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N Coin Flips and N --+ oo 

Example 2 Suppose xis 1 or -1 with equal probabilities p1 = p_ 1 = ½. 
The mean value ism= ½(1) + ½(-1) = 0. The variance is u2 = ½(1)2 

+ ½(-1)2 = 1.

The key question is the average AN = ( x 1 + · · · + x N) / N. The independent Xi 

are ±1 and we are dividing their sum by N. The expected mean of AN is still zero.
The law of large numbers says that this sample average approaches zero with probability 1.
How fast does AN approach zero? What is its variance u'f..?

(J.2 CT2 CT2 CT2 1 
By linearity u'fv = N2 

+ N2 
+ · · · + N2 

= N N2 
= N since CT2 = 1. (11)

Example 3 Change outputs from 1 or -1 to x = 1 or x = 0. Keep p1 = p0 = ½-
The new mean value m = ½ falls halfway between 0 and 1. The variance moves to u2 = ¼ :

1 1 1 
m = -(1) + -(0) = -

2 2 2 
1 

( 
1
)

2 1 
( 

1
)

2 

and u2 = 2 1 - 2 + 2 0 -
2 

1
4

1 1 1 1 
The average AN now has mean - and variance --

2 
+ · · · + --

2 
= - = u'fv. (12)

2 4N 4N 4N 

This CTN is half the size of CTN in Example 2. This must be correct because the new range
0 to 1 is half as long as -1 to 1. Examples 2-3 are showing a law of linearity.

The new 0 - 1 variable xnew is ½ Xold + ½. So the mean m is increased to ½ and
the variance is multiplied by ( ½) 

2

. A shift changes m and the rescaling changes CT2
. 

Linearity Xnew = aXoJd + b has ffinew = amold + b and u2new = a2 u2oJd· (13)

Here are the results from three numerical tests: random 0 or 1 averaged over N trials.

[48 l's from N = 100] [5035 l's from N = 10000] [19967 l's from N = 40000].

The standardized X = (x - m)/CT = (AN - ½) / 2vN was [-.40] [.70] [-.33].

The Central Limit Theorem says that the average of many coin flips will approach a
normal distribution. Let us begin to see how that happens: binomial approaches normal. 

For each flip, the probability of heads is ½. For N = 3 flips, the probability of heads
all three times is ( ½) 3 = ½. The probability of heads twice and tails once is j,
from three sequences HHT and HTH and THH. These numbers ½ and ¾ are pieces of
( ½ + ½) 3 = ½ + ¾ + ¾ + ½ = 1. The average number of heads in 3 flips is 1.5.

1 3 3 3 6 3
Mean m = (3 heads)

8 
+ (2 heads)

8 
+ (1 head)

8 
+ 0 = 

8 
+ 

8 
+ 

8 
= 1.5 heads
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With N flips, Example 3 ( or common sense) gives a mean of rn = :E Xi Pi = ½ N heads. 

The variance 0'
2 is based on the squared distance from this mean N /2. With N = 3 

the variance is 0'
2 = ¾ (which is N / 4). To find 0'

2 we add ( Xi - m )2 Pi with m = 1.5 : 

2 21 
2

3 
2

3 
2

1 9+3+3+9 3 u = (3-1.5) - + (2-1.5) - + (1-1.5) - + (0-1.5) -= ----= -.
8 8 8 8 32 4 

For any N, the variance is u'f.., = N/4. Then O'N = ,/Fi /2. 
Figure 12.3 shows how the probabilities of 0, 1, 2, 3, 4 heads in N = 4 flips come 

close to a bell-shaped Gaussian. That Gaussian is centered at the mean value N /2 = 2. 
To reach the standard Gaussian (mean O and variance 1) we shift and rescale that graph. 
If x is the number of heads in N flips-the average of N zero-one outcomes-then x is 
shifted by its mean m = N /2 and rescaled by O' = ,/Fi /2 to produce the standard X : 

Shifted and scaled 
X -rn 

X=--­
u v'IV/2 

(N = 4 has X = x -2) 

Subtracting rn is "centering" or "detrending". The mean of Xis zero.

Dividing by u is "normalizing" or "standardizing". The variance of Xis 1. 

p(x) = 1 
uniform 

PN/2 � J2li'N/'•',
I \ 

1-' binomial \,
1 approaches \ M heads 

area= 1 1 
16 

1
I Gaussian \ N flips 

I 
1 I 1 

/ -2 O 2 M=O N 2 N 

Figure 12.3: The probabilities p (l, 4, 6, 4, 1) /16 for the number of heads in 4 flips. 
These Pi approach a Gaussian distribution with variance 0'

2 = N / 4 centered at m = N /2. 
For X, the Central Limit Theorem gives convergence to the normal distribution N(O, 1). 

It is fun to see the Central Limit Theorem giving the right answer at the center point 
X = 0. At that point, the factor e-X

2 

/
2 equals 1. We know that the variance for N coin 

flips is 0'
2 = N / 4. The center of the bell-shaped curve has height 1 / v'21m2 = )2 / N 1r. 

What is the height at the center of the coin-flip distribution p0 to PN (the binomial 
distribution)? For N = 4, the probabilities for 0, 1, 2, 3, 4 heads come from(½+ ½) 4. 

6 
Center probability -

16 
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The binomial theorem in Problem 8 tells us the center probability PN/2 for any even N:

The center probability ( � heads, � tails) is
1 N!

2 N (N/2)! (N/2)!

For N = 4, those factorials produce 4!/2! 2! = 24/4 = 6. For large N, Stirling's formula
v'21r N(N/ e)N is a close approximation to N!. Use Stirling for N and twice for N/2: 

Limit of coin-flip 

Center probability 

1 /2'iN(N/e)N y'2 1 
PN/2 � 2 N wN(N/2e)N 

= 
,j;"Fi 

= 
,,/'h<J

. (14) 

At that last step we used the variance <J2 = N / 4 for the coin-tossing problem. The result
1/,,/'h<J matches the center value (above) for the Gaussian. The Central Limit Theorem
is true: The "binomial distribution" approaches the normal distribution as N --+ oo. 

Monte Carlo Estimation Methods 

Scientific computing has to work with errors in the data. Financial computing has to work
with unsure numbers and uncertain predictions. All of applied mathematics has moved
to accepting uncertainty in the inputs and estimating the variance in the outputs. 

How to estimate that variance? Often probability distributions p(x) are not known.
What we can do is to try different inputs b and compute the outputs x and take an average.
This is the simplest form of a Monte Carlo method (named after the gambling palace
on the Riviera, where I once saw a fight about whether the bet was placed in time).
Monte Carlo approximates an expected value E[x] by a sample average (x 1 + · · · +xN )/ N.

Please understand that every Xk can be expensive to compute. We are not just flip­
ping coins. Each sample comes from a set of data bk . Monte Carlo randomly chooses this
data bk , it computes the outputs Xk , and then it averages those x's. Decent accuracy for
E[x] often requires many samples band huge computing cost. The error in approximating
E[x] by (x 1 + · · ·+XN )/N is normally of order 1/vN. Slow improvement as N increases. 

That 1/ vN estimate came for coin flips in equation (11). Averaging N independent
samples x k of variance <J2 reduces the variance to <J2 / N. 

"Quasi-Monte Carlo" can sometimes reduce this variance to <J2 / N2 : a big difference!
The inputs bk are selected very carefully-not just randomly. This QMC approach is
surveyed in the journal Acta Numerica 2013. The newer idea of "Multilevel Monte Carlo"
is outlined by Michael Giles in Acta Numerica 2015. Here is how it works. 

Suppose it is much simpler to simulate another variable y(b) close to x(b). Then use
N computations of y(bk) and only N* < N computations of x(bk) to estimate E[x].

2-level Monte Carlo 
1 N 1 N* 

E[x] � - L y(bk) + - L [x(bk) - y(bk)].
N i N* i 
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The idea is that x - y has a smaller variance CJ* than the original x. Therefore N* can 
be smaller than N, with the same accuracy for E[x]. We do N cheap simulations to find 
the y's. Those cost C each. We only do N* expensive simulations involving x's. Those 
cost C* each. The total computing cost is NC+ N*C*. 

Calculus minimizes the overall variance for a fixed total cost. The optimal ratio N* / N 
is JC/ C* CJ*/ CJ. Three-level Monte Carlo would simulate x, y, and z : 

1 N 1 N* 1 N** 
E[x] � N

L z(bk) + N* 
L [y(bk) - z(bk)] + N** L [x(bk) - y(bk)].

1 1 1 
Giles optimizes N, N*, N**, ... to keep E[x] :s; fixed E0 , and provides a MATLAB code. 

Review : Three Formulas for the Mean and the Variance 

The formulas for m and CJ
2 are the starting point for all of probability and statistics. There 

are three different cases to keep straight: sample values Xi , expected values (discrete Pi), 
and a range of expected values ( continuous p( x) ). Here are the mean and the variance: 

Samples X 1 to X N 

n possible outputs

with probabilities Pi 

m= 
X1+···+XN 

S2 = 
(X1-m) 2 +···+(XN-m) 2 

N N-1
n 

m = I:: PiXi 

1 

Range of outputs 
m=fxp(x)dx 

with probability density 

n 
a2 = I:: Pi (Xi - m)2 

1 

a2 = f (x -m) 2p(x)dx 

A natural question: Why are there no probabilities p on the first line? How can these 
formulas be parallel ? Answer : We expect a fraction Pi of the samples to be X = Xi . If 
this is exactly true, X = Xi is repeated PiN times. Then lines 1 and 2 give the same m. 

When we work with samples, we don't know the Pi · We just include each output X 
as often as it comes. We get the "empirical" mean instead of the expected mean. 

Problem Set 12.1 

1 Add 7 to every output x. What happens to the mean and the variance? 
What are the new sample mean, the new expected mean, and the new variance? 

2 We know: ½ of all integers are divisible by 3 and t of integers are divisible by 7. 
What fraction of integers will be divisible by 3 or 7 or both ? 

3 Suppose you sample from the numbers 1 to 1000 with equal probabilities 1/1000. 
What are the probabilities p0 to pg that the last digit of your sample is 0, ... , 9? 
What is the expected mean m of that last digit? What is its variance CJ2 ? 

4 Sample again from 1 to 1000 but look at the last digit of the sample squared. That 
square could end with x = 0, 1, 4, 5, 6, or 9 .  What are the probabilities Po,Pi, p4,p5, 
p6, pg? What are the ( expected) mean m and variance CJ

2 of that number x? 
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5 (a little tricky) Sample again from 1 to 1000 with equal probabilities and let x be the 
first digit (x = l if the number is 15). What are the probabilities p1 to p9 (adding to 1) of x = l, ... , 9? What are the mean and variance of x? 

6 Suppose you have N = 4 samples 157,312, 696, 602 in Problem 5. What are the first digits x1 to x4 of the squares? What is the sample meanµ? What is the sample variance S2 ? Remember to divide by N -1 = 3 and not N = 4. 
7 Equation (4) gave a second equivalent form for 82 (the variance using samples):1 1 S2 = -- sum of (xi -m) 2 = -- [(sum of x;) -Nm2]. 

N-l N -1 Verify the matching identity for the expected variance u2 (using m = I; Pi Xi): o-2 
= sum of p; (x; - rn) 2 

= (sum of Pix:} -rn2. 

8 If all 24 samples from a population produce the same age x = 20, what are the sample meanµ and the sample variance 82 ? What if x = 20 or 21, 12 times each ? 
9 Computer experiment as on page 541: Find the average A1000000 of a million random 0-1 samples! What is X = (AN - ½) /2vN? 
10 The probability Pi to get i heads in N coin flips is the binomial number bi = ( �) 

divided by 2N. The bi add to (1 + 1 )N = 2N so the probabilities Pi add to l. 
(1 l)N 1 . N! Po+···+ PN = '.2 + 

2 
= 2N 

( bo + · · · + bN ) with bi = i! (N _ i)! 
24 24 24 1 N= 4 leads tob0 = 24

, b1 = (l)(6
) = 4, b2 = (2)(2) = 6, Pi = 16 

(1,4, 6,4, 1).
Notice bi = bN-i · Problem: Confirm that the mean m = 0p0+· · ·+NpN equals If.

11 For any function f ( x) the expected value is E[f] = 'I', Pi f (Xi) or J p( x) f ( x) dx(discrete probability or continuous probability). Suppose the mean is E[x] = m andthe variance is E[(x -m) 2 ] = u2 . Whatis E[x2]? 
12 Show that the standard normal distribution p( x) has total probability J p( x) dx = las required. A famous trick multiplies J p( x) dx by J p(y) dy and computes theintegral over all x and ally (-oo to oo). The trick is to replace dx dy in that doubleintegral by r dr d0 (polar coordinates with x2 

+ y2 = r2
). Explain each step: 

00 

21r jp(x) dx 
-00 

00 00 27f 00 

j�(y)dy = fje-(x2
+Y

2 ll2 dxdy = J Je-r2 12rdrd0 = 2-rr. 
-oo -oo 0 = 0 r = 0 
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12.2 Covariance Matrices and Joint Probabilities 

Linear algebra enters when we run M different experiments at once. We might measure 
age and height and weight (M = 3 measurements of N people). Each experiment 
has its own mean value. So we have a vector m = (m1, m2, m3) containing the M
mean values. Those could be sample means of age and height and weight. Or m1, m2, m3 
could be expected values of age, height, weight based on known probabilities. 

A matrix becomes involved when we look at variances. Each experiment will have a 
sample variance S; or an expected a} = E [(xi - mi) 2 ] based on the squared distance 
from its mean. Those M numbers O"r, ... , O"i will go on the main diagonal of the matrix. 
So far we have made no connection between the M parallel experiments. They measure 
M different random variables, but the experiments are not necessarily independent! 

If we measure age and height and weight (a, h, w) for children, the results will be 
strongly correlated. Older children are generally taller and heavier. Suppose the means 
ma , mh, mw are known. Then O"�, O"�, O"! are the separate variances in age, height, weight. 
The new numbers are the covariances like u ah, where age multiplies height.

Covariance u ah = E [ ( age - mean age) (height - mean height)]. (1) 

This definition needs a close look. To compute O"ah, it is not enough to know the 
probability of each age and the probability of each height. We have to know the joint
probability of each pair (age and height). This is because age is connected to height. 

Pah = probability that a random child has age = a and height = h: both at once 

Pij = probability that experiment 1 produces Xi and experiment 2 produces Yj 
Suppose experiment 1 (age) has mean m1. Experiment 2 (height) has mean m2. The 
covariance in (1) between experiments 1 and 2 looks at all pairs of ages Xi, heights y1: 

Covariance U12 = I: I: Pij(Xi - m1)(Yj - m2) 
all i, j

(2) 

To capture this idea of "joint probability Pij" we begin with two small examples. 

Example 1 Flip two coins separately. With 1 for heads and O for tails, the results can be 
(1, 1) or (1, 0) or (0, 1) or (0, 0). Those four outcomes all have probability p11 = p1o = 
Poi= Poo = ¼- Independent experiments have Prob of ( i, j) = (Prob of i) (Prob of j). 

Example 2 Glue the coins together, facing the same way. The only possibilities are 
(1, 1) and (0, 0). Those have probabilities ½ and ½- The probabilities p10 and p01 are zero. 
(1, 0) and (0, 1) won't happen because the coins stick together: both heads or both tails. 

Probability matrices 
for Examples 1 and 2 P=[! il· 
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Let me stay longer with P, to show it in good matrix notation. The matrix shows the prob­
ability Pij of each pair (Xi, Yj )-starting with ( x1, Y1) = (heads, heads) and ( x1, Y2) 

(heads, tails). Notice the row sums Pi and column sums Pj and the total sum = 1.

Probability matrix p = [ Pn P12 ] 
Pn + P12 = P1 

( 
fir�t 

)
P21 P22 P21 + P22 = P2 com 

(second coin) column sums P1 P2 4 entries add to 1

Those numbers p1, P2 and Pi, P2 are called the marginals of the matrix P:

Pl = P11 + P12 = chance of heads from coin 1 (coin 2 can be heads or tails)
Pi = p11 + p21 = chance of heads from coin 2 (coin 1 can be heads or tails)

Example 1 showed independent variables. Every probability Pij equals Pi times Pj(½ times ½ gave Pij = ¼ in that example). In this case the covariance u12 will be zero.
Heads or tails from the first coin gave no information about the second coin. 

Zero covariance u12 

for independent trials O ] d' 1 . . 2 = iagona covariance matrix.
O' 2 

Independent experiments have 0'12 = 0 because every Pij = (Pi) (Pj) in equation (2):

The glued coins show perfect correlation. Heads on one means heads on the other.
The covariance 0'12 moves from O to 0"10'2 = ¼-this is the largest possible value of 0'12 : 

1 
Means= -

2 0'12 = � ( 1 - �) ( 1 - �) + 0 + 0 + � ( 0 - �) ( 0 - �) = ¾ 

Heads or tails from coin 1 gives complete information about heads or tails from coin 2 :

Glued coins give largest possible covariances
Singular covariance matrix: determinant = 0

Always Uiu� � ui
2 , Thus 0'12 is between -0"10"2 and 0"10"2. The covariance matrix V

is positive definite (or in this singular case of glued coins, V is positive semidefinite).
That is an important fact about M by M covariance matrices for M experiments. 

Note that the sample covariance matrix S from N trials is certainly semidefinite.
Every new sample X = (age, height, weight) contributes to the sample mean X and to S.

Each term (Xi - X)(Xi - X)T is positive semidefinite and we just add to reach S: 

x 
= _x_1_+_·_·_· _+_x_N_ 

N 

- -T - -T (X1 - X)(X1 - X) + · · · + (XN - X)(XN - X) 
S =

N -1 
(3)
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The Covariance Matrix V is Positive Semidefinite

Come back to the expected covariance o-12 between two experiments 1 and 2 (two coins) : 

expected value of [ ( output l - mean l) times ( output 2 - mean 2)] 
L L Pij (xi - m1) (yj - m2). 
all i, j

(4) 

Pij 2". 0 is the probability of seeing output Xi in experiment 1 and y1 in experiment 2. 
Some pair of outputs must appear. Therefore the N2 probabilities Pij add to 1. 

Total probability (all pairs) is 1 LLPij = l. 
all i, j

(5) 

Here is another fact we need. Fix on one particular output Xi in experiment 1. Allow 
all outputs y1 in experiment 2. Add the probabilities of (xi, Y1), (xi, Y2), ... , (xi, Yn) : 

Row sum Pi of P L Pij = probability Pi of xi in experiment 1. (6) 
j=l 

Some y1 must happen in experiment 2 ! Whether the two coins are completely separate or 
glued together, we still get ½ for the probability PH =PHH+ PHT that coin 1 is heads: 

1 1 1 
(separate) PHH+ PHT = - + - = -4 4 2 

1 1 
(glued) PHH+ PHT = - + 0 = -.

2 2 
That basic reasoning allows us to write one matrix formula that includes the covariance 
o-12 along with the separate variances o-f and o-� for experiment 1 and experiment 2. 
We get the whole covariance matrix V by adding the matrices ¼1 for each pair ( i, j) : 

Covariance matrix 
V = :E :E ¼j 

Off the diagonal, this is equation (2) for the covariance o-12. On the diagonal, we are 
getting the ordinary variances o-f and d. I will show in detail how we get V11 = o-f by 
using equation (6). Allowing all j just leaves the probability Pi of xi in experiment 1 :  

V11 = L LPij(Xi - m1)2 = L (probability ofxi) (xi - m1)2 = a-r (8) 
all i,j all i 

Please look at that twice. It is the key to producing the whole covariance matrix by 
one formula (7). The beauty of that formula is that it combines 2 by 2 matrices ¼1 . 
And the matrix ¼1 in (7) for each pair of outcomes i, j is positive semidefinite:

¼1 has diagonal entries Pi1 (xi-m1)2 2". 0 and Pi1 (y1-m2)2 2". 0 and det(¼1) = 0.
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That matrix ¼j has rank 1. Equation (7) multiplies Pij times column U times row UT : 

(9) 

Every matrix UU
T is positive semidefinite. So the whole matrix V (combining these 

matrices UUT with weights Pij � 0) is at least semidefinite-and probably V is definite. 

The covariance matrix V is positive definite unless the experiments are dependent. 

Now we move from two variables x and y to M variables like age-height-weight. 
The output from each trial is a vector X with M components. (Each child has an age­
height-weight vector with 3 components.) The covariance matrix V is now M by M.

V is created from the output vectors X and their average X = E [ X] 

Covariance matrix V = E [ (X - X) (X - X) T] (10) 

Remember that X XT and XX T = (column) (row) are M by M matrices. 
For M = l (one variable) you see that Xis the mean m and Vis 1J

2 (Section 12.1).
For M = 2 (two coins) you see that Xis (m 1,m2

) and V matches equation (10). The 
expectation E always adds up outputs times their probabilities. For age-height-weight 
the output could be X = (5 years, 31 inches, 48 pounds) and its probability is P5,31,48. 

Now comes a new idea. Take any linear combination c
T X = c1X1 + · · · + cMXM. 

With c = (6, 2, 5) this would be c
T X = 6 (age)+ 2 (height)+ 5 (weight). By linearity 

we know that its expected value E [cT X] is cTE [X] = cT X :  

E [cT X] = cTE [X] = 6 (expected age)+ 2 (expected height)+ 5 (expected weight). 

More than that, we also know the variance 1J2 of that number c TX: 

Variance of cT X=E [(cT X-cT X)(cT X-cT X)T] 

=cTE [(X-X)(X-X)T]c=cT Vc! 
(11) 

Now the key point: The variance of cT X can never be negative. So cT V c 2'. 0. 
The covariance matrix Vis therefore positive semidefinite by the energy test cT V c 2'. 0. 

Covariance matrices V open up the link between probability and linear algebra: 
V equals QAQT with eigenvalues Ai � 0 and orthonormal eigenvectors q

1 
to qM. 

Diagonalizing the covariance matrix means finding M independent

experiments as combinations of the original M experiments. 
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Confession I am not entirely happy with that proof based on cT V c ;:::: 0. The expectation 
symbol Eis burying the key idea of joint probability. Allow me to show directly that Vis 
positive semidefinite (at least for the age-height-weight example). The proof is simply that 
V is the sum of the joint probability Pahw of each combination (age, height, weight)

times the positive semidefinite matrix UUT . Here U is X - X : 

V = L Pahw u uT with 
all a,h,w 

[ 
age l [ mean age l 

U = hei�ht - mean hei�ht
weight mean weight 

This is exactly like the 2 by 2 coin flip matrix V in equation (7). Now M = 3. 

(12) 

The value of the expectation symbol E is that it also allows pdf's (probability density 
functions like p(x, y, z) for continuous random variables x and y and z). If we allow all 
numbers as ages and heights and weights, instead of age i = 0, 1, 2, 3 ... , then we need 
p( x, y, z) instead of Pij k. The sums in this section of the book would all change to integrals. 
But we still have V = E [UUT ] : 

Covariance matrix V = j j j p( x, y, z) UUT dx dy dz
[X -Xi

with U = y - � . (13) 
z-z 

Always J J J p = 1. Examples 1-2 emphasized how p can give diagonal V or singular V: 
Independent variables x, y, z p(x, y, z) = P1 (x) P2(Y) p3(z). 
Dependent variables x, y, z p(x, y, z) = 0 except when ex+ dy + ez = 0. 

The Mean and Variance of z = x + y

Start with the sample mean. We have N samples of x. Their mean(= average) is mx. 
We also have N samples of y and their mean is my. The sample mean of z = x + y 
is clearly mz = mx + my : 

Mean of sum = Sum of means (14) 

Nice to see something that simple. The expected mean of z = x + y doesn't look so 
simple, but it must come out as E[z] = E[x] + E[y]. Here is one way to see this. 

The joint probability of the pair (Xi, yj) is Pij. Its value depends on whether the exper­
iments are independent, which we don't know. But for the mean of the sum z = x + y, 
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dependence or independence of x and y doesn't matter. Expected values still add: 

E[x + y] = L LPij (Xi + Yj) = L LPijXi + L LPijYj · (15) 
j j j 

All the sums go from 1 to N. We can add in any order. For the first term on the right side, 
add the Pij along row i of the probability matrix P to get Pi· That double sum gives E[x] : 

LLPijXi = L(Pil + · · · + PiN)Xi = LPiXi = E[x]. 
j 

For the last term, add Pij down column j of the matrix to get the probability Pj of Yj. 
Those pairs (x1, Yj) and (x2, Yj) and ... and (xN, Yj) are all the ways to produce Yj : 

L LPijYj = L(Plj + ... + PNj)Yj = L Pjyj = E[y]. 
j j j 

Now equation (15) says that E[x + y] = E[x] + E[y]. 
What about the variance of z = x + y? The joint probabilities Pij and the covariance 

CTxy will be involved. Let me separate the variance of x + y into three simple pieces: 

u; = L LPij (Xi + Yj - mx - my)2 

= L LPij (Xi - mx)2 
+ L LPij (Yj - my)2 

+ 2 L LPij (Xi - mx) (yj - my) 
The first piece is u;. The second piece is u�. The last piece is 2u rey. 

The variance of z = x + y is u; = u; + ui + 2urey
• (16) 

The Covariance Matrix for Z = AX 

Here is a good way to see u; when z = x + y. Think of (x, y) as a column vector X. 
Think of the 1 by 2 matrix A = [ 1 1 ] multiplying that vector X. Then AX is the sum 
z = x + y. The variance u; in equation (16) goes into matrix notation as 

which is u2 
- AV AT 

z-

You can see that u; = AV AT in (17) agrees with u� + u� + 2uxy in (16). 

(17) 

Now for the main point. The vector X could have M components corning from M
experiments (instead of only 2). Those experiments will have an M by M covariance 
matrix Vx. The matrix A could be K by M. Then AX is a vector with K combinations 
of the M outputs (instead of 1 combination x + y of 2 outputs). 

That vector Z = AX of length K has a K by K covariance matrix V z. Then the 
great rule for covariance matrices-of which equation (17) was only a 1 by 2 example­
is this beautiful formula: Covariance matrix of AX is A (covariance matrix of X) AT : 

The covariance matrix of Z = AX is V z = AV X A
T (18) 

To me, this neat formula shows the beauty of matrix multiplication. I won't prove this 
formula, just admire it. It is constantly used in applications-corning in Section 12.3. 
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The Correlation p

Correlation Pxy is closely related to covariance O"xy· They both measure dependence or 
independence. Start by rescaling or "standardizing" the random variables x and y 
The new X = x /a"' and Y = y / a y have variance ai = a-} = 1. This is just like
dividing a vector v by its length to produce a unit vector v / I Iv 11 of length 1. 

The correlation of x and y is the covariance of X and Y. If the original covariance
of x and y was O"xy, then rescaling to X and Y will divide by O"x and O"y: 

Uxy 
X y 

Correlation Pxy 
= -- = covariance of - and -

Urr,U
y 

Ux U
y 

Always -1 � Pxy � 1

Zero covariance gives zero correlation. Independent random variables produce Pxy = 0. 

We know that always O"�Y ::;: O"�O"� (the covariance matrix V is at least positive
semidefinite). Then p;,Y � 1. Correlation near p = + l means strong dependence in 
the same direction: often voting the same. Negative correlation means that y tends to be 
below its mean when x is above its mean: Voting in opposite directions. 

Example 3 Suppose that y is just -x. A coin flip has outputs x = 0 or 1. The same flip 
has outputs y = 0 or -1. The mean mx is ½ for a fair coin, and m

y 
is -½. The covariance 

is O"xy = -O"xO"y. The correlation divides by O"xO"y to get Pxy = -1. In this case the 
correlation matrix R has determinant zero (singular and only semidefinite): 

Correlation matrix R - [ 
P

�
y 

P
? ] R= [ 1

-1 

-1 ] 
1 wheny = -x

R always has l's on the diagonal because we normalized to O"x = O"y = l. R is the 
correlation matrix for x and y, and the covariance matrix for X = x / O" x and Y = y / O" y. 

That number Pxy is also called the Pearson coefficient. 

Example 4 Suppose the random variables x, y, z are independent. What matrix is R?

Answer R is the identity matrix. All three correlations Pxx, Pyy, Pzz are 1 by definition. 
All three cross-correlations Pxy, Pxz, Pyz are zero by independence. 

The correlation matrix R comes from the covariance matrix V, when we rescale every 
row and every column. Divide each row i and column i by the ith standard deviation O"i-

(a) R = DVD for the diagonal matrix D = diag [1/ 0"1, ... , 1/ O"Af].

(b) If covariance V is positive definite, correlation R = DVD is also positive definite.
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• WORKED EXAMPLES • 

12.2 A Suppose x and y are independent random variables with mean O and variance 1. 
Then the covariance matrix Vx for X = (x, y) is the 2 by 2 identity matrix. What are the 
mean mz and the covariance matrix Vz for the 3-component vector Z = (x, y, ax+ by)? 

Solution 

Z is connected to X by A 
X 

y 
ax+by l [� :][;] = AX. 

The vector m x contains the means of the M components of X. The vector m z contains 
the means of the K components of Z = AX. The matrix connection between the means 
of X and Z has to be linear: mz = A mx. The mean of ax+ by is amx + bm

y
. 

The covariance matrix for Z is Vz = AAT , when Vx is the 2 by 2 identity matrix: 

covariance matrix for 
Vz

= 

Z = (x,y,ax + by) 
0 
1 

0 

1 
b 

a l b 
a2 + b2 

Interpretation: x and y are independent so axy 
= 0. Then the covariance of x with 

ax + by is a and the covariance of y with ax + by is b. Those just come from the two 
independent parts of ax+ by. Finally, equation (18) gives the variance of ax+ by: 

Use Vz = AVxAT 2 2 2 2 2 b2 0 aax+by 
= aax + aby 

+ aax ,by 
= a + + . 

The 3 by 3 matrix Vz is singular. Its determinant is a2 
+ b2 - a2 - b2 

= 
0. The third

component z =ax+ by is completely dependent on x and y. The rank of Vz is only 2. 

GPS Example The signal from a GPS satellite includes its departure time. The receiver 
clock gives the arrival time. The receiver multiplies the travel time by the speed of light. 
Then it knows the distance from that satellite. Distances from four or more satellites 
pinpoint the receiver position (using least squares !). 

One problem: The speed of light changes in the ionosphere. But the correction 
will be almost the same for all nearby receivers. If one receiver stays in a known position, 
we can take differences from that position. Differential GPS reduces the error variance: 

Difference matrix 

A=[l -1] 

Covariance matrix 

Vz = AVxAT 
Vz = [ 1 -1 l [ ar 

a12 

= uf - 2u12 + u�
] [ -� ] 

Errors in the speed of light are gone. Then centimeter positioning accuracy is achievable. 
(The key ideas are on page 320 of Algorithms for Global Positioning by Borre and Strang.) 
The GPS world is all about time and space and amazing accuracy. 
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Problem Set 12.2 

1 (a) Compute the variance a-2 when the coin flip probabilities are p and 1 - p
(tails = 0, heads= 1). 

(b) The sum of N independent flips (0 or 1) is the count of heads after N tries.
The rule ( 16-17-18) for the variance of a sum gives a-2 = __ . 

2 What is the covariance O"kz between the results x1, ... , Xn of Experiment 3 and the
results y1, ... , Yn of Experiment 5? Your formula will look like a-12 in equation (2).
Then the ( 3, 5) and (5, 3) entries of the covariance matrix V are a-35 = a-53. 

3 For M = 3 experiments, the variance-covariance matrix V will be 3 by 3. There
will be a probability Pijk that the three outputs are Xi and Yj and Zk- Write down a
formula like equation (7) for the matrix V. 

4 What is the covariance matrix V for M = 3 independent experiments with means
m1, m2, m3 and variances a-r, (T�, O"§ ? 

Problems 5-9 are about the conditional probability that Y = y3 when we know X = Xi. 

Notation: Prob (Y = y3 IX = xi) = probability of the outcome Yj given that X = Xi.

Example 1 Coin 1 is glued to coin 2. Then Prob (Y = heads when X = heads) is 1.
Example 2 Independent coin flips : X gives no information about Y. Useless to know X.

Then Prob (Y = heads IX = heads) is the same as Prob (Y = heads). 

5 Explain the sum rule of conditional probability :
Prob(Y = Yj) = sum over all outputs xi ofProb(Y = YjlX = Xi)-

6 Then by n matrix P contains joint probabilities Pij = Prob ( X = Xi and Y = Yj).

p· Pi1·Explain why the conditional Prob (Y = Yj IX = xi) equals '1 

Pi1 + · · · + Pin Pi

7 For this joint probability matrix with Prob (x1, y2) = 0.3, find Prob (Y2 lx1) and Prob (x1).

p = [ P11 P12 ] = [ 0.1 0.3 ] 
P21 P22 0.2 0.4 

The entries Pij add to 1.
Some i, j must happen. 

8 Explain the product rule of conditional probability:

Pij = Prob (X = Xi and Y = Yj) equals Prob (Y = YjlX = Xi) times Prob (X = Xi)-

9 Derive this Bayes Theorem for Pij from the product rule in Problem 8:

P b(y-. dX- ·)_Prob(X=xilY=yj)Prob(Y=yj)ro - y
1 

an - x, -
Prob (X = xi) 

"Bayesians" use prior information. "Frequentists" only use sampling information.
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12.3 Multivariate Gaussian and Weighted Least Squares 

The normal probability density p(x) (the Gaussian) depends on only two numbers:

Mean m and variance a-2 (1)

The graph of p(x) is a bell-shaped curve centered at x = m. The continuous variable x
can be anywhere between -oo and oo. With probability close to i, that random x will lie
between m - r, and m + r, (less than one standard deviation r, from its mean value m).

00 

J p(x)dx = 1

-oo

m + u 1 

and J p(x) dx = � J e-X 2 12 dX:::::; �-

m - u -1

(2)

That integral has a change of variables from x to X ( x - m) / r,. This simplifies the
exponent to -X 2 / 2 and it simplifies the limits of integration to -1 and 1. Even the 1 / r,
from p disappears outside the integral because dX equals dx / r,. Every Gaussian turns
into a standard Gaussian p(X) with mean m = 0 and variance r,2 = 1 .  Just call it p(x):

The standard normal distribution N(O, 1) has p(x) = -
1
- e-x

2

/2.
v'2rr 

(3) 

Integrating p(x) from -oo to x gives the cumulative distribution F(x): the probability
that a random sample is below x. That probability will be F = ½ at x = 0 (the mean). 

Two-dimensional Gaussians 

Now we have M = 2 Gaussian random variables x and y. They have means m1 and m2. 

They have variances <5f and <5§. If they are independent, then their probability density
p( x, y) is just p1 ( x) times p2 (y). Multiply probabilities when variables are independent:

Independent x and y 

The covariance of x and y will be a-12 = 0. The covariance matrix V will be diago­
nal. The variances <5f and <5§ are always on the main diagonal of V. The exponent in
p(x, y) is just the sum of the x-exponent and they-exponent. Good to notice that the two
exponents can be combined into -½ ( x - m? v- 1 ( x - m) with v- 1 in the middle:

(5)
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Non-independent x and y 

We are ready to give up independence. The exponent (5) with v- 1 is still correct when Vis 
no longer a diagonal matrix. Now the Gaussian depends on a vector m and a matrix V.

When M = 2, the first variable x may give partial information about the second 
variable y (and vice versa). Maybe part of y is decided by x and part is truly independent. 
It is the M by M covariance matrix V that accounts for dependencies between the M 
variables x = x1, ... , XM. Its inverse v- 1 goes into p(x):

Multivariate Gaussian 

probability distribution 

The vectors x = ( x1, ... , x M) and m = ( m1, ... , m M) contain the random variables and 
their means. The M square roots of 21r and the determinant of V are included to make the 
total probability equal to 1. Let me check that by linear algebra. I use the eigenvalues >. and 
orthonormal eigenvectors q of the symmetric matrix V = QAQT. So v-

1 = QA- 1 QT : 

X=x-m 

Notice! The combinations Y = QT X = QT ( x - m) are statistically independent. 
Their covariance matrix A is diagonal.

This step of diagonalizing V by its eigenvector matrix Q is the same as "uncorrelating" 
the random variables. Covariances are zero for the new variables X 1, ... X m. This is the 
point where linear algebra helps calculus to compute multidimensional integrals. 

The integral of p( x) is not changed when we center the variable x by subtracting m
to reach X, and rotate that variable to reach Y = QT X. The matrix A is diagonal! 
So the integral we want splits into M separate one-dimensional integrals that we know : 

j j e_yTr 1Yf2dY � (l ,-yl/2>., dy,) ... (l e-Y/.,/2>.M dyM)

= ( �) ... ( J21r>.M) = ( �)
M 

v'detV. (7) 

The determinant of V (also the determinant of A) is the product (>- 1
) ... (>.M) of 

the eigenvalues. Then (7) gives the correct number to divide by so that p( x 1 , ... , x M)
in equation (6) has integral= 1 as desired. 

The mean and variance of p( x) are also M-dimensional integrals. The same idea of 
diagonalizing V by its eigenvectors and introducing Y = QT X will find those integrals : 

Vector m of means J ... J xp(x) dx = (m1,m2, ... ) = m (8) 

Covariance matrix V J ... J (x - m)p(x)(x - m) T dx = V. (9) 

Conclusion: Formula (6) for the probability density p(x) has all the properties we want. 
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Weighted Least Squares 

In Chapter 4, least squares started from an unsolvable system Ax = b. We chose x to 
minimize the error 11 b - Ax I I 

2
. That led us to the least squares equation AT Ax = AT b.

The best Ax is the projection of b onto the column space of A. But is this squared 
distance E = 11 b - Ax 112 the right error measure to minimize ? 

If the measurement errors in b are independent random variables, with mean m = 0 
and variance CJ2 = 1 and a normal distribution, Gauss would say yes: Use least squares.

If the errors are not independent or their variances are not equal. Gauss would say no : 
Use weighted least squares. This section will show that the good measure of error is 
E = ( b - Ax) Ty-1 ( b - Ax). The equation for the best x uses the covariance matrix V :

Weighted least squares (10) 

The most important examples have m independent errors in b. Those errors have 
variances CJi, ... , CJ;,. By independence, V is a diagonal matrix. The good weights 
1 / CJi, ... , 1 / CJ;, come from v- 1

. We are weighting the errors in b to have variance = 1 : 

Weighted least squares 

Independent errors in b 
Minimize E = 

f, (b -:x); 
i=l (Ji 

(11) 

By weighting the errors, we are "whitening" the noise. White noise is a quick description 
of independent errors based on the standard Gaussian N ( 0, 1) with mean zero and CJ2 = 1. 

Let me write down the steps to equations (10) and (11) for the best x: 
Start with Ax = b (m equations, n unknowns, m > n, no solution) 

Each right side bi has mean zero and variance er;. The bi are independent. 

Divide the ith equation by CJi to have variance = 1 for every bi/ CJi 

That division turns Ax = b into v- 1/2 Ax = v-
1 !2 b with v-1/2 = diag (1/ CJ1, ... , 1/ Cim)

Ordinary least squares on those weighted equations has A--+ v-112 A and b--+ v-
112b

Because of 1/ CJ2 in v- 1, more reliable equations (smaller CI) get heavier weights. This is
the main point of weighted least squares. 

Those diagonal weightings (uncoupled equations) are the most frequent and the sim­
plest. They apply to independent errors in the bi. When these measurement errors are not 
independent, Vis no longer diagonal-but (12) is still the correct weighted equation. 

In practice, finding all the covariances can be serious work. Diagonal V is simpler. 
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The Variance in the Estimated x 

One more point : Often the important question is not the best x for one particular set of 
measurements b. This is only one sample ! The real goal is to know the reliability of the 
whole experiment. That is measured (as reliability always is) by the variance in the

estimate x. First, zero mean in b gives zero mean in x. Then the formula connecting 
variance V in the inputs b to variance W in the outputs x turns out to be beautiful: 

Variance-covariance matrixWforx E[(x-x)(x-x?] = (AT V- 1A)- 1. (13) 

That smallest possible variance comes from the best possible weighting, which is v- 1
. 

This key formula is a perfect application of Section 12.2. If b has covariance matrix

V, then x = Lb has covariance matrix LV LT . Equation (12) above tells us that Lis 
(AT v- 1 A)- 1 AT v- 1

. Now substitute this into LV LT and watch equation (13) appear: 

This is the covariance W of the output, our best estimate x. It is time for examples. 

Example 1 Suppose a doctor measures your heart rate x three times ( m = 3, n = 1) : 

is Ax = b with A = 
[ 

1

i l [ 

0"2 

and V = i 0
a§ 
0 

The variances could be af - / 9 and a§ = 1 / 4 and a� = 1. You are getting more nervous 
as measurements are taken: ; is less reliable than b2 and bi . All three measurements 
contain some information, so they all go into the best (weighted) estimate x:

3x = 3b1 
v- 1 !2 Ax= v- 1!2 b is 2x = 2b2 leading to AT v- 1 Ax= AT v- 1 b

Ix= lb3 

[ 1 1 [ 1 1 

X= is a weighted average of b1 , b2 , b3 
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Most weight is on b1 since its variance o-1 is smallest. The variance of x has the beautifulformula W = (AT v-1 A)-1 = 1/14: 

Variance of x

1
'T 4 ,][:Jr 

1 
14 is smaller than 1

9
The BLUE theorem of Gauss (proved on the website) says that our x = Lb is the best

linear unbiased estimate of the solution to Ax = b. Any other unbiased choice x* = L * bhas greater variance than x. All unbiased choices have L * A = I so that an exact Ax = bwill produce the right answer x = L * b = L * Ax. 
Note. I must add that there are reasons not to minimize squared errors in the first place.
One reason : This x often has many small components. The squares of small numbers 
are very small, and they appear when we minimize. It is easier to make sense of sparsevectors-only a few nonzeros. Statisticians often prefer to minimize unsquared errors:

the sum of l(b - Ax)il- This error measure is L 1 instead of L2
. Because of theabsolute values, the equation for x becomes nonlinear (it is actually piecewise linear).

Fast new algorithms are computing a sparse x quickly and the future may belong to L 1
. 

The Kalman Filter 

The "Kalman filter" is the great algorithm in dynamic least squares. That word dynamicmeans that new measurements bk keep coming. So the best estimate Xk keeps changing(based on all of bo , ... , bk). More than that, the matrix A is also changing. So x2 will be
our best least squares estimate of the latest solution x k to the whole history of observation

equations and update equations (state equations) up to time 2: 

Aoxo = bo (14) 

The Kalman idea is to introduce one equation at a time. There will be errors in eachequation. With every new equation, we update the best estimate Xk for the current Xk. But
history is not forgotten! This new estimate Xk uses all the past observations b0 to bk-I and
all the state equations Xnew = Fold Xo!d· A large and growing least squares problem. 

One more important point. Each least squares equation is weighted using thecovariance matrix Vi for the error in bk. There is even a covariance matrix Ck for
errors in the update equations Xk+I = FkXk - The best x2 then depends on b0 , b1 , b2 and
Vo , Vi, Vi and C1, C2. The good way to write Xk is as an update to the previous Xk-l·

Let me concentrate on a simplified problem, without the matrices Fk and the covari­
ances Ck. We are estimating the same true x at every step. How do we get x1 from x0 ?

OLD Ao xo = bo leads to the weighted equation AJ' v
0
-

1 Ao x0 = AJ' v
0
-

1 
b0 . (15)

NEW [ ��] x1 = [ :�] leads to the following weighted equation for x1 : 
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[ AJ [ AJ 

Yes, we could just solve that new problem and forget the old one. But the old solution x0 
needed work that we hope to reuse in x1. What we look for is an update to x0 : 

Kalman update gives x1 from xo (17) 

The update correction is the mismatch b1 -A1x0 between the old state x0 and the new 
measurements b1-multiplied by the Kalman gain matrix K1. The formula for K1 comes 
from comparing the solutions x1 and x0 to (15) and (16). And when we update xo to x1 
based on new data b1 , we also update the covariance matrix W0 to W1 . Remember 
Wo = (AJ v0

-
1 Ao)-1 from equation (13). Update its inverse to w1-

1
: 

Covariance W1 of errors in x1 

Kalman gain matrix K 1 

w
l
- l = W

o
- l + AI vl- l A1 

Ki = W1 AI v1-
1

(18) 

(19) 

This is the heart of the Kalman filter. Notice the importance of the Wk. Those matrices 
measure the reliability of the whole process, where the vector Xk estimates the current state 
based on the particular measurements bo to bk. 

Whole chapters and whole books are written to explain the dynamic Kalman filter, 
when the states Xk are also changing (based on the matrices Fk)- There is a prediction of 
Xk using F, followed by a correction using the new data b. Perhaps best to stop here. 

This page was about recursive least squares: adding new data bk and updating both 
x and W : the best current estimate based on all the data, and its covariance matrix. 

Problem Set 12.3 

1 Two measurements of the same variable x give two equations x = b1 and x = b2. 
Suppose the means are zero and the variances are o-f and o-�, with independent 
errors: V is diagonal with entries o-f and o-�. Write the two equations as Ax = b

(A is 2 by 1). As in the text Example 1, find this best estimate x based on b1 and b2 : 

��T 1 1 
( 

)-1 

E [ x x ] = 
o-r 

+ (l� 

2 (a) In Problem 1, suppose the second measurement b2 becomes super-exact and its
variance o-2 -+ 0. What is the best estimate x when o-2 reaches zero?

(b) The opposite case has o-2 -+ oo and no information in b2. What is now the best
estimate x based on bi and b2 ?
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3 If x and y are independent with probabilities p1 ( x) and p2 (y), then p( x, y) =

p1 ( x) p2 (y). By separating double integrals into products of single integrals 
(-oo to oo) show that 

jjp(x,y)dxdy=l and j J (x + y) p(x, y) dx dy = rn1 + rn2. 

4 Continue Problem 3 for independent x, y to show that p( x, y) = p1 ( x) p2 (y) has 

J J (x - mi)2 p(x, y) dxdy = O"i j j (x - m1)(y - m2) p(x, y) dxdy = 0. 

So the 2 by 2 covariance matrix V is diagonal and its entries are -� . 

5 Show that the inverse of a 2 by 2 covariance matrix V is 

6 

0"12 

0'2 

2 l-

1 
with correlation 
p = 0"12 / 0"10"2 · 

This produces the exponent -( x - rn) T v- 1 ( x - rn) in a 2-variable Gaussian. 

Suppose Xk is the average of b1, ... , bk. A new measurement bk+l arrives and we 
want the new average x k+ 1. The Kalman update equation ( 17) is 

New average 
� � 1 ( �)Xk+l = Xk + -

k
-- bk+l - Xk 
+1 

Verify that Xk+l is the correct average of b1 ... , bk+l· 

7 Also check the update equation (18) for the variance Wk+l = 0"
2 /(k + 1) of this 

average x assuming that Wk = 0'2 / k and bk+1 has variance V = 0'2 . 

8 (Steady model) Problems 6-7 were static least squares. All the sample averages 
Xk were estimates of the same x. To make the Kalman filter dynamic, include also 
a state equation Xk+l = Fxk with its own error variance s2

. The dynamic least 
squares problem allows x to "drift" as k increases : 

[ ) :] [ :: ] [ ! ] "°lh variances [ ;: ]
With F = l, divide both sides of those three equations by O", s, and O". Find Xo 
and Xi by least squares, which gives more weight to the recent b1. The Kalman 
filter is developed in Algorithms for Global Positioning (Borre and Strang, Wellesley­
Cambridge Press). 
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Change in A -1 from a Change in A

This final page connects the beginning of the book (inverses and rank one matrices) with 
the end of the book (dynamic least squares and filters). Begin with this basic formula: 

T 

The inverse of M = I -uvT is M- 1 =I+
uv 

1-vTu
T 

The quickest proof is MM- 1 =I -uv T 
+ (1-uvT) 

uv
T 

= I -uvT 
+ uvT =I.

l-v u

M is not invertible ifv Tu=l(thenMu=O).Herev T =u T = [ 1 1 1): 

Example The inverse of M = I - [ i i i ] is M- 1 = I+ -1- [ i i i ] 
111 1-3 111 

But we don't always start from the identity matrix. Many applications need to invert 
M = A -uv T. After we solve Ax = b we expect a rank one change to give My = b. 
The division by 1 -vT u above will become a division by c = 1 -vT A- 1u = l -vT z.

Step 1 

Step 2 

Solve Az = u and compute c = 1 - v T z.

V
T

X 

If c =/= 0 then M- 1b is y = x + -- z.

Suppose A is easy to work with. A might already be factored into LU by elimination. 
Then this Sherman-Woodbury-Morrison formula is the fast way to solve My = b.
Here are three problems to end the book ! 
9 TakeStepsl-2tofindywhenA=Jandu T =v T =[ l 2 3] andbT=[2 1 4]. 

10 Step 2 in this "update formula" claims that My = ( A -uv T ) ( x +
v

: 
x z) = b.

T 

Simplify this to 
uv x 

[1 - c -v T z] = 0. This is true since c = 1 -v T z. 
C 

11 When A has a new row v T , AT A in the least squares equation changes to M :

M = [ AT v ] [ : T ] = A T A + vv T = rank one change in AT A.

Why is that multiplication correct? The updated Xnew comes from Steps 1 and 2. 
For reference here are four formulas for M- 1

. The first two were given above, when the 
change was uvT . Formulas 3 and 4 go beyond rank one to allow matrices U, V, W.

1 M = I -uv T and M- 1 = J + uvT /(1 -vTu) (rank l change)
2 M = A-uvT and M- 1 = A- 1 

+ A- 1uvT A- 1 /(1-vT A- 1u)
3 M = I - UV and M- 1 = In + U(Lm - VU)- 1 V
4 M = A- uw-

1
v and M- 1 = A- 1 

+ A- 1 U(W - V A- 1 u)- 1 VA- 1 

Formula 4 is the "matrix inversion lemma" in engineering. Not seen until now ! 
The Kalman filter for solving block tridiagonal systems uses formula 4 at each step. 
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Requirements: A is invertible. Then P, L, U are invertible. P does all of the
row exchanges on A in advance, to allow normal LU. Alternative: A= L 1Pi U1. 

4. EA= R (m by m invertible E) (any m by n matrix A)= rref(A).

Requirements: None! The reduced row echelon form R has r pivot rows and pivot
columns, containing the identity matrix. The last m - r rows of E are a basis for
the left nullspace of A; they multiply A to give m - r zero rows in R. The first r
columns of E-1 are a basis for the column space of A.

5. S = CT C = (lower triangular) ( upper triangular) with v15 on both diagonals

Requirements: Sis symmetric and positive definite (all n pivots in Dare positive).
This Choleskyfactorization C = chol(S) has cT = Lv15, sos= cTc = LDL T .

6. A= QR= (orthonormal columns in Q) (upper triangular R).

Requirements: A has independent columns. Those are orthogonalized in Q by the
Gram-Schmidt or Householder process. If A is square then Q-1 = QT

. 

7. A = X Ax- 1 = (eigenvectors in X) (eigenvalues in A) (left eigenvectors in x- 1 ). 

Requirements: A must have n linearly independent eigenvectors.

8. S = QAQT = (orthogonal matrix Q) (real eigenvalue matrix A) (QT is Q-1 ).
Requirements: Sis real and symmetric: ST = S. This is the Spectral Theorem.
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9. A = BJ B-1 = (generalized eigenvectors in B) (Jordan blocks in J) (B-1 ). 

10.

Requirements: A is any square matrix. This Jordan form J has a block for each
independent eigenvector of A. Every block has only one eigenvalue. 

A = U:EVT = ( or:hogonal ) ( m x n singular _val�e matrix ) ( ort?ogonal ) .
U 1s m x m o-1, ... , O-r on its diagonal V 1s n x n 

Requirements: None. This Singular Value Decomposition (SVD) has the eigenvec­
tors of AAT in U and eigenvectors of AT A in V; o-i = J>.i(AT A)= J>.i(AAT). 
Those singular values are o-1 2: o-2 2: · · · 2: O-r > 0. By column-row multiplication

T T TA= U:EV = CJ1U1V1 + · · · + 0-rUrVr . 

If S is symmetric positive definite then U = V = Q and I:= A and S = QAQT.

ll. A+ = V:E+uT = (orthogonal) ( n/ 
x m pseu

/
doinver�e of I: ) (orthogonal).nxn 1 o-1, ... ,1 o-r on diagonal mxm 

Requirements: None. The pseudoinverse A+ has = projection onto row space
of A and AA+ = projection onto column space. A+ = A -1 if A is invertible. The
shortest least-squares solution to Ax = b is x+ =A+ b. This solves AT Ax+= AT b.

12. A= QS = (orthogonal matrix Q) (symmetric positive definite matrix S).
Requirements: A is invertible. This polar decomposition has S2 

= AT A. The
factor S is semidefinite if A is singular. The reverse polar decomposition A = K Q

has K2 
= AAT . Both have Q = uvT from the SVD. 

13. A= u Au-1 = (unitary U) (eigenvalue matrix A) cu- 1 which is UH= UT).
Requirements: A is normal: AH A= AAH . Its orthonormal (and possibly complex)
eigenvectors are the columns of U. Complex ,\.'s unless S = SH : Hermitian case.

14. A= QTQ-1 = (unitary Q) (triangular T with Xs on diagonal) (Q-1 = QH).
Requirements: Schur triangularization of any square A. There is a matrix Q with
orthonormal columns that makes Q-1 AQ triangular: Section 6.4. 

] [ even-odd ] .
F 

. = one step of the recursive FFT. 
n/2 permutat10n 

Requirements: Fn = Fourier matrix with entlies wjk where wn = 1: FnF n = nI.

D has 1, w, ... , w
n/2 

-

1 on its diagonal. For n = 2£ the Fast Fourier Transform

will compute Fnx with only ½nR = ½n log
2 

n multiplications from .e stages of D's.



Index 

A 

Absolute value, 430, 433, 436 

Add angles, 434 

Add vectors, 2, 3 

Adjacency matrix, 76 

Adjoint, 439 

Affine,402,410,497,498 

All combinations, 5, 130 

Angle, 11, 14, 15 

Antisymmetric matrix, 122, 328, 349 

Applied mathematics, 455, 468 

Area,276,277,284 

Arnoldi iteration, 531, 533 

Arrow, 3, 4 

Associative law, 61, 73, 82 

Augmented matrix, 58, 63, 86, 134, 150 

Average value, 231,493 

Axes of ellipse, 355.392 

B 

Back substitution, 34, 46, 50 

Backslash, 102 

Backward difference, 325 

Balance equation, 189,455,468 

Band matrix, 52, 101,102,512 

Basis, 164, 168, 170,200,403 

Bayes Theorem, 554 

Bell-shaped curve, 539, 555 

Bidiagonal matrix, 377, 512 

Big formula, 248, 258, 260, 261, 266 

Big Picture, 149, 184, 197, 199, 222 

Binomial, 541, 542, 545 

Bit-reversed order, 450, 451 

Bits per second, 365 

Black-Scholes, 473 

Block determinants, 270 

Block elimination, 75, 117 

Block factorization, 117 

Block matrix, 74, 96, 400, 509 

Block multiplication, 7 4, 81 

BLUE theorem, 559 

BlueGene, 509 

Boundary conditions, 462 

Bowl, 361 

Box, 278, 285 

Breakdown, 47, 51 

Butterflies in FFT, 449 

C 

Calculus, 24, 25, 122, 221, 257, 270, 

286,404,405 

Cauchy-Binet, 287 

Cayley-Hamilton Theorem, 317 

Center the data, 382, 391 

Centered difference, 25, 28 

Central Limit Theorem, 539, 541, 542 

Change of basis matrix, 174,412,419 

Change signs, 249 

Characteristic polynomial, 292 

Chebyshev basis, 427,428 

Chemical engineering, 473 

Chemistry, 461 

Chess matrix, 193 

Cholesky, 353, 360 

Circulant matrix, 363,425 

Civil engineering, 462 

Clock, 9 

Closest line, 219, 223, 229, 383 

Code,240,245,504 

Coefficient matrix, 33, 36 
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Cofactor, 263, 264, 267 

Cofactor matrix, 275, 284 

Coin flip, 536, 541, 543, 546, 554 

Column at a time, 22, 38 

Column picture, 31, 32, 34, 36 

Column rank, 150, 152 

Column space, 127, 156, 182 

Column vector, 4, 123 

Columns times rows, 65, 72, 140, 147 

Combination (linear), 9 

Combination of basis vectors, 168 

Combination of columns, 22, 127 

Combination of eigenvectors, 310,321 

Commutative law, 61 

Commuting matrices, 317 

Companion matrix, 301, 322 

Complement, 197, 207 

Complete graph, 453,461 

Complete solution, 151, 153, 154, 463 

Complex conjugate, 341,430,432,436 

Complex eigenvalues, 341 

Complex inner product, 426 

Complex number, 430, 431 

Complex plane, 431,432 

Complex symmetry, 346 

Components, 2 

Compression, 365, 368 

Computational science, 472, 473 

Computer graphics, 402, 496 

Condition number, 379, 509, 520, 521, 522 

Conditional probability, 554 

Conductance, 458 

Conductance matrix, 469 

Confounding, 385 

Congruent, 349, 502 

Conjugate gradient method, 509, 528, 533 

Conjugate transpose, 438, 439 

Conservation, 455 

Constant coefficients, 319,322 

Constant diagonals, 425 

Constraint, 483 

Consumption matrix, 478,479,480 

Convergence, 480, 525 

Corner, 484, 486 

Comer submatrix, 259 

Correlation matrix, 384, 552 

Cosine, 11, 15, 16, 17,490 

Cosine Law, 20 

Cosine matrix, 336, 344 

Cost vector, 483, 484 

Index 

Counting Theorem, 142,179,185,404 

Covariance,383,546,547 

Covariance matrix, 230,547,549,553,556 

Cramer's Rule, 273, 274, 282, 283 

Cross product, 279, 280 

Cryptography,502,503,505,507 

Cube, 8, 10, 501 

Cumulative distribution, 537,540 

Current Law (Kirchhoff), 145,455,456 

Cyclic, 25, 30, 425 

Cyclic matrix, 363 

D 

Data matrix, 382 

Delta function, 492, 495 

Dense matrix, 101 

Dependent, 27, 164, 165, 175 

Dependent columns, 225, 354, 396 

Derivative, 122, 404, 413 

Determinant, 84, 87, 115, 247, 249, 352 

Determinant of A - >.I, 292, 293 

Determinant of AT and A - l and AB, 252 

Diagonal matrix, 84, 304, 384 

Diagonalizable, 311, 327 

Diagonalization, 304, 305, 339, 371 

Diagonally dominant, 89, 297 

Difference coding, 365 

Difference equation, 310, 323 

Difference matrix, 23, 90, 96, 108 

Differential equation, 319,337,422,462 

Diffusion, 473 

Dimension, 141,164,171,181,184,201 

Discrete Fourier Transform (DFT), 344, 

424,435,442 

Distance to subspace, 213 

Domain, 402 

Dot product, 11, 15, 17, 23, 71,111 

Dot product matrix, 223,426 

Double angle, 415,434 
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Dual problem, 485, 489 
Duality, 485,486 
Dynamic least squares, 559 

E 

Echelon matrix, 138 
Economics, 479,482 
Edges, 365 
Eigenfaces, 386 
Eigenvalue, 248, 288, 289, 292 
Eigenvalue computations, 377, 530 
Eigenvalue instability, 375 
Eigenvalue matrix A, 304, 314 
Eigenvalues of A-1

, 299 
Eigenvalues of AT A, 378 
Eigenvalues of A2

, 289,304 
Eigenvalues of AB, 295,318 
Eigenvalues of eAt, 328 
Eigenvalues of permutation, 302 
Eigenvector, 288, 289 
Eigenvector basis, 416, 421 
Eigenvector matrix X, 304, 314 
Eigenvector of AT A, 380 
Eight vector space rules, 131 
Eigshow, 303, 380 
Einstein, 59 
Elementary matrix, 60 
Elimination, 46, 99, 149, 250, 511 
Elimination matrix, 28, 58, 60, 61, 97 
Ellipse, 354,356,381,392,399,410 
Encryption, 505 
Energy, 351, 352 
Engineering, 462, 463, 465, 466, 468, 470 
Enigma, 504 
Entry, 37, 59, 70 
Equal rows, 250, 275 
Error, 208, 220, 525 
Error equation, 520, 524, 526 
Euler's formula, 434,456,460 
Even permutation, 118, 248, 267 
Even-odd permutation, 448 
Exascale, 509 
Exchange equations, 49, 508 
Existence of solution, 151, 154, 200 
Expected value, 536, 544, 545, 548 

Exponential matrix, 326, 331 
Exponential series, 327, 334 
Exponential solution, 319, 320 

F 

Face recognition, 386 
Face space, 386, 387 
Factorial, 113, 543 
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Factorization, 97, 99, 104, 121,147,448 
Failure of elimination, 49, 53 
False proof, 346 
Fast Fourier Transform, 424, 445, 448 
Favorite matrix, 86, 264, 357 
Feasible set, 483, 484 
Fermat's Last Theorem, 502 
Fibonacci, 265,268,271,287,308,315,380 
Field, 502, 505, 506 
Fill-in, 513, 527 
Finite element, 4 73 
First order system, 333 
Fixed-free, 466,467,470 
Flag, 366, 369, 370 
Flip across diagonal, 111 
Flows in networks, 456 
Formula for JT, 493 
Formula for A-1, 275 
Forward difference, 30, 463 
Forward Euler, 324 
Forward substitution, 56 
Four Fundamental Subspaces, 181, 184, 196, 

371,443 
Four numbers determine A, 400 
Four possible ranks, 155, 161 
Fourier coefficient, 427, 493 
Fourier matrix, 421,424,425,442,446 
Fourier series,427,429,491,493 
Framework for applications, 467 
Fredholm Alternative, 202 
Free column, 137, 138, 140 
Free variables, 48, 138, 151 
Frequency space, 445, 447 
Frobenius, 518 
Full column rank, 153, 160, 166 
Full row rank, 154 
Function space, 172, 178, 421, 426, 491, 492 
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Functions, 122, 124 

Fundamental Theorem of Algebra, 445 

Fundamental Theorem of Calculus, 405 

Fundamental Theorem of Linear Algebra, 

181, 185, 198 

G 

Gain matrix, 560 

Galileo, 226 

Gambling, 485 

Gauss, 51,557,559 

Gauss-Jordan, 86, 87, 94, 149, 161 

Gauss-Seidel method, 524, 526, 527, 531 

Gaussian, 540, 542, 555 

Gaussian elimination, 51, 508 

General (complete) solution, 159 

Generalized eigenvector, 421,422 

Geometric mean, 16 

Geometric series, 4 79 

Geometry of A = UI;VT, 392 

Gershgorin circles, 297 

Giles, 543, 544 

Givens rotation, 514, 517 

Glued coins, 546, 547, 548, 554 

GMRES, 528 

Golden mean, 309 

Golub-Van Loan, 528 

Google, 387,477 

GPS, 553 

GPU, 509 

Gram-Schmidt, 232,237,239,240,428,515 

Graph, 76,186,187,452 

Graph Laplacian matrix, 457 

Grayscale, 364 

Greece, 369 

Grounded node, 458 

Group, 121, 362 

Growth factor, 321,327,337,478 

H 

Hadamard matrix, 241,285,313 

Half-plane, 7, 15 

Heat equation, 330 

Heisenberg, 296, 303 

Hermitian matrix, 347,430,438, 440 

Hessenberg matrix, 265, 530, 534 

Hessian matrix, 356 

High Definition TV, 365 

Index 

Hilbert matrix, 95,257,357,368,426,516 

Hilbert space, 490, 492, 493 

Hill Cipher, 504, 505 

HITS algorithm, 388 

Homogeneous coordinates, 496, 497, 500 

Homogeneous solution, 159 

Hooke's Law, 467,468 

House matrix, 406, 409 

Householder, 241, 513, 515 

Hypercube, 285 

Hyperplane, 33, 232 

Identity matrix, 37 

Ill-conditioned, 516 

Image processing, 364 

Imaginary eigenvalues, 294 

Incidence matrix, 186,452,456,459 

Incomplete LU, 524 

Independent columns, 153 

Independent eigenvectors, 305, 306 

Independent random variables, 555, 557 

Independent vectors, 27, 164, 547 

Infinite dimensions, 490 

Inner product, 11, 111, 122,426,439,491 

Input basis, 411,412,421 

Integral, 404,413,545 

Integration by parts, 122 

Interior point method, 488 

Interlacing, 349 

Interpolation, 44 7 

Intersection, 133, 179 

Inverse formula, 275, 284 

Inverse matrix, 24, 83, 255, 408 

Inverse power method, 530, 532 

Invertible matrix, 27, 88, 89 

Isometric, 416 

Iteration, 524 

J 

Jacobi's method, 524, 526, 527 

Jacobian matrix, 279 



Index 

Joint probability, 546, 550, 554 

Jordan form, 308, 421, 423, 429, 525 

Jordan matrix, 422, 423 

JPEG, 344 

K 

Kalman filter, 218,559,560,561 

Kernel, 405 

Kirchhoff's Laws, 145, 187, 189,455 

Krylov space, 533 

L 

Lagrange multiplier, 488 

Lanczos method, 533, 534 

Laplace transform, 337 

Largest ratio, 393 

Law of Inertia, 349 

Law of large numbers, 536 

Lax, 317, 348 

Leapfrog method, 324, 325, 336 

Least squares, 220, 226, 239, 240, 396 

Left eigenvectors, 318 

Left inverse, 83, 148, 397 

Left nullspace, 181, 183, 185 

Legendre polynomial, 428, 494 

Length, 11,438,490,491 

Line, 5 

Line of springs, 467 

Linear combination, 1, 3, 9, 33 

Linear independence, 164,165,167,175 

Linear programming, 483, 485 

Linear transformation, 401, 402, 407, 411 

Linearity, 45,403,411, 541 

Loadings, 390 

Loop, 187,314,453,456 

Lower triangular, 98 

Lucas numbers, 312 

M 

Magic matrix, 44 

Map of Europe, 385 

Markov equation, 332, 481 

Markov matrix, 290,301,387,474,476,480 

Mass matrix, 324 

Matching signs, 342 

Mathematical finance, 473 

Matrix, 7, 22, 37 

Matrix exponential, 326 

Matrix for transformation, 413 

Matrix inversion lemma, 562 

Matrix multiplication, 58, 62, 70, 414 

Matrix powers, 74, 80 
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Matrix space, 125, 126, 171, 172, 178, 409 

Max = min, 485 

Maximum ratio, 376 

Mean,230,535,538 

Mean square error, 227 

Mechanical engineering, 462,463,465,468 

Median, 228 

Medical genetics, 385 

Minimum of function, 356,361,381 

Minimum cost, 483, 485, 486 

Minor, 263 

Model Order Reduction, 387 

Modified Gram-Schmidt, 240 

Modular arithmetic, 502, 504 

Monte Carlo, 543 

Moore's Law, 509 

Multigrid, 528 

Multiplication, 71, 72, 74,414 

Multiplication by rows/ columns, 36, 37, 72 

Multiplication count, 71, 82, 101 

Multiplicity of eigenvalues, 311 

Multiplier, 46, 47, 51, 85, 97,105,508 

Multiply pivots, 251 

Multivariate Gaussian, 556 

N 

Nearest singular matrix, 395 

Network, 76, 458, 469 

No solution, 26, 40, 48, 220 

Nodes, 187,454 

Noise, 219, 230, 427 

N ondiagonalizable matrix, 306, 311 

Nonnegative Factorization, 386 

Nonnegative matrix, 479 

Nonzero solution, 139 

Norm, 393,394,518,519 

Normal distribution, 537, 539, 540 

Normal equation, 211,219 
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Normal matrix, 348, 444 
Not diagonalizable, 306, 312, 429 
Nullspace, 135, 147 
Nullspace of ATA, 203,212,217 

0 
Odd permutation, 249, 261 
Ohm's Law, 189,458 
One at a time, 376 
Operation count, 511 
Optimal solution, 483 
Order of importance, 371 
Orthogonal columns, 224,447 

Pivot matrix, 106 
Pivot variables, 138, 151 
Pixel, 364, 499 
Plane, 1, 5, 128 
Plane rotation, 498 
Polar decomposition, 392, 394 
Polar form, 285, 430, 433 
Population, 384, 478 
Positive definite, 350, 469, 547, 549 
Positive definite matrix, 352, 359 
Positive matrix, 474, 477 
Positive semidefinite, 350, 354 
Power method, 388, 529, 532 

Index 

Orthogonal complement, 197, 198 
Orthogonal eigenvectors, 340, 440 
Orthogonal matrix, 234,241,242,295,494 
Orthogonal subspaces, 195, 196, 203 
Orthogonal vectors, 194, 233, 430 
Orthonormal basis, 371,492 

Powers of A, 121,305,307,310,315,525 
Preconditioner, 524, 528 

Orthonormal columns, 234,236,441 
Orthonormal eigenvectors, 338, 348 
Orthonormal vectors, 233, 237 
Outer product (see columns times rows), 81 
Output basis, 411,412, 413 

p 
P-value, 385
PageRank, 388
Parabola, 226, 227, 464
Paradox, 347
Parallel plane, 41, 483
Parallelogram, 3, 8, 277
Parentheses, 61, 73, 83
Partial pivoting, 115,508,510,516
Particular solution, 151,153,334,462 
Pascal matrix, 91,103,271,357 
PCA, 382, 383, 389 

Primal problem, 489 
Prime number, 503 
Principal axis theorem, 339 
Principal Component Analysis, 382, 389 
Probability, 535, 538 
Probability density (pdf), 538, 544, 555 
Probability matrix, 547,554 
Probability vector, 475 
Product inequality, 393 
Product of eigenvalues, 294, 300, 342 
Product of pivots, 248, 342 
Product rule, 252, 266, 273, 554 
Projection, 206, 208, 236, 395, 496, 498 
Projection matrix, 206, 209, 211, 216, 236, 

291,415,501 
Pseudoinverse, 198,225,392,395,399,404 
Pythagoras, 13, 14, 20, 194 

Q 

Quadratic formula, 309, 437 
Quantum mechanics, 111, 296 

Permutation matrix, 49, 62, 63, 109, 113, R 
116, 179,303,424 Random matrix, 57, 541 

Perpendicular, 11 rank(AB), 147 
Perpendicular distances, 384 Range, 402, 405 
Perron-Frobenius theorem, 477,482 Rank, 139,146,155,171,181,190,366,369 
Pivot, 46, 47, 88,137,378,508,510 Rank one matrix, 140,188,318,372,400 
Pivot columns, 137, 138, 169 Rank one update, 562 
Pivot formula, 258 Rayleigh quotient, 376,519 
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Real eigenvalues, 339,440 

Recursive, 214,218,231,449,560 

Reduced row echelon form, 86, 137, 138 

Reflection matrix, 235,241,291,499,514 

Repeated eigenvalue, 311,327, 333 

Rescaling, 496, 552 

Residual, 224, 524 

Reverse order, 84, 85, 110 

Right hand rule, 278, 280 

Right inverse, 83, 397, 448 

Right triangle, 13, 14, 194, 220 

Roots of 1, 435, 442, 445 

Rotation, 15, 392,394,496 

Rotation matrix, 294, 414 

Roundoff error, 510, 520 

Row at a time, 22, 23, 38 

Row exchange,49,58,63, 115,247,256 

Row picture, 31, 32, 34 

Row rank, 150 

Row space, 168, 182,443 

Rules for vector spaces, 131 

Rules for determinant, 249, 254 

Runge-Kutta, 337 

s 

Saddle point, 117, 358, 361 

Same eigenvalues, 308,318 

Same length, 235 

Sample covariance matrix, 382, 547 

Sample mean, 535, 547, 550 

Sample value, 535, 544 

Sample variance, 382, 536 

Scalar, 2, 32, 124 

Schur, 343, 363 

Schur complement, 75, 96, 270, 357 

Schwarz inequality, 11, 16, 20, 393, 490 

Scree plot, 389 

Second derivative matrix, 356, 361 

Second difference, 344, 357, 464 

Second eigenvalue, 477 

Second order equation, 322, 333 

Semidefinite matrix, 354 

Sensitivity, 478, 482 

Sherman-Woodbury-Morrison, 562 

Shift by Uo, 402 

Short wide matrix, 139, 171 

Shortage of eigenvectors, 329 

Shortest solution, 225, 397, 400 

Sigma notation, 59 
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Signal processing, 435,445,450 

Similar matrix, 307,318,416,421,429 

Simplex method, 486 

Simulation, 4 72 

Sine matrix, 344 

Singular matrix, 27, 88,225,251 

Singular value, 367,368,371,520 (see SVD) 

Singular value matrix, 416 

Singular vector, 367,371,416 

Skew-symmetric matrix, 119,295,334,437 

Slope, 19, 31 

Snapshot, 387 

SNP, 384, 385 

Solvable, 127, 130 

SOR, 527, 532 

Span, 128,134,164,167,200 

Spanning tree, 314 

Sparse matrix, 101,508,513,559 

Spatial statistics, 385 

Special solution, 135,137, 140, 149, 158 

Spectral radius, 522, 525, 534 

Spectral Theorem, 339, 340, 343 

Spiral, 323 

Splitting, 200, 222, 260, 524, 531 

Spread, 536 

Spreadsheet, 12, 375 

Square root matrix, 353 

Square wave, 492, 494 

Squashed, 410 

Stoichiometric matrix, 461 

Stability, 307,319,325,326,375 

Standard basis, 169,415,421 

Standard deviation, 536 

Standard normal (Gaussian), 545, 555 

Standardize, 541, 542, 552 

State equations, 559 

Statistics, 38, 230, 384 

Steady model, 561 

Steady state, 290, 332, 474, 476 

Stiffness matrix, 324, 462, 469 
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Stirling's formula, 543 

Straight line, 223, 231 

Stretching, 279, 392, 394 

Stripes on flag, 369 

Submatrix, 38, 146, 263 

Subspace, 123,125,126,130,132 

Sum matrix, 29, 90, 276 

Sum of eigenvalues, 294, 300 

Sum of errors, 228 

Sum of spaces, 179 

Sum of squares, 353 

Super Bowl, 387 

Supercomputer, 509 

SVD, 364, 370, 372, 392 

Symmetric factorization, 116 

Symmetric matrix, 87, 111, 338 

T 

Table of eigenvalues, 363 

Test, 350, 359 

Test for minimum, 356, 361 

Three-dimensional space, 4 

Tic-tac-toe, 193 

Time to maturity, 389 

TOP500, 509 

Total least squares, 384 

Total variance,383,389 

Trace,294,300,316,325,380,383 

Training set, 386 

Transform, 236 

Transformation, 401, 402 

Translation matrix, 496 

Transpose matrix, 109, 117, 122, 417 

Transpose of inverse, 110 

Trapezoidal, 336 

Tree, 187,314,453 

Trefethen-Bau, 528 

Triangle area, 276 

Triangle inequality, 16, 17, 20, 393, 523 

Triangular matrix, 52, 89, 100, 251 

Tridiagonal matrix, 87,107,268,363,377 

Triple product, 112, 281, 286 

Turing,504 

Two-dimensional Gaussian, 555 

u 

U.S. Treasury, 389 

Uncertainty principle, 296, 303 

Underdamping, 337 

Underdetermined, 154 

Uniform distribution, 537, 539 

Unique solution, 153, 168, 200 

Unit circle, 432 

Unit vector, 13, 14 

Unitary matrix, 430,441,446 

Unsquared errors, 559 

Update, 214, 218, 559, 560, 562 

Upper left submatrix, 259, 352 

Upper triangular, 46, 87 

V 

Vandermonde, 256,269,447 

Variance,230,535,537,539,545,551 

Variance in x, 558 

Vector addition, 2, 32 

Vector space, 123, 124 

Vertical distances, 220, 384 

Voltage, 187, 454, 457 

Volume, 42, 278 

w 

Wall, 203 

Wave equation, 330 

Wavelets, 245 

Web matrix, 387 

Weight function, 426 

Weighted least squares, 557 

White noise, 557 

y 

Yield curve, 389, 390 

z 

Zero determinant, 24 7 

Zero nullspace, 138 

Zero vector, 2, 3, 166, 167 

Index 
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Index of Symbols and Computer Codes 

A= LDU,99 
A= LU, 99,114,378 
A= QR, 239,240,378 
A= QS and KQ, 394 
A = U�VT, 372, 378 
A= UV

T
, 140 

A= BCB-1, 308 
A= BJB-1

, 422,423 
A= QR, 239,513,530,532 
A= QTQ-1

, 343 
A= XAX-1, 304,310 
Ak = XAk x-1, 307,310 
A+= v�+ uT, 395 
AT A, 112,203,212,372 
AT Ax= AT b, 219 
ATCA, 362,459,467 
p = A(AT A)-1 AT, 211
PA= L U, 114 
QTQ = I, 234 
R = rref(A), 137 
S = AT A, 352,372 
S = LDLT, 342 
S = QAQT , 338,341,353 
eAt, 326, 328, 334 
eAt = XeAtx-1, 327 
(A-AI)x =0,292 
(Ax) T y = x T (AT y), 111 
(AB)T = BT AT, 110 

(AB)-1 
= B-1 A-1, 84 

(AB)C = A(BC), 70 
[A b] and [A I], 149 
det(A -Al) = 0, 292, 293 
C(A) and C(AT), 128 
N(A) and N(AT), 135 
e

n

, 430,444 
Rn, 123,430 
SU T, 134 
S + T, 134, 179 
Sn T, 133,179 
V _1_, 197, 204 
z, 123, 125, 137, 173 
£1 and £00

, 523 
i,j,k, 13,169,280
u X v,279
x+ = A+ b, 397
N(0, 1), 555
mod p, 502, 503
NaN, 225
-1, 2, -1 matrix, 259,368,

523 
3 by 3 determinant, 271 

Computer Packages 

ARPACK, 531 
BLAS, 509 

chebfun, 428 
Fortran, 39 
Julia, 16, 38, 39 
LAPACK, 100, 378, 509, 
515,529 
Maple, 38 
Mathematica, 38 
MATLAB, 16, 38, 43, 88, 
115,240,303 
MINRES, 528 
Python, 16, 38, 39 
R, 38, 39 

Code Names 

amd, 513 
chol, 353 
eig, 293 
eigshow, 303, 380 
lu, 103 
norm, 17,392,518 
pascal, 95 
plot2d, 406, 410 
qr,241,246 
rand, 370 
rref, 88, 137 
svd, 378 
toeplitz, 108 
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ocw.mit.edu MIT's Open Course Ware site including video lectures in 18.06 and 18.085-6 

web.mit.edu/18.06 Current and past exams and homeworks with extra materials 

wellesleycambridge.com Ordering information for books by Gilbert Strang 

linearalgebrabook@gmail.com Direct email contact about this book 
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Six Great Theorems of Linear Algebra 

Dimension Theorem All bases for a vector space have the same number of vectors. 

Counting Theorem Dimension of column space + dimension of nullspace = number of columns. 

Rank Theorem Dimension of column space = dimension of row space. This is the rank. 

Fundamental Theorem The row space and nullspace of A are orthogonal complements in Rn
.

SVDThere are orthonormal bases (v's and u's for the row and column spaces) so that Avi = CTiUi. 

Spectral Theorem If AT = A there are orthonormal q's so that Aqi = >..iqi and A = QAQT .

LINEAR ALGEBRA IN A NUTSHELL 

(( The matrix A is n by n )) 

Nonsingular 

A is invertible 

The columns are independent 

The rows are independent 

The determinant is not zero 

Ax= 0 has one solution x = 0 

Ax=b has one solution x=A- 1b 

A has n (nonzero) pivots 

A has full rank r = n 

The reduced row echelon form is R = I 

The column space is all of Rn 

The row space is all of Rn 

All eigenvalues are nonzero 

AT A is symmetric positive definite 

A has n (positive) singular values 

Singular 

A is not invertible 

The columns are dependent 

The rows are dependent 

The determinant is zero 

Ax= 0 has infinitely many solutions 

Ax= b has no solution or infinitely many 

A has r < n pivots 

A has rank r < n 

R has at least one zero row 

The column space has dimension r < n 

The row space has dimension r < n 

Zero is an eigenvalue of A 

AT A is only semidefinite 

A has r < n singular values 
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