infor-
mation; they just tell us again that these same identities hold.

Remark 1.4.2
Rotation Notation

Example 1.4.12 actually explains why we use the notation Rθ , despite it
seeming to conflict with the fact that we also use superscripts for powers
of matrices. It turns out that there is no conflict between these notations
at all—[Rθ ] really is the θ -th power of the matrix

R =

[
cos(1) −sin(1)
sin(1) cos(1)

]
≈
[

0.5403 −0.8415
0.8415 0.5403

]

that rotates counter-clockwise by 1 radian. Geometrically, we defined Rθ

as rotating counter-clockwise by an angle of θ , but we can equivalently
think of it as rotating counter-clockwise by 1 radian θ times.

For now, this interpretation of Rθ as the θ -th power of R only makes
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sense when θ is a non-negative integer, but it also works for non-integer
powers of R, which we introduce in Section 3.4.2.

We close this section by noting that the composition of three or more linear
transformations works exactly how we might expect based on how it works for
two of them: if R, S, and T are linear transformations then their composition
R ◦ S ◦ T is the linear transformation that applies T , then S, then R, and its
standard matrix is [R◦S◦T ] = [R][S][T ].

Exercises solutions to starred exercises on page 439

1.4.1 Find the standard matrix of the following linear
transformations:

∗ (a) T (v1,v2) = (v1 +2v2,3v1− v2).
(b) T (v1,v2) = (v1 + v2,2v1− v2,−v1 +3v2).
∗ (c) T (v1,v2,v3) = (v1 + v2,v1 + v2− v3).

(d) T (v1,v2,v3) = (v2,2v1 + v3,v2− v3).

1.4.2 Find the standard matrices of the linear transfor-
mations T that act as follows:

∗ (a) T (1,0) = (3,−1) and T (0,1) = (1,2).
(b) T (1,0) = (1,3) and T (1,1) = (3,7).
∗ (c) T (1,0) = (−1,0,1) and T (0,1) = (2,3,0).

(d) T (1,0,0) = (2,1), T (0,1,0) = (−1,1), and
T (0,0,1) = (0,3).

∗(e) T (1,0,0) = (1,2,3), T (1,1,0) = (0,1,2), and
T (1,1,1) = (0,0,1).

1.4.3 Determine which of the following statements are
true and which are false.

∗(a) Linear transformations are functions.
(b) Every matrix transformation (i.e., function that sends

v to Av for some fixed matrix A∈Mm,n) is a linear
transformation.

∗(c) Every linear transformation T : R2 → R4 is com-
pletely determined by the vectors T (e1) and T (e2).

(d) The standard matrix of a linear transformation T :
R4→ R3 has size 4×3.

∗(e) There exists a linear transformation T : R2 →
R2 such that T (e1) = (2,1), T (e2) = (1,3), and
T (1,1) = (3,3).

(f) If u ∈ Rn is a vector then the standard matrix of
the projection onto the line in the direction of u is
uuT .

∗(g) If Rθ
xy, Rθ

yz, and Rθ
xz are rotations around the co-

ordinate axes in R3 as described in the text, then
Rθ

xy ◦Rθ
yz = Rθ

xz.

1.4.4 Determine which of the following functions T :
R2→ R2 are and are not linear transformations. If T is a
linear transformation, find its standard matrix. If it is not
a linear transformation, justify your answer (i.e., show a
property of linear transformations that it fails).

∗(a) T (v1,v2) = (v2
1,v2).

(b) T (v1,v2) = (v1 +2v2,v2− v1).
∗(c) T (v1,v2) = (sin(v1)+ v2,v1− cos(v2)).
(d) T (v1,v2) = (sin(3)v1 + v2,v1− cos(2)v2).
∗(e) T (v1,v2) = (

√
v1 +
√

v2,
√

v1 + v2).
(f) T (v1,v2) = (

√
3v1,
√

2v2−
√

5v1).
∗(g) T (v1,v2) = (|v1|, |v2|).

1.4.5 Determine which of the following geometric trans-
formations of R2 are and are not linear transformations.
If it is a linear transformation, find its standard matrix. If
it is not a linear transformation, justify your answer (i.e.,
show a property of linear transformations that it fails).

∗ (a) The projection onto the line y = 3x.
(b) The projection onto the line y = 3x−2.
∗(c) The reflection across the line y = 2x.
(d) The reflection across the line y = 2x+1.
∗(e) The counter-clockwise rotation around the point

(0,0) by π/5 radians.
(f) The counter-clockwise rotation around the point

(0,1) by π/5 radians.

1.4.6 Find the standard matrix of the composite linear
transformation S◦T , when S and T are defined as follows:

∗(a) S(v1,v2) = (2v2,v1 + v2),
T (v1,v2) = (v1 +2v2,3v1− v2).

(b) S(v1,v2) = (v1−2v2,3v1 + v2),
T (v1,v2,v3) = (v1 + v2,v1 + v2− v3).

∗(c) S(v1,v2,v3) = (v1,v1 + v2,v1 + v2 + v3),
T (v1,v2) = (v1 + v2,2v1− v2,−v1 +3v2).

1.4.7 Find the standard matrix of the composite linear
transformation that acts on R2 as follows:

(a) Rotates R2 counter-clockwise about the origin by
an angle of π/3 radians, and then stretches in the x-
and y-directions by factors of 2 and 3, respectively.

∗(b) Projects R2 onto the line y = x and then rotates
R2 clockwise about the origin by an angle of π/4
radians.

(c) Reflects R2 through the line y = 2x and then reflects
R2 through the line y = x/2.

∗∗1.4.8 Show that if T : Rn → Rm is a linear transfor-
mation, then T (0) = 0.

∗∗1.4.9 Show that a function T : Rn → Rm is a linear
transformation if and only if

T (c1v1 + · · ·+ ckvk) = c1T (v1)+ · · ·+ ckT (vk)

for all v1, . . . ,vk ∈ Rn and all c1, . . . ,ck ∈ R.

∗∗ 1.4.10 Let D ∈Mn be a diagonal matrix and let
A ∈Mn be an arbitrary matrix. Use block matrix mul-
tiplication to show that, for all 1≤ i≤ n, ...

(a) the product DA multiplies the i-th row of A by di,i,
and
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(b) the product AD multiplies the i-th column of A by
di,i.

∗∗1.4.11 Let S,T : Rn → Rm be linear transformations
and let c ∈ R be a scalar. Show that the following rela-
tionships between various standard matrices hold. [Hint:
Recall the definitions of S+T and cT from Remark 1.4.1.]

(a) [S +T ] = [S]+ [T ], and
(b) [cT ] = c[T ].

1.4.12 Let Q,S,T : Rn→ Rm be linear transformations.
Prove the following. [Hint: Use Exercise 1.4.11(a) and
properties that we already know about matrix addition.]

(a) S +T = T +S, and
(b) Q+(S +T ) = (Q+S)+T .

1.4.13 Let S,T : Rn→ Rm be linear transformations and
let c,d ∈ R be scalars. Prove the following.

[Hint: Use Exercise 1.4.11 and properties that we already
know about scalar multiplication for matrices.]

(a) c(S +T ) = cS + cT ,
(b) (c+d)T = cT +dT , and
(c) c(dT ) = (cd)T .

∗1.4.14 Suppose

A =

[
cos(π/4) −sin(π/4)
sin(π/4) cos(π/4)

]
.

Compute the matrix A160.

[Hint: Think about this problem geometrically.]

∗∗1.4.15 Suppose

A =

[
cos(θ) −sin(θ)
sin(θ) cos(θ)

]

for some θ ∈ R. Show that AT A = I.

[Side note: Matrices with this property are called unitary
matrices, and we will study them in depth in Section 1.4
of [Joh20].]

1.4.16 Suppose u ∈ Rn is a unit vector and A = uuT ∈
Mn. Show that A2 = A. Provide a geometric interpretation
of this fact.

∗∗ 1.4.17 Suppose u ∈ Rn is a unit vector and A =
2uuT − I ∈Mn. Show that A2 = I. Provide a geometric
interpretation of this fact.

1.4.18 Show that if Pu : Rn→ Rn is a projection onto a
line and v ∈ Rn then ‖Pu(v)‖ ≤ ‖v‖.

∗1.4.19 Show that the linear transformation that reflects
R2 through the line y = mx has standard matrix

1
1+m2

[
1−m2 2m

2m m2−1

]
.

1.4.20 Show that the linear transformation that reflects R2

through the line that points at an angle θ counter-clockwise
from the x-axis has standard matrix

[
cos(2θ) sin(2θ)
sin(2θ) −cos(2θ)

]
.

1.4.21 Suppose u,v ∈R2 are vectors with an angle of θ

between them. Show that Fu ◦Fv = R2θ .

[Hint: Use Exercise 1.4.20.]

1.4.22 Give an example of a function T : R2→ R2 that
is not a linear transformation, but satisfies the property
T (cv) = cT (v) for all v ∈ R2 and c ∈ R.

[Hint: You probably cannot find a “nice” function that
works. Try a piecewise/branch function.]

∗∗1.4.23 A shear matrix is a square matrix with every
diagonal entry equal to 1, and exactly one non-zero off-
diagonal entry. For example, the 2×2 shear matrices have
the form [

1 c
0 1

]
or

[
1 0
c 1

]

for some non-zero scalar c ∈ R. Let Sc
i, j denote the shear

matrix with a c in the (i, j)-entry (where i 6= j).

(a) Illustrate the geometric effect of the 2× 2 shear
matrices Sc

1,2 and Sc
2,1 shown above as linear trans-

formations.
[Side note: This picture is the reason for the name
“shear” matrix.]

(b) Show that (Sc
i, j)

n = Snc
i, j for all integers n≥ 1 (and

hence the superscript notation that we use here for
shear matrices agrees with exponent notation, just
like it did for rotation matrices in Remark 1.4.2).
[Hint: We can write every shear matrix in the form
Sc

i, j = I +cEi, j , where Ei, j is the matrix with a 1 in
its (i, j)-entry and zeros elsewhere. What is E2

i, j?]

∗∗1.4.24 Let Rθ
u be the linear transformation that rotates

R3 around the unit vector u clockwise (when looking in
the direction that u points) by an angle of θ . Its standard
matrix is

[
Rθ

u
]
= cos(θ)I +(1− cos(θ))uuT

+ sin(θ)




0 −u3 u2

u3 0 −u1

−u2 u1 0


 .

(a) Compute [Rθ
u ] if u = (1,0,0). Which matrix that we

already saw in the text does it equal?
(b) Compute Rπ/4

u (v) if u = (1,2,2)/3 and v = (3,2,1).
(c) Show that Rπ/3

yz ◦Rπ/3
xy is a rotation matrix. Further-

more, find a unit vector u and an angle θ such that
Rθ

u = Rπ/3
yz ◦Rπ/3

xy .
[Side note: the composition of any two rotations is
always a rotation (even in dimensions higher than
3), but proving this fact is outside of the scope of
this book.]
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1.5 Summary and Review

In this chapter, we introduced the central objects that are studied in linear
algebra: vectors, matrices, and linear transformations. We developed some basic
ways of manipulating and combining these objects, such as vector addition
and scalar multiplication, and we saw that these operations satisfy the basic
properties, like distributivity and associativity, that we would expect them to
based on our familiarity with properties of real numbers.

On the other hand, the formula for matrix multiplication was seemingly
quite bizarre at first, but was later justified by the fact that it implements the
action of linear transformations. That is, we can think of a linear transformation
T : Rn→ Rm as being “essentially the same” as its standard

Recall that
e1,e2, . . . ,en are the

standard basis
vectors.

matrix
[
T
]
=
[

T (e1) | T (e2) | · · · | T (en)
]

in the following two senses:
• Applying T to v is equivalent to performing matrix-vector multiplication

with [T ]. That is, T (v) = [T ]v.
• Composing two linear transformations S and T is equivalent to multi-

plying their standard matrices. That is, [S◦T ] = [S][T ].
For these reasons, we often do not even differentiate between matrices and

linear transformations in the later sections of this book. Instead, we just talk
about matrices, with the understanding that a matrix is no longer “just” a 2D
array of numbers for us, but is also a function that moves vectors around Rn in
a linear way (i.e., it is a linear transformation). Furthermore, the columns of
the matrix tell us exactly where the linear transformation sends the standard
basis vectors e1,e2, . . . ,en (see Figure 1.22).

x

y

e2

e1

A−−→

x

y

Ae2

Ae1

Figure 1.22: A 2×2 matrix A transforms the unit square (with sides e1 and e2) into
a parallelogram with sides Ae1 and Ae2, which are the columns of A.

This interpretation of matrices reinforces the idea that most linear algebraic
objects have both an algebraic interpretation as well as a geometric one. Most
importantly, we have the following interpretations of vectors and matrices:

• Algebraically, vectors are lists of numbers. Geometrically, they are arrows
in space that represent movement or displacement.

• Algebraically, matrices are arrays of numbers. Geometrically, they are
linear transformations—functions that deform a square grid in Rn into a
parallelogram grid.
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Exercises solutions to starred exercises on page 442

1.5.1 Determine which of the following statements are
true and which are false.

∗(a) If A and B are matrices such that AB is square, then
BA must also be square.

(b) If A and B are square matrices of the same size,
then (AB)T = AT BT .

∗(c) If A and B are square matrices of the same size,
then (AB)3 = A3B3.

(d) If A and B are square matrices of the same size,
then (A+B)(A−B) = A2−B2.

∗(e) If A is a square matrix for which A2 = O, then
A = O.

(f) There exists a matrix A ∈M2 such that

A
[

x
y

]
=

[
2x− y
y− x

]

for all x,y ∈ R.
∗(g) If R,S,T : Rn→Rn are linear transformations, then

R◦ (S◦T ) = (R◦S)◦T .

1.5.2 Suppose

A =
1√
2

[
1 −1
1 1

]
.

(a) Show (algebraically) that ‖Av‖= ‖v‖ for all v∈R2.
(b) Provide a geometric explanation for the result of

part (a).

1.5.3 For each of the following matrices, determine
whether they are the standard matrix of a projection onto
a line, a reflection through a line, a rotation, or none of
these. In each case, find a unit vector being projected onto
or reflected through, or the angle being rotated by.

∗(a)
[

1 0
0 0

]

∗(c) 1√
2

[
1 −1
1 1

]

∗(e)
[

1 2
3 4

]

∗(g)
1
9




1 2 2
2 4 4
2 4 4




(b)
[
−1 0
0 1

]

(d)
[

1 0
0 1

]

(f) 1
2

[
1

√
3

−
√

3 1

]

(h)
1
9



−1 4 8
4 −7 4
8 4 −1




1.5.4 Suppose

A =

[
−1 2
0 3

]
and v =

[
1
0

]
.

Compute A500v.

∗1.5.5 Explain why the following matrix power identity
holds for all θ ∈ R and all positive integers n.

[
cos(θ) −sin(θ)
sin(θ) cos(θ)

]n

=

[
cos(nθ) −sin(nθ)
sin(nθ) cos(nθ)

]
.

[Hint: Think geometrically.]

1.A Extra Topic: Areas, Volumes, and the Cross Product

There is one more operation on vectors that we have not yet introduced, called
the cross product. To help motivate it, consider the problem of finding a vector
that is orthogonal to v = (v1,v2) ∈ R2. It is clear from inspection that one
vector that works is w = (v2,−v1), since then v ·w = v1v2− v2v1 = 0 (see
Figure 1.23(a)).

If we ramp this type of problem up slightly to 3 dimensions, we can instead
ask for a vector x ∈ R3 that is orthogonal to two vectors v = (v1,v2,v3) ∈ R3

and w = (w1,w2,w3) ∈ R3. It is much more difficult to eyeball a solution in
this case, but we will verify momentarily that the following vector works:

Definition 1.A.1
Cross Product

If v = (v1,v2,v3) ∈ R3 and w = (w1,w2,w3) ∈ R3 are vectors then their
cross product, denoted by v×w, is defined

We just write the
cross product as a

column vector
(instead of a row

vector) here to
make it easier to

read.

by

v×w def=




v2w3− v3w2
v3w1− v1w3
v1w2− v2w1


 .

To see that the cross product is orthogonal to each of v and w, we simply



1.A Extra Topic: Areas, Volumes, and the Cross Product 59

compute the relevant dot products:

v · (v×w) = v1(v2w3− v3w2)+ v2(v3w1− v1w3)+ v3(v1w2− v2w1)
= v1v2w3− v1v3w2 + v2v3w1− v2v1w3 + v3v1w2− v3v2w1

= 0.

The dot product w · (v×w) can similarly be shown to equal 0 (see Exer-
cise 1.A.10), so we conclude that v×w is orthogonal to each of v and w,
as illustrated in Figure 1.23(b).

Keep in mind that
the cross product is
only defined in R3;

it is one of the very
few dimension-

dependent
operations that we

investigate.

w = (v2,−v1)

v = (v1,v2)

x

y

x

y

z

v

w

v×w

Figure 1.23: How to construct a vector that is orthogonal to (a) one vector in R2

and (b) two vectors in R3.

TheIt helps to
remember that, in

the formula for
v×w, the first entry

has no 1s in
subscripts, the

second has no 2s,
and the third has

no 3s.

formula for the cross product is a bit messy, so it can help to have
a mnemonic that keeps track of which entries of v and w are multiplied and
subtracted in which entries of v×w. One way of remembering the formula is to
write the entries of v in order twice, like v1,v2,v3,v1,v2,v3, and then similarly
write the entries of w twice underneath, creating a 2×6 array. We completely
ignore the leftmost and rightmost columns of this array, and draw the three
“X”s possible between the 2nd and 3rd, 3rd and 4th, and 4th and 5th columns
of the array, as in

This mnemonic also
suggests where the

name “cross”
product comes

from.

Figure 1.24.

v1 v2 v3 v1 v2 v3

w1 w2 w3 w1 w2 w3

v2w3 v3w2 v3w1 v1w3 v1w2 v2w1v w )

Figure 1.24: A mnemonic for computing the cross product: we add along the
forward (green) diagonals and subtract along the backward (purple) diagonals.

The first “X” tells us the value of the first entry of v×w, the second “X” tells
us the second entry, and the third “X” tells us the third entry: we multiply along
the diagonals of the “X”s, adding up the forward diagonals and subtracting the
backward diagonals.

Example 1.A.1
Numerical Examples
of the Cross Product

Find a vector orthogonal to the following vectors:
a) (1,2), and
b) (1,2,3) and (−1,0,1).
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Solutions:
a) Just reverse the order of the entries in the vector and take the negative

of one of them: (2,−1) works, since (1,2) · (2,−1) = 2−2 = 0.
Alternatively, we could think of (1,2) as living in R3 (with z-entry
equal to 0) and take the cross product with a vector that points in
the direction of the z-axis: (1,2,0)× (0,0,1) = (2,−1,0), which is
the same as the answer we found before, but embedded in R3.

b) (1,2,3)× (−1,0,1) = (2,−4,2) is orthogonal to both of these vec-
tors. As a sanity check, it is straightforward to verify that (1,2,3) ·
(2,−4,2) = 0 and (−1,0,1) · (2,−4,2) = 0.

As always, since we have defined a new mathematical operation, we would
like to know what basic properties it satisfies. The following theorem lists
these “obvious” properties, which we note are quite a bit less obvious than the
properties of the dot product were:

Theorem 1.A.1
Properties of the

Cross Product

Let v,w,x ∈ R3 be vectors and let c ∈ R be a scalar. Then
a) v×w =−(w×v), (anticommutativity)
b) v× (w+x) = v×w+v×x, (distributivity)
c) v×v = 0, and
d) (cv)×w = c(v×w).

Proof. We only explicitly prove properties (a) and (c), since these are the more
surprising ones. The proofs of properties (b) and (d) are similar, so we leave
them to Exercise 1.A.11.

For property (a), we just compute v×w and w×v directly from the defini-
tion of the cross product:

(v1,v2,v3)× (w1,w2,w3) = (v2w3− v3w2,v3w1− v1w3,v1w2− v2w1)
(w1,w2,w3)× (v1,v2,v3) = (w2v3−w3v2,w3v1−w1v3,w1v2−w2v1).

It is straightforward to verify that the two vectors above are negatives of each
other, as desired.

To see that property (c) holds, we similarly compute

(v1,v2,v3)× (v1,v2,v3) = (v2v3− v2v3,v1v3− v1v3,v1v2− v1v2) = (0,0,0),

which completes the proof. �

1.A.1 Areas

We have already seen that the direction of the cross product encodes an impor-
tant geometric property—it points in the direction orthogonal to each of v and
w. It turns out that its length also has a nice geometric interpretation as well,
as demonstrated by the following theorem.



1.A Extra Topic: Areas, Volumes, and the Cross Product 61

Theorem 1.A.2
Area of a

Parallelogram

Let v,w ∈ R3 be vectors and let θ be the angle between them. Then the
following four quantities are all equal to each other:

a) ‖v×w‖,
b)
√
‖v‖2‖w‖2− (v ·w)2,

c) ‖v‖‖w‖sin(θ),Quantities (b), (c),
and (d) are equal

to each other in
any dimension, not

just R3.

and
d) the area of the parallelogram whose sides are v and w.

Proof. We start by showing that the quantities (c) and (d) are equal to each
other. That is, we show that the area of a parallelogram with sides v and w is
‖v‖‖w‖sin(θ). To this end, recall that the area of a parallelogram is equal to its
base times its height. The length of its base is straightforward to compute—it is
‖v‖. To determine its height, we drop a line from the head of w perpendicularly
down to v, as in Figure 1.25(a).

The choice of v as
the base here is

arbitrary—we
could instead

choose w as the
base and get the
same final answer.

v

w

‖v‖

‖w‖sin(θ)

θ

w

‖w‖cos(θ)

‖w‖sin(θ)‖‖ww
‖‖

θ

x

y

x

y

Figure 1.25: A parallelogram with sides v and w has base length ‖v‖ and height
‖w‖sin(θ), and thus area equal to ‖v‖‖w‖sin(θ).

This process creates a right-angled triangle whose legs have lengths ‖w‖cos(θ)
and ‖w‖sin(θ), as in Figure 1.25(b). In particular, the side perpendicular to v
has length ‖w‖sin(θ), which is thus the height of the parallelogram with sides
v and w. The area of that parallelogram is then ‖v‖‖w‖sin(θ), as claimed.

Next,The equivalence of
(a) and (b) in this

theorem is
sometimes called

Lagrange’s identity.

we show that the quantities (a) and (b) are the same by verifying
that ‖v×w‖2 = ‖v‖2‖w‖2− (v ·w)2 and then taking the square root of both
sides of the equation. To this end, we simply compute

‖v×w‖2 =
∥∥(v2w3− v3w2,v3w1− v1w3,v1w2− v2w1)

∥∥2

= (v2w3− v3w2)2 +(v3w1− v1w3)2 +(v1w2− v2w1)2

= v2
2w2

3 + v2
3w2

2 + v2
3w2

1 + v2
1w2

3 + v2
1w2

2 + v2
2w2

1

−2(v2v3w2w3 + v1v3w1w3 + v1v2w1w2).

On the other hand, we can also

The terms v2
1

w2
1, v2

2w2
2, and v2

3w2
3

were both added
and subtracted

here and thus
canceled out.

expand ‖v‖2‖w‖2− (v ·w)2 to get

‖v‖2‖w‖2− (v ·w)2 = (v2
1 + v2

2 + v2
3)(w

2
1 +w2

2 +w2
3)− (v1w1 + v2w2 + v3w3)2

= v2
1w2

2 + v2
1w2

3 + v2
2w2

1 + v2
2w2

3 + v2
3w2

1 + v2
3w2

2

−2(v2v3w2w3 + v1v3w1w3 + v1v2w1w2),

which is the exact same as the expanded form of ‖v×w‖2 that we computed
previously. We thus conclude that ‖v×w‖2 = ‖v‖2‖w‖2− (v ·w)2, as desired.
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Finally, to see that the quantities (b) and (c) are the same, we use the
fact that the angle between v and w is θ = arccos

(
v ·w/(‖v‖‖w‖)

)
(recall

Definition 1.2.3), which can be rearranged into the form v ·w = ‖v‖‖w‖cos(θ).

Remember that
sin2(θ)+ cos2(θ) = 1,

so
1− cos2(θ) = sin2(θ).

Plugging this formula for v ·w into (b) shows that

√
‖v‖2‖w‖2− (v ·w)2 =

√
‖v‖2‖w‖2−‖v‖2‖w‖2 cos2(θ)

=
√
‖v‖2‖w‖2(1− cos2(θ))

=
√
‖v‖2‖w‖2 sin2(θ)

= ‖v‖‖w‖sin(θ),

where the final equality makes use of the fact that
√

sin2(θ) = |sin(θ)|= sin(θ)
since 0≤ θ ≤ π , so sin(θ)≥ 0. This completes the proof. �

Example 1.A.2
Areas Via the
Cross Product

Compute the areas of the following regions:
a) The parallelogram in R3 with sides (1,2,−1) and (2,1,2),
b) the parallelogram in R2 with sides (1,2) and (3,1),
c) the parallelogram in R4 with sides (2,2,−1,1) and (−1,1,2,1), and
d) the triangle in R2 with sides (1,2) and (3,1).

Solutions:
a) We compute the length of the cross product: (1,2,−1)× (2,1,2) =

(5,−4,−3), which has length
√

52 +(−4)2 +(−3)2 = 5
√

2.

b) To compute this area, we can embed these vectors into R3 by adding
a z-entry equal to 0 and then using the cross product: (1,2,0)×
(3,1,0) = (0,0,−5), which has length 5.

c) We cannot use the cross product here since these vectors live in R4,
but we can still use formula (b) from Theorem 1.A.2 to see that the
area of this parallelogram is

√
‖v‖2‖w‖2− (v ·w)2 =

√
10 ·7− (−1)2 =

√
69.

d) The triangle with sides v and w has exactly half of the area of the
parallelogram with the same sides, as illustrated below, so the area
of this triangle is 5/2 (recall that we found that this parallelogram
has area 5 in

A parallelogram
with sides v and w is

made up of two
copies of the

triangle with sides v
and w, and thus has

double the area.

part (b)).

v

w

x

y
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1.A.2 Volumes

We can also extend these ideas slightly to learn about the volume of paral-
lelepipeds in R3, but we need to make use of both the cross product and the
dot product in order to make it work:

Theorem 1.A.3
Volume of a

Parallelepiped

Let v,w,x ∈ R3 be vectors. Then the volume of the parallelepiped with
sides v, w, and x is |v · (w×x)|.

Proof. We first expand the expression |v · (w×x)| in terms of the lengths of v
and w×x. If θA parallelepiped is

a slanted and
stretched cube in

R3, just like a
parallelogram is a

slanted and
stretched square in

R2.

is the angle between v and w×x, then Definition 1.2.3 tells us
that |v · (w×x)|= ‖v‖‖w×x‖|cos(θ)|.

Our goal now becomes showing that this quantity equals the volume of the
parallelepiped with sides v, w, and x. This parallelepiped’s volume is equal
to the area of its base times its height. However, its base (when oriented as in
Figure 1.26) is a parallelogram with sides w and x, and thus has area ‖w×x‖
according to Theorem 1.A.2.

We must use
|cos(θ)| rather than

just cos(θ) since
w×x might point

up or down.
x

θ

w×x

w

vheight: ‖v‖|cos(θ )|

base area: ‖w×x‖

Figure 1.26: The volume of a parallelepiped with sides v, w, and x is the area of
its base ‖w×x‖ times its height ‖v‖|cos(θ)|, where θ is the angle between w×x
and v.

It follows that all we have left toThe quantity
v · (w×x) is called

the scalar triple
product of v, w,

and x—see
Exercise 1.A.16.

do is show that the height of this paral-
lelepiped is ‖v‖|cos(θ)|. To verify this claim, recall that w×x is perpendicular
to each of w and x, and is thus perpendicular to the base parallelogram. The
height of the parallelepiped is then the amount that v points in the direction
of w×x, which we can see is indeed ‖v‖|cos(θ)| by drawing a right-angled
triangle with hypotenuse v, as in Figure 1.26. �

Example 1.A.3
Volume Via the

Cross Product

Compute the volume of the parallelepiped with sides (1,0,1), (−1,2,2),
and (3,2,1).

Solution:
We use the formula provided by Theorem 1.A.3:
∣∣(1,0,1) ·

(
(−1,2,2)× (3,2,1)

)∣∣= |(1,0,1) · (−2,7,−8)|
= |−2−8|= 10.

Remark 1.A.1
Why Parallelograms

and Parallelepipeds?

At this point, we might wonder why we care about the areas of parallelo-
grams and volumes of parallelepipeds in the first place—they perhaps seem
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like somewhat arbitrary shapes to focus so much attention on.
The answer is that they are exactly the shapes that a square or a cube

can be transformed into by a linear transformation. For example, a linear
transformation T : R2→R2 moves the sides e1 and e2 of the unit square to
T (e1) and T (e2), which are the sides of a parallelogram. The area of this
parallelogram (which we can compute via Theorem 1.A.2) describes how
much T has stretched or shrunk the unit square and thus R2 as a whole:

x

y

e2

e1

T−−→

x

y

T (e2)

T (e1)

This measure of how much a linear transformation stretches space
is called its determinant, and the techniques that we presented in this
section let us compute it for linear transformations acting on R2 or R3.
We will investigate determinants of general linear transformations on Rn

in Section 3.2.

Exercises solutions to starred exercises on page 442

1.A.1 Compute the cross product v×w of the following
pairs of vectors:

∗(a) v = (1,2,3) and w = (3,2,1)
(b) v = (87,17,−43) and w = (87,17,−43)
∗(c) v = (−1,2,0) and w = (−4,1,−2)
(d) v = (1,0,0) and w = (0,1,0)

1.A.2 Compute the area of the parallelograms with the
following pairs of vectors as their sides:

∗(a) v = (2,1) and w = (−2,3)
(b) v = (3,0,0) and w = (0,4,0)
∗(c) v = (1,2,3) and w = (3,−1,2)
(d) v = (1,0,1,−2) and w = (−2,1,3,1)

1.A.3 Compute the area of the triangles with the follow-
ing pairs of vectors as their sides:

∗ (a) v = (0,4) and w = (1,1)
(b) v = (0,2,2) and w = (1,−2,1)
∗ (c) v = (−1,1,−1) and w = (3,2,1)

(d) v = (1,2,1,2) and w = (0,−1,2,1)

1.A.4 Compute the volume of the parallelepipeds with
the following sets of vectors as their sides:

∗ (a) v = (1,0,0), w = (0,2,0), and x = (0,0,3)
(b) v = (0,4,1), w = (1,1,0), and x = (2,0,−1)
∗ (c) v = (1,1,1), w = (2,−1,1), and x = (2,−2,−1)

(d) v = (−2,1,3), w = (1,−4,2), and x = (3,3,−2)

1.A.5 Find the area of the parallelogram or parallelepiped
that the unit square or cube is sent to by the linear transfor-
mations with the following standard matrices. [Hint: Refer
back to Remark 1.A.1.]

∗ (a)
[

1 0
0 1

]

∗ (c)
[

0 −2
2 3

]

∗ (e)



1 −3 2
0 2 −7
0 0 3




(b)
[

1 7
0 1

]

(b)
[

1 2
3 4

]

(b)



1 2 3
4 5 6
7 8 9




1.A.6 Determine which of the following statements are
true and which are false.

∗ (a) The cross product of two unit vectors is a unit vec-
tor.

(b) If v,w ∈ R3 then ‖v×w‖= ‖w×v‖.
∗ (c) If v ∈ R3 then v×v = v2.

(d) If v,w ∈ R3 then (v+v)×w = 2(v×w).
∗(e) If v,w ∈ R4 then v×w =−(w×v).

(f) There exist vectors v,w∈R3 with ‖v‖= 1, ‖w‖= 1,
and v×w = (1,1,1).

1.A.7 Recall that ei is the vector whose i-th entry is 1
and all other entries are 0. Compute the following cross
products: e1× e2, e2× e3, and e3× e1.

∗1.A.8 Suppose that v and w are unit vectors in R3 with
v×w = (1/3,2/3,2/3). What is the angle between v and w?
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1.A.9 Suppose that v,w,x ∈ R3 are vectors. Show that
‖v×w‖= ‖v‖‖w‖ if and only if v and w are orthogonal.

∗∗1.A.10 We showed that if v,w∈R3 then v ·(v×w) = 0.
Show that w · (v×w) = 0 too.

∗∗1.A.11 Recall Theorem 1.A.1, which established some
of the basic properties of the cross product.

(a) Prove part (b) of the theorem.
(b) Prove part (d) of the theorem.

1.A.12 Suppose that v,w ∈ R3 are vectors and c ∈ R is
a scalar. Show that v× (cw) = c(v×w).

∗1.A.13 Is the cross product associative? In other words,
is it true that (v×w)×x = v×(w×x) for all v,w,x∈R3?

1.A.14 In Theorem 1.A.1 we showed that v×v = 0. Prove
the stronger statement that v×w = 0 if and only if w = 0
or v = cw for some c ∈ R.

1.A.15 Suppose that v,w,x ∈ R3 are non-zero vectors.

(a) Give an example to show that it is possible that
v×w = v×x even if w 6= x.

(b) Show that if v×w = v×x and v ·w = v ·x then it
must be the case that w = x.

∗∗1.A.16 Suppose that v,w,x ∈ R3 are vectors.

(a) Show that v · (w×x) = w · (x×v) = x · (v×w).
[Side note: In other words, the scalar triple product
is unchanged under cyclic shifts of v, w, and x.]

(b) Show that

v · (w×x) =−v · (x×w)

=−w · (v×x)

=−x · (w×v).

[Side note: In other words, the scalar triple product
is negated if we swap any two of the three vectors.]

1.A.17 Suppose that v,w,x ∈ R3 are vectors. Show that
v× (w×x) = (v ·x)w− (v ·w)x. [Side note: This is called
the vector triple product of v, w, and x.]

∗1.A.18 Suppose that v,w,x ∈R3 are vectors. Show that

v× (w×x)+w× (x×v)+x× (v×w) = 0.

[Side note: This is called the Jacobi identity.]

1.A.19 Suppose that v,w ∈ R3 are vectors. Show that

v×w =
1
2
(v−w)× (v+w).

1.B Extra Topic: Paths in Graphs

While we already saw one use of matrices (they give us a method of representing
linear transformations), we stress that this is just one particular application
of them. As another example to illustrate the utility of matrices and matrix
multiplication, we now explore how they can help us uncover properties of
graphs.

1.B.1 Undirected Graphs

A graph is a finite set of vertices, together with a set of edges connecting
those vertices. Vertices are typically drawn as dots (sometimes with labels like
A, B, C, . . .) and edges are typically drawn as (not necessarily straight) lines
connecting those dots, as in Figure 1.27.

A B

C D

A B

C

D E

Figure 1.27: Some small graphs. Notice that edges need not be straight, and they
are allowed to cross each other.
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WeFor now, the
graphs we

consider are
undirected: edges

connect two
vertices, but there

is no difference
between an edge

that connects
vertex i to j versus
one that connects

j to i.

think of the vertices as objects of some type, and edges as representing
the existence of a relationship between those objects. For example, a graph
might represent

• A collection of cities (vertices) and the roads that connect them (edges),
• People (vertices) and the friendships that they have with other people

on a social networking website (edges), or
• Satellites (vertices) and communication links between them (edges).
We emphasize that a graph is determined only by which vertices and edges

between vertices are present—the particular locations of the vertices and meth-
ods of drawing the edges are unimportant. For example, the two graphs dis-
played in Figure 1.28 are in fact the exact same graph, despite looking quite
different on the surface.

A B

C D

A

B C

D

Figure 1.28: Two different representations of the same graph. The geometric
arrangement of the vertices and edges does not matter—only the number of
vertices and presence or absence of edges between those vertices is relevant.

A problem that comes up fairly frequently is how to count the number of
paths of a certain length between different vertices on a graph. For example,
this could tell us how many ways there are to drive from Toronto to Montréal,
passing through exactly three other cities on the way, or the number of friends
of friends that we have on a social networking website. For small graphs, it is
straightforward enough to count the paths of small lengths by hand.

Example 1.B.1
Counting Short
Paths by Hand

Count the number of paths of the indicated type in the graph displayed in
Figure 1.27(a):

a) Of length 2 from A to B, and
b) of length 3 from A to D.

Solutions:
a) We simply examine the graph and notice that there is only one such

path: A–D–B.

b) Paths of length 3By “path of length
3”, we mean a
path of length

exactly 3; a path
of length 2 does

not count.

are a bit more difficult to eyeball, but some exam-
ination reveals that there are 4 such paths:

A−B−A−D, A−D−A−D, A−D−B−D, and A−D−C−D.

As the size of the graph or the length of the paths increases, counting these
paths by hand becomes increasingly impractical. Even for paths just of length 3
or 4, it’s often difficult to be sure that we have found all paths of the indicated
length. To lead us toward a better way of solving these types of problems, we
construct a matrix that describes the graph:



1.B Extra Topic: Paths in Graphs 67

Definition 1.B.1
Adjacency Matrix

The adjacency matrix of a graph with n vertices is the matrix A ∈Mn
whose entries are

ai, j =

{
1, if there is an edge between thei− th and j-th vertices
0, otherwise.

The adjacency

The adjacency
matrix of a graph is

always symmetric:
ai, j = a j,i for all i, j

(equivalently,
A = AT ).

matrix of a graph encodes all of the information about the
graph—its size is the number of vertices and its entries indicate which pairs of
vertices do and do not have edges between them. We can think of the adjacency
matrix as a compact representation of a graph that eliminates the (irrelevant)
details of how the vertices are oriented in space and how the edges between
them are drawn. For example, the graphs in Figure 1.28 have the same adjacency
matrices (since they are the same graph).

Example 1.B.2
Constructing

Adjacency
Matrices

Construct the adjacency matrix of the graph from each of the following
figures:

a) Figure 1.27(a),
b) Figure 1.27(b), and
c) Figure 1.28.

Solutions:
a) Since vertex A is connected to vertices B and D via edges, we place

a 1 in the 2nd and 4th entries of the first row of the adjacency matrix.
Using similar reasoning for the other rows results in the following
adjacency matrix: 



0 1 0 1
1 0 0 1
0 0 0 1
1 1 1 0


 .

b) SinceIf the vertices of a
graph are not

labeled then there is
some ambiguity

in the definition of
its adjacency

matrix, since it is
not clear which
vertices are the

first, second, third,
and so on. In

practice, this does
not matter

much—the vertices
can be ordered in
any arbitrary way
without changing

the adjacency
matrix’s important

properties.

there are 5 vertices, this adjacency matrix is 5×5:




0 0 1 1 1
0 0 1 1 0
1 1 0 0 0
1 1 0 0 0
1 0 0 0 0




.

c) Both of the graphs in this figure really are the same (only their geo-
metric representation differs), so we get the same answer regardless
of which of them we use:




0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0


 .

One way of thinking of the adjacency matrix A is that the entry ai, j counts
the number of paths of length 1 between vertices i and j (since ai, j = 1 if there
is such a path and ai, j = 0 otherwise). Remarkably, the entries of higher powers
of the adjacency matrix similarly count the number of paths of longer lengths
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between vertices.

Theorem 1.B.1
Counting Paths

in Graphs

Suppose A ∈Mn is the adjacency matrix of a graph, and let k ≥ 1 be
an integer. Then for each 1 ≤ i, j ≤ n, the number of paths of length k
between vertices i and j is equal to

[
Ak
]

i, j.

Proof. We already noted why this theorem is true when k = 1. To show that it
is true when k = 2, recall from the definition of matrix multiplication

Recall that the
notation [Ak]i, j

means the
(i, j)-entry of the

matrix Ak.

that

[
A2]

i, j = ai,1a1, j +ai,2a2, j + · · ·+ai,nan, j.

The first term in the sum above (ai,1a1, j) equals 1 exactly if there is an edge
between vertices i and 1 and also an edge between vertices 1 and j. In other
words, the quantity ai,1a1, j counts the number of paths of length 2 between
vertices i and j, with vertex 1 as the intermediate vertex.

Similarly, ai,2a2, j counts the number of paths of length 2 between vertices
i and j with vertex 2 as the intermediate vertex, and so on. By adding these
terms up, we see that [A2]i, j counts the number of paths of length 2 between
vertices i and j, with any vertex as the intermediate vertex.

The general result for arbitrary k≥ 1 can be proved in a very similar manner
via induction, but is left as Exercise 1.B.11. �

Example 1.B.3
Counting Paths

via the
Adjacency

Matrix

Count the number of paths of the indicated type in the following graph:

A B

C D

a) Of lengthBe careful: we use
A to refer to a

vertex in the graph
as well as the

graph’s adjacency
matrix. It should be
clear from context

which one we
mean.

3 from A to D, and
b) of length 6 from B to C.

Solutions:
a) We computed the adjacency matrix of this graph in Example 1.B.2(a):

A =




0 1 0 1
1 0 0 1
0 0 0 1
1 1 1 0


 .
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To compute the number of paths of length 3, we compute A3:

We will see an
extremely fast way
to compute large

powers of matrices
(and thus the

number of long
paths in graphs) in

Section 3.4.

A3 =




0 1 0 1
1 0 0 1
0 0 0 1
1 1 1 0







0 1 0 1
1 0 0 1
0 0 0 1
1 1 1 0







0 1 0 1
1 0 0 1
0 0 0 1
1 1 1 0




=




2 1 1 1
1 2 1 1
1 1 1 0
1 1 0 3







0 1 0 1
1 0 0 1
0 0 0 1
1 1 1 0


=




2 3 1 4
3 2 1 4
1 1 0 3
4 4 3 2


 .

Since the (1,4)-entry of this matrix is 4, there are 4 such paths
from the first vertex (A) to the fourth vertex (D). Notice that this
is exactly the same answer that we computed for this problem in
Example 1.B.1(b).

b) To count paths of length 6, we need to compute A6. While we could
laboriously multiply five times to get A6 = AAAAAA, it is quicker
to recall that A6 = (A3)2, so we can just square the matrix that we
computed in part (a):

A6 = (A3)2 =




2 3 1 4
3 2 1 4
1 1 0 3
4 4 3 2




2

=




30 29 17 31
29 30 17 31
17 17 11 14
31 31 14 45


 .

Since

We did not need
to compute the
entire matrix A6

here—we could
have just

computed its
(2,3)-entry to save

time and effort.

the (2,3)-entry of this matrix is 17, there are 17 paths of
length 6 from the second vertex (B) to the third vertex (C).

Example 1.B.4
Counting Airline

Routes

The following graph represents nonstop airline routes between some cities
in Eastern Canada:

Toronto
Hamilton

Halifax

Moncton

Saint John

Montréal

a) How many routes are there from Moncton to Hamilton with exactly
one stopover in another city in between?

b) How many routes are there from Saint John to Halifax with no more
than two stopovers in between?

Solutions:
a) We

Choosing a
different ordering

of the cities might
change the

adjacency matrix,
but not the final

answer.

start by constructing the adjacency matrix of this graph. Note
that we must order the vertices in some way, so we (arbitrarily) or-
der the vertices Hamilton–Toronto–Montréal–Saint John–Moncton–
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Halifax, which results in the adjacency matrix

A =




0 1 0 0 1 1
1 0 1 1 1 1
0 1 0 1 1 1
0 1 1 0 0 0
1 1 1 0 0 1
1 1 1 0 1 0




.

The number of routes from Moncton to Hamilton with exactly one
stopover in between is then [A2]5,1, so we compute

A route with one
stopover is a path

of length 2, a route
with two stopovers

is a path of
length 3, and so on.

A2:

A2 =




3 2 3 1 2 2
2 5 3 1 3 3
3 3 4 1 2 2
1 1 1 2 2 2
2 3 2 2 4 3
2 3 2 2 3 4




.

Since the (5,1)-entry of this matrix is 2, there are 2 such routes.
b) The number of routes with no more than two stopovers equals

[A3]4,6 +[A2]4,6 +a4,6, so we start by computing [A3]4,6, which is
the dot product of the 4th row of A with the 6th column of A2:

[
A3]

4,6 = (0,1,1,0,0,0) · (2,3,2,2,3,4) = 3+2 = 5.

The number of such routes is thus
[
A3]

4,6 +
[
A2]

4,6 +a4,6 = 5+2+0 = 7.

1.B.2 Directed Graphs and Multigraphs

It is often the case that the relationship between objects is not entirely symmetric,
and when this happens it is useful to be able to distinguish which object is
related to the other one. For example, if we try to use a graph to represent the
connectivity of the World Wide Web (with vertices representing web pages
and edges representing links between web pages), we find that the types of
graphs that we considered earlier do not suffice. After all, it is entirely possible
that Web Page A links to Web Page B, but not vice-versa—should there be an
edge between the two vertices corresponding to those web pages?

ToDirected graphs
are sometimes

called digraphs for
short.

address situations like this, we use directed graphs, which consist of
vertices and edges just like before, except the edges point from one vertex to
another (whereas they just connected two vertices in our previous undirected
setup). Some examples are displayed in Figure 1.29.

Fortunately, counting paths in directed graphs is barely any different from
doing so in undirected graphs—we construct the adjacency matrix of the graph
and then look at the entries of its powers. The only difference is that the adjacency
matrix of a directed graph has a 1 in its (i, j)-entry if the graph has an edge going
from vertex i to vertex j, so it is no longer necessarily the case that ai, j = a j,i.
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A B

C D

A B

C

D E

Figure 1.29: Some small directed graphs. Notice that vertices can now potentially
have a pair of edges between them—one going in each direction.

Example 1.B.5
Counting Paths in
Directed Graphs

Count the number of paths of the indicated type in the graph displayed in
Figure 1.29(b):

a) Of length 2 from B to A,
b) of length 4 from C to E, and
c) of length 87 from A to C.

Solutions:
a) We start by computing the adjacency matrix of this graph:Unlike in the case

of undirected
graphs, the

adjacency matrix
of a directed

graph is not
necessarily
symmetric.

A =




0 0 0 1 1
0 0 1 1 0
1 1 0 0 0
1 0 0 0 0
0 0 0 0 0




.

To count the number of paths of length 2, we compute A2:

A2 =




1 0 0 0 0
2 1 0 0 0
0 0 1 2 1
0 0 0 1 1
0 0 0 0 0




.

Since the (2,1)-entry of this matrix is 2, there are 2 such paths from
B to A.

b)We could explicitly
compute the

entire matrix A4,
but that would be

more work than we
have to do to solve

this problem.

We need to compute [A4]3,5, which is the dot product of the 3rd row
of A2 with the 5th column of A2:
[
A4]

3,5 = (0,0,1,2,1) · (0,0,1,1,0) = 0+0+1+2+0 = 3.

There are thus 3 paths of length 4 from C to E.

c) We could compute A87 and look at its (1,3)-entry (ugh!), but an
easier way to solve this problem is to notice that the only edge that
points to C comes from B, and the only edge that points to B comes
from C. There are thus no paths whatsoever, of any length, to C
from any vertex other than B.
In fact, this argument shows that the third column of Ak alternates
back and forth between (0,1,0,0,0) when k is odd (and there is 1
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path of length k from B to C) and (0,0,1,0,0) when k is even (and
there is 1 path of length k from C back to itself).

As an even further generalization of graphs, we can consider multigraphs,
which are graphs that allow multiple edges between the same pair of vertices,
and even allow edges that connect a vertex to itself. Multigraphs could be used
to represent roads connecting cities, for example—after all, a pair of cities
often has more than just one road connecting them.

MultigraphsAn edge from a
vertex to itself is

called a loop.

can be either directed or undirected, as illustrated in Figure 1.30.
In either case, the method of using the adjacency matrix to count paths between
vertices still works. The only difference with multigraphs is that the adjacency
matrix no longer consists entirely of 0s and 1s, but rather its entries ai, j describe
how many edges there are from vertex i to vertex j.

A B

C D

A B

C D

Figure 1.30: Some small multigraphs, which allow for multiple edges between the
same pairs of vertices, and even edges from a vertex to itself. Multigraphs can
either be (a) undirected or (b) directed.

Example 1.B.6
Counting Paths
in Multigraphs

Count the number of paths of the indicated type:
a) Of length 2 from A to D in Figure 1.30(a), and
b) of length 3 from B to C in Figure 1.30(b).

Solutions:
a) The adjacency matrix of this graph is

A =




0 1 3 0
1 1 1 1
3 1 0 2
0 1 2 0


 .

To compute the number of paths of length 2 between vertices A and
D, we compute [A2]1,4, which is the dot product of the 1st row of
the adjacency matrix with its fourth column:

[
A2]

1,4 = (0,1,3,0) · (0,1,2,0) = 0+1+6+0 = 7.

b) The adjacency matrix of this graph is

A =




0 1 2 0
0 1 1 1
1 0 0 2
0 1 0 0


 .
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To compute the number of paths of length 3 from B to C, we need
the quantity [A3]2,3. Before we can compute this though, we need
A2:

A2 =




2 1 1 5
1 2 1 3
0 3 2 0
0 1 1 1


 .

Then [A3]2,3 is the dot product of the 2nd row of A2 with the 3rd
column

[A3]2,3 is also the
dot product of the

2nd row of A with
the 3rd column of A2:
(0,1,1,1) ·(1,1,2,1) = 4

too.

of A:

[
A3]

2,3 = (1,2,1,3) · (2,1,0,0) = 2+2+0+0 = 4.

Remark 1.B.1
Your Friends are

More Popular
than You Are

Linear algebra is actually used for much more in graph theory than just as
a tool for being able to count paths in graphs. As another application of the
tools that we have learned so far, we now demonstrate the interesting (but
slightly disheartening) fact that, on average, a person has fewer friends
than their friends have. This counter-intuitive fact is sometimes called the
friendship paradox.

To pin

The friendship
paradox was first

observed by
Scott L. Feld in 1991

[Fel91].

down this fact mathematically, let n be the number of people
in the world (n≈ 7.5 billion) and let w = (w1,w2, . . . ,wn) ∈ Rn be such
that, for each 1≤ j ≤ n, w j is the number of friends that the j-th person
has. Then the average number of friends that people have is

The notation
∑

n
j=1 w j means

w1 +w2 + · · ·+wn.
1
n

n

∑
j=1

w j.
(average number of friendships =

total friendships divided by number of people)

Counting the average number of friends of friends is somewhat more
difficult, so it helps to draw a small graph to illustrate how it works. For
now, we consider a graph that illustrates the friendships between just 4
people:

Alice Bob

Cora Devon

Now we imagine that each person in this graph creates one list for each
of their friends, and those lists contain the names of the friends of that
friend, as follows:
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Alice’s lists:

Bob Cora Devon

Alice Alice Alice
Devon Bob

Bob’s lists:

Alice Devon

Bob Alice
Cora Bob
Devon

Cora’s list:

Alice

Bob
Cora
Devon

Devon’s lists:

Alice Bob

Bob Alice
Cora Devon
Devon

The

In this example, the
average number

of friends is
(3+2+1+2)/4 = 2.
Since 2≤ 2.25, we

see that the
friendship paradox

indeed holds in this
case.

average number of friends of friends is the average length of these lists
(excluding the bold headers), which is (2+1+2+3+2+3+3+2)/8 =
2.25 in this example.

In general, the j-th person creates w j lists—one for each of their
friends—so there are a total of ∑

n
j=1 w j lists created. Furthermore, the j-th

person will have a list made for them by each of their w j friends, and each
of those lists contain w j entries. It follows that person j contributes w2

j

entries to these lists,Alice is friends with
3 people, each of
whom make a list
for her of length 3,
so she contributes

9 total names to
the lists. Similarly,
Bob and Devon
each contribute
2×2 = 4 names,

and Cora
contributes

1×1 = 1.

so there are ∑
n
j=1 w2

j total friends of friends listed.
The average number of friends that friends have is thus

∑
n
j=1 w2

j

∑
n
j=1 w j

.
(average number of friends of friends =

total names on lists divided by number of lists)

If we let v = (1,1, . . . ,1) ∈ Rn and then apply the Cauchy–Schwarz
inequality to v and w then see that

n

∑
j=1

w j = |v ·w| ≤ ‖v‖‖w‖=
√

n

√
n

∑
j=1

w2
j .

Squaring both sides of the above inequality, and then dividing both sides
by n∑

n
j=1 w j, results in the inequality

1
n

n

∑
j=1

w j ≤
∑

n
j=1 w2

j

∑
n
j=1 w j

,

which is exactly the friendship paradox: the average number of friends is
no larger than the average number of friends that friends have.

We close this section by noting that the friendship paradox also applies
to many things other than friendships. For example, our social media
followers typically have more followers than we do, our mathematical
co-authors are typically more prolific than we are, and our dance partners
have typically danced with more people than we have (and the same goes
for partners in... other activities).
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Exercises solutions to starred exercises on page 443

1.B.1 Write the adjacency matrix of each of the following
(undirected) graphs:

∗(a)
A B

C D

(b)
A B C

D E

∗(c)
A B C

D E F

1.B.2 Write the adjacency matrix of each of the following
directed graphs:

∗(a)
A B

C D

(b)
A

B C D E

∗(c)
A B C

D E F

1.B.3 Write the adjacency matrix of each of the following
multigraphs:

∗(a)
A B

C D

(b)
A B

C D E

∗(c)
A B C

D E F

1.B.4 Determine which of the following statements are
true and which are false.

∗(a) The adjacency matrix A of every undirected graph
is symmetric (i.e., has the property A = AT ).

(b) The adjacency matrix of a graph with 7 edges is of
size 7×7.

∗(c) If there is a path of length two between two spe-
cific vertices in an undirected graph, then there must
be a path of length three between those same two
vertices.

(d) If a graph has no loops then the diagonal entries of
its adjacency matrix must all equal 0.

1.B.5 Draw a (multi)graph with the given adjacency ma-
trix. Choose your (multi)graph to be undirected or directed
as appropriate.

∗(a) 


0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0




∗(c) 


0 1 1 1 1
1 0 1 1 1
1 1 0 1 1
1 1 1 0 1
1 1 1 1 0




∗(e) 


0 1 1 1
0 0 0 0
0 0 0 0
1 0 0 0




(b) 


0 1 1 1 1
0 0 1 1 1
0 0 0 1 1
0 0 0 0 1
0 0 0 0 0




(d) 


1 2 2 1
2 0 0 1
2 0 0 0
1 1 0 1




(f) 


2 0 0 1
0 1 3 0
0 0 1 1
3 0 1 1




1.B.6 Compute the number of paths of the given length
in the graph from the indicated exercise.

∗(a) Of length 2, from A to C, Exercise 1.B.1(a).
(b) Of length 3, from A to E, Exercise 1.B.1(b).
∗(c) Of length 2, from D to E, Exercise 1.B.1(c).
(d) Of length 2, from A to D, Exercise 1.B.2(a).
∗(e) Of length 3, from A back to A, Exercise 1.B.2(b).

(f) Of length 3, from A to F , Exercise 1.B.2(c).
∗(g) Of length 2, from D to C, Exercise 1.B.3(a).
(h) Of length 3, from A to E, Exercise 1.B.3(b).
∗(i) Of length 3, from D to F , Exercise 1.B.3(c).

§(j) Of length 5, from A to D, Exercise 1.B.1(a).
∗§(k) Of length 6, from B to E, Exercise 1.B.1(b).
§(l) Of length 7, from C to D, Exercise 1.B.1(c).

1.B.7 Compute the number of paths of the indicated type
in the following (undirected) graph:

A B

C D

∗(a) Of length 2 from A to B.
(b) Of length 3 from A to C.
∗(c) Of length 4 from A to D.
(d) Of length 8 from B to C.
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1.B.8 Suppose that the friendships between six people on
a social network are represented by the following graph:

Alice Bob Cora

Devon Eve Frank

Use the adjacency matrix of this graph to answer the fol-
lowing questions:

(a) How many friends of friends does Bob have?
(b) In how many ways are Alice and Frank friends of

friends of friends? (In other words, how many paths
of length three are there between Alice and Frank?)

∗1.B.9 Sometimes, we can use graphs to help us learn
things about matrices (rather than the other way around).

(a) Draw a directed graph that has adjacency matrix

A =

[
1 1
0 1

]
.

(b) Determine (based on the graph from part (a)) how
many paths of length n there are between each pair
of vertices in the graph.

(c) Use part (b) to find a formula for An. [Hint: Your
answer should be the same as it was for Exer-
cise 1.3.7(c).]

1.B.10 Powers of the adjacency matrix can also be used
to find the length of the shortest path between two vertices
in a graph.

(a) Describe how to use the adjacency matrix of a graph
to find the length of the shortest path between two
vertices in that graph.

(b) Use this method to find the length of the shortest
path from vertex B to vertex E in the graph from
Exercise 1.B.2(b).

∗∗1.B.11 Complete the proof of Theorem 1.B.1. [Hint:
Use induction and mimic the proof given in the k = 2
case.]



2. Linear Systems and Subspaces

Linear algebra is the central subject of mathematics.
You cannot learn too much linear algebra.

Benedict Gross

In this chapter, we start introducing some more interesting and useful properties
of matrices and linear transformations. While we begin the chapter by motivat-
ing these various properties via systems of linear equations, it is important to
keep in mind that systems of linear equations are just one of the many uses of
matrices.

As we make our way through to the end of this chapter (and indeed, through-
out the rest of this book), we will see that the various concepts that arise from
systems of linear equations are also useful when investigating seemingly unre-
lated objects like linear transformations, graphs, and integer sequences.

2.1 Systems of Linear Equations

Much of linear algebra revolves around solving and manipulating the simplest
types of equations that exist—linear equations:

Definition 2.1.1
Linear Equations

A linear equation in n variables x1,x2, . . . ,xn is an equation that can be
written in the form

a1x1 +a2x2 + · · ·+anxn = b,

where a1,a2, . . . ,an and b are constants called the coefficients of the linear
equation.

The names of the
variables do not

matter. We typically
use x, y, and z if

there are only 2 or 3
variables, and we

use x1,x2, . . . ,xn if
there are more.

For example, the following equations are all linear:

x+3y = 4, 2x−πy = 3, 4x+3 = 6y,
√

3x− y =
√

5, cos(1)x+ sin(1)y = 2, and x+ y−2z = 7.

Note that even though the top-right equation above is not quite in the form
described by Definition 2.1.1, it can be rearranged so as to be in that form, so it
is linear. In particular, it is equivalent to the equation 4x−6y =−3, which is in
the desired form. Also, the bottom-left and bottom-middle equations are indeed
linear since the square root and trigonometric functions are only applied to
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the coefficients (not the variables) in the equations. By contrast, the following
equations are all not linear:

√
x+3y = 4, 2x−7y2 = 3, 4y+2xz = 1,

2x−2y = 3, cos(x)+ sin(y) = 0, and ln(x)− y/z = 2.

In general, an equation is linear if each variable is only multiplied by a constant:
variables cannot be multiplied by other variables, they cannot be raised to an
exponent other than 1, and they cannot have other functions applied to them.

Geometrically, we can think of linear equations as representing lines and
planes (and higher-dimensional flat shapes that we cannot quite picture). For
example, the general equation of a line is ax+by = c,The equation of a

line is sometimes
instead written in

the form y = mx+b,
where m and b are

constants. This is also
a linear equation.

and the general equation
of a plane is ax+by+cz = d, both of which are linear equations (see Figure 2.1).

x

y

1 2 3

1

2

x+2y= 4

x

y

z

x+2y+4z= 4

Figure 2.1: Linear equations represent flat objects: lines, planes, and higher-
dimensional hyperplanes.

Oftentimes, we want to solve multiple linear equations at the same time.
That is, we want to find values for the variables x1,x2, . . . ,xn such that multiple
different linear equations are all satisfied simultaneously. This leads us naturally
to consider systems of linear equations:

Definition 2.1.2
Systems of

Linear Equations

A system of linear equations (or a linear system) is a finite set of linear
equations, each with the same variables x1,x2, . . . ,xn. Also,

• a solution of a system of linear equations is a vector x =
(x1,x2, . . . ,xn) whose entries satisfy all of the linear equations in the
system, and

• the solution set of a system of linear equations is the set of all
solutions of the system.

Geometrically, a solution of a system of linear equations is a point at the
intersection of all of the lines, planes, or hyperplanes defined by the linear
equations in the system. For example, consider the following linear system that
consists of two equations:

x+2y = 4
−x+ y =−1

The lines defined by these equations are plotted in Figure 2.2. Based on this
graph, it appears that

Try plugging x = 2,
y = 1 back into the
linear equations to
verify that they are

both true at this
point. these lines have a unique point of intersection, and
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it is located at the point (2,1). The vector x = (2,1) thus seems to be the
unique solution of this system of linear equations. To instead find this solution
algebraically, we could add the two equations in the linear system to get the
new equation 3y = 3, which tells us that y = 1. Plugging y = 1 back into the
original equation x+2y = 4 then tells us that x = 2.

x

y

1 2 3

1

2

x+2y= 4

−x+ y=−1

(2,1)

Figure 2.2: The system of linear equations x+2y = 4,−x+y =−1 is represented graph-
ically by two lines that intersect at a single point (2,1). This point of intersection is
the unique solution of the linear system.

However, systems of linear equations do not always have a unique solution
like in the previous example. To illustrate the other possibilities, consider the
following two systems of linear equations:

x+2y = 4
2x+4y = 8

∣∣∣
x+2y = 4
x+2y = 3

The first linear system is strange because the second equation is simply
a multiple of the first equation, and thus tells us nothing new—any pair of
x,y values that satisfy the first equation also satisfy the second equation. In
other words, both equations describe the same line, so there are infinitely many
solutions, as displayed in Figure 2.3(a).

On the other hand, the second linear system has no solutions at all because
x+2y cannot simultaneously equal 4 and 3. Geometrically, these two equations
represent parallel lines, as illustrated in Figure 2.3(b). The fact that this linear
system has no solutions corresponds to the fact that parallel lines do not
intersect.

x

y

1 2 3

1

2 x+2y= 4
2x+4y= 8

x

y

1 2 3

1

2

x+2y= 4

x+2y= 3

Figure 2.3: A visual demonstration of the fact that systems of linear equations can
have (a) infinitely many solutions or (b) no solutions.
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These examples show that systems of linear equations can have no solutions,
exactly one solution, or infinitely many solutions. We will show shortly (in the
upcoming Theorem 2.1.1) that these are the only possibilities. That is, there
does not exist a system of linear equations with exactly 2 solutions, or exactly
3 solutions, or exactly 4 solutions, and so on.

2.1.1 Matrix Equations

One of the primary uses of matrices is that they give us a way of working with
linear systems much more compactly and cleanly. In particular, any system of
linear

Go back to
Definition 1.3.2 or
Theorem 1.3.5 to

remind yourself that
this ugly mess is just
what a matrix times

a vector looks like.

equations

a1,1x1 +a1,2x2 + · · ·+a1,nxn = b1

a2,1x1 +a2,2x2 + · · ·+a2,nxn = b2

...
am,1x1 +am,2x2 + · · ·+am,nxn = bm

can be rewritten as the single matrix equation Ax = b, where A∈Mm,n is the co-
efficient matrix whose (i, j)-entry is ai, j, b = (b1,b2, . . . ,bm) ∈Rm is a vector
containing the constants from the right-hand side, and x = (x1,x2, . . . ,xn) ∈ Rn

is a vector containing the variables.

Example 2.1.1
Writing Linear

Systems as Matrix
Equations

Write the following linear systems as matrix equations:
a) x+2y = 4

3x+4y = 6
b) 3x−2y+ z =−3

2x+3y−2z = 5

Solutions:
a) We place the coefficients of the linear system in a matrix A, the

variables in a vector x, and the numbers from the right-hand side in
a vector b, obtaining the following matrix equation Ax = b:

[
1 2
3 4

][
x
y

]
=

[
4
6

]
.

Indeed, if we were to perform the matrix multiplication on the left
then we would get exactly the linear system that we started with.

b) WeThe number of rows
of A equals the

number of linear
equations. The

number of columns
of A equals the

number of variables.

proceed similarly to before, being careful to note that the coef-
ficient matrix now has 3 columns and the vector x now contains 3
variables: [

3 −2 1
2 3 −2

]


x
y
z


=

[
−3
5

]
.

As a sanity check, we can we perform the matrix multiplication on
the left to see that we get back the original linear system:

[
3x−2y+ z

2x+3y−2z

]
=

[
−3
5

]
.

The advantage of writing linear systems in this way (beyond the fact that it
requires less writing) is that we can now make use of the various properties of
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matrices and matrix multiplication that we already know to help us understand
linear systems a bit better. For example, we can now prove the observation that
we made earlier: every linear system has either zero, one, or infinitely many
solutions.

Theorem 2.1.1
Trichotomy for
Linear Systems

Every system of linear equations has either
a) no solutions,
b) exactly one solution, or
c) infinitely many solutions.

Proof. AnotherRefer back to
Figures 2.2 and 2.3

for geometric
interpretations of

the three
possibilities

described by this
theorem.

way of phrasing this theorem is as follows: if a system of linear
equations has at least two solutions then it must have infinitely many solutions.
With this in mind, we start by assuming that there are two distinct solutions to
the linear system.

If Ax = b is the matrix form of the linear system (where A ∈Mm,n, x ∈Rn,
and b ∈ Rm), then there existing two distinct solutions of the linear system
means that there exist vectors x1 6= x2 ∈ Rn such that Ax1 = b and Ax2 = b.
Then for any scalar c ∈ R, it is the case that

A
(
(1− c)x1 + cx2

)
= (1− c)Ax1 + cAx2 = (1− c)b+ cb = b,

so every vector of the form (1− c)x1 + cx2 is a solution of the linear system.
Geometrically, this

proof shows that
every vector whose

head is on the line
going through the
heads of x1 and x2
is a solution of the
linear system too.

Since there are infinitely many such vectors (one for each choice of c ∈ R), the
proof is complete. �

When a system of linear equations has at least one solution (i.e., in cases (b)
and (c) of the above theorem), it is called consistent. If it has no solutions (i.e.,
in case (a) of the theorem), it is called inconsistent. For example, the linear
systems depicted in Figures 2.2 and 2.3(a) are consistent, whereas the system
in Figure 2.3(b) is inconsistent. Similarly, we can visualize linear systems in
three variables via intersecting planes as in Figure 2.4. A linear system in
three variables is consistent if all of the planes have at least one common point
of intersection (as in Figures 2.4(a), (b), and (c)), whereas it is inconsistent
otherwise (as in Figure 2.4(d), where each pair of planes intersect, but there is
no point where all three of them intersect).

2.1.2 Row Echelon Form

We now turn our attention to the problem of actually finding the solutions of a
system of linear equations. If the linear system has a “triangular” form, then
solving it is fairly intuitive. For example, consider the following system of
linear equations:

x+3y−2z = 5
2y−6z = 4

3z = 6

The final equation in this system tells us that 3z = 6, so z = 2. Plugging z = 2
into the other two equations (and moving all constants over to the right-hand
side) transforms them into the form

x+3y = 9
2y = 16
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Figure 2.4: Planes can intersect at either infinitely many points (as in (a) and (c)),
at a single point (as in (b)), or not at all (as in (d)). There are also some other ways
for planes to intersect at infinitely many points or no points that are not displayed
here.

We

It is also possible for
the intersection of

several planes to be
a plane (if all of the
planes are really the

same plane in
disguise), in which

case the
associated linear

system has infinitely
many solutions.

It is also possible for
several planes to all
be parallel to each

other, in which case
the associated

linear system has no
solutions.

can again then just read off the value of one of the variables from the final
equation: 2y = 16, so y = 8. Finally, plugging y = 8 into the first equation then
tells us that x+24 = 9, so x =−15. This system of linear equations thus has a
unique solution, and it is (x,y,z) = (−15,8,2).

The procedure that we used to solve the previous example is called back
substitution, and it worked because of the triangular shape of the linear system.
We were able to easily solve for z, which we then could plug into the second
equation and easily solve for y, which we could plug into the first equation and
easily solve for x. With this in mind, our goal now is to put every system of
equations into this triangular form. We first start by eliminating the variable
x from the second and third equations, and then we eliminate the variable y
from the third equation (and then to actually solve the system, we do back
substitution like before).

Example 2.1.2
Solving a

Linear System

Put the following system of linear equations into a triangular form that is
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easy to solve via back substitution:

x+3y−2z = 5
x+5y−8z = 9

2x+4y+5z = 12

Solution:
To put

Since every term in
our new equation 2
is a multiple of 2, we

could cancel out
this common factor
and instead write it
in the simpler form

y−3z = 2 if we
wanted to.

this linear system into the desired triangular form, we start by
subtracting the first equation from the second equation, so that the new
second equation is

(equation 2)
−(equation 1)

(new equation 2)

x+5y−8z = 9
−x−3y+2z =−5

2y−6z = 4

The reason for performing this calculation is that our new equation 2 does
not have an “x” term. To similarly eliminate the “x” term from equation 3,
we subtract 2 copies of the first equation from the third equation:

(equation 3)
−2(equation 1)

(new equation 3)

2x+4y+5z = 12
−2x−6y+4z =−10

−2y+9z = 2

Our system of linear equations is now in the form

x+3y−2z = 5
2y−6z = 4
−2y+9z = 2

To complete the process of putting this system into triangular form, we
just need to eliminate the “y” term in the third equation, which can be
accomplished by adding the second equation to the third equation:

(equation 3)
+(equation 2)

(new equation 3)

−2y+9z = 2
2y−6z = 4

3z = 6

Finally, our linear system is now in the triangular form

x+3y−2z = 5
2y−6z = 4

3z = 6

which is exactly the linear system that we solved earlier via back substitu-
tion. We thus conclude that the (unique) solution to this linear system is
(x,y,z) = (−15,8,2), just like we computed earlier.

To reduce the amount of writing we have to do when solving the linear
system Ax = b, we typically write it more compactly as an augmented matrix
[ A | b ], so that we only have to write down the coefficients in the linear system
at every step of the computation, rather than also having to write down the
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variable names (e.g., x, y, and z) and other details that do not change. For
example, the augmented matrix of the linear system from Example 2.1.2 is




1 3 −2 5
1 5 −8 9
2 4 5 12


 .

Then all of the equation manipulations that we performed earlier correspond
to operations where we modify the rows of this augmented matrix. For example,
our first step toward solving Example 2.1.2 was to replace the second equation
by (equation 2)− (equation 1), which is equivalent to replacing the second
row of the augmented matrix by (row 2)− (row 1). In order to even further
reduce the amount of writing we have to do when solving linear systems,
we now introduce some standard notation that we can use to indicate which
row modifications we are performing at each step of our computation, so
that we do not have to repeatedly write out expressions like “(equation 3)−
2(equation 1)”:

Multiplication. Multiplying row j by a non-zero scalar c ∈ R is denoted by cR j.
Swap. Swapping rows i and j is denoted by Ri↔ R j.

Addition. For any scalar c ∈ R, replacing row i by (row i)+ c(row j) is denoted by
Ri + cR j.

The three operations described above are called elementary row operations,
and two matrices are called row equivalent if one can be converted to the other
via elementary row operations. To get comfortable with row operations and
their associated notation, we now use them to re-solve the system of linear
equations from Example 2.1.2.

Example 2.1.3
Solving a Linear

System via
Matrix Notation

Use matrix notation to solve this system of linear equations:

x+3y−2z = 5
x+5y−8z = 9

2x+4y+5z = 12

Solution:
We already displayed the augmented matrix of this linear system

earlier—we start with that matrix and perform row operations so as to get
it into an upper triangular form, just like

At each step, we
highlight which row
was just modified to

make the
operations a bit

easier to see.

earlier:



1 3 −2 5

1 5 −8 9

2 4 5 12


 R2−R1−−−−→




1 3 −2 5

0 2 −6 4

2 4 5 12







1 3 −2 5

0 2 −6 4

0 −2 9 2


 R3+R2−−−−→




1 3 −2 5

0 2 −6 4

0 0 3 6


 .

R3 −2R1

The row operations illustrated above carry out the exact same calcula-
tion as the entirety of Example 2.1.2. At this point, the system of equations
is in a form that can be solved by back substitution. However, we can also
completely solve the system of equations by performing a few extra row
operations, as we now illustrate:

Be careful when
grouping multiple

row operations into
one step like we did
here. The operations
are performed one

after another, not at
the same time.
Exercise 2.1.16

illustrates how things
can go wrong if row

operations are
performed

simultaneously.
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1 3 −2 5

0 2 −6 4

0 0 3 6


 1

3
R3−−→




1 3 −2 5

0 2 −6 4

0 0 1 2







1 3 0 9

0 2 0 16

0 0 1 2


 1

2
R2−−→




1 3 0 9

0 1 0 8

0 0 1 2







1 0 0 −15

0 1 0 8

0 0 1 2


 .

R1 +2R3

R2 +6R3

R1 −3R2

At this point, we can simply read the solution to the system of equations
off from the right-hand side of the bottom augmented matrix: (x,y,z) =
(−15,8,2), just like we computed earlier.

Remark 2.1.1
Elementary Row
Operations are

Reversible

It is not difficult to see that if x is a solution of a linear system [ A | b ]
then it is also a solution of any linear system that is obtained by applying
elementary row operations to it. For example, swapping the order of two
equations in a linear system does not alter its solutions, and multiplying
an equation through by a scalar does not affect whether or not it is true.

Furthermore, the elementary row operations are all reversible—they
can be undone by other elementary row operations of the same type. In
particular, the multiplication operation cR j is reversed by 1

c R j, the swap
operation Ri↔ R j is undone by itself, and the addition operation Ri + cR j
is undone by Ri− cR j.

This reversibility of row operations ensures that, not only are solutions
to the linear system not lost when row-reducing (as we showed above), but
no new solutions are introduced either (since no solutions are lost when
undoing the row operations). In fact, this is exactly why we require c 6= 0
in the multiplication row operation cR j; if c = 0 then this row operation is
not reversible, so it may introduce additional solutions to the linear system.
For example, in the linear systems

[
1 2 3
3 4 7

]
0R2−−→

[
1 2 3
0 0 0

]
,

the system on the left has a unique solution x = (1,1), but the system on
the right has infinitely many others, such as x = (3,0).

The previous examples illustrate the most commonly-used method for solv-
ing systems of linear equations: use row operations to first make the matrix
“triangular”, and then either solve the system by back substitution or by per-
forming additional row operations. To make this procedure more precise, and
to help us solve some trickier linear systems where a triangular form seems
difficult to obtain, we now define exactly what our triangular form should look
like and discuss how to use row operations to get there.
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Definition 2.1.3
(Reduced) Row

Echelon Form

A matrix is said to be in row echelon form (REF) if:
a) all rows consisting entirely of zeros are below the non-zero rows,

and
b) in each non-zero row, the first non-zero entry (called the leading

entry) is to the left of any leading entries below it.
If the matrix also satisfies the following additional property, then it is in
reduced row echelon form (RREF):

c) each leading entry equals 1 and is the only non-zero entry in its
column.

For example,The word “echelon”
means level or rank,

and it refers to the
fact that the rows of
a matrix in this form

are arranged
somewhat like a

staircase.

of the two augmented matrices



1 3 −2 5
0 2 −6 4
0 0 3 6


 and




1 0 0 −15
0 1 0 8
0 0 1 2




that appeared in Example 2.1.3, both are in row echelon form, but only the
matrix on the right is in reduced row echelon form.

Slightly more generally, if we use F to represent non-zero leading entries
and ∗ to represent arbitrary (potentially zero) non-leading entries, then the
following matrices are in row echelon form:




⋆ ∗ ∗ ∗
0 0 ⋆ ∗
0 0 0 ⋆
0 0 0 0


 and




0 0 ⋆ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 0 0 ⋆ ∗ ∗ ∗ ∗ ∗ ∗
0 0 0 0 0 ⋆ ∗ ∗ ∗ ∗
0 0 0 0 0 0 0 0 ⋆ ∗


 .

If we modify theseA leading column
of a matrix in row
echelon form is a

column containing
a leading entry. For

example, the
leading columns of

the matrix on the
left here are its first,

third, and fourth.

matrices so that their leading entries are 1 and they also
have 0’s above those leading 1’s, then they will be in reduced row echelon
form:




1 ∗ 0 0

0 0 1 0

0 0 0 1

0 0 0 0


 and




0 0 1 0 ∗ 0 ∗ ∗ 0 ∗
0 0 0 1 ∗ 0 ∗ ∗ 0 ∗
0 0 0 0 0 1 ∗ ∗ 0 ∗
0 0 0 0 0 0 0 0 1 ∗


 .

Roughly speaking, a matrix is in row echelon form if we can solve the
associated linear system via back substitution, whereas it is in reduced row
echelon form if we can just read the solution to the linear system directly from
the entries of the matrix.

Example 2.1.4
(Reduced) Row
Echelon Forms

Determine which of the following matrices are and are not in (reduced)
row echelon form:

a)
[

1 2 3
0 1 0

]

c)



2 0 −1 5
0 0 3 0
0 0 0 0




b)
[

1 0 2
0 1 4

]

d)



1 2 3 4
0 0 2 −1
0 0 1 0




Solutions:
a) This matrix is in row echelon form. However, it is not in reduced



2.1 Systems of Linear Equations 87

row echelon form, because the leading 1 in the second row has
a non-zero entry above it.

b) This matrix is in reduced row echelon form.Every matrix that is
in reduced row

echelon form is also
in row echelon form
(but not vice-versa).

c) This matrix is also in row echelon form. However, it is not in reduced
row echelon form, because its leading entries are 2 and 3 (not 1).

d) This matrix is not in row echelon form since the leading entry in the
second row has a non-zero entry below it.

2.1.3 Gaussian Elimination

There are numerous different sequences of row operations that can be used
to put a matrix (or augmented matrix) into row echelon form (or reduced row
echelon form), and the process of doing so is called row-reduction. However,
it is useful to have a standard method of choosing which row operations to
apply when. With this in mind, we now present one method, called Gaussian
elimination, which can be used to put any matrix into (not necessarily reduced)
row echelon form and thus solve the associated linear system. In particular, we
illustrate this algorithm with the following matrix:




0 0 −1 1 0
0 −2 1 −5 2
0 2 −2 6 −3
0 −4 2 −10 5


 .

Step 1: Position a leading entry. Locate the leftmost non-zero column of the ma-
trix, and swap rows (if necessary) so that the topmost entry of this column
is non-zero. This top-left entry becomes the leading entry of the top row:

Alternatively, we
could have instead

swapped rows 1
and 2 or rows 1

and 4 here.




0 0 −1 1 0
0 −2 1 −5 2
0 2 −2 6 −3
0 −4 2 −10 5


 R1↔R3−−−−→




0 2 −2 6 −3
0 −2 1 −5 2
0 0 −1 1 0
0 −4 2 −10 5




leading entry

Step 2: Zero out the leading entry’s column. Use the “addition” row operation
to create zeros in all entries below the leading entry from step 1. Option-
ally, the arithmetic

This step is
sometimes called

pivoting on the
leading entry (and
the leading entry is

sometimes called
the pivot).

can be made somewhat easier by first dividing the top
row by the leading entry (2 in this case), but we do not do so here:




0 2 −2 6 −3
0 −2 1 −5 2
0 0 −1 1 0
0 −4 2 −10 5




R2+R1
R4+2R1−−−−→




0 2 −2 6 −3
0 0 −1 1 −1
0 0 −1 1 0
0 0 −2 2 −1




new zeros

Step 3: Repeat until we cannot. Partition the matrix into a block matrix whose
top block consists of the row with a leading entry from Step 1, and whose
bottom block consists of all lower rows. Repeat Steps 1 and 2 on the
bottom block.

Be careful with your
arithmetic! Double

negatives are quite
common when
performing row

operations, and lots
of them appear

here when we
subtract row 2 from

the others.
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0 2 −2 6 −3

0 0 −1 1 −1

0 0 −1 1 0

0 0 −2 2 −1




R3−R2

R4−2R2−−−−→




0 2 −2 6 −3

0 0 −1 1 −1

0 0 0 0 1

0 0 0 0 1




new zeros

new leading entry

ignore this top row

Now that we have completed Steps 1 and 2 again, we repeat this process,
now ignoring the top two rows (instead of just the top row). In general,
we continue in this way until all of the bottom rows consist of nothing
but zeros, or until we reach the bottom of the matrix (whichever comes
first):




0 2 −2 6 −3

0 0 −1 1 −1

0 0 0 0 1

0 0 0 0 1


 R4−R3−−−−→




0 2 −2 6 −3

0 0 −1 1 −1

0 0 0 0 1

0 0 0 0 0




new zeronew leading entry

ignore these top rows

At this point, all of the remaining rows contain nothing but zeros, so we are
done—the matrix is now in row echelon form. If this matrix represented a linear
system then we could solve it via back substitution at this point. However, it is
sometimes convenient to go slightly farther and put the matrix into reduced row
echelon form. We can do so via an extension of Gaussian elimination called
Gauss–Jordan elimination, which consists of just one additional step.

Step 4: Reduce even more, from right-to-left. Starting with the rightmost lead-
ing entry, andKeep in mind that

Step 4 is only
necessary if we

want the matrix in
reduced row

echelon form.

moving from bottom-right to top-left, use the “multipli-
cation” row operation to change each leading entry to 1 and use the
“addition” row operation to create zeros in all entries above the leading
entries.




0 2 −2 6 −3

0 0 −1 1 −1

0 0 0 0 1

0 0 0 0 0




R1+3R3

R2+R3−−−−→




0 2 −2 6 0

0 0 −1 1 0

0 0 0 0 1

0 0 0 0 0




new zeros

rightmost leading entry

The next rightmost leading entry is the (2,3)-entry, so we now use row
operations to change it to 1 and create zeros in the remaining entries of
this column.




0 2 −2 6 0

0 0 −1 1 0

0 0 0 0 1

0 0 0 0 0


 −R2−−→




0 2 −2 6 0

0 0 1 −1 0

0 0 0 0 1

0 0 0 0 0




R1+2R2−−−−→




0 2 0 4 0

0 0 1 −1 0

0 0 0 0 1

0 0 0 0 0




next leading entry scaled to 1

new zero
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Finally,

This example was
chosen very

carefully so that the
arithmetic worked

out nicely. In
general, we should

be very careful
when performing

row operations, as
there are often lots
of ugly fractions to

deal with.

the only remaining leading entry is the (1,2)-entry, which we
scale to equal 1.




0 2 0 4 0

0 0 1 −1 0

0 0 0 0 1

0 0 0 0 0




1
2 R1−−→




0 1 0 2 0

0 0 1 −1 0

0 0 0 0 1

0 0 0 0 0




next leading entry scaled to 1

Finally, the matrix on the right above is the reduced row echelon form of
the matrix that we started with.

Neither Gaussian elimination nor Gauss–Jordan elimination is “better” than
the other for solving linear systems—which one we use largely depends on
personal preference. However, one advantage of the reduced row echelon form
of a matrix is that it is unique (i.e., every matrix can be row-reduced to one,
and only one, matrix in reduced row echelon form), whereas non-reduced row
echelon forms are not. That is, applying a different sequence of row operations
than the one specified by Gauss–Jordan elimination might get us to a different
row echelon form along the way, but we always end up at the same reduced row
echelon form. This fact is hopefully somewhat intuitive—reduced row echelon
form was defined specifically to have a form that row operations are powerless
to simplify further—but it is proved explicitly in Appendix B.2.

2.1.4 Solving Linear Systems

After we have used row operations to put an augmented matrix into (reduced)
row echelon form, it is straightforward to find the solution(s) of the correspond-
ing linear system just by writing down the linear system associated with that
(reduced) row echelon form. However, the details can differ somewhat depend-
ing on whether the linear system has no solutions, one solution, or infinitely
many solutions, so we consider each of these possibilities one at a time.

Linear Systems with No Solutions
If we interpret the RREF that we computed via Gauss–Jordan elimination in
the previous subsection as an augmented matrix, then the associated system of
linear equations has the following form:Remember that

each row
corresponds to an

equation, and
each column

corresponds to a
variable or the

right-hand side of
the equation. We
assigned the 2nd,

3rd, and 4th
columns the

variables x, y, and z,
respectively.




0 1 0 2 0
0 0 1 −1 0
0 0 0 0 1
0 0 0 0 0




∣∣∣∣∣

x+2z = 0
y− z = 0

0 = 1
0 = 0

Of particular note is the third equation, which says 0 = 1. This tells us that the
linear system has no solutions, since there is no way to choose x,y, and z so as
to make that equation true. In fact, this is precisely how we can identify when a
linear system is inconsistent (i.e., has no solutions) in general: there is a row in
its row echelon forms consisting of zeros on the left-hand side and a non-zero
entry on the right-hand side.

! A linear system has no solutions if and only if its row echelon
forms have a row that looks like

[
0 0 · · · 0 | b

]
for some

scalar b 6= 0.
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Linear Systems with a Unique Solution
If the RREF of an augmented matrix and the associated system of linear
equations were to instead have the form




1 0 0 4
0 1 0 −3
0 0 1 2




∣∣∣
x = 4
y = −3
z = 2

then we could directly see that the system has a unique solution: (x,y,z) =
(4,−3,2). In general, a linear system has a unique solution exactly when (a) it
is consistent (i.e., there is at least one solution, so no row of the reduced row
echelon form corresponds to the unsolvable equation 0 = 1) and (b) every
column in the left-hand block of the row echelon forms has a leading entry in
it.

! A linear system has a unique solution if and only if it is consis-
tent and the number of leading entries in its row echelon forms
equals the number of variables.

Linear Systems with Infinitely Many Solutions
Finally, if the RREF of an augmented matrix and the associated system of
linear equations were to have the form




1 4 0 3
0 0 1 2
0 0 0 0




∣∣∣
x+4y = 3

z = 2
0 = 0

then the linear system would have infinitely many solutions. The reason for
this is that we could choose y to have any value that we like and then solve
for x = 3− 4y. In general, we call the variables corresponding to columns
containing a leading entry a leading variable, and we call the other variables
free variables. In the system above, y is the free variable, while x and z are
leading variables.

The solution set of a system with infinitely many solutions can always be
described by solving for the leading variables in terms of the free variables,
and each free variable corresponds to one “dimension” or “degree of freedom”
in the solution set. For example, if there is one free variable then the solution
set is a line, if there are two then it is a plane, and so on.

To get a bit of a handle on what the solution set looks like geometrically, it
is often useful to write it in terms of vectors. For example, if we return to the
example above, the solutions are the vectors of the form

Recall from earlier
that x = 3−4y and

z = 2. We just leave
the free variable y

alone and write
y = y.




x
y
z


=




3−4y
y
2


=




3
0
2


+ y



−4
1
0


 .

This set of vectors has the geometric interpretation of being the line (in R3)
through the point (3,0,2) in the direction of the vector (−4,1,0), as in Fig-
ure 2.5. We investigate this geometric interpretation of the solution set in much
more depth in Section 2.3.

A system of linear equations has infinitely many solutions exactly when
(a) there is at least one solution and (b) there is at least one column in the
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y

z

z= 2

x+4y= 3

x

y

z

(−4,1,0)(3,0,2)

Figure 2.5: Geometrically, the solution set to the system of linear equations x+4y = 3,
z = 2 can be thought of as the intersection of those two planes, or as the line
through the point (3,0,2) in the direction of the vector (−4,1,0).

left-hand block of the row echelon forms without a leading entry (i.e., there
is at least one free variable). In this case, all of the solutions can be described
by letting the free variables take on any value (hence the term “free”) and then
solving for the leading variables in terms of those free variables.

! A linear system has infinitely many solutions if and only if it is
consistent and the number of leading entries in its row echelon
forms is less than the number of variables.

The method that we have developed here for determining how many so-
lutions a linear system has once it has been put into row echelon form is
summarized by the flowchart in Figure 2.6.

Keep in mind that
we can use any row

echelon form here
to determine how

many solutions
there are.

Computing the
reduced row

echelon form is
often overkill,

especially if there
are no solutions.

Does an REF have a[
0 0 · · · 0 | b

]
row? no solutions

Is every variable

a leading variable?

infinitely many

solutions

unique solution

yes

no

no

yes

Figure 2.6: A flowchart that describes how to use a row echelon form of an
augmented matrix to determine how many solutions the associated linear system
has.
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Example 2.1.5
Solving Systems of
Linear Equations in
Row Echelon Form

Find all solutions of the linear systems associated with the following
augmented matrices in row echelon form:

a)



1 −1 0 1 2
0 0 1 −1 1
0 0 0 0 0




b)



1 2 −4 −4
0 3 −1 2
0 0 8 8




Solutions:
a) This matrixSince there are two

free variables in the
solution of the linear
system in part (a), its

solution set is
2-dimensional (i.e.,

a plane).

is already in reduced row echelon form, so we can
directly read the solutions from the matrix. If we label the variables
corresponding to the columns from left-to-right as w,x,y,z, then w
and y are the leading variables and x and z are the free variables.
The first equation says (after moving the free variables to the right-
hand-side) w = 2 + x− z, and the second equation says y = 1 + z
(and x and z can be anything).

b) This matrix is in non-reduced row echelon form. Since each column
on the left-hand-side has a leading entry, and there are no rows of
the form

[
0 0 0 | b

]
, we know the system has a unique solution. To

find it, we back substitute. If we label the variables from left-to-right
as x,y,z, then the third equation says 8z = 8, so z = 1. Plugging that
into the second equation tells us 3y−1 = 2, so y = 1. Plugging those
values into the first equation tells us x+2−4 =−4, so x =−2. The
unique solution is thus (x,y,z) = (−2,1,1).

Example 2.1.6
Solving a System

of Linear
Equations

Find all solutions of the linear system associated with the augmented
matrix 


1 2 −2 −4
2 4 1 0
1 2 7 2


 .

Solution:
This matrix is not in row echelon form, so our first step is to use row

operations to get it there:

Notice that we only
needed a

(non-reduced) row
echelon form of the

matrix to see that
there are no

solutions.




1 2 −2 −4
2 4 1 0
1 2 7 2


 R2−2R1

R3−R1−−−−→




1 2 −2 −4
0 0 5 8
0 0 9 6




R3− 9
5R2−−−−−→




1 2 −2 −4
0 0 5 8
0 0 0 −42/5




Since the bottom row of this row echelon form corresponds to the
equation 0x+0y+0z =−42/5, we see that this system of equations has
no solution.

There are some special cases where we can determine how many solutions a
linear system has without actually performing any computations. For example,
if the linear system has a zero right-hand side (i.e., it is of the form Ax = 0)
then we know that it must have at least one solution, since x = 0 solves any
such system. Linear systems of this form are called homogeneous systems,
and we now state our previous observation about them a bit more formally:
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Theorem 2.1.2
Homogeneous

Systems

Suppose A ∈Mm,n. Then the linear system Ax = 0 is consistent.

The shape of a matrix can also tell us a great deal about how many solutions
a linear system has, as demonstrated by the following theorem:

Theorem 2.1.3
Short and Fat

Systems

Suppose A ∈Mm,n and m < n. Then the linear system Ax = b has either
no solutions or infinitely many solutions.

ToWe often say that a
matrix is “short and

fat” if it has more
columns than rows,
and similarly that it

is “tall and skinny” if
it has more rows

than columns.

convince ourselves that the above theorem is true, consider what happens
if we row-reduce a matrix with more columns than rows. Since each row has
at most 1 leading entry, it is not possible for each column to have a leading
entry in it (see Figure 2.7), so we see from the flowchart in Figure 2.6 that the
associated linear system cannot have a unique solution.




⋆ ∗ ∗ ∗ ∗ · · · ∗ ∗
0 ⋆ ∗ ∗ ∗ · · · ∗ ∗
.
.
.

.

.

.
. . .

.

.

.
.
.
.
. . .

.

.

.
.
.
.

0 0 · · · ⋆ ∗ · · · ∗ ∗




Figure 2.7: A short and fat linear system (i.e., one with more variables than equa-
tions) cannot have a unique solution, since the coefficient matrix does not have
enough rows for each column to have a leading entry.

By combining the previous two theorems, we immediately get the following
corollary:

Corollary 2.1.4
Short and Fat

Homogeneous
Systems

Suppose A∈Mm,n and m < n. Then the linear system Ax = 0 has infinitely
many solutions.

2.1.5 Applications of Linear Systems

To start demonstrating the utility of solving systems of linear equations, we
now look at how they can be used to solve some problems that we introduced
earlier, as well as various other scientific problems of interest. Our first such
example shows how they can be used to find vectors that are orthogonal to
other given vectors.

Example 2.1.7
Finding Orthogonal

Vectors

Find a non-zero vector that is orthogonal to...
a) (1,2,3) and (0,1,−1)
b) (1,2,2,2), (2,1,−1,0), and (1,0,2,1)

Solutions:
a) We could

Remember that we
want to write v1 in
terms only of the

free variable, so do
not leave it in the

form v1 =−2v2−3v3.
Use the fact that
v2 = v3 to replace

the leading variable
v2 by the free

variable v3.

use the cross product (see Section 1.A) to find such a
vector, or we can set this up as a linear system. We want to find a
vector v = (v1,v2,v3) such that

v1 +2v2 +3v3 = 0
v2− v3 = 0

This linear system is already in row echelon form, with v3 as a
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free variable and v1,v2 as leading variables. Its solutions are thus
the vectors (v1,v2,v3) with v2 = v3 and v1 = −2v2− 3v3 = −5v3,
and v3 arbitrary. To find a single explicit vector that works, we can
choose v3 = 1 to get v = (−5,1,1).

b) Once again, we set up the system of linear equations that is described
by the three orthogonality requirements:

v1 +2v2 +2v3 +2v4 = 0
2v1 + v2− v3 = 0
v1 +2v3 + v4 = 0

The

Try to compute this
RREF on your own.

reduced row echelon form of the associated augmented matrix
is 


1 0 0 0 0
0 1 0 1/2 0
0 0 1 1/2 0


 .

We thus see that v4 is a free variable, and v1,v2,v3 are all leading
variables. Solutions (v1,v2,v3,v4) to this system have the form v1 =
0, v2 = −v4/2, and v3 = −v4/2, with v4 arbitrary.Really though, we

can choose v4 to
be any non-zero

value that we want.

If we choose
v4 = 2 then we find the specific vector v = (0,−1,−1,2), which is
indeed orthogonal to all three of the given vectors.

Next, we use linear systems to determine whether or not a vector is a linear
combination of some given collection of vectors (recall that we saw how to do
this in some very limited special cases in Section 1.1.3, but we did not learn
how to do it in general).

Example 2.1.8
Finding a Linear

Combination

Determine whether or not the following vectors are linear combinations of
the vectors (−1,3,2) and (3,1,−1):

a) (1,1,3)
b) (1,3,1)

Solutions:
a) MoreRefer back to

Section 1.1.3 if you
need a refresher on
linear combinations.

explicitly, we are being asked whether or not there exist scalars
c1,c2 ∈ R such that

(1,1,3) = c1(−1,3,2)+ c2(3,1,−1).

If we compare the entries of the vectors on the left- and right-hand
sides of that equation, we see that this is actually a system of linear
equations:

−c1 +3c2 = 1
3c1 + c2 = 1
2c1− c2 = 3

We can solve this linear system by using row operations to put it in
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row echelon form:


−1 3 1
3 1 1
2 −1 3


 R2+3R1

R3+2R1−−−−−→



−1 3 1
0 10 4
0 5 5




R3− 1
2 R2−−−−−→



−1 3 1
0 10 4
0 0 3


 .

From

Notice that the
columns on the left

are the vectors in
the linear

combination and
the augmented

column is the vector
that we want to
write as a linear

combination of the
others.

here we see that the linear system has no solution, since
the final row in this row echelon form says that 0 = 3. It follows
that there do not exist scalars c1,c2 with the desired properties, so
(1,1,3) is not a linear combination of (−1,3,2) and (3,1,−1).

b) Similarly, we now want to know whether or not there exist scalars
c1,c2 ∈ R such that

(1,3,1) = c1(−1,3,2)+ c2(3,1,−1).

If we set this up as a linear system and solve it just as we did in
part (a), we find the following row echelon form:

Notice that this
augmented matrix
is the same as the
one from part (a),

except for its
right-hand-side

column.



−1 3 1
3 1 3
2 −1 1


 R2+3R1

R3+2R1−−−−−→



−1 3 1
0 10 6
0 5 3




R3− 1
2 R2−−−−−→



−1 3 1
0 10 6
0 0 0


 .

After the
coefficients c1,c2

are found, it is easy
to verify that

(1,3,1) = 4
5 (−1,3,2)+

3
5 (3,1,−1). The hard

part is finding c1
and c2 in the first

place.

This linear system can now be solved via back substitution: c2 = 3/5,
so −c1 +3c2 = 1 implies c1 = 4/5. We thus conclude that (1,3,1)
is a linear combination of (−1,3,2) and (3,1,−1), and in particular

(1,3,1) = 4
5 (−1,3,2)+ 3

5 (3,1,−1).

The above example has a natural geometric interpretation as well. There
is some plane that contains both of the vectors (−1,3,2) and (3,1,−1)—this
plane also contains the vector (1,3,1) from part (b) of the example, but not the
vector (1,1,3) from part (a), as illustrated

We start exploring
this idea of whether

or not one vector
lies in the same

(hyper)plane as
some other vectors

in depth in
Section 2.3.

in Figure 2.8.

Example 2.1.9
Solving Mixing

Problems

Suppose a farmer has two types of milk: one that is 3.5% butterfat and
another that is 1% butterfat. How much of each should they mix together
to create 500 liters of milk that is 2% butterfat?

Solution:
If we let x and y denote the number of liters of 3.5% butterfat milk and

1% butterfat milk that the farmer will mix together, respectively, then the
fact that they want a total of 500 liters of milk tells us that

x+ y = 500.

We similarly want there to be a total of 0.02×500 = 10 liters of butterfat
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y

(3,1,−1)

(1,1,3)
(−1,3,2)

x

z

y

(3,1,−1)

(−1,3,2)

(1,3,1)

x

z

Figure 2.8: Geometrically, any two vectors lie on a common plane. A third vector
is a linear combination of those two vectors if and only if it also lies on the same
plane (and the two original vectors are not multiples of each other).

in the resulting mixture, so we want

0.035x+0.01y = 10.

We thus have a linear system with two variables and two equations,
and it is straightforward to solve it via Gauss–Jordan elimination:

We could have
instead used

Gaussian
elimination and

back substitution.
Either method works.

[
1 1 500

0.035 0.01 10

]
R2−0.035R1−−−−−−−→

[
1 1 500
0 −0.025 −7.5

]

−40R2−−−−→
[

1 1 500
0 1 300

]
R1−R2−−−−→

[
1 0 200
0 1 300

]
.

We thus see that the farmer should mix together x = 200 liters of the
3.5% butterfat milk and y = 300 liters of the 1% butterfat milk.

Remark 2.1.2
Numerical
Instability
of Linear
Systems

Great care must be taken when constructing a linear system in practice, as
changing its coefficients even slightly can change the resulting solution(s)
considerably. For example, if we were to change the bottom-right entry in
the linear system from Example 2.1.9 from 0.01 to 0.015 then the solution
changes considerably, from (x,y) = (200,300) to (x,y) = (125,375). For
another example of this phenomenon, see Exercise 2.1.10.

Changing the coefficients just slightly can even change a linear system
from having a unique solution to having no solution or infinitely many
solutions (or vice-versa), which can be particularly problematic when
the linear system was constructed by performing various (necessarily not
perfect) measurements. However, identifying these problems and dealing
with them is outside of the scope of this book—there are entire textbooks
devoted to numerical linear algebra where these problems are explored.

The following example illustrates how we can use linear systems to de-
termine how many molecules of various chemical compounds are required
as input to a chemical reaction, as well as how many molecules of different
compounds are produced as output.
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Example 2.1.10
Balancing
Chemical
Equations

When butane (C4H10) burns in the presence of oxygen gas (O2), it pro-
duces carbon dioxide (CO2) and water vapor (H2O). We thus say that the
“unbalanced” equation for burning butane is

C4H10 +O2→ CO2 +H2O.

Find the corresponding
In molecular

formulas, subscripts
say how many

copies of the
preceding element
are in the molecule.

For example, the
formula H2O for

water means that it
consists of 2 atoms

of hydrogen (H)
and 1 atom of

oxygen (O).

“balanced” equation. That is, find integers w,x,y,
and z (which represent how many copies of each molecule are present in
the reaction) such that the chemical equation

wC4H10 + xO2→ yCO2 + zH2O

has the same amount of each element on the left- and right-hand sides.

Solution:
On the left-hand side of this chemical equation, we have 2x atoms of

oxygen (O) and on the right-hand side we have 2y+ z atoms of oxygen, so
we require

2x = 2y+ z, or equivalently 2x−2y− z = 0.

Similarly matching up the number of atoms of carbon (C) and hydrogen
(H) on the left- and right-hand sides reveals that

4w− y = 0 and 10w−2z = 0.

We thus have a linear system with 4 variables and 3 equations, which
we can solve using the techniques of this section:

Try to compute this
RREF on your own.




0 2 −2 −1 0
4 0 −1 0 0

10 0 0 −2 0


 row-reduce−−−−−−→




1 0 0 −1/5 0
0 1 0 −13/10 0
0 0 1 −4/5 0


 .

Since z is a free variable, we are free to choose it however we like, and we
should choose it so that all of the variables end up having integer values.
In particular, if we choose z = 10 then we get w = 2, x = 13, and y = 8,
so that the balanced chemical equation isAny positive integer

multiple of this
equation is also

balanced. 2C4H10 +13O2→ 8CO2 +10H2O.

That is, 2 molecules of butane can be burned in the presence of 13
molecules of oxygen gas to produce 8 molecules of carbon dioxide and 10
molecules of water vapor.

Some other problems that we can solve with linear systems include charac-
terizing which vectors go to a certain place via a given linear transformation (Ex-
ercise 2.1.24), finding matrices that commute with each other (Exercise 2.1.28),
and finding polynomials whose graphs go through a specific set of points in
the plane (Exercise 2.1.29). In general, most new computational problems that
we see from here on in this book can be solved by rephrasing the problem
as a linear system. Being able to solve linear systems is our mathematical
sledgehammer that breaks down the majority of problems that we encounter
from here.
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Exercises solutions to starred exercises on page 444

2.1.1 Which of the following matrices are in row echelon
form? Reduced row echelon form?

∗(a)
[

1 0
0 1

]

∗(c)



0 0 0
0 1 2
0 0 0




∗(e)



1 0
0 2
0 1




∗(g)



1 2 0 3 0
0 0 1 −1 0
0 0 0 0 1




(b)
[

1 2 1
0 1 2

]

(d)



2 0 1
0 2 0
0 0 0




(f)



1 2 7
0 0 0
0 0 0




(h)



0 2 3 −1
0 0 1 1
0 0 0 0




2.1.2 Use Gauss–Jordan elimination to compute the re-
duced row echelon form of each of the following matrices.

∗(a)
[

1 2
3 4

]

∗(c)



1 2
3 6
−1 −2




∗(e)


−1 2 2
4 −1 1
2 4 2




∗(g)



4 0 8
4 1 11
1 2 8
−1 0 −2




(b)
[

2 3 −1
4 1 3

]

(d)



3 9 3
1 3 0
1 3 2




(f)


−1 2 7 2
4 −1 −7 1
2 4 10 2




(h)



1 −2 0 1
4 −8 1 7
2 −4 1 5
1 −2 −1 −2




§ 2.1.3 Use computer software to compute the reduced
row echelon form of each of the following matrices.

∗(a)



3 −2 0 −2
0 −2 −2 2
0 2 0 −1
1 0 2 −2




(b)



4 2 −1 2 1
1 2 −1 0 4
5 1 2 6 −1
−3 4 2 2 5




∗(c)



0 −2 −2 3 4 1
1 0 −2 5 4 0
5 0 2 1 0 3
−1 1 0 2 4 −1




(d) 


1 −1 −3 −1 −3 −3 −1
0 −1 −2 1 −2 3 2
3 −1 −5 0 0 −5 3
2 −3 −8 −2 −9 −5 1
−2 3 8 −2 5 −3 −1




∗2.1.4 If we interpret each of the matrices from Exer-
cise 2.1.1 as augmented matrices, which of the correspond-
ing systems of equations have no solutions, a unique solu-
tion, and infinitely many solutions? For example, the matrix
in Exercise 2.1.1(h) corresponds to the linear system

2y+3z =−1
z = 1

2.1.5 Find all solutions of the following systems of linear
equations.

∗(a) x+2y = 3
2x+ y = 3

∗(c) x− y = 2
x+2y = 4

2x− y = 5

(b) x+ y+ z = 4
x− y+ z = 0

(d) 2x+ y− z = 1
x−3y+ z =−2

2x−2y+3z = 7

∗(e) x+ y+ z = 1
−x + z = 2
2x+ y = 0

(f) w+ x+ y− z = 0
2x+3y+ z =−1

y− z =−3
3z = 3

∗(g) v−2w− x−2y− z = 1
2v −2x−6y−4z = 2

4w + y−2z = 3

§ 2.1.6 Use computer software to find all solutions of the
following systems of linear equations.

∗(a) 6v+5w+3x−2y−2z = 1
3v− w+ x+5y+4z = 2
3v+4w+ x+3y+4z = 3
2v+6w+ x−2y− z = 4

(b) v− w+2x+6y+6z = 3
4v+3w − y+4z = 0
5v+ w−2x−2y−2z = 2

w−2x+3y−2z =−1
v+5w− x +5z = 3

2.1.7 Determine which of the following statements are
true and which are false.

∗(a) The equation 4x− sin(1)y+2z = 3√5 is linear.
(b) The equation xy+4z = 4 is linear.
∗(c) In R3, if two lines are not parallel then they must

intersect at a point.
(d) In R3, if two planes are not parallel then they must

intersect in a line.
∗(e) A system of linear equations can have exactly 2 dis-

tinct solutions.
(f) Every homogeneous system of linear equations is

consistent.
∗(g) If a linear system has more equations than variables,

then it must have no solution.
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(h) If a linear system has fewer equations than variables,
then it cannot have a unique solution.

∗(i) If a linear system has fewer equations than variables,
then it must have infinitely many solutions.

∗2.1.8 Let t ∈ R and consider the linear system described
by the following augmented matrix:




1 −1 0
1 1 1
0 1 t


 .

For which values of t does this system have (i) no solutions,
(ii) a unique solution, and (iii) infinitely many solutions?

2.1.9 Let h,k ∈ R and consider the following system of
linear equations in the variables x,y, and z:

x+ y+hz = 1
y− z = k

x− y+2z = 3

For which values of h and k does this system have (i) no
solutions, (ii) a unique solution, and (iii) infinitely many
solutions?

∗∗§ 2.1.10 Consider the following system of linear equa-
tions in the variables w, x, y, and z:

w+ x/2 + y/3 + z/4 = 1

w/2 + x/3 + y/4 + z/5 = 1

w/3 + x/4 + y/5 + z/6 = 1

w/4 + x/5 + y/6 + z/7 = h

Use computer software to solve this linear system when
h = 0.95, h = 1.00, and h = 1.05. Do you notice anything
surprising about how the solution changes as h changes?
Explain what causes this surprising change in the solution.

∗2.1.11 Let a,b,c,d ∈R be scalars and consider the system
of linear equations described by the augmented matrix

[
a b 1
c d 1

]
.

Show that this system of linear equations has a unique solu-
tion whenever ad−bc 6= 0.

2.1.12 Show how to swap the two rows of the matrix
[

a b
c d

]

using only the “addition” and “multiplication” row opera-
tions (i.e., do not directly use the “swap” row operation).
[Hint: Start by subtracting row 1 from row 2.]

∗∗2.1.13 Suppose A,B,R ∈Mm,n.

(a) Suppose A and R are row equivalent, and so are B
and R. Explain why A and B are row equivalent.

(b) Show that A and B are row equivalent if and only if
they have the same reduced row echelon form.

2.1.14 Let A ∈Mm,n and b ∈ Rm. Show that the system
of linear equations Ax = b is consistent if and only if b is a
linear combination of the columns of A.

∗2.1.15 Use a system of linear equations to find a vector
that is orthogonal to each of the listed vectors.

(a) (1,2,3) and (3,2,1)
(b) (1,2,0,1), (−2,1,1,3), and (−1,−1,2,1)

∗∗2.1.16 Care must be taken when performing multiple
row operations simultaneously—even though it is OK to
write multiple row operations in one step, this exercise il-
lustrates why they must be performed sequentially (i.e., one
after another) rather than simultaneously.

Consider the linear system represented by the augmented
matrix [

1 1 3
1 2 5

]
.

(a) Perform the row operation R2−R1, followed by the
row operation R1 −R2, on this augmented matrix.
What is the resulting augmented matrix, and what is
the (unique) solution of the associated linear system?

(b) Perform the row operations R2−R1 and R1−R2 si-
multaneously on this augmented matrix (i.e., in the
operation R1−R2, subtract the original row 2 from
row 1, not the newly-computed row 2). What is the re-
sulting augmented matrix, and what are the solutions
of the associated linear system?

2.1.17 Determine whether or not b is a linear combination
of the other vectors. [Hint: Mimic Example 2.1.8.]

∗(a) b = (3,4), v1 = (6,8)
(b) b = (2,−3), v1 = (1,2), v2 = (4,−1)
∗(c) b = (1,5,−6), v1 = (1,0,0), v2 = (0,1,0), v3 =

(0,0,1)
(d) b = (2,1,2), v1 = (−2,2,1), v2 = (1,2,3)
∗(e) b = (2,1,2), v1 = (−4,4,−1), v2 = (2,−1,1)

(f) b = (2,1,2,3), v1 = (1,2,3,4), v2 = (4,3,2,1),
v3 = (1,−1,1,−1)

∗(g) b = (1,3,−3,−1), v1 = (1,2,3,4), v2 = (4,3,2,1),
v3 = (1,−1,1,−1)

∗2.1.18 Let v = (v1,v2,v3) and w = (w1,w2,w3) be non-
zero vectors. Use a system of linear equations to show that
every vector that is orthogonal to both v and w is a multiple
of

(v2w3− v3w2,v3w1− v1w3,v1w2− v2w1)

[Side note: This vector is the cross product, which we ex-
plored in Section 1.A.]

∗2.1.19 Suppose we have two mixtures of salt water: one
that is 13% salt (by weight) and another that is 5% salt. How
much of each should be mixed together to get 120 kilograms
of a salt water mixture that is 8% salt?

[Hint: Mimic Example 2.1.9.]

2.1.20 Suppose a chemist has two acid solutions: one that
is 30% acid (and the rest is water) and another that is 8%
acid. How much of each should be mixed together to get
110 liters of a solution that is 25% acid?
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∗2.1.21 When zinc sulfide (ZnS) is heated in the presence
of oxygen gas (O2), it produces zinc oxide (ZnO) and sul-
fur dioxide (SO2). Determine how many of each of these
molecules are involved in the reaction. That is, balance the
following unbalanced chemical equation:

ZnS+O2→ ZnO+SO2.

[Hint: Mimic Example 2.1.10.]

2.1.22 When ethane (C2H6) burns in the presence of oxy-
gen gas (O2), it produces carbon dioxide (CO2) and wa-
ter vapor (H2O). Determine how many of each of these
molecules are involved in the reaction. That is, balance the
following unbalanced chemical equation:

C2H6 +O2→ CO2 +H2O.

2.1.23 Find an equation of the plane in R3 with the points
(1,1,1), (2,3,4), and (−1,−1,0) on it.

[Hint: Recall that the general equation of a plane is of the
form ax+by+ cz = d. Plug in the given points to set up a
system of linear equations.]

∗∗2.1.24 Suppose u = (1,2,2)/3 and let Pu be the linear
transformation that projects R3 onto the line through the
origin in the direction of u. Find all vectors v ∈ R3 with the
property that Pu(v) = (2,4,4).

[Hint: Find the standard matrix of Pu and use it to set up a
system of linear equations.]

2.1.25 Systems of linear equations can be used to deter-
mine whether or not a vector is a linear combination of
another set of vectors.

∗(a) Is (3,−2,1) a linear combination of the vectors
(1,4,2) and (2,−1,1)?
[Hint: Rewrite the equation (3,−2,1) = c1(1,4,2)+
c2(2,−1,1) as a system of linear equations.]

(b) Is (2,7,−3,3) a linear combination of the vectors
(1,2,0,1), (−2,1,1,3), and (−1,−1,2,1)?

2.1.26 Find the standard matrix of the linear transforma-
tion T that acts as described. [Hint: Set up a system of linear
equations to determine T (e1),T (e2), . . . ,T (en).]

∗(a) T (1,1) = (3,7), T (1,−1) = (−1,−1)
(b) T (1,2) = (5,3,4), T (2,−1) = (0,1,3)
∗(c) T (1,1,1) = (4,6,1), T (2,−1,1) = (1,1,−4),

T (0,0,1) = (1,2,0)

2.1.27 We can sometimes solve systems of non-linear
equations by cleverly converting them into systems of linear
equations. Some particular tricks that are useful are mul-
tiplying equations by variables to eliminate fractions, and
performing a change of variables.

Use these tricks to find all solutions of the following systems
of non-linear equations.

∗(a) 1/x + 2/y = 3/xy

x+ y = 2

(b) y/x + 2x/y = 6/xy

x2 + y2 = 5

∗(c) 1/x − 2/z =−4

1/x + 1/y + 1/z = 4

2/x− 6/y− 2/z = 4

(d) sin(x)+2cos(y)− cos(z) = 3

2sin(x)+ cos(y)+ cos(z) = 0

−sin(x)− cos(y)+ cos(z) =−2

∗∗2.1.28 Recall that matrix multiplication is not commu-
tative in general. Nonetheless, it is sometimes the case that
AB = BA, and we can find matrices with this property by
solving linear systems.

(a) Suppose

A =

[
0 1
1 0

]
.

Find all B ∈M2 with the property that AB = BA.
[Hint: Write

B =

[
a b
c d

]

and use the matrix multiplication to set up a system
of linear equations.]

(b) Suppose

C =

[
1 1
1 0

]
.

Find all D ∈M2 with the property that CD = DC.
(c) Use parts (a) and (b) to show that the only matrices

that commute with everything in M2 are the matri-
ces of the form cI, where c ∈ R. [Side note: These
are sometimes called scalar matrices.]

∗∗2.1.29 An interpolating polynomial is a polynomial
that passes through a given set of points in R2 (often these
points are found via some experiment, and we want some
curve that can be used to estimate other data points).

(a) Find constants b and m such that the line y = mx+b
goes through the points (1,2) and (3,8).
[Hint: The fact that the line goes through (1,2) tells
us that 2 = m + b and the fact that the line goes
through (3,8) tells us that 8 = 3m+b.]

(b) Find constants a, b, and c such that the parabola
y = ax2 +bx+c goes through the points (1,3), (2,6),
(3,13).
[Hint: The fact that the parabola goes through (2,6)
tells us that 6 = 4a+2b+ c, and so on.]

(c) What happens in part (b) if you try to find a line
y = mx+b that goes through all 3 points?

(d) What happens in part (b) if you try to find a cubic
y = ax3 +bx2 +cx+d that goes through the 3 points?
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§ 2.1.30 The world’s population (in billions) over the
past 50 years is summarized in the following table:

Year: 1970 1980 1990 2000 2010 2020
Pop.: 3.70 4.46 5.33 6.14 6.96 7.79

(a) Use computer software and the method of Exer-
cise 2.1.29 to construct a degree-5 interpolating poly-
nomial for this data. That is, find scalars a, b, c, d,
e, and f such that if x is the number of decades that
have passed since 1970 then

p(x) = ax5 +bx4 + cx3 +dx2 + ex+ f

is the world’s population (in billions) at the start of
the decade (i.e., p(0) = 3.70, p(1) = 4.46, and so
on).

(b) Use this polynomial to estimate what the world’s
population was in 1960, and compare with the actual
population in that year (3.03 billion). How accurate
was your estimate?

(c) Use this polynomial to estimate what the world’s
population will be in 2060. Do you think that this
estimate is reasonable?

2.2 Elementary Matrices and Matrix Inverses

In the previous section, we demonstrated how we can use matrices and the three
elementary row operations to solve systems of linear equations. In this section,
we rephrase these elementary row operations purely in terms of matrices and
matrix multiplication, so that we can more easily make use of linear systems
and Gaussian elimination when proving theorems and making connections with
other aspects of linear algebra.

2.2.1 Elementary Matrices

Suppose we are given the following 3×4 matrix, which we would like to put
into row echelon form via Gaussian elimination (or reduced row echelon form
via Gauss–Jordan elimination):




0 2 4 0
1 1 0 −1
3 4 2 1


 .

WeWe could also swap
rows 1 and 3, but

doing so makes the
numbers a bit uglier.

should start by swapping rows 1 and 2, since we want to get a non-zero
leading entry in the top-left corner of the matrix. We of course could do this
operation “directly” like we did in the previous section, but another way of
doing it is to multiply on the left by a certain matrix as follows (for now, do not
worry about why we would do the row operation this way):




0 1 0
1 0 0
0 0 1






0 2 4 0
1 1 0 −1
3 4 2 1


=




1 1 0 −1
0 2 4 0
3 4 2 1


 . (2.2.1)

Next, we want to subtract 3 times row 1 from row 3, which we can again carry
out by multiplying on the left by a certain cleverly-chosen matrix:




1 0 0
0 1 0
−3 0 1






1 1 0 −1
0 2 4 0
3 4 2 1


=




1 1 0 −1
0 2 4 0
0 1 2 4


 , (2.2.2)

and we then probably want to divide row 2 by 2, which we can (yet again)
implement by multiplying on the left by a certain matrix:




1 0 0
0 1/2 0
0 0 1







1 1 0 −1
0 2 4 0
0 1 2 4


=




1 1 0 −1
0 1 2 0
0 1 2 4


 . (2.2.3)



102 Chapter 2. Linear Systems and Subspaces

We couldMuch of the power
of linear algebra

comes from being
able to represent so

many different
things via matrix

multiplication: paths
in graphs

(Section 1.B), linear
transformations

(Section 1.4),
systems of linear

equations
(Section 2.1), and
now elementary

row operations.

continue in this way if we wanted to (see the upcoming Exam-
ple 2.2.1), but the point is that we have now shown how to perform all 3 of the
elementary row operations (first “swap”, then “addition”, and then “multipli-
cation”) by multiplying on the left by certain matrices. In fact, the matrices
that we multiplied by on the left are the matrices that we get by applying the
desired row operations to the identity matrix.

For example, we carried out the “swap” row operation R1↔ R2 in Equa-
tion (2.2.1) by multiplying on the left by




0 1 0
1 0 0
0 0 1


 ,

which is exactly the matrix that we get if we swap rows 1 and 2 of the identity
matrix. Similarly, in Equations (2.2.2) and (2.2.3) we multiplied on the left by
the matrices 


1 0 0
0 1 0
−3 0 1


 and




1 0 0
0 1/2 0
0 0 1


 ,

respectively, which are the matrices that are obtained by applying the desired
row operations R3−3R1 and 1

2 R2 to the identity matrix. We will make extensive
use of these special matrices that implement the elementary row operations
throughout the rest of this section (and some of the later sections of this book),
so we give them a name.

Definition 2.2.1
Elementary

Matrices

A square matrix A ∈ Mn is called an elementary matrix if it can be
obtained from the identity matrix via a single elementary row operation.

WeWe prove that
multiplying on the

left by an
elementary matrix

always gives the
same result as

applying the
corresponding

elementary row
operation directly in

Appendix B.3.

have already seen a few specific examples of elementary matrices, but
it is worthwhile to briefly discuss what they look like in general. Just like
there are three types of elementary row operations (“swap”, “addition”, and
“multiplication”), there are also three types of elementary matrices.

The elementary matrices corresponding to the “swap” row operation Ri↔
R j look like




1
. . .

0 · · · 1
...

. . .
...

1 · · · 0
. . .

1




.rows i and j swapped

otherwise equals I

Geometrically, these “swap” matrices act as linear transformations that do
not stretch or deform Rn, but rather only reflect space so as to swap two of
the coordinate axes. In particular, the unique “swap” matrix acting on R2 is
the reflection through the line y = x that interchanges the x- and y-axes, as
illustrated in Figure 2.9.

Similarly, the elementary matrices corresponding to the “addition” row
operation Ri + cR j and the “multiplication” row operation cR j

Any entries in these
matrices that are
not displayed just

equal 0. look like
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y = x

x

y

e2

e1

A =

[
0 1

1 0

]
y = x

x

y

Ae1 = e2

Ae2 = e1

Figure 2.9: The “swap” matrix A =
[

0 1
1 0

]
acts as a reflection through the line y = x.

R j

Ri+ cR j

cR j




1
. . .

1...
. . .

c · · · 1
. . .

1




and




1
. . .

1
c

1
. . .

1




,

respectively. Geometrically, the “multiplication” matrices implement a diagonal
scaling and thus just stretch Rn by a factor of c in the j-th coordinate direction.
The “addition” matrices, however, are slightly more exotic—they shear space
in the direction of one of the coordinate axes, as illustrated in Figure 2.10, and
are thus sometimes called shear matrices.

We first saw shear
matrices back in

Exercise 1.4.23.

x

y

e2

e1

A =

[
1 c

0 1

]

x

y

Ae2 = (c,1)

Ae1 = e1

Figure 2.10: The “addition” matrix A =
[

1 c
0 1

]
shears space in the x-direction. A

larger value of c corresponds to a more extreme shear.

While elementary matrices themselves are not terribly exciting, they are
useful because we can use them to build up to more interesting things. For
example, since multiplying on the left by an elementary matrix is equivalent to
performing a single elementary row operation, multiplying on the left by several
elementary matrices, one after another, must be equivalent to performing a
sequence of elementary row operations. In particular, this means that we can
encode the row operations applied by Gaussian elimination or Gauss–Jordan
elimination as matrix multiplication. We illustrate what we mean by this with
an example.
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Example 2.2.1
A Matrix

Decomposition
Based on
the RREF

Let

A =




0 2 4 0
1 1 0 −1
3 4 2 1


 .

Find a 3× 3 matrix E such that EA = R, where R is the reduced row
echelon form of A.

Solution:
We actually already started to do this earlier in this section, in Equa-

tions (2.2.1)–(2.2.3), when we started row-reducing A. In particular, we
showed that if

E1 =




0 1 0
1 0 0
0 0 1


 , E2 =




1 0 0
0 1 0
−3 0 1


 , and E3 =




1 0 0
0 1/2 0
0 0 1


 ,

then

E3E2E1A =




1 1 0 −1
0 1 2 0
0 1 2 4


 ,

which is a partially row-reduced form of A. To find E, we just need
to continue this process until we reach the RREF of A. The next two
elementary row operations we perform are R1−R2 and R3−R2, which
correspond to the elementary matrices

E4 =




1 −1 0
0 1 0
0 0 1


 and E5 =




1 0 0
0 1 0
0 −1 1


 ,

so that

E5E4E3E2E1A =




1 0 −2 −1
0 1 2 0
0 0 0 4


 .

Finally, we apply the elementary row operations 1
4 R3 and then R1 + R3,

which correspond to multiplying by the elementary matrices

E6 =




1 0 0
0 1 0
0 0 1/4


 and E7 =




1 0 1
0 1 0
0 0 1


 ,

respectively. It follows that

E7E6E5E4E3E2E1A =




1 0 −2 0
0 1 2 0
0 0 0 1


 ,

which is the

Computing E in this
way requires six

matrix
multiplications! We

will see a better way
soon.

reduced row echelon form of A. So to get EA = R, we can set
E = E7E6E5E4E3E2E1, which can be computed by straightforward (albeit
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tedious) calculation to be

E = E7E6E5E4E3E2E1 =
1
8



−5 2 2
4 0 0
−1 −6 2


 .

The matrices E1,E2, . . . ,E7 in the previous example can be thought of like
a log that keeps track of which row operations were used to transform A into
its reduced row echelon form R—first the row operation corresponding to E1
was performed, then the one corresponding to E2, and so on. Similarly, the
matrix E = E7E6E5E4E3E2E1 can be thought of as a condensed version of that
log—the entriesRecall from

Exercise 1.3.27 that
the rows of EA = R

are linear
combinations of the

rows of A.

of the rows of E tell us which linear combinations of the rows
of A give us its reduced row echelon form. For example, in Example 2.2.1 the
first row of E tells us that to get the first row of the RREF of A, we should add
−5/8 of A’s first row, 2/8 = 1/4 of its second row, and 1/4 of its third row.

To actually compute the product of all of those elementary matrices E =
E7E6E5E4E3E2E1, we could perform six matrix multiplications (ugh!), but a
perhaps slightly less unpleasant way is to just apply the same row operations
to the identity matrix that we apply to A in its row-reduction. The following
example illustrates what we mean by this.

Example 2.2.2
A Matrix

Decomposition
via Row

Operations

Let

A =




0 2 4 0
1 1 0 −1
3 4 2 1


 .

Compute the reduced row echelon form of the 1×2 block matrix [ A | I ].

Solution:
We just apply Gauss–Jordan elimination to this block matrix and see

what happens:



0 2 4 0 1 0 0
1 1 0 −1 0 1 0
3 4 2 1 0 0 1


 R1↔R2−−−−→




1 1 0 −1 0 1 0
0 2 4 0 1 0 0
3 4 2 1 0 0 1




R3−3R1−−−−→




1 1 0 −1 0 1 0
0 2 4 0 1 0 0
0 1 2 4 0 −3 1




1
2 R2−−→




1 1 0 −1 0 1 0
0 1 2 0 1/2 0 0
0 1 2 4 0 −3 1




R1−R2
R3−R2−−−−→




1 0 −2 −1 −1/2 1 0
0 1 2 0 1/2 0 0
0 0 0 4 −1/2 −3 1


.

At this point, the matrix is in row echelon form, and we now begin the
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backwards row-reduction step to put it into reduced row echelon form:



1 0 −2 −1 −1/2 1 0
0 1 2 0 1/2 0 0
0 0 0 4 −1/2 −3 1




1
4 R3−−→




1 0 −2 −1 −1/2 1 0
0 1 2 0 1/2 0 0
0 0 0 1 −1/8 −3/4 1/4




R1+R3−−−−→




1 0 −2 0 −5/8 1/4 1/4
0 1 2 0 1/2 0 0
0 0 0 1 −1/8 −3/4 1/4


 .

In particular, the left block in this reduced row echelon form is simply
the RREF of A, while the right block is exactly the same as the matrix E
that we computed in Example 2.2.1.

The previous example suggests that if we row-reduce a block matrix [ A | I ]
to some other form [ R | E ] then these blocks must satisfy the property EA = R.
We now state and prove this observation formally.

In the following
theorem, R is often

chosen to be a row
echelon form of A,

but it does not have
to be.

Theorem 2.2.1
Row-Reduction is
Multiplication on

the Left

If A,R∈Mm,n and E ∈Mm are matrices such that the block matrix [ A | I ]
can be row-reduced to [ R | E ], then R = EA.

Proof. We make use of some block matrix multiplication trickery along with
the fact that performing an elementary row operation is equivalent to multi-
plication on the left by the corresponding elementary matrix. In particular, if
row-reducing [ A | I ] to [ R | E ] makes use of the elementary row operations
corresponding to elementary matrices E1,E2, . . . ,Ek, in that order, then

[ R | E ] = Ek · · ·E2E1[ A | I ] = [ Ek · · ·E2E1A | Ek · · ·E2E1 ].

This means (by looking at the right half of the above block matrix) that
E = Ek · · ·E2E1, which then implies (by looking at the left half of the block
matrix) that R = EA. �

The above theorem says that, not only is performing a single row operation
equivalent to multiplication on the left by an elementary matrix, but performing
a sequence of row operations is also equivalent to multiplication on the left by
some (potentially non-elementary) matrix.

2.2.2 The Inverse of a Matrix

One of the nice features of the elementary matrices is that they are invertible:
multiplication by them can be undone by multiplying by some other matrix.

Refer back to
Remark 2.1.1, which

noted that every
elementary row

operation is
reversible.

For example, if

E1 =




1 0 0
0 1 0
−3 0 1


 and E2 =




1 0 0
0 1 0
3 0 1


 ,

then it is straightforward to check that E1E2 = I and E2E1 = I. We thus say that
E1 and E2 are inverses of each other, which makes sense in this case because
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E1 is the elementary matrix corresponding to the elementary row operation
R3−3R1, and E2 is the elementary matrix corresponding to the elementary row
operation R3 +3R1, and performing these row operations one after another has
the same effect as not doing anything at all.

It is also useful to talk about invertibility of (not necessarily elementary)
matrices in general, and the idea is exactly the same—two matrices are inverses
of each other if multiplying by one of them “undoes” the multiplication by the
other.

Definition 2.2.2
Invertible Matrices

A square matrix A∈Mn is called invertible if there exists a matrix, which
we denote by A−1 and call the inverse of A, such that

AA−1 = A−1A = I.

InSome books use the
terms singular and

non-singular to
mean non-invertible

and invertible,
respectively.

this definition, we referred to A−1 as the inverse of A (as opposed to an
inverse of A). To justify this terminology, we should show that every matrix has
at most one inverse. To see this, suppose for a moment that a matrix A ∈Mn
had two inverses B,C ∈Mn (i.e., AB = BA = I and AC = CA = I). It would
then follow that

B = IB = (CA)B = C(AB) = CI = C,

so in fact these two inverses must be the same as each other. It follows that
inverses (when they exist) are indeed unique.

Given a pair of matrices, it is straightforward to check whether or not they
are inverses of each other—just multiply them together and see if we get the
identity matrix.

Example 2.2.3
Verifying Inverses

Determine whether or not the following pairs of matrices are inverses of
each other:

a)
[

1 2
3 4

]
and

1
2

[
−4 2
3 −1

]
,

b)
[

1 2
2 4

]
and

[
−4 2
2 −1

]
, and

c)



0 1 1
1 0 1
1 1 0


 and

1
2



−1 1 1
1 −1 1
1 1 −1


.

Solutions:
a) We just compute the product of these two matrices in both ways:

[
1 2
3 4

](
1
2

[
−4 2
3 −1

])
=
[

1 0
0 1

]
and

(
1
2

[
−4 2
3 −1

])[
1 2
3 4

]
=
[

1 0
0 1

]
.

Since both of these products equal the identity matrix, these two
matrices are inverses of each other.
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b) Again, we compute the product of these
In fact, we will show

in Example 2.2.7
that the matrix
[

1 2
2 4

]

does not have an
inverse at all.

two matrices:

[
1 2
2 4

][
−4 2
2 −1

]
=
[

0 0
0 0

]
.

Since this does not equal the identity matrix, we conclude that these
matrices are not inverses of each other (note that we do not need to
compute the product of these two matrices in the opposite order in
this case—as long at least one of those products is not the identity,
they are not inverses of each other).

c) Yet again, we compute the product of these two matrices in both
ways:




0 1 1
1 0 1
1 1 0




1

2



−1 1 1
1 −1 1
1 1 −1




=




1 0 0
0 1 0
0 0 1


 and


1

2



−1 1 1
1 −1 1
1 1 −1








0 1 1
1 0 1
1 1 0


=




1 0 0
0 1 0
0 0 1


 .

Since both of these products equal the identity matrix, these two
matrices are inverses of each other.

We can also think about inverses geometrically in terms of linear transfor-
mations. Since matrices and linear transformations are essentially the same
thing, it should not be surprising that we say that a linear transformation
T : Rn → Rn is invertible if there exists a linear transformation, which we
denote by T−1, such that T ◦T−1 = T−1 ◦T = I. In other words, T−1 is the
linear transformation that undoes the action of T : it sends each vector T (v)
back to v, as in Figure 2.11.

v

x

y

T−−→

T (v)

x

y

T−1
−−−→

T−1(T (v)) = v

x

y

Figure 2.11: T−1 is the linear transformation that undoes the action of T . That is,
T−1(T (v)) = v for all v ∈ Rn (and T (T−1(v)) = v too).

However, not every linear transformation has an inverse (i.e., not every
linear transformation is invertible), which we can again make sense of geomet-
rically. For example, recall from Section 1.4.2 that a projection Pu onto a line
in the direction of a unit vector u is a linear transformation. The problem that
gets in the way of invertibility of Pu is that multiple vectors get projected onto
the same vector on that line, so how could we ever undo the projection? Given
just Pu(v), we have no way of determining what v is (see Figure 2.12).

In other words, the projection Pu “squashes” space – it takes in all of R2

but only outputs a (1-dimensional) line, and there is no way to recover the
information that was thrown away in the squashing process. This is completely
analogous to the fact that we cannot divide real numbers by 0: given the value
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x

y

u

v2

v1

Pu−−→

x

y

v1

v2

Pu(v1) = Pu(v2)

Figure 2.12: Not all matrices or linear transformations are invertible. For example,
the projection Pu onto the line in the direction of a unit vector u is not invertible,
since multiple input vectors are sent to the same output vector. In particular, every
single vector on the dashed line on the right is sent to Pu(v1) = Pu(v2).

0x, we cannot determine x: it could be absolutely anything. Multiplication by 0
throws away information, so we cannot undo/invert it (i.e., we cannot divide by
0). In fact, 0 is the unique non-invertible 1×1 matrix.

As always, it is worthwhile to spend some time thinking about what proper-
ties our new mathematical operation (matrix inversion) has.

Theorem 2.2.2
Properties of

Matrix Inverses

Let A ∈Mn be an invertible matrix, let c be a non-zero real number, and
let k be a positive integer. Then

a) A−1 is invertible and (A−1)−1 = A.
b) cA is invertible and (cA)−1 = 1

c A−1.
c) AT isT is not an

exponent here.
Recall that AT is the

transpose of A.

invertible and (AT )−1 = (A−1)T .
d) Ak is invertible and (Ak)−1 = (A−1)k.

Proof. Most parts of this theorem are intuitive enough, so we just prove part (b),
and we leave the others to Exercise 2.2.17.

To see why part (b) holds, we just compute the product of cA and its
proposed inverse in both ways:

(cA)
(

1
c

A−1
)

=
c
c

AA−1 = I and
(

1
c

A−1
)

(cA) =
c
c

A−1A = I,

which shows that cA has 1
c A−1 as its inverse, as desired. �

In particular, part (d) of the above theorem tells us that we can unambigu-
ously extend our definition of matrix powers (which we have already defined
for non-negative exponents) to negative exponents. Specifically, if we define

A−k def= (A−1)k for all integers k ≥ 1,

then matrix powers still have the “nice” properties like Ak+` = AkA` and Ak` =
(Ak)` even when k and ` are allowed to be negative (see Exercise 2.2.18).

Example 2.2.4
Computing

Negative
Matrix

Powers

Compute A−2 if A =
[

1 2
3 4

]
.

Solution:
We saw in Example 2.2.3(a) that the inverse of A is

A−1 =
1
2

[
−4 2
3 −1

]
.
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It follows thatAlternatively, we
could have first

squared A and then
found the inverse of

A2. We would get
the same answer.

A−2 = (A−1)2 =
(

1
2

[
−4 2
3 −1

])(
1
2

[
−4 2
3 −1

])
=

1
4

[
22 −10
−15 7

]
.

Example 2.2.3 showed that it is straightforward to check whether or not
a given matrix is an inverse of another matrix. However, actually finding the
inverse of a matrix (or showing that none exists) is a bit more involved. To get
started toward solving this problem, we first think about how to find the inverse
of an elementary matrix.

Recall from Remark 2.1.1 that elementary row operations are reversible—
we can undo any of the three elementary row operations by applying another
elementary row operation:

• The row operation cRi isKeep in mind that
cR j is only if a valid

elementary row
operation if c 6= 0, so

1
c R j makes sense.

undone by the row operation 1
c R j.

• The row operation Ri↔ R j is undone by applying itself a second time.
• The row operation Ri + cR j is undone by the row operation Ri− cR j.

It follows that every elementary matrix is invertible, and that its inverse is also
an elementary matrix. Furthermore, pairs of elementary matrices are inverses
of each other exactly when they correspond to elementary row operations that
undo each other. We illustrate this idea with some examples.

Example 2.2.5
Inverses of

Elementary
Matrices

Find the inverse of each of the following elementary matrices:

a)
[

1 0
0 3

]

c)



1 0 0
0 0 1
0 1 0




b)
[

1 2
0 1

]

d)



1 0 0
−5 1 0
0 0 1




Solutions:
a) This is the elementary matrix corresponding to the row operation

3R2, so its inverse is the elementary matrix for the row operation
1
3 R2: [

1 0
0 1/3

]
.

b) This is the elementary matrix for the row operation R1 +2R2, so its
inverse is the elementary matrix for the row operation R1−2R2:

[
1 −2
0 1

]
.

c) This is the elementary matrix for the row operation R2↔ R3, so its
inverse is just itself: 


1 0 0
0 0 1
0 1 0


 .

d) This is the elementary matrix for to the row operation R2−5R1, so
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its inverse is the elementary matrix for the row operation R2 +5R1:



1 0 0
5 1 0
0 0 1


 .

To ramp this technique up into a method for finding the inverse of an
arbitrary matrix, we need the following theorem, which tells us that if two
matrices are invertible, then so is their product (and furthermore, we can
compute the inverse of the product directly from the inverses of the matrices in
the product):

Theorem 2.2.3
Product of

Invertible Matrices

Suppose A,B ∈Mn are invertible. Then AB is also invertible, and

(AB)−1 = B−1A−1.

Proof. SinceCompare this
theorem with

Theorem 1.3.4(c),
where the transpose

of a product was
similarly the product
of the transposes in
the opposite order.

we are given a formula for the proposed inverse, we just need to
multiply it by AB and see that we do indeed get the identity matrix:

(AB)(B−1A−1) = A(BB−1)A−1 = AIA−1 = AA−1 = I, and

(B−1A−1)(AB) = B−1(A−1A)B = B−1IB = B−1B = I.

Since both products result in the identity matrix, we conclude that AB is indeed
invertible, and its inverse is B−1A−1, as claimed. �

The fact that the order of multiplication is switched in the above theorem
perhaps seems strange at first, but actually makes a great deal of sense—when
inverting (or “undoing”) operations in real life, we often must undo them in the
order opposite to which we originally did them. For example, in the morning
we put on our socks and then put on our shoes, but at night we take off our
shoes and then take off our socks. For this reason, Theorem 2.2.3 is sometimes
light-heartedly referred to as the “socks-and-shoes rule”.

Example 2.2.6
Finding an Inverse

of a Product

Find the inverse of the matrix [1 2
0 1

][
1 0
0 3

]
=

[
1 6
0 3

]
.

Solution:
We saw in Example 2.2.5 that

[
1 2
0 1

]−1

=
[

1 −2
0 1

]
and

[
1 0
0 3

]−1

=

[
1 0
0 1/3

]
.

To find the inverse of their product, we compute the product of their
inverses in the opposite order:

[
1 6
0 3

]−1

=
([

1 2
0 1

][
1 0
0 3

])−1

=
[

1 0
0 3

]−1 [
1 2
0 1

]−1

=

[
1 0
0 1/3

][
1 −2
0 1

]
=

[
1 −2
0 1/3

]
.
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Theorem 2.2.3 also extends to the product of more than two matrices in a
straightforward way. For example, if A,B, and C are invertible matrices of the
same size, then applying the theorem twice shows that

(ABC)−1 =
(
(AB)C

)−1 = C−1(AB)−1 = C−1B−1A−1.

In general, the inverse of a product of invertible matrices is again invertible,
regardless of how many matrices there are in the product, and its inverse is the
product of the individual inverses in the opposite order.

2.2.3 A Characterization of Invertible Matrices

Since we now know how to find the inverse of a product of invertible matrices,
it follows that if we can write a matrix as a product of elementary matrices,
then we can find its inverse by inverting each of those elementary matrices
and multiplying together those inverses in opposite order (just like we did in
Example 2.2.6).

However, this observation is not yet useful, since we do not know how to
break down a general invertible matrix into a product of elementary matrices,
nor do we know whether or not this is always possible. The following theorem
and its proof solve these problems, and also introduces an important connection
between invertible matrices and systems of linear equations.

Theorem 2.2.4
Characterization of
Invertible Matrices

Suppose A ∈Mn. The following are equivalent:
a) A is invertible.
b) The linear system Ax = b has a solution for all b ∈ Rn.
c) The linear system Ax = b has a unique solution for all b ∈ Rn.
d) The linear system Ax = 0 has a uniqueTo prove this

theorem, we show
that the 6 properties
imply each other as

follows:

(a)
(b)

(c)
(d)

(e)

(f)

solution.
e The reduced row echelon form of A is I (the identity matrix).
f A can be written as a product of elementary matrices.

Proof. To start, we show that (a) =⇒ (c) =⇒ (d) =⇒ (e) =⇒ (f) =⇒ (a),
which means that any one of these five statements implies any of the other five
(we will take care of condition (b) later).

To see that (a) =⇒ (c), we note that if A is invertible then x = A−1b is a
solution of the linear system Ax = b, since

A(A−1b) = (AA−1)b = Ib = b.

To see that this solution is unique, suppose that there were two solutions
x,y ∈ Rn. Then Ax = b and Ay = b, so subtracting gives us A(x− y) = 0. It
then follows that

x−y = (A−1A)(x−y) = A−1(A(x−y)
)

= A−10 = 0,

so x = y (i.e., the solution is unique).
The implication (c) =⇒ (d) follows simply by choosing b = 0, so we jump

straight to proving that (d) =⇒ (e). If we represent the linear system Ax = 0
in augmented matrix form [ A | 0 ] and then apply Gauss–Jordan elimination,
we get the augmented matrix [ R | 0 ], where R is the reduced row echelon form
of A. Since R is square, if R 6= I then it must have a row of zeros at the bottom,
so this linear system must have at least one free variable and thus cannot have
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a unique solution. We thus conclude that if the linear system Ax = 0 does have
a unique solution (i.e., (d) holds) then R = I (i.e., (e) holds).

Next, we show that (e) =⇒ (f). If the RREF of A is I, then there exists a
sequence of row operations that transforms A into I. Equivalently, there exists a
sequence of elementary matrices E1,E2, . . . ,Ek such that Ek · · ·E2E1A = I. By
multiplying on the left by E−1

k , E−1
k−1, and so on to E−1

1 , we see that

A = E−1
1 E−1

2 · · ·E−1
k .

Since the inverse of an elementary matrix is again an elementary matrix, A can
be written as a product of elementary matrices, so (f) follows.

To complete this portion of the proof, we note that the implication (f)
=⇒ (a) follows from the facts that elementary matrices are invertible, and the
product of invertible matrices is invertible (Theorem 2.2.3).

All that remains is to show that property (b) is equivalent to the other
properties. Property (c) trivially implies property (b), so we just need to show
that (b) implies any of the five other properties. We show that (b) implies (e).

To this end,

To find a b such that
row-reducing [ A | b ]

produces [ R | en ],
just apply the

inverse sequence of
row operations to en.

choose b ∈ Rn so that applying Gauss–Jordan elimination to
[ A | b ] produces [ R | en ], where R is the reduced row echelon form of A. If R
had a zero row at the bottom, then this linear system would not have a solution.
However, since we are assuming (b) holds, this cannot be the case. It follows
that R must have no zero rows, so it equals I, which (finally!) completes the
proof. �

Remark 2.2.1
How to Think About

Elementary
Matrices

We can think of the relationship between elementary matrices and in-
vertible matrices much like we think of the relationship between prime
numbers and positive integers—Theorem 2.2.4 tells us that every invertible
matrix can be written as a product of elementary matrices, just like every
positive integer can be written as a product of prime numbers.

One important difference between these two settings is that the method
of writing an invertible matrix as a product of elementary matrices is
very non-unique, whereas the prime decomposition of a positive integer is
unique. However, we can still think of elementary matrices as the basic
building blocks of invertible matrices, and oftentimes we can prove general
facts and properties of invertible matrices just by considering what those
properties look like for elementary matrices.

Example 2.2.7
Determining

Whether
or Not a

Matrix
is Invertible

Determine whether or not the following matrices are invertible:

a)
[

1 2
2 4

]
b)



1 2 −2
0 1 −2
1 1 1




Solutions:
a) By the previous theorem, we know that a matrix is invertible if and

only if its reduced row echelon form is the identity matrix. With that
in mind, we compute the RREF of this matrix:

[
1 2
2 4

]
R2−2R1−−−−→

[
1 2
0 0

]
.
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Since this RREF is not the identity matrix, we conclude that this
matrix is not invertible.

b) Again, we determine invertibility by computing the RREF of this
matrix:




1 2 −2
0 1 −2
1 1 1


 R3−R1−−−−→




1 2 −2
0 1 −2
0 −1 3




R1−2R2
R3+R2−−−−−→




1 0 2
0 1 −2
0 0 1


 R1−2R3

R2+2R3−−−−−→




1 0 0
0 1 0
0 0 1


 .

Since this RREF is the identity matrix, it follows that the original
matrix is invertible.

Fortunately, we can also use the above theorem to actually compute the
inverse of a matrix when it exists. If A is invertible then block matrix mul-
tiplication shows that A−1[ A | I ] = [ I | A−1 ]. However, multiplication on
the left by A−1 is equivalent to performing a sequence of row operations on
[ A | I ], so we conclude that [ A | I ] can be row-reduced to [ I | A−1 ]. This leads
immediately to the following theorem, which tells us how to simultaneously
check if a matrix is invertible, and find its inverse if it exists:

Theorem 2.2.5
Finding

Matrix Inverses

Suppose A ∈Mn. Then A is invertible if and only if there exists a matrix
E ∈ Mn such that the RREF of the block matrix [ A | I ] is [ I | E ].
Furthermore, if A is invertible then it is necessarily the case that A−1 = E.

Before working through some explicit examples, it is worth comparing this
result with Theorem 2.2.1, which says that if we can row-reduce [ A | I ] to
[ R | E ] then R = EA. The above theorem clarifies the special case when the
reduced row echelon form of A is R = I, so the equation R = EA simplifies to
I = EA (and thus E = A−1).

Example 2.2.8
Computing

Inverses

For each of the following matrices, either compute their inverse or show
that

We generalize
part (c) of this

example a bit later,
in Exercise 2.3.14.

none exists:

a)
[

2 2
4 5

]

c)



1 2 3
4 5 6
7 8 9




b)
[

1 −2
−3 6

]

d)



1 1 1
1 2 4
1 3 9




Solutions:
a) To determine whether or not this matrix is invertible, and find its

inverse if it is, we augment it with the identity and row-reduce:
[

2 2 1 0
4 5 0 1

]
R2−2R1−−−−→

[
2 2 1 0
0 1 −2 1

]

R1−2R2−−−−→
[

2 0 5 −2
0 1 −2 1

]
1
2 R1−−−−→

[
1 0 5/2 −1
0 1 −2 1

]
.
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Since we were able to row-reduce this matrix so that the block on
the left is the identity, it is invertible, and its inverse is the block on
the right: [

5/2 −1
−2 1

]
.

b) Again,
If we ever get a zero

row on the left at
any point while

row-reducing, we
can immediately

stop and conclude
the matrix is not

invertible—the
reduced row

echelon form will
also have a zero

row.

we augment with the identity matrix and row-reduce:
[

1 −2 1 0
−3 6 0 1

]
R2+3R1−−−−→

[
1 −2 1 0
0 0 3 1

]
.

Since the matrix on the left has a zero row, the original matrix is not
invertible.

c) Yet again, we augment with the identity matrix and row-reduce:



1 2 3 1 0 0
4 5 6 0 1 0
7 8 9 0 0 1


 R2−4R1

R3−7R1−−−−−→




1 2 3 1 0 0
0 −3 −6 −4 1 0
0 −6 −12 −7 0 1




R3−2R2−−−−→




1 2 3 1 0 0
0 −3 −6 −4 1 0
0 0 0 1 −2 1


.

Since we have row-reduced the matrix on the left so that it has a
zero row, we conclude that it is not invertible.

d) As always, we augment with the identity matrix and row-reduce:



1 1 1 1 0 0
1 2 4 0 1 0
1 3 9 0 0 1


 R2−R1

R3−R1−−−−→




1 1 1 1 0 0
0 1 3 −1 1 0
0 2 8 −1 0 1




R1−R2
R3−2R2−−−−→




1 0 −2 2 −1 0
0 1 3 −1 1 0
0 0 2 1 −2 1




1
2 R3−−→




1 0 −2 2 −1 0
0 1 3 −1 1 0
0 0 1 1/2 −1 1/2




R1+2R3
R2−3R3−−−−−→




1 0 0 3 −3 1
0 1 0 −5/2 4 −3/2
0 0 1 1/2 −1 1/2


.

SinceWe will see a
generalization of
the fact that the

matrix from part (d)
is invertible a bit

later, in
Example 2.3.8.

we were able to row-reduce this block matrix so that the block
on the left is the identity, we conclude that the original matrix is
invertible and its inverse is the block on the right:




3 −3 1
−5/2 4 −3/2
1/2 −1 1/2


 .

While our general method of computing inverses works for matrices of any
size, when the matrix is 2×2 we do not actually have to row-reduce at all, as
the following theorem provides an explicit formula for the inverse.
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Theorem 2.2.6
Inverse of a
2×2 Matrix

The matrix A =
[

a b
c d

]
is invertible if and only if ad−bc 6= 0, and

A−1 =
1

ad−bc

[
d −b
−c a

]
.

Proof. If ad−bc 6= 0

The quantity ad−bc
is called the

determinant of A.
We will explore it in

depth in Section 3.2.
then we can show that the inverse of A is as claimed just

by multiplying it by A:

(
1

ad−bc

[
d −b
−c a

])[
a b
c d

]
=

1
ad−bc

[
ad−bc 0

0 ad−bc

]
=
[

1 0
0 1

]
,

and similarly when computing the product in the opposite order. Since this
product is the identity matrix, A is invertible and its inverse is as claimed.

On the other hand, if ad− bc = 0 then ad = bc. From here we split into
two cases:

Case 1: If either a = 0 or b = 0 then ad = bc implies that two of the entries
of A in the same row or column are both 0. It follows that A can be
row-reduced so as to have a zero row, and is thus not invertible.

Case 2: If a,b 6= 0 then ad = bc implies d/b = c/a, so the second row of A is
a multiple of its first row. It again follows that A can be row-reduced
so as to have a zero row, and thus is not invertible.

In either case, the equation ad−bc = 0 implies that A is not invertible, which
completes the proof. �

There is actually an explicit formula for the inverse of a matrix of any
size, which we derive in Section 3.A.1. However, it is hideous for matrices of
size 3×3 and larger and thus the method of computing the inverse based on
Gauss–Jordan elimination is typically much easier to use.

Example 2.2.9
Inverse of a
2×2 Matrix

For each of the following matrices, either compute their inverse or show
that none exists:

a)
[

1 2
3 4

]

c)
[

2 2
4 5

]

b)
[

1 2
2 4

]

d)
[

1 −2
−3 6

]

Solutions:
a) We firstThe inverses of all

four of these
matrices were also
investigated earlier

in Examples 2.2.3
and 2.2.8.

compute ad−bc = 1×4−2×3 = 4−6 =−2 6= 0, so this
matrix is invertible. Its inverse is

1
−2

[
4 −2
−3 1

]
=

1
2

[
−4 2
3 −1

]
.

b) Again, we start by computing ad−bc = 1×4−2×2 = 4−4 = 0.
Since this quantity equals 0, we conclude that the matrix is not
invertible.

c) Yet again, we first compute ad−bc = 2×5−2×4 = 10−8 = 2 6= 0,
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so this matrix is invertible. Its inverse is

1
2

[
5 −4
−2 2

]
.

d) Once again, computing ad−bc = 1×6− (−2)× (−3) = 6−6 = 0
shows that this matrix is not invertible.

At this point, it is perhaps worthwhile to return to the fact that a linear
system Ax = b with an invertible coefficient matrix has a unique solution (i.e.,
condition (c) of Theorem 2.2.4). In fact, we can write this solution explicitly
in terms of the inverse matrix: x = A−1b is the (necessarily unique) solution,
since

Ax = A
(
A−1b

)
=
(
A−1A

)
b = Ib = b.

Solving a linear system by finding the inverse of the coefficient matrix is a
useful technique because it allows us to solve linear systems with multiple
different right-hand-side vectors b after performing Gauss–Jordan elimination
just once (to compute A−1), rather than having to do it for every single right-
hand-side vector.

To illustrate what we mean by this, consider the linear system Ax = b,
where

A =




1 1 1
1 2 4
1 3 9


 and b =




2
1
2


 .

We computed the inverse of this coefficient matrix in Example 2.2.8(d), and it
is

A−1 =




3 −3 1
−5/2 4 −3/2
1/2 −1 1/2


 .

The unique solution of this linear system is thus

x = A−1b =




3 −3 1
−5/2 4 −3/2
1/2 −1 1/2







2
1
2


=




5
−4
1


 .

If the right-hand-side bThere is an even
better method of

solving multiple
linear systems with

the same
coefficient matrices

based on
something called

the “LU
decomposition”,

which we explore in
Section 2.D.2.

were to then change to something different then
we could again compute the unique solution simply via matrix multiplication,
rather than having to row-reduce all over again. For example, if

b =




1
0
−1


 then x = A−1b =




3 −3 1
−5/2 4 −3/2
1/2 −1 1/2







1
0
−1


=




2
−1
0


 .

Again, it is perhaps useful to keep in mind the idea that elementary matrices
act as a log that keeps track of row operations. Since A−1 is the product of all
of the elementary matrices that were used to row-reduce A to I, we can think of
multiplication by A−1 as performing all of the row operations needed to solve
the linear system Ax = b simultaneously.

Finally, we close this section with one final result that shows that, up until
now, we have been doing twice as much work as is necessary to show that two
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matrices are inverses of each other. Even though we defined matrices A and
A−1 as being inverses of each other if AA−1 = A−1A = I, it is actually enough
just to check one of these two equations:

Theorem 2.2.7
One-Sided Inverses

Suppose A ∈Mn. If there exists a matrix B ∈Mn such that AB = I or
BA = I then A is invertible and A−1 = B.

Proof. If BA = I then multiplying the linear system Ax = 0 on the left by B
shows that BAx = B0 = 0, but also BAx = Ix = x, so x = 0. The linear system
Ax = 0 thus has x = 0 as its unique solution, so it follows from Theorem 2.2.4
that A is invertible. Multiplying the equation BA = I on the right by A−1 shows
that B = A−1, as desired.

The proof of the case when AB = I is similar, and left as Exercise 2.2.19.
�

Remark 2.2.2
One-Sided and

Non-Square
Inverses

When we defined inverses in Definition 2.2.2, we required that the matrix
A was square. Some of the ideas from this section can be extended to the
non-square case, but the details are more delicate. For example, consider
the matrix

A =




1 0
0 2
0 0


 .

This matrix is not square, and thus not invertible, but it does have a “left”
inverse—there is a matrix B such

In fact, A has
infinitely many left
inverses—we can

replace the entries
of the third column

of B by whatever
we like.

that BA = I. For example,

BA =

[
1 0 0
0 1/2 0

]


1 0
0 2
0 0


=

[
1 0
0 1

]
.

However, it does not have a “right” inverse: there is no matrix C such that
AC = I, since the only way that AC could be square is if C is 2× 3, in
which case the third row of AC must be the zero vector.

Geometrically, this makes sense since A acts as a linear transformation
that sends R2 to the xy-plane in R3, and there is another linear transforma-
tion (a left inverse) that sends that plane back to R2:

The fact that A has
a left inverse but

not a right inverse
does not violate

Theorem 2.2.7, since
that theorem only
applies to square

matrices. x

y

e2

e1

A−−→

x

yAe1 = (1,0,0)

Ae2 = (0,2,0)

z

However, there does not exist a linear transformation (a right inverse) that
squashes all of R3 into R2 in such a way that A then blows it back up to
all of R3.
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Exercises solutions to starred exercises on page 447

2.2.1 Write down the elementary matrix E ∈M3 corre-
sponding to each of the following row operations.

∗(a) R1↔ R3
∗(c) R1 +3R2
∗(e) 3R1
∗(g) R2−2R3

(b) R2↔ R3
(d) R3−4R1
(f) 6R3
(h) R2 +3R1

2.2.2 For each of the following matrices, either find the
inverse of the matrix, or show that it is not invertible.

∗(a)
[

1 0
0 1

]

∗(c)
[

2 3
3 2

]

∗(e)



2 4 0
1 −2 0
2 0 −1




∗(g)



1 0
0 2
0 1




(b)
[

6 3
2 1

]

(d)
[

1 2 1
0 1 2

]

(f)



2 6 1
0 0 0
3 −2 7




(h)



1 −2 −2
−2 1 −2
−2 −2 1




§ 2.2.3 For each of the following matrices, use computer
software to either find the inverse of the matrix, or to show
that it is not invertible.

∗(a)



0 1 1 2
4 2 3 0
3 1 5 5
5 0 5 2




(b)



−1 −2 2 2
−1 1 1 0
3 3 5 1
5 2 2 0




∗(c) 


−1 −3 3 5 4
1 5 −2 4 5
5 −3 0 1 0
4 1 −2 1 1
4 4 5 3 5




(d)



−1 −2 −1 1 2 4
−1 −1 0 0 −1 0
2 4 1 1 −4 −6
1 2 1 0 −2 −5
−3 −6 −1 −4 7 9
0 −1 1 −5 3 1




2.2.4 For each of the following matrices A ∈Mm,n, find
a matrix E ∈Mm such that EA equals the reduced row
echelon form of A.

∗(a)
[

1 2
3 4

]

∗(c)
[

1 2 3
4 5 6

]

∗(e)



2 1
−1 2
1 1




∗(g)



0 1 3
3 −2 3
1 0 3




(b)
[

2 −1
−4 2

]

(d)
[

0 −1 3
0 2 1

]

(f)



1 2 1
−1 0 −1
0 1 2




(h)



4 0 2 4
−1 −1 1 2
5 0 0 2




2.2.5 Determine which of the following statements are
true and which are false.

∗(a) The inverse of an elementary matrix is an elementary
matrix.

(b) The transpose of an elementary matrix is an elemen-
tary matrix.

∗(c) Every square matrix can be written as a product of
elementary matrices.

(d) Every invertible matrix can be written as a product
of elementary matrices.

∗(e) The n×n identity matrix is invertible.
(f) If A and B are invertible matrices, then so is AB.
∗(g) If A and B are invertible matrices, then so is A+B.
(h) If A6 = I then A is invertible.
∗(i) If A7 = O then A is not invertible.
(j) If A and B are matrices such that AB = O and A is

invertible, then B = O.
∗(k) If A, B, and X are invertible matrices such that

XA = B, then X = A−1B.

2.2.6 Let a 6= 0 be a real number. Show that the following
matrix is invertible, and find its inverse:




a 1 1
0 a 1
0 0 a


 .

∗2.2.7 Let a and b be real numbers, and consider the
matrix

A =




a b b · · · b
b a b · · · b
b b a · · · b
...

...
...

. . .
...

b b b · · · a



∈Mn.

(a) Show that A is not invertible if a = b.
(b) Find a formula for A−1 (and thus show that A is in-

vertible) if a 6= b. [Hint: Try some small examples
and guess a form for A−1.]

2.2.8 Suppose A ∈Mn.

(a) Show that if A has a row consisting entirely of zeros
then it is not invertible.
[Hint: What can we say about the rows of AB in this
case, where B ∈Mn is any other matrix?]

(b) Show that if A has a column consisting entirely of
zeros then it is not invertible.

2.2.9 Compute the indicated powers of the matrix

A =

[
2 1
3 2

]
.

∗(a) A2

∗(c) A−2
(b) A−1

(d) A−4

2.2.10 A matrix A ∈Mn is called nilpotent if there is
some positive integer k such that Ak = O. In this exercise,
we will compute some formulas for matrix inverses involv-
ing nilpotent matrices.



120 Chapter 2. Linear Systems and Subspaces

(a) Suppose A2 = O. Prove that I−A is invertible, and
its inverse is I +A.

(b) Suppose A3 = O. Prove that I−A is invertible, and
its inverse is I +A+A2.

(c) Suppose k is a positive integer and Ak = O. Prove
that I−A is invertible, and find its inverse.

∗2.2.11 Suppose A ∈Mm,n is such that AT A is invertible,
and let P = A(AT A)−1AT .

(a) What is the size of P?
(b) Show that P = PT . [Side note: Matrices with this

property are called symmetric.]
(c) Show that P2 = P. [Side note: Matrices such that

PT = P2 = P are called orthogonal projections.]

∗2.2.12 Suppose that P,Q ∈Mn and P is invertible. Show
that row-reducing the augmented matrix [ P | Q ] produces
the matrix [ I | P−1Q ].

2.2.13 Suppose that A, B, and X are square matrices of
the same size. Given the following matrix equations, find
a formula for X in terms of A and B (you may assume all
matrices are invertible as necessary).

[Hint: Multiply on the left and/or right by matrix inverses.]

∗(a) AX = B
∗(c) AXB = I

(b) AXB = O
(d) AX +BX = A−B

2.2.14 Suppose A ∈Mn is invertible and B ∈Mn is ob-
tained by swapping two of the rows of A. Explain why B−1

can be obtained by swapping those same two columns of
A−1.

2.2.15 Show that a diagonal matrix is invertible if and only
if all of its diagonal entries are non-zero, and find a formula
for its inverse.

∗∗2.2.16 Suppose that A ∈Mn is an upper triangular
matrix.

(a) Show that A is invertible if and only if all of its diag-
onal entries are non-zero.
[Hint: Consider the linear system Ax = 0.]

(b) Show that if A is invertible then A−1 is also upper
triangular. [Hint: First show that if b has its last k
entries equal to 0 (for some k) then the solution x to
Ax = b also has its last k entries equal to 0.]

(c) Show that if A is invertible then the diagonal entries
of A−1 are the reciprocals of the diagonal entries of
A, in the same order.

(d) What changes in parts (a)–(c) if A is lower triangular
instead of upper triangular?

∗∗2.2.17 Recall Theorem 2.2.2, which established some
of the basic properties of matrix inverses.

(a) Prove part (a) of the theorem.
(b) Prove part (c) of the theorem.
(c) Prove part (d) of the theorem.

∗∗2.2.18 Suppose A∈Mn and k and ` are integers (which
may potentially be negative).

(a) Show that Ak+` = AkA`.

(b) Show that
(
Ak)` = Ak`.

∗∗2.2.19 Complete the proof of Theorem 2.2.7 by showing
that if A,B ∈Mn are such that AB = I then A is invertible
and A−1 = B.

∗∗2.2.20 In this exercise, we generalize Exercise 2.2.15
to block diagonal matrices.

(a) Show that
[

A O
O D

]−1

=

[
A−1 O

O D−1

]
,

assuming that A and D are invertible.
(b) Show that the block diagonal matrix




A1 O · · · O
O A2 · · · O

...
...

. . .
...

O O · · · An




is invertible if and only if each of A1,A2, . . . ,An are
invertible, and find a formula for its inverse.

2.2.21 Show that the following block matrix inverse for-
mulas hold, as long as the matrix blocks are of sizes so that
the given expressions make sense and all of the indicated
inverses exist.

∗(a) [A I
I O

]−1

=

[
O I
I −A

]

(b) [ I B
O I

]−1

=

[
I −B
O I

]

∗(c) [A B
O D

]−1

=

[
A−1 −A−1BD−1

O D−1

]

(d) If we define S = D−CA−1B, then
[

A B
C D

]−1

=

[
A−1 +A−1BS−1CA−1 −A−1BS−1

−S−1CA−1 S−1

]
.

[Side note: The matrix S in part (d) is called the Schur
complement.]

2.2.22 Find the inverse of each of the following matrices.
[Hint: Partition the matrices as block matrices and use one
of the formulas from Exercise 2.2.21.]

∗(a)



1 2 1 0
2 3 0 1
1 0 0 0
0 1 0 0




∗(c) 


1 1 2 −1 0
1 2 2 0 1
0 0 1 0 0
0 0 0 2 0
0 0 0 0 3




(b)



1 0 4 6
0 1 1 5
0 0 1 0
0 0 0 1




(d)



2 1 1 0
1 2 1 1
1 1 2 1
0 1 1 2
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2.2.23 The Sherman-Morrison formula is a result that
says that if A ∈Mn is invertible and v,w ∈ Rn, then

(A+vwT )−1 = A−1− A−1vwT A−1

1+wT A−1v
,

as long as the denominator on the right is non-zero. Prove
that this formula holds by multiplying A+vwT by its pro-
posed inverse.

[Side note: This formula is useful in situations where we
know the inverse of A and want to use that information
to obtain the inverse of a slight perturbation of A without
having to compute it from scratch.]

§ 2.2.24 Let An be the n×n matrix

An =




1 1 1 · · · 1
1 2 1 · · · 1
1 1 3 · · · 1

...
...

...
. . .

...
1 1 1 · · · n




.

(a) Use computer software to compute A−1
n when n =

2,3,4,5.
(b) Based on the computations from part (a), guess a

formula for A−1
n that works for all n.

2.3 Subspaces, Spans, and Linear Independence

In the previous two sections, we considered some topics (linear systems and
matrix inverses) that were motivated very algebraically. We now switch gears a
bit and think about how we can make use of geometric concepts to deepen our
understanding of these topics.

2.3.1 Subspaces

As a starting point, recall that linear systems can be interpreted geometrically
as asking for the point(s) of intersection of a collection of lines or planes
(depending on the number of variables involved). The following definition
introduces subspaces, which can be thought of as any-dimensional analogues
of lines and planes.

Definition 2.3.1
Subspaces

A subspace of Rn is a non-empty set S of vectors in Rn with the properties
that

a) if v,w ∈ S then v+w ∈ S , and
b) if v ∈ S and c ∈ R then cv ∈ S .

The

Properties (a)
and (b) are

sometimes called
closure under

vector addition and
closure under

scalar
multiplication,

respectively.

idea behind this definition is that property (a) ensures that subspaces
are “flat”, and property (b) makes it so that they are “infinitely long” (just
like lines and planes). Subspaces do not have any holes or edges, and if they
extend even a little bit in a given direction, then they must extend forever in
that direction.

The defining properties of subspaces mimic the properties of lines and
planes, but with one caveat—every subspace contains 0 (the zero vector). The
reason for this is simply that if we choose v ∈ S arbitrarily and let c = 0 in
property (b) of Definition 2.3.1 then

0 = 0v = cv ∈ S.

This implies, for example, that a line through the origin is indeed a subspace,
but a line in R2 with y-intercept equal to anything other than 0 is not a subspace
(see Figure 2.13).

Before working with subspaces algebraically, we look at couple of quick
examples geometrically to try to build some intuition for how they work.
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1 2 3

1

2

y= x/2

x

y

y= x/2+1

1 2 3

1

2

x

y

Figure 2.13: Lines and planes are subspaces if and only if they go through the
origin, so the line (a) y = x/2 is a subspace but the line (b) y = x/2+1 is not.

Example 2.3.1
Geometric

Examples of
Subspaces

Determine whether or not the following sets of vectors are subspaces.
a) The line in R2 through the points (2,1) and (−4,−2).
b) The line in R2 with slope 1/2 and y-intercept −1.
c) The plane in R3 with equation x+ y−3z = 0.

Solutions:
a) This line is sketched below, and it does indeed go through the origin.

It should be quite believable that if we add any two vectors on this
line, the result is also on the line. Similarly, multiplying any vector
v on this line by a scalar c just stretches it but does not change its
direction, so cv is also on the line. It follows that this is a subspace.Every line through

the origin (in any
number of

dimensions) is
always a subspace.

(2,1)

(−4,−2)

x

y

b) This line
Sets like this line,
which would be

subspaces if they
went through the

origin, are
sometimes called

affine spaces.

is sketched below, but notice that it does not contain 0 (i.e.,
it does not go through the origin). This immediately tells us that it is
not a subspace. Algebraically, we can prove that it is not a subspace
by noticing that (2,0) is on the line, but 2(2,0) = (4,0) is not, so it
is not closed under scalar multiplication.

x

y

(0,−1) (2,0)

c) This plane is a subspace,We will show that
this plane is

subspace
algebraically in

Example 2.3.2.

and is illustrated below. It should be quite
believable that if v lies on this plane and c ∈ R is a scalar, then cv
also lies on the plane. The fact that v+w lies on the plane whenever
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v and w do can be seen from the parallelogram law for adding
vectors—the entire parallelogram with v and w as its sides lies on
the same plane.Every plane through

the origin (in any
number of

dimensions) is also
always a subspace.

yyyyy

vvvvvv+++++ww

w

v

x

z

It is worth observing that the definition of a subspace is very reminiscent
of the definition of a linear transformation (Definition 1.4.1). In both cases,
we require that vector addition and scalar multiplication are “respected” in
some sense: linear transformations are the functions for which we can apply
the function either before or after performing vector addition or scalar multipli-
cation without affecting the result, and subspaces are the sets for which we can
perform vector addition and scalar multiplication without leaving the set.

Also, just like we did with linear transformations, we can rephrase the
defining properties of subspaces in terms of linear combinations. In particular,
a non-empty set S is a subspace of Rn if and only

Be careful: v1, v2, . . .,
vk are vectors, not
entries of a vector,
which are instead
denoted like v1, v2,

. . ., vn.

if

c1v1 + c2v2 + · · ·+ ckvk ∈ S

for all v1,v2, . . . ,vk ∈ S and all c1,c2, . . . ,ck ∈ R (see Exercise 2.3.15).
Even though we cannot visualize subspaces in higher than 3 dimensions,

we keep the line/plane intuition in mind—a subspace of Rn looks like a copy
of Rm (for some m≤ n) going through the origin. For example, lines look like
copies or R1, planes look like copies of R2, and so on. The following example
clarifies this intuition a bit and demonstrates how to show algebraically that a
set is or is not a subspace.

Example 2.3.2
Algebraic
Examples

of Subspaces

Determine whether or not the following sets of vectors are subspaces.
a) The graph of the function y = x2 in R2.
b) The set {(x,y) ∈ R2 : x≥ 0,y≥ 0}.

The notation {(x,y) ∈
R2 : some property}
means the set of all

vectors in R2 that
satisfy the
conditions

described by “some
property”.

c) The plane in R3 with equation x+ y−3z = 0.

Solutions:
a) This set is not a subspace, since (for example) the vectors v =

(−1,1) and w = (1,1) are in the set, but v+w = (0,2) is not, since
it is not the case that 2 = 02:

y y = x2

w = (11,1))v = ((−1,1))

v+ww = ((00,22))

x
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b) ThisThe only subspaces
of R2 are lines

through the origin,
{0}, and all of R2.

set is not a subspace, since (for example) the vector v = (1,1)
is in the set, but −v = (−1,−1) is not, since the set only contains
vectors with non-negative entries:

v= (1,1)

−−v= (−−1,−1))

y

x

c) ThisThe only subspaces
of R3 are lines

through the origin,
planes through the
origin, {0}, and all

of R3.

plane is a subspace, as we illustrated geometrically in Exam-
ple 2.3.1(c). To prove it algebraically, we must show that both of
the properties described in the definition of a subspace hold.

For property (a), suppose that v = (v1,v2,v3) and w = (w1,w2,w3)
are both on the plane, so v1 + v2−3v3 = 0 and w1 +w2−3w3 = 0.
Then by adding these two equations, we see that

(v1 +w1)+(v2 +w2)−3(v3 +w3) = 0,

so v+w lies on the plane too.
For property (b), suppose that v = (v1,v2,v3) is on the plane, so
v1 + v2−3v3 = 0. Then for any scalar c, multiplying this equation
by c shows that

(cv1)+(cv2)−3(cv3) = 0,

so cv lies on the plane too.

Many of the most useful subspaces that we work with come from inter-
preting matrices as linear systems or linear transformations. For example, one
very natural subspace arises from the fact that matrices represent linear systems
of equations: for every matrix A ∈Mm,n, there is an associated linear system
Ax = 0, and the set of vectors x satisfying this system is aOn the other hand,

the set of vectors x
satisfying Ax = b is

not a subspace
when b 6= 0 (see
Exercise 2.3.13).

subspace (we will
verify this claim shortly).

Similarly, another subspace appears naturally if we think about matrices
as linear transformations: every matrix A ∈Mm,n can be thought of as a linear
transformation that sends x ∈ Rn to Ax ∈ Rm. The set of possible outputs of
this linear transformation—that is, the set of vectors of the form Ax—is also a
subspace. We summarize these observations in Definition 2.3.2.

Definition 2.3.2
Matrix Subspaces

Suppose A ∈Mm,n.
a) The range of A is the subspace of Rm, denoted by range(A), that

consists of all vectors of the form Ax.
b) TheIn other books, the

null space of A is
sometimes instead

called its kernel and
denoted by ker(A).

null space of A is the subspace of Rn, denoted by null(A), that
consists of all solutions x of the linear system Ax = 0.

For completeness, we should verify that the range and null space are indeed
subspaces. To see that null(A) is a subspace, we have to show that it is non-
empty and that it satisfies both of the defining properties of subspaces given in
Definition 2.3.1. It is non-empty because A0 = 0, so 0 ∈ null(A). To see that it



2.3 Subspaces, Spans, and Linear Independence 125

satisfies property (a), let v,w ∈ null(A), so that Av = 0 and Aw = 0. Then

A(v+w) = Av+Aw = 0+0 = 0,

so v+w ∈ null(A) too. Similarly, for property (b) we note that if v ∈ null(A)
and c ∈ R then

A(cv) = c(Av) = c0 = 0,

so cv ∈ null(A) too. It follows that null(A) is indeed a subspace.
Similarly, to see that range(A) is a subspace, we first notice that it is non-

empty since A0 = 0 ∈ range(A). Furthermore, if Ax,Ay ∈ range(A) and c ∈ R
then Ax+Ay = A(x+y) ∈ range(A) as well, as is A(cx) = c(Ax).

Example 2.3.3
Determining Range

and Null Space

Describe and plot the range and null space of the matrix A =
[

2 −2
1 −1

]
.

Solution:
To get our hands on the range of A, we let x = (x,y) and compute

Ax =
[

2 −2
1 −1

][
x
y

]
=
[

2(x− y)
x− y

]
.

Notice

We will develop
more systematic

ways of finding the
range and null

space of a matrix in
the next several

subsections.

that Ax only depends on x− y, not x and y individually. We can
thus define a new variable z = x− y and see that Ax = (2z,z) = z(2,1), so
the range of A is the set of all multiples of the vector (2,1). In other words,
it is the line going through the origin and the point (2,1):

(2,1)
x

y

On the other hand, null(A) is the set of vectors x = (x,y) such that
Ax = 0. This is a linear system that we can solve as follows:
[

2 −2 0
1 −1 0

]
R1↔R2−−−−→

[
1 −1 0
2 −2 0

]
R2−2R1−−−−→

[
1 −1 0
0 0 0

]
,

which shows that y is a free variable and x is a leading variable with
x = y. It follows that x = (x,x) = x(1,1), so the null space is the line going
through the origin and the point

In this example, the
range and null

space were both
lines. We will see

later (in
Theorem 2.4.10) that

the only other
possibility for 2×2

matrices is that one
of the range or null

space is all of R2

and the other
one is {0}.

(1,1):

(1,1)
x

y
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2.3.2 The Span of a Set of Vectors

Some of the previous examples of sets that are not subspaces suggest a method
by which we could turn them into subspaces: we could add all linear combi-
nations of members of the set to it. For example, the set containing only the
vector (2,1) is not a subspace of R2 because, for example, 2(2,1) = (4,2) is
not in the set. To fix this problem, we could simply add (4,2) to the set and ask
whether or not {(2,1),(4,2)} is a subspace. This larger set also fails to be a
subspace for a very similar reason—there are other scalar multiples of (2,1)
still missing from it. However, if we add all of the scalar multiples of (2,1)
to the set, we get the line through the origin and the point (2,1), which is a
subspace, as shown Figure 2.14.

(4,2)

(2,1)

y

x

Figure 2.14: To turn the set {(2,1)} into a subspace, we have to add all of the scalar
multiples of (2,1) to it, creating a line through the origin.

In

Recall that a linear
combination of the

vectors v1, . . . ,vk is
any vector of the

form c1v1 + · · ·+ ckvk,
where c1, . . . ,ck ∈ R.

general, if our starting set contains more than just one vector, we might
also have to add general linear combinations of those vectors (not just their
scalar multiples) in order to create a subspace. This idea of enlarging a set so as
to create a subspace is an important one that we now give a name and explore.

Definition 2.3.3
Span

If B = {v1,v2, . . . ,vk} is a set of vectors in Rn, then the set of all linear
combinations of those vectors is called their span, and it is denoted by

span(B) or span(v1,v2, . . . ,vk).

For example, span
(
(2,1)

)
is the line through the origin and the point (2,1),

which was depicted in Figure 2.14 and discussed earlier. As a more useful
example, we note thatRecall that in R2,

e1 = (1,0) and
e2 = (0,1).

if e1 and e2 are the standard basis vectors in R2 then
span(e1,e2) = R2. To verify this claim, we just need to show that every vector
in R2 can be written as a linear combination of e1 and e2, which we learned
how to do back in Section 1.1.3:

(x,y) = xe1 + ye2.

It should seem believable that the natural generalization of this fact to arbitrary
dimensions also holds: span(e1,e2, . . . ,en) = Rn for all n ≥ 1, since we can
always write any vector, in any number of dimensions as a linear combination
of these standard basis vectors:

v = (v1,v2, . . . ,vn) = v1e1 + v2e2 + · · ·+ vnen.
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Example 2.3.4
Determining

Spans

Describe the following spans both geometrically and algebraically.
a) span

(
(1,2),(2,1)

)

b) span
(
(1,2,1),(2,1,1)

)

Solutions:
a) Geometrically, this span seems like it “should” be all of R2, since

we can lay a parallelogram grid with sides (1,2) and (2,1) down on
top of R2. This grid tells us how to create a linear combination of
those two vectors that equals any other vector (we just follow the
lines on the grid and keep track of how far we had to go in each
direction):

(2,1)

(1,2)

x

y

To verify that span
(
(1,2),(2,1)

)
= R2 algebraically, we show that

for every (x,y) ∈ R2 we can find coefficients c1,c2 ∈ R such that

(x,y) = c1(1,2)+ c2(2,1).

If we compare the entries of the vectors on the left- and right-hand
sides of that equation, we see that this is actually a system of linear

Be careful: the
variables in this

linear system are c1
and c2, not x and y.

We are trying to
solve for c1 and c2,

while we should just
think of x and y as

unknown constants
that are given
ahead of time.

equations:

c1 +2c2 = x

2c1 + c2 = y

We can solve this linear system by using row operations to put it in
row echelon form:

[
1 2 x
2 1 y

]
R2−2R1−−−−→

[
1 2 x
0 −3 y−2x

]
.

From here, we could explicitly solve the system to find values for
c1 and c2, but it is enough to notice that this row echelon form has
no row of the form

[
0 0 | b

]
, so it has a solution regardless of

the values of x and y. That is, we can always write (x,y) as a linear
combination of (1,2) and (2,1).

b) This set should be the plane in R3 containing the vectors (1,2,1)
and (2,1,1), which is displayed below. Just like in the previous
2D example, we can lay out a parallelogram grid using these two
vectors that tells us how to use a linear combination to reach any
vector on this

The span of any two
non-zero vectors is

always either a line
(if the vectors are

collinear) or a plane
(if they are not

collinear). plane.
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yyyyyy

(2,1,1)

(1,2,1)

x

z

To come up with an algebraic description of this plane, we use
the same procedure that we did in part (a). We start with a vector
(x,y,z) ∈ R3 and we try to find c1,c2 ∈ R such that

(x,y,z) = c1(1,2,1)+ c2(2,1,1).

By setting the entries of the vectors on the left- and right-hand-
sides equal to each other, we can interpret this as a system of linear
equations, which we can solve as follows:

Again, the variables
that we are solving

for in this linear
system are c1 and

c2, not x,y, and z.




1 2 x
2 1 y
1 1 z


 R2−2R1

R3−R1−−−−−→




1 2 x
0 −3 y−2x
0 −1 z− x




R3− 1
3 R2−−−−−→




1 2 x
0 −3 y−2x
0 0 z− 1

3 x− 1
3 y


 .

Now that this linear system is in row echelon form, we see that it has
a solution if and only if the bottom-right entry, z = 1

3 x+ 1
3 y, equals

zero. After rearranging and simplifying, this equation becomes
x + y− 3z = 0, so the vector (x,y,z) is a linear combination of
(1,2,1) and (2,1,1) if and only if x+ y−3z = 0.

We motivated the span of a set of vectors as a way of turning that set into
a subspace. We now show that the span of a set of vectors is indeed always a
subspace, as we would hope.

Theorem 2.3.1
Spans are

Subspaces

Let v1,v2, . . . ,vk ∈ Rn. Then span(v1,v2, . . . ,vk) is a subspace of Rn.

Proof. We first note that span(v1,v2, . . . ,vk) is non-empty (for example, it
contains each ofIn fact, we can think

of span(v1,v2, . . . ,vk)
as the smallest

subspace
containing
v1,v2, . . . ,vk.

v1,v2, . . . ,vk). To show that property (a) in the definition
of subspaces (Definition 2.3.1) holds, suppose that v,w ∈ span(v1,v2, . . . ,vk).
Then there exist c1,c2, . . . ,ck,d1,d2, . . . ,dk ∈ R such that

v = c1v1 + c2v2 + · · ·+ ckvk

w = d1v1 +d2v2 + · · ·+dkvk.

By adding these two equations, we see that

v+w = (c1 +d1)v1 +(c2 +d2)v2 + · · ·+(ck +dk)vk,

so v + w is also a linear combination of v1,v2, . . . ,vk, which implies that
v+w ∈ span(v1,v2, . . . ,vk) too.
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Similarly, to show that property (b) holds, note that if c ∈ R then

cv = (cc1)v1 +(cc2)v2 + · · ·+(cck)vk,

so cv ∈ span(v1,v2, . . . ,vk), which shows that span(v1,v2, . . . ,vk) is indeed a
subspace. �

Spans
If

S = span(v1,v2, . . . ,vk)
then we sometimes

say that
{v1,v2, . . . ,vk} spans

S or that S is
spanned by
{v1,v2, . . . ,vk}.

provide us with an any-dimensional way of describing a subspace in
terms of some of the vectors that it contains. For example, instead of saying
things like “the line going through the origin and (2,3)” or “the plane going
through the origin, (1,2,3), and (3,−1,2)”, we can now say span

(
(2,3)

)
or

span
(
(1,2,3),(3,−1,2)

)
, respectively. Being able to describe subspaces like

this is especially useful in higher-dimensional situations where our intuition
about (hyper-)planes breaks down.

It turns out that the range of a matrix can be expressed very conveniently as
the span of a set of vectors in a way that requires no calculation whatsoever—it
can be eyeballed directly from the entries of the matrix.

Theorem 2.3.2
Range Equals the
Span of Columns

Suppose A ∈Mm,n has columns a1,a2, . . . ,an. Then

range(A) = span(a1,a2, . . . ,an).

Proof. Recall from Theorem 1.3.5 that Ax can be written as a

For this reason, the
range of A is

sometimes called its
column space and

denoted by col(A).

linear combina-
tion of the columns a1,a2, . . . ,an of A:

Ax = x1a1 + x2a2 + · · ·+ xnan.

The range of A is the set of all vectors of the form Ax, which thus equals the set
of all linear combinations of a1,a2, . . . ,an, which is span(a1,a2, . . . ,an). �

The above theorem provides an alternate proof of the fact that range(A) is
a subspace, since it equals the span of a set of vectors, and we just showed in
Theorem 2.3.1 that the span of any set of vectors is a subspace. Furthermore,
it is useful for giving us a way to actually get our hands on and compute the
range of a matrix, as we now demonstrate.

Example 2.3.5
Determining

Range
via Columns

Describe the range of A =
[

2 −2
1 −1

]
as the span of a set of vectors.

Solution:
Theorem 2.3.2 says that the range of A is the span of its columns, so

range(A) = span
(
(2,1),(−2,−1)

)
.

This is a fine answer on its own, but it is worthwhile to simplify it
somewhat—the vector (−2,−1) does not actually contribute anything
to the span since it is a multiple of (2,1). We could thus just as well say
that

range(A) = span
(
(2,1)

)
.

Furthermore, both of these spans are the line through the origin and (2,1),
which agrees with the answer that we found in Example 2.3.3.

While we like to describe subspaces as spans of sets of vectors, the previous
example demonstrates that doing so might be somewhat redundant—we can
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describe a line as a span of 2 (or more) vectors, but it seems somewhat silly to
do so when we could just use 1 vector instead. Similarly, we could describe
a plane as the span of 93 vectors, but why would we? Only 2 vectors are
needed. We start looking at this idea of whether or not a set of vectors contains
“redundancies” like these in the next subsection.

We close this subsection by describing how the span of the rows or columns
of a matrix can tell us about whether or not it is invertible.

Theorem 2.3.3
Spanning Sets and
Invertible Matrices

Suppose A ∈Mn. The following are equivalent:
a) A is invertible.
b) The columns of A span Rn.
c) The rows of A span Rn.

Proof. The fact that properties (a) and (b) are equivalent follows from combin-
ing two of our recent previous results: Theorem 2.2.4 tells us that A is invertible
if and only if the linear system Ax = b has a solution for all b ∈ Rn, which
means that every b ∈ Rn can be written as a linear combination of the columns
of A (by Theorem 1.3.5). This is exactly what it means for the columns of A to
span Rn.

The equivalence ofThere are actually
numerous other

conditions that are
equivalent to

invertibility as well.
We will collect these

conditions at the
end of the chapter,

in Theorem 2.5.1.

properties (b) and (c) follows from the fact that A is
invertible if and only if AT is invertible (Theorem 2.2.2(c)), and the rows of A
are the columns of AT . �

Since the range of a matrix equals the span of its columns, the equivalence
of properties (a) and (b) in the above theorem can be rephrased as follows:

! A matrix A ∈Mn is invertible if and only if its range is all of Rn.

The geometric interpretation of this fact is the same as the geometric
interpretation of invertibility that we saw back in Section 2.2.2: if the range
of a matrix is smaller than Rn (for example, a plane in R3), then that matrix
“squashes” space, and that squashing cannot be undone (see Figure 2.15).
However, if its range is all of Rn then it just shuffles vectors around in space,
and its inverse shuffles them back.

x

y

e2

e1

A−−→
Ae1

Ae2

x

y

Figure 2.15: Non-invertible matrices A ∈Mn have range that is strictly smaller than
Rn, so space is “squashed” by the corresponding linear transformation. In this
figure, R2 is sent to a (1-dimensional) line, which cannot be “unsquashed” back
into all of R2.



2.3 Subspaces, Spans, and Linear Independence 131

2.3.3 Linear Dependence and Independence

Recall from earlier that a row echelon form of a matrix can have entire rows of
zeros at the bottom of it. For example, a row echelon form of

[
1 −1 2
−1 1 −2

]
is

[
1 −1 2
0 0 0

]
.

This happens when there is some linear combination of the rows of the
matrix that equals the zero row, and we interpret this roughly as saying that
one of the rows of the matrix (i.e., one of the equations in the associated linear
system) does not “contribute anything new” to the linear system. In the example
above, the second equation of the associated linear system says −x+ y =−2,
which is redundant since the first equation already said that x−y = 2, and these
equations can be obtained from each other just by multiplying one another by
−1.

The following definition captures this idea that a redundancy among vectors
or linear equations can be identified by whether or not some linear combination
of them equals zero.

Definition 2.3.4
Linear

Dependence and
Independence

A set of vectors B = {v1,v2, . . . ,vk} is linearly dependent if there exist
scalars c1,c2, . . . ,ck ∈ R, at least one of which is not zero, such that

c1v1 + c2v2 + · · ·+ ckvk = 0.

If B is not linearly dependent then it is called linearly independent.

For example, the set of vectors
{
(2,3),(1,0),(0,1)

}
is linearly dependent

because
(2,3)−2(1,0)−3(0,1) = (0,0).

On the other hand, the set of vectors
{
(1,0,0),(0,1,0),(0,0,1)

}
is linearly

independent, since the only linear combination of those three vectors that equals
(0,0,0) is the “trivial”More generally, the

set of standard
basis vectors

{e1,e2, . . . ,en} ⊆ Rn is
always linearly
independent,

regardless of n.

linear combination:

0(1,0,0)+0(0,1,0)+0(0,0,1) = (0,0,0).

In general, to check whether or not a set of vectors {v1,v2, . . . ,vk} is
linearly independent, we set

c1v1 + c2v2 + · · ·+ ckvk = 0

and then try to solve for the scalars c1,c2, . . . ,ck. If they must all equal 0
(i.e., if this homogeneous linear system has a unique solution), then the set
is linearly independent, and otherwise (i.e., if the linear system has infinitely
many solutions) it is linearly dependent.

Example 2.3.6
Determining Linear

Independence

Determine whether the following sets of vectors are linearly dependent or
linearly independent:

a)
{
(1,−1,0),(−2,1,2),(1,1,−4)

}

b)
{
(1,2,3),(1,0,1),(0,−1,2)

}

Solutions:
a) More explicitly, we are being asked whether or not there exist (not
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all zero) scalars c1,c2,c3 ∈ R such that

c1(1,−1,0)+ c2(−2,1,2)+ c3(1,1,−4) = (0,0,0).

If we compare the entries of the vectors on the left- and right-hand
sides of this equation, we see that it is actually a linear system:

c1−2c2 + c3 = 0
−c1 + c2 + c3 = 0

2c2−4c3 = 0

We can solve this linear system by using row operations to put it in
row echelon form:




1 −2 1 0
−1 1 1 0
0 2 −4 0


 R2+R1−−−−→




1 −2 1 0
0 −1 2 0
0 2 −4 0




R3+2R2−−−−→




1 −2 1 0
0 −1 2 0
0 0 0 0


 .

From here,

Notice that the
columns of this

coefficient matrix
are exactly the
columns whose

linear
(in)dependence we

are trying to
determine.

we see that the linear system has infinitely many solu-
tions (since it is consistent and c3 is a free variable). If we choose
c3 = 1 andWe could have also

chosen c3 to be any
other non-zero

value.

then solve by back substitution, we find that c2 = 2 and
c1 = 3, which tells us that

3(1,−1,0)+2(−2,1,2)+(1,1,−4) = (0,0,0).

It follows that {(1,−1,0),(−2,1,2),(1,1,−4)} is linearly depen-
dent.

b) Similarly, we now want to know whether or not there exist scalars
c1,c2,c3 ∈ R, not all equal to 0, such that

c1(1,2,3)+ c2(1,0,1)+ c3(0,−1,2) = (0,0,0).

If we set this up as a linear system and solve it just as we did in
part (a), we find the following row echelon

Recall from
Theorem 2.1.2 that
linear systems with

zeros on the
right-hand side are

called
homogeneous and
always have either

infinitely many
solutions like in

part (a), or unique
solution (the zero

vector) like in
part (b).

form:



1 1 0 0
2 0 −1 0
3 1 2 0


 R2−2R1

R3−3R1−−−−−→




1 1 0 0
0 −2 −1 0
0 −2 2 0




R3−R2−−−−→




1 1 0 0
0 −2 −1 0
0 0 3 0




From here we see that the linear system has a unique solution,
since it is consistent and each column has a leading entry. Since
c1 = c2 = c3 = 0 is a solution, it must be the only solution, so
we conclude that the set

{
(1,2,3),(1,0,1),(0,−1,2)

}
is linearly

independent.

We saw in the previous example that we can check linear (in)dependence of
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a set of vectors by placing those vectors as columns in a matrix and augmenting
with a 0 right-hand side. It is worth stating this observation as a theorem:

Theorem 2.3.4
Checking Linear

Dependence

Suppose A ∈Mm,n has columns a1,a2, . . . ,an. The following are equiva-
lent:

a) The set {a1,a2, . . . ,an} is linearly dependent.
b) The linear system Ax = 0 has a non-zero solution.

Proof. We use block matrix multiplication. If A =
[

a1 | a2 | · · · | an
]

then

Ax =
[

a1 | a2 | · · · | an
]



x1
x2
...

xn


= x1a1 + x2a2 + · · ·+ xnan.

It follows that there exists a non-zero x ∈Rn such that Ax = 0 if and only if
there exist constants x1, x2, . . ., xn (not all 0) such that x1a1 +x2a2 + · · ·+xnan =
0 (i.e., {a1,a2, . . . ,an} is a linearly dependent set). �

While it is typically most convenient mathematically to work with linear
dependence in the form described by Definition 2.3.4, we can gain some
intuition for it by rephrasing it in a slightly different way. The idea is to notice
that we can rearrange the equation

c1v1 + c2v2 + · · ·+ ckvk = 0

so as to solve for one of the vectors (say v1) in terms of the others. In other
words, we have the following equivalent characterization of linear

This fact is proved in
Exercise 2.3.21.

(in)dependence:

! A set of vectors is linearly dependent if and only if at least one
of the vectors in the set is a linear combination of the others.

For example, {(1,−1,0),(−2,1,2),(1,1,−4)} is linearly dependent, since

3(1,−1,0)+2(−2,1,2)+(1,1,−4) = (0,0,0).

By rearranging this equation, we can solve for any one of the vectors in terms
of the other two as follows:

(1,−1,0) =− 2
3 (−2,1,2)− 1

3 (1,1,−4),

(−2,1,2) =− 3
2 (1,−1,0)− 1

2 (1,1,−4), and
(1,1,−4) =−3(1,−1,0)−2(−2,1,2).

Geometrically, this means that (1,−1,0), (−2,1,2), and (1,1,−4) all lie
on a common plane. In other words, they span a plane instead of all of R3, and
in this case we could discard any one of these vectors and the span would still
be a plane (see Figure 2.16(a)).

It is important to be a bit careful when rephrasing linear (in)dependence
in terms of one vector being a linear combination of the other vectors in the
set. To illustrate why, consider the set

{
(1,2,1),(2,4,2),(2,1,1)

}
, which is

linearly dependent

Remember that for
linear dependence,

we only need at
least one of the

coefficients to be
non-zero. This set is

still linearly
dependent even
though the third

coefficient is 0.

since

2(1,2,1)− (2,4,2)+0(2,1,1) = (0,0,0).
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However, it is not possible to write (2,1,1) as a linear combination of (1,2,1)
and (2,4,2), since those two vectors point in the same direction (see Fig-
ure 2.16(b)) and so any linear combination of them also lies on the line in that
same direction. This illustrates why we say that a set is linearly dependent if at
least one of the vectors from the set is a linear combination of the others. In
this case, we can write (2,4,2) as a linear combination of (1,2,1) and (2,1,1):
(2,4,2) = 2(1,2,1)+0(2,1,1).

(1,1,−4)

(−2,1,2)

(1,−1,0)

x

y

z

y

(1,2,1)

(2,4,2)

(2,1,1)

x

z

Figure 2.16: If a set of 3 non-zero vectors in R3 is linearly dependent then it spans a
line or a plane, and there is at least one vector in the set with the property that
we can remove it without affecting the span.

One special case of linear (in)dependence that is worth pointing out is
the case when there are only two vectors. A set of two vectors is linearly
dependent if and only if one of the vectors is a multiple of the other one. This
is straightforward enough to prove using the definition of linear dependence
(see Exercise 2.3.20), but geometrically it says that two vectors form a linearly
dependent set if and only if they lie on the same line.

Example 2.3.7
Linear

Independence of a
Set of Two Vectors

Determine whether the following sets of vectors are linearly dependent or
linearly independent:

a)
{
(1,2),(3,1)

}

b)
{
(1,2,3),(2,4,6)

}

Solutions:
a) Since (1,2) and (3,1) are not

We could also
check linear

(in)dependence
using the method of

Example 2.3.6, but
that is overkill when
there are only two

vectors.

multiples of each other (i.e., there
is no c ∈ R such that (3,1) = c(1,2)), we conclude that this set
is linearly independent. Geometrically, this means that these two
vectors do not lie on a common line:

(1,2)

(3,1)
x

y
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b) Since (2,4,6) = 2(1,2,3), these two vectors are multiples of each
other and thus the set is linearly dependent. Geometrically, this
means that these two vectors lie on the same line:

x

y

z

(2,4,6)

(1,2,3)

Similarly, a set of 3 vectors is linearly dependent if and only if they lie on a
common plane, and in general a set of n vectors is linearly dependent if and
only if they lie on a common (n−1)-dimensional hyperplane. More generally,
linear dependence means that a set of vectors is bigger than the dimension of
the hyperplane that they span—an idea that we clarify and make more precise
in the next section.

We close this subsection by introducing a connection between linear inde-
pendence and invertible matrices that is analogous to the connection between
spanning sets and invertible matrices that was provided by Theorem 2.3.3.

Theorem 2.3.5
Independence and

Invertible Matrices

Suppose A ∈Mn. The following are equivalent:
a) A is invertible.
b) The columns of A form a linearly independent set.
c) The rows of A form a linearly independent set.

Proof. The fact that properties (a) and (b) are equivalent follows from com-
bining two of our recent previous results: Theorem 2.2.4 tells us that A is
invertible if and only if the linear system Ax = 0 has a unique solution (which
is necessarily x = 0), and then Theorem 2.3.4 says that is equivalent to the
columns of A forming a linearly independent set.

The equivalenceThe final line of this
proof is identical to
the final line of the

proof of
Theorem 2.3.3.

of properties (b) and (c) follows from the facts that A is
invertible if and only if AT is invertible (Theorem 2.2.2(c)), and the rows of A
are the columns of AT . �

For example, if we go back to the sets of vectors that we considered in
Example 2.3.6, we see that 


1 −2 1
−1 1 1
0 2 −4




is not invertible, since its columns are linearly dependent, while the matrix




1 1 0
2 0 −1
3 1 2
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is invertible, since its columns are linearly independent. Note that this conclu-
sion agrees with the fact that a row echelon form of the former matrix has a
zero row, while a row echelon form of the latter matrix does not (we computed
row echelon forms of these matrices back Example 2.3.6).

The following example illustrates a somewhat more sophisticated way that
the above theorem can be used to establish invertibility of a matrix or family of
matrices.

Example 2.3.8
Vandermonde

Matrices

A Vandermonde matrix is a square

For example, the
matrix




1 1 1
1 2 4
1 3 9




from
Example 2.2.8(d) is

a Vandermonde
matrix with a0 = 1,
a1 = 2, and a2 = 3.

matrix of the form

V =




1 a0 a2
0 · · · an

0

1 a1 a2
1 · · · an

1
...

...
...

. . .
...

1 an a2
n · · · an

n




,

where a0,a1, . . . ,an are real numbers. Show that V is invertible if and only
if a0,a1, . . . ,an are distinct (i.e., ai 6= a j whenever i 6= j).

Solution:
Suppose for now that a0,a1, . . . ,an are distinct. We just learned from

Theorem 2.3.5 that V is invertible if and only if its columns are linearly
independent, which is the case if and only if

c0




1
1
...
1


+ c1




a0
a1
...

an


+ c2




a2
0

a2
1...

a2
n




+ · · ·+ cn




an
0

an
1...

an
n


=




0
0
...
0


 (2.3.1)

implies
Be careful: V is an

(n+1)× (n+1)
matrix, not an n×n

matrix.

c0 = c1 = · · ·= cn = 0.

If we define the polynomial p(x) = c0 + c1x+ c2x2 + · · ·+ cnxn, then
the first entry of Equation (2.3.1) says that p(a0) = 0, the next entry says
that p(a1) = 0, and so on to p(an) = 0. Since p is a degree-n polynomial,
and we just showed that it has n+1 distinct roots (since a0,a1, . . . ,an are
distinct), the factor theorem (Theorem A.2.2) showsThe factor theorem,

as well as other
useful

polynomial-related
facts, are covered
in Appendix A.2.1.

that it must be the
zero polynomial. That is, its coefficients must all equal 0, so c0 = c1 =
· · ·= cn = 0, so the columns of A form a linearly independent set, which
implies that A is invertible via Theorem 2.3.5.

On the other hand, if a0,a1, . . . ,an are not distinct then two of the rows
of V are identical, so the rows of V do not form a linearly independent set,
so V is not invertible.

Remark 2.3.1
Polynomial

Interpolation

Suppose we are given a set of points (x0,y0), (x1,y1), . . ., (xn,yn) in R2

and we would like to find a polynomial whose graph goes through all of
those points (in other words, we want to find a polynomial p for which
p(x0) = y0, p(x1) = y1, . . ., p(xn) = yn).

Since
We assume

throughout this
remark that

x0,x1, . . . ,xn are
distinct.

we can find a line going through any two points, the n = 1 case
of this problem can be solved by a polynomial p of degree 1:
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x

y

(x0,y0)
(x1,y1)

More generally, we can use the invertibility of Vandermonde matrices
to show that there exists a unique degree-nActually, the

interpolating
polynomial might

have leading
coefficient 0 and
thus degree less

than n.

polynomial going through any
given set of n+1 points—this is called the interpolating polynomial of
those points. So just like there is a unique line going through any 2 points,
there is a unique parabola going through any 3 points, a unique cubic
going through any 4 points, and so on:

x

y

x

y

To see why such a polynomial exists (and is unique), recall that a
degree-n polynomial p can be written in the form

p(x) = cnxn + · · ·+ c2x2 + c1x+ c0

for some scalars c0,c1, . . . ,cn. The fact that we are requiring p(x0) = y0,
p(x1) = y1, . . ., p(xn) = yn, can be written explicitly as the linear system




1 x0 x2
0 · · · xn

0

1 x1 x2
1 · · · xn

1
...

...
...

. . .
...

1 xn x2
n · · · xn

n







c0
c1

...
cn


=




y0
y1

...
yn


 ,

where

For example,
p(x0) = y0 can be

written more
explicitly as

cnxn
0 + · · ·+ c0 = y0,
which is the first
equation in this

linear system.

we recognize the coefficient matrix on the left as a Vandermonde
matrix. We showed in Example 2.3.8 that this matrix is invertible whenever
x0,x1, . . . ,xn are distinct. It follows that this linear system has a unique
solution, so there is a unique polynomial p of degree n whose graph goes
through the desired points.

For example, to find the quadratic (i.e., degree-2) polynomial whose
graph goes through the points (−2,13), (1,−2), and (3,8), we construct
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the linear
This linear system is

constructed by
placing powers of

the x-coordinates in
the coefficient
matrix and the

y-coordinates in the
right-hand-side

vector.

system




1 −2 4
1 1 1
1 3 9






c0
c1
c2


=




13
−2
8


 ,

which has unique solution (c0,c1,c2) = (−1,−3,2). The desired quadratic
(i.e., the interpolating polynomial of the 3 given points) is thus

p(x) = c2x2 + c1x+ c0 = 2x2−3x−1.

To double-check that this polynomial does indeed interpolate those points,
we could plug values into p to see that it is indeed the case that p(−2) = 13,
p(1) =−2, and p(3) = 8.

Exercises solutions to starred exercises on page 451

2.3.1 Determine which of the following sets are and are
not subspaces.

∗(a) The graph of the function y = x+1 in R2.
(b) The graph of the function y = 3x in R2.
∗(c) The graph of the function y = sin(x) in R2.
(d) The set of unit vectors in R3.
∗(e) The set of solutions (x,y,z) to x+2y+3z = 4.

(f) The set of solutions (x,y,z) to x− y+8z = 0.
∗(g) {(x,y) ∈ R2 : x+2y = 0}
(h) {(x,y) ∈ R2 : x+ y≥ 0}
∗(i) {(x,y) ∈ R2 : xy≥ 0}
(j) {(x,y,z) ∈ R3 : xy+ yz = 0}

2.3.2 For each of the following sets of vectors in R2, de-
termine whether its span is a line or all of R2. If it is a line
then give an equation of that line.

∗(a) {(1,1),(2,2),(3,3),(−1,−1)}
(b) {(2,3),(0,0)}
∗(c) {(1,2),(2,1)}

2.3.3 For each of the following sets of vectors in R3, de-
termine whether its span is a line, a plane, or all of R3. If
it is a line then say which direction it points in, and if it is
a plane then give an equation of that plane (recall that an
equation of a plane has the form ax+by+ cz = d).

∗(a) {(1,1,1),(0,0,0),(−2,−2,−2)}
(b) {(0,1,−1),(1,2,1),(3,−1,4)}
∗(c) {(1,2,1),(0,1,−1),(2,5,1)}
(d) {(1,1,0),(1,0,−1),(0,1,1),(1,2,1)}

2.3.4 Describe the range and null space of the follow-
ing matrices geometrically. That is, determine whether they
are {0}, a line, or all of R2. If they are a line then give an
equation of that line.

∗(a)
[

1 1
1 1

]

∗(c)
[

0 1
2 3

]

(b)
[

1 2
2 4

]

(d)
[

0 0
0 0

]

2.3.5 Describe the range and null space of the following
matrices geometrically. That is, determine whether they are
{0}, a line, a plane, or all of R3. If they are a line then say
which direction they point in, and if they are a plane then
give an equation of that plane (recall that an equation of a
plane has the form ax+by+ cz = d).

∗(a)



1 1 2
1 1 2
2 2 4




∗(c)



1 1 1
1 1 0
1 0 0




(b)



1 0 0
0 1 1
0 1 1




(d)



1 2 3
2 3 4
3 4 6




2.3.6 Determine which of the following sets are and are
not linearly independent.

∗(a) {(1,2),(3,4)}
(b) {(1,0,1),(1,1,1)}
∗(c) {(1,0,−1),(1,1,1),(1,2,−1)}
(d) {(1,2,3),(4,5,6),(7,8,9)}
∗(e) {(1,1),(2,1),(3,−2)}

(f) {(2,1,0),(0,0,0),(1,1,2)}
∗(g) {(1,2,4,1),(2,4,−1,3),(−1,1,1,−1)}
(h) {(0,1,1,1),(1,0,1,1),(1,1,0,1),(1,1,1,0)}

§ 2.3.7 Use computer software to determine which of
the following sets of vectors span all of R4.

∗(a) {(1,2,3,4),(3,1,4,2),(2,4,1,3),(4,3,2,1)}
(b) {(4,2,5,2),(3,1,2,4),(1,4,2,3),(3,1,4,2)}
∗(c) {(4,4,4,3),(3,3,−1,1),(−1,2,1,2),

(1,0,1,−1),(3,3,2,2)}
(d) {(2,−1,4,−1),(3,1,2,1),(0,1,3,4),

(−1,−1,5,2),(1,3,1,6)}

§ 2.3.8 Use computer software to determine which of
the following sets are and are not linearly independent.

∗(a) {(1,2,3,4),(3,1,4,2),(2,4,1,3),(4,3,2,1)}
(b) {(3,5,1,4),(4,4,5,5),(5,0,4,3),(1,1,5,−1)}
∗(c) {(5,4,5,1,5),(4,3,3,0,4),(−1,0,3,−1,4)}
(d) {(5,−1,2,4,3),(4,−8,1,−4,−9),(2,2,1,4,5)}
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2.3.9 Determine which of the following statements are
true and which are false.

∗(a) If vectors v1,v2, . . . ,vk ∈ Rn are such that no two of
these vectors are scalar multiples of each other then
they must be linearly independent.

(b) Suppose the vectors v1,v2, . . . ,vk ∈ Rn are drawn,
head-to-tail (i.e., the head of v1 at the tail of v2, the
head of v2 at the tail of v3, and so on). If the vectors
form a closed loop (i.e., the head of vk is at the tail
of v1), then they must be linearly dependent.

∗(c) The set containing just the zero vector, {0}, is a sub-
space of Rn.

(d) Rn is a subspace of Rn.
∗(e) If v,w ∈ R3 then span(v,w) is a plane through the

origin.
(f) Let v1,v2, . . . ,vk be vectors in Rn. If k ≥ n then it

must be the case that span(v1,v2, . . . ,vk) = Rn.

2.3.10 For what values of k is the following set of vectors
linearly independent?

{
(1,2,3),(−1,k,1),(1,1,0)

}

2.3.11 For which values of k, if any, do the given vectors
span (i) a line, (ii) a plane, or (iii) all of R3?

∗(a) (0,1,−1),(1,2,1),(k,−1,4)
(b) (1,2,3),(3,k,k +3),(2,4,k)

2.3.12 Use the method of Remark 2.3.1 to find a polyno-
mial that goes through the given points.

∗(a) (2,1),(5,7)
(b) (1,1),(2,2),(4,4)
∗(c) (1,1),(2,2),(4,10)
(d) (−1,−3),(0,1),(1,−1),(2,3)

∗∗2.3.13 Suppose A ∈Mm,n is a matrix. Show that if
b 6= 0 is a column vector then the solution set of the linear
system Ax = b is not a subspace of Rn. [Side note: Recall
that it is a subspace (the null space) if b = 0.]

∗∗2.3.14 Let An be the n×n matrix with entries 1,2, . . . ,n2

written left-to-right, top-to-bottom. For example,

A2 =

[
1 2
3 4

]
and A3 =




1 2 3
4 5 6
7 8 9


 .

Show that An is invertible if and only if n≤ 2.

[Hint: Write the third row of An as a linear combination of
its first two rows.]

∗∗2.3.15 Show that a non-empty set S is a subspace of
Rn if and only if

c1v1 + · · ·+ ckvk ∈ S

for all v1, . . . ,vk ∈ S and all c1, . . . ,ck ∈ R.

2.3.16 Suppose A =
[

0 1
1 0

]
.

(a) Find all vectors v∈R2 with the property that {v,Av}
is a linearly dependent set.

(b) Interpret your answer to part (a) geometrically. In
particular, use the fact that A is the standard matrix
of some well-known linear transformation.

§ 2.3.17 Use computer software to determine whether or
not v = (1,2,3,4,5) is in the range of the given matrix.

∗(a) 


3 −1 1 0 −1
2 1 −1 4 0
1 1 −1 1 2
2 1 2 0 0
−1 3 −1 3 2




(b) 


4 1 2 3 2 2 −1
0 −1 4 2 0 4 2
−1 2 0 2 4 3 3
3 1 −1 0 2 2 3
−1 0 −1 4 3 0 3




∗2.3.18 Let A ∈Mn. Show that the set of vectors v ∈ Rn

satisfying Av = v is a subspace of Rn.

[Side note: This subspace is sometimes called the fixed-
point subspace of A.]

2.3.19 Suppose v,w ∈ Rn. Show that

span(v,w) = span(v,v+w).

∗∗2.3.20 Prove that a set of two vectors {v,w} ⊂ Rn is
linearly dependent if and only if v and w lie on the same
line (i.e., v = cw or w = 0).

∗∗2.3.21 Prove that a non-empty set of vectors is linearly
dependent if and only if at least one of the vectors in the set
is a linear combination of the others.

2.3.22 Suppose that the set of vectors {v,w,x} ⊆ Rn is
linearly independent.

(a) Show that the set {v + w,v + x,w− x} is linearly
dependent.

(b) Show that the set {v + w,v + x,w + x} is linearly
independent.

(c) Determine whether or not {v,v + w,v + w + x} is
linearly independent, and justify your answer.

∗∗2.3.23 Suppose that B ⊆ Rn is a finite set of vectors.
Show that if 0 ∈ B then B is linearly dependent.

2.3.24 Suppose that w,v1,v2, . . . ,vk ∈Rn are vectors such
that w is a linear combination of v1,v2, . . . ,vk . Show that

span(w,v1,v2, . . . ,vk) = span(v1,v2, . . . ,vk).

∗2.3.25 Suppose that B⊆C⊆Rn are finite sets of vectors.

(a) Show that if B is linearly dependent, then so is C.
(b) Show that if C is linearly independent, then so is B.

2.3.26 Prove that a set of n vectors in Rm is linearly de-
pendent whenever n > m.
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∗∗2.3.27 Suppose that A ∈Mm,n and B ∈Mn,p.

(a) Show that range(AB)⊆ range(A).
(b) Show that null(B)⊆ null(AB).
(c) Provide an example to show that range(AB) might

not be contained in range(B), and null(A) might not
be contained in null(AB).

∗∗ 2.3.28 Suppose v1,v2, . . . ,vn ∈ Rn are vectors
and c1,c2, . . . ,cn ∈ R are non-zero scalars. Show that
{v1,v2, . . . ,vn} is linearly independent if and only if
{c1v1,c2v2, . . . ,cnvn} is linearly independent.

§ 2.3.29 Let Vn be the n×n Vandermonde matrix (see
Example 2.3.8)

Vn =




1 1 1 · · · 1

1 2 4 · · · 2n−1

1 3 9 · · · 3n−1

...
...

...
. . .

...

1 n n2 · · · nn−1




.

(a) Use computer software to compute V−1
n when n =

2,3,4,5.
(b) Based on the computations from part (a), guess a

formula for the entries in the first row of V−1
n that

works for all n.
[Side note: There is an explicit formula for the in-
verse of arbitrary Vandermonde matrices, but it is
quite nasty.]

2.4 Bases and Rank

When describing a subspace as the span of a set of vectors, it is desirable
to avoid redundancies. For example, it seems a bit silly to describe the plane
x+y−3z = 0 in R3 (see Figure 2.17) as span

(
(1,2,1),(2,1,1),(3,3,2)

)
, since

the vector (3,3,2)In particular,
(3,3,2) =

(1,2,1)+(2,1,1).

is a linear combination of (1,2,1) and (2,1,1) and thus
contributes nothing to the span—we could instead just say that the plane
is span

(
(1,2,1),(2,1,1)

)
. In this section, we explore this idea of finding a

smallest possible description of a

We typically prefer
to write subspaces

as a span of as few
vectors as possible.

subspace.

x+ y−3z = 0

(2,1,1)
(1,

2,
1)

(3,3,2)

x

z

Figure 2.17: The plane x+ y−3z = 0 is the span of the three vectors (1,2,1), (2,1,1),
and (3,3,2). However, it is also the span of any two of these three vectors, since
they are all linear combinations of each other.

2.4.1 Bases and the Dimension of Subspaces

The key tool for making spanning sets as small as possible is linear indepen-
dence. For example, a plane in R3 is spanned by any linearly independent
set of two vectors on the plane (i.e., two vectors that are not parallel to each
other). More than two vectors could be used to span the plane, but they would
necessarily be linearly dependent. On the other hand, there is no way to use
fewer than two vectors to span a plane, since the span of just one vector is a
line (see Figure 2.18).
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Two or more vectors
can also span a line,

if they all point in
the same or

opposite directions.

y

x

z

y

x

z

y

x

z

Figure 2.18: The most efficient way to express a plane as a span of vectors on that
plane is to use two non-parallel vectors, since one vector is too few (it spans just a
line) and three or more non-parallel vectors are redundant (all vectors after the
second one tell us nothing new about the plane).

For planes in R3, it is thus the case that every linearly independent set con-
tains at most 2 vectors, whereas every spanning set contains at least 2 vectors.
A similar size trade-off occurs in general for all subspaces (as we will prove
later in this section), which leads to the following definition:

Definition 2.4.1
Bases

A basis of a subspace S ⊆ Rn is a set of vectors in S that
a) spans S , and
b) is linearly independent.

The
A basis is not too big

and not too
small—it’s just right.

idea of a basis is that it is a set that is “big enough” to span the subspace,
but it is not “so big” that it contains redundancies. That is, it is “just” big enough
to span the subspace.

We actually already saw some bases in previous sections of this book. For
example, the set {e1,e2, . . . ,en}⊂Rn of standard basis vectors is (as their name
suggests) indeed a basis of Rn, and it is called the standard basis. To verify
that it is a basis, we need to show (a) that its span is Rn (which we already
showed immediately after introducing spans in Section 2.3.2), and (b) that
{e1,e2, . . . ,en} is linearly independent. To see linear independence, suppose
that

c1e1 + c2e2 + · · ·+ cnen = 0.

The vector on the left is just (c1,c2, . . . ,cn), and if that vector equals 0 then
c1 = c2 = · · · = cn = 0, which means exactly that {e1,e2, . . . ,en} is linearly
independent. We now look at some less trivial examples of bases of subspaces.

Example 2.4.1
Showing That a

Set is a Basis

Show that the following sets B are bases of the indicated subspace S .
a) B =

{
(1,2,1),(2,1,1)

}
, S is the plane x+ y−3z = 0 in R3.

b) B =
{
(1,1,2),(1,2,1),(2,1,1)

}
, S = R3.

Solutions:
a) We showed in Example 2.3.4(b) that span

(
(1,2,1),(2,1,1)

)
is ex-

actly this plane, so we just need to show linear independence. Since
there are only two vectors in this set,

Recall that a set
{v,w} with two

vectors is linearly
dependent if and
only if v and w are
multiples of each

other.

linear independence follows
from the fact that (1,2,1) and (2,1,1) are not multiples of each
other.

b) We have to show that span(B) = R3 and that B is linearly indepen-
dent. To see that B spans R3, we find which vectors (x,y,z) are in
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the span using the same method of Example 2.3.4:



1 1 2 x
1 2 1 y
2 1 1 z


 R2−R1

R3−2R1−−−−→




1 1 2 x
0 1 −1 y− x
0 −1 −3 z−2x




R3+R2−−−−→




1 1 2 x
0 1 −1 y− x
0 0 −4 z+ y−3x


 .

Now that this linear system is in row echelon form, we see that
it has a solution no matter what x,y, and z are (their values only
change what the solution is, not whether or not a solution exists), so
span(B) = R3.

Next, we have to show that B is linearly independent. To do so, we
place the vectors from B as columns into a matrix, augment with a
0 right-hand side, and solve (i.e., we use

Notice that the
linear

independence
calculation is

identical to the
span calculation

that we did above,
except for the

augmented
right-hand side.

Theorem 2.3.4):



1 1 2 0
1 2 1 0
2 1 1 0


 R2−R1

R3−2R1−−−−→




1 1 2 0
0 1 −1 0
0 −1 −3 0




R3+R2−−−−→




1 1 2 0
0 1 −1 0
0 0 −4 0


 .

From here we can see that this linear system has a unique solution,
which must be the zero vector, so B is linearly independent. Since it
spans R3 and is linearly independent, we conclude that B is a basis
of R3.

Remark 2.4.1
The Zero Subspace

and the Empty
Basis

Bases give us a standardized way of describing subspaces of Rn, so we
would like every subspace to have at least one. We will see in the upcoming
Theorem 2.4.5 that subspaces do indeed all have bases, but there is one
subspace that is worth devoting some special attention to in this regard—
the zero subspace {0}.We similarly call

subspaces other
than {0} non-zero

subspaces.
The only subsets of {0} are {} and {0} itself, so these are the only sets

that could possibly be bases of it. However, we showed in Exercise 2.3.23
that {0} is linearly dependent, so the only possible basis of the zero
subspace {0} is the empty set {}.

Fortunately, {} is indeed a basis of {0}. To see that it is linearly
independent, notice that if we choose B = {} (i.e., k = 0) in Definition 2.3.4
then there is no non-zero linear combination of the members of B adding
up to 0, so it is not linearly dependent. Similarly, the span of the empty set
{} is indeed {0} (not {}), since every linear combination of the members
of {} is an “empty sum” (i.e., a sum with no terms in it). Empty sums are
chosen to equal 0 simply by definition.

In general, bases are very non-unique—every subspace other than {0}
has infinitely many different bases. For example, we already showed that
R3 has at least two bases: {e1,e2,e3} and

{
(1,1,2),(1,2,1),(2,1,1)

}
(from

Example 2.4.1(b)). To obtain even more bases of R3, we could just rotate any
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one vector from an existing basis, being careful not to rotate it into the plane
spanned by the other two basis vectors (see Figure 2.19).

(2,1,1)

(1,2,1)
(1,1,2)

x

z

Figure 2.19: The set
{
(1,1,2),(1,2,1),(2,1,1)

}
is a basis of R3, and it will remain a basis

of R3 even if we change (1,1,2) to any vector that is not a linear combination of
(i.e., not in the planed spanned by) the other two vectors.

However, one thing that never changes is the number of vectors in a basis.
For example, the fact that all of the bases of R3 that we have seen consist of
exactly 3 vectors is not a coincidence—they all have exactly that many vectors.
To prove this claim, we first need the following theorem that pins down the
idea that linearly independent sets are “small”, while spanning sets are “big”.

Theorem 2.4.1
Linearly

Independent
Sets Versus

Spanning Sets

Let S be a subspace of Rn, and suppose that B,C ⊆ S are finite sets with
the properties that B is linearly independent and span(C) = S . Then

|B| ≤ |C|.

Proof. We begin by giving names to the vectors in B and C: we write B =
{v1,v2, . . . ,vk} and C = {w1,w2, . . . ,w`}, where k = |B| and ` = |C|.

We prove the resultThe notation |B|
means the number
of vectors in the set

B.

by showing that if ` < k and C spans S , then B must in
fact be linearly dependent. To prove this claim, we observe that since C spans
S , and vi ∈ B⊆S for all 1≤ i≤ k, we can write each vi as a linear combination
of w1,w2, . . . ,w`:

vi = ai,1w1 +ai,2w2 + · · ·+ai,`w` for 1≤ i≤ k, (2.4.1)

where each of the ai, j’s (1≤ i≤ k, 1≤ j ≤ `) is a scalar.
To make the rest of the proof simpler, we place these scalars into vectors

and matrices in the “usual” way—we define A ∈Mk,` to be the matrix whose
(i, j)-entry is ai, j, V ∈Mn,k to be the matrix whose columns are v1,v2, . . . ,vk,
and W ∈Mn,` to be the matrix whose columns are w1,w2, . . . ,w`.In words, this

theorem says that in
any subspace,

every linearly
independent set is
smaller than every

spanning set.

We can
then succinctly rewrite the linear system (2.4.1) as the single matrix equation
V =WAT , since block matrix multiplication shows that the i-th column of WAT

equals
ai,1w1 +ai,2w2 + · · ·+ai,`w`,

which equals vi (the i-th column of V ).
Next, Corollary 2.1.4 tells us that there is a non-zero solution x ∈ Rk to the

linear system AT x = 0, since AT has more columns than rows. It follows that

V x = (WAT )x = W (AT x) = W0 = 0.
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Finally, since the linear system V x = 0 has a non-zero solution, Theorem 2.3.4
tells us that the set B = {v1,v2, . . . ,vk} consisting of the columns of V is
linearly dependent, which completes the proof. �

The previous theorem roughly says that there is a sort of tug-of-war that
happens between linear independent and spanning sets—a set has to be “small
enough” in order for it to be linearly independent, while it has to be “big
enough” in order for it to span the subspace it lives in. Since bases require that
both of these properties hold, their size is actually completely determined by
the subspace that they span.

Corollary 2.4.2
Uniqueness of

Size of Bases

Suppose S is a subspace of Rn. Every basis of S has the same number of
vectors.

Proof. This result follows immediately from Theorem 2.4.1: if B ⊆ S and
C⊆S are bases of S then |B| ≤ |C| since B is linearly independent and C spans
S . On the other hand, |C| ≤ |B| since C is linearly independent and B spans S .
It follows that |B|= |C|. �

Until now, we have never actually defined exactly what we mean by the
“dimension” of a subspace of Rn. While this concept is intuitive enough in the
cases that we can visualize (i.e., dimensions 1, 2, and 3), one of the main uses
of the above corollary is that it lets us unambiguously extend this concept to
larger subspaces that we cannot draw pictures of.

Definition 2.4.2
Dimension of a

Subspace

Suppose S is a subspace of Rn. The number of vectors in a basis of S is
called the dimension of S and is denoted by dim(S).

While the above definition of dimension might seem a bit strange at first,
it actually matches our intuitive notion of dimension very well. For example,
dim(Rn) = n since the standard basis of Rn (i.e., the set {e1,e2, . . . ,en}) con-
tains exactly n vectors. Similarly, lines are 1-dimensional since a single vector
acts as a basis of a line, planes in R3 are 2-dimensional since two non-parallel
vectors form a basis of a plane (see Figure 2.20), and the zero subspace {0} is
0-dimensional as a result of Remark 2.4.1 (which agrees with our intuition that
a single point is 0-dimensional).

x

y

z

x

y

z

Figure 2.20: Our new definition of dimension agrees with our intuitive understanding
of dimension: lines and planes are 1- and 2-dimensional, respectively, as we would
expect.
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Furthermore, by combining Theorem 2.4.1 with Definition 2.4.2, we see
that not only are linearly independent sets “small” and spanning sets “large”,
but the point that separates “small” from “large” is exactly the dimension of
the subspace that is being worked in. That is, for every subspace S of Rn, the
following fact holds:

! size of a linearly independent set≤ dim(S)≤ size of a spanning set

So, for example, any linearly independent set that is contained within a plane
has at most 2 vectors, and any set that spans a plane has at least 2 vectors.

Example 2.4.2
Finding a Basis
and Dimension

Find a basis of the following subspaces S of R3 and thus compute their
dimension.

a) S = span
(
(1,1,1),(1,2,3),(3,2,1)

)
.

b) The set S of vectors (x,y,z) satisfying the equation 2x−y+3z = 0.

Solutions:
a) It seems natural to first guess that B =

{
(1,1,1),(1,2,3),(3,2,1)

}

might be a basis of this subspace. By the definition of S , we already
know that S = span(B), so we just need to check linear indepen-
dence of B, which we do in the usual way by placing the vectors
from B into a matrix as columns, and augmenting with a 0 right-hand
side:




1 1 3 0
1 2 2 0
1 3 1 0


 R2−R1

R3−R1−−−−→




1 1 3 0
0 1 −1 0
0 2 −2 0




R3−2R2−−−−→




1 1 3 0
0 1 −1 0
0 0 0 0


 .

We see from the above row echelon form that this system of equa-
tions has infinitely many solutions, so B is a linearly dependent set.
We can thus discard

Be slightly careful
here: the discarded

vector must be a
linear combination

of the other vectors
in the set. In this

case, any of the
vectors can be
discarded, but

sometimes we have
to be careful (see

Exercise 2.4.23).

one of the vectors from B without affecting
span(B). If we (arbitrarily) decide to discard (1,1,1) then we arrive
at the set C = {(1,2,3),(3,2,1)}, which has the same span as B.
Furthermore, C is linearly independent since (1,2,3) and (3,2,1)
are not multiples of each other. It follows that C is a basis of S , and
S is 2-dimensional (i.e., a plane) since C contains 2 vectors.

yyyyy

(1,1,1)

(1,2,3)

(3,2,1)

x

z
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b) Unlike in part (a), we do not have an “obvious” choice of basis to use
as our starting point here. Instead, we start by picking (arbitrarily)
the vector (1,−1,−1), which we can see is in S since 2(1)−(−1)+
3(−1) = 0. However, this vector by itself does not span S since we
can find a vector in S but not in span

(
(1,−1,−1)

)
—in particular,

To see that
(3,3,−1) ∈ S we

compute
2(3)− (3)+3(−1) = 0.

(3,3,−1) is one such vector. If we set B =
{
(1,−1,−1),(3,3,−1)

}
,

then we can see that B is linearly independent since the two vec-
tors in B are not multiples of each other. To check whether or not
span(B) = S, we check which vectors (x,y,z) are linear combina-
tions of the members of B:




1 3 x
−1 3 y
−1 −1 z


 R2+R1

R3+R1−−−−→




1 3 x
0 6 x+ y
0 2 x+ z




R3− 1
3 R2−−−−−→




1 3 x
0 6 x+ y
0 0 2

3 x− 1
3 y+ z


 .

The above system of linear equations has a solution (and thus (x,y,z)
is in span(B)) if and only if 2

3 x− 1
3 y+ z = 0. Multiplying this equa-

tion by 3 shows that 2x− y + 3z = 0, so span(B) is exactly the
subspace S and B is a basis of S . Furthermore, dim(S) = 2 since B
contains 2

In general, any two
vectors on a plane

that are not
multiples of each
other form a basis

of that plane.

vectors.

y

(3,333,−1)

(1,−1,−1)

(
x

z

When constructing bases of subspaces, it is very useful to be able to tweak
linearly independent or spanning sets that we have already found. For example,
in Example 2.4.2(a) we started with a set B that spanned a subspace S , and we
discarded vectors from B until it was small enough to be a basis of S. On the
other hand, in Example 2.4.2(b) we started with a linearly independent set and
we added vectors to it until it was large enough to be a basis of S .

The following theorem says that both of these procedures always work—we
can always toss away vectors from a spanning set until it is small enough to be
a basis, and we can always add new vectors to a linearly independent set until
it is big enough to be a basis.

Theorem 2.4.3
Creating a Basis

from a Set of Vectors

Suppose S is a subspace of Rn and B⊆ S is a finite set of vectors.
a) If B is linearly independent then there is a basis C of S with B⊆C.
b) If B spans S then there is a basis C of S with C ⊆ B.

Proof. Suppose B = {v1,v2, . . . ,vk}. To prove part (a), notice that if span(B) =
S then we are done: B is linearly independent and spans S , and is thus a basis
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of it. On the other hand, if
Part (a) of this

theorem is
sometimes phrased

as “any linearly
independent set

can be extended to
a basis”.

it does not span S then there exists a vector w ∈ S
that is not a linear combination of v1,v2, . . . ,vk.

Our next step is to show that the set {w,v1,v2, . . . ,vk} is linearly indepen-
dent. To show this, we suppose that

dw+ c1v1 + c2v2 + · · ·+ ckvk = 0,

with the goal of showing that d = c1 = c2 = · · ·= ck = 0. Well, d = 0 since oth-
erwise we could rearrange the equation to show that w is a linear combination
of v1,v2, . . . ,vk. It is thus the case that

c1v1 + c2v2 + · · ·+ ckvk = 0.

However, since {v1,v2, . . . ,vk} is a linearly independent set, this means that
c1 = c2 = · · ·= ck = 0 too, so {w,v1,v2, . . . ,vk} is indeed linearly independent.

We then repeat: if {w,v1,v2, . . . ,vk} spans S then it must be a basis of S,
whereas if it does not span S we can add another vector to it while preserving
linear independence. Since S is contained in Rn, we cannot find a linearly inde-
pendent subset of it containing more than n vectors, so this process eventually
terminates—we must arrive at a linearly independent set C ⊆ S (with no more
than n vectors) that spans S , and is thus a basis of it.

The proof of part (b) of the theorem is quite similar, and is thus left as
Exercise 2.4.22. �

If we know the dimension of a subspace S in advance (as is often the case
with lines, planes, and other “familiar” subspaces), we can save ourselves quite
a bit of work when trying to determine whether or not a particular set is a
basis of S. The following theorem summarizes the simplest way to solve this
problem. In particular, it shows that if the size of the proposed basis is right then
we only have to check one of the two defining properties of bases (spanning or
linear independence)—the other property comes for free.

Theorem 2.4.4
Determining if a

Set is a Basis

Suppose S is a subspace of Rn and B⊆ S is a set containing k vectors.
a) If k 6= dim(S) then B is not a basis of S .
b) If k = dim(S) then the following are equivalent:

i) B spans S ,
ii) B is linearly independent, and

iii) B is a basis of S .

Proof. Part (a) of the theorem follows immediately from the definition of
dimension (Definition 2.4.2) and the fact that all bases have the same size
(Corollary 2.4.2).

For
A lot of the proofs

involving bases just
involve definition

chasing. We do not
do anything

particularly clever in
these proofs, but

rather just string
together definitions

as appropriate.

part (b), we note that condition (iii) immediately implies conditions (i)
and (ii), since all bases (by definition) are linearly independent and span S .

To see that condition (ii) implies condition (iii), we note that Theorem 2.4.3(a)
says that, since B is linearly independent, we can add 0 or more vectors to B to
create a basis of S. However, B already has k vectors and dim(S) = k, so all
bases of S have exactly k vectors. It follows that the only possibility is that B
becomes a basis when we add 0 vectors to it—i.e., B itself is already a basis of
S .

The proof that condition (i) implies condition (iii) is similar, and left as
Exercise 2.4.24. �
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Example 2.4.3
Determining if a

Set is a Basis

Determine whether or not the given set B is a basis of R3.
a) B =

{
(1,2,3),(4,1,2)

}

b) B =
{
(1,−1,−1),(2,2,−1),(1,1,0)

}

Solutions:
a) B is not a basis of R3 since R3 is 3-dimensional, but B contains only

2 vectors.

b) Since R3 is 3-dimensional and B contains 3 vectors, we conclude
that B might be a basis—we just have to make sure that it is linearly
independent or spans all of R3. We decide to check that it is linearly
independent, which we do by placing the vectors from B as columns
into a matrix and augmenting with a 0 right-hand side as usual:

Checking linear
independence is a

bit easier than
checking that a set

is spanning, since
the right-hand side
of the linear system

then has the zero
vector 0 rather than
an arbitrary vector x.




1 2 1 0
−1 2 1 0
−1 −1 0 0


 R2+R1

R3+R1−−−−→




1 2 1 0
0 4 2 0
0 1 1 0




R3− 1
4 R2−−−−−→




1 2 1 0
0 4 2 0
0 0 1/2 0


 .

Since the above linear system has a unique solution, we conclude
that B is indeed linearly independent, so it is a basis of R3.

Example 2.4.4
Determining if a

Set is a Basis...
Again

Determine whether or not B =
{
(1,−1,−1),(2,2,−1)

}
is a basis of the

plane S ⊂ R3 defined by the equation 3x− y+4z = 0.

Solution:
This plane is 2-dimensional and B contains 2 vectors, so B might be

a basis of S. To confirm that it is a basis, we first double-check that its
members are actually in S in the first place, which we do by verifying that
they both satisfy the given equation of the plane:

3(1)− (−1)+4(−1) = 0 and 3(2)− (2)+4(−1) = 0.

With that technicality out of the way, we now just need to check that
B either spans all of S or that B is linearly independent. Checking linear
independence is much easier in this case, since we can just notice that
(1,−1,−1) and (2,2,−1) are not multiples of each other, so B is indeed a
basis of S .

Up until now, we have not actually showed that all subspaces have bases.
We now fill this gap and show that we can indeed construct a basis of any
subspace. Furthermore, a basis can be found via the procedure that we used
to find one in Example 2.4.2(b): we just pick some vector in the subspace,
then pick another one that is not a linear combination of the vector we already
picked, and so on until we have enough that they span the whole subspace.

Theorem 2.4.5
Existence of Bases

Every subspace of Rn has a basis.

Proof. We start by choosing a largest possible linearly independent set of
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vectors in the subspace S , and calling it B = {v1,v2, . . . ,vm} (a largest such set
indeed exists, and has m≤ n, since no linearly independent set in Rn can have
more than n vectors).If S = {0} is the zero

subspace then the
largest linearly

independent set of
vectors in it is the
empty set {}. The

rest of the proof falls
apart in this case,

but that’s okay
because we

already know from
Remark 2.4.1 that S

has a basis: {}.

We claim that B is in fact a basis of S, so our goal is to
show that span(B) = S .

To verify this claim, let w be any vector in S—we want to show that
w ∈ span(B). We know that the set {w,v1,v2, . . . ,vm} is linearly dependent
since it contains m + 1 vectors, and the largest linearly independent set in S
contains m vectors. We can thus find scalars d, c1, c2, . . ., cm (not all equal to
zero) such that

dw+ c1v1 + c2v2 + · · ·+ cmvm = 0.

Since B is linearly independent, we know that if d = 0 then c1 = c2 = · · ·=
cm = 0 too, which contradicts our assumption that not all of these scalars equal
0. We thus conclude that d 6= 0, so we can rearrange this equation into the form

w =−c1

d
v1−

c2

d
v2−·· ·−

cm

d
vm.

It follows that w ∈ span(B), so span(B) = S , as claimed. �

The above theorem can be thought of as the converse of Theorem 2.3.1:
not only is every span a subspace, but also every subspace can be written as
the span of a finite set of vectors. Furthermore, that set of vectors can even be
chosen to be linearly independent (i.e., a basis).

2.4.2 The Fundamental Matrix Subspaces

Recall from Theorem 2.3.2 that the range of a matrix is equal to the span of its
columns. However, its columns in general do not form a basis of its range, since
they might be linearly dependent. We thus now spend some time reconsidering
the range and null space of a matrix, particularly with the goal of constructing
bases (not just any spanning sets) of these subspaces.

Example 2.4.5
Determining Range

and Null Space

Find bases of the range and null space of A = 


1 1 2
2 −1 1
1 0 1




.

Solution:
The range of A is the span of its columns:

range(A) = span
(
(1,2,1),(1,−1,0),(2,1,1)

)
.

To find a basis of range(A), we need to find a linearly independent subset
of these columns.

To this end, we note that (2,1,1) = (1,2,1)+ (1,−1,0),Recall that linear
combinations like

this one can be
found by solving the

linear system
(2,1,1) = c1(1,2,1)+

c2(1,−1,0).

so we can
discard (2,1,1) from this set without affecting linear independence. And
indeed, it is straightforward to see that {(1,2,1),(1,−1,0)} is linearly
independent (and thus a basis of range(A)) since the two vectors in that
set are not multiples of each other. If follows that range(A) is a plane.

On the other hand, to find a basis of null(A), we just solve the system
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of linear equations Ax = 0:



1 1 2 0
2 −1 1 0
1 0 1 0


 R2−2R1

R3−R1−−−−−→




1 1 2 0
0 −3 −3 0
0 −1 −1 0




−1
3 R2−−−→




1 1 2 0
0 1 1 0
0 −1 −1 0


 R1−R2

R3+R2−−−−→




1 0 1 0
0 1 1 0
0 0 0 0


 .

From here we see that x3 is a free variable, and we can solve for x1 and x2
(the leading variables) in terms of x3: the first row tells us that x1 + x3 = 0
(i.e., x1 =−x3) and the second row tells us that x2 +x3 = 0 (i.e., x2 =−x3).

It follows that null(A) consists of the vectors of the form (x1,x2,x3) =
(−x3,−x3,x3) = x3(−1,−1,1), so

{
(−1,−1,1)

}
is a basis ofWe will see later (in

Theorem 2.4.10) that
the dimensions of

the range and null
space of an n×n

matrix always add
up to n (just like here
the dimensions are
2+1 = 3 for a 3×3

matrix).

null(A).
These subspaces are displayed below (range(A) on the left and null(A) on
the right):

x

y

(2,1,1)
(1,2,1)

(1,−1,0)

z

x

y

z

((−1,−1,11)))

To compute a basis of null(A) in the previous example, we had to compute a
row echelon form of A. It turns out that we can directly find a basis of range(A)
from a row echelon form as well, just by taking the columns of A that become
leading columns in the REF. For example, we showed that the RREF of

A =




1 1 2
2 −1 1
1 0 1


 is




1 0 1
0 1 1
0 0 0


 ,

which has leading entries in its first and second columns. Taking the first and
second columns of A itself results in the set

{
(1,2,1),(1,−1,0)

}
, which is a

basis of range(A).
To see why this method works in general, recall that if a matrix A has row

echelon form R then x solves the linear system Ax = 0 if and only if it solves
the linear system Rx = 0 (this is why we started looking at row echelon forms
in the first place—they have the same solution set but are easier to work with).
In other words, a linear combination of the columns of A equals 0 if and only if
the same linear combinationBy “the same linear

combination”, we
mean a linear

combination with
the same

coefficients.

of the columns of R equals 0.
It follows that a particular subset of the columns of A is a basis of range(A)

if and only if that same subset of columns of R is a basis of range(R). Since
the leading columns of R form a basis of range(R) (after all, the non-leading
columns of R are linear combinations of its leading columns), we arrive at the
following fact, which we illustrate in Figure 2.21:
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! The columns of a matrix A that have a leading entry in one of
its row echelon forms make up a basis of range(A).

For example, the
three columns

highlighted in blue
in Figure 2.21 form a

basis of range(A).

range(A)

null(A)
(sort of—see Remark 2.4.2)

A =




∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗




row-reduce−−−−−−→




1 ∗ 0 ∗ ∗ 0 ∗ ∗ ∗
0 0 1 ∗ ∗ 0 ∗ ∗ ∗
0 0 0 0 0 1 ∗ ∗ ∗
0 0 0 0 0 0 0 0 0


= R

Figure 2.21: After we row-reduce A to its reduced row echelon form R, we can
immediately read off a basis of range(A) from the columns of A (actually, any row
echelon form of A suffices). A basis of null(A) can also be determined from R, but it
is not quite as straightforward (see Remark 2.4.2).

Example 2.4.6
Determining Range

and Null Space
(More Efficiently)

Find bases of the range and null space of the following matrix:

A =




1 0 1 0 −1
1 1 0 0 1
−1 0 −1 1 4
2 1 1 −1 −3




Solution:
We start by finding the reduced row echelon formWe prefer this

method of
determining a basis
of the range, rather

than that of
Example 2.4.5, since

it just requires one
calculation (finding

the RREF) to get
bases of both the

range and the null
space.

of A:



1 0 1 0 −1
1 1 0 0 1
−1 0 −1 1 4
2 1 1 −1 −3




R2−R1
R3+R1

R4−2R1−−−−→




1 0 1 0 −1
0 1 −1 0 2
0 0 0 1 3
0 1 −1 −1 −1




R4−R2−−−−→




1 0 1 0 −1
0 1 −1 0 2
0 0 0 1 3
0 0 0 −1 −3




R4+R3−−−−→




1 0 1 0 −1
0 1 −1 0 2
0 0 0 1 3
0 0 0 0 0


 .

Since this row echelon form has leading entries in columns 1, 2, and
4, we know thatBe careful to use

columns of the
original matrix A

when constructing
a basis of range(A),
not columns of a

row echelon form.

the set consisting of columns 1, 2, and 4 of A (i.e.,{
(1,1,−1,2),(0,1,0,1),(0,0,1,−1)

}
) is a basis of range(A).

To find a basis of null(A), we proceed as we did in Example 2.4.5. We
think of A as the coefficient matrix in the linear system Ax = 0 and note
that the RREF tells us that x3 and x5 are free variables, so we solve for
x1,x2, and x4 (the leading variables) in terms of them. Explicitly, we get

(x1,x2,x3,x4,x5) = x3(−1,1,1,0,0)+ x5(1,−2,0,−3,1).
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We thus conclude that
{
(−1,1,1,0,0),(1,−2,0,−3,1)

}
is a basis of

null(A).

Remark 2.4.2
Eyeballing a Basis
of the Null Space

It is actually possible to construct a basis of null(A) pretty much directly
from the entries of the RREF of A, without having to explicitly write down
a solution of the linear system Ax = 0 first. The trick is as follows:
• First, extend or truncate each of the non-leading columns of a re-

duced row echelon form so as to have the same number of entries
as the rows of A.

• Next, space out the non-zero entries of these vectors so that, instead
of being grouped together at the top of the vector, they are located
in the entries corresponding to the leading columns.

• Finally, put a −1 in the “diagonal” entry—if came from the j-th
column of the RREF, put a −1 in its j-entry.

For example, if the reduced row echelon form of a matrix A is



1 2 0 3 4 0 5

0 0 1 6 7 0 8

0 0 0 0 0 1 9




then each of the four non-leading columns correspond to one vector in
a basis of null(A) as

In particular, we
place the 3

potentially non-zero
entries of each of
these new vectors

in their first, third,
and sixth entries,

since the leading
columns of the RREF
are its first, third, and

sixth columns.

follows:




2

0

0


→




2

−1

0

0

0

0

0




,




3

6

0


→




3

0

6

−1

0

0

0




,




4

7

0


→




4

0

7

0

−1

0

0




,




5

8

9


→




5

0

8

0

0

9

−1




One basis of null(A) is thus
{
(2,−1,0,0,0,0,0),(3,0,6,−1,0,0,0),

(4,0,7,0,−1,0,0),(5,0,8,0,0,9,−1)
}
.

It turns out that the subspaces range(AT ) and null(AT ) play just as important
of a role as range(A) and null(A) themselves, so we give these four subspaces
a common name:

Definition 2.4.3
The Four

Fundamental
Matrix

Subspaces

Suppose A is a matrix. The four subspaces

range(A), null(A), range(AT ), and null(AT )

are called the four fundamental subspaces associated with A.

One method of finding bases of range(AT ) and null(AT ) would be to simply
compute the RREF of AT and use the method for finding bases of the range
and null space discussed in the previous two examples. We demonstrate this



2.4 Bases and Rank 153

method in the following example, but we will see a more efficient way shortly:

Example 2.4.7
Determining Range

and Null Space of
a Transposed Matrix

Find bases of range(AT ) and null(AT ), where

A =




1 0 1 0 −1
1 1 0 0 1
−1 0 −1 1 4
2 1 1 −1 −3


 .

Solution:
We start by finding the reduced row echelon form of AT :




1 1 −1 2
0 1 0 1
1 0 −1 1
0 0 1 −1
−1 1 4 −3




R3−R1
R5+R1−−−−→




1 1 −1 2
0 1 0 1
0 −1 0 −1
0 0 1 −1
0 2 3 −1




R1−R2
R3+R2

R5−2R2−−−−→




1 0 −1 1
0 1 0 1
0 0 0 0
0 0 1 −1
0 0 3 −3




R3↔R4−−−−→




1 0 −1 1
0 1 0 1
0 0 1 −1
0 0 0 0
0 0 3 −3




R1+R3
R5−3R3−−−−→




1 0 0 0
0 1 0 1
0 0 1 −1
0 0 0 0
0 0 0 0




.

SinceOne of the reasons
why range(AT ) and

null(AT ) are
interesting is
provided by

Exercise 2.4.26. We
investigate these

two subspaces
more thoroughly in

[Joh20].

this row echelon form has leading entries in columns 1, 2, and 3, we
know that columns 1, 2, and 3 of AT (i.e., rows 1, 2, and 3 of A) form a
basis of range(AT ). Explicitly, this basis is

{
(1,0,1,0,−1),(1,1,0,0,1),(−1,0,−1,1,4)

}
.

To find a basis of null(AT ), we proceed as we did in the previous
examples: we think of A as the coefficient matrix in the linear system
Ax = 0 and note that the RREF tells us that x4 is a free variable, so we
solve for x1,x2, and x3 (the leading variables) in terms of it. Explicitly, we
get

(x1,x2,x3,x4) = x4(0,−1,1,1),

so
{
(0,−1,1,1)

}
is a basis of null(AT ).

However, if we already have the RREF of A, we can compute a basis of
range(AT ) without going through the additional trouble of row-reducing AT .
To see how why, we start with the following theorem:
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Theorem 2.4.6
Range of

Transposed Matrix
Equals the Span

of Rows

Suppose A ∈Mm,n has rows a1, a2, . . ., am. Then

range(AT ) = span(a1,a2, . . . ,am).

The above theorem follows immediately from the corresponding obser-
vation (Theorem 2.3.2) about the range of a matrix equaling the span of its
columns, and the fact that the rows of A are the (transpose of the) columns of
AT .

The way we can make use of this theorem is by noticing that if R is a row
echelon form of A then the rows of R are linear combinations of theFor this reason,

range(AT ) is
sometimes called

the row space of A
and denoted by

row(A).

rows of
A, and vice-versa (after all, the three elementary row operations that we use to
row-reduce matrices are just very specific ways of taking linear combinations).
It follows that range(AT ) = range(RT ), which is the span of the rows of R. Since
the non-zero rows of R are linearly independent, we arrive at the following fact:

! The non-zero rows in a row echelon form of A form a basis of
range(AT ).

We thus now know how to compute bases of three of the four fundamental
subspaces of a matrix directly from its reduced row echelon form. To see how
we can similarly handle the remaining fundamental subspace, null(AT ), we
recall that row-reducing [ A | I ] to [ R | E ], where R is the reduced row echelon
form of A, results in the equation R = EA holding (refer back to Theorem 2.2.1).
Taking the transpose of both sides of that equation gives AT ET = RT . If we
write ET in terms of its columns v1, . . . ,vm (i.e., the rows of E), then we see
that

AT ET =
[

AT v1 | AT v2 | · · · | AT vm
]
= RT .

If the bottom k rows of R consist entirely of zeros, it follows that the rightmost
k columns of RT are 0 as well, so AT vm−k+1 = AT vm−k+2 = · · · = AT vm = 0.
In other words, the rightmost k columns of ET (i.e., the bottom k rows of E)
are in null(AT ).

The fact that these k rows are linearly independent follows from Theo-
rem 2.3.5, which tells us that rows of invertible matrices (like E) are always
linearly independent. To see that they span null(AT ) (and thus form a basis
of that subspace), we just note that if we could find another vector to add to
this set (while preserving linear independence), then running the argument
above backwards would show that R has an additional zero row, which violates
uniqueness of the reduced row echelon form (Theorem B.2.1). This leads to
the following observation:

! The block matrix [ A | I ] can be row-reduced to [ R | E ], where
R is a row echelon form of A. If R has k zero rows, then the
bottom k rows of E form a basis of null(AT ).

To summarize, we can find bases of each of the four fundamental subspaces
by row-reducing [ A | I ] to its reduced row echelon form [ R | E ]. The non-zero
rows of R then form a basis of range(AT ), the rows of E beside the zero rows of
R form a basis of null(AT ) (these two facts are summarized in Figure 2.22), the
columns of A corresponding to leading columns in R form a basis of range(A),
and a basis of null(A) can be found by solving for the leading variables in
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The columns of A
and R can be used
to construct bases

on range(A) and
null(A), as in
Figure 2.21.

range(AT )

null(AT )

[ A | I ] =
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 1 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 1 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0 1

row-reduce−−−−−−→ 
⋆ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 0 ⋆ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 0 0 0 0 ⋆ ∗ ∗ ∗ ∗ ∗ ∗
0 0 0 0 0 0 0 0 ∗ ∗ ∗ ∗

= [ R | E ]

Figure 2.22: After we row-reduce [ A | I ] to a row echelon form [ R | E ], we can
immediately read off bases of range(AT ) and null(AT ) from the rows of that matrix.

terms of the free variables in the linear system Rx = 0 (these two facts were
summarized in Figure 2.21).

Example 2.4.8
Computing Bases

of the Four
Fundamental

Subspaces

Find bases of the four fundamental subspaces of A = 


1 1 1 −1
0 1 1 0
−1 1 1 1




.

Solution:
We start by augmenting this matrix with a 3×3 identity matrix and

row-reducing to find its reduced row echelon form:



1 1 1 −1 1 0 0
0 1 1 0 0 1 0
−1 1 1 1 0 0 1


 R3+R1−−−−→




1 1 1 −1 1 0 0
0 1 1 0 0 1 0
0 2 2 0 1 0 1




R1−R2
R3−2R2−−−−→




1 0 0 −1 1 −1 0
0 1 1 0 0 1 0
0 0 0 0 1 −2 1


.

From here, we can immediately identify bases of three of the four
fundamental subspaces as rows and columns of these matrices (using
Figures 2.21 and 2.22 as a guide):

The first two
columns of A form a
basis of range(A), the
first two rows of the

RREF form a basis of
range(AT ), and the

final row of the
augmented matrix

to the right of the
RREF forms a basis

of null(AT ).

• range(A):
{
(1,0,−1),(1,1,1)

}
,

• null(AT ):
{
(1,−2,1)

}
, and

• range(AT ):
{
(1,0,0,−1),(0,1,1,0)

}
.

To find a basis of null(A), we solve the linear system Rx = 0, where R
is the reduced row echelon form that we computed above. In this linear
system, x1 and x2 are leading variables and x3 and x4 are free variables.
Furthermore, x1−x4 = 0 and x2 +x3 = 0, so writing the solution in vector
notation gives

(x1,x2,x3,x4) = x3(0,−1,1,0)+ x4(1,0,0,1).

It follows that one basis of null(A) is
{
(0,−1,1,0),(1,0,0,1)

}
.

These ideas lead naturally to yet another characterization of invertibility of
a matrix. Most of these properties follow immediately from the relevant defi-
nitions or our previous characterizations of invertibility (e.g., Theorems 2.3.3
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and 2.3.5), so we leave its proof to Exercise 2.4.19.

Theorem 2.4.7
Bases and
Invertible
Matrices

Suppose A ∈Mn. The following are equivalent:
a) A is invertible.
b) range(A) = Rn.
c) null(A) = {0}.
d) The columns of A form a basis of Rn.
e) The rows of A form a basis of Rn.

We could also add “range(AT ) = Rn” and “null(AT ) = {0}” as additional
equivalent conditions in the above theorem, but perhaps we have shown that
invertibility is equivalent to enough other properties at this point that they are
starting to feel redundant.

2.4.3 The Rank of a Matrix

In Section 2.2.2, we looked at invertible matrices A ∈Mn, which (among their
many other equivalent characterizations) were the matrices whose columns
span Rn. In other words, their range is all of Rn—they do not “squash” space
down into a smaller-dimensional subspace. We now look at the rank of a matrix,
which can be thought of as a measure of how non-invertible it is (i.e., how
small is the subspace it squashes Rn down to).

Definition 2.4.4
Rank of a Matrix

Suppose A is a matrix. Its rank, denoted by rank(A), is the dimension of
its range.

For example, if u ∈ Rn is a unit vector and A = uuT is the standard matrix
of the projection onto the line in the direction of u, then theProjections were

introduced in
Section 1.4.2.

range of A is
1-dimensional, so rank(A) = 1. Similarly, we showed that the matrix

A =




1 1 2
2 −1 1
1 0 1




from Example 2.4.5 has range equal to span
(
(1,2,1),(1,−1,0)

)
. Since this

range is a (2-dimensional) plane, its rank equals 2 (see Figure 2.23).

x

y

x

y

(1,2,1)

(1,−1,0)

z

Figure 2.23: The rank of a matrix is the dimension of its range.
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By recalling the fact that A ∈Mn is invertible if and only if its range is Rn,
we conclude that A is invertible if and only if its rank is n. Since rank(A)≤ n for
all A ∈Mn, invertible matrices are exactly those with the largest possible rank,
so we say that they have full rank.

More generally, if
A ∈Mm,n then

rank(A)≤min{m,n}
so we say that A has

full rank when
rank(A) = min{m,n}.

Roughly speaking, we think of higher-rank
matrices as being “closer to” invertible than lower-rank matrices, and we will
present several different ways of justifying this intuition as we investigate the
basic properties of rank throughout this subsection.

One of the reasons why the rank of a matrix is so useful is that it can be
interpreted in so many different ways. While it equals the dimension of the
range of a matrix (which is a very geometrically-motivated quantity), it can
also be phrased in purely algebraic ways coming from linear systems.

Theorem 2.4.8
Characterization

of Rank

Suppose A is a matrix. The following quantities are equal to each other:
a) rank(A)
b) rank(AT )
c) The number of non-zero rows in any row echelon form of A.
d) The number of leading columns in any row echelon form of A.

Proof. WeThe equivalence of
(a) and (b) says

that for every matrix,
the dimension of

the column space
equals the

dimension of the
row space. We thus

sometimes say
“column rank

equals row rank”.

start by noting that the quantities (c) and (d) are equal to each other
since every non-zero row in a row echelon form has exactly one leading entry,
as does every leading column. The remainder of the proof is devoted to showing
that (a) and (d) are equal to each other, as are (b) and (c).

The equivalence of (a) and (d) comes from our method of constructing
a basis of range(A) from Section 2.4.2. Specifically, the basis of range(A)
that we constructed there consists of the columns of A corresponding to lead-
ing columns in its row echelon forms. The number of these leading columns
thus equals the number of vectors in the basis, which (by definition) equals
the dimension of range(A), and that dimension (again, by definition) equals
rank(A).

The fact that (b) and (c) are equal to each other follows from a similar argu-
ment: the non-zero rows in a row echelon form of A form a basis of range(AT ),
and the number of vectors in this basis equals rank(AT ). This completes the
proof. �

In fact, we could give a characterization of rank that is analogous to almost
any one of the characterizations of invertible matrices that we have provided
throughout this chapter (Theorems 2.2.4, 2.3.3, and 2.3.5). For example, A is
invertible if and only if its columns form a linearly independent set, and more
generally the rank of A is equal to the maximal size of a linearly independent
subset of its columns (see Exercise 2.4.29).

Example 2.4.9
Computing the Rank

Compute the rank of the following matrices:
a) The standard matrix A ∈Mn of a reflection across a line.
b) The standard matrix B ∈M2 of a rotation.
c) C =




0 0 −2 2 −2
2 −2 −1 3 3
−1 1 −1 0 −3




Solutions:
a) The

We explored
reflections and

rotations in
Section 1.4.2.

rank of this matrix is n since its every vector in Rn can be
reached by the reflection, so its range is all of Rn, which is n-
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dimensional. Equivalently, A is invertible since reflecting across a
line twice is equivalent to doing nothing at all, so A2 = I (i.e., A is
its own inverse). Since invertible matrices have rank n, it follows
that rank(A) = n.

b) Similar to the matrix A from part (a), every vector in R2 can
be reached by a rotation, so its range is all of R2, which is 2-
dimensional. It follows that rank(B) = 2.

c) We can find the rank of this matrix by row-reducing to row echelon
form:




0 0 −2 2 −2
2 −2 −1 3 3
−1 1 −1 0 −3


 R1↔R3−−−−→



−1 1 −1 0 −3
2 −2 −1 3 3
0 0 −2 2 −2




R2+2R1−−−−→



−1 1 −1 0 −3
0 0 −3 3 −3
0 0 −2 2 −2


 R3− 2

3 R2−−−−−→



−1 1 −1 0 −3
0 0 −3 3 −3
0 0 0 0 0




Since this row echelon form has 2 non-zero rows, we conclude that
rank(C) = 2.

Somewhat complementary to the rank of a matrix is its nullity, which is the
dimension of its null space (we denote the nullity of A simply by nullity(A)).
We saw that a matrix A ∈Mn is invertible if and only if the linear system
Ax = 0 has a unique solution (i.e., its null space is {0}), which is equivalent
to it having nullity 0. This leads immediately to the following theorem, which
follows immediately from Theorem 2.4.7 and the definitions of rank and nullity.

Theorem 2.4.9
Rank and
Invertible
Matrices

Let A ∈Mn. The following are equivalent:
a) A is invertible.
b) rank(A) = n.
c) nullity(A) = 0.

More generally, a natural trade-off occurs between the rank and nullity of a
matrix: the smaller the rank of a matrix is (i.e., the “less invertible” it is), the
smaller the span of its columns is, so the more ways we can construct linear
combinations of those columns to get 0, and thus the larger its nullity is. The
following theorem makes this observation precise.

Theorem 2.4.10
Rank–Nullity

Suppose A ∈Mm,n is a matrix. Then rank(A)+nullity(A) = n.

Proof. We use the equivalence of the quantities (a) and (d) from Theorem 2.4.8.
Let r = rank(A) and consider the linear system Ax = 0, which has r leading

In a linear system
Ax = b, the rank of A

is the number of
leading variables

and its nullity is the
number of free

variables. This
theorem thus just

says that if we add
up the number of
leading and free
variables, we get

the total number of
variables.

variables. Since this linear system has n variables total, it must have n− r free
variables. But we saw in Section 2.4.2 that each free variable gives one member
of a basis of null(A), so nullity(A) = dim(null(A)) = n− r. It follows that

rank(A)+nullity(A) = r +(n− r) = n,

as claimed. �

In terms of systems of linear equations, the rank of a coefficient matrix tells
us how many leading variables it has, or equivalently how many of the equations
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in the system actually matter (i.e., cannot be removed without changing the
solution set). On the other hand, the nullity tells us how many free variables it
has (see Figure 2.24).

rank(A) = 3

rank(A) = 3

nullity(A) = 6




0 1 0 ∗ ∗ 0 ∗ ∗ ∗
0 0 1 ∗ ∗ 0 ∗ ∗ ∗
0 0 0 0 0 1 ∗ ∗ ∗
0 0 0 0 0 0 0 0 0




Figure 2.24: The rank of a matrix equals the number of leading columns that its
RREF has, which equals the number of non-zero rows that its RREF (or any of its
row echelon forms) has. Its nullity is the number of non-leading columns in its RREF,
which equals the number of free variables in the associated linear system.

Example 2.4.10
Computing the

Rank and Nullity

Compute the rank and nullity of the matrix

A =




1 0 −1 0 0
2 1 −1 2 2
−1 −1 0 −2 −2
1 0 −1 0 1


 .

Solution:
We can find the rank and nullity of this matrix by row-reducing to row

echelon form:



1 0 −1 0 0
2 1 −1 2 2
1 0 −1 0 1
−1 −1 0 −2 −2




R2−2R1
R3−R1
R4+R1−−−−−→




1 0 −1 0 0
0 1 1 2 2
0 0 0 0 1
0 −1 −1 −2 −2




R4+R2−−−−→




1 0 −1 0 0
0 1 1 2 2
0 0 0 0 1
0 0 0 0 0


 .

Since

To find the rank and
nullity, we just need
a row echelon form

of the matrix, not
necessarily its
reduced row

echelon form.

this row echelon form has 3 non-zero rows, we conclude that
rank(A) = 3 and nullity(A) = 5−3 = 2.

The previous theorem also makes sense geometrically—if we think of
A ∈Mm,n as a linear transformation, then it takes n-dimensional vectors (from
Rn) as input. Of those n input dimensions, rank(A) are sent to the output space
and the other nullity(A) dimensions are “squashed away” by A (see Figure 2.25).
For example, the matrix from Example 2.4.10 can be thought of as a linear
transformation from R5 to R4. Since its rank is 3, it sends a 3-dimensional
subspace of R5 to a 3-dimensional subspace of R4 and it “squashes away” the
other 2 dimensions of R5 (i.e., its nullity is 2).

It is important to keep in mind that the rank of a matrix can change drasti-
cally when its entries change just a tiny amount (see Exercise 2.4.16), and it



160 Chapter 2. Linear Systems and Subspaces

x

y

e1

e2

A−−→
Ae1

Ae2 x

y

z

x

y

e1

e2

A−−→
Ae1

Ae2 x

y

z

Figure 2.25: A non-zero matrix A ∈M3,2 either has rank 1 and nullity 1 (as in (a)) or
rank 2 and nullity 0 (as in (b)).

is not particularly well-behaved under matrix addition or multiplication (e.g.,
it is not the case that rank(A+B) = rank(A)+ rank(B), nor is it the case that
rank(AB) = rank(A)× rank(B)). However, there are some inequalities that at
least loosely relate rank(A+B) and rank(AB) to the ranks of A and B:

Theorem 2.4.11
Rank of a Sum

and Product

Let A and B be matrices (with sizes such that the operations below make
sense). Then

a) rank(A+B)≤ rank(A)+ rank(B)
b) rank(AB)≤min

{
rank(A), rank(B)

}

Proof. Denote the columns of A and B by a1,a2, . . . and b1,b2, . . ., respectively.
To see why part (a) holds, suppose A,B ∈Mm,n and notice that the columns
of A+B areIf B is invertible then

part (b) can be
strengthened to

rank(AB) = rank(A)
(see Exercise 2.4.17).

a1 +b1,a2 +b2, . . . ,an +bn, which are each contained within the
span of a1,b1,a2,b2, . . . ,an,bn. It follows that

span(a1 +b1,a2 +b2, . . . ,an +bn)⊆ span(a1,b1,a2,b2, . . . ,an,bn)

as well. The span on the left equals range(A+B), so its dimension is rank(A+
B). The span on the right cannot have dimension larger than rank(A)+ rank(B),
so the fact that range(A+B) is contained in the subspace on the right implies
rank(A+B)≤ rank(A)+ rank(B), as desired.

For part (b), suppose A ∈Mm,n and B ∈Mn,p. We use block matrix multi-
plication to express the columns of AB in terms of the columns of A:The notation ∑

n
j=1

refers to a sum:
∑

n
j=1 b j,1a j =

b1,1a1 + · · ·+bn,1an. AB =
[

Ab1 | Ab2 | · · · | Abp
]
=

[
n

∑
j=1

b j,1a j

∣∣∣
n

∑
j=1

b j,2a j

∣∣∣ · · ·
∣∣∣

n

∑
j=1

b j,pa j

]
.
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The important point here is that the columns of AB are linear combinations
of the columns of A, so range(AB) ⊆ range(A).This proof of part (b)

shows that
range(AB)⊆ range(A)

and thus solves
Exercise 2.3.27(a).

Since the rank of a matrix is
the dimension of its range, it follows that rank(AB) ≤ rank(A). To see that
rank(AB)≤ rank(B) as well (thus completing the proof), we could apply this
same argument to (AB)T = BT AT . �

Exercises solutions to starred exercises on page 453

2.4.1 Determine which of the following sets B are bases
of the subspace S.

∗(a) B = {(1,1),(1,2),(3,4)}, S = R2

(b) B = {(1,1),(1,−1)}, S = R2

∗(c) B = {(1,1,1),(2,1,−1)}, S = R3

(d) B = {(2,2,1),(0,1,1)}, S is the plane in R3 with
equation x+ y− z = 0.

∗(e) B = {(1,0,1),(2,1,3)}, S is the plane in R3 with
equation x+ y− z = 0.

(f) B = {(1,3,2),(−1,−2,1),(1,4,5)}, S = span(B).

2.4.2 Find a basis of each of the following subspaces.

∗(a) The line in R2 with equation y = 3x.
(b) The line in R3 going through the origin and (2,1,4).
∗(c) The plane in R3 with equation 2x+ y+ z = 0.
(d) The plane in R3 with equation z = 4x−3y.
∗(e) The line in R3 at the intersection of the planes

x+ y− z = 0 and 2x− y+2z = 0.
(f) span({(1,3,2,1),(−1,−2,1,0),(1,4,−1,1)})

§ 2.4.3 With the help of computer software, discard 0 or
more vectors from the following sets so as to turn them into
bases of their span.

∗(a) {(1,2,3,4),(3,5,7,9),(6,7,8,9),(9,8,7,6)}
(b) {(5,5,5,1),(3,6,3,2),(4,1,4,4),(1,4,1,4)}
∗(c) {(1,1,4,5,1),(2,−7,4,2,2),(5,2,4,5,3),

(4,−2,6,6,3),(2,5,2,4,1)}
(d) {(3,4,−1,1,3),(−1,1,3,0,1),(4,6,−5,3,6),

(0,3,−1,2,4),(3,2,1,3,2),(−1,3,1,−2,2),
(−4,5,0,1,7)}

§ 2.4.4 With the help of computer software, extend the
following linearly independent sets of vectors (i.e., add 0 or
more vectors to them) to create bases of R4.

∗(a) {(2,3,1,1),(3,3,2,3),(2,1,2,3)}
(b) {(3,2,0,2),(0,1,3,3),(2,1,1,1),(0,2,3,2)}
∗(c) {(2,4,3,4),(3,2,−1,−1)}
(d) {(−1,3,6,3),(1,3,5,0),(3,0,−1,−3)}

2.4.5 For each of the following matrices A, find bases for
each of range(A), null(A), range(AT ), and null(AT ).

∗(a)
[

1 0
0 1

]

∗(c)



0 0 0
0 1 2
0 0 0




∗(e)



1 0
0 2
0 1




∗(g)



1 2 0 3 0
0 0 1 −1 0
0 0 0 0 1




(b)
[

1 2 1
0 1 2

]

(d)



2 0 1
0 2 0
0 0 0




(f)



1 2 7
0 0 0
0 0 0




(h)



0 0 1 1
0 1 1 0
1 1 0 0




∗(i)



0 −4 0 2 1
−1 2 1 2 1
−2 0 2 6 3




(j)



2 −1 2 3 5
−1 1 −2 −2 −2
1 −1 2 1 2
1 −2 4 2 1




2.4.6 Compute the rank and nullity of the following matri-
ces.

∗(a)
[

1 −1
−1 1

]

∗(c)
[

1 2
3 5

]

∗(e)



2 4 0
1 −2 0
2 0 −1




∗(g)



1 0
0 2
3 1




(b)
[

6 3
2 1

]

(d)
[

1 2 1
0 1 2

]

(f)



2 6 1 −1
5 4 8 1
3 −2 7 2




(h)



1 2 1 0
2 1 2 −3
0 3 1 2
0 0 2 −2
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§ 2.4.7 Use computer software to find bases for the four
fundamental subspaces of the following matrices. Also com-
pute their rank and nullity.

∗(a)



0 0 2 2 −1 −2 3 −1
−6 −12 −1 −7 1 8 −7 6
4 8 −2 2 1 −2 1 −2
−1 −2 0 −1 0 1 −1 1




(b) 


5 1 9 6 −1 1 8
2 2 2 4 1 0 0
5 4 6 9 1 1 4
6 3 9 9 0 1 7
−3 1 −7 −2 2 −1 −8




2.4.8 Determine which of the following statements are
true and which are false.

∗(a) Every basis of R3 contains exactly 3 vectors.
(b) Every set of 3 vectors in R3 forms a basis of R3.
∗(c) If S = span(v1,v2, . . . ,vk) then {v1,v2, . . . ,vk} is a

basis of S.
(d) A basis of range(A) is given by the set of columns

of A corresponding to the leading columns in a row
echelon form of A.

∗(e) A basis of range(AT ) is given by the set of rows of A
corresponding to the non-zero rows in a row echelon
form of A.

(f) The rank of the zero matrix is 0.
∗(g) The n×n identity matrix has rank n.
(h) If A ∈M3,7 then rank(A)≤ 3.
∗(i) If A and B are matrices of the same size then

rank(A+B) = rank(A)+ rank(B).
(j) If A and B are square matrices of the same size then

rank(AB) = rank(A) · rank(B).
∗(k) If A and B are square matrices of the same size then

rank(AB) = min{rank(A), rank(B)}.
(l) The rank of a matrix equals the number of non-zero

rows that it has.
∗(m) The rank of a matrix equals the number of non-zero

rows in any of its row echelon forms.
(n) If A,B ∈Mm,n are row equivalent then null(A) =

null(B).
∗(o) If A ∈Mm,n then nullity(A) = nullity(AT ).

2.4.9 In this exercise, we explore a relationship between
the range and null space of a matrix.

(a) Find a matrix A ∈M4 whose range is the same as
its null space.

(b) Show that there does not exist a matrix A ∈M3
whose range is the same as its null space.

∗2.4.10 Let Jn be the n×n matrix, all of whose entries are
1. Compute rank(Jn).

2.4.11 Suppose A and B are 4×4 matrices with the prop-
erty that Av 6= Bv for all v 6= 0. What is the rank of the
matrix A−B?

∗2.4.12 Let An be the n×n matrix with entries 1,2, . . . ,n2

written left-to-right, top-to-bottom. For example,

A2 =

[
1 2
3 4

]
and A3 =




1 2 3
4 5 6
7 8 9


 .

Show that rank(An) = 2 for all n≥ 2. [Hint: Write each row
of An as a linear combination of its first two rows.]

2.4.13 Determine which values of the (real) number x lead
to the following matrices having which rank.

∗(a)
[

1 x
2 4

]

∗(c)



1 2 x
2 3− x 3x+1
−x −2x −1




(b)
[

x−1 −1
1 1− x

]

(d)



1 1 1
1 2 2
1 2 x




∗2.4.14 Suppose A ∈Mn.

(a) Show that if A is diagonal then its rank is the number
of non-zero diagonal entries that it has.

(b) Show that the result of part (a) is not necessarily true
if A is just triangular. That is, find a triangular matrix
whose rank does not equal its number of non-zero
diagonal entries.

2.4.15 Suppose that A,B ∈Mm,n.

(a) Show that if A and B differ in just one entry (and all
of their other entries are the same) then |rank(A)−
rank(B)| ≤ 1. That is, show that rank(A) and rank(B)
differ by at most 1.

(b) More generally, show that if A and B differ in exactly
k entries then |rank(A)− rank(B)| ≤ k.

∗∗2.4.16 In this exercise, we show that changing the en-
tries of a matrix just a tiny amount can change its rank
drastically. Let x be a real number, and consider the matrix

A =




x 1 1 · · · 1
1 x 1 · · · 1
1 1 x · · · 1
...

...
...

. . .
...

1 1 1 · · · x



∈Mn.

(a) Show that if x = 1 then rank(A) = 1.
(b) Show that if x 6= 1 then rank(A) = n.

∗∗2.4.17 Suppose A and B are matrices with sizes such
that the product AB makes sense.

(a) Show that if A is invertible (and thus square) then
rank(AB) = rank(B). [Hint: Try to make use of The-
orem 2.4.11 in two different ways.]

(b) Show that if B ∈Mn is invertible then rank(AB) =
rank(A).

2.4.18 Suppose A ∈Mn is a matrix with the property that
A2 = O. Show that rank(A)≤ n/2.

∗∗2.4.19 Prove Theorem 2.4.7.
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2.4.20 Suppose that S1 and S2 are subspaces of Rn with
the property that S1 ⊆ S2. Show that dim(S1)≤ dim(S2).

[Hint: Intuitively this is clear, but to actually prove it we
have to use the definition of dimension as the number of
vectors in a basis.]

2.4.21 Suppose that S1 and S2 are subspaces of Rn with
the property that S1 ⊆ S2 and dim(S1) = dim(S2). Show
that S1 = S2.

∗∗2.4.22 Prove Theorem 2.4.3(b). That is, show that if
S = span(v1,v2, . . . ,vk) is a non-zero subspace of Rn then
there is a subset of {v1,v2, . . . ,vk} that is a basis of S.

∗∗2.4.23 Consider the set

B = {(1,−1,2),(−1,2,3),(2,−2,4)}
and the subspace S = span(B).

(a) Show that B is a linearly dependent set, so a basis of
S can be obtained by removing a vector from B.

(b) Why does removing (−1,2,3) from B not result in a
basis of S?

∗∗2.4.24 Complete the proof of Theorem 2.4.4 by show-
ing that condition (b)(i) implies condition (b)(iii). That is,
show that if S is a subspace of Rn and B⊆ S spans S and
contains dim(S) vectors, then B is a basis of S.

2.4.25 Suppose A,B ∈Mn are such that AB is invertible.
Show that A and B must be invertible.

[Side note: This is the converse of Theorem 2.2.3, which
said that if A and B are invertible, then so is AB.]

∗∗2.4.26 Suppose A ∈Mm,n.

(a) Show that if v ∈ range(A) and w ∈ null(AT ) then v
and w are orthogonal.

(b) Show that if v ∈ null(A) and w ∈ range(AT ) then v
and w are orthogonal.

∗∗2.4.27 Suppose that A,B ∈Mm,n. Recall from Exer-
cise 2.1.13 that A and B are row equivalent if and only if
they have the same reduced row echelon form.

(a) Show that A and B are row equivalent if and only if
null(A) = null(B).

(b) Show that A and B are row equivalent if and only if
range(AT ) = range(BT ).

2.4.28 Suppose A ∈Mm,n and B ∈Mn,p.

(a) Show that nullity(AB) ≤ nullity(A) + nullity(B).
[Hint: Extend a basis of null(B) to a basis of
null(AB).]

(b) Show that rank(AB)≥ rank(A)+ rank(B)−n.

∗∗2.4.29 Suppose A ∈Mm,n.

(a) Show that rank(A) equals the maximal number of
linearly independent columns of A.

(b) Show that rank(A) equals the maximal number of
linearly independent rows of A.

∗∗2.4.30 Show that A ∈Mm,n has rank 1 if and only if
there exist non-zero (column) vectors v ∈ Rm and w ∈ Rn

such that A = vwT .

2.4.31 Suppose A ∈Mm,n.

(a) Suppose m ≥ n and rank(A) = n. Show that there
exists a matrix B ∈Mn,m such that BA = In.

(b) Suppose n ≥ m and rank(A) = m. Show that there
exists a matrix C ∈Mn,m such that AC = Im.

[Side note: The matrices B and C in parts (a) and (b) are
sometimes called a left inverse and a right inverse of A,
respectively.]

2.5 Summary and Review

In this chapter, we introduced Gaussian elimination and Gauss–Jordan elimi-
nation as methods for solving systems of linear equations. This led us to the
concept of the reduced row echelon form R ∈Mm,n of a matrix A ∈Mm,n,
which can be thought of as the simplest coefficient matrix with the property
that the linear systems Ax = 0 and Rx = 0 have the same solution sets. We saw
that if A is square (i.e., m = n) then its RREF is equal to the identity matrix I
if and only if it is invertible. That is, for such matrices we can find a matrix
A−1 ∈Mn with the property that AA−1 = A−1A = I, and we think of A−1 as a
linear transformation that “undoes” what A “does” to vectors.

We saw several theorems (in particular, Theorems 2.2.4, 2.3.3, 2.3.5, 2.4.7,
and 2.4.9) that further characterize invertibility of matrices in terms of other
linear algebraic concepts. We summarize most of these conditions here for ease
of reference.
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Theorem 2.5.1
The Invertible

Matrix Theorem

Suppose A ∈Mn. The following are equivalent:
a) A is invertible.
b) AT is invertible.
c) rank(A) = n.
d) nullity(A) = 0.
e) The linear system Ax = b has a solution for all b ∈ Rn.
f) TheWe will see yet

another equivalent
condition that

could be added to
this theorem a bit

later, in
Theorem 3.2.1.

linear system Ax = b has a unique solution for all b ∈ Rn.
g) The linear system Ax = 0 has a unique solution (x = 0).
h) The reduced row echelon form of A is I.
i) The columns of A are linearly independent.
j) The columns of A span Rn.
k) The columns of A form a basis of Rn.
l) The rows of A are linearly independent.

m) The rows of A span Rn.
n) The rows of A form a basis of Rn.

We then introduced subspaces, bases, and the rank of a matrix primarily
as tools for discussing matrices that are not invertible, and generalizing the
properties of the above theorem to all matrices. For example, if a matrix
A ∈Mn is not invertible, then its range (i.e., the span of its columns) is not all
of Rn. Instead, its range is a subspace of Rn with dimension equal to rank(A),
and there is a set consisting of this many of its columns that forms a basis of
range(A). In a sense, invertible matrices form the realm where linear algebra is
“easy”: we do not have to worry about knowing about the range or null space of
an invertible matrix, since its range is all of Rn and its null space is {0}.

It is also worth reminding ourselves of some of the equivalent ways of
saying that two matrices are row equivalent (i.e., there is a sequence of row
operations that converts one matrix into the other) that we saw in this chapter.
The following theorem summarizes these characterizations of row equivalence
for easy reference.

Theorem 2.5.2
Characterization of

Row Equivalence

Suppose A,B ∈Mm,n. The following are equivalent:
a) A and B are row equivalent.
b) A and B have the same reduced row echelon form.
c) null(A) = null(B).
d) range(AT ) = range(BT ).
e) There is an invertible matrix P ∈Mm such that A = PB.

In particular, characterization (b) of row equivalence in the above the-
orem was proved in Exercise 2.1.13, while (c) and (d) were established in
Exercise 2.4.27, and (e) comes from Exercise 2.5.6.

We close this section by briefly returning to some ideas that we originally
presented in Section 2.2.1. Recall that we showed in Theorem 2.2.1 that row-
reducing

We leave the proof
of the upcoming

theorem to
Exercise 2.5.5.

[ A | I ] to [ R | E ] ensures that R = EA. We now state this theorem in
a slightly different way that takes advantage of the fact that we now understand
invertible matrices.

Theorem 2.5.3
RREF Decomposition

Suppose A ∈Mm,n has reduced row echelon form R ∈Mm,n. Then there
exists an invertible matrix P ∈Mm such that A = PR.

Since multiplication on the left by an invertible matrix is equivalent to
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applying a sequence of row operations to that matrix, this RREF decomposition
is just another way of saying that every matrix A can be row-reduced to its
reduced

The matrix P in the
statement of

Theorem 2.5.3 is the
inverse of the matrix

E from the
statement of

Theorem 2.2.1.

row echelon form. However, phrasing it in this way provides us with
our first matrix decomposition: a way of writing a matrix as a product of two or
more matrices with special properties. Being able to decompose matrices into
a product of multiple simpler matrices is a very powerful technique that we
will make considerable use of in the next chapter of this book. We also explore
another matrix decomposition that arises from Gaussian elimination (one that
lets us write a matrix as a product of a lower triangular matrix and an upper
triangular matrix) in Section 2.D.

Exercises solutions to starred exercises on page 456

2.5.1 Determine whether or not the following pairs of
matrices are row equivalent.

∗(a) A =
[

1 1
1 1

]
and B =

[
1 1
1 2

]

(b) A =
[

1 1 1
1 2 3

]
and B =

[
0 1 2
1 1 1

]

∗(c) A =



1 2 1
2 1 1
1 −1 0




and B =



3 3 2
0 0 0
0 3 1




(d) A =



1 −1 2
1 0 2
2 −1 4




and B =



1 2 −1
1 2 0
2 4 −1




∗(e) A =



1 −1 0
−1 1 −3
1 −2 −1
1 1 −3




and B =



2 −1 3
0 −1 2
−1 −1 1
−1 0 0




(f) A =



1 1 4 3
1 2 3 1
3 3 3 0




and B =



1 2 3 4
2 3 4 2
4 2 0 1




2.5.2 Determine which of the following statements are
true and which are false.

∗(a) The reduced row echelon form of a matrix is unique.
(b) If R is the reduced row echelon form of A then the

linear systems Ax = 0 and Rx = 0 have the same
solution sets.

∗(c) If R is the reduced row echelon form of A then the
linear systems Ax = b and Rx = b have the same
solution sets.

(d) Every matrix can be written as a product of elemen-
tary matrices.

∗(e) Every matrix A can be written in the form A = PR,
where P is invertible and R is the reduced row eche-
lon form of A.

(f) If A = PR, where R is the reduced row echelon form
of A, then P must be invertible.

∗(g) If a square matrix has range equal to {0} then it must
be invertible.

(h) If A,B ∈Mn are both invertible then they are row
equivalent.

∗(i) If A,B ∈Mm,n are row equivalent then they have the
same rank.

∗2.5.3 Suppose A,B ∈Mm,n and let {v1,v2, . . . ,vn} be a
basis of Rn. Show that A = B if and only if Av j = Bv j for
all 1≤ j ≤ n.

2.5.4 Suppose A is a 4×4 matrix, B is a 4×3 matrix, and
C is a 3× 4 matrix such that A = BC. Prove that A is not
invertible.

∗∗2.5.5 Prove Theorem 2.5.3.

[Hint: Thanks to Theorem 2.2.1, all you have to do is explain
why P can be chosen to be invertible.]

∗∗2.5.6 Suppose A,B ∈Mm,n. Show that A and B are row
equivalent if and only if there exists an invertible matrix
P ∈Mm such that A = PB.

2.5.7 Suppose that A ∈Mm,n.

(a) Show that null(A) = null(AT A).
[Hint: If x ∈ null(AT A) then compute ‖Ax‖2.]

(b) Show that rank(AT A) = rank(A).
(b) Show that range(A) = range(AAT ).

[Hint: Use Exercise 2.4.21.]
(d) Show that rank(AAT ) = rank(A).
(e) Provide an example that shows that it is not nec-

essarily the case that range(A) = range(AT A) or
null(A) = null(AAT ).

2.A Extra Topic: Linear Algebra Over Finite Fields

One of the most useful aspects of Gaussian elimination and Gauss–Jordan
elimination is that they only rely on our ability to perform two different mathe-
matical operations: addition and (scalar) multiplication. These algorithms do
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not rely on much of the specific structure of the real numbers, so they can also
be used to solve systems of linear equations involving other types of numbers.
Slightly more specifically, we can use numbers coming from any field, which
roughly speaking is a set containing 0 and 1, and which has addition and mul-
tiplication operations that behave similarly to the ones on real numbers (e.g.,
a(b+ c) = ab+ac for all a, b, and c in the field).

The reader is likely at least superficially familiar with some other types
of numbers, like the rational numbers (i.e., ratios of integers) and complex
numbers (i.e., numbers of the form a+ ib, where a,b ∈ R and i2 =−1, which
are covered in Appendix A.1). However, many other sets of numbers work just
as well, and in this section we focus on the sets of non-negative integers under
modular arithmetic.

2.A.1 Binary Linear Systems

For now, we work with the set Z2 of numbers under arithmetic mod 2. That
is, Z2 is simply the set {0,1}, but with the understanding that addition and
multiplication of these numbers work as follows:

0+0 = 0 0+1 = 1 1+0 = 1 1+1 = 0, and
0×0 = 0 0×1 = 0 1×0 = 0 1×1 = 1.

In other words, these operations work just as they normally do, with the excep-
tion that 1+1 = 0 instead of 1+1 = 2 (since there is no “2” in Z2). Phrased
differently, we can think of these operations as usual binary arithmetic, except
we do not bother carrying digits when adding. As yet another interpretation,
we can think of it as a simplified form of arithmetic that only keeps track of
whether or not a number is even (with 0 for even and 1 for odd).

This weird form of arithmetic might seem arbitrary and silly, but it is useful
when we want to use vectors to represent objects that can be toggled between 2
different states (e.g., “on” and “off”), since adding 1 to a number in Z2 performs
this toggle—it changes 0 to 1 and 1 to 0. It is also useful in computing, since
computers represent data via 0s and 1s, and the addition and multiplication
operations correspond to the bitwise XOR and AND gates, respectively.

For now, we work through an example to illustrate the fact that we can
solve linear systems with entries from Z2 in the exact same way that we solve
linear systems with entries from R.

Example 2.A.1
Solving a Binary

Linear System

Solve the following linear system over Z2:

x1 + x3 + x5 = 1
x1 + x2 + x5 = 0

x3 + x4 = 1
x1 + x3 + x4 + x5 = 0

x2 + x3 + x5 = 1

Solution:
We represent this linear system via an augmented matrix and then use

Gauss–Jordan elimination to put it into reduced row echelon form, just
like we would for any other linear system. The only thing that we have to
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be careful of is that 1+1 = 0

If 1+1 = 0 then
subtracting 1 from

both sides shows
that 1 = 0−1, which
we use repeatedly

when row-reducing
here.

in

Because −1 = 1 in
Z2, the row

operations Ri−R j
and Ri +R j are the

same as each other.

this setting:



1 0 1 0 1 1
1 1 0 0 1 0
0 0 1 1 0 1
1 0 1 1 1 0
0 1 1 0 1 1




R2−R1
R4−R1−−−−→




1 0 1 0 1 1
0 1 1 0 0 1
0 0 1 1 0 1
0 0 0 1 0 1
0 1 1 0 1 1




R5−R2−−−−→




1 0 1 0 1 1
0 1 1 0 0 1
0 0 1 1 0 1
0 0 0 1 0 1
0 0 0 0 1 0




R1−R5−−−−→




1 0 1 0 0 1
0 1 1 0 0 1
0 0 1 1 0 1
0 0 0 1 0 1
0 0 0 0 1 0




R3−R4−−−−→




1 0 1 0 0 1
0 1 1 0 0 1
0 0 1 0 0 0
0 0 0 1 0 1
0 0 0 0 1 0




R1−R3
R2−R3−−−−→




1 0 0 0 0 1
0 1 0 0 0 1
0 0 1 0 0 0
0 0 0 1 0 1
0 0 0 0 1 0




.

It follows that the unique solution of this linear system is (x1,x2,x3,x4,x5)=
(1,1,0,1,0).

There is one particular case, however, where linear systems over Z2 are
somewhat different from those over the real numbers, and that is when the
linear system has multiple solutions. When working over R, if a linear system
has multiple solutions then it must have infinitely many solutions. However,
no linear system over Z2 can possibly have infinitely many solutions, since
there are only a finite number of vectors in Zn

2 (specifically, the only possible
solutions of a linear system over Z2 in n variables are the 2n vectors consisting
of all possible arrangements of 0s and 1).

The notation Zn
2

refers to the set of
vectors with n

entries from Z2, just
like Rn refers to the

set of vectors with n
real entries.

To get a feeling for what does and
does not change in this case, we work through another example.

Example 2.A.2
Solving a Binary

Linear System with
Multiple Solutions

Solve the following linear system over Z2:

x1 + x3 + x4 = 1
x2 + x3 = 1

x1 + x3 + x4 + x5 = 0
x1 + x2 + x5 = 0

x2 + x3 + x5 = 0

Solution:
Again, we just apply Gauss–Jordan elimination to put the augmented
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matrix that represents this linear system into reduced row echelon form:

Notice that we
never need to

perform a
“multiplication” row
operation, since 0R j

is not a valid
elementary row

operation and 1R j
does not change

anything.




1 0 1 1 0 1
0 1 1 0 0 1
1 0 1 1 1 0
1 1 0 0 1 0
0 1 1 0 1 0




R3−R1
R4−R1−−−−→




1 0 1 1 0 1
0 1 1 0 0 1
0 0 0 0 1 1
0 1 1 1 1 1
0 1 1 0 1 0




R4−R2
R5−R2−−−−→




1 0 1 1 0 1
0 1 1 0 0 1
0 0 0 0 1 1
0 0 0 1 1 0
0 0 0 0 1 1




R3↔R4−−−−→




1 0 1 1 0 1
0 1 1 0 0 1
0 0 0 1 1 0
0 0 0 0 1 1
0 0 0 0 1 1




R3−R4
R5−R4−−−−→




1 0 1 1 0 1
0 1 1 0 0 1
0 0 0 1 0 1
0 0 0 0 1 1
0 0 0 0 0 0




R1−R3−−−−→




1 0 1 0 0 0
0 1 1 0 0 1
0 0 0 1 0 1
0 0 0 0 1 1
0 0 0 0 0 0




.

We thus see that x3 is a free variable while the others are leading. In
particular, x5 = 1, x4 = 1, x2 = 1− x3, and x1 = x3 (recall that x3 =−x3
in Z2).

However, x3 being free does not mean that there are infinitely many
solutions. Since there are only two possible choices for x3 here (0 and 1),
there are only two solutions, and they can be found simply by plugging
x3 = 0 or x3 = 1 into the equations for x1 and x2 that we wrote down above.
In particular, the two solutions of this linear system are

(x1,x2,x3,x4,x5) = (0,1,0,1,1) and (x1,x2,x3,x4,x5) = (1,0,1,1,1).

As illustrated by the above example, linear systems with free variables do
not have infinitely many solutions in Z2, since there are not infinitely many
choices for those free variables. Instead, there are only two choices for each
free variable, which gives us the following fact:

! Every linear system over Z2 has either no solutions or exactly
2k solutions, where k is a non-negative integer (equal to the
number of free variables in the linear system).

2.A.2 The “Lights Out” Game

As one particularly interesting application of the fact that we can solve linear
systems over finite fields (and over Z2 in particular), we consider the “Lights
Out” game. The setup of this game is that buttons are arranged in a square grid,
and pressing on one of those buttons toggles it on or off, but also toggles all
other buttons that touch itTwo buttons

touching each
other

“orthogonally”
means that they

share a side,
not just a corner.

orthogonally (but not diagonally), as in Figure 2.26.
The game itself asks the player to press the buttons so as to put them into

some pre-specified configuration, such as turning them all on. The reason that
this game is challenging is that buttons interact with each other—pressing an
orthogonal neighbor of an “on” button turns it back off, so we typically will
not win by just pressing whichever buttons we want to turn on.
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Figure 2.26: The “Lights Out” game on a 4×4 grid. Touching one of the buttons
toggles (off-to-on or on-to-off) that button as well as all of its orthogonal neighbors.

In order to rephrase this game so that linear algebra can help us analyze
it, we encode the states of the buttons in binary—0 for “off” and 1 for “on”.
We then arrange those 16 states into a vector (we choose to place them into the
vector in standard left-to-right reading order: the top-left button’s state is the
first entry of the vector, the second button in the top row is the second entry of
the vector, and so on, as in Figure 2.27).The particular

ordering of the
buttons does not

matter. All that
matters is that we

consistently use the
same ordering
throughout our

calculations and
interpretation of the

final answer.

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Figure 2.27: We use a vector v ∈ Z16
2 to encode the states of the 4×4 “Lights Out”

game, with its entries describing the states of the buttons in standard reading
order: left-to-right and then top-to-bottom.

When we encode the game in this way, pressing one of the buttons just
performs a specific vector addition in Z2. For example, the sequence of two
button presses presented in Figure 2.26 can be represented by the vector addition

(0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0) (all buttons start “off”)
+ (1,1,1,0, 0,1,0,0, 0,0,0,0, 0,0,0,0) (press #1 toggles 1, 2, 3, 6)
+ (0,0,1,0, 0,1,1,1, 0,0,1,0, 0,0,0,0) (press #2 toggles 3, 6, 7, 8, 11)

= (1,1,0,0, 0,0,1,1, 0,0,1,0, 0,0,0,0) (just add, but 1+1 = 0)

More generally, we use vs,ve ∈ Z16
2 to represent the vectors that encode the

starting state and ending (i.e., target) state, respectively. For example, if our
goal is to turn every light in the 4×4 version of the game from off to on then
we have

vs = (0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0) and
ve = (1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1).

If a1,a2, . . . ,a16 denote the 16 different vectors that are potentially added to vs
when we press the 16 different buttons, and we let x ∈ Z16

2 denote the vector
that encodes which buttons we press (i.e., x j = 1 if we press the j-th button
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and x j = 0 otherwise) then our goal is to find x1, x2, . . ., x16 so that

vs +(x1a1 + x2a2 + · · ·+ x16a16) = ve, or
x1a1 + x2a2 + · · ·+ x16a16 = ve−vs.

This is a system of linear equations, and it is convenient to write it as the
matrix equation Ax = ve−vs, where A =

[
a1 | a2 | · · · | a16

]
, which we can

solve via Gaussian or Gauss–Jordan elimination as usual. In this particular case,
the 16×16 matrix A has the following form, where (for ease of visualization)
we use dots to denote entries that are equal to 0:

For example, the
5th column of A

encodes the fact
that pressing button
5 toggles buttons 1,

5, 6, and 9 (the
non-zero entries in

that column).

We just partition A
as a block matrix to

make it easier to
visualize.

A =




1 1 · · 1 · · · · · · · · · · ·
1 1 1 · · 1 · · · · · · · · · ·
· 1 1 1 · · 1 · · · · · · · · ·
· · 1 1 · · · 1 · · · · · · · ·
1 · · · 1 1 · · 1 · · · · · · ·
· 1 · · 1 1 1 · · 1 · · · · · ·
· · 1 · · 1 1 1 · · 1 · · · · ·
· · · 1 · · 1 1 · · · 1 · · · ·
· · · · 1 · · · 1 1 · · 1 · · ·
· · · · · 1 · · 1 1 1 · · 1 · ·
· · · · · · 1 · · 1 1 1 · · 1 ·
· · · · · · · 1 · · 1 1 · · · 1
· · · · · · · · 1 · · · 1 1 · ·
· · · · · · · · · 1 · · 1 1 1 ·
· · · · · · · · · · 1 · · 1 1 1
· · · · · · · · · · · 1 · · 1 1




. (2.A.1)

Before we explicitly solve the “Lights Out” game, it is worth pointing
out that a solution only depends on which buttons are pressed, not the order
in which they are pressed, since the only things that determine the state of
a button at the end of the game are its starting state and how many times it
was toggled. Similarly, no solution could ever require us to press a button
more than once, since pressing a button twice is the same as not pressing it at
all. Mathematically, these two facts are encoded in the fact that mod-2 vector
addition is commutative and associative.

Example 2.A.3
Solving the

4×4 “Lights Out”
Game

Either find a set of button presses that flips all of the buttons in the 4×4
“Lights Out” game from Figure 2.26 from off to on, or show that no such
set exists.

Solution:
The linear system that we wish to solve in this case is Ax = ve−vs,

where A is the 16× 16 coefficient matrix that we constructed in Equa-
tion (2.A.1) and ve− vs ∈ Z16

2 is the vector with every entry equal to 1.
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The reduced row echelon form of the augmented matrix [ A | ve−vs ] is

Again, we use dots
to denote entries

that are equal to 0.




1 · · · · · · · · · · · · 1 1 1 1
· 1 · · · · · · · · · · 1 1 · 1 1
· · 1 · · · · · · · · · 1 · 1 1 1
· · · 1 · · · · · · · · 1 1 1 · 1
· · · · 1 · · · · · · · 1 · 1 · 1
· · · · · 1 · · · · · · · · · 1 ·
· · · · · · 1 · · · · · 1 · · · ·
· · · · · · · 1 · · · · · 1 · 1 1
· · · · · · · · 1 · · · 1 1 · · 1
· · · · · · · · · 1 · · 1 1 1 · 1
· · · · · · · · · · 1 · · 1 1 1 1
· · · · · · · · · · · 1 · · 1 1 1
· · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · ·




,

which tells us that this linear system has 4 free variables and thus 24 = 16
solutions, which we can get our hands on by making various choices for
the free variables x13, x14, x15, and x16. The simplest solution arises from
choosing x13 = 0, x14 = 1, x15 = 0, x16 = 0, which gives

x = (0,0,1,0, 1,0,0,0, 0,0,0,1, 0,1,0,0).

This solution tells us that the 4× 4 “Lights Out” game can be solved
by pressing the 3rd, 5th, 12th, and 14th buttons on the grid (again, in
left-to-right then top-to-bottom standard reading order) as follows:

The remaining 15 solutions can be similarly constructed by making
different choices for x13, x14, x15, and x16 (i.e., we range through all
possible ways of pressing buttons on the bottom row of the 4×4 grid):
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Again, to describe
a solution of this

game, we just need
to specify which

buttons are
pressed—the order

in which they are
pressed is irrelevant.

Not surprisingly, many of these solutions are simply rotations and
reflections of each other. If we regard solutions as “the same” if they can
be mirrored or rotated to look like each other, then there are only 5 distinct
solutions.

Since 16 different sets of button presses all lead to the same result on the
4×4 grid (i.e., turn all lights from “off” to “on”), most starting configurations
of that grid cannot be turned into the all-“on” configuration (of the 216 = 65536
starting configurations, only 65536/16 = 4096 are solvable). For example, of
the 16 configurations of the 4×4 grid with the bottom 3 rows off, the only one
that is solvable is the one that also has the entire top row off (see Figure 2.28).

Variants of “Lights
Out” appear

frequently in video
games. Architects in
fantasy worlds have

a strange
propensity to use it

as a door-unlocking
mechanism.

Figure 2.28: Some unsolvable configurations of the “Lights Out” game. Starting
from these configurations, no set of button presses can turn all of the buttons on.

These same techniques can similarly be used to solve the “Lights Out”
game on larger game boards, with different starting configurations, or even
when the buttons are not laid out in a square grid. We present one more example
to illustrate how our methods work in these slightly more general settings work.

Example 2.A.4
Solving a Triangular
“Lights Out” Game

Either find a set of button presses that flips on the remaining buttons (1,
2, 3, 4, and 9) in the “Lights Out” game displayed below, or show that no
such set exists.
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1

2 3 4

5 6 7 8 9

Solution:
We represent the starting state via the vector vs =(0, 0,0,0, 1,1,1,1,0)

and the target state via the vector ve = (1, 1,1,1, 1,1,1,1,1). If we let
A be the 9× 9 binary matrix whose j-th column (for each 1 ≤ j ≤ 9)
describes which buttons are toggled when button j is pressed, then the
linear system Ax = ve− vs that we want to solve can be represented by
the following augmented matrix [ A | ve−vs ]:




1 · 1 · · · · · · 1
· 1 1 · · 1 · · · 1
1 1 1 1 · · 1 · · 1
· · 1 1 · · · 1 · 1
· · · · 1 1 · · · 0
· 1 · · 1 1 1 · · 0
· · 1 · · 1 1 1 · 0
· · · 1 · · 1 1 1 0
· · · · · · · 1 1 1




.

It

Again, we just
partition this matrix
in this way for ease

of visualization.
Notice that each

block corresponds
to one row of the
“Lights Out” grid.

is straightforward (albeit tedious) to verify that the reduced row
echelon form of this augmented matrix has the form [ I | x ], where
x = (1, 1,0,0, 0,0,1,1,0). It follows that this linear system has a unique
solution, and it corresponds to pressing buttons 1, 2, 7, and 8:

Interestingly, the RREF of A being the identity matrix tells us that the
“Lights Out” game on this board can always be solved (and that the solution
is always unique), regardless of the starting configuration of on/off buttons.

In the previous examples, we saw two very different button layouts on which
the “Lights Out” game could be solved from the all-off starting configuration.
One of the most remarkable facts about this game is that, even though the
starting configuration of the board affects whether or not a solution exists, its
size and shape do not. That is, there always exists a set of button presses that
flips that state of every single button, even if the grid is a large and hideous
mess like the one in Figure 2.29.
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Figure 2.29: The “Lights Out” game can be solved on any game board, no matter
how ugly, as long as we start from the all-off configuration.

Theorem 2.A.1
“Lights Out” Can

Always Be Solved
(From All-Off)

In the “Lights Out” game, there is always a set of button presses that turns
the all-off configuration into the all-on configuration, regardless of the size
and shape of the grid of buttons.

Proof. Recall that the linear system we want to solve has the form Ax = 1,
where 1 = (1,1, . . . ,1) ∈ Zn

2 is the vector with every entry equal to 1. In other
words, we want to show that 1 ∈ range(A).This proof makes use

of many of the
ideas from

Section 2.4.2. If you
have not yet read

that section, it is
probably best to
skip this proof for

now.

Furthermore, A has the following
two properties that we will need to make use of:

• Every diagonal entry of A equals 1, since each button toggles itself when
pressed.

• A is symmetric (i.e., AT = A), since button i is a neighbor of button j if
and only if button j is a neighbor of button i (and thus they toggle each
other) for all i and j.

With these two properties in mind, we now prove the theorem in three
steps. The first step is to show that every y ∈ null(A) (i.e., every y ∈ Zn

2 for
which Ay = 0) has an even number of entries equal to 1 (in other words, it
is not possible to get back to the all-off configuration via an odd number of
button presses—only an even number will do). To his end, let k be the number
of entries equal to 1 in y and let B be the submatrix of A that is obtained by
deleting every row and column j for which y j = 0. For example, if

y =




0

1

1

0

1




and A =




1 0 1 1 0

0 1 0 1 0

1 0 1 1 1

1 1 1 1 0

0 0 1 0 1




then B =




1 0 0

0 1 1

0 1 1


 .

Then BT = B as well and it also has all of its diagonal entries equal to 1.
Furthermore, the fact that Ay = 0 tells us that B1 = 0.Be slightly careful

here—this vector 1
lives in Zk

2, whereas
the 1 that we

mentioned at the
very start of this
proof lives in Zn

2.

However, the entries of
B1 just count the number of 1s in each row of B, so every row of B contains an
even number of 1s. By Exercise 2.A.10, it follows that the number of rows of B
(i.e., k) must be even. We thus conclude that y contains an even number of 1s,
which completes the first step of the proof.

For the second step of the proof, we show that the reduced row echelon
form R of A has an odd number of 1s in each of its columns. For the leading
columns of R, this fact is trivial since they (by definition) contain exactly one
1. For the non-leading columns of R, we recall from Remark 2.4.2 that a basis
of null(A) can be obtained by spacing out the non-zero entries in those non-
leading columns appropriately and then adding one more non-zero term in their
“diagonal” entry. For example, if
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R =




1 0 0 0 0 1

0 1 1 0 0 1

0 0 0 1 0 0

0 0 0 0 1 1

0 0 0 0 0 0

0 0 0 0 0 0




then null(A) = span







0

1

1

0

0

0



,




1

1

0

0

1

1






.

Since

Since we are
working in Z2, the

extra non-zero entry
that we add to

these columns is 1,
not −1 like in
Remark 2.4.2.

these basis vectors are contained in null(A), we know from the first
step of this proof that they each contain an even number of 1s, so the non-
leading columns of R each contain an odd number of 1s. This completes the
second step of the proof.

For the third (and final) step of the proof, we recall that the non-zero rows of
R form a basis of range(AT ), which equals range(A) in this case since AT = A.
In particular, this means that any linear combination of the rows of R is in the
range of A. Since each column of R contains an odd number of 1s, adding up
all of the rows of R results in the all-ones vector 1. It follows that 1 ∈ range(A),
which is exactly what we wanted to prove. �

In fact, the above theorem even works for variants of this game in which
pressing a button toggles the state of any other given configuration of buttons—
not necessarily its orthogonal neighbors. That is, if we put wires between
buttons and demand that pressing a button toggles the state of every other
button that is connected to it via a wire (but do not make any restriction on
the physical locations of these buttons relative to each other), then there is still
always a solution, regardless of how many buttons there are or how we connect
them (as long as we start from the all-off configuration). Furthermore, we can
use the exact same method that we have been using already to actually find the
solutions(s)—see Exercise 2.A.9.

2.A.3 Linear Systems with More States

We can also solve linear systems that make use of modular arithmetic with a
modulus larger than 2. For example, Z3 denotes the set {0,1,2} under arith-
metic mod 3. That is, we perform addition and multiplication in the usual ways,
except we “cycle” them through the numbers 0, 1, and 2. For example, instead
of having 2+2 = 4, we have 2+2 = 1 since the addition “rolls over” back to
0 when it hits 3. Explicitly, the addition and multiplication tables in Z3 are as
follows:

+ 0 1 2
0 0 1 2
1 1 2 0
2 2 0 1

× 0 1 2
0 0 0 0
1 0 1 2
2 0 2 1

Perhaps the most familiar example of modular arithmetic comes from 12-hour
clocks, which split time up into 12-hour chunks and thus correspond to modular
arithmetic with modulus 12. For example, if it is 9:00 now then in 7 hours
it will be 4:00, since 9 + 7 = 16 = 12 + 4, and the extra 12 is irrelevant (it
only affects whether it is morning or night, or which day it is—not the hour
displayed on the clock). For example, in mod-12 arithmetic, 9 + 7 = 4 (see
Figure 2.30).
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1

0 2

+1 +1

+1

+2

+7

Figure 2.30: Modular arithmetic works by having addition and multiplication “wrap
around” the modulus.

It turns out that we can use our standard techniques for solving linear
systems over Zp (i.e., using just the numbers 0, 1, 2, . . ., p−1) when p is any
prime number. We now present an example that shows how this works for Z3.

Example 2.A.5
Solving a Ternary

Linear System

Solve the following linear system over Z3:

w + y+2z = 2
x+ y+ z = 1

2w+ x+ y+ z = 0
w + y = 1

Solution:
Just as we did when solving linear systems over Z2, we represent

this linear system via an augmented matrix and then use Gauss–Jordan
elimination to put it into reduced row

Keep in mind that
we are working in
mod-3 arithmetic,

so subtraction also
works cyclically:

0−1 = 2, 0−2 = 1,
1−2 = 2, and so on

(just follow the
arrows in Figure 2.30

backwards).

echelon form:



1 0 1 2 2
0 1 1 1 1
2 1 1 1 0
1 0 1 0 1




R3−2R1
R4−R1−−−−−→




1 0 1 2 2
0 1 1 1 1
0 1 2 0 2
0 0 0 1 2




R3−R2−−−−→




1 0 1 2 2
0 1 1 1 1
0 0 1 2 1
0 0 0 1 2




R1−2R4
R2−R4

R3−2R4−−−−−→




1 0 1 0 1
0 1 1 0 2
0 0 1 0 0
0 0 0 1 2




R1−R3
R2−R3−−−−→




1 0 0 0 1
0 1 0 0 2
0 0 1 0 0
0 0 0 1 2


 .

It follows that the unique solution of this linear system is (w,x,y,z) =
(1,2,0,2).

Remark 2.A.1
The “Set”

Card Game

One particularly interesting application of linear algebra over Z3 comes in
the form of a card game called “Set”. In this game, players use a custom
deck of cards in which each card contains colored symbols that can vary
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in 4 different properties:
• color (red, green, or purple),
• shape (diamond, squiggle, or oval),
• shading (solid, striped, or hollow), and
• number of symbols (one, two, or three).

In particular, each possible combination of properties appears exactly once
in the deck (for example, there is exactly one card in the deck with two
striped red ovals), for a total of 34 = 81 cards in the deck. Some examples
of cards are as follows:

green red purple green purple

In this game, a “set” is any collection of three cards such that each
property of the cards is either the same or different.It is impossible for all

properties to be the
same among the
three cards, since

each card only
appears once in

the deck.

For example, the
following collections of cards form valid sets:

Three cards do not
form a valid set if

one of the
properties is shared
by two of the cards

but not the other.

color: different shape: same shading: different number: different

color: same shape: different shading: different number: same

The game is typically played with two or more players being presented
with a large collection of cards and being tasked with finding valid sets
among them—whoever finds the most sets before cards or time run out is
the winner.

Mathematically, this game is interesting because it can be phrased in
terms of linear algebra over Z3. In particular, we can represent each of
the 81 cards as a vector in Z4

3 by encoding each of the properties as one
of the components of a 4-entry vector whose entries can be 0, 1, or 2.
Specifically, we can write the cards as vectors of the form v = (c, p,d,n),
where c, p, d, and n encode the color, shape, shading, and number of
symbols on the card, respectively, as follows:
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Value Color (c) Shape (p) Shading (d) Number (n)

0 red diamond solid one
1 green squiggle striped two
2 purple oval hollow three

For example,The particular
assignment of

values here does
not matter—all that

matters is that we
pick some way of

assigning the
properties to {0,1,2}
and we stick with it.

a card with one red striped oval on it would be represented
by the vector v = (c, p,d,n) = (0,2,1,0).

When representing “Set” cards in this way, the condition that they form
a valid set (i.e., each property is either the same or different) is equivalent
to the condition that their associated vectors v1, v2, and v3 are such that
v1 +v2 +v3 = 0. To see why this is the case, just notice that the only ways
to add up 3 numbers in Z3 to get 0 are as follows:

0+0+0 = 0, 1+1+1 = 0, 2+2+2 = 0, and 0+1+2 = 0.

That is, the three numbers must all be the same or all be different, which
is exactly the rule for making sets.

We can use this representation of the “Set” game to quickly prove
some interesting facts about it:

• Given any two cards, there is exactly one card that forms a valid
set with them. This is because, given v1,v2 ∈ Z4

3, there is a unique
v3 ∈ Z4

3 such that v1 +v2 +v3 = 0 (in particular, v3 =−v1−v2).
• If 26 sets (and thus 26×3 = 78 cards) are removed from the deck,

the remaining 3 cards must form a set. This is because the sum of all
81 vectors in Z4

3 is 0 (in each entry, 27 vectors are “0”, 27 vectors
are “1”, and 27 vectors are “2”), so if the sum of the 78 vectors we
remove is 0 then so must be the sum of the remaining 3 vectors.

• Since v1 + v2 + v3 = 0 is equivalent to v1− v2 = v2− v3 in Z4
3,

three cards form a set if and only if their associated vectors lie on a
common line (1-dimensional affine space) in Z4

3.Recall that an
affine space is a

shifted subspace.
It’s like a subspace,
but not necessarily

going through 0.

This is difficult to
visualize directly since Z4

3 is 4-dimensional, but we can get some
intuition for it by looking at the lines within a 2-dimensional affine
slice of Z4

3. In particular, the affine space consisting of vectors of
the form (x,2,y,x) is displayed below:
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The sets in this affine space are exactly the straight lines—the 3
rows, 3 columns, 3 forward diagonals (keep in mind that diagonals
and lines “wrap around” in this space), and 3 backward diagonals.

We cannot directly apply these same techniques to solve linear systems via
mod-4 arithmetic (or mod-n arithmetic when n is not a prime number) since
in this case we run into issues like the equation 2x = 1 not having a solution.
That is,To be clear,

modular arithmetic
itself still works fine

when p is not
prime—it is just the
process of solving

linear systems that
gets harder in this

case.

we cannot “divide by 2” in mod-4 arithmetic (see the following mod-4
addition and multiplication tables):

+ 0 1 2 3
0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

× 0 1 2 3
0 0 0 0 0
1 0 1 2 3
2 0 2 0 2
3 0 3 2 1

However, this problem does not arise when working in Zp when p is prime,
since in this case each row of the mod-p multiplication table is a permutation
of {0,1,2, . . . , p−1}, so in particular we can always “divide” by any scalar—
given any y ∈ Zp, we can find an x ∈ Zp such that xy = 1. For example, the
addition and multiplication tables in Z5 are as follows:

+ 0 1 2 3 4
0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

× 0 1 2 3 4
0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 4 1 3
3 0 3 1 4 2
4 0 4 3 2 1

With this in mind, we now present an example of how to solve a linear
system over Z5, but we keep in mind that if we ever have an urge to divide
by a scalar, we instead multiply by the scalar that makes the product equal 1.

Keep in mind that
fractions do not

exist in Z5—the only
scalars that we
should ever see

when working in Z5
are 0, 1, 2, 3, and 4. For example, to solve the equation 2x = 3 in Z5, instead of dividing by 2 we
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multiply by 3, since the Z5 multiplication table above shows us that 2 ·3 = 1.
Multiplying the equation 2x = 3 through by 3 then gives us x = 4.

Example 2.A.6
Solving a Quinary

Linear System

Find all solutions of the following linear system over Z5:

2w +4y = 1
3w+ x+2y = 0

4x+4y+ z = 1
3w+3x+4y+2z = 1

Solution:
Just as we did when solving linear systems over Z2 and Z3, we repre-

sent this linear system via an augmented matrix and then use Gauss–Jordan
elimination to put it into reduced row echelon form:




2 0 4 0 1
3 1 2 0 0
0 4 4 1 1
3 3 4 2 1


 3R1−−→




1 0 2 0 3
3 1 2 0 0
0 4 4 1 1
3 3 4 2 1




R2−3R1
R4−3R1−−−−−→




1 0 2 0 3
0 1 1 0 1
0 4 4 1 1
0 3 3 2 2




R3−4R2
R4−3R2−−−−−→




1 0 2 0 3
0 1 1 0 1
0 0 0 1 2
0 0 0 2 4




R4−2R3−−−−→




1 0 2 0 3
0 1 1 0 1
0 0 0 1 2
0 0 0 0 0


 .

It follows that y is a free variable and w, x, and z are leading variables
satisfying z = 2, x = 1−y, and w = 3−2y. By letting y range over the five
possible values 0, 1, 2, 3, and 4, we see that this linear system has exactly
five solutions, which are

(3,1,0,2), (1,0,1,2), (4,4,2,2), (2,3,3,2), and (0,2,4,2).

Given that the linear system of the previous example has exactly 5 solutions,
it seems natural to wonder how many solutions a linear system over Zp can have.
We already answered this question when p = 2: recall that, in this case, the
number of solutions is always a power of 2. The following theorem establishes
the natural generalization of this fact to arbitrary primes.

Theorem 2.A.2
Number of Solutions

of a Linear System
Over a Finite Field

Let p be a prime number. Then a linear system over Zp has either no
solutions or exactly pk solutions, where k is a non-negative integer (equal
to the number of free variables in the linear system).

The proof of this theorem involves nothing more than noting that each free
variable can take on one of p different values, so if there are k free variables
then there are pk different combinations of values that they can take on, and
each one corresponds to a different solution of the linear system.
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Exercises solutions to starred exercises on page 456

2.A.1 Find all solutions of the following systems of linear
equations over Z2.

∗(a) x+ y+ z = 1
x+ y = 1
x + z = 0

∗(c) w+ x + z = 1
w + y+ z = 0

x+ y+ z = 1

(b) x+ y+ z = 0
x+ y = 1

(d) x + z = 0
w + y+ z = 1
w+ x+ y+ z = 0

x+ y+ z = 1

∗(e) v+w+ x = 0
w+ x+ y = 1

x+ y+ z = 0
v + y+ z = 1
v+w + z = 0

(f) r + s +w+ x = 1
r + v + x+ y = 0

s+ v+w + z = 1
r +w + y+ z = 1

s +w+ x + z = 0

2.A.2 Find all solutions of the following systems of linear
equations over Z3.

∗(a) x+2y+2z = 0
2x+ y+2z = 1
x + z = 2

(b) 2w+ x+ y = 2
w +2y+2z = 1

x+ y+2z = 0
2x+2y+ z = 0

2.A.3 Find all solutions of the following systems of linear
equations over Z5.

∗(a) x+2y+3z = 4
2x+3y+ z = 1
4x+ y+2z = 0

(b) 4w + y+3z = 3
2w+ x+ y+2z = 1

w+3x +4z = 3
4x+ y+3z = 3

§ 2.A.4 Set up a linear system for finding a set of button
presses that solves the “Lights Out” game on each of the
following grids. Use computer software to solve this linear
system, thus solving the game.

∗(a)

∗(c)

(b)

(d)

§ 2.A.5 Set up a linear system for finding a set of but-
ton presses that solves the “Lights Out” game on each of
the following grids. Use computer software to either solve
this linear system, thus solving the game, or show that no
solution exists.

∗(a)

∗(c)

(b)

(d)

2.A.6 Determine which of the following statements are
true and which are false.

∗(a) Linear systems over Z2 must have exactly 0, 1, or
infinitely many solutions.

(b) A linear system over Z5 with 3 variables must have
exactly 0, 1, 5, 25, or 125 solutions.

∗(c) Every game of “Lights Out” has a solution, regard-
less of the layout and on/off configuration of the
buttons.

(d) Every game of “Lights Out”, starting from the all-off
configuration and with the goal of reaching the all-on
configuration, has a solution regardless of the layout
of the buttons.

∗(e) If we represent a game of “Lights Out” as a linear
system over Z2 of the form Ax = ve−vs then A must
be symmetric (i.e., AT = A).

(f) There exist two cards in the “Set” game of Re-
mark 2.A.1 that do not form a valid set with any
third card.

∗2.A.7 Find integers v,w,x,y,z (or show that none exist)
such that

v 3w + x + y + z is even
−2v − w + 2x + y is odd

v + w + y + z is odd
w − x + 2y − z is even, and

v + w − 3x + y + 2z is even.

2.A.8 Find integers v,w,x,y,z (or show that none exist)
such each of the following quantities is an integer multiple
of 5:

v + w + x + y − z − 1
v − 2w + 2x + 2y + 2z + 2
−v + w + x + z

2w − x + y − 3z + 3
2v + w − 2y + z − 4
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∗∗2.A.9 Consider the variants of the “Lights Out” game
in which the following 9 buttons toggle each other if and
only if they are connected directly by a wire:

(a) Set up a linear system (over Z2) that can be used to
solve this game (i.e., to find a set of button presses
that turns every button on).

§(b) Find a solution to the linear system from part (a) and
thus the “Lights Out” game.

∗∗2.A.10 Suppose that B is a symmetric k× k matrix, all
of whose entries are 0 or 1.

(a) Show that if B has every diagonal entry equal to 0
and has an odd number of 1s in each row, then k
must be even. [Hint: B must have an even number of
entries equal to 1 (why?).]

(b) Show that if B has every diagonal entry equal to 1
and has an even number of 1s in each row, then k
must be even.

2.A.11 Recall that every solution of the “Set” card game
described in Remark 2.A.1 is a solution of a certain linear
system over Z3. It turns out that there are exactly 1080
different sets (i.e., winning 3-card combinations) possible,
which is not a power of 3. Explain why this does not contra-
dict Theorem 2.A.2.

2.A.12 Provide an example to show that Theorem 2.A.2
does not hold when p is not prime. [Hint: There is a mod-4
linear system with exactly 2 solutions.]

2.B Extra Topic: Linear Programming

We now introduce an optimization technique that is based on the linear algebra
tools that we have developed so far. In many real-world situations, we want to
maximize or minimize some function under some constraints (i.e., restrictions
on the variables). Standard calculus techniques can handle the cases where the
function being optimized only has one or two input variables, but they quickly
become cumbersome as the number of variables increases. On the other hand,
linear programming is a method that lets us easily optimize functions of many
variables, as long as the function and constraints are all linear.

2.B.1 The Form of a Linear Program

Loosely speaking, a linear program is a optimization problem in which the
function being maximized or minimized, as well as all of the constraints, are
linear in the variables. We typically use x1,x2, . . . ,xn ∈ R as the variables, so
an example of a linear program (in two variables x1 and x2) is

maximize: x1 +3x2
subject to: 2x1 + x2 ≤ 4

x1 +3x2 ≤ 6
x1, x2 ≥ 0

WhenThe entries of A are
the coefficients on
the left-hand-side
of the constraints,

the entries of b are
the scalars on the
right-hand-side of

the constraints, and
the entries of c are
the coefficients in

the function being
maximized.

working with linear programs, it is usually convenient to group the
various scalars into vectors and matrices (just like we write systems of linear
equations as the single matrix equation Ax = b rather than writing out each
scalar and variable explicitly every time). With this in mind, we would typically
write the above linear program in the more compact form

maximize: c ·x
subject to: Ax≤ b

x≥ 0
(2.B.1)
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where

A =
[

2 1
1 3

]
, b = (4,6), and c = (1,3),

and the vector inequalities are meant entrywise (e.g., x ≥ 0 means that each
entry of x is non-negative, and Ax≤ b means that each entry of Ax is no larger
than the corresponding entry of b).

With the above example in mind, we now clarify exactly what types of
optimization problems are and are not linear programs.

Definition 2.B.1
Linear Program

(Standard Form)

A linear program (LP) is an optimization problem that can be written
in the following form, where A ∈Mm,n, b ∈ Rm, c ∈ Rn are fixed, and
x ∈ Rn is a vector of variables:

maximize: c ·x
subject to: Ax≤ b

x≥ 0
(2.B.2)

Furthermore, this is called the standard form of the linear program.

The above definition perhaps seems somewhat restrictive. For example,
what if we wanted to consider a minimization problem that contained some
equality constraints, and allowed some of the variables to be negative? It
turns out that this is no problem—by massaging things a little bit, we can
actually write a fairly wide variety of optimization problems in the standard
form (2.B.2).

Before we demonstrate these techniques though, it is useful to clarify some
terminology. The objective function is the function that is being maximized
or minimized (i.e., c · x), and the optimal value is the maximal or minimal
value that the objective function can have subject to the constraints (i.e., it is
the “solution” of the linear program). A feasible vector is a vector x ∈ Rn that
satisfies all of the constraints (i.e., Ax≤ b and x≥ 0), and the feasible region
is the set of all feasible vectors.

Minimization Problems
To write a minimization problem in standard form, we just have to notice that
minimizing c ·x is the same as maximizing −(c ·x) and then multiplying the
optimal value by −1. We illustrate this fact with Figure 2.31 and an example.

−(c ·x) c ·x

0-5 -4 -3 -2 -1 1 2 3 4 5

Figure 2.31: Minimizing c ·x is essentially the same as maximizing −(c ·x); the final
answers just differ by a minus sign.
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Example 2.B.1
Minimization

in Linear Programs

Write the following linear program in standard form:

minimize: −x1−2x2
subject to: x1 + x2 ≤ 3

−x1 + x2 ≤ 1
x1, x2 ≥ 0

Solution:
We simply change the “minimize” to a “maximize” and flip the sign

on each term in the function being maximized:

maximize: x1 +2x2
subject to: x1 + x2 ≤ 3

−x1 + x2 ≤ 1
x1, x2 ≥ 0

If we wanted to, we could then specify exactly what A, b, and c are in this
linear program’s standard form:

A =
[

1 1
−1 1

]
, b = (3,1), and c = (1,2).

Note that we have to be slightly careful and keep in mind that the optimal
value of this new linear program is the negative of the optimal value of the
original linear program.

We will talk about
how to actually find
the optimal value of

a linear program
shortly.

The optimal value in both cases is attained at x =
(x1,x2) = (1,2), but the original minimization problem has optimal value
−x1−2x2 =−5, whereas its standard form has optimal value x1 +2x2 = 5.

Equality and Flipped Constraints
Equality constraints and “≥” constraints can both be converted into “≤” con-
straints, and thus pose no problem for linear programs. To convert a “≥” con-
straint into a “≤” constraint, we just multiply it by−1 (recall that the sign of an
inequality flips when multiplying it through by a negative number). To handle
equality constraints, recall that x = a is equivalent to the pair of inequalities
x≤ a and x≥ a, which in turn is equivalent to the pair of inequalities x≤ a and
−x≤−a, so one equality constraint can be converted into two “≤” constraints.
Again, we illustrate these facts with an example.

Example 2.B.2
Equality and Flipped
Constraints in Linear

Programs

Write the following linear program in standard form:

maximize: x1 +2x2
subject to: 3x1−4x2 ≥ 1

2x1 + x2 = 5
x1, x2 ≥ 0

Solution:
We multiply the constraint 3x1−4x2≥ 1 by−1 to obtain the equivalent

constraints −3x1 + 4x2 ≤ −1, and we split the equality constraint 2x1 +
x2 = 5 into the equivalent pair of inequality constraints 2x1 + x2 ≤ 5 and
−2x1− x2 ≤−5. After making these changes, the linear program has the
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form

maximize: x1 +2x2
subject to: −3x1 +4x2 ≤−1

2x1 + x2 ≤ 5
−2x1− x2 ≤−5

x1, x2 ≥ 0

If we wanted to,

In general, A has as
many rows as there
are constraints and

as many columns as
there are variables

(similar to the
coefficient matrix of

a linear system).

we could then specify exactly what A, b, and c are in this
linear program’s standard form:

A =



−3 4
2 1
−2 −1


 , b = (−1,5,−5), and c = (1,2).

Negative Variables
If we want one of the variables in a linear program to be able to take on negative
values, then we can just write it as a difference of two non-negative variables,
since every real number x can be written in the form x = x+−x−, where x+ ≥ 0
and x− ≥ 0. We illustrate how this fact can be used to write even more linear
programs in standard form via another example.

Example 2.B.3
Negative Variables
in Linear Programs

Write the following linear program in standard form:

maximize: 2x1− x2
subject to: x1 +3x2 ≤ 4

3x1−2x2 ≤ 5
x1 ≥ 0

Solution:
The only reason this linear program is not yet in standard form is

that there is no x2 ≥ 0 constraint. To rewrite this linear program in an
equivalent form with all non-negative variables, we write x2 = x+

2 − x−2 ,
where x+

2 ,x−2 ≥ 0, and then we replace all instances of x2 in the linear
program with x+

2 − x−2 :

maximize: 2x1− (x+
2 − x−2 )

subject to: x1 +3(x+
2 − x−2 )≤ 4

3x1−2(x+
2 − x−2 )≤ 5

x1, x+
2 , x−2 ≥ 0

This is

Be careful when
computing A and

c—we have to
expand out

parentheses first. For
example, the first

inequality is
x1 +3(x+

2 − x−2 )≤ 4,
which expands to

x1 +3x+
2 −3x−2 ≤ 4, so

the first row of A is
(1,3,−3).

now a linear program in 3 non-negative variables, and we can
expand out all parentheses and then specify exactly what A, b, and c are in
this linear program’s standard form:

A =
[

1 3 −3
3 −2 2

]
, b = (4,5), and c = (2,−1,1).

It is perhaps worth working through one example that makes use of all of
these techniques at once to convert a linear program into standard form.
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Example 2.B.4
Converting a

Linear Program
into Primal

Standard
Form

Write the following linear program in standard form:

minimize: 3x1−2x2
subject to: x1 +3x2 = 4

x1 +2x2 ≥ 3
x2 ≥ 0

Solution:
We start by converting the minimization to a maximization (by multi-

plying the objective function by −1) and converting the equality and “≥”
inequality constraints into “≤” constraints:

maximize: −3x1 +2x2
subject to: x1 +3x2 ≤ 4

− x1−3x2 ≤−4
− x1−2x2 ≤−3

x2 ≥ 0

Again, we must be careful to keep in mind that the optimal value of
this linear program is the negative of the optimal value of the original
linear program. To complete the conversion to standard form, we replace
the unconstrained variable x1 by x+

1 − x−1 , where x+
1 ,x−1 ≥ 0:

maximize: −3(x+
1 − x−1 )+2x2

subject to: x+
1 − x−1 +3x2 ≤ 4

− (x+
1 − x−1 )−3x2 ≤−4

− (x+
1 − x−1 )−2x2 ≤−3

x+
1 , x−1 , x2 ≥ 0

This is
Once again, be

careful and expand
out parentheses

before computing A
and c.

now a linear program in 3 non-negative variables, and we can
specify exactly what A, b, and c are in this linear program’s standard form:

A =




1 −1 3
−1 1 −3
−1 1 −2


 , b = (4,−4,−3), and c = (−3,3,2).

2.B.2 Geometric Interpretation

To get a bit of intuition about linear programs, we now consider how we could
interpret and solve the following one geometrically:

This is the linear
program from
Example 2.B.1.

maximize: x1 +2x2
subject to: x1 + x2 ≤ 3

−x1 + x2 ≤ 1
x1, x2 ≥ 0

(2.B.3)

We start by graphing the constraints—there are two variables, so the feasible
region x = (x1,x2) is a subset of R2. The constraints x1 ≥ 0 and x2 ≥ 0 are sim-
ple enough, and just force x to lie in the non-negative (i.e., top-right) quadrant.
The other two constraints are perhaps easier to visualize if we rearrange them
into the forms x2≤−x1 +3 (i.e., everything on and below the line x2 =−x1 +3)
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and x2 ≤ x1 +1 (i.e., everything on and below the line x2 = x1 +1), respectively.
These lines and inequalities are plotted in Figure 2.32.

x1
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x 1
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1
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Figure 2.32: A visualization of the inequality constraints of linear program (2.B.3).

Since feasible vectors must satisfy all of the constraints of the linear pro-
gram, the feasible region is exactly the intersection of the regions defined by
these individual constraints, which is illustrated in Figure 2.33(a).

Now that we know what the feasible region looks like, we can solve the
linear program by investigating how the objective function behaves on that
region. To this end, we defineThese lines are

called the level sets
or level curves of

the function
f (x1,x2) = x1 +2x2.

z = x1 +2x2, so that our goal is to maximize z.
We can rearrange this equation to get x2 =−x1/2+ z/2, which is a line with
slope −1/2 and y-intercept z/2. We want to find the largest possible z such that
this line intersects the feasible region of the linear program, which is depicted
in Figure 2.33(b). We see that the largest such value of z is z = 5 (corresponding
to a y-intercept of 5/2), so this is the optimal value of the linear program, and
it is attained at the vector x = (x1,x2) = (1,2).

x1

x2

z =−3

1 2 3 4

1
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3

-1

-1

x1

x2

z = 11

z = 9

z = 7

z = 5

(x1,x2) = (1,2)

z = 3

z = 1z =−1z =−3

1 2 3 4

1

2

3

-1

-1

Figure 2.33: A visualization of the feasible region of the linear program (2.B.3), and
how we can use it to find its optimal value.

This geometric method of solving linear programs works for essentially
any linear program of 2 variables, but it is much more difficult to make use of
when there are 3 or more variables, since it is much more difficult to visualize a
feasible region in 3 (or more!) dimensions. However, much of the intuition from
2 dimensions carries over to higher dimensions. For example, the feasible set
of a linear program is always a convex polytope (roughly speaking, a region
with flat sides, no holes, and that never bends inward), and the optimal value is
always attained at a corner of the feasible set (if it exists and is finite).
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Unbounded and Infeasible Problems
There are two basic ways in which a linear program can fail to have a solution.
A linear program is called unbounded if there exist feasible vectors that make
the objective function arbitrarily large (if it is a maximization problem) or
arbitrarily small (if it is a minimization problem). For example, the linear
program

Linear programs
with unbounded

feasible regions can
have bounded

optimal values. For
example, if this
linear program

asked for a
minimum instead of

a maximum, its
optimal value

would be 0
(attained at

x1 = x2 = 0).

maximize: x1 +2x2
subject to: −x1 + x2 ≤ 1

x1, x2 ≥ 0
(2.B.4)

is unbounded because we can choose x2 = x1 +1 so that (x1,x2) is a feasible
vector whenever x1 ≥ 0. The value of the objective function at this vector is
x1 + 2x2 = x1 + 2(x1 + 1) = 3x1 + 2, which can be made as large as we like
by increasing x1. The feasible region of this linear program is displayed in
Figure 2.34(a).

On the other hand, a linear program is called infeasible if the feasible set
is empty (i.e., there are no feasible vectors). For example, the linear program

maximize: x1 +2x2
subject to: x1− x2 ≤−1

−x1 + x2 ≤−1
x1, x2 ≥ 0

(2.B.5)

is infeasible since there is no way to find values of x1,x2 that satisfy all of the
constraints simultaneously, as demonstrated geometrically in Figure 2.34(b).
One way of seeing that this linear program is infeasible algebraically is to add
the first inequality to the second inequality, which results in the new inequality
(x1− x2)+(−x1 + x2) = 0≤−1−1 =−2, which is not true no matter what
x1 and x2 equal.
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x1

z =−2 z = 0 z = 2
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Figure 2.34: Examples of unbounded and infeasible linear programs.

If

Notice the analogy
between the

trichotomy for linear
systems (every

linear system has no
solution, a unique

solution, or infinitely
many solutions) and

for linear programs
(every linear

program is
infeasible, has a

finite solution, or is
unbounded).

a maximization problem is unbounded then we sometimes say that its
optimal value is ∞, and if it is infeasible then we might say that its optimal value
is −∞. Similarly, if a minimization problem is unbounded then we sometimes
say that its optimal value if −∞, and if it is infeasible then its optimal value is
∞. The benefit of defining things in this way is that then every linear program
has an optimal value (though that optimal value might not be a real number).
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2.B.3 The Simplex Method for Solving Linear Programs

We now present an algorithm, called the simplex method, for solving linear
programs algebraically, much like Gaussian elimination can be used to solve
linear systems algebraically (so that we do not have to rely on the geometric
method introduced in the previous section, which breaks down when the lin-
ear program has more than 2 or 3 variables). In particular, we illustrate this
algorithm with the following linear program:

maximize: 2x1 + x2
subject to: 3x1 +2x2 ≥−1

x1− x2 ≤ 2
x1−3x2 ≥−3
x1 ≥ 0

(2.B.6)

Step 1: Put the linear program into standard form. Fortunately, we already
know how to perform this step, and if we apply it to the linear pro-
gram (2.B.6) then we get

maximize: 2x1 + x2− x3
subject to: −3x1−2x2 +2x3 ≤ 1

x1− x2 + x3 ≤ 2
− x1 +3x2−3x3 ≤ 3

x1, x2, x3 ≥ 0

(2.B.7)

In particular, this standard form was obtained by multiplying the first
and third constraints by −1 and replacing the unconstrained variable x2
by x2− x3 where x2,x3 ≥ 0.

Step 1.5: Hope that b≥ 0. If b (the vector containing the coefficients on the right-
hand side of the “≤” inequalities) has a negative entry then we will run
into a problem later on. We will discuss what this problem is and how to
fix it later—for this particular example we just note that b = (1,2,3)≥ 0,
so we move on.

Step 2: Add some new variables. Next, we change each of the “≤” constraints
into an equality constraint by adding a new variable to it. For example,
the inequality x≤ 5 is equivalent to the pair of constraints s+x = 5, s≥ 0.
The new variable s is called a slack variable, and it just measures the
difference between the right- and left-hand sides. Applying this technique
to the linear program (2.B.7) puts it into the form

One slack variable
is added for each

“≤” constraint that
is being turned into

an equality
constraint.

maximize: 2x1 + x2− x3
subject to: s1 −3x1−2x2 +2x3 = 1

s2 + x1− x2 + x3 = 2
s3− x1 +3x2−3x3 = 3

s1, s2, s3, x1, x2, x3 ≥ 0

(2.B.8)

We also introduce a variable z that equals the objective function (i.e.,
z = c ·x), and we rephrase the linear program as maximizing over z with
the additional constraint that z− c · x = 0. Making this change to the
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linear program (2.B.8) gives it the form

maximize: z
subject to: z −2x1− x2 + x3 = 0

s1 −3x1−2x2 +2x3 = 1
s2 + x1− x2 + x3 = 2

s3− x1 +3x2−3x3 = 3
s1, s2, s3, x1, x2, x3 ≥ 0

(2.B.9)

This final change perhaps seems somewhat arbitrary and silly right now,
but it makes the upcoming steps work out much more cleanly.

Step 3: Put the linear program into a tableau. Adding the new variables to
the linear program in the previous step unfortunately made it quite large,
so we now construct a matrix representation of it so that we do not have
to repeatedly write down the variable names (this is the same reason that
we typically represent a linear system Ax = b via the augmented matrix
[ A | b ]). In particular, the matrix form of a linear program

maximize: c ·x
subject to: Ax≤ b

x≥ 0

is called its tableau, and it is the block matrix
[

1 0T −cT 0
0 I A b

]
.

This matrix perhaps looks quite strange at first glance, but a little reflection
shows that it is simply the augmented matrix corresponding to the equality
constraints in the linear program (2.B.9) that we constructed in Step 2.

We do not actually
need to explicitly

carry out Step 2 at
all—we can go

straight from the
standard form of a

linear program to its
tableau.

In particular, the top row simply says that z− cT x = 0 and the bottom
block row [ 0 | I | A | b ] represents the equality constraints involving slack
variables (the identity block comes from the slack variables themselves).
For example, the tableau of the linear program (2.B.9) is




1 0 0 0 −2 −1 1 0
0 1 0 0 −3 −2 2 1
0 0 1 0 1 −1 1 2
0 0 0 1 −1 3 −3 3


 ,

z− c ·x= 0
z s1 s2 s3 x1 x2 x3

which is also exactly the augmented matrix corresponding to the equality
constraints in that linear program.
Once nice feature of this tableau (and the main reason that we introduced
the new variables in Step 2) is that it is necessarily in reduced row echelon
form, so all solutions of these equality constraints can be read off from
it directly. In particular, the newly-introduced variables z, s1, s2, and s3
are the leading variables and the original variables x1, x2, and x3 are the
free variables. We can choose x1, x2, and x3 to be anything we like, as
long as that choice results in all variables (except for maybe z) being
non-negative.

The tableau of a
linear program only

encodes its
objective function

and equality
constraints. The

requirement that all
variables except for

z must be
non-negative is

implicit.
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Step 4: Starting from one feasible vector, find a better feasible vector. A
feasible vector of the linear program corresponds to a choice of the free
variables that results in each variable being non-negative. One way to
find a feasible vector is to simply set all of the free variables equal to 0.

This is why we
needed b≥ 0 back

in Step 1.5.
Choosing x = 0

results in the slack
variables being the
entries of b must be

non-negative in
order to be feasible.

In this case, that gives us

x1 = x2 = x3 = 0, s1 = 1,s2 = 2,s3 = 3, z = 0.

While this is indeed a feasible vector, it is not a particularly good one—it
gives us a value of z = 0 in the objective function, and we would like to
do better (i.e., we would like to increase z). To do so, we increase one
free variable at a time.
To increase the value of the objective function z = 2x1 + x2− x3, we
could increase either x1 or x2, but since x1 has the largest coefficient,
increasing it will provide the quickest gain. We thus increase x1 as much
as possible (i.e., without violating the constraints of the linear program).
Since we are leaving x2 = x3 = 0 alone for now, the constraints simply
have the form

−3x1−2x2 +2x3 =−3x1 ≤ 1
x1− x2 + x3 = x1 ≤ 2

− x1 +3x2−3x3 =− x1 ≤ 3.

Since we are increasing x1, the most restrictive of these constraints is
the second one, so we wish to set x1 = 2 and update the other vari-
ables accordingly. One way to do this is to apply row operations to the
tableau so as eliminate all entries in the x1 column other than the entry
corresponding to the 2nd (i.e., the most restrictive) constraint:

This is all very
analogous to how

we used
Gauss–Jordan

elimination to solve
linear systems back
in Section 2.1.3. The
only difference is in

the choice of which
entries to pivot on

(i.e., which column
to zero out).




1 0 0 0 −2 −1 1 0
0 1 0 0 −3 −2 2 1
0 0 1 0 1 −1 1 2
0 0 0 1 −1 3 −3 3




R1+2R3
R2+3R3
R4+R3−−−−→




1 0 2 0 0 −3 3 4
0 1 3 0 0 −5 5 7
0 0 1 0 1 −1 1 2
0 0 1 1 0 2 −2 5


 .

new “leading” entry

z s1 s2 s3 x1 x2 x3

Even though this new tableau is not quite in reduced row echelon form,
for our purposes it is just as good—we can still read the solutions of
the equality constraints directly from it. We just have to think of s1, s3,
and x1 as the leading variables (after all, their columns look like leading
columns) and s2, x2, and x3 as the free variables. Setting this new set of
free variables equal to 0 gives us

s2 = x2 = x3 = 0, s1 = 7,x1 = 2,s3 = 5, z = 4.

In particular, we noconclude that the optimal value oftice that the value
of z = 4 in the objective function is better than the value of z = 0 that we
had started with.
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Step 5: Repeat until we cannot. Now we just apply Step 4 over and over again,
but more quickly now that we are a bit more comfortable with it. Suc-
cinctly, we find the most negative coefficient in the top row of the tableau,
which is now the −3 in the x2 column, and then in that column we find
the positive entry that minimizes its ratio with the scalar on the right-hand
side:




1 0 2 0 0 −3 3 4
0 1 3 0 0 −3 5 7
0 0 1 0 1 −1 1 2
0 0 1 1 0 2 −2 5




most negative entry in top row

5/2 is smallest (and only) positive ratio

Finally, we pivot on the positive entry that we just found (i.e., the 2 in
the x2 column), thus obtaining a tableau with a new value of z in the
upper-right corner:Keep in mind that

row operations are
performed

sequentially—we
first multiply row 4

by 1/2 and then
perform the other

three row
operations.




1 0 2 0 0 −3 3 4
0 1 3 0 0 −5 5 7
0 0 1 0 1 −1 1 2
0 0 1 1 0 2 −2 5




(1/2)R4
R1+3R4
R2+5R4
R3+R4−−−−→




1 0 7/2 3/2 0 0 0 23/2
0 1 11/2 5/2 0 0 0 39/2
0 0 3/2 1/2 1 0 0 9/2
0 0 1/2 1/2 0 1 −1 5/2




new “leading” entry

new “z” value

z s1 s2 s3 x1 x2 x3

We then repeat this same procedure over and over again until we get
stuck. In fact, for this particular linear program we get stuck if we try to
do this even once more, since there are no longer any negative entries in
the top row for us to choose. Indeed, the top row of the final tableau above
tells us that z = 23/2− (7/2)s2− (3/2)s3. Since s2,s3 ≥ 0 we conclude
that z = 23/2 is the optimal value of this linear program, and it is attained
when x1 = 9/2 and x2 = 5/2 (and s1 = 39/2 and s2 = s3 = x3 = 0).

Geometrically, what Steps 4 and 5 of the simplex method do is start at the
origin (recall that Step 4 begins by setting each x j = 0) and repeatedly look for
nearby corners that produce a higher value in the objective function. For the
particular linear program (2.B.7) that we just worked through, we first moved
from (x1,x2,x3) = (0,0,0) to (x1,x2,x3) = (2,0,0) and then to (x1,x2,x3) =
(9/2,5/2,0), as illustrated in Figure 2.35.

It is worth recalling that the 3-variable linear program that we solved
was equivalent to the 2-variable linear program (2.B.6) that we were actually
interested in originally. The 2D feasible region of this linear program is just the
projection of the 3D feasible region from Figure 2.35 onto the plane x2 +x3 = 0
(we have not discussed how to project onto a plane, but it analogous to how
we projected onto a line in Section 1.4.2; think of the 2D projected shape
as the shadow of the full 3D shape). This 2D feasible region is displayed in
Figure 2.36.
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The feasible region
of a linear program

with n variables and
m constraints can

have up to
(m

n

)

corners. The simplex
algorithm is useful

for helping us
search through this

large number of
corners quickly.

x2

x1

x3

(9/2,5/2,0)

(0,0,0)

(2,0,0)

Figure 2.35: The feasible region of the linear program (2.B.7). The simplex method
works by jumping from one corner of the feasible region to a neighboring one
in such a way as to increase the value of the objective function by as much as
possible at each step.

The 3D feasible
region in Figure 2.35

has 6 corners, but
the 2D projected
feasible region in

Figure 2.36 only has
4 corners. The 2

corners that were
lost when projecting

are the ones at
(0,0,0) and (2,0,0),

which were
projected down to

(0,0) and (2,0),
respectively.
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z = 23/2

(x1,x2) = (9/2,5/2)

z = 4z = 0

(x1,x2) = (0,0)
(x1,x2) = (2,0)

Figure 2.36: The 2D feasible region of the linear program (2.B.6), which is a projec-
tion (shadow) of the feasible region from Figure 2.35. The simplex method starts
with a value of z = 0 in the objective function at (x1,x2) = (0,0) and then moves
to (x1,x2) = (2,0) to get a value of z = 4, and finally to (x1,x2) = (9/2,5/2) to get the
optimal value of z = 23/2.

Example 2.B.5
How Best to

Sell Cookies

Suppose a bakery bakes and sells three types of cookies: peanut butter,
chocolate chip, and peanut butter chocolate chip. The profit that they make
per dozen cookies of each type is as follows:

• Peanut butter: $1.00
• Chocolate chip: $0.80
• Peanut butter chocolate chip: $1.50

Due to ingredient supply limitations, they can bake no more than 100
dozen cookies containing chocolate chips and 80 dozen cookies containing
peanut butter per week. Furthermore, their market research indicates that
people are unwilling to buy more than 150 dozen cookies from them per
week. How many dozen cookies of each type should the bakery bake each
week in order to maximize profits?

Setting up the linear program:
We start by formulating this problem as a linear program. Let xp, xc,

and xpc denote the number of dozen peanut butter, chocolate chip, and
peanut butter chocolate chip cookies to be baked, respectively. The bakery
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wants to maximize its profits, which are given by the equation
This objective

function says that
the bakery makes

$1 per dozen
peanut butter

cookies sold, $0.80
per dozen

chocolate chip
cookies, and $1.50
per dozen peanut

butter chocolate
chip cookies.

xp +0.8xc +1.5xpc,

so this will be the objective function of the linear program. Furthermore,
the constraints described by the problem have the form

xc + xpc ≤ 100, xp + xpc ≤ 80, and xp + xc + xpc ≤ 150,

and each of the variables is non-negative as well (i.e., xp,xc,xpc ≥ 0) since
the bakery cannot bake a negative number of cookies. The linear program
that we wish to solve thus has the form

Notice that this
linear program is

already in standard
form. This happens

for many real-world
linear programs,

and is part of the
reason why we like

standard form so
much.

maximize: xp +0.8xc +1.5xpc
subject to: xc + xpc ≤ 100

xp + xpc ≤ 80
xp + xc + xpc ≤ 150
xp, xc, xpc ≥ 0

Solving the linear program:
Since this linear program is already in standard form, and the scalars

on the right-hand side of each inequality are all non-negative, to solve it
via the simplex method we can jump straight to Step 3. That is, we put
this linear program into its tableau:




1 0 0 0 −1 −0.8 −1.5 0
0 1 0 0 0 1 1 100
0 0 1 0 1 0 1 80
0 0 0 1 1 1 1 150


 .

Now we just repeatedly apply Step 4 of the simplex method: we select the
column whose top entry is the most negative, and then we pivot on the
entry in that column whose ratio with the right-hand side is the smallest
positive number possible.
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1 0 0 0 −1 −0.8 −1.5 0

0 1 0 0 0 1 1 100

0 0 1 0 1 0 1 80

0 0 0 1 1 1 1 150




R1+1.5R3

R2−R3

R4−R3−−−−−−→




1 0 1.5 0 0.5 −0.8 0 120

0 1 −1 0 −1 1 0 20

0 0 1 0 1 0 1 80

0 0 −1 1 0 1 0 70




R1+0.8R2

R4−R2−−−−−−→




1 0.8 0.7 0 −0.3 0 0 136

0 1 −1 0 −1 1 0 20

0 0 1 0 1 0 1 80

0 −1 0 1 1 0 0 50




R1+0.3R4

R2+R4

R3−R4−−−−−−→




1 0.5 0.7 0.3 0 0 0 151

0 0 −1 1 0 1 0 70

0 1 1 −1 0 0 1 30

0 −1 0 1 1 0 0 50




z s1 s2 s3 xp xc xpc

Since

Here, we highlight
the entry of the

tableau that we will
pivot on in the

upcoming set of
row operations. The
row operations are

chosen to turn all
other entries in that

column into zeros.

we have arrived at a tableau with a non-negative top row, we are
done and conclude that the optimal value of this linear program (i.e., the
most money that the bakery can make per week) is $151. Furthermore, it
is attained when they bake xp = 50 dozen peanut butter cookies, xc = 70
dozen chocolate chip cookies, and xpc = 30 dozen peanut butter chocolate
chip cookies.

The feasible region of the linear program that we just solved, as well
as the corners traversed by the simplex method to solve it, are displayed
below:

The three slanted
sides of this feasible

region each
correspond to one

of the inequality
constraints in the

linear program.

xp

xc

xpc

(50,70,30)

(0,20,80)(xp,xc,xpc) = (0,0,80)

Remark 2.B.1
Integer Solutions

to Linear Programs
are Hard to Find

In Example 2.B.5, we were lucky that the solution to the linear program
required the bakery to bake an integer number of cookies—while they
might be able to bake a fraction of a cookie, they would certainly have a
tough time selling it.

If the solution to a linear program is not an integer, but it really should
be (e.g., due to physical constraints of the problem being modeled), we
can try just rounding the various variables to the nearest integer. However,
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this does not always work very well. For example, the optimal value of
the linear program

maximize: x1 +3x2
subject to: x1 +2x2 ≤ 4

−2x1 + x2 ≤ 0
x1, x2 ≥ 0

is 5.6, which is attained at the vector (x1,x2) = (0.8,1.6). If we try to find
the optimal value when restricted to integer inputs simply by rounding
these values down to (x1,x2) = (0,1), we run into a big problem—this
vector is not even feasible (it violates the constraint −2x1 + x2 ≤ 0)!

It is also possible for
a linear program

with integer
coefficients to have

a non-empty
feasible region but
no feasible vectors

with integer
coordinates, or for it

to have an
integer-valued

optimal vector that
is arbitrarily far for

the real-valued
optimal vector (see

Exercises 2.B.6
and 2.B.8).

Of the four possible ways of rounding each of x1 = 0.8 and x2 = 1.6 up
or down, only one results in a feasible vector: (x1,x2) = (1,1). However,
this vector is not optimal—it gives a value of x1 + 3x2 = 4 in the objec-
tive function, whereas the vector (2,1) gives a value of 5. We can make
sense of all of this by plotting the feasible region of this linear program:

x1

x2

1 2 3 4 5

1

2

z= 5.6

real optimal point
(x1,x2) = (0.8,1.6)

z= 5
z= 4

infeasible rounded point
(x1,x2) = (0,1)

non-optimal rounded point
(x1,x2) = (1,1)

integer optimal point
(x1,x2) = (2,1)

Linear programming with integer constraints is called integer linear
programming, and it is typically much harder than linear programming
itself. Low-dimensional integer linear programs can be solved via the
same geometric technique that we used for low-dimensional linear pro-
grams. However, algebraic methods for dealing with higher-dimensional
integer linear programs are much more involved, so the interested reader
is directed to a book like [Mar99] for their treatment.

Finding an Initial Feasible Point
Recall that Step 1.5 of the simplex method was “hope that b≥ 0”. The reason
that we required b≥ 0 is that we started the simplex method at the vector x = 0,
which is only feasible if b ≥ 0. To illustrate the problem with having b 6≥ 0
more clearly, and to see how we can get around it, consider the following linear
program:

maximize: x1 +2x2
subject to: x1 + x2 ≤ 2

− x1− x2 ≤−1
−2x1 + x2 ≤−2

x1, x2 ≥ 0

(2.B.10)

This linear program is already in standard form, but we cannot perform
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Step 4 of the simplex method since we do not have an “obvious” choice
of feasible vector to start from, since x1 = x2 = 0 violates the second and third
constraints and is thus not feasible. To get around this problem we first solve
a different linear program, which we call the feasibility linear program,

We sometimes
abbreviate this term

as feasibility LP for
brevity.

that
either finds a (not necessarily optimal) feasible vector for us or shows that none
exist (i.e., shows that the linear program is infeasible).

To construct this feasibility LP we introduce yet another variable y ≥ 0,
which we call the artificial variable, and we make two changes to the original
linear program (2.B.10):

• we subtract y from each equation that has a negative right-hand side, and
• we change the objective function to “maximize −y”.

Making these changes gives us the feasibility linear program

The idea here is that
we want to make y
as small as possible

(hopefully 0). To
minimize y, we

maximize −y.

maximize: − y
subject to: x1 + x2 ≤ 2

− x1− x2− y≤−1
−2x1 + x2− y≤−2

x1, x2, y≥ 0

(2.B.11)

The reason for making these changes is that the feasibility LP (2.B.11) has an
“obvious” feasible vector that we can start the simplex method from: x1 = x2 = 0,
y = 2 (in general, we set each x j = 0 and then set y large enough to satisfy all
constraints). Furthermore, its optimal value equals 0 if and only if the original
linear program (2.B.10) is feasible, since (x1,x2,y) = (x1,x2,0) is a feasible
vector of the feasibility LP (2.B.11) if and only if (x1,x2) is a feasible vector of
the original linear program (2.B.10).

Example 2.B.6
Finding a Feasible

Point of a Linear
Program

Find a feasible vector of the linear program (2.B.10), or show that it is
infeasible.

Solution:
As indicated earlier, we can solve this problem by using the simplex

method to solve the feasibility LP (2.B.11). Since we want to start at the
“obvious” feasible vector (x1,x2,y) = (0,0,2) that we noted earlier, after
constructing the tableau we first pivot on the entry in the “y” column
corresponding to the “−2x1 + x2− y ≤ −2” constraint (since this one
places the biggest restriction on y):

Again, keep in mind
that row operations

are performed
sequentially. We

multiply row 4 by −1
and then do the

“addition” row
operations.




1 0 0 0 0 0 1 0
0 1 0 0 1 1 0 2
0 0 1 0 −1 −1 −1 −1
0 0 0 1 −2 1 −1 −2




−R4
R1−R4
R3+R4−−−−→




1 0 0 1 −2 1 0 −2
0 1 0 0 1 1 0 2
0 0 1 −1 1 −2 0 1
0 0 0 −1 2 −1 1 2




pivot
here

z s1 s2 s3 x1 x2 y

We now apply the simplex method to this tableau as usual, which
fortunately ends in just one step:
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1 0 0 1 −2 1 0 −2

0 1 0 0 1 1 0 2

0 0 1 −1 1 −2 0 1

0 0 0 −1 2 −1 1 2




(1/2)R4

R1+2R4

R2−R4

R3−R4−−−−→




1 0 0 0 0 0 1 0

0 1 0 1/2 0 3/2 −1/2 1

0 0 1 −1/2 0 −3/2 −1/2 0

0 0 0 −1/2 1 −1/2 1/2 1




The top-right entry of the final tableau

Here we could pivot
in either the third or

fourth row, since
there is a tie for the

minimal ratio with
the right-hand side.

We chose row 4
randomly.

being 0 tells us that the optimal
value of this feasibility LP is 0, so the original linear program (2.B.10) is
feasible. In particular, since this final tableau has x1 = 1 and x2 = 0, we
conclude that (x1,x2) = (1,0) is a feasible vector of that original LP. It is
perhaps worthwhile to visualize the feasible region of this feasibility LP
to see what we have done here:

x2

y

x1

(1,0,0)

(0,0,2)

We have truncated
the feasible region

of the feasibility
LP—it is actually

unbounded. Its top
surface (triangle) is
the feasible region

of the original
LP (2.B.10).

If we had instead found an optimal value of −y < 0 in the above example,
it would have meant that the original linear program (2.B.10) is infeasible.
However, that is not the case here, and we can use the feasible vector that we
found to start the simplex method and solve that linear program.

Example 2.B.7
Solving a Linear
Program from a

Non-zero Feasible
Point

Use the simplex method to solve the linear program (2.B.10).

Solution:
We proceed just like we always do, except since we want to start at the

feasible vector (x1,x2) = (1,0) that we found in Example 2.B.6, we first
pivot in the x1 column so as to make x1 leading:

In general, we start
by pivoting in

whichever columns
correspond to the
non-zero entries in
our initial feasible

vector.




1 0 0 0 −1 −2 0

0 1 0 0 1 1 2

0 0 1 0 −1 −1 −1

0 0 0 1 −2 1 −2




R1+R2

R3+R2

R4+2R2−−−−→




1 1 0 0 0 −1 2

0 1 0 0 1 1 2

0 1 1 0 0 0 1

0 2 0 1 0 3 2




z s1 s2 s3 x1 x2

Notice that the right-hand side vector of this new tableau is non-negative—
this always happens if the feasible vector that we found earlier and are
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trying to start from is indeed feasible.
From here, we just apply the simplex method as usual, repeatedly

pivoting until the top row of the tableau is non-negative:



1 1 0 0 0 −1 2
0 1 0 0 1 1 2
0 1 1 0 0 0 1
0 2 0 1 0 3 2




(1/3)R4
R1+R4
R2−R4−−−−→




1 5/3 0 1/3 0 0 8/3
0 1/3 0 −1/3 1 0 4/3
0 1 1 0 0 0 1
0 2/3 0 1/3 0 1 2/3




We thus see that the optimal value of this linear program is 8/3, and it is
attained at the vector (x1,x2) = (4/3,2/3). We can visualize the feasible
region of this linear program as follows:

Notice that this
feasible region is

the top surface of
the one from

Example 2.B.6.

x1

x2

z= 8/3

(x1,x2) = (4/3,2/3)

z= 2(x1,x2) = (2,0)

Remark 2.B.2
The Fine Details of

the Simplex
Method

We have glossed over countless details of the simplex method, including
a proof that it always works, a proper explanation for why it jumps from
corner to corner of the feasible region (or even what it means to be a
“corner” of a set when the dimension is larger than 3!), and a discussion
of some implementation details and edge cases (e.g., what to do if there
is a tie between minimal positive ratios when determining which entry to
pivot on in Step 4). Indeed, there are entire textbooks devoted to linear
programs and how to solve them, so the interested reader is directed to
any of [Chv83, Win03, HL10] for a more thorough treatment.

2.B.4 Duality

We saw geometrically back in Figure 2.33 that the linear program

maximize: x1 +2x2
subject to: x1 + x2 ≤ 3

−x1 + x2 ≤ 1
x1, x2 ≥ 0

(2.B.12)

has optimal value 5,The optimal value
of this linear

program is attained
at (x1,x2) = (1,2).

but how could we algebraically convince someone that
this is the optimal value of the linear program? By providing them with the
vector (x1,x2) = (1,2), we certainly convince them that the optimal value is at
least 5, since they can check that it satisfies all constraints and gives a value of
5 when plugged into the objective function.
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On the other hand, how could we convince them that it’s not possible to do
any better? Certainly we could solve the LP via the simplex method and show
them our work, but this does not seem very efficient. After all, to convince
someone that we have found a solution of a linear system, all we have to do is
present them with that solution—we do not have to show them our work with
Gaussian elimination. We would like a similarly simple method of verifying
solutions of linear programs.

The key idea that lets us easily verify a solution (but not necessarily find it)
is to add up the constraints of the linear program in a clever way so as to obtain
new (more useful) constraints. For example, if we add up the first and second
constraint of the linear program (2.B.12), we learn that

(x1 + x2)+(−x1 + x2) = 2x2 ≤ 3+1 = 4, so x2 ≤ 2.

But if we now add the first constraint (x1 + x2 ≤ 3) again, we similarly see that

x2 +(x1 + x2) = x1 +2x2 ≤ 2+3 = 5.

In other words, we have shown that the objective function of the linear program
is never larger than 5, so this is indeed the optimal value of the linear program.

A bit more generally, if we add up y1 times the first constraint and y2 times
the second constraint of this linear program for some y1,y2 ≥ 0,We need y1,y2 ≥ 0

so the signs of the
inequalities do not

change.

then it is the
case that

y1(x1 + x2)+ y2(−x1 + x2)≤ 3y1 + y2.

If we cleverly choose y1 and y2 so that

x1 +2x2 ≤ y1(x1 + x2)+ y2(−x1 + x2),

then 3y1 + y2 must also be an upper bound on x1 + 2x2 (i.e., the objective
function of the linear program). It is straightforward to check that y1 = 3/2,
y2 = 1/2 works and establishes the bound x1 +2x2 ≤ 3(3/2)+(1/2) = 5, just
like before.

The following definition is the result of generalizing this line of thinking to
arbitrary linear programs:

Definition 2.B.2
Dual of a

Linear Program

Suppose A ∈Mm,n(R), b ∈ Rm, c ∈ Rn are fixed, and x ∈ Rn,y ∈ Rm are
vectors of variables. Then the dual of a linear program

maximize: c ·x
subject to: Ax≤ b

x≥ 0

is the linear programFour things “flip”
when constructing

a dual problem:
“maximize”

becomes
“minimize”, A turns

into AT , the “≤”
constraint becomes

“≥”, and b and c
switch spots.

minimize: b ·y
subject to: AT y≥ c

y≥ 0

The original linear program in Definition 2.B.2 is called the primal prob-
lem, and the two of them together are called a primal/dual pair. As hinted at
by our previous discussion, the dual problem is remarkable for the fact that it
can provide us with upper bounds on the optimal value of the primal problem
(and the primal problem similarly provides lower bounds on the optimal value
of the dual problem):
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primal (maximize)
c ·x

dual (minimize)
b ·y

0-2 -1 1 2 3 4 5 6 7 8

Figure 2.37: Weak duality says that the objective function of the primal (maxi-
mization) problem cannot be increased past the objective function of the dual
(minimization) problem.

Theorem 2.B.1
Weak Duality

If x ∈ Rn is a feasible vector of a (primal) linear program and y ∈ Rm is a
feasible vector of its dual problem, then

c ·x≤ b ·y.

Proof. Since Ax≤ b and all of the entries of y are non-negative, it follows that
y · (Ax) ≤ y ·b. However, by using the fact that AT y ≥ c,Recall from

Exercise 1.3.17 that
y · (Ax) = yT Ax =
(AT y) ·x. This is a

general fact about
the dot product

and transpose that
is not specific to

linear programming.

a similar argument
shows that y · (Ax) = (AT y) · x ≥ c · x. Stringing these inequalities together
shows that c ·x≤ y ·b = b ·y, as desired. �

The weak duality theorem not only provides us with a way of establishing
upper bounds on the optimal value of our linear program, but it also lets us
easily determine when we have found its optimal value. In particular, since
we are bounding a maximization problem above by a minimization problem,
we know that if x ∈ Rn and y ∈ Rm are feasible vectors of the primal and dual
problems, respectively, for which c · x = b · y, then they must be optimal. In
other words, if we can find feasible vectors of each problem that give the same
value when plugged into their respective objective functions, they must be
optimal, since they cannot possibly be increased or decreased past each other
(see Figure 2.37).

The following example illustrates how we can construct the dual of a linear
program and use it to verify optimality.

Example 2.B.8
Constructing

and Using a Dual
Program

Construct the dual of the linear program

maximize: x1 +2x2
subject to: x1 + x2 ≤ 3

−x1 + x2 ≤ 1
x1, x2 ≥ 0

and then verify that the optimal value of both linear programs equals 5.

This is the linear
program (2.B.12)

again.

Solution:
This linear program is in primal standard form with

A =
[

1 1
−1 1

]
, b = (3,1), and c = (1,2),

and we already noted that (x1,x2) = (1,2) is a feasible vector of this linear
program that gives c ·x = 5, so 5 is a lower bound on the optimal value of
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both the primal and dual problems. The dual program is
Each variable in the

dual problem
corresponds to a
constraint in the
primal problem,

and each
constraint in the

dual problem
corresponds to a

variable in the
primal problem.

minimize: 3y1 + y2
subject to: y1− y2 ≥ 1

y1 + y2 ≥ 2
y1, y2 ≥ 0

It is straightforward to verify that (y1,y2) = (3/2,1/2) is a feasible vector
of the dual program, and it gives b ·y = 5, so 5 is an upper bound on the
optimal value of both the primal and dual problems. We thus conclude that
both problems have optimal value 5.

The above example perhaps does not display the true magic of duality,
since we already knew the solution of that linear program. Duality becomes
particularly useful when there is a seemingly “obvious” solution to a linear
program that we would like to quickly and easily show is in fact its solution.
We illustrate this technique with another example.

Example 2.B.9
Verifying an

“Obvious” Solution

Solve the linear program

maximize: x1 + x2 + x3 + x4 + x5
subject to: x1 + x2 + x3 ≤ 3

x2 + x3 + x4 ≤ 3
x3 + x4 + x5 ≤ 3

x1 + x4 + x5 ≤ 3
x1 + x2 + x5 ≤ 3
x1, x2, x3, x4, x5 ≥ 0

by constructing its dual problem and findingThis technique of
solving linear

programs via duality
works especially
well when they

have a lot of
structure or are very
symmetric, as in this

example.

feasible vectors of both
problems that produce the same value in their objective functions.

Solution:
It does not take long to see that (x1,x2,x3,x4,x5) = (1,1,1,1,1) is a

feasible vector of this linear program giving a value of

x1 + x2 + x3 + x4 + x5 = 1+1+1+1+1 = 5

in the objective function. Also, this vector somehow “feels” optimal—to
increase x1, for example, we would have to correspondingly decrease each
of x2 + x3 and x4 + x5 in order for the first and fourth constraints to still be
satisfied.

To pin this intuition down and verify that this vector is in fact optimal,
we could use the simplex algorithm to solve this linear program, but an
easier way (especially for large linear programs) is to construct its dual. In
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this case, the dual program is

It can be helpful
when constructing
the dual of a linear

program to explicitly
write out the A

matrix and the b
and c vectors first.

minimize: 3y1 +3y2 +3y3 +3y4 +3y5
subject to: y1 + y4 + y5 ≥ 1

y1 + y2 + y5 ≥ 1
y1 + y2 + y3 ≥ 1

y2 + y3 + y4 ≥ 1
y3 + y4 + y5 ≥ 1

y1, y2, y3, y4, y5 ≥ 0

Our goal now is to find a feasible vector of this dual LP that produces a
value of 5 in its objective function. A bit of thought and squinting reveals
that the vector (y1,y2,y3,y4,y5) = (1,1,1,1,1)/3 works. Since we have
found feasible vectors of both the primal and dual problems that result in
their objective functions equaling the same value, we conclude that these
vectors must be optimal and the optimal value of each linear program is 5.

In the previous two examples, we saw that not only did the dual problem
serve as an upper bound on the primal problem, but rather we were able to
find particular feasible vectors of each problem that resulted in their objective
functions taking on the same value, thus proving optimality. The following
theorem establishes the remarkable fact that this always happens—if a linear
program has an optimal value (i.e., it is neither unbounded nor infeasible),
then the dual program has the same optimal value. However, we present this
theorem without proof, as it requires a significant amount of extra background
material to prove (again, we refer the interested reader to any of the textbooks
mentioned in Remark 2.B.2 for the details).

Theorem 2.B.2
Strong Duality

If x∗ ∈ Rn is a feasible vector of a (primal) linear program satisfying
c · x∗ ≥ c · x for all feasible vectors x ∈ Rn, then there exists a feasible
vector y∗ ∈ Rm of its dual problem such that

x∗ and y∗ are
vectors attaining

the maximum and
minimum values of

the primal and dual
linear programs,

respectively.

c ·x∗ = b ·y∗.

It is worth noting that strong duality shows that Figure 2.37 is somewhat
misleading—it is not just the case that the primal and dual programs bound
each other, but rather they bound each other “tightly” in the sense that their
optimal values coincide (see Figure 2.38).

c ·x∗ = b ·y∗
primal (maximize)
c ·x

dual (minimize)
b ·y

0-2 -1 1 2 3 4 5 6 7 8

Figure 2.38: Strong duality says that the objective function of the primal (maxi-
mization) problem can be increased to the exact same value that the objective
function of the dual (minimization) problem can be decreased to.

Note that the weak duality theorem says that if a primal problem is un-
bounded (i.e., it has feasible vectors x making c ·x arbitrarily large), then its
dual problem must be infeasible, since we could otherwise bound the primal
problem by some quantity b ·y. A similar argument shows that if a dual problem
is unbounded, then the primal problem must be infeasible.
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The linear programs in a primal/dual pair are thus either both solvable,
both infeasible, or one is infeasible while the other is unbounded. We saw
examples where both are solvable in Examples 2.B.8 and 2.B.9. To illustrate
the case where one problem is unbounded and its dual is infeasible, consider
the following primal/dual pair:

Now is a good time
to practice

constructing the
dual of a linear
program. Try to

construct the duals
that we present

here yourself.

Primal
maximize: x1 +2x2
subject to: −x1 + x2 ≤ 1

x1, x2 ≥ 0

∣∣∣∣∣

Dual
minimize: y
subject to: −y≥ 1

y≥ 2
y≥ 0

We illustrated that the above primal problem is unbounded in Figure 2.34(a),
and it is straightforward to see that the dual problem is infeasible (it is not
possible that −y≥ 1 and y≥ 0 simultaneously).

Finally, to illustrate the case where both problems are infeasible, consider
the following primal/dual pair:

Primal
maximize: x1 +2x2
subject to: x1− x2 ≤−1

−x1 + x2 ≤−1
x1, x2 ≥ 0

∣∣∣∣∣

Dual
minimize: −y1− y2
subject to: y1− y2 ≥ 1

−y1 + y2 ≥ 2
y1, y2 ≥ 0

We illustrated that the above primal problem is infeasible in Figure 2.34(b),
and the dual problem is infeasible since adding the two constraints yields the
(false) inequality 0≥ 3.

The possible infeasible/solvable/unbounded pairings that primal and dual
problems can share are summarized in Table 2.1.

Primal problem
Infeasible Solvable Unbounded

D
ua

l Infeasible X · X
Solvable · X ·

Unbounded X · ·

Table 2.1: A summary of how the infeasibility, solvability, or unboundedness of one
problem in a primal/dual pair can be used to help determine that of the other.
For example, if a primal problem is unbounded then we know immediately that its
dual must be infeasible.

The Dual of Problems Not in Standard Form
Strictly speaking, Definition 2.B.2 only tells us how to construct the dual of a
linear program that is represented in primal standard form. If a linear program
has (for example) equality constraints, then we must convert it into primal
standard form before constructing its dual problem.
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Example 2.B.10
Constructing the

Dual
of a Problem
Not in Primal

Standard Form

Construct the dual of the following linear program:

maximize: x1 +2x2
subject to: x1 + x2 = 3

−x1 + x2 ≤ 1
x1, x2 ≥ 0

(2.B.13)

Solution:
Before constructing the dual of this linear program, we first construct

its primal standard form by turning the equality constraint into two in-
equality constraints:

maximize: x1 +2x2
subject to: x1 + x2 ≤ 3

−x1− x2 ≤−3
−x1 + x2 ≤ 1

x1, x2 ≥ 0

Now

When constructing
the dual of a linear

program, the
number of

constraints and
variables swap.

Since the primal
problem here has 2

variables and 3
constraints, the dual

program has 3
variables and 2

constraints (ignoring
the non-negativity
constraints in each

problem).

that this linear program is in primal standard form, we can compute
its dual:

minimize: 3y1−3y2 + y3
subject to: y1− y2− y3 ≥ 1

y1− y2 + y3 ≥ 2
y1, y2, y3 ≥ 0

(2.B.14)

However, it turns out that there are some simple rules that we can use to
convert an arbitrary linear program (not necessarily in standard form) into its
dual program, without having to do the extra intermediate step of converting it
into its primal standard form. To get an idea of how they work, notice that in
the linear program (2.B.14), the variables y1 and y2 never appear independently,
but rather always appear together in the form y1− y2. We can thus replace
y1− y2 with the single (potentially negative) variable y∗, which results in the
following equivalent linear program:

minimize: 3y∗+ y3
subject to: y∗− y3 ≥ 1

y∗+ y3 ≥ 2
y3 ≥ 0

The first constraint in linear program (2.B.13) being equality (rather than
“≤”) thus had the effect on the dual problem of making the first variable
unconstrained (rather than≥ 0). This makes a fair amount of sense intuitively—
if we strengthen one of the constraints in the primal problem from “≤” to
equality then the optimal value will decrease, so we must correspondingly
loosen one of the constraints in the dual problem. We can similarly come up
with rules for other possible forms of a linear program (e.g., one having a “≥”
constraint or an unconstrained variable), and these rules are summarized in
Table 2.2.

We close this section with one final example that illustrates how to make
use of these rules to quickly construct the dual of a linear program that is not in
primal standard form.
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We do not prove
these rules here.

Again, see
Remark 2.B.2.

Primal problem (maximize) Dual problem (minimize)

i-th constraint: ≥ i-th variable: ≤ 0
= unconstrained
≤ ≥ 0

j-th variable: ≥ 0 j-th constraint: ≥
unconstrained =
≤ 0 ≤

Table 2.2: A summary of the rules that can be used to help construct the dual of a
linear program not in primal standard form. For example, if the i-th constraint of
the primal problem is a “≤” constraint, then the i-th variable of the dual problem
must be restricted to being ≥ 0.

Example 2.B.11
Constructing and

Using a Dual
Program

Construct the dual of the following linear program

maximize: x2
subject to: x1 + x2 =−3

2x1− x2 ≥ 1
x1 ≥ 0

and then find that the optimal value of both linear programs.

Solution:
By using the rules from Table 2.2, we construct the dual problem in

the usual way, except keeping in mind that since the first constraint of the
primal is equality, the first variable of the dual must be unconstrained, since
the second constraint of the primal is “≥”, the second variable of the dual
must be ≤ 0, and since the second variable of the primal is unconstrained,
the second constraint of the dual must be equality. It follows the dual of
this linear program isAlternatively, we

could convert this
linear program to

primal standard
form and then

construct its dual,
just like we did in

Example 2.B.10—the
resulting

primal/dual pair will
look slightly

different, but will
have the same

optimal value.

minimize: −3y1 + y2
subject to: y1 +2y2 ≥ 0

y1− y2 = 1
y2 ≤ 0

These linear programs are small and simple enough that we can find
their optimal values just by fumbling and eyeballing feasible vectors for
a while. It does not take long to find the vector (x1,x2) = (0,−3), which
is feasible for the primal problem and has c · x = −3, and the vector
(y1,y2) = (1,0), which is feasible for the dual problem and has b ·y =−3.
Since these values are the same, weak duality tells us that both linear
programs have optimal value −3.

Exercises solutions to starred exercises on page 457

2.B.1 Use the geometric method of Section 2.B.2 to either
solve each of the following linear programs or show that
they are unbounded or infeasible.

∗(a) maximize: x1 + x2
subject to: 2x1 + x2 ≥ 1

x1 +2x2 ≤ 3
x1, x2 ≥ 0
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(b) minimize: 2x1− x2
subject to: x1 + x2 ≤ 4

2x1 +3x2 ≥ 4
x1, x2 ≥ 0

∗(c) minimize: 3x1 + x2
subject to: x1 + x2 ≥ 2

2x1− x2 ≥ 1
x1, x2 ≥ 0

(d) maximize: 2x1 + x2
subject to: x1 + x2 ≥ 2

x1 +2x2 ≥ 3
2x1 +2x2 ≤ 5

x1, x2 ≥ 0

2.B.2 Use the simplex method to either solve each of the
following linear programs or show that they are unbounded
(they all have x = 0 as a feasible point and are thus feasible).

∗(a) maximize: 4x1 + x2
subject to: 2x1−2x2 ≤ 5

x1 +3x2 ≤ 3
x1, x2 ≥ 0

(b) maximize: x1 + x2 + x3
subject to: x1 +2x2 +3x3 ≤ 2

3x1 +2x2 + x3 ≤ 1
x1, x2, x3 ≥ 0

∗(c) maximize: x1 + x2 + x3
subject to: 2x1− x2 + x3 ≤ 1

x1 +3x2 ≤ 2
− x1 + x2 +2x3 ≤ 3

x1, x2, x3 ≥ 0
(d) maximize: 2x1 + x2 + x3 + x4

subject to: x1 +2x2−3x3 +2x4 ≤ 1
2x1− x2 + x3 + x4 ≤ 0
3x1 + x2−2x3− x4 ≤ 1
x1, x2, x3, x4 ≥ 0

∗(e) maximize: x1 + x2 + x3 + x4
subject to: 4x1 +3x2 +2x3 ≤ 1

x1 +4x2 + x3 +2x4 ≤ 2
2x1 + x2 +3x3 +2x4 ≤ 2
x1, x2, x3, x4 ≥ 0

2.B.3 Use the simplex method to find a feasible point of
each of the following linear programs (or show that they
are infeasible) and then solve them (or show that they are
unbounded).

∗(a) maximize: x2
subject to: 2x1−2x2 ≥ 2

x1 +3x2 ≤ 3
x1, x2 ≥ 0

(b) minimize: 2x1− x2−2x3
subject to: 2x1− x2 +4x3 ≥ 2

x1 +2x2−3x3 ≤ 1
x1, x2, x3 ≥ 0

∗(c) minimize: x1 +2x2− x3
subject to: x2− x3 ≤ 3

2x1 +2x2− x3 = 1
x1 +2x2 +2x3 ≤ 3
x1, x2, x3 ≥ 0

(d) maximize: 3x1 +2x2− x3 +2x4
subject to: 2x1−2x2− x3 +2x4 ≥ 2

x1 +3x2−2x3 + x4 = 2
3x1 + x2−3x3 +3x4 ≤ 3
x1, x2, x4 ≥ 0

∗(e) maximize: x1 +2x2 + x3 +2x4
subject to: 2x1 +4x2− x3 ≤ 3

3x2 + x3 +2x4 = 1
3x1− x2 +2x3 +2x4 ≤ 3
x1, x3 ≥ 0

∗2.B.4 Construct the dual of each of the linear programs
from Exercise 2.B.3.

2.B.5 Determine which of the following statements are
true and which are false.

∗(a) If Ax≤ b and A is invertible, then x≤ A−1b.
(b) If c,x,y ∈ Rn and x≥ y then c ·x≥ c ·y.
∗(c) If c,x,y ∈ Rn, c≥ 0 and x≥ y, then c ·x≥ c ·y.
(d) If a linear program has finite optimal value, then it

is attained at a unique vector (i.e., there is exactly
one vector x such that c ·x is as large or as small as
possible).

∗(e) If the feasible region of a linear program is un-
bounded (i.e., infinitely large), then the linear pro-
gram is unbounded (i.e., does not have a finite opti-
mal value).

(f) The optimal value (if it exists) of a linear program in
primal standard form is always less than or equal to
the optimal value of its dual problem.

∗∗2.B.6 Find the optimal value of the linear program

maximize: x1 + x2
subject to: 2x1 + x2 ≤ 2

2x1 +3x2 ≥ 3
x1−2x2 ≥−1
x1, x2 ≥ 0

and then show that its feasible region contains no points
with integer coordinates.

2.B.7 Two of the five constraints in the linear pro-
gram (2.B.10) are redundant—which ones?
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∗∗2.B.8 Suppose 0 < c ∈ R and consider the linear pro-
gram

maximize: x2
subject to: cx1 + x2 ≤ c

−cx1 + x2 ≤ 0
x1, x2 ≥ 0

(a) Show that the optimal value of this linear program is
c/2.

(b) Show that if x1 and x2 are constrained to be integers
then the optimal value of this integer linear program
is 0.

∗∗2.B.9 Show that the dual of the dual of a linear program
is the original linear program.

[Hint: Write the dual from Definition 2.B.2 in standard
form.]

2.B.10 Linear programming duality can be used to give us
a deeper understanding of basic linear algebraic operations
like linear combinations.

(a) Suppose x1, . . . ,xk,y ∈ Rn. Construct a linear
program that determines whether or not y ∈
span(x1, . . . ,xk).

(b) Use the dual of the linear program from part (a) to
show that y ∈ span(x1, . . . ,xk) if and only if y is
orthogonal to every vector that x1, . . . ,xk are orthog-
onal to (i.e., x1 ·z = · · ·= xk ·z = 0 implies y ·z = 0).

2.B.11 The 1-norm and ∞ -norm of a vector v ∈ Rn are
defined by

‖v‖1
def=

n

∑
j=1
|v j| and ‖v‖∞

def= max
1≤ j≤n

{
|v j|
}
,

respectively, and they provide other ways (besides the usual
vector length ‖v‖) of measuring how large a vector is.

(a) Construct a linear program that, given a matrix
A∈Mm,n and a vector b∈Rm, finds a vector x∈Rn

that makes ‖Ax−b‖1 as small as possible.
[Hint: |a| ≤ b if and only if −b≤ a≤ b.]

(b) Construct a linear program that, given a matrix
A∈Mm,n and a vector b∈Rm, finds a vector x∈Rn

that makes ‖Ax−b‖∞ as small as possible.

[Side note: If the linear system Ax = b does not have a so-
lution, these linear programs find the “closest thing” to a
solution.]

∗∗2.B.12 A matrix A ∈Mn with non-negative entries is
called column stochastic if its columns each add up to 1
(i.e., a1, j + a2, j + · · ·+ an, j = 1 for each 1 ≤ j ≤ n). Show
that if A is column stochastic then there is a vector x ∈ Rn

for which Ax = x and x≥ 0.

[Hint: Set up a linear program and use duality. There is an
“obvious” vector y ∈ Rn for which AT y = y... what is it?]

2.C Extra Topic: More About the Rank

Recall from Section 2.4.3 that the rank of a matrix can be characterized in
numerous different ways, such as the dimension of its range, the dimension of
the span of its rows, or the number of non-zero rows in any of its row echelon
forms. In this section, we look at the rank in a bit more depth and provide two
(or three, depending on how we count) additional characterizations of it.

2.C.1 The Rank Decomposition

Our first new characterization of the rank is a kind of converse to Theo-
rem 2.4.11(b), which said that for all matrices A and B, we have

rank(AB)≤min
{

rank(A), rank(B)
}
.

This inequality is particularly useful (i.e., provides a particularly strong bound)
when we can write a matrix as a product of a tall and skinny matrix with a
short and fat matrix. In particular, if we recall that rank(A)≤min{m,n} for all
A ∈Mm,n, then we see that if we can write A = CR for some C ∈Mm,r and
R ∈Mr,n, then we must have

rank(A) = rank(CR)≤min
{

rank(C), rank(R)
}
≤min{m,r,n} ≤ r.

In other words, it is not possible to write a matrix A as a product of a tall and
skinny matrix with a short and fat matrix if they are skinnier and shorter, respec-
tively, than rank(A). The following theorem says that this skinniness/shortness
threshold actually completely characterizes the rank (see Figure 2.39).
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rank(A) = 3

A =

∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗

=

∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗

Figure 2.39: Theorem 2.C.1 says that every matrix can be written as a product of a
tall and skinny matrix and a short and fat matrix. The rank determines exactly how
skinny and short the matrices in the product can be (as shown here, A has rank 3,
so it can be written as a product of a matrix C with 3 columns and a matrix R with
3 rows).

Theorem 2.C.1
Rank

Decomposition

Let A ∈Mm,n. Then the smallest integer r for which there exist matrices
C ∈Mm,r and R ∈Mr,n with A = CR is exactly r = rank(A).

Proof. WeThe names “C” and
“R” stand for

“column” and
“row”, respectively,

since C has long
columns and R has

long rows.
Alternatively, “R”

could stand for
“RREF”, since it can

be chosen to be
the RREF of A with its

0 rows discarded.

already showed that rank(A)≤ r, so to complete the proof we just
need to show that if r = rank(A) then we can find such a C and R. To see this,
recall from Theorem 2.5.3 that we can write A = PR̂, where P is some invertible
matrix and R̂ is the reduced row echelon form of A. If r = rank(A) then the first
r rows of R̂ are exactly its non-zero rows. We can thus write P and R̂ as block
matrices

P = [ C | D ] and R̂ =
[

R
O

]
,

where C ∈Mm,r contains the leftmost r columns of P and R ∈Mr,n contains
the top r rows of R̂ (i.e., its non-zero rows). Then

A = PR̂ = [ C | D ]
[

R
O

]
= CR+DO = CR,

as claimed. �

Example 2.C.1
Computing a

Rank
Decomposition

Compute a rank decomposition of the matrix A = 


1 1 1 −1
0 1 1 0
−1 1 1 1




.

Solution:
In order to construct a rank decompositionWe talk about

finding a rank
decomposition of a

matrix, rather than
the rank

decomposition of a
matrix, since the

matrices C and R
are not unique (see

Exercise 2.C.6).

of a matrix, we first recall
from Example 2.4.8 that row-reducing [ A | I ] results in the matrix




1 0 0 −1 1 −1 0
0 1 1 0 0 1 0
0 0 0 0 1 −2 1


 .
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It follows that R̂ = EA (and equivalently, A = PR̂, where P = E−1),

If you have
forgotten this

relationship
between

row-reduction and
matrix

multiplication, refer
back to

Theorem 2.2.1.

where

R̂ =




1 0 0 −1
0 1 1 0
0 0 0 0


 , E =




1 −1 0
0 1 0
1 −2 1


 , and P =




1 1 0
0 1 0
−1 1 1


 .

Since R̂ has two non-zero rows, it follows that rank(A) = 2. The matrices
C and R in the rank decomposition can thus be chosen to consist of the
leftmost 2 columns of P and the topmost 2 rows of R̂, respectively:

A = CR, where C =




1 1
0 1
−1 1


 and R =

[
1 0 0 −1
0 1 1 0

]
.

One of the useful features of the rank decomposition of a matrix is that it
lets us store low-rank matrices much more efficiently than the naïve method
that involves writing down all entries in the matrix. In particular, to store a
rank-r matrix A ∈Mm,n, we can just keep track of the mr entries of C and rn
entries of R in its rank decomposition, which is much simpler than keeping
track of the mn entries of A when r is small.

For example, in order to store

In a sense, low-rank
matrices contain
“less information”

than full-rank
matrices—there are

patterns in their
entries that can be

exploited to
compress them.

the matrix

A =




1 0 −1 0 2 0 2 0 −1 0 1
0 2 0 1 0 3 0 1 0 2 0
1 0 −1 0 2 0 2 0 −1 0 1
0 4 0 2 0 6 0 2 0 4 0
1 0 −1 0 2 0 2 0 −1 0 1
0 −2 0 −1 0 −3 0 −1 0 −2 0
1 0 −1 0 2 0 2 0 −1 0 1
0 4 0 2 0 6 0 2 0 4 0
1 0 −1 0 2 0 2 0 −1 0 1
0 2 0 1 0 3 0 1 0 2 0
1 0 −1 0 2 0 2 0 −1 0 1




we could list all 11×11 = 121 of its entries. However, a more economical way
to store it is to first compute one of its rank decompositions: A = CR

We just write CT

here (instead of C
itself) for formatting

reasons—C has 11
rows and thus

would take up a lot
of space.

with

CT =
[

1 0 1 0 1 0 1 0 1 0 1
0 1 0 2 0 −1 0 2 0 1 0

]
and

R =
[

1 0 −1 0 2 0 2 0 −1 0 1
0 2 0 1 0 3 0 1 0 2 0

]
,

and then just keep track of C and R instead. This way, we only need to keep
track of (11×2)+(2×11) = 44 numbers instead of the 121 numbers required
by the naïve method.

In the most extreme case when r = 1, Theorem 2.C.1 says that a non-zero
matrix A has rank 1 if and only if it can be written as a product of a matrixWe originally

proved this claim
about rank-1

matrices back in
Exercise 2.4.30.

with
1 column (i.e., a column vector) and a matrix with 1 row (i.e., a row vector). In
other words, rank-1 matrices A ∈Mm,n are exactly those that can be written in
the form A = vwT for some non-zero column vectors v ∈ Rm and w ∈ Rn. The
following theorem provides a natural generalization of this fact to higher-rank
matrices:
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Theorem 2.C.2
Rank-One Sum
Decomposition

Let A ∈Mm,n. Then the smallest integer r for which there exist sets of
vectors {v j}r

j=1 ⊂ Rm and {w j}r
j=1 ⊂ Rn with

A =
r

∑
j=1

v jwT
j

is exactly r = rank(A). Furthermore, the sets {vi}r
i=1 and {wi}r

i=1 can be
chosen to be linearly independent.

Proof. Use the rank decomposition to write A = CR, where C ∈Mm,r and R ∈
Mr,n, and then write C and R in terms of their columns and rows, respectively:

C =
[

v1 | v2 | · · · | vr
]

and RT =
[

w1 | w2 | · · · | wr
]
.

Then performing block matrix multiplication reveals that

A = CR =
[

v1 | v2 | · · · | vr
]




wT
1

wT
2
...

wT
n


=

r

∑
j=1

v jwT
j ,

as claimed. The fact that {vi}r
i=1 and {wi}r

i=1 are linearly independent sets
follows from how the matrices C and R were constructed in the proof of the rank
decomposition (Theorem 2.C.1)—{vi}r

i=1 consists of the leftmost r columns
of an invertible matrix and {wi}r

i=1 consists of the non-zero rows of a matrix in
reduced row echelon form.

To see that r cannot be smaller than rank(A), recall that each of the matrices
v jwT

j have rank 1, so Theorem 2.4.11(a) tells usThis theorem says
that a rank-r matrix
can be written as a

sum of r rank-1
matrices, but not

fewer.

that

rank(A) = rank

(
r

∑
j=1

v jwT
j

)
≤

r

∑
j=1

rank
(
v jwT

j
)

=
r

∑
j=1

1 = r,

which completes the proof. �

The above proof shows that the rank-one sum decomposition (Theorem 2.C.2)
really is equivalent to the rank decomposition (Theorem 2.C.1) in a straightfor-
ward way: the vectors {v j}r

j=1 and {w j}r
j=1 are just the columns of the matrices

C and RT , respectively. In fact, these decompositions are so closely related to
each other that they are sometimes considered the “same” decomposition, just
written in a slightly different form. Nevertheless, we find it useful to have both
forms of this decomposition written out explicitly.

Example 2.C.2
Computing a

Rank-One Sum
Decomposition

Compute a rank-one sum decomposition of the matrix

A =




1 1 1 −1
0 1 1 0
−1 1 1 1


 .

Solution:
We showed in Example 2.C.1 that this matrix has rank decompos-
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ition

A = CR, where C =




1 1
0 1
−1 1


 and R =

[
1 0 0 −1
0 1 1 0

]
.

We can thus construct a rank-one sum decomposition of A by multiplying
each column of C by the corresponding row of R and adding:

A =




1
0
−1


[1 0 0 −1

]
+




1
1
1


[0 1 1 0

]
.

2.C.2 Rank in Terms of Submatrices

We now present an alternative characterization of the rank that is particularly
useful for helping us eye-ball lower bounds on the rank of large matrices. The
basic idea is that if we look at just a small piece of a matrix, then the rank of
that small piece cannot exceed the rank of the entire matrix.

As our first step toward making this idea precise, we say that a submatrix
of A ∈Mm,n is any matrix that can be obtained by erasing

The rows and/or
columns that are

erased do not need
to be next to each

other.

zero or more rows
and/or columns of A. For example, if

A =




1 2 3 4 5
6 7 8 9 10

11 12 13 14 15




then erasing the third and fifth columns of A, as well as its second row, gives us
the submatrix



1 2 3 4 5
6 7 8 9 10
11 12 13 14 15


 −→

[
1 2 4
11 12 14

]
.

Remark 2.C.1
Geometric

Interpretation
of Submatrices

Geometrically, if a matrix represents a linear transformation, then its sub-
matrices represent restrictions of that linear transformation to hyperplanes
spanned by the coordinate axes. In particular, erasing the j-th column of a
matrix corresponds to ignoring the j-th input variable of the linear trans-
formation, and erasing the i-th row of a matrix corresponds to ignoring its
i-th output variable.

For example, a 3×3 matrix represents a linear transformation acting
on R3. Here, we have highlighted how the matrix

A =




1 2 2
2 1 −1
1 1 0




distorts the xy-plane (since it is difficult too picture how it transforms all
of R3):
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x

y

z

e1

e2

e3 A
−−→

y
(1,2,1)

(2,1,1)

(2,− 1,0)

x

z

If we erase the third column of this matrix, then the resulting 3×2 sub-
matrix is a linear transformation that acts on R2 in the same way that the
original 3× 3 matrix acted on the xy-plane (i.e., the input z variable is
ignored):

x

y

e2

e1




1 2

2 1

1 1




−−−−−−→

y
(1,2,1)

(2,1,1)

x

z

If we then erase its third row, the resulting 2×2 submatrix describes what
the xy-plane looks like after being transformed, if we ignore the output in
the direction of the z-axis. That is, it tells us what the output looks like if
we look down at the xy-plane from the top of the z-axis:

x

y

e2

e1

[
1 2

2 1

]

−−−−−−→

x

y

(1,2)

(2,1)

The following theorem pins down the claim that we made earlier (i.e., that
a submatrix of A cannot have rank larger than that of A itself) and lets us get
some easy-to-spot lower bounds on the rank of a matrix:

Theorem 2.C.3
Ranks of

Submatrices

Suppose A ∈Mm,n. If B is a submatrix of A then rank(B)≤ rank(A).

Proof. Just recall that if A has columns a1,a2, . . . ,an then
Here we are using

Theorem 2.3.2. rank(A) = dim(range(A)) = dim(span(a1,a2, . . . ,an)).

If a submatrix C ∈ Mm,` is created by erasing some columns of A, then
rank(C) ≤ rank(A) since range(C) is the span of the columns of C, which
are a subset of the columns of A.

On the other hand, we can also express rank(C) in terms of its rows
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c1,c2, . . . ,cm:
Recall from

Theorem 2.4.8 that
rank(C) = rank(CT ).

rank(C) = dim(range(CT )) = dim(span(c1,c2, . . . ,cm)).

If a submatrix B ∈Mk,` is created by erasing some rows of C, then rank(B)≤
rank(C) since range(BT ) is the span of the rows of B, which are a subset of
the rows of C. Putting these two inequalities together shows that rank(B) ≤
rank(C)≤ rank(A), as desired. �

The above theorem can help us quickly and easily come up with crude
lower bounds on the rank of a large matrix without having to do much work.
We now illustrate how to make use of it with some examples.

Example 2.C.3
Computing Lower

Bounds for the
Rank of a Matrix

Use Theorem 2.C.3 to find lower bounds on the ranks of the following
matrices:

a) A = 


1 1 0 0 1
1 0 1 0 1
1 0 0 1 1




b) B =



1 1 1 1 1
1 2 4 8 16
1 2 5 14 41
1 3 9 27 81




Solutions:
a) Notice that if we ignore the first and fifth columns of A, we get the

3×3 identity matrix as a submatrix of A:

1 1 0 0 1
1 0 1 0 1
1 0 0 1 1


 −→



1 0 0
0 1 0
0 0 1


 .

Since the identity matrix is invertible (and thus has rank 3), we
conclude that rank(A)≥ 3 (in fact, since A is 3×5, its rank cannot
exceed 3, so it must in fact be the case that rank(A) = 3).

b) If we ignore the last two columns of B as well as its third row, we
get the following 3×3 submatrix:



1 1 1 1 1
1 2 4 8 16
1 2 5 14 41
1 3 9 27 81


 −→



1 1 1
1 2 4
1 3 9


 .

Since

Lots of other 3×3
submatrices work

just as well here.

this matrix is invertible (see Example 2.2.8(d) for a direct
verification of this fact,In fact, rank(B) = 3

since its third row is
the average of its

first and fourth rows.

or see note that it is a Vandermonde matrix
and recall from Example 2.3.8 that all such matrices are invertible),
it has rank 3. It follows that rank(B)≥ 3.

In fact, we can rephrase the above theorem slightly in order to turn it into a
new characterization of the rank of a matrix:

Corollary 2.C.4
Rank in Terms of

Invertible
Submatrices

Suppose A ∈Mm,n. Then rank(A) equals the largest integer r for which
there exists an invertible r× r submatrix of A.

Proof. Theorem 2.C.3 tells us that r ≤ rank(A), so we just need to show that
we can always find an invertible submatrix of size r× r when r = rank(A).



2.D Extra Topic: The LU Decomposition 215

To this end, notice that if r = rank(A) then we can pick a set of r columns
of A that span its range. Let C ∈Mm,r be the submatrix consisting of these
columns (in the same order that they appear in A). Then rank(C) = r as well,
so rank(CT ) = r, so there is some set of r rows of C that span range(CT ). Let
B ∈Mr be the submatrix consisting of these rows. Then rank(B) = r as well,
so it is invertible, which completes the proof. �

Exercises solutions to starred exercises on page 458

2.C.1 Compute a rank decomposition of each of the matri-
ces from Exercise 2.4.6.

§ 2.C.2 For each of the following matrices A ∈Mm,n,
use computer software to compute their rank r and find
matrices C ∈Mm,r and R ∈Mr,n such that A = CR.

∗(a)



4 5 0 4 1 3
2 2 1 2 1 1
−4 0 3 −2 −3 1
3 5 4 4 1 3




(b) 


−1 0 3 −1 2 −1 −2
3 1 −3 2 −2 1 4
3 2 3 1 2 −1 2
6 6 2 0 2 0 6
6 4 6 2 4 −2 4




2.C.3 For each of the following matrices, compute their
rank r and then find an invertible r× r submatrix of them.

∗(a)
[

1 2
2 4

]

∗(c)



1 2
2 4
1 3




∗(e)



1 2 3
4 5 6
7 8 9

10 11 12




(b)
[

1 2 1
3 2 1

]

(d)



1 1 2
1 1 2
2 2 3




(f)



1 1 0 0
1 0 1 0
0 0 0 1
1 0 1 1




§ 2.C.4 For each of the matrices from Exercise 2.C.2,
use computer software to compute their rank r and find an
invertible r× r submatrix of them.

2.C.5 Determine which of the following statements are
true and which are false.

∗(a) If A ∈Mn has rank 5 then it can be written as a sum
of 5 rank-1 matrices.

(b) If A ∈Mn has rank 10 then it can be written as a
sum of 5 rank-2 matrices.

∗(c) If A ∈Mn has a non-invertible 3×3 submatrix then
rank(A)≤ 3.

(d) If A ∈Mn has an invertible 4× 4 submatrix then
rank(A)≥ 4.

∗(e) If A ∈Mn has an (n−1)× (n−1) submatrix equal
to the zero matrix then rank(A)≤ 1.

∗∗2.C.6 In this exercise, we show that the rank decomposi-
tion of Theorem 2.C.1 is not unique. Suppose A∈Mm,n has
rank r and rank decomposition A = CR (where C ∈Mm,r
and R ∈Mr,n). Let P ∈Mr be any invertible matrix, and
define C̃ = CP−1 and R̃ = PR. Show that A = C̃R̃ is also a
rank decomposition of A.

2.C.7 Suppose A ∈Mm,n has z non-zero entries. Show
that rank(A)≤ z.

∗2.C.8 In this exercise, we consider the problem of how a
matrix can change upon multiplying it on the left and right
by invertible matrices.

(a) Show that every matrix A ∈Mm,n can be written in
the form A = PDQ, where P∈Mm and Q∈Mn are
invertible and

D =

[
Irank(A) O

O O

]
.

(b) Suppose A,B ∈Mm,n. Show that there exist in-
vertible matrices P ∈Mm and Q ∈Mn such that
A = PBQ if and only if rank(A) = rank(B).

2.C.9 Suppose a0,a1, . . . ,am are distinct real numbers and
let V ∈Mm+1,n+1 be the matrix

V =




1 a0 a2
0 · · · an

0

1 a1 a2
1 · · · an

1

...
...

...
. . .

...

1 am a2
m · · · an

m




.

Show that rank(V ) = min{m + 1,n + 1} (i.e., V has full
rank).

[Side note: If m = n then V is a Vandermonde matrix, which
we showed are invertible in Example 2.3.8.]

2.D Extra Topic: The LU Decomposition

Recall that Gauss–Jordan elimination can be interpreted entirely in terms
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of matrices—every row operation that we apply to a matrix is equivalent to
multiplying it on the left by an elementary matrix. We saw in Theorem 2.5.3
that if we use this idea repeatedly while row-reducing a matrix A ∈Mm,n to its
reduced row echelon form R, then we can write A in the form A = PR, where P
is invertible (in particular, it is the inverse of the product of all of the elementary
matrices used to row-reduce A).

It is worth investigating what happens if we instead only row-reduce to any
row echelon form, rather than going all the way to the reduced row echelon
form. Certainly it is still the case that A = PR where P is invertible and R is
a row echelon form of A, but usually much more is true. To get a feeling for
what special form P can be chosen to have in this case, we now find such a
decomposition of the matrix

A =




1 −2 −1
2 −1 −1
3 6 2




by using Gaussian elimination to put [ A | I ] in row echelon form (rather than
using Gauss–Jordan elimination to put it in reduced row echelon form). In
particular, we recall from Theorem 2.2.1 that row-reducing [ A | I ] to [ R | E ]
gives R = EA, so A = PR, where P = E−1:



1 −2 −1 1 0 0
2 −1 −1 0 1 0
3 6 2 0 0 1


 R2−2R1

R3−3R1−−−−−→




1 −2 −1 1 0 0
0 3 1 −2 1 0
0 12 5 −3 0 1




R3−4R2−−−−→




1 −2 −1 1 0 0
0 3 1 −2 1 0
0 0 1 5 −4 1


 .

It follows that A = PR, where

R =




1 −2 −1
0 3 1
0 0 1


 and P =




1 0 0
−2 1 0
5 −4 1



−1

=




1 0 0
2 1 0
3 4 1


 . (2.D.1)

In particular, since R is a row echelon form of A it is upper triangular, so
we refer to it as U from now on. Similarly, the matrix P that we constructed
happened to be lower triangular, so we refer to it as L from now on. Being able
to decompose a matrix into the product of lower and upper triangular matrices
like this is very useful when solving systems of linear equations (as we will
demonstrate later in this section), so we give this type of decomposition a name.

Definition 2.D.1
LU Decomposition

Suppose A ∈Mm,n. An LU decomposition of A is any factorization of
the form A = LU , where L ∈Mm is lower triangular and U ∈Mm,n is
upper triangular.

Despite the fact that we were already able to compute an LU decomposition
of the matrix A above, we know very little about them. In particular, we spend
the rest of this section exploring the following questions:

1) The matrix U = R from Equation (2.D.1) was upper triangular just as a
result of being chosen to be a row echelon form of A, but why was L = P
lower triangular?
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2) In
The term “upper

triangular” means
the same thing for

non-square
matrices as it does

for square ones— all
non-zero entries are

on and above the
main diagonal,

such as in



1 2 3 4
0 5 6 7
0 0 8 9


 .

order to construct L and U , we had to perform Gaussian elimination
twice—once to row-reduce [ A | I ] and once more to invert a matrix. Is
there a more efficient method of computing L and U?

3) Can we find an LU decomposition of any matrix, or did the matrix A
above have some special structure that we exploited?

Before proceeding to answer these questions, it will be useful for us to
remind ourselves of some facts about triangular matrices that we proved back
in Exercise 2.2.16, which we make use of repeatedly throughout this section:

• A triangular matrix is invertible if and only if its diagonal entries are
non-zero.

• If a lower (upper) triangular matrix is invertible then its inverse is also
lower (upper) triangular.

• If a triangular matrix has all diagonal entries equal to 1 then so does its
inverse.

2.D.1 Computing an LU Decomposition

We start by investigating question (1) above—why the matrix L = P from
Equation (2.D.1) was lower triangular. To this end, we start by recalling that
we constructed L by row-reducing [ A | I ] to [ R | E ], where R is a row echelon
form of A, and setting L = E−1.

The key factThis discussion (and
the upcoming

theorem) rely on us
specifically
performing

Gaussian
elimination, not a

variant of it like
Gauss–Jordan

elimination.

that is responsible for the lower triangular shape of L is that
we did not have to perform any “swap” row operations when row-reducing A
to a row echelon form, so the only entries that we modified in the augmented
right-hand-side of [ A | I ] were those below the main diagonal. Specifically,
it is not difficult to convince ourselves that if we start with a lower triangular
matrix (like I) then “multiplication” row operations cR j and “addition” row
operations Ri + cR j with j < i preserve lower triangularity, so E must be lower
triangular as well.

Since L = E−1, we then just need to recall that the inverse of a lower
triangular matrix is also lower triangular, which proves the following theorem.

Theorem 2.D.1
LU Decomposition

via Gaussian
Elimination

If Gaussian elimination row-reduces [ A | I ] to [ R | E ], where R is a row
echelon form of A, without using any “swap” row operations, then setting
L = E−1 and U = R gives an LU decomposition A = LU .

While we already used the method of this theorem to construct an LU
decomposition earlier, it is perhaps worth going through the procedure again
now that we understand a bit better why it works.

Example 2.D.1
Computing an

LU Decomposition

Compute an LU decomposition of the matrix A =



2 1 −2 1
−4 −4 3 0
2 −5 −2 8




.

Solution:
We start by applying Gaussian elimination to [ A | I ], as suggested by
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Theorem 2.D.1:



2 1 −2 1 1 0 0
−4 −4 3 0 0 1 0
2 −5 −2 8 0 0 1




R2+2R1
R3−R1−−−−−→




2 1 −2 1 1 0 0
0 −2 −1 2 2 1 0
0 −6 0 7 −1 0 1




R3−3R2−−−−→




2 1 −2 1 1 0 0
0 −2 −1 3 2 1 0
0 0 3 1 −7 −3 1


 .

One LU decomposition A = LU is thus given by

U =




2 1 −2 1
0 −2 −1 3
0 0 3 1


 and L =




1 0 0
2 1 0
−7 −3 1



−1

=




1 0 0
−2 1 0
1 3 1


 .

In the above example, the lower triangular matrix L that we constructed was
a unit triangular matrix—it had all of its diagonal entries equal to 1. We
call an LU decomposition associated with such an L a unit LU decomposi-
tion, and most matrices that have an LU decomposition also have a unit LU
decomposition. To see why this is the case, consider either of the following
arguments:

• WhenBoth of these
arguments rely on L

being invertible.
However, there are
some matrices with

an LU
decomposition, but

no LU
decomposition with
an invertible L (see

Exercise 2.D.13) and
thus no unit LU

decomposition.

performing Gaussian elimination, it is always possible to avoid
using “multiplication” row operations—they only serve to simplify al-
gebra in some cases. Avoiding these row operations when constructing
the matrix E in Theorem 2.D.1 results in it having ones on its diagonal
(since “addition” row operations of the form Ri + cR j with j < i only
affect the strictly lower triangular portion of E), so L = E−1 has ones on
its diagonal as well.

• Alternatively, suppose that A = LU is any LU decomposition of A with
L invertible. If we let D be the diagonal matrix with the same diagonal
entries as L then LD−1 is a lower triangular matrix with ones on its
diagonal and DU is an upper triangular matrix, so A = (LD−1)(DU) is a
unit LU decomposition of A.

Since unit LU decompositions are somewhat more elegant than general LU
decompositions (for example, we will see in Exercise 2.D.6 that the unit LU
decomposition of an invertible matrix is unique when it exists, whereas LU
decompositions themselves are never unique), we restrict our attention to them
from now on.

Remark 2.D.1
Redundancies in the

LU Decomposition

LU decompositions themselves are quite non-unique, since if D is any
invertible diagonal matrix and A = LU is an LU decomposition of A then
A = (LD−1)(DU) is another one. For example, if

A =
[

2 4
2 7

]
then A =

[
1 0
1 1

][
2 4
0 3

]
=
[

2 0
2 3

][
1 2
0 1

]

are two different LU decompositions of A.
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You can think of unit LU decompositions as removing redundancies
in LU decompositions. An LU decomposition of a matrix A ∈ Mn is
specified by the n(n+1)/2 potentially non-zero entries in each of L and
U , for a total of n(n+1) = n2 +n numbers, so it seems reasonable that we
can freely choose n of those numbers while still recovering the n2 entries
of A.

There are many other possible choices that we could make to remove
this redundancy as well (for example, we could choose the diagonal entries
of U to all equal 1 instead), but choosing the diagonal entries of L to equal
1 is the most convenient choice for most purposes.

Again, but Faster Now
To address our question (2) from earlier—how to construct a (unit) LU decom-
position in a way that does not require us to use Gaussian elimination twice—we
notice that the lower triangular entries in the matrix L inSimilarly, the entries

in the lower
triangular portion of

L = P in
Equation (2.D.1)
were 2, 3, and 4,

and the row
operations we used

to find it were
R2−2R1, R3−3R1,

and R3−4R2.

Example 2.D.1 (−2, 1,
and 3) were exactly the negatives of the scalars in the “addition” row operations
that we used to put [ A | I ] into row echelon form [ U | E ] (R2 +2R1, R3−R1,
and R3−3R2). This is not a coincidence—roughly speaking, it is a result of
the fact that if A = LU then the rows of L contain the coefficients of the row
operations needed to transform U into A. However, the row operations used to
transform U into A are exactly the inverses of those used to convert A into U ,
and the row operation that undoes Ri + cR j is simply Ri− cR j.

More precisely, we have the following refinement of Theorem 2.D.1 that
has the advantage of only requiring us to perform Gaussian elimination once
to find an LU decomposition, not twice (since we no longer need to invert a
matrix to find L):

Theorem 2.D.2
Computing an LU

Decomposition
Quickly

Suppose A,U ∈Mm,n. A unit lower triangular matrix L ∈Mm is such that
A = LU if and only if the following sequence of row operations transforms
A into

Here, `i, j refers to
the (i, j)-entry of L.

U :

R2− ℓ2,1R1

R3− ℓ3,1R1 R3− ℓ3,2R2

...
...

. . .

Rm− ℓm,1R1 Rm− ℓm,2R2 Rm− ℓm,m−1Rm−1.

Proof. Recall from our block matrix multiplication techniques (and in particu-
lar, Exercise 1.3.27(b)) that the rows of A = LU are linear combinations of the
rows of U , and the coefficients of those linear combinations are the entries of L.
In particular, if we let aT

i and uT
i denote the i-th rows of A and U , respectively,

then L is lower triangular with ones on its diagonal if and only
If j = 1 then the sum
on the right has no

terms in it. This is
called the empty

sum, and it equals 0
(so aT

1 = uT
1 ).

if

aT
i = uT

i +
i−1

∑
j=1

`i, juT
j for all 1≤ i≤ m. (2.D.2)

This equation says exactly that there is a particular sequence of row opera-
tions of the form Ri + `i, jR j (with j < i) that converts U into A. For example,
applying the sequence of row operations

Rm + `m,1R1, Rm + `m,2R2, . . . , Rm + `m,m−1Rm−1
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to U turns its m-th row into

uT
m + `m,1uT

1 + `m,2uT
2 + · · ·+ `m,m−1uT

m−1,

which is exactly aT
m, via Equation (2.D.2). Similar sequences of row operations

turn each of the rows of U into the rows of A, but we have to be careful to apply
them in an order that does not modify a row before adding it to another row. To
this end, we work from the bottom to the top, first applying any row operations
that involves adding a multiple of Rm−1, then all row operations that involve
adding a multiple of Rm−2, and so on. In particular, U is transformed into A via
the following sequence of row

Here the row
operations are just

read left-to-right
and then

top-to-bottom, in
usual reading order.

operations:

Rm + `m,m−1Rm−1,

Rm + `m,m−2Rm−2, Rm−1 + `m−1,m−2Rm−2

...
...

. . .

Rm + `m,1R1, Rm−1 + `m−1,1R1, · · · R2 + `2,1R1.

To transform A into U , we thusRecall that the
inverse of the row

operation Ri + `i, jR j
is Ri− `i, jR j.

apply the inverses of these row operations
in the opposite order, which is exactly the sequence of row operations described
by the theorem. �

If we apply the above theorem in the case when U is a row echelon form of
A, then we get exactly a unit LU decomposition of A. We illustrate this quicker
method of constructing an LU decomposition with an example.

Example 2.D.2
Computing an LU

Decomposition
Quickly

Construct a unit LU decomposition of the matrix

A =




2 4 −1 −1
4 9 0 −1
−6 −9 7 6
−2 −2 9 0


 .

Solution:
As always, our goal is to row-reduce A into an upper triangular (row

echelon) form without using any “swap” row operations (though this
time we want to avoid “multiplication” row operations as well). Thanks
to Theorem 2.D.2, we no longer need to keep track of the augmented
right-hand-side (i.e., we just row-reduce A, not [ A | I ]):




2 4 −1 −1
4 9 0 −1
−6 −9 7 6
−2 −2 9 0




R2−2R1
R3+3R1

R4+R1−−−−−→




2 4 −1 −1
0 1 2 1
0 3 4 3
0 2 8 −1




R3−3R2
R4−2R2−−−−−→




2 4 −1 −1
0 1 2 1
0 0 −2 0
0 0 4 −3




R4+2R3−−−−→




2 4 −1 −1
0 1 2 1
0 0 −2 0
0 0 0 −3


 .

A unit LU

For example, the
first set of row

operations that we
performed were
R2−2R1, R3 +3R1,

and R4 +R1, so the
entries in the first

column of L are 2,
−3, and −1.

decomposition of A is thus obtained by choosing U to be this
row echelon form and L to be the unit lower triangular matrix whose
entries are the negatives of the coefficients that we used in the “addition”
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row operations above:

L =




1 0 0 0
2 1 0 0
−3 3 1 0
−1 2 −2 1


 and U =




2 4 −1 −1
0 1 2 1
0 0 −2 0
0 0 0 −3


 .

One of the other nice features of this faster method of computing a unit
LU decomposition is that it provides us with a converse of Theorem 2.D.1.
That is, it shows that not only does a matrix have a unit LU decomposition if it
can be made upper triangular via Gaussian elimination without any swap row
operations, but in fact these are the only matrices with a unit LU decomposition.

Corollary 2.D.3
Characterization

of Unit LU
Decompositions

A matrix A ∈Mm,n has a unit LU decomposition if and only if it can
be row-reduced to an upper triangular matrix entirely via “addition” row
operations of the form Ri + cR j with i > j.

Proof. Theorem 2.D.1 already established the “if” direction of this theorem,
so we just need to prove the “only if” implication. To this end, suppose that
A = LU is a unit LU decomposition of A. Theorem 2.D.2 then provides a list of
elementary row operations (which are all of the type described by the statement
of this theorem) that row-reduces A to U . Since U is upper triangular, we are
done. �

Notice that Corollary 2.D.3 specifies that A can be row-reduced to an upper
triangular matrix, but not necessarily a row echelon form. This is because of
matrices like

Every matrix in row
echelon form is

upper triangular,
but not every upper
triangular matrix is in

row echelon form.

A =
[

0 0
0 1

]
,

which has a unit LU decomposition (since A itself is upper triangular, we can
just choose L = I and U = A) but requires a swap row operation (or an operation
of the form Ri + cR j for some i < j instead of i > j) to put it in row echelon
form.

2.D.2 Solving Linear Systems

One of the primary uses of the LU decomposition is as a method for solving
multiple systems of linear equations more quickly than we could by repeatedly
applying Gaussian elimination or Gauss–Jordan elimination. To see how this
works, suppose we have already computed an LU decomposition A = LU of
the coefficient matrix of the linear system Ax = b. Then LUx = b, which is a
linear system that we can solve via the following two-step procedure:

• First, solve the linear system Ly = b for the vector y. This linear system
is straightforward to solve via “forward” elimination (i.e., first solving
for y1 then substituting that so as to solve for y2, and so on) due to the
lower triangular shape of L.

• Next, solve the linear system Ux = y for the vector x. This linear system
is similarly straightforward to solve via backward elimination due to the
upper triangular shape of U .
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Once we have obtained the vector x via this procedure, it is the case that

Ax = LUx = L(Ux) = Ly = b,

so x is indeed a solution of the original linear system, as desired.
Although solving a linear system in this way might seem like more work

than just using Gaussian elimination to solve it directly (after all, we have to
solve two linear systems via this method rather than just one), the triangular
shape of the linear systems saves us a lot of work in the end. In particular, if A∈
Mn and n is large then solving the linear system Ax = b directly via Gaussian
elimination requires roughly 2n3/3 operations (i.e., additions, subtractions,
multiplications, and/or divisions), whereas each of the triangular systems Ly =
b and Ux = y can be solved in roughly n2 operations. When n is large, solving
these two triangular systems via roughly 2n2 operations is considerably quicker
than solving the system directly via roughly 2n3/3 operations.

Example 2.D.3
Solving Linear

Systems via an LU
Decomposition

Use the LU decomposition to solve the linear system



2 4 −1 −1
4 9 0 −1
−6 −9 7 6
−2 −2 9 0







w
x
y
z


=




0
2
0
1


 .

Solution:
We constructed an LU decomposition A = LU of this coefficient matrix

in Example 2.D.2, so we start by solving the lower triangular system

Even though we still
have to perform a

lot of row
operations to find
the solution, they

are very simple due
to the triangular

shapes of L and U .
Each “addition” row

operation only
affects one entry of

the coefficient
matrix (plus the

augmented
right-hand side)
rather than the

entire row.

Ly = b:



1 0 0 0 0
2 1 0 0 2
−3 3 1 0 0
−1 2 −2 1 1




R2−2R1
R3+3R1

R4+R1−−−−−→




1 0 0 0 0
0 1 0 0 2
0 3 1 0 0
0 2 −2 1 1




R3−3R2
R4−2R2−−−−−→




1 0 0 0 0
0 1 0 0 2
0 0 1 0 −6
0 0 −2 1 −3


 R4+2R3−−−−→




1 0 0 0 0
0 1 0 0 2
0 0 1 0 −6
0 0 0 1 −15


 ,

so y = (0,2,−6,−15). Next, we solve the upper triangular system Ux = y:



2 4 −1 −1 0
0 1 2 1 2
0 0 −2 0 −6
0 0 0 −3 −15




R1/2
−R3/2
−R4/3
−−−−→




1 2 −1/2 −1/2 0
0 1 2 1 2
0 0 1 0 3
0 0 0 1 5




R1+ 1
2 R4

R2−R4−−−−−→




1 2 −1/2 0 5/2
0 1 2 0 −3
0 0 1 0 3
0 0 0 1 5




R1+ 1
2 R3

R2−2R3−−−−−→




1 2 0 0 4
0 1 0 0 −9
0 0 1 0 3
0 0 0 1 5




R1−2R2−−−−→




1 0 0 0 22
0 1 0 0 −9
0 0 1 0 3
0 0 0 1 5


 .
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It follows that the (unique) solution to the original linear system Ax = b is
x = (w,x,y,z) = (22,−9,3,5).

Even though we can solve these triangular linear systems more quickly than
other linear systems, using the LU decomposition like we did in the previous
example is still somewhat silly, since constructing the LU decomposition in the
first place takes just as long as solving the linear system directly. After all, both
of these tasks are carried out via Gaussian elimination.

For this reason, the LU decomposition is typically only used in the case
when we wish to solve multiple linear systems, each of which have the same
coefficient matrix but different right-hand-side vectors. In this case, we can
pre-compute the LU decomposition of the coefficient matrix (which is time-
consuming and requires a full application of Gaussian elimination) and then
use that LU decomposition to (much more quickly) solve each of the linear
systems. As an example to illustrate this method, we show how it can be used
to fit polynomials to data sets.

Example 2.D.4
Repeated

Polynomial
Interpolation

Find degree-3 polynomials whose graphs go through the following sets of
points:

a) {(0,3),(1,−1),(2,−3),(3,9)}
b) {(0,−1),(1,−1),(2,−1),(3,5)}

Solutions:
a) If the polynomial that we seek is p(x) = c3x3 +c2x2 +c1x+c0, then

the equations p(0) = 3, p(1) = 0, p(2) = 1, and p(3) = 18 can be
written explicitly as the following linear

We originally
explored how to use

linear systems to fit
polynomials to sets

of points in
Remark 2.3.1.

system:



1 0 0 0
1 1 1 1
1 2 4 8
1 3 9 27







c0
c1
c2
c3


=




3
−1
−3
9


 .

In particular, notice that the y-values in the given data set only appear
on the right-hand-side of the linear system—the coefficient matrix is
determined only by the x-values and thus will be the same in part (b).
For this reason, we start by constructing the LU decomposition of
this coefficient matrix, rather than solving the linear system directly:




1 0 0 0
1 1 1 1
1 2 4 8
1 3 9 27




R2−R1
R3−R1
R4−R1−−−−→




1 0 0 0
0 1 1 1
0 2 4 8
0 3 9 27




R3−2R2
R4−3R2−−−−−→




1 0 0 0
0 1 1 1
0 0 2 6
0 0 6 24




R4−3R3−−−−→




1 0 0 0
0 1 1 1
0 0 2 6
0 0 0 6


 .

It thus follows from Theorem 2.D.2 that one unit LU decomposition
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is given by choosing

L =




1 0 0 0
1 1 0 0
1 2 1 0
1 3 3 1


 and U =




1 0 0 0
0 1 1 1
0 0 2 6
0 0 0 6


 .

Then solving the lower triangular linear system Ly = b =(3,−1,3,9)
gives y = (3,−4,2,12), and solving the upper triangular linear sys-
tem Ux = y =(3,−4,2,12) gives x =(c0,c1,c2,c3)= (3,−1,−5,2).
It follows that the (unique) degree-3 polynomial going through the
4 given points is

p(x) = 2x3−5x2− x+3.

The fact that this polynomial goes through the four given points is
straightforward to verify by plugging x = 0,1,2 and 3 into it, and it
is displayed below:

x

y y= 2x3−5x2− x+3

(0,3)

(1,−1)
(2,−3)

(3,9)

b) In this case, the linear system that we wish to solve is



1 0 0 0
1 1 1 1
1 2 4 8
1 3 9 27







c0
c1
c2
c3


=




−1
−1
−1
5


 .

Since the coefficient matrix in this linear system is that same as
the one from part (a), we can re-use the LU decomposition that we
already computed there.

In particular, we jump straight to solving the lower triangular lin-
ear system Ly = b = (−1,−1,−1,5), which gives y = (−1,0,0,6).
Solving the upper triangular linear system Ux = y = (−1,0,0,6)
then gives x =(c0,c1,c2,c3)= (−1,2,−3,1), so the (unique) degree-
3 polynomial going through the 4 given points is

p(x) = x3−3x2 +2x−1.

Again, it is straightforward to verify that the graph of this polynomial
goes through the four points (0,−1), (1,−1), (2,−1), and (3,5):
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x

y y= x3−3x2+2x−1

(0,−1)
(1,−1)

(2,−1)

(3,5)

The idea of using a matrix decomposition to offload the difficult part of a
calculation (like we did with the LU decomposition in the previous example) is a
very widely applicable one, and there are many different matrix decompositions
that are each suited to different tasks. The LU decomposition is well-suited
to solving linear systems, and we will investigate another decomposition in
Section 3.4 that lets us quickly compute matrix powers.

Remark 2.D.2
The Inverse Works,

But LU is Better

There is a seemingly simpler way to solve multiple linear systems that
have the same coefficient matrix but different right-hand sides—compute
the inverse of the coefficient matrix and multiply it by the right-hand-side
vectors. For example, if we want to solve the linear systems

Ax = b, Ay = c, and Az = d,

we could pre-compute A−1 and then multiply by it three times to get
x = A−1b, y = A−1c, and z = A−1d. Both this approach and the one based
on the LU decomposition work, but we favor the LU decomposition for a
few reasons:

• TheWe explore another
reason for preferring

the LU
decomposition in

Exercise 2.D.9.

LU decomposition works for non-square linear systems, whereas
inverses do not exist in this case.

• Even some square matrices are not invertible—the LU decompo-
sition can be used in these cases to determine whether or not the
associated linear system has solutions. While some matrices also do
not have an LU decomposition, we will see in the next subsection
that every matrix has a slightly more general “PLU decomposition”
that works just as well.

• If A ∈Mn then computing A−1 via Gauss–Jordan elimination re-
quires roughly 2n3 operations (additions, subtractions, multiplica-
tions, and/or divisions), making it about three times as computation-
ally expensive as the LU decomposition, which can be computed in
roughly 2n3/3 operations via Gaussian elimination.

• The LU decomposition is more numerically stable than the inverse—
problems can arise when computing the inverse of a matrix that is
close to a non-invertible one (though the details of this claim are
outside of the scope of this book).

2.D.3 The PLU Decomposition

Since there are matrices that do not have a unit LU decomposition (in particular,
these are the matrices that requires a swap row operation to be put in upper
triangular form), it seems natural to ask what the next best thing is. That is, can
we find a matrix decomposition that is slightly more general than the unit LU
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decomposition and applies to all matrices?There are also
matrices like
[

0 1
1 0

]

that do not have
any LU

decomposition.

To get a feeling for what this more general decomposition might look like,
we try (and fail) to find an LU decomposition of the matrix

A =




0 2 4 2
2 1 1 2
1 1 2 3
1 2 3 4




by simply doing what we did at the start of this section—row-reducing [ A | I ]
until it is in row echelon form [ R | E ] and noting that A = E−1R:

We swap with row 3
instead of row 2 just

to make the
arithmetic work out
more cleanly—we

like having a 1
instead of a 2 in the

leading entry (i.e.,
pivot position).




0 2 4 2 1 0 0 0
2 1 1 2 0 1 0 0
1 1 2 3 0 0 1 0
1 2 3 4 0 0 0 1


 R1↔R3−−−−→




1 1 2 3 0 0 1 0
2 1 1 2 0 1 0 0
0 2 4 2 1 0 0 0
1 2 3 4 0 0 0 1




R2−2R1
R4−R1−−−−−→




1 1 4 3 0 0 1 0
0 −1 −3 −4 0 1 −2 0
0 2 4 2 1 0 0 0
0 1 1 1 0 0 −1 1




R3+2R2
R4+R2−−−−−→




1 1 4 3 0 0 1 0
0 −1 −3 −4 0 1 −2 0
0 0 −2 −6 1 2 −4 0
0 0 −2 −3 0 1 −3 1




R4−R3−−−−→




1 1 4 3 0 0 1 0
0 −1 −3 −4 0 1 −2 0
0 0 −2 −6 1 2 −4 0
0 0 0 3 −1 −1 1 1


.

It follows that A = E−1R, where

R =




1 1 4 3
0 −1 −3 −4
0 0 −2 −6
0 0 0 3


 and

E−1 =




0 0 1 0
0 1 −2 0
1 2 −4 0
−1 −1 1 1




−1

=




0 −2 1 0
2 1 0 0
1 0 0 0
1 −1 1 1


 .

Notice in particular that R is upper triangular (after all, it is a row echelon
form), so we refer to it as U from now on (just like we did with the LU
decomposition). On the other hand, E−1 is not lower triangular, but its rows
can be permuted to make it lower triangular. In particular, if we swap its first
and third rows, then we get




0 −2 1 0
2 1 0 0
1 0 0 0
1 −1 1 1




R1↔R3−−−−→




1 0 0 0
2 1 0 0
0 −2 1 0
1 −1 1 1


 ,
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which is lower triangular. We can encode this row swapping operation as
multiplication on the left by a permutation matrix,We investigate

permutation
matrices in much

more depth in
Section 3.A.3.

which is a matrix that
contains exactly one 1 in each row and column (and all of its other entries are
0). In this case, we can write

E−1 = PL, where P =




0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1


 and L =




1 0 0 0
2 1 0 0
0 −2 1 0
1 −1 1 1


 .

It follows that A = E−1U = PLU , where P is a permutation matrix, L is
lower triangular, and U is upper triangular. We now give this decomposition a
name:

Definition 2.D.2
PLU Decomposition

Suppose A ∈Mm,n. A PLU decomposition of A is any factorization of
the form A = PLU , where P ∈Mm is a permutation matrix, L ∈Mm is
lower triangular, and U ∈Mm,n is upper triangular.

The biggestThe identity matrix is
a permutation

matrix, and if we set
P = I then we get

the LU
decomposition as a
special case of the
PLU decomposition.

advantage of the PLU decomposition over the LU decomposi-
tion is that it applies to every matrix, not just those that can be row-reduced
without using swap row operations (as we show in the next theorem). In fact,
the permutation matrix P simply encodes which swap row operations were
performed along the way to row echelon form.

Before proceeding with the main theorem of this subsection, which tells us
how to construct a PLU decomposition of any matrix, we note that permutation
matrices P ∈Mn are special for the fact that are not only invertible, but in
fact their inverse is simply their transpose: P−1 = PT . We prove this fact in
Exercise 2.D.15, and also a bit later in Theorem 3.A.3.

Theorem 2.D.4
Computing a PLU

Decomposition

If Gaussian elimination row-reduces [ A | I ] to [ U | E ], where U is a row
echelon form of A, then there exists a permutation matrix P and a lower
triangular matrix L such that E−1 = PL. In particular,

A = PLU

is a PLU decomposition of A.

Proof. Most parts of this theorem have already been proved—all that we have
yet to show is that there exists a permutation matrix P and a lower triangular
matrix L such that E−1 = PL. To this end, notice that using Gaussian elimination
to turn [ A | I ] into [ U | E ] results in E having at most 1 non-zero entry in its
first row (from whichever row of I is swapped into the first row of E).

Similarly, the second row of E contains at most 2 non-zero entries (one of
which is below the non-zero entry in the first row, and one of which comes
from whichever row of I is swapped into the second row of E). Similarly, there
are at most 3 non-zero entries in the third row of E (two of which must below
the non-zero entries of the second row, and one of which can be elsewhere),
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and so on.If we avoid
“multiplication” row

operations during
Gaussian

elimination then the
matrix L described
by this theorem will

in fact be unit lower
triangular.

Visually, this means that E looks something like

E =




0 0 F 0 0

0 0 ∗ F 0

F 0 ∗ ∗ 0

∗ 0 ∗ ∗ F

∗ F ∗ ∗ ∗




.

In particular, it follows that we can permute the columns of E so as to put it
into lower triangular form. That is, we can find a permutation matrix P∗ ∈Mm
and a lower triangular matrix L∗ ∈Mm such that E = L∗P∗. Taking the inverse
of both sides of this equation shows that

E−1 = P−1
∗ L−1

∗ .

Since P−1
∗ = PT

∗ is also a permutation matrix, and L−1
∗ is also lower triangular,

it follows that we can set P = P−1
∗ and L = L−1

∗ to complete the proof. �

Before we work through an example, we note that after row-reducing [ A | I ]
into [ U | E ], there there is actually a very simple and straightforward way to
find the permutation matrix P in the PLU decomposition of A: place a “1” in
the entry corresponding to the first non-zero entry in each column of E, and
then take the transpose of the resulting matrix. For example,We say “the” PLU

decomposition of A,
but PLU

decompositions are
actually very

non-unique (see
Exercise 2.D.14).

Here we just mean
the PLU

decomposition that
is generated by

Gaussian
elimination as in

Theorem 2.D.4.

if

E =




0 0 F 0 0

0 0 ∗ F 0

F 0 ∗ ∗ 0

∗ 0 ∗ ∗ F

∗ F ∗ ∗ ∗




then PT =




0 0 1 0 0

0 0 0 1 0

1 0 0 0 0

0 0 0 0 1

0 1 0 0 0




.

The reason this that works is simply that EP is lower triangular (which is
straightforward but annoying to check from the definition of matrix multiplica-
tion), so its inverse P−1E−1 is lower triangular too. If we define L = P−1E−1

then multiplying on the left by P shows that E−1 = PL, as desired.

Example 2.D.5
Constructing a PLU

Decomposition

Construct a PLU decomposition of the matrix A =



1 1 2 1
1 1 1 2
1 2 1 1
0 1 1 1




.

Solution:
Applying Gaussian elimination to [ A | I ] results in the following

matrix [ U | E ] in row echelon form:
Depending on the
exact sequence of
row operations we

perform to get to
row echelon form,

we could get a
different [ U | E ].

That’s OK.

[ U | E ] =




1 1 2 1 1 0 0 0
0 1 −1 0 −1 0 1 0
0 0 2 1 1 0 −1 1
0 0 0 3/2 −1/2 1 −1/2 1/2


 .

We then choose PT to have ones in its entries corresponding to the topmost
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non-zero entries of each column of E, and we also compute E−1:

PT =




1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0


 and E−1 =




1 0 0 0
1 0 −1/2 1
1 1 0 0
0 1 1 0


 .

Since we have now found the matrices P (it is the transpose of PT ) and
U (it is the left half of [ U | E ]) in the PLU decomposition A = PLU , all
that remains is to compute L, which we know from Theorem 2.D.4 equals

If we construct P
correctly, L will

necessarily be lower
triangular when we

compute it in this
way.

L = P−1E−1 = PT E−1 =




1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0







1 0 0 0
1 0 −1/2 1
1 1 0 0
0 1 1 0




=




1 0 0 0
1 1 0 0
0 1 1 0
1 0 −1/2 1


 .

We can think of the PLU decomposition as the matrix form of Gaussian
elimination just like we think of the RREF decomposition of Theorem 2.5.3 as
the matrix form of Gauss–Jordan elimination. The P matrix encodes the swap
row operations used when row-reducing, the L matrix encodes the addition row
operations (and the multiplication row operations, if it is not chosen to be unit
triangular), and U is the row echelon form reached via these row operations.
The analogy between the RREF decomposition and the PLU decomposition is
summarized in Table 2.3.

Algorithm Resulting form Matrix decomposition

Gaussian elimination row echelon form PLU decomposition
Gauss–Jordan elim. reduced REF RREF decomposition

Table 2.3: The PLU decomposition is created from using Gaussian elimination to
put a matrix into row echelon form in a manner completely analogous to how
the RREF decomposition is created from using Gauss–Jordan elimination to put a
matrix into reduced row echelon form.

Just like the LU decomposition can be used to (repeatedly) solve linear
systems, so can the PLU decomposition. The basic idea is the same—if we
want to solve the linear system Ax = b and we have already computed a PLU
decomposition A = PLU , then PLUx = b is a linear system that we can solve
as follows:

The second and
third steps here are

the same as they
were for solving

linear systems via
the LU

decomposition.

• Set c = PT b.
• Solve the linear system Ly = c for y.
• Solve the linear system Ux = y for x.

It is then straightforward to check that

Recall that P−1 = PT ,
so c = PT b means

Pc = b.

Ax = PLUx = PL(Ux) = PLy = P(Ly) = Pc = b,

so x is indeed a solution of the original linear system, as desired.
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Example 2.D.6
Using the PLU

Decomposition to
Solve a Linear

System

Let A be the matrix from Example 2.D.5. Use a PLU decomposition of A
to solve the linear system Ax = b, where b = (0,1,2,3).

Solution:
We let P, L, and U be the matrices that we computed in Example 2.D.5

so that A = PLU is a PLU decomposition of A. We then start by computing

Multiplying b by PT

just permutes its
entries around,

hence the term
“permutation

matrix”.

c = PT b =




1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0







0
1
2
3


=




0
2
3
1


 .

Next, we solve the lower triangular linear system Ly = c via forward
substitution:




1 0 0 0 0
1 1 0 0 2
0 1 1 0 3
1 0 −1/2 1 1


 row-reduce−−−−−−→




1 0 0 0 0
0 1 0 0 2
0 0 1 0 1
0 0 0 1 3/2


 ,

so y = (0,2,1,3/2).
Finally, weWhile this perhaps

seems like a lot of
work, each of these

three steps is
significantly faster

than applying
Gaussian

elimination to the
coefficient matrix

directly (refer back
to Remark 2.D.2).

solve the upper triangular linear system Ux = y via back-
ward substitution:




1 1 2 1 0
0 1 −1 0 2
0 0 2 1 1
0 0 0 3/2 3/2


 row-reduce−−−−−−→




1 0 0 0 −3
0 1 0 0 2
0 0 1 0 0
0 0 0 1 1


 ,

so the unique solution of this linear system is x = (−3,2,0,1).

2.D.4 Another Characterization of the LU Decomposition

We saw in Theorem 2.D.2 that a matrix A ∈Mm,n has a unit LU decomposition
if and only if Gaussian elimination makes it upper triangular without using any
“swap” row operations. This criterion is quite useful in practice if we have an
explicit matrix to work with, but it is a somewhat clunky condition to work
with theoretically—what connection (if any) is there between matrix properties
like its rank and the fact that it can be row-reduced without any “swap” row
operations? We now present another method of showing that a matrix has a
unit LU decomposition that bridges this gap, as it is based only on rank and
invertibility, both of which are deeply intertwined with all other aspects of
linear algebra.

Refer back to
Theorems 2.4.8

and 2.5.1 for the
connections

between rank,
invertibility, and

other linear
algebraic concepts.

Theorem 2.D.5
Existence of an

LU Decomposition

Suppose A ∈Mn has rank r. If the top-left k× k submatrices of A are
invertible for all 1≤ k ≤ r then A has a unit LU decomposition.

Proof. We prove this result by induction on the dimension n. If n = 1 then the
result is trivial, since any 1× 1 matrix A = [a1,1] can be written in the form
A = LU with L = [1] and U = [a1,1].

For the inductive step of the proof, we assume that every (n−1)× (n−1)
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matrix satisfying the hypotheses of the theorem has a unit LU decomposition,
and our goal is to use that fact to show that every matrix n×n matrix has a unit
LU decomposition as well. We start by partitioning A ∈Mn as a block matrix
whose top-left block B is (n−1)× (n−1) and whose bottom-right block c is

Here, v and w are
column vectors and

c is a scalar.

1×1:

A =
[

B v
wT c

]
.

Since B ∈Mn−1, we know by the inductive hypothesis that it has a unit LU
decomposition B = LU . Our goal is to extend this to a unit LU decomposition
of A. To this end, we want to find column vectors x,y ∈ Rn−1 and a scalar
d ∈ R suchGiven an LU

decomposition in
which the diagonal
entries of L are not
all ones, it can be

“fixed” by letting D
be the diagonal

matrix with the
same diagonal
entries as L and

noticing that
LU = (LD−1)(DU)

are both LU
decompositions,

but LD−1 has ones
on its diagonal.

that

A =
[

B v
wT c

]
=
[

L 0
xT 1

]

︸ ︷︷ ︸
“new” L

[
U y
0T d

]

︸ ︷︷ ︸
“new” U

=
[

LU Ly
xTU d +xT y

]
.

The top-left block of this equation requires B = LU , which holds by how we
chose L and U in the first place. The bottom-right block requires c = d +xT y,
which can be satisfied just by choosing d = c− xT y. The top-right block
requires us to find a y such that Ly = v, which can be be done straightforwardly
since L has ones on its diagonal and is thus invertible (by Exercise 2.2.16):
y = L−1v.

All that remains is to see that there exists a vector x such that the bottom-left
block is correct: wT = xTU . To this end, we split into two separate cases:

Case 1: B is invertible. In this case, B = LU , so U = BL−1 is also invertible, so
we can simply choose x = (U−1)T w.

Case 2: B is not invertible. Since the top-left r× r submatrix of B is invertible
(by one of the hypotheses of the theorem), we conclude that rank(A) =
rank(B) = r. It follows that wT must be a linear combination of the rows
of B, since otherwise Exercise 2.4.29(b) would imply that

rank
([

B
wT

])
> r,

which in turn would imply rank(A) > r.
Furthermore, the equation B = LU tells us that the rows of B are linear
combinations of the rows of U (via Exercise 1.3.27(b)), so in fact wT

is a linear combination of the rows of U . But this is exactly what the
equation wT = xTU says—in particular,This theorem also

works even if A is not
square—see

Exercise 2.D.5.

we choose the entries of xT to
be exactly the coefficients of that linear combination.

Now that we know how to construct each of d, x, and y, the inductive step and
the proof are complete. �

Example 2.D.7
Showing a Matrix

Has an LU
Decomposition

Show that the matrix A =



3 −2 −1
3 −1 4
1 5 2




has a unit LU decomposition.

Solution:
It is straightforward to show that rank(A) = 3, so we must check
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invertibility of each of the top-left 1×1, 2×2 and 3×3 submatrices of A:

[
3
]
,

[
3 −2
3 −1

]
, and




3 −2 −1
3 −1 4
1 5 2


 .

It is

Forgotten how to
compute the rank

of a matrix or check
whether or not it’s
invertible? Have a

look back at
Sections 2.2.3

and 2.4.3.

straightforward to show that these matrices are all invertible, so
Theorem 2.D.7 tells us that A has a unit LU decomposition.

Although we could mimic the proof of Theorem 2.D.5 in order to construct
an LU decomposition of a matrix as well, it is typically quicker and easier to
just use the method based on Gaussian elimination from Theorem 2.D.2. In
other words, it is best to think of Theorem 2.D.5 just as a tool for checking
existence of an LU decomposition, not as a computational tool.

It is also perhaps worth noting that the converse of Theorem 2.D.5 holds in
the special case when A ∈Mn is invertible. That is, an invertible matrix has a
unit LU decomposition if and only if all of its top-left square submatrices are
invertible (see Exercise 2.D.7), and furthermore it is necessarily unique (see
Exercise 2.D.6). However, the converse of Theorem 2.D.5 does not hold for
non-invertible matrices. For example, the matrices

A =




0 1 0
0 1 0
0 0 1


 and B =




0 1 0
0 1 0
1 0 0




have the same rank and the same top-left 1×1 and 2×2 submatrices, but A
has a unit LU decomposition while B does not.

Exercises solutions to starred exercises on page 459

2.D.1 Compute a unit LU decomposition of each of the
following matrices.

∗(a)
[

1 2
2 5

]

∗(c)
[

3 1 2
−3 −3 −1

]

∗(e)



1 2
2 3
1 −1




∗(g)



1 −4 5
3 −9 8
−2 5 −2




(b)
[

2 −1
4 1

]

(d)
[
−1 2 0
−3 5 2

]

(f)



1 2 −1
−1 −3 −2
3 5 −8




(h)



2 −1 4 3
−4 4 −7 −6
6 −7 12 10




2.D.2 Compute a PLU decomposition of each of the fol-
lowing matrices.

∗(a)
[

0 2
1 3

]

∗(c)



1 1 1
1 1 2
1 2 3




(b)
[

1 2 3
4 5 6

]

(d)



0 2 3 3
1 2 1 2
1 2 1 4




2.D.3 Use the given LU or PLU decomposition to find the
solution of the following linear systems.

∗(a)
[

1 0
2 1

][
2 3
0 1

][
x
y

]
=

[
1
−1

]

(b)



1 0 0
2 1 0
−1 1 1







2 1 0
0 2 1
0 0 2







x
y
z


=




3
1
2




∗(c)



0 0 1
0 1 0
1 0 0







1 0 0
0 1 0
1 0 1







1 2 3
0 1 2
0 0 1







x
y
z


=




1
2
3




(d)



1 0 0 0
1 1 0 0
2 1 1 0
1 1 3 1







2 1 0 1
0 1 2 0
0 0 1 1
0 0 0 3







w
x
y
z


=




1
1
1
1
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2.D.4 Determine which of the following statements are
true and which are false.

∗(a) Every matrix has a unit LU decomposition.
(b) Every matrix has a PLU decomposition.
∗(c) A permutation matrix is one that has a single 1 in

each row and column, and every other entry equal to
0.

(d) Every permutation matrix is its own inverse.
∗(e) Every matrix that is in row echelon form is upper

triangular.
(f) Every matrix that is upper triangular is in row eche-

lon form.

∗∗2.D.5 Show that Theorem 2.D.5 holds even if A is not
square.

[Hint: Start with an LU decomposition of a maximal square
submatrix of A.]

∗∗2.D.6 In this exercise, we investigate the uniqueness of
unit LU decompositions.

(a) Show that if A ∈Mn is invertible then its unit LU
decomposition is unique (if it exists).

(b) Find two different unit LU decompositions of the
(non-invertible) matrix

A =

[
0 0
0 1

]
.

∗∗2.D.7 Show that if A ∈Mn is invertible then the con-
verse of Theorem 2.D.5 holds (i.e., A has a unit LU decom-
position if and only if all of its top-left square submatrices
are invertible).

2.D.8 Use Exercise 2.D.7 to determine whether or not the
following matrices have a unit LU decomposition (you do
not need to compute this decomposition).

∗(a)
[

1 3
3 2

]

∗(c)



3 1 −1
−1 1 3
2 −2 1




(b)
[

0 1
1 −2

]

(d)



4 5 5 0
3 4 3 3
1 1 2 3
3 3 4 2




∗∗§ 2.D.9 Let

A =




2 −1 0 0 0 0
−1 3 −1 0 1 0
0 −1 4 −1 0 0
0 0 −1 4 −1 0
0 0 0 −1 3 −1
0 1 0 0 −1 2




.

(a) Use computer software to compute a unit LU decom-
position of A.

(b) Use computer software to compute A−1.
[Side note: Since A is sparse (i.e., has many zeros
in it), so is its LU decomposition. However, A−1 is
not sparse, which is another reason that we typically
prefer using the LU decomposition for solving linear
systems instead of the inverse.]

∗2.D.10 An LDU decomposition of a matrix A ∈Mm,n
is any factorization of the form A = LDU , where L and U
are unit lower and upper triangular matrices, respectively,
and D is diagonal.

Suppose A ∈Mn is invertible. Show that A has an LDU
decomposition if and only if it has a unit LU decomposition.

2.D.11 Compute an LDU decomposition (see Exer-
cise 2.D.10) of the matrices from the following exercises.

∗(a) Exercise 2.D.1(a).
(b) Exercise 2.D.1(b).
∗(c) Exercise 2.D.1(f).
(d) Exercise 2.D.1(g).

2.D.12 Show that if a symmetric and invertible matrix
A ∈Mn has an LDU decomposition (see Exercise 2.D.10)
then it is unique and has the form A = LDLT .

[Hint: Use Exercise 2.D.6(a).]

∗∗2.D.13 Consider the matrix A =

[
0 0
1 1

]
.

(a) Find an LU decomposition of A.
(b) Show that A does not have a unit LU decomposi-

tion (and thus does not have an LU decomposition in
which the lower triangular matrix L is invertible).

(c) Find a PLU decomposition of A.

∗∗2.D.14 PLU decompositions are quite non-unique, even
if the lower triangular matrix is restricted to having 1s on
its diagonal (in which case we call it a unit PLU decomposi-
tion).

(a) Find two different unit PLU decompositions of the
matrix [

2 −1
4 −1

]
.

(b) Based on your answer to part (a) and Exercise 2.D.6,
how many different unit PLU decompositions do you
think a typical invertible 3×3 matrix has? A 4×4
invertible matrix?

∗∗2.D.15 Suppose that P ∈Mn is a permutation matrix
(i.e., exactly one entry in each of its rows and column
equals 1, and the rest equal 0). Show that P is invertible
and P−1 = PT .

2.D.16 Recall from Example 2.3.8 that a Vandermonde
matrix is a square matrix of the form

V =




1 a0 a2
0 · · · an

0

1 a1 a2
1 · · · an

1

...
...

...
. . .

...

1 an a2
n · · · an

n




,

where a0,a1, . . . ,an are real numbers. Show that if
a0,a1, . . . ,an are distinct then V has a unit LU decompo-
sition.



3. Unraveling Matrices

The shortest path between two truths in the real domain
passes through the complex domain.

Jacques Hadamard

We now start investigating the properties of matrices that can be used to simplify
our understanding of the linear transformations that they represent. Most of the
matrix properties that we will look at in this chapter come from thinking about
how they act on certain subspaces, and trying to find particular subspaces of
Rn where they behave “nicely”. For example, consider the matrix

A =
[

2 1
1 2

]
,

which acts as a linear transformation on R2 in the manner shown in Figure 3.1.

Recall that this A
sends e1 = (1,0) to

Ae1 = (2,1), which is
its first column, and it

sends e2 = (0,1) to
Ae2 = (1,2), which is
its second column.

x

y

e2

e1

−−→

x

y

e2

e1

Figure 3.1: The matrix A =
[

2 1
1 2

]
acting as a linear transformation on R2.

When represented in this way, this matrix does not have a particularly
nice geometric interpretation—it distorts the square grid defined by e1 and e2
into a rotated parallelogram grid. However, if we change our perspective a bit
and instead consider how it acts on the input grid defined by v1 = (1,1) and
v2 = (−1,1), then this matrix transforms R2 in the manner shown in Figure 3.2,
which is much easier to understand visually.

In particular, since A just scales v1 by a factor of 3 (it does not change its
direction) and it does not change v2 at all, the square grid determined by v1
and v2 is just stretched into a rectangular grid with the same orientation. This
grid is not rotated or skewed at all, but instead it is just stretched along one of
its sides.
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Even though this
figure looks quite

different from
Figure 3.1, they

represent the exact
same matrix. They

just emphasize how
it acts on different

sets of vectors. x

y

v2 v1

−−→

x

y

v2

v1

Figure 3.2: When viewed in this way, the matrix A =
[

2 1
1 2

]
is a bit easier to visualize.

In this chapter, we flesh out the mathematics behind this example. We
introduce exactly how we can represent a matrix in a different basis (i.e., a
different input grid), we investigate how to find a particular basis ({v1,v2} in
this example) that makes a matrix easier to work with and visualize, and we
look at what types of computations can be made simpler by representing them
in this way.

3.1 Coordinate Systems

Our starting point is the concept of a coordinate system, which is something
that lets us write a vector or matrix so that it still represents the same geometric
object (either an arrow in space or a linear transformation), but viewed through
a different lens that makes it easier to perform calculations with. For now
we just focus on the mechanics of what coordinate systems are and how to
use them—we return to the problem of finding useful coordinate systems in
Sections 3.3 and 3.4.

3.1.1 Representations of Vectors

One of the most useful features of bases is that they remove ambiguity in
linear combinations. While we can always write a vector in a subspace as a
linear combination of vectors in any set that spans that subspace, that linear
combination will typically not be unique.

For example, it is the case that R2 = span
(
(1,0),(0,1),(1,1)

)
, so every

vector (x,y) ∈ R2 can be written as a linear combination of (1,0),(0,1), and
(1,1). In particular, some ways to write (2,1) as a linear combination of these
vectors include

(2,1) = 2(1,0)+(0,1)
= − (0,1)+2(1,1)
= (1,0) + (1,1),

as well as infinitely many other possibilities (see Figure 3.3).
The reason for the non-uniqueness of the above linear combinations is

that the set {(1,0),(0,1),(1,1)} is not linearly independent (and thus not a
basis). If we throw away the vector (1,1)

We could have
instead thrown

away either of (1,0)
or (0,1).

then we arrive at the standard basis
{(1,0),(0,1)}, and linear combinations of the standard basis vectors are unique
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(2,1) (2,1) (2,1)

x

y

x

y

x

y

Figure 3.3: The vector (2,1) can be written as a linear combination of (1,0),(0,1),
and (1,1) in many different ways. In a sense, the vector (1,1) is “not needed” in
the linear combinations and only serves to make them non-unique.

(and in this case, the unique way to write (2,1) as a linear combination of the
standard basis vectors is simply (2,1) = 2(1,0)+(0,1)).

The main result of this subsection shows that this uniqueness claim is true
of bases in general.

Theorem 3.1.1
Uniqueness of

Linear
Combinations

Let S be a subspace of Rn with basis B. For every vector v ∈ S, there is
exactly one way to write v as a linear combination of the vectors from B.

Proof. Since B = {v1,v2, . . . ,vk} is a basis, it spans S, so v can be written
as a linear combination of the vectors from B in at least one way. To show
uniqueness, suppose that

v = c1v1 + c2v2 + · · ·+ ckvk and
v = d1v1 +d2v2 + · · ·+dkvk

are two ways of writing v as a linear combination of v1,v2, . . . ,vk. Subtracting
those equations gives

0 = v−v = (c1−d1)v1 +(c2−d2)v2 + · · ·+(ck−dk)vk.

Since B is a basis, and is thus linearly independent, it follows that

c1−d1 = 0, c2−d2 = 0, . . . , ck−dk = 0, so
c1 = d1, c2 = d2, . . . , ck = dk.

The two linear combinations for v are thus actually the same linear combination,
which proves uniqueness.

The converse of this
theorem also holds.

That is, if B is a set
with the property
that every vector

v ∈ S can be written
as a linear

combination of the
members of B in

exactly one way,
then B must be a

basis of S (see
Exercise 3.1.10).

�

It is worth emphasizing that the above proof shows that the two defining
properties of bases—spanning S and being linearly independent—each corre-
spond to half of the above theorem. The fact that a basis B spans S tells us that
every vector can be written as a linear combination of the members of B, and
the fact that B is linearly independent tells us that those linear combinations
are unique.

The fact that linear combinations of basis vectors are unique means that
we can treat them as distinct directions that uniquely identify each point in
space. Much like we can specify points on the surface of the Earth uniquely by
their latitude and longitude (i.e., where that point is in the east–west direction
and in the north–south direction), we can also specify vectors in a subspace
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uniquely by how far they extend in the direction of each basis vector. In fact,
we even use terminology that is familiar to us from when we specify a point on
the surface of the Earth: the (unique!) coefficients c1, c2, . . ., ck described by
the previous theorem are called the coordinates of the vector v:

Definition 3.1.1
Coordinates with

Respect to a Basis

Suppose S is a subspace of Rn, B = {v1,v2, . . . ,vk} is a basis of S, and
v ∈ S . Then the unique scalars c1, c2, . . ., ck for which

v = c1v1 + c2v2 + · · ·+ ckvk

are called the coordinates of v with respect to B, and the vector

[v]B
def= (c1,c2, . . . ,ck)

is called the coordinate vector of v with respect to B.

Remark 3.1.1
Ordered Bases

There is actually a problem with Definition 3.1.1, and that is the fact
that order does not matter for bases (e.g., {e1,e2} and {e2,e1} are the
exact same basis of R2). However, order does matter for vectors (e.g.,
(c1,c2) and (c2,c1) are different vectors). In other words, we want to
use coordinates to talk about how far v extended in the direction of the
first basis vector, how far it extends in the direction of the second basis
vector, and so on, but bases (and sets in general) have no “first” or “second”
vectors.

To get around this problem, whenever we work with coordinates or
coordinate vectors, we simply use the basis vectors in the order written.
That is, if we write B = {v1,v2, . . . ,vk} then we understand that the “first”
basis vector is v1, the “second” basis vector is v2, and so on. This could
be made precise by defining an ordered basis of a subspace S ⊆ Rn to be
a linearly independent tuple (rather than a set) of vectors that span S , but
we do not explicitly do so.

When working with the standard basis of Rn (i.e., when S = Rn and B =
{e1,e2, . . . ,en}), coordinate vectors coincide exactly with how we think of
vectors already—every vector simply equals its coordinate vector with respect
to the standard basis. This is because the unique scalars c1, c2, . . ., cn for which

v = c1e1 + c2e2 + · · ·+ cnen

are just the entries of v, so when working with the standard basis we just have
v = (c1,c2, . . . ,cn) = [v]B. The true utility of coordinates and coordinate vectors
becomes more apparent when we work with proper subspaces of Rn rather than
with Rn itself.

Example 3.1.1
Finding

Coordinate
Vectors

Find the coordinate vector of v ∈ S with respect to the basis B of S .
a) v = (5,1), B = {(2,1),(1,2)}, S = R2

b) v = (5,4,3), B = {(1,2,1),(2,1,1)}, S = span(B)

Solutions:
a) We want to find the scalars c1 and c2 for which

(5,1) = c1(2,1)+ c2(1,2).
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We solved this type of problem repeatedly in the previous chapter—
it is a linear system that can be solved by placing (2,1) and (1,2) as
columns in a matrix with (5,1) as the augmented right-handSince we are told

that B is a basis, we
know in advance

that this linear
system will have a

unique solution.

side:
[

2 1 5
1 2 1

]
R2− 1

2 R1−−−−−→

[
2 1 5
0 3/2 −3/2

]
.

From here we can solve the linear system via back substitution to
see that the unique solution is c1 = 3,c2 =−1, so [v]B = (3,−1):

x

y

(5,1) = 3(2,1)− (1,2)
(2,1)

(1,2)

b) We want to find the scalars c1 and c2 for which

(5,4,3) = c1(1,2,1)+ c2(2,1,1).

Again, we solve this problem by viewing it as a linear system:



1 2 5
2 1 4
1 1 3


 R2−2R1

R3−R1−−−−−→




1 2 5
0 −3 −6
0 −1 −2



−1
3 R2

R3+R2−−−−→




1 2 5
0 1 2
0 0 0


 .

From here we can solve the linear system via back substitution to
see that the unique solution is c1 = 1,c2 = 2, so [v]B = (1,2):

y

z

yyy
(5,4,3) = (1,2,1)+2(2,1,1)

(2,1,1)

(1,2,1)

x

It is worth noting that if B = {v1,v2, . . . ,vk} is a basis then [v j]B = e j (the
j-th standard basis vector) for all 1≤ j≤ k, since the unique linear combination
of {v1,v2, . . . ,vk} resulting in v j is quite trivial:

v j = 0v1 +0v2 + · · ·+0v j−1 +1v j +0v j+1 + · · ·+0vk.

We thus think of coordinate vectors as being a lens through which we look at S
so that v1 looks like e1, v2 looks like e2, and so on (see Figure 3.4). It is worth
stating this observation more prominently, for easy reference:

! If B = {v1,v2, . . . ,vk} then [v j]B = e j for all 1≤ j ≤ k.

We saw in Example 3.1.1(b) that, even though the vector (5,4,3) lives in
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R3, it also lives in the 2-dimensional plane S = span
(
(1,2,1),(2,1,1)

)
and

thus can be described in that plane via just 2 coordinates. In a sense, we think
of that plane as a copy of R2 that is embedded in R3, and we give the vectors
in that plane coordinates as if they just lived in R2.

x

y

(5,1)
(2,1)

(1,2)

x

y

[(5,1)]B = (3,−1)

[(2,1)]B = e1

[(1,2)]B = e2

Figure 3.4: We can think of coordinate vectors as distorting space in such a way
as to make the given basis look like the standard basis. In this case, the space is
S = R2 and the basis is B = {(2,1),(1,2)}, as in Example 3.1.1(a).

While reducing a 3-dimensional vector down to a 2-dimensional one like
this might not seem particularly important, many real-world problems are much
higher-dimensional. If we only care about a particular 3-dimensional subspace
of R85 (for example), then we can use coordinate vectors to describe vectors in
that subspace via just 3 coordinates rather than 85, which makes computations
significantly easier.

Example 3.1.2
Computing a

Coordinate Vector
in the Range

of a Matrix

Find a basis B of the range of the following matrix A and then compute
the coordinate vector [v]B of the vector v = (2,1,−3,1,2) ∈ range(A):

A =




1 0 1
2 1 1
0 1 −1
2 1 1
1 0 1




.

Solution:
Recall from Example 2.4.6 that one way to find the basis of the range

of A is to take the columns of A that are leading in one of its row echelon
forms:




1 0 1
2 1 1
0 1 −1
2 1 1
1 0 1




R2−2R1
R4−2R1

R5−R1−−−−−→




1 0 1
0 1 −1
0 1 −1
0 1 −1
0 0 0




R3−R2
R4−R2−−−−→




1 0 1
0 1 −1
0 0 0
0 0 0
0 0 0




.

SinceBe careful
here—remember
that we take the
leading columns

from A itself, not from
its row echelon form.

the first two columns of this row echelon form are leading, we
choose B to consist of the first two columns of A:

B = {(1,2,0,2,1),(0,1,1,1,0)}.
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To compute [v]B, we then solve the linear system

(2,1,−3,1,2) = c1(1,2,0,2,1)+ c2(0,1,1,1,0)

for c1 and c2:



1 0 2
2 1 1
0 1 −3
2 1 1
1 0 2




R2−2R1
R4−2R1

R5−R1−−−−−→




1 0 2
0 1 −3
0 1 −3
0 1 −3
0 0 0




R3−R2
R4−R2−−−−→




1 0 2
0 1 −3
0 0 0
0 0 0
0 0 0




.

It follows that c1 = 2 and c2 =−3, so [v]B = (2,−3).

One way to think about the previous example is that the range of A is just
2-dimensional (i.e., its rank is 2), so representing the vector v = (2,1,−3,1,2)
in its range via 5 coordinates is somewhat wasteful—we can fix a basis B of
the range and then represent v via just two coordinates, as in [v]B = (2,−3).

Furthermore,

The following
theorem essentially

says that the
function that sends v

to [v]B is a linear
transformation.

once we have represented vectors more compactly via coor-
dinate vectors, we can work with them naïvely and still get correct answers.
That is, a coordinate vector [v]B can be manipulated (i.e., added and scalar
multiplied) in the exact same way as the underlying vector v that it represents:

Theorem 3.1.2
Vector Operations

on Coordinate
Vectors

Suppose S is a subspace of Rn with basis B, and let v,w ∈ S and c ∈ R.
Then

a) [v+w]B = [v]B +[w]B, and
b) [cv]B = c[v]B.

As the proof of this theorem is not terribly enlightening, we leave it as
Exercise 3.1.11 and instead jump straight to an example.

Example 3.1.3
Linear

Combinations of
Coordinate

Vectors

Let B = {(1,2,0,2,1),(0,1,1,1,0)} be a basis of the subspace

S = span(B)⊂ R5,

and suppose v = (2,1,−3,1,2) and w = (1,0,−2,0,1). Compute the fol-
lowing quantities directly from their

We know from
Theorem 3.1.2 that

we must get the
same answer to

parts (a) and (b) of
this example.

definitions:
a) [2v−5w]B
b) 2[v]B−5[w]B

Solutions:
a) It is straightforward to compute

2v−5w = 2(2,1,−3,1,2)−5(1,0,−2,0,1) = (−1,2,4,2,−1).

Next, we can compute the coordinate vector of 2v−5w in the same
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way that we did in Example 3.1.2:



1 0 −1
2 1 2
0 1 4
2 1 2
1 0 −1




R2−2R1
R4−2R1

R5−R1−−−−−→




1 0 −1
0 1 4
0 1 4
0 1 4
0 0 0




R3−R2
R4−R2−−−−→




1 0 −1
0 1 4
0 0 0
0 0 0
0 0 0




.

It follows that

2v−5w = (−1,2,4,2,−1) =−(1,2,0,2,1)+4(0,1,1,1,0),

so [2v−5w]B = (−1,4).

b) We already know from Example 3.1.2 that [v]B = (2,−3), so we
just need to compute [w]B:



1 0 1
2 1 0
0 1 −2
2 1 0
1 0 1




R2−2R1
R4−2R1

R5−R1−−−−−→




1 0 1
0 1 −2
0 1 −2
0 1 −2
0 0 0




R3−R2
R4−R2−−−−→




1 0 1
0 1 −2
0 0 0
0 0 0
0 0 0




.

It follows that [w]B = (1,−2), so we see that

2[v]B−5[w]B = 2(2,−3)−5(1,−2) = (−1,4),

which agrees with the answer that we found in part (a).

Remark 3.1.2
Orthonormal Bases

and the Size of
Coordinate Vectors

When performing computations, bases that are “almost” linearly dependent
can sometimes be numerically undesirable. To illustrate what we mean by
this, suppose v1 = (1,0.2) and v2 = (1,0.1), and consider the basis B =
{v1,v2} of R2. When we represent vectors in this basis, their coordinate
vectors can have surprisingly large entries that make them difficult to work
with.

For example, it isIf v1 and v2 are even
closer, then

coordinate vectors
can become even

larger. For example,
if v1 = (1,0.002) and

v2 = (1,0.001) then
[(−1,1)]B =

(1001,−1002).

straightforward to verify that

(−1,1) = 11v1−12v2, so [(−1,1)]B = (11,−12).

Geometrically, the reason for these large entries is that the parallelogram
grid defined by v1 and v2 is extremely thin, so we need large coefficients
in order to represent vectors that do not point in the same direction as the
parallelograms:

(−1,1) = 11v1−12v2

v1 = (1,0.2)

−v2 =−(1,0.1)

x

y



3.1 Coordinate Systems 243

In order to avoid problems like this one, we typically prefer to work
with orthonormal bases whenever possible, which are bases B with the
following additional properties:

a) v ·w = 0 for all v 6= w ∈ B, and
b) ‖v‖= 1 for all v ∈ B.

The standard basis is an example of an orthonormal basis, and in general
the parallelogram grid that they define is in fact a (potentially rotated)

More generally, the
grid is made up of

unit squares, unit
cubes, or unit

hypercubes,
depending on the

dimension.

unit
square grid:

x

y

If B is an orthonormal basis then ‖v‖=
∥∥[v]B

∥∥, so [v]B cannot be large
if v is small (in contrast with the non-orthonormal example [(−1,1)]B =
(11,−12) above). We briefly explore other nice properties of orthonormal
bases in Exercises 3.1.21–3.1.24, but we defer most of their discussion to
[Joh20].

3.1.2 Change of Basis

In order to make matrix multiplication work with coordinate vectors, we have
to also know how to represent matrices in different bases. Before we can get
there though, we need to develop some additional machinery to help us convert
between different coordinate systems.

Given a particular basis of a subspace, Theorem 3.1.1 tells us that coordinate
vectors with respect to that basis are unique. However, if we change the basis,
then the coordinate vectors change too. We have seen this (at least implicitly) a
few times already, but it’s worth working through an example to illustrate this
fact.

Example 3.1.4
Computing a

Coordinate Vector
from Another

Coordinate Vector

Let B = {(1,1),(1,−1)} and C = {(3,1),(0,1)} be bases of R2, and
suppose that [v]B = (5,1). Compute [v]C.

Solution:
Since [v]B = (5,1) we know that v = 5(1,1)+(1,−1) = (6,4). Next,

we simply represent v = (6,4) in the basis C by finding scalars c1 and c2
so that (6,4) = c1(3,1)+ c2(0,1):

[
3 0 6
1 1 4

]
1
3 R1−−→

[
1 0 2
1 1 4

]
R2−R1−−−−→

[
1 0 2
0 1 2

]
.

It follows that c1 = 2 and c2 = 2, so we conclude that [v]C = (2,2), as
illustrated below. Notice that even though [v]B and [v]C look quite different,
the underlying vector v is the same in both cases:
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x

y

[x]B = (5,1)

(1,1)

(1,−1)
x

y

[x]C = (2,2)

(3,1)
(0,1)

In the above example, in order to compute [v]C from [v]B, we computed v
itself as an intermediate step. While this was not a problem in this particular
case, this is quite undesirable in general since [v]B and [v]C can have a much
lower dimension than v.

For example, if S is a 3-dimensional subspace of R85 then we do not want to
have to decompress a 3-dimensional coordinate vector into an 85-dimensional
vector as an intermediate step when changing basis—we would prefer a method
of jumping directly from one 3-dimensional coordinate vector to another. The
following definition introduces the object (a matrix) that lets us do exactly this.

Definition 3.1.2
Change-of-Basis

Matrix

Let S be a subspace of Rn with bases B = {v1,v2, . . . ,vk} and C. The
change-of-basis matrix from B to C, denoted by PC←B, is the k×k matrix
whose columns are the coordinate vectors [v1]C, [v2]C, . . . , [vk]C:

It might seem
strange to use the

notation PC←B
instead of PB→C, but

we will soon see that
it makes our life a lot

easier this way.

PC←B
def=
[

[v1]C | [v2]C | · · · | [vk]C
]
.

As its name suggests, a change-of-basis matrix converts coordinate vectors
with respect to one basis B into coordinate vectors with respect to another basis
C. For example, if we return to the vectors and bases from Example 3.1.4, we
can write the vectors in B in terms of the vectors in C as follows:

v1 = (1,1) =
1
3
(3,1)+

2
3
(0,1) and v2 = (1,−1) =

1
3
(3,1)− 4

3
(0,1).

It follows that

[v1]C = (1,2)/3 and [v2]C = (1,−4)/3, so PC←B =
1
3

[
1 1
2 −4

]
.

With this change-of-basis matrix in hand, it is now trivial to use the fact
that [v]B = (5,1) to compute [v]C—we just multiply [v]B by PC←B to get

[v]C = PC←B[v]B =
1
3

[
1 1
2 −4

][
5
1

]
=
[

2
2

]
, (3.1.1)

which agrees with the answer that we found in Example 3.1.4. The following
theorem shows that this method of changing the basis of a coordinate vector
always works.



3.1 Coordinate Systems 245

Theorem 3.1.3
Change-of-Basis

Matrices

Suppose B and C are bases of a subspace S of Rn, and let PC←B be the
change-of-basis matrix from B to C. Then

a) PC←B[v]B = [v]C for all v ∈ S , and
b) PC←B is invertible and (PC←B)−1 = PB←C.

Furthermore,This theorem is why
we use the notation

PC←B instead of PB→C:
in part (a) of the

theorem, the middle
Bs “cancel out” and

leave just the Cs
behind.

PC←B is the unique matrix with property (a).

Proof. Let B = {v1,v2, . . . ,vk} so that we have names for the vectors in B. To
see that property (a) holds, suppose v∈S and write v = c1v1 +c2v2 + · · ·+ckvk,
so that [v]B = (c1,c2, . . . ,ck). We can then directly compute

PC←B[v]B =
[

[v1]C | [v2]C | · · · | [vk]C
]



c1
c2
...

ck


 (definition of PC←B)

= c1[v1]C + c2[v2]C + · · ·+ ck[vk]C (block matrix mult.)
= [c1v1 + c2v2 + · · ·+ ckvk]C (by Theorem 3.1.2)
= [v]C. (since [v]B = (c1,c2, . . . ,ck))

On theThis theorem can be
thought of as

another
characterization of
invertible matrices.

That is, a matrix is
invertible if and only

if it is a
change-of-basis

matrix (see
Exercise 3.1.13).

other hand, to see why PC←B is the unique matrix with property (a),
suppose P ∈Mk is any matrix for which P[v]B = [v]C for all v ∈ S . For every
1≤ j ≤ k, if v = v j then we see that [v]B = [v j]B = e j (the j-th standard basis
vector), so P[v]B = Pe j is the j-th column of P. On the other hand, it is also the
case that P[v]B = [v]C = [v j]C. The j-th column of P thus equals [v j]C for each
1≤ j ≤ k, so P = PC←B.

To see why property (b) holds, we now use property (a) twice to see that,
for each 1≤ j ≤ k, we have

(PB←CPC←B)e j = PB←C(PC←B[v j]B) = PB←C[v j]C = [v j]B = e j.

It follows that the j-th column of PB←CPC←B equals e j for each 1≤ j ≤ k,
so PB←CPC←B = I. Theorem 2.2.7 then tells us that PC←B is invertible with
(PC←B)−1 = PB←C. �

One of the useful features of change-of-basis matrices is that they can
be re-used to change the basis of multiple different vectors. For example, in
Equation (3.1.1) we used the change-of-basis matrix PC←B to change [v]B =
(5,1) from the basis B = {(1,1),(1,−1)} to C = {(3,1),(0,1)}. If we also
have [w]B = (−1,4) then we can re-use that same change-of-basis matrix to
see that

[w]C = PC←B[w]B =
1
3

[
1 1
2 −4

][
−1
4

]
=

[
1
−6

]
.

Example 3.1.5
Constructing and

Using a Change
of Basis Matrix

Suppose

v1 = (2,1,0,1,2), v2 = (1,2,−1,1,0), v3 = (0,1,−3,1,1),
w1 = (1,−1,1,0,2), w2 = (1,1,2,0,−1), w3 = (2,3,1,1,−1).

Then B = {v1,v2,v3} and C = {w1,w2,w3} are bases of S = span(B).
a) ComputeIt is also the case

that S = span(C).
PC←B.

b) Compute [v]C if [v]B = (1,2,3).
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c) Compute [w]C if [w]B = (2,0,−1).

Solutions:
a) We must first compute [v1]C, [v2]C, and [v3]C (i.e., we must write

v1, v2, and v3 each as a linear combination of w1, w2, and w3). For
v1, we can solve the linear

This linear system is
v1 =

c1w1 + c2w2 + c3w3.

system

(2,1,0,1,2)
= c1(1,−1,1,0,2)+ c2(1,1,2,0,−1)+ c3(2,3,1,1,−1)

as

We could swap
some rows around

here to put this
matrix into row

echelon form, but it’s
easy enough to read
off the solution as-is.

follows:



1 1 2 2
−1 1 3 1
1 2 1 0
0 0 1 1
2 −1 −1 2




R2+R1
R3−R1

R5−2R1−−−−→




1 1 2 2
0 2 5 3
0 1 −1 −2
0 0 1 1
0 −3 −5 −2




R2−2R3
R5+3R3−−−−−→




1 1 2 2
0 0 7 7
0 1 −1 −2
0 0 1 1
0 0 −8 −8




R2−7R4
R5+8R4−−−−−→




1 1 2 2
0 0 0 0
0 1 −1 −2
0 0 1 1
0 0 0 0




.

We can now solve this linear system via back substitution and see
that c1 = 1, c2 =−1, c3 = 1, so [v1]C = (1,−1,1). Similar compu-
tations show that [v2]C = (0,−1,1) and [v3]C = (0,−2,1), so

PC←B =
[

[v1]C | [v2]C | [v3]C
]
=




1 0 0
−1 −1 −2
1 1 1


 .

b) We just multiply:

[v]C = PC←B[v]B =




1 0 0
−1 −1 −2
1 1 1






1
2
3


=




1
−9
6


 .

c) Again, we justConstructing PC←B
took some work, but
converting between

bases is trivial now
that we have it.

multiply:

[w]C = PC←B[w]B =




1 0 0
−1 −1 −2
1 1 1






2
0
−1


=




2
0
1


 .

The schematic displayed in Figure 3.5 illustrates the relationship between
coordinate vectors and change-of-basis matrices: the bases B and C provide two
different ways of making the subspace S look like Rk, and the change-of-basis
matrices PC←B and PB←C are linear transformations that convert these two
different representations into each other.

Remark 3.1.3
Change-of-Basis

Matrices and
Standard Matrices

It is worthwhile to compare the definition of a change-of-basis matrix
PC←B (Definition 3.1.2) to that of the standard matrix [T ] of a linear
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S ⊆ Rn with dim(S) = k

Rk Rk

PC←B

P−1
C←B = PB←C

[ · ]B[ · ]C

[v]C [v]B

v

Figure 3.5: A visualization of the relationship between vectors, their coordinate
vectors, and change-of-basis matrices. There are many different bases that let us
think of S as Rk, and change-of-basis matrices let us convert between them.

transformation T : Rk→ Rk (Theorem 1.4.1):

PC←B =
[

[v1]C | [v2]C | · · · | [vk]C
]

and

[T ] =
[

T (e1) | T (e2) | · · · | T (ek)
]
.

The fact that these definitions look so similar (in both cases, we modify
basis vectors in a linear way and stick them as columns into a matrix)
is not a coincidence—PC←B is exactly the standard matrix of the linear
transformation that sends [v j]B to [v j]C for all 1≤ j ≤ k.

This interpretation of PC←B can be useful when trying to remember
how to construct it (i.e., to keep track of which vectors, represented in
which basis, make up its columns). Since PC←B sends coordinate vectors
represented in the B basis to the C basis, it should send [v j]B = e j to [v j]C
(i.e., its j-th column should be [v j]C).

We already saw how to construct change-of-basis matrices in Example 3.1.5,
but there is one special case where the computation simplifies considerably—
when the subspace S is all of Rn and one of the bases is simply the standard
basis. Since this case will be particularly important for us in upcoming sections,
it is worth working through an example.

Example 3.1.6
Change-of-Basis
Matrices to and

from the Standard
Basis

Let B = {v1,v2,v3} and E = {e1,e2,e3} be bases of R3, where

v1 = (1,1,−1), v2 = (2,2,−1), and v3 = (−1,−2,1).

Compute PE←B and PB←E .

Solution:
To compute PE←B, we must first write the vectors from the “old” basis

B in the “new” basis E. However, since E is the standard basis, this has
already been done for us (i.e., recall that [v]E = v for all vectors v):

[v1]E = (1,1,−1), [v2]E = (2,2,−1), and [v3]E = (−1,−2,1).
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Then PE←B is simply the matrix that has these vectors as its columns:

PE←B =
[

[v1]E | [v2]E | [v3]E
]
=




1 2 −1
1 2 −2
−1 −1 1


 .

To construct PB←E , we could compute each of [e1]B, [e2]B, and [e3]B
and then place them as columns in a matrix, but this would require us
to solve three linear systems (one for each of those vectors). An easier
way to get our hands on PB←E is to recall from Theorem 3.1.3(b) that
PB←E = P−1

E←B, so we can just invert the change

If you have forgotten
how to compute the

inverse of a matrix,
refer back to
Section 2.2.3.

of basis matrix that we
computed above:

PB←E = P−1
E←B =




1 2 −1
1 2 −2
−1 −1 1



−1

=




0 −1 −2
1 0 1
1 −1 0


 .

There are some similar tricks that can be used to simplify the computation
of change-of-basis matrices when neither of the bases are the standard basis,
but they are somewhat less important so we defer them to Exercise 3.1.14.

3.1.3 Similarity and Representations of Linear Transformations

We now do for matrices and linear transformations what we did for vectors in
Section 3.1.1: we give them coordinates so that we can describe how they act on
vectors that are represented in different bases. Our starting point is the following
definition/theorem that tells us how to represent a linear transformation in this
way:

Theorem 3.1.4
Standard Matrix

of a Linear
Transformation

with Respect
to a Basis

Suppose B = {v1,v2, . . . ,vn} is a basis of Rn and T : Rn→ Rn is a linear
transformation. Then there exists a unique matrix [T ]B ∈Mn for which

[T (v)]B = [T ]B[v]B for all v ∈ Rn.

This matrix is called the standard matrix of T with respect to B, and it is

[T ]B
def=
[

[T (v1)]B | [T (v2)]B | · · · | [T (vn)]B
]
.

In otherThis theorem can be
extended to the

case when
T : Rn→ Rm (with
m 6= n), even with

different bases on
the input and output

spaces, but the
version given here is

enough for us.

words, this theorem tells us that instead of applying T to v and then
computing the coordinate vector of the output, we can equivalently compute
the coordinate vector of the input and then multiply by the matrix [T ]B (see
Figure 3.6). This fact is a direct generalization of Theorem 1.4.1, which is what
we get if we use the standard basis B = {e1,e2, . . . ,en}.

Since the proof of the above theorem is almost identical to that of Theo-
rem 1.4.1 (just replace the standard basis vectors e1,e2, . . . ,en by v1,v2, . . . ,vn
throughout the proof), we leave it to Exercise 3.1.16. In fact, almost all of the
basic properties of standard matrices that we explored in Section 1.4 carry
over straightforwardly to this slightly more general setting. For example, if
S,T : Rn → Rn are linear transformations then [S ◦T ]B = [S]B[T ]B, which is
the natural generalization of Theorem 1.4.2. We leave proofs of facts like these
to the exercises as well, and we instead jump right into an example.
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Read this figure as
starting at the

top-right corner
and moving to the

bottom-left.

T

[T ]B

[ · ]B [ · ]B

T (v) v

[T (v)]B = [T ]B[v]B [v]B

Figure 3.6: A visualization of the relationship between linear transformations and
their standard matrices. Just like T sends v to T (v), the standard matrix [T ]B sends
[v]B to [T (v)]B. In other words, Theorem 3.1.4 says that we can first compute T (v)
and then find its coordinate vector (the top-left path in this figure), or we can
compute the coordinate vector [v]B and then multiply by [T ]B (the bottom-right
path in this figure)—the answer we get will be the same either way.

Example 3.1.7
Representing a

Linear
Transformation

in a Strange Basis

Let T : R2→ R2 be defined by T (x,y) = (2x + y,x +2y). Compute [T ]B
for each of the following bases:

a) B = {e1,e2}
b) B = {(1,1),(1,−1)}

Solutions:
a) To construct [T ]B when B is the standard basis, we just do what

we have been doing ever since Section 1.4: we compute T (e1) and
T (e2) and place them as columns in a matrix:

[T ]B =
[

[T (e1)]B | [T (e2)]B
]
=
[

2 1
1 2

]
.

b) First, we need to compute T (1,1) and T (1,−1):

T (1,1) = (3,3) and T (1,−1) = (1,−1).

Next, we must represent these vectors in the basis B:

(3,3) = 3(1,1)+0(1,−1) so [(3,3)]B = (3,0), and
(1,−1) = 0(1,1)+1(1,−1) so [(1,−1)]B = (0,1).

Finally,
As we see here,

changing the basis B
can drastically

change what [T ]B
looks like.

we place these coordinate vectors as columns into a matrix:

[T ]B =
[

[T (1,1)]B | [T (1,−1)]B
]
=
[

3 0
0 1

]
.

In part (a) of the previous example, the standard matrix of the linear trans-
formation T (with respect to the standard basis) did not seem to have any
particularly nice structure. The reason for this is that T just does not do any-
thing particularly interesting to the standard basis vectors, as illustrated in
Figure 3.7.

On the other hand, when we changed to a different basis in part (b) we
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This is the same
linear transformation
that was depicted in

Figure 3.1.

x

y

e2

e1

T−−→
T (e1)

T (e2)

x

y

Figure 3.7: The linear transformation T from Example 3.1.7 does not do anything
terribly interesting to the standard basis vectors.

saw that the standard matrix of this linear transformation became diagonal.
Geometrically, this corresponds to the fact that T just stretches, but does not
rotate, the vectors in this new basis (see Figure 3.8). In other words, if we skew
the input and output spaces so that the members of this basis point along the x-
and y-axes, then T just stretches along those axes (like a diagonal matrix).

Compare this image
with Figure 3.4. Just

like in that figure, we
are distorting space

so that the basis
vectors point along

the x- and y-axes.

x

y

v1v2

T−−→

x

y

T (v1) = 3v1

T (v2) = v2

x

y

[v2]B = e2

[v1]B = e1

[T ]B−−−→

x

y

[T (v2)]B = [v2]B

[T (v1)]B = 3[v1]B

Figure 3.8: The linear transformation T from Example 3.1.7 looks diagonal if we view
it in the basis B = {(1,1),(1,−1)}.

The above example illustrates why it is sometimes useful to work with
bases other than the standard basis—if we represent a linear transformation
with respect to a certain basis, it might be much easier to work with than if we
use the standard basis (since, for example, diagonal matrices are much easier
to work with than general matrices).

Just like we sometimes want to convert a vector from being represented
in one basis to another, we often want to do the same with linear transforma-
tions (for example, if we have already represented a linear transformation as a
matrix in the standard basis, we would like to have a direct way of changing
it into another basis). Fortunately, we already did most of the hard that goes into
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solving this problem when we introduced change-of-basis matrices, so we can
just stitch things together to make them work in this setting.

Theorem 3.1.5
Change-of-Basis

for Linear
Transformations

Let B and C be bases of Rn and let T : Rn→Rn be a linear transformation.
Then

[T ]C = PC←B[T ]BPB←C,

where PC←B and PB←C are change-of-basis matrices.

Proof. We simply multiply the matrix PC←B[T ]BPB←C on the right by an arbi-
trary coordinate vector [v]C:As before, notice

that adjacent
subscripts in this
theorem match

(e.g., the three Bs
that are next to

each other).

PC←B[T ]BPB←C[v]C = PC←B[T ]B[v]B (PB←C[v]C = [v]B by Theorem 3.1.3(a))
= PC←B[T (v)]B ([T ]B[v]B = [T (v)]B by Theorem 3.1.4)
= [T (v)]C. (by Theorem 3.1.3(a) again)

However, we know from Theorem 3.1.4 that [T ]C is the unique matrix for which
[T ]C[v]C = [T (v)]C for all v ∈ Rn, so it follows that PC←B[T ]BPB←C = [T ]C, as
claimed. �

A schematic that illustrates the statement of the above theorem, as well as
all of the other relationships between standard matrices and change-of-basis
matrices that we have seen, is provided by Figure 3.9. All it says is that there
are numerous different ways of computing [T (v)]C from v, such as:
• We could apply T and then represent T (v) in the basis C.
• We could represent v in the basis C and then multiply by [T ]C.
• We could represent v in the basis B, multiply by [T ]B, and then multiply

by PC←B.

Again, read this
figure as starting at
the top-right corner
and moving to the

bottom-left.

T (v) v

[T (v)]C [T (v)]B [v]B [v]C

[ · ]C
[ · ]B [ · ]B

[ · ]C

T

PC←B [T ]B PB←C

[T ]C = PC←B[T ]BPB←C

Figure 3.9: A visualization of the relationship between linear transformations, stan-
dard matrices, change-of-basis matrices, and coordinate vectors. In particular,
the bottom row illustrates Theorem 3.1.5, which says that we can construct [T ]C from
[T ]B by multiplying on the right and left by appropriate change-of-basis matrices.
This image is basically just a combination of Figures 3.5 and 3.6.

Example 3.1.8
Changing the

Basis of a Linear
Transformation

Let B = {(1,2,3),(2,−1,0),(−1,1,2)} be a basis of R3 and let T : R3→
R3 be the linear transformation with standard matrix (with respect to the



252 Chapter 3. Unraveling Matrices

standard basis) equal to

[T ] =




2 1 −3
1 0 1
0 1 2


 .

Compute [T ]B.

Solution:
If we let E = {e1,e2,e3} denoteWe could have also

written [T ] as [T ]E .
the standard basis of R3 then

Theorem 3.1.5 tells us that [T ]B = PB←E [T ]PE←B. Well, we recall from
Example 3.1.6 that PE←B is the matrix whose columns are the vectors
from B:

PE←B =




1 2 −1
2 −1 1
3 0 2


 , so PB←E = P−1

E←B =
1
7




2 4 −1
1 −5 3
−3 −6 5


 .

It follows that

Most of the
examples that we
work through are

carefully
constructed to avoid
ugly fractions, but it’s

good to be
reminded that they

exist every now and
then.

[T ]B = PB←E [T ]PE←B

=
1
7




2 4 −1
1 −5 3
−3 −6 5







2 1 −3
1 0 1
0 1 2






1 2 −1
2 −1 1
3 0 2




=
1
7




2 4 −1
1 −5 3
−3 −6 5






−5 3 −7
4 2 1
8 −1 5




=
1
7



−2 15 −15
−1 −10 3
31 −26 40


 .

Similarity
At this point, we have two fairly natural questions in front of us, which serve
as the motivation for the remainder of this chapter:

1) Given a linear transformation, how can we find a basis C such that [T ]C
is as simple as possible (e.g., diagonal)?

2) If we are given two square matrices A and B, how can we determine
whether or not they represent the same linear transformation? That is,
how can we determine whether or not there exist bases C and D and a
common linear transformation T such that A = [T ]C and B = [T ]D?

We need some more machinery before we can tackle question (1), so we
return to it in Section 3.4. For now, we consider question (2). By Theorem 3.1.5,
we know that A = [T ]C and B = [T ]D if and only if B = PD←CAPC←D. However,
we also know from Theorem 3.1.3(b) that PC←D = P−1

D←C, so we have

B = PD←CAP−1
D←C.

Finally, Exercise 3.1.13 tells us that every invertible matrix is a change-of-basis
matrix, which means that the answer to question (2) is that matrices A,B ∈Mn
represent the same linear transformation (in different bases) if and only if there
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is an invertible matrix P∈Mn such that B = PAP−1. This property is important
enough that we give it a name:

Definition 3.1.3
Similarity

We say that two matrices A,B∈Mn are similar if there exists an invertible
P ∈Mn such that A = PBP−1.

For example,We sometimes say
that A is similar to B if
A = PBP−1. However,

if A is similar to B then
B is also similar to A,

since B = P−1AP.

the matrices

A =
[

1 2
3 4

]
and B =

[
5 −1
−2 0

]
(3.1.2)

are similar, since straightforward calculation shows that if P =
[

1 1
1 −1

]
then

PBP−1 =
[

1 1
1 −1

][
5 −1
−2 0

][
1/2 1/2
1/2 −1/2

]

=
[

1 1
1 −1

][
2 3
−1 −1

]
=
[

1 2
3 4

]
= A.

We do not yet have the tools required to actually find the matrix P when it
exists and thus show that two matrices are similar, but there are some simple
things that we can do to (sometimes) show that they are not similar. For
example, we showed in Exercise 2.4.17 that multiplying A on the left or right
by an invertible matrix does not change its rank. It follows that if A and B are
similar (i.e., there exists an invertible matrix P such that A = PBP−1), then

rank(A) = rank(PBP−1) = rank(PB) = rank(B).

For example, the two matrices from Equation (3.1.2) are similar so they must
have the same rank, and indeed they both have rank 2. We state this general
observation a bit more prominently for

Since the rank is
shared by similar
matrices, we say
that it is similarity

invariant.

emphasis:

! If A ∈Mn and B ∈Mn are similar then rank(A) = rank(B).

Intuitively, the reason for this fact is that the rank is actually a property
of linear transformations, not of matrices. Indeed, the rank of a matrix is the
dimension of its range, which does not depend on the particular basis used to
represent the underlying linear transformation (e.g., a plane is still a plane no
matter which basis we view it in—no basis turns it into a line).

Example 3.1.9
Using the Rank to

Show Matrices
are Not Similar

Show that the matrices A =
[

1 2
2 4

]
and B =

[
1 2
3 4

]
are not similar.

Solution:
We start by using row operations to find row echelon forms of these

matrices:
[

1 2
2 4

]
R2−2R1−−−−→

[
1 2
0 0

]
and

[
1 2
3 4

]
R2−3R1−−−−→

[
1 2
0 −2

]
.

It follows that rank(A) = 1 and rank(B) = 2, so they are not similar.
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The Trace
There are several other properties of matrices that, like the rank, are shared
by similar matrices. We now introduce another such property that has the nice
feature of being much easier to compute than the rank.

Definition 3.1.4
The Trace

Suppose A∈Mn is a square matrix. Then the trace of A, denoted by tr(A),
is the sum of its diagonal entries:

tr(A) def= a1,1 +a2,2 + · · ·+an,n.

For example, the two matrices from Equation (3.1.2) both have trace 5.
We now work through another example to make sure that we understand this
definition properly.

Example 3.1.10
Computing

the Trace

Compute the trace of each of the following matrices:

a)
[

2 2
4 5

]
b)



3 6 −3
0 −2 3
2 4 −1




Solutions:
Both of these traces are straightforward to compute from the definition:

we just add up the diagonal entries of the matrices.

a) tr

([
2 2
4 5

])
= 2+5 = 7.

b) tr







3 6 −3
0 −2 3
2 4 −1





= 3−2−1 = 0.

At first glance, the trace perhaps seems like a rather arbitrary function—
why should we care about the sum of the diagonal entries of a matrix, and
why would this quantity be shared among similar matrices? The answer is
that, roughly speaking, the trace is the “nicest” linear function on matrices. In
particular, the trace satisfies the following desirable properties:

Theorem 3.1.6
Properties of

the Trace

Suppose A and B are matrices whose sizes are such that the following
operations make sense, and let c be a scalar. Then

a) tr(A+B) = tr(A)+ tr(B)
b) tr(cA) = ctr(A)
c) tr(AB) = tr(BA)In fact, the trace

and its scalar
multiples are the

only functions that
satisfy these

properties.
Proof. Properties (a) and (b) are hopefully clear enough, so we leave them to
Exercise 3.1.19.

The surprising property in this theorem is property (c). To verify that
it is true, suppose A ∈Mm,n and B ∈Mn,m, and use the definition of matrix
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multiplication to compute the diagonal entries of AB and

Recall that the
notation [AB]i,i

means the (i, i)-entry
of AB.

BA:

[AB]i,i =
n

∑
j=1

ai, jb j,i for all 1≤ i≤ m, and

[BA] j, j =
m

∑
i=1

b j,iai, j for all 1≤ j ≤ n.

While these diagonal entries individually may be different, when we add them
up we get the same quantity:

tr(AB) =
m

∑
i=1

[AB]i,i =
m

∑
i=1

n

∑
j=1

ai, jb j,i

=
n

∑
j=1

m

∑
i=1

b j,iai, j =
n

∑
j=1

[BA] j, j = tr(BA),

where the central step is accomplished by noting that ai, jb j,i = b j,iai, j and the
fact that we can swap the order of summation. �

Example 3.1.11
Trace of a Product

Suppose A =
[

1 2
3 4

]
and B =

[
1 −1
−2 1

]
. Compute tr(AB) and tr(BA).

Solution:
We compute both of these quantities directly by performing the indi-

cated matrix multiplications and then adding up the diagonal entries of the
resulting matrices:

tr(AB) = tr
([

1 2
3 4

][
1 −1
−2 1

])
= tr

([
−3 1
−5 1

])
=−2 and

tr(BA) = tr
([

1 −1
−2 1

][
1 2
3 4

])
= tr

([
−2 −2
1 0

])
=−2,

which agrees with the fact (Theorem 3.1.6(c)) that tr(AB) = tr(BA).

The fact that tr(AB) = tr(BA) is what makes the trace so useful for us—even
though matrix multiplication is not commutative, the trace lets us treat it is if it
were commutative in some situations. For example, it tells us that if A and B
are similar (i.e., there exists an invertible matrix P such that A = PBP−1) then

tr(A) = tr(PBP−1) = tr
(
P(BP−1)

)
= tr

(
(BP−1)P

)
= tr

(
B(P−1P)

)
= tr(B).

by Theorem 3.1.6(c)

As with the analogous fact about the rank, we state this observation a bit more
prominently for emphasis:

! If A ∈Mn and B ∈Mn are similar then tr(A) = tr(B).
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Example 3.1.12
Using the Trace to

Show Matrices are
Not Similar

Show that the matrices A =
[

1 2
3 4

]
and B =

[
1 2
3 5

]
are not similar.

Solution:
The rank does not help us here, since rank(A) = rank(B) = 2. On the

other hand, tr(A) = 5 and tr(B) = 6, so we know that A and B are not
similar.

Although it is true that tr(AB) = tr(BA), we need to be careful when taking
the trace of the product of three or more matrices. By grouping matrix products
together, we can see that

tr(ABC) = tr
(
A(BC)

)
= tr

(
(BC)A

)
= tr(BCA),

and similarly that tr(ABC) = tr(CAB). However, the other similar-looking
equalities like tr(ABC) = tr(ACB) do not hold in general. For example, if

A =
[

1 0
0 0

]
, B =

[
0 1
0 0

]
, and C =

[
0 0
1 0

]
,

then direct calculation reveals that tr(ABC) = 1, but tr(ACB) = 0.

In general, all that we can say about the trace when it acts on the product
of many matrices is that it is “cyclically commutative”: it remains unchanged
when the first matrix in the product wraps around to become the last matrix in
the product, as long as the other matrices stay in the same order. For example,
if A,B,C,D ∈Mn then

tr(ABCD) = tr(BCDA) = tr(CDAB) = tr(DABC).

However, tr(ABCD) does not necessarily equal the trace of any of the other 20
possible products of A, B, C, and D.

Exercises solutions to starred exercises on page 461

3.1.1 Compute the coordinate vector [v]B of the indicated
vector v in the subspace S with respect to the basis B. You
do not need to prove that B is indeed a basis.

∗(a) v = (6,1), B = {(3,0),(0,2)}, S = R2

(b) v = (4,2), B = {(1,1),(1,−1)}, S = R2

∗(c) v = (2,3,1), B = {(1,0,−1),(1,2,1)}, S is the
plane in R3 with equation x− y+ z = 0.

(d) v = (1,1,1), B = {(1,2,3),(−1,0,1),(2,2,1)}, S =
R3.

3.1.2 Suppose v = (2,3) and w = (2,−1).

∗(a) Find a basis B of R2 such that [v]B = (1,0) and
[w]B = (0,1).

(b) Find a basis B of R2 such that [v]B = (3,−1) and
[w]B = (−1,2).

§ 3.1.3 Use computer software to show that if

B =
{
(3,1,4,−2,1),(2,3,−1,1,2),(−1,2,−2,4,−2)

}

and v = (1,5,6,8,−9), then v ∈ span(B), and compute [v]B.

3.1.4 Compute the change-of-basis matrix PC←B for each
of the following pairs of bases B and C.

∗(a) B = {(1,2),(3,4)}, C = {(1,0),(0,1)}
(b) B = {(1,0),(0,1)}, C = {(2,1),(−4,3)}
∗(c) B = {(1,2),(3,4)}, C = {(2,1),(−4,3)}
(d) B = {(4,0,0),(0,4,0),(1,4,1)},

C = {(1,2,3),(1,0,1),(−1,1,2)}

3.1.5 Find the standard matrix [T ]B of the follow-
ing linear transformations with respect to the basis B =
{(2,3),(1,−1)}:
∗(a) T (v1,v2) = (v1− v2,v1 +3v2).
(b) T (v1,v2) = (v1 +2v2,v1 +2v2).
∗(c) T (v1,v2) = (−v1 +2v2,3v1).
(d) T (v1,v2) = (4v1 +3v2,5v1 + v2).
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§ 3.1.6 Use computer software to find the standard ma-
trix [T ]B of the following linear transformations with respect
to the basis B = {(3,1,2),(0,−1,−1),(2,−1,0)}:
∗(a) T (v1,v2,v3) =

(2v2 +3v3,3v1 + v2 +3v3,3v1 +2v2 +2v3).
(b) T (v1,v2,v3) =

(4v1 + v2− v3,2v1− v2− v3,2v1− v2 + v3).

3.1.7 Show that the following pairs of matrices A and B
are not similar.

∗(a) A =
[

1 −1
−1 1

]
and B =

[
2 −1
−1 0

]

(b) A =
[

1 −1
−1 1

]
and B =

[
1 −2
−2 4

]

∗(c) A =



0 1 2
1 2 3
2 3 4




and B =



1 −1 0
3 1 2
1 1 1




(d) A =



2 0 1
1 1 3
−1 2 1




and B =



1 −1 1
−1 1 1
0 0 2




3.1.8 Determine whether or not the following pairs of
matrices A and B are similar.

[Hint: Neither the rank nor the trace will help you here.
Work directly from the definition of similarity.]

∗(a) A =
[

1 0
0 2

]
and B =

[
3 −2
1 0

]

(b) A =
[

1 2
0 3

]
and B =

[
2 0
1 2

]

3.1.9 Determine which of the following statements are
true and which are false.

∗(a) If B is a basis of a subspace S of Rn then PB←B = I.
(b) Every square matrix is similar to itself.
∗(c) The identity matrix I is only similar to itself.
(d) If A and B are similar matrices then rank(A) =

rank(B).
∗(e) If rank(A) = rank(B) and tr(A) = tr(B) then A and B

are similar.
(f) If A and B are square matrices of the same size then

tr(A+B) = tr(A)+ tr(B).
∗(g) If A and B are square matrices of the same size then

tr(AB) = tr(A)tr(B).
(h) If A is a square matrix then tr(AT ) = tr(A).

∗∗3.1.10 Show that the converse of Theorem 3.1.1 holds.
That is, show that if S is a subspace of Rn and B ⊆ S is
a finite set with the property that every vector v ∈ S can
be written as a linear combination of the members of B in
exactly one way, then B must be a basis of S.

∗∗3.1.11 In this exercise, we prove Theorem 3.1.2. Sup-
pose that S is a subspace of Rn with basis B, and v,w ∈ S
and c ∈ R.

(a) Show that [v+w]B = [v]B +[w]B.
(b) Show that [cv]B = c[v]B.

∗∗3.1.12 Let S be a k-dimensional subspace of Rn with
basis B. Let C = {w1, . . . ,wm} ⊂ S be a set of vectors and
let D = {[w1]B, . . . , [wm]B} be the set of corresponding co-
ordinate vectors.

(a) Show that C is linearly independent if and only if D
is linearly independent.

(b) Show that C spans S if and only if D spans Rk .
(c) Show that C is a basis of S if and only if D is a basis

of Rk .

∗∗3.1.13 Show that if S ⊆Rn is a k-dimensional subspace,
P ∈Mk is invertible, and B is a basis of S , then there exists
a basis C of S such that P = PB←C .

[Side note: This shows that the converse of Theorem 3.1.3(b)
holds: not only is every change-of-basis matrix invertible,
but also every invertible matrix is a change-of-basis matrix
too.]

∗∗3.1.14 Let S be a subspace of Rn with bases B, C, and E.
We now present two methods that simplify the computation
of PC←B when E is chosen so as to be easy to convert into
(e.g., if S = Rn and E is the standard basis).

(a) Show that PC←B = PC←E PE←B.
(b) Show that the reduced row echelon form of

[ PE←C | PE←B ] is [ I | PC←B ].

§ 3.1.15 Use computer software to compute the change-
of-basis matrix PC←B for each of the following pairs of bases
B and C, both directly from the definition and also via the
method of Exercise 3.1.14(b). Which method do you prefer?

∗(a) B = {(3,0,0,3),(3,0,1,1),
(2,−1,0,1),(2,−1,3,−1)},

C = {(0,1,3,2),(−1,1,2,−1),
(1,−1,−1,−1),(0,2,2,0)}

(b) B = {(−1,−1,1,0,2),(−1,−1,0,1,0),
(2,2,2,−1,−1),(1,1,1,2,0),(1,2,0,1,2)},

C = {(2,−1,3,0,1),(0,1,0,1,0),
(2,−1,2,−1,0),(1,1,0,1,0),(3,−1,2,3,3)}

∗∗3.1.16 Prove Theorem 3.1.4.

∗∗3.1.17 Show that if A and B are square matrices that are
similar, then nullity(A) = nullity(B).

3.1.18 Suppose A,B ∈Mn.

(a) Show that if at least one of A or B is invertible then
AB and BA are similar.

(b) Provide an example to show that if A and B are not
invertible then AB and BA may not be similar.

∗∗3.1.19 Recall Theorem 3.1.6, which established some
of the basic properties of the trace.

(a) Prove part (a) of the theorem. That is, prove that
tr(A+B) = tr(A)+ tr(B) for all A,B ∈Mn.

(b) Prove part (b) of the theorem. That is, prove that
tr(cA) = ctr(A) for all A ∈Mn and all c ∈ R.
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∗∗3.1.20 Show that the only linear function f : Mn→ R
with the property that f (ABC) = f (ACB) for all A,B,C ∈
Mn is the zero function (i.e., the function defined by
f (A) = 0 for all A ∈Mn).

[Hint: Compute f (eieT
j ) in multiple different ways.]

[Side note: This exercise shows that the cyclic commutativ-
ity of the trace is “as good as it gets”: no non-zero linear
function is unchanged under arbitrary permutations of the
matrices in a product on which the function acts.]

∗∗3.1.21 Suppose that S is a subspace of Rn and v,w ∈ S .

(a) Show that if B is an orthonormal basis of S (see
Remark 3.1.2) then v ·w = [v]B · [w]B.

(b) Show that if B is an orthonormal basis of S then
‖v‖=

∥∥[v]B
∥∥.

(c) Provide an example to show that parts (a) and (b) are
not necessarily true if B is a non-orthonormal basis.

∗∗3.1.22 Suppose B⊂ Rn is a set consisting of non-zero
vectors that are mutually orthogonal (i.e., v ·w = 0 for all
v 6= w ∈ B). Show that B is linearly independent.

∗∗3.1.23 Suppose B = {v1,v2, . . . ,vn} is an orthonormal
basis of Rn, and let A be the matrix with the basis vectors
as its columns:

A =
[

v1 | v2 | · · · | vn
]
.

Show that AT A = I.

∗∗3.1.24 Let {e1,e2} be the standard basis of R2 and
let Rθ be the linear transformation that rotates R2 counter-
clockwise by θ radians.

(a) Show that {Rθ (e1),Rθ (e2)} is an orthonormal basis
of R2.

(b) Show that by choosing θ appropriately, every or-
thonormal basis of R2 can be written in the form
{Rθ (e1),Rθ (e2)}.

3.2 Determinants

We now introduce one of the most important properties of a matrix: its
determinant, which roughly is a measure of how “large” the matrix is. More
specifically, recall that every square matrix A ∈Mn can be thought of as a
linear transformation that sends x ∈ Rn to Ax ∈ Rn. That linear transformation
sends the unit square (or cube, or hypercube, ...) with sides e1,e2, . . . ,en to the
parallelogram (or parallelepiped, or hyperparallelepiped, ...) with side vectors
equal to the columns of A: Ae1,Ae2, . . . ,Aen (see Figure 3.10).

x

y

e2

e1

−−→

e1

e2

x

y

Figure 3.10: A 2×2 matrix A stretches the unit square (with sides e1 and e2) into a
parallelogram with sides Ae1 and Ae2 (the columns of A). The determinant of A is
the area of this parallelogram.

The determinant of A, which we denote by det(A),Some books denote
the determinant of a
matrix A ∈Mn by |A|

instead of det(A).

is the area (or volume,
or hypervolume, depending on the dimension n) of this distortion of the unit
square. In other words, it measures how much A expands space when acting as
a linear transformation—it is the ratio

volume of output region
volume of input region

.
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Since linear transformations behave so uniformly on Rn, this definition does
not rely specifically on using the unit square as the input to A—if A doubles the
area of the unit square (i.e., det(A) = 2), then it also doubles the area of any
square, and in fact it doubles the area of any region for which it makes sense to
talk about “area” (see Figure 3.11).

The determinant
generalizes many of

the ways of
computing areas
and volumes that
we introduced in

Section 1.A.
x

y

e2

e1

−−→

e1

e2

x

y

Figure 3.11: Both of the regions on the left have their areas stretched by the same
amount by the matrix A (det(A) = 2.46 in this case).

It is not yet at all clear how to actually compute the determinant of a matrix.
It turns out that there are several different formulas for computing it, and they
are all somewhat ugly and involved, so we start by looking at some of the basic
properties of the determinant instead.

3.2.1 Definition and Basic Properties

Before we even define the determinant algebraically, we think about some
properties that it should have. The first important property is that, since the
identity matrix does not stretch or shrink Rn at all, it must be the case that
det(I) = 1. Secondly, since every A ∈Mn expands space by a factor of det(A),
and similarly each B ∈Mn expands space by a factor of det(B), it must be the
case that AB stretches space by the product of these two factors. That is,

det(AB) = det(A)det(B) for all A,B ∈Mn.

To illustrate the third and final property of the determinant that we need,
consider what happens to det(A) if we multiply one of the columns of A by a
scalar c ∈ R. Geometrically, this corresponds to multiplying one of the sides of
the output parallelogram by c, which in turn scales the area of that parallelogram
by c (see Figure 3.12). That is, we have

det
(
[ a1 | · · · | ca j | · · · | an ]

)
= c ·det

(
[ a1 | · · · | a j | · · · | an ]

)
.

Similarly, if we add a vector to one of the columns of a matrix, then that
corresponds geometrically to adding that vector to one of the side vectors of
the output parallelogram, while leaving all of the other sides alone. We should
thus expect that the area of this parallelogram is the sum of the areas of the two
individual parallelograms:

det
(
[ a1 | · · · | v+w | · · · | an ]

)

= det
(
[ a1 | · · · | v | · · · | an ]

)
+det

(
[ a1 | · · · | w | · · · | an ]

)
.

This property is perhaps a bit more difficult to visualize, but it is illustrated
when n = 2 in Figure 3.13.
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Throughout this
section, when we
talk about area or

volume in Rn, we
mean whichever of

area, volume, or
hypervolume is

actually relevant
depending on n

(and similarly when
we say words like

“square” or “cube”).

x

y

e2

e1

= [ a1 | a2 ]
[ a1 | 2a2 ]−−−−−−−−−→

a1

2a2

a2

x

y

Figure 3.12: Scaling one of the columns of A = [ a1 | a2 ] scales the area of the
output of the corresponding linear transformation (and thus det(A)) by that same
amount. Here, the parallelogram with sides a1 and 2a2 has twice the area of the
parallelogram with sides a1 and a2.

The equality of these
two areas is

sometimes called
Cavalieri’s principle.

It perhaps helps to
think of each area

as made up of many
small slices that are

parallel to the side a1.

x

y

e2

e1

[ a1 | v ]
[ a1 | w ]
[ a1 | v+w ]

−−−−−−−−→

x

y

a1

a1

w

v+w
v

Figure 3.13: The blue and green parallelograms share the side a1 but not their other
sides (v and w, respectively). The sum of their areas equals the area of the orange
parallelogram with sides a1 (the shared side) and v+w (the sum of the non-shared
sides).

In other words, the determinant is linear in the columns of a matrix. In order
to be able to work with the determinant algebraically, we define it to be the
function that satisfies this linearity property, as well as the other two properties
that we discussed earlier:

Definition 3.2.1
Determinant

The determinant is the (unique!) function det :Mn→R that satisfies the
following three properties:

a) det(I) = 1,
b) det(AB) = det(A)det(B) for all A,B ∈Mn, and
c) for all c ∈ R andProperty (c) is

sometimes called
multilinearity of the
determinant, which

in this context just
means “linear in

each of the
columns”.

all v,w,a1,a2, . . . ,an ∈ Rn, it is the case that

det
(
[ a1 | · · · | v+ cw | · · · | an ]

)

= det
(
[ a1 | · · · | v | · · · | an ]

)
+ c ·det

(
[ a1 | · · · | w | · · · | an ]

)
.

We note that it is not yet at all obvious that these three properties uniquely
define the determinant—what prevents there from being multiple different func-
tions with these properties? However, as we proceed throughout this section,
we will use these properties to develop an explicit formula for the determinant,
from which uniqueness follows.

To begin our investigation of the consequences of the three properties in
the above definition, we look at what they tell us about invertible matrices. If
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A ∈Mn is invertible then properties (a) and (b) tell us that

1 = det(I) = det(AA−1) = det(A)det(A−1).

It follows that det(A) 6= 0 and det(A−1) = 1/det(A). This makes sense geomet-
rically, since if A expands space by a factor of det(A) then A−1 must shrink it
back down by that same amount.

On the other hand,We looked at this
geometric

interpretation of
invertibility at the

end of Section 2.3.2.

if A is not invertible, then we recall that it squashes
all of Rn down into some (n−1)-dimensional (or smaller) subspace. That is,
A squashes the unit square/cube/hypercube into something that is “flat” and
thus has 0 volume (for example, a 1-dimensional line in R2 has 0 area, a
2-dimensional plane in R3 has 0 volume, and so on). We thus conclude that if
A is not invertible then det(A) = 0 (see Figure 3.14).

x

y

e2

e1

−−→

x

y

Figure 3.14: Non-invertible matrices send Rn to a subspace of dimension less than
n, and thus have determinant 0. In this figure, R2 is sent to a (1-dimensional) line,
and thus the unit square is sent to a line segment (which has 0 area).

We summarize our observations about the determinant of invertible and
non-invertible matrices in the following theorem:

Theorem 3.2.1
Determinants and

Invertibility

Suppose A ∈Mn. Then A is invertible if and only if det(A) 6= 0, and if it
is invertible then det(A−1) = 1/det(A).

Proof. We have already demonstrated most pieces of this theorem. To be
rigorous, we still need to give a proof of the fact that non-invertible matrices
have 0 determinant that only uses the three properties from Definition 3.2.1,
rather than using our original geometric interpretation of the determinant.

To this end, we recall from Theorem 2.2.4 that if A is not invertible then
there exists a non-zero vector x ∈ Rn such that Ax = 0. If we let P be any
invertible matrix that has x as its first columnTo construct an

invertible matrix P
with x as its first

column, recall from
Theorem 2.4.3(a)

that we can extend
x to a basis of Rn,

and then
Theorem 2.5.1 tells us

that placing those
basis vectors as
columns into a

matrix P will ensure
that it is invertible.

then

det(P−1AP) = det(P−1)det(A)det(P)

=
1

det(P)
det(A)det(P) = det(A),

(3.2.1)

so our goal now is to show that det(P−1AP) = 0. By recalling that the first
column of P is x (i.e., Pe1 = x), we see that

(P−1AP)e1 = (P−1A)(Pe1) = (P−1A)x = P−1(Ax) = P−10 = 0.

In other words, the first column of P−1AP is the zero vector 0, so our goal
now is to show that every such matrix has 0 determinant. To see this, we use
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multilinearity (i.e., defining property (c)) of the determinant:

det
(
[ 0 | a2 | · · · | an ]

)
= det

(
[ a1−a1 | a2 | · · · | an ]

)

= det
(
[ a1 | a2 | · · · | an ]

)
−det

(
[ a1 | a2 | · · · | an ]

)

= 0,

which completes the proof. �

It is worth briefly focusing on the fact that we showed in Equation (3.2.1)
that det(P−1AP) = det(A) for every invertible matrix P. In other words, the
determinant (just like the rank and the trace) is shared between similar

In other words, the
determinant is

similarity invariant.

matrices:

! If A ∈Mn and B ∈Mn are similar then det(A) = det(B).

Morally, the reason for this similarity invariance of the determinant is
the fact that, just like the rank, the determinant is really a property of linear
transformations, not of matrices. That is, the particular basis that we are using
to view Rn does not affect how much the linear transformation stretches space.

Once we actually know how to compute the determinant, we will be able
to use it to show that certain matrices are not similar, just like we did with the
rank and trace in Examples 3.1.9 and 3.1.12. For now though, we close this
section with a couple of other useful properties of the determinant that are a
bit easier to demonstrate than the invertibility properties that we investigated
above. We do not prove either of the following properties, but instead leave
them to Exercise 3.2.13.

Theorem 3.2.2
Other Properties of

the Determinant

Suppose A ∈Mn and c ∈ R. Then
a) det(cA) = cn det(A), and
b) det(AT ) = det(A).

ItProperty (b) of this
theorem is actually

best proved with
techniques from the
next subsection. It is

just more convenient
to state it here.

is perhaps worth providing a geometric interpretation for property (a) of
the above theorem: since the determinant of an n×n matrix is an n-dimensional
volume, it makes sense that scaling the matrix by a factor of c scales the
resulting volume by cn (rather than just by c, which is what we might mistakenly
guess at first). See Figure 3.15 for an illustration in the n = 2 case.

x

y

e2

e1

2

−−−→

2a1

a1

2a2

a2

x

y

Figure 3.15: Scaling A ∈M2 by a factor of 2 increases the resulting area (i.e., the
determinant) by a factor of 22 = 4.
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Example 3.2.1
Determinant

Properties

Suppose that A,B,C ∈M3 are matrices with det(A) = 2, det(B) = 3, and
det(C) = 5. Compute each of the following determinants:

a) det(AB)
c) det(3AB−2C2)

b) det(A2CT B−1)
d) det

(
2A−3B−2(CT B)4(C/5)2

)

Solutions:
a) det(AB) = det(A)det(B) = 2 ·3 = 6.

b) det(A2CT B−1) = det(A)2 det(CT )det(B−1) = 22 ·5 · (1/3) = 20/3.

c)The exponent 3 that
appears in parts (c)
and (d) is because
the matrices have

size 3×3.

det(3AB−2C2) = 33 det(A)det(B)−2 det(C)2 = 27 · 2 · (1/9) · 25 =
150.

d) By combining all of the determinant rules that we have seen, we get

det
(
2A−3B−2(CT B)4(C/5)2)

= 23 det(A)−3 det(B)−2 det(CT )4 det(B)4 det(C/5)2

= 8 · (1/8) · (1/9) ·54 ·34 · (1/25)2 = 9.

3.2.2 Computation

We already know that the determinant of every non-invertible matrix is 0, so
our goal now is to develop a method of computing the determinant of invertible
matrices. As a preliminary step toward this goal, we first consider the simpler
problem of computing the determinant of elementary matrices. We consider
the three different types of elementary matrices one at a time.

Multiplication
The “multiplication” row operation cRi corresponds to an elementary matrix of
the

Even though we
originally

constructed the
elementary matrices

via row operations,
we are investigating
what their columns
look like here, since
property (c) of the

determinant
depends on

columns, not rows.

form

cRi




1
. . .

1
c

1
. . .

1




,

where the scalar c appears in the i-th column. It is thus obtained by multiplying
the i-th column of the identity matrix (which has determinant 1) by c, so
multilinearity of the determinant (i.e., defining property (c)) tells us that the
determinant of this elementary matrix is c. Geometrically, this makes sense
because this elementary matrix just stretches the unit square in the direction of
one of the standard basis vectors by a factor of c (see Figure 3.16).

Addition
The “addition” row operation Ri + cR j corresponds to an elementary matrix of
the form
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x

y

e2

e1

=

[
2.5 0

0 1

]

−−−−−−−−−→

x

y

e2

e1

Figure 3.16: The elementary matrix with diagonal entries 2.5 and 1 stretches e1 by a
factor of 2.5 and thus stretches the area of the unit square by 2.5. It follows that its
determinant is 2.5.

Ri+ cR j




1
. . .

1...
. . .

c · · · 1
. . .

1




,

where the scalar c appears in the i-th row and j-th column. It is thus obtained
by adding cei to the j-th column of I, so we can use multilinearity (defining
property (c) of determinants) to see that the determinant of this elementary
matrix is

det
(
[ e1 | · · · | e j + cei | · · · | en ]

)

= det
(
[ e1 | · · · | e j | · · · | en ]

)
+ c ·det

(
[ e1 | · · · | ei | · · · | en ]

)
.

In the above sum, the matrix on the left is simply the identity matrix, which
has determinant 1. The matrix on the right contains ei as two of its columns
(both the i-th column and the j-th column) and is thus not invertible, so its
determinant is 0. This elementary matrix thus has determinant 1+ c ·0 = 1.

This determinant equaling 1 perhaps seems somewhat counter-intuitive at
first, but it makes sense geometrically: this elementary matrix is a shear matrix

Shear matrices were
investigated in
Exercise 1.4.23.

that slants the unit square but does not change its area (see Figure 3.17).

x

y

e2

e1

=

[
1 0

1/2 1

]

−−−−−−−−−−→

x

y

e1

e2

Figure 3.17: The elementary matrix corresponding to the row operation R2 + 1
2 R1

shears the unit square but does not change its area, so its determinant equals 1.
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Swap
The “swap” row operation Ri↔ R j, which corresponds to an elementary matrix
of the form




1
. . .

0 · · · 1...
. . .

...
1 · · · 0

. . .
1




.Ri ↔ R j

is perhaps the most surprising. Geometrically, it seems as though it should have
determinant 1, since it does not actually change the unit square at all, but rather
just re-orders its side vectors.

To actually compute its determinant algebraically, we consider the matrix
that is the same as the identity matrix, except its i-th and j-th columns both
equal ei + e j. Since this matrix has two equal columns, it is not invertible, so
its determinant equals 0. Then using multilinearity (i.e., defining property (c)
of determinants) repeatedly shows that

0 = det
(
[ e1 | · · · | ei + e j | · · · | ei + e j | · · · | en ]

)

= det
(
[ e1 | · · · | ei | · · · | ei + e j | · · · | en ]

)

+det
(
[ e1 | · · · | e j | · · · | ei + e j | · · · | en ]

)

= det
(
[ e1 | · · · | ei | · · · | ei | · · · | en ]

)
(not invertible, det = 0)

+det
(
[ e1 | · · · | ei | · · · | e j | · · · | en ]

)
(identity matrix, det = 1)

+det
(
[ e1 | · · · | e j | · · · | ei | · · · | en ]

)
(elementary swap matrix)

+det
(
[ e1 | · · · | e j | · · · | e j | · · · | en ]

)
. (not invertible, det = 0)

After simplifying three of the four determinants above (one of the terms is
just the determinant of the identity matrix and thus equals 1, and two of the
determinants equal 0 since the matrix has a repeated column and is thus not
invertible), we see that

0 = 0+1+det
(
[ e1 | · · · | e j | · · · | ei | · · · | en ]

)
+0,

where the remaining term is exactly the determinant of the elementary swap
matrix that we want. We thus conclude that this determinant must be −1.

While this result feels “wrong” at first, it is actually correct and completely
necessary if we want the determinant to have nice mathematical properties—
instead of interpreting the determinant just as the area of the parallelogram
that the unit square is mapped to, we must interpret it as a signed area that is
negative if the linear transformation reverses (i.e., reflects) the orientation of
space (see Figure 3.18).

In fact, the elementary matrix corresponding to the multiplication row
operation can also have a negative determinant, if the scalar c on the diagonal
is negative. This also agrees with the interpretation of a negative determinant
meaning that the orientation of space has been flipped, since multiplying a
vector by a negative scalar reverses the direction of that vector.
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x

y

e2

e1

=

[
0 1

1 0

]

−−−−−−−−→

x

y

e1 = e2

e2 = e1

Figure 3.18: The elementary matrix corresponding to the row operation R1 ↔ R2
swaps the standard basis vectors. The unit square is mapped to the exact same
square, which thus has the same area, but the determinant of this linear transfor-
mation is −1 (instead of 1) since the orientation of space is flipped.

Remark 3.2.1
Negative

Determinants

While it might seem uncomfortable at first that determinants can be neg-
ative, this idea of an area or volume being signed is nothing new if you
have taken an integral calculus course. In particular, recall that the definite
integral ∫ b

a
f (x) dx

is defined as the area under the graph of f (x) from x = a to x = b:

a b

f (x)

∫ bb

a

∫∫
f (xx) dxdd

x

y

However, this geometric definition is only accurate if f (x)≥ 0 for all
x between a and b. If f (x) is potentially negative, then in order for the
definite integral to satisfy nice properties like

∫ b

a
f (x) dx+

∫ c

b
f (x) dx =

∫ c

a
f (x) dx,

we must instead define it to be the signed area under the graph of f (x).
That is, areas above the x-axis are considered positive and areas under the
x-axis are considered negative:
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The definite integral
depicted here

would be computed
as the area of the

“+” region minus the
area of the “−”

region.

a

b

f (x)

+

−−
x

y

Similarly, we initially motivated the determinant geometrically in
terms of areas and volumes, but for it to have nice mathematical properties
(i.e., the three properties given in Definition 3.2.1), we must be willing to
accept that it can be negative.

Arbitrary Matrices
For clarity, we now summarize the determinant calculations that we just com-
pleted for the three types of elementary matrices.

! The elementary matrix corresponding to the row operation cRi
has determinant c, the row operation Ri + cR j has determinant
1, and the row operation Ri↔ R j has determinant −1.

Remarkably, now that we are able to compute the determinant of elemen-
tary matrices, we know everything that we need to know in order to develop
a general method for computing the determinant of arbitrary matrices. The
following theorem says that we can compute the determinant of a matrix just
by performing Gauss–Jordan elimination on it and keeping track of which
“multiplication” and “swap” row operations we used in the process.

Theorem 3.2.3
Computing

Determinants via
Gauss–Jordan

Elimination

Let A ∈Mn be invertible, and suppose that A can be row-reduced to I
via k “multiplication” row operations c1Ri1 ,c2Ri2 , . . . ,ckRik as well as s
“swap” row operations (and some “addition” row operations that we do not
care about). Then

det(A) =
(−1)s

c1c2 · · ·ck
.

Proof. Recall that if A is invertible then we can write Em · · ·E2E1A = I, where
E1,E2, . . . ,Em are the elementary matrices corresponding to the row operations
used to row-reduce A to I, so

det(Em · · ·E2E1A) = det(I) = 1.

Using multiplicativity of the determinant and re-arranging shows that

det(A) =
1

det(E1)det(E2) · · ·det(Em)
.

Now we just use the fact that we know what the determinants of elementary
matrices are: the “multiplication” row operations c1Ri1 ,c2Ri2 , . . . ,ckRik corre-
spond to elementary matrices with determinants c1,c2, . . . ,ck, the “swap” row
operations correspond to elementary matrices with determinant −1, and the
“addition” row operations correspond to elementary matrices with determinant
1 (which we thus ignore). We thus conclude that

det(A) =
1

(−1)sc1c2 · · ·ck
,
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which is equivalent to the formula presented in the statement of the theorem
since 1/(−1)s = (−1)s. �

Even though the above theorem only applies to invertible matrices, this is
not actually a restriction, since we already know that non-invertible matrices
have determinant 0 (and we can simultaneously check whether or not a matrix
is invertible via Gauss–Jordan elimination as well). The next example illustrates
this method for computing the determinant of both invertible and non-invertible
matrices.

Example 3.2.2
Computing

Determinants via
Gauss–Jordan

Elimination

Compute the determinant of each of the following matrices:

a)
[

2 2
4 5

]

c)



1 2 3
4 5 6
7 8 9




b)
[

0 2
3 4

]

d)



1 1 1
1 2 4
1 3 9




Solutions:
a) To compute the determinant of this matrix, we try to row-reduce it

to the identity matrix, and keep track of the row operations that we
perform along the way:

The two “addition”
row operations that
we perform here do

not matter when
computing the

determinant.

[
2 2
4 5

]
R2−2R1−−−−→

[
2 2
0 1

]
R1−2R2−−−−→

[
2 0
0 1

]
1
2 R1−−−−→

[
1 0
0 1

]
.

Since we did not need to perform any “swap” row operations, and
the only “multiplication” row operation that we performed was 1

2 R1,
we conclude that the determinant of this matrix is 1/(1/2) = 2.

b) Again, we row-reduce and keep track of the row operations as we
apply them:

[
0 2
3 4

]
R1↔R2−−−−→

[
3 4
0 2

]
R1−2R2−−−−→

[
3 0
0 2

]
(1/3)R1
(1/2)R2−−−−−→

[
1 0
0 1

]
.

SinceBe careful with
fractions within
fractions when

computing
determinants in this

way.

we performed s = 1 “swap” row operation, as well as the
two “multiplication” row operations 1

3 R1 and 1
2 R2, it follows that

the determinant of this matrix is (−1)/((1/2)(1/3)) =−6.

c) Yet again, we perform Gauss–Jordan elimination and keep track of
the row operations that we perform:



1 2 3
4 5 6
7 8 9




R2−4R1
R3−7R1−−−−−→




1 2 3
0 −3 −6
0 −6 −12


 R3−2R2−−−−→




1 2 3
0 −3 −6
0 0 0


 .

Since we have row-reduced this matrix to one with a zero row,

If we ever get a zero
row at any point

while row-reducing,
we can immediately

stop and conclude
the matrix has
determinant 0.

we
conclude that it is not invertible and thus has determinant 0.
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d) As always, we row-reduce to the identity matrix and keep track of
the row operations that we perform along the way:




1 1 1
1 2 4
1 3 9


 R2−R1

R3−R1−−−−→




1 1 1
0 1 3
0 2 8


 R1−R2

R3−2R2−−−−→




1 0 −2
0 1 3
0 0 2




1
2 R3−−→




1 0 −2
0 1 3
0 0 1


 R1+2R3

R2−3R3−−−−−→




1 0 0
0 1 0
0 0 1


 .

Since

At this point it is
maybe a good idea

to look back at
Example 2.2.8,

where we checked
invertibility of many

of these same
matrices. Almost no

part of the
calculations

changed.

we did not perform any “swap” row operations, and the only
“multiplication” row operation that we performed was 1

2 R3, we con-
clude that the determinant of this matrix is 1/(1/2) = 2.

We can make this method of computing the determinant slightly faster by
modifying it so that we just need to compute a row echelon form of the matrix,
rather than row-reducing it all the way to its reduced row echelon form I. The
key insight that makes this possible is provided by the following theorem,
which shows that it is straightforward to compute the determinant of triangular
matrices (and thus of matrices that are in row echelon form):

Theorem 3.2.4
Determinant of a
Triangular Matrix

Suppose A ∈Mn is a triangular matrix. Then det(A) is the product of its
diagonal entries:

det(A) = a1,1a2,2 · · ·an,n.

Proof. Throughout this proof, we assume that A is upper triangular, but the
same method works if A instead is lower triangular.

First, we consider the case when all of the diagonal entries of A are non-zero:
a1,1,a2,2, . . . ,an,n 6= 0. Then we can construct a sequence of row operations that
row-reduces A to I. First, divide the n-th row of A by an,n and then, for each
1≤ i≤ n−1, subtract ai,nRn

All we are doing
here is applying

Gauss–Jordan
elimination to A,

while being careful
to list exactly which
row operations we
are applying in the

process.

from Ri:



a1,1 · · · a1,n−1 a1,n

...
. . .

...
...

0 · · · an−1,n−1 an−1,n

0 · · · 0 an,n




1
an,n

Rn

−−−−→




a1,1 · · · a1,n−1 a1,n

...
. . .

...
...

0 · · · an−1,n−1 an−1,n

0 · · · 0 1




R1−a1,nRn
R2−a2,nRn

...
Rn−1−an−1,nRn−−−−−−−−−→




a1,1 · · · a1,n−1 0
...

. . .
...

...
0 · · · an−1,n−1 0
0 · · · 0 1




We now repeat this procedure on the matrix from right to left: we divide the
(n−1)-th row by an−1,n−1 and then, for each 1≤ i≤ n−2, subtract ai,n−1Rn−1
from Ri. By repeating in this way, we eventually row-reduce all the way to the
identity matrix without performing any “swap” row operations, and the only
“multiplication” row operations performed are

1
an,n

Rn,
1

an−1,n−1
Rn−1, . . . ,

1
a1,1

R1.



270 Chapter 3. Unraveling Matrices

It then follows from Theorem 3.2.3 that

det(A) =
1

1
a1,1
· 1

a2,2
· · · 1

an,n

= a1,1a2,2 · · ·an,n,

as desired.
On the other hand, if A has a diagonal entry equal to 0, then a1,1a2,2 · · ·an,n =

0,We also showed that
a triangular matrix is
invertible if and only
if its diagonal entries

are all non-zero in
Exercise 2.2.16.

so our goal is to show that det(A) = 0 as well (i.e., we want to show that A
is not invertible). To see this, suppose that the ai,i = 0 (and furthermore, i is
the largest subscript for which ai,i = 0). Then applying the same row-reduction
procedure as in the first half of this proof would turn the i-th row into a zero
row, thus showing that A is not invertible and completing the proof. �

The above result leads immediately to the following slight improvement of
our method for computing determinants:

Theorem 3.2.5
Computing

Determinants via
Gaussian

Elimination

Let A ∈Mn, and suppose that A can be row-reduced to a row echelon
form R via k “multiplication” row operations c1Ri1 ,c2Ri2 , . . . ,ckRik as well
as s “swap” row operations (and some “addition” row operations that we
do not care about).

We apologize for
using “R” here to

refer both to a row
echelon form of A

and to elementary
row operations.

Then

det(A) =
(−1)sr1,1r2,2 · · ·rn,n

c1c2 · · ·ck
,

where r1,1,r2,2, . . . ,rn,n are the diagonal entries of the row echelon form R.

Proof. The proof is almost identical to that of Theorem 3.2.3, but instead
of applying Gauss–Jordan elimination to row-reduce A to I, we apply Gaus-
sian elimination to row-reduce A to any row echelon form R and then apply
Theorem 3.2.4 to R. �

Example 3.2.3
Computing

Determinants via
Gaussian

Elimination

Compute the determinant of each of the following matrices:

a)
[

2 2
4 5

]

c)



3 6 −3
0 −2 3
2 4 −1




b)
[

1 −1
−1 1

]

d)



0 2 1 2
1 −1 1 0
2 1 0 1
−2 0 1 1




Solutions:
a) To compute the determinant of this matrix, we apply Gaussian

elimination and keep track of the row operations that we perform
along the way:

[
2 2
4 5

]
R2−2R1−−−−→

[
2 2
0 1

]
.

Since

This first example is
the same as

Example 3.2.2(a).
Notice that this

method is much
quicker and only
requires one row

operation instead of
three.

we did not need to perform any row operations that contribute
to the determinant, we conclude that the determinant of the original
matrix is the product of the diagonal entries of its row echelon form:
2 ·1 = 2.
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b) Again, we apply Gaussian elimination and keep track of the row
operations that we perform along the way:

[
1 −1
−1 1

]
R2+R1−−−−→

[
1 −1
0 0

]
.

Since this row echelon form has a 0 diagonal entry, we conclude
that its determinant equals 0 (equivalently, as soon as we see a zero
row when row-reducing, we know it must not be invertible and thus
has determinant equal to 0).

c) Yet again, we row-reduce the matrix to row echelon form and keep
track of the row operations that we perform:



3 6 −3
0 −2 3
2 4 −1


 1

3 R1−−→




1 2 −1
0 −2 3
2 4 −1


 R3−2R1−−−−→




1 2 −1
0 −2 3
0 0 1


 .

This matrix is now in row echelon form. Since we did not apply any
“swap” row operations, and the only “multiplication” row operation
that we applied was (1/3)R1, we conclude that the determinant of
the original matrix is (1 · (−2) ·1)/(1/3) =−6.

d) As always, we row-reduce and keep track of the row operations as
we perform them:

Many other
sequences of row

operations can be
used to put this
matrix into row

echelon form. They
all give the same

value for the
determinant.




0 2 1 2
1 −1 1 0
2 1 0 1
−2 0 1 1




R1↔R2−−−−→




1 −1 1 0
0 2 1 2
2 1 0 1
−2 0 1 1




R3−2R1
R4+2R1−−−−−→




1 −1 1 0
0 2 1 2
0 3 −2 1
0 −2 3 1




R3− 3
2 R2

R4+R2−−−−−→




1 −1 1 0
0 2 1 2
0 0 −7/2 −2
0 0 4 3




R4+ 8
7 R3−−−−−→




1 −1 1 0
0 2 1 2
0 0 −7/2 −2
0 0 0 5/7


 .

Since we performed one “swap” row operation, but no “multipli-
cation” row operations, we conclude that the determinant of the
original matrix is (−1) ·1 ·2 · (−7/2) · (5/7) = 5.

3.2.3 Explicit Formulas and Cofactor Expansions

One of the most remarkable properties of the determinant is that there exists an
explicit formula for computing it just in terms of multiplication and addition of
the entries of the matrix.The determinant

of a 1×1 matrix [a]
is just a itself.

Before presenting the main theorem of this section,
which presents the formula for general n×n matrices, we discuss the 2×2 and
3×3 special cases.
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Theorem 3.2.6
Determinant of

2×2 Matrices

The determinant of a 2×2 matrix is given by

det

([
a b
c d

])
= ad−bc.

Proof. We prove this theorem by making use of multilinearity (i.e., defining
property (c) of the determinant). We canIn particular, notice

that this theorem
says that a 2×2

matrix is invertible if
and only if

ad−bc 6= 0. Compare
this statement with

Theorem 2.2.6.

write

det

([
a b
c d

])
= det

([
a b
0 d

])
+det

([
0 b
c d

])
,

since the two matrices on the right differ only in their leftmost column. Well,

det

([
a b
0 d

])
= ad

since that matrix is upper triangular, so its determinant is the product of its
diagonal entries (by Theorem 3.2.4). Similarly,

det

([
0 b
c d

])
=−det

([
c d
0 b

])
=−bc,

since the “swap” row operation multiplies the determinant of a matrix by −1.
By adding these two quantities together, the theorem follows. �

The above theorem is perhaps best remembered in terms of diagonals of the
matrix—the determinant of a 2×2 matrix is the product of its forward diagonal
minus the product of its backward diagonal:

det
([

a b
c d

])
= ad−bc.

Example 3.2.4
Using the

Determinant to
Show Matrices
are Not Similar

Show that the matrices A =
[

1 2
3 4

]
and B =

[
0 2
3 5

]
are not similar.

Solution:
The rank and trace cannot help us show that these matrices are not

similar, since rank(A) = rank(B) = 2
We justified the fact
that similar matrices

have the same
determinant on

page 262.

and tr(A) = tr(B) = 5. However,
their determinants are different:

det(A) = 1 ·4−2 ·3 =−2 and det(B) = 0 ·5−2 ·3 =−6.

Since det(A) 6= det(B), we conclude that A and B are not similar.

The formula for the determinant of a 3×3 matrix is similar in flavor, but
somewhat more complicated:
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Theorem 3.2.7
Determinant of

3×3 Matrices

The determinant of a 3×3 matrix is given by

det







a b c
d e f
g h i





= aei+b f g+ cdh−a f h−bdi− ceg.

Proof. The proof is very similar to the proof of the 2×2 determinant formula
given earlier, just with more steps. We make use of multilinearity (i.e., defining
property (c) of the determinant) to write

det







a b c
d e f
g h i







= det







a b c
0 e f
0 h i





+det







0 b c
d e f
0 h i





+det







0 b c
0 e f
g h i





 ,

since the three matrices on the right differ only in their leftmost column. We
now compute the first of the three determinants on the right by using a similar
trick on its second column:

det







a b c
0 e f
0 h i





= det







a b c
0 e f
0 0 i





+det







a 0 c
0 0 f
0 h i





 ,

since the two matrices on the right differ only in their middle column. Well, the
first matrix on the right is upper triangular so its determinant is the product of
its diagonal entries (by Theorem 3.2.4), and the second matrix on the right can
be made upper triangular by swapping two of its rows (which multiplies the
determinant by −1), so

det







a b c
0 e f
0 h i





= aei−det







a 0 c
0 h i
0 0 f





= aei−a f h.

Similar arguments showThis same approach
works for any matrix

of any size by
working left-to-right
through its columns
and swapping rows

until all matrices
being considered

are upper triangular.

that

det







0 b c
d e f
0 h i





= cdh−bdi, and det







0 b c
0 e f
g h i





= b f g− ceg,

and adding up these three answers gives the formula stated by the theorem. �

Much like we did for the 2×2 determinants, we can think of the formula
for determinants of 3×3 matrices in terms of diagonals of the matrix – it is the
sum of the products of its forward diagonals minus the sum of the products of
its backward diagonals, with the understanding that the diagonals “loop around”
the matrix

Compare this to the
mnemonic used for

computing the cross
product in
Figure 1.24.

(see Figure 3.19).
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a b c

d e f

g h i






a b c

d e f

g h i




Determinant: aei + b f g + cdh − a f h − bdi − ceg

Figure 3.19: A mnemonic for computing the determinant of a 3×3 matrix: we add
along the forward (green) diagonals and subtract along the backward (purple)
diagonals.

Example 3.2.5
Computing

Determinants via
Explicit Formulas

Compute the determinant of each of the following matrices via Theo-
rems 3.2.6

The matrices in parts
(a)–(c) here are the

same as the those
that we computed

determinants of (via
Gaussian

elimination) in
Example 3.2.3. We of
course get the same

answer using either
method.

and 3.2.7:

a)
[

2 2
4 5

]

c)



3 6 −3
0 −2 3
2 4 −1




b)
[

1 −1
−1 1

]

d)



0 2 1
1 −1 1
2 1 0




Solutions:
a) The determinant of a 2× 2 matrix is the product of its forward

diagonal minus the product of its backward diagonal:

2 ·5−2 ·4 = 10−8 = 2.

b) Again, we just apply Theorem 3.2.6 to see that the determinant of
this 2×2 matrix is

1 ·1− (−1) · (−1) = 1−1 = 0.

c) The determinant of a 3×3 matrix can be computed as the sum of the
products of its 3 forward diagonals, minus the sum of the products
of its 3 backward diagonals:

(
3 · (−2) · (−1)

)
+
(
6 ·3 ·2

)
+
(
(−3) ·0 ·4

)

−
(
3 ·3 ·4

)
−
(
6 ·0 · (−1)

)
−
(
(−3) · (−2) ·2

)

= 6+36+0−36−0−12 =−6.

d) Once again, we just apply Theorem 3.2.7 to compute the determinant
of this 3×3 matrix:

(
0 · (−1) ·0

)
+
(
2 ·1 ·2

)
+
(
1 ·1 ·1

)

−
(
0 ·1 ·1

)
−
(
2 ·1 ·0

)
−
(
1 · (−1) ·2

)

= 0+4+1−0−0− (−2) = 7.

The determinant formulas provided by Theorems 3.2.6 and 3.2.7 in fact
can be generalized to matrices of any (square) size, but doing so requires a
bit of setup first, since the resulting formulas become much too ugly to just
write out explicitly (for example, the determinant of a 4×4 matrix is the sum
and difference of 24 terms, each of which is the product of 4 of the entries of
the matrix).
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The idea behind the general determinant formula will be to compute deter-
minants of large matrices in terms of determinants of smaller matrices. The
following definition provides some terminology that we will need before we
can introduce the general formula.

Definition 3.2.2
Minors and

Cofactors

Suppose A ∈Mn and let 1≤ i, j ≤ n. Then
a) the (i, j)-minor of A is the determinant of the (n− 1)× (n− 1)

matrix that is obtained by deleting the i-th row and j-th column of
A, and

b) theWe typically use mi, j
to denote the

(i, j)-minor of A and
ci, j to denote the

(i, j)-cofactor of A,
but there is not really
a standard notation
for these quantities.

(i, j)-cofactor of A is the quantity (−1)i+ jmi, j, where mi, j is the
(i, j)-minor of A.

For example, to find the (1,2)-minor of the matrix

A =




1 2 3
4 5 6
7 8 9


 ,

we erase all of the entries in its first row and second column and then compute
the determinant of the resulting 2×2

For the (i, j)-minor,
we erase the row

and column
containing the

(i, j)-entry.

matrix:

m1,2 = det





1 2 3
4 5 6
7 8 9




= det

([
4 6
7 9

])
= 4×9−6×7= 36−42

=−6.

To similarly find the (i, j)-cofactor ci, j of A, we just multiply the corresponding
minor mi, j by (−1)i+ j. In this case, the (1,2)-cofactor of A is

c1,2 = (−1)1+2m1,2 = (−1)(−6) = 6.

To help us quickly and easily determine the sign of the (i, j)-cofactor, we
notice that (−1)i+ j alternates in a checkerboard pattern if we interpret i as the
row and j as the column (as we usually do when working with matrices), as
illustrated in Figure 3.20. The (i, j)-cofactor is thus the same as the (i, j)-minor,
but with its sign multiplied by the sign in the (i, j)-entry of this checkerboard
pattern. For example, the (1,2)-entry of this checkerboard is “−”, so the (1,2)-
cofactor is the negative of the (1,2)-minor (which agrees with the calculation
c1,2 =−m1,2 =−(−6) = 6 that we did earlier).

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.
. . .

4 − + − + − ·· ·
3 + − + − + · · ·
2 − + − + − ·· ·

i= 1 + − + − + · · ·
j = 1 2 3 4 5 · · ·

Figure 3.20: The expression (−1)i+ j that determines the sign of the (i, j)-cofactor
of a matrix alternates back and forth between +1 and −1 in a checkerboard
pattern.
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Example 3.2.6
Computing Minors

and Cofactors

Compute all minors and cofactors of the following matrices:

a)
[

2 2
4 5

]
b)



0 2 1
1 −1 1
2 1 0




Solutions:
a) This matrix has 4 minors (and 4 cofactors). Its (1,1)-minor is

m1,1 = det
([

2 2
4 5

])
= det([5]) = 5,

and its 3 other minors are computed in a similar manner:

m1,2 = 4, m2,1 = 2, and m2,2 = 2.

Its cofactors are the same, except the (1,2)- and (2,1)-cofactors
have their signs switched:

c1,1 = 5, c1,2 =−4, c2,1 =−2, and c2,2 = 2.

b) This matrix has 9 minors (and 9 cofactors). Its (1,1)-minor is

m1,1 = det





0 2 1
1 −1 1
2 1 0




= det

([
−1 1
1 0

])
=−1,

and similar computations show that its 9 minors are as follows:

m1,1 =−1 m1,2 =−2 m1,3 = 2
m2,1 =−1 m2,2 =−2 m2,3 = 5
m3,1 = 3 m3,2 =−1 m3,3 =−2.

Its cofactors are the same, except the (1,2)-, (2,1)-, (2,3)-, and
(3,2)-cofactors have their signs switched (we have highlighted these
four cofactorsThe cofactors are

exactly the same as
the minors, but the

signs switch
according to the

checkerboard
pattern described

earlier.

below):

c1,1 =−1 c1,2 = 2 c1,3 = 2
c2,1 = 1 c2,2 =−2 c2,3 =−5
c3,1 = 3 c3,2 = 1 c3,3 =−2.

We are now able to state the main result of this section, which provides
us with a recursive formula for computing the determinant of a matrix of any
size in terms of determinants of smaller sizes. By repeatedly applying this
result until we get down to 2×2 or 3×3 determinants (at which point we can
use the formulas provided by Theorems 3.2.6 and 3.2.7), we can compute the
determinant of a matrix of any size “directly” from its entries (without having
to row-reduce as in the previous section).
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Theorem 3.2.8
Cofactor

Expansion

Suppose A ∈Mn has cofactors {ci, j}n
i, j=1. Then

det(A) = ai,1ci,1 +ai,2ci,2 + · · ·+ai,nci,n for all 1≤ i≤ n and
det(A) = a1, jc1, j +a2, jc2, j + · · ·+an, jcn, j for all 1≤ j ≤ n.

Before proving this theorem, we clarify that it provides us with numerous
different ways of computing the determinant of a matrix. The first formula
is called aSome other books

call cofactor
expansions Laplace
expansions instead.

cofactor expansion along the i-th row, and it tells us how to
compute the determinant of A from the entries in its i-th row as well as the
cofactors coming from that row. Similarly, the second formula is called a
cofactor expansion along the j-th column, and it tells us how to compute the
determinant of A from the entries in its j-th column as well as the cofactors
coming from that column. Remarkably, the same answer is obtained no matter
which row or column is chosen.

Example 3.2.7
Determinant via

Multiple Cofactor
Expansions

Compute the determinant of the following matrix via the 3 indicated
cofactor expansions:

A =




2 1 −1 0
0 −2 1 3
0 0 1 0
−1 3 0 2


 .

a) Along its first row.
b) Along its third row.
c) Along its second column.

Solutions:
a) WeThere’s no direct

benefit to
computing the

determinant via
multiple different

cofactor
expansions— just
one suffices. This

example is just
meant to illustrate

the fact that we
really do get the
same answer no

matter which
cofactor expansion

we choose.

add and subtract four 3× 3 determinants (cofactors), being
careful to adjust their signs according to the checkerboard pattern
discussed earlier:




2 1 −1 0
0 −2 1 3
0 0 1 0
−1 3 0 2




+ − + −

Then

det(A) = 2det





−2 1 3
0 1 0
3 0 2




−det






0 1 3
0 1 0
−1 0 2






+(−1)det






0 −2 3
0 0 0
−1 3 2




−0det






0 −2 1
0 0 1
−1 3 0






= 2 · (−13)−3+0−0
=−29.



278 Chapter 3. Unraveling Matrices

b) Again, we add and subtract four 3×3 determinants (cofactors), but
this time along the third row of A instead of its first row:



2 1 −1 0
0 −2 1 3
0 0 1 0
−1 3 0 2


+ − + −

Then

det(A) = 0det






1 −1 0
−2 1 3
3 0 2




−0det






2 −1 0
0 1 3
−1 0 2






+det






2 1 0
0 −2 3
−1 3 2




−0det






2 1 −1
0 −2 1
−1 3 0






= 0−0+(−29)−0
=−29.

Notice
We will get an

answer of −29 no
matter which row or
column we expand

along. Determinants
are basically magic.

that we did not actually need to compute 3 of the 4 determi-
nants above, since they were multiplied by zeros. This illustrates an
important technique to keep in mind when computing determinants
via cofactor expansions: choose a cofactor expansion along a row or
column with lots of zeros in it.

c) This time, we add and subtract multiples of the four cofactors com-
ing from the second column of A:




2 1 −1 0
0 −2 1 3
0 0 1 0
−1 3 0 2




−
+

−
+

ThenBe careful! When
expanding along

the 2nd column, the
cofactors signs start

with a negative
instead of a positive.

Again, refer to the
checkerboard sign

pattern of
Figure 3.20.

det(A) =−det






0 1 3
0 1 0
−1 0 2




+(−2)det






2 −1 0
0 1 0
−1 0 2






−0det






2 −1 0
0 1 3
−1 0 2




+3det






2 −1 0
0 1 3
0 1 0






=−3+(−2) ·4−0+3 · (−6)
=−29,

which agrees with the answer that we computed in parts (a) and (b).

Proof of Theorem 3.2.8. We start by proving the theorem in the j=1 case (i.e.,
we show that det(A) equals its cofactor expansion along the first column of A).
To this end, we use multilinearity of the determinant on the first column of A to
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write det(A) as the sum of n determinants:

There are n terms in
this sum, and each

one is the
determinant of a

matrix with a single
non-zero entry in its

leftmost column.

det(A) = det







a1,1 a1,2 · · · a1,n

0 a2,2 · · · a2,n

...
...

. . .
...

0 an,2 · · · an,n







+det







0 a1,2 · · · a1,n
a2,1 a2,2 · · · a2,n

...
...

. . .
...

0 an,2 · · · an,n







+ · · ·

(3.2.2)

The goal now is to show that the n terms in the above sum equal the n
terms in the cofactor expansion. The first determinant in the sum (3.2.2) can be
computed as

det







a1,1 a1,2 · · · a1,n

0 a2,2 · · · a2,n

...
...

. . .
...

0 an,2 · · · an,n







= a1,1 det







a2,2 · · · a2,n

...
. . .

...
an,2 · · · an,n





= a1,1c1,1,

with the second equality following exactly from the definition of the cofactor
c1,1. To see why the first equality holds, notice that if the matrix




a2,2 · · · a2,n

...
. . .

...
an,2 · · · an,n


 has row echelon form R,

then

Indeed, applying
Gaussian elimination

to this matrix only
affect rows 2

through n.




a1,1 a1,2 · · · a1,n
0 a2,2 · · · a2,n
...

...
. . .

...
0 an,2 · · · an,n


 has row echelon form




a1,1 a1,2 · · · a1,n
0...
0

R


,

and furthermore the same set of row operations (shifted down by one row for
the latter matrix) can be used to put these two matrices into these row echelon
forms. Since the latter row echelon form has the same diagonal entries as R,
with the addition of a1,1, it follows from Theorem 3.2.5 that

det







a1,1 a1,2 · · · a1,n

0 a2,2 · · · a2,n

...
...

. . .
...

0 an,2 · · · an,n







= a1,1 det







a2,2 · · · a2,n

...
. . .

...
an,2 · · · an,n





 ,

as claimed.
The other terms in the sum (3.2.2) can be computed in a similar manner.

For example, the second term can be computed by first swapping the first two
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rows in the

Recall that
swapping two rows

of a matrix multiplies
its determinant by

−1.

matrix:

det







0 a1,2 · · · a1,n
a2,1 a2,2 · · · a2,n

...
...

. . .
...

0 an,2 · · · an,n







=−det







a2,1 a2,2 a2,3 · · · a2,n

0 a1,2 a1,3 · · · a1,n

0 a3,2 a3,3 · · · a3,n

...
...

...
. . .

...
0 an,2 an,3 · · · an,n







=−a2,1 det







a1,2 a1,3 · · · a1,n
a3,2 a3,3 · · · a3,n

...
...

. . .
...

an,2 an,3 · · · an,n







= a2,1c2,1.

The remaining terms in the sum are similar, with the only change being that,
for the i-th term in the sum, we perform i−1 swap operations: first we swap
rows i and i−1, then i−1 and i−2, then i−2 and i−3, and so on until rows
2 and 1. These swaps introduce a sign of (−1)i−1, which explains why the ci,1
cofactor is signed the way it is.

We have thus showed that the determinant equals its cofactor expansion
along its first column:

det(A) = a1,1c1,1 +a2,1c2,1 + · · ·+an,1cn,1.

To see that it also equals its cofactor expansion along its second column, just
swap the first and second column of A before performing a cofactor expansion
along its first column (which switches the signs of the cofactors in the second
column, as expected). A similar argument applies for the other columns. To
see that it even equals its cofactor expansions along any of its rows (instead of
columns), recall from Theorem 3.2.2(b) that det(A) = det(AT ), and a cofactor
expansion along a row of A is equivalent to an expansion along a column
of AT . �

To make use of cofactor expansions for large matrices, we apply it recur-
sively. For example, to compute the determinant of a 5×5 matrix, a cofactor
expansion requires us to compute the determinant of five 4×4 matrices, each of
which could be computed via cofactor expansions involving four 3×3 determi-
nants, each of which can be computed by the explicit formula of Theorem 3.2.7.
However, cofactor expansions quickly become very computationally expensive,
so the method of computing the determinant based on Gaussian elimination
(Theorem 3.2.5) is typically used in practice.

However, cofactor expansions are nevertheless very useful in certain situa-
tions. For example, if the matrix has a row or column consisting almost entirely
of zeros, then performing a cofactor expansion along it is fairly quick. We
illustrated this fact in Example 3.2.7(b), but it is worthwhile to do one more
example to drive this point home.
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Example 3.2.8
Determinant of a

Matrix with
Many Zeros

Compute the determinant of the following matrix:



0 −1 2 1 3
0 0 0 2 0
−2 1 1 −1 0
1 0 −3 1 0
2 1 −1 0 0




Solution:
Since the rightmost column of this matrix contains many zeros, we

perform a cofactor expansion along that column, and then we perform a
cofactor expansion along the top row of the resulting 4×4

The determinant of
this 3×3 matrix is −10.

matrix:

det







0 −1 2 1 3
0 0 0 2 0
−2 1 1 −1 0
1 0 −3 1 0
2 1 −1 0 0







= 3det







0 0 0 2
−2 1 1 −1
1 0 −3 1
2 1 −1 0







=−6det





−2 1 1
1 0 −3
2 1 −1




= 60.

Cofactor expansions are also a very useful theoretical tool, and can be used
to construct an explicit formula for the determinant of a matrix of any size.
For example, we can use cofactor expansions, along with the formula for the
determinant of a 2×2 matrix, to re-derive the formula for the determinant of a
3×3

Here we are
performing a

cofactor expansion
along the first row of

the matrix.

matrix:

det







a b c
d e f
g h i





= adet

([
e f
h i

])
−bdet

([
d f
g i

])
+ cdet

([
d e
g h

])

= a(ei− f h)−b(di− f g)+ c(dh− eg)
= aei+b f g+ cdh−a f h−bdi− ceg,

which matches the formula of Theorem 3.2.7. Similarly, if we then use this
same method on a 4×4 matrix, we can derive the

It only gets worse as
matrices get

larger—the formula
for the determinant
of a 5×5 matrix has

120 terms in it.

formula

det







a b c d
e f g h
i j k `
m n o p





= a f kp−a f `o−ag jp+ag`n+ah jo−ahkn

−bekp+be`o+bgip−bg`m−bhio+bhkm

+ ce jp− ce`n− c f ip+ c f `m+ chin− ch jm

−de jo+dekn+d f io−d f km−dgin+dg jm,

which illustrates why we do not typically use explicit formulas for matrices of
size 4×4 and larger.

Our primary purpose for introducing cofactor expansions is that they are
extremely useful for computing and working with eigenvalues, which we learn
about in the next section. Other uses of cofactors (and determinants in general)
are also explored in Section 3.A.
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Remark 3.2.2
Existence and

Uniqueness of the
Determinant

Throughout this section, we used the three defining properties of the
determinant from Definition 3.2.1 to develop several different formulas
that can be used to compute it. Those formulas can be thought of as
showing that the determinant is unique—there can only be one function
satisfying those three defining properties since we used those properties to
come up with formulas (like the cofactor expansion along the first row of
the matrix) for computing it.

However, we never actually showed that the determinant exists (i.e.,
that it is well-defined). When defining something abstractly via properties
that it has (rather than an explicit formula), this is a subtle issue that must
be dealt with, as it is possible to “define” things that do not actually make
any sense or do not exist. To illustrate what we mean by this, consider the
“function” f :Mn→R that is defined just like the determinant, except we
require that f (I) = 2 instead of f (I) = 1:

a) f (I) = 2, and
b) f (AB) = f (A) f (B) for all A,B ∈Mn.
We can come up with formulas for this function f just like we did

for the determinant in this section, but there is one big problem— f does
not actually exist. That is, no function f actually satisfies both of the
properties (a) and (b) described above. To see why, simply let A = B = I
in property (b) above to see that

2 = f (I) = f (I) f (I) = 2 ·2 = 4,

which makes no sense.For other examples
of how a function

defined by the
properties it satisfies

might fail to exist,
see Exercises 3.1.20

and 3.2.22.

Showing that the determinant does not suffer from this same problem
is somewhat fiddly and not terribly enlightening, so we leave it to Ap-
pendix B.4. The idea behind the proof is to show that another formula that
we have not yet seen (but we will see in Section 3.A) satisfies the three
defining properties of the determinant, so the determinant could instead be
defined via that explicit formula rather than in terms of the properties that
it has.

Exercises solutions to starred exercises on page 464

3.2.1 Compute the determinant of the following matrices.

∗(a)
[

1 −1
−1 1

]

(b)
[

1 2
3 5

]

∗(c)



2 4 0
1 −2 0
2 0 −1




(d)



1 3 0
0 −2 2
−1 0 1




∗(e)



2 0 1
5 2 8
3 −2 7




(f)



1 1 3
−4 2 1
3 1 2




∗(g)



3 2 −6
0 2 2
0 0 3




(h)



1 2 1 0
2 1 2 −3
4 3 1 2
0 0 2 −2
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§ 3.2.2 Use computer software to compute the determi-
nant of the following matrices.

∗(a)



3 1 6 4
−2 5 3 3
6 −2 4 1
3 4 −2 6




(b) 


−2 6 −1 6 −1
5 4 −1 3 −1
4 3 4 −2 1
6 6 5 4 2
−1 2 −2 −1 −2




∗(c)



2 2 5 −1 1 −1
1 3 0 0 1 1
1 2 5 −1 0 3
4 0 5 5 −1 3
5 −1 5 2 0 −1
3 0 3 3 4 3




(d)



−2 3 2 5 2 4
−1 2 −1 −3 2 0
6 −2 3 5 4 −1
−2 2 −2 −2 −3 3
3 3 2 2 −3 1
1 6 0 −1 −3 −2




3.2.3 Suppose that A,B,C ∈M5 are such that det(A) = 2,
det(B) = 3, and det(C) = 0. Compute the determinant of
the following matrices.

∗(a) ABT

∗(c) A2B
∗(e) A−1B3

∗(g) 3A2(BT B/2)−1

(b) ABC
(d) 2A2

(f) A3B−2A−4B2A
(h) A64B−14C9A−6B13

3.2.4 Suppose that A ∈M4 is a matrix with det(A) = 6.
Compute the determinant of the matrices that are obtained
from A by applying the following sequences of row opera-
tions:

∗(a) R1−2R2
(b) 3R3
∗(c) R1↔ R4
(d) R2−2R1,R3−4R1
∗(e) 2R1,R2↔ R4

(f) R1↔ R2,R2↔ R3
∗(g) 2R2,3R3,4R4
(h) R1↔ R3,2R2,R3−3R1,R4−7R2,3R4

3.2.5 Suppose that

det







a b c
d e f
g h i





= 4.

Compute the determinant of the following matrices.

∗(a)



g h i
d e f
a b c




∗(a)



a b+a 2c
d e+d 2 f
g h+g 2i




(b)



a b c
2d 2e 2 f
3g 3h 3i




(d)



a 2b 3c
2d 4e 6 f
3g 6h 9i




3.2.6 Determine which of the following statements are
true and which are false.

∗(a) For all square matrices A, it is true that det(−A) =
−det(A).

(b) If A and B are square matrices of the same size, then
det(AB) = det(BA).

∗(c) If A and B are square matrices of the same size, then
det(A+B) = det(A)+det(B).

(d) If A is a 3×3 matrix with det(A) = 3, then rank(A) =
3.

∗(e) If A is a square matrix whose reduced row echelon
form is I, then det(A) = 1.

(f) If A is a square matrix whose reduced row echelon
form is I, then det(A) 6= 0.

∗(g) If the columns of a square matrix A are linearly de-
pendent, then det(A) = 0.

(h) If a matrix B is obtained from A ∈M4 by swapping
rows 1 and 2 and also swapping rows 3 and 4, then
det(A) = det(B).

3.2.7 Let Bn be the n× n “backwards identity” matrix
whose entries on the diagonal from its top-right to bottom-
left equal 1, and whose other entries equal 0. For example,

B2 =

[
0 1
1 0

]
and B3 =




0 0 1
0 1 0
1 0 0


 .

Find a formula for det(Bn) in terms of n.

∗3.2.8 Provide an example to show that it is not necessar-
ily the case that det(AB) = det(BA) when A and B are not
square. Both of the products AB and BA should exist in your
example.

3.2.9 Compute the determinant of the matrix
[

cos(θ) −sin(θ)
sin(θ) cos(θ)

]

and provide a geometric interpretation of your answer.

∗3.2.10 Let [Pu] be the standard matrix of a projection
onto a line (see Section 1.4.2). Compute det([Pu]).

3.2.11 Suppose A ∈Mn and r is any integer. Show that
det(Ar) = (det(A))r .

3.2.12 A matrix A ∈Mn is called skew-symmetric if
AT = −A. Show that skew-symmetric matrices are not in-
vertible if n is odd.

[Hint: Determinants.]

∗∗3.2.13 Recall Theorem 3.2.2, which established some
of the basic properties of the determinant.

(a) Prove part (a) of the theorem.
(b) Prove part (b) of the theorem. [Hint: Write A as a

product of elementary matrices.]
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3.2.14 Given a matrix A ∈Mn, let AR denote the matrix
that is obtained by rotating the entries of A in the clockwise
direction by 90 degrees. For example, for 2× 2 and 3× 3
matrices we have
[

a b
c d

]R

=
[

c a
d b

]
,




a b c
d e f
g h i




R

=




g d a
h e b
i f c


 .

Find a formula for det(AR) in terms of det(A) and n. [Hint:
Try to make use of Exercise 3.2.7.]

§ 3.2.15 Let An be the n×n matrix

An =




1 1 1 · · · 1
1 2 1 · · · 1
1 1 3 · · · 1

...
...

...
. . .

...
1 1 1 · · · n




.

(a) Use computer software to compute det(An) when
n = 2,3,4,5.

(b) Based on the computations from part (a), guess a
formula for det(An) that works for all n.

(c) Prove that your formula from part (b) is correct.

∗∗3.2.16 In this exercise, we show that Theorem 3.2.4 can
be generalized to block triangular matrices.

(a) Show that

det

([
A B
O C

])
= det(A)det(C).

(b) Show that

det







A1 ∗ · · · ∗
O A2 · · · ∗
...

...
. . .

...
O O · · · An







=
n

∏
j=1

det(A j),

where asterisks (∗) denote blocks whose values are
irrelevant but potentially non-zero.
[Side note: The notation ∏

n
j=1 refers to a product

(multiplication) in the same way that the notation
∑

n
j=1 refers to a sum (addition).]

3.2.17 Suppose A ∈Mm, B ∈Mm,n, C ∈Mn,m, and
D ∈Mn. Provide an example to show that it is not neces-
sarily the case that

det

([
A B
C D

])
= det(A)det(D)−det(B)det(C).

∗3.2.18 Suppose A ∈Mm,n and B ∈Mn,m. Show that

det(Im +AB) = det(In +BA).

[Note: This is called Sylvester’s determinant identity.]
[Hint: Use Exercise 3.2.16(a) to compute the determinant
of the product

[
Im −A
B In

][
Im A
O In

]

in two different ways.]

3.2.19 Recall from Example 2.3.8 that a Vandermonde
matrix is a square matrix of the form

V =




1 a0 a2
0 · · · an

0

1 a1 a2
1 · · · an

1

...
...

...
. . .

...

1 an a2
n · · · an

n




,

where a0,a1, . . . ,an are real numbers. Show that

det(V ) = ∏
0≤i< j≤n

(a j−ai).

[Side note: This exercise generalizes Example 2.3.8, which
showed that Vandermonde matrices are invertible whenever
a0,a1, . . . ,an are distinct.]

[Hint: Try a proof by induction, and use row operations to
turn an (n + 1)× (n + 1) Vandermonde matrix into some-
thing that resembles an n×n Vandermonde matrix.]

∗3.2.20 The matrix determinant lemma is a result that
says that if A ∈Mn is invertible and v,w ∈ Rn, then

det(A+vwT ) = (1+wT A−1v)det(A).

This exercise guides you through a proof of this lemma.

(a) Use block matrix multiplication to compute the prod-
uct

[
In 0

wT 1

][
In +vwT v

0T 1

][
In 0
−wT 1

]
.

(b) Use part (a) to show that det(In + vwT ) = 1 + wT v.
[Hint: Use Exercise 3.2.16 to compute the determi-
nant of block triangular matrices.]

(c) Show that det(A + vwT ) = (1 + wT A−1v)det(A).
[Hint: Write A+vwT = A(In +A−1vwT ).]

[Side note: This lemma is useful in situations where you
know lots of information about A (its inverse and determi-
nant) and want to know the determinant of a slight perturba-
tion of it. See also Exercise 2.2.23.]

3.2.21 Use the matrix determinant lemma (Exer-
cise 3.2.20) to show that the standard matrix of a reflection
through a line in Rn (see Section 1.4.2) has determinant
equal to (−1)n+1.

3.2.22 Show that there does not exist a function f :Mn→
R that has the same defining properties as the determinant,
except with multilinearity replaced by linearity:

a) f (I) = 1,
b) f (AB) = f (A) f (B) for all A,B ∈Mn, and
c) for all c ∈ R and A,B ∈Mn, we have f (A+ cB) =

f (A)+ c f (B).

[Hint: Compute f (eieT
j ) in multiple different ways.]
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3.3 Eigenvalues and Eigenvectors

Some linear transformations behave very well when they act on certain spe-
cific vectors. For example, diagonal linear transformationsDiagonal matrices

and linear
transformations were

introduced in
Section 1.4.2.

simply stretch the
standard basis vectors, but do not change their direction, as illustrated in Fig-
ure 3.21. Algebraically, this property corresponds to the fact that if A ∈Mn is
diagonal then Ae j = a j, je j for all 1≤ j ≤ n.

x

y

e2

e1

−−→

x

y

e2

e1

Figure 3.21: A diagonal matrix can stretch the standard basis vectors, but cannot
change their direction.

This situation, where matrix multiplication behaves just like scalar multi-
plication, is extremely desirable since scalar multiplication is so much simpler
to work with than matrix multiplication in general. This idea leads naturally to
the following definition.

Definition 3.3.1
Eigenvalues and

Eigenvectors

Suppose A is a square matrix. A non-zero vector v is called an eigenvector
of A if there is a scalar λ such that

Av = λv.

Such a scalar λ is called the eigenvalue of A corresponding to v.We sometimes say
that v corresponds

to λ . It does not
matter which

corresponds to
which—we think of

them as a pair.

In other words, an eigenvector of a matrix A is a vector that is just stretched
by A, but not rotated by it, and the corresponding eigenvalue describes how
much it is stretched by. In the case of diagonal matrices, the standard basis
vectors e1, e2, . . ., en are eigenvectors, and their corresponding eigenvalues are
A’s diagonal entries a1,1, a2,2, . . ., an,n.

Remark 3.3.1
Eigenvalues, Yeah!

It is impossible to overstate the importance of eigenvalues and eigenvectors.
Everything that we have learned so far in this book has been in preparation
for this section—we will need to know how to solve linear systems, find a
basis of the null space of a matrix, compute determinants and use them to
check invertibility of matrices, construct coordinate vectors and use linear
transformations to manipulate them, and so on. This section together with
Section 3.4 are the punchline of this book.

3.3.1 Computation of Eigenvalues and Eigenvectors

Computing eigenvalues and eigenvectors of non-diagonal matrices is a some-
what involved process, so we first present some examples to illustrate how we
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can find an eigenvalue if we are given an eigenvector, or vice-versa.

Example 3.3.1
Computing an

Eigenvalue, Given
an Eigenvector

Suppose that

A =
[

2 1
1 2

]
and v =

[
1
1

]
.

Show that v is an eigenvector of A, and find its corresponding eigenvalue.

Solution:
We just compute Av and see how much v is stretched:

Av =
[

2 1
1 2

][
1
1

]
=
[

3
3

]
= 3v.

Since Av = 3v, the eigenvalue corresponding to v is λ = 3. The effect of
this matrix as a linear transformation is illustrated below. Notice that v is
just stretched by A, but its direction remains unchanged:

v= (1,1)

x

y

e2

e1

A−−→

Av= 3v

Ae1

Ae2

x

y

Example 3.3.2
Computing an

Eigenvector, Given
an Eigenvalue

Suppose that A is as in the previous example (Example 3.3.1). Show that
λ = 1 is an eigenvalue of A, and find an eigenvector that it corresponds to.

Solution:
We want to find a non-zero vector v ∈ R2 such that Av = 1v. This is a

system of linear equations in the entries v1 and v2 of v:

2v1 + v2 = v1

v1 +2v2 = v2

If we move all of the variables in this linear system to the left-hand side,
we can solve it via Gaussian

After moving all
variables to the left,

this linear system has
the form

v1 + v2 = 0
v1 + v2 = 0

elimination:
[

1 1 0
1 1 0

]
R2−R1−−−−→

[
1 1 0
0 0 0

]

We thus see that v2 is a free variable and v1 is a leading variable with
v1 =−v2. In other words, the eigenvectors are the (non-zero) vectors of
the form v = (−v2,v2). We (arbitrarily) choose v2 = 1 so that we get
v = (−1,1) as an eigenvector of A with corresponding eigenvalue λ = 1.

The

Recall that
eigenvectors are, by

definition, non-zero.
The reason for this is

that A0 = λ0 for all
matrices A and all

scalars λ , so if 0 were
allowed as an

eigenvector then
every number λ

would be an
eigenvalue of every

matrix.

effect of this matrix as a linear transformation is once again
illustrated below. Notice that v is unaffected by A:
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v= (−1,1)

x

y

e2

e1

A−−→ Av= v
Ae1

Ae2

x

y

The previous examples illustrate how to find either an eigenvalue or an
eigenvector, if we are given the other one. However, if we are given neither
the eigenvalues nor the eigenvectors (as is generally the case), it is not quite
so straightforward to find them. We thus typically use the following two-step
procedure, which starts by computing the eigenvalues, and then computes the
eigenvectors corresponding to those eigenvalues.

Step 1: Compute the eigenvalues. Recall that λ is an eigenvalue of A if and
only if there is a non-zero vector v such that Av = λv. By moving both
terms to the same side of this equation and then factoring, we seeBe careful when

factoring Av−λv. It is
tempting to write

(A−λ )v = 0, but this
does not make

sense (what is a
matrix minus a

scalar?).

that

Av = λv ⇐⇒ Av−λv = 0 ⇐⇒ (A−λ I)v = 0.

It follows that λ is an eigenvalue of A if and only if the linear system
(A−λ I)v = 0 has a non-zero solution. By Theorem 2.2.4, this is equiva-
lent to A−λ I not being invertible. We have thus arrived at the following
important observation:

! A scalar λ is an eigenvalue of a square matrix A if and
only if A−λ I is not invertible.

While there are multiple different ways to determine which values of λ

make A−λ I not invertible, one of the conceptually simplest methods
is to compute det(A− λ I) via one of the explicit formulas for the
determinant from Section 3.2.3, and then set it equal to 0 (since A−λ I
is not invertible if and only if det(A−λ I) = 0, by Theorem 3.2.1). We
illustrate this method via an example.

Example 3.3.3
Computing the

Eigenvalues
of a Matrix

Compute all of the eigenvalues of the matrix A =
[

1 2
5 4

]
.

Solution:
To find the eigenvalues of A, we first compute

Recall that the
determinant of a

2×2 matrix is

det

([
a b
c d

])
= ad−bc.

det(A− λ I) via Theo-
rem 3.2.6:

det(A−λ I) = det

([
1−λ 2

5 4−λ

])

= (1−λ )(4−λ )−10 = λ
2−5λ −6.

Setting this determinant equal to 0 then gives

λ
2−5λ −6 = 0⇐⇒ (λ +1)(λ −6) = 0

⇐⇒ λ =−1 or λ = 6,
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so the eigenvalues of A are λ =−1 and λ = 6.
As an alternative to factoring the polynomial λ 2−5λ −6, we could have
instead found its rootsA root of a

polynomial is a value
that makes it equal 0.

via the quadratic formula, which says that the
solutions of aλ 2 +bλ + c = 0 are

λ =
−b±

√
b2−4ac

2a
.

In this case, the quadratic formula gives λ = (5±7)/2, which of course
agrees with the λ =−1 and λ = 6 answer that we found via factoring.

In the above example, det(A−λ I) was a quadratic in λ , and finding the
roots of that quadratic gave us the eigenvalues of A. We will return to
this idea of eigenvalues being the roots of a polynomial shortly, so keep
it in the back of your mind.

Step 2: Compute the eigenvectors. Once we know the eigenvalues of a matrix
(from Step 1 above), the eigenvectors corresponding to them can be
found via the method of Example 3.3.2. That is, they can be found by
solving the linear system Av = λv for v. By moving all terms over to the
left-hand side of this equation, we see that this is equivalent to solving
the linear system (A−λ I)v = 0 (i.e., computing the null space of the
matrix A−λ I).

! A non-zero vector v is an eigenvector of A with corre-
sponding eigenvalue λ if and only if v ∈ null(A−λ I).

Example 3.3.4
Computing the

Eigenvectors
of a Matrix

Compute all of the eigenvectors of the matrix from the previous example
(Example 3.3.3), and state which eigenvalues correspond to them.

Solution:
We already saw that the eigenvalues of A are λ =−1 and λ = 6. To find
the eigenvectors corresponding to these eigenvalues, we solve the linear
systems (A+ I)v = 0 and (A−6I)v = 0, respectively:

λ =−1: In this case, we want to solve the linear system (A−λ I)v =
(A+ I)v = 0, which we can write explicitly as follows:

2v1 +2v2 = 0
5v1 +5v2 = 0

To solve this linear system, we use Gaussian elimination as
usual:

[
2 2 0
5 5 0

]
R2− 5

2 R1−−−−−→

[
2 2 0
0 0 0

]
,

It follows that

If we computed the
eigenvalues

correctly, we can
always find

corresponding
eigenvectors, so the

linear system
(A−λ I)v = 0 always
has a free variable.

v2 is a free variable and v1 is a leading variable
with v1 =−v2. The eigenvectors with corresponding eigenvalue
λ =−1 are thus exactly the non-zero vectors of the form v =
(−v2,v2) = v2(−1,1).
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λ = 6: Similarly, we now want to solve the linear system (A−λ I)v =
(A−6I)v = 0, which we can do as follows:

[
−5 2 0
5 −2 0

]
R2+R1−−−−→

[
−5 2 0
0 0 0

]
,

We thus conclude thatBy multiplying (2/5,1)
by 5, we could also

say that the
eigenvectors here

are the multiples of
(2,5), which is a
slightly cleaner

answer.

v2 is a free variable and v1 is a lead-
ing variable with v1 = 2v2/5, so the eigenvectors with corre-
sponding eigenvalue λ = 6 are the non-zero vectors of the form
v = (2v2/5,v2) = v2(2/5,1).

Eigenvalues and eigenvectors can help us better understand what a matrix
looks like as a linear transformation. For example, to understand the geometric
effect of the matrix

A =

[
1 2
5 4

]

from Examples 3.3.3 and 3.3.4, we could show how it transforms a unit square
grid into a parallelogram grid as usual (by recalling that its columns Ae1 and
Ae2 are the sides of one of the parallelograms in this grid, as in Figure 3.22).

x

y

e2

e1

−−→

e1 = (1,5)

e2 = (2,4)

x

y

Figure 3.22: The effect of the matrix A from Example 3.3.3 on the standard basis
vectors e1 and e2 is not terribly enlightening.

However, it is perhaps more illuminating to see how the parallelogram grid
defined by the eigenvectors of A is transformed. In particular, because each
vector in this grid is just stretched or shrunk, the grid is not rotated or skewed
at all, as illustrated in Figure 3.23.

In order to make sure that we are comfortable computing eigenvalues and
eigenvectors, we now work through a 3× 3 example. We will see that the
general procedure is the same as it was for a 2×2 matrix, but the details are a
bit uglier.

Example 3.3.5
Eigenvalues and

Eigenvectors of a
3×3 Matrix

Compute the eigenvalues and eigenvectors of the matrix

A =




1 3 3
3 1 −1
0 0 2


 .

Solution:
We start by computing det(A − λ I) via the explicit formula of
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x

y

v2 = (2/5,1)v1 = (−1,1) −−→

x

y

v2 = 6v2

v1 =−v1

Figure 3.23: The effect of the matrix A from Example 3.3.3 on its eigenvectors
v1 = (−1,1) and v2 = (2/5,1), which have corresponding eigenvalues −1 and 6,
respectively.

Theorem 3.2.7:

det(A−λ I) = det







1−λ 3 3
3 1−λ −1
0 0 2−λ







= (1−λ )(1−λ )(2−λ )+0+0−0−0−9(2−λ )

= (2−λ )
(
(1−λ )2−9

)

= (2−λ )(λ 2−2λ −8)
= (2−λ )(λ +2)(λ −4).

To

Instead of
multiplying out this

polynomial, we
factored out the

common term
(2−λ ), since this

saved us from
having to factor a
cubic polynomial

later (which is a
pain).

find the eigenvalues of A, we now set this polynomial equal to 0, which
gives us λ =−2, λ = 2, and λ = 4. To find eigenvectors corresponding
to these three eigenvalues, we solve the linear systems (A−λ I)v = 0 for
each of λ =−2, λ = 2, and λ = 4:
λ =−2: In this case, the linear system is (A+2I)v = 0, which we can

solve as follows:



3 3 3 0
3 3 −1 0
0 0 4 0


 R2−R1−−−−→




3 3 3 0
0 0 −4 0
0 0 4 0




R3+R2−−−−→




3 3 3 0
0 0 −4 0
0 0 0 0


 .

We thus see that v2 is a free variable and v1 and v3 are lead-
ing variables with v3 = 0 and v1 =−v2. The eigenvectors cor-
responding to the eigenvalue λ = −2 are thus the non-zero
multiples of (−1,1,0).

λ = 2: We work through this eigenvector calculation a bit more quickly.
In this case, the linear system that we want to solve is
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(A−2I)v = 0. Since the reduced row echelon form of A−2I

Now is a good time
to remind ourselves

of how to solve linear
systems. Try

computing this RREF
on your own.

is




1 0 0
0 1 1
0 0 0


 ,

we see that v3 is a free variable and v1 and v2 are leading vari-
ables with v1 = 0 and v2 =−v3. The eigenvectors correspond-
ing to the eigenvalue λ = 2 are thus the non-zero multiples of
(0,−1,1).

λ = 4: In this case, the linear system is (A−4I)v = 0. Since the reduced
row echelon form of A−4I

Remember that, if
we computed the

eigenvalues
correctly, the RREFs

of these linear
systems must have a

zero row, or else we
wouldn’t be able to
find an eigenvector

at all.

is




1 −1 0
0 0 1
0 0 0


 ,

we see that v2 is a free variable and v1 and v3 are leading vari-
ables. Furthermore, v1 = v2 and v3 = 0, so the eigenvectors
corresponding to the eigenvalue λ = 4 are the non-zero multi-
ples of (1,1,0).

The eigenvalue computation in the previous example simplified a fair bit
thanks to the zeros at the matrix’s bottom-left corner. We now work through
one last 3×3 example to illustrate how we can find the eigenvalues of a matrix
whose entries are all non-zero, and for which the determinant and eigenvalue
computations are thus not so straightforward.

Example 3.3.6
Eigenvalues of an

Ugly 3×3 Matrix

Compute the eigenvalues of the matrix A = 


1 2 3
1 −2 1
3 2 1




.

Solution:
We start by computing det(A−λ I):

det(A−λ I) = det







1−λ 2 3
1 −2−λ 1
3 2 1−λ







= (1−λ )(−2−λ )(1−λ )+6+6
−2(1−λ )−2(1−λ )−9(−2−λ )

=−λ
3 +16λ +24.

To

No, simplifying this
polynomial is not fun,
but it is “just” routine
algebra: we multiply

out the terms in
parentheses and

then group powers
of λ .

find the eigenvalues of A, we now set this polynomial equal to 0 and
solve for λ . However, since this is a cubic equation, factoring it and
finding its roots requires a bit more work than solving a quadratic equation.
The techniques that we use to solve cubic equations (and other higher-
degree polynomial equations) like −λ 3 + 16λ + 24 = 0 are covered in
Appendix A.2.

First, to find one solution of this equation, we recall that the rational
root theorem (Theorem A.2.1) says that if a rational number solves this
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equation, it must be one of the divisors of 24 (the constant term in the
polynomial): ±1, ±2, ±3, ±4, ±6, ±8, ±12, or ±24. By plugging these
values into the equation −λ 3 +16λ +24 = 0, we see that λ =−2 is the
only one of them that is actually a solution (indeed, −(−2)3 +16(−2)+
24 = 8−32+24 = 0).

To find the other (necessarily irrational) solutions of this equation, we
use polynomial long division to obtain the result of dividing −λ 3 +16λ +
24 by λ +2 (which we know is a factor since λ =−2 is a root of the cubic

If you are not familiar
with polynomial long

division and this
looks cryptic to you,

have a look at
Appendix A.2.

polynomial):

−λ 2 + 2λ +12
λ +2

)
−λ 3 +0λ 2 +16λ +24
−λ 3−2λ 2

2λ 2 +16λ +24
2λ 2 + 4λ

12λ +24
12λ +24

0

It follows that−λ 3 +16λ +24 = (λ +2)(−λ 2 +2λ +12), so the roots of
−λ 3 +16λ +24 (i.e., the eigenvalues of A) are λ =−2 as well as the two
roots of −λ 2 +2λ +12, which we can compute via the quadratic formula:

λ =
−2±

√
4+48
−2

= 1±
√

13.

The eigenvalues of A are thus λ = −2,λ = 1 +
√

13, and λ = 1−√
13. If we were feeling adventurous, we could also find the eigenvectors

corresponding to these eigenvalues by solving the linear system (A−
λ I)v = 0 for each of these three choices of λ . However, it is perhaps a
better use of our time to move on to new things from here.

The previous example illustrates a key problem that arises when trying to
analytically compute eigenvalues—if the matrix is 3× 3 or larger, it can be
extremely difficult to find the roots of the polynomial det(A−λ I). In fact, it can
be impossible to do so if the matrix is 5×5 or larger (see Remark A.2.1). For
this reason, methods of numerically approximating eigenvalues are typically
used in practice instead, and one such method is explored in Section 3.B.

3.3.2 The Characteristic Polynomial and Algebraic Multiplicity

When we computed the eigenvalues of a matrix in the previous section, we
always ended up having to find the roots of a polynomial. More specifically,
we computed det(A− λ I), which was a polynomial in λ , and we set that
polynomial equal to 0 and solved for λ .

This happens in general, since the eigenvalues of a matrix A are the solutions
λ to the equation det(A−λ I) = 0, and this determinant can be written as a sum
of products of entries of A−λ I (via the cofactor expansions of Theorem 3.2.8).
It follows that det(A−λ I) is indeed always a polynomial in λ , and we now
give it a name:
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Definition 3.3.2
Characteristic

Polynomial

Suppose A is a square matrix. The function pA : R→ R defined by

pA(λ ) = det(A−λ I)

is called the characteristic polynomial of A.

For example, we showed in Examples 3.3.3 and 3.3.6 that the characteristic
polynomialsSome other books

instead define the
characteristic

polynomial to be
det(λ I−A). These two

polynomials only
differ by a minus sign

in odd dimensions,
so they have the

same roots.

of

A =

[
1 2
5 4

]
and B =




1 2 3
1 −2 1
3 2 1




are
pA(λ ) = λ

2−5λ −6 and pB(λ ) =−λ
3 +16λ +24,

respectively.

Examples like these ones seem to suggest that the characteristic polynomial
of an n× n matrix always has degree n. This fact can be verified by noting
that in a cofactor expansion of A−λ I, we add up several terms, each of which
is the product of n entries of A−λ I. One of the terms being added up is the
product of the diagonal entries, (a1,1−λ )(a2,2−λ ) · · ·(an,n−λ ), which has
degree n, and no other term in the sum has higher degree. We now re-state this
observation a bit more prominently, since it is so important:

! The characteristic polynomial of an n×n matrix has degree n.

Thanks to the factor theorem (Theorem A.2.2), we know that every degree-
n polynomial has at most n distinct roots. Since the eigenvalues of a matrix are
the roots of its characteristic polynomial, this immediately tells us the following
fact:

! Every n×n matrix has at most n distinct eigenvalues.

Just like it is useful to talk about the multiplicity of a root of a polynomial
(which we roughly think of as “how many times” that root occurs), it is similarly
useful to talk about the multiplicity of an eigenvalue.

Definition 3.3.3
Algebraic

Multiplicity

Suppose A is a square matrix with eigenvalue λ . The algebraic multiplic-
ity of λ is its multiplicity as a root of A’s characteristic polynomial.

A bit more explicitly, if the characteristic polynomial of A is pA and λ0 is a
particular eigenvalue of A, then the algebraic multiplicity of λ0 is the exponent
of the term (λ0−λ ) in the factored form of pA(λ ). We now work through an
example to clarify exactly what we mean by this.

Example 3.3.7
Algebraic

Multiplicity

Compute the eigenvalues, and their algebraic multiplicities, of the matrix

A =




2 0 −3
1 −1 −1
0 0 −1


 .
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Solution:
The characteristic polynomial of this matrix

Since our goal is to
eventually find the

roots of the
characteristic

polynomial, we do
not multiply it out

here, since it is
already factored for

us.

is

pA(λ ) = det(A−λ I) = det







2−λ 0 −3
1 −1−λ −1
0 0 −1−λ







= (2−λ )(−1−λ )(−1−λ )+0+0−0−0−0

= (2−λ )(−1−λ )2.

Now that we have a factored form of the characteristic polynomial of A, we
can read off its algebraic multiplicities as the exponents of its factors. In
particular, the eigenvalues of A are 2 and −1, with algebraic multiplicities
of 1 and 2, respectively.

If we allow complex eigenvalues, then the fundamental theorem of algebra
(Theorem A.2.3) tells us the following even stronger fact about the number of
eigenvalues that matrices have:

! Every n×nJust a quick note on
terminology: real

numbers are
complex. The real

line is a subset of the
complex plane.

However, there are
many non-real

complex numbers
too.

matrix has exactly n complex eigenvalues, counting
algebraic multiplicity.

For example, the 3× 3 matrix from Example 3.3.7 had eigenvalues 2
and −1, with algebraic multiplicities of 1 and 2, respectively. We thus say
that matrix has 3 eigenvalues “counting algebraic multiplicity” (since the
algebraic multiplicities of its eigenvalues add up to 3), and we similarly list the
eigenvalues “according to algebraic multiplicity” as 2, −1, and −1 (i.e., the
number of times that we list an eigenvalue is its algebraic multiplicity).

We now work through an example to demonstrate why working with com-
plex numbers is so natural when dealing with eigenvalues and eigenvectors—a
real matrix may not have any real eigenvalues.

Example 3.3.8
A Real Matrix with

no Real Eigenvalues

Compute the eigenvalues, and their algebraic multiplicities, of the matrix

A =
[
−3 −2
4 1

]
.

Solution:
The characteristic polynomial of this matrix is

pA(λ ) = det(A−λ I) = det

([
−3−λ −2

4 1−λ

])

= (−3−λ )(1−λ )+8

= λ
2 +2λ +5.

This characteristic polynomial does not factor “nicely”, so we use the
quadratic formula to find its roots (i.e.,

For the most part,
you can work with
complex numbers

how you would
expect if you accept√

−1 = i. See
Appendix A.1 for

details.

the eigenvalues of A):

λ =
−2±

√
4−20

2
=−1±

√
−4 =−1±2i.

These eigenvalues are distinct so they each have algebraic multiplicity 1
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(i.e., the two ± branches of the quadratic formula do not give us the same
eigenvalue).

The above example highlights why we really need to specify that a matrix
has exactly n complex eigenvalues counting algebraic multiplicity—even if its
entries are real, it might have no real eigenvalues at all (or it might have some
number of real eigenvalues strictly between 0 and n).

It is also worth observing that the eigenvalues in the previous example are
complex conjugates of each other: −1+2i =−1−2i.

The complex
conjugate of a+bi

(where a,b ∈ R) is
a+bi = a−bi. This always happens for

real matrices, since the characteristic polynomial pA of a real matrix A has real
coefficients, so if pA(λ ) = 0 then pA

(
λ
)

= pA(λ ) = 0 as well.

Remark 3.3.2
Complex

Eigenvalues

A matrix having eigenvalues is an extremely desirable property and is
a starting point for many advanced linear algebraic techniques. For this
reason, from now on our default viewpoint will be to think in terms
of complex numbers rather than real numbers. For example, instead of
thinking of [

1 2
−4 −3

]

as a real matrix, we think of it as a complex matrix whose entries just
happen to be real. If we wish to clarify exactly what types of entries a
matrix can have, we use the notationMm,n(R) to denote the set of m×n
matrices with real entries andMm,n(C) to denote the set of m×n matrices
with complexMore generally,

Mm,n(X) is the set of
m×n matrices whose

entries come from
the set X . Also, we

use Mn(X) to
denote the set of
n×n (i.e., square)

matrices with entries
from X .

entries.

Typically, we do not shy away from using complex numbers in calcula-
tions in order to deepen our understanding of the topic being investigated.
However, we do occasionally discuss the (typically weaker) statements
we can prove if we restrict our attention to real numbers. For example,
in Section 3.C we discuss how to interpret complex eigenvalues of real
matrices geometrically.

Much like most of the other properties of matrices that we have introduced
in this chapter, characteristic polynomials are similarity invariant. That is, if
A and B are similar matrices (i.e., there exists an invertible matrix P such that
B = PAP−1) then

pB(λ ) = det(B−λ I) = det(PAP−1−λ I)

= det
(
P(A−λ I)P−1)= det(A−λ I) = pA(λ ),

where the second-to-last equality makes use of the fact that the determinant
is similarity invariant. Again, we re-state this important observation more
prominently:

! If A ∈ Mn and B ∈ Mn are similar then their characteristic
polynomials are the same: pA(λ ) = pB(λ ).

Since the eigenvalues of a matrix are the roots of its characteristic polyno-
mial, an immediate corollary of the above observation is the fact that eigenval-
ues (and their algebraic multiplicities) are also similarity invariant.
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Example 3.3.9
Using Characteristic

Polynomials to
Show Matrices are

Not Similar

Show that A =



4 0 2
−2 6 2
2 0 4




and B =



8 −5 −5
5 −2 −5
−5 5 8




are not similar.

Solution:
The rank, trace, and determinant cannot help us show that these matri-

ces are not similar, since

rank(A) = rank(B) = 3, tr(A) = tr(B) = 14, and det(A) = det(B) = 72.

However, their characteristic polynomials are

The eigenvalues of A
(listed according to

algebraic
multiplicity) are 2, 6,

and 6, while the
eigenvalues of B are

3, 3, and 8.

different:

pA(λ ) = det(A−λ I) = det







4−λ 0 2
−2 6−λ 2
2 0 4−λ







= (4−λ )(6−λ )(4−λ )+0+0
−0−0−4(6−λ )

=−λ
3 +14λ

2−60λ +72, but

pB(λ ) = det(B−λ I) = det







8−λ −5 −5
5 −2−λ −5
−5 5 8−λ







= (8−λ )(−2−λ )(8−λ )−125−125
+25(8−λ )−25(−2−λ )+25(8−λ )

=−λ
3 +14λ

2−57λ +72.

Since pA(λ ) 6= pB(λ ), we conclude that A and B are not similar.

Notice in the above example that the coefficient of λ 2 in the characteristic
polynomials was 14, which equaled the trace of the matrices, and the constant
term in the characteristic polynomials was 72, which equaled their determinant.
This is not a coincidence—the following theorem shows that these coefficients
always equal the trace and determinant, and they can also be expressed in terms
of the eigenvalues of the matrix.

Theorem 3.3.1
Trace and

Determinant in
Terms of Eigenvalues

Denote the n eigenvalues of A ∈Mn(C) (listed according to algebraic
multiplicity) by λ1, λ2, . . ., λn, and its characteristic polynomial by

pA(λ ) = (−1)n
λ

n + cn−1λ
n−1 + · · ·+ c1λ + c0.

ThenThe coefficient of λ n

in the characteristic
polynomial of an

n×n matrix is always
(−1)n.

c0 = det(A) = λ1λ2 · · ·λn and

(−1)n−1cn−1 = tr(A) = λ1 +λ2 + · · ·+λn.

Proof. We start by proving the claim that c0 = det(A) = λ1λ2 · · ·λn. To see
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why this holds, we recall the various formulas for pA(λ ) that we know:

pA(λ ) = det(A−λ I) = (−1)n
λ

n + cn−1λ
n−1 + · · ·+ c1λ + c0

= (λ1−λ )(λ2−λ ) · · ·(λn−λ ),

with the final formula coming from the fact that the factor theorem (Theo-
rem A.2.2) lets us completely factor a polynomial via its n roots. Plugging
λ = 0 into the above formulas shows that

pA(0) = det(A) = c0 = λ1λ2 · · ·λn,

asCan we take a
moment to admire

the beauty of this
theorem? It relates

the trace,
determinant, and
eigenvalues (the

topics of the last 3
sections of this book)

so well.

desired.

To prove the claim that (−1)n−1cn−1 = λ1 +λ2 + · · ·+λn, we simply mul-
tiply out the expression

pA(λ ) = (λ1−λ )(λ2−λ ) · · ·(λn−λ )

and observe that the coefficient of λ n−1 on the right-hand side (i.e., cn−1) is
(−1)n−1(λ1 +λ2 + · · ·+λn).

On the other hand, we can show that (−1)n−1cn−1 = tr(A) by considering
how we would compute the coefficient of λ n−1 in pA(λ ) via the determinant:

pA(λ ) = det(A−λ I) = det







a1,1−λ a1,2 · · · a1,n

a2,1 a2,2−λ · · · a2,n

...
...

. . .
...

an,1 an,2 · · · an,n−λ







.

If we use a cofactor expansion along the first column of this matrix, we can
express the above determinant as a sum of n determinants of (n−1)× (n−1)
matrices:

det(A−λ I) = (a1,1−λ )det







a2,2−λ a2,3 · · · a2,n

a3,2 a3,3−λ · · · a3,n

...
...

. . .
...

an,2 an,3 · · · an,n−λ







−a2,1 det







a1,2 a1,3 · · · a1,n

a3,2 a3,3−λ · · · a3,n

...
...

. . .
...

an,2 an,3 · · · an,n−λ







...

+(−1)n+1an,1 det







a1,2 a1,3 · · · a1,n

a2,2−λ a2,3 · · · a2,n

...
...

. . .
...

an−1,2 an−1,3 · · · an−1,n







.

Notice that the only one of these n smaller determinants that can produce a
term of the form λ n−1 is the first one, since it is the only one containing n−1
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or more λ s. The coefficient of λ n−1 in pA(λ ) (i.e., cn−1) is thus the same as
the coefficient of λ n−1

We are not saying
that the entire
characteristic

polynomial pA(λ )
equals this smaller
determinant—just

that they have the
same coefficient of

λ n−1.

in

(a1,1−λ )det







a2,2−λ a2,3 · · · a2,n

a3,2 a3,3−λ · · · a3,n

...
...

. . .
...

an,2 an,3 · · · an,n−λ







.

By repeating this argument a total of n− 1 times (i.e., using a cofactor
expansion along the first column repeatedly until we are left with a 1× 1
matrix), we similarly see that cn−1 equals the coefficient of λ n−1 in

(a1,1−λ )(a2,2−λ ) · · ·(a2,2−λ ).

Multiplying out this expression then shows that the coefficient of λ n−1 in it is

cn−1 = (−1)n−1(a1,1 +a2,2 + · · ·+an,n) = (−1)n−1tr(A),

which completes the proof. �

The fact that the determinant of a matrix equals the product of its eigen-
values has a very natural geometric interpretation. If A ∈Mn has n distinct
eigenvalues then they specify how much A stretches space in each of n different
directions. Multiplying these eigenvalues together thus gives the amount by
which A stretches space as a whole (i.e., its determinant—see Figure 3.24).

This geometric
interpretation is only
“mostly” correct—it
is much more subtle

if a matrix has
repeated

eigenvalues.

x

y

v1 v2

−−→

x

y

v1

= 2v1

v2

= 3v2

Figure 3.24: A matrix A ∈M2 with eigenvalues 2 and 3, and thus determinant
2×3 = 6.

Example 3.3.10
Computing the

Trace and
Determinant in

Two Ways

Compute the trace and determinant of the matrix

A =




3 1 1
0 1 0
−2 −1 0




directly, and also via Theorem 3.3.1.

Solution:
Computing the trace of A directly from the definition and its determi-

nant from the explicit formula of Theorem 3.2.7 is straightforward:

tr(A) = 3+1+0 = 4 and det(A) = 0+0+0−0− (−2)−0 = 2.
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To instead compute the trace and determinant of A via Theorem 3.3.1,
we must first calculate its eigenvalues:

When computing
the trace and

determinant in this
way, each

eigenvalue must be
listed according to

its algebraic
multiplicity.

det(A−λ I) = det







3−λ 1 1
0 1−λ 0
−2 −1 −λ







= (3−λ )(1−λ )(−λ )+2(1−λ )

= (1−λ )(λ 2−3λ +2)

= (1−λ )2(2−λ ).

It follows that A has eigenvalues λ = 1,1, and 2, so its trace is tr(A) =
1+1+2 = 4 and its determinant is det(A) = 1×1×2 = 2, which agree
with the values that we computed earlier.

It is also worth noting that Theorem 3.3.1 tells us that the characteristic
polynomial of a 2×2 matrix A is completely determined by its determinant
and trace, since

pA(λ ) = λ
2− tr(A)λ +det(A).

In particular, this means that we can explicitly compute the eigenvalues of a
2×2 matrix from just its trace and determinant (see Exercise 3.3.10). However,
this is not true for larger matrices (refer back to Example 3.3.9).

The Conjugate Transpose and Hermitian Matrices
It is often desirable to work with matrices whose eigenvalues are real. There is
one particularly important family of such matrices, but before we can talk about
them, we need to briefly discuss how to “properly” generalize the transpose of
a matrix to matrices with complex entries.

When working with a complex matrix A ∈Mm,n(C),Recall that
A ∈Mm,n(C) means

that A is an m×n
matrix with complex

entries.

it is often useful to
construct its conjugate transpose A∗ (instead of its standard transpose AT ),
which is computed by taking the conjugate transpose of the entries of A and
then transposing it:

A∗ def= AT
.

Example 3.3.11
Computing
Conjugate
Transposes

Compute the conjugate transpose of each of the following matrices:

a)
[

2i 1−3i
−3 5+2i

]

c)



1 2 3
4 5 6
7 8 9




b)
[

0 2+3i
2−3i 4

]

d)



i 1− i
−2 −2− i

1+ i 2+3i




Solutions:
a) First, we take the complex conjugate of each entry in the matrix,
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and
The reason why we

typically use the
conjugate transpose

(instead of the
standard transpose)

when working with
complex matrices is
so that the property

v · (Aw) = (A∗v) ·w
holds (see

Exercise 3.3.15).

then we transpose the result:

[
2i 1−3i
−3 5+2i

]
=

[
−2i 1+3i
−3 5−2i

]
, so

[
2i 1−3i
−3 5+2i

]∗
=

[
−2i −3

1+3i 5−2i

]
.

b) This matrix equals its own conjugate transpose:

[
0 2+3i

2−3i 4

]∗
=
[

0 2+3i
2−3i 4

]
.

c) Since the entries of this matrix are all real, taking the complex
conjugate has no effect, so its conjugate transpose equals its standard
transpose: 


1 2 3
4 5 6
7 8 9




∗

=




1 4 7
2 5 8
3 6 9


 .

d) The conjugate transpose changes this 3× 2 matrix into a 2× 3
matrix:




i 1− i
−2 −2− i

1+ i 2+3i



∗

=
[
−i −2 1− i

1+ i −2+ i 2−3i

]
.

In the special case when a matrix A ∈Mn(C) is such that A∗ = A, like in
part (b) of the above example, it is called Hermitian. If A is real and Hermitian
(i.e., it is real and AT = A) then it is called symmetric. Hermitian matrices
(and thus symmetric matrices) are special since all of their eigenvalues are real,
which we state as the final theorem of this subsection.

Theorem 3.3.2
Eigenvalues of

Hermitian Matrices

If A ∈Mn(C) is Hermitian (i.e., A∗ = A) then all of its eigenvalues are
real.

Proof. Suppose that v ∈ Cn is an eigenvector of A with corresponding eigen-
value λ ∈ C. Then computing v∗Av shows that

v∗Av = v∗(Av) = v∗(λv) = λv∗v.

Also, taking the conjugate transpose of v∗Av shows that
Since v∗Av is a scalar,

its conjugate
transpose is just its

complex conjugate.

(v∗Av)∗ = v∗A∗v = v∗Av.

By putting the two above facts together, we see that

λv∗v = v∗Av = (v∗Av)∗ = (λv∗v)∗ = λv∗v.

Since v 6= 0 (recall that eigenvectors are non-zero by definition), it follows
that

Recall from
Appendix A.1 that
zz = |z|2 for all z ∈ C. v∗v =

[
v1 v2 · · · vn

]




v1
v2

...
vn


= |v1|2 + |v2|2 + · · ·+ |vn|2
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is a non-zero real number. We can thus divide both sides of the equation
λv∗v = λv∗v by v∗v to see that λ = λ , which shows that λ ∈ R. �

Example 3.3.12
Computing

Eigenvalues of
Hermitian
Matrices

Compute all of the eigenvalues of each of the following matrices:

a)
[

2 1+ i
1− i 3

]
b)



0 1 −1
1 −3 2
−1 2 1




Solutions:
a) This matrix is Hermitian, so we know that its eigenvalues must be

real. We can verify this by explicitly computing them via our usual
method:

det

([
2−λ 1+ i
1− i 3−λ

])
= (2−λ )(3−λ )− (1+ i)(1− i)

= λ
2−5λ +6−2

= λ
2−5λ +4

= (λ −1)(λ −4).

Setting this characteristic polynomial equal to 0 then shows that the
eigenvalues of the matrix are λ = 1 and λ = 4.

b) Again, since this matrix is Hermitian (in fact, it is real and thus
symmetric), its eigenvalues must be real. To find its eigenvalues
explicitly, we compute

det






−λ 1 −1
1 −3−λ 2
−1 2 1−λ





=−λ (−3−λ )(1−λ )−2−2

−4(−λ )− (1−λ )− (−3−λ )

=−λ
3−2λ

2 +9λ −2.

Finding the roots of this cubic is a bit of a pain, but it’s doable. We
start by using the rational root theorem (Theorem A.2.2) to see that
λ = 2 is its only rationalTo use the rational

root theorem, we
plug each of ±1 and
±2 into the cubic
and see which of

those numbers make
it equal 0. This

technique is covered
in Appendix A.2.

root. To find its two other roots, we use
polynomial long division to divide −λ 3−2λ 2 +9λ −2 by λ −2:

−λ 2−4λ +1
λ −2

)
−λ 3−2λ 2 +9λ −2
−λ 3 +2λ 2

−4λ 2 +9λ −2
−4λ 2 +8λ

λ −2
λ −2

0

It follows that −λ 3− 2λ 2 + 9λ − 2 = (λ − 2)(−λ 2− 4λ + 1), so
the roots of−λ 3−2λ 2 +9λ−2 (i.e., the eigenvalues of this matrix)
are λ = 2 as well as the two roots of −λ 2−4λ +1, which can be
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computed via the quadratic formula:

λ =
4±
√

16+4
−2

=−2±
√

5.

In particular, all three of these eigenvalues are indeed real.

3.3.3 Eigenspaces and Geometric Multiplicity

Recall that the set of all eigenvectors of a matrix A ∈Mn corresponding to
a particular eigenvalue λ (together with the zero vector) is the null space of
A− λ I. Since the null space of any matrix is a subspace of Rn (or Cn, if
it has complex entries), this set of eigenvectors corresponding to λ forms a
subspace (as long as we add the zero vector to it). We will be working with
these subspaces of eigenvectors extensively, so we give them a name:

Definition 3.3.4
Eigenspace

Suppose A is a square matrix with eigenvalue λ . The set of all eigenvec-
tors of A corresponding to λ , together with the zero vector, is called the
eigenspace of A corresponding to λ .

Since eigenspaces are subspaces, we can use all of the subspace-related ma-
chinery that we developed in the previous chapter to help us better understand
eigenspaces.In other words, the

eigenspace of A
corresponding to its

eigenvalue λ is
null(A−λ I).

In particular, instead of finding all eigenvectors corresponding to
a particular eigenvalue, we typically just find a basis of that eigenspace, since
that provides a more compact description of it.

For example, we showed that the eigenvalues of the matrix

A =




1 3 3
3 1 −1
0 0 2




from Example 3.3.5 are −2, 2, and 4, with corresponding eigenvectors that are
the non-zero multiples of (−1,1,0), (0,1,−1), and (1,1,0), respectively. It fol-
lows that {(−1,1,0)}, {(0,1,−1)}, and {(1,1,0)} are bases of the eigenspaces
of A. We now work through an example to illustrate the fact that eigenspaces
can be larger (i.e., not just 1-dimensional).

Example 3.3.13
Computing Bases

of Eigenspaces

Compute bases of the eigenspaces of the matrix A = 


2 0 −3
1 −1 −1
0 0 −1




.

Solution:
We computed the eigenvalues of this matrix to be 2 (with algebraic

multiplicity 1) and−1 (with algebraic multiplicity 2) in Example 3.3.7. We
now compute bases of the eigenspaces corresponding to these eigenvalues
one at a time:

λ = 2: We compute bases of the eigenspaces in the same way that we
computed eigenvectors in the previous subsections—we start
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by solving the linear system (A−2I)v = 0 as
We could do some

more row operations
to get this matrix in
row echelon form,

but we can also
perform back

substitution to solve
the linear system

from here.

follows:



0 0 −3 0
1 −3 −1 0
0 0 −3 0


 R3−R1−−−−→




0 0 −3 0
1 −3 −1 0
0 0 0 0


 .

We thus see that v2 is a free variable and v1 and v3 are leading
variables with v3 = 0 and v1 = 3v2. The eigenvectors corre-
sponding to the eigenvalue λ = 2 thus have the form v2(3,1,0),
so {(3,1,0)} is a basis of this eigenspace.

λ =−1: This time, we solve the linear system (A+ I)v = 0:



3 0 −3 0
1 0 −1 0
0 0 0 0


 R2− 1

3 R1−−−−−→




3 0 −3 0
0 0 0 0
0 0 0 0


 .

We thus see that v2 and v3 are free variables and v1 is a leading
variable with v1 = v3. The eigenvectors corresponding to the
eigenvalue λ =−1 thus have the form v2(0,1,0)+ v3(1,0,1),
so {(0,1,0),(1,0,1)} is a basis of this eigenspace.

Geometrically, this means that the eigenspace corresponding to λ = 2
is a line, while the eigenspace corresponding to λ =−1 is a plane. Every
vector on that line is stretched by a factor of λ = 2, and every vector in
that plane is reflected through the origin (i.e., multiplied by λ =−1):

Any (non-zero) linear
combination of

eigenvectors
corresponding to a

particular
eigenvalue is also an

eigenvector
corresponding to
that eigenvalue.

z

y
x v1 = (3,1,0)

v3 = (1,0,1)
v2 = (0,1,0) A−−→

z

Av3 =−v3Av3 =

Av1 = 2v1

Av2 =−v2

y
x

The dimension of an eigenspace is an important quantity that gives us
another way of capturing the idea of “how many times” an eigenvalue occurs
(much like the algebraic multiplicity did):

Definition 3.3.5
Geometric
Multiplicity

Suppose A is a square matrix with eigenvalue λ . The geometric multi-
plicity of λ is the dimension of its corresponding eigenspace.

For example, we showed in
In other words, the

geometric
multiplicity of the

eigenvalue λ of A is
nullity(A−λ I).

Example 3.3.7 that the matrix

A =




2 0 −3
1 −1 −1
0 0 −1




has eigenvalues 2 and −1, with algebraic multiplicities 1 and 2, respectively.
We then showed in Example 3.3.13 that their geometric multiplicities are also
1 and 2, respectively, since the eigenspace corresponding to λ = 2 is a line
(which is 1-dimensional), while the eigenspace corresponding to λ =−1 is a
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plane (which is 2-dimensional).

One important observation about the geometric multiplicity of an eigenvalue
is that it is similarity invariant (just like algebraic multiplicity).We already know

from the previous
section that A and B

have the same
characteristic

polynomial and thus
the same

eigenvalues and the
same algebraic

multiplicities.

That is, if A
and B are square matrices that are similar (so there exists an invertible matrix
P such that B = PAP−1), then

nullity(A−λ I) = nullity
(
P(A−λ I)P−1)

= nullity(PAP−1−λPP−1) = nullity(B−λ I),

where the first equality follows from the fact that the nullity of a matrix is
similarity invariant (see Exercise 3.1.17). Since nullity(A−λ I) is the geometric
multiplicity of λ as an eigenvalue of A (and nullity(B−λ I) is its geometric
multiplicity as an eigenvalue of B), we have demonstrated the following fact:

! If A ∈Mn and B ∈Mn are similar then they have the same
eigenvalues, with the same geometric multiplicities.

Again, this observation makes geometric sense, since changing the ba-
sis through which we look at A or B only changes the orientation of its
eigenspaces—it does not change their dimensionality (e.g., skewing and stretch-
ing a line results in a line, not a plane).

Example 3.3.14
Using Geometric

Multiplicity to Show
Matrices are

Not Similar

Show that A = 


2 0 −3
1 −1 −1
0 0 −1




and B = 


2 2 3
0 −1 0
0 1 −1




are not similar.

Solution:
The rank, trace, determinant, and characteristic polynomial cannot

help us show that these matrices are not similar, since

rank(A) = rank(B) = 3, tr(A) = tr(B) = 0,

det(A) = det(B) = 2, and pA(λ ) = pB(λ ) =−λ
3 +3λ +2.

However, the geometric multiplicities of their eigenvalue λ =−1 differ
between A and B, so they are not similar.

More explicitly, we showed in Example 3.3.13 that λ = −1 has ge-
ometric multiplicity 2 as an eigenvalue of A. To compute its geometric
multiplicity as an eigenvalue of B, we solve the linear system (B+ I)v = 0
to find a basis of its corresponding eigenspace as usual:

In general, the
geometric

multiplicity of λ as
an eigenvalue of A is

the number of zero
rows in a row

echelon form of
A−λ I.




3 2 3 0
0 0 0 0
0 1 0 0


 R1−2R3−−−−→




3 0 3 0
0 0 0 0
0 1 0 0


 .

It follows that v3 is a free variable and v1 and v2 are leading variables
with v1 = −v3 and v2 = 0. The eigenvectors corresponding to λ = −1
as an eigenvalue of B are thus of the form v3(−1,0,1), so {(−1,0,1)} is
a basis of this (1-dimensional) eigenspace. It follows that the geometric
multiplicity of λ =−1 as an eigenvalue of B is 1.

The previous example demonstrates that if an eigenvalue has algebraic
multiplicity 2, it may have geometric multiplicity 1 or 2. In particular, this
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means that the algebraic and geometric multiplicities of an eigenvalue might
be equal to each other, or the geometric multiplicity might be smaller than
the algebraic multiplicity. The following theorem says that these are the only
possibilities—the geometric multiplicity of an eigenvalue can never be larger
than its algebraic multiplicity.

Theorem 3.3.3
Geometric

Multiplicity Cannot
Exceed Algebraic

Multiplicity

For each eigenvalue of a square matrix, the geometric multiplicity is less
than or equal to the algebraic multiplicity.

Proof. Suppose that λ1 is an eigenvalue of A∈Mn with geometric multiplicity
k, so that there exists a basis {v1, . . . ,vk} of the eigenspace nullity(A−λ1I).
Since thisWe call the

eigenvalue λ1
(instead of just λ )

since we will use λ as
a variable later in

this proof.

set is linearly independent, we can construct an invertible matrix

P =
[

v1 | · · · | vk | V
]
∈Mn

that has these vectors as its first k columns, by extending them to a basis
of Rn via Theorem 2.4.3(a) (we do not care about the particular entries of
V ∈Mn,n−k; they are just chosen to make P invertible).

We now show that P−1AP has a block structure that makes it much easier
to work with than A itself:

P−1AP = P−1A
[

v1 | · · · | vk | V
]

(definition of P)

= P−1[ Av1 | · · · | Avk | AV
]

(block matrix mult.)

= P−1[
λ1v1 | · · · | λ1vk | AV

]
(v1, . . . ,vk are eigenvecs.)

=
[

λ1P−1v1 | · · · | λ1P−1vk | P−1AV
]

(block matrix mult.)

=
[

λ1e1 | · · · | λ1ek | P−1AV
]
. (Pe j = v j, so P−1v j = e j)

In particular, since the first k columns of this matrix are just λ1 times the first k
standard basis vectors, we can write P−1AP in the block matrix form

P−1AP =

[
λ1Ik B
O C

]
,

where B =Mk,n−k and C ∈Mn−k,n−k are ugly matrices whose entries we do
not care about.

Then, since the characteristic polynomial of a matrix is similarity invariant,
we have

pA(λ ) = det
(
P−1AP−λ I

)
(since pA(λ ) = pP−1AP(λ ))

= det

([
λ1Ik−λ Ik B

O C−λ In−k

])
(block form of P−1AP)

= det
(
(λ1−λ )Ik

)
det(C−λ In−k) (by Exercise 3.2.16(a))

= (λ1−λ )k pC(λ ) (since (λ1−λ )Ik is diagonal)

The characteristic polynomial of A thus has (λ1−λ )k as a factor, so the alge-
braic multiplicity of λ1 is at least k. �
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Example 3.3.15
Computing

Algebraic and
Geometric

Multiplicities

Find the eigenvalues, as well as their algebraic and geometric multiplicities,
of the matrix

A =




−6 0 −2 1
0 −3 −2 1
3 0 1 1
−3 0 2 2


 .

Solution:
We start by finding the characteristic polynomial of this matrix by

performing a cofactor expansion along the second column of A−λ I:

Unfortunately,
having to factor a

cubic is unavoidable
here. But at least we

do not have to
factor a quartic!

pA(λ ) = det(A−λ I) = det







−6−λ 0 −2 1
0 −3−λ −2 1
3 0 1−λ 1
−3 0 2 2−λ







= (−3−λ )
(
(−6−λ )(1−λ )(2−λ )+6+6

−2(−6−λ )+3(1−λ )+6(2−λ )
)

= (3+λ )
(
λ

3 +3λ
2−9λ −27

)

= (3+λ )(3−λ )
(
λ

2 +6λ +9
)

= (3+λ )3(3−λ ).

The eigenvalues of this matrix are thus −3 and 3, with algebraic multiplic-
ities 3 and 1, respectively.

All that remains is to find the geometric multiplicity of these eigenval-
ues. For λ = 3 we know from Theorem 3.3.3 that its geometric multiplicity
is at most 1 (its algebraic multiplicity). Since every eigenvalue must have
geometric multiplicity at least 1 (after all, every eigenvalue has at least
one corresponding eigenvector), we can conclude that its geometric multi-
plicity is exactly 1. If we wanted to, we could explicitly show that λ = 3
has a 1-dimensional eigenspace with {(0,0,1,2)} as a basis, but this is
more work than is necessary.

For λ =−3, all we know is that its geometric multiplicity is between
1 and 3 inclusive, so we have to do more work to find its exact value. To
this end, we solve the linear system (A+3I)v = 0 to find a basis of this
eigenspace:



−3 0 −2 1 0
0 0 −2 1 0
3 0 4 1 0
−3 0 2 5 0




R3+R1
R4−R1−−−−→




−3 0 −2 1 0
0 0 −2 1 0
0 0 2 2 0
0 0 4 4 0




R1+R3
R2+R3

R4−2R3−−−−→




−3 0 0 3 0
0 0 0 3 0
0 0 2 2 0
0 0 0 0 0


 R1−R2−−−−→




−3 0 0 0 0
0 0 0 3 0
0 0 2 2 0
0 0 0 0 0


 .

From here it is straightforward to use back substitution to solve the lin-
ear system and see that {(0,1,0,0)} is a basis of the eigenspace, so the
geometric multiplicity of λ =−3 is 1.
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Eigenvalues of Triangular Matrices
We close this section by noting that, just as was the case with determinants,
eigenvalues become much easier to deal with if we restrict our attention to
triangular matrices. To illustrate why this is the case, suppose we wanted to
find the eigenvalues of the matrix

A =




1 2 3
0 4 5
0 0 6


 .

Since the determinant of a triangular matrix is the product of its diago-
nal entries (refer back to Theorem 3.2.4), we can compute the characteristic
polynomial of A as follows:

pA(λ ) = det(A−λ I) = det







1−λ 2 3
0 4−λ 5
0 0 6−λ







= (1−λ )(4−λ )(6−λ ).

The roots of this characteristic polynomial (and thus the eigenvalues of A) are
1, 4, and 6, which are the diagonal entries of A. The following theorem tells us
that this is not a coincidence:

Theorem 3.3.4
Eigenvalues of

Triangular
Matrices

Suppose A ∈Mn is a triangular matrix. Then its eigenvalues, listed ac-
cording to algebraic multiplicity, are exactly its diagonal entries (i.e., a1,1,
a2,2, . . ., an,n).

We leave the proof of this theorem to Exercise 3.3.18, but we note that it
follows almost immediately from Theorem 3.2.4 (i.e., the fact that the deter-
minant of a triangular matrix is the product of its diagonal entries). We note,
however, that there is no general shortcut for computing all of the eigenvectors
of a triangular matrix.

Example 3.3.16
Eigenvalues and

Eigenvectors of
Triangular
Matrices

Compute the eigenvalues of the following matrices, as well as bases for
their corresponding eigenspaces:

a)



1 2 3
0 4 5
0 0 6




b)



7 0 0
0 2 0
0 0 −3




c)



2 1 0
0 2 1
0 0 2




Solutions:
a) As we already discussed, this matrix (which we called A above) has

eigenvalues 1, 4, and 6. We find the corresponding eigenvectors by
considering these eigenvalues one at a time, just like in previous
examples:

λ = 1: We want to find the null space of the matrix A−λ I =
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A− I:



0 2 3 0
0 3 5 0
0 0 5 0


 R2− 3

2 R1−−−−−→




0 2 3 0
0 0 1/2 0
0 0 5 0




R3−10R2−−−−−→




0 2 3 0
0 0 1/2 0
0 0 0 0


 .

One basis of this null space is

Here, v1 is a free
variable and v2 and

v3 are leading.
thus {(1,0,0)}.

λ = 4: We want to find the null space of the matrix A−λ I =
A−4I:


−3 2 3 0
0 0 5 0
0 0 2 0


 R3− 2

5 R2−−−−−→



−3 2 3 0
0 0 5 0
0 0 0 0


 .

One basis of

Here, v2 is a free
variable and v1 and

v3 are leading.
this null space is thus {(2,3,0)}.

λ = 6: We want to find the null space of the matrix A−λ I =
A−6I:


−5 2 3 0
0 −2 5 0
0 0 0 0


 R1+R2−−−−→



−5 0 8 0
0 −2 5 0
0 0 0 0


 .

One basis of this null space is thus {(16,25,10)}.
b) This matrix is triangular (in fact, it is diagonal), so its eigenvalues

are its diagonal entries: 7, 2, and −3. It is straightforward to check
that bases of the corresponding eigenspaces are [v,]{e1}, {e2}, and
{e3}, respectively.

This happens for all
diagonal

matrices—the
standard basis

vectors make up
bases of their
eigenspaces.

c) This matrix is triangular, so its eigenvalues all equal 2 (i.e., its only
eigenvalue is 2, with algebraic multiplicity 3). To find a basis of the
corresponding eigenspace, we find the null space

For this matrix, the
eigenvalue 2 has

algebraic multiplicity
3 and geometric

multiplicity 1.

of




2 1 0
0 2 1
0 0 2


−2




1 0 0
0 1 0
0 0 1


=




0 1 0
0 0 1
0 0 0


 .

It is straightforward to check that {(1,0,0)} is a basis of this null
space.

Exercises solutions to starred exercises on page 466

3.3.1 For each of the following matrices A and vectors v,
show that v is an eigenvector of A and find the corresponding
eigenvalue.

∗(a) A =
[

1 5
4 2

]
, v =

[
1
1

]
.

(b) A =
[

1 −1
3 6

]
, v =

[
−2

5+
√

13

]
.

∗(c) A =



4 1 1
3 3 −1
4 1 1




, v =


−4
7
9




.

(d) A =



2 −1 −1
−1 2 0
3 2 4




, v =



2
−1+ i
−1−3i




.
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∗(e) A =



3 1 5 5
3 2 2 5
3 3 5 5
2 5 2 0




, v =



13
14
6
−27




.

3.3.2 For each of the following matrices A and scalars λ ,
show that λ is an eigenvalue of A and find a corresponding
eigenvector.

∗(a) λ =−3, A =
[

1 5
4 2

]
.

(b) λ =
√

2, A =
[

0 1
2 0

]
.

∗(c) λ = 2, A =



0 3 −1
2 −1 −1
−2 3 0




.

(d) λ = 2+ i, A =


−1 0 −1
2 2 1
2 −2 3




.

∗(e) λ =−1, A =



3 2 3 2
0 0 3 −1
4 1 3 3
2 1 1 0




.

3.3.3 For each of the following matrices, compute all
(potentially complex) eigenvalues, state their algebraic and
geometric multiplicities, and find bases for their correspond-
ing eigenspaces.

∗(a)
[

1 2
−1 −2

]

∗(c)
[

0 1
0 0

]

∗(e)



3 0 0
0 −2 0
0 0 7




∗(g)



2 1 0 0
0 −3 2 0
0 0 1 −1
0 0 0 2




(b)
[

6 3
2 1

]

(d)
[

2 1
3 −1

]

(f)



2 3 0
3 0 1
0 1 2




(h)



2 1 −1 −1
0 3 1 1
0 1 3 1
0 0 0 2




§ 3.3.4 Use computer software to compute all eigen-
values of the given matrix. Also state their algebraic and
geometric multiplicities, and find bases for their correspond-
ing eigenspaces.

∗(a)



19 10 5 22
9 17 5 19
−8 −10 2 −18
−11 −10 −5 −14




(b)



12 −3 −6 −3
1 16 2 1
−3 −3 9 −3
−1 −1 −2 14




∗(c) 


6 −4 4 0 4
0 10 −6 0 −6
16 20 −20 −8 −26
−8 −8 11 10 11
−16 −20 24 8 30




(d) 


−4 −12 28 44 −4
1 8 −16 −30 2
−10 −12 30 36 −4

5 6 −14 −16 2
−2 −2 0 −4 4




3.3.5 Determine which of the following statements are
true and which are false.

∗(a) Every matrix has at least one real eigenvalue.
(b) A set of two eigenvectors corresponding to the same

eigenvalue of a matrix must be linearly dependent.
∗(c) If two matrices are row equivalent then they must

have the same eigenvalues.
(d) If v and w are eigenvectors of a matrix A∈Mn corre-

sponding to an eigenvalue λ then so is any non-zero
linear combination of v and w.

∗(e) If A ∈Mn then det(A−λ I) = det(λ I−A).
(f) If A ∈Mn(C) is Hermitian then its diagonal entries

must be real.
∗(g) Every diagonal matrix A ∈Mn(R) is symmetric.
(h) The eigenvalues of every matrix A ∈Mn(C) come

in complex conjugate pairs.
∗(i) The geometric multiplicity of an eigenvalue λ of

A ∈Mn equals nullity(A−λ I).
(j) It is possible for an eigenvalue to have geometric

multiplicity equal to 0.
∗(k) If an eigenvalue has algebraic multiplicity 1 then its

geometric multiplicity must also equal 1.
(l) If an eigenvalue has geometric multiplicity 1 then its

algebraic multiplicity must also equal 1.
∗(m) If two matrices A,B ∈Mn have the same character-

istic polynomial then they have the same trace.
(n) If two matrices A,B∈Mn have the same characteris-

tic polynomial then they have the same determinant.

∗3.3.6 Let k ∈ R and consider the following matrix:

A =

[
k 1
−1 1

]
.

For which values of k does A have (i) two distinct real eigen-
values, (ii) only one distinct real eigenvalue, and (iii) no real
eigenvalues?

3.3.7 Let A =




1 0 0
−8 4 −5
8 0 9


.

(a) Find all eigenvalues of A.
(b) Find a basis for each of the eigenspaces of A.
(c) Find all eigenvalues of A2−3A+ I.

[Hint: You can explicitly calculate the matrix A2−
3A+ I and find its eigenvalues, but there is a much
faster and easier way.]

(d) Find a basis for each eigenspace of A2−3A+ I.

∗3.3.8 Suppose that all entries of A ∈Mn are real. Show
that if v is an eigenvector of A corresponding to the eigen-
value λ then v is an eigenvector of A corresponding to the
eigenvalue λ .

3.3.9 Suppose A ∈Mn and n is odd. Show that A has at
least one real eigenvalue.
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∗∗3.3.10 Suppose A ∈M2(C). Find a formula for the
eigenvalues of A in terms of tr(A) and det(A).

3.3.11 Suppose that A ∈Mn is a matrix such that A2 = O.
Find all possible eigenvalues of A.

∗3.3.12 Suppose that A ∈Mn(C) is a matrix such that
A4 = I. Find all possible eigenvalues of A.

∗∗3.3.13 Recall that if Rθ is the linear transformation that
rotates vectors in R2 by an angle of θ counter-clockwise
around the origin, then its standard matrix is

[
Rθ
]
=

[
cos(θ) −sin(θ)
sin(θ) cos(θ)

]
.

(a) Compute the eigenvalues of
[
Rθ
]

(keep in mind that
the eigenvalues might be complex, and that’s OK).

(b) For which values of θ are the eigenvalues of
[
Rθ
]

real? Provide a geometric interpretation of your an-
swer.

3.3.14 A matrix A ∈Mn(C) is called skew-Hermitian
if A∗ =−A. Show that the eigenvalues of skew-Hermitian
matrices are imaginary (i.e., of the form bi for some b ∈ R).

∗∗3.3.15 Suppose that A ∈Mm,n(C) and recall from
Exercise 1.2.15 that the dot product on Cn is given by

v ·w def= v1w1 + v2w2 + · · ·+ vnwn,

which equals v∗w if v and w are column vectors.

(a) Show that v · (Aw) = (A∗v) ·w for all v ∈ Cm and
w ∈ Cn.

(b) Show that if B ∈Mn,m(C) is such that v · (Aw) =
(Bv) ·w for all v ∈ Cm and w ∈ Cn, then B = A∗.

∗∗3.3.16 Show that a square matrix is invertible if and
only if 0 is not an eigenvalue of it.

3.3.17 Show that if square matrices A and B are similar
(i.e., A = PBP−1 for some invertible matrix P), then v is an
eigenvector of B if and only if Pv is an eigenvector of A.

∗∗3.3.18 Prove Theorem 3.3.4. That is, show that the
eigenvalues of a triangular matrix, listed according to alge-
braic multiplicity, are its diagonal entries.

3.3.19 Suppose A ∈Mm,n and B ∈Mn,m. In this exer-
cise, we show that AB and BA have (essentially) the same
eigenvalues.

(a) Show that if λ 6= 0 is an eigenvalue of AB then it is
also an eigenvalue of BA. [Hint: Let v be an eigenvec-
tor of AB corresponding to λ and simplify BABv.]

(b) Provide an example for which 0 is an eigenvalue of
AB, but not of BA. [Hint: Choose A and B so that AB
is larger than BA.]

3.3.20 Suppose A ∈Mn.

(a) Show that A and AT have the same characteristic
polynomials and thus the same eigenvalues.

(b) Provide an example to show that A and AT might
have different eigenvectors.

∗∗3.3.21 Suppose A ∈Mn(C).

(a) Show that λ is an eigenvalue of A if and only if λ is
an eigenvalue of A∗.

(b) Let v be an eigenvector corresponding to an eigen-
value λ of A and w be an eigenvector corresponding
to an eigenvalue µ 6= λ of A∗. Show that v ·w = 0.

∗∗3.3.22 Suppose A∈Mn(C) has eigenvalues λ1, λ2, . . .,
λn with corresponding unit (i.e., length 1) eigenvectors v1,
v2, . . ., vn. Let B = A−λ1v1v∗1.

(a) Show that v1 is an eigenvector of B corresponding to
the eigenvalue 0.

(b) Show that B has eigenvalues 0,λ2,λ3, . . . ,λn. [Side
note: If it helps, you can assume that λ1 6= λ2,
λ1 6= λ3, . . ., λ1 6= λn.] [Hint: Use Exercise 3.3.21.]

(c) Give an example to show that none of v2, . . . ,vn are
necessarily eigenvectors of B.

∗∗3.3.23 This exercise demonstrates how to construct a
matrix whose characteristic polynomial is any given poly-
nomial (with leading term (−1)nλ n) of our choosing.

(a) Show that the characteristic polynomial of the matrix

C =




0 1 0
0 0 1
−a0 −a1 −a2




is pC(λ ) =−(λ 3 +a2λ 2 +a1λ +a0).
(b) More generally, show that the characteristic polyno-

mial of the matrix

C =




0 1 0 · · · 0
0 0 1 · · · 0

...
...

...
. . .

...
0 0 0 · · · 1
−a0 −a1 −a2 · · · −an−1




is pC(λ ) = (−1)n(λ n +an−1λ n−1 + · · ·+a1λ +a0).
[Hint: Try a proof by induction.]

[Side note: This matrix C is called the companion matrix
of the polynomial pC . Although we have used polynomials
to compute eigenvalues, in practice the opposite is often
done. That is, to find the roots of a high-degree polynomial,
people construct its companion matrix and then compute
its eigenvalues using numerical methods like the one intro-
duced in Section 3.B.]

∗∗3.3.24 A matrix A ∈Mn(R) with non-negative entries
is called column stochastic if its columns each add up to 1,
and it is called row stochastic if its rows each add up to 1.
For example, the matrices

[
1/2 0
1/2 1

]
and

[
1/3 2/3
1/2 1/2

]

are column stochastic and row stochastic, respectively.

(a) Show that every row stochastic matrix has an eigen-
value equal to 1. [Hint: There is an “obvious” eigen-
vector corresponding to this eigenvalue.]
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(b) Show that every eigenvalue of a row stochastic ma-
trix has absolute value no larger than 1.
[Hint: Suppose v is an eigenvector that is scaled so
that its largest entry vi has vi = 1.]

(c) Show that the claims from parts (a) and (b) also apply
to column stochastic matrices.
[Side note: We showed in Exercise 2.B.12 that the
eigenvalue 1 of a column stochastic matrix has a
corresponding eigenvector with all of its entries non-
negative.]

3.4 Diagonalization

Recall that our motivation for this chapter was that we wanted to find bases
that make linear transformations easier to work with than the standard basis.
Equivalently, we wanted to transform a matrix via similarity to make it as
simple as possible. In this section, we finally answer the question of when we
can make linear transformations and matrices diagonal in this way, and how to
choose the basis so as to make it happen.

Definition 3.4.1
Diagonalizable

Matrices

A matrix A ∈Mn is called diagonalizable if there is a diagonal matrix
D ∈Mn and an invertible matrix P ∈Mn such that A = PDP−1.

The idea behind diagonalization is that a diagonalized matrix is almost as
easy to work with as a diagonal matrix. To illustrate what we mean by this,
consider the problem of computing Ak, where A ∈Mn and k is a very large
integer.

• If A is a general matrix (i.e., it does not have any special structure
that we can exploit), computing Ak requires a whole bunch of matrix
multiplications. Since matrix multiplication is ugly and time-consuming,
this seems undesirable.

• If A is a diagonal matrix, computing Ak is fairly straightforward, since
diagonal matrices multiply entry-wise, so we can just compute the k-th
power of each diagonal entry of A:

Ak =




a1,1 0 · · · 0
0 a2,2 · · · 0
...

...
. . .

...
0 0 · · · an,n




k

=




ak
1,1 0 · · · 0

0 ak
2,2 · · · 0

...
...

. . .
...

0 0 · · · ak
n,n




.

• If A is diagonalizable, so A = PDP−1 for some invertible P and diagonal
D, then

Ak =
(
PD

P−1P = I︷ ︸︸ ︷
P−1)(PD

P−1P = I︷ ︸︸ ︷
P−1)(PD

···︷︸︸︷
P−1) · · ·

(
PDP−1)

︸ ︷︷ ︸
k times

= PDkP−1.

Since D is diagonal, Dk can be computed entry-wise, so we can compute
Ak via just 2 matrix multiplications: one on the left by P and one on the
right by P−1.
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However, this is just the first taste of how diagonalization is useful—we
will also see that we can use diagonalization to do things like take the square
root of a matrix, find an explicit formula for terms in the Fibonacci sequence, or
even apply exponential or trigonometric functions (among others) to matrices.
In a sense, once we have a diagonalization of a matrix, that matrix has been
“unlocked” for us, making it significantly easier to solve problems involving it.

3.4.1 How to Diagonalize

We now stitch together the tools that we developed throughout this chapter
in order to answer the questions of which matrices can be diagonalized (or
equivalently, which linear transformations are diagonal in some basis), and how
to do the diagonalization.

We start with the latter question—it turns out that eigenvalues and eigen-
vectors can be used to diagonalize matrices, and in fact they are the only way
to do so:

Theorem 3.4.1
Diagonalizability

Let A ∈Mn and suppose P,D ∈Mn are such that P is invertible and D is
diagonal. Then A = PDP−1 if and only if the columns of P are eigenvectors
of A whose corresponding eigenvalues are the diagonal entries of D in the
same order.

Proof. If we multiply the equation A = PDP−1 on the right by P, we see that
it is equivalent to AP = PD. If we write P in terms of its columns v1,v2, . . . ,vn
and use block matrix multiplication, we see that

AP = A
[

v1 | v2 | · · · | vn
]
=
[

Av1 | Av2 | · · · | Avn
]

and
This way of writing

PD in terms of scaled
columns of P only

works because D is
diagonal.

PD =
[

v1 | v2 | · · · | vn
]
D =

[
d1,1v1 | d2,2v2 | · · · | dn,nvn

]
.

Since AP = PD if and only if the columns of AP equal the columns of PD
in the same order, we conclude that AP = PD if and only if Av j = d j, jv j for all
1≤ j≤ n. In other words, A = PDP−1 if and only if v1,v2, . . . ,vn (the columns
of P) are eigenvectors of A with corresponding eigenvalues d1,1,d2,2, . . . ,dn,n,
respectively. �

Example 3.4.1
Our First

Diagonalization

Diagonalize the matrix A =
[

1 2
5 4

]
.

Solution:
We showed in Examples 3.3.3 and 3.3.4 that this matrix has eigenval-

ues λ1 =−1 and λ2 = 6 corresponding to the eigenvectors v1 = (−1,1)
and v2 = (2,5),We could have also

chosen v2 = (2/5,1),
but our choice here

is prettier. Which
multiple of each
eigenvector we

choose does not
matter.

, respectively. We thus stick these eigenvalues along the
diagonal of a diagonal matrix D, and the corresponding eigenvectors as
columns into a matrix P in the same order, as suggested by Theorem 3.4.1:

D =

[
λ1 0
0 λ2

]
=

[
−1 0
0 6

]
and P =

[
v1 | v2

]
=

[
−1 2
1 5

]
.
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It is straightforward to check that P is invertible, and

P−1 =
1
7

[
−5 2
1 1

]
,

so Theorem 3.4.1 tells us that A is diagonalized by this D and P (i.e.,
A = PDP−1).

Since this is our first diagonalization, it is worth doing a sanity check—
let’s multiply out PDP−1 and see that it does indeed equal A:

PDP−1 =

[
−1 2
1 5

][
−1 0
0 6

](
1
7

[
−5 2
1 1

])

=
1
7

[
−1 2
1 5

][
5 −2
6 6

]
=

1
7

[
7 14
35 28

]
=

[
1 2
5 4

]
= A.

It is perhaps also worth illustrating what this diagonalization means
geometrically. The matrix A is the standard matrix (in the standard basis)
of some linear transformation T that acts on R2. If we look at this linear
transformation in the basis B = {v1,v2}= {(−1,1),(2,5)} consisting of
eigenvectors of A then [T ]B = D is diagonal:

x

y

[v2]B = e2
[v1]B = e1

[T ]B = D−−−−−−→

x

y

[T (v2)]B = 6[v2]B

[T (v1)]B =−[v1]B

Compare this image with Figures 3.22 and 3.23, where we depicted the
action of A = [T ] in the standard basis.

Example 3.4.2
Our Second

Diagonalization

Diagonalize the matrix A = 


2 0 −3
1 −1 −1
0 0 −1




.

Solution:
We showed in Examples 3.3.7 that this matrix has eigenvalues (listed

according to algebraic multiplicity) λ1 = 2 and λ2 = λ3 = −1, and we
showed in Example 3.3.13 that bases of its eigenspaces can be made
from the corresponding eigenvectors v1 = (3,1,0), v2 = (0,1,0), and
v3 = (1,0,1).It does not matter

whether we choose
v2 = (0,1,0) and

v3 = (1,0,1), or
v2 = (1,0,1) and

v3 = (0,1,0). Either
choice works.

We thus stick these eigenvalues along the diagonal of a
diagonal matrix D, and the eigenspaces basis vectors into a matrix P as
columns:

D =




λ1 0 0
0 λ2 0
0 0 λ3


=




2 0 0
0 −1 0
0 0 −1


 , P =

[
v1 | v2 | v3

]
=




3 0 1
1 1 0
0 0 1


 .
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It is straightforward to check that P is invertible with inverse

P−1 =
1
3




1 0 −1
−1 3 1
0 0 3


 ,

so Theorem 3.4.1 tells us that A is diagonalized by this D and P.

Again, we multiply out PDP−1 to double-check that this is indeed a
diagonalization of

The scalar 1/3 here
comes from P−1; we
just pulled it in front

of all three matrices.

A:

PDP−1 =
1
3




3 0 1
1 1 0
0 0 1






2 0 0
0 −1 0
0 0 −1






1 0 −1
−1 3 1
0 0 3




=
1
3




3 0 1
1 1 0
0 0 1






2 0 −2
1 −3 −1
0 0 −3


=




2 0 −3
1 −1 −1
0 0 −1


= A.

Geometrically, A is the standard matrix (in the standard basis) of some
linear transformation T that acts on R3. If we instead look at this linear
transformation in the basis B = {v1,v2,v3} consisting of eigenvectors of
A, then [T ]B = D is diagonal:

x

y

z

[v1]B = e1

[v2]B = e2

[v3]B = e3

[T ]B = D−−−−−−→

x

y

z

[T (v1)]B = 2[v1]B

[[T (v2)]BB =−[v2]B

[T (v3)]B =−[v3]B

Compare this image with the one from Example 3.3.13, where we depicted
the action of A = [T ] in the standard basis.

The method of diagonalizing a matrix that was presented in the previous
examples works in general: after finding the eigenvalues of the matrix and bases
of the corresponding eigenspaces, we place those eigenvalues as the diagonal
entries in the diagonal matrix D, and we place the eigenspace basis vectors in
the matrix P as columns in the same order. The following theorem shows that
this procedure always leads to P being invertible, as long as there are enough
vectors in the bases of the eigenspaces to fill out all n columns of P:

Theorem 3.4.2
Bases of

Eigenspaces

Suppose A is a square matrix. If B1, B2, . . ., Bm are bases of eigenspaces
of A corresponding to distinct eigenvalues, then

B1∪B2∪·· ·∪Bm

is linearly independent.

Proof. First, let v1 ∈ span(B1),v2 ∈ span(B2), . . . ,vm ∈ span(Bm) be arbitrary
vectors from those eigenspaces (i.e., they either equal 0 or they are eigenvectors
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of A corresponding to eigenvalues λ1,λ2, . . . ,λm, respectively). We first show
that the following two facts concerning these vectors hold:

a) If 1 ≤ ` ≤ m is such that {v1,v2, . . . ,v`} is linearly dependent,Showing fact (a)
proves the theorem

in the case when the
eigenspaces of A

are all 1-dimensional.

then at
least one of v1,v2, . . . ,v` is the zero vector.

b) If v1 +v2 + · · ·+vm = 0 then v1 = v2 = · · ·= vm = 0.
To prove fact (a), suppose that {v1,v2, . . . ,v`} is linearly dependent and

assume that v1,v2, . . . ,v` are all non-zero (otherwise we are done). If we let
k ≤ ` be the smallest integer such that {v1,v2, . . . ,vk} is linearly dependent
then there exist scalars c1, c2, . . ., ck−1 such that

vk = c1v1 + c2v2 + · · ·+ ck−1vk−1. (3.4.1)

Multiplying onOof, the proof of this
theorem is a beast. I
promise it’s the worst

one in this section.

the left by A shows that

λkvk = Avk = c1Av1 + c2Av2 + · · ·+ ck−1Avk−1

= c1λ1v1 + c2λ2v2 + · · ·+ ck−1λk−1vk−1.
(3.4.2)

Also, multiplying both sides of Equation (3.4.1) by λk gives

λkvk = c1λkv1 + c2λkv2 + · · ·+ ck−1λkvk−1. (3.4.3)

Subtracting Equation (3.4.3) from Equation (3.4.2) then shows that

0 = c1(λ1−λk)v1 + c2(λ2−λk)v2 + · · ·+ ck−1(λk−1−λk)vk−1.

Since k was chosen to be the smallest integer such that {v1,v2, . . . ,vk} is
linearly dependent, {v1,v2, . . . ,vk−1} is linearly independent, which implies
c j(λ j−λk) = 0 for all 1≤ j ≤ k−1. Since λ1, λ2, . . ., λm are distinct, this is
only possible if c1 = c2 = · · ·= ck−1 = 0, so vk = 0, which proves fact (a).This proof still works

even if B1,B2, . . . ,Bm
are just linearly

independent (but
not necessarily

spanning).

Fact (b) follows by using fact (a), which tells us that if v1 +v2 + · · ·+vm = 0
then at least one of v1,v2, . . . ,vm is the zero vector. Suppose that vm = 0 (but a
similar argument works if it’s one of v1, v2, . . ., vm−1 that equals 0). Then

v1 +v2 + · · ·+vm−1 +vm = v1 +v2 + · · ·+vm−1 +0 = 0,

so using fact (a) again tells us that one of v1, v2, . . ., vm−1 is the zero vector.
Repeating in this way shows that, in fact, v1 = v2 = · · ·= vm = 0.

To now show that B1∪B2∪·· ·∪Bm is linearly independent, we give names
to the vectors in each of these bases via B j = {v j,1,v j,2, . . . ,v j,γ j}Here, γ j is the

geometric
multiplicity of the

eigenvalue
corresponding to the

eigenspace with
basis B j.

for each
1≤ j ≤ m. Now suppose that some linear combination of these vectors equals
the zero vector:

γ1

∑
`=1

c1,`v1,`

︸ ︷︷ ︸
call this v1

+
γ2

∑
`=1

c2,`v2,`

︸ ︷︷ ︸
call this v2

+ · · · +
γm

∑
`=1

cm,`vm,`

︸ ︷︷ ︸
call this vm

= 0. (3.4.4)

If we define v1,v2, . . . ,vm to be the m sums indicated above, then fact (b) tells
us that v1 = v2 = · · ·= vm = 0. But since each B j is a basis (and thus linearly
independent), the fact that

v j =
γ j

∑
`=1

c j,`v j,` = 0 for all 1≤ j ≤ m

tells us that c j,1 = c j,2 = · · ·= c j,γ j = 0 for all 1≤ j ≤ m. It follows that every
coefficient in the linear combination (3.4.4) must equal 0, so B1∪B2∪·· ·∪Bm
is linearly independent. �
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In particular, since matrices with linearly independent columns are invert-
ible (refer back to Theorem 2.3.5), the above theorem tells us that we can
diagonalize any matrix A ∈Mn for which we can find bases of its eigenspaces
consisting of a total of n vectors. However, there are two problems that may
make it impossible to find such bases, and thus two ways that a matrix can fail
to be diagonalizable:

• If A ∈Mn(R), it may

If you do not like
complex

diagonalizations of
real matrices, look at

Section 3.C, where
we investigate how
“close” to diagonal

we can make D if we
restrict to real entries.

not be possible to construct D and P so that they
have real entries, since A might have complex (non-real) eigenvalues and
eigenvectors. For the purposes of this section (and most of this book),
we ignore this problem, as we do not mind placing complex entries in D
and P.

• Even if we allow for complex eigenvalues and eigenvectors, there may
not be a way to choose eigenvectors so that the matrix P (whose columns
are eigenvectors) is invertible. We illustrate how this problem can arise
with an example.

Example 3.4.3
Not All Matrices Can

Be Diagonalized

Show that the matrix A =
[

3 −1
1 1

]
cannot be diagonalized.

Solution:
We first must compute the eigenvalues and eigenvectors of A. For its

eigenvalues, we compute

pA(λ ) = det

([
3−λ −1

1 1−λ

])
= (3−λ )(1−λ )+1

= λ
2−4λ +4

= (λ −2)2.

It follows that λ = 2 is the only eigenvalue of A, and it has algebraic
multiplicity 2.

To find the eigenvectors corresponding to this eigenvalue, we solve the
linear system (A−2I)v = 0 as follows:

[
1 −1 0
1 −1 0

]
R2−R1−−−−→

[
1 −1 0
0 0 0

]
.

We thus see that v2 is a free variable and v1 is a leading variable with v1 =
v2, so all eigenvectors corresponding to λ = 2 are of the form v = v2(1,1).

We can now see why A cannot possibly be diagonalized—we would
have to put eigenvectors of A as columns into a matrix P in a way that
makes P invertible. However, this is not possible, since every eigenvector
of A is a multiple of (1,1).

Geometrically, the fact that A cannot be diagonalized is a result of
the fact that the line in the direction of the eigenvector v = (1,1) is the
only line whose direction is unchanged by A—every other line through
the origin is rotated counter-clockwise toward that

If A were
diagonalizable there

would be two lines
unchanged by A,

and they would
become the

coordinate axes
when viewed in the

basis of
eigenvectors. one:
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v== ((11,1))

x

y

A−−→

AAvv11 = 2v11

x

y

The previous theorem and example suggest that, for a matrix to be diago-
nalizable, it must have “enough” eigenvectors so that they span all of Rn (or Cn,
if we allow complex numbers). The following theorem makes this observation
precise in several different ways.

Before stating the theorem, we note that if a matrix A ∈Mn can be diag-
onalized as A = PDP−1 via real matrices D,P ∈Mn(R) then we say that A
is diagonalizable over R, and if it can be diagonalized via complex matrices
D,P ∈Mn(C) then we say that A is diagonalizable over C. If we just say
“diagonalizable” without specifying either R or C then we do not particularly
care which type of diagonalization we mean (i.e., whatever statement we are
making applies to both diagonalization over R and over C). Furthermore, diag-
onalizability over R implies diagonalizability over C since real matrices are
complex.

Theorem 3.4.3
Characterization of

Diagonalizability

Suppose A ∈Mn. The following are equivalent:

a) A is diagonalizable over R (or C).
b) There exists a basis of Rn (or Cn) consisting of eigenvectors of A.
c) The set of eigenvectors of A spans all of Rn (or Cn).
d) The

To prove this
theorem, we show

that the 4 properties
imply each other as

follows:

(a)

(b)

(c)

(d)

sum of the geometric multiplicities of the real (or complex)
eigenvalues of A is n.

Proof. We prove this result by showing that condition (b) is equivalent to each
of the others. To see why (b)⇐⇒ (a), just recall that Theorem 3.4.1 tells us that
A = PDP−1 is diagonalizable if and only if the columns of P are eigenvectors
of A, and Theorem 2.5.1 tells us that P−1 actually exists (so this is a valid
diagonalization of A) if and only if those columns (i.e., the eigenvectors of A)
form a basis of Rn (or Cn, as appropriate).

The fact that (b)⇐⇒ (c) follows immediately from the facts that a basis of
Rn (or Cn) spans it, and conversely any spanning set can be reduced down to a
basis via Theorem 2.4.3(b).

For the remainder of the proof, we denote the distinct eigenvalues of A by
λ1, λ2, . . ., λm. To see why (b) =⇒ (d), suppose B is a basis of Rn (or Cn)
consisting of eigenvectors of A. Partition these eigenvectors into sets according
to their corresponding eigenvalues. Specifically, let B1, B2, . . ., Bm ⊆ B be
the sets of eigenvectors from B corresponding to λ1, λ2, . . ., λm, respectively,
and note that the fact that λ1, λ2, . . ., λm are distinct ensures that B1, B2, . . .,
Bm are disjoint (after all, no non-zero vector can be scaled by two different
eigenvalues).

Since B is linearly independent, so is each B j, so the geometric multiplicity
of λ j is at least |B j|. Then the fact that n = |B|= |B1|+ · · ·+ |Bm| implies that
the sum of the geometric multiplicities of the eigenvalues of A is at least n. On
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the other hand, Theorem 3.3.3 tells us that the sum of geometric multiplicities
cannot exceed the sum of

Recall that |B|
denotes the size of
(i.e., the number of

vectors in) B.

algebraic multiplicities, which cannot exceed n (the
degree of the characteristic polynomial). It follows that the sum of geometric
multiplicities of eigenvalues of A must equal exactly n.

In the other direction, to see that (d) =⇒ (b) and finish the proof, sup-
pose B1, B2, . . ., Bm are bases of the eigenspaces of A corresponding to
the eigenvalues λ1, λ2, . . ., λm, respectively. Since |B1|, |B2|, . . ., |Bm| are
the geometric multiplicities of λ1, λ2, . . ., λm, respectively, we know that
|B1|+ |B2|+ · · ·+ |Bm|= n. If we define B = B1∪B2∪ ·· ·∪Bm, then |B|= n
too, since B1, B2, . . ., Bm are disjoint. Since Theorem 3.4.2 tells us that B is
linearly independent, Theorem 2.4.4 then implies that it must be a basis of Rn

(or Cn), which completes the proof. �

For example, this theorem tells us that the 2×2 matrix from Example 3.4.3
cannot be diagonalized since its only eigenvalue is λ = 2 with geometric
multiplicity 1 (which is less than n = 2). On the other hand, we were able to
diagonalize the 3×3 matrix from Example 3.4.2, since the geometric multi-
plicities of its eigenvalues were 1 and 2, and 1+2 = 3 = n.

Example 3.4.4
Checking

Diagonalizability

Determine whether or not A =



5 1 −1
1 3 −1
2 0 2




can be diagonalized.

Solution:
We start by computing and factoring A’s characteristic

The algebra here
maybe looks a bit

strange—we simplify
things in this way

because we really
do not want to have

to factor a cubic
equation, so we

never fully multiply
it out.

polynomial:

det(A−λ I) = det







5−λ 1 −1
1 3−λ −1
2 0 2−λ







= (5−λ )(3−λ )(2−λ )−2+0−0+2(3−λ )− (2−λ )
= (5−λ )(3−λ )(2−λ )+(2−λ )

= (2−λ )
(
(5−λ )(3−λ )+1

)

= (2−λ )
(
λ

2−8λ +16
)

= (2−λ )(4−λ )2.

The eigenvalues of A are thus λ = 2 and λ = 4, with algebraic multiplici-
ties 1 and 2, respectively.

Since the eigenvalue λ = 2 has algebraic multiplicity 1, its geometric
multiplicity must also equal 1 (thanks to Theorem 3.3.3). However, we
have to do more work to compute the geometric multiplicity of λ = 4. In
particular, we solve the linear system (A−4I)v = 0 to find a basis of the
corresponding eigenspace, as usual:



1 1 −1 0
1 −1 −1 0
2 0 −2 0


 R2−R1

R3−2R1−−−−→




1 1 −1 0
0 −2 0 0
0 −2 0 0




−1
2 R2−−−→




1 1 −1 0
0 1 0 0
0 −2 0 0


 R1−R2

R3+2R2−−−−→




1 0 −1 0
0 1 0 0
0 0 0 0


 .
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Since this linear system has just 1 free variable, the eigenspace is
1-dimensional, so the geometric multiplicity of λ = 4 is 1.

Since the sum of the geometric multiplicities of the eigenvalues of
this matrix is 1+1 = 2, but the matrix is 3×3, we conclude from Theo-
rem 3.4.3 that A is not diagonalizable.

Theorem 3.4.3 is useful since it completely characterizes which matrices
are diagonalizable. However, there is one special case that is worth pointing
out where it is actually much easier to show that a matrix is diagonalizable.

Corollary 3.4.4
Matrices with

Distinct
Eigenvalues

If A ∈Mn has n distinct eigenvalues then it is diagonalizable.

Proof. The eigenvalues of A being distinct means that they each have algebraic
multiplicity 1, and thus also have geometric multiplicity 1 by Theorem 3.3.3.
Since there are n distinct eigenvalues, their geometric multiplies thus sum to 1+
1+ · · ·+1 = n. It then follows from Theorem 3.4.3 that A is diagonalizable. �

Keep in mind that the above corollary only works in one direction. If A
has n distinct eigenvalues then it is diagonalizable, but if it has fewer distinct
eigenvalues then A may or may not be diagonalizable—we must use Theo-
rem 3.4.3 to distinguish the two possibilities in this case. For example, the
matrix from Example 3.4.2 was diagonalizable despite having λ = −1 as a
repeated (i.e., non-distinct) eigenvalue, since the geometric multiplicity of that
eigenvalue was large enough that we could still find a basis of Rn consisting of
eigenvectors.

Example 3.4.5
Checking

Diagonalizability
(Again)

Determine whether or not A =
[

1 1
1 0

]
is diagonalizable.

Solution:
We start by computing the characteristic polynomial of A, as usual:

pA(λ ) = det(A−λ I) = det

([
1−λ 1

1 −λ

])
= (1−λ )(−λ )−1
= λ

2−λ −1.

This polynomial does not factor nicely, so we use the quadratic formula to
find its roots

Recall that the
quadratic formula

says that the roots of
aλ 2 +bλ + c are

λ =
−b±

√
b2−4ac

2a
.

(i.e., the eigenvalues of A):

λ =
1±
√

1+4
2

=
1±
√

5
2

.

Since these 2 eigenvalues are distinct (i.e., they occur with algebraic
multiplicity 1), Corollary 3.4.4 tells us that A is diagonalizable.

One of the useful features of the above corollary is that we can use it to
show that many matrices are diagonalizable based only on their eigenvalues
(without having to know anything about their corresponding eigenvectors). We
only need to compute the corresponding eigenvectors if we actually want to
compute the matrix P in the diagonalization.

Remark 3.4.1
Most Matrices are

Diagonalizable

The rest of this section is devoted to exploring what we can do with diago-
nalizable matrices. Before we explore these applications of diagonalization
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though, we should emphasize that “most” matrices are diagonalizable, so
assuming diagonalizability is typically not much of a restriction.

Making this idea precise is outside of the scope of this book, but we can
think about it intuitively as follows: if we were to randomly generate the
entries of a matrix, its eigenvalues would be a random mess, so it would
be an astonishing coincidence for one of them to occur twice or more
(just like if we were to randomly generate 10 real numbers, it would be
exceedingly unlikely for 2 or more of them to be the same). Corollary 3.4.4
then implies that most randomly-generated matrices are diagonalizable.

Similarly,Another way of
dealing with

non-diagonalizable
matrices is via

something called
the “Jordan

decomposition”,
which is covered in

advanced linear
algebra books like

[Joh20].

we can wiggle the entries of a non-diagonalizable matrix by
an arbitrarily small amount to turn it into a matrix with distinct eigenvalues
(which is thus diagonalizable). For example, we showed in Example 3.4.3
that the matrix

A =
[

3 −1
1 1

]

is not diagonalizable. However, changing the bottom-right entry of A to
1+ ε results in its eigenvalues being

λ =
4+ ε±

√
ε2−4ε

2
,

which are distinct as long as ε /∈ {0,4}. It follows that nearby matrices
like

B =
[

3 −1
1 1.0001

]

are diagonalizable.

3.4.2 Matrix Powers

Recall from the start of this section that if A ∈Mn is diagonalizable (i.e.,
A = PDP−1 for some diagonal D and invertible P) then

Ak =
(
PD

P−1P = I︷ ︸︸ ︷
P−1)(PD

P−1P = I︷ ︸︸ ︷
P−1)(PD

···︷︸︸︷
P−1) · · ·

(
PDP−1)

︸ ︷︷ ︸
k times

= PDkP−1 for all k ≥ 0,

and Dk is typically much easier to compute directly than Ak is. We can use
this technique to come up with explicit formulas for powers of diagonalizable
matrices.

Example 3.4.6
Using

Diagonalization
to Find a Formula

for Powers of
a Matrix

Find an explicit formula for Ak if A =
[

1 2
5 4

]
.

Solution:
Recall from Example 3.4.1 that A can be diagonalized as A = PDP−1

via

D =

[
−1 0
0 6

]
, P =

[
−1 2
1 5

]
, and P−1 =

1
7

[
−5 2
1 1

]
.
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It follows that

The 1/7 comes from
P−1. We just pulled it

in front of all 3
matrices.

Ak = PDkP−1

=
1
7

[
−1 2
1 5

][
(−1)k 0

0 6k

][
−5 2
1 1

]

=
1
7

[
−1 2
1 5

][
5(−1)k+1 2(−1)k

6k 6k

]

=
1
7

[
5(−1)k + 2×6k 2(−1)k+1 +2×6k

5(−1)k+1 +5×6k 2(−1)k + 5×6k

]
for all k ≥ 0.

Although the formula that we derived in the above example looks somewhat
messy, it is much easier to use than multiplying A by itself repeatedly. Indeed,
it is much simpler to compute A500 by performing this diagonalization and then
plugging k = 500 into that formula, rather than multiplying A by itself 499
times.

In fact, we can make the formula from the previous example look a bit
cleaner by factoring out the powers of −1 and 6 as follows:

The matrices in
Equation (3.4.5)

have rank 1 since
their rows are

multiples of each
other.

Ak =
1
7

(
(−1)k

[
5 −2
−5 2

]
+6k

[
2 2
5 5

])
. (3.4.5)

This formula seems to have a lot of structure: the terms being raised to the
power of k are exactly the eigenvalues of A, and they are multiplying some
fixed rank-1 matrices. The following theorem shows that something analogous
happens for every diagonalizable matrix, and also tells us exactly where those
rank-1 matrices come from.

Theorem 3.4.5
Diagonalization as a

Rank-One Sum

Suppose P,Q,D ∈Mn are such that D is diagonal with diagonal entries
d1, d2, . . ., dn, in that order. Write P and Q in terms of their columns:

P =
[

p1 | p2 | · · · | pn
]

and Q =
[

q1 | q2 | · · · | qn
]
.

Then
Recall that Q∗ is the

conjugate transpose
of Q, which was

introduced in
Section 3.3.2. This

theorem is still true if
we replace both

conjugate
transposes by the

standard transpose.

PDQ∗ =
n

∑
j=1

d jp jq∗j .

Proof. We just use block matrix multiplication, with each of the matrices
partitioned as indicated by the statement of the theorem:

PDQ∗ =
[

p1 | p2 | · · · | pn
]




d1 0 · · · 0
0 d2 · · · 0
...

...
. . .

...
0 0 · · · dn







q∗1
q∗2
...

q∗n




=
[

p1 | p2 | · · · | pn
]




d1q∗1
d2q∗2

...
dnq∗n


=

n

∑
j=1

d jp jq∗j ,

which is what we wanted to prove. �
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In particular, the above theorem tells us that A is diagonalizable via A =
PDP−1 if and only if

A =
n

∑
j=1

λ jp jq∗j ,

where p j is the j-th column of P and q∗j is the j-th row of P−1. Furthermore, in
this case we have Ak = PDkP−1, from which the above theorem implies

Ak =
n

∑
j=1

λ
k
j p jq∗j for all integers k ≥ 0. (3.4.6)

This is exactly the form of Equation (3.4.5) that we found earlier—since each
p j is a column vector and each q∗j is a row vector, the products p jq∗j are rank-1
matrices (we proved that a matrix has rank 1 if and only if it is of this form in
Exercise 2.4.30 as well as Theorem 2.C.2).

Example 3.4.7
Finding a Rank-One

Sum Formula for
Powers of a Matrix

Find a formula of the form (3.4.6) for Ak if A = 


2 0 −3
1 −1 −1
0 0 −1




.

Solution:
Recall from Example 3.4.2 that A can be diagonalized as A = PDP−1

via

D =




2 0 0
0 −1 0
0 0 −1


 , P =




3 0 1
1 1 0
0 0 1


 , and P−1 =

1
3




1 0 −1
−1 3 1
0 0 3


 .

If we write P and P−1 in terms of their columns and rows, respectively,

P =
[

p1 | p2 | p3
]
=




3 0 1
1 1 0
0 0 1


 , P−1 =




q∗1
q∗2
q∗3


=

1
3




1 0 −1
−1 3 1
0 0 3


 ,

then

Be careful when
computing products

like p1q∗1. A column
vector times a row

vector results in a
matrix (not a scalar).

p1q∗1 =
1
3




3
1
0


[1 0 −1

]
=

1
3




3 0 −3
1 0 −1
0 0 0




p2q∗2 =
1
3




0
1
0


[−1 3 1

]
=

1
3




0 0 0
−1 3 1
0 0 0


 , and

p3q∗3 =
1
3




1
0
1


[0 0 3

]
=

1
3




0 0 3
0 0 0
0 0 3


 .

Theorem 3.4.5 (more specifically, Equation (3.4.6)) then tells us

We could add up
the two matrices

that are multiplied
by (−1)k here if we

wanted to.

that

Ak =
1
3


2k




3 0 −3
1 0 −1
0 0 0


+(−1)k




0 0 0
−1 3 1
0 0 0


+(−1)k




0 0 3
0 0 0
0 0 3






for all integers k ≥ 0.
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We can think of Equation (3.4.6) as saying that every power of a diagonal-
izable matrix can be written as a linear combination of the n fixed matrices
p1q∗1, p2q∗2, . . . , pnq∗n (we have not yet discussed linear combinations of ma-
trices, but it is completely analogous to linear combinations of vectors).

We now look at some examples of the types of problems that we can
solve with our new-found method of constructing formulas for large powers of
matrices.

Example 3.4.8
Fibonacci
Sequence

The Fibonacci sequence is the sequence of positive integers defined re-
cursively via

F0 = 0, F1 = 1, Fn+1 = Fn +Fn−1 for all n≥ 1.

The first few terms of this sequence are 0,1,1,2,3,5,8,13,21,34, . . ..For example,
F3 = F2 +F1 = 1+1 = 2,
F4 = F3 +F2 = 2+1 = 3,

and so on.

Find
an explicit formula for Fn that does not depend on the previous terms in
the sequence.
Solution:

The key observation is to notice that this sequence can be represented in
terms of matrix multiplication—the fact that Fn+1 = Fn +Fn−1 is equivalent
to the matrix-vector equation

[
Fn+1

Fn

]
=
[

1 1
1 0

][
Fn

Fn−1

]
for all n≥ 1.

If we iterate this matrix equation,We generalize this
example to many

other integer
sequences in

Section 3.D.

we find that

[
Fn+1

Fn

]
=
[

1 1
1 0

][
Fn

Fn−1

]

=
[

1 1
1 0

]2 [
Fn−1

Fn−2

]
= · · ·=

[
1 1
1 0

]n [
F1

F0

]
=
[

1 1
1 0

]n [
1
0

]
.

It follows that if we can find a closed-form formula for powers of the
matrix

A =
[

1 1
1 0

]
,

then a formula for Fn will follow immediately.

To find a formula for the powers of A, we diagonalize it. To this end, we
recall from Example 3.4.5 that its characteristic polynomial is λ 2−λ −1,
and its eigenvalues are

λ =
1
2
(
1±
√

5
)
.

For convenience, weφ is sometimes
called the “golden

ratio,” and its
decimal expansion
starts φ = 1.61803 . . .

define φ = (1+
√

5)/2, so that the eigenvalues of A
are φ and 1−φ .

Next, we find the corresponding eigenvectors. For λ = φ , we find a
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basis of null(A−φ I) as

When computing
the bottom-right

entry after
row-reducing, we
used the fact that

1− (1−φ)(−φ) =
−φ 2 +φ +1 = 0, since

φ was chosen
specifically to satisfy

this equation.

follows:
[

1−φ 1 0
1 −φ 0

]
R1↔R2−−−−→

[
1 −φ 0

1−φ 1 0

]

R2+(φ−1)R1−−−−−−−→
[

1 −φ 0
0 0 0

]
.

One basis of this null space is thus {(φ ,1)}. On the other hand, for λ =
1−φ , we find a basis of null(A− (1−φ)I):
[

φ 1 0
1 φ −1 0

]
R1↔R2−−−−→

[
1 φ −1 0
φ 1 0

]
R2−φR1−−−−−→

[
1 φ −1 0
0 0 0

]
.

It follows that one basis of this null space is {(1−φ ,1)}.
By putting this all together, we see that we can diagonalize A via

A = PDP−1, where

D =

[
φ 0
0 1−φ

]
, P =

[
φ 1−φ

1 1

]
, and P−1 =

1√
5

[
1 φ −1
−1 φ

]
.

Finally, we can use this diagonalization to compute arbitrary powers
of A and thus find our desired

Here we use the fact
that if A = PDP−1

then An = PDnP−1.

formula for Fn:

[
Fn+1

Fn

]
=
[

1 1
1 0

]n [
1
0

]

=
1√
5

[
φ 1−φ

1 1

][
φ n 0
0 (1−φ)n

][
1 φ −1
−1 φ

][
1
0

]

=
1√
5

[
φ 1−φ

1 1

][
φ n 0
0 (1−φ)n

][
1
−1

]

=
1√
5

[
φ 1−φ

1 1

][
φ n

−(1−φ)n

]

=
1√
5

[
φ n+1− (1−φ)n+1

φ n− (1−φ)n

]
.

We thus obtain

This formula is
remarkable for the

fact that it combines
powers of two

irrational numbers (φ
and 1−φ ) in such a

way that the result is
an integer (Fn) for all

n. It is called Binet’s
formula.

the following simple formula for the n-th Fibonacci num-
ber:

Fn =
1√
5

(
φ

n− (1−φ)n).

The idea used in the previous example works in a lot of generality—if we
can represent a problem via powers of a matrix, then there’s a good chance
that diagonalization can shed light on it. The following example builds upon
this idea and shows how we can make use of diagonalization to solve a graph
theory problem that we introduced back in Section 1.B.

Example 3.4.9
Counting Paths in

Graphs via
Diagonalization

Find a formula for the number of paths of length k from vertex A to vertex
D in the following graph:



3.4 Diagonalization 325

A B

C D E

Solution:
RecallIf you did not read

Section 1.B, you
should either do so

now or skip this
example.

from Theorem 1.B.1 that we can count the number of paths
between vertices in this graph by first constructing the adjacency matrix
A ∈M5 of this graph—the matrix whose (i, j)-entry equals 1 if there is
an edge from the i-th vertex to the j-th vertex, and equals 0 otherwise:

A =




0 1 1 1 1
1 0 1 1 1
1 1 0 0 0
1 1 0 0 0
1 1 0 0 0



.

In particular, the number of paths of length k from vertex A to vertex D is
equal to [Ak]1,4.

To find an explicit formula for this quantity, we diagonalize A. Its
eigenvalues, along with corresponding eigenvectors, are as

The repeated
eigenvalue

λ3 = λ4 = 0 might
worry us a bit, but A
is still diagonalizable

since its
corresponding
eigenspace is
2-dimensional.

follows:

λ1 =−2 v1 = (1,1,−1,−1,−1)
λ2 =−1 v2 = (1,−1,0,0,0)
λ3 = 0 v3 = (0,0,1,−1,0)
λ4 = 0 v4 = (0,0,0,1,−1)
λ5 = 3 v5 = (3,3,2,2,2).

The matrices P and D in the diagonalization A = PDP−1 are thus

D =




−2 0 0 0 0
0 −1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 3




and P =




1 1 0 0 3
1 −1 0 0 3
−1 0 1 0 2
−1 0 −1 1 2
−1 0 0 −1 2



.

It is then straightforward (albeit rather tedious) to compute

P−1 =
1
30




6 6 −6 −6 −6
15 −15 0 0 0
0 0 20 −10 −10
0 0 10 10 −20
3 3 2 2 2



,

so we now have a complete diagonalization of A. It follows that Ak =
PDkP−1 for all integers k ≥ 0, so the formula that we desire is simply the
(1,4)-entry of PDkP−1. Since we do not require this entire matrix, we can
save some effort by recalling that [Ak]1,4 = [PDkP−1]1,4 is

Alternatively,
[PDkP−1]1,4 is the dot

product of the 1st
row of P with the 4th

row of DkP−1.
the dot product
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of the 1st row of PDk with the 4th column of P−1. That is, the number of
paths of length k from vertex A to vertex D is

[Ak]1,4 = [PDkP−1]1,4 =
1

30

1st row of PDk

︷ ︸︸ ︷
((−2)k,(−1)k,0,0,3k+1) ·

30×(4th column of P−1)︷ ︸︸ ︷
(−6,0,−10,10,2)

=
1
5
(
3k− (−2)k) for all integers k ≥ 0.

Non-Integer Powers of Matrices
Recall that when we originally defined matrix powers back in Section 1.3.2,
we only did so for positive integer exponents. After all, what would it mean to
multiply a matrix by itself, for example, 2.3 times? We are now in a position to
fill this gap and define the r-th power of a diagonalizable matrix for any real
number r (i.e., r does not need to be an integer):

Definition 3.4.2
Powers of

Diagonalizable
Matrices

Suppose A ∈Mn is diagonalizable (i.e., A = PDP−1 for some invertible
P ∈Mn and diagonal D ∈Mn). We then define

Ar def= PDrP−1 for all r ∈ R,

where Dr is obtained byActually, this
definition works fine

if r ∈ C too.

raising each of its diagonal entries to the r-th
power.

In other words, we define non-integer powers of diagonalizable matrices
so as to extend the pattern Ak = PDkP−1 that we observed for positive inte-
ger exponents. Before proceeding to examples, we note that there are two
technicalities that arise from this definition that we have to be slightly careful
of:

• First, how do we know that Definition 3.4.2 is well-defined (i.e., how do
we know that Ar does not change if we choose a different diagonalization
of A)? Fortunately, it is well-defined, which we prove in Exercise 3.4.16.

• Second, if the eigenvalues of A are negative or complex (non-real) then
we may have to be somewhat careful about how we compute powers of
the diagonal entries of D (i.e., the eigenvalues of A). The result of such
an exponentiation will be complex in general, since we have (−1)1/2 = i,
for example. See Appendix A.1 for a discussion of how to exponentiate
negative and complex numbers.

Example 3.4.10
Computing Weird

Matrix Powers

Use Definition 3.4.2 to compute the following powers of A =
[

0 4
−1 5

]
.

a) A1/2

b) A−1

c) Aπ

Solutions:
a) The eigenvalues of A are 1 and 4, which correspond to the eigen-

vectors

Try computing these
eigenvalues and

eigenvectors (and
thus this

diagonalization) on
your own.

(4,1) and (1,1), respectively. We can thus diagonalize A as
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follows:

A =
[

4 1
1 1

]

︸ ︷︷ ︸
P

[
1 0
0 4

]

︸ ︷︷ ︸
D

(
1
3

[
1 −1
−1 4

])

︸ ︷︷ ︸
P−1

.

Using Definition 3.4.2 then tells us

Here we moved the
1/3 from in front of
P−1 to the front of

the product.

that

A1/2 =
1
3

[
4 1
1 1

][
11/2 0

0 41/2

][
1 −1
−1 4

]

=
1
3

[
4 1
1 1

][
1 0
0 2

][
1 −1
−1 4

]

=
1
3

[
4 1
1 1

][
1 −1
−2 8

]
=

1
3

[
2 4
−1 7

]
.

b) We re-use the diagonalization from part (a). We could just raise the
diagonal entries of D to the exponent −1 rather than 1/2, but we
instead find an explicit formula for Ar and then plug r = −1 into
that formula afterward:

Ar =
1
3

[
4 1
1 1

][
1r 0
0 4r

][
1 −1
−1 4

]

=
1
3

[
4 1
1 1

][
1 −1

−4r 4r+1

]
=

1
3

[
4−4r 4r+1−4

1−4r 4r+1−1

]
.

Plugging

If we plug r = 1/2
into this formula, we

get the above
answer to part (a).

r =−1 into this formula gives

A−1 =
1
3

[
4−4−1 40−4

1−4−1 40−1

]
=

1
3

[
15/4 −3
3/4 0

]
=

1
4

[
5 −4
1 0

]
.

As a side note, this matrix really is the inverse of A (as we would
hope based on the notation), since

A−1A =
1
4

[
5 −4
1 0

][
0 4
−1 5

]
=
[

1 0
0 1

]
= I.

c) Plugging r = π into the formula that we found in part (b) gives

Aπ =
1
3

[
4−4π 4π+1−4

1−4π 4π+1−1

]
,

which cannot be simplified much further than that.

When defined in this way, matrix powers “just work” and behave much like
powers of numbers in many ways. After all, multiplication of diagonal matrices
works entry-wise (i.e., just like multiplication of scalars), and multiplication of
diagonalizable matrices works just like multiplication of diagonal matrices.

For example, if r =−1 then the matrix A−1, that we computed via Defini-
tion 3.4.2 in Example 3.4.10(b) was indeed the inverse of A. To see that this
happens in general, note that if A = PDP−1 is a diagonalization of A (and thus
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D is diagonal with the eigenvalues λ1, λ2, . . ., λn of A along its diagonal)Recall from
Exercise 3.3.16 that A

is invertible if and
only if it does not

have 0 as an
eigenvalue. This

makes sense here
since we can

compute A−1 using
this method if and

only if each λ
−1
j

exists.

then

A−1A =


P




λ
−1
1 · · · 0
...

. . .
...

0 · · · λ−1
n


P−1





P




λ1 · · · 0
...

. . .
...

0 · · · λn


P−1




= P




λ
−1
1 λ1 · · · 0

...
. . .

...

0 · · · λ−1
n λn


P−1 = PIP−1 = I.

We can also use Definition 3.4.2 to compute roots of matrices just like we
compute roots of numbers. In particular, a square root of a matrix A ∈Mn is
a matrix B ∈Mn such that B2 = A. Well, if A = PDP−1 is a diagonalization of
A then A1/2 is one such matrix, since

(
A1/2)2 =


P




λ
1/2
1 · · · 0
...

. . .
...

0 · · · λ
1/2
n


P−1





P




λ
1/2
1 · · · 0
...

. . .
...

0 · · · λ
1/2
n


P−1




= P




λ
1/2
1 λ

1/2
1 · · · 0

...
. . .

...

0 · · · λ
1/2
n λ

1/2
n


P−1 = P




λ1 · · · 0
...

. . .
...

0 · · · λn


P−1 = A.

For example, if we multiply the matrix A1/2 that we computed in Exam-
ple 3.4.10(a) by itself, we get

(
A1/2)2 =

(
1
3

[
2 4
−1 7

])(
1
3

[
2 4
−1 7

])
=

1
9

[
0 36
−9 45

]
=

[
0 4
−1 5

]
= A,

as expected. Slightly more generally, we say that B ∈Mn is a k-th root of
A ∈Mn if Bk = A, and the same argument as above shows that B = A1/k is one
such k-th root.

Example 3.4.11
Computing a

Matrix Cube Root

Find a cube root of the matrix A =
[
−2 6
3 −5

]
.

Solution:
The eigenvalues of A are 1 and −8, with corresponding eigenvectors

(2,1) and (1,−1), respectively. We can thus diagonalize A as follows:

A =
[

2 1
1 −1

]

︸ ︷︷ ︸
P

[
1 0
0 −8

]

︸ ︷︷ ︸
D

(
1
3

[
1 1
1 −2

])

︸ ︷︷ ︸
P−1

.

We can then find a cube root B of A simply by taking the cube root of
the diagonal entries of D (1 and−8), leaving the rest of the diagonalization
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alone:

B =
1
3

[
2 1
1 −1

][
1 0
0 −2

][
1 1
1 −2

]
=
[

0 2
1 −1

]
.

To double-check our work, we

There are also 8
other cube roots of

this matrix A, but they
all have complex
(non-real) entries.

can verify that it is indeed the case that
B3 = A:

B3 =
[

0 2
1 −1

][
0 2
1 −1

][
0 2
1 −1

]

=
[

0 2
1 −1

][
2 −2
−1 3

]
=

[
−2 6
3 −5

]
= A.

It is important to keep in mind that, just like roots of numbers are not
unique (for example, 2 and −2 are both square roots of 4), roots of matrices
are also not unique. However, this non-uniqueness is much more pronounced
for matrices, as we now demonstrate.

Example 3.4.12
Multiple Square

Roots of a Matrix

Find four different square roots of A =
[

0 4
−1 5

]
.

Solution:
We already found one square root of A back in Example 3.4.10(a):

A1/2 =
1
3

[
2 4
−1 7

]

is one, and −A1/2 is another one. To find two more square roots of A,
we can use the same procedure that we used to compute A1/2, but take
different square roots of its eigenvalues (when computing A1/2, we took
the positive square root of both of its eigenvalues). In particular, since one
diagonalization of A is

A =
1
3

[
4 1
1 1

][
1 0
0 4

][
1 −1
−1 4

]
,

two other square roots of ADespite looking
absolutely nothing

like A1/2, B really is a
square root of A.
Compute B2 to

check.

are

B =
1
3

[
4 1
1 1

][
1 0
0 −2

][
1 −1
−1 4

]
=

1
3

[
4 1
1 1

][
1 −1
2 −8

]
=
[

2 −4
1 −3

]
,

as well as −B.

Example 3.4.13
Infinitely Many

Square Roots of
a Matrix

Show that the identity matrix has infinitely many different square roots.
Solution:

Perhaps the simplest way to demonstrate this fact is by thinking ge-
ometrically. We want to find infinitely many linear transformations with
the property that, if we apply them to a vector twice,We learned about

reflections and their
standard matrices

back in Section 1.4.2.

they do nothing.
Reflections are one such family of linear transformations: reflecting a
vector across a line once changes that vector, but reflecting it again moves
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it back to where it started.

It follows that if Fu is the reflection across the line in the direction of a
unit vector u, then F2

u = I:

u

v

x

y

Fu−−→
Fu(v)u

x

y

Fu−−→
u

F2
u (v) = v

x

y

Since the standard matrix of FuWe made this exact
same observation

about the square of
a reflection way

back in
Exercise 1.4.17.

is [Fu] = 2uuT −I, every matrix of the form
2uuT−I is a square root of I (i.e., (2uuT − I)2 = I for all unit vectors u).

The following theorem explains the key difference that led to the identity
matrix having infinitely many square roots, versus the matrix from Exam-
ple 3.4.12 only having finitely many square roots (indeed, the four square roots
that we found in that example are all of them). It also shows that the method
we used in Example 3.4.12 (i.e., taking all possible roots of the diagonal entries
of D in a diagonalization of A) gives us all roots of A—there are no other roots
that require different techniques to be found.

Theorem 3.4.6
Counting Roots of

Matrices

Suppose A ∈Mn(C) is diagonalizable and let k > 1 be an integer.

a) If A’s eigenvalues are distinct, it has exactly kn different k-th roots.
b) If A’s eigenvalues are not distinct, it has infinitely many k-th roots.

Our discussion of matrix powers has perhaps gone on long enough, so we
leave the proof of the above theorem as Exercise 3.4.15. Instead, we close this
subsection by noting that the “usual” exponent laws that we would hope for
matrix powers to satisfy do still hold, as long as we restrict our attention to
matrices with non-negative real eigenvalues. That is, Ar+s = ArAs and (Ar)s =
Ars for all real numbers r and s, as long as A has non-negative real eigenvalues
(see Exercise 3.4.19).

Seriously, we have to
be careful when

taking non-integer
powers of negative

or complex
(non-real) numbers—

see Appendix A.1.

However, if we do not restrict to matrices with non-negative real eigenval-
ues, these exponent rules are not even true for 1×1 matrices (i.e., scalars). For
example,

(
(−1)1/2)2 = i2 =−1, but

(
(−1)2)1/2 = 11/2 = 1.

Furthermore, keep in mind that the theorem only applies to diagonalizable
matrices. We will see in Exercise 3.5.4 that some non-diagonalizable matrices
do not have any roots at all.

3.4.3 Matrix Functions

Now that we understand how powers of matrices work, it is not a huge leap to
imagine that we can apply polynomials to matrices. In particular, we say that if
p is a polynomial defined by

p(x) = ckxk + · · ·+ c2x2 + c1x+ c0,
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then we can apply p to a square matrix A via
Recall that A0 = I for

all A ∈Mn. p(A) = ckAk + · · ·+ c2A2 + c1A+ c0I.

That is, we just raise A to the same powers that x was raised to in the scalar-
valued version of p.

Just like we can use diagonalization to easily compute large powers of
matrices, we can also use it to quickly compute a polynomial applied to a
matrix. In particular, we just apply the polynomial to the diagonal part of the
diagonalization:

Theorem 3.4.7
Polynomial of a
Diagonalizable

Matrix

Suppose A ∈Mn is diagonalizable (i.e., A = PDP−1 for some invertible
P ∈Mn and diagonal D ∈Mn) and p is a polynomial. Then

p(A) = Pp(D)P−1,

where p(D) is obtained by applying p to each diagonal entry of D.

Proof. We just write p(x) = ckxk + · · ·+c2x2 +c1x+c0, and then make use of
the fact that

(
PDP−1

)r = PDrP−1 for all r:

p(A) = p
(
PDP−1)= ck

(
PDP−1)k + · · ·+ c2

(
PDP−1)2 + c1

(
PDP−1)+ c0I

= ck
(
PDkP−1)+ · · ·+ c2

(
PD2P−1)+ c1

(
PDP−1)+ c0I

= P
(
ckDk + · · ·+ c2D2 + c1D+ c0I

)
P−1

= Pp(D)P−1,

as desired. �

One immediate consequence of Theorem 3.4.7 is that if a matrix A ∈
Mn has an eigenvalue λ with corresponding eigenvector v, then p(λ ) is an
eigenvalue of p(A) corresponding to the same eigenvector v. In fact, this is true
even for non-diagonalizable matrices (see Exercise 3.4.18).

Example 3.4.14
Polynomial of

a Matrix

Compute p(A) directly from the definition and also via Theorem 3.4.7, if
p(x) = x3−3x2 +2x−4 and A =

[
0 4
−1 5

]
.

Solution:
To compute p(A) directly, we first compute A2 and A3:

A2 =

[
0 4
−1 5

][
0 4
−1 5

]
=

[
−4 20
−5 21

]
and

A3 = A2A =

[
−4 20
−5 21

][
0 4
−1 5

]
=

[
−20 84
−21 85

]
.
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It follows that

p(A) = A3−3A2 +2A−4I

=

[
−20 84
−21 85

]
−3

[
−4 20
−5 21

]
+2

[
0 4
−1 5

]
−4
[

1 0
0 1

]

=
[
−12 32
−8 28

]
.

To instead use Theorem 3.4.7 to compute p(A), recall from Exam-
ple 3.4.10 that A can be diagonalized as

A =
1
3

[
4 1
1 1

][
1 0
0 4

]

︸ ︷︷ ︸
D

[
1 −1
−1 4

]
.

We thus have

p(A) =
1
3

[
4 1
1 1

][
p(1) 0

0 p(4)

][
1 −1
−1 4

]

=
1
3

[
4 1
1 1

][
−4 0
0 20

][
1 −1
−1 4

]

=
1
3

[
4 1
1 1

][
−4 4
−20 80

]
=
[
−12 32
−8 28

]
,

which agrees with the answer that we found earlier via direct computation.

Well, if we can apply a polynomial to a matrix just by applying it to each of
the diagonal entries in its diagonalization, why not just do the same thing for
functions in general? Since diagonal matrices (and thus diagonalizable matrices)
multiply so much like scalars, doing this ensures that matrix functions retain
most of the useful properties of their scalar-valued counterparts.

Definition 3.4.3
Functions of

Diagonalizable
Matrices

Suppose A ∈Mn is diagonalizable (i.e., A = PDP−1 for some invertible
P ∈Mn and diagonal D ∈Mn) and f is a scalar-valued function. Then
we define

f (A) def= P f (D)P−1,

where f (D) is obtainedDon’t worry— f (A) is
well-defined (see

Exercise 3.4.17).

by applying f to each of the diagonal entries of D.

In other words, to compute a function of a matrix, we just do the exact
same thing that we did for powers and for polynomials: diagonalize, apply the
function to the diagonal part, and then un-diagonalize.

Example 3.4.15
Computing Weird

Matrix Functions

Compute the following functions of A =
[

0 4
−1 5

]
.

a) eA

b) sin(A)
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Solutions:
a) Recall from Example 3.4.10 that A can be diagonalized as

A =
1
3

[
4 1
1 1

][
1 0
0 4

]

︸ ︷︷ ︸
D

[
1 −1
−1 4

]
.

Definition 3.4.3 thus tells
Keep in mind that
we only apply the

function to the
diagonal entries of

D, not all entries of D.

us that

eA =
1
3

[
4 1
1 1

][
e 0

0 e4

][
1 −1
−1 4

]

=
1
3

[
4 1
1 1

][
e −e

−e4 4e4

]
=

1
3

[
4e− e4 4e4−4e

e− e4 4e4− e

]
.

b) Repeating the exact same calculation from part (a), but applying the
function sin(x) instead of ex to the diagonal entries of D,

Do not try to simplify
sin(A) any

further—sometimes
an ugly mess is just

an ugly mess.

gives

sin(A) =
1
3

[
4 1
1 1

][
sin(1) 0

0 sin(4)

][
1 −1
−1 4

]

=
1
3

[
4 1
1 1

][
sin(1) −sin(1)
−sin(4) 4sin(4)

]

=
1
3

[
4sin(1)− sin(4) 4sin(4)−4sin(1)
sin(1)− sin(4) 4sin(4)− sin(1)

]
.

Since matrix functions are defined via diagonalizations, which in turn
work via eigenvalues and eigenvectors, we know that if a square matrix A is
diagonalizable with λ as an eigenvalue corresponding to an eigenvector v, then
f (λ ) must be an eigenvalue of f (A) corresponding to the same eigenvector v.

Remark 3.4.2
Matrix Functions
via Power Series

Another way to define matrix functions, which has the advantage of also
applying to non-diagonalizable matrices, is to recall that many functions
can be written as a power series—an infinite sum of powers of the input
variable—on some open interval

A function that can
be written as a

power series is called
analytic.

(a,b):

f (x) = c0 + c1x+ c2x2 + c3x3 + · · ·=
∞

∑
k=0

ckxk for all x ∈ (a,b).

Most named functions from

This all works for
complex-valued

analytic functions
too.

calculus courses are of this type. For example,

ex =
∞

∑
k=0

1
k!

xk for all x ∈ R,

sin(x) =
∞

∑
k=0

(−1)k

(2k +1)!
x2k+1 for all x ∈ R,

1
1− x

=
∞

∑
k=0

xk for all x ∈ (−1,1), and

− ln(1− x) =
∞

∑
k=0

1
k

xk for all x ∈ (−1,1).
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By simply replacing powers of x by powers of A in these power series,
we get analogous matrix functions. For example, we could define eA by

eA =
∞

∑
k=0

1
k!

Ak for all A ∈Mn.

The tricky thing about defining matrix functions in this way is dealing with
(a) convergence concerns (how do we know that the entries of Ak decrease
fast enough that every entry of this infinite sum approaches a fixed limit?),
and (b) how to actually compute these sums (we certainly need a better
method than adding up infinitely many large powers of A).

However, if we restrict our attention to diagonalizable matrices and
ignore convergence concerns, this method is equivalent to Definition 3.4.3
since

f (A) = f (PDP−1) =
∞

∑
k=0

ck(PDP−1)k = P

(
∞

∑
k=0

ckDk

)
P−1 = P f (D)P−1

and each diagonal entry of f (D) can be computed by applying f to the
diagonal entries of D.

The most well-known and frequently-used matrix function (besides powers
and polynomials) is the matrix exponential f (A) = eA. The following theorem
establishes some of the basic properties of the matrix exponential, which are
analogous to the facts that, for real numbers, e0 = 1 and 1/ex = e−x.

Theorem 3.4.8
Properties of the

Matrix
Exponential

Suppose A ∈Mn is diagonalizable. Then

a) eO = I, and
b) eA is invertible and

(
eA
)−1 = e−A.

Proof. For part (a), just notice that the zero matrix is diagonal, so

eO =




e0 0 · · · 0

0 e0 · · · 0
...

...
. . .

...

0 0 · · · e0




=




1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1


= I.

Similarly, for

The main practical
use of the matrix
exponential is for

solving systems of
linear differential

equations—a topic
that is outside the

scope of this book.

part (b) we just multiply eA by e−A and work with their diagonal
parts entry-by-entry:

eAe−A =
(
PeDP−1)(Pe−DP−1)

= P




ed1,1 0 · · · 0

0 ed2,2 · · · 0
...

...
. . .

...

0 0 · · · edn,n







e−d1,1 0 · · · 0

0 e−d2,2 · · · 0
...

...
. . .

...

0 0 · · · e−dn,n




P−1
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= P




1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1


P−1

= I.

We thus conclude that eA and e−A are inverses of each other. �

Note, however, that it is typically not the case that eA+B = eAeB (even
though ex+y = exey for all real numbers x and y). The reason that this property
does not extend to matrices is the exact same reason that matrix powers do
not satisfy properties like (A + B)2 = A2 + 2AB + B2 or (AB)2 = A2B2: non-
commutativity of matrix multiplication gets in the way. For example, if

A =
[

1 1
0 0

]
and B =

[
0 0
1 1

]
,

then

eA+B =
1
2

[
e2 +1 e2−1

e2−1 e2 +1

]
, but

eAeB =
[

e e−1
0 1

][
1 0

e−1 e

]
=

[
e2− e+1 e2− e

e−1 e

]
.

Roughly speaking, properties of functions carry over to matrices as long as
they only depend on one input (a single number x or matrix A), but not if they
depend on two or more inputs (numbers x and y, or matrices A and B).

The matrix exponential also provides an interesting connection between
the trace and determinant of a matrix:

Theorem 3.4.9
Determinant of the
Matrix Exponential

If A ∈Mn is diagonalizable then det
(
eA
)

= etr(A).

Proof. Recall from Theorem 3.3.1 that if the eigenvalues of A, listed according
to algebraic multiplicity, are λ1, λ2, . . ., λn, then

det(A) = λ1λ2 · · ·λn and tr(A) = λ1 +λ2 + · · ·+λn.

The equation that we want comes from combining that theorem with the fact
that the eigenvalues of eA are eλ1 ,eλ2 , . . . ,eλn :

det
(
eA)= eλ1eλ2 · · ·eλn = eλ1+λ2+···+λn = etr(A). �

The previous two theorems are actually true for non-diagonalizable matrices
as well, but even defining functions of non-diagonalizable matrices requires
some technicalities that are beyond the scope of this book. They are typically
handled via something called the “Jordan decomposition” of a matrix, which is
covered in [Joh20].
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Exercises solutions to starred exercises on page 468

3.4.1 Diagonalize the following matrices over R, or give a
reason why that is not possible.

∗(a)
[

1 1
1 1

]

∗(c)
[

1 1
0 1

]

∗(e)



2 0 0
0 0 1
0 1 0




∗(g)



3 0 1
0 −1 2
0 0 2




(b)
[

2 1
−1 2

]

(d)
[
−2 6
−3 7

]

(f)



5 0 −3
−3 2 3
6 0 −4




(h)


−3 4 5
−3 5 3
1 −2 1




3.4.2 Diagonalize the following matrices over C, or give
a reason why that is not possible.

∗(a)
[

1 1
1 1

]

∗(c)
[

2 1
−1 2

]

∗(e)



2 0 0
0 0 1
0 −1 0




∗(g)



1+ i −1 0
1 −1+ i 0
2 −2 i




(b)
[

2+2i 1− i
2 1− i

]

(d)
[

1 1
−9 −5

]

(f)


−2 −3 −2
4 6 4
−4 −5 −4




(h)



2 4 −2
1 3 −1
3 −1 1




§ 3.4.3 Use computer software to diagonalize the fol-
lowing matrices over R (if possible) or C (if possible), or
explain why this is not possible.

∗(a) 


4 −2 2 −3 2
0 4 −1 1 0
2 0 3 −2 2
2 0 0 1 2
−1 2 −2 3 1




(b) 


−2 7 9 3 10
−1 4 3 2 5
2 −4 −5 −3 −7
1 −1 −1 0 −2
−2 3 5 2 6




∗(c) 


11 4 7 −18 5
7 3 8 −15 5

20 5 23 −43 15
15 5 14 −29 10
−1 1 −3 4 0




(d) 


−4 4 2 2 1
−5 5 2 2 1
−5 4 3 2 1
5 −4 −2 −1 −1
−5 4 2 2 2




3.4.4 Compute the indicated function of the matrix A that
was diagonalized in the specified earlier exercise.

∗(a) eA, where A is the matrix from Exercise 3.4.1(a).
∗(b) sin(A), Exercise 3.4.1(a).

(c)
√

A, Exercise 3.4.1(d).
(d) eA, Exercise 3.4.1(e).

§ 3.4.5 Use computer software to diagonalize the follow-
ing matrices and then find a real square root of them.

∗(a) 


18 5 4 9 −8
−17 −4 −4 −9 8
20 8 5 12 −8
3 3 0 4 0
20 8 4 12 −7




(b) 


−2 3 11 −1 3
−14 −6 −4 −7 3

6 −9 3 −15 −9
1 12 −1 5 12
3 0 15 −12 −9




3.4.6 Determine which of the following statements are
true and which are false.

∗(a) If there exists P ∈Mn and a diagonal D ∈Mn such
that AP = PD then A is diagonalizable.

(b) If A ∈Mn(C) has n eigenvectors then A is diagonal-
izable.

∗(c) A matrix A ∈Mn(C) is diagonalizable if and only if
it has n eigenvalues, counting algebraic multiplicity.

(d) A matrix A ∈Mn(C) is diagonalizable if and only if
it has n eigenvalues, counting geometric multiplicity.

∗(f) If A ∈Mn(C) is diagonalizable then it has n distinct
eigenvalues.

(g) If A ∈Mn(C) has n distinct eigenvalues then it is
diagonalizable.

∗(h) Every diagonalizable matrix is invertible.
(i) If A ∈Mn is diagonalizable then A2 is diagonaliz-

able too.
∗(j) If A ∈Mn is diagonalizable with all eigenvalues

equal to each other (i.e., a single eigenvalue with
multiplicity n) then it must be a scalar multiple of
the identity matrix.

3.4.7 Let k ∈ R and consider the following matrix:

A =

[
5 3
k −1

]
.

(a) For which values of k is A diagonalizable over R?
(b) For which values of k is A diagonalizable over C?

∗3.4.8 Suppose

A =

[
5 −6
−3 2

]
.

Find a cube root of A (i.e., find a matrix B such that B3 = A).
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∗3.4.9 The Lucas sequence is the sequence of positive
integers defined recursively via

L0 = 2, L1 = 1, Ln+1 = Ln +Ln−1 for all n≥ 1.

Find an explicit formula for Ln. [Hint: This sequence satis-
fies the same recurrence as the Fibonacci numbers, but just
has different initial conditions, so the diagonalization from
Example 3.4.8 can be used here as well.]

3.4.10 The Pell sequence is the sequence of positive inte-
gers defined recursively via

P0 = 0, P1 = 1, Pn+1 = 2Pn +Pn−1 for all n≥ 1.

Find an explicit formula for Pn.

[Hint: Mimic the method used in Example 3.4.8.]

3.4.11 Let Fn be the n-th term of the Fibonacci sequence
from Example 3.4.8.

(a) Show that[
Fn+1 Fn

Fn Fn−1

]
=

[
1 1
1 0

]n

for all n≥ 1.

(b) Show that Fn+1Fn−1−F2
n = (−1)n for all n≥ 1.

[Hint: Determinants.]
(c) Show that Fm+n = Fm+1Fn +FmFn−1 for all m,n≥ 1.

[Hint: AmAn = Am+n for all square matrices A.]

∗∗3.4.12 Suppose A ∈Mn(C).

(a) Show that if A is diagonalizable then rank(A) equals
the number of non-zero eigenvalues of A.

(b) Give an example to show that part (a) is not necessar-
ily true if A is not diagonalizable.

3.4.13 Suppose A = xyT for some non-zero column vec-
tors x,y ∈ Rn.

[Side note: Recall that a matrix has rank 1 if and only if it
can be written in this form.]

(a) Show that A has at most one non-zero eigenvalue,
equal to x ·y, with corresponding eigenvector x.

(b) Show that A is diagonalizable if and only if x ·y 6= 0.

∗3.4.14 Suppose A,B ∈Mn are matrices with the same
eigenvalues and corresponding eigenvectors.

(a) Show that if A is diagonalizable then A = B.
(b) Give an example to show that if A is not diagonaliz-

able then it might be the case that A 6= B.

∗∗3.4.15 Recall Theorem 3.4.6, which counted the number
of roots of a diagonalizable matrix.

(a) Prove part (a) of the theorem.
(b) Prove part (b) of the theorem.

∗∗3.4.16 Show that matrix powers are well-defined by Def-
inition 3.4.2. That is, show that if P1D1P−1

1 = P2D2P−1
2 are

two diagonalizations of a matrix then P1Dr
1P−1

1 = P2Dr
2P−1

2
for all real r.

∗∗3.4.17 Show that matrix functions are well-defined by
Definition 3.4.3. That is, show that if P1D1P−1

1 = P2D2P−1
2

are two diagonalizations of a matrix then P1 f (D1)P−1
1 =

P2 f (D2)P−1
2 for all functions f .

∗∗3.4.18 Suppose A ∈Mn has eigenvector v with corre-
sponding eigenvalue λ .

(a) Show that v is an eigenvector of A2 with eigenvalue
λ 2.

(b) Show that if k≥ 0 is an integer then v is an eigenvec-
tor of Ak with eigenvalue λ k .

(c) Show that if p is a polynomial then v is an eigenvec-
tor of p(A) with eigenvalue p(λ ).

∗∗3.4.19 Suppose A ∈Mn is diagonalizable and has non-
negative real eigenvalues. Show that if r and s are real num-
bers then

(a) Ar+s = ArAs, and
(b)

(
Ar)s = Ars.

3.4.20 Suppose A ∈Mn is diagonalizable. Show that

e
(

AT
)

=
(
eA)T .

∗3.4.21 Suppose A,B ∈Mn are diagonalizable and so is
A+B. Show that

det
(
eA+B)= det

(
eAeB).

[Be careful: remember that it is not the case that eA+B =
eAeB in general.]

3.4.22 Suppose A ∈Mn is diagonalizable. Show that
sin2(A)+ cos2(A) = I.

∗∗3.4.23 Recall from Exercise 3.3.23 that the companion
matrix of the polynomial p(λ ) = λ n + an−1λ n−1 + · · ·+
a1λ +a0 is the matrix

C =




0 1 0 · · · 0
0 0 1 · · · 0

...
...

...
. . .

...
0 0 0 · · · 1
−a0 −a1 −a2 · · · −an−1




.

(a) Show that if the eigenvalues λ1,λ2, . . . ,λn of C (i.e.,
the roots of p) are distinct, then C can be diagonal-
ized by the matrix

V =




1 1 . . . 1
λ1 λ2 . . . λn

λ 2
1 λ 2

2 . . . λ 2
n

...
...

. . .
...

λ
n−1
1 λ

n−1
2 · · · λ n−1

n




.

That is, show that C = V DV−1, where D is the diag-
onal matrix with diagonal entries λ1, λ2, . . ., λn, in
that order.
[Side note: Recall from Example 2.3.8 that V is the
transpose of a Vandermonde matrix, and it is invert-
ible if λ1,λ2, . . . ,λn are distinct.]
[Hint: What should the eigenvectors of C be if this
diagonalization is correct?]

(b) Show that if the eigenvalues of C are not distinct then
it is not diagonalizable.
[Hint: Show that the geometric multiplicity of an
eigenvalue of C is always 1, regardless of its alge-
braic multiplicity.]
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3.5 Summary and Review

In this chapter, we introduced coordinate systems as a method of viewing
vectors and linear transformations in different ways that can make them easier
to work with. This led to the question of how we can determine whether or
not two matrices A,B ∈Mn are similar (i.e., whether or not there exists an
invertible matrix P ∈Mn such that A = PBP−1), since they are similar if and
only if they represent the same linear transformation in different bases.

We noted that several important properties of matrices and linear transfor-
mations are similarity invariant, which means that if two matrices A,B ∈Mn
are similar then they share that property. Some examples of similarity invariant
properties of matrices include their:The fact that the

characteristic
polynomial is

similarity invariant
implies that the

trace, determinant,
eigenvalues, and

algebraic
multiplicities are as

well.

• rank,
• trace,
• determinant,
• eigenvalues,
• algebraic and geometric multiplicities of their eigenvalues, and
• characteristic polynomial.

One particularly important case is when A ∈Mn is similar to a diagonal
matrix D (i.e., A = PDP−1 for some invertible P and diagonal D), in which
case we call A diagonalizable. Geometrically, we can think of such matrices as
un-skewing space, then stretching along the standard basis vectors, and then
re-skewing space back to how it started, as in Figure 3.25.

Compare this image
to Figure 3.8.

A basis of Rn (or Cn)
consisting

eigenvectors of A is
sometimes called an

eigenbasis of A.

x

y

v2 v1

P−1−−−→

x

y

P−1v2 = e2

P−1v1 = e1

D−−→

x

y

De2 = 2e2

De1 = 1e1

P−−→

x

y

v2 = 2v2

v1 = 1v1

Figure 3.25: If A = PDP−1 ∈M2 has eigenvectors v1 and v2 with corresponding
eigenvalues λ1 and λ2, respectively, then its diagonalization skews the basis {v1,v2}
into the standard basis, then stretches along the coordinate axes by the eigenval-
ues, and then skews the standard basis back into {v1,v2}.

If A is diagonalizable then it can be manipulated almost as easily as diagonal
matrices, so we can do things like compute large powers of A very quickly, or
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even define things like square roots of A or eA. The idea is to simply do all of
the hard work to the diagonal piece D and then un-skew and skew space after
the fact (i.e., multiply on the left by P and multiply on the right by P−1 after
manipulating D appropriately).

In addition to making computations significantly easier, diagonalization
can also make it much simpler to prove theorems (as long as we are willing to
take the trade-off that we are only proving things about diagonalizable matrices,
not all matrices).

For example, we showed in Theorem 3.3.1 that if A ∈Mn(C) has eigen-
values (listed according to algebraic multiplicity) λ1, λ2, . . ., λn then

det(A) = λ1λ2 · · ·λn and tr(A) = λ1 +λ2 + · · ·+λn,

but the proof of these facts (especially the fact about the trace) was quite long
and involved. However, these facts can be proved in just one line via similarity
invariance of the determinant and trace if A = PDP−1 is diagonalizable:

det(A) = det(PDP−1) = det(D) = λ1λ2 · · ·λn and

tr(A) = tr(PDP−1) = tr(D) = λ1 +λ2 + · · ·+λn,

where the final equalities both follow from the fact that the diagonal entries of
D are λ1,λ2, . . . ,λn.

Remark 3.5.1
Does a Property

Hold for
Diagonalizable

Matrices or
All Matrices?

When trying to solve a problem in linear algebra, it is often tempting to
assume that the matrix we are working with is diagonalizable. However,
this can be slightly dangerous too, as we might mislead ourselves into
thinking that some nice property of diagonalizable matrices holds for all
matrices (even though it does not).

In situations like this, when we know that a property holds for diago-
nalizable matrices and we want to get an idea of whether or not it holds in
general, a good trick is to check whether or not the (non-diagonalizable)
matrix

N =
[

0 1
0 0

]

has that property.

For example, we showed in Exercise 3.4.12 that the rank of a diagonal-
izable matrix A ∈Mn(C) equals the number of non-zero eigenvalues that
it has (counting algebraic multiplicity). But we can see that this property
does not hold for non-diagonalizable matrices, since N has no non-zero
eigenvalues yet has rank 1. Similarly, since the method of Section 3.4.2 can
be used to find a square root of every diagonalizable matrix A ∈Mn(C),
it might be tempting to think that all matrices have square roots. However,
N does not—see Exercise 3.5.4.

Much like invertible matrices, diagonalizable matrices provide a place
where linear algebra is “easy”. While it might be difficult to prove something
or to perform a particular matrix calculation in general, doing it just for diago-
nalizable matrices is much simpler. For example, if we restrict our attention to
diagonalizable matrices then we can provide a complete answer to the question
of when two matrices are similar:
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Theorem 3.5.1
Similarity of

Diagonalizable
Matrices

Suppose A,B ∈Mn(C) are diagonalizable. Then A and B are similar if
and only if they have the same characteristic polynomial.

Proof. We already showed that similar matrices have the same characteristic
polynomial back on page 295, so we just need to show that the converse holds
for diagonalizable matrices.

To this end, suppose that A and B have the same characteristic polynomial.
Then they have the same eigenvalues with the same algebraic multiplicities, so
they are similar to a common diagonal matrix D (whose diagonal entries are
those shared eigenvalues):

A = PDP−1 and B = QDQ−1 for some invertible P,Q ∈Mn(C).

Multiplying the equation B = QDQ−1 on the left by Q−1 and on the right by Q
shows that Q−1BQ = D. Substituting this into the equation A = PDP−1 shows

Recall that the
inverse of a product
is the product of the

inverses in the
opposite order, so

(PQ−1)−1 = QP−1.

that

A = PDP−1 = P
(
Q−1BQ

)
P−1 =

(
PQ−1)B

(
PQ−1)−1

,

which demonstrates that A and B are similar. �

We saw back in Example 3.3.14 that this theorem is not true if A or B is
not diagonalizable, since the geometric multiplicities of eigenvalues are also
similarity invariant, but not determined by the characteristic polynomial. It
turns out that it is even possible for two non-diagonalizable matrices to have
the same characteristic polynomial and the same geometric multiplicities of all
of their eigenvalues, yet still not be similar (see Exercise 3.5.3). A complete
method of determining whether or not two matrices are similar is provided by
something called the “Jordan decomposition” of a matrix, which is covered in
advanced linear algebra books like [Joh20].

Exercises solutions to starred exercises on page 471

3.5.1 Determine whether or not the following pairs of
matrices are similar.

∗(a) A =
[

1 1
1 1

]
and B =

[
1 2
2 1

]

(b) A =
[

1 1
1 1

]
and B =

[
2 0
3 0

]

∗(c) A =
[

3 1
2 3

]
and B =

[
2 −1
3 5

]

(d) A =
[

2 1
−3 3

]
and B =

[
4 2
−1 1

]

∗(e) A =
[

3 3
0 2

]
and B =

[
4 2
−1 1

]

(f) A =



1 2 3
4 5 6
7 8 9




and B =



1 2 3
8 9 4
7 6 5




∗(g) A =



3 1 −1
0 2 1
−1 0 2




and B =



3 1 2
−2 3 0
1 −1 1




3.5.2 Determine which of the following statements are
true and which are false.

∗(a) If A is a square matrix with 3 as one of its eigenvalues,
then 9 must be an eigenvalue of A2.

(b) If A,B ∈Mn are similar then they have the same
range.

∗(c) If A,B ∈Mn are similar then their eigenvalues have
the same geometric multiplicities.

(d) If A,B ∈Mn are similar then they have the same
eigenvectors.

∗(e) If A ∈M2 and B ∈M2 each have eigenvalues 4 and
5 then they must be similar.

(f) If A ∈M3 and B ∈M3 each have eigenvalues 1, 2,
and 2, listed according to algebraic multiplicity, then
they must be similar.
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∗∗3.5.3 Consider the matrices

A =




0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0


 and B =




0 0 0 0
0 0 1 0
0 0 0 1
0 0 0 0


 .

(a) Show that A and B have the same rank.
(b) Show that A and B have the same characteristic poly-

nomial.
(c) Show that A and B have the same eigenvectors (and

thus in particular their eigenvalues have the same
geometric multiplicities).

(d) Show that A and B are not similar.
[Hint: Rewrite A = PBP−1 as AP = PB and solve a
linear system to find P.]

∗∗3.5.4 Show that the matrix

N =

[
0 1
0 0

]

does not have a square root. That is, show that there does
not exist a matrix A ∈M2(C) such that A2 = N.

3.A Extra Topic: More About Determinants

We now explore some more properties of determinants that go a bit beyond
the “core” results of Section 3.2 that should be known by all students of linear
algebra, but are nonetheless interesting and/or useful in their own right.

3.A.1 The Cofactor Matrix and Inverses

Recall from Section 3.2.3 that the determinant of a matrix can be computed
explicitly in terms of its cofactors. This section is devoted to showing that
cofactors can also be used to construct an explicit formula for the inverse of
a matrix. To this end, recall from Definition 3.2.2 that the (i, j)-cofactor of a
matrix A∈Mn is the quantityThe quantity mi, j was

called the
(i, j)-minor of A.

ci, j = (−1)i+ jmi, j, where mi, j is the determinant
of the (n− 1)× (n− 1) matrix obtained by removing the i-th row and j-th
column of A. Placing these cofactors into a matrix in the natural way creates a
matrix that it is worth giving a name to.

Definition 3.A.1
Cofactor Matrix

The cofactor matrix of A ∈Mn, denoted by cof(A), is the matrix whose
entries are the cofactors {ci, j}n

i, j=1 of A:

cof(A) def=




c1,1 c1,2 · · · c1,n
c2,1 c2,2 · · · c2,n

...
...

. . .
...

cn,1 cn,2 · · · cn,n


 ∈Mn.

Example 3.A.1
Computing

Cofactor
Matrices

Compute the cofactor matrix of the following matrices:

a)
[

2 3
−1 4

]
b)



1 2 3
4 5 6
7 8 9
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Solutions:
a) The cofactors of this matrix are

c1,1 = det([4]) = 4, c1,2 =−det([−1]) = 1,

c2,1 =−det([3]) =−3, and c2,2 = det([2]) = 2.

It follows that

cof
([

2 3
−1 4

])
=
[

c1,1 c1,2
c2,1 c2,2

]
=
[

4 1
−3 2

]
.

b) The (1,1)-cofactor of this matrix is

c1,1 = det

([
5 6
8 9

])
= 5 ·9−6 ·8 = 45−48 =−3.

Similarly, the otherCofactor matrices
quickly become
cumbersome to

compute as we work
with larger matrices.

For example,
constructing the

cofactor matrix of a
4×4 involves

computing 16
determinants of 3×3

matrices.

cofactors are

c1,1 =−3 c1,2 = 6 c1,3 =−3
c2,1 = 6 c2,2 =−12 c2,3 = 6
c3,1 =−3 c3,2 = 6 c3,3 =−3,

so

cof







1 2 3
4 5 6
7 8 9





=



−3 6 −3
6 −12 6
−3 6 −3


 .

Our primary interest in cofactor matrices comes from the following theorem,
which establishes a surprising connection between cofactor matrices and matrix
inverses.

Theorem 3.A.1
Matrix Inverse via

Cofactor Matrix

If A ∈Mn is an invertible matrix then

A−1 =
1

det(A)
cof(A)T .

Proof. This theoremRecall from
Theorem 3.2.1 that if

A is invertible then
det(A) 6= 0, so the

division by det(A) in
this theorem is not a

problem.

is essentially just a restatement of the cofactor method of
computing the determinant (Theorem 3.2.8). If we compute the (i, i)-entry of
the product Acof(A)T straight from the definition of matrix multiplication, we
get

[Acof(A)T ]i,i = ai,1[cof(A)T ]1,i +ai,2[cof(A)T ]2,i + · · ·+ai,n[cof(A)T ]n,i

= ai,1ci,1 +ai,2ci,2 + · · ·+ai,nci,n

= det(A).

We have thus shown that all of the diagonal entries of Acof(A)T are equal to
det(A).

On the other hand,The matrix cof(A)T is
sometimes called

the adjugate matrix
of A and denoted by

adj(A).

if i 6= j then the (i, j)-entry of the product Acof(A)T is

[Acof(A)T ]i, j = ai,1c j,1 +ai,2c j,2 + · · ·+ai,nc j,n. (3.A.1)

We claim that this sum equals 0. To see why this is the case, define B ∈Mn to
be the matrix that is identical to A, except its j-th row equals the i-th row of A
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(in particular, this means that the i-th and j-th rows of B are identical to each
other):

A=




a1,1 a1,2 · · · a1,n
a2,1 a2,2 · · · a2,n
...

...
. . .

...
ai,1 ai,2 · · · ai,n
...

...
. . .

...
a j,1 a j,2 · · · a j,n
...

...
. . .

...
an,1 an,2 · · · an,n




, B=




a1,1 a1,2 · · · a1,n
a2,1 a2,2 · · · a2,n
...

...
. . .

...
ai,1 ai,2 · · · ai,n
...

...
. . .

...
ai,1 ai,2 · · · ai,n
...

...
. . .

...
an,1 an,2 · · · an,n




.

cofactor expansion
Since A and B are identical except in their j-th rows, their cofactors along

that row are the same, so computing det(B) via a cofactor expansion along that
row gives

det(B) = ai,1c j,1 +ai,2c j,2 + · · ·+ai,nc j,n,

which is exactly the quantity [Acof(A)T ]i, j from Equation (3.A.1). Since B
has two identical rows,The fact that a

matrix with two
identical rows

cannot be invertible
follows from

Theorem 2.3.5.

it is not invertible, so we conclude that 0 = det(B) =
[Acof(A)T ]i, j

.

We have thus shown that all off-diagonal entries of Acof(A)T equal 0, so
Acof(A)T = det(A)I. By dividing both sides by det(A), we see that

A
(

1
det(A)

cof(A)T
)

= I,

so the inverse of A is as claimed. �

The beauty of the above theorem is that, since we have explicit formulas
for the determinant of a matrix, we can now construct explicit formulas for the
inverse of a matrix as well. For example, the cofactor matrix of a 2×2 matrix

A =

[
a b
c d

]
is cof(A) =

[
d −c
−b a

]
.

Since det(A) = ad−bc, it follows that

A−1 =
1

det(A)
cof(A)T =

1
ad−bc

[
d −b
−c a

]
,

which is exactly the formula for the inverse of a 2× 2 matrix that we found
back in Theorem 2.2.6.

We can also use this theorem to compute the inverse of larger matrices,
which we illustrate with an example.

Example 3.A.2
Using Cofactors to

Compute an
Inverse

Use Theorem 3.A.1 to compute the inverse of the matrix

A =




1 1 1
1 2 4
1 3 9


 .
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Solution:
In order to use Theorem 3.A.1, we must compute det(A) as well as all

of its cofactors. We summarize these calculations here:

det(A) = 2 c1,1 = 6 c1,2 =−5 c1,3 = 1
c2,1 =−6 c2,2 = 8 c2,3 =−2
c3,1 = 2 c3,2 =−3 c3,3 = 1.

It follows thatWe also computed
the inverse of this

matrix via
Gauss–Jordan

elimination way
back in

Example 2.2.8(d).

cof(A) =




6 −5 1
−6 8 −2
2 −3 1


 , so A−1 =

1
2




6 −6 2
−5 8 −3
1 −2 1


 .

By generalizing the previous example, we can also use Theorem 3.A.1
to come up with explicit formulas for the inverse of larger matrices, but they
quickly become so ugly as to not be practical (and thus the method of computing
inverses based on Gauss–Jordan elimination, from Theorem 2.2.5, is preferred).
For example, the cofactor matrix of a 3×3 matrix

A =




a b c
d e f
g h i


 is cof(A) =




ei− f h f g−di dh− eg
ch−bi ai− cg bg−ah
b f − ce cd−a f ae−bd


 .

Theorem 3.A.1 then gives us the following explicit formula for the inverse of a
3×3

Here we used the
explicit formula for

the determinant of a
3×3 matrix from

Theorem 3.2.7.

matrix:

A−1 =
1

det(A)
cof(A)T

=
1

aei+b f g+ cdh−a f h−bdi− ceg




ei− f h ch−bi b f − ce
f g−di ai− cg cd−a f
dh− eg bg−ah ae−bd


 .

3.A.2 Cramer’s Rule

Now that we know how to write the inverse of a matrix in terms of determinants
(thanks to Theorem 3.A.1), and we already know how to solve linear systems in
terms of matrix inverses (recall that if Ax = b and A is invertible, then x = A−1b
is the unique solution), we can very quickly derive a method for solving linear
systems in terms of determinants.

Theorem 3.A.2
Cramer’s Rule

Suppose A ∈Mn is invertible and b ∈ Rn. Define A j to be the matrix that
equals A, except its j-th column is replaced by b. Then the linear system
Ax = b has a unique solution x, whose entries are

x j =
det(A j)
det(A)

for all 1≤ j ≤ n.

Proof. We know from Theorem 2.2.4 that, since A is invertible, the linear
system Ax = b has a unique solution x = A−1b. We thus just need to compute
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the entries of A−1b, which we do via Theorem 3.A.1:

x j = [A−1b] j =
[

1
det(A)

cof(A)T b
]

j
=

1
det(A)

(c1, jb1 + c2, jb2 + · · ·+ cn, jbn),

where c1, j,c2, j, . . . ,cn, j are cofactors of A and the final equality above follows
from the definition of matrix multiplication. Well, the quantity c1, jb1 +c2, jb2 +
· · ·+ cn, jbn above on the right is exactly the cofactor expansion of A j along its
j-th

The key idea here is
that A and A j have
the same cofactors

corresponding to
their j-th column,

since they are
identical

everywhere except
for their j-th column.

column:

A=




a1,1 · · · a1, j · · · a1,n
a2,1 · · · a2, j · · · a2,n
...

. . .
...

. . .
...

an,1 · · · an, j · · · an,n


 , A j =




a1,1 · · · b1 · · · a1,n
a2,1 · · · b2 · · · a2,n
...

. . .
...

. . .
...

an,1 · · · bn · · · an,n




cofactor expansion
It follows from the cofactor expansion theorem (Theorem 3.2.8) that c1, jb1 +
c2, jb2 + · · ·+ cn, jbn = det(A j), so x j = det(A j)/det(A), as desired. �

As with our other results that involve determinants, we can substitute the
explicit formulas for the determinant of small matrices into Cramer’s rule to
obtain explicit formulas for the solution of small linear systems. For example,
if A ∈M2 is invertible then Cramer’s rule tells us that the unique solution of
the linear system Ax = b is given by the formulas

x1 =
det
([

b1 a1,2
b2 a2,2

])

det
([

a1,1 a1,2
a2,1 a2,2

]) =
b1 a2,2−a1,2 b2

a1,1a2,2−a1,2a2,1
and

x2 =
det
([

a1,1 b1
a2,1 b2

])

det
([

a1,1 a1,2
a2,1 a2,2

]) =
a1,1 b2 − b1 a2,1

a1,1a2,2−a1,2a2,1
.

Example 3.A.3
Solving Linear

Systems via
Cramer’s Rule

Use Cramer’s rule to solve the following linear systems:

a) x+2y = 4
3x+4y = 6

b) 3x−2y+ z =−3
2x+3y−2z = 5

y+ z = 4

Solutions:
a) We use the explicit formulas for x and y that were introduced imme-

diately above this example:

x =
4 ·4−2 ·6
1 ·4−2 ·3 =

4
−2

=−2 y =
1 ·6−4 ·3
1 ·4−2 ·3 =

−6
−2

= 3.

b) For this 3×3 system, we are a bit more explicit with our calculations.
We start by writing out the four matrices A,A1,A2, and A3 whose
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determinants are used in the computation of x, y, and z:

A =




3 −2 1
2 3 −2
0 1 1


 , A1 =



−3 −2 1
5 3 −2
4 1 1


 ,

A2 =




3 −3 1
2 5 −2
0 4 1


 , A3 =




3 −2 −3
2 3 5
0 1 4


 .

The determinants of
Recall that the

determinant of a
3×3 matrix can be
computed via the

formula of
Theorem 3.2.7.

these four matrices are

det(A)= 21, det(A1)= 4, det(A2)= 53, and det(A3)= 31.

Cramer’s rule thus tells us that the unique solution of this linear
system is

x =
det(A1)
det(A)

=
4

21
, y =

det(A2)
det(A)

=
53
21

, z =
det(A3)
det(A)

=
31
21

.

Similar to how we used Cramer’s rule to construct an explicit formula for
the solution of a linear system with two equations and two variables, we could
use it to construct such a formula for larger linear systems as well. For example,
if A ∈M3 is invertible then the linear system Ax = b has a unique solution,
whose first entry is given by

x1 =

det






b1 a1,2 a1,3
b2 a2,2 a2,3
b3 a3,2 a3,3






det






a1,1 a1,2 a1,3
a2,1 a2,2 a2,3
a3,1 a3,2 a3,3






=

b1 a2,2a3,3 +a1,2a2,3 b3 +a1,3 b2 a3,2− b1 a2,3a3,2−a1,2 b2 a3,3−a1,3a2,2 b3

a1,1a2,2a3,3 +a1,2a2,3a3,1 +a1,3a2,1a3,2−a1,1a2,3a3,2−a1,2a2,1a3,3−a1,3a2,2a3,1
,

and whose other two entries x2 and x3 are given by similar formulas. However,
these formulas are quite unwieldy, so it’s typically easier to solve linear systems
of size 3×3 or larger just by using Gaussian elimination as usual.

Remark 3.A.1
Computational
(In)Efficiency of

Cramer’s Rule

Keep in mind that Cramer’s rule is computationally inefficient and thus not
often used to solve linear systems in practice. In particular, to use Cramer’s
rule we must compute the determinant of n+1 different n×n matrices,
and the quickest method that we have seen for computing the determinant
of a matrix is the method based on

This same disclaimer
applies to matrix

inverses and
Theorem 3.A.1.

Gaussian elimination (Theorem 3.2.5).
However, we could just use Gaussian elimination (once, instead of n+1
times) to directly solve the linear system in the first place.

Nevertheless, Cramer’s rule is still a useful theoretical tool that lets us
use the many nice properties of determinants to prove things about linear
systems.
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3.A.3 Permutations

There is one final widely-used formula for the determinant that provides it
with an alternate algebraic interpretation. It is based on permutations, which
are functions that shuffle objects around without duplicating or erasing any of
those objects:

Definition 3.A.2
Permutation

A function σ : {1,2, . . . ,n} → {1,2, . . . ,n} is called a permutation if
σ(i) 6= σ( j) whenever i 6= j.

For example, the function
Recall that the

notation
σ : {1,2, . . . ,n}→
{1,2, . . . ,n}means

that σ is a function
that takes 1,2, . . . ,n
as inputs and also
produces them as

possible outputs.

σ : {1,2,3} → {1,2,3} defined by σ(1) = 2,
σ(2) = 3, and σ(3) = 1 is a permutation (it just shuffles 1, 2, and 3 around),
but the function f : {1,2,3} → {1,2,3} defined by f (1) = 2, f (2) = 2, and
f (3) = 1 is not (since f (1) = f (2)).

In order to describe permutations a bit more efficiently, we use one-line
notation, where we simply list the outputs of the permutation in order within
parentheses: (σ(1) σ(2) · · · σ(n)). For example, the permutation discussed
earlier with σ(1) = 2, σ(2) = 3, and σ(3) = 1 is described succinctly by its
one-line notation: (2 3 1). In the other direction, if a permutation is described
via its one-line notation σ = (4 1 3 2) then we know that it acts on {1,2,3,4}
via σ(1) = 4, σ(2) = 1, σ(3) = 3, and σ(4) = 2.

There are exactly n! = n · (n−1) · (n−2) · · ·2 ·1 permutations σ that act
on the set {1,2, . . . ,n}. To see this, notice that σ(1) can be any of n different
values, σ(2) can be any of the n−1 remaining values (since it cannot be the
same as σ(1)), σ(3) can be any of the n−2 remaining values not equal to σ(1)
or σ(2), and so on. The set of all of these permutations acting on {1,2, . . . ,n}
is denoted by Sn.

Example 3.A.4
Constructing All

Permutations

List all permutations in the following sets:

a) S2
b) S3

Solutions:
a) There are only 2! = 2 permutations that act on the set {1,2}, and

they are (1 2) and (2 1).
b) There are 3! = 6 permutations that act on the set {1,2,3}, and they

are

(1 2 3) (2 1 3) (3 1 2)
(1 3 2) (2 3 1) (3 2 1).

Since permutations are functions, we can compose them with each other,
just like we do with linear transformations. Specifically, if σ ,τ ∈ Sn then we
define their composition σ ◦ τ by

(σ ◦ τ)( j) = σ(τ( j)) for all 1≤ j ≤ n.

Similarly,

Proving that the
composition of two

permutations is a
permutation should

be believable
enough—we skip

over an explicit
proof, since the

details are not too
enlightening.

the identity permutation, which we denote by ι , is the one that does
nothing at all: ι = (1 2 · · · n), so ι( j) = j for all 1 ≤ j ≤ n, and the inverse
σ−1 of a permutation σ is the one that “undoes” it:

σ ◦σ
−1 = ι and σ

−1 ◦σ = ι .
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Example 3.A.5
Composing and

Inverting
Permutations

Suppose σ = (3 2 5 1 4) and τ = (5 1 4 2 3). Compute the one-line
notations for the following permutations:

a) σ ◦ τ

b) τ ◦σ

c) σ−1

d) τ−1

Solutions:
a) We just directly compute σ(τ( j)) for each 1≤ j ≤ 5:

σ(τ(1)) = σ(5) = 4 σ(τ(2)) = σ(1) = 3 σ(τ(3)) = σ(4) = 1
σ(τ(4)) = σ(2) = 2 σ(τ(5)) = σ(3) = 5.

We thus conclude thatThe one-line
notation for σ ◦ τ is

constructed simply
by writing σ(τ(1)),

σ(τ(2)), . . ., σ(τ(5)) in
order.

σ ◦ τ = (4 3 1 2 5).
b) Again, we just directly compute τ(σ( j)) for each 1≤ j ≤ 5:

τ(σ(1)) = τ(3) = 4 τ(σ(2)) = τ(2) = 1 τ(σ(3)) = τ(5) = 3
τ(σ(4)) = τ(1) = 5 τ(σ(5)) = τ(4) = 2.

It follows that τ ◦σ = (4 1 3 5 2).
c) Since σ−1 takes the output of σ back to its input, one way to

construct σ−1 is to write down the locationIf σ( j) = k then
σ−1(k) = j.

of the numbers 1, 2, . . .,
n in the one-line notation of σ , in order. For this particular σ , the
numbers 1,2,3,4,5 appear in positions 4,2,1,5,3 in σ ’s one-line
notation, so σ−1 = (4 2 1 5 3).

d) The numbers 1,2,3,4,5 appear in positions 2,4,5,3,1 in τ’s one-
line notation, so τ−1 = (2 4 5 3 1).

Every permutation can be associated with a particular matrix by permuting
the columns of the identity matrix in the manner described by the permutation.
The following definition makes this idea precise.

Definition 3.A.3
Permutation Matrix

Given a permutation σ : {1,2, . . . ,n}→ {1,2, . . . ,n}, the associated per-
mutation matrix

We first introduced
permutation

matrices when
discussing the PLU
decomposition in

Section 2.D.3.

is the matrix

Pσ =
[

eσ(1) | eσ(2) | · · · | eσ(n)
]
.

In other words, the permutation matrix Pσ is the standard matrix of the
linear transformation that sends e j to eσ( j) for each 1≤ j ≤ n. Geometrically,
this linear transformation permutes the sides of the unit square (or cube, or
hypercube...) and thus changes its orientation, but does not stretch or skew it at
all (see Figure 3.26).

We now work through a couple of examples to get more comfortable with
permutation matrices.

Example 3.A.6
Constructing
Permutation

Matrices

Construct the permutation matrices corresponding to the following permu-
tations, which have been written in one-line notation:

a) σ = (3 4 2 1)
b) σ = (2 5 1 3 4)
c) ι ∈ S6
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This cube is rotating,
pivoting on its corner
at the origin, so that
each standard basis

vector lands on a
different axis.

e1

e2

e3

x

y

P−−−−−−→
=(2 3 1)

P e3 = e1

P e1 = e2

P e2 = e3

x

y

Figure 3.26: If σ = (2 3 1) then the permutation matrix Pσ sends e1 to e2, e2 to e3, and
e3 to e1.

Solutions:
a) As described by Definition 3.A.3, we just place e3, e4, e2, and e1 as

columns into a matrix, in thatPermutation
matrices are exactly
the matrices with a
single 1 in each row

and column, and
every other entry

equal to 0.

order:

Pσ =
[

e3 | e4 | e2 | e1
]
=




0 0 0 1
0 0 1 0
1 0 0 0
0 1 0 0


 .

b) Similarly, for this permutation we place e2, e5, e1, e3, and e4 as
columns into a matrix:

Pσ =
[

e2 | e5 | e1 | e3 | e4
]
=




0 0 1 0 0
1 0 0 0 0
0 0 0 1 0
0 0 0 0 1
0 1 0 0 0




.

c) For the identity permutation on {1,2,3,4,5,6}, we place e1, e2, . . .,
e6 as columns into a matrix. Doing so gives us exactly the 6× 6
identity matrix:

Pσ =
[

e1 | e2 | · · · | e6
]
= I6.

In part (c) of the above example, we saw that the permutation matrix
associated with the identity permutation in S6 was the identity matrix inM6.
It’s not difficult to show that this is true in general, regardless of n. There
are also some other pleasant properties of permutation matrices, all of which
basically say that permutation matrices interact with each other in the same
way that the permutations themselves interact with each other. The following
theorem summarizes these properties.

Theorem 3.A.3
Properties of
Permutation

Matrices

Let σ ,τ ∈ Sn be permutations with corresponding permutation matrices
Pσ ,Pτ ∈Mn. Then

a) Pσ Pτ = Pσ◦τ
b) Pσ is invertible, and P−1

σ = PT
σ = Pσ−1 .

Proof. For part (a), we just recall that Pσ acts on the standard basis vectors via
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Pσ e j = eσ( j) for all j, so

(Pσ Pτ)e j = Pσ (Pτ e j) = Pσ eτ( j) = eσ(τ( j)) = e(σ◦τ)( j).

In particular, this meansRecall that Pσ◦τ is
defined to have its

j-th column equal to
e(σ◦τ)( j).

that, for all 1 ≤ j ≤ n, the j-th column of Pσ Pτ is
e(σ◦τ)( j). We thus conclude that Pσ Pτ = Pσ◦τ , as desired.

For part (b), we first note that part (a) tells us that Pσ Pσ−1 = Pσ◦σ−1 = Pι = I,
so P−1

σ = Pσ−1 , as claimed. All that remains is to show that PT
σ = P−1

σ . To this
end, we compute the entries of PT

σ Pσ :

[PT
σ Pσ ]i, j = eT

σ(i)eσ( j) = eσ(i) · eσ( j).

If i = j then σ(i) = σ( j), so theA matrix whose
inverse is its

transpose (like Pσ ) is
called unitary.

above dot product equals 1 (i.e., the diagonal
entries of PT

σ Pσ all equal 1). On the other hand, if i 6= j then σ(i) 6= σ( j), so
eσ(i) · eσ( j) = 0 (i.e., the off-diagonal entries of PT

σ Pσ all equal 0). It follows
that PT

σ Pσ = I, so PT
σ = P−1

σ , which completes the proof. �

We just need one final property of permutations before we can establish
their connection with the determinant.

Definition 3.A.4
Sign of a

Permutation

The sign of a permutation σ , denoted by sgn(σ), is the quantity

sgn(σ) def= det(Pσ ).

Example 3.A.7
Computing the

Sign of a
Permutation

Compute the signs of the following permutations, which have been written
in one-line notation:

a) σ = (3 4 2 1)
b) σ = (2 5 1 3 4)

Solutions:
a) We computed the permutation matrix Pσ of this permutation back in

Example 3.A.6(a), so we now just need to compute its determinant:

These determinants
are straightforward

to compute via
cofactor expansions
(Theorem 3.2.8) since

they have so many
zeros.

sgn(σ) = det(Pσ ) = det







0 0 0 1
0 0 1 0
1 0 0 0
0 1 0 0





=−1.

b) Again, we just compute the determinant of the permutation matrix
Pσ that we already constructed for this permutation:

sgn(σ) = det(Pσ ) = det







0 0 1 0 0
1 0 0 0 0
0 0 0 1 0
0 0 0 0 1
0 1 0 0 0







= 1.

In the previous example,Permutations are
sometimes called

even or odd,
depending on

whether their sign is 1
or −1, respectively.

the signs of the determinants were ±1. This is
the case for every permutation, since permutation matrices can be obtained
from the identity matrix (which has determinant 1) by repeatedly swapping
columns, and swapping two columns of a matrix multiplies its determinant by
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−1. In fact, this argument tells us the following fact that makes the sign of a
permutation easier to compute:

! The sign of a permutation equals (−1)s, where s is the number
of times that two of its outputs must be swapped to turn it into
the identity permutation.

Example 3.A.8
Computing the

Sign of a
Permutation

More Quickly

Compute the signs of the following permutations (the same ones from
Example 3.A.7), without making use of determinants or permutation
matrices:

a) σ = (3 4 2 1)
b) σ = (2 5 1 3 4)

Solutions:
a) To compute the sign of σ , we swap numbers in its one-line notation

until they are in the order 1,2,3,4 (i.e., until we have created the
identityIt is possible to use a

different number of
swaps (e.g., 5 or 7

instead of 3 in
part (a) here) to get

the identity
permutation, but the
parity of the number
of swaps will always

be the same (i.e.,
always odd or
always even).

permutation):

(3 4 2 1)→ (1 4 2 3)→ (1 2 4 3)→ (1 2 3 4).

Since we swapped 3 times, we conclude that sgn(σ) = (−1)3 =−1.
b) Again, we swap numbers in σ ’s one-line notation until they are in

the order 1,2,3,4,5 (i.e., until we have created the identity permu-
tation):
(2 5 1 3 4)→ (1 5 2 3 4)→ (1 2 5 3 4)→ (1 2 3 5 4)→ (1 2 3 4 5).

Since we swapped 4 times, we conclude that sgn(σ) = (−1)4 = 1.

Now that we understand permutations and permutation matrices a bit better,
we are (finally!) in a position to present the main result of this subsection, which
provides a formula for the determinant of a matrix in terms of permutations.

Theorem 3.A.4
Determinants via

Permutations

Suppose A ∈Mn. Then det(A) = ∑
σ∈Sn

sgn(σ)aσ(1),1aσ(2),2 · · ·aσ(n),n.

While this

The formula
provided by this

theorem is
sometimes called

the Leibniz formula
for the determinant.

theorem might seem like a mouthful, it really is just a non-
recursive way of generalizing the formulas for the determinant that we devel-
oped in Section 3.2.3 (similar to how cofactor expansions provided us with a
recursive way of generalizing those formulas). For example, when n = 2, there
are two permutations in S2: (1 2), which has sign +1, and (2 1), which has sign
−1. The above theorem thus tells us that det(A) = a1,1a2,2−a2,1a1,2, which is
exactly the formula that we originally derived in Theorem 3.2.6.

Similarly, when n = 3, there are six permutations in S3, which we now
list along with their signs and the term that they contribute to the determinant
calculation in the above theorem:
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σ sgn(σ) contribution to det(A)

(1 2 3) 1 a1,1a2,2a3,3
(1 3 2) −1 −a1,1a3,2a2,3
(2 1 3) −1 −a2,1a1,2a3,3
(2 3 1) 1 a2,1a3,2a1,3
(3 1 2) 1 a3,1a1,2a2,3
(3 2 1) −1 −a3,1a2,2a1,3

Adding up the

In the third column
of this table, the

second subscripts
are always 1,2,3, in
that order, and the

first subscripts come
from σ .

six terms in the rightmost column of the table above gives
exactly the formula for the determinant that we originally derived in Theo-
rem 3.2.7.

Proof of Theorem 3.A.4. Write A = [ a1 | a2 | · · · | an ], so that a j denotes the
j-th column of A. We can write each a j as a linear combination of the standard
basis vectors as follows:

a j =
n

∑
i=1

ai, jei.

By repeatedly using this fact, along with multilinearity of the determinant (i.e.,
property (c) of Definition 3.2.1), it follows

Yes, this is hideous.
Try not to think about

how hideous it
is—just work one

column at a time
and breathe.

that

det(A) = det
([

a1 | a2 | · · · | an
])

= det

([
n

∑
i1=1

ai1,1ei1

∣∣∣ a2
∣∣ · · ·

∣∣ an

])

=
n

∑
i1=1

ai1,1 det
([

ei1 | a2 | · · · | an
])

=
n

∑
i1=1

ai1,1 det

([
ei1

∣∣∣
n

∑
i2=1

ai2,2ei2

∣∣∣ · · ·
∣∣ an

])

=
n

∑
i1,i2=1

(ai1,1ai2,2)det
([

ei1 | ei2 | · · · | an
])

...

=
n

∑
i1,i2,...,in=1

(
ai1,1ai2,2 · · ·ain,n

)
det
([

ei1 | ei2 | · · · | ein
])

.

If any of the indices i1, i2, . . . , in in the above sum are equal to each other
then the matrix [ ei1 | ei2 | · · · | ein ] has a repeated columnThe fact that

matrices with
repeated columns

are not invertible
follows from

Theorem 2.3.5.

and is thus not
invertible and has determinant 0. It follows that the sum over all of those indices
can be replaced by a sum over non-repeating indices (i.e., permutations σ with
σ(1) = i1, σ(2) = i2, and so on), so that

det(A) = ∑
σ∈Sn

(
aσ(1),1aσ(2),2 · · ·aσ(n),n

)
det
([

eσ(1) | eσ(2) | · · · | eσ(n)
])

= ∑
σ∈Sn

(
aσ(1),1aσ(2),2 · · ·aσ(n),n

)
det(Pσ )

= ∑
σ∈Sn

sgn(σ)aσ(1),1aσ(2),2 · · ·aσ(n),n,

which completes the proof. �

Theorem 3.A.4 is typically not used numerically for the same reason that
cofactor expansions are not used numerically—the method of computing the



3.A Extra Topic: More About Determinants 353

determinant based on Gaussian elimination or Gauss–Jordan elimination is
much faster for matrices of size 4× 4 or larger. However, it is often useful
as a theoretical tool that can be used to establish connections between the
determinant and other areas of mathematics (especially abstract algebra, where
permutations are a common object of study).

ToKeep in mind that if
A and B are not

square then det(A)
and det(B) are not

even defined.

illustrate the type of result that we can prove with this new approach to
determinants based on permutations, recall that if A,B ∈Mn are square then
det(AB) = det(A)det(B). The following theorem provides a natural generaliza-
tion of this fact to non-square matrices A ∈Mm,n and B ∈Mn,m that involves
the determinants of their square submatrices.

Theorem 3.A.5
Cauchy–Binet

Formula

Suppose A∈Mm,n and B∈Mn,m with m≤ n, and let A j1,..., jm and B j1,..., jm
denote the m×m submatrices of A and B consisting of the j1, . . . , jm-th
columns of A and j1, . . . , jm-th rows of B, respectively. Then

det(AB) = ∑
1≤ j1<···< jm≤n

det
(
A j1,..., jm

)
det
(
B j1,..., jm

)
.

Proof. We use Theorem 3.A.4 to write
Recall that

[
AB
]

i, j
denotes the

(i, j)-entry of AB.
det(AB) = ∑

σ∈Sm

sgn(σ)
[
AB
]

σ(1),1 · · ·
[
AB
]

σ(m),m

= ∑
σ∈Sm

sgn(σ)

(
n

∑
j=1

aσ(1), jb j,1

)
· · ·
(

n

∑
j=1

aσ(m), jb j,m

)

= ∑
1≤ j1,..., jm≤n

b j1,1 · · ·b jm,m

(
∑

σ∈Sm

sgn(σ)aσ(1), j · · ·aσ(m), jm

)

= ∑
1≤ j1,..., jm≤n

b j1,1 · · ·b jm,m det
(
A j1,..., jm

)
.

From here, we note that this sum is over unordered tuples ( j1, j2, . . . , jm), so
we can split it into two nested sums: an outer sum over ordered tuples with
j1 ≤ j2 ≤ ·· · ≤ jm and an inner sum over permutations of the members of that
tuple. That is, the above sum can be written in the form

The sgn(σ) term after
the first equality here

comes from pulling
the permutation σ

out of det
(
A j1 ,..., jm

)

and thus permuting
the columns of

A j1 ,..., jm .

∑
1≤ j1≤···≤ jm≤n

(
∑

σ∈Sm

b jσ(1),1 · · ·b jσ(m),m det
(
A jσ(1),..., jσ(m)

)
)

= ∑
1≤ j1≤···≤ jm≤n

(
∑

σ∈Sm

sgn(σ)b jσ(1),1 · · ·b jσ(m),m

)
det
(
A j1,..., jm

)

= ∑
1≤ j1≤···≤ jm≤n

det
(
B j1,..., jm

)
det
(
A j1,..., jm

)
.

By recalling that det
(
A j1,..., jm

)
= 0 whenever two of the “ j” indices are the

same (since that causes A j1,..., jm to have a repeated column), we see that we can
replace the sum over 1 ≤ j1 ≤ ·· · ≤ jm ≤ n above with a sum over 1 ≤ j1 <
· · ·< jm ≤ n, which completes the proof. �

We already noted that in the m = n case, the Cauchy–Binet formula sim-
ply says that det(AB) = det(A)det(B), since the only tuple ( j1, j2, . . . , jn) with
1≤ j1 < j2 < · · ·< jn≤ n is ( j1, j2, . . . , jn) = (1,2, . . . ,n). At the other extreme,
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if m = 1 then A ∈M1,n is a row vector and B ∈Mn,1 is a column vector, and
the Cauchy–Binet formula simply says that

det(AB) = a1,1b1,1 +a1,2b2,1 + · · ·+a1,nbn,1,

which makes sense since AB in this case is just the dot product of A with B
and the determinant of a scalar (1×1 matrix) just equals that scalar. We close
this section with an example to illustrate how the intermediate cases of the
Cauchy–Binet formula work.

Example 3.A.9
Using the

Cauchy–Binet
Formula

Use the Cauchy–Binet formula to compute det(AB) if

A =
[

1 0 2
2 1 −1

]
and B =




3 1
−2 3
−1 2


 .

Solution:
We first construct all 2×2 submatrices of A and B:

A1,2 =
[

1 0
2 1

]
, A1,3 =

[
1 2
2 −1

]
, A2,3 =

[
0 2
1 −1

]
,

B1,2 =
[

3 1
−2 3

]
, B1,3 =

[
3 1
−1 2

]
, and B2,3 =

[
−2 3
−1 2

]
.

The determinants of these 2×2 submatrices areThe Cauchy–Binet
formula is a useful as

a theoretical result,
but not as a

computational tool.
It is much quicker

and easier to
compute det(AB)

directly than it is to
compute the

determinants of all
of these submatrices.

det(A1,2) = 1, det(A1,3) =−5, det(A2,3) =−2,

det(B1,2) = 11, det(B1,3) = 7, and det(B2,3) =−1.

The Cauchy–Binet formula then says that

det(AB) = 1 ·11+(−5) ·7+(−2) · (−1) = 11−35+2 =−22.

Of course, this fact can be verified directly by multiplying A and B and
then computing the determinant of AB directly:

det(AB) = det

([
1 5
5 3

])
=−22.

Exercises solutions to starred exercises on page 472

3.A.1 Compute the cofactor matrix of each of the follow-
ing matrices.

∗(a)
[

1 0
0 1

]

(b)
[

6 3
2 1

]

∗(c)
[

2 3
3 2

]

(d)
[

1 2
0 1

]

∗(e)



2 4 0
1 −2 0
2 0 −1




(f)



2 6 1
0 0 0
3 −2 7




∗(g)



0 0 1
0 2 3
4 5 6




(h)



1 −2 −2
−2 1 −2
−2 −2 1
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§ 3.A.2 Use computer software to compute the cofactor
matrix of each of the following matrices.

∗(a)



3 2 4 3
1 1 3 2
4 0 1 1
3 1 2 4




(b) 


6 2 1 0 4
4 2 0 4 6
0 6 3 4 4
0 3 6 0 3
2 6 1 6 6




3.A.3 Use Cramer’s rule to find the unique solution of
each of the following linear systems.

∗(a) x+2y = 3
2x+ y = 3

∗(c) x+ y+ z = 4
x− y+ z = 0
x+ y− z = 1

(b) x− y = 2
2x− y = 5

(d) 2x+ y− z = 1
x−3y+ z =−2

2x−2y− z = 6

∗(e) x+ y+ z = 1
−x+ y+ z = 2
2x+ y = 0

(f) 2w− x−2y− z = 1
w−2x− y−3z = 2

4w + y−2z = 3
2x− y+2z = 2

3.A.4 Compute the inverse of each of the following per-
mutations.

∗(a) (1 2 3)
∗(c) (1 3 2 4)
∗(e) (5 4 3 2 1)
∗(g) (3 4 1 5 2 6)

(b) (2 3 1)
(d) (2 4 1 3)
(f) (4 3 1 5 2)
(h) (5 6 3 2 1 4)

3.A.5 Compute the indicated compositions of permuta-
tions.

∗(a) (1 2 3)◦ (3 2 1)
(b) (3 1 2)◦ (2 3 1)
∗(c) (1 3 2 4)◦ (4 2 3 1)
(d) (2 4 1 3)◦ (4 1 3 2)
∗(e) (3 4 5 1 2)◦ (2 4 3 1 5)

(f) (2 3 1 5 4)◦ (1 2 5 3 4)
∗(g) (6 4 2 1 3 5)◦ (2 4 6 1 3 5)
(h) (2 4 1 5 3 6)◦ (3 6 1 5 2 4)

3.A.6 Determine which of the following statements are
true and which are false.

∗(a) If A is invertible then so is cof(A).
(b) If A is not invertible then cof(A) does not exist.
∗(c) cof(I) = I
(d) If A,B ∈Mn are such that cof(A) = cof(B) then

A = B.
∗(e) For all A ∈ Mn, it is the case that rank(A) =

rank(cof(A)).
(f) Cramer’s rule applies to every linear system with a

unique solution.

∗(g) The inverse of the identity permutation is itself:
ι−1 = ι .

(h) Composition of permutations is commutative: σ ◦
τ = τ ◦σ for all σ ,τ ∈ Sn.

∗(i) There are exactly 120 permutations in S5.

3.A.7 Suppose A,B ∈Mn are invertible. Show that
cof(AB) = cof(A)cof(B).

[Side note: This result is also true even if A and B are not
invertible, but this more general fact is hard to prove.]

∗3.A.8 Suppose A ∈Mn is invertible and k is an integer.
Show that cof(Ak) = (cof(A))k. [Side note: This result is
also true when A is not invertible as long as k ≥ 0.]

3.A.9 Suppose A ∈Mn and c ∈ R. Show that cof(cA) =
cn−1cof(A).

∗ 3.A.10 Suppose A ∈ Mn in invertible. Show that
det(cof(A)) = (det(A))n−1.

[Side note: Again, this is true even if A is not invertible.]

3.A.11 Suppose A ∈ Mn is invertible. Show that
cof(cof(A)) = (det(A))n−2A.

[Side note: Yes, this one is also true even if A is not in-
vertible, and it shows in particular that cof(cof(A)) = O
whenever A is not invertible and n≥ 3.]

3.A.12 This exercise guides you through an alternate proof
of Cramer’s rule (Theorem 3.A.2). Let A ∈Mn, Ax = b,
and A j is the matrix equal to A but with its j-th column
replaced by b.

(a) Compute the columns of the matrix A−1A j .
(b) Compute det(A−1A j) in two different ways: by using

what you learned in part (a) and by using multiplica-
tivity of the determinant.

∗3.A.13 Suppose σ ,τ ∈ Sn are permutations.

(a) Show that sgn(σ ◦ τ) = sgn(σ) · sgn(τ).
(b) Show that exactly half of the permutations in Sn have

sign 1, and the other half have sign −1.

∗3.A.14 Suppose A ∈Mm,n and B ∈Mn,m. Explain why
the Cauchy–Binet formula (Theorem 3.A.5) only tells us
how to compute det(AB) in the case when m≤ n. What is
det(AB) if m > n?

3.A.15 Suppose A∈Mm,n with m≤ n, and let A j1 ,..., jm de-
note the m×m submatrix of A consisting of the j1, . . . , jm-th
columns of A. Show that

det(AAT ) = ∑
1≤ j1<···< jm≤n

det
(
A j1 ,..., jm

)2
.
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3.A.16 The permanent of a matrix A ∈Mn, denoted by
per(A), is the quantity defined by

per(A) = ∑
σ∈Sn

aσ(1),1aσ(2),2 · · ·aσ(n),n.

That is, it has the same formula as the one that Theo-
rem 3.A.4 provides for the determinant, except the signs of
the permutations are ignored.

Compute the permanent of each of the following matrices.

∗(a)
[

1 0
0 1

]

∗(c)
[

1 −1
−1 1

]

∗(e)



2 0 1
5 2 8
3 −2 7




∗(g)



3 2 −6
0 2 2
0 0 3




(b)
[

1 3
0 −2

]

(d)
[

1 2
3 5

]

(f)



1 1 3
−4 2 1
3 1 2




(h)



1 2 1 0
2 1 2 −3
4 3 1 2
0 0 2 −2




∗3.A.17 Show that the permanent (see Exercise 3.A.16)
satisfies per(AT ) = per(A) for all A ∈Mn.

3.A.18 Show that the permanent (see Exercise 3.A.16) of
a triangular matrix equals the product of its diagonal entries:
per(A) = a1,1a2,2 · · ·an,n.

∗3.A.19 Give an example to show that the permanent (see
Exercise 3.A.16) does not satisfy the property per(AB) =
per(A)per(B).

3.B Extra Topic: Power Iteration

Eigenvalues and eigenvectors help clarify our intuition that linear transforma-
tions stretch space in a somewhat “uniform” way, but possibly by different
amounts in different directions/dimensions. The different directions are de-
termined by its eigenvectors, and the amounts by which it stretches are the
corresponding eigenvalues.

If a linear transformation is applied multiple times in succession, then its
features get exaggerated—directions in which it stretches get stretched even
more and directions that it squishes get squished even more. In particular this
means that, most of the time, most of space gets pushed toward whichever
direction gets stretched the most—that is, the direction of the eigenspace
corresponding to the maximal eigenvalue (see Figure 3.27).

In this section, we use this idea to come up with another method of comput-
ing the eigenvalues and corresponding eigenvectors of a matrix. The advantage
of the method that we introduce here is that it does not require us to find a root
of the characteristic polynomial (which is quite a nasty task when the matrix,
and thus the degree of the characteristic polynomial, is large).

3.B.1 The Method

Since repeatedly applying a matrix to Rn skews it in the direction of the
eigenspace corresponding to its largest eigenvalue, we can get a good idea of
what this eigenvalue/eigenvector pair is just by applying A to a randomly-chosen
starting vector. That is, if we start with a randomly-chosen vector v0 ∈ Rn, we
then define

vk =
Avk−1

‖Avk−1‖
for all k ≥ 1.
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In this figure, we
zoom out by a factor

of 6 every time we
apply A in order to

prevent the vectors
from becoming so

large that we
cannot see what is

going on.

v= 1√
5
(1,2)

x

y

e2

e1

−−→

x

y

e2

e1

−−→

x

y

2
e2

2
e1

−−→

x

y

3
e2

3
e1

Figure 3.27: Repeatedly applying the matrix (linear transformation) A =
[

4 1
2 5

]

to R2 results in space getting more and more skewed. In particular, space is
squished closer and closer to the line in the direction of v = (1,2)/

√
5, which is a

unit eigenvector corresponding to the maximal eigenvalue λ = 6 of A.

The idea here is that multiplying vk−1 by A skews it a bit closer toward the
eigenspace corresponding to the maximal eigenvalue, and rescaling it to have
length 1 just keeps its scaling consistent (i.e., it prevents these vectors from
blowing up if the maximal eigenvalue is larger than 1 or decreasing toward 0 if
the maximal eigenvalue is smaller than 1).

We zoomed out
after each

application of A in
Figure 3.27 for the

same reason that we
renormalize vk after

each iteration—it
helps us better see

the directions in
which interesting

things happen, while
keeping the scale

consistent.

We claim that, as k gets large, vT
k Avk typically becomes a better and better

approximation of the maximal (in absolute value) eigenvalue of A, which we
call the dominant eigenvalue of A. Furthermore, vk gets closer and closer
to the eigenspace corresponding to that dominant eigenvalue, which we call
the dominant eigenspace of A. This procedure is called power iteration, and
before analyzing how well it works (and sometimes does not work) in detail,
we present some examples to illustrate how to use it.

Example 3.B.1
Power Iteration for

a 2×2 Matrix

Use power iteration to approximate the dominant eigenvalue λ and corre-
sponding eigenvector v of the matrix A =

[
1 2
5 4

]
.

Solution:
We start by picking v0 arbitrarily. If we select v0 = e1 then power

iteration tells us that
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k Avk−1 ‖Avk−1‖ vk = Avk−1/‖Avk−1‖
0 – – v0 = e1 = (1,0)
1 (1.00,5.00) 5.10 (0.20,0.98)
2 (2.16,4.90) 5.36 (0.40,0.92)
3 (2.23,5.68) 6.10 (0.37,0.93)
4 (2.23,5.55) 5.98 (0.37,0.93)
5 (2.23,5.57) 6.00 (0.37,0.93)

We could of course keep going and compute v6, v7, v8, and so on,
but very little is changing from one iteration to the next at this point. In
particular, if power iteration works the way that we claim it does, this
means that the dominant eigenvalue of A should be approximately

We only display two
decimal places of

each of these
numbers, but when

we perform the
calculations we

keep as many digits
of precision as our

computer lets us
(typically 16 or so by

default).

λ ≈ vT
5 Av5 ≈

[
0.37 0.93

]
[

2.23
5.57

]
≈ 6.00,

with corresponding unit eigenvector v≈ v5 ≈ (0.37,0.93).

As a sanity check to verify our work, we can have a look back at
Examples 3.3.3 and 3.3.4, where we found that the eigenvalues of A are
λ = 6 and λ = −1, and a unit eigenvector corresponding to λ = 6 is
v = (2,5)/

√
29≈ (0.37,0.93).

Also, we can visualize the vectors v0, v1, v2, . . . that we computed via
power iteration as shown below. Note that these vectors bounce back and
forth around the dominant eigenspace (which is a line), and v3 already
lies so close to that eigenspace as to be almost indistinguishable from an
actual eigenvector.

x

y

v0 = e1

v1
v2

v3

In the previous example, using power iteration perhaps seemed somewhat
silly, since we already saw that we can just use the characteristic polynomial
and other techniques that we have already developed to construct the eigenval-
ues and eigenvectors exactly. The real advantage of power iteration becomes
apparent when working with larger matrices—especially ones with lots of zero
entries (called sparse matrices).

Example 3.B.2
Power Iteration for

a Large Matrix

Use power iteration to approximate the dominant eigenvalue λ and a
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corresponding eigenvector v of the matrix

A =




0 −1 1 0 1 0 1
−1 0 1 1 1 −1 0
1 1 0 −1 −2 1 0
0 1 −1 0 −1 1 1
1 1 −2 −1 0 1 0
0 −1 1 1 1 0 −1
1 0 0 1 0 −1 0




.

Solution:
As before, we start by picking v0 arbitrarily, so we just select v0 = e1

again. Then applying power iteration (on a computer, not by hand!) gives us

Because the
maximal eigenvalue

is negative, the
vectors vk do not

approach any fixed
eigenvector (though

they do still
approach the

eigenspace). Rather,
their sign changes

after each iteration.

k vk = Avk−1/‖Avk−1‖ vT
k Avk

0 ( 1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00) 0.00
1 ( 0.00,−0.50, 0.50, 0.00, 0.50, 0.00, 0.50) −2.00
2 ( 0.59, 0.29,−0.44,−0.29,−0.44, 0.29, 0.00) −4.26
3 (−0.26,−0.45, 0.51, 0.32, 0.51,−0.32, 0.00) −4.83
4 ( 0.30, 0.39,−0.49,−0.37,−0.49, 0.37, 0.08) −4.91
5 (−0.26,−0.41, 0.49, 0.37, 0.49,−0.37,−0.09) −4.91
6 ( 0.27, 0.40,−0.49,−0.38,−0.49, 0.38, 0.10) −4.92
7 (−0.26,−0.41, 0.49, 0.38, 0.49,−0.38,−0.10) −4.92

We thus conclude that the maximal eigenvalue of A (in absolute value)
is approximately −4.92, and there is a corresponding unit eigenvector
close to v7 ≈ (−0.26,−0.41,0.49,0.38,0.49,−0.38,−0.10).

In this case, we do not have an exact closed-form expression of the
maximal eigenvalue of A that we can compare our decimal approximation
−4.92 to. However, we can at least note that the characteristic polynomial
of A is

pA(λ ) =−λ
7 +19λ

5−36λ
4−24λ

3 +116λ
2−102λ +28.

Factoring this polynomial is out of the question, but numerical software
can be used to verify that its largest (in absolute value) root is indeed
located near λ =−4.92.

The reason that power iteration is so useful for sparse matrices in particular
is that multiplying a vector by a sparse matrix can be done much more efficiently
than general matrix multiplication can. In particular, if each row of A ∈Mn
has s non-zero entries, then each entry of Av can be computed via just s
multiplications and s− 1 additions, rather than n multiplications and n− 1
additions. Because of this, power iteration can be used to estimate eigenvalues
and eigenvectors of absolutely humongous matrices, as long as they do not
have too many non-zero entries.

Remark 3.B.1
Eigenvalues are Used

to Find Roots of
Polynomials, Not

Vice-Versa

Our primary method for finding the eigenvalues of a matrix has been
to construct its characteristic polynomial and then find the roots of that
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polynomial. While this method works fine for small (e.g., 2× 2, 3× 3,
and maybe even 4× 4) matrices, it is not really how things are done in
practice. In fact, roots of high-degree polynomials are typically computed
by computing the eigenvalues of a matrix, not vice-versa.

Specifically, to find the roots of p(x) = λ n +an−1λ n−1 + · · ·+a1λ +a0,
we first construct its companion matrix (introduced in Exercise 3.3.23)

C =




0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−a0 −a1 −a2 · · · −an−1




,

which has p as its characteristic polynomial.Actually, the
characteristic

polynomial of C is
pC(λ ) = (−1)n p(λ ),

but this has the same
roots as p itself, so we

do not care much
about the (−1)n

coefficient in front.

Then we apply some numeri-
cal method like power iteration to C to find one or more of its eigenvalues,
which are the roots of p. In fact, power iteration is particularly well-suited
to this task since C is so sparse (it only has 2n−1 non-zero entries, despite
being an n×n matrix).

For example, to find the largest root (in absolute value) of the poly-
nomial p(x) = x6− 2x5 + 2x4− 3x3 + x2 + x− 2, we first construct its
companion matrix

In fact, computing
Cvk only requires n

multiplications (all in
the last row)— the

first n−1 entries can
be computed simply

by shifting up the
bottom n−1 entries

of vk.

C =




0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
2 −1 −1 3 −2 2




,

and then we apply power iteration to it:

k vk = Cvk−1/‖Cvk−1‖ vT
k Cvk

0 (1.00,0.00,0.00,0.00,0.00,0.00) 0.00
1 (0.00,0.00,0.00,0.00,0.00,1.00) 2.00
2 (0.00,0.00,0.00,0.00,0.45,0.89) 1.20
3 (0.00,0.00,0.00,0.33,0.67,0.67) 1.33

...
26 (0.06,0.10,0.17,0.28,0.48,0.81) 1.69
27 (0.06,0.10,0.17,0.28,0.48,0.81) 1.68

We thus conclude that the largest root of p is approximately 1.68 (and
indeed, it is–the roots of p are approximately 1.68, −0.72, −0.17±1.32i,
and 0.69±0.67i).

3.B.2 When it Does (and Does Not) Work

Now that we have seen how to perform power iteration, it is time to clarify
exactly what conditions need to be satisfied in order for it to work. There
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are essentially two ways in which power iteration can fail, and we start by
illustrating them with examples.

The first way in which power iteration can fail is if the starting vector v0
is contained in the span of the non-maximal eigenvectors, since then it must
necessarily stay in that span no matter how many times we apply A to it, so
it cannot possibly be stretched in the direction of the maximal eigenspace.
Fortunately, if we choose v0 randomly then this only happens extremely rarely.

Example 3.B.3
Failed Power Iteration

due to Poor Choice
of Starting Vector

Apply power iteration to the matrix A =
[

1 2
0 3

]
.

Solution:
If we start by choosing v0 = e1 like usual and then iteratively set-

ting vk = Avk−1/‖Avk−1‖ for k = 1, 2, 3, . . ., then absolutely nothing
interesting happens:

k vk = Avk−1/‖Avk−1‖ vT
k Avk

0 (1.00,0.00) 1.00
1 (1.00,0.00) 1.00
2 (1.00,0.00) 1.00

Since A is triangular,
we can read its

eigenvalues off of its
diagonal: 1 and 3.

The reason for this behavior is that v0 is an eigenvector of A (corresponding
to the non-maximal eigenvalue 1). If we instead choose v0 randomly to
be v0 = (0.80,0.60) then power iteration does indeed converge to the
maximum eigenvalue 3:

Also, vk converges to
the unit eigenvector

(1,1)/
√

2
corresponding to the

eigenvalue 3.

k vk = Avk−1/‖Avk−1‖ vT
k Avk

0 (0.80,0.60) 2.68
1 (0.74,0.67) 2.89
2 (0.72,0.69) 2.96
3 (0.71,0.70) 2.99
4 (0.71,0.71) 3.00

The other way in which power iteration can fail is if the matrix has multiple
distinct eigenvalues with the same maximal absolute value. In this case, power
iteration pulls the vk vectors toward each of the maximal eigenspaces, so they
often end up just bouncing around aimlessly rather than being stretched in one
particular direction. Unfortunately, there is not much that we can do to fix this
problem, as it is intrinsic to the matrix itself rather than the starting vector v0.

Example 3.B.4
Failed Power Iteration

due to No Maximal
Eigenvalue

Apply power iteration to the matrix A =
[

1 1
3 −1

]
.

Solution:
We start by choosing v0 = e1, just like usual, and then we iteratively

set vk = Avk−1/‖Avk−1‖ for k = 1, 2, 3, . . .:The exact values of
the vectors in this

table are (1,0) and
(1,3)/

√
10. Similarly,

the values of vT
k Avk

are exactly 1 and 0.4.



362 Chapter 3. Unraveling Matrices

k vk = Avk−1/‖Avk−1‖ vT
k Avk

0 (1.00,0.00) 1.00
1 (0.32,0.95) 0.40
2 (1.00,0.00) 1.00
3 (0.32,0.95) 0.40

It thus appears that vk just alternates back and forth between (1.00,0.00)
and (0.32,0.95), and vT

k Avk similarly alternates back and forth between
1.00 and 0.40 (and in particular, does not approach a single value).

It is straightforward to check that the eigenvalues of A are actually 2
and−2, which the power iteration above did not even come close to finding.
We might at first guess that the problem is a result of a poorly-chosen
starting vector v0 (as was the case in Example 3.B.3), but something very
similar happens if we start with a different vector like v0 = (0.80,0.60):

k vk = Avk−1/‖Avk−1‖ vT
k Avk

0 (0.80,0.60) 2.20
1 (0.61,0.79) 1.69
2 (0.80,0.60) 2.20
3 (0.61,0.79) 1.69

The problem in this case is that the maximal eigenvalues 2 and −2
have the same absolute value, so vectors are pulled back and forth between
these two different eigenspaces with equal “force” and neither one ends up
“winning” as A is applied more times. In particular, A2 = 4I, so applying A
twice (and rescaling appropriately) simply moves each vector Av back to
v, where it started, much like a reflection:

The lines y = x and
y =−3x are the

eigenspaces
corresponding to the

eigenvalues 2 and
−2, respectively.

y= xy=−3x

x

y

A/2←−→ x

y

It is also worth noting that power iteration can never help us find complex
(non-real) eigenvalues or eigenvectors of real matrices, since if we start with
a real vector v0 then v1 = Av0/‖Av0‖ will also be real, as will v2, v3, and so
on. This is actually a special case of the problem described above—recall that
complex eigenvalues of real matrices come in complex conjugate pairs, and
complex conjugates have the same absolute value of each other: |λ |= |λ | for
all λ ∈ C. For example, the matrix

[
1 1
−1 1

]

has eigenvalues 1± i, which have the same absolute value as each other:
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|1 + i| = |1− i| =
√

2. Power iteration thus does not necessarily converge to
these maximal eigenvalues when applied to this matrix (and of course cannot if
we start with a real vector v0).

However, we might
get lucky and have

power iteration
converge if we start

with a random
v0 ∈ Cn instead. Fortunately, these are the only cases in which power iteration fails. That

is, as long as there is only one eigenvalue of A with maximal absolute value
and we are not unlucky in our choice of v0, power iteration converges to that
maximal eigenvalue as we expect:

Theorem 3.B.1
Power Iteration

Suppose A ∈ Mn has a linearly independent set of eigenvectors
{w1,w2, . . . ,wn} with corresponding eigenvalues λ1,λ2, . . . ,λn, respec-
tively. Also let v0 ∈ Rn be a vector and suppose that the following two
conditions hold:

• |λ1|> |λ j| for all 2≤ j ≤ n, and

• v0 6∈ span{w2,w3, . . . ,wn}.
If we defineIn other words,

power iteration
always converges to

the maximal
eigenvalue of A,

except possibly in
the two problematic
cases we discussed

earlier.

vk = Avk−1/‖Avk−1‖ for all k ≥ 1 then lim
k→∞

v∗kAvk = λ1.

Proof. We begin by noting that vk is obtained via multiplying v0 by A a total
of k times and normalizing after each multiplication. Since the normalization
can instead be deferred to the end of the calculation, we can write the formula
for vk a bit more explicitly as vk = Akv0/‖Akv0‖. With this in mind, we begin
by investigating what happens to Akv0 as k gets large.

Without loss of generality, we can assume that each eigenvector w j is a
unit vector, since rescaling vectors does not affect linear independence (see
Exercise 2.3.28). Furthermore, since {w1,w2, . . . ,wn} is linearly independent,
it is in fact a basis of Rn, so we can write v0 as a linear combination of these
basis vectors:

v0 = c1w1 + c2w2 + · · ·+ cnwn.

Then repeatedly using the fact that Aw j = λ jw j for each 1≤ j ≤ n givesAs stated, this
theorem only applies

to diagonalizable
matrices, as those

are the matrices with
a linearly

independent set of n
eigenvectors (by
Theorem 3.4.3). It

does apply to
non-diagonalizable

matrices too, but the
proof of that fact is
beyond the scope

of this book.

Akv0 = Ak(c1w1 + c2w2 + · · ·+ cnwn)

= c1λ
k
1 w1 + c2λ

k
2 w2 + · · ·+ cnλ

k
n wn

= λ
k
1

(
c1w1 + c2

(
λ2

λ1

)k

w2 + · · ·+ cn

(
λn

λ1

)k

wn

)
.

We then notice that, since |λ1|> |λ j| for all 2≤ j≤ n, we have
∣∣λ j/λ1

∣∣< 1
and so (λ j/λ1)k → 0 as k→ ∞ for all 2 ≤ j ≤ n as well. For simplicity, we
then define rk to be the “remainder” vector that consists of terms that become
small as k gets large:

rk = c2

(
λ2

λ1

)k

w2 + · · ·+ cn

(
λn

λ1

)k

wn.

Putting all of this together shows that

vk =
Akv0

‖Akv0‖
=

λ k
1
(
c1w1 + rk

)
∥∥λ k

1

(
c1w1 + rk

)∥∥ for all k ≥ 0.
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In particular, by using the fact that lim
k→∞

rk = 0 we can now compute the desired

limit:

The |λ1|2k term here
comes from

combining λ k
1 from

the v∗k on the left
with λ k

1 from the vk
on the right.

lim
k→∞

v∗kAvk = lim
k→∞

|λ1|2k
(
c1w1 + rk

)∗A
(
c1w1 + rk

)
∥∥λ k

1

(
c1w1 + rk

)∥∥2

=

(
c1w1 + lim

k→∞
rk

)∗
A
(

c1w1 + lim
k→∞

rk

)

∥∥∥c1w1 + lim
k→∞

rk

∥∥∥
2

=
|c1|2w∗1Aw1∥∥c1w1

∥∥2 = w∗1Aw1 = w∗1(λ1w1) = λ1,

where at the end we use the facts that w1 is a unit vector (twice) and that it is
an eigenvector of A with corresponding eigenvalue λ1. �

It is worth noting that the above proofTheorem 3.B.1 works
fine if the largest

eigenvalue is
repeated (i.e., has

algebraic multiplicity
larger than 1). There

is only a problem if
there are two

different maximal
eigenvalues with the
same absolute value.

shows that

vk =
λ k

1
(
c1w1 + rk

)
∥∥λ k

1

(
c1w1 + rk

)∥∥ =
(

λ1

|λ1|

)k c1w1 + rk∥∥c1w1 + rk
∥∥ ≈

c1

|c1|

(
λ1

|λ1|

)k

w1

when k is large. It follows that vk approaches the maximal eigenspace of A, but
it might not approach any of its particular fixed maximal eigenvectors, since the
scalar (λ1/|λ1|)k can change sign (or in the case of complex matrices, bounce
around the unit circle in the complex plane) as k varies. We already saw an
example of this behavior in Example 3.B.2, where vk was multiplied by roughly
−1 from one iteration to the next (as a result of the maximal eigenvalue λ1
being negative, and thus λ1/|λ1|=−1).

It is also worth noting that, even if power iteration converges to the max-
imal eigenvalue of a matrix, it might converge quite slowly. The proof of
Theorem 3.B.1 above shows that the speed of convergence is determined by
the ratio |λ2/λ1| of the two largest (in absolute value) eigenvalues of A—the
closer this ratio is to 1, the slower convergence is, and the closer it is to 0, the
quicker convergence is.

Example 3.B.5
Power Iteration Might

Converge Very Slowly

Apply power iteration to the matrix A =



8 −1 0
−1 2 5
0 5 −6




.

Solution:
If we apply power iteration starting from v0 = e1 as usual, we notice

that things do not change very quickly:

k vk = Avk−1/‖Avk−1‖ vT
k Avk

0 (1.00, 0.00, 0.00) 8.00
1 (0.99,−0.12, 0.00) 8.15
2 (0.99,−0.15,−0.07) 8.19
3 (0.98,−0.20,−0.04) 8.21
4 (0.98,−0.19,−0.10) 8.21
5 (0.97,−0.22,−0.05) 8.21

Based on the above calculations, it looks like the maximal eigenvalue of A
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is approximately 8.21, but running power iteration for longer reveals this
to be very, very wrong. After k = 63 iterations, the eigenvalue estimate
dips back down below 8.00, after k = 156 iterations it dips down below
0.00, and it is finally correct to two decimal places after we reach iteration
k = 320:

The vectors v318 and
v320 are actually

slightly different at
later decimal places

not displayed here
(and similarly for v319

and v321).

k vk = Avk−1/‖Avk−1‖ vT
k Avk

318 (0.05, 0.43,−0.90) −8.40
319 (0.00,−0.44, 0.90) −8.40
320 (0.05, 0.43,−0.90) −8.41
321 (0.00,−0.44, 0.90) −8.41

The reason for this strange behavior is that the two largestThe other
eigenvalue of A is

λ3 ≈ 4.19.

eigenvalues
λ1 ≈ −8.41 and λ2 ≈ 8.22 of A are so close to each other in absolute
value (so the ratio |λ2/λ1| ≈ 0.98 is close to 1). Furthermore, the starting
vector v0 = e1 is very close to the eigenspace corresponding to λ2 (which
is span{(0.97,−0.22,−0.08)}), so it starts off by getting pulled toward
that eigenspace before λ1 dominates and pulls it back toward its own. A
plot of the eigenvalue estimate v∗kAvk, as a function of the iteration k, is
provided below:

40 80 120 160 200 240 280 320
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8 λ2 ≈ 8.22

λ1 ≈−8.41

k

v∗kAvk

Finding Non-Maximal Eigenvalues
Power iteration can actually be adapted to find all eigenvalues of a matrix,
not just the dominant one. To see how this works, recall from Exercise 3.3.22
that if A ∈ Mn has eigenvalues λ1,λ2, . . . ,λn and w1 is a unit eigenvector
corresponding to λ1, then the matrix

A−λ1w1wT
1

has eigenvalues 0,λ2,λ3, . . . ,λn.

However, the
eigenvectors of
A−λ1w1wT

1 may
be different than

those of A. See
Exercise 3.3.22.

In particular, if λ1 is the dominant eigenvalue
of A then the dominant eigenvalue of A−λ1w1wT

1 is the second-largest eigen-
value (in absolute value) of A, which can be found via power iteration. Then
we can just repeat this process to find the third-largest eigenvalue (in absolute
value) and so on.
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Example 3.B.6
Finding All

Eigenvalues via
Power Iteration

Use power iteration to find all eigenvalues of A =



1 2 3
4 5 4
3 2 1




.

Solution:
We start by applying power iteration to A to find its dominant eigen-

value. As usual, we just start the iteration with v0 = e1 for convenience:

k vk = Avk−1/‖Avk−1‖ vT
k Avk

0 (1.00,0.00,0.00) 1.00
1 (0.20,0.78,0.59) 7.85
2 (0.42,0.84,0.33) 8.49
3 (0.36,0.85,0.39) 8.53
4 (0.38,0.85,0.37) 8.53

Indeed, the dominant eigenvalue of A is λ1 ≈ 8.53 with corresponding
unit eigenvector w1 ≈ (0.38,0.85,0.37).

To find the second-largest eigenvalue of A, we set

B = A−λ1w1wT
1 ≈




1 2 3
4 5 4
3 2 1


−8.53




0.14 0.32 0.14
0.32 0.72 0.32
0.14 0.32 0.14




=



−0.21 −0.73 1.80
1.27 −1.14 1.31
1.80 −0.69 −0.18




and then apply power iteration to B:

k vk = Bvk−1/‖Bvk−1‖ vT
k Bvk

0 ( 1.00,0.00, 0.00) −0.21
1 (−0.10,0.57, 0.81) −0.52
2 ( 0.81,0.22,−0.54) −1.81
3 (−0.68,0.04, 0.73) −1.99
4 ( 0.72,0.03,−0.69) −2.00

The dominant eigenvalue of B (and the second-to-largest eigenvalue of A
in absolute value) is thus λ2 ≈−2.00, with corresponding unit eigenvector
w2 ≈ (0.72,0.03,−0.69).

Keep in mind that w2
is an eigenvector of

B, but not necessarily
of A.

To finally find the smallest eigenvalue of A, we set

C = B−λ2w2wT
2 ≈




0.82 −0.69 0.81
1.31 −1.14 1.27
0.81 −0.73 0.78




and then apply power iteration to C:
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k vk = Cvk−1/‖Cvk−1‖ vT
k Cvk

0 (1.00,0.00,0.00) 0.82
1 (0.47,0.75,0.46) 0.47
2 (0.51,0.75,0.42) 0.47
3 (0.51,0.75,0.42) 0.47

The dominant eigenvalue of C (and the smallest eigenvalue of A in absolute
value) is thus λ3 ≈ 0.47.

We have thus found that the eigenvalues of A are approximately 8.53,
−2.00, and 0.47. Since this matrix is fairly small, we can verify our
answers explicitly by computing the characteristic polynomial of A to be

pA(λ ) =−λ
3 +7λ

2 +14λ −8,

which indeed has roots−2, (9+
√

65)/2≈ 8.53, and (9−
√

65)/2≈ 0.47.

Keep in mind that, when finding all eigenvalues of a matrix in this way, the
conditions of Theorem 3.B.1 must be satisfied each and every time we apply
power iteration. For example, the matrix

A =




1 2 2 2
3 −1 2 −1
2 3 2 2
3 3 0 −1




has eigenvalues equal to approximately 6.25, −2.55±1.88i, and −0.16. How-
ever, if we try to use this method based on power iteration to find these eigenval-
ues, we will only be able to find the dominant eigenvalue 6.25. The problem is
that the next two eigenvalues −2.55±1.88i are equal to each other in absolute
value, so power iteration gets stuck and is unable to find them (in fact, power
iteration can never find any complex eigenvalue of a real matrix since it only
involves multiplication, addition, and division of real numbers).

3.B.3 Positive Matrices and Ranking Algorithms

Since Theorem 3.B.1 tells us that power iteration only applies to matrices that
have an eigenvalue that is strictly larger than the rest, it is important to find
families of matrices that have this property. With this in mind, we say that a
matrix is positive if all of its entries are positive (i.e., strictly bigger than 0).
For example, here are some matrices that are and are not positive:

The rightmost matrix
here is non-negative

though, since all of
its entries are bigger

than or equal to 0.

Positive Not positive
[

3 1
2 7

] [
2 4 1
8 1 3

] ∣∣∣
[

1 −1
−2 3

] [
4 3 2
1 0 1

]
.

Our main result about positive matrices is that they have exactly the prop-
erty that we want—they have one eigenvalue (which happens to always be
positive and real) that is strictly larger than the absolute value of the rest. The
following theorem establishes this fact, as well as some simple properties of
the eigenvectors to which that largest eigenvalue corresponds.
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Theorem 3.B.2
Perron–Frobenius

Suppose A ∈Mn is positive with eigenvalues λ1,λ2, . . . ,λn (listed accord-
ing to algebraic multiplicity). Then:

a) One of the eigenvalues, say λ1, is positive and larger than the rest:
λ1 > |λ j| for all 2≤ j ≤ n.

b) λ1 has algebraic multiplicity 1.Properties (b)–(d) tell
us that v1 is (up to

scaling) the unique
eigenvector of A

(corresponding to
any eigenvalue)

with all entries
positive.

c) There is an eigenvector v1 corresponding to the eigenvalue λ1 with
all of its entries positive.

d) Every eigenvector corresponding to an eigenvalue λ j (2 ≤ j ≤ n)
has at least one negative or non-real entry.

Proof. Before being able to prove any of the statements of the theorem, we
need to establish some notation and machinery that we will use throughout
the proof. For brevity, we write v ≥ w and v > w to indicate that v j ≥ w j or
v j > w j for all j, respectively (just like we did in Section 2.B). In particular,
this means that non-negativity of v can be denoted by v≥ 0, and positivity of v
can be denoted by v > 0.

Keep in mind that,
whenever we say

“positive” in this
section, we mean

strictly positive—no
zeros allowed.

We also let Sn ⊂ Rn be the set of unit vectors with
positive entries, which we can think of geometrically as the intersection of the
unit (hyper)sphere with the non-negative orthant (see Figure 3.28).

This theorem actually
applies to some

matrices that are not
positive as well—see

Exercise 3.B.8.

S2

x

y

1

y

x

S3

Figure 3.28: The set Sn is the portion of the unit circle/sphere/hypersphere that is
contained in the non-negative quadrant/orthant.

Note that if v∈ Sn then Av > 0, since it is computed by multiplying together
and adding up non-negative numbers, and at least one entry of v is strictly
positive. We can thus define a function L : Sn→ R by

L(v) = max
{

c ∈ R : Av≥ cv
}
. (3.B.1)

In particular, there exists a c > 0 such that Av≥ cv since Av > 0 (so L(v) > 0 for
all v ∈ Sn). Furthermore, once we have found some c that works, the maximal
such c (i.e., the value of L(v)) can be found by increasing c until one of the
entries of cv equals the corresponding entry of Av. That is, a somewhat more
explicit formula for L is given by

The notation [Av] j
means the j-th entry

of the vector Av.
L(v) = min

1≤ j≤n

{
[Av] j

v j
: v j 6= 0

}

In words, L(v) tells us the smallest amount by which any entry of v is stretched
by A.

Notice that L is a continuous function—slightly changing v can only slightly
change L(v)—and the set Sn is both closed (i.e., it contains its boundary/edges)
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and bounded (i.e., it does not contain vectors of arbitrarily large length). It
follows from the Extreme Value Theorem (a theorem from analysis that we
do not explore here) that L attains a maximum value somewhere on Sn. That
is, there is a particular number µ ∈ R and a particular vector v∗ ∈ Sn with the
property that L(v∗) = µ ≥ L(v) for all v ∈ Sn.

Before proceeding, we must prove four claims about the relationships
between A, v∗, and µ that we will use repeatedly.

Claim 1: If v ∈ Sn and L(v) = µ then Av = µv. To see why this claim holds,
notice that L(v) = µ implies Av≥ µv and thus Av−µv≥ 0. Suppose
(for the purpose of establishing a contradiction) that Av−µv 6= 0. Since
A is positive, this implies that A(Av−µv) > 0, and re-arranging then
gives A(Av) > µAv. It follows that

A(Av)
‖Av‖ >

µAv
‖Av‖ , so L

(
Av
‖Av‖

)
> µ.

However, this contradicts the fact that µ is the maximal value of L,
so µ ≥ L(Av/‖Av‖). It follows that our assumption that Av−µv 6= 0
must be mistaken, so Av = µv, as desired.

The above claim shows that µ is in fact an eigenvalue of A with corresponding
eigenvector v∗. The remaining claims will help us understand this particular
eigenvalue/eigenvector pair a bit better.

Claim 2: If v≥ 0 then Av > 0. This follows simply from the fact that A is positive,
so for each 1≤ i≤ n, the sum [Av]i = ai,1v2 +ai,2v2 + · · ·+ai,nvn has at
least one strictly positive term.

Claim 3: If v ∈ Sn and L(v) = µ then v > 0. The fact that v ≥ 0 is a direct con-
sequence of the definition of Sn, so we just need to show that all of its
entries are non-zero (and it is thus positive). To this end, notice that
since A is positive it is the case that Av > 0 (by Claim 2). However,
Claim 1 tells us that Av = µv, so dividing both sides by µ shows us that
v = (Av)/µ > 0 as well.

Claim 3 above shows that the eigenvector v∗ of A is positive. Since we want the
only eigenvalue of A with a positive eigenvector to be λ1, we now know that
we must prove that µ = λ1. The fourth and final claim demonstrates this fact:

Claim 4: If B ∈ Mn(R) is such that O ≤ B ≤ A and λ is an eigenvalue of B
then |λ | ≤ µ . To see why this property holds, notice that if w is a unit
eigenvector of B corresponding to the eigenvalue λ and we fix an integer
1≤ i≤ n then

Ugh, we apologize
for the unfortunate

notation here. To be
clear,

∣∣[Bw]i
∣∣ is the

absolute value of
the i-th entry of Bw,

while
[
B|w|

]
i is the

i-th entry of B|w|.

|λ ||wi|=
∣∣[Bw]i

∣∣=
∣∣∣∣∣

n

∑
j=1

bi, jw j

∣∣∣∣∣≤
n

∑
j=1

bi, j|w j|=
[
B|w|

]
i, (3.B.2)

where the inequality is just the triangle inequality, together with the
fact that A is positive. If we let |w| denote the vector whose entries are
the absolute values of the entries of w (i.e., |w| = (|w1|, |w2|, . . . , |wn|)
then the above inequalities implies B|w| ≥ |λ ||w|. However, since A−B
is entry-wise non-negative, it is also the case that (A−B)|w| ≥ 0, so
A|w| ≥ B|w| ≥ |λ ||w|. It follows that L(|w|)≥ |λ |, but since µ ≥ L(|w|)
we then have µ ≥ |λ |.
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In particular,

Yes, this proof really is
this long. Buckle up...

if we choose B = A in Claim 4 then we see that µ is indeed
the dominant eigenvalue of A (i.e., µ = λ1). Putting this all together reveals
that we have successfully proved part (c) of the theorem and almost proved
part (a) of it (we still have to show that µ is strictly larger than the absolute
value of the other eigenvalues of A, but we leave that to later). We thus now
turn our attention to parts (b) and (d) of the theorem.

The proof that µ has algebraic multiplicity 1 (i.e., part (b) of the theorem)
is somewhat technical and involves some clever techniques from multivariable
calculus, so we leave it to Appendix B.5.

To see that eigenvectors corresponding to eigenvalues of A other than µ

must contain at least one non-positive entry (i.e., part (d) of the theorem),
suppose that λ is an eigenvalue of A with corresponding eigenvector v≥ 0 (our
goal is to show that this implies λ = µ). Then Av = λv, and since Av > 0 (by
Claim 2), we conclude that λ > 0. Then there exists some real scalar c 6= 0
such that (i) cµ ≥ cλ , and (ii) v1 > cv,

If µ ≤ λ then we can
choose c < 0

arbitrarily. If µ ≥ λ

then we can choose
c > 0 to be

sufficiently small so
that v1 > cv.

so

A(v1− cv) = Av1− cAv = µv1− cλv≥ µv1− cµv = µ(v1− cv).

It follows that

A(v1− cv)
‖v1− cv‖ ≥

µ(v1− cv)
‖v1− cv‖ , so L

(
v1− cv
‖v1− cv‖

)
≥ µ. (3.B.3)

However, since µ is the maximal value of L on Sn, it follows that Inequal-
ity (3.B.3) is actually an equality. Claim 1 then tells us that A(v1− cv) =
µ(v1− cv), so v1− cv is an eigenvector of A corresponding to the eigenvalue
µ . Since µ has algebraic multiplicity 1, it also has geometric multiplicity 1,
so v1− cv must be a multiple of v1. However, this is only possible if v itself
is a multiple of v1, so these eigenvectors correspond to the same eigenvalue:
λ = µ .

We have thus shown that µ satisfies properties (b), (c), and (d) of the
theorem that we claimed λ1 satisfies. All that remains is to show that µ is
strictly larger than the absolute value of all other eigenvalues of A. To this end,
we return to Claim 4 and set B = A. We already showed that |λ | ≤ µ , and our
goal is to show that if |λ |= µ then λ = µ .

Well, if |λ |= µ then Inequality (3.B.2) would have to be equality for each
i, but equality holds in the triangle inequalityThe equality

condition of the
triangle inequality

was explored in
Exercise 1.2.17.

if and only if, for each 1≤ j ≤ n,
the terms bi, jw j are non-negative real multiples of each other. Since bi, j > 0
for all 1≤ i, j ≤ n, it follows that w is a scalar multiple of |w|, so |w| is also an
eigenvector corresponding to the eigenvalue λ . However, we already showed
that the only eigenvalue of A = B with a non-negative corresponding eigenvector
is µ , so this shows that λ = µ and (finally!) completes the proof. �

Theorem 3.B.2 guarantees that the dominant eigenvalue λ1 of a positive
matrix is itself positive (and real) and strictly larger than the absolute value of
the other eigenvalues, and that its dominant eigenspace contains an entry-wise
positive vector v1. Power iteration is thus particularly useful when applied to
positive matrices, since combining Theorems 3.B.1 and 3.B.2 shows that power
iteration always finds their dominant eigenvalue (as long as the starting vector
v0 is not chosen to start in the span of the non-dominant eigenspaces).
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Example 3.B.7
Applying Power

Iteration to a
Positive Matrix

Estimate the dominant eigenvalue and eigenvectors of the positive matrix

A =




2 1 4
4 1 2
1 2 4




via power iteration and then confirm analytically that they are indeed an
eigenvalue/eigenvector pair.
Solution:

If we apply power iteration starting from v0 = e1 as usual, we get

k vk = Avk−1/‖Avk−1‖ vT
k Avk

0 (1.00,0.00,0.00) 2.00
1 (0.44,0.87,0.22) 4.48
2 (0.52,0.60,0.60) 6.96
3 (0.58,0.56,0.59) 7.06
4 (0.58,0.58,0.58) 7.00
5 (0.58,0.58,0.58) 7.00

The calculation above suggests that λ = 7 is the dominant eigenvalue
of A and that the dominant eigenspace consists of the multiples of v =
(1,1,1).

The vector v = (1,1,1)
comes from

rescaling
v5 = (0.58,0.58,0.58). To verify that these are indeed an eigenvalue and eigenvector of

A, respectively, we could factor the characteristic polynomial of A and
then solve a linear system as we did repeatedly in Section 3.3. However, it
is much easier to just compute Av and see that it equals λv:

Av =




2 1 4
4 1 2
1 2 4






1
1
1


=




7
7
7


= 7v = λv,

as claimed.

Google’s PageRank Algorithm
Back in the early days of the World Wide Web, there were numerous search
engines that could be used to find web pages of interest, and there was not a
clear “winner” until Google came onto the scene in 1998. The primary reason
for Google’s success was its clever algorithm for ranking the “importance” of
web pages, called PageRank, which is based on power iteration.

Prior to Google,
search engines

sorted web pages
by things like how
often the search

words appeared on
them.

The idea behind PageRank is that the rank (i.e., “importance”) of a web
page should be determined by the ranks of the pages that link to it—after all,
a link to our web page from a Wikipedia is probably a better indicator of its
importance than a link from my personal homepage. In particular, if there are n
web pages to be ranked (n≈ 5 billion at the time of this writing) and we let ri
denote the rank of page i, p j denote the number of pages that page j links to,
andThis seems

completely circular
(we are using the

importance of web
pages to determine

the importance of
web pages), but we

just run with it for
now.

ai, j =

{
1
p j

if page j links to page i, and

0 otherwise,

then we set

ri = ai,1r1 +ai,2r2 + · · ·+ai,nrn for all 1≤ i≤ n. (3.B.4)
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That is, we are thinking of each web page as sharing its own rank evenly among
the other pages that it links to. We illustrate how to construct this linear system
with an example.

Example 3.B.8
A Linear System
for Determining

PageRank

Suppose that 5 web pages, which we call A, B, C, D, and E, link to each
other as follows:

PAGE A PAGE B PAGE C PAGE D PAGE E

B
C

A

D
E

A
E

A

A

B

C

D

For example, page A links to pages B and C. Construct and solve the linear
system (3.B.4) for determining the ranks rA, rB, rC, rD, and rE of these
pages.
Solution:

For example, page A shares half of its rank with each of pages B and C.
On the other hand, page A receives 1/3 of page B’s rank, as well as all
of page C’s, 1/2 of page D’s, and 1/4 of page E’s. We can express this
relationship via the linear equation

rA = 1
3 rB + rC + 1

2 rD + 1
4 rE .

If we similarly construct linear equations based on which pages link into
pages B, C, D, and E, we arrive at the linear system

1
3 rB + rC + 1

2 rD + 1
4 rE = rA,

1
2 rA + 1

4 rE = rB,

1
2 rA + 1

4 rE = rC,

1
3 rB + 1

4 rE = rD,

1
3 rB + 1

2 rD = rE .

It is straightforward to use Gaussian elimination to see that the solu-
tions of this linear system are exactly the multiples of (rA,rB,rC,rD,rE) =
(36,21,21,10,12). The exact values of the entries of this vector are not
particularly important—what matters is their relative ordering. In partic-
ular, we have rA > rB = rC > rE > rD as the resulting ranking of how
important each page is.

Remark 3.B.2
The World Wide

Web as a Graph

One convenient way to represent web pages and links between them is
as a (weighted, directed) graph, where the vertices of the graph represent
the pages and an edge from vertex i to vertex j means that page i links to
page j. Furthermore, we give each edge coming out of vertex j the “weight”
1/p j, where p j

Refer back to
Section 1.B for an

introduction to
graphs and

adjacency matrices.

is the total number of edges coming out of vertex j. For
example, the graph that represents the 5 pages from Example 3.B.8 looks
like
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A B

C D

E

1/2

1
/2

1/3

1/ 3

1/
31 1/2

1/2

1/4

1/
4

1/4
1/4

TheFor each vertex, the
sum of the weights

of edges coming out
of that vertex is 1.

linear system (3.B.4) that is used to compute the ranks of web
pages then simply has the form Ar = r, where A is the adjacency matrix
of this graph. However, since this graph is weighted, instead of placing
1 in the (i, j)-entry of A if there is an edge from vertex i to vertex j, we
place the weight of that edge. For example, the 5-vertex graph above has
adjacency matrix

A =




0 1/3 1 1/2 1/4
1/2 0 0 0 1/4
1/2 0 0 0 1/4

0 1/3 0 0 1/4
0 1/3 0 1/2 0




.

It is straightforward to verify that if r = (rA,rB,rC,rD,rE) then the linear
system Ar = r is exactly the same as the one that we constructed in
Example 3.B.8.

We can of course solve the linear system (3.B.4) directly via Gaussian
elimination, thus finding the ranks of each web page. However, in practice it
is much quicker to use power iteration to do so (after all, the linear system
has the form Ar = r, so we are actually finding an eigenvector of the matrix A
corresponding to the eigenvalue 1).

The reason that power iteration is faster than Gaussian elimination here is
that the World Wide Web is absolutely huge—it has about 5 billion web pages
at the time of this writing—and no computer in the world is fast enough to
use Gaussian elimination to solve a linear system with that many equations
and variables. On the other hand, power iteration only requires us to repeatedly
multiply a vector by the coefficient matrix A, which is much faster in this case
thanks to A being sparse (i.e., since each web page only links to a few others).

The reason that power iteration works to find an eigenvector corresponding
to the eigenvalue λ = 1 is that the columns of the matrix A all add up to 1,

Recall that an
entry-wise

non-negative matrix
whose columns add

up to 1 is called
column stochastic.

and we showed in Exercise 3.3.24 that (a) λ = 1 is an eigenvalue of every
such matrix, and (b) all eigenvalues of these matrices have absolute value at
most 1. It follows that λ = 1 is the dominant eigenvalue of A, so it (and its
corresponding eigenvector r) is what power iteration converges to.

Example 3.B.9
Finding PageRank via

Power Iteration

Use power iteration to solve the linear system from Example 3.B.8.
Solution:

If we apply power iteration to this linear system, starting with v0 = e1,

we get
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k vk = Avk−1/‖Avk−1‖ vT
k Avk

0 (1.00,0.00,0.00,0.00,0.00) 0.00
1 (0.00,0.71,0.71,0.00,0.00) 0.00
2 (0.94,0.00,0.00,0.24,0.24) 0.21
3 (0.23,0.68,0.68,0.08,0.15) 0.49

...
16 (0.74,0.41,0.41,0.21,0.25) 0.99
17 (0.72,0.44,0.44,0.20,0.24) 1.00
18 (0.74,0.42,0.42,0.21,0.24) 1.00

We thusThis particular power
iteration does not

converge very
quickly, due to

having a negative
eigenvalue

λ2 =−0.77 that is
somewhat close to

the dominant
eigenvalue λ1 = 1 in

absolute value.

conclude that the vector

r = (rA,rB,rC,rD,rE)≈ (0.74,0.42,0.42,0.21,0.24)

is close to the eigenspace corresponding to eigenvalue 1, which is what
we wanted. Use as when we found r analytically in Example 3.B.8, the
exact values of its entries are not particularly important (so it is okay that
they are just approximations here)—what matters is their relative ordering
rA > rB = rC > rE > rD.

It is worth looking back at the pages themselves from Example 3.B.8
and trying to convince ourselves that this ranking makes sense. For exam-
ple, page A is linked to by every other page, so it should have the highest
rank, and pages B and C are linked to by the exact same sets of pages (A
and E), so they should have the same rank as each other. We look at why it
makes sense for pages D and E to have the lowest ranks in Exercise 3.B.14.

There is actually one important issue that we glossed over when applying
power iteration in the above example—how did we know that power iteration
would converge in the first place? That is, how did we know that the matrix A
did not have another eigenvalue with absolute value equal to 1? The answer is
simply that we were lucky—there are many column stochastic matrices with
multiple distinct eigenvalues of absolute value 1, such as

Matrices like these
correspond to the

case when the web
pages all link to
each other in a
cycle, so power

iteration has no idea
how to assign their

ranks (i.e., the
assignment of ranks

is too circular for it to
ever make progress).

[
0 1
1 0

]
and




0 1 0
0 0 1
1 0 0


 .

In particular, the first matrix has eigenvalues 1 and −1, and the second matrix
has eigenvalues 1 and (−1± i

√
3)/2, each of which have absolute value 1.

To get around this problem, instead of applying power iteration to A itself,
it is typically applied to A + εJ instead, where J is the matrix of appropriate
size with every entry equal to 1 and ε is some very small (but positive) real
number. If ε is small enough then this change does not change the rankings of
the web pages at all, and the matrix A+ εJ has the advantage of being positive,
rather than just non-negative, so Theorem 3.B.2 applies to it. In particular, this
guarantees that power iteration converges, and the eigenvector that it finds has
positive entries (and thus the web page ranks are positive).
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Exercises solutions to starred exercises on page 473

§ 3.B.1 With the help of computer software, use power
iteration to approximate the dominant eigenvalue and a cor-
responding unit eigenvector of each of the following matri-
ces.

∗(a)
[

1 2
3 4

]

∗(c)


−2 1 1
4 1 2
1 0 −2




∗(e)



3 2 4 3
1 1 1 3
3 4 2 0
0 3 1 2




(b)
[

3 −1
−4 5

]

(d)



3 −1 2
0 4 1
−4 1 2




(f)



0 5 5 2
5 4 7 2
5 4 0 6
7 5 5 4




§ 3.B.2 With the help of computer software, use power
iteration to approximate all eigenvalues, as well as a corre-
sponding unit eigenvector for each, of the following matri-
ces.

∗(a)
[

1 2
3 4

]

∗(c)



1 2 3
4 5 6
7 8 9




(b)
[
−2 4
5 5

]

(d)


−2 3 −1
5 2 3
3 3 0




§ 3.B.3 With the help of computer software, use power
iteration to approximate the dominant eigenvalue and a cor-
responding unit eigenvector of each of the following matri-
ces.

∗(a)



−3 −4 3 7 1 −2 1
4 6 4 −1 −4 3 −2
−2 1 −3 −1 −3 1 −1
0 4 1 5 −3 5 −1
0 3 4 0 2 −1 −5
3 −1 3 5 6 0 7
4 8 3 7 7 6 −1




(b) 


0 1 2 3 4 5 6 7
1 2 3 4 5 6 7 6
2 3 4 5 6 7 6 5
3 4 5 6 7 6 5 4
4 5 6 7 6 5 4 3
5 6 7 6 5 4 3 2
6 7 6 5 4 3 2 1
7 6 5 4 3 2 1 0




3.B.4 Determine which of the following statements are
true and which are false.

∗(a) If A ∈Mn(R) is diagonalizable then power itera-
tion, applied to A, always converges to its dominant
eigenvalue.

(b) If A ∈M3(R) has eigenvalues 3, 2, and 1, then
power iteration, applied to A, always converges to
the eigenvalue 3.

∗(c) If A ∈M3(R) has eigenvalues 5, 3, and −3, then
power iteration, applied to A, converges to the eigen-
value 5 as long as the initial vector v0 is not in the
span of the eigenspaces corresponding to the eigen-
values 3 and −3.

(d) power iteration produces a sequence of values

vT
0 Av0,vT

1 Av1,vT
2 Av2, . . .

that converges to the dominant eigenvalue of a matrix
A ∈Mn(R) then the sequence of vectors v0, v1, v2,
. . . converges to a corresponding eigenvector.

∗(e) If A ∈Mn(R) is positive then it has an eigenvector
with all of its entries positive.

(f) If A ∈Mn(R) is positive then all of its eigenvalues
are positive.

3.B.5 Recall the matrix A from Example 3.B.1, which we
applied power iteration to with the starting vector v0 = e1 so
as to find its maximal eigenvalue and corresponding eigen-
vector.

(a) Repeat the computations from that example starting
with v0 = e2 instead of v0 = e1.

(b) Find a starting vector v0 for which power iteration,
starting with v0, does not converge.

∗∗3.B.6 Suppose A ∈Mn satisfies the hypotheses of The-
orem 3.B.1 and has dominant eigenvalue λ1 that is positive
and real. Explain why

lim
k→∞
‖Avk‖= λ1.

[Side note: A rough explanation is enough—do not feel
the need to rigorously prove this limit like we did in Theo-
rem 3.B.1.]

3.B.7 Show that if A ∈M2(R) is positive then all of its
eigenvalues are real.

∗∗3.B.8 A matrix A ∈Mn is called primitive if Ak is
positive for some integer k ≥ 1. Show that the Perron–
Frobenius theorem (Theorem 3.B.2) applies to primitive
matrices, as long as we change part (a) of the theorem to say
that |λ1| > |λ j| instead of λ1 > |λ j| for all 2 ≤ j ≤ n (i.e.,
λ1 is no longer necessarily positive and real).
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3.B.9 Verify that each of the following matrices are primi-
tive (see Exercise 3.B.8). That is, find a positive integer k
such their k-th powers are positive.

∗(a)
[

0 1
1 1

]

∗(c)
[

i i
i i

]

∗(e)



0 1 1
1 1 0
1 0 0




(b)
[

2 1
1 −1

]

(d) [√5+ i
√

5− i
√

5− i
√

5+ i

]

(f)



0 1 0
1 1 1
0 1 −1




∗§ 3.B.10 For each of the matrices in Exercise 3.B.9,
use power iteration (with the help of computer software) to
approximate its dominant eigenvalue λ1 and an eigenvector
v1 with positive entries to which it corresponds (which are
guaranteed to exist by Exercise 3.B.8).

3.B.11 An entry-wise non-negative matrix A ∈Mn(R) is
called irreducible if, for each (i, j), there exists an integer
k (that may depend on i and j) such that [Ak]i, j > 0.

(a) Show that the following matrix is irreducible:
[

0 1
1 0

]
.

(b) Show that the matrix from part (a) is not primitive
(see Exercise 3.B.8).

(c) Show that if a matrix A is irreducible then I + A is
primitive.

3.B.12 Determine whether the following matrices are prim-
itive (see Exercise 3.B.8), irreducible (see Exercise 3.B.11),
both, or neither.

∗(a)
[
−1 1
1 1

]

∗(c)
[

0 1
2 3

]

∗(e)



1 −1 1
−1 1 1
1 1 1




(b)
[

1 1
0 1

]

(d)
[
−2 1
1 3

]

(f)



0 1 0
1 0 1
0 1 0




§ 3.B.13 Suppose 5 web pages link to each other as indi-
cated below:

PAGE A PAGE B PAGE C PAGE D PAGE E

E
D

C C
A

B

D

E

A

B

C
C

B

Use computer software and power iteration to find the ranks
of these 5 pages (i.e., mimic Example 3.B.9).

∗∗3.B.14 The web pages B, C, D, and E in Example 3.B.8
are all linked to by exactly 2 other web pages, yet we showed
in Example 3.B.9 that pages D and E have lower ranks than
pages B and C. Provide an intuitive explanation for why this
makes sense (i.e., explain why pages D and E “should” have
lower ranks than pages B and C).

3.C Extra Topic: Complex Eigenvalues of Real Matrices

Recall that real matrices may have complex (non-real) eigenvalues and eigen-
vectors. For example, we showed in Example 3.3.8 that the matrix

A =
[
−3 −2
4 1

]

has eigenvalues −1±2i. While this is a fine algebraic result, there are some
situations where we really want toIf you are not

comfortable with
complex numbers,

have a look at
Appendix A.1 before
reading this section.

restrict our attention to real numbers (e.g., if
we are thinking of A as a linear transformation acting on R2), in which case
these complex eigenvalues do not seem to be of much use to us. For example,
our geometric interpretation of eigenvalues is as an amount that A stretches
certain vectors (the corresponding eigenvectors), but A clearly does not stretch
any vector in R2 by a factor of −1+2i.

To illustrate how we will get around this apparent problem and come up
with a geometric interpretation of complex eigenvalues of real matrices, we
first find the eigenvectors of the above matrix A.

Example 3.C.1
Computing

Complex
Eigenvectors

Compute bases of the eigenspaces of the matrix A =
[
−3 −2
4 1

]
.
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Solution:
We showed in Example 3.3.8 that A has eigenvalues λ± = −1± 2i.

We thus want to find the non-zero vectors v± satisfying the linear systems
(A− (−1±2i)I)v± = 0. We start by solving the “+”

The bottom-left entry
after the row

operation was
computed via

4+(1− i)(−2−2i) =
4+(−2+2i−2i−2) =

4−4 = 0.

system:
[
−2−2i −2 0

4 2−2i 0

]
R2+(1−i)R1−−−−−−−→

[
−2−2i −2 0

0 0 0

]
.

It follows that one basis of the eigenspace corresponding to λ+ =−1+2i
consists of the single vector v+ = (1,−1− i). A similar calculation shows
that one basis of the eigenspace corresponding to λ− =−1−2i consists
of the vector v− = (1,−1+ i).

In particular, the eigenvectors in the previous example are also not real, so
we cannot plot them in R2 and talk about the geometric effect that A has on
them. The key observation that we make in order to get around this problem
is that, just like the eigenvalues of a real matrix always come in complex
conjugate pairs (as we noted back in Section 3.3.2), so do its eigenvectors. In
this case, its eigenvalues are complex conjugates of each other, since−1+2i =
−1−2i,

The complex
conjugate of a

complex number is
a+ ib = a− ib.

and its eigenvectors are also complex conjugates of each other, since
(1,−1− i) = (1,−1+ i).

To see that this phenomenon occurs for every real matrix B, suppose that v
is an eigenvector of B with corresponding eigenvalue λ . Then Bv = λv, which
we can use to compute

The leftmost equality
holds because B has
real entries, so B = B.

Bv as follows:

Bv = Bv = Bv = λv = λv.

Since Bv = λv, we conclude that v is an eigenvector of B with correspond-
ing eigenvalue λ . This observation is important, so we re-state it a bit more
prominently:

! The non-real eigenvalues and eigenvectors of real matrices come
in complex conjugate pairs.

3.C.1 Geometric Interpretation for 2×2 Matrices

Since the main result of this section combines several pieces of machinery that
we have either not explicitly covered yet (mostly facts concerning complex
numbers) or have not used in quite some time, we briefly remind ourselves of
some useful tidbits of math that we may haveThe polar form (and

other facts about
complex numbers)

are covered in
Appendix A.1.

forgotten.

First, recall that every complex number λ can be written in polar form
λ = reiθ , which means that λ is a distance of r from the origin in the complex
plane and is rotated up from the real axis by an angle of θ (see Figure 3.29). In
particular, r and θ can be computed via r =

√
a2 +b2 and θ = arctan(b/a) if

a > 0 (if a ≤ 0 then we have to be more careful when computing θ to make
sure that we choose it to be in the correct quadrant).

Second, we use Re(v) and Im(v) to denote the real and imaginary parts of
a vector, respectively. That is, if v = x+ iy for some x,y ∈ Rn then Re(v) = x
and Im(v) = y. Also, by recalling that the complex conjugate of v is v =
Re(v)− iIm(v), we can solve for Re(v) and Im(v) in terms of v and v:

It is also worth
knowing that

eiθ = cos(θ)+ isin(θ)
for all θ ∈ R. This is

called Euler’s
formula.

Re(v) =
1
2
(v+v) and Im(v) =

1
2i

(v−v).
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a+bi= rei

e
i

r

Re

Im

-1 1 2 3

-1

1

2

a

b

Figure 3.29: Every complex number a + ib can be written in the form a + ib = reiθ ,
where r =

√
a2 +b2 is the distance from a+ ib to the origin and θ is the angle that

a+ ib makes with the real axis.

Third, recall from Section 3.1 that if B is a basis of a subspace then [x]B
refers to the coordinate vector of x with respect to the basis B. In particular,
if B = {v,w} is a basis of a 2-dimensional subspace (i.e., a plane) and x =
cv+dw, then [x]B = (c,d).

Finally, recall that
[
Rθ
]

is the 2×2 matrix that rotates vectors in R2 counter-
clockwise by an angle of θ . Specifically,Rotation matrices

(and other similar
linear

transformations)
were introduced in

Section 1.4.2.

this matrix has the form

[
Rθ
]
=

[
cos(θ) −sin(θ)
sin(θ) cos(θ)

]
.

With all of these observations and technicalities taken care of, we are now
able to present a geometric interpretation of the non-real eigenvalues of real
matrices, at least in the 2×2 case. In particular, if we recall from Exercise 3.3.13
that every rotation matrix

[
Rθ
]

has complex (non-real) eigenvalues, unless θ is
an integer multiple of π , then the upcoming theorem can be thought of as the
converse statement that every real matrix with non-real eigenvalues is, up to
scaling and similarity, a rotation.

Theorem 3.C.1
2×2 Matrices with

Complex
Eigenvalues

Look Like
Rotations

Suppose A ∈M2(R) has a complex (non-real) eigenvalue reiθ ∈ C with
corresponding eigenvector v ∈C2. If we let Q =

[
Re(v) | − Im(v)

]
then

Q is invertible and
A = Q

(
r
[
Rθ
])

Q−1.

Just like being able to diagonalize a matrix via A = PDP−1 means that A
“looks diagonal” when viewed in the basis consisting of the columns of P, the
above theorem means that A “looks like” a rotation counter-clockwise by an
angle of θ composed with a stretch by a factor of r when viewed in the basis
B = {Re(v),−Im(v)}.

For instance, if we return to the matrix

A =
[
−3 −2
4 1

]
.

from Example 3.3.8, we recall that one of its eigenvalues is λ = −1 + 2i =√
5eiθ , where θ ≈ ±(0.6476)π . In Example 3.C.1, we found that one cor-

responding eigenvector is v = (1,−1− i). It follows that this matrix can be
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viewed as rotating R2 in the basis B = {Re(v),−Im(v)} = {(1,−1),(0,1)}
counter-clockwise by approximately 0.6476 half-rotations (i.e., an angle of θ ≈
(0.6476)π) and stretching it by a factor of r =

√
5≈ 2.2361, as in Figure 3.30.

In Figure 3.30(a), the
ellipse itself is not

rotated, but rather
vectors are rotated

around its edge. The
ellipse is stretched by

a factor of r =
√

5,
but its orientation

remains the same.

Figure 3.30: A visualization of the geometric effect of the matrix A =
[
−3 −2

4 1

]
from

Example 3.C.1.

Proof Theorem 3.C.1. First,

Figure 3.30(b)
can be thought of
as an “un-skewed”

version of
Figure 3.30(a)—they
are qualitatively the

same, but (b) has
had the specifics

smoothed out.

we note that since the eigenvalue reiθ is not real,
it does not equal its complex conjugate re−iθ , so A is diagonalizable via A =
PDP−1, whereRecall from

Corollary 3.4.4 that
every n×n matrix

with n distinct
eigenvalues is

diagonalizable.

D =

[
reiθ 0

0 re−iθ

]
and P =

[
v | v

]

have complex entries.
Our goal now is to transform this diagonalization into the form described by

the statement of the theorem (which in particular consists entirely of matrices
with real entries). To this end, let H ∈M2(C) be the matrix

H =
[

1 1
−i i

]
with inverse H−1 =

1
2

[
1 i
1 −i

]
. (3.C.1)

It is straightforward to verify that

QH =
[

Re(v) | − Im(v)
][ 1 1
−i i

]

=
[

Re(v)+ iIm(v)
∣∣ Re(v)− iIm(v)

]
=
[

v | v
]
= P,

(3.C.2)
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which tells us that Q is invertible since it implies Q = PH−1, which is the
product of two invertible matrices.

The remainder of the proof is devoted to showing that we can use this
relationship between P and Q to transform D = P−1AP into Q−1AQ and see
that it has the stretched rotation form that we claimed in the statement of the
theorem. In particular, we now compute HDH−1 in two different ways. First,

In the final equality
we use the fact that

QH = P, so
HP−1 = Q−1.

HDH−1 = H(P−1AP)H−1 = (HP−1)A(HP−1)−1 = Q−1AQ,

so if we can also show that HDH−1 = r
[
Rθ
]

then we will be done. Equivalently,
we want to show that HD = r

[
Rθ
]
H, which can be done simply by multiplying

the indicated matrices together:

In the final equality
here, we use the

fact that
eiθ = cos(θ)+ isin(θ).

If we recall that
sin(−θ) =−sin(θ)

then we similarly see
that

e−iθ = cos(θ)− isin(θ).

HD =
[

1 1
−i i

][
reiθ 0

0 re−iθ

]
= r

[
eiθ e−iθ

−ieiθ ie−iθ

]
, and

r
[
Rθ
]
H = r

[
cos(θ) −sin(θ)
sin(θ) cos(θ)

][
1 1
−i i

]

= r

[
cos(θ)+ isin(θ) cos(θ)− isin(θ)
sin(θ)− icos(θ) sin(θ)+ icos(θ)

]
= r

[
eiθ e−iθ

−ieiθ ie−iθ

]
.

Since these two matrices do equal each other, we conclude that

Q−1AQ = HDH−1 = r
[
Rθ
]
,

which completes the proof. �

The matrix H from Equation 3.C.1 is quite remarkable for the fact that it
does not depend on A. That is, no matter what matrix A ∈M2(R) is chosen, H
can be used to convert its complex diagonalization into the stretched rotation
form of Theorem 3.C.1, and vice-versa.

Example 3.C.2
Converting a

Complex
Diagonalization

Use the matrix H from Equation 3.C.1 to convert a complex diagonaliza-
tion of the matrix

A =
[
−3 −2
4 1

]

from Example 3.C.1 to its stretched rotation form of Theorem 3.C.1.
Solution:

We start by recalling that the eigenvalues of this matrix are λ± =−1±
2i and a pair of corresponding eigenvectors is given by v± = (1,−1∓ i).
It follows that A can be diagonalized as A = PDP−1, where

D =
[
−1+2i 0

0 −1−2i

]
and P =

[
1 1

−1− i −1+ i

]
.

To convert this diagonalization into the stretched rotation form de-
scribed by Theorem 3.C.1, we compute

Q = PH−1 =
1
2

[
1 1

−1− i −1+ i

][
1 i
1 −i

]
=
[

1 0
−1 1

]
,
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which is exactly
[

Re(v+) | − Im(v+)
]
, as we would hope (we want our

answer to match up with the statement of Theorem 3.C.1).
We could also
compute this

stretched rotation
form of A directly

from the statement
of Theorem 3.C.1

(without using the
matrix H at all).

Similarly, we
notice that

HDH−1 =
1
2

[
1 1
−i i

][
−1+2i 0

0 −1−2i

][
1 i
1 −i

]
=
[
−1 −2
2 −1

]
,

which is exactly the stretched rotation matrix depicted in Figure 3.30(b)
(i.e., it equals

√
5
[
Rθ
]
, where θ = arccos(−1/

√
5)≈ (0.6476)π).

3.C.2 Block Diagonalization of Real Matrices

We now ramp up the ideas of the previous subsection to real matrices of
arbitrary size. Fortunately, not much changes when we do this—the idea is that
instead of the matrix A ∈Mn(R) looking like a rotation on all of Rn, it looks
like a rotation if we only focus our attention on the two-dimension subspaces
defined by its eigenvectors that come in complex conjugate pairs.

Before stating the theorem, we note that we use the notation diag(a,b,c, . . .)
to denote the diagonal matrix with diagonal entries a, b, c, . . .. In fact, we even
allow a, b, c, . . . to be matrices themselves, in which case diag(a,b,c, . . .) is a
block diagonal matrix with diagonal blocks equal to a, b, c, . . .. For example,

diag
(

I2,5,
[
Rπ/7])=




1 0 0 0 0
0 1 0 0 0
0 0 5 0 0
0 0 0 cos(π/7) −sin(π/7)
0 0 0 sin(π/7) cos(π/7)




.

With this notation out of the way, we can now state the main result of this
section.

Theorem 3.C.2
Block

Diagonalization
of Real Matrices

Suppose A =Mn(R) has ` complex conjugate eigenvalue pairs and m
real eigenvalues (counting algebraic multiplicity) and is diagonalizable
via A = PDP−1, where D,P ∈Mn(C) have

There are m real
eigenvalues and 2`
complex (non-real)

eigenvalues, so
2`+m = n.

the forms

D = diag
(
r1eiθ1 ,r1e−iθ1 , . . . ,r`eiθ` ,r`e−iθ` , λ1, . . . ,λm

)
and

P =
[

v1 | v1 | · · · | v` | v` | w1 | · · · | wm
]
,

with r j,λ j,θ j ∈ R, w j ∈ Rn, and v j ∈ Cn for all j.

Then A = QBQ−1, where B,Q ∈Mn(R) are defined by

In particular, notice
that B and Q are

both real and the
diagonal blocks of B
all have size 2×2 or

1×1.

[-0.4cm]

B = diag
(

r1
[
Rθ1
]
, . . . ,r`

[
Rθ`
]
, λ1, . . . ,λm

)
and

Q =
[

Re(v1) | − Im(v1) | · · · | Re(v`) | − Im(v`) | w1 | · · · | wm
]
.

As another way of thinking about this theorem, recall that any real matrix
A ∈Mn(R) with distinct complex (non-real) eigenvalues can be diagonalized
as A = PDP−1 via some P,D ∈Mn(C), but not via a real P and D (in other
words, A can be diagonalized over C but not over R). For example, the matrix

A =
1
4




3 2 −1
−5 2 3
−5 2 7
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has distinct eigenvalues 2 and (1± i)/2 and is thus diagonalizable over C, but
not over R.

While we cannot diagonalize matrices like this one via a real change of
basis (i.e., a real similarity), it seems natural to ask how close we can get if we
restrict our attention to real matrices. The above theorem answers this question
and shows that we can make it block diagonal with blocks of size no larger
than 2×2. Furthermore, its proof provides a simple method of transforming a
complex diagonalization into a real 2×2 block diagonalization, and vice-versa.

Proof of Theorem 3.C.2. While this theorem looks like a bit of a beast at first,
we did all of the hard work when proving Theorem 3.C.1, which we can now
just repeatedly apply to prove this theorem. In particular, we recall the 2×2
matrix H from Equation (3.C.1) and then we start by defining the various
two-dimensional “chunks” of this problem. That is, we let

D j =

[
r jeiθ j 0

0 r je−iθ j

]
, Pj =

[
v j | v j

]
, and Q j =

[
Re(v j) | −Im(v j)

]

for all 1≤ j ≤ `, and we also define

H̃ = diag H,H, . . . ,H,1,1, . . . ,1
)
.

ℓ copies m copies

We already showed in Equation 3.C.2 of the proof of Theorem 3.C.1 that
Q jH = Pj for all 1≤ j ≤ `, so block matrix multiplication then shows that

All of these block
matrix multiplications

work out so cleanly
simply because H̃ is

block diagonal.

QH̃ =
[

Q1 | Q2 | · · · | Q` | w1 | w2 | · · · | wm
]
diag

(
H,H, . . . ,H,1,1, . . . ,1

)

=
[

Q1H | Q2H | · · · | Q`H | w1 | w2 | · · · | wm
]

=
[

P1 | P2 | · · · | P̀ | w1 | w2 | · · · | wm
]
= P.

Similarly, we also showed in the proof of Theorem 3.C.1 that HD j =
r j
[
Rθ j
]
H for all 1≤ j ≤ `, so block matrix multiplication shows that

H̃D = diag
(
H,H, . . . ,H,1,1, . . . ,1

)
diag

(
D1,D2, . . . ,D`, λ1, . . . ,λm

)

= diag
(
HD1,HD2, . . . ,HD`, λ1, . . . ,λm

)

= diag
(
r1
[
Rθ1
]
H,r2

[
Rθ2
]
H, . . . ,r`

[
Rθ`
]
H, λ1, . . . ,λm

)

= BH̃.

It follows that H̃DH̃−1 = B,

Note that H̃ is
invertible by

Exercise 2.2.20, since
all of its diagonal

blocks are invertible.
so

QBQ−1 = Q(H̃DH̃−1)Q−1 = (QH̃)D(QH̃)−1 = PDP−1 = A,

as claimed, which completes the proof. �

Example 3.C.3
A Complex

Diagonalization
of a Real Matrix

Diagonalize the following matrix over C:

A =
1
4




3 2 −1
−5 2 3
−5 2 7


 .

Solution:
We have carried out this type of computation several times already,
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so we just give a brief rundown of the key properties of A that we must
compute:

• Its characteristic polynomial is pA(λ ) =−λ 3 +3λ 2− (5/2)λ +1.

• Its eigenvalues are (1+ i)/2, (1− i)/2, and 2.We list the real
eigenvalue of A last

so as to be
consistent with
Theorem 3.C.2.

• Eigenvectors corresponding to those eigenvalues, in the same order,
are v = (1, i,1), v = (1,−i,1), and w = (0,1,2).

By just placing these eigenvalues along the diagonal of a diagonal
matrix D and the eigenvectors as columns (in the same order) into a matrix
P, we see that A = PDP−1 is a diagonalization of A over C when

D =




(1+ i)/2 0 0
0 (1− i)/2 0
0 0 2


 and P =




1 1 0
i −i 1
1 1 2


 .

While the complex diagonalization that we found in the above example
is fine for algebraic purposes (for example, we could use it to compute large
powers of that matrix very quickly), it does not help us visualize A as a linear
transformation. To fill in this gap, we now construct its real block diagonaliza-
tion described by Theorem 3.C.2.

Example 3.C.4
A Real Block

Diagonalization
of a Real Matrix

Block diagonalize (in the sense of Theorem 3.C.2) the matrix A from
Example 3.C.3 and then illustrate how it acts as a linear transformation on
R3.
Solution:

We first (arbitrarily) pick one of the complex (non-real) eigenvalues of
A and write it in polar form. We choose the eigenvalue (1+ i)/2, so r =√

(1/2)2 +(1/2)2 = 1/
√

2 and θ = arctan((1/2)/(1/2)) = arctan(1) =
π/4. The polar form of this eigenvalue is thus (1+ i)/2 = 1√

2
eiπ/4.

If we denote the eigenvectors corresponding to the eigenvalues (1 +
i)/2 and 2 by v = (1, i,1) and w = (0,1,2), respectively, it then follows
from Theorem 3.C.2 that

B =

[
1√
2

[
Rπ/4

]
0

0T 2

]
=




1/2 −1/2 0
1/2 1/2 0

0 0 2


 and

Q =
[

Re(v) | − Im(v) | w
]
=




1 0 0
0 −1 1
1 0 2


 .

Geometrically, this means that on the line spanned by the eigenvector
(0,1,2), A stretches by a factor of 2 (this is nothing new—this is exactly
the geometric intuition of eigenvalues that we have had from the start).
Furthermore, if we define a plane S ⊂ R3 by

S = span
(
Re(v),−Im(v)

)
= span

(
(1,0,1),(0,−1,0)

)

then A acts on S like a rotation by an angle of θ = π/4

When constructing
real block

diagonalizations in
this way, the rotation
in S is in the direction

from Re(v) toward
−Im(v).

composed with a
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scaling by a factor of r = 1/
√

2, as displayed below:

xRe(v)
= (1,0,1)

−Im(v) = (0,−1,0)

Aw= 2w

w= (0,1,2)y

z

Just like diagonalizations can be used to quickly compute matrix powers,
so can the block diagonalizations provided by Theorem 3.C.2. The trick is to
recall that

[
Rθ
]k =

[
Rkθ
]

since a rotating R2 by an angle of kθ is equivalent
to rotating it by an angle of θ a total of k times.It’s probably a good

idea to have
a look back at

Example 1.4.12 and
Remark 1.4.2
at this point.

It follows that if A is block
diagonalized as A = QBQ−1 then we can compute its powers quickly via

Ak =(QBQ−1)k = QBkQ−1 = Qdiag
(

rk
1
[
Rkθ1

]
, . . . ,rk

`

[
Rkθ`

]
, λ

k
1 , . . . ,λ k

m

)
Q−1.

While this method might seem somewhat more involved than just using
diagonalization itself at first, it has the advantage over that method of not requir-
ing us to compute large powers of complex numbers. For example, if we tried
to compute A40 for the matrix A from Example 3.C.3 via its diagonalization, we
would have to compute complex numbers like ((1+ i)/2)40, which is perhaps
not so easy depending on how comfortable with complex numbers we are (in
this particular case, the answer is in fact real: ((1+ i)/2)40 = 1/220).

Example 3.C.5
Large Matrix

Powers by Block
Diagonalization

Use the block diagonalization of the matrix A from Example 3.C.4 to
compute A40.
Solution:

Recall that A = QBQ−1, where

B =

[
1√
2

[
Rπ/4

]
0

0T 2

]
and Q =




1 0 0
0 −1 1
1 0 2


 .
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We thus conclude that

The rotation matrix[
R40π/4] is simply the

identity matrix, since
a rotation by an

angle of
θ = 40π/4 = 10π is
equivalent to no

rotation at all.

A40 = (QBQ−1)40 = QB40Q−1

=
1
2




1 0 0
0 −1 1
1 0 2



[ 1

220

[
R40π/4

]
0

0T 240

]


2 0 0
−1 −2 1
−1 0 1




=
1
2




1 0 0
0 −1 1
1 0 2







1/220 0 0

0 1/220 0

0 0 240







2 0 0
−1 −2 1
−1 0 1




=
1

221




2 0 0

1−260 2 260−1

2−261 0 261


 .

Exercises solutions to starred exercises on page 473

3.C.1 Construct a decomposition of the form described
by Theorem 3.C.1 for each of the following 2×2 matrices.
That is, find values for r,θ ∈ R and a matrix Q ∈M2(R)
such that the given matrix has the form Q

(
r
[
Rθ
])

Q−1.

∗(a)
[

0 −1
1 0

]

∗(c)
[

2 1
−2 0

]

(b)
[

0 1
−2 0

]

(d)
[

1 −
√

3
√

3 1

]

3.C.2 Block diagonalize (in the sense of Theorem 3.C.2)
each of the following real matrices.

∗(a)



1 0 0
−1 0 1
1 −1 0




∗(c)



1 −2 2 1
0 1 0 0
−1 −1 2 1
1 0 0 1




(b)



1 −
√

3
√

3
0 3 0

−
√

3 2 1




(d)



4 −3 −1 2
6 −5 0 1
4 −5 1 0
0 −1 3 −2




§ 3.C.3 Use computer software to diagonalize (in the
sense of Theorem 3.C.2) each of the following real matrices.

∗(a) 


2 0 0 0 −2
0 2 1 2 −1
2 0 2 0 0
0 −2 −1 2 1
2 0 −2 0 4




(b)



−2 −3 7 −1 −7 3
2 −9 −9 1 13 −3
−9 16 31 −5 −39 9
−13 38 50 −8 −67 14
−2 −1 5 −1 −5 1
8 −20 −29 5 38 −9




3.C.4 Determine which of the following statements are
true and which are false.

∗(a) Every matrix A ∈M3(R) has a real eigenvalue.
(b) Every matrix A ∈M4(R) has a real eigenvalue.
∗(c) Every matrix A ∈Mn(R) that is diagonalizable over

R is diagonalizable over C.
(d) Every matrix A ∈Mn(R) that is diagonalizable over

C is diagonalizable over R.
∗(e) Every matrix A ∈Mn(R) can be block diagonalized

in the sense of Theorem 3.C.2.
(f) Every rotation matrix

[
Rθ
]
∈M2(R) has complex

(non-real) eigenvalues.

3.C.5 Compute A40 for the matrix A from Example 3.C.4
via complex diagonalization rather than via real block diag-
onalization as in Example 3.C.5.

∗3.C.6 Consider the matrix

A =

[√
3−1 1

−2
√

3+1

]

(a) Diagonalize A and use that diagonalization to find a
formula for Ak .

(b) Use block diagonalization to find a formula for Ak

that only makes use of real numbers.
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3.D Extra Topic: Linear Recurrence Relations

One of the most useful aspects of diagonalization and matrix functions is
their ability to swiftly solve problems that do not even seem to be linear
algebraic in nature at first glance. We already saw a hint of how this works in
Example 3.4.8, where we developed a closed-form formula for the Fibonacci
numbers. In this section, we extend this idea to a larger family of sequences of
numbers x1,x2,x3, . . . that are defined in a similar linear way.

3.D.1 Solving via Matrix Techniques

A linear recurrence relation is a formula that represents a term xn in a se-
quence of numbers as aMore specifically,

these are called
homogeneous

linear recurrence
relations with

constant
coefficients, but that
is a bit of a mouthful.

linear combination of the immediately previous terms in
the sequence. That is, it is a formula for which there exist scalars a0,a1, . . . ,ak−1
so that

xn = ak−1xn−1 +ak−2xn−2 + · · ·+a0xn−k for all n≥ k. (3.D.1)

The number of terms in the linear combination is called the degree of
the recurrence relation (so the recurrence relation (3.D.1) has degree k). In
order for the sequence to be completely defined, we also need some initial
conditions that specify the first term(s) of the sequence. In particular, for a
degree-k recurrence relation we require the first k terms to be specified.

For example, the Fibonacci numbers F0,F1,F2, . . . from Example 3.4.8
satisfy the degree-2 linear recurrence relation Fn = Fn−1 +Fn−2, and the initial
conditions were the requirements that F0 = 0 and F1 = 1.

Example 3.D.1
Computing Terms

via a Linear
Recurrence

Relation

Compute the first 10 terms of the sequence defined by the linear recurrence
relation

xn = 4xn−1− xn−2−6xn−3 for all n≥ 3,

if x0 = 3, x1 =−2, and x2 = 8.
Solution:

We just compute the next terms in the sequence by repeatedly using
the given recurrence relation. For example,

x3 = 4x2− x1−6x0 = 4(8)− (−2)−6(3) = 16,

x4 = 4x3− x2−6x1 = 4(16)−8−6(−2) = 68, and
x5 = 4x4− x3−6x2 = 4(68)−16−6(8) = 208.

By using this same procedure to compute x6, x7, and so on, we see that
the first 10 terms of this sequence are

3, −2, 8, 16, 68, 208, 668, 2056, 6308, and 19168.

It is often

we typically start our
sequences at x0

instead of x1. We just
use this convention

to make some results
work out more

cleanly—it is not
actually important.

desirable to convert a recurrence relation into an explicit formula
for the n-th term of the sequence that does not depend on the computation of
the previous terms in the sequence. In order to do this, we represent linear
recurrence relations via matrices-vector multiplication, just like we did for the
Fibonacci numbers in Example 3.4.8. The following definition says how to
construct the matrix in this matrix-vector multiplication.
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Definition 3.D.1
Companion Matrix

The companion matrix of the linear recurrence relation

xn = ak−1xn−1 +ak−2xn−2 + · · ·+a0xn−k

is the k× k

We first saw
companion matrices

back in
Exercises 3.3.23

and 3.4.23.

matrix

C =




0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
a0 a1 a2 · · · ak−1




.

Example 3.D.2
Constructing
Companion

Matrices

Construct the companion matrices of the following linear recurrence rela-
tions:

a) xn = xn−1 + xn−2,
b) xn = 4xn−1− xn−2−6xn−3, and
c) xn = xn−1 +4xn−3 +2xn−4.

Solutions:
a) This is a degree-2 linear recurrence relation with a1 = a0 = 1, so its

companion matrixThe recurrence from
part (a) is the same

as the one from
Example 3.4.8. In

that example, we
used a slightly

different companion
matrix just to make

the algebra work out
slightly cleaner.

is

C =
[

0 1
1 1

]
.

b) This is a degree-3 linear recurrence relation with a2 = 4, a1 =−1,
and a0 =−6, so its companion matrix is

C =




0 1 0
0 0 1
−6 −1 4


 .

c) Be careful—this is a degree-4 (not degree-3) linear recurrence re-
lation with a3 = 1, a2 = 0, a1 = 4, and a0 = 2, so its companion
matrix is

C =




0 1 0 0
0 0 1 0
0 0 0 1
2 4 0 1


 .

The first main result of this section shows how we can represent the terms
in any sequence that is defined by a linear recurrence relation via powers of
that relation’s companion matrix.

Theorem 3.D.1
Solving Linear

Recurrence
Relations via Matrix

Multiplication

Let x0,x1,x2, . . . be a sequence satisfying a linear recurrence rela-
tion with companion matrix C. For each n = 0,1,2, . . ., define xn =
(xn,xn+1, . . . ,xn+k−1) ∈ Rk. Then

xn = Cnx0 for all n≥ 0.
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Proof of Theorem 3.D.1. We start by computing

Cx0 =




0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
a0 a1 a2 · · · ak−1







x0
x1

...
xk−2
xk−1




=




x1
x2

...
xk−1

a0x0 +a1x1 + · · ·+ak−1xk−1




=




x1
x2

...
xk−1
xk




= x1,

where we used the given recurrence relation (with n = k) to simplify the bottom
entry at the right. By multiplying by this matrix n times and repeating this
argument, we similarly see that

Cnx0 = Cn−1(Cx0) = Cn−1x1 = Cn−2(Cx1) = Cn−2x2 = · · ·= Cxn−1 = xn,

as desired. �

On its own, the above theorem might not seem terribly useful, since com-
puting xn by repeatedly multiplying a vector by a matrix is more work than
just computing it via the original recurrence relation. However, it becomes
extremely useful when combined with diagonalization (i.e., the technique of
Section 3.4), which lets us derive explicit formulas for powers of matrices.

In particular, since xn equals the first entry of Cnx0

Notice that
x0 = (x0,x1, . . . ,xk−1)

contains exactly the
initial conditions of

the sequence.

(or the last entry of
Cn−k+1x0), any explicit formula for the powers of C immediately gives us an
explicit formula for xn as well. This technique is exactly how we found an
explicit formula for the Fibonacci numbers in Example 3.4.8, and we illustrate
this method again here with a degree-3 recurrence relation.

Example 3.D.3
Finding a Formula

for a Linear
Recurrence

Relation

Find an explicit formula for the n-th term of the sequence defined by the
recurrence relation

xn = 4xn−1− xn−2−6xn−3 for all n≥ 3,

if x0 = 3, x1 =−2, and x2 = 8.
Solution:

We startThis is the same
sequence that we

investigated in
Examples 3.D.1

and 3.D.2(b).

by using Theorem 3.D.1, which tells us that xn equals the top
entry of




0 1 0
0 0 1
−6 −1 4




n


3
−2
8


 .

To compute the top entry of this vector explicitly, we diagonalize the
companion matrix. Its eigenvalues are 3, 2, and −1, with corresponding
eigenvectors (1,3,9), (1,2,4), and (1,−1,1), respectively. This matrix
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can thus be diagonalized via

D =




3 0 0
0 2 0
0 0 −1


 , P =




1 1 1
3 2 −1
9 4 1


 , P−1 =

1
12



−6 −3 3
12 8 −4
6 −5 1


 .

It follows that

P is the transpose of
a Vandermonde
matrix, which we

showed always
happens when

diagonalizing
companion matrices

in Exercise 3.4.23.




0 1 0
0 0 1
−6 −1 4




n


3
−2
8


= PDnP−1




3
−2
8




=




1 1 1
3 2 −1
9 4 1







3n 0 0
0 2n 0
0 0 (−1)n





 1

12



−6 −3 3
12 8 −4
6 −5 1










3
−2
8




=




1 1 1
3 2 −1
9 4 1







3n 0 0
0 2n 0
0 0 (−1)n







1
−1
3




=




1 1 1
3 2 −1
9 4 1







3n

−2n

3(−1)n


 ,

and the top entry of this matrix-vector product is 3n−2n + 3(−1)n. We
thus conclude that xn = 3n−2n +3(−1)n for all n.

3.D.2 Directly Solving When Roots are Distinct

While we could always work through the procedure of Example 3.D.3 in order
to find an explicit formula for the terms in a linear recurrence relation (as long
as its companion matrix is diagonalizable), there are some observations that we
can make to speed up the process. First, we learned in Exercise 3.3.23 that the
characteristic polynomial of the companion matrix




0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
a0 a1 a2 · · · ak−1




is simply p(λ ) = (−1)k(λ k− ak−1λ k−1−·· ·− a1λ − a0). Since the leading
coefficient of (−1)k does not affect the roots of this polynomial (i.e., the
eigenvalues of the companion matrix), this leads naturally to the following
definition:
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Definition 3.D.2
Characteristic

Polynomial of a
Linear Recurrence

Relation

The characteristic polynomial of the degree-k linear recurrence relation

xn = ak−1xn−1 +ak−2xn−2 + · · ·+a0xn−k

is the degree-k polynomial

p(λ ) = λ
k−ak−1λ

k−1−ak−2λ
k−2−·· ·−a1λ −a0.

If the roots
A recurrence

relation’s
characteristic
polynomial is

obtained by moving
all terms to one side
and replacing each

xn− j with λ k− j.

of this polynomial (i.e., the eigenvalues of the companion matrix)
are distinct, then we know from Corollary 3.4.4 that the companion matrix is
diagonalizable. We can thus mimic Example 3.D.3 to solve the corresponding
recurrence relation in terms of powers of those roots. However, doing so still
requires us to compute k eigenvectors, and thus solve k linear systems. The
following theorem shows that we can instead solve the recurrence relation by
solving just a single linear system instead.

Theorem 3.D.2
Solving Linear

Recurrence
Relations

Suppose x0,x1,x2, . . . is a sequence satisfying a linear recurrence relation
whose characteristic polynomial has distinct roots λ0,λ1, . . . ,λk−1. Let
c0,c1, . . . ,ck−1 be the (necessarily unique) scalars such that

xn = c0λ
n
0 + c1λ

n
1 + · · ·+ ck−1λ

n
k−1 when 0≤ n < k. (3.D.2)

Then theIn other words, we
choose c0,c1, . . . ,ck−1

so that this formula
satisfies the given

initial conditions.

formula (3.D.2) holds for all n≥ 0.

Before proving the above theorem, it is worth noting that λ = 0 is never a
root of the characteristic polynomial p(λ ) = λ k−ak−1λ k−1−ak−2λ k−2−·· ·−
a1λ −a0, so there is never a term of the form 0n in the explicit formula (3.D.2)
(not that it would contribute anything even if it were there). The reason for this
is simply that it would imply a0 = 0, which means that the recurrence relation

xn = ak−1xn−1 +ak−2xn−2 + · · ·+a0xn−k

actually has degree k−1 (or less), so p is not actually its characteristic polyno-
mial in the first place—a characteristic polynomial cannot have higher degree
than the recurrence relation it came from.

The fact that we can find scalars c0,c1, . . . ,ck−1 satisfying Equation (3.D.2)
can be made clearer by writing it out as a linear system. Explicitly, this linear
system has the

For example,
plugging n = 0 into

Equation (3.D.2)
gives the first

equation in this
linear system,

plugging in n = 1
gives the second

equation, and so on.

form




1 1 . . . 1
λ0 λ1 . . . λk−1

λ 2
0 λ 2

1 . . . λ 2
k−1

...
...

. . .
...

λ
k−1
0 λ

k−1
1 · · · λ

k−1
k−1







c0
c1
c2

...
ck−1




=




x0
x1
x2

...
xk−1




.

The fact that this linear system has a unique solution follows from the fact that
the coefficient matrix (i.e., the matrix containing the powers of λ0,λ1, . . . ,λk−1)
is the transpose of a Vandermonde matrix, and we showed that all such matrices
are invertible in Example 2.3.8.

Proof of Theorem 3.D.2. We just discussed why c0,c1, . . . ,ck−1 exist and are
unique, so we just need to show that xn does indeed satisfy the given formula.
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To this end, we recall that we specifically chose c0, c1, . . ., ck−1 so that

xn = c0λ
n
0 + c1λ

n
1 + · · ·+ ck−1λ

n
k−1 for 0≤ n < k,

so we just need to show that this same formula holds for higher values of n. For
n = k, we use the original recurrence relation to see that

xk =
k−1

∑
n=0

anxn (recurrence that defines xk)

=
k−1

∑
n=0

an

(
k−1

∑
j=0

c jλ
n
j

)
(since xn =

k−1

∑
j=0

c jλ
n
j when i≤ k−1)

=
k−1

∑
j=0

c j

(
k−1

∑
n=0

anλ
n
j

)
(swap the order of the sums)

=
k−1

∑
j=0

c jλ
k
j , (characteristic polynomial says λ

k
j =

k−1

∑
n=0

anλ
n
j )

which is exactly the claimed formula for xk.

This proof can be
made a bit more

rigorous via
induction, if desired.

Repeating this argument for xk+1,
xk+2, and so on shows that the result holds for all n. �

The above theorem has a couple of advantages over our previous method
based on diagonalization: we only need to solve one linear system (instead of
n linear systems for an n×n matrix), and it can be used even by people who
have never heard of eigenvalues, eigenvectors, or diagonalization.

Example 3.D.4
Simpler Method

for Solving Linear
Recurrence

Relations

Find an explicit formula for the n-th term of the sequence defined by the
recurrence relation

xn = 8xn−1−17xn−2 +10xn−3 for all n≥ 3,

if x0 = 1, x1 = 4, and x2 = 22.
Solution:

The characteristic polynomial of this recurrence relation is

p(λ ) = λ
3−8λ

2 +17λ −10 = (λ −5)(λ −2)(λ −1),

which has roots λ0 = 1, λ1 = 2, and λ2 = 5. Since these roots are distinct,
Theorem 3.D.2 applies, so our goal is to solve the linear

The matrix on the left
contains powers of

λ0 = 1, λ1 = 2, and
λ2 = 5, while the
right-hand side

vector contains the
initial conditions

x0 = 1, x1 = 4, and
x2 = 22.

system



1 1 1
1 2 5
1 4 25







c0
c1
c2


=




1
4

22


 .

The unique solution is (c0,c1,c2) = (1,−1,1), so we conclude that

xn = c0λ
n
0 + c1λ

n
1 + c2λ

n
2 = 1−2n +5n for all n≥ 0.

Remark 3.D.1
Proving

Theorem 3.D.2 via
Diagonalization

Another way to demonstrate that the formula provided by Theorem 3.D.2
holds is to represent the sequence via the matrix-vector multiplication
xn = Cnx0, where C is the companion matrix, and then diagonalize C. In
particular, we showed in Exercise 3.4.23 that companion matrices with dis-
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tinct eigenvalues can be diagonalized by the transpose of a Vandermonde
matrix. That is, C = V DV−1, where

V =




1 1 . . . 1
λ0 λ1 . . . λk−1

λ 2
0 λ 2

1 . . . λ 2
k−1

...
...

. . .
...

λ
k−1
0 λ

k−1
1 · · · λ

k−1
k−1




and D =




λ0 0 · · · 0
0 λ1 · · · 0
...

...
. . .

...
0 0 · · · λk−1




.

If we let c = (c0,c1, . . . ,ck−1) be a vector for which

Here we use the fact
that if V c = x0 then

V−1x0 = c.

V c = x0, then Theo-
rem 3.D.1 tells us that xn equals the top entry of

xn = Cnx0 = V DnV−1x0 = V Dnc for all n≥ 0.

It is straightforward to explicitly compute the top entry of V Dnc to then
see that

xn = c0λ
n
0 + c1λ

n
1 + · · ·+ ck−1λ

n
k−1 for all n≥ 0,

as claimed.

It is perhaps worth working through an example to illustrate what happens
when the characteristic polynomial of a linear recurrence relation has non-real
roots.

Example 3.D.5
Solving a Linear

Recurrence
Relation with

Complex Roots

Find an explicit formula for the n-th term of the sequence defined by the
recurrence relation

xn = 2xn−1− xn−2 +2xn−3 for all n≥ 3,

if x0 = 3, x1 = 8, and x2 = 2.
Solution:

The characteristic polynomial of this recurrence relation is

p(λ ) = λ
3−2λ

2 +λ −2 = (λ −2)(λ 2 +1),

which has roots λ0 = 2, λ1 = i, and λ2 =−i. Since these roots are distinct,
Theorem 3.D.2 applies, so our goal is to solve theComplex roots of

real polynomials
always come in

complex conjugate
pairs (λ1 = i and

λ2 = i =−i here), as
do the associated
coefficients in the

formula for xn
(c1 = 1−3i and

c2 = 1−3i = 1+3i
here).

linear system




1 1 1
2 i −i
4 −1 −1






c0
c1
c2


=




3
8
2


 .

The unique solution is (c0,c1,c2) = (1,1−3i,1+3i), so we conclude that

xn = c0λ
n
0 +c1λ

n
1 +c2λ

n
2 = 2n +(1−3i)in +(1+3i)(−i)n for all n≥ 0.

The formula above perhaps seems nonsensical at first, since xn must
be real for all n, but its formula involves complex numbers. However, the
imaginary parts of these complex numbers cancel out in such a way that,
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no matter what value of n is plugged into the formula, the result is always
real. For example,

x3 = 23 +(1−3i)i3 +(1+3i)(−i)3 = 8+(−3− i)+(−3+ i) = 2.

If we wish to obtain a formula for xn consisting entirely of real numbers,
we can write the complex roots λ1 and λ2 in their polar forms λ1 = i = eiπ/2

and λ2 =−i = e−iπ/2 and simplify:

xn = 2n +(1−3i)in +(1+3i)(−i)n

= 2n +(1−3i)eiπn/2 +(1+3i)e−iπn/2

= 2n +(eiπn/2 + e−iπn/2)−3i(eiπn/2− e−iπn/2)
= 2n +2cos(πn/2)+6sin(πn/2) for all n≥ 0,

with the final equality coming from the fact that eiθ = cos(θ)+ isin(θ),
so eiθ + e−iθ = 2cos(θ) and eiθ − e−iθ = 2isin(θ) (see Appendix A.1).

Alternatively, this same formula could have been obtained by applying
the 2×2 block diagonalization techniques of Section 3.C to the companion
matrix of this linear recurrence relation.

3.D.3 Directly Solving When Roots are Repeated

If the roots of a recurrence relation’s characteristic polynomial are not distinct,
then Theorem 3.D.2 does not apply. We might think that we could instead go
back to our method based on diagonalization and hope that the companion
matrix is diagonalizable, but it turns out that companion matrices are never
diagonalizable if their eigenvalues are not distinct (this is not obvious, but we
proved it in Exercise 3.4.23(b)), so this will not work. Instead, we can make
use of the following generalization of Theorem 3.D.2.

Theorem 3.D.3
Solving Linear

Recurrence
Relations with

Repeated Roots

Suppose x0,x1,x2, . . . is a sequence satisfying a linear recurrence relation
whose characteristic polynomial has roots λ0, λ1, . . ., λm−1, with multiplic-
ities r0, r1, . . ., rm−1, respectively. Let q0,q1, . . . ,qm−1 be the (necessarily
unique) polynomials with degrees r0−1, r1−1, . . ., rm−1−1, respectively,
such that

xn =
m−1

∑
j=0

q j(n)λ n
j when 0≤ n < k. (3.D.3)

Then the formula (3.D.3) holds for all n≥ 0.

The

A polynomial of
degree 0 is a

constant, so this
theorem simplifies to

exactly
Theorem 3.D.2 if

r0 = . . . = rm−1 = 1.

above theorem seems like quite a mouthful at first glance, but its
general structure is very similar to that of Theorem 3.D.2—all that has changed
is that the powers of roots are now multiplied by polynomials rather than just
scalars. Before proving this result, we work through an example to clarify what
it says.

Example 3.D.6
Solving a Linear

Recurrence Relation
with Repeated Roots

Find an explicit formula for the n-th term of the sequence defined by the
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recurrence relation

xn = 3xn−2 +2xn−3 for all n≥ 3,

if x0 = 6, x1 = 0, and x2 = 3.
Solution:

TheRead the recurrence
relation above

carefully—it has
degree 3, not 2 (the

coefficient of
xn−1 is 0).

characteristic polynomial of this recurrence relation is

p(λ ) = λ
3−3λ −2 = (λ −2)(λ +1)2,

which has roots λ0 = 2 and λ1 =−1, with multiplicities 1 and 2, respec-
tively. The polynomials q0 and q1 in Theorem 3.D.3 then have degrees 0
and 1, respectively, so they are of the form q0(x) = c0 and q1(x) = c1 +c2x.
Our goal is thus to find c0,c1,c2 such that

c02n +(c1 + c2n)(−1)n = xn when 0≤ n < 3.

By plugging n = 0, 1, and 2 into this equation, we arrive at the linear

More specifically, the
first equation in this

linear system comes
from plugging in

n = 0, the second
from n = 1, and the

third from n = 2.

system




1 1 0
2 −1 −1
4 1 2






c0
c1
c2


=




6
0
3


 ,

which has unique solution (c0,c1,c2) = (1,5,−3). It follows that

xn = c02n +(c1 + c2n)(−1)n = 2n +(5−3n)(−1)n for all n≥ 0.

Proof of Theorem 3.D.3. We start by showing that q0,q1, . . . ,qk−1 exist and
are unique. To this end, we start by writing the polynomials q0,q1, . . . ,qm−1
more explicitly as q j(n) = c j,0 +c j,1n+ · · ·+c j,r j−1nr j−1 for 0≤ j < m. Then
the system of equations (3.D.3) has coefficient matrix

V =
[

V0 | V1 | · · · | Vm−1
]
,

where Vj has the following form for

Notice that each Vj
has size k× r j, so V

has size
k× (r0 + · · ·+ rm−1) =

k× k.

each 0≤ j < m:

Vj =




1 0 0 · · · 0
λ j λ j λ j · · · λ j

λ 2
j 2λ 2

j 4λ 2
j · · · 2r j−1λ 2

j

λ 3
j 3λ 3

j 9λ 3
j · · · 3r j−1λ 3

j

...
...

...
. . .

...

λ
k−1
j (k−1)λ k−1

j (k−1)2λ
k−1
j · · · (k−1)r j−1λ

k−1
j




.

In

The matrix V is the
transpose of a
Vandermonde

matrix if r j = 1 (i.e., Vj
is k×1) for all j. This

invertibility proof
generalizes

Example 2.3.8.

particular, if we recall that every column in the coefficient matrix corresponds
to a variable in the linear system, then the `-th column of Vj (starting counting
from ` = 0) corresponds to c j,`.

To show that q0,q1, . . . ,qk−1 exist and are unique, it suffices to show that
V is invertible (since we can then row-reduce V to I and solve for the c j,`
coefficients). To this end, we will show that the rows of V form a linearly
independent set (which is equivalent to invertibility via Theorem 2.3.5). Well,
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suppose that some linear combination (with coefficients d0, d1, . . ., dk−1) of
the rows of V equals 0.

Keep in mind that
00 = 1, so d000λ 0

j = d0,
but d00`λ 0

j = 0 when
` > 0.

Then

k−1

∑
n=0

dnn`
λ

n
j = 0 for all 0≤ j < m, 0≤ ` < r j.

We now claim that the above equation implies that the polynomial

p(λ ) = d0 +d1λ + · · ·+dk−1λ
k−1

has each of λ0, λ1, . . ., λk−1 as roots with multiplicities r0, r1, . . ., rm−1, re-
spectively. We prove this fact in Appendix B.6 (since it is quite long and
technical, and the proof we are currently working through is already long
enough). Counting multiplicity, we have thus found r0 + r1 + · · ·+ rm−1 = k
roots of p, which has degree k−1. It follows that p is the zero polynomial, so
d0 = d1 = · · ·= dk−1 = 0. The rows of V are thus linearly independent, so it is
invertible, as claimed.

Now that we know that q0, q1, . . ., qm−1 exist and are unique, we recall that
we specifically chose them so that

xn = q0(n)λ n
0 +q1(n)λ n

1 + · · ·+qm−1(n)λ n
m−1 when 0≤ n < k.

We thus just need to show that this same formula holds for higher values of n.
To do so, we use the original recurrence relation to see

The structure of this
proof is very similar

to that of
Theorem 3.D.2, but

with a couple of
extra layers of

ugliness added
on top.

that

xk =
k−1

∑
n=0

anxn (recurrence that defines xk)

=
k−1

∑
n=0

an

(
k−1

∑
j=0

q j(n)λ n
j

)
(since xn =

k−1

∑
j=0

q j(n)λ n
j when n < k)

=
k−1

∑
n=0

an

k−1

∑
j=0

(
r j−1

∑
`=0

c j,`n`

)
λ

n
j (since q j(n) =

r j−1

∑
`=0

c j,`n`)

=
k−1

∑
j=0

r j−1

∑
`=0

c j,`

(
k−1

∑
n=0

ann`
λ

n
j

)
(swap the order of the sums)

=
k−1

∑
j=0

r j−1

∑
`=0

c j,`

(
k`

λ
k
j

)
(Theorem B.6.2: λ j is root of char. poly.)

=
k−1

∑
j=0

q j(k)λ k
j , (since q j(k) =

r j−1

∑
`=0

c j,`k`)

which

Again, this argument
could be made a bit

more rigorous via
induction, but the

proof is already long
and messy enough

without it.

is exactly the claimed formula for xk. Repeating this argument for xk+1,
xk+2, and so on shows that the result holds for all n. �

That proof was a bit rough to get through, so we cleanse our palates by
working through another example, this time with a root whose multiplicity is
greater than 2.

Example 3.D.7
Solving a Linear

Recurrence
Relation with

Repeated Roots

Find an explicit formula for the n-th term of the sequence defined by the
recurrence relation

xn = 6xn−1−12xn−2 +10xn−3−3xn−4 for all n≥ 4,

if x0 = 0, x1 = 3, x2 = 8, and x3 = 7.
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Solution:
The characteristic polynomial of this recurrence relation is

p(λ ) = λ
4−6λ

3 +12λ
2−10λ +3 = (λ −1)3(λ −3),

which has roots λ0 = 1 and λ1 = 3, with multiplicities 3 and 1, respectively.
The polynomials q0 and q1 in Theorem 3.D.3 then have degrees 2 and 0,
respectively, so they are of the form q0(x) = c0 +c1x+c2x2 and q1(x) = c3.
Our goal is thus to find c0,c1,c2,c3 suchSince 1n = 1 for all n,

the term
(c0 + c1n+ c2n2)1n

simplifies to just
c0 + c1n+ c2n2 here.

that

c0 + c1n+ c2n2 + c33n = xn when 0≤ n < 4.

By plugging n = 0, 1, 2, and 3 into this equation, we arrive at the linear
system




1 0 0 1
1 1 1 3
1 2 4 9
1 3 9 27







c0
c1
c2
c3


=




0
3
8
7


 ,

which has unique solution (c0,c1,c2,c3) = (1,2,3,−1). It follows that

xn = c0 + c1n+ c2n2 + c33n = 1+2n+3n2−3n for all n≥ 0.

In the explicit formulas for sequences defined by linear recurrence relations
that are provided by Theorems 3.D.2 and 3.D.3, if n is large then the term
involving largest root of the characteristic polynomial has by far the biggest
effect on the overall size of xn. For example, the following table lists the first
18 Fibonacci numbers (recall from Example 3.4.8 that the Fibonacci numbers
satisfy F0 = 0, F1 = 1, and Fn = Fn−1 +Fn−2 when n≥ 2), as well as the ratios
between consecutive terms in the sequence:

n Fn Fn/Fn−1

0 0 –
1 1 –
2 1 1.0000
3 2 2.0000
4 3 1.5000
5 5 1.6667

n Fn Fn/Fn−1

6 8 1.6000
7 13 1.6250
8 21 1.6154
9 34 1.6190
10 55 1.6176
11 89 1.6182

n Fn Fn/Fn−1

12 144 1.6180
13 233 1.6181
14 377 1.6180
15 610 1.6180
16 987 1.6180
17 1597 1.6180

It appears that the ratio between terms converges to some number around
1.6180. To see why this is the case, recall the explicit formula for the Fibonacci

Since 1−φ ≈−0.6180,
which is smaller than

1 in absolute value,
(1−φ)n→ 0 as n→ ∞.

numbers:

Fn =
1√
5

(
φ

n− (1−φ)n), where φ =
1+
√

5
2

≈ 1.6180.

In particular, since φ n is significantly larger than (1−φ)n when n is large, Fn
grows in roughly the same way that φ n/

√
5 grows, so the Fibonacci sequence

grows by roughly a factor of φ from term to term. The following result makes
this observation precise and generalizes it to other linear recurrence relations.
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Corollary 3.D.4
Growth Rate of

Linear Recurrence
Relations

Suppose x0,x1,x2, . . . is a sequence satisfying a linear recurrence relation
whose characteristic polynomial has roots λ0, λ1, . . ., λm−1 (which may
have multiplicities greater than 1, but they are listed here just once). Sup-
pose that one of these roots, λ0, has strictly larger absolute value than the

If the above
inequality is not strict,

then this limit may
not even exist (see

Example 3.D.8).

others:
|λ0|> |λ j| for all 0 < j < m.

Then
lim
n→∞

xn+1

xn
= λ0.

Proof. We start by using Theorem 3.D.3 to write

xn = q0(n)λ n
0 +q1(n)λ n

1 + · · ·+qm−1(n)λ n
m−1,

where q0, q1, . . ., qm−1 are the polynomials described by that theorem.

Dividing the
numerator and

denominator by
q0(n)λ n

0 here is a
standard technique
for evaluating limits
of fractions—divide

by the
fastest-growing term
in the denominator.

Then

lim
n→∞

xn+1

xn
= lim

n→∞

q0(n+1)λ n+1
0 + · · ·+qm−1(n+1)λ n+1

m−1

q0(n)λ n
0 + · · ·+qm−1(n)λ n

m−1

= lim
n→∞

q0(n+1)λ n+1
0 + · · ·+qm−1(n+1)λ n+1

m−1

q0(n)λ n
0 + · · ·+qm−1(n)λ n

m−1
·

(
1

q0(n)λ n
0

)

(
1

q0(n)λ n
0

)

= lim
n→∞

q0(n+1)
q0(n) λ0 + · · ·+λm−1

qm−1(n+1)
q0(n)

(
λm−1

λ0

)n

1+ · · ·+ qm−1(n)
q0(n)

(
λm−1

λ0

)n

=
λ0 +0+ · · ·+0
1+0+ · · ·+0

= λ0,

where the second-to-last equality comes from the facts that, for any polynomial
q and any number c with |c|< 1, we have

lim
n→∞

q(n+1)
q(n)

= 1 and lim
n→∞

q(n)cn = 0.

The two limits above are hopefully intuitive enough (q(n+1) and q(n) have the
same leading terms and the exponential cn goes to 0 faster than the polynomial
q(n) goes to infinity), so we leave their proofs to Appendix B.7. �

For example, if we go way back to the sequence defined by x0 = 3, x1 =−2,
x2 = 8, and xn = 4xn−1−xn−2−6xn−3 for n≥ 3 from Example 3.D.1, it seems
that every term is roughly 3 times as large as the previous one (e.g., x8 = 6308,
which is roughly 3 times as large as x7 = 2056). This now makes sense, since
we showed in Example 3.D.3 that the roots of its characteristic polynomial are
3, 2, and −1.

Similarly, the sequences from Examples 3.D.4, 3.D.5, 3.D.6, and 3.D.7
have limiting growth rates of 5, 2, 2, and 3, respectively. It is perhaps worth
working through a couple of examples for which Corollary 3.D.4 does not
apply.
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Example 3.D.8
Sequences

Without a
Limiting Ratio

Explain why Corollary 3.D.4 does not apply to each of the following
sequences:

a) x0 = 0, x1 = 0, x2 = 1, xn = xn−1−4xn−2 +4xn−3 when n≥ 3, and
b) x0 = 0, x1 = 1, x2 = 0, xn = 2xn−1 +9xn−2−18xn−3 when n≥ 3.

Solutions:
a) The characteristic polynomial of this linear recurrence relation is

p(λ ) = λ
3−λ

2 +4λ −4 = (λ −1)(λ 2 +4),

which has roots 1, 2i, and −2i.

If the largest root (in
absolute value) λ0 is

not real then
Corollary 3.D.4 does
not apply, since λ0 is
another root with the
same absolute value.

Since the absolute values of these
roots are 1, 2, and 2, respectively, there is no one root that has
strictly larger absolute value than the rest, so Corollary 3.D.4 does
not apply.

To get a bit of a better feel for what is happening in this sequence,
we list out its first several terms explicitly:

0, 0, 1, 1, −3, −3, 13, 13, −51, −51, 205, 205, . . .

It is now a bit more apparent that the limiting ratio discussed by
Corollary 3.D.4 indeed does not exist, since this sequence alternates
back and forth between repeating the previous

We prove the claim
that the terms in this
sequence repeat in

Exercise 3.D.8.

term (so xn/xn−1 = 1)
and growing by roughly a factor of −4 (so xn/xn−1 ≈ −4). The
fact that this sequence grows by a factor of −4 every two terms is
explained by the fact that the two largest roots of its characteristic
polynomial satisfy (2i)2 = (−2i)2 =−4.

b) The characteristic polynomial of this linear recurrence relation is

p(λ ) = λ
3−2λ

2−9λ +18 = (λ −2)(λ −3)(λ +3),

which has roots 2, 3, and−3. Since the absolute values of these roots
are 2, 3, and 3, respectively, there is no one root that has strictly
larger absolute value than the rest, so Corollary 3.D.4 does not apply.

Again, it is perhaps helpful to write out the first several terms of the
sequence explicitly to see what is happening here:

0, 1, 0, 9, 0, 81, 0, 729, 0, 6561, 0, 59049, . . .

This sequence just alternates back and forth between zeros and the
powers of 9, so the limiting ratio of Corollary 3.D.4 indeed does not
exist—the ratio xn/xn−1 alternates back and forth between 0 and
being undefined. The fact that this sequence grows by a factor of 9
every two terms is explained by the fact that the two largest roots of
its characteristic polynomial satisfy 32 = (−3)2 = 9.

Remark 3.D.2
The Look-and-Say

Sequence

As one particularly interesting and surprising application of the techniques
from this section, consider the sequence that begins

1, 11, 21, 1211, 111221, 312211, 13112221, 1113213211, . . .
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This is called the look-and-say sequence, since each of its terms after
the initial 1 is generated by “reading” the digits of the previous term. For
example, the term 111221 can be read as “three 1s, two 2s, one 1”, so the
next term in the sequence is 312211. This term can be read as “one 3, one
1, two 2s, two 1s”, so the next term in the sequence is 13112221, and so
on.

Although this sequence seems somewhat silly and “non-mathematical”,
the number of digits in the terms of this sequence behave in a very in-
teresting way. Let xn denote the number of digits in the n-th term of
the look-and-say sequence—for example, x5 = 6 since the fifth terms in
the look-and-say sequence is 111221, which has 6 digits. Remarkably,
the sequence x1,x2,x3, . . . satisfies the following degree-74(!!)

The fact that xn
satisfies this

recurrence relation
(or any linear

recurrence relation
at all) is very not
obvious—it was

proved in [Con86].

recurrence

Be careful—the
coefficient of each

of xn−3, xn−11, xn−12,
xn−45, xn−54 is 0.

relation:

xn = xn−1 + 2xn−2 − 2xn−4 − 4xn−5 + xn−6 + 4xn−7 + 2xn−8

− xn−9 − 2xn−10− 3xn−13− 3xn−14+ 5xn−15+ 8xn−16+ 6xn−17

−12xn−18− 9xn−19− xn−20+ xn−21+13xn−22− 8xn−23+ 7xn−24

+12xn−25−11xn−26− 4xn−27−19xn−28+ 4xn−29+16xn−30+ 9xn−31

+ 9xn−32−32xn−33+ 7xn−34+ 5xn−35− 8xn−36+18xn−37−19xn−38

+ 5xn−39+20xn−40−13xn−41+ xn−42− 3xn−43−13xn−44+17xn−46

−10xn−47+10xn−48+ 9xn−49−15xn−50− 8xn−51− xn−52+23xn−53

−10xn−55−25xn−56+ 8xn−57+24xn−58+ 9xn−59−13xn−60−16xn−61

+ xn−62+ 7xn−63+ 6xn−64+ 3xn−65−13xn−66+ 3xn−67− 2xn−68

+ 7xn−69+ 7xn−70− 9xn−71+ 3xn−72− 9xn−73+ 6xn−74

The characteristic polynomial of the recurrence relation above factors
as p(λ ) = (λ + 1)(λ − 1)2q(λ ), where q(λ ) is the following

This degree-71
polynomial does not

have any rational
roots, so we cannot

really factor it any
further.

degree-71
polynomial:

q(λ ) = λ
71− λ

69−2λ
68− λ

67+ 2λ
66+ 2λ

65+ λ
64− λ

63

− λ
62− λ

61− λ
60− λ

59+ 2λ
58+ 5λ

57+ 3λ
56− 2λ

55

−10λ
54− 3λ

53−2λ
52+ 6λ

51+ 6λ
50+ λ

49+ 9λ
48− 3λ

47

− 7λ
46− 8λ

45−8λ
44+10λ

43+ 6λ
42+ 8λ

41− 5λ
40−12λ

39

+ 7λ
38− 7λ

37+7λ
36+ λ

35− 3λ
34+10λ

33+ λ
32− 6λ

31

− 2λ
30−10λ

29−3λ
28+ 2λ

27+ 9λ
26− 3λ

25+14λ
24− 8λ

23

− 7λ
21+ 9λ

20+3λ
19− 4λ

18−10λ
17− 7λ

16+12λ
15+ 7λ

14

+ 2λ
13−12λ

12−4λ
11− 2λ

10+ 5λ
9 + λ

7 − 7λ
6 + 7λ

5

− 4λ
4 +12λ

3 −6λ
2 + 3λ − 6

We could thus use Theorem 3.D.3 to come up with an explicit formula
for xn in terms of powers of 1, −1, and the 71 (distinct) roots of the
polynomial q. It is not realistic to write down this entire formula, but we
can at least plot those 71 roots to see where they are located in the complex
plane:
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Of these 71 roots,
only 3 are real. The 3

real roots are
approximately
−1.0882, −1.0112,

and 1.3036.

Re

Im

-1 -0.5 0.5 1

-1

-0.5

0.5

1

Of particular note is the root approximately equal to 1.3036 (high-
lighted in orange above), which is larger in absolute value than any of the
other roots. In light of Corollary 3.D.4, this tells us that

lim
n→∞

xn+1

xn
≈ 1.3036.

In words, this means that when n is large, the number of digits in the terms
of the look-and-say sequence increases by approximately 30.36% from
one term to the next.

This limiting ratio, approximately equal to 1.3036, is interesting for
the fact that it is a root of a degree-71 polynomial with integer coefficients,
but not of any lower-degree polynomial with integer coefficients.Numbers like π and e

that are not roots of
any polynomial with
integer coefficients

are called
transcendental.

Many
numbers like

√
2 or φ = (1+

√
5)/2 are roots of low-degree polynomials

with integer coefficients (degree 2 in those two cases), and many numbers
like π and e are not roots of any polynomial with integer coefficients at
all. This limiting ratio is one of the few examples of a naturally-arising
number that is the root of a polynomial with integer coefficients, but only
a very high-degree one.

Exercises solutions to starred exercises on page 474

3.D.1 Compute the (potentially complex) roots, and their
multiplicities, of the characteristic polynomials of the each
of the following linear recurrence relations.

∗(a) xn = xn−1 +6xn−2
(b) xn = 6xn−1−9xn−2
∗(c) xn = 6xn−1−4xn−2
(d) xn = 2xn−1−2xn−2
∗(e) xn = 6xn−1−11xn−2 +6xn−3

(f) xn = 2xn−2 + xn−3
∗(g) xn = 6xn−1−12xn−2 +8xn−3
(h) xn = 7xn−1−8xn−2−16xn−3
∗(i) xn = 5xn−1−4xn−2−6xn−3
(j) xn = 7xn−1−17xn−2 +15xn−3

3.D.2 Write the companion matrix for each of the linear
recurrence relations given in Exercise 3.D.1.

3.D.3 Solve each of the following linear recurrence rela-
tions. That is, find an explicit formula for the n-th term of
each of the following sequences.

∗(a) x0 = 4, x1 =−3,
xn = xn−1 +6xn−2 when n≥ 2

(b) x0 = 1, x1 = 0,
xn = 6xn−1−9xn−2 when n≥ 2

∗(c) x0 = 2, x1 = 0,
xn =−xn−2 when n≥ 2

(d) x0 = 2, x1 = 3,
xn = 2xn−1− xn−2 when n≥ 2

∗(e) x0 = 0, x1 = 2, x2 = 8,
xn = 6xn−1−11xn−2 +6xn−3 when n≥ 3

(f) x0 = 0, x1 = 2, x2 = 16,
xn = 6xn−1−12xn−2 +8xn−3 when n≥ 3

∗(g) x0 =−2, x1 = 1, x2 = 5,
xn = 4xn−1−5xn−2 +2xn−3 when n≥ 3
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(h) x0 = 7, x1 = 8, x2 = 4,
xn = 4xn−1−6xn−2 +4xn−3 when n≥ 3

3.D.4 Determine which of the following statements are
true and which are false.

∗(a) The roots of the characteristic polynomial of a linear
recurrence relation must all be real.

(b) The sequence defined by the formula xn = 2n− 3n

satisfies a linear recurrence relation.
∗(c) The sequence defined by the formula xn = n2− n3

satisfies a linear recurrence relation.
(d) The sequence defined by the formula xn =

√
2n−√

3n satisfies a linear recurrence relation.
∗(e) If the characteristic polynomial of a linear recurrence

relation has roots 4, 3, and 2, each with multiplicity
2, then limn→∞ xn+1/xn = 4.

3.D.5 For each of the following formulas, find a linear
recurrence relation that the formula satisfies.

∗(a) xn = 2n +3n

(b) xn = 2n−3n+1

∗(c) xn = 2n +3n +4n

(d) xn = (1+n)2n +3n

∗(e) xn = (1+n+n2)2n +3n

(f) xn = 7+2n

∗(g) xn = n2

(h) xn = 2(1+ i)n +2(1− i)n

∗(i) xn = (n−5)3n +(3+ i)(1−2i)n +(3− i)(1+2i)n

(j) xn = 2n cos(πn/4)−2n sin(πn/4)

3.D.6 Find an explicit formula for the n-th term of each
of the following sequences that only involves real numbers
and real-valued functions (even though their characteristic
polynomials all have non-real roots).

[Hint: Mimic the procedure of Example 3.D.5.]

∗(a) x0 = 2, x1 = 0,
xn =−xn−2 when n≥ 2

(b) x0 = 4, x1 = 4,
xn = 2xn−1−2xn−2 when n≥ 2

∗(c) x0 = 3, x1 = 1, x2 =−7,
xn = xn−1−4xn−2 +4xn−3 when n≥ 3

(d) x0 =−1, x1 = 0, x2 = 8,
xn = 4xn−1−8xn−2 +8xn−3 when n≥ 3

3.D.7 Consider the sequence defined by the formula
xn = b(4 +

√
11)nc, where b·c denotes the “floor” func-

tion that rounds down the input, discarding its decimal part.
Show that xn satisfies a linear recurrence relation.

[Hint: The characteristic polynomial of the linear recurrence
relation should have 4+

√
11 as a root.]

∗∗3.D.8 In Example 3.D.8(a), we claimed that the se-
quence defined by the linear recurrence relation xn = xn−1−
4xn−2 + 4xn−3, with initial conditions x0 = 0, x1 = 0 and
x2 = 1, repeats every term (for example, x0 = x1, x2 = x3,
and so on). Prove this claim.



A. Mathematical Preliminaries

In this appendix, we present some of the miscellaneous bits of mathematical
knowledge that are not topics of linear algebra themselves, but are nevertheless
useful and might be missing from the reader’s toolbox.

A.1 Complex Numbers

Throughout this book, the vectors, matrices, and other linear algebraic objects
that we work with almost always have entries that come from the set of real
numbers (denoted by R), though we sometimes make use of the set of complex
numbers (denoted by C) in order to simplify our work. Since complex num-
bers make linear algebra work so nicely (especially once we start computing
eigenvalues in Section 3.3), we now introduce some of their basic properties.

The core idea behind complex numbers is to extend the real numbers in
a way that lets us take square roots of negative numbers. To this end, we let i
be an object with the property that i2 =−1. It is clear that i cannot be a real
number, but we nonetheless think of it like a number anyway, as we will see
that we can manipulate it much like we manipulate real numbers. We call any
real scalar multiple of i like 2i or −(7/3)i an imaginary number, and such
numbers obey the same laws of arithmetic that we would expect them to (e.g.,
2i+3i = 5i and (3i)2 = 32i2 =−9).

We then let C, the set of complex numbers, be the set

C def=
{

a+bi : a,b ∈ R
}

in which addition and multiplication work exactly as they do for real numbers,
as long as we keep in mind that i2 =−1. We call a the real part of a+bi, and
it is sometimes convenient to denote it by Re(a+bi) = a. We similarly call b
its imaginary part and denote it by Im(a+bi) = b.

Remark A.1.1
Yes, We Can

Do That

It might seem extremely strange at first that we can just define a new
number i and start doing arithmetic with it. However, this is perfectly fine,
and we do this type of thing all the time—one of the beautiful things about
mathematics is that we can define whatever we like. However, for that
definition to actually be useful, it should mesh well with other definitions
and objects that we use.

The reason that complex numbers are so useful is that they extend
the set of real numbers in such a way that they allow us to solve any
polynomial equation (see the upcoming fundamental theorem of algebra—
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Theorem A.2.3),We actually do lose
one thing when we
go from R to C: we

cannot order the
members of C in a

way that meshes
well with addition

and multiplication
like we can on R.

yet they do not break any of the usual laws of arithmetic.
That is, we still have all of the properties like ab = ba, a+b = b+a, and
a(b+ c) = ab+ac for all a,b,c ∈ C that we would expect “numbers” to
have.

By way of contrast, suppose that we tried to similarly add a new
number that lets us divide by zero. If we let ε be a number with the
property that ε × 0 = 1 (i.e., we are thinking of ε as 1/0 much like we
think of i as

√
−1), then we have

1 = ε×0 = ε× (0+0) = (ε×0)+(ε×0) = 1+1 = 2.

We thus cannot work with such a number without breaking at least one of
the usual laws of arithmetic.

A.1.1 Basic Arithmetic and Geometry

For the most part, arithmetic involving complex numbers works simply how we
might expect it to. For example, to add two complex numbers together we just
add up their real and imaginary parts: (a+bi)+(c+di) = (a+ c)+(b+d)i,
which is hopefully not surprising (it is completely analogous to how we can
group and add real numbers and vectors). For example,

(3+7i)+(2−4i) = (3+2)+(7−4)i = 5+3i.

Similarly, to multiply two complex numbers together we just distribute
parentheses like we usually do when we multiply numbers together, and we
make use of the fact that i2 =−1:If you are familiar

with the acronym
“FOIL” for multiplying

binomials together,
that is what we are

using here.

(a+bi)(c+di) = ac+bci+adi+bdi2 = (ac−bd)+(ad +bc)i.

For example,

(3+7i)(4+2i) = (12−14)+(6+28)i =−2+34i.

One of the primary uses of complex numbers is that they can be used to
solve arbitrary polynomial equations—even ones that do not have real solutions.
For example, the equation x2− 2x + 5 = 0You can find the

solutions of a
polynomial equation

like this one via the
quadratic formula,
which we cover in

the next section.

has no real solutions, but it has
x = 1+2i as a complex solution, since

(1+2i)2−2(1+2i)+5 = (1+2i)(1+2i)− (2+4i)+5
= (−3+4i)− (2+4i)+5
= (−5+5)+(4−4)i
= 0.

Once we have the (potentially complex) solutions of polynomial equations like
this one, we can use them to factor and simplify that polynomial, or better
understand the underlying problem that led to that polynomial in the first place.

Much like we think of R as a line, we think of C as a plane, which we
call the complex plane. The set of real numbers takes the place of the x-axis
(which we call the real axis) and the set of imaginary numbers takes the place
of the y-axis (which we called the imaginary axis). The complex number a+bi
thus has coordinates (a,b) on that plane, as in Figure A.1.
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a+bi
−2+2i

3− i

4+3i

−1− i

Re

Im

a

b

Figure A.1: The complex plane is a representation of the set C of complex numbers.

We thus think of C much like we think of R2 (i.e., we can think of the
complex number a + bi ∈ C as the vector (a,b) ∈ R2), but with a multiplica-
tion operation that we do not have on R2. With this in mind, we define the
magnitude of a complex number a+bi to be the quantity

The magnitude of a
real number is simply

its absolute value:
|a|=

√
a2.

|a+bi| def=
√

a2 +b2,

which is simply the length of the associated vector (a,b) (i.e., it is the distance
between a+bi and the origin in the complex plane).

A.1.2 The Complex Conjugate

One particularly important operation on complex numbers that does not have
any natural analog on the set of real numbers is complex conjugation, which
negates the imaginary part of a complex number and leaves its real part alone.
We denote this operation by putting a horizontal bar over the complex number
it is being applied to so that, for example,

3+4i = 3−4i, 5−2i = 5+2i, 3i =−3i, and 7 = 7.

Geometrically, complex conjugation corresponds to reflecting a number in the
complex plane through the real axis, as in Figure A.2.

Applying the
complex conjugate
twice simply undoes

it:
a+bi = a−bi = a+bi.

a+bi

a+bi = a−bi

Re

Im

a

b

Figure A.2: Complex conjugation reflects a complex number through the real axis.

Algebraically, complex conjugation is useful since many other common
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operations involving complex numbers can be expressed in terms of it. For
example:

• The magnitude of a complex number z = a+bi can be written in terms
of the product of z with its complex conjugate: |z|2 = zz, sinceThe product

(a+bi)(a−bi) here
simplifies a lot

because its
imaginary part is

(ab−ab)i = 0.

zz = (a+bi)(a+bi) = (a+bi)(a−bi)

= a2 +b2 = |a+bi|2 = |z|2.

• The previous point tells us that we can multiply any complex number
by another one (its complex conjugate) to get a real number. We can
make use of this fact to come up with a method of dividing by complex
numbers:

In the first step here,
we just cleverly

multiply by 1 so as to
make the

denominator real.

a+bi
c+di

=
(

a+bi
c+di

)(
c−di
c−di

)

=
(ac+bd)+(bc−ad)i

c2 +d2 =
(

ac+bd
c2 +d2

)
+
(

bc−ad
c2 +d2

)
i.

• The real and imaginary parts of a complex number z = a + bi can be
computed via

Re(z) =
z+ z

2
and Im(z) =

z− z
2i

,

since

z+ z
2

=
(a+bi)+(a−bi)

2
=

2a
2

= a = Re(z) and

z− z
2i

=
(a+bi)− (a−bi)

2i
=

2bi
2i

= b = Im(z).

A.1.3 Euler’s Formula and Polar Form

Since we can think of complex numbers as points in the complex plane, we
can specify them via their length and direction rather than via their real and
imaginary parts. In particular, we can write every complex number in the form
z = |z|u, where |z| is the magnitude of z and u is a number on the unit circle in
the complex plane.

By recalling that every point on the unit circle in R2 has coordinates of
the form (cos(θ),sin(θ)) for some θ ∈ [0,2π),The notation

θ ∈ [0,2π) means
that θ is between 0

(inclusive) and 2π

(non-inclusive).

we see that every point on the
unit circle in the complex plane can be written in the form cos(θ)+ isin(θ), as
illustrated in Figure A.3.

It follows that we can write every complex number in the form z =
|z|(cos(θ) + isin(θ)). However, we can simplify this expression somewhat
by using the remarkable fact, called Euler’s formula, that

In other words,
Re(eiθ ) = cos(θ) and

Im(eiθ ) = sin(θ). eiθ = cos(θ)+ isin(θ) for all θ ∈ [0,2π).

If you are not familiar with the exponential function ex, then you can think of
this formula simply as a definition—just think of eiθ as a shorthand for the
expression cos(θ)+ isin(θ). However, if you have seen the function ex and are
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It is worth noting that
|cos(θ)+ isin(θ)|2 =
cos2(θ)+ sin2(θ) = 1,

so these numbers
really are on the unit

circle.
θ

Re

Im

cos(θ )+ isin(θ )

cos(θ )

sin(θ )

Figure A.3: Every number on the unit circle in the complex plane can be written in
the form cos(θ)+ isin(θ) for some θ ∈ [0,2π).

familiar with Taylor series then you can justify this formula by recalling that
ex, cos(x), and sin(x) have Taylor series

ex = 1+ x+
x2

2
+

x3

3!
+

x4

4!
+

x5

5!
+ · · · ,

cos(x) = 1 − x2

2!
+

x4

4!
−·· · , and

sin(x) = x − x3

3!
+

x5

5!
· · · ,

respectively. Plugging x = iθ into the Taylor series for ex then givesWe do not worry
about things like

convergence
here—these details

are covered in
textbooks on

complex analysis.

eiθ = 1+ iθ − θ 2

2
− i

θ 3

3!
+

θ 4

4!
+ i

θ 5

5!
−·· ·

=
(

1− θ 2

2
+

θ 4

4!
−·· ·

)
+ i
(

θ − θ 3

3!
+

θ 5

5!
+ · · ·

)
,

which equals cos(θ)+ isin(θ), as claimed.
By making use of Euler’s formula, we see that we can write every complex

number z ∈ C in the form z = reiθ , where r is the magnitude of z (i.e., r = |z|)
and θ is the angle that z makes with the positive real axis (see Figure A.4). This
is called the polar form of z, and we can convert back and forth between the
polar form z = reiθ and its Cartesian form z = a+bi via the formulas

In the formula for θ ,
sign(b) =±1,

depending on
whether b is positive
or negative. If b < 0

then we get
−π < θ < 0, which
we can put in the

interval [0,2π) by
adding 2π to it.

a = r cos(θ) r =
√

a2 +b2

b = r sin(θ) θ = sign(b)arccos
(

a√
a2 +b2

)
.

There is no simple way to “directly” add two complex numbers that are
in polar form, but multiplication is quite straightforward: (r1eiθ1)(r2eiθ2) =
(r1r2)ei(θ1+θ2). We can thus think of complex numbers as stretched rotations—
multiplying by reiθ stretches numbers in the complex plane by a factor of r and
rotates them counter-clockwise by an angle of θ .

Because the polar form of complex numbers works so well with multipli-
cation, we can use it to easily compute powers and roots. Indeed, repeatedly
multiplying a complex number in polar form by itself gives (reiθ )n = rneinθ for
all positive integers n≥ 1. We thus see that every non-zero complex number
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a+bi = re
iθ

e
iθ

θ

r

Re

Im

a

b

Figure A.4: Every complex number can be written in Cartesian form a+bi and also
in polar form reiθ .

has at least n distinct n-th roots (and in fact, exactly n distinct n-th roots). In
particular, the n roots of z = reiθ are

You should try to
convince yourself
that raising any of
these numbers to

the n-th power results
in reiθ . Use the fact

that e2πi = e0i = 1.
r1/neiθ/n, r1/nei(θ+2π)/n, r1/nei(θ+4π)/n, . . . , r1/nei(θ+2(n−1)π)/n.

Example A.1.1
Computing

Complex Roots

Compute all 3 cube roots of the complex number z = i.

Solution:
We start by writing z in its polar form z = eπi/2, from which we see

that its 3 cube roots are

eπi/6, e5πi/6, and e9πi/6.

We can convert these three cube roots into their Cartesian forms if we want
to, though this is perhaps not necessary:

eπi/6 = (
√

3+ i)/2, e5πi/6 = (−
√

3+ i)/2, and e9πi/6 =−i.

Geometrically, the cube root eπi/6 = (
√

3 + i)/2 of i lies on the unit
circle and has angle one-third as large as that of i, and the other two cube
roots are evenly spaced around the unit circle:

π/6 Re

Im

eπi/2 = i

eπi/6 = (
√
3+ i)/2e5πi/6 = (−

√
3+ i)/2

e9πi/6 =−i

Among the n distinct n-th roots of a complex number z = reiθ ,This definition of
principal roots

requires us to take
θ ∈ [0,2π).

we call
r1/neiθ/n its principal n-th root, which we denote by z1/n. The principal root
of a complex number is the one with the smallest angle so that, for example, if
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z is a positive real number (i.e., θ = 0) then its principal roots are positive real
numbers as well. Similarly, the principal square root of a complex number is the
one in the upper half of the complex plane (for example, the principal square
root of −1 is i, not −i), and we showed in Example A.1.1 that the principal
cube root of z = eπi/2 = i is z1/3 = eπi/6 = (

√
3+ i)/2.

A.2 Polynomials

A polynomial is a function p : R→ R of the form
It is also OK to

consider polynomials
p : C→ C with

coefficients in C.

p(x) = anxn +an−1xn−1 + · · ·+a2x2 +a1x+a0,

where a0,a1,a2, . . . ,an−1,an ∈ R are constants (called the coefficients of p).
The highest power of x appearing in the polynomial is called its degree (so, for
example, the polynomial displayed above has degree n, as long as an 6= 0).

A degree-2 polynomial is called a quadratic, and it is typically written in
the form

p(x) = ax2 +bx+ c,

where a,b, and c are constants. The graph of a quadratic function is a parabola
(see Figure A.5). A degree-3 polynomial is called a cubic, and a degree-4
polynomial is called a quartic, but quadratics typically receive quite a bit
more attention than their higher-degree counterparts since they are so much
simpler to work with. The graph of a cubic function typically looks much like a
parabola, but with an extra “bend” in it, and the graph of a quartic typically has
another bend still (and this pattern continues for higher-degree polynomials).

x

y

-2 -1 1 2

x

y

-2 -1 1 2

x

y

-2 -1 1 2

Figure A.5: Graphs of some low-degree polynomials. Increasing the degree of a
polynomial typically adds an additional “bend” to its graph.

A.2.1 Roots of Polynomials

One of the most typical tasks involving polynomials is to find their roots,
which are the solutions to the equation p(x) = 0. Geometrically, the roots of
a polynomial are the x values of the points where its graph crosses the x-axis.
For example, the roots of the cubic in Figure A.5(b) are approximately x =−2,
x = 0.5, and x = 1.5.
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If p is a quadraticWe prove the
quadratic formula a

bit later, in
Theorem A.3.3.

then one method of finding its roots is to use the
quadratic formula:

x =
−b±

√
b2−4ac

2a
.

We illustrate how to use this formula via some examples.

Example A.2.1
Using the

Quadratic
Formula

Find all roots of the following quadratics:
a) x2−6x+8,
b) 2x2 +8x+8, and
c) x2 +2x+3.

Solutions:
a) This quadratic has a = 1, b = −6, and c = 8, so the quadratic

formula tells us that its roots are

x =
6±
√

36−32
2

=
6±2

2
= 3±1.

Its roots are thus x = 2 and x = 4. This quadratic is displayed below
(notice that it crosses the x-axis at x = 2 and x = 4):

x
1 2 3 4 5

b) ThisThe quadratics in this
example show that
they can have 2, 1,

or 0 distinct roots.

quadratic has a = 2, b = 8, and c = 8, so the quadratic formula
tells us that its roots are

x =
−8±

√
64−64

4
=
−8±0

4
=−2.

It thus has just one root: x =−2. This quadratic is displayed below
(notice that it just touches the x-axis once, at x =−2):

x
-4 -3 -2 -1 0

c) This quadratic has a = 1, b = 2, and c = 3, so the quadratic formula
tells us that its roots are

x =
−2±

√
4−12

2
=−1±

√
−2.
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In this situation, context matters:If you are
uncomfortable or

unfamiliar with
complex numbers

like −1+ i
√

2, go
back to

Appendix A.1.

if we demand that roots must be
real (i.e., we are considering this quadratic as a function on R) then
we conclude that it has no roots. However, if we allow complex
roots (i.e., we are considering it as a function on C) then its roots
are −1± i

√
2. This quadratic is displayed below (notice that it does

not cross the x-axis at all):

x

y

-3 -2 -1 0 1

To find the roots of a polynomial of degree higher than 2, we have to be a
bit more clever than we were with quadratics, since we typically cannot just
plug values into a formula to find the roots. The following theorem provides the
main tool that is used for analytically finding roots of polynomials in general.

Theorem A.2.1
Rational Root

Theorem

Let p be a polynomial of the form

p(x) = anxn +an−1xn−1 + · · ·+a2x2 +a1x+a0,

where a0,a1,a2, . . . ,an−1,an ∈ R areFor integers x and y,
x is a “divisor” of y if y
is an integer multiple

of x.

integers and a0,an 6= 0. Then every
rational root of p has the form b/c, where b is a divisor of a0 and c is a
divisor of an.

We do not prove the above theorem, but instead jump right into working
through a few examples to illustrate its usage.

Example A.2.2
Using the Rational

Root theorem

Find all rational roots of the following polynomials:
a) x2−2x−3,
b) 2x3−9x2−6x+5, and
c) 3x3−14x+4.

Solutions:
a) Since

A rational number is
one that can be

written in the form
b/c, where b and c
are both integers

(and c 6= 0). For
example, 3, 5/7, and
−13/2 are rational

numbers.

a2 = 1 and a0 = 3, the rational root theorem tells us that the
only possible rational roots of this polynomial are ±1 and ±3 (i.e.,
the divisors of 3). To check which of these are actually roots, we
just plug them into the polynomial:

(1)2−2(1)−3 =−4 (−1)2−2(−1)−3 = 0

(3)2−2(3)−3 = 0 (−3)2−2(−3)−3 = 12.

The rational roots of this polynomial are thus x = −1 and x = 3
(which we could have also found via the quadratic formula).
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b) Since a3 = 2 and a0 = 5, the rational root theorem tells us that the
only possible rational roots of this polynomial are ±5, ±1, ±5/2,
and ±1/2. To check which of these are actually roots, we just plug
them into the polynomial:

2(5)3−9(5)2−6(5)+5 = 0

2(−5)3−9(−5)2−6(−5)+5 =−440

2(1)3−9(1)2−6(1)+5 =−8

2(−1)3−9(−1)2−6(−1)+5 = 0

2(5/2)3−9(5/2)2−6(5/2)+5 =−35

2(−5/2)3−9(−5/2)2−6(−5/2)+5 =−135/2

2(1/2)3−9(1/2)2−6(1/2)+5 = 0

2(−1/2)3−9(−1/2)2−6(−1/2)+5 = 11/2.

It follows that the rational roots of this polynomial are x = 5, x = 1/2,
and x =−1. In fact, we will see shortly that every cubic polynomial
has at most 3 roots, so these must be all of the (not necessarily
rational) roots of this polynomial.

c) Since a3 = 3 and a0 = 4, the rational root theorem tells us that
the only possible rational roots of this polynomial are ±4, ±2, ±1,
±4/3, ±2/3, and ±1/3. Plugging these values into the polynomial
(just like we did in parts (a) and (b)) shows that x = 2 is the only
one of these quantities that is actually a root.

A.2.2 Polynomial Long Division and the Factor Theorem

In Example A.2.2(c), we used the rational root theorem to find one root of
the cubic p(x) = 3x3− 14x + 4. However, this cubic actually has two other
(necessarily irrational)A number is called

irrational if it is not
rational. Examples of

irrational numbers
include

√
2, π, and e.

roots as well. To find them, we can use the fact that
x = 2 is one of its roots to try to factor p(x) as

p(x) = (x−2)q(x), (A.2.1)

where q is a quadratic. If we can find such a factorization of p, then we can use
the quadratic formula to find the roots of q (which are the two remaining roots
of p).

To find the quadratic q, we use a method called polynomial long division,
which is a method of “dividing” polynomials by each other that is completely
analogous to how we can use long division to divide numbers by each other.
This method is best illustrated via an example, so we now work through the
polynomial long division that produces the quadratic q in Equation (A.2.1).

Step 1: Divide the highest-degree term in the dividend (p(x) = 3x3−14x + 4)
by the highest-degree term in the divisor (x−2). In this case, we divide
3x3 by x, getting 3x2 as our result:

3x2

x−2
)

3x3 +0x2−14x+4
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Step 2: Multiply the divisor (x−2) by the quotient from Step 1 (3x2) and subtract
the result

Be careful with
double negatives:

0x2− (−6x2) = 6x2.

from the dividend (p(x) = 3x3−14x+4):

3x2

x−2
)

3x3 +0x2−14x+4
3x3−6x2

6x2−14x+4

Step 3: Repeat this procedure, but with the polynomial that resulted from the
subtraction in Step 2 (6x2−14x+4) as the new dividend:

3x2 + 6x
x−2

)
3x3 +0x2−14x+4
3x3−6x2

6x2−14x+4
6x2−12x

−2x+4

Step 4: Keep on repeating until the degree of the dividend is strictly smaller than
the degree of the divisor. If the divisor is in fact a factor of the original
polynomial p, then the final remainder will be 0:

3x2 + 6x−2
x−2

)
3x3 +0x2−14x+4
3x3−6x2

6x2−14x+4
6x2−12x

−2x+4
−2x+4

0

The quotient (i.e., the result of the polynomial long division) is the
polynomial written at the top of this calculation (q(x) = 3x2 +6x−2).

The calculation above showed that

p(x) = 3x3−14x+4 = (x−2)q(x) = (x−2)(3x2 +6x−2).

We can now find the remaining roots of p by using the quadratic formula to
find the roots of q(x) = 3x2 +6x−2, which are

x =
−6±

√
36+24

6
=−1±

√
5
3
.

We (finally!) have shown that the roots of p are 2,−1+
√

5/3, and−1−
√

5/3.
We now work through another example to make sure that we understand this
procedure.

Example A.2.3
Finding Roots of
Higher-Degree

Polynomials

Find all roots of the polynomial p(x) = 3x4 +4x3−14x2−11x−2.

Solution:
Since a4 = 3 and a0 =−2, the rational root theorem tells us that the

only possible rational roots of this polynomial are ±2, ±1, ±2/3, and
±1/3. Plugging these values into the polynomial shows that x = 2 and
x =−1/3 are the only ones that are actually roots of p.

To find the remaining (necessarily irrational) roots of p, we divide
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p(x) by 3(x−2)(x+1/3) = 3x2−5x−2:
Alternatively, we

could have divided
p(x) by

(x−2)(x+ 1
3 )

= x2− 5
3 x− 2

3 ,

but multiplying this
divisor through by 3

avoids some ugly
fractions.

x2 + 3x+1
3x2−5x−2

)
3x4 +4x3−14x2−11x−2
3x4−5x3− 2x2

9x3−12x2−11x−2
9x3−15x2− 6x

3x2−5x−2
3x2−5x−2

0

It follows that

p(x) = 3x4 +4x3−14x2−11x−2 = 3(x−2)(x+1/3)(x2 +3x+1),

so we can find the remaining roots of p by applying the quadratic formula
to x2 +3x+1:

x =
−3±

√
9−4

2
=

1
2
(−3±

√
5).

It follows that the roots of p are 2, −1
3 , 1

2 (−3+
√

5), and 1
2 (−3−

√
5).

If r is a root of a polynomial p and we divide p(x) by x− r via polynomial
long division, the remainder of that division always equals 0. It follows that
polynomial long division in these cases really does always lead to a factorization
of p. We now state (but do not prove) this result more formally:

Theorem A.2.2
Factor Theorem

Let p be a polynomial of degree n ≥ 1. Then a scalar r is a root of p
if and only if there exists a polynomial q with degree n− 1 such that
p(x) = (x− r)q(x).

One of the consequences of the factor theorem is that every polynomialThe (degree-0)
polynomial p(x) = 0
has infinitely many

roots.

of
degree n≥ 1 has at most n distinct roots. After all, each root r of a non-constant
polynomial corresponds to a linear factor x− r of that polynomial, and each of
these factors contributes 1 to its degree.

Remark A.2.1
The Cubic Formula

and Beyond

Just like there is a quadratic formula for finding roots of quadratics, there
is indeed a cubic formula that can be used to explicitly compute the roots
of cubics. Specifically, if we want to find the roots of the cubic

p(x) = ax3 +bx2 + cx+d,

we introduce the intermediate variables

q =
−b
3a

, r = q3 +
bc−3ad

6a2 , and s =
c

3a

and then compute one of its rootsThe other 2 roots of
this cubic can be
found by carefully
choosing different

complex cube roots
in this formula.

via

x = q+
3
√

r +
√

r2 +(s−q2)3 +
3
√

r−
√

r2 +(s−q2)3.
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However, this formula is typically not used in practice due to it being
cumbersome, and the fact that complex numbers may be required in
intermediate steps of the calculation even when the cubic’s coefficients
and roots are all real. For these reasons, the methods discussed earlier
in this section based on the rational root theorem and polynomial long
division are preferred.

There is also a quartic formula for explicitly computing the roots of
quartics, but it is even nastier than its cubic counterpart. However, this
is where the formulas end: a remarkable result called the Abel–Ruffini
theorem says that there is no explicit formula for the roots of degree-5
(or higher) polynomials in terms of “standard” operations like addition,
subtraction, multiplication, division, and roots.

A.2.3 The Fundamental Theorem of Algebra

Some polynomials like p(x) = x2 +1 do not have any real roots at all, so the
upper bound of a degree-n polynomial having at most n roots is sometimes
quite loose. One of the most remarkable theorems concerning polynomials
says that this never happens as long as we allow the roots to be complex
numbers. We now state this theorem, but proving it is far outside of the scope
of this book—the interested reader is directed to a book like [FR97] for a more
thorough treatment.

Theorem A.2.3
Fundamental

Theorem
of Algebra

Every non-constant polynomial has at least one complex root.

By combining the fundamental theorem of algebra with the factor theorem,
we immediately see that every polynomial of degree n has exactly n complex
roots and can be factored as

p(x) = a(x− r1)(x− r2) · · ·(x− rn),

where a is the coefficient of xn in p and r1,r2, . . . ,rn are the (potentially com-
plex, and not necessarily distinct) roots of p.

To clarify what we mean when we say that a polynomial has exactly n
not-necessarily-distinct roots, we need to introduce the multiplicity of a root r,
which is the exponent of the term x− r in the factorization of the polynomial.

Roots with
multiplicity 2 or

greater are
sometimes called
“repeated roots”.

We think of a multiplicity-k root as one that “occurs k times”, or as k roots that
are equal to each other. With this in mind, the fundamental theorem of algebra
says that every degree-n polynomial has exactly n complex roots, counting
multiplicity (that is, if we add up the multiplicities of each root).

For example, the root −2 of the polynomial 2x2 +8x+8 = 2(x+2)2 has
multiplicity 2, since the term x+2 is squared, while all of the other roots that
we have discussed so far have multiplicity 1. The 2 roots of this polynomial are
thus both equal to −2.

A.3 Proof Techniques

While proofs are at the center of modern mathematics, this book serves as
one of the first places where the intended reader will encounter them with
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any regularity. The goal of a proof is to use facts that the reader is already
comfortable with to establish new facts (called “theorems”) that they can then
add to their mathematical toolbox.

At the start of this book, we assume that the reader is familiar with the basic
properties of the real numbers, like the fact that xy = yx for all real numbers x
and y (this property is called commutativity). These properties of real numbers
are then used to prove similar properties of vectors, matrices, and other linear
algebraic objects.

The first proofs that we see, and the simplest type of proofs that exist, are
direct proofs: proofs where we just use the definition of whatever object we
are working with, together with other properties that we are familiar with, to
demonstrate that the proposed theorem is true. We illustrate this type of proof
with an example.

Theorem A.3.1
The Squares of Even

Integers are Even

If m is an even integer then so is m2.

Proof. If m is an even integer then there is some integer k such that m = 2k.
Then

m2 = (2k)2 = 4k2 = 2(2k2),

which is also even since it is 2 times the integer 2k2. �

One of the most difficult hurdles to get over when first learning how to write
proofs is how to make use of the information that has been given to you. In
Theorem A.3.1, we were told that m is even, so to make use of that information
we write m as m = 2k. If we were instead trying to prove a theorem about an
odd integer m we would write m = 2k +1 for some integer k, and if we were
trying to prove a theorem about multiples of 7 then we would write m = 7k.

Many proofs just make use of all of the relevant definitions and proceed in
pretty much the only way they could. For example, to prove Theorem A.3.1,
our hypothesis tells us that m is an even integer, so we start off with the relevant
definition (i.e., m = 2k for some integer k). We want to show that m2 is even
based on that, so we then simply compute m2 = (2k)2, and we finish the proof
by again using the definition of “even integer”: we write (2k)2 = 2(2k2), which
is even.

However, proofs are not always this straightforward, and there may be a
trick or two that we have to perform along the way to get from the hypothesis
to the conclusion. We illustrate this with an example.

Theorem A.3.2
AM–GM Inequality

If x and y are real numbers then x2 + y2 ≥ 2xy.

Proof. Recall that the square of every real number is non-negative, so (x−
y)2 ≥ 0. However, using some algebra to expand (x− y)2 shows that

0≤ (x− y)2 = x2−2xy+ y2.

Adding 2xy to both sides of this inequality shows that 2xy≤ x2 +y2, as desired.
�

If you are new to proofs, it likely seems quite strange that we considered
the quantity (x− y)2 at all in the above proof—nothing in the statement of the
theorem had anything to do with that quantity, so why bring it up? The answer
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is simply that it is a trick that got us where we needed to go. Even if you do
not believe that you could have come up with the trick yourself, you should be
able to follow along with the proof and agree that every step in it is logically
correct.

As you read (and write!) more and more proofs, you will see a greater
number of tricks like this one, and they will start to become more familiar.
Furthermore, you will notice that many of the same tricks get applied over
and over in similar situations. For example, if you are trying to prove some
arithmetic expression involving quadratic terms (like in Theorem A.3.2), then
it is probably a good idea to try to factor or complete the square (which is really
all we did in that proof—we factored x2 +y2−2xy as (x−y)2). This same trick
can be used to prove the quadratic formula:

Theorem A.3.3
Quadratic Formula

If a,b,c, and x are real or complex numbers such that ax2 + bx + c = 0
and a 6= 0, then

x =
−b±

√
b2−4ac

2a
.

Proof. We start by rewriting the quantity ax2 +bx+ c in a different way that
groups that linear bx term and quadratic ax2 term together:

The “=⇒” arrows
here are called

“implication arrows”,
and they mean that

the current line
follows logically from

the one before it.

ax2 +bx+ c = 0 (hypothesis)

=⇒ x2 +
b
a

x =− c
a

(divide both sides by a)

=⇒ x2 +
b
a

x+
b2

4a2 =
b2

4a2 −
c
a

(add b2/(4a2) to both sides)

=⇒
(

x+
b

2a

)2

=
b2

4a2 −
c
a

(factor the left-hand side)

From here we can just apply standard algebraic manipulations to solve for x:We abbreviate the
terms “left-hand

side” and
“right-hand side” as

“LHS” and “RHS”,
respectively.

(
x+

b
2a

)2

=
b2

4a2 −
c
a

(derived above)

=⇒
(

x+
b

2a

)2

=
b2−4ac

4a2 (common denom. on RHS)

=⇒ x+
b

2a
=±
√

b2−4ac
2a

(square root both sides)

=⇒ x =
−b±

√
b2−4ac

2a
(subtract b/(2a))

which is exactly what we wanted to prove. �

A.3.1 The Contrapositive

Sometimes it is difficult to prove a statement directly, so it is convenient to
rearrange the statement into some other (equivalent) form first. For example,
every statement of the form “if P then Q” is logically equivalent to its contra-
positive, which is the statement “if not Q then not P”. That is, if the original
statement is true then so is its contrapositive, and vice-versa.



418 Appendix A. Mathematical Preliminaries

The contrapositive is actually quite a bit more intuitive than it seems at first.
For example, if the statements P and Q are

P: “I am running”, and
Q: “I am sweaty”, then

the statement “if P then Q” reads “if I am running then I am sweaty”. This
statement is logically equivalent to its contrapositive “if not Q then not P”,
which in this case is “if I am not sweaty then I am not running” (indeed, if I
were running then I would be sweaty, so if I’m not sweaty then I must not be
running). The following example illustrates a case where the contrapositive of
a statement might be easier to prove than the original statement itself.

Theorem A.3.4
Even Squares

are the Squares of
Even Integers

If m2 is an even integer then so is m.

Proof. This statement is rather difficult to prove directly,

Seriously, try proving
this directly for a

couple of minutes.
You can start by

writing m2 = 2k for
some integer k, but

you likely will not get
much farther than

that—it’s hard!

so we instead consider
its contrapositive: “if m is not even then m2 is not even”, which can be phrased
a bit more naturally as “if m is odd then so is m2”.

To prove this claim, we proceed just like we did in the proof of The-
orem A.3.1. If m is an odd integer then there is some integer k such that
m = 2k +1. Then

m2 = (2k +1)2 = 4k2 +4k +1 = 2(2k2 +2k)+1,

which is also odd since it is 1 larger than the even integer 2(2k2 +2k). �

Be careful not to confuse the contrapositive with the converse “if Q then
P”, which is not equivalent to “if P then Q”. For example, the converse of “if I
am running then I am sweaty” is “if I am sweaty then I am running” , which is
not a true statement—maybe I got sweaty from riding my bike.

A.3.2 Bi-Directional Proofs

Sometimes we wish to state a fact that not only does one property imply another
one, but actually they imply each other (i.e., they are equivalent to each other).
In these situations, we usually say that the first property holds “if and only if”

The statement “P
only if Q” is

synonymous with “if
P then Q”.

the second property holds. To prove such a statement, care needs to be taken to
ensure that we really are showing that each property implies the other, and not
simply that the second property follows from the first.

Theorem A.3.5
Integers Have the

Same Parity as
Their Squares

A integer m is even if and only if m2 is even.

Proof. This theorem is simply a combination of Theorems A.3.1 and A.3.4.
�

To better illustrate why it really is necessary to prove both directions of
an “if and only if” statement, consider the problem of tiling a standard 8×8
chessboard by 2×1 dominoes.By “adjacent

squares”, we mean
squares that share a

side, not just touch
at a corner.

That is, we lay 2×1 dominoes on top of the
chessboard so that each domino covers exactly two of its adjacent squares, and
none of the dominoes overlap. There are numerous ways to do this, with one of
them illustrated in Figure A.6.

While a chessboard itself can of course be tiled by dominoes, if we change
the shape of the board then this may no longer be the case. For example, if we
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Figure A.6: An illustration of one of the many possible domino tilings of a standard
8×8 chessboard.

remove one of the 8×8 = 64 squares from the chessboard, then the remaining
configuration of 63 squares cannot possibly have a domino tiling, since each
domino covers 2 squares and thus no collection of dominoes can cover an odd
number of squares.

However, if we remove two squares from a chessboard, things become more
interesting (see Figure A.7)—the resulting board may or may not have a domino
tiling. For example, if we remove two opposite corners from a chessboard then
it cannot be tiled by dominoes (this fact is not obvious—try to figure out why),
but if we remove two adjacent squares from one corner then it can be tiled
by dominoes (after all, we are essentially just removing one domino from a
domino tiling of the full chessboard).

If you cannot figure
out why the board in
Figure A.7(b) cannot

be tiled by
dominoes, that’s

OK—the upcoming
proof will explain it.

In fact, that’s the
point of proofs—to

explain and
illuminate things.

Figure A.7: Some chessboards, once they have some squares removed, can no
longer be tiled by dominoes.

The following theorem solves this problem and tells us exactly which
boards can still be tiled by dominoes after two squares are removed.

Theorem A.3.6
Tiling Chessboards
Minus Two Squares

An 8×8 chessboard with two squares removed can be tiled by dominoes
if and only if the two squares that were removed had different colors.

For example, this theorem tells us that we cannot tile the board in Fig-
ure A.7(b), since the two corners that we removed were both black. Instead,
the only way to be able to tile the resulting 62-square board is if we removed
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one black square and one white one (so that we have 31 squares of each color
remaining).

Proof of Theorem A.3.6. For the “only if” direction, we must show that if the
board with two squares removed can be tiled by dominoes, then the two squares
that were removed had opposite colors. By the contrapositive, this is equivalent
to showing that if the two squares that were removed had the same color then
the resulting board has no domino tiling.In practice, we often

opt to prove the
contrapositive of a
statement without

explicitly mentioning
that we are doing so.

To this end, simply notice that each domino in a domino tiling covers
exactly one square of each color (since all of the neighbors of a white square
are black, and all of the neighbors of a black square are white). However, if two
squares of the same color are removed from the chessboard, then the resulting
board has 30 squares of one color and 32 squares of the other color, so no
arrangement of dominoes can cover them all (the best we can do is use 30
dominoes to cover 60 squares, and then have 2 squares of the same color left
over).

We must also prove the “if” direction, that every chessboard with two
squares of different colors removed has a domino tiling. To do so, suppose we
placed “walls” along certain lines of the chessboard as in Figure A.8(a). Then
no matter which two squares of opposite color are removed, there is exactly
one way to tile the board with dominoes without crossing those walls, since
they form two paths that start and end with opposite-colored squares, as in
Figure A.8(b).The phrase “if and

only if” is often
abbreviated to “iff”.

Figure A.8: An illustration of the fact that a chessboard with two squares removed
can be tiled by dominoes as long as the two squares that were removed had
different colors.

Since we have now demonstrated both implications of the theorem (i.e.,
both the “if” and “only if” directions), the proof is now complete. �

When starting out with proofs, it is typically best to be careful and explic-
itly prove both directions in an “if and only statement” separately. However,
sometimes one direction of the proof is identical to the other direction read
backwards, and in these situations it is okay to just say so or re-word the proof
to make it clear that it can be read both forward and backward.

For example, in the proof of the quadratic formula (Theorem A.3.3), we
showed that if ax2 +bx+ c = 0 then

x =
−b±

√
b2−4ac

2a
. (A.3.1)
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However, the converse of this statement is also true—if x is given by the
quadratic formula (A.3.1) then ax2 +bx+ c = 0. To prove this additional im-
plication, we could either substitute the quadratic formula (A.3.1) into the
expression ax2 + bx + c and do a bunch of messy algebra to see that it does
simplify to 0, or alternatively we could just notice that every step in the proof of
Theorem A.3.3 works backwards as well as forwards. That is, we could change
the “if” in the statement of that theorem to “if and only if” just by replacing
the implication arrows “=⇒” with double-sided implication arrows “⇐⇒”.

Many of the most useful theorems state that numerous different properties are
all equivalent to each other (i.e., the first property holds if and only if the second
property holds, if and only if the third property holds, and so on). A theorem
of this form could be proved by explicitly proving each and every implication
among those properties, but this is much more work than is necessary.

Typically, the simplest way to prove a theorem of this type is to prove a
“loop” of implications. For example, to prove a theorem that says that properties
A, B, C, and D are equivalent to each other, it is enough to show that A implies
B, B implies C, C implies D, and D implies A (since then we can follow this
loop of implications to see that any one of the four properties implies each
of the others). We first make use of this technique in Theorem 2.2.4, and we
typically include a schematic in the margin that illustrates which implications
we explicitly prove.

A.3.3 Proof by Contradiction

The contrapositive of Section A.3.1 provided us with our first method of
indirect proof—it let us show that one statement follows logically from an-
other even when there was no clear path from the former to the latter. Another
technique along these lines is proof by contradiction, in which we assume that
the desired statement P is not true and then use that assumption to demonstrate
two contradictory facts. Since those two contradictory facts cannot simultane-
ously be true, we then conclude that we must have made a mistake at some
point. That is, we conclude that our original assumption (that P is not true) was
incorrect (i.e., P is true).

This method of proof is particularly useful when proving that certain objects
do not exist, or that it is not possible to perform a certain task. The following
proof is a standard example of this technique.

Theorem A.3.7
Irrationality of the

Square Root of Two

There do not exist integers a and b such that
√

2 = a/b. In other words,√
2 is irrational.

Proof. Suppose (for the sake of establishing a contradiction) that there did exist
integers a and b such that

√
2 = a/b. Since we can cancel common divisors of

a and b in this fraction, it follows that we can choose a and b so that at least
one of them is odd (just divide each of them by 2 until this happens—doing so
does not change the value of the fraction a/b).A real number that

can be written in the
form a/b, where a

and b are integers, is
called rational, and

all other real
numbers are called

irrational.

Multiplying the equation
√

2 = a/b through by b shows that
√

2b = a, and
then squaring shows that 2b2 = a2, so a2 is even. It follows from Theorem A.3.5
that a is even and can be written in the form a = 2k for some integer k. Since
a is even, b must be odd (recall that we chose a and b so that at least one of
them is odd).
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Plugging a = 2k into the equation 2b2 = a2 shows that 2b2 = (2k)2 = 4k2,
so b2 = 2k2. It follows that b2 is even, so using Theorem A.3.5 again shows
that b is also even. We have thus reached a contradiction: we have shown that
b must be both odd and even. This is of course not possible, so we must have
made a mistake somewhere. In particular, our original assumption that a and b
exist must be false. �

A.3.4 Proof by Induction

Oftentimes, we observe a pattern and expect that it is true, but it is not immedi-
ately clear how to actually prove that it is true. For example, if we start adding
up consecutive odd natural numbers then we find that

1 = 1
1+3 = 4

1+3+5 = 9
1+3+5+7 = 16

1+3+5+7+9 = 25,

and so on. In particular, we notice that the sums on the right-hand side are
perfect squares (i.e., we have shown that 1 + 3 + 5 + · · ·+(2n− 1) = n2, at
least for n≤ 5). We expect that this pattern continues forever, but how could
we prove it?

One particularly useful proof technique for showing that a pattern really
does continue forever is proof by induction. If we have a family of statements
P(1), P(2), P(3), . . ., indexed by the natural numbers 1, 2, 3, . . ., then proof by
induction consists of two pieces:

• The base case: we start by showing that P(1) is true.
• The inductive step: we show that if P(n) is true for a particular value of

n, then P(n+1) must also be true.The assumption that
P(n) holds for a

particular value of n
is sometimes called

the inductive
hypothesis.

If we can carry out both of the steps described above, it then follows that
P(n) must be true for all natural numbers n. To see why this is the case, just
consider each n≥ 1 in order:
P(1): True because of the base case.
P(2): True by the inductive step: if P(1) is true (it is!) then P(2) is true too.
P(3): True by the inductive step: if P(2) is true (it is!) then P(3) is true too.
P(4): True because P(3) is true. You get the idea...
To see how proof by induction works a bit more explicitly, we now use it to
prove our conjecture from earlier.

Theorem A.3.8
Sum of Odd

Natural Numbers

If n≥ 1 is a natural number then 1+3+5+ · · ·+(2n−1) = n2.

Proof. We prove this result by induction. To be explicit, the statements that we
will prove are

P(n) : “1+3+5+ · · ·+(2n−1) = n2′′

For the base case, we must show that P(1) is true. Since P(1) simply says
that 1 = 1, this step is complete.

The base case being
trivial (like it was

here) is very
common, but it is still

important to make
sure that it holds.
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For the inductive step, we suppose that P(n) is true for a particular value of
n, and our goal is to use that information to prove that P(n+1) is true as well.
The trick that lets us do this is to add 2n+1 to both sides of P(n):

1+3+5+ · · ·+(2n−1) = n2 (P(n) is true)

=⇒ 1+3+5+ · · ·+(2n−1)+(2n+1) = n2 +(2n+1) (add 2n+1)

=⇒ 1+3+5+ · · ·+(2(n+1)−1) = n2 +2n+1 (rewrite slightly)

=⇒ 1+3+5+ · · ·+(2(n+1)−1) = (n+1)2 (factor RHS)

The final line above is exactly the statement P(n+1), so we have shown that
P(n) implies P(n+1). This completes the inductive step and the proof. �

You can think of induction much like dominoes knocking each other over:
the inductive step says that if a particular domino falls over then so does the
one after it, and the base case says that the first domino is falling over. Based
on these two facts, we conclude that all dominoes will fall over.

While proof by induction is a very effective proof technique, such proofs
are also often quite un-illuminating. That is, they show that a statement is
true, but they often are not great at really explaining why that statement is true.
We thus consider proofs by induction to be a necessary evil that we make use
of when we must, but we avoid when we can. For example, we now present
another proof of Theorem A.3.8 that we feel is much more illuminating and
better explains why that theorem is true.

Alternate proof of Theorem A.3.8. We notice that an n×n square grid can be
partitioned into “L”-shaped regions, each consisting of an odd number of
squares, as in Figure A.9.

1

3

5

7

9

Figure A.9: A demonstration of the fact that adding the first n odd natural numbers
gives n2.

Since the grid overall consists of n2 squares, and the “L”-shaped regions consist
of 1, 3, 5, . . ., 2n−1 squares, it follows that 1+3+5+ · · ·+(2n−1) = n2, as
claimed. �



B. Additional Proofs

In this appendix, we prove some of the technical results that we made use of
throughout the main body of the textbook. Their proofs are messy enough (or
unenlightening enough, or simply not “linear algebra-y” enough) that they are
hidden away here.

B.1 Block Matrix Multiplication

In Section 1.3.4, we claimed that performing block matrix multiplication gives
the same result as performing standard matrix multiplication, as long as the
matrices are partitioned so that the block matrix multiplication makes sense.
We now prove this claim.

Theorem B.1.1
Block Matrix

Multiplication

If two matrices A and B are partitioned as block matrices

A =




A1,1 A1,2 · · · A1,n

A2,1 A2,2 · · · A2,n

...
...

. . .
...

Am,1 Am,2 · · · Am,n




and B =




B1,1 B1,2 · · · B1,p

B2,1 B2,2 · · · B2,p

...
...

. . .
...

Bn,1 Bn,2 · · · Bn,p




then AB can be computed by multiplying their blocks together via the
usual matrix multiplication rule. That is, for each 1 ≤ i ≤ m and 1 ≤ j ≤ p,
the (i, j)-block of AB equals

Ai,1B1, j +Ai,2B2, j + · · ·+Ai,nBn, j,

as long as each of these matrix products make sense.

Proof. This fact followsThis proof is ugly no
matter how you cut

it (that’s why it’s
tucked away back

here in the
appendix).

almost immediately from the definition of matrix
multiplication, but we first have to get our head around the horrendous notation
that we must use. Since we are going to be working with individual entries
of a block matrix, we need four subscripts—two to tell us which block of the
block matrix the entry is in, and two to tell us which row and column of that
block it is. Specifically, we use [Ai, j]k,� to refer to the (k, �)-entry of the matrix
Ai, j, which itself is the matrix that makes up the i-th block row and j-th block
column of A.

First, we compute the (k, �)-entry of the (i, j)-block of AB directly from the
definition of matrix multiplication. This is somewhat difficult to visualize due
to the block structure of A and B, but recall that we want to take the dot product
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of one row of A with one column of B. In particular, we take the dot product of
the k-th row of the i-th block row of A with the `-th column of the j-th block
column of

The way we have
written the block

matrices here, each
block in the i-th

block row of A has
the same number of
columns (c), but this

need not be the
case in general.

B:




A1,1 · · · A1,n
...

. . .
...

[Ai,1]1,1 · · · [Ai,1]1,c
...

. . .
...

[Ai,1]r,1 · · · [Ai,1]r,c

· · ·
[Ai,n]1,1 · · · [Ai,n]1,c

...
. . .

...
[Ai,n]r,1 · · · [Ai,n]r,c

...
. . .

...







B1,1 · · ·
[B1, j]1,1 · · · [B1, j]1,s

...
. . .

...
[B1, j]c,1 · · · [B1, j]c,s

· · ·

...
. . .

...
. . .

Bn,1 · · ·
[Bn, j]1,1 · · · [Bn, j]1,s

...
. . .

...
[Bn, j]c,1 · · · [Bn, j]c,s

· · ·




k-th row of i-th block row of A ℓ-th column of j-th block column of B
To compute this quantity, we sum over each column and block column of

A, or equivalently we sum over each row and block row of B, which gives us

n

∑
a=1

∑
b

[Ai,a]k,b[Ba, j]b,` (B.1.1)

as the (k, `)-entry of the (i, j)-block of AB. We note that the inner sum over b
has as many terms in it as there are columns in the a-th block column of A (or
as many rows as in the a-th block row of B).

On the other hand, if we compute this entry via the method suggested by
the statement of the theorem, we

The quantity in
square brackets on

the left here is the
same as the sum in

the statement of the
theorem.

get
[

n

∑
a=1

Ai,aBa, j

]

k,`

=
n

∑
a=1

[Ai,aBa, j]k,` =
n

∑
a=1

(
∑
b

[Ai,a]k,b[Ba, j]b,`

)
,

which is the same as the direct formula from Equation (B.1.1) and thus com-
pletes the proof. �

B.2 Uniqueness of Reduced Row Echelon Form

In Section 2.1.3, we claimed that the reduced row echelon form of a matrix is
unique. That is, every matrix can be row-reduced to one and only one matrix in
reduced row echelon form. We now prove this claim.

Theorem B.2.1
Uniqueness of
Reduced Row
Echelon Form

Suppose A ∈Mm,n. There exists exactly one matrix in reduced row eche-
lon form that is row equivalent to A.

Proof. The Gauss–Jordan elimination algorithm shows that every matrix is row
equivalent to one that is in reduced row echelon form, so all that we need to
show is uniqueness. That is, we need to show that if A is row equivalent to two
matrices R,S ∈Mm,n, both of which are in reduced row echelon form, then
R = S.

To this end, suppose for the sake of contradiction that R 6= S. Let R̃ and S̃
be the matrices that are obtained from R and S, respectively, by keeping the
leftmost column in which they differ, together with all leading columns to their
left, and discarding all others. For example, if



B.3 Multiplication by an Elementary Matrix 427

R=




0 1 3 0 2 0
0 0 0 1 −1 0
0 0 0 0 0 1
0 0 0 0 0 0


 and S=




0 1 3 0 4 0
0 0 0 1 2 0
0 0 0 0 0 1
0 0 0 0 0 0




then

R̃=




1 0 2
0 1 −1
0 0 0
0 0 0


 and S̃=




1 0 4
0 1 2
0 0 0
0 0 0


 .

Since R and S are each row equivalent to A, we know from Exercise 2.1.13(a)
that they are row equivalent to each other. It follows that R̃ and S̃ are row equiv-
alent as well, since removing columns from a pair of matrices does not affect
row equivalence.

If we interpret R̃ and S̃ as augmented matrices that represent linear systems
(which must have the same solution sets since they are row equivalent), then
they must have one of the forms

R̃ and/or S̃ have the
form on the right if

the first in which they
differ is leading, and

they have the form
on the left otherwise.

R̃ =
[

I b
O 0

]
or R̃ =

[
I 0
O e1

]
, and

S̃ =
[

I c
O 0

]
or S̃ =

[
I 0
O e1

]
.

We now split this into two cases depending on the form of R̃.
Case 1: R̃ has the first form. Then the linear system associated with R̃ has the

unique solution b, so the linear system associated with S̃ must also have
the unique solution b, so it must also have the first form with c = b (and
thus S̃ = R̃).

Case 2: R̃ has the second form. Then the linear system associated with R̃ has
no solutions, so the linear system associated with S̃ must also have no
solutions, so it must also have the second form (and thus S̃ = R̃).

We have R̃ = S̃ in both cases, which contradicts the fact that we chose them
so that their last columns differ. It follows that R = S, which completes the
proof. �

B.3 Multiplication by an Elementary Matrix

In Section 2.2, we claimed that multiplying a matrix on the left by an elementary
matrix gave the same result as applying the corresponding row operation to
that matrix directly. We now prove this claim.

Theorem B.3.1
Multiplication on

the Left by an
Elementary Matrix

Suppose A ∈Mm,n. If applying a single elementary row operation to A
results in a matrix B, and applying that same elementary row operation to
Im results in a matrix E, then EA = B.

Proof. We consider the three types of elementary row operations one at a time.
The “multiplication” row operation cR j is the easiest to work with since in this
case, E is diagonal with all diagonal entries equal to 1, except for the ( j, j)-
entry, which is equal to c. We already noted in Section 1.4.2 that multiplying
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on the left by a diagonal matrix has the same effect as multiplying row-wise by
its diagonal entries, which is exactly the claim here.

For the “addition” row operation Ri + cR j, we notice that the associated
elementary matrix EYes, the j-th column

of E is e j + cei, not
ei + ce j. The reason

for the apparent
subscript swap is that

we are listing the
columns of E here,

not its rows.

is

E = [ e1 | · · · | e j + cei | · · · | em ],

where the single “weird” column e j + cei occurs in the j-th column of E. If we
multiply this matrix by A, which we represent in terms of its rows, then we

Keep in mind that
these products like

e1aT
1 are matrices,

not scalars, since e1
is m×1 and aT

1 is 1×n.

get

EA = [ e1 | · · · | e j + cei | · · · | em ]




aT
1
...

aT
m




= e1aT
1 + e2aT

2 + · · ·+(e j + cei)aT
j + · · ·+ emaT

m

=
(
e1aT

1 + e2aT
2 + · · ·+ emaT

m
)
+ ceiaT

j

= A+ ceiaT
j .

Since eiaT
j is the matrix that contains the entries from the j-th row of A in its

i-th row, it follows that A + ceiaT
j is exactly the matrix B that is obtained by

applying the row operation Ri + cR j to A, as claimed.
Finally, for the “swap” row operation Ri↔ R j, the associated elementary

matrix has the form

[ e1 | · · · | e j | · · · | ei | · · · | em ],

where e j appears in the i-th column and ei appears in the j-th column. By
mimicking the block matrix multiplication argument that we made earlier for
“addition” row operations, we see that

EA = [ e1 | · · · | e j | · · · | ei | · · · | em ]




aT
1
...

aT
m




= e1aT
1 + e2aT

2 + · · ·+ e jaT
i + · · ·+ eiaT

j + · · ·+ emaT
m,

which is exactly the matrix that is obtained by swapping the i-th and j-th rows
of A. �

B.4 Existence of the Determinant

In Section 3.2,
Throughout this

section, we use the
same notation as in

Section 3.A.3. In
particular, Sn is the

set of all
permutations on
{1,2, . . . ,n}, σ is a

permutation, and
sgn(σ) is the sign of

that permutation.

we defined the determinant as the unique function satisfying
the three properties given in Definition 3.2.1. Uniqueness of the determinant
followed from the fact that we came up with explicit formulas for computing
it (i.e., we showed that any function satisfying those three properties must be
given by, for example, the cofactor expansions of Theorem 3.2.8).

However, we never showed that the determinant exists. That is, we never
showed that any of the formulas we came up with satisfy all three of the defining
properties of the determinant (see Remark 3.2.2). We now fill in this gap by
showing that the function defined by the formula given in Theorem 3.A.4
satisfies its three defining properties.
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Theorem B.4.1
Permutation Sums

Satisfy Determinant
Properties

Let A ∈Mn and define a function f :Mn→ R via

f (A) = ∑
σ∈Sn

sgn(σ)aσ(1),1aσ(2),2 · · ·aσ(n),n.

Then f satisfies the three defining properties of the determinant from
Definition 3.2.1.

Proof. The fact that f (I) = 1 follows simply from the fact that if A = I and σ

is the identity permutation (i.e., σ( j) = j for all 1≤ j ≤ n) then

sgn(σ)aσ(1),1aσ(2),2 · · ·aσ(n),n = a1,1a2,2 · · ·an,n = 1,

whereas if σ is any other permutation then the above product contains an
off-diagonal entry of I and thus equals 0. By adding up many terms equal to 0
and one term equal to 1, we see that det(I) = 1.

To see that f (AB) = f (A) f (B) for all A,B ∈Mn, we recall the Cauchy–
Binet formula from Theorem 3.A.5. In particular, in the m = n case this formula
tells us that det(AB) = det(A)det(B), and we proved that theorem only using
the sum-of-permutations formula for f given in the statement of this theorem
(not any of the three defining properties of the determinant or other formulas
for it), so we conclude that f (AB) = f (A) f (B) too.

Finally, to see that f is multilinear in the columns of the input matrix A, we
just compute

Here we are letting j
denote the index of
the column in which

the v+ cw column
occurs.

f
(
[ a1 | · · · | v+ cw | · · · | an ]

)

= ∑
σ∈Sn

sgn(σ)aσ(1),1 · · · [v+ cw]σ( j) · · ·aσ(n),n

= ∑
σ∈Sn

sgn(σ)aσ(1),1 · · ·vσ( j) · · ·aσ(n),n

+ c ∑
σ∈Sn

sgn(σ)aσ(1),1 · · ·wσ( j) · · ·aσ(n),n

= f
(
[ a1 | · · · | v | · · · | an ]

)
+ c f

(
[ a1 | · · · | w | · · · | an ]

)
,

which completes the proof. �

B.5 Multiplicity in the Perron–Frobenius Theorem

About halfway through the proof of the Perron–Frobenius theorem (Theo-
rem 3.B.2), we claimed that the eigenvalue µ of A had algebraic multiplicity 1.
We now prove this claim. Throughout this subsection, we use the same notation
as in the proof of Theorem 3.B.2, so L is the function defined in Equation (3.B.1)
and µ ∈ R is the maximal value of L on Sn.

Before proving anything about µ , we claim that if B ∈Mn(R) is such
that O≤ B≤ A and λ is any eigenvalue of B, then |λ |= µ implies B = A. To
provide a bit of context, recall that we already showed in Claim 4 of the proof
of Theorem 3.B.2 that |λ | ≤ µ (regardless of whether or not B = A).

To see why this claim holds, let w be a unit eigenvector corresponding to
the eigenvalue λ of B. We showed in the proof of Claim 4 that L(|w|)≥ |λ |,
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Recall that |w| is the
vector whose entries

are the absolute
values of the

entries of w.

so if |λ |= µ then in fact we have L(|w|) = µ . Claims 1 and 3 then tell us that
A|w|= µ|w| and |w|> 0. It follows that

(A−B)|w| ≤ µ|w|−µ|w|= 0,

but since A−B is entrywise non-negative, this is only possible if (A−B)|w|= 0.
Since |w| > 0, this then implies A−B = O, so A = B, which completes the
proof of this first claim.

With the above detail out of the way, we can now prove that µ has algebraic
multiplicity 1 as an eigenvalue of A. To this end, we consider what happens
when we take the derivative of the characteristic polynomial pA(λ ) = det(A−
λ I) of A. To show that the algebraic multiplicity of µ is 1, it suffices to show
that p′A(µ) 6= 0 (via Theorem B.6.1, for example).The notation p′A

refers to the
derivative of pA.

To see why this is the case,
consider the somewhat uglier multivariable function f : Rn→ R defined by

f (λ1,λ2, . . . ,λn) = det(A−Λ),

where Λ is the diagonal matrix whose diagonal entries are λ1,λ2, . . . ,λn. If we
let Ai denote the (n−1)× (n−1) matrix that is obtained by removing the i-th
row and column from A (and similarly for Λi from Λ), and we let ci, j denote
the (i, j)-cofactor of A−Λ, then applying a cofactor expansion along the i-th
row of A−Λ shows that

det(A−Λ) = ai,1ci,1 + · · ·+(ai,i−λi)ci,i + · · ·+ai,nci,n.

Since none of ai,1, . . ., ai,n or ci,1, . . ., ci,n depend on λi, it follows thatThe notation ∂

∂λi
refers to the partial

derivative with
respect to λi.

∂

∂λi
det(A−Λ) =−ci,i =−det(Ai−Λi). (B.5.1)

By the chain rule from multivariable calculus, we then have

p′A(λ ) =
d

dλ
f (λ ,λ , . . . ,λ )

=
∂

∂λ1
f (λ1,λ , . . . ,λ )+

∂

∂λ2
f (λ ,λ2, . . . ,λ )+ · · ·+ ∂

∂λn
f (λ ,λ , . . . ,λn)

=−det(A1−λ I)−det(A2−λ I)−·· ·−det(An−λ I)
=−pA1(λ )− pA2(λ )−·· ·− pAn(λ ),

with the second-to-last equality following from Equation (B.5.1).
If we now let Bi be the matrix obtained by replacing the i-th row and column

of A by zeros (or equivalently, Bi is obtained from Ai by inserting a row and
column of zeros at the i-th index), then pBi(λ ) =−λ pA(λ ) for all i, so

We will plug µ into
this formula shortly,

but that’s OK
because µ 6= 0 (this

follows from
combining Claims 1
and 2, for example).

p′A(λ ) =
1
λ

(
pB1(λ )+ pB2(λ )+ · · ·+ pBn(λ )

)
for all λ 6= 0.

Since O ≤ Bi ≤ A, we know from our earlier claim that the absolute values
of the eigenvalues of Bi are strictly smaller than µ . This tells us that either
pBi(µ) > 0 for all i (if n is even) or pBi(µ) < 0 for all i (if n is odd). Either
way, it follows that p′A(µ) 6= 0, so we are done.
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B.6 Multiple Roots of Polynomials

When proving Theorem 3.D.3, which gives the general form for the solution
of a linear recurrence relation, we needed a technical result that relates the
multiplicity of a root of a polynomial to another closely-related family of
polynomials. We now pin down this result, but first we need to establish the
following connection between the multiplicity of a root of a polynomial and
the derivatives of that polynomial.

Theorem B.6.1
Multiplicity of Roots

and Derivatives

Suppose p is a polynomial. Then r is a root of p with multiplicity at least
m if and only if r is a root of each of p and its first m−1 derivatives:

p(r) = p′(r) = p′′(r) = · · ·= p(m−1)(r) = 0.

Proof. We instead prove the (equivalent) statement that if r has multiplicity
exactly m then is a root of p, p′, . . ., p(m−1), but not of p(m).

Recall that the factor theorem (Theorem A.2.2) lets us factor p as p(x) =
(x− r)mq(x), where q is some polynomial with q(r) 6= 0. We begin by showing
that, for every integer k ≥ 0, the k-th derivative of p has the form

The notation p(k)

refers to the k-th
derivative of p. p(k)(x) = (x− r)m−k(ckq(x)+ sk(x)) for all 0≤ k ≤ m, (B.6.1)

where ck 6= 0 is a scalar and sk(x) is a polynomial depending on k with the
property that sk(r) = 0 (note that in the k = 0 case, we simply have c0 = 1 and
sk(x) = 0).

For the k = 1 case, we simply use the product rule for derivatives to see
Recall that the

product rule says
that ( f g)′(x) =

f ′(x)g(x)+ f (x)g′(x).

that

p′(x) = m(x− r)m−1q(x)+(x− r)mq′(x) = (x− r)m−1(mq(x)+(x− r)q′(x)),

so the derivative of p does have the claimed form, with c1 = m and s1(x) =
(x− r)q′(x).

From here, we proceed by induction: if p(k) has the form (B.6.1) for some
value of k then taking its derivative via the product rule shows that

p(k+1)(x) = (m− k)(x− r)m−(k+1)(ckq(x)+ sk(x)
)

+(x− r)m−k(ckq′(x)+ s′k(x))

= (x− r)m−(k+1)((m− k)ckq(x)+(m− k)sk(x)

+(x− r)(ckq′(x)+ s′k(x))
)
,

so p(k+1) also has the form (B.6.1), with

ck+1 = (m− k)ck and sk+1(x) = (m− k)sk(x)+(x− r)(ckq′(x)+ s′k(x)).

This completes the inductive step and thus the proof of the claim that p(k) has
the form (B.6.1) for all 0≤ k ≤ m.

It follows by plugging in x = r that p(k)(r) = 0 for all 0≤ k < m. Further-
more, since sm(r) = 0 but cm,q(r) 6= 0, it follows that

p(m)(r) = cmq(r)+ sm(r) = cmq(r) 6= 0,

which completes the proof. �
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With the above result taken care of, we can now prove the result that we
actually need.

Theorem B.6.2
Multiple Roots of

Polynomials

Consider polynomials p0, p1, . . . , pm of the form

p0(x) = c0 + c1x+ c2x2 + · · ·+ cnxn

p1(x) = c1x+ 2c2x2 + · · ·+ ncnxn

p2(x) = c1x+ 22c2x2 + · · ·+ n2cnxn

...

pm(x) = c1x+2mc2x2 + · · ·+nmcnxn.

Then r 6= 0 is a root of p0 with multiplicity at least m+1 if and only if it
is a root of each of p0, p1, . . ., pm.

Proof. If m = 0 then the result is trivial (it just says that r is a root of p0 if and
only if it is a root of p0), so we start by proving the m = 1 case. If r is a root of
p0 with multiplicity m+1 = 2 then Theorem B.6.1 tells us that it is also a root
of its derivative, p′0, and thus also a

Recall that the
derivative of xn is

nxn−1.

root of

xp′0(x) = x(c1 +2c2x+3c3x2 + · · ·+ncnxn−1) = p1(x).

In the opposite direction, we can just follow this argument backwards: if r 6= 0
is a root of p1(x) = xp′0(x) then it is a root of p′0(x), so Theorem B.6.1 tells us
that it is a root of p0 with multiplicity at least 2.

If m > 1 then we can just iterate the argument above, using the facts that
p2(x) = xp′1(x), p3(x) = xp′2(x), and so on. �

B.7 Limits of Ratios of Polynomials and Exponentials

In the proof of Corollary 3.D.4, we needed to make use of the facts that if q is
any polynomial and c is a number with |c|< 1 then

lim
x→∞

q(x+1)
q(x)

= 1 and lim
x→∞

q(x)cx = 0. (B.7.1)

We now prove these statements by making use of L’Hôpital’s rule from calculus,
which says that if

lim
x→∞

f (x)
g(x)

exists and is an indeterminate form of type “0/0” or “∞/∞” (along with some
other technical requirements that we won’t get into here), then it equals

lim
x→∞

f ′(x)
g′(x)

.

For the first of the limits (B.7.1) that we want to evaluate, we write q
explicitly as q(x) = ckxk + · · ·+ c1x+ c0. Then using L’Hôpital’s rule a total of
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k times shows that

lim
x→∞

q(x+1)
q(x)

= lim
x→∞

ck(x+1)k + · · ·+ c1(x+1)+ c0

ckxk + · · ·+ c1x+ c0

L’Hôp= lim
x→∞

ckk(x+1)k−1 + · · ·+ c1

ckkxk−1 + · · ·+ c1

...

L’Hôp= lim
x→∞

ckk!(x+1)+ ck−1(k−1)!
ckk!x+ ck−1(k−1)!

L’Hôp= lim
x→∞

ckk!
ckk!

= 1,

as claimed.
To evaluate the other limit (B.7.1), we define b = 1/c and notice that |b|> 1

since |c|< 1. Then using L’Hôpital’s rule a total of k times (again!) shows

Recall that the
derivative of bx is

bx ln(b).

that

lim
x→∞

q(x)cx = lim
x→∞

ck(x+1)k + · · ·+ c1(x+1)+ c0

bx

L’Hôp= lim
x→∞

ckk(x+1)k−1 + · · ·+ c1

bx ln(b)
...

L’Hôp= lim
x→∞

ckk!(x+1)+ ck−1(k−1)!
bx(ln(b))k−1

L’Hôp= lim
x→∞

ckk!
bx(ln(b))k

= 0,

as

This final fraction
goes to 0 because

the numerator is
constant (it equals
ckk!), whereas the

denominator grows
without bound.

claimed.



C. Selected Exercise Solutions

Section 1.1: Vectors and Vector Operations

1.1.1 (a)

x

y (c)

x

y

1.1.2 (a)

x

y (c)

x

y

1.1.3 (a) (0,1) (c) (2,6)

1.1.4 (a)

x
y

z
2

(c)

x
y

z

1
2

1.1.5 (a) (2.5,5) (c) (−4,5)

1.1.6 (a) (3,2,1) (c) (6,4,−2)

1.1.7 (a) v = 2e3 (c) x = e1 +2e2

1.1.9 We want vectors v and w such that v+w = x and
v − w = y. Adding these two equations together
tells us that 2v = x+y, and subtracting the second
equation from the first tells us that 2w = x− y, so
v = (x+y)/2 = (2,1) and w = (x−y)/2 = (1,−3).
The negatives of these answers are fine too.

1.1.10 (a) x = (2,2) (c) x = 0

1.1.11 (a) x = 1
2 (v−w) (c) x = 2w−4v

1.1.12 Algebraically, we note that c(1,2) = (3,4) implies
c = 3 and 2c = 4, so c = 2. Since c cannot simulta-
neously be 2 and 3, no such c exists. Geometrically,
we notice that (1,2) and (3,4) point in different di-
rections, so no such c exists:

(1,2)

(3,4)

x

y

1.1.14 We just use the definition of vector addition, together
with associativity of real number addition:

(v+w)+x = ((v1, . . . ,vn)+(w1, . . . ,wn))

+(x1, . . . ,xn)

= (v1 +w1, . . . ,vn +wn)+(x1, . . . ,xn)

= (v1 +w1 + x1, . . . ,vn +wn + xn)

= (v1, . . . ,vn)+(w1 + x1, . . . ,wn + xn)

= (v1, . . . ,vn)

+((w1, . . . ,wn)+(x1, . . . ,xn))

= v+(w+x).

1.1.15 (a) We just use the definition of vector addition
and scalar multiplication, together with proper-
ties of real numbers:

(c+d)v = ((c+d)v1, . . . ,(c+d)vn)

= (cv1 +dv1, . . . ,cvn +dvn)

= (cv1, . . . ,cvn)+(dv1, . . . ,dvn)

= cv+dv.

(b) Similarly,

c(dv) = c(dv1, . . . ,dvn)

= (cdv1, . . . ,cdvn)

= ((cd)v1, . . . ,(cd)vn)

= (cd)v.
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Section 1.2: Lengths, Angles, and the Dot Product

1.2.1 (a) 0 (c) 1 (e) 0

1.2.2 (a) ‖v‖= 5,u = (3/5,4/5)
(c) ‖v‖= 6,u = (−

√
2/3,−1/2,

√
10/6,1/2)

1.2.3 (a) arccos(
√

3/2) = π/6
(c) arccos(−1/

√
2) = 3π/4

(e) v ·w = 0, so the angle is π/2

1.2.4 (a) False. A counter-example is given by v = (1,0),
w = (1,1), and x = (1,−1). In this case, v ·w =
v ·x = 1, but w 6= x.

(c) True. The triangle inequality tells us that ‖v+
w‖ ≤ ‖v‖+‖w‖ ≤ 2.

(e) True. As long as |v ·w| ≤ ‖v‖‖w‖ (i.e., the
Cauchy–Schwarz inequality) is satisfied, we
can find vectors with the given lengths and
dot product. As an explicit example, let v =
(1,0,0) and w = (−1,

√
3,0).

(g) False. A counter-example is given by v = (2,0)
and w = (0,2).

1.2.6 Since v ·w = cos(θ)‖v‖‖w‖= cos(π/3)(2
√

3)(2)=
2
√

3, we find that 3w1 +
√

3w2 = 2
√

3, so
w2 = 2 −

√
3w1. On the other hand, ‖w‖ = 2,

so w2
1 + w2

2 = 4. Plugging in our formula for w2

gives w2
1 + (2 −

√
3w1)2 = 4, and simplifying

gives w1(w1 −
√

3) = 0, so w1 = 0 or w1 =
√

3.
If we plug these values back into the equation
3w1 +

√
3w2 = 2

√
3, we find that w1 = 0 implies

w2 = 2, and w1 =
√

3 implies w2 = −1. There
are thus two possible vectors: w = (0,2) and
w = (

√
3,−1).

1.2.7 (a) Makes sense.
(c) Does not make sense—we cannot add a vector

and a scalar.
(e) Does not make sense—raising a vector to an

exponent is not standard notation. Does v2

mean the vector whose entries are the squares
of the entries of v, or the scalar ‖v‖2 = v ·v, or
something else altogether?

1.2.9 (a) There are many possibilities: we require that
w = (w1,w2) ∈ R2 satisfies w1 + 2w2 = 0, so
we can choose w2 arbitrarily and set w1 =
−2w2. One possibility is w = (−2,1).

(b) No, this is not possible, since we showed in
part (a) that the only solutions y to v ·y = 0 are
of the form y = y2(−2,1). However, y then can-
not be orthogonal to w, since w ·y = y2(4+1),
which equals 0 if and only if y = 0. However,
we were asked to find a non-zero y.

1.2.11 Start by computing the differences of the three points
that are given to us:

(1,0,−1)− (2,2,2) = (−1,−2,−3)

(1,0,−1)− (−1,2,3) = (2,−2,−4)

(−1,2,3)− (2,2,2) = (−3,0,1).

We know that two of these vectors are sides of the
rectangle (the other one is a diagonal of the rectan-
gle), but we do not know which two yet. To deter-
mine which are which, we use the dot product to find
which of these vectors are orthogonal:

(−1,−2,−3) · (2,−2,−4) =−2+4+12 = 14

(−1,−2,−3) · (−3,0,1) = 3+0−3 = 0

(−3,0,1) · (2,−2,−4) =−6+0−4 =−10.

We thus see that (−1,−2,−3) and (−3,0,1) are
sides of the rectangle, and (2,2,2) is the ver-
tex that joins these two sides. If we add both
of the side vectors to (2,2,2) then we will get
the opposite corner of the rectangle, which is
(2,2,2)+(−1,−2,−3)+(−3,0,1) = (−2,0,0).

1.2.13 (a) We just use the definitions of the dot product
and vector addition, together with properties of
the real numbers:

v · (w+x) = v1(w1 + x1)+ · · ·+ vn(wn + xn)

= (v1w1 + v1x1)+ · · ·+(vnwn + vnxn)

= v ·w+v ·x.

(b) We just use the definitions of the dot product
and scalar multiplication, together with proper-
ties of the real numbers:

v · (cw) = v1(cw1)+ · · ·+ vn(cwn)

= c(v1w1)+ · · ·+ c(vnwn)

= c(v ·w).

1.2.15 (a) To prove the desired equality, we compute

w ·v = w1v1 + · · ·+wnvn

= w1v1 + · · ·+wnvn

= v1w1 + · · ·+ vnwn

= v ·w,

where we used the facts that x = x and x · y =
x · y for all x,y ∈ C.

(b) For this one, we similarly compute

v · (cw) = v1(cw1)+ · · ·+ vn(cwn)

= c(v1w1 + · · ·+ vnwn)

= c(v ·w).

By combining the above fact with the one that
we proved in part (a), we see that

(cv) ·w = w · (cv) = c(w ·v) = cv ·w.

1.2.17 (a) For the “if” direction: if w = 0 then v ·w = 0
and ‖v‖‖w‖ = 0, so equality holds in the
Cauchy–Schwarz inequality, and if v = cw
then |v ·w| = |(cw) ·w| = |c|‖w‖2, whereas
‖v‖‖w‖ = ‖cw‖‖w‖ = |c|‖w‖2, so equality
holds in this case too.

For the “only if” direction, we notice that
v ·w = ‖v‖‖w‖ implies (by tracing the proof
of Theorem 1.2.3 backwards) that the length of
‖w‖v−‖v‖w is 0. However, we saw in Theo-
rem 1.2.2 that the only vector with 0 length is
0, so it follows that ‖w‖v = ‖v‖w, so v and w
are scalar multiples of each other.
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(b) For the “if” direction: if w = 0 then the equal-
ity just says that ‖v‖ = ‖v‖, which is true,
and if v = cw then ‖v + w‖ = ‖(cw)+ w‖ =
‖(c + 1)w‖ = (c + 1)‖w‖ = c‖w‖+ ‖w‖ =
‖cw‖+‖w‖= ‖v‖+‖w‖.
For the “only if” direction, recall from the
proof of Theorem 1.2.4 that if ‖v + w‖ =
‖v‖+ ‖w‖ then 2(v ·w) = 2‖v‖‖w‖. It then
follows from part (a) that either w = 0 or
there exists c ∈ R such that v = cw; all that
remains is to show that c≥ 0. To this end, just
observe that if it were the case that v = cw
with c < 0 then 2(v ·w) = 2c‖w‖2, whereas
2‖v‖‖w‖= 2|c|‖w‖2 =−2c‖w‖2, which con-
tradicts the fact that 2(v ·w) = 2‖v‖‖w‖. It
follows that c≥ 0 and we are done.

1.2.19 (a) Expand ‖v+w‖2 and ‖v−w‖2 using the dot
product:

‖v+w‖2 +‖v−w‖2

= (v+w) · (v+w)+(v−w) · (v−w)

= (v ·v)+2(v ·w)+(w ·w)

+(v ·v)−2(v ·w)+(w ·w)

= 2‖v‖2 +2‖w‖2.

(b) The vectors v+w and v−w are the diagonals
of the parallelogram, so part (a) says that the
sum of the squares of the two diagonal lengths
of a parallelogram is equal to the sum of the
squares of the lengths of its four sides. In the
special case where the parallelogram is a rect-
angle, this is exactly the Pythagorean theorem.

1.2.21 The triangle inequality tells us that ‖x+y‖ ≤ ‖x‖+
‖y‖ for all x,y ∈ Rn. If we choose x = v−w and
y = w, then this says that

‖(v−w)+w‖ ≤ ‖v−w‖+‖w‖.

After simplifying and rearranging, this becomes

‖v‖−‖w‖ ≤ ‖v−w‖.

1.2.23 (a) f (x) = ‖v− xw‖2 = (v− xw) · (v− xw) =
x2‖w‖2−2x(v ·w)+‖v‖2

(b) 4(v ·w)2−4‖v‖2‖w‖2

(c) Since f (x)≥ 0 for all x ∈ R, we see that f has
at most one real root, so the discriminant is
non-positive.

(d) By parts (b) and (c), we know that 4(v ·w)2−
4‖v‖2‖w‖2 ≤ 0. By adding 4‖v‖2‖w‖2 to both
sides, dividing by 4, and then taking square
roots, we get the Cauchy–Schwarz inequality:
|v ·w| ≤ ‖v‖‖w‖.

Section 1.3: Matrices and Matrix Operations

1.3.1 (a)
[

1 0
−2 3

]
(c)

[
3 −2
2 3

]

1.3.2 (a)
[

0 2
−6 0

]

(e)
[

4 −5
0 9

]

(i)
[

1 0 0
7 6 3

]

(c)
[

1 4 −3
3 0 3

]

(g)
[

2 4 −1
0 4 −2

]

1.3.3 (a) False. For example, if A is 2×3 and B is 3×2
then AB is 2×2.

(c) True. (Same reasoning as in part (b).)
(e) False. Again, non-commutativity of matrix

multiplication gets in the way. (AB)2 =
(AB)(AB), but in general there is no way to
swap the As and Bs past each other in the mid-
dle. As a specific counter-example, consider

A =

[
1 0
0 0

]
,B =

[
1 1
0 1

]
.

(g) False. One counter-example is given by
[

1 0
0 −1

]
.

(i) False. It is a linear combination of the columns
of A, not its rows.

1.3.4 (a) Yes, this makes sense. AB is 2×5.

(c) No, the inner dimensions of A and C are 2 and
5, so we cannot multiply them.

(e) No, we can only subtract matrices that have the
same size.

(g) Yes, this makes sense. ABC is 2×2.
(i) Yes, this makes sense. A+BC is 2×2.

1.3.5 Start by observing that

A1 =

[
0 1
−1 0

]
A2 =

[
−1 0
0 −1

]

A3 =

[
0 −1
1 0

]
A4 =

[
1 0
0 1

]
.

It follows that A4 = I, so the powers of A cycle from
this point on (i.e., A5 = A1, A6 = A2, and so on). We
thus conclude that

A1000 = A996 = A992 = · · ·= A4 = I.

1.3.7 (a) A2 =

[
1 2
0 1

]

(b) A3 =

[
1 3
0 1

]

(c) Based on parts (a) and (b), we guess that

Ak =

[
1 k
0 1

]
for all integers k ≥ 0.
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We prove this by induction: the base cases
k = 0,1 are clear, and we also already showed
the k = 2,3 cases. For the inductive step, as-

sume that A` =

[
1 `

0 1

]
for some particular

positive integer `. Then

A`+1 = AA` =

[
1 1
0 1

][
1 `

0 1

]
=

[
1 `+1
0 1

]
,

which completes the inductive step and thus
the proof.

1.3.11 The (i, j)-entry of J2
n is defined to be the dot product

of the i-th row of Jn with the j-th column of Jn. That
is, [Jn]i, j = (1,1, . . . ,1) · (1,1, . . . ,1) = n for all i, j,
so J2

n = nJn.

1.3.12 (a) Yes, this makes sense:
[

A A
A A

]2

=

[
2A2 2A2

2A2 2A2

]
.

(c) No, this makes no sense. The block matrix mul-
tiplication would gives us

[
A B

BT I3

][
O CT

BT I3

]

=

[
AO+BBT ACT +BI3

BT O+ I3BT BTCT + I3I3

]
,

but some of these products (like ACT ) do not
make sense.

1.3.13 (a) AB =
[

3 3 3 3
3 3 3 3

]

(c) AB =




2 4 6
3 5 7
4 6 8
2 4 6




1.3.15 (a) For AB to exist, we need r = n, and for BA to
exist, we need p = m. For both products to ex-
ist, we thus need both of these conditions to be
true (i.e., if A ∈Mm,n, then B ∈Mn,m).

(b) Under the restrictions from part (a), AB will
have size m×m and BA will have size n× n.
For them to have the same size, we need m = n
(and thus m = n = r = p).

1.3.17 (a) We use the fact that if v and w are column vec-
tors then v ·w = vT w. It follows that x · (Ay) =
xT Ay and (AT x) ·y = (AT x)T y = xT Ay. Since
both quantities equal xT Ay, we indeed have
x · (Ay) = (AT x) ·y.

(b) Just like in part (a), x · (Ay) = xT Ay and
(Bx) ·y = xT BT y. We thus know that xT Ay =
xT BT y for all x ∈ Rm and y ∈ Rn. However, if
we choose x = ei and y = e j then xT Ay = ai, j
and xT BT y = b j,i, so we see that ai, j = b j,i for
all i, j. In other words, B = AT .

1.3.18 (a) Recall from the definition of matrix multiplica-
tion that the j-th entry of Aei is

a j,1[ei]1 +a j,2[ei]2 + · · ·+a j,n[ei]n = a j,i,

where the equality comes from the fact that
[ei]k = 0 if k 6= i and [ei]i = 1. It follows that

Aei =




a1,i
a2,i

...
am,i




,

which is the i-th column of A.
(b) We again directly use the definition of matrix

multiplication: the j-th entry of eT
i A is

[ei]1a1, j +[ei]2a2, j + · · ·+[ei]man, j = ai, j,

where the equality comes from the fact that
[ei]k = 0 if k 6= i and [ei]i = 1. It follows that

eT
i A =

[
ai,1 ai,2 · · · ai,n

]
,

which is the i-th row of A.

(c) We let ai denote the i-th column of A and then
simply compute

AIn =
[
Ae1 | Ae2 | · · · | Aen

]

=
[
a1 | a2 | · · · | an

]

= A,

where the first equality comes from Theo-
rem 1.3.6 and the second equality comes from
part (a) of this exercise.
On the other hand, if we instead let ai denote
the i-th row of A then we have

ImA =




eT
1 A

eT
2 A
...

eT
mA




=




a1
a2
...

am


= A.

(d) The “if” direction of the proof is trivial: if
A = B then Av = Bv for all v ∈ Rn. For the
“only if” direction, notice that if Av = Bv then
(A−B)v = 0 for all v ∈ Rn. In particular then,
(A−B)ei = 0 for all i, so part (a) tells us that
the i-th column of A−B is 0 for all i. In other
words, every entry of A−B is 0, so A−B = O
and thus A = B.

1.3.19 (a) We compute the (i, j)-entry of both (A+B)+C
and A+(B+C):

[(A+B)+C]i, j = (ai, j +bi, j)+ ci, j

= ai, j +(bi, j + ci, j)

= [A+(B+C)]i, j.

It follows that the entries of (A + B)+C and
A+(B+C) are all the same, so (A+B)+C =
A+(B+C).

(b) We compute the (i, j)-entry of both c(A + B)
and cA+ cB:

[c(A+B)]i, j = c(ai, j +bi, j)

= cai, j + cbi, j

= [cA+ cB]i, j.

It follows that the entries of c(A+B) and cA+
cB are all the same, so c(A+B) = cA+ cB.
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(c) We compute the (i, j)-entry of both (c + d)A
and cA+dA:

[(c+d)A]i, j = (c+d)ai, j

= cai, j +dai, j

= [cA+dA]i, j.

It follows that the entries of (c+d)A and cA+
dA are all the same, so (c+d)A = cA+dA.

(d) We compute the (i, j)-entry of both c(dA) and
(cd)A:

[c(dA)]i, j = c(dai, j) = (cd)ai, j = [(cd)A]i, j.

It follows that the entries of c(dA) and (cd)A
are all the same, so c(dA) = (cd)A.

1.3.20 (a) We compute the (i, j)-entry of both (AB)C and
A(BC):

[A(BC)]i, j =
n

∑
k=1

ai,k

(
n

∑
`=1

bk,`c`, j

)

=
n

∑
`=1

(
n

∑
k=1

ai,kbk,`

)
c`, j

= [(AB)C]i, j.

It follows that the entries of (AB)C and A(BC)
are all the same, so (AB)C = A(BC).

(b) We compute the (i, j)-entry of both A(B +C)
and AC +BC:

[A(B+C)]i, j =
n

∑
k=1

ai,k(bk, j + ck, j)

=
n

∑
k=1

ai,kbk, j +
n

∑
k=1

ai,kck, j

= [AB+AC]i, j.

It follows that the entries of A(B + C) and
AB + AC are all the same, so A(B + C) =
AB+AC.

(c) We compute the (i, j)-entry of both c(AB) and
(cA)B:

[c(AB)]i, j = c
n

∑
k=1

ai,kbk, j

=
n

∑
k=1

(cai,k)bk, j = [(cA)B]i, j.

It follows that the entries of c(AB) and (cA)B
are all the same, so c(AB) = (cA)B.

1.3.21 We recall that the (i, j)-entry of ImA is the dot prod-
uct of the i-th row of Im (which is ei) with the j-th
column of A. It follows from Example 1.2.1(c) that
the (i, j)-entry of ImA is the i-th entry of the j-th
column of A: ai, j . All entries of ImA and A thus
coincide, so ImA = A.

1.3.22 (a) Just note that AkA` = (AA · · ·A)(AA · · ·A),
where the first bracket has k copies of A and
the second has ` copies of A, for a total of k+`
copies of A (and is thus equal to Ak+`).

(b) Just note that

(Ak)` = (AA · · ·A)(AA · · ·A) · · ·(AA · · ·A),

where each parenthesis has k copies of A, and
there are ` parentheses, for a total of k` copies
of A (which is thus equal to Ak`).

1.3.23 (a) Since the transpose operation swaps columns
and rows, performing it twice will swap them
back to their original orientations. In symbols,
[(AT )T ]i, j = [AT ] j,i = [A]i, j , so (AT )T = A.

(b) Compute the (i, j)-entry of both sides: [(A +
B)T ]i, j = [A + B] j,i = [A] j,i +[B] j,i = [AT ]i, j +
[BT ]i, j = [AT +BT ]i, j , so (A+B)T = AT +BT .

(c) Compute the (i, j)-entry of both sides:
[(cA)T ]i, j = [cA] j,i = c[A] j,i = c[AT ]i, j =
[cAT ]i, j , so (cA)T = cAT .

1.3.26 To prove this equality, we perform block matrix mul-
tiplication:

AB =




aT
1

aT
2
...

aT
m




B =




aT
1 B

aT
2 B
...

aT
mB




,

where the final inequality comes from thinking of A
as a p×1 block matrix and B as a 1×1 block matrix,
and performing block matrix multiplication.

1.3.27 (a) Recall from Theorem 1.3.6 that

AB =
[

Ab1 | Ab2 | · · · | Abp

]
.

Well, Theorem 1.3.5 tells us that

Ab j = b1, ja1 +b2, ja2 + · · ·+bn, jan,

where a1,a2, . . .an are the columns of A. Com-
bining these two facts shows that the columns
of AB are linear combinations of the columns
of A.

(b) We could prove this by mimicking the proof of
part (a), and making use of Exercise 1.3.26, but
perhaps an easier way is to use the transpose.
The rows of AB are the columns of (AB)T =
BT AT . By part (a), the columns of BT AT are
linear combinations of the columns of BT ,
which are the rows of B. Putting these facts
together gives us what we want: the rows of
AB are linear combinations of the rows of B.

Section 1.4: Linear Transformations

1.4.1 (a)
[

1 2
3 −1

]
(c)

[
1 1 0
1 1 −1

]
1.4.2 (a) Just place the output vectors as columns into

the matrix [T ]:

[T ] =

[
3 1
−1 2

]
.
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(c) Again, we just place the output vectors as
columns in a matrix:

[T ] =



−1 2
0 3
1 0


 .

(e) This time, we must be more clever. T (1,0,0) =
(1,2,3) is the first column of [T ]. Its second
column is T (0,1,0) = T (1,1,0)−T (1,0,0) =
(0,1,2)− (1,2,3) = (−1,−1,−1). Its third
column is T (0,0,1) = T (1,1,1)−T (1,1,0) =
(0,0,1) − (0,1,2) = (0,−1,−1). It follows
that

[T ] =




1 −1 0
2 −1 −1
3 −1 −1


 .

1.4.3 (a) True. They are functions with the special
properties that T (v + w) = T (v)+ T (w) and
T (cv) = cT (v).

(c) True. In particular, the standard matrix of T
(which completely determines T ) is [T ] =[

T (e1) | T (e2)
]
.

(e) False. If T (e1) = (2,1) and T (e2) = (1,3)
then T (1,1) = T (e1 + e2) = T (e1)+T (e2) =
(2,1)+(1,3) = (3,4) 6= (3,3).

(g) False. For example, suppose θ = π/2
and v = (0,1,0). Then Rθ

xz(v) = v, but
(Rθ

xy ◦ Rθ
yz)(v) = Rθ

xy(0,0,1) = (0,0,1) 6= v.
It follows that Rθ

xy ◦Rθ
yz 6= Rθ

xz.

1.4.4 (a) Is not a linear transformation: squaring the
entries of v is not allowed. Specifically,
T (2(1,1)) = (4,2), but 2T (1,1) = (2,2).

(c) Is not a linear transformation: neither sin nor
cos can be applied to the entries of v. Specifi-
cally, T (0,0) = (0,−1) 6= 0.

(e) Is not a linear transformation: taking the square
root of entries of v is not allowed. Specifi-
cally, T (2(1,1)) = (2

√
2,2), but 2T (1,1) =

(4,2
√

2).
(g) Is not a linear transformation: absolute values

of the entries of the vector are not allowed.
Specifically, T (1,1)+T (−1,−1) = (2,2), but
T ((1,1)+(−1,−1)) = (0,0).

1.4.5 (a) Is a linear transformation. Its standard matrix

is
1

10

[
1 3
3 9

]
.

(c) Is a linear transformation. Its standard matrix

is
1
5

[
−3 4
4 3

]
.

(e) Is a linear transformation. Its standard matrix

is

[
cos(π/5) −sin(π/5)
sin(π/5) cos(π/5)

]
.

1.4.6 (a) The standard matrices of S and T are

[S] =

[
0 2
1 1

]
, [T ] =

[
1 2
3 −1

]
,

so the standard matrix of S◦T is given by the
matrix product

[S◦T ] = [S][T ] =

[
6 −2
4 1

]
.

(c) The standard matrices of S and T are

[S] =




1 0 0
1 1 0
1 1 1


 , [T ] =




1 1
2 −1
−1 3


 ,

so the standard matrix of S◦T is given by the
matrix product

[S◦T ] = [S][T ] =




1 1
3 0
2 3


 .

1.4.7 (b) The standard matrices of the projection in the
direction of u = 1√

2
(1,1) and rotation are

[Pu] =
1
2

[
1 1
1 1

]
, [R−π/4] =

1√
2

[
1 1
−1 1

]
.

The standard matrix of the composite linear
transformations thus is their product:

[R−π/4][Pu] =
1

2
√

2

[
1 1
−1 1

][
1 1
1 1

]

=
1√
2

[
1 1
0 0

]
.

1.4.8 Since T is a linear transformation, we know that
T (cv) = cT (v) for all c∈R and v∈Rn. If we choose
c = 0 and v = 0 then this says that T (0) = 0T (0) = 0,
as desired.

1.4.9 For the “if” direction, assume that T (c1v1 + · · ·+
ckvk) = c1T (v1)+ · · ·+ ckT (vk) for all v1, . . . ,vk ∈
Rn and all c1, . . . ,ck ∈ R. If we choose k = 1
then this says that T (c1v1) = c1T (v1), and if we
choose k = 2 and c1 = c2 = 1 then it says that
T (v1 + v2) = T (v1) + T (v2). These are the two
defining properties of linear transformations, so T is
a linear transformation.
For the “only if” direction, assume that T is a linear
transformation. Then we can repeatedly use the
two defining properties of linear transformations to
see that T (c1v1 + · · ·+ ckvk) = T (c1v1)+T (c2v2 +
· · ·+ckvk) = c1T (v1)+T (c2v2 + · · ·+ckvk) = · · ·=
c1T (v1)+ · · ·+ ckT (vk) for all v1, . . . ,vk ∈ Rn and
all c1, . . . ,ck ∈ R.

1.4.10 (a) We partition A as a block matrix based on its
rows, which we call a1,a2, . . . ,an and then per-
form block matrix multiplication:

DA =




d1 0 · · · 0
0 d2 · · · 0

...
...

. . .
...

0 0 · · · dn







a1
a2
...

an


=




d1a1
d2a2

...
dnan


 .

(b) We partition A as a block matrix based on its
columns, which we call a1,a2, . . . ,an and then
perform block matrix multiplication:

AD =
[

a1 | a2 | · · · | an

]




d1 0 · · · 0
0 d2 · · · 0

...
...

. . .
...

0 0 · · · dn




=
[

d1a1 | d2a2 | · · · | dnan

]
.
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1.4.11 (a) We just string together the relevant definitions:
for all v ∈Rn it is the case that [S+T ]v = (S+
T )(v) = S(v) + T (v) = [S]v + [T ]v = ([S] +
[T ])v. Since [S + T ]v = ([S] + [T ])v for all
v ∈ Rn, it follows from Exercise 1.3.18(d) that
[S +T ] = [S]+ [T ].

(b) Similar to part (a), for all v ∈ Rn it is the case
that [cS]v = (cS)(v) = cS(v) = c[S]v = (c[S])v.
Since [cS]v = (c[S])v for all v ∈ Rn, it follows
from Exercise 1.3.18(d) that [cS] = c[S].

1.4.14 The matrix A is the standard matrix of the rotation
counter-clockwise by an angle of π/4 about the
origin, and thus A160 is the matrix that implements
this transformation 160 times. In other words, it
rotates vectors counter-clockwise by an angle of
160π/4 = 40π . Since 40π is a multiple of 2π , this
rotation does not actually move any vectors at all, so
A160 = I.

1.4.15 We directly compute the product

AT A =

[
cos(θ) sin(θ)
−sin(θ) cos(θ)

][
cos(θ) −sin(θ)
sin(θ) cos(θ)

]
.

The top-left and bottom-right entries of this
product are both sin2(θ) + cos2(θ) = 1, while
the off-diagonal entries of this product are both
cos(θ)sin(θ) − cos(θ)sin(θ) = 0. We thus con-
clude that AT A = I, as claimed.

1.4.17 We directly compute A2:
A2 = (2uuT − I)2

= (2uuT − I)(2uuT − I)

= 4uuT uuT −4uuT + I

= 4uuT −4uuT + I = I,
as desired. Geometrically, this makes sense since A
is the standard matrix of a reflection across a line,
and A2 is the standard matrix of the same reflection
across the line twice. However, applying a reflection
twice returns each vector to where it started, so it has
the same effect as doing nothing at all (i.e., it acts as
the identity transformation).

1.4.19 One vector that points in the direction of the line
y = mx is u = (1,m), so we know that the standard
matrix of this reflection is

[Fu] = 2uuT /‖u‖2− I

= 2
[

1
m

][
1 m

]
/(1+m2)−

[
1 0
0 1

]

=
1

1+m2

[
1−m2 2m

2m m2−1

]
.

1.4.23 (a) The transformation Sc
1,2 has the following effect

on the standard unit grid on R2, with the value
of c determining the severity of the shear:

x

y

Sc1,2(e2)

SSSc1111,22((((eeeee11))))

Similarly, the transformation Sc
2,1 has the fol-

lowing effect on the standard unit grid on R2:

x

y

SScc2,1((eee22))
Sc2,1(e1)

(b) First, we notice that Ei, j = eieT
j , so E2

i, j =
eieT

j eieT
j = ei(e j · ei)eT

j = 0, since i 6= j. Since
Sc

i, j = I + cEi, j , it follows that

(Sc
i, j)

2 = (I + cEi, j)2

= I + cEi, j + cEi, j + c2E2
i, j

= I +2cEi, j = S2c
i, j.

By repeating this argument and multiplying
by Sc

i, j again and again, we similarly see that
(Sc

i, j)
n = Snc

i, j forall integersn≥ 1(thisargument
can be made rigorous via induction, if desired).

1.4.24 (a) This matrix is

[
Rθ

u
]
=




1 0 0
0 cos(θ) −sin(θ)
0 sin(θ) cos(θ)


=

[
Rθ

yz
]
.

(b) In this case, the standard matrix is

[
Rπ/4

u
]
=

1
9




1+4
√

2 2−4
√

2 2+2
√

2

2+2
√

2 4+5/
√

2 4−7/
√

2

2−4
√

2 4−1/
√

2 4+5/
√

2


 .

Multiplying this matrix by v = (3,2,1) gives

Rπ/4
u (3,2,1) =

(3+2
√

2,6+5/
√

2,6−7/
√

2)/3.

(c) Multiplying their standard matrices together
shows that

[
Rπ/3

yz ◦Rπ/3
xy
]
=




1/2 −
√

3/2 0
√

3/4 1/4 −
√

3/2

3/4
√

3/4 1/2


 .

To see that this is a rotation matrix, we set
this matrix equal to [Rθ

u ] from the statement
of the question and try to solve for u and θ .
There are many ways to do this, but if we fo-
cus on setting the diagonal entries equal to
each other first, we find that u2

1 = u2
3 = 3/7,

u2
2 = 1/7, and cos(θ) = 1/8. Then focusing

on the off-diagonal entries tells us that u =
(
√

3,1,
√

3)/
√

7 and θ = −arccos(1/8) ≈
−1.4455 (be careful when finding θ—if
you choose θ = arccos(1/8) ≈ 1.4455 then
the sin(θ) terms will have the wrong sign,
so you’ll get the transpose of the desired
matrix).
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Section 1.5: Summary and Review

1.5.1 (a) True. If AB is n× n then A and B must have
sizes of the form n×m and m×n, respectively,
so BA is m×m.

(c) False. (AB)3 = (AB)(AB)(AB) and in general
there is no way to commute the A’s and B’s
past each other in the middle, so it does not
necessarily equal A3B3 = AAABBB.

(e) False. A simple counter-example is given by

A =

[
0 1
0 0

]
.

(g) True. This is called “associativity” of composi-
tion, and it follows from the fact that applying
either linear transformation to a vector v results
in R(S(T (v))).

1.5.3 (a) Projection onto the line in the direction of
u = (1,0).

(c) Rotation counter-clockwise by an angle of
θ = π/4.

(e) None of these.
(g) Projection onto the line in the direction of

u = (1,2,2)/3.

1.5.5 The matrix
[

cos(θ) −sin(θ)
sin(θ) cos(θ)

]

is the standard matrix of a rotation counter-clockwise
by an angle of θ (i.e., it is [Rθ ]). Composing n copies
of Rθ together results in a rotation by an angle of nθ ,
so we have

[Rθ ]n = [Rθ ◦Rθ ◦ · · · ◦Rθ ] = [Rnθ ],

which is exactly what we wanted to show.

Section 1.A: Extra Topic: Areas, Volumes, and the Cross Product

1.A.1 (a) (−4,8,−4) (c) (−4,−2,7)

1.A.2 (a) ‖(2,1,0)× (−2,3,0)‖= ‖(0,0,8)‖= 8
(c) ‖(1,2,3)× (3,−1,2)‖= ‖(7,7,−7)‖= 7

√
3

1.A.3 (a) 1
2‖(0,4,0)× (1,1,0)‖= 1

2‖(0,0,−4)‖= 2
(c) 1

2‖(−1,1,−1)×(3,2,1)‖= 1
2‖(3,−2,−5)‖=√

38
2

1.A.4 (a) This is a cuboid (rectangular prism) with side
lengths 1, 2, and 3, so its volume is 1 ·2 ·3 = 6.

(c) |v · (w×x)|= |(1,1,1) · (3,4,−2)|= |3+4−
2|= 5

1.A.5 (a) In all cases, we compute the area of the par-
allelogram or parallelepiped with sides given
by the columns of the matrix. In this case, the
sides are (1,0) and (0,1), which is a square of
area 1, so that is our answer.

(c) ‖(0,2,0)× (−2,3,0)‖= ‖(0,0,4)‖= 4.
(e) Now we use Theorem 1.A.3: |(1,0,0) ·

((−3,2,0)× (2,−7,3))|= 6.

1.A.6 (a) False. For example, the cross product of two
unit vectors can be 0 if they are the same unit
vector.

(c) False. The notation v2 does not even mean any-
thing. The correct statement is v×v = 0 (via
Theorem 1.A.1(c)).

(e) False. This would be true if v,w ∈ R3, but
since they are in R4 the cross product does not
even make sense.

1.A.8 Recall that ‖v×w‖ = ‖v‖‖w‖sin(θ). We are told
in the question that v and w are unit vectors,
so ‖v‖ = ‖w‖ = 1. Similarly, we can compute
‖v×w‖ =

√
(1/3)2 +(2/3)2 +(2/3)2 = 1. It fol-

lows that 1 = sin(θ), so θ = π/2.

1.A.10 We just mimic the calculation given earlier in the
text:

w · (v×w) = w1(v2w3− v3w2)+w2(v3w1− v1w3)

+w3(v1w2− v2w1)

= w1v2w3−w1v3w2 +w2v3w1−w2v1w3

+w3v1w2−w3v2w1

= 0.

1.A.11 (a) We use the definitions of the cross product and
vector addition:

v× (w+x) =




v2(w3 + x3)− v3(w2 + x2)
v3(w1 + x1)− v1(w3 + x3)
v1(w2 + x2)− v2(w1 + x1)


 .

On the other hand,

v×w+v×x =




v2w3− v3w2

v3w1− v1w3

v1w2− v2w1


+




v2x3− v3x2

v3x1− v1x3

v1x2− v2x1




=




v2w3− v3w2 + v2x3− v3x2

v3w1− v1w3 + v3x1− v1x3

v1w2− v2w1 + v1x2− v2x1




It is straightforward to compare these two vec-
tors entry-by-entry and see that they are the
same.

(b) Again, we just use the relevant definitions:

(cv)×w =




(cv2)w3− (cv3)w2

(cv3)w1− (cv1)w3

(cv1)w2− (cv2)w1




= c




v2w3− v3w2

v3w1− v1w3

v1w2− v2w1


= c(v×w).
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1.A.13 No, it is not associative. To see this, we can choose
v = e1, w = e2, and x = e2. Then (v × w)× x =
(e1 × e2)× e2 = e3 × e2 = −e1, but v× (w× x) =
e1 × (e2 × e2) = e1 ×0 = 0.

1.A.16 (a) To show that v ·(w×x) = w ·(x×v) we explic-
itly compute both sides in terms of the vectors’
entries:

v · (w×x)
= v · (w2x3 −w3x2,w3x1 −w1x3,w1x2 −w2x1)

= v1(w2x3 −w3x2)+ v2(w3x1 −w1x3)

+ v3(w1x2 −w2x1)

= v1w2x3 − v1w3x2 + v2w3x1 − v2w1x3

+ v3w1x2 − v3w2x1.

Similarly,

w · (x×v)
= w · (x2v3 − x3v2,x3v1 − x1v3,x1v2 − x2v1)

= w1(x2v3 − x3v2)+w2(x3v1 − x1v3)

+w3(x1v2 − x2v1)

= w1x2v3 −w1x3v2 +w2x3v1 −w2x1v3

+w3x1v2 −w3x2v1.

We can directly compare these two expressions
to see that they are equal, so v · (w × x) =
w ·(x×v). The fact that w ·(x×v) = x ·(v×w)
can be proved in the exact same way.

(b) Recall from Theorem 1.A.1 that the cross prod-
uct is anticommutative: v×w =−(w×v). By
combining this fact with part (a) of this ques-
tion, we get exactly what we want:

v · (w×x) =−v(x×w),

v · (w×x) = w · (x×v) =−w · (v×x), and

v · (w×x) = x · (v×w) =−x · (w×v).

1.A.18 We could verify this directly by computing the ex-
pression in terms of the entries of v, w, and x, but an
easier way is to use the result of Exercise 1.A.17:

v× (w×x)+w× (x×v)+x× (v×w)

=
(
(v ·x)w− (v ·w)x

)
+
(
(w ·v)x− (w ·x)v

)

+
(
(x ·w)v− (x ·v)w

)

=
(
(v ·x)w− (x ·v)w

)
+
(
(w ·v)x− (v ·w)x

)

+
(
(x ·w)v− (w ·x)v

)

= 0.

Section 1.B: Extra Topic: Paths in Graphs

1.B.1 (a) The adjacency matrix of this graph is



0 1 0 1
1 0 1 1
0 1 0 0
1 1 0 0


 .

(c) The adjacency matrix of this graph is



0 1 1 1 0 0
1 0 1 0 0 0
1 1 0 0 0 1
1 0 0 0 1 1
0 0 0 1 0 1
0 0 1 1 1 0



.

1.B.2 (a) The adjacency matrix of this graph is



0 1 0 1
0 0 1 1
0 0 0 0
0 0 0 0


 .

(c) The adjacency matrix of this graph is



0 1 1 1 0 0
0 0 1 0 0 0
0 0 0 0 0 1
1 0 0 0 1 1
0 0 0 0 0 1
0 0 1 0 0 0



.

1.B.3 (a) The adjacency matrix of this multigraph is



0 1 0 1
1 0 5 2
0 5 0 0
1 2 0 0


 .

(c) The adjacency matrix of this graph is



0 1 0 1 0 0
0 0 2 0 0 0
0 0 0 0 0 1
1 0 0 0 2 1
0 0 0 0 2 1
0 0 1 0 0 0



.

1.B.4 (a) True. This follows from the fact that there is an
edge from vertex i to j if and only if there is an
edge from vertex j to i.

(c) False. A simple counter-example is given by

A B C

which has a path of length 2 from A to C, but
no such path of length 3.

1.B.5 (a) A B

C D
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(c)

A

B

C

D E

(e) A B

C D

1.B.6 (a) 1
(g) 10

(c) 1
(i) 6

(e) 2
(k) 298

1.B.7 (a) The adjacency matrix of this graph is

A =




0 1 0 1
1 0 1 1
0 1 0 1
1 1 1 0


 .

To compute paths of length 2, we compute A2:

A2 =




2 1 2 1
1 3 1 2
2 1 2 1
1 2 1 3


 .

There is thus [A2]1,2 = 1 path of length 2 from
vertex A to vertex B.

(c) We start by computing A4:

A4 =




10 9 10 9
9 15 9 14
10 9 10 9
9 14 9 15


 .

There are thus [A4]1,4 = 9 paths of length 4
from vertex A to vertex D.

1.B.9 (a)
A B

(b) From vertex A to A, there is just one path. From
B to B, there is just one path. From B to A there
are no paths. From A to B there are n paths of
length n: for any 0 ≤ k ≤ n− 1, the self-loop
at A can be used k times, followed by the edge
from A to B, followed by the self-loop at B
another n− k−1 times.

(c) Part (b) tells us that

An =

[
1 n
0 1

]
,

which is exactly the same as the formula for
An that we found in Exercise 1.3.7(c).

1.B.11 As suggested by the hint, we proceed by induction.
For the base case, we note that the k = 1 and k = 2
cases were already proved for Theorem 1.B.1. For
the inductive step, suppose that, for some fixed in-
teger k ≥ 1, [Ak]i, j counts the number of paths of
length k between vertices i and j. Then

[Ak+1]i, j = [AkA]i, j

= [Ak]i,1a1, j +[Ak]i,2a2, j + · · ·+[Ak]i,nan, j.

The first term in the sum above ([Ak]i,1a1, j) equals
[Ak]i,1 exactly if there is a path of length k edge be-
tween vertices i and 1 and also an edge between ver-
tices 1 and j. In other words, the quantity [Ak]i,1a1, j
counts the number of paths of length k+1 between
vertices i and j, with vertex 1 as the second-to-last
vertex visited.
Similarly, [Ak]i,2a2, j counts the number of paths of
length k+1 between vertices i and j, with vertex 2
as the second-to-last vertex visited, and so on. By
adding these terms up, we see that [Ak+1]i, j counts
the number of paths of length k+1 between vertices
i and j, with any vertex as the second-to-last vertex
visited, completing the inductive step.

Section 2.1: Systems of Linear Equations

2.1.1 (a) Reduced row echelon form.
(c) Not in row echelon form.
(e) Not in row echelon form.
(g) Reduced row echelon form.

2.1.2 (a)
[

1 0
0 1

]

(e)



1 0 0
0 1 0
0 0 1




(c)



1 2
0 0
0 0




(g)



1 0 2
0 1 3
0 0 0
0 0 0




2.1.3 (a) 


1 0 0 −1
0 1 0 −1/2
0 0 1 −1/2
0 0 0 0




(c) 


1 0 0 0 −4/3 2/5
0 1 0 0 −4/3 −4/5
0 0 1 0 7/3 9/20
0 0 0 1 2 1/10




2.1.4 (a) No solutions (the last row says 0 = 1).
(c) Infinitely many solutions (there are two vari-

ables x and y: x is free and y = 2).
(e) No solutions.
(g) No solutions.

2.1.5 (a) (x,y) = (1,1).
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(c) No solutions.
(e) No solutions.
(g) Infinitely many solutions: The variables v,w,

and y are leading, while x and z are free. The
solutions are of the form

(v,w,x,y,z) = (4+ x+2z,1/2+ z/2,x,1,z).

2.1.6 (a) Infinitely many solutions: v, w, x, and y
are leading variables, and z is free. The
solutions are of the form (v,w,x,y,z) =
(−30,3,60,7,0)+ z(−51,3,106,5,6)/6.

2.1.7 (a) True. Each of the variables (x, y, and z) are just
multiplied by a scalar and added together. The
fact that the scalars (sin(1), 3√5) are ugly does
not matter.

(c) False. Lines in R3 can be “skew”: non-parallel
and non-intersecting. For example, the line on
the x-axis does not intersect the line going
through the points (0,0,1) and (0,1,1) (i.e.,
the line 1 unit above the y-axis).

(e) False. Every linear system has exactly 0, 1, or
infinitely many solutions.

(g) False. For example, here is a system of linear
equations with more equations than variables:

x+ y = 1
2x+2y = 2
3x+3y = 3

that has infinitely many solutions. One solution
is x = 1, y = 0.

(i) False. It could also have no solutions, as
demonstrated by the following system:

x+ y+ z = 1
x+ y+ z = 2

2.1.8 One row echelon form of this matrix is



1 −1 0
0 1 1/2
0 0 t−1/2


 .

We see that the first two rows are always non-zero
with leading variables, and the final row is non-zero
if and only if t 6= 1/2. This linear system thus has
(i) no solutions if t 6= 1/2, (ii) a unique solution if
t = 1/2, and (iii) never has infinitely many solutions.

2.1.10 The unique solutions when h = 0.95, h = 1.00,
and h = 1.05 are (w,x,y,z) = (3,−24,30,0),
(w,x,y,z) = (−4,60,−180,140), and (w,x,y,z) =
(−11,144,−390,280), respectively. What is surpris-
ing about these solutions is how drastically they
change when h is changed just a tiny amount. The
reason that these small changes in h lead to such
large changes in the solution is that the equations in
the linear system are so close to being multiples of
each other.

2.1.11 We start by finding a row echelon form for the ma-
trix:
[

a b 1
c d 1

]
aR2−cR1−−−−−→

[
a b 1
0 ad−bc a− c

]
.

If ad − bc 6= 0 then the row echelon form has no
all-zero rows, so the system has a unique solution.

2.1.13 (a) Since A and R are row equivalent, we can ap-
ply a sequence of elementary row operations
to turn A into R. Similarly, since B and R are
row equivalent, we can apply a sequence of
elementary row operations to turn R into B. By
stringing these two sequences of row opera-
tions together, we can convert A into R into B,
so A and B are row equivalent.

(b) If A and B have the same RREF (which we
will call R) then A and R are row equivalent,
as are B and R, so part (a) tells us that A and B
are row equivalent too. In the other direction,
if A and B are row equivalent then we can
row-reduce A to B and then to the RREF of
B. Since every matrix can be row-reduced to
exactly one RREF (this is Theorem B.2.1), A
and B must have the same RREF.

2.1.15 (a) The system of linear equations that we must
solve is

v1 +2v2 +3v3 = 0
3v1 +2v2 + v3 = 0

The reduced row echelon form of the associ-
ated augmented matrix is

[
1 0 −1 0
0 1 2 0

]
,

so v3 is a free variable. Arbitrarily choosing
v3 = 1 then gives us v2 = −2 and v1 = 1, so
the vector v = (1,−2,1) is orthogonal to both
of the given vectors.

(b) The system of linear equations that we must
solve is

v1 +2v2 + v4 = 0
−2v1 + v2 + v3 +3v4 = 0
−v1− v2 +2v3 + v4 = 0

The reduced row echelon form of the associ-
ated augmented matrix is




1 0 0 −7/9 0
0 1 0 8/9 0
0 0 1 5/9 0


 ,

so v4 is a free variable. Arbitrarily choosing
v4 = 9 then gives us v3 = −5, v2 = −8, and
v1 = 7, so the vector v = (7,−8,−5,9) is or-
thogonal to all three of the given vectors.

2.1.16 (a) The augmented matrix becomes
[

1 0 1
0 1 2

]
,

so the unique solution is (x,y) = (1,2).
(b) The augmented matrix becomes

[
0 −1 −2
0 1 2

]
.

There are infinitely many solutions of this sys-
tem of equations: y = 2 and x can be anything.

2.1.17 (a) Yes, b = (1/2)v1.
(c) Yes, b = v1 +5v2−6v3.
(e) Yes, b = v1 +3v2.
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(g) Yes, b =−v1 +v2−2v3.

2.1.18 The augmented matrix of the system of linear equa-
tions that we need to solve is

[
v1 v2 v3 0
w1 w2 w3 0

]

By replacing R1 with w1R1 and then replacing R2
with R1− v1R2, the system becomes
[

w1v1 w1v2 w1v3 0
0 w1v2− v1w2 w1v3− v1w3 0

]

(Note that we have to be slightly careful here, as we
can only replace R1 by w1R1 if w1 6= 0. However,
since w 6= 0, we can always find some non-zero entry
of w, so this is just a technicality.)
This augmented matrix corresponds to the linear sys-
tem

(w1v1)x1 +(w1v2)x2 +(w1v3)x3 = 0

(w1v2− v1w2)x2 +(w1v3− v1w3)x3 = 0

where x1,x2,x3 are the variables we are trying to
solve for. In particular, x1 and x2 are leading vari-
ables, while x3 is a free variable. Rearranging the
above equations in terms of x3 and then simplifying
gives

(w1v2− v1w2)x1 = (v3w2− v2w3)x3

(w1v2− v1w2)x2 = (v1w3−w1v3)x3

If c ∈ R is any scalar, and we choose x3 = c(v1w2−
v2w1) then we find that x1 = c(v2w3 − v3w2) and
x2 = c(v3w1− v1w3), so

(x1,x2,x3)= c(v2w3−v3w2,v3w1−v1w3,v1w2−v2w1),

as claimed.

2.1.19 If we mix x and y kilograms of the 13% and 5% salt
water mixtures, respectively, then the resulting linear
system is

x+ y = 120
0.13x+0.05y = 9.6

Solving this linear system shows that we should mix
x = 45 kilograms of the 13% salt water and y = 75
kilograms of the 5% salt water.

2.1.21 If we let w, x, y, and z denote how many copies of
each molecule are present in the reaction (in the order
listed in the exercise), then we get the linear system

2x− y−2z = 0

w− y = 0

w− z = 0.

Solving this linear system shows that z is free, w = z,
x = 3z/2, and y = z. Choosing z = 2 so that all of
these variables are integers gives the balanced equa-
tion

2ZnS+3O2→ 2ZnO+2SO2.

2.1.24 The standard matrix of Pu is

[Pu] = uuT =
1
9




1 2 2
2 4 4
2 4 4


 .

We are thus trying to find vectors v = (v1,v2,v3) with
the property that

1
9




1 2 2
2 4 4
2 4 4







v1
v2
v3


=




2
4
4


 .

This is a linear system with augmented matrix



1/9 2/9 2/9 2
2/9 4/9 4/9 4
2/9 4/9 4/9 4


 ,

which has reduced row echelon form



1 2 2 18
0 0 0 0
0 0 0 0


 .

It follows that v2 and v3 are free variables and v1 is a
leading variable with v1 = 18−2v2−2v3. The vec-
tors v for which Pu(v) = (2,4,4) are thus those of the
form v = (18− 2v2− 2v3,v2,v3), where v2,v3 ∈ R
are arbitrary.

2.1.25 (a) This exercise is asking whether or not there ex-
ist c1,c2 ∈R such that (3,−2,1) = c1(1,4,2)+
c2(2,−1,1). This is equivalent to the system
of linear equations

c1 +2c2 = 3
4c1− c2 =−2
2c1 + c2 = 1

One row echelon form of the associated aug-
mented matrix is




1 2 3
0 −9 −14
0 0 −1/3


 .

Since the last line of this matrix corresponds
to the equation 0 = −1/3, we see that there
are no solutions, so (3,−2,1) is not a linear
combination of (1,4,2) and (2,−1,1).

2.1.26 (a) If we can find T (1,0) and T (0,1) then we can
just stick these as columns in a matrix to get
the standard matrix of T . To find these vectors,
we start by writing (1,0) and (0,1) as linear
combinations of (1,1) and (1,−1):

(1,0) = c1(1,1)+ c2(1,−1)

(0,1) = c3(1,1)+ c4(1,−1).

These are linear systems of equations that are
easily solved to get c1 = c2 = c3 = 1/2 and
c4 =−1/2. It follows that

T (1,0) = T ( 1
2 (1,1)+ 1

2 (1,−1))

= 1
2 T (1,1)+ 1

2 T (1,−1)

= 1
2 (3,7)+ 1

2 (−1,−1)

= (1,3).

A similar calculation shows that T (0,1) =
(2,4), so

[T ] =

[
1 2
3 4

]
.
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(c) By working similarly as in part (a), we find

[T ] =




1 2 1
1 3 2
−1 2 0


 .

2.1.27 (a) Multiplying the top equation by xy turns the
system into

2x+ y = 3
x+ y = 2

which has unique solution (x,y) = (1,1).
(c) Let u = 1/x, v = 1/y, and w = 1/z. Then the

system of equations becomes

u −2w =−4
u+ v+ w = 4

2u−6v−2w = 4

Solving this system via row operations gives
us the unique solution (u,v,w) = (2,−1,3).
Using the fact that u = 1/x, v = 1/y, and
w = 1/z then gives us (x,y,z) = (1/2,−1,1/3)
as the unique solution of the original system of
equations.

2.1.28 (a) We need to find all matrices

[
a b
c d

]
such that

[
0 1
1 0

][
a b
c d

]
=

[
a b
c d

][
0 1
1 0

]
.

By multiplying out these matrices, we get
[

c d
a b

]
=

[
b a
d c

]
.

This is a system of 4 linear equations in 4 vari-
ables, and it is straightforward to solve it to get
c = b, d = a. The matrices that commute with

A are thus those of the form

[
a b
b a

]
.

(b) We need to find all matrices

[
a b
c d

]
such that

[
1 1
1 0

][
a b
c d

]
=

[
a b
c d

][
1 1
1 0

]
.

By multiplying out these matrices, we get
[

a+ c b+d
a b

]
=

[
a+b a
c+d c

]
.

This is a system of 4 linear equations in 4 vari-
ables, and it is straightforward to solve it to get
c = b, d = a− b. The matrices that commute

with C are thus those of the form

[
a b
b a−b

]
.

(c) If B commutes with everything in M2 then
in particular AB = BA and BC = CB, where
A and C are as defined in parts (a) and (b) of
this question. It follows that B must have the
form described by our solutions to parts (a)

and (b) of this question, so B =

[
a b
b a−b

]

(by part (b)), and a− b = a (by part (a)), so

b = 0, so B =

[
a 0
0 a

]
= aI. On the other hand,

it is clear that the matrix aI commutes with
everything in M2 since (aI)A = aA = A(aI).

2.1.29 (a) The system of equations

b+m = 2
b+3m = 8

has unique solution (b,m) = (−1,3), so the
unique line that works is y = 3x−1.

(b) The system of equations

a+b+ c = 3
4a+2b+ c = 6
9a+3b+ c = 13

has unique solution (a,b,c) = (2,−3,4), so the
unique parabola that works is y = 2x2−3x+4.

(c) The relevant system of equations in this case is

b+m = 3
b+2m = 6
b+3m = 13

which has no solution. There thus does not ex-
ist a line that goes through all 3 points.

(d) The relevant system of equations in this case is

a+b+ c+d = 3
8a+4b+2c+d = 6

27a+9b+3c+d = 13

Representing this system by an augmented ma-
trix and row-reducing yields the reduced row
echelon form




1 0 0 1/6 2/3
0 1 0 −1 −2
0 0 1 11/6 13/3


 .

Since this system has a free variable, there are
infinitely many solutions. In particular, no mat-
ter what value of d we choose, the cubic

y = (2/3−d/6)x3 +(d−2)x2

+(13/3−11/6d)x+d

goes through the 3 points. [Side note: If we
choose d = 4, we get exactly the parabola that
we found in part (b). We will discuss polyno-
mial interpolation a bit more thoroughly in
Remark 2.3.1.]
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Section 2.2: Elementary Matrices and Matrix Inverses

2.2.1 (a)



0 0 1
0 1 0
1 0 0




(e)



3 0 0
0 1 0
0 0 1




(c)



1 3 0
0 1 0
0 0 1




(g)



1 0 0
0 1 −2
0 0 1




2.2.2 (a) The identity matrix is its own inverse:
[

1 0
0 1

]
.

(c) We can compute the inverse of this matrix
either via the Gauss–Jordan (row-reduction)
method or via the explicit formula for 2× 2
matrices. Its inverse is

1
5

[
−2 3
3 −2

]
.

(e) We perform row operations on the augmented
system [A | I ] (where A is the matrix whose
inverse we are trying to compute) to find the
inverse:

[
2 4 0 1 0 0
1 −2 0 0 1 0
2 0 −1 0 0 1

]

1
2 R1−−→

[
1 2 0 1/2 0 0
1 −2 0 0 1 0
2 0 −1 0 0 1

]

R2−R1
R3−2R1−−−−−→

[
1 2 0 1/2 0 0
0 −4 0 −1/2 1 0
0 −4 −1 −1 0 1

]

R3−R2−−−−→

[
1 2 0 1/2 0 0
0 −4 0 −1/2 1 0
0 0 −1 −1/2 −1 1

]

−1
4 R2
−R3−−−−→

[
1 2 0 1/2 0 0
0 1 0 1/8 −1/4 0
0 0 1 1/2 1 −1

]

R1−2R2−−−−→

[
1 0 0 1/4 1/2 0
0 1 0 1/8 −1/4 0
0 0 1 1/2 1 −1

]
.

We can now simply read the inverse off from the
right-hand side of the above augmented matrix:




1/4 1/2 0
1/8 −1/4 0
1/2 1 −1


 .

(g) This matrix is not invertible, since it is not
even square.

2.2.3 (a) This matrix has inverse



36 −7 −22 19
−3 1 2 −2
−46 9 28 −24
25 −5 −15 13


 .

(c) This matrix has inverse

1
10




−11 17 26 −36 −1
−162 264 382 −562 −22
−80 130 190 −280 −10
−431 707 1026 −1506 −61
477 −779 −1132 1662 67




.

2.2.4 (a) The RREF is I2 and

E =

[
−2 1
3/2 −1/2

]
.

(c)

[
−5/3 2/3
4/3 −1/3

]

(e)




0 −1/3 2/3
0 1/3 1/3
1 1/3 −5/3


 (not unique)

(g)




0 0 1
0 −1/2 3/2
1 1/2 −3/2


 (not unique)

2.2.5 (a) True. In fact, the inverse of an elementary ma-
trix is an elementary matrix of the same “type”
(i.e., corresponding to the same type of row
operation—swap, multiplication, or addition).

(c) False. The product of elementary matrices is
always invertible, so no non-invertible matrix
can be written as such a product.

(e) True. In fact, the identity matrix is its own in-
verse.

(g) False. For example, if A = I and B =−I then
A+B = O, which is not invertible.

(i) True. If A were invertible then we could mul-
tiply the equation A7 = O on the left by A−1 7
times to get

(A−1)7A7 = (A−1)7O,

which simplifies to I = O, which is false. It
follows that A is not invertible.

(k) False. Multiplying that equation on the right by
A−1 gives X = BA−1, which in general is not
the same as A−1B since matrix multiplication is
not commutative. A specific counter-example
is given by

X =

[
0 1
1 0

]
, A =

[
1 0
0 −1

]
, B =

[
0 −1
1 0

]

2.2.7 (a) If a = b then every entry in this matrix is a, so
its reduced row echelon form is




1 1 1 · · · 1
0 0 0 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0




,

which is not the identity matrix, so A is not
invertible.

(b) If we let Jn denote the n× n matrix with ev-
ery entry equal to 1, then A = (a−b)In +bJn.
Based on testing out some small examples, we
might conjecture that the inverse of A is a ma-
trix of the form B = cIn +dJn for some c,d ∈R
as well, and we just need to carefully choose
c and d. Well, we use the fact that J2

n = nJn
(which we proved way back in Exercise 1.3.11)
to compute

AB = ((a−b)In +bJn)(cIn +dJn)

= c(a−b)In +(bc+d(a−b)+nbd)Jn.
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Since we want this product to equal In, we
choose c = 1/(a− b) and then solve bc +
d(a−b)+nbd = 0 to get d =−b(nd +1/(a−
b))/(a−b). It follows that A is invertible, and
its inverse is

A−1 =
1

a−b
(In−b(nd +1/(a−b))Jn) .

2.2.9 (a) A2 =

[
7 4
12 7

]

(c) A−2 =

[
7 −4
−12 7

]

2.2.11 (a) Since A is m×n, AT A is n×n, so (AT A)−1 is
also n×n. It follows that P = A(AT A)−1AT is
m×m.

(b) PT =
(
A(AT A)−1AT )T =(AT )T ((AT A)−1)T AT =

A
(
(AT A)T )−1AT = A

(
AT A

)−1AT = P.
(c) Similar to part (b), this follows from some

messy algebra:
P2 =

(
A(AT A)−1AT )(A(AT A)−1AT )

= A(AT A)−1(AT A)(AT A)−1AT

= A(AT A)−1AT

= P.
2.2.12 We use a similar argument to the one used to prove

Theorem 2.2.1: row-reducing [ P |Q ] is equivalent to
multiplying it on the left by a sequence of elementary
matrices E1,E2, . . . ,Ek:
Ek · · ·E2E1[ P | Q ] = [ Ek · · ·E2E1P | Ek · · ·E2E1Q ].
Well, if the matrix on the right equals [ I | P−1Q ]
then Ek · · ·E2E1P = I, so Ek · · ·E2E1 = P−1, so the
matrix on the right is P−1Q, as claimed.

2.2.13 (a) Multiplying on the left by A−1 gives X =
A−1B.

(c) Multiplying on the left by A−1 and on the right
by B−1 gives X = A−1IB−1 = A−1B−1.

2.2.16 (a) We can solve the linear system Ax = 0 via back
substitution. The final equation says an,nxn = 0,
which implies xn = 0 as long as an,n 6= 0. Plug-
ging this into the next equation then gives
an−1,n−1xn−1 = 0, which implies xn−1 = 0 as
long as an−1,n−1 6= 0. Continuing in this way
gives x = 0 as the unique solution of the lin-
ear system if all of the diagonal entries of A
are non-zero. However, if one of the diagonal
entries equals 0 (let’s say a j, j = 0) then the
equation a j, jx j = 0 gives no restriction on x j ,
so it is free and thus the linear system has in-
finitely many solutions. The desired result then
follows from Theorem 2.2.4(d).

(b) As suggested by the hint, we first show that
if the last k entries of b equal 0 then the so-
lution x to Ax = b also has its last k entries
equal to 0. The proof of this fact is almost iden-
tical to the back substitution argument from
part (a). The final equation in this linear sys-
tem says an,nxn = 0, so xn = 0 too, which then
gives an−1,n−1xn−1 = 0 via back substitution,
so xn−1 = 0, and so on.
To then prove that A−1 must be upper triangu-
lar, we give names to its columns:

A−1 =
[

b1 | b2 | · · · | bn
]
.

Then

AA−1 = A
[

x1 | x2 | · · · | xn
]

=
[

Ax1 | Ax2 | · · · | Axn
]

=
[

e1 | e2 | · · · | en
]
= I,

so Ax j = e j for all 1 ≤ j ≤ n. Since the last
n− j entries of e j all equal 0, the last n− j
entries of x j must equal 0 as well, so A−1 is
upper triangular.

(c) Since A and A−1 are both upper triangular, we
can compute the diagonal entries of their prod-
uct reasonably directly. If we denote the diago-
nal entries of A by a1,a2, . . . ,an, the diagonal
entries of A−1 by b1,b2, . . . ,bn, and use aster-
isks (∗) to denote entries whose values we do
not care about, then

AA−1 =




a1 ∗ · · · ∗
0 a2 · · · ∗
...

...
. . .

...
0 0 · · · an







b1 ∗ · · · ∗
0 b2 · · · ∗
...

...
. . .

...
0 0 · · · bn




=




a1b1 ∗ · · · ∗
0 a2b2 · · · ∗
...

...
. . .

...
0 0 · · · anbn




,

which can only equal the identity matrix if
b1 = 1/a1, b2 = 1/a2, and so on.

(d) Part (a) does not change at all (the proof just
uses forward substitution instead of backward
substitution). In part (b), A−1 is lower tri-
angular whenever A is invertible and lower
triangular (which can be proved just by apply-
ing the transpose to the result from part (b)).
Part (c) also does not change at all.

2.2.17 (a) An inverse of A−1 is a matrix (A−1)−1 such
that A−1(A−1)−1 = (A−1)−1A−1 = I. Replac-
ing (A−1)−1 in this equation by A makes it true,
so it must be the case that (A−1)−1 = A, since
matrix inverses are unique.

(b) Again, we just need to show that the claimed
inverse, when multiplied by the original matrix,
gives the identity matrix. That is, we want to
show that (A−1)T AT = AT (A−1)T = I. Well,
I = IT = (AA−1)T = (A−1)T AT , and similarly
I = IT = (A−1A)T = AT (A−1)T , as desired.

(c) Notice that if we multiply Ak by A−1 k times
then we get

Ak(A−1)k = (AA · · ·A)(A−1A−1 · · ·A−1).

The central AA−1 cancels to give an identity
matrix, leaving k−1 copies of each of A and
A−1. We then cancel the central terms again,
repeating until there is nothing but an identity
matrix left. It follows that Ak(A−1)k = I (and
the equation (A−1)kAk = I is proved similarly),
so (Ak)−1 = (A−1)k .
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2.2.18 (a) We already proved this claim when k, `≥ 0 in
Exercise 1.3.22, and it follows when k, ` < 0
simply by replacing A by A−1, so we just prove
the case when k≥ 0 and ` < 0. In this case, we
notice that AkA` = (AA · · ·A)(A−1A−1 · · ·A−1),
where the first bracket has k copies of A and
the second has |`| = −` copies of A−1. The
central AA−1 terms repeatedly cancel out, leav-
ing just k−|`| = k + ` copies of A (if k ≥ |`|)
or |`|− k =−(k + `) copies of A−1 (if |`|> k).
In either case, the product thus equals Ak+`, as
claimed.

(b) Again, we just explicitly prove the k≥ 0, ` < 0
case, and note that the other cases are handled
similarly. In this case, notice that (Ak)` =
(AA · · ·A)−1(AA · · ·A)−1 · · ·(AA · · ·A)−1,
where each bracket has k copies of A, and there
are |`| = −` brackets. Since (AA · · ·A)−1 =
A−1A−1 · · ·A−1, it follows that there are a total
of k|`| = −k` copies of A−1, so this product
equals A−|k`| = Ak`.

2.2.19 If AB = I then taking the transpose of both sides
gives BT AT = (AB)T = IT = I. It follows from the
half of Theorem 2.2.7 that was proved in the text that
AT is invertible and (AT )−1 = BT . Using the fact
that (AT )−1 = (A−1)T and taking the transpose of
both sides then gives A−1 = B, as desired.

2.2.20 (a) We just compute the product of the two matri-
ces (using block matrix multiplication) and see
that we get the identity:
[

A O
O D

][
A−1 O

O D−1

]
=

[
AA−1 O

O DD−1

]

=

[
I O
O I

]
.

(b) We first note that if we multiply the block di-
agonal matrix by any other matrix, we get



A1 O · · · O
O A2 · · · O
...

...
. . .

...
O O · · · An







B1,1 B1,2 · · · B1,n

B2,1 B2,2 · · · B2,n
...

...
. . .

...
Bn,1 Bn,2 · · · Bn,n




=




A1B1,1 A1B1,2 · · · A1B1,n

A2B2,1 A2B2,2 · · · A2B2,n
...

...
. . .

...
AnBn,1 AnBn,2 · · · AnBn,n




.

Well, if any of A1,A2, . . . ,An are not invertible,
then the products A1B1,1,A2B2,2, . . . ,AnBn,n
cannot all equal I, so the above block matrix
product cannot equal I either (since its diagonal
blocks do not all equal I). The block diagonal
matrix is thus not invertible, which completes
the “only if” direction of the proof.

On the other hand, if A1,A2, . . . ,An are invert-
ible, then it is straightforward to check that



A1 O · · · O
O A2 · · · O
...

...
. . .

...
O O · · · An







A−1
1 O · · · O

O A−1
2 · · · O

...
...

. . .
...

O O · · · A−1
n




=




I O · · · O
O I · · · O
...

...
. . .

...
O O · · · I


 ,

so the matrix above on the right is the inverse
of the block diagonal matrix above on the left,
which completes the “if” direction of the proof.

2.2.21 In all parts of this question, we show that the claimed
inverse is correct simply by performing block ma-
trix multiplication and seeing that we get the identity
matrix.

(a)

[
A I
I O

][
O I
I −A

]
=

[
I A−A
O I

]
=

[
I O
O I

]

(c) This one is a bit uglier:
[

A B
O D

][
A−1 −A−1BD−1

O D−1

]

=

[
AA−1 −AA−1BD−1 +BD−1

O DD−1

]

=

[
I −BD−1 +BD−1

O I

]
=

[
I O
O I

]

2.2.22 (a) This inverse can be found by using the formula
from Exercise 2.2.21(a), partitioning this ma-
trix via

A =

[
1 2
3 4

]
.

The inverse is


0 0 1 0
0 0 0 1
1 0 −1 −2
0 1 −2 −3


 .

(c) This inverse can be found by using the formula
from Exercise 2.2.21(c), partitioning this ma-
trix via

A =

[
1 1
1 2

]
, B =

[
2 −1 0
2 0 1

]
, and

D =




1 0 0
0 2 0
0 0 3


 .

The inverse is

1
6




12 −6 −12 6 2
−6 6 0 −3 −2
0 0 6 0 0
0 0 0 3 0
0 0 0 0 2




.
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Section 2.3: Subspaces, Spans, and Linear Independence

2.3.1 (a) Not a subspace, since (for example) it does not
contain the zero vector.

(c) Not a subspace, since (for example) (π,0) is in
the set but 1

2 (π,0) = (π/2,0) is not in the set.
(e) Not a subspace, since (for example) it does not

contain the zero vector.
(g) This is a subspace since it is a line going

through the origin. A bit more formally, it
is span{(−2,1)}, and spans are always sub-
spaces.

(i) Not a subspace, since (for example) (1,0) and
(0,−1) are in the set, but (1,0) + (0,−1) =
(1,−1) is not in the set.

2.3.2 (a) All four vectors are multiples of (1,1), so their
span is a line pointing in that direction. This
line has equation y = x, or x− y = 0.

(c) We want to determine which vectors (x,y) are
in the span of these two vectors. We thus want
to determine when the following system of lin-
ear equations has a solution:
[

1 2 x
2 1 y

]

R2−2R1−−−−→
[

1 2 x
0 −3 y−2x

]

This system of equations always has a solution,
regardless of x and y, so the span of the two
original vectors is all of R2.

2.3.3 (a) All three vectors are multiples of (1,1,1), so
their span is a line pointing in that direction.

(c) We want to determine which vectors (x,y,z)
are in the span of these three vectors. We thus
want to determine when the following system
of linear equations has a solution:




1 0 2 x
2 1 5 y
1 −1 1 z




R2−2R1
R3−R1−−−−−→




1 0 2 x
0 1 1 y−2x
0 −1 −1 z− x




R3+R2−−−−→




1 0 2 x
0 1 1 y−2x
0 0 0 −3x+ y+ z


 .

This system has a solution if and only if
−3x + y + z = 0, which is the equation of a
plane, and this plane is the span of the 3 given
vectors.

2.3.4 (a) We mimic Example 2.3.3 and find the range of
this matrix is the line through the origin and
(1,1) (i.e., the line with equation y = x), while
its null space is the line through the origin and
(1,−1) (i.e., the line with equation y =−x).

(c) The range is all ofR2, while the null space is{0}.

2.3.5 (a) We mimic Example 2.3.3 and find the range of
this matrix is the line through the origin and
(1,1,2). To find its null space, we row-reduce




1 1 2 0
1 1 2 0
2 2 4 0




to



1 1 2 0
0 0 0 0
0 0 0 0


 .

This linear system has two free variables (y and
z) and one leading variable x with x+ y+2z =
0. The null space is thus a plane, and that is its
equation.

(c) The range is all of R3, while the null space is
{0}.

2.3.6 (a) Linearly independent, since this set consists of
two vectors that are not multiples of each other.

(c) Linearly independent. To see this, we place
these vectors as columns in a matrix A and
solve the linear system Ax = 0:



1 1 1 0
0 1 2 0
−1 1 −1 0


 R3+R1−−−−→




1 1 1 0
0 1 2 0
0 2 0 0


 .

We could go further and get a row echelon
form, but we can see from here that the sys-
tem has a unique solution x = 0, so the set is
linearly independent by Theorem 2.3.4.

(e) Linearly dependent (any set with more vectors
than dimensions is linearly dependent—see Ex-
ercise 2.3.26).

(g) Linearly independent. To see this, use Theo-
rem 2.3.4.

2.3.7 (a) No, does not span all of R4.
(c) Yes, spans all of R4.

2.3.8 (a) Linearly dependent, since

(4,3,2,1) = (3,1,4,2)+(2,4,1,3)− (1,2,3,4).

(c) Linearly independent.

2.3.9 (a) False. A counter-example is provided by v1 =
(1,0), v2 = (0,1), and v3 = (1,1).

(c) True. Any scalar multiple of 0 is 0, and the sum
of 0 with itself is 0.

(e) False. It could be a line (if v and w are multi-
ples of each other) or even the subspace {0} if
v = w = 0.

2.3.11 (a) We want to determine which vectors (x,y,z)
are in the span of these three vectors. We thus
want to determine when the following system
of linear equations has a solution:




0 1 k x
1 2 −1 y
−1 1 4 z




R1↔R2−−−−→




1 2 −1 y
0 1 k x
−1 1 4 z




R3+R1−−−−→




1 2 −1 y
0 1 k x
0 3 3 y+ z




R3−3R2−−−−→




1 2 −1 y
0 1 k x
0 0 3−3k y+ z−3x


 .
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If 3−3k 6= 0 (i.e., k 6= 1), then this system of
equations has a solution for all x,y,z, so the
span is (iii) all of R3 when k 6= 1. If k = 1, then
the bottom row of the matrix is all zeros, so the
only way for the system to have a solution is if
y+ z−3x = 0. This is the equation of a plane,
so (ii) the span is a plane when k = 1. (i) The
span of these three vectors is never a line.

2.3.12 (a) By Remark 2.3.1, we want to solve the linear
system [

1 2
1 5

][
c0
c1

]
=

[
1
7

]
.

The unique solution to this linear system is
(c0,c1) = (−3,2), so the interpolating polyno-
mial is p(x) = 2x−3.

(c) Again, we want to solve the linear system



1 1 1
1 2 4
1 4 16







c0
c1
c2


=




1
2
10


 .

The unique solution is (c0,c1,c2) = (2,−2,1),
so the interpolating polynomial is p(x) =
x2−2x+2.

2.3.13 Since A0 = 0 6= b, the solution set does not contain
the zero vector and is thus not a subspace.

2.3.14 It is straightforward to check that A1 = 1 so A−1
1 = 1,

and

A2 =

[
1 2
3 4

]
so A−1

2 =
1
2

[
−4 2
3 −1

]
.

To see that An is not invertible when n ≥ 3, we no-
tice that the first row of An is the vector (1,2, . . . ,n)
and its second row is the vector (n+1,n+2, . . . ,2n).
Then the linear combination

2(n+1,n+2, . . . ,2n)− (1,2, . . . ,n)

= (2n+1,2n+2, . . . ,3n)

gives its third row. The rows of An thus form a lin-
early dependent set, so Theorem 2.3.5 tells us that
An is not invertible.

2.3.15 If S is a set such that

c1v1 + · · ·+ ckvk ∈ S

for all v1, . . . ,vk ∈ S and all c1, . . . ,ck ∈ R, then
we can choose k = 2 and c1 = c2 = 1 to see that
v1 + v2 ∈ S whenever v1,v2 ∈ S. Similarly, if we
choose k = 1 then we see that c1v1 ∈ S whenever
v1 ∈ S, so both of the defining properties of sub-
spaces hold.
In the other direction, if S is a subspace of
Rn then we can repeatedly use the two defin-
ing properties of subspaces to see that c1v1 ∈ S,
c2v2 ∈ S, . . ., ckvk ∈ S and thus c1v1 + c2v2 ∈ S,
so (c1v1 + c2v2)+ c3v3 ∈ S, and so on until we get
c1v1 + · · ·+ ckvk ∈ S.

2.3.17 (a) Not in the range.

2.3.18 We could prove this fact directly by using the two
defining properties of subspaces, but perhaps a sim-
pler way is to notice that Av = v if and only if
(A− I)v = 0. In other words, the fixed-point sub-
space of A is equal to null(A− I), and we already
know that the null space of any matrix is a subspace.

2.3.20 By definition, if the set {v,w} is linearly dependent
then there exist (not both zero) constants c1,c2 ∈ R
such that c1v + c2w = 0. If c1 = 0 then c2 6= 0
then w = 0. On the other hand, if c1 6= 0 then
v = (−c2/c1)w.
In the other direction, if w = 0 then 0v + 1w = 0,
so {v,w} is linearly dependent, and if v = cw then
1v+(−c)w = 0, so {v,w} is linearly dependent.

2.3.21 Let S = {v1,v2, . . . ,vk} be the set of vectors. If S is
linearly dependent, then there exist (not all 0) scalars
c1,c2, . . . ,ck such that

c1v1 + c2v2 + · · ·+ ckvk = 0.

Suppose that ci 6= 0 (which we can do since not all
of the coefficients are 0). Then we can rearrange the
above equation to get
vi =

−c1
ci

v1 + . . .+ −ci−1
ci

vi−1 + −ci+1
ci

vi+1 + . . .+ −ck
ci

vk.

It follows that vi is a linear combination of the other
vectors in the set.
In the other direction, suppose that vi is a linear com-
bination of the other vectors in S:
vi = c1v1 + . . .+ ci−1vi−1 + ci+1vi+1 + . . .+ ckvk.

Rearranging this equation gives
c1v1 + . . .+ci−1vi−1−vi +ci+1vi+1 + . . .+ckvk = 0,

so S is linearly dependent.

2.3.23 Suppose B = {0,v1,v2, . . . ,vk}. Then
0+0v1 +0v2 + · · ·+0vk = 0.

Since not all of the coefficients in the linear combi-
nation above are 0 (notice that the first coefficient
in the linear combination is 1), this shows that B is
linearly dependent.

2.3.25 (a) Suppose B = {v1,v2, . . . ,vk} is linearly de-
pendent. Then there exist (not all 0) scalars
c1,c2, . . . ,ck such that

c1v1 + c2v2 + · · ·+ ckvk = 0.

If C = {v1,v2, . . . ,vk,w1,w2, . . . ,wm} then we
thus have

c1v1 + · · ·+ ckvk +0w1 + . . .+0wm = 0.

Since at least one of the coefficients in this lin-
ear combination is non-zero, C is thus linearly
dependent too.

(b) This statement is logically equivalent to the one
from part (a). IfC is linearly independent, then B
cannot possibly be linearly dependent, because
by (a) that would mean thatC is linearly depen-
dent. So B must be linearly independent as well.

2.3.27 (a) If x ∈ range(AB) then there exists y ∈ Rp

such that x = (AB)y = A(By). It follows that
x ∈ range(A) as well (since it can be written as
A times a vector), so range(AB)⊆ range(A).

(b) If x ∈ null(B) then Bx = 0, so ABx = A0 =
0, so x ∈ null(AB). It follows that null(B) ⊆
null(AB).



C.2 Linear Systems and Subspaces 453

(c) We choose

A =

[
0 1
0 0

]
and B =

[
0 0
1 0

]
.

Then

AB =

[
1 0
0 0

]
,

which has range(AB) = span
(
(1,0)

)
, which is

not contained within range(B) = span
(
(0,1)

)
.

Similarly, null(A) = span
(
(1,0)

)
, which is not

contained within null(AB) = span
(
(0,1)

))
.

2.3.28 Suppose d1, d2, . . ., dn ∈ R are such that

d1(c1v1)+d2(c2v2)+ · · ·+dn(cnvn) = 0.

If {v1,v2, . . . ,vn} is linearly independent then this
equation implies d1c1 = · · · = dncn = 0. Since c1,
. . ., cn are non-zero, this implies d1 = · · · = dn = 0,
so {c1v1,c2v2, . . . ,cnvn} is linearly independent
too. The reverse implication follows from writing
v j = (1/c j)(c jv j) for each 1≤ j ≤ n and then using
the fact that multiplying vectors by scalars preserves
linear independence (which we just proved).

Section 2.4: Bases and Rank

2.4.1 (a) Not a basis, since B consists of 3 vectors in a
2-dimensional space (R2).

(c) Not a basis, since B contains 2 vectors but S is
3-dimensional.

(e) Is a basis. Since B contains 2 vectors and S is
2-dimensional, we just need to check that B is
linearly independent:



1 2 0
0 1 0
1 3 0


 R3−R1−−−−→




1 2 0
0 1 0
0 1 0




R3−R2−−−−→




1 2 0
0 1 0
0 0 0


 .

This linear system thus has a unique solution
(the zero vector), so B is linearly independent
and thus a basis.

2.4.2 (a) Sincea line is1-dimensional,we justneed tofind
any non-zero vector on the line. (x,y) = (1,3)
works, so B = {(1,3)} is a basis of this subspace.

(c) A plane is 2-dimensional, so we need 2 lin-
early independent basis vectors. We thus need
any two non-zero vectors in this plane that are
not multiples of each other. By picking val-
ues of x,y and solving for z, we can find many
such vectors, such as (1,1,−3) and (1,0,−2).
Since these are not multiples of each other,
B = {(1,1,−3),(1,0,−2)} is a basis of this
plane.

(e) To find what direction this line points in, we
solve the linear system defined by the two given
planes:

[
1 1 −1 0
2 −1 2 0

]

R2−2R1−−−−→
[

1 1 −1 0
0 −3 4 0

]

It follows that z is a free variable. Arbitrarily
choosing z = 3 and solving by back substitution
gives y = 4 and x =−1. The line points thus in
the direction of the vector (x,y,z) = (−1,4,3),
so B = {(−1,4,3)} is a basis of this line.

2.4.3 (a) {(1,2,3,4),(3,5,7,9)}
(c) {(1,1,4,5,1),(2,−7,4,2,2),(5,2,4,5,3)}

2.4.4 There are many possible solutions to this exercise.

(a) {(2,3,1,1),(3,3,2,3),(2,1,2,3),(1,0,0,0)}

(c) {(2,4,3,4),(3,2,−1,−1),(1,0,0,0),(0,1,0,0)}

2.4.5 (a) This matrix is already in RREF (and so is
its transpose), so we can read bases for the
four fundamental subspaces directly from the
columns of A.
Basis of range(A): {(1,0),(0,1)}
Basis of null(A): {} (null(A) = {0})
Basis of range(AT ): {(1,0),(0,1)}
Basis of null(AT ): {} (null(AT ) = {0})

(c) This matrix will be in RREF after swapping its
first two rows (and the RREF of AT is similarly
simple).
Basis of range(A): {(0,1,0)}
Basis of null(A): {(1,0,0),(0,−2,1)}
Basis of range(AT ): {(0,1,2)}
Basis of null(AT ): {(1,0,0),(0,0,1)}

(e) Basis of range(A): {(1,0,0),(0,2,1)}
Basis of null(A): {} (null(A) = {0})
Basis of range(AT ): {(1,0),(0,1)}
Basis of null(AT ): {(0,−1,2)}

(g) This matrix is already in RREF, and we can
directly see the first 3 of these bases.
Basis of range(A): {(1,0,0),(0,1,0),(0,0,1)}
Basis of null(A): {(−2,1,0,0,0),(−3,0,1,1,0)}
Basis of range(AT ): {(1,2,0,3,0),(0,0,1,−1,0),
(0,0,0,0,1)}
Basis of null(AT ): {} (null(AT ) = {0})

(i) The RREF of this matrix is



1 0 −1 −3 −3/2
0 1 0 −1/2 −1/4
0 0 0 0 0


 .

Basis of range(A): {(0,−1,−2),(−4,2,0)}
Basis of null(A): {(1,0,1,0,0),(3,1/2,0,1,0),
(3/2,1/4,0,0,1)}
Basis of range(AT ): {(1,0,−1,−3,−3/2),
(0,1,0,−1/2,−1/4)}
Basis of null(AT ): {(−1,−2,1)}

2.4.6 To find the rank of these matrices, we compute a
row echelon form of them and count the number of
non-zero rows.

(a) rank 1, nullity 1
(e) rank 3, nullity 0

(c) rank 2, nullity 0
(g) rank 2, nullity 0
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2.4.7 (a) If we call this matrix A then rank(A) = 4,
nullity(A) = 4, and we have:
Basis of range(A): {(0,−6,4,−1),(2,−1,−2,0),
(−1,1,1,0),(−1,6,−2,1)} (or the standard
basis of R4)
Basis of null(A): {(2,−1,0,0,0,0,0,0),
(1,0,1,−1,0,0,0,0),(−1,0,0,0,2,−1,0,0),
(1,0,2,0,1,0,−1,0)}
Basis of range(AT ): {(1,2,0,1,0,−1,1,0),
(0,0,1,1,0,0,2,0),(0,0,0,0,1,2,1,0),
(0,0,0,0,0,0,0,1)}
Basis of null(AT ): {} (null(AT ) = {0})

2.4.8 (a) True. Every basis of a k-dimensional subspace
must consist of k vectors.

(c) False. The vectors v1,v2, . . . ,vk might be lin-
early dependent.

(e) False. A basis is made up of the non-zero rows
of the row echelon form itself—not the corre-
sponding rows of A. For example, the reduced
row echelon form of

A =




1 1
2 2
1 2


 is




1 0
0 1
0 0


 .

It follows that range(AT ) is 2-dimensional,
with basis {(1,0),(0,1)}. However, if we took
the first two rows of A itself, we would get the
set {(1,1),(2,2)}, which is not even linearly
independent (indeed, its span is 1-dimensional
and thus cannot be range(AT )).

(g) True. The identity matrix is its own row ech-
elon form, and it has n non-zero rows, so its
rank is n.

(i) False. All that we can say is that rank(A+B)≤
rank(A)+ rank(B), thanks to Theorem 2.4.11.
For a specific counter-example, notice that if
A = B = In then rank(A+B) = rank(2In) = n,
but rank(A)+ rank(B) = n+n = 2n.

(k) False. All that we can say is that rank(AB) ≤
min

{
rank(A), rank(B)

}
, thanks to Theo-

rem 2.4.11. Again, A = B = In serves as a
counter-example.

(m) True. This is the statement of Theo-
rem 2.4.8(c).

(o) False. These quantities are the same as each
other if m = n, but otherwise they are neces-
sarily different, since the rank-nullity theorem
(Theorem 2.4.10) tells us that

nullity(A) = n− rank(A) and

nullity(AT ) = m− rank(AT ) = m− rank(A).

2.4.10 Since every column of this matrix is the same, its
range (i.e., span of its columns) is 1-dimensional, so
its rank is 1.

2.4.12 It is straightforward to check that rank(A2) = 2, so
we assume from here on that n ≥ 3. Well, the first
row of An is the vector (1,2, . . . ,n) and its second
row is the vector (n+1,n+2, . . . ,2n). Then each of
its remaining rows can be written as a linear combi-
nation of those two rows. In particular, if k ≥ 3 then
the k-th row can be written as

(k−1)(n+1,n+2, . . . ,2n)− (k−2)(1,2, . . . ,n)

= ((k−1)n+1,(k−1)n+2, . . . ,kn).

The span of the rows of An thus equals the span of its
first two rows (and those two rows are not multiples
of each other), so An has rank 2.

2.4.13 (a) By performing the row operation R2−2R1, we
get to the following row echelon form of this
matrix: [

1 x
0 4−2x

]
.

The rank of this matrix thus equals 1 whenever
the bottom row of this REF is all-zero (i.e.,
when x = 2) and the rank equals 2 otherwise
(i.e., when x 6= 2).

(c) This matrix has row echelon form



1 2 x
0 −1− x x+1

0 0 x2−1


 .

If x = −1 then the bottom two rows are both
zero, so the rank is 1. If x = 1 then the bottom
row is zero but the other two rows are not, so
the rank is 2. If x 6=±1 then the rank is 3.

2.4.14 (a) If A is diagonal then simply swapping some of
its rows (so that its non-zero entries are in the
topmost rows) produces one of its row echelon
forms. One basis of its range is thus simply the
set of its columns that contain a non-zero diago-
nal entry. Since its rank is the dimension of the
range, which is the number of elements in a ba-
sis of the range, we conclude that the rank of
A equals the number of non-zero entries on its
diagonal.

(b) The simplest example is

A =

[
0 1
0 0

]
,

which has 0 non-zero diagonal entries but rank 1.

2.4.16 (a) If x = 1 then this is the matrix Jn from Exer-
cise 2.4.10, which we already showed has rank 1.

(b) This is somewhat tricky to show directly (e.g.,
by computing a row echelon form of A), so we
just recall from Exercise 2.2.7 that this matrix
is invertible whenever x 6= 1, so it has rank n.

2.4.17 (a) Theorem 2.4.11 tells us that rank(AB) ≤
rank(B), so we just need to prove the oppo-
site inequality. Since A is invertible, we know
that A−1(AB) = B, so using Theorem 2.4.11
again tells us that rank(B) = rank(A−1(AB))≤
rank(AB), as desired.

(b) This is proved almost identically to part (a),
but instead of multiplying on the left by A−1,
we multiply on the right by B−1.

2.4.19 Recall from Theorem 2.3.5 that A is invertible if and
only if its columns form a linearly independent set.
Since there are n columns, Theorem 2.4.4(b) tells
us that these columns being linearly independent is
equivalent to them forming a basis of Rn. It follows
that A is invertible if and only if its columns form a
basis of Rn (i.e., properties (a) and (d) of the theo-
rem are equivalent). The equivalence of (a) and (e) is
almost identical.
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The equivalence of (b) and (d) follows immediately
from the fact that range(A) equals the span of the
columns of A, and the equivalence of (a) and (c)
follows from the equivalence of conditions (a) and
(d) in Theorem 2.2.4.

2.4.22 If {v1,v2, . . . ,vk} is a linearly independent set, then
we are done: {v1,v2, . . . ,vk} is a basis of S since it
also spans S . If it is a linearly dependent set, then one
of its members (let’s call it vi) is a linear combination
of the other members and thus (by Exercise 2.3.24)
span(v1, . . . ,vk) = span(v1, . . . ,vi−1,vi+1, . . . ,vk).

We then repeat: if {v1, . . . ,vi−1,vi+1, . . . ,vk} is lin-
early independent then it must be a basis, whereas
if it is linearly dependent we can remove another
vector without changing the span. By repeatedly
removing vectors we must eventually reach a linearly
independent set (since any set containing exactly one
non-zero vector is linearly independent) and thus a
basis.

2.4.23 (a) To show linear dependence, we find a non-zero
linear combination of these vectors that adds to
0. We could do this by solving a linear system,
but in this case it is easy enough to “eyeball” a
solution:
2(1,−1,2)+0(−1,2,3)−(2,−2,4)= (0,0,0).
This set of vectors is thus linearly dependent.
Since they are not all multiples of each other,
their span must be 2-dimensional, so we know
from Exercise 2.4.22 that there is a 2-vector
subset of B that is a basis of S.

(b) If we remove (−1,2,3) from B, we are left
with the set {(1,−1,2),(2,−2,4)}, and the
span of this set is just the line (not a plane!)
through the origin and the point (1,−1,2).
Phrased another way, (−1,2,3) is not a linear
combination of (1,−1,2) and (2,−2,4), so we
must instead remove either of those two other
vectors.

2.4.24 We can use Theorem 2.4.3(b) to remove 0 or more
vectors from B to create a basis of S. However, we
know that all bases of S contain dim(S) vectors,
and B already contains exactly this many vectors.
We thus conclude that the only possibility is that B
becomes a basis when we remove 0 vectors from
it—i.e., B itself is already a basis of S.

2.4.26 (a) If v ∈ range(A) then we can write it as v = Ax
for some x ∈ Rn. Then

v ·w = (Ax) ·w = x · (AT w) = x ·0 = 0.

(b) If w ∈ range(AT ) then we can write it as w =
AT x for some x ∈ Rm. Then

v ·w = v · (AT x) = (Av) ·x = 0 ·x = 0.

2.4.27 (a) We observe that if A and B have the same RREF
R then the augmented matrices [ A | 0 ] and
[ B | 0 ] have the same RREF [ R | 0 ], so the lin-
ear systems Ax = 0 and Bx = 0 have the same
solution set (in particular, the same solution set
as the equation Rx = 0), so null(A) = null(B).

For the converse, we can proceed in much the
same way as the proof of Theorem B.2.1. If A
and B have different RREFs R and S, respec-
tively, then they have a first column where they
differ. Then consider two cases: that column is
leading in one of the RREFs and not the other,
or that column is not leading in either RREF.
In either case, we can construct a vector x such
that Rx = 0 and Sx 6= 0, so null(A) 6= null(B).

(b) Recall that one way to construct a basis of
range(AT ) is to simply put the non-zero rows
of the reduced row echelon form of A into a
set. If A and B have the same RREF then these
bases are the same, so range(AT ) = range(BT ).
For the converse, we argue much like we did
in part (a). If A and B have different RREFs
R and S, respectively, then there is a first (i.e.,
topmost) row where they differ. Then consider
two cases: the leading entries in that row of R
and S are or are not in the same position. In
either case, we can show that row in R is not a
linear combination of the rows of S (and that
row of S is not a linear combination of the rows
of R). It follows that range(AT ) 6= range(BT ).

2.4.29 (a) Recall that there is a subset of the columns of
A that form a basis of range(A). This set will
be linearly independent and consist of rank(A)
vectors. On the other hand, there is no linearly
independent set of columns of A with more
than this many vectors, since the range of A
contains the span of these vectors, and would
thus be larger than rank(A)-dimensional, which
contradicts the definition of rank(A) as the di-
mension of range(A).

(b) This follows from part (a) and the fact that
rank(A) = rank(AT ).

2.4.30 For the “if” direction, notice that if we think of v and
wT as m× 1 and 1× n matrices, respectively, then
rank(v) = rank(wT ) = 1. Then Theorem 2.4.11(b)
tells us that rank(A) = rank(vwT )≤ 1. Since v and
w are non-zero, A 6= O so rank(A) 6= 0. It follows that
rank(A) = 1.
To prove the opposite direction, we note that
rank(A) = 1 implies that range(A) has dimension
1. In other words, the columns of A are all multiples
of each other. In particular, if the first column of A
is v then there are constants w2,w3, . . . ,wn such that
the 2nd column is w2v, the 3rd column is w3v, and
so on. In other words,

A =
[

v | w2v | · · · | wnv
]
.

If wT = (1,w2,w3, . . . ,wn) then the above expres-
sion for A is equivalent to A = vwT , so we are done.
Note that if this first column of A is 0 then this
argument does not quite work, but it can be patched
up by letting v be the first non-zero column of A.
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Section 2.5: Summary and Review

2.5.1 (a) Not row equivalent, since they have RREFs
[

1 1
0 0

]
and

[
1 0
0 1

]
,

respectively.
(c) Row equivalent, since they both have RREF




1 0 1/3
0 1 1/3
0 0 0


 .

(b) Row equivalent, since they both have RREF



1 0 0
0 1 0
0 0 1
0 0 0


 .

2.5.2 (a) True. This is the statement of Theorem B.2.1.
(c) False. Row-reducing [ A | b ] produces a matrix

of the form [ R | c ], where c in general may be
different from b. It follows that Ax = b has the
same solution set as Rx = c for some vector c,
but c 6= b in general.

(e) True. This is exactly the RREF decomposition
(Theorem 2.5.3).

(g) False. If range(A) = {0} then A = O, which is
not invertible (in fact, the zero matrix is, in a
sense, the “least invertible” matrix that exists).

(i) True. If A and B are row equivalent then they
have the same RREF. Since the rank of a ma-
trix equals the number of non-zero rows in its
RREF, they must have the same rank too.

2.5.3 The “only if” implication is trivial (if A = B then
Av j = Bv j for all 1≤ j ≤ n). For the “if” direction,
suppose v ∈ Rn and write v as a linear combination
of the basis vectors:

v = c1v1 + c2v2 + · · ·+ cnvn.

Then the fact that Av j = Bv j for all 1 ≤ j ≤ n tells
us that

Av = A(c1v1 + c2v2 + · · ·+ cnvn)

= c1Av1 + c2Av2 + · · ·+ cnAvn

= c1Bv1 + c2Bv2 + · · ·+ cnBvn

= B(c1v1 + c2v2 + · · ·+ cnvn) = Bv.

It then follows from Exercise 1.3.18(d) that A = B.

2.5.5 As noted in the hint, we just have to explain why P
can be chosen to be invertible. The reason for this is
that if we row-reduce

[ A | I ] to [ R | E ]

via a sequence of row operations encoded by elemen-
tary matrices E1, E2, . . ., Ek then

[ R | E ] = Ek · · ·E2E1[ A | I ]

= [ Ek · · ·E2E1A | Ek · · ·E2E1 ].

In particular, R = Ek · · ·E2E1A, so A =
E−1

1 E−1
2 · · ·E−1

k R (since elementary matrices are
invertible). We can thus choose P = E−1

1 E−1
2 · · ·E−1

k ,
which will also be invertible, since the product of
invertible matrices is invertible.

2.5.6 For the “only if” direction, recall that if A and B
are row equivalent then they have the same RREF
R. By Theorem 2.5.3, we know that there exist in-
vertible matrices P1,P2 ∈Mm such that A = P1R
and B = P2R. Then multiplying on the left by P1P−1

2
shows that

P1P−1
2 B = (P1P−1

2 )P2R = P1R = A,

so we can choose P = P1P−1
2 .

For the “if” direction, we note that if A = PB and
P is invertible, then we can write P as a product of
elementary matrices: P = E1E2 · · ·Ek . It follows that
A = E1E2 · · ·EkB, so A can be reached from B via
the sequence of row operations corresponding to
these elementary matrices. In other words, A and B
are row equivalent.

Section 2.A: Extra Topic: Linear Algebra Over Finite Fields

2.A.1 (a) (x,y,z) = (0,1,0).
(c) (w,x,y,z) = (0,1,0,0) and (w,x,y,z) =

(1,0,1,0).
(e) (v,w,x,y,z) = (1,1,0,0,0).

2.A.2 (a) (x,y,z) = (1,0,1).

2.A.3 (a) There are no solutions.

2.A.4 (a) (c)
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2.A.5 (a) (c)

2.A.6 (a) False. They must have 0 solutions or a num-
ber of solutions that is a non-negative integer
power of 2.

(c) False. We showed right after Example 2.A.3
that only 1 out of every 16 starting configura-
tions has a solution on a 4×4 grid.

(e) True. This follows from the fact that, for each i
and j, button i is a neighbor of button j if and
only if button j is a neighbor of button i.

2.A.7 Since we only care about the evenness/oddness of
these equations, they are really mod-2 equations that
we can solve by representing it as a linear system
over Z2. The augmented system looks like




1 1 1 1 1 0
0 1 0 1 0 1
1 1 0 1 1 1
0 1 1 0 1 0
1 1 1 1 0 0


 .

The unique solution to this linear system is
(v,w,x,y,z) = (0,1,1,0,0), though the original
even/odd linear system can differ from this one
by any even number in any entry (for example,
(v,w,x,y,z) = (4,−1,3,2,8) is another solution).

2.A.9 (a) If we order the buttons in standard reading
order as usual then the linear system that we
need to solve is Ax = ve−vs, where ve−vs =
(1,1,1,1,1,1,1,1,1) and

A =




1 1 1 0 0 0 0 1 0
1 1 1 0 0 1 0 0 1
1 1 1 0 1 0 0 0 0
0 0 0 1 1 0 0 1 0
0 0 1 1 1 1 1 0 0
0 1 0 0 1 1 0 0 0
0 0 0 0 1 0 1 0 0
1 0 0 1 0 0 0 1 1
0 1 0 0 0 0 0 1 1




.

(b) The unique solution of the linear system from
part (a) is x = (1,0,0,1,0,1,1,0,1), which

means we win the game by pressing buttons 1,
4, 6, 7, and 9:

2.A.10 (a) First notice that B must have an even number
of ones in it since its lower triangular portion
is identical to its upper triangular portion. On
the other hand, if the j-th row has m j ones in
it, and each m j is odd, then in total there are

m1 +m2 + · · ·+mk

ones in B. This sum is even if and only if k is
even.

(b) Just apply part (a) to the matrix B− I.

Section 2.B: Extra Topic: Linear Programming

2.B.1 (a) The optimal value is 3, which is attained at
(x1,x2) = (3,0).

(c) The optimal value is 4, which is attained at
(x1,x2) = (1,1).

2.B.2 (a) The optimal value is 85/8, which is attained at
(x1,x2) = (21,1)/8.

(c) The optimal value is 37/18, which is attained
at (x1,x2,x3) = (3,11,23)/18.

(e) The optimal value is 31/30, which is attained
at (x1,x2,x3,x4) = (6,2,0,23)/30.

2.B.3 (a) The optimal value is 1/2, which is attained at
(x1,x2) = (3,1)/2.

(c) The optimal value is 0, which is attained at
(x1,x2,x3) = (1,0,1).

(e) The optimal value is 7/4, which is attained at
(x1,x2,x3,x4) = (8,2,0,1)/8.

2.B.4 (a) minimize: 2y1 +3y2
subject to: 2y1 + y2 ≥ 0

−2y1 +3y2 ≥ 1
− y1, y2 ≥ 0

(c) maximize: 3y1 + y2 +3y3
subject to: 2y2 + y3 ≥ 1

y1 +2y2 +2y3 ≥ 2
− y1− y2 +2y3 ≥−1
− y1, y3 ≥ 0

(e) minimize: 3y1 + y2 +3y3
subject to: 2y1 + 3y3 ≥ 1

4y1 +3y2− y3 = 2
− y1 + y2 +2y3 ≥ 1

2y2 +2y3 = 2
y1, y3 ≥ 0

2.B.5 (a) False. For example, if x = (1,0), b = (2,2),
and

A =

[
1 2
2 3

]
,
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then Ax≤ b but

A−1b =

[
−3 2
2 −1

][
2
2

]
=

[
−2
2

]
6≥
[

1
0

]
= x.

(c) True. If x≥ y then x j ≥ y j for each 1≤ j ≤ n,
so c jx j ≥ c jy j for each j, so

c ·x =
n

∑
j=1

c jx j ≥
n

∑
j=1

c jy j = c ·y.

(e) False. See the margin note beside the linear
program (2.B.4).

2.B.6 The optimal value of this linear program is 1.4,
which is attained at (x1,x2) = (0.6,0.8). To see
that its feasible region contains no points with inte-
ger coordinates, we note that adding −1 times the
first constraint to the second constraint shows that
x2 ≥ 1/2, whereas adding the first constraint to −2
times the third constraint shows that x2 ≤ 4/5. In
particular, this means that x2 cannot be an integer.
Alternatively, x1 can similarly be bounded between
3/7 and 3/4, or the feasible region can just be plot-
ted.

2.B.8 (a) Adding the two constraints shows that 2x2 ≤ c,
so x2 ≤ c/2, so certainly the optimal value of
the linear program cannot exceed c/2. On the
other hand, (1/2,c/2) is a feasible point of
the linear program attaining this value in the
objective function.

(b) The first constraint tells us that x1 ≤ 1− x2/c
and the second constraint tells us that x1 ≥
x2/c. Since x2 ≥ 0, it follows that 0≤ x1 ≤ x2,
and the only way that either equality can hold
is if x2 = 0, so the optimal value of the integer
linear program cannot exceed 0. On the other
hand, (0,0) is a feasible point of this integer
linear program attaining the value of 0 in the
objective function.

2.B.9 The dual of a linear program in standard form looks
like

minimize: b ·y
subject to: AT y≥ c

y≥ 0

which we can write in the form

−maximize: (−b) ·y
subject to: (−AT )y≤−c

y≥ 0

Then the dual of this linear program is

−minimize: (−c) ·x
subject to: (−AT )T x≥−b

x≥ 0

which can be written in the form

maximize: c ·x
subject to: Ax≤ b

x≥ 0

which is exactly the original linear program.

2.B.12 Consider the linear program

maximize: 0
subject to: (A− I)x = 0

x≥ 0

and the associated dual problem

minimize: 0
subject to: (AT − I)y = 0

y≥ 0

Notice that the rows of AT sum to 1 so AT 1 = 1
(where 1 = (1,1, . . . ,1)). It follows that the latter
problem is feasible, since we can choose y = 1 in it.
By strong duality, it follows that the original primal
problem is feasible as well, so there exists a vector
x ∈ Rn such that Ax = x and x≥ 0.

Section 2.C: Extra Topic: More About the Rank

2.C.1 In this question, we compute a rank decomposition
by mimicking the method of Example 2.C.1. How-
ever, keep in mind that rank decompositions are very
non-unique, so your answers might look different
from the answers provided here.

(a)

[
1
−1

][
1 −1

]

(c)




2 4 0
1 −2 0
2 0 −1







1 0 0
0 1 0
0 0 1




(e)

[
3
1

][
2 1

]

(g)




2 6
5 4
3 −2



[

1 0 2 5/11
0 1 −1/2 −7/22

]

2.C.2 (a) The rank is 3, and

C =




2 −1 0
1 0 0
−1 0 2
2 0 1


 and

R =




2 2 1 2 1 1
0 −1 2 0 1 −1
−1 1 2 0 −1 1


 .

2.C.3 (a) Rank 1, invertible 1×1 submatrix is any of the
matrix’s individual entries.
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(c) Rank 2, invertible 2×2 submatrix
[

1 2
1 3

]
.

(e) Rank 2, invertible 2×2 submatrix
[

1 2
4 5

]
.

2.C.4 (a) The rank is 3 and its top-left 3×3 submatrix
works: 


4 5 0
2 2 1
−4 0 3




is invertible.

2.C.5 (a) True. This follows from the rank-one sum de-
composition (Theorem 2.C.2).

(c) False. The rank of a matrix is determined by its
largest invertible submatrix, not its largest non-
invertible submatrix. For example, the 4× 4
identity matrix has rank 4, but has a non-
invertible 3× 3 submatrix (its top-right 3× 3
submatrix, for example).

(e) False. The following matrix has rank 2, for
example: 


1 1 1
1 0 0
1 0 0


 .

2.C.6 It is clear that C̃ ∈Mm,r and R̃ ∈Mr,n, so we just
need to show that A = C̃R̃. To see this, we just com-
pute C̃R̃ = CP−1PR = CR = A.

2.C.8 (a) Recall the RREF decomposition (Theo-
rem 2.5.3), which says that we can write A =
PR, where P∈Mm is invertible and R∈Mm,n
is the RREF of A. We thus just have to show
that we can write R in the form

R =

[
Irank(A) O

O O

]
Q,

where Q∈Mn is invertible. To this end, notice
that the non-zero rows of R form a linearly in-
dependent set (they form a basis of range(AT ),
after all), so by Theorem 2.4.3(a) we can ex-
tend them to a basis of Rn. We can choose Q
to be the matrix whose first rank(A) rows are
the non-zero rows of R, and whose remaining
rows are the vectors that we added to create a
basis (thus making Q invertible).

(b) If A = PBQ for some invertible P and Q, then
the fact that rank(A) = rank(B) follows imme-
diately from Exercise 2.4.17.
On the other hand, if rank(A) = rank(B) (and
we denote this common rank by r) then we can
find invertible matrices P1, P2, Q1, and Q2 such
that

A = P1

[
Ir O
O O

]
Q1 and B = P2

[
Ir O
O O

]
Q2.

Multiplying on the left by P−1
2 and on the right

by Q−1
2 shows that

A = P1P−1
2 BQ−1

2 Q1,

so we can choose P = P1P−1
2 and Q = Q−1

2 Q1
to get A = PBQ.

Section 2.D: Extra Topic: The LU Decomposition

2.D.1 (a) L =

[
1 0
2 1

]
, U =

[
1 2
0 1

]
.

(c) L =

[
1 0
−1 1

]
, U =

[
3 1 2
0 −2 1

]
.

(e) L =




1 0 0
2 1 0
1 3 1


, U =




1 2
0 −1
0 0


.

(g) L =




1 0 0
3 1 0
−2 −1 1


, U =




1 −4 5
0 3 −7
0 0 1


.

2.D.2 (a) P =

[
0 1
1 0

]
, L =

[
1 0
0 1

]
, U =

[
1 3
0 2

]
.

(c) P =




1 0 0
0 0 1
0 1 0


, L =




1 0 0
1 1 0
1 0 1


, U =




1 1 1
0 1 2
0 0 1


.

2.D.3 (a) (x,y) = (5,−3).

(c) (x,y,z) = (−3,6,−2).

2.D.4 (a) False. See Exercise 2.D.13 for an explicit
counter-example. Also note that this answer
being “false” is the entire reason that we intro-
duced the PLU decomposition.

(c) True. This is simply the definition of a permu-
tation matrix.

(e) True. This follows immediately from the defi-
nition of row echelon form.

2.D.5 Let B be the top-left r× r submatrix of A. If the
top-left k× k submatrices of A are invertible for all
1≤ k ≤ r then the same is true of B, which is square,
so Theorem 2.D.5 applies to it and shows that B has
a unit LU decomposition B = LU .
Suppose now that A ∈Mm,n with m < n (i.e., A is
wider than it is tall). If we write A =

[
B |C

]
and let

Ũ =
[

U | L−1C
]

(note that L is invertible since its
diagonal entries equal 1) then block matrix multipli-
cation shows that

LŨ =
[

LU | LL−1C
]
=
[

B |C
]
= A,
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so A has a unit LU decomposition too. The case
when m > n is similar.

2.D.6 (a) Suppose that A had two unit LU decompo-
sitions A = L1U1 = L2U2. Since A is invert-
ible, we know from Exercise 2.4.25 that each
of L1, L2, U1, and U2 must be invertible as
well, so doing some matrix algebra shows that
L−1

1 L2 = U1U−1
2 .

Since the inverse of an upper (lower) trian-
gular matrix is also upper (lower) triangular,
and the product of two upper (lower) trian-
gular matrices is again upper (lower) triangu-
lar, it follows that L−1

1 L2 and U1U−1
2 must in

fact be diagonal. However, since the diagonal
entries of L−1

1 and L2 all equal 1, it follows
that L−1

1 L2 = I, so L1 = L2. Multiplying the
equation L1U1 = L2U2 on the left by L−1

1 then
shows that U1 = U2 as well, so these two unit
LU decompositions are in fact the same.

(b) Here are two different unit LU decompositions
A = L1U1 = L2U2:

L1 =

[
1 0
0 1

]
, U1 =

[
0 0
0 1

]
, and

L1 =

[
1 0
1 1

]
, U1 =

[
0 0
0 1

]
.

2.D.7 If A has a unit LU decomposition A = LU then block
matrix multiplication shows that the top-left k× k
submatrix of A has the form L̃Ũ , where L̃ and Ũ are
the top-left k× k submatrices of L and U , respec-
tively.
Since A is invertible, so are L and U (by Exer-
cise 2.4.25), so their diagonal entries are non-zero,
so the diagonal entries of L̃ and Ũ are also non-zero.
It follows that L̃ and Ũ are invertible, so L̃Ũ is also
invertible (i.e., the top-left k× k submatrix of A is
invertible).

2.D.8 (a) Has a unit LU decomposition since its top-left
square submatrices are

[1] and

[
1 3
3 2

]
,

both of which are invertible.
(c) Has a unit LU decomposition since its top-left

square submatrices are

[3],

[
3 1
−1 1

]
, and




3 1 −1
−1 1 3
2 −2 1


 ,

all of which are invertible.

2.D.9 (a) We have A = LU , where

L =




1 0 0 0 0 0
−1
2 1 0 0 0 0

0 −2
5 1 0 0 0

0 0 −5
18 1 0 0

0 0 0 −18
67 1 0

0 2
5

1
9

2
67

−19
37 1




, and

U =




2 −1 0 0 0 0

0 5
2 −1 0 1 0

0 0 18
5 −1 2

5 0

0 0 0 67
18

−8
9 0

0 0 0 0 185
67 −1

0 0 0 0 0 55
37




.

(b)
1

275




171 67 16 −3 −28 −14
67 134 32 −6 −56 −28
17 34 82 19 −6 −3
1 2 21 82 32 16
−13 −26 2 34 134 67
−40 −80 −15 20 95 185




2.D.10 If A = LDU then setting Ũ = DU gives A = LŨ as a
unit LU decomposition of A, since Ũ is also upper
triangular.
In the opposite direction, if A = LU is a unit LU
decomposition of A then we can let D be the ma-
trix with the same diagonal entries as U and set
Ũ = D−1U to get A = LDŨ as an LDU decomposi-
tion of A (since LDŨ = LDD−1U = LU = A). This
argument relies on D being invertible (i.e., U having
non-zero diagonal entries), which is guaranteed by A
being invertible.

2.D.11 (a) L =

[
1 0
2 1

]
, D =

[
1 0
0 1

]
, U =

[
1 2
0 1

]
.

(c) L =




1 0 0
−1 1 0
3 1 1


, D =




1 0 0
0 −1 0
0 0 −2


,

U =




1 2 −1
0 1 3
0 0 1


.

2.D.13 (a) This matrix is already lower triangular and is
thus essentially its own LU decomposition:

A =

[
0 0
1 1

][
1 0
0 1

]
.

(b) The only elementary row operations that could
be applied to A to put a leading entry in its
top-left corner are R1 ↔ R2 or R1 + cR2, so
Corollary 2.D.3 tells us that it does not have
a unit LU decomposition. Alternatively, sup-
pose for a moment that A did have a unit LU
decomposition:
[

0 0
1 1

]
=

[
1 0

`2,1 1

][
u1,1 u1,2

0 u2,2

]

=

[
u1,1 u1,2

`2,1u1,1 `2,1u1,2 +u2,2

]
.
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Comparing the (1,1)-entries of these matrices
shows that u1,1 = 0. However, this then im-
plies that the (2,1)-entry also equals 0, which
contradicts the fact that the (2,1)-entry of A
is 1. It follows that A does not have a unit LU
decomposition.

(c) It is straightforward to eyeball the PLU decom-
position A = PLU with

P =

[
0 1
1 0

]
, L =

[
1 0
0 1

]
, U =

[
1 1
0 0

]
.

2.D.14 (a) We get one unit PLU decomposition if P = I:

A =

[
1 0
2 1

][
2 −1
0 1

]
,

and we can get another one by choosing P to
be the other 2×2 permutation matrix:

A =

[
0 1
1 0

][
1 0

1/2 1

][
4 −1
0 −1/2

]
.

(b) If A ∈Mn then we can usually find a different
unit PLU decomposition for each of the n! dif-
ferent permutation matrices P (i.e., no matter
which permutation matrix P we choose, we can
usually find an L and U such that A = PLU).
We thus expect to be able to find n! different
unit PLU decompositions for most n×n matri-
ces. In particular, we expect to be able to find
6 unit PLU decompositions of 3×3 matrices
and 24 such decompositions of 4×4 matrices.

2.D.15 Recall that if the j-th column of P is p j then the
(i, j)-entry of PT P is

[
PT P

]
i, j = pi ·p j.

Since each column of P contains exactly one 1 and all
other entries equal to 0, we conclude that pi ·p j = 1
if i = j, so the diagonal entries of PT P equal 1. On
the other hand, if i 6= j then the columns pi and p j
have their 1s in different positions (otherwise there
would be a row of P with two 1s in it), so pi ·p j = 0
if i 6= j. In other words, the off-diagonal entries of
PT P equal 0. It follows that PT P = I, so PT = P−1.

Section 3.1: Coordinate Systems

3.1.1 (a) [v]B = (2,1/2), since 2(3,0)+ 1
2 (0,2) = (6,1).

This linear combination can be found by
“eyeballing” or by solving the linear system
(6,1) = c1(3,0)+ c2(0,2).

(c) [v]B = (1/2,3/2) since (2,3,1) =
1
2 (1,0,−1)+ 3

2 (1,2,1).

3.1.2 (a) B = {(2,3),(2,−1)} works.

3.1.4 (a)
[

1 3
2 4

]
(c)

[
11/10 5/2
3/10 1/2

]

3.1.5 (a)
[

2 0
−5 2

]
(c)

[
2 0
0 −3

]

3.1.6 (a)



10 −5 0
5 −6 −4
−11 5 −1




3.1.7 (a) rank(A) = 1 and rank(B) = 2, so they are
not similar (the trace cannot be used, since
tr(A) = tr(B) = 2).

(c) tr(A) = 6 and tr(B) = 3, so they are not similar
(but their ranks both equal 2).

3.1.8 (a) rank(A) = rank(B) = 2 and tr(A) = tr(B) =
3, so we need to work harder to determine
whether or not A and B are similar. Recall that
A and B are similar if there exists an invertible
matrix P ∈M2 such that

A = PBP−1, and AP = PB.

Multiplying these matrices out gives
[

p1,1 p1,2

2p2,1 2p2,2

]
=

[
3p1,1 + p1,2 −2p1,1

3p2,1 + p2,2 −2p2,1

]
.

This is a linear system with 4 variables, and
its solutions have p1,2 and p2,2 free, with
p1,1 =−p1,2/2 and p2,1 =−p2,2. We just need
to find any invertible matrix of this form, and
one possibility is

P =

[
1 −2
−1 1

]
.

Then A = PBP−1, so A and B are similar.

3.1.9 (a) True. Recall that if B = {v1,v2, . . . ,vk} then
[v j]B = e j for each 1≤ j≤ k. The j-th column
of PB←B is thus e j , so PB←B = I.

(c) True. This follows from the fact that PIP−1 =
PP−1 = I for all invertible matrices P.

(e) False. A counter-example is given by

A =

[
1 0
0 1

]
, B =

[
1 1
0 1

]
,

both of which have rank and trace equal to 2.
However, A and B are not similar: A = I, so
PAP−1 = A for all invertible P (i.e., A is only
similar to itself and thus cannot be similar to B).

(g) False. For example, if A = B = I ∈M2 then
tr(AB) = 2 but tr(A)tr(B) = 4.
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3.1.10 If every vector in S can be written as a linear com-
bination of the members of B, then B spans S by
definition. We thus only need to show linear indepen-
dence of B. To this end, suppose that v ∈ S can be
written as a linear combination of the members of
B = {v1,v2, . . . ,vk} in exactly one way:

v = c1v1 + c2v2 + · · ·+ ckvk.

If B were linearly dependent, then there must be a
non-zero linear combination of the form

0 = d1v1 +d2v2 + · · ·+dkvk.

By adding these two linear combinations, we see that

v = (c1 +d1)v1 +(c2 +d2)v2 + · · ·+(ck +dk)vk.

Since not all of the d j’s are zero, this is a different
linear combination that gives v, which contradicts
uniqueness. It follows that B must in fact be linearly
independent.

3.1.11 (a) Write B = {v1,v2, . . . ,vk} and give names
to the entries of [v]B and [w]B: [v]B =
(c1,c2, . . . ,ck) and [w]B = (d1,d2, . . . ,dk).
This means that

v = c1v1 + c2v2 + · · ·+ ckvk

w = d1v1 +d2v2 + · · ·+dkvk.

By adding these equations we see that

v+w = (c1 +d1)v1 + · · ·+(ck +dk)vk,

which means that [v + w]B = (c1 + d1,c2 +
d2, . . . ,ck + dk), which is the same as [v]B +
[w]B.

(b) Write B = {v1,v2, . . . ,vk} and give names to
the entries of [v]B similar to those in part (a):
[v]B = (d1,d2, . . . ,dk). This means that

v = d1v1 +d2v2 + · · ·+dkvk.

It follows that

cv = (cd1)v1 +(cd2)v2 + · · ·+(cdk)vk,

which means that [cv]B = (cd1,cd2, . . . ,cdk),
which is the same as c[v]B.

3.1.12 (a) This follows fairly quickly from Exercise 3.1.11.
We just notice that [v]B = 0 if and only if v = 0,
so

c1w1 + · · ·+ cmwm = 0
if and only if

c1[w1]B + · · ·+ cm[wm]B
= [c1w1 + · · ·+ cmwm]B = [0]B = 0.

In particular, c1 = · · ·= cm = 0 is the only so-
lution to the former equation if and only if it is
the only solution to the latter equation, so C is
linearly independent if and only if D is linearly
independent.

(b) Not only does every vector v ∈ S have a coordi-
natevector[v]B ∈Rk ,butconverselyeveryvector
x ∈ Rk can be written as the coordinate vector of
some vector fromS: x = [v]B for some v ∈ S.
We thus conclude that the linear system

c1w1 + · · ·+ cmwm = v
has a solution for all v ∈ S (i.e., C spans S) if
and only if the linear system

c1[w1]B + · · ·+ cm[wm]B
= [c1w1 + · · ·+ cmwm]B = [v]B

has a solution for all v ∈ S (i.e., D spans Rk).

(c) This follows immediately from combining
parts (a) and (b).

3.1.13 Since P is invertible, its columns (which are the co-
ordinate vectors with respect to B of some vectors in
S) form a basis of Rk . That is,

P def=
[

[v1]B | [v2]B | · · · | [vk]B
]

for some vectors v1, . . . ,vk ∈S with the property that
{
[v1]B, [v2]B, . . . , [vk]B

}

is a basis of Rk. It follows from Exercise 3.1.12
that C = {v1,v2, . . . ,vk} is a basis of S, and (by
definition) we have P = PB←C .

3.1.14 (a) Let v ∈ S be any vector. Then

(PC←E PE←B)[v]B = PC←E (PE←B[v]B)

= PC←E [v]E = [v]C.

By uniqueness of change-of-basis matri-
ces (Theorem 3.1.3), it thus follows that
PC←E PE←B = PC←B.

(b) By using Exercise 2.2.12, we see that row-
reducing [ PE←C | PE←B ] produces the matrix

[ I | P−1
E←CPE←B ] = [ I | PC←E PE←B ],

which we know from part (a) equals
[ I | PC←B ].

3.1.15 (a) 


1 1 5/6 3/2
−2 −1 −2/3 1
1 2 4/3 3
1 1 1/12 −1/4




3.1.16 We just mimic the proof of Theorem 1.4.1.
To see that [T ]B[v]B = [T (v)]B, first write [v]B =
(c1, . . . ,cn) and then use block matrix multiplication:

[T ]B[v]B =
[

[T (v1)]B | · · · | [T (vn)]B
]



c1...
cn




= c1[T (v1)]B + · · ·+ cn[T (vn)]B
= [T (c1v1 + · · ·+ cnvn)]B
= [T (v)]B.

To verify that [T ]B is unique, suppose that A∈Mn is
any matrix such that [T (v)]B = A[v]B for all v ∈ Rn.
Then [T ]B[v]B = A[v]B for all v∈Rn. It follows from
Exercise 1.3.18(d) that A = [T ]B, which completes
the proof.

3.1.17 Recall from the rank-nullity theorem (Theo-
rem 2.4.10) that for every matrix A ∈Mn, we
have nullity(A) = n− rank(A). Since we already
know that A and B being similar implies rank(A) =
rank(B), it follows that A and B being similar implies

n−nullity(A) = n−nullity(B),

so nullity(A) = nullity(B).
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3.1.19 (a) We compute tr(A+B) directly from the defini-
tion of the trace:

tr(A+B) =
n

∑
j=1

[A+B] j, j =
n

∑
j=1

a j, j +b j, j

=
n

∑
j=1

a j, j +
n

∑
j=1

b j, j = tr(A)+ tr(B).

(b) Similarly, we now compute tr(cA) directly
from the definition of the trace:

tr(cA) =
n

∑
j=1

[cA] j, j =
n

∑
j=1

ca j, j

= c
n

∑
j=1

a j, j = ctr(A).

3.1.20 We start by seeing what happens if we choose B =
eieT

j and C = e jeT
k for some i, j,k with i 6= k:

f (ACB) = f (Ae jeT
k eieT

j ) = 0 f (Ae jeT
j ) = 0,

f (ABC) = f (AeieT
j e jeT

k ) = f (AeieT
k ).

Since f (ACB) = f (ABC), it follows that f (AeieT
k ) =

0. By now choosing A = e jeT
i , we see that

f (AeieT
k ) = f (e jeT

i eieT
k ) = f (e jeT

k ) = 0

for all j,k. Since f is linear and every matrix A∈Mn
can be written in the form A = ∑

n
j,k=1 a j,ke jeT

k , it fol-
lows that

f (A) = f

(
n

∑
j,k=1

a j,ke jeT
k

)
=

n

∑
j,k=1

a j,k f (e jeT
k ) = 0

for all A ∈Mn.

3.1.21 (a) To give names to all of the vectors and
scalars we will need to work with, suppose
B = {v1,v2, . . . ,vk}, [v]B = (c1,c2, . . . ,ck) and
[w]B = (d1,d2, . . . ,dk). Then

v ·w = (c1v1 + · · ·+ ckvk) · (d1v1 + · · ·+dkvk)

= c1d1(v1 ·v1)+ c1d2(v1 ·v2)+ · · ·
+ ckdk−1(vk ·vk−1)+ ckdk(vk ·vk)

= c1d1 + c2d2 + · · ·+ ckdk,

where the final equality comes from the fact
that vi · v j = 1 if i = j and vi · v j = 0 if i 6= j
(since B is an orthonormal basis). But

[v]B · [w]B = c1d1 + c2d2 + · · ·+ cndn

too, directly from the definition of the dot prod-
uct, so we are done.

(b) We can use part (a):
∥∥[v]B

∥∥=
√

[v]B · [v]B =
√

v ·v = ‖v‖.

(c) There are lots of possible counter-examples.
For example, if B = {(1,1),(0,1)} and v =
(1,0), w = (0,1) then [v]B = (1,−1) and
[w]B = (0,1). It follows that

v ·w = 0 but [v]B · [w]B =−1, and

‖v‖= 1 but
∥∥[v]B

∥∥=
√

2

3.1.22 We start by supposing that v1,v2, . . . ,vk ∈ B and
c1,c2, . . . ,ck ∈ R are such that

c1v1 + c2v2 + · · ·+ ckvk = 0.

Our goal is to show that c1 = c2 = · · ·= ck = 0. To
this end, we start by computing v1 ·0 in two different
ways:

0 = v1 ·0
= v1 · (c1v1 + c2v2 + · · ·+ ckvk)

= c1(v1 ·v1)+ c2(v1 ·v2)+ · · ·+ ck(v1 ·vk)

= c1‖v1‖2 +0+ · · ·+0.

Since all of the vectors in B are non-zero we know
that ‖v1‖ 6= 0, so this implies c1 = 0.
A similar computation involving v2 · 0 shows that
c2 = 0, and so on up to vk · 0 showing that ck = 0,
so we conclude c1 = c2 = · · ·= ck = 0 and thus B is
linearly independent.

3.1.23 We use the interpretation of matrix multiplication as
the matrix whose entries are all possible dot products
of the first matrix with the second matrix:

AT A =




vT
1

vT
2
...

vT
n



[

v1 | v2 | · · · | vn
]

=




vT
1 v1 vT

1 v2 · · · vT
1 vn

vT
2 v1 vT

2 v2 · · · vT
2 vn

...
...

. . .
...

vT
n v1 vT

n v2 · · · vT
n vn




=




1 0 · · · 0
0 1 · · · 0

...
...

. . .
...

0 0 · · · 1




= I.

Side note: Matrices A ∈Mn with the property that
AT A = I are called unitary matrices.

3.1.24 (a) Since {Rθ (e1),Rθ (e2)} consists of 2 vectors in
R2, we just need to show that they are orthogonal
unit vectors. Well, Rθ (e1) = (cos(θ),sin(θ)),

which has length
√

sin2(θ)+ cos2(θ) =
√

1 =

1, and similarly Rθ (e2) = (−sin(θ),cos(θ)),
which has length 1. (Another way to see that they
have length 1 is to simply notice that rotating a
unit vector does not change its length.) To see
that they are orthogonal to each other, we com-
pute

Rθ (e1) ·Rθ (e2)

= (cos(θ),sin(θ)) · (−sin(θ),cos(θ))

=−cos(θ)sin(θ)+ sin(θ)cos(θ) = 0.

(b) Suppose that {u1,u2} is an orthonormal ba-
sis of R2. Since u1 = (a,b) is a unit vector,
we know that |a| ≤ 1, so we can find θ such
that cos(θ) = a. Then b =±

√
1− cos2(θ) =

±|sin(θ)|. If b is positive, we have writ-
ten u1 = (cos(θ),sin(θ)). If b is negative,
then replace θ by −θ so that we have u1 =
(cos(θ),sin(θ)) in this case too.
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Next, since u2 is orthogonal to u1, we know
that it is on the line perpendicular to the line in
the direction of (cos(θ),sin(θ)). It follows that
u2 is a multiple of (−sin(θ),cos(θ)). Since
u2 is a unit vector, the only possible multiples
are 1 and −1, so we know that either u2 =

(−sin(θ),cos(θ)) or u2 = (sin(θ),−cos(θ)).
In the former case, we are done: u1 = Rθ (e1)
and u2 = Rθ (e2). In the latter case, we use
the facts that sin(θ) = cos(θ − π/2) and
−cos(θ) = sin(θ − π/2) to see that u1 =
Rθ−π/2(e2) and u2 = Rθ−π/2(e1), so again we
are done.

Section 3.2: Determinants

3.2.1 (a) 0
(e) 44

(c) 8
(g) 18

3.2.2 (a) −545 (c) −4008

3.2.3 (a) 6
(e) 27/2

(c) 12
(g) 2733 = 3456

3.2.4 (a) 6
(e) −12

(c) −6
(g) 144

3.2.5 (a) −4 (c) 8

3.2.6 (a) False. det(−A) = (−1)ndet(A), so the given
property is true when n (the size of the matrix)
is odd, but false when it is even.

(c) False. For example, if A = I2 and B = −I2
then det(A + B) = det(O) = 0, but det(A) +
det(B) = 1+1 = 2.

(e) False. All that we can say is that if the RREF
of A is I then it is invertible, so det(A) 6= 0.
Row operations can change determinants, so
the determinant might not equal det(I) = 1.

(g) True. If the columns of A are linearly depen-
dent then it is not invertible, so det(A) = 0.

3.2.8 Let

A =




1 0
0 1
0 0


 and B =

[
1 0 0
0 1 0

]
.

Then

AB =




1 0 0
0 1 0
0 0 0


 and BA =

[
1 0
0 1

]
,

which have determinants 0 and 1, respectively.

3.2.10 Since the range of [Pu] is 1-dimensional, it is not
invertible (as long as [Pu] is 2× 2 or larger), so
det([Pu]) = 0.

3.2.13 (a) We just use multilinearity of the determinant
(i.e., its defining property (c)) repeatedly:

det(cA) = det
(
[ ca1 | ca2 | · · · | can ]

)

= cdet
(
[ a1 | ca2 | · · · | can ]

)

= c2 det
(
[ a1 | a2 | · · · | can ]

)

...

= cn det
(
[ a1 | a2 | · · · | an ]

)
= cn det(A).

(b) If A is not invertible then det(A) = 0 and AT

must also not be invertible, so det(AT ) = 0 as
well.
On the other hand, if A is invertible then
Theorem 2.2.4 tells us that we can write A
as a product of elementary matrices: A =
E1E2 · · ·Ek . Then det(A) = det(E1E2 · · ·Ek) =
det(E1) · · ·det(Ek). Also, AT = ET

k · · ·ET
2 ET

1 ,
so det(AT ) = det(ET

k · · ·ET
2 ET

1 ) =
det(ET

k ) · · ·det(ET
2 )det(ET

1 ), so it suffices to
show that det(E) = det(ET ) whenever E is an
elementary matrix.
To this end, we note that if E is an elemen-
tary matrix corresponding to a “swap” row
operation Ri ↔ R j or a “multiplication” row
operation cRi then ET = E, so it is trivially
the case that det(ET ) = det(E). For the one
remaining case (i.e., the “addition” row oper-
ation Ri + cR j), we just note that each of E
and ET are triangular (one of them is lower
triangular and the other is upper triangular), so
Theorem 3.2.4 tells us that their determinants
equal the product of their diagonal entries.
But E and ET have the same diagonal entries
(which are all 1), so det(E) = det(ET ), which
completes the proof.

3.2.16 (a) First notice that
[

A B
O C

]
=

[
I B
O C

][
A O
O I

]
.

The determinant of the matrix on the left is the
product of the determinants of the matrices on
the right, so it suffices to show that the matrices
on the right have determinants equal to det(C)
and det(A), respectively.
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Suppose A is k× k. For the matrix[
Ik B
O C

]
,

notice that computing its determinant via a
cofactor expansion down its leftmost column
shows that

det

([
Ik B
O C

])
= det

([
Ik−1 B̃
O C

])
,

where B̃ is the matrix obtained from B by re-
moving its topmost row. Repeating this argu-
ment again a total of k times similarly shows
that

det

([
Ik B
O C

])
= det(C),

as desired. The fact that

det

([
A O
O I

])
= det(A)

can be proved similarly by using cofactor ex-
pansions along the last column of the matrix.

(b) This fact is trivial if n = 1 and we already
proved it in the n = 2 case in part (a). To prove
it in general, we use induction and start with
the inductive step since we have already proved
the base case.
Suppose that the claim holds for a particular
value of n. We can partition an (n+1)×(n+1)
block triangular matrix as a 2×2 block trian-
gular matrix as follows:



A1 ∗ · · · ∗ ∗
O A2 · · · ∗ ∗
...

...
. . .

...
...

O O · · · An ∗
O O · · · O An+1




=




A1 ∗ · · · ∗ ∗
O A2 · · · ∗ ∗
...

...
. . .

...
...

O O · · · An ∗
O O · · · O An+1




.

By using the inductive hypothesis and part (a),
we then see that

det







A1 ∗ · · · ∗ ∗
O A2 · · · ∗ ∗
...

...
. . .

...
...

O O · · · An ∗
O O · · · O An+1







= det







A1 ∗ · · · ∗
O A2 · · · ∗
...

...
. . .

...
O O · · · An







det(An+1)

=

(
n

∏
j=1

det(A j)

)
det(An+1) =

n+1

∏
j=1

det(A j),

which completes the inductive step and the
proof.

3.2.18 Following the hint, we compute
[

Im −A
B In

][
Im A
O In

]
=

[
Im O
B In +BA

]
.

Since this matrix is block triangular, Exercise 3.2.16
(together with the fact that taking the transpose of a
matrix does not change its determinant) tells us that
the determinant of this product equals

det

([
Im O
B In +BA

])
= det(Im)det(In +BA)

= det(In +BA).

However, we can swap the order of the matrix prod-
uct without changing the determinant, so this also
equals

det

([
Im A
O In

][
Im −A
B In

])
= det

([
Im +AB O

B In

])

= det(Im +AB)det(In)

= det(Im +AB).

We thus conclude that det(Im +AB) = det(In +BA),
as desired.

3.2.20 (a) We just multiply
[

In 0
wT 1

][
In +vwT v

0T 1

][
In 0
−wT 1

]

=

[
In v
0T wT v+1

]

.
(b) By Exercise 3.2.16, we know that the determi-

nant of a block triangular matrix is the product
of the determinants of its diagonal blocks. It
follows that

det

([
In 0

wT 1

][
In +vwT v

0T 1

][
In 0
−wT 1

])

= det

([
In +vwT v

0T 1

])
= det(In +vwT ).

However, using the result of part (a) shows that
this determinant also equals

det

([
In v
0T wT v+1

])
= wT v+1,

so det(In +vwT ) = 1+wT v.
(c) By the hint, A + vwT = A(In + A−1vwT ). Ap-

plying the result of part (b) then shows that

det(A+vwT ) = det(A)det(In +A−1vwT )

= det(A)det(In +(A−1v)wT )

= det(A)(1+wT A−1v),

as desired.
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Section 3.3: Eigenvalues and Eigenvectors

3.3.1 (a) 6 (c) 0 (e) −4

3.3.2 (a) A corresponding eigenvector is v = (5,−4).
Note that any scalar multiple of this eigenvec-
tor also works (and the same remark applies to
all parts of this exercise).

(c) v = (3,2,0)
(e) v = (−1,1,0,1)

3.3.3 (a) We start by finding the eigenvalues:

det

([
1−λ 2
−1 −2−λ

])

= (1−λ )(−2−λ )+2 = λ
2 +λ = λ (λ +1),

so the eigenvalues are λ = 0 and λ =−1, each
of which have algebraic multiplicity 1 (and
thus geometric multiplicity 1 as well).
To find a basis of the eigenspace correspond-
ing to λ = 0, we solve the linear system
(A−0I)v = 0:
[

1 2 0
−1 −2 0

]
R2+R1−−−−→

[
1 2 0
0 0 0

]
.

From here we see that v2 is a free variable and
v1 =−2v2, so all eigenvectors are of the form
v = v2(−2,1). It follows that {(−2,1)} is a ba-
sis of this eigenspace.
Similarly, to find a basis of the eigenspace cor-
responding to λ =−1, we solve the linear sys-
tem (A+ I)v = 0:
[

2 2 0
−1 −1 0

]
R2+ 1

2 R1−−−−−→

[
2 2 0
0 0 0

]
.

From here we see that v2 is a free variable and
v1 = −v2, so all eigenvectors are of the form
v = v2(−1,1). It follows that {(−1,1)} is a
basis of this eigenspace.

(c) The only eigenvalue is 0 with algebraic mul-
tiplicity 2. A basis for the corresponding
eigenspace is {(1,0)}, so this eigenvalue has
geometric multiplicity 1.

(e) The eigenvalues of a triangular matrix (and
thus of a diagonal matrix) are its diagonal en-
tries: 3, −2, and 7, each with algebraic multi-
plicity 1 (and thus geometric multiplicity 1 as
well). Bases for the corresponding eigenspaces
are {e1}, {e2}, and {e3}, respectively.

(g) This matrix is triangular, so its eigenval-
ues are its diagonal entries 2, −3, and 1,
with algebraic multiplicities 2, 1, and 1,
respectively. Bases for the corresponding
eigenspaces are {(1,0,0,0)}, {(1,−5,0,0)},
and {(1,−1,−2,0)}, respectively, so all of the
eigenvalues have geometric multiplicity 1.

3.3.4 (a) The eigenvalues are 2 and 8 (with alge-
braic and geometric multiplicity 1 each),
and 7 (with algebraic and geometric mul-
tiplicity 2). Bases for their eigenspaces
are {(1,1,−1,−1)}, {(2,−1,2,−1)}, and
{(1,1,0,−1),(0,1,−2,0)}, respectively.

(c) The eigenvalues are 6 and 10 (with al-
gebraic and geometric multiplicity 2
each), and 4 (with algebraic and geo-
metric multiplicity 1). Bases for their
eigenspaces are {(0,0,1,0,−1),(1,0,0,2,0)},
{(1,−1,−1,0,1),(2,−2,0,1,0)}, and
{(0,2,2,−1,0)}, respectively.

3.3.5 (a) False. We saw a counter-example to this claim
in Example 3.3.8.

(c) False. For example, the following two matrices
are row equivalent[

1 0
0 2

]
,

[
3 0
0 4

]
,

but the first matrix has eigenvalues 1 and 2, while
the second matrix has eigenvalues 3 and 4.

(e) False. The closest true statement that can be
made is det(A−λ I) = (−1)n det(λ I−A).

(g) True. If a matrix A is diagonal then ai, j = 0
whenever i 6= j, so ai, j = a j,i for all i, j.

(i) True (by definition).
(k) True. Since geometric multiplicity cannot ex-

ceed algebraic multiplicity, and geometric mul-
tiplicity cannot equal 0, the geometric multi-
plicity must equal 1.

(m) True. If two matrices have the same charac-
teristic polynomial then they have the same
eigenvalues, and the trace of a matrix equals
the sum of its eigenvalues (by Theorem 3.3.1),
so their trace must also be the same.

3.3.6 We start by computing the eigenvalues of A:

det(A−λ I) = det

([
k−λ 1
−1 1−λ

])

= (k−λ )(1−λ )+1

= λ
2− (1+ k)λ +(k +1)

= 0.

Using the quadratic formula to solve this equation for
λ , we get λ = 1

2 (1 + k)± 1
2

√
(1+ k)2−4k−4 =

1
2 (1 + k) ± 1

2

√
k2−2k−3. We get two distinct

eigenvalues exactly if the discriminant is positive:
k2 − 2k− 3 > 0. Similarly, we get only one real
eigenvalue if the discriminant is 0, and we get no
real eigenvalues if it is < 0.
The discriminant k2−2k−3 factors as (k−3)(k+1),
so we find that (i) we get two distinct real eigenvalues
when k > 3 or k <−1, (ii) we get exactly one distinct
eigenvalue when k = 3 or k = −1, and (iii) we get
no real eigenvalues when −1 < k < 3.

3.3.8 If Av = λv then

Av = Av = λv = λv,

as desired.

3.3.10 Recall that the characteristic polynomial of a 2×2
matrix A is pA(λ ) = λ 2− tr(A)λ +det(A). Applying
the quadratic formula to this polynomial gives the
eigenvalues of A as

λ =
tr(A)±

√
tr(A)2−4det(A)

2
.
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3.3.12 The only possible eigenvalues are λ = ±1 and
λ = ±i. The fact that these eigenvalues are all pos-
sible can be seen simply by placing them on the
diagonal of a diagonal matrix. Conversely, to see
that no other eigenvalues are possible, let λ be an
eigenvalue of A corresponding to an eigenvector v,
so Av = λv. Multiplying by A on the left three times
shows that A4v = λ 4v. On the other hand, A4 = I, so
A4v = v, so λ 4v = v, so λ 4 = 1.

3.3.13 (a) Setting det
([

Rθ
]
−λ I

)
= 0 gives

det

([
cos(θ)−λ −sin(θ)

sin(θ) cos(θ)−λ

])

= (cos(θ)−λ )2 + sin2(θ)

= λ
2−2cos(θ)λ +1

= 0.

Solving this equation (via the quadratic for-
mula) gives λ = cos(θ)±

√
cos2(θ)−1.

(b) We found the eigenvalues to be λ = cos(θ)±√
cos2(θ)−1, which are real if and only if

cos2(θ)− 1 ≥ 0, i.e., cos(θ) = ±1. In other
words, θ = kπ for some integer k.
This makes sense geometrically because if
θ = 2kπ then all vectors are being rotated back
around to themselves, so every vector is an
eigenvector of

[
Rθ
]

in this case (with eigen-
value 1). If θ = (2k +1)π then every vector is
rotated around so that it is pointing in the exact
opposite direction, so again every vector is an
eigenvector (with eigenvalue −1). However,
if θ 6= kπ , then every vector is rotated so that
it is not parallel to where it started, so there
are no (real) eigenvectors and hence no (real)
eigenvalues.
As a side note, we show a bit later (in The-
orem 3.C.1) that every 2 × 2 matrix with
complex (non-real) eigenvalues looks like a
scaling of a rotation in some basis.

3.3.15 (a) We use the fact that if v and w are column vec-
tors then v ·w = v∗w. It follows that x · (Ay) =
x∗Ay and (A∗x) · y = (A∗x)∗y = x∗Ay. Since
both quantities equal x∗Ay, we indeed have
x · (Ay) = (A∗x) ·y.

(b) Just like in part (a), x · (Ay) = x∗Ay and
(Bx) · y = x∗B∗y. We thus know that x∗Ay =
x∗B∗y for all x ∈ Cm and y ∈ Cn. However, if
we choose x = ei and y = e j then x∗Ay = ai, j

and x∗B∗y = b j,i, so we see that ai, j = b j,i for
all i, j. In other words, B = A∗.

3.3.16 Note that 0 is an eigenvalue of A if and only if there
exists a non-zero vector v such that Av = 0v = 0,
which is equivalent to A not being invertible via
Theorem 2.2.4.

3.3.18 Recall from Theorem 3.2.4 that the determinant of a
triangular matrix is the product of its diagonal entries.
It follows that

pA(λ ) = det(A−λ I)

= (a1,1−λ )(a2,2−λ ) · · ·(an,n−λ ),

which has roots a1,1, a2,2, . . ., an,n. In other words,
the eigenvalues of A are the diagonal entries of A.

3.3.21 (a) Recall from Exercise 3.3.20 that A and AT have
the same eigenvalues. If λ is an eigenvalue of
AT (and thus of A as well) with corresponding
eigenvector v then

A∗v = AT v = λv = λv,

so λ is an eigenvalue of A∗ (with correspond-
ing eigenvector v). The reverse implication fol-
lows from the fact that (A∗)∗ = A so if λ is an

eigenvalue of A∗ then λ = λ is an eigenvalue
of A.

(b) We compute w · (Av) in two different ways:

w · (Av) = w · (λv) = λ (w ·v) and

w · (Av) = (A∗w) ·v = (µw) ·v = µ(w ·v).

Since µ 6= λ , the only way that this can happen
is if w ·v = 0 (or equivalently, v ·w = 0).

3.3.22 (a) We just compute

Bv1 = (A−λ1v1v∗1)v1

= Av1−λ1v1 = λ1v1−λ1v1 = 0.

(b) We already showed in part (a) that B has 0 as
an eigenvalue, so we just need to show that
its other eigenvalues are λ2,λ3, . . . ,λn. To this
end, let w j be an eigenvector of A∗ correspond-
ing to the eigenvalue λ j for 2≤ j ≤ n. Then

B∗w j = (A−λ1v1v∗1)
∗w j

= (A∗−λ1v1v∗1)w j = A∗w j = λ jw j,

where the second-to-last equality follows from
Exercise 3.3.21 and the assumption that λ1 6=
λ j . The statement is still true even if λ1 = λ j ,
but we have to be careful to choose w j to be
orthogonal to v1 (it does not come for free).
It follows that B∗ has λ2,λ3, . . . ,λn as eigen-
values, so B has λ2,λ3, . . . ,λn as eigenvalues.

(c) Consider the matrix

A =

[
1 1
0 2

]
,

which has eigenvalues λ1 = 1 and λ2 = 2 with
corresponding unit eigenvectors v1 = (1,0)
and v2 = (1,1)/

√
2, respectively. Then

B = A−λ1v1v∗1 =

[
0 1
0 2

]

still has λ2 = 2 as an eigenvalue, but its corre-
sponding eigenvectors are now the non-zero
multiples of v2 = (1,2).
In general, almost any triangular matrix can
be used to show that the eigenvectors might
change here.

3.3.23 (a) We just compute this characteristic polynomial
via the formula for the determinant of a 3×3
matrix:

det(C−λ I) = det






−λ 1 0
0 −λ 1
−a0 −a1 −a2−λ







=−λ
2(a2 +λ )−a0−a1λ

=−(λ 3 +a2
λ

2 +a1λ +a0),

as claimed.



468 Appendix C. Selected Exercise Solutions

(b) We already proved the n = 3 base case (and the
n = 1 and n = 2 cases are even simpler), so we
jump right to the inductive step. We induct on
n (the size of the matrix) and assume that the
result holds for (n− 1)× (n− 1) companion
matrices. By taking a cofactor expansion along
the first column of C, we see that

det(C−λ I)

= det







−λ 1 0 · · · 0
0 −λ 1 · · · 0

...
...

...
. . .

...
0 0 0 · · · 1
−a0 −a1 −a2 · · · −an−1−λ







=−λ det







−λ 1 · · · 0

...
...

. . .
...

0 0 · · · 1
−a1 −a2 · · · −an−1−λ







+(−1)na0

=−λ
(
(−1)n−1(λ n−1 +an−1λ

n−2

+ · · ·+a2λ +a1)
)
+(−1)na0

= (−1)n(λ n +an−1λ
n−1 + · · ·+a1λ +a0),

where the second-to-last equality follows
from the inductive hypothesis and the fact
that we are taking the determinant of an
(n−1)× (n−1) companion matrix.

3.3.24 (a) We simply note that if 1 = (1,1, . . . ,1) then
A1 = 1, since A1 is simply the vector whose
entries are the sums of the rows of A. It follows
that 1 is an eigenvector of A with correspond-
ing eigenvalue 1.

(b) Let v be an eigenvector of A corresponding to
an eigenvalue λ , scaled so that its largest en-
try is vi = 1, as suggested by the hint. Since
Av = λv, we conclude then that

n

∑
j=1

ai, jv j = λvi = λ .

Taking the absolute value of both sides of this
equation then shows that

|λ |=
∣∣∣∣∣

n

∑
j=1

ai, jv j

∣∣∣∣∣≤
n

∑
j=1
|ai, jv j| ≤

n

∑
j=1
|ai, j|= 1,

where the first inequality is the triangle inequal-
ity and the second inequality follows from the
fact that we scaled v so that |v j| ≤ 1 for all j.

(c) We simply note that A is column stochastic if
and only if AT is row stochastic, and recall that
the eigenvalues of A and AT coincide.

Section 3.4: Diagonalization

3.4.1 In all of these cases, your diagonalization might
look slightly different than the solution presented
here due to choosing different eigenvectors for the
columns of P or a different ordering of the eigenval-
ues/eigenvectors.

(a) D =

[
0 0
0 2

]
, P =

[
−1 1
1 1

]
,P−1 =

1
2

[
−1 1
1 1

]
.

(c) Not diagonalizable, since its eigenvalue λ = 1
has algebraic multiplicity 2 but geometric mul-
tiplicity 1.

(e) D =




2 0 0
0 1 0
0 0 −1


, P =




1 0 0
0 1 1
0 1 −1


,

P−1 =
1
2




2 0 0
0 1 1
0 1 −1


.

(g) D =




3 0 0
0 −1 0
0 0 2


, P =




1 0 3
0 1 −2
0 0 −3


,

P−1 =
1
3




3 0 3
0 3 −2
0 0 −1


.

3.4.2 (a) This matrix can be diagonalized in the same
way as in Exercise 3.4.1(a). Any real diagonal-
ization of a matrix is also a complex diagonal-
ization of it.

(c) D =

[
2+ i 0

0 2− i

]
, P =

[
1 1
i −i

]
,

P−1 =
1
2

[
1 −i
1 i

]
.

(e) D =




2 0 0
0 i 0
0 0 −i


, P =




1 0 0
0 1 i
0 1 −i


,

P−1 =
1
2




2 0 0
0 1 −i
0 1 i


.

(g) Not diagonalizable, since its eigenvalue λ = i
has algebraic multiplicity 3 but geometric mul-
tiplicity 2.
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3.4.3 (a) This matrix A can be diagonalized over R (and
thus C) as A = PDP−1, where D is diagonal
with diagonal entries 1, 2, 3, 3, and 4 (in that
order), and

P =




−1 −1 1 −1 −1
0 0 0 1 1
−1 0 1 0 0
−1 0 1 −1 0
1 1 0 0 1




.

(c) This matrix A can be diagonalized over C (but
not R) as A = PDP−1, where D is diagonal
with diagonal entries 2 + i, 2 + i, 2− i, 2− i,
and 0 (in that order), and

P =




2 2+ i 2 2− i 2
1− i −1 1+ i −1 0
2− i −1− i 2+ i −1+ i 2
2− i 1 2+ i 1 2
−i 2 i 2 0




.

3.4.4 (a)
[
(e2 +1)/2 (e2−1)/2

(e2−1)/2 (e2 +1)/2

]

(b)
[

sin(2)/2 sin(2)/2
sin(2)/2 sin(2)/2

]

3.4.5 (a) 


5 1 1 2 −2
−4 0 −1 −2 2
5 2 2 3 −2
1 1 0 2 0
5 2 1 3 −1




3.4.6 (a) False. We can always find such a P and D: just
choose P = D = O. To make this statement
true, we must add the requirement that P is
invertible.

(c) False. Every complex matrix has n eigenval-
ues counting algebraic multiplicity (as noted
in the text, this follows from the Fundamental
Theorem of Algebra).

(e) False. It can have repeated eigenvalues, as long
as the geometric multiplicity of each eigen-
value equals its algebraic multiplicity.

(g) False. Diagonalizability and invertibility are
not at all related. For example, the matrix

[
1 0
0 0

]

is diagonal (and thus diagonalizable via P = I)
but not invertible.

(i) True. If that single eigenvalue is λ then
A = PDP−1 = P(λ I)P−1 = λPP−1 = λ I.

3.4.8 We start by diagonalizing A. Its eigenvalues are −1
and 8, with corresponding eigenvectors (1,1) and
(2,−1), respectively. It follows that A = PDP−1,
where

D =

[
−1 0
0 8

]
, P =

[
1 2
1 −1

]
, P−1 =

1
3

[
1 2
1 −1

]
.

One cube root of A is thus

B = PD1/3P−1

=
1
3

[
1 2
1 −1

][
−1 0
0 2

][
1 2
1 −1

]

=

[
1 −2
−1 0

]
.

3.4.9 Everything in Example 3.4.8 is the same with the
Lucas numbers as it was with the Fibonacci numbers,
except for the initial condition L0 = 2 instead of
F0 = 0. We can thus copy down the diagonalization
from that example and change that initial condition
to get [

Ln+1

Ln

]
=

[
1 1
1 0

]n[
1
2

]

= PDnP−1

[
1
2

]

=
1√
5

PDn

[
1 φ −1
−1 φ

][
1
2

]

= P

[
φ n 0
0 (1−φ)n

][
1
1

]

=

[
φ 1−φ

1 1

][
φ n

(1−φ)n

]

=

[
φ n+1 +(1−φ)n+1

φ n +(1−φ)n

]
,

where we used the fact that 2φ−1 =
√

5 in the fourth
equality above. It follows that

Ln = φ
n +(1−φ)n.

3.4.12 (a) Since A is diagonalizable, we can find an in-
vertible matrix P ∈Mn and a diagonal ma-
trix D ∈Mn such that A = PDP−1. Since P
and P−1 are invertible, Exercise 2.4.17 implies
rank(A) = rank(PDP−1) = rank(DP−1) =
rank(D). Since D is diagonal, its rank is the
number of non-zero diagonal entries that it has
(see Exercise 2.4.14), which is the number of
non-zero eigenvalues of A.

(b) For example,

A =

[
0 1
0 0

]

has eigenvalue 0 with algebraic multiplicity
2 (and thus no non-zero eigenvalues), but its
rank is 1.

3.4.14 (a) Theorem 3.4.3 tells us that if A is diagonal-
izable then it has a set of eigenvectors that
forms a basis of Rn (or Cn, as appropriate).
Theorem 3.4.1 then tells us that A = PDP−1,
where D is diagonal with the eigenvalues of
A as its diagonal entries and P has the corre-
sponding eigenvectors as its columns. Since B
has the same eigenvalues and corresponding
eigenvectors, the same theorem also implies
that B this is a valid diagonalization of B. That
is, B = PDP−1 too, so A = B.
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(b) For example, the matrices

A =

[
0 1
0 0

]
and B =

[
0 2
0 0

]

have the same eigenvalues (λ = 0 with alge-
braic multiplicity 2) and the same eigenvec-
tors ({(1,0)} is a basis of the corresponding
eigenspace for both matrices), but A 6= B.

3.4.15 (a) Recall from Appendix A.1.3 that every com-
plex number has exactly k distinct k-th roots. It
follows that if A = PDP−1 then A has at least
kn distinct k-th roots of the form PD̃P−1, where
D̃ is one of the kn diagonal matrices that can be
obtained from D by taking a k-th root of each
of its n diagonal entries.
To see that there are no other k-th roots of A (so
there are exactly kn k-th roots), notice that if
Bk = A then each eigenvalue λ of B is such that
λ k is an eigenvalue of A, and the corresponding
eigenvectors for B and A are the same. It then
follows from Exercise 3.4.14 that B must be
one of the kn matrices that are diagonalized by
the same matrix P as A described above.

(b) Suppose A = PDP−1 where the top two diag-
onal entries of D are the same value, which
we will call λ , and we partition P as P =[

v1 | v2 | P2
]
. If we let

Q =
[

c1v1 + c2v2 | d1v1 +d2v2 | P2
]

be such that {c1v1 + c2v2,d1v1 + d2v2} is
linearly independent (so Q is invertible) then
A = QDQ−1 as well. If we let D̃ be a k-th root
of D with its top-left two entries different from
each other (i.e., they are different k-th roots
of λ ) then there are infinitely many different
matrices of the form QD̃Q−1 (by varying the
coefficients c1,c2,d1,d2 in the definition of Q),
each of which is a k-th root of A.

3.4.16 This follows immediately from the fact that ev-
ery diagonalization is produced via eigenvalues
and eigenvectors (Theorem 3.4.1) and every diag-
onalizable matrix is completely determined by its
eigenvalues an eigenvectors (Exercise 3.4.14).

3.4.17 See the solution to Exercise 3.4.16.

3.4.18 (a) If Av = λv, multiplying on the left by A shows
that A2v = λAv = λ 2v.

(b) If k ≥ 1 then this follows just by multiplying
the equation Av = λv on the left by A a total
of k− 1 times. If k = 0 then it follows from
the fact that every vector v is an eigenvector of
A0 = I with eigenvalue λ 0 = 1.

(c) We just make use of part (b) repeatedly. If
p(x) = ckxk + · · ·+ c1x+ c0 then

p(A)v =
(
ckAk + · · ·+ c1A+ c0I

)
v

= ckAkv+ · · ·+ c1Av+ c0v

= ckλ
kv+ · · ·+ c1λv+ c0v

=
(
ckλ

k + · · ·+ c1λ + c0
)
v = p(λ )v.

3.4.19 (a) Diagonalize A as A = PDP−1. Then

ArAs = (PDrP−1)(PDsP−1)

= PDrDsP−1 = PDr+sP−1 = Ar+s,

where the second-to-last equality follows from
the fact that diagonal matrix multiplication
works entrywise and xrxs = xr+s for all scalars
x.

(b) Diagonalize A as A = PDP−1. Then
(
Ar)s =

(
PDrP−1)s = P

(
Dr)sP−1

= PDrsP−1 = Ars,

where the second-to-last equality follows from
the fact that diagonal matrix multiplication
works entrywise and (xr)s = xrs for all scalars
x.

3.4.21 Recall from Theorem 3.4.9 that det(eA) = etr(A), and
similarly det(eA+B) = etr(A+B). We thus conclude
that

det
(
eA+B)= etr(A+B) = etr(A)+tr(B) = etr(A)etr(B)

= det(eA)det(eB) = det(eAeB).

3.4.23 (a) Recall from Example 2.3.8 that V is invertible,
so we just need to show that its columns are
eigenvectors of C with corresponding eigen-
values λ1,λ2, . . . ,λn. Well, let v j be the j-th
column of V . Then

Cv j =




0 1 · · · 0

...
...

. . .
...

0 0 · · · 1
−a0 −a1 · · · −an−1







1
λ j

...

λ
n−2
j

λ
n−1
j




=




λ j

λ 2
j

...

λ
n−1
j

−a0−a1λ j−·· ·−an−1λ
n−1
j ,




= λ jv j

where the final entry −a0 − a1λ j − a2λ 2
j −

·· · − an−1λ
n−1
j equals λ n

j , since λ j is a root
of the polynomial p. It follows that v j is in-
deed an eigenvector of C with corresponding
eigenvalue λ j , which completes the proof.

(b) Suppose that λ is an eigenvalue of C that is
repeated (i.e., has algebraic multiplicity greater
than 1). We will show that it has geometric
multiplicity equal to 1 and thus C is not diago-
nalizable by Theorem 3.4.3.
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To this end, suppose v = (v1,v2, . . . ,vn) is an
eigenvector of C with corresponding eigen-
value λ . Then Cv = λv implies

Cv =




0 1 · · · 0

...
...

. . .
...

0 0 · · · 1
−a0 −a1 · · · −an−1







v1
v2

...
vn−1
vn




=




v2
v3

...
vn

−a0v1−·· ·−an−1vn,




=




λv1

λv2

...
λvn−1

λvn




.

The top entry of these vectors tell us that
v2 = λv1, the next entry tells us that v3 = λv2,
and so on up to vn = λvn−1. It follows that
v j = λ j−1v1 for 1 ≤ j ≤ n− 1. Then the bot-
tom entry of the vectors above tell us that

λvn =−a0v1−a1v2−·· ·−an−1vn

= v1(−a0−a1λ −·· ·−an−1λ
n−1) = λ

nv1,

so vn = λ n−1v1. We have thus shown
that every eigenvector of C correspond-
ing to the eigenvalue λ has the form v =
v1(1,λ ,λ 2, . . . ,λ n−1). This set of vectors is
1-dimensional, so the geometric multiplicity
of λ is 1.

Section 3.5: Summary and Review

3.5.1 (a) Not similar. For example, rank(A) = 1 but
rank(B) = 2.

(c) Not similar. For example, tr(A) = 6 but tr(B) =
7.

(e) Similar. To see this, just note that both are
diagonalizable and have the same character-
istic polynomials (λ − 2)(λ − 3). Explicitly,
A = PBP−1 if

P =
1
5

[
2 −1
1 2

]
.

(g) Similar. To see this, just note that both are
diagonalizable and have the same character-
istic polynomials (λ −1)(λ −3)2. Explicitly,
A = PBP−1 if

P =




1 0 1
1 1 1
0 1 1


 .

3.5.2 (a) True. If Av = 3v, then multiplying on the left
by A gives A2v = 3Av = 9v.

(c) True. This was noted explicitly in the text.
(e) True. If the eigenvalues of A and B are distinct

then they are diagonalizable, and if they are
diagonalizable with the same eigenvalues (with
the same multiplicities) then they are similar
by Theorem 3.5.1.

3.5.3 (a) They both have rank 2 (A is already in RREF
and B can be put into RREF just by swapping
rows).

(b) The characteristic polynomial of each matrix
is pA(λ ) = pB(λ ) = λ 4.

(c) Both matrices only have 0 as their eigen-
values, corresponding to the eigenspace
span{(1,0,0,0),(0,1,0,0)}. In particular, for
each matrix the eigenvalue 0 has geometric
multiplicity 2.

(d) Following the hint, let P ∈M4 and write the
linear system AP = PB explicitly in terms of
the entries of P:



p3,1 p3,2 p3,3 p3,4
p4,1 p4,2 p4,3 p4,4

0 0 0 0
0 0 0 0




=




0 0 p1,2 p1,3

0 0 p2,2 p2,3

0 0 p3,2 p3,3

0 0 p4,2 p4,3


 .

It follows that P has the form

P =




p1,1 0 p1,3 p1,4

p2,1 0 p2,3 p2,4

0 0 0 p1,3

0 0 0 p2,3


 .

Since no matrix P of this form is invertible
(if a matrix has a zero column then it is not
invertible), we conclude that A and B are not
similar.

3.5.4 Suppose that

A =

[
a b
c d

]

is such that A2 = N. Multiplying A by itself gives[
a2 +bc b(a+d)

c(a+d) bc+d2

]
=

[
0 1
0 0

]
.

The bottom-left entry of this matrix equation tells us
that either c = 0 or a+d = 0. However, if a+d = 0
then the top-right entry must also equal 0 (but it
equals 1), so we conclude that c = 0. The above ma-
trix equation thus simplifies to[

a2 b(a+d)

0 d2

]
=

[
0 1
0 0

]
.

The top-left entry tells us that a = 0, the bottom-right
entry tells us that d = 0, and then the top-right entry
gives us a contradiction since it says b(0+0) = 1. It
follows that the equation A2 = N has no solution.
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Section 3.A: Extra Topic: More About Determinants

3.A.1 (a)
[

1 0
0 1

]

(e)



2 1 4
4 −2 8
0 0 −8




(c)
[

2 −3
−3 2

]

(g)


−3 12 −8
5 −4 0
−2 0 0




3.A.2 (a)



3 27 −6 −6
−5 −31 17 3
5 −11 4 −3
−1 −2 −5 9




3.A.3 Throughout this solution, we give the determinant
of A (the coefficient matrix) as well as the matrices
A1,A2, . . . ,An that are used in Cramer’s rule.

(a) det(A) = −3, det(A1) = −3, det(A2) = −3,
(x,y) = (1,1).

(c) det(A) = 4, det(A1) = 2, det(A2) = 8,
det(A3) = 6, (x,y,z) = (1/2,2,3/2).

(e) det(A) = −2, det(A1) = 1, det(A2) = −2,
det(A3) =−1, (x,y,z) = (−1/2,1,1/2).

3.A.4 (a) (1 2 3)
(e) (5 4 3 2 1)

(c) (1 3 2 4)
(g) (3 5 1 2 4 6)

3.A.5 (a) (3 2 1)
(e) (3 1 5 2 4)

(c) (4 3 2 1)
(g) (5 1 4 2 6 3)

3.A.6 (a) True. In fact, we can rearrange Theorem 3.A.1
to see that

(cof(A))−1 =
1

det(A)
AT .

(c) True. This can be seen directly from the defi-
nition of the cofactor matrix or by rearranging
Theorem 3.A.1 to show

(cof(I)) = det(I)(IT )−1 = I.

(e) False. We encountered a counter-example to
this claim in Example 3.A.1(b). The matrix in
that example has rank 2, but its cofactor matrix
has rank 1. Note, however, that if rank(A) = n
then rank(cof(A)) = n by part (a) of this exer-
cise.

(g) True. This follows from the fact that ι ◦ ι = ι .
(i) True. There are n! permutations in Sn. When

n = 5, there are 5! = 5 · 4 · 3 · 2 · 1 = 120 per-
mutations.

3.A.8 This follows from repeatedly applying the result of
Exercise 3.A.7. For example, that exercise tells us
that cof(A2) = cof(AA) = cof(A)cof(A) = (cof(A))2.
Applying this result repeatedly similarly gives
cof(Ak) = (cof(A))k for all integers k ≥ 1.
The k = 0 case follows from the fact that cof(I) = I.
If k = −1 then we notice that cof(A−1) =
AT /det(A) = (cof(A))−1. For k < −1 we just re-
peatedly use Exercise 3.A.7 and the k =−1 case.

3.A.10 We use Theorem 3.A.1 to see that cof(A) =
det(A)(AT )−1. Taking the determinant of both sides
gives us

det(cof(A)) = det
(

det(A)(AT )−1)

= (det(A))n det((AT )−1)

= (det(A))n/det(A)

= (det(A))n−1

as desired.

3.A.13 (a) This follows from multiplicativity of the deter-
minant:

sgn(σ ◦ τ) = det(Pσ◦τ ) = det(Pσ Pτ )

= det(Pσ )det(Pτ ) = sgn(σ)sgn(τ).

(b) Let τ = (2 1 3 4 5 · · · n) be the permutation
that swaps 1 and 2 but leaves all other inputs
alone. Then sgn(τ) =−1 and as σ ranges over
all permutations in Sn so does σ ◦ τ . If strictly
more than half of the permutations σ had sign
1, it would follow from part (a) that strictly
more than half of the permutations σ ◦ τ had
sign −1 (and similarly if we replaced “more”
by “fewer” in this sentence). This does not
make sense, so exactly half of the permutations
must have each sign.

3.A.14 If m > n then rank(A)≤ n < m so rank(AB)≤ n < m
by Theorem 2.4.11. However, AB is an m×m matrix,
so it is thus not invertible and det(AB) = 0.

3.A.16 (a) 1
(e) −8

(c) 2
(g) 18

3.A.17 We observe that

per(AT ) = ∑
σ∈Sn

a1,σ(1)a2,σ(2) · · ·an,σ(n)

= ∑
σ∈Sn

a
σ−1(1),1a

σ−1(2),2 · · ·aσ−1(n),n

= ∑
σ∈Sn

aσ(1),1aσ(2),2 · · ·aσ(n),n

= per(A),

where the second-to-last equality follows from the
fact that the set of inverses of permutations is exactly
the same as the set of permutations themselves.

3.A.19 Almost any matrices work. For example, if

A =

[
1 1
1 1

]
and B =

[
1 2
3 4

]

then per(A) = 2, per(B) = 10, but per(AB) = 48.



C.3 Unraveling Matrices 473

Section 3.B: Extra Topic: Power Iteration

3.B.1 (a) λ ≈ 5.37, v≈ (0.42,0.91)
(c) λ ≈−3.33, v≈ (0.73,−0.42,−0.55)
(e) λ ≈ 7.92, v≈ (0.73,0.29,0.57,0.24)

3.B.2 (a) λ1 ≈ 5.37, v1 ≈ (0.42,0.91)
λ2 ≈−0.37, v2 ≈ (0.82,−0.57)

(c) λ1 ≈ 16.12, v1 ≈ (0.23,0.53,0.82)
λ2 ≈−1.12, v2 ≈ (0.79,0.09,−0.61)
λ3 ≈ 0.00, v2 ≈ (0.41,−0.82,0.41)

3.B.3 (a) λ ≈ 11.58,
v≈ (0.15,0.25,0.01,0.54,−0.27,0.46,0.58)

3.B.4 (a) False. Diagonalizability has nothing to do with
whether or not power iteration converges.

(c) True. This follows from Theorem 3.B.1.
(e) True. This is part of the Perron–Frobenius the-

orem (Theorem 3.B.2).
3.B.6 Recall that vk approaches the eigenspace correspond-

ing to the dominant eigenvalue of A, so Avk ≈ λ1vk
when k is large, so ‖Avk‖ ≈ ‖λ1vk‖= λ1 when k is
large.
The above argument is the key idea. If we want to
make it rigorous, we note that since vk approaches
the eigenspace corresponding to the dominant eigen-
value, we have

lim
k→∞

(
Avk−λ1vk

)
= 0,

so
lim
k→∞

∥∥Avk−λ1vk
∥∥= 0.

By the reverse triangle inequality (Exercise 1.2.21),
this implies

lim
k→∞
‖Avk‖= lim

k→∞
‖λ1vk‖,

as long as at least one of these limits exists. The limit
on the right is simply

lim
k→∞
‖λ1vk‖= lim

k→∞
λ1 = λ1,

which proves the claim.

3.B.8 If Ak is positive then the Perron–Frobenius theorem
applies to it. Since A has the same eigenvectors and
the corresponding eigenvalues of A are simply some
k-th roots of the corresponding eigenvalues of Ak,
parts (b), (c), and (d) follow immediately. Part (a)
just needs the minor adjustment that |λ1|> |λ j| for
all 2≤ j ≤ n since a k-th root of a positive number
is not necessarily positive.

3.B.9 In all parts of this question, we refer to the original
given matrix as A.

(a) k = 2: A2 =
[

1 1
1 2

]

(c) k = 4: A4 =
[

8 8
8 8

]

(e) k = 4: A4 =



5 4 1
4 6 3
1 3 2




3.B.10 (a) λ ≈ 1.62, v≈ (0.53,0.85)
(c) λ ≈ 2.00i, v≈ (0.71,0.71)
(e) λ ≈ 1.80, v≈ (0.59,0.74,0.33)

3.B.12 (a) Neither irreducible (irreducible matrices by
definition have all entries non-negative) nor
primitive.

(c) Both primitive and irreducible.
(e) Neither irreducible nor primitive.

3.B.14 Pages B and C are both linked by page A, whereas
pages D and E are both linked by page B. Since
page A has a higher rank than page B, it boosts up
the ranks of the pages it links to, so pages B and C
end up with higher rank than pages D and E.

Section 3.C: Extra Topic: Complex Eigenvalues of Real Matrices

3.C.1 (a) We recognize this as the rotation matrix
[
Rπ/2],

so a decomposition of the desired form comes
just from choosing Q = I, r = 1, and θ = π/2.

(c) This matrix has eigenvalues 1± i =
√

2e±iπ/4

with corresponding eigenvectors (1,−1± i), so
we can choose r =

√
2, θ = π/4, and

Q =

[
1 0
−1 −1

]
.

3.C.2 (a) B = diag
(
1,
[
Rπ/2]), Q =




1 0 0
0 1 0
1 0 −1


.

(c) B = diag
(
1,2,
√

2
[
Rπ/4]),

Q =




0 1 1 0
1 0 0 0
1 0 0 −1
0 1 0 1


.

3.C.3 (a) B = diag
(
2
√

2
[
Rπ/4],2

√
2
[
Rπ/4],4

)
,

Q =




1 0 0 1 1
−1 1 0 1 0
0 1 −1 0 1
1 1 1 0 −1
0 1 −1 0 −1




.

3.C.4 (a) True. If n is odd then every matrix A ∈Mn(R)
has a real eigenvalue. The reason for this is
that the eigenvalues of A come in complex con-
jugate pairs, so there is necessarily an even
number of non-real eigenvalues, but the total
number of eigenvalues (counting algebraic mul-
tiplicity) is n, which is odd.

(c) True. Since real numbers are complex num-
bers, any real diagonalization is automatically
a complex diagonalization as well.
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(e) False. We can only block diagonalize matrices
that can be diagonalized over C. For example,
we cannot block diagonalize the matrix


1 1 1
0 1 1
0 0 1




in the sense of that theorem, since its eigen-
value 1 has algebraic multiplicity 3 but geo-
metric multiplicity 1.

3.C.6 (a) This matrix can be diagonalized as A = PDP−1,
where

P =

[
1 1

1+ i 1− i

]
, D =

[√
3+ i 0

0
√

3− i

]
.

It follows that
Ak = PDkP−1 =

1
2

[
1 1

1+ i 1− i

][
(
√

3+ i)k 0

0 (
√

3− i)k

][
1+ i −i
1− i i

]
,

which can be multiplied together if desired (it
is an ugly mess).

(b) One block diagonalization of this matrix is
A = QBQ−1, where

Q =

[
1 0
1 −1

]
and B = 2

[
Rπ/6].

It follows that

Ak = QBkQ−1

= 2k

[
1 0
1 −1

]
[
Rkπ/6]

[
1 0
1 −1

]
,

which has top-left entry equal to
2k(cos(kπ/6) − sin(kπ/6)), top-right
entry 2k sin(kπ/6), bottom-left entry
−2k+1 sin(kπ/6), and bottom-right entry
2k(cos(kπ/6)+ sin(kπ/6)).

Section 3.D: Extra Topic: Linear Recurrence Relations

3.D.1 (a) The characteristic polynomial of this linear re-
currence relation is λ 2−λ−6, which has roots
λ0 = 3 and λ1 =−2, each with multiplicity 1.

(c) 3±
√

5, each with multiplicity 1.
(e) 1, 2, and 3, each with multiplicity 1.
(g) 2, with multiplicity 3.
(i) 3 and 1±

√
3, each with multiplicity 1.

3.D.2 (a)
[

0 1
6 1

]

(e)



0 1 0
0 0 1
6 −11 6




(i)



0 1 0
0 0 1
−6 −4 5




(c)
[

0 1
−4 6

]

(g)



0 1 0
0 0 1
8 −12 6




3.D.3 (a) The characteristic polynomial of this linear re-
currence relation is λ 2z−λ−6, which has roots
λ0 = 3 and λ1 =−2. There thus exist (unique)
scalars c0 and c1 such that xn = c03n +c1(−2)n

for all n. Using the fact that x0 = 4 and x1 =−3
shows that c0 = 1 and c1 = 3, so xn = 3n +
3(−2)n.

(c) xn = in +(−i)n. Alternatively, a formula that
does not involve complex numbers is xn =
2cos(πn/2).

(e) xn = 3n−1.
(g) xn = (2n−3)+2n.

3.D.4 (a) False. We saw numerous counter-examples to
this claim throughout this section, and a sim-
ple example is the linear recurrence relation
xn = −xn−2, which has characteristic polyno-
mial λ 2 +1, which has roots ±i.

(c) True. In light of Theorem 3.D.3, we want to
construct a linear recurrence relation with 1 as
a root of multiplicity 4 (since the polynomial
n2− n3 has degree 4− 1 = 3). One such lin-
ear recurrence relation is xn = 4xn−1−6xn−2 +
4xn−3− xn−4, which has characteristic polyno-
mial (λ −1)4.

(e) True. This follows from Corollary 3.D.4. Note
that the root 4 being repeated is not a problem—
there would only be a problem if there were
two different largest roots with the same abso-
lute value (e.g., 4 and −4).

3.D.5 (a) The characteristic polynomial of this linear re-
currence relation must have roots 2 and 3, so
it is p(λ ) = (λ −2)(λ −3) = λ 2−5λ +6, so
the recurrence itself must be

xn = 5xn−1−6xn−2.

(c) xn = 9xn−1−26xn−2 +24xn−3
(e) xn = 9xn−1−30xn−2 +44xn−3−24xn−4
(g) xn = 3xn−1−3xn−2 + xn−3
(i) xn = 8xn−1−26xn−2 +48xn−3−45xn−4

3.D.6 (a) The characteristic polynomial of this recur-
rence relation is λ 2 +1, which has roots ±i =
e±iπ/2. After solving for the coefficients in the
solution, we see that xn = in +(−i)n. By substi-
tuting in the polar forms (±i)n = (e±iπ/2)n =
e±inπ/2, we see that

xn = in +(−i)n

= einπ/2 + e−inπ/2 = 2cos(nπ/2).

(c) xn = 1+2n+1 cos(nπ/2).

3.D.8 We prove this claim by induction. The base case is
trivial since we were told that x0 = x1 = 0. For the in-
ductive step, suppose xn−1 = xn−2. Then using the re-
currence relation gives xn+1 = xn−4xn−1 +4xn−2 =
xn−4xn−1 +4xn−1 = xn, which completes the induc-
tive step and the proof.
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