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Foreword

This book is an introduction to group theory and linear algebra from a geometric
viewpoint. It is intended for motivated students who want a solid foundation in both
subjects and are curious about the geometric aspects of group theory that cannot be
appreciated without linear algebra. Linear algebra and group theory are connected in
very pretty ways, and so it seems that presenting them together is an appropriate goal.
Group theory, founded by Galois to study the symmetries of roots of polynomial
equations, was extended by many nineteenth-century mathematicians who were also
leading figures in the development of linear algebra such as Cauchy, Cayley, Schur,
and Lagrange. It is amazing that such a simple concept has touched somany rich areas
of current research: algebraic geometry, number theory, invariant theory, represen-
tation theory, combinatorics, and cryptography, to name some. Matrix groups, which
are part matrix theory, part linear algebra, and part group theory, have turned out to be
richest source of finite simple groups and the basis for the theory of linear algebraic
groups and for representation theory, two very active areas of current research that
have linear algebra as their basis. The orthogonal and unitary groups are matrix
groups that are fundamental tools for particle physicists and for quantum mechanics.
And to bring linear algebra in, we should note that every student of physics also needs
to know about eigentheory and Jordan canonical form.

For the curious reader, let me give a brief description of what is covered. After a
brief preliminary chapter on combinatorics, mappings, binary operations, and rela-
tions, the first chapter covers the basics of group theory (cyclic groups, permutation
groups, Lagrange’s theorem, cosets, normal subgroups, homomorphisms, and quo-
tient groups) and gives an introduction to the notion of a field. We define the basic
fieldsQ,R, andC, and discuss the geometry of the complex plane. We also state the
fundamental theorem of algebra and define algebraically closed fields. We then
construct the prime fields Fp for all primes p and define Galois fields. It is especially
nice to have finite fields, since computations involving matrices over F2 are delight-
fully easy. The lovely subject of linear coding theory,which requiresF2,will be treated
in due course. Finally, we define polynomial rings and prove the multiple root test.
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We next turn to matrix theory, studying matrices over an arbitrary field. The
standard results on Gaussian elimination are proven, and LPDU factorization is
studied. We show that the reduced row echelon form of a matrix is unique, thereby
enabling us to give a rigorous treatment of the rank of a matrix. (The uniqueness
of the reduced row echelon form is a result that most linear algebra books curiously
ignore.) After treating matrix inverses, we define matrix groups, and give examples
such as the general linear group, the orthogonal group, and the n� n permutation
matrices, which we show are isomorphic to the symmetric group SðnÞ. We conclude
the chapter with the Birkhoff decomposition of the general linear group.

The next chapter treats the determinant. After defining the signature of a per-
mutation and showing that it is a homomorphism, we define detðAÞ via the alter-
nating sum over the symmetric group known as Leibniz’s formula. The proofs
of the product formula (that is, that det is a homomorphism) and the other basic
results about the determinant are surprisingly simple consequences of the definition.
The determinant is an important and rich topic, so we treat the standard applications
such as the Laplace expansion and Cramer’s rule, and we introduce the important
special linear group. Finally, we consider a recent application of the determinant
known as Dodgson condensation.

In the next chapter, finite-dimensional vector spaces, bases, and dimension are
covered in succession, followed by more advanced topics such as direct sums,
quotient spaces, and the Grassmann intersection formula. Inner product spaces over
R and C are covered, and in the appendix, we give an introduction to linear coding
theory and error-correcting codes, ending with perfect codes and the hat game, in
which a player must guess the color of her hat based on the colors of the hats her
teammates are wearing.

The next chapter moves us on to linear mappings. The basic properties such as
the rank–nullity theorem are covered. We treat orthogonal linear mappings and the
orthogonal and unitary groups, and we classify the finite subgroups of SOð2;RÞ.
Using the Oð2;RÞ dichotomy, we also obtain Leonardo da Vinci’s classification
that all finite subgroups of Oð2;RÞ are cyclic or dihedral. This chapter also covers
dual spaces, coordinates, and the change of basis formulas for matrices of linear
mappings.

We then take up eigentheory: eigenvalues and eigenvectors, the characteristic
polynomial of a linear mapping, and its matrix and diagonalization. We show how
the Fibonacci sequence is obtained from the eigenvalue analysis of a certain
dynamical system. Next, we consider eigenspace decompositions and prove that a
linear mapping is semisimple—equivalently, that its matrix is diagonalizable—if
and only if its minimal polynomial has simple roots. We give a geometric proof
of the principal axis theorem for both Hermitian and real symmetric matrices and
for self-adjoint linear mappings. Our proof of the Cayley–Hamilton theorem uses a
simple inductive argument noticed by the author and Jochen Kuttler. Finally,
returning to the geometry of R3, we show that SOð3;RÞ is the group of rotations of
R3 and conclude with the computation of the rotation groups of several of the
Platonic solids.
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Following eigentheory, we cover the normal matrix theorem and quadratic
forms, including diagonalization and Sylvester’s law of inertia. Then we classify
linear mappings, proving the Jordan–Chevalley decomposition theorem and the
existence of the Jordan canonical form for matrices over an algebraically closed
field. The final two chapters concentrate on group theory. The penultimate chapter
establishes the basic theorems of abstract group theory up to the Jordan-Schreier
theorem and gives a treatment of finite group theory (e.g., Cauchy’s theorem and
the Sylow theorems) using the very efficient approach via group actions and the
orbit-stabilizer theorem. We also classify the finite subgroups of SOð3;RÞ. The
appendix to this chapter contains a description of how Polish mathematicians
reconstructed the German Enigma machine before the Second World War via group
theory. This was a milestone in abstract algebra and to this day is surely the most
significant application of group theory ever made.

The final chapter is an informal introduction to the theory of linear algebraic
groups. We give the basic definitions and discuss the basic concepts: maximal tori,
the Weyl group, Borel subgroups, and the Bruhat decomposition. While these
concepts were already introduced for the general linear group, the general notions
came into use relatively recently. We also consider reductive groups and invariant
theory, which are two topics of contemporary research involving both linear algebra
and group theory.
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Chapter 1
Preliminaries

In this brief chapter, we will introduce (or in many cases recall) some elemen-
tary concepts that will be used throughout the text. It will be convenient to
state them at the beginning so that they will all be in the same place.

1.1 Sets and Mappings

A set is a collection of objects called the elements of X. If X is a set, the
notation x ∈ X will mean that x is an element of X. Sets are frequently
defined in terms of a property. For example, if R denotes the set of all real
numbers, then the set of all positive real numbers is denoted by the expression
{r ∈ R | r > 0}. One can also define a set by listing its elements, an example
being the set consisting of the integers 1, 2, and 3, which could be denoted
by either

{1, 2, 3},

or, more clumsily,

{r ∈ R | r is an integer and 1 ≤ r ≤ 3}.

A set with exactly one element is called a singleton.
The union of two sets X and Y is the set

X ∪ Y = {a | a ∈ X or a ∈ Y }

whose elements are the elements of X together with the elements of Y . The
intersection of X and Y is the set

c© Springer Science+Business Media LLC 2017
J.B. Carrell, Groups, Matrices, and Vector Spaces,
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2 1 Preliminaries

X ∩ Y = {a | a ∈ X and a ∈ Y }.

The difference of X and Y is the set

X\Y = {x ∈ X | x /∈ Y }.

Note that Y does not need to be a subset of X for one to speak about the
difference X\Y . Notice that set union and difference are analogous to addition
and subtraction. Intersection is somewhat analogous to multiplication. For
example, for any three sets X,Y,Z, one has

X ∩ (Y ∪ Z) = (X ∩ Y ) ∪ (X ∩ Z),

which is analogous to the distributive law a(b + c) = ab + ac for real numbers
a, b, c. The product of X and Y is the set

X × Y = {(x, y) | x ∈ X and y ∈ Y }.

We call (x, y) an ordered pair. That is, when X = Y , then (x, y) �= (y, x)
unless x = y. The product X × X can be denoted by X2. For example, R × R

is the Cartesian plane, usually denoted by R
2.

A mapping from X to Y is a rule F that assigns to every element x ∈ X
a unique element F (x) ∈ Y . The notation F : X → Y will be used to denote
a mapping from X to Y ; X is called the domain of F , and Y is called its
target. The image of F is

F (X) = {y ∈ Y | y = F (x) for some x ∈ X}.

For example, if F : R → R is the mapping F (r) = r2, then F (R) is the set
of all nonnegative reals. The composition of two mappings F : X → Y and
G : W → X is the mapping F ◦ G : W → Y defined by G ◦ F (w) = F (G(w)).
The composition F ◦ G is defined whenever the domain of F is contained in
the image of G.

1.1.1 Binary operations

The following notion will be used in the definition of a field.

Definition 1.1. A binary operation on a set X is a function

F : X × X → X.
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Example 1.1. Let Z denote the set of integers. There are two binary opera-
tions on Z called addition and multiplication. They are defined, respectively,
by F+(m,n) = m + n and F·(m,n) = mn. Note that division is not a binary
operation on Z.

We also need the notion of a subset being closed with respect to a binary
operation.

Definition 1.2. Let F be a binary operation on a set A. A subset B of A
such that F (x, y) ∈ B whenever x, y ∈ B is said to be closed under the binary
operation F .

For example, let A = Z and let B be the set of all nonnegative integers.
Then B is closed under both addition and multiplication. The odd integers
are closed under multiplication, but not closed under addition, since, for
instance, 1 + 1 = 2.

If F is a mapping from X to Y and y ∈ Y , then the inverse image of y is

F−1(y) = {x ∈ X | F (x) = y}.

Of course, F−1(y) may not have any elements; that is, it may be the empty
set. For example, if F : R → R is the mapping F (r) = r2, then F−1(−1) is
empty. Notice that if y �= y′, then F−1(y) ∩ F−1(y′) is the empty set.

The notion of the inverse image of an element is useful in defining some
further properties of mappings. For example, a mapping F : X → Y is one
to one, or injective, if and only if F−1(y) is either empty or a single element
of X for all y ∈ Y . In other words, F is injective if and only if F (x) = F (x′)
implies x = x′. Similarly, F is onto, or equivalently, surjective, if F−1(y) is
nonempty for all y ∈ Y . Alternatively, F is surjective if and only if F (X) = Y .
A mapping F : X → Y that is both injective and surjective is said to be
bijective. A mapping that is injective, surjective, or bijective will be called
an injection, surjection, or bijection respectively. A bijective map F : X → Y
has an inverse mapping F−1, which is defined by putting F−1(y) = x if and
only if F (x) = y. It follows directly from the definition that F−1 ◦ F (x) = x
and F ◦ F−1(y) = y for all x ∈ X and y ∈ Y .

The following proposition gives criteria for injectivity and surjectivity.

Proposition 1.1. Suppose F : X → Y is a mapping and suppose there exists
a mapping G : Y → X such that G ◦ F (x) = x for all x ∈ X. Then F is injec-
tive and G is surjective. Moreover, F is bijective if and only if G ◦ F and
F ◦ G are the identity mappings on X and Y respectively.
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1.1.2 Equivalence relations and equivalence
classes

We now want to define an equivalence relation on a set. This will give us a
way of partitioning a set into disjoint subsets called equivalence classes. The
notion of equivalence is a generalization of the notion of equality. First, we
need to recall what a relation on a set is.

Definition 1.3. Let S be a nonempty set. A subset E of S × S is called a
relation on S. If E is a relation on S, and a and b are elements of S, we will
say that a and b are related by E and write aEb if and only if (a, b) ∈ E.
A relation E on S is called an equivalence relation when the following three
conditions hold for all a, b, c ∈ S:

(i) (E is reflexive) aEa,

(ii) (E is symmetric) if aEb, then bEa, and

(iii) (E is transitive) if aEb and bEc, then aEc.

If E is an equivalence relation on S and a ∈ S, then the equivalence class of
a is defined to be the set of all elements b ∈ S such that bEa. An element of
an equivalence class is called a representative of the class.

Before proving the main property of an equivalence relation, we will con-
sider two basic examples.

Example 1.2. The model on which the notion of an equivalence relation is
built is equality. On an arbitrary nonempty set S, let us say that sEt if and
only if s = t. The equivalence classes consist of the singletons {s}, as s varies
over S. �

The second example is an equivalence relation on the integers frequently
used in number theory.

Example 1.3 (The Integers Modulo m). Let m denote an integer, and con-
sider the pairs of integers (r, s) such that r − s is divisible by m. That is,
r − s = km for some integer k. This defines a relation Cm on Z × Z called
congruence modulo m. When (r, s) ∈ Cm, one usually writes r ≡ s mod(m).
We claim that congruence modulo m is an equivalence relation. For exam-
ple, rCmr, and if rCms, then certainly sCmr. For transitivity, assume rCms
and sCmt. Then r − s = 2i and s − t = 2j for some integers i and j. Hence
r − t = (r − s) + (s − t) = 2i + 2j = 2(i + j), so rCmt. Hence Cm is an equiv-
alence relation on Z. �

Here is the basic result on equivalence relations.
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Proposition 1.2. Let E be an equivalence relation on a set S. Then every
element a ∈ S is in its own equivalence class, and two equivalence classes are
either disjoint or equal. Therefore, S is the disjoint union of the equivalence
classes of E.

Proof. Every element is equivalent to itself, so S is the union of its equivalence
classes. We have to show that two equivalence classes are either equal or
disjoint. Suppose C1 and C2 are equivalence classes, and let c ∈ C1 ∩ C2. If
a ∈ C1, then aEc. If C2 is the equivalence class of b, then cEb, so aEb. Hence,
a ∈ C2, so C1 ⊂ C2. Similarly, C2 ⊂ C1, so C1 = C2. �

Definition 1.4. The set of equivalence classes of an equivalence relation E
on S is called the quotient of S by E.
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1.2 Some Elementary Combinatorics

Combinatorics deals with the properties of various kinds of finite sets. A
nonempty set X is said to be finite if there exist an integer n > 0 and a
bijection σ : {1, 2, . . . , n} → X. If X is finite, the number of elements of X
is denoted by |X|. If X is the empty set, we define |X| = 0. The following
result is an example of an elementary combinatorial result.

Proposition 1.3. Let X be finite set that is the union of mutually disjoint
(nonempty) subsets X1, . . . , Xk. Then

|X| =
k∑

i=1

|Xi|.

In particular, if Y is a proper subset of X, then |Y | < |X|.
Proof. We will consider the case k = 2 first and then finish the proof by apply-
ing the principle of mathematical induction, which is introduced in the next
section. Suppose X = X1 ∪ X2, where X1 ∩ X2 is empty and both X1 and X2

are nonempty. Let |X1| = j and |X2| = k. By definition, there exist bijections
σ1 : {1, . . . , i} → X1 and σ2 : {1, . . . , j} → X2. Define σ : {1, . . . , i + j} → X
by σ(r) = σ1(r) if 1 ≤ r ≤ i and σ(r) = σ2(r − i) if i + 1 ≤ r ≤ i + j. By con-
struction, σ is a bijection from {1, . . . , i + j} to X = X1 ∪ X2. Therefore,
|X| = i + j = |X1| + |X2|. �

This identity applies, for example, to the equivalence classes of an equiv-
alence relation on a finite set. Another application (left to the reader) is
contained in the following proposition.

Proposition 1.4. If X and Y are finite sets, then

|X ∪ Y | = |X| + |Y | − |X ∩ Y |.

Here is another consequence.

Proposition 1.5. Let X and Y be finite and F : X → Y . Then

|X| =
∑

y∈Y

|F−1(y)|. (1.1)

In particular, if F is surjective, then |X| ≥ |Y |.
Proof. Let y ∈ Y . By definition, F−1(y) is a nonempty subset of X if and only
if y ∈ F (X). Moreover, F−1(y) ∩ F−1(y′) is empty if y �= y′ for any y′ ∈ Y .
Thus, X can be written as the disjoint union of nonempty subsets
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X =
⋃

y∈F (X)

F−1(y).

Since |F−1(y)| = 0 if y /∈ F (X), the identity (1.1) follows from
Proposition 1.3. �

Proposition 1.6 (The Pigeonhole Principle). Let X and Y be finite sets
with |X| = |Y |, and suppose F : X −→ Y is a mapping. If F is either injective
or surjective, then F is a bijection.

Proof. If F is injective, then |F−1(y)| is either 0 or 1 for all y ∈ Y . But if
|F−1(y)| = 0 for some y ∈ Y , then

|X| =
∑

y∈Y

|F−1(y)| < |Y |,

which is impossible, since |X| = |Y |. Thus, F is surjective. On the other hand,
if F is surjective, then |F−1(y)| ≥ 1 for all y. Thus,

|Y | ≤
∑

y∈Y

|F−1(y)| = |X|.

Since |X| = |Y |, |F−1(y)| = 1 for all y, so F is a bijection. �

1.2.1 Mathematical induction

Mathematical induction is a method of proof that allows one to prove propo-
sitions that state that some property holds for the set of all positive integers.
Here is an elementary example.

Proposition 1.7 (The Principle of Mathematical Induction). A proposition
P (n) defined for each positive integer n holds for all positive integers provided:

(i) P (n) holds for n = 1, and

(ii) P (n + 1) holds whenever P (n) holds.

The proof is an application of the fact that every nonempty set of positive
integers has a least element. �

Let us now finish the proof of Proposition 1.3. Let P (k) be the conclusion of
the proposition when X is any finite set that is the union of mutually disjoint
(nonempty) subsets X1, . . . , Xk. The statement P (1) is true, since X = X1.
Now assume that P (i) holds for i < k, where k > 1. Let Y1 = X1 ∪ · · · Xk−1

and Y2 = Xk. Now X = Y1 ∪ Y2, and since Y1 and Y2 are disjoint, |X| =
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|Y1| + |Y2|, as we already showed. Now apply the principle of mathematical
induction: since P (k − 1) holds, |Y1| = |X1| + · · · |Xk−1|. Thus,

|X| = |Y1| + |Y2| = |X1| + · · · |Xk−1| + |Xk|,

which is exactly the assertion that P (k) holds. Hence Proposition 1.3 is proved
for all k. �

Here is a less pedestrian application.

Proposition 1.8. For every positive integer n,

1 + 2 + · · · + n =
n(n + 1)

2
. (1.2)

Proof. Equality certainly holds if n = 1. Suppose (1.2) holds for an integer
k > 0. We have to show that it holds for k + 1. Applying (1.2) for k, we see
that

1 + 2 + · · · + k + (k + 1) =
k(k + 1)

2
+ (k + 1).

But

k(k + 1)
2

+ (k + 1) =
k(k + 1) + 2(k + 1)

2
=

(k + 2)(k + 1)
2

,

so indeed (1.2) holds for (k + 1). Hence, by the principle of mathematical
induction, (1.2) holds for all positive integers n.

Induction proofs can often be avoided. For example, one can also see the
identity (1.2) by observing that the sum of the integers in the array

1 2 · · · (n − 1) n
n (n − 1) · · · 2 1

is n(n + 1), since there are n columns, and each column sum is n + 1.

1.2.2 The Binomial Theorem

The binomial theorem is a formula for expanding (a + b)n for any positive
integer n, where a and b are variables that commute. The formula uses the
binomial coefficients. First we note that if n is a positive integer, then by
definition, n! = 1 · 2 · · · n: we also define 0! = 1. Then the binomial coefficients
are the integers
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(
n

i

)
=

n!
i! (n − i)!

, (1.3)

where 0 ≤ i ≤ n.
One can show that the binomial coefficient (1.3) is exactly the number of

subsets of {1, 2, . . . , n} with exactly i elements. The binomial theorem states
that

(a + b)n =
n∑

i=0

(
n

i

)
an−ibi. (1.4)

A typical application of the binomial theorem is the formula

2n =
n∑

i=0

(
n

i

)
.

This shows that a set with n elements has exactly 2n subsets.
The binomial theorem is typical of the kind of result that is most easily

proven by induction. The multinomial theorem is a generalization of the
binomial theorem that gives a formula for expanding quantities such as (a +
b + c)3. Let n be a positive integer and suppose n1, n2, . . . , nk are nonnegative
integers such that n1 + · · · + nk = n. The associated multinomial coefficient
is defined as (

n

n1, n2, · · · , nk

)
=

n!
n1!n2! · · · nk!

.

This multinomial coefficient is the number of ways of partitioning a set with n
objects into k subsets, the first with n1 elements, the second with n2 elements,
and so forth. The multinomial theorem goes as follows.

Theorem 1.9 (Multinomial theorem). Let a1, . . . , ak be commuting vari-
ables. Then

(a1 + a2 + · · · + ak)n =
∑

n1+···+nk=n

(
n

n1, n2, · · · , nk

)
an1
1 an2

2 · · · ank

k . (1.5)



Chapter 2
Groups and Fields: The Two
Fundamental Notions of Algebra

Algebra is the mathematical discipline that arose from the problem of solving
equations. If one starts with the integers Z, one knows that every equa-
tion a + x = b, where a and b are integers, has a unique solution. However,
the equation ax = b does not necessarily have a solution in Z, or it might
have infinitely many solutions (take a = b = 0). So let us enlarge Z to the
rational numbers Q, consisting of all fractions c/d, where d �= 0. Then both
equations have a unique solution in Q, provided that a �= 0 for the equation
ax = b. So Q is a field. If, for example, one takes the solutions of an equation
such as x2 − 5 = 0 and forms the set of all numbers of the form a + b

√
5,

where a and b are rational, we get a larger field, denoted by Q(
√

5), called
an algebraic number field. In the study of fields obtained by adjoining the
roots of polynomial equations, a new notion arose, namely, the symmetries of
the field that permute the roots of the equation. Évariste Galois (1811–1832)
coined the term group for these symmetries, and now this group is called
the Galois group of the field. While still a teenager, Galois showed that the
roots of an equation are expressible by radicals if and only if the group of the
equation has a property now called solvability. This stunning result solved
the 350-year-old question whether the roots of every polynomial equation are
expressible by radicals.

2.1 Groups and homomorphisms

We now justly celebrate the Galois group of a polynomial, and indeed, the
Galois group is still an active participant in the fascinating theory of elliptic
curves. It even played an important role in the solution of Fermat’s last
theorem. However, groups themselves have turned out to be central in all
sorts of mathematical disciplines, particularly in geometry, where they allow
us to classify the symmetries of a particular geometry. And they have also

c© Springer Science+Business Media LLC 2017
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become a staple in other disciplines such as chemistry (crystallography) and
physics (quantum mechanics).

In this section we will define the basic concepts of group theory starting
with the definition of a group itself and the most basic related concepts such
as cyclic groups, the symmetric group. and group homomorphisms. We will
also prove some of the beginning results in group theory such as Lagrange’s
theorem and Cayley’s theorem.

2.1.1 The Definition of a Group

The notion of a group involves a set with a binary operation that satisfies
three natural properties. Before stating the definition, let us mention some
basic but very different examples to keep in mind. The first is the integers
under the operation of addition. The second is the set of all bijections of a
set, and the third is the set of all complex numbers ζ such that ζn = 1. We
now state the definition.

Definition 2.1. A group is a set G with a binary operation written (x, y) →
xy such that

(i) (xy)z = x(yz) for all x, y, z ∈ G;

(ii) G contains an identity element 1 such that 1x = x1 = x for all x ∈ G,
and

(iii) if x ∈ G, then there exists y ∈ G such that xy = 1. In this case, we say
that every element of G has a right inverse.

Property (i) is called the associative law. In other words, the group oper-
ation is associative. In group theory, it is customary to use the letter e to
denote an identity. But it is more convenient for us to use 1. Note that prop-
erty (iii) involves being able to solve an equation that is a special case of
the equation ax = b considered above. There are several additional proper-
ties that one can impose to define special classes of groups. For example, we
might require that the group operation be independent of the order in which
we take the group elements. More precisely, we make the following definition.

Definition 2.2. A group G is said to be commutative or abelian if and only
if for all x, y ∈ G, we have xy = yx. A group that is not abelian is said to be
nonabelian.

Example 2.1 (The Integers). The integers Z form a group under addition.
The fact that addition is associative is well known. Zero is an additive identity.
In fact, it is the only additive identity. An additive inverse of m ∈ Z is its
negative −m: m + (−m) = 0. Moreover, Z is abelian: m + n = n + m for all
m,n ∈ Z. �
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The group G = {1,−1} under multiplication is an even simpler example
of an abelian group. Before we consider some examples of groups that are
nonabelian, we will introduce a much more interesting class of groups, namely
the finite groups.

Definition 2.3. A group G is said to be finite if the number |G| of elements
in the set G is finite. We will call |G| the order of G.

The order of G = {1,−1} is two, while Z is an infinite group. Of course,
it is not clear yet why we say that the abelian groups are not as interesting
as the finite groups. But this will become evident later.

2.1.2 Some basic properties of groups

Before going on to more examples of groups, we would like to prove a propo-
sition that gives some basic consequences of the definition of a group. In
particular, we will show that there is only one identity element 1, and we will
also show that every element x in a group has a unique two-sided inverse x−1.
The reader may find the proofs amusing. Before we state this proposition,
the reader may want to recall that we already noticed these facts in Z: there
is only one additive identity, 0, and likewise only one right inverse, −m, for
each m. Moreover, −m is also a left inverse of m. These properties are usually
stated as part of the definition of a group, but for reasons we cannot explain
now, we have chosen to use a minimal set of group axioms.

Proposition 2.1. In every group, there is exactly one identity element, 1.
Furthermore, if y is a right inverse of x, then xy = yx = 1. Hence, a right
inverse is also a left inverse. Therefore, each x ∈ G has a two-sided inverse
y, which is characterized by the property that either xy = 1 or yx = 1. More-
over, each two sided inverse is unique.

Proof. To prove the uniqueness of 1, suppose the 1 and 1′ are both identity
elements. Then 1 = 1 · 1′ = 1′. Thus the identity is unique. Now let x have a
right inverse y and let w be a right inverse of y. Then

w = 1w = (xy)w = x(yw) = x1 = x.

Since w = x, it follows that if xy = 1, then yx = 1. Thus, every right inverse is
a two-sided inverse. We will leave the assertion that inverses are unique as an
exercise. �

From now on, we will refer to the unique left or right inverse of x as the
inverse of x. The notation for the inverse of x is x−1. The next result is the
formula for the inverse of a product.

Proposition 2.2. For all x, y ∈ G, we have (xy)−1 = y−1x−1.
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Proof. Let w = y−1x−1. Then it suffices to show that w(xy) = 1. But

w(xy) = (wx)y = ((y−1x−1)x)y = (y−1(x−1x))y = (y−11)y = y−1y = 1.

�
If x1, x2, . . . , xn are arbitrary elements of a group G, then the expression

x1x2 · · · xn will stand for x1(x2 · · · xn), where x2 · · · xn = x2(x3 · · · xn) and so
on. This gives an inductive definition of the product of an arbitrary finite
number of elements of G. Moreover, by associativity, pairs (· · · ) of parentheses
can be inserted or removed in the expression x1x2 · · · xn without making any
change in the group element being represented, provided the new expression
makes sense. (For example, you can’t have an empty pair of parentheses,
and the number of left parentheses has to be the same as the number of
right parentheses.) Thus the calculation in the proof of Proposition 2.2 can
be simplified to

(y−1x−1)(xy) = y−1(x−1x)y−1 = y1y−1 = 1.

2.1.3 The symmetric groups S(n)

We now come to the symmetric groups, also known as the permutation
groups. They form the single most important class of finite groups. All per-
mutation groups of order greater than two are nonabelian, but more impor-
tantly, permutation groups are one of the foundational tools in the discipline
of combinatorics. The symmetric group is undoubtedly the single most fre-
quently encountered finite group in mathematics. In fact, as we shall soon
see, all finite groups of order n can be realized inside the symmetric group
S(n). This fact, known as Cayley’s theorem, will be proved at the end of this
section.

Let X denote a set. A bijective mapping σ : X → X will be called
a permutation of X. The set of all permutations of X is denoted by Sym(X)
and (due to the next result) is called the symmetric group of X. When
X = {1, 2, . . . , n}, Sym(X) is denoted by S(n) and called (somewhat inaccu-
rately) the symmetric group on n letters.

Proposition 2.3. The set Sym(X) of permutations of X is a group under
composition whose identity element is the identity map idX : X → X. If
|X| = n, then |Sym(X)| = n!.

Proof. That Sym(X) is a group follows from the fact that the composi-
tion of two bijections is a bijection, the inverse of a bijection is a bijec-
tion, and the identity map is a bijection. The associativity follows from
the fact that composition of mappings is associative. Now suppose that
X = {x1, . . . , xn}. To define an element of Sym(X), it suffices, by the pigeon-
hole principle (see Chap. 1), to define an injection σ : X → X. Note that

http://dx.doi.org/10.1007/978-0-387-79428-0_1
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there are n choices for the image σ(x1). In order to ensure that σ is one to
one, σ(x2) cannot be σ(x1). Hence there are n − 1 possible choices for σ(x2).
Similarly, there are n − 2 possible choices for σ(x3), and so on. Thus the num-
ber of injective maps σ : X → X is n(n − 1)(n − 2) · · · 2 · 1 = n!. Therefore,
|Sym(X)| = n!. �

In the following example, we will consider a scheme for writing down the
elements of S(3) that easily generalizes to S(n) for all n > 0. We will also see
that S(3) is nonabelian.

Example 2.2. To write down the six elements σ of S(3), we need a way to
encode σ(1), σ(2), and σ(3). To do so, we represent σ by the array

(
1 2 3

σ(1) σ(2) σ(3)

)
.

For example, if σ(1) = 2, σ(2) = 3, and σ(3) = 1, then

σ =
(

1 2 3
2 3 1

)
.

We will leave it to the reader to complete the list of elements of S(3). If
n > 2, then S(n) is nonabelian: the order in which two permutations are
applied matters. For example, if n = 3 and

τ =
(

1 2 3
3 2 1

)
,

then

στ =
(

1 2 3
1 3 2

)
,

while

τσ =
(

1 2 3
2 1 3

)
.

Hence στ �= τσ. �

2.1.4 Cyclic groups

The next class of groups we will consider consists of the cyclic groups. Before
defining these groups, we need to explain how exponents work. If G is a group
and x ∈ G, then if m is a positive integer, xm = x · · · x (m factors). We define
x−m to be (x−1)m. Also, x0 = 1. Then the usual laws of exponentiation hold
for all integers m,n:
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(i) xmxn = xm+n,

(ii) (xm)n = xmn.

Definition 2.4. A group G is said to be cyclic if there exists an element
x ∈ G such that for every y ∈ G, there is an integer m such that y = xm.
Such an element x is said to generate G.

In particular, Z is an example of an infinite cyclic group in which zm is
interpreted as mz. The multiplicative group G = {1,−1} is also cyclic. The
additive groups Zm consisting of integers modulo a positive integer m form an
important class of cyclic groups, which we will define after discussing quotient
groups. They are the building blocks of the finite (in fact, finitely generated)
abelian groups. However, this will not be proven until Chap. 11. Notice that
all cyclic groups are abelian. However, cyclic groups are not so common. For
example, S(3) is not cyclic, nor is Q, the additive group of rational numbers.
We will soon prove that all finite groups of prime order are cyclic.

When G is a finite cyclic group and x ∈ G is a generator of G, one often
writes G =< x >. It turns out, however, that a finite cyclic group can have
several generators, so the expression G =< x > is not necessarily unique.
To see an example of this, consider the twenty-four hour clock as a finite
cyclic group. This is a preview of the group Zm of integers modulo m, where
m = 24.

Example 2.3. Take a clock with 24 hours numbered 0 through 23. The
group operation on this clock is time shift by some whole number n of hours.
A forward time shift occurs when n is positive, and a backward time shift
occurs when n is negative. When n = 0, no shift occurs, so hour 0 will be the
identity. A one-hour time shift at 23 hours sends the time to 0 hours, while
a two-hour time shift sends 23 hours to 1 hour, and so on. In other words,
the group operation is addition modulo 24. The inverse of, say, the ninth
hour is the fifteenth hour. Two hours are inverse to each other if shifting one
by the other puts the time at 0 hour. This makes the 24-hour clock into a
group of order 24, which is in fact cyclic, since repeatedly time shifting by
one hour starting at 0 hours can put you at any hour. However, there are
other generators, and we will leave it as an exercise to find all of them. �

Another interesting finite cyclic group is the group Cn of nth roots of unity,
that is, the solutions of the equation ζn = 1. We will postpone the discussion
of Cn until we consider the complex numbers C.

2.1.5 Dihedral groups: generators and relations

In the next example, we give an illustration of a group G that is described
by giving a set of its generators and the relations the generators satisfy. The

http://dx.doi.org/10.1007/978-0-387-79428-0_11
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group we will study is called the dihedral group. We will see in due course that
the dihedral groups are the symmetry groups of the regular polygons in the
plane. As we will see in this example, defining a group by giving generators
and relations does not necessarily reveal much information about the group.

Example 2.4. (Dihedral Groups) The dihedral groups are groups that are
defined by specifying two generators a and b and also specifying the rela-
tions that the generators satisfy. When we define a group by generators and
relations, we consider all words in the generators, in this case a and b: these
are all the strings or products x1x2 · · · xn, where each xi is either a or b,
and n is an arbitrary positive integer. For example, abbaabbaabba is a word
with n = 16. Two words are multiplied together by placing them side by side.
Thus,

(x1x2 · · · xn)(y1y2 · · · yp) = x1x2 · · · xny1y2 · · · yp.

This produces an associative binary operation on the set of words. The next
step is to impose some relations that a and b satisfy. Suppose m > 1. The
dihedral group D(m) is defined to be the set of all words in a and b with the
above multiplication that we assume is subject to the following relations:

am = b2 = 1, ab = bam−1. (2.1)

It is understood that the cyclic groups < a > and < b > have orders m and
two respectively. By (2.1), a−1 = am−1 and b = b−1. For example, if m = 3,
then a3 = b2 = 1, so

aaabababbb = (aaa)(bab)(ab)(bb) = (a2)(ab) = a3b = b.

The reader can show that D(3) = {1, a, a2, b, ab, ba}. For example, a2b =
a(ab) = a(ba2) = (ab)a2 = ba4 = ba. Hence, D(3) has order 6. We will give
a more convincing argument in due course. �

Example 2.5. Let us now verify that D(2) is a group. Since the multiplica-
tion of words is associative, it follows from the requirement that a2 = b2 = 1
and ab = ba that every word can be collapsed to one of 1, a, b, ab, ba. But
ab = ba, so D(2) = {1, a, b, ab}. To see that D(2) is closed under multipli-
cation, we observe that a(ab) = a2b = b, b(ab) = (ba)b = ab2 = a, (ab)a =
(ba)a = ba2 = b, and (ab)(ab) = (ba)(ab) = ba2b = b2 = 1. Therefore, D(2) is
closed under multiplication, so it follows from our other remarks that D(2)
a group. Note that the order of D(2) is 4. �

It turns out that D(m) is a finite group of order 2m for all m > 0. This
will be proved in Example 2.12. But first we must define subgroups and show
that every subgroup H of a group G partitions G into disjoint subsets gH,
called cosets, all of which have the same number of elements when G is finite.
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Another computation of the order |D(m)| uses the fact that D(m) is the
symmetry group of a regular m-gon and a principle called O(2,R)-dichotomy.
The details of this are in Section 7.3.7.

2.1.6 Subgroups

We now single out the most important subsets of a group: namely those that
are also groups.

Definition 2.5. A nonempty subset H of a group G is called a subgroup of
G if whenever x, y ∈ H, we have xy−1 ∈ H.

In particular, since every subgroup is nonempty, every subgroup H of
G contains the identity of G, hence also the inverses of all of its elements.
Moreover, by definition, H is closed under the group operation of G. Finally,
associativity of the group operation on H follows from its associativity in G.
Consequently, every subgroup of G is also a group. Thus we have proved the
following result.

Proposition 2.4. A subset H of a group G is a subgroup if and only if H
is a group under the group operations of G. That is, H is closed under the
group operation and contains the identity of G, and the inverse of an element
of H is its inverse in G.

Example 2.6. Suppose G denotes the integers. The even integers make up
a subgroup of G, since the difference of two even integers is even. On the
other hand, the odd integers do not, since the difference of two odd integers
is even. �

Example 2.7. Here are some other examples of subgroups.

(i) Let m ∈ Z. Then all integral multiples mn of m form the subgroup mZ

of Z.

(ii) In every group, the identity element 1 determines the trivial
subgroup {1}.

(iii) If H and K are subgroups of a group G, then H ∩ K is also a subgroup
of G.

(iv) If G =< a > is a finite cyclic group and k ∈ Z, then H =< ak > is a
subgroup of G. Note that < ak > need not be a proper subgroup of < a >.
If |G| = n, then H = G if and only if the greatest common divisor of k and
n is 1. �
(v) The dihedral group D(m) generated by a and b defined in Example 2.4
has a cyclic subgroup of order m, namely < a >. The subgroup < b > is cyclic
of order two. �

http://dx.doi.org/10.1007/978-0-387-79428-0_7
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Here is a nice criterion for a subgroup.

Proposition 2.5. Let G be a group and suppose H is a nonempty finite sub-
set of G such that for every a, b ∈ H, we have ab ∈ H. Then H is a subgroup
of G.

Proof. Consider the mapping La : G → G defined by left multiplication by
a. That is, La(g) = ag. This mapping is injective; for if ag = ag′, then left
multiplication by a−1 gives g = g′. By assumption, if a ∈ H, then La(h) ∈ H
for all h ∈ H. Hence, since H is finite, the pigeonhole principle implies that
La is a bijection of H onto H. Now H contains an element a, so there exists
an h ∈ H such that La(h) = ah = a. But since G is a group, it follows that
h = 1. Thus, H contains the identity of G. It follows that a has a right
inverse, since La(h) = 1 for some h ∈ H. Hence every element a ∈ H has an
inverse in H, so H satisfies the property that for every a, b ∈ H, ab−1 ∈ H.
Consequently, H is a subgroup, by definition. �
Remark. Note that for a group G and a ∈ G, the left-multiplication map-
ping La : G → G is a bijection. For La is injective by the proof of the above
proposition. It is also surjective, since if g ∈ G, the equation La(x) = ax = g
has a solution, namely x = a−1g. The same remark holds for right multipli-
cation Ra : G → G, which is defined by Ra(g) = ga.

2.1.7 Homomorphisms and Cayley’s Theorem

One often needs to compare or relate groups. The basic tool for this is given
by the notion of a homomorphism.

Definition 2.6. If G and H are groups, then a mapping ϕ : G → H is said
to be a homomorphism if and only if ϕ(gg′) = ϕ(g)ϕ(g′) for all g, g′ ∈ G.
A bijective homomorphism is called an isomorphism. If there exists an iso-
morphism ϕ : G → H, we will say that G and H are isomorphic and write
G ∼= H. The kernel of a homomorphism ϕ : G → H is defined to be

ker(ϕ) = {g ∈ G | ϕ(g) = 1 ∈ H}.

Here is an interesting example that we will generalize several times.

Example 2.8. Let R
∗ denote the nonzero real numbers. Multiplication by

a ∈ R
∗ defines a bijection μa : R → R given by μa(r) = ar. The distributive

law for R says that

μa(r + s) = a(r + s) = ar + as = μa(r) + μa(s)

for all r, s ∈ R. Thus μa : R → R is a homomorphism for the additive group
structure on R. Since a �= 0, μa is in fact an isomorphism. Furthermore, the
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associative and commutative laws for R imply that a(rs) = (ar)s = (ra)s =
r(as). Hence,

μa(rs) = rμa(s).

Combining these two identities says that μa is a linear mapping of R. (Linear
mappings will be studied in great detail later.) The linear mappings μa form
an important group, denoted by GL(1,R) called the general linear group
of R. The corresponding general linear group GL(n,R) of linear bijections
of R

n will be introduced in Section 4.2. I claim that R
∗ and GL(1,R) are

isomorphic via the homomorphism μ : R∗ → GL(1,R) defined by μ(a) = μa.
We leave this claim as an exercise. The cyclic subgroup < −1 >= {−1, 1} of
R

∗ is the one-dimensional case of an important subgroup O(n) of GL(n,R)
called the orthogonal group. We may thus denote < −1 > by O(1). �

Example 2.9. If g ∈ G, the mapping σg : G → G defined by putting σg(h) =
ghg−1 is an isomorphism. The mapping σg is called conjugation by g. An
isomorphism of the form σg is called an inner automorphism of G. An iso-
morphism σ : G → G that is not of the form σg for some g ∈ G is said to be
an outer automorphism of G. �

Notice that if G is abelian, then its only inner automorphism is the identity
map IG(g) = g for all g ∈ G.

Proposition 2.6. The image of a homomorphism ϕ : G → G′ is a subgroup
of G′, and its kernel is a subgroup of G.

We leave this as an exercise. An example of an outer automorphism ϕ :
G → G is given by letting G be any abelian group and putting ϕ(g) = g−1.
For example, if G = Z, then ϕ(m) = −m.

The next result, known as Cayley’s theorem, reveals a nontrivial funda-
mental property of the symmetric group.

Theorem 2.7. Every finite group G is isomorphic to a subgroup of Sym(G).
Hence if |G| = n, then G is isomorphic to a subgroup of S(n).

Proof. As already noted in the remark following Proposition 2.5, the mapping
La : G → G defined by left multiplication by a ∈ G is a bijection of G. Thus,
by definition, La ∈ Sym(G). Now let ϕ : G → Sym(G) be defined by ϕ(a) =
La. I claim that ϕ is a homomorphism. That is, ϕ(ab) = ϕ(a)ϕ(b). For if
a, b, c ∈ G, then

ϕ(ab)(c) = Lab(c) = (ab)c = a(bc) = La(Lb(c))

by associativity. But

ϕ(a)ϕ(b)(c) = ϕ(a)(Lb(c)) = La(Lb(c)),

http://dx.doi.org/10.1007/978-0-387-79428-0_4
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so indeed ϕ is a homomorphism. Hence H = ϕ(G) is a subgroup of Sym(G).
To show that ϕ : G → H is an isomorphism, it suffices to show that ϕ is
injective. But if ϕ(a) = ϕ(b), then ag = bg for all g ∈ G. This implies a = b,
so ϕ is indeed injective. �

Exercises

Exercise 2.1.1. Let S be a finite set. Show that Sym(S) is a group.

Exercise 2.1.2. Show that S(n) is nonabelian for all n > 2.

Exercise 2.1.3. Let G = S(3) and let σ1, σ2 ∈ G be given by

σ1 =
(

1 2 3
2 1 3

)
and σ2 =

(
1 2 3
1 3 2

)
.

(i) Compute σ1σ2 and σ2σ1 as arrays.

(ii) Likewise, compute σ1σ2σ
−1
1 .

Exercise 2.1.4. The purpose of this exercise is to enumerate the elements of
S(3). Let σ1, σ2 ∈ G be defined as in Exercise 2.1.3. Show that every element
of S(3) can be expressed as a product of σ1 and σ2.

Exercise 2.1.5. In part (iii) of Example 2.7, we asserted that if G =< a >
is a finite cyclic group of order n and if m ∈ Z, then H =< am > is a subgroup
of G, and H = G if and only if the greatest common divisor of m and n is
1. Prove this. Note: the greatest common divisor (gcd) of m and n is the
largest integer dividing both m and n. The key property of the gcd is that
the gcd of m and n is d if and only if there exist integers a and b such that
am + bn = d.

Exercise 2.1.6. For the notation in this exercise, see Example 2.8. Prove
that R

∗ and GL(1,R) are isomorphic via the mapping μ : R∗ → GL(1,R)
defined by μ(a) = μa.

Exercise 2.1.7. Suppose Alice, Bob, Carol, and Ted are seated in the same
row at a movie theater in the order ABCT . Suppose Alice and Ted switch
places, then Ted and Carol switch, and finally Bob and Ted switch. Putting
A = 1, B = 2, C = 3 and T = 4, Do the same if Ted and Carol switch first,
then Bob and Ted switch, and Alice and Ted switch last. Compare the results.

Exercise 2.1.8. Suppose only Alice, Bob, and Carol are seated in a row.
Find the new seating arrangement if Alice and Bob switch, then Bob and
Carol switch, and finally Alice and Bob switch again. Now suppose Bob and
Carol switch first, then Alice and Bob switch, and finally Bob and Carol
switch again.
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(i) Without computing the result, how do you think the seating arrangements
differ?

(ii) Now compute the new arrangements and comment on the result.

Exercise 2.1.9. Prove Proposition 2.6. That is, show that if G and G′ are
groups and ϕ : G → G′ is a homomorphism, then the image of ϕ is a subgroup
of G′, and its kernel is a subgroup of G.

Exercise 2.1.10. Let G be a group and g ∈ G. Prove that the inner auto-
morphism σg : G → G defined by σg(h) = ghg−1 is an isomorphism.

Exercise 2.1.11. Let Aut(G) denote the set of all automorphisms of a
group G.

(i) Prove that Aut(G) is a group;

(ii) Prove that the inner automorphism σg : G → G defined by σg(h) = ghg−1

is an element of Aut(G);

(iii) Prove that the mapping Φ : G → Aut(G) defined by Φ(g) = σg is a homo-
morphism; and

(iv) Describe the kernel of Φ. The kernel is called the center of G.

(v) Show that if G is finite, then Aut(G) is also finite.
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2.2 The Cosets of a Subgroup and Lagrange’s
Theorem

Suppose G is a group and H is a subgroup of G. We are now going to use H
to partition G into mutually disjoint subsets called cosets. In general, cosets
are not subgroups; they are translates of H by elements of G. Hence there is
a bijection of H onto each of its cosets. Actually, cosets come in two varieties:
left cosets and right cosets. When G is a finite group, every pair of cosets
of both types of a subgroup H have the same number of elements. This is
the key fact in the proof of Lagrange’s Theorem, which was one of the first
theorems in group theory and is still an extremely useful result.

2.2.1 The definition of a coset

Suppose G is a group and H is a subgroup of G.

Definition 2.7. For every x ∈ G, the subset

xH = {g ∈ G | g = xh ∃h ∈ H}

is called the left coset of H containing x. Similarly, the subset

Hx = {g ∈ G | g = hx ∃h ∈ H}

of G is called the right coset of H containing x. Note, xH and Hx both
contain x, since 1 ∈ H. The set of left cosets of H is denoted by G/H, while
the set of right cosets of H is denoted by H\G. We will call x a representative
of either coset xH or Hx.

Let us make some basic observations. Since x ∈ xH, it follows that G is
the union of all the left cosets of H:

G =
⋃
x∈G

xH.

Of course, a similar assertion holds for the right cosets. Since two cosets xH
and yH may intersect or even coincide, the above expression for G needs to
be made more precise. To do so, we will consider how two cosets xH and yH
intersect. The answer might be a little surprising.

Proposition 2.8. Two left cosets xH and yH of the subgroup H of G are
either equal or disjoint. That is, either xH = yH or xH ∩ yH is empty. Fur-
thermore, xH = yH if and only if x−1y ∈ H. Consequently, G is the disjoint
union of all the left cosets of H.
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Proof. We will show that if xH and yH have at least one element in com-
mon, then they coincide. Suppose z ∈ xH ∩ yH. Then z = xh = yk. Now
we observe that xH ⊂ yH. For if u ∈ xH, then u = xj for some j ∈ H.
Since x = ykh−1, u = ykh−1j. But kh−1j ∈ H, since H is a subgroup. Thus
u ∈ yH. Similarly, yH ⊂ xH, so indeed, xH = yH. Thus, two left cosets
that have a nonempty intersection coincide. Consequently, two cosets are
either equal or disjoint. To prove the second statement, assume xH = yH.
Then xh = yk for some h, k ∈ H, so x−1y = hk−1 ∈ H. On the other hand,
if x−1y ∈ H, then y = xh for some h ∈ H. Thus xH and yH have y as a
common element. Therefore, xH = yH by the first statement of the proposi-
tion. The final statement follows from the fact that every element of G is in
a coset. �

If G is abelian, then xH = Hx for all x ∈ G and all subgroups H. In
nonabelian groups, it is often the case that xH �= Hx. Left and right cosets
may be different. We will see that subgroups H such that xH = Hx for all
x ∈ G play a special role in group theory. They are called normal subgroups.
Let us now consider some examples.

Example 2.10. Let us find the cosets of the subgroup mZ of Z. By defini-
tion, every coset has the form k + mZ = {k + mn | n ∈ Z}. Suppose we begin
with m = 2. In this case, mZ = 2Z is the set of even integers. Then 2Z and
1 + 2Z are cosets. Similarly, 3 + 2Z is also a coset, as is 4 + 2Z. We could
continue, but it is better to check first whether all these cosets are distinct.
For example, 4 + 2Z = 0 + 2Z, since 4 − 0 is even. Similarly, 3 − 1 ∈ 2Z, so
3 + 2Z = 1 + 2Z. Thus when m = 2, there are only two cosets: the even inte-
gers and the odd integers. Now suppose m is an arbitrary positive integer.
Then by similar reasoning, the cosets are

mZ, 1 + mZ, 2 + mZ, . . . , (m − 1) + mZ.

In other words, mZ has m distinct cosets. Note that since mZ is an abelian
group,
the right cosets and the left cosets are the same: k + mZ = mZ + k for all
integers k. �

In number theory, one says that two integers r and s are congruent mod-
ulo m if their difference is a multiple of m: r − s = tm. When r and s are
congruent modulo m, one usually writes r ≡ s mod(m). Interpreted in terms
of congruence, Proposition 2.8 says that r ≡ s mod(m) if and only if r and s
are in the same coset of mZ if and only if r + mZ = s + mZ.

Example 2.11 (Cosets in R
2). Recall that R

2 = R × R denotes the set
of all ordered pairs {(r, s) | r, s ∈ R}. By the standard identification, R2 is
the Cartesian plane. It is also an abelian group by componentwise addi-
tion: (a, b) + (c, d) = (a + c, b + d). The solution set � of a linear equation
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rx + sy = 0 is a line in R
2 through the origin (0, 0). Note that (0, 0) is the

identity element of R2. Note also that every line � through the origin is a sub-
group of R2. By definition, every coset of � has the form (a, b) + �, and thus
the cosets of � are lines in R

2 parallel to �. For if (u, v) ∈ �, then ru + sv = 0;
hence r(a + u) + s(b + v) = (ra + sb) + (ru + sv) = ra + sb. Thus the coset
(a, b) + � is the line rx + sy = d, where d = ra + sb. If d �= 0, this is a line in
R

2 parallel to �, which verifies our claim. Consequently, the coset decompo-
sition of R2 determined by a line � through the origin consists of � together
with the set of all lines in R

2 parallel to �. Finally, we remark that every
subgroup of R2 distinct from R

2 and {(0, 0)} is a line through the origin, so
we have determined all possible cosets in R

2: every coset is either R2, a point,
or a line. In Exercise 2.2.7, the reader is asked to carefully supply the details
of this example. �

The final example of this section verifies our claim about the order of the
dihedral group.

Example 2.12 (The order of the dihedral group D(m) is 2m). Let m be
a positive integer. In this example, we will compute a coset decomposition
of the dihedral group D(m) and use it to show that |D(m)| = 2m. Recall
from Example 2.4 that D(m) is generated by two elements a and b satisfying
am = 1, b2 = 1, and ab = bam−1. Let H denote the cyclic subgroup < a >,
and let us compute the cosets of H. One is H, and another is bH, since b /∈ H.
Now consider abH. Since ab = ba−1, it follows that abH = bH. Furthermore,
b2H = H. Thus the coset decomposition of D(m) into left cosets of H has to
be

D(m) = H
⋃

bH.

Since |H| = m, and |bH| = |H| due to the fact that Lb(h) = bh defines a
bijection of H to bH, it follows that |D(m)| = m + m = 2m. �

2.2.2 Lagrange’s Theorem

The most important consequence of the fact that the cosets of a subgroup of
a finite group partition the group into subsets all having the same number
of elements is the famous theorem of Lagrange, which we will now prove. We
first note the following result.

Proposition 2.9. If G is a group and H is a finite subset of G, then for
every a ∈ G, |aH| = |Ha| = |H|.
Proof. Recall that the left multiplication mapping La : G → G defined by
La(g) = ag is injective. Since La(H) = aH, we conclude that |aH| = |H|.
Similarly, |Ha| = |H|. �
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We now prove Lagrange’s theorem. It is undoubtedly the most frequently
cited elementary result on finite groups.

Theorem 2.10. Suppose G is a finite group and H is a subgroup of G. Then
the order of H divides the order of G. In fact,

|G|/|H| = |G/H|.

Proof. Every element of G is in a unique left coset of H, and by the previous
lemma, any two cosets have the same number of elements. Since distinct
cosets are disjoint, we may conclude that |G| = |G/H||H|. �

Definition 2.8. If |G| is finite, the common value of |G/H| and |H\G| is
called the index of H in G.

Since the left and right cosets in an abelian group are the same, it is also
possible to define the index of a subgroup of an infinite abelian group.

Definition 2.9. If a subgroup H of an arbitrary abelian group G has only
finitely many cosets, then the index of H in G is defined to be |G/H|. If G/H
is infinite, we say that H has infinite index in G.

For example, by Example 2.10, the index of H = mZ in G = Z is exactly
m. Let us now consider the order of an element x �= 1.

Definition 2.10. Let G be a group. An element x �= 1 ∈ G is said to have
finite order if xm = 1 for some m > 0. The order of an element x of finite order
is the smallest integer n > 0 such that xn = 1. By assumption, the identity
has order one.

Notice that if x has order n > 0 and xm = 1 for some m > 0, then n
divides m. Reason: By definition, m ≥ n. Dividing m by n, we can write
m = sn + r, where s and r are nonnegative integers and 0 ≤ r < n. But then
xm = xsnxr = xr = 1. Since r < n, it follows by the definition of n that r = 0.
Of course, groups that are not finite need not have any elements of finite
order (example?). Another remark is that an element and its inverse have the
same order. Let us now derive the first of several applications of Lagrange’s
theorem.

Proposition 2.11. Every element in a finite group G has finite order, and
the order of every element divides the order of the group.

Proof. If x ∈ G, the powers x, x2, x3, . . . cannot all be distinct. Hence there
are positive integers r < s such that xr = xs. Consequently, xs−r = 1. Hence
every element of G has finite order. Let x have order n. Then the cyclic group
< x >= {1, x, . . . , xn−2, xn−1} is a subgroup of G of order n, so by Lagrange,
n divides |G|. �
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Recall that an integer p > 1 is said to be prime if its only positive inte-
ger divisors are 1 and p. The next result is an immediate consequence of
Proposition 2.11.

Corollary 2.12. A group of prime order is cyclic.

Another useful result is the following.

Proposition 2.13. In a finite group, the number of elements of prime order
p is divisible by p − 1.

Proof. By Lagrange, two distinct subgroups of prime order p meet exactly
at 1, for their intersection is a subgroup of both. But in a group of order
p, every element except the identity has order exactly p, since p is prime.
Thus the number of elements of order p is m(p − 1) where m is the number
of subgroups of order p. �

The reader may wonder whether Lagrange’s theorem has a converse: does a
group of order m have a subgroup of order k for every divisor k of m? It turns
out that the answer is no. For example, a group of order 12 need not have a
subgroup of order 4. However, there is a famous theorem of Cauchy that says
that if a prime p divides |G|, then G contains an element of order p. What
one can say in general about the converse of Lagrange’s theorem is partially
answered by the Sylow theorems, which describe the Sylow subgroups of G,
namely those subgroups whose order is the highest power pm of a prime p
dividing |G|. These results are all proved in Chap. 11.

Exercises

Exercise 2.2.1. Suppose G is a group and H is a subgroup of G. Show that
the relation on G given by x ≡ y if and only if x−1y ∈ H is an equivalence
relation whose equivalence classes are exactly the left cosets of H. Conclude
that G is the disjoint union of its left cosets. This gives an alternative proof
of Proposition 2.8.

Exercise 2.2.2. Let G have order 15 and let H have order 8. Does there
exist a surjective homomorphism ϕ : G → H?

Exercise 2.2.3. Let G have order 9 and let G′ have order 20. Describe the
set of all homomorphisms ϕ : G → G′.

Exercise 2.2.4. Suppose G is a finite cyclic group.

(i) Show that every subgroup of G is also cyclic.

(ii) Show that for every divisor k of m, there exists a cyclic subgroup of G
having order k.

http://dx.doi.org/10.1007/978-0-387-79428-0_11
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Exercise 2.2.5. Show that if ϕ is a homomorphism on a group G and if H
is the kernel of ϕ, then ϕ is constant on each coset of H, and ϕ takes different
values on different cosets.

Exercise 2.2.6. Let G be an abelian group, and suppose x and y are ele-
ments of G of finite orders m and n respectively.

(i) Show that the order of xy is the least common multiple of m and n.

(ii) Give an explicit example of a finite nonabelian group G containing non-
commuting elements x and y such that the order of xy is not the least common
multiple of m and n. (Try S(3).)

Exercise 2.2.7. Consider the plane R2 = {(x, y) | x, y ∈ R}, and define addi-
tion on R

2 by (x, y) + (u, v) = (x + u, y + v).

(i) Show that R
2 is an abelian group under addition.

(ii) Let a, b ∈ R, and put � = {(x, y) | ax + by = 0}. Thus � is a line in R
2

through the origin (0, 0). Show that � is a subgroup of R2, and conclude that
lines through the origin in R

2 are subgroups.

(iii) Show that if (r, s) ∈ R
2, then the coset (r, s) + � of � is a line in R

2. In
fact, show that (r, s) + � is the line ax + by = ar + bs. Conclude from this
that any two cosets of � coincide or are disjoint.

Exercise 2.2.8. Consider the group Z24 as defined in the 24-hour clock
example. Find the number of elements of order n for each divisor of 24.
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2.3 Normal Subgroups and Quotient Groups

Suppose G is a group and H is a subgroup of G. Recall that G/H is the set
of all left cosets of H in G. The plan in this section is to define what is called
a normal subgroup of G and to show that when H is a normal subgroup
of G, then G/H is also a group. The group G/H is called the quotient of
G by H.

2.3.1 Normal subgroups

Suppose H is a subgroup of an arbitrary group G. Let us consider what it
means to impose the condition that a left coset xH is also a right coset Hy.

Proposition 2.14. Suppose the left coset xH coincides with the right coset
Hy for a pair x, y ∈ G. Then x = hy for some h ∈ H, so Hy = Hx. Thus
xH = Hx, and consequently, xHx−1 = H.

Proof. Left to the reader.

It follows that the subgroups H of G such that every left coset of H is a
right coset are characterized by the property that xHx−1 = H for all x ∈ G.
From now on, such subgroups will be called normal subgroups.

Definition 2.11. Let H be a subgroup of G. The normalizer of H in G is
defined to be NG(H) = {g ∈ G | gHg−1 = H}.

We leave it as an exercise to show that NG(H) is a subgroup of G and
H is a normal subgroup of NG(H). For example, if G is abelian, then every
subgroup is normal. By the above proposition, NG(H) consists of those x ∈ G
such that the coset xH is also a right coset.

Example 2.13. Let m be a positive integer, and let G denote the dihedral
group D(m) with generators a and b satisfying am = b2 = 1 and ab = bam−1.
Let us show that the cyclic subgroup H =< a > of order m is normal. To
see this, note that since b = b−1, we know that bab−1 = am−1. It follows that
b ∈ NG(H). Moreover, a ∈ NG(H), so G = NG(H), since NG(H) contains
the generators a, b of G. Therefore, < a > is normal in D(m). Now consider
the subgroup < b >. Since aba−1 = bam−1a−1 = bam−2, aba−1 /∈< b > unless
m = 2. But in this case, as we have already seen, G is abelian. Therefore, for
m > 2, < b > is not normal in D(m). �

The following proposition gives a well-known condition for a subgroup to
be normal.
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Proposition 2.15. Let G be a finite group and suppose H is a subgroup of
index two. Then H is normal in G.

Proof. Recall that G is the disjoint union of both its left cosets and its right
cosets. Hence if x /∈ H, then

G = H ∪ xH = H ∪ Hx.

This implies that xH = Hx for every x ∈ G. Therefore, H is normal. �

Since |D(m)| = 2m (by Example 2.12) and the cyclic subgroup < a > has
order m, it follows that < a > has index two. This gives another proof that
< a > is normal.

The next proposition gives a method for producing normal subgroups.

Proposition 2.16. Let G and G′ be groups, and let ϕ : G → G′ be a homo-
morphism with kernel H. Then H is normal in G.

Proof. Let h ∈ H and take any g ∈ G. Then

ϕ(ghg−1) = ϕ(g)ϕ(h)ϕ(g−1) = ϕ(g)1ϕ(g−1) = ϕ(gg−1) = 1.

Thus, ghg−1 ∈ H for all g ∈ G and h ∈ H. Therefore, G = NG(H), so H is
normal. �

2.3.2 Constructing the quotient group G/H

We will now construct the quotient group G/H of G by a normal subgroup
H.

Proposition 2.17. Suppose H is a normal subgroup of G. Then the set
G/H of left cosets of H has a natural group structure under the binary
operation G/H × G/H → G/H defined by (xH, yH) → xyH. Moreover, the
natural mapping π : G → G/H sending g ∈ G to its coset gH is a homomor-
phism. Similarly, the set of right cosets of H admits a group structure defined
analogously.

Proof. The first step is to show that the rule (xH, yH) → xyH doesn’t
depend on the way the cosets are represented. Thus, suppose xH = uH
and yH = vH. I claim that xyH = uvH. To see this, we must show that
(xy)−1(uv) ∈ H. Since xH = uH and vH = yH, x−1u = h1 ∈ H and y−1v =
h2 ∈ H, so

(xy)−1(uv) = y−1x−1uv = y−1x−1uyy−1v = y−1h1yh2 ∈ H,
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since y−1h1y ∈ H, due to the fact that H is a normal subgroup. There-
fore, xyH = uvH, as claimed. We leave it as an exercise to verify that
the group operation is associative. The other group properties are routine:
1 ∈ G/H is the identity coset H and the inverse (xH)−1 is equal to x−1H.
Thus G/H satisfies the group axioms. Finally, it is evident that π is a
homomorphism. �

The map π : G → G/H is called the quotient map. The quotient group
G/H is often referred to as G modulo H, or simply G mod H. The terminol-
ogy for the group of right cosets is the same.

Remark. It is worth noting that when H is normal in G, the product of
the two cosets xH and yH is the coset xyH, where by the product of xH
and yH, we mean the set (xH)(yH) ⊂ G consisting of all elements of the
form xhyk, where h, k ∈ H. We will leave the verification of this claim as an
exercise.

Example 2.14 (Example 2.8 continued). Since R
∗ is abelian, O(1) = {±1}

is a normal subgroup. Each element of the quotient group R
∗/O(1) is a coset

that can be uniquely written rO(1), where r is a positive real number. Note
that the set R>0 of all positive reals is also a subgroup of R

∗. In fact, the
mapping ϕ : R>0 → R

∗/O(1) given by ϕ(r) = rO(1) is an isomorphism, so
R>0

∼= R
∗/O(1). �

Example 2.15. One of the most important examples of a quotient group is
the group Zm = Z/mZ of integers modulo m, where m is a positive integer.
Since Z is an abelian group under addition, the subgroup mZ is normal in Z,
so it follows that Zm is indeed a group. As we noted after Example 2.10, the
index of mZ in Z is m. Thus |Z/mZ| = |Zm| = m. �

Here are two more interesting examples.

Example 2.16. Viewing R as an additive abelian group and Z as a normal
subgroup, the quotient S = R/Z of R modulo Z can be pictured by taking the
unit interval [0, 1] in R and identifying 0 and 1, thus producing a circle that
represents S. The quotient map π : R → R/Z wraps the real line R around
the circle S an infinite number of times so that each interval [n, n + 1] repeats
what happened on [0, 1]. We will see below that the group operation on S can
be explicitly realized using complex numbers and the complex exponential.
In fact, S is then realized concretely as the unit circle in the complex plane.

�

Example 2.17. The plane R
2, which consists of all pairs (x, y) of real num-

bers, is an abelian group under the addition (u, v) + (x, y) = (u + x, v + y).
Let Z

2 denote the subgroup consisting of all pairs (m,n) of integers m and
n. The quotient group T = R

2/Z2 is called a torus. One can visualize T by
taking the unit square S in R

2 with vertices (0, 0), (1, 0), (0, 1), and (1, 1)
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and first identifying the horizontal edge from (0, 0) to (1, 0) with the hori-
zontal edge from (0, 1) to (1, 1) placing (0, 0) on (0, 1) and (1, 0) on (1, 1).
The result is a horizontal cylinder of length one. Next, identify the left edge
circle with the right circle in the same way, placing the point (0, 0) on (1, 1).
This produces a curved surface that looks like the surface of a doughnut or,
in mathematical terminology, a torus. �

When G is a finite group and H is normal in G, Lagrange’s theorem gives
us the following.

Proposition 2.18. The quotient group G/H has order |G/H| =
|G|
|H| . Hence,

|H| and |G/H| both divide |G|.
By Cauchy’s theorem, which we mentioned above, if a prime p divides

|G|, then G contains an element of order exactly p. This tells us something
interesting about a group G of order 2p: G has an element a of order p and an
element b of order two. Moreover, the cyclic subgroup < a > is normal, since
its index in G is two. Thus, bab−1 = ar. Then G = D(2p) when r = p − 1.
But there are other possibilities. For example, if r = 1, then ab = ba, so this
implies that G is abelian. In fact, in the abelian case, the element ab has
order 2p, provided p �= 2. Hence G =< ab >.

2.3.3 Euler’s Theorem via quotient groups

There are several beautiful applications of Lagrange’s theorem and quotient
groups to number theory. One of the nicest is the proof of Euler’s theorem that
we now give. First, let us recall the greatest common divisor, or gcd, (m,n) of
two integers m and n, already defined in Exercise 2.1.5. By definition, (m,n)
is the largest positive integer d dividing both m and n, and (m,n) = d if and
only if there exist integers r and s such that rm + sn = d. When (m,n) = 1,
we say that m and n are relatively prime. The proof of this characterization
of (m,n) can be found in any book on elementary number theory. Euler’s
phi function φ : Z>0 → Z>0 is defined as follows: if m ∈ Z>0, then φ(m) is
the number of integers a ∈ [1,m] such that (a,m) = 1.

Theorem 2.19 (Euler’s theorem). Let m and a be positive integers such
that (a,m) = 1. Then

aφ(m) ≡ 1 mod(m).

Euler’s theorem was published in 1736 and hence preceded groups and
Lagrange’s theorem. Thus the proof given here cannot be Euler’s original
proof. Despite its antiquity, the theorem has a modern application: it turns
out to be one of the ideas that RSA encryption is based on. After defining a
certain finite abelian group Um known as the group of units modulo m, we
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will apply Lagrange’s theorem to deduce the result. The key turns out to be
the fact that the order of Um is φ(m).

Before defining Um, we need to observe that the additive group Zm of inte-
gers modulo m also has an associative and commutative multiplication such
that 1 + mZ is a multiplicative identity. For those already familiar with the
notion of a ring, these claims follow because Zm is also a ring. The construc-
tion of the multiplication will be repeated (in more detail) in Section 2.6.1,
so we may omit some details. The product on Zm is given by the rule

(a + mZ)(b + mZ) = ab + mZ.

This definition is independent of the integers a and b representing their
corresponding cosets. Furthermore, this multiplication is associative and
commutative, and 1 + mZ is a multiplicative identity. We will say that
the coset a + mZ in Zm is a unit if there exists a coset b + mZ such
that (a + mZ)(b + mZ) = 1 + mZ. This is saying that there is a solution
to the equation rx = 1 in Zm. Now let Um ⊂ Zm denote the set of unit
cosets. Then Um contains a multiplicative identity 1 + mZ, and each ele-
ment a + mZ of Um is invertible. That is, there exists b + mZ such that
(a + mZ)(b + mZ) = 1 + mZ. To finish showing that Um is a group, in fact
an abelian group, we must prove the following assertion.

Claim 1: The product of two units is a unit.

Proof. Let a + mZ and b + mZ be units with inverses c + mZ and d + mZ

respectively. Then, omitting parentheses, we have

(a + mZ)(b + mZ)(c + mZ)(d + mZ) = (a + mZ)(c + mZ)(b + mZ)(d + mZ)

= (1 + mZ)(1 + mZ) = 1 + mZ.

Consequently, Um is a group.

Claim 2: |Um| = φ(m).

Proof. Every element of Um is a coset a + mZ represented by an integer a
such that 0 < a < m. It will suffice to show that a + mZ is a unit if and
only if (a,m) = 1. Suppose first that a + mZ is a unit. Then there exists
an integer b such that (a + mZ)(b + mZ) = 1 + mZ. Thus ab − 1 = mn for
some n ∈ Z, so ab − mn = 1. We conclude that (a,m) = 1. Conversely, if
(a,m) = 1, then there exist integers b, c such that ab + cm = 1, from which it
follows that (a + mZ)(b + mZ) = 1 + mZ. Thus, a + mZ ∈ Um, finishing the
proof of Claim 2.

To prove Euler’s theorem, we must show that for every integer a such that
(a,m) = 1, aφ(m) ≡ 1 mod(m). Let a denote a + mZ. Then a ∈ Um, so by
Lagrange’s theorem, aφ(m) = aφ(m) + mZ = 1 + mZ. This is equivalent to the
conclusion of the theorem, so we are done. �
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The groups of units Um are interesting in themselves, because they give
nontrivial examples of finite abelian groups. Let us consider a couple of exam-
ples.

Example 2.18. Let us calculate Um for m = 8 and 10. As above, let a
denote a + mZ. Then U8 = {1, 3, 5, 7}. A simple check shows that every
element of U8 has order two. For example, 32 = 9 = 1. In particular, U8

cannot be cyclic. On the other hand, U10 = {1, 3, 7, 9} has at least one
element of order 4 (find one!). Consequently, U10 is cyclic.

2.3.4 The First Isomorphism Theorem

Finally, let us prove one of the most fundamental results in group theory.

Theorem 2.20. (The first isomorphism theorem) Let ϕ : G → G′ be a sur-
jective group homomorphism, and let H = ker(ϕ). Then ϕ induces an iso-
morphism Φ : G/H → G′ for which Φ(gH) = ϕ(g).

Proof. Since H = ker(ϕ), Proposition 2.16 implies that H is a normal
subgroup. To see that Φ is well defined, we must show that its definition
is independent of the representative g of gH. But all representatives have the
form gh for some h ∈ H, while ϕ(gh) = ϕ(g)ϕ(h) = ϕ(g), so Φ is well defined.
Suppose Φ(gH) = Φ(kH). Then ϕ(g) = ϕ(k). Since ϕ(k−1) = ϕ(k)−1 (due to
the fact that ϕ(k)ϕ(k−1) = ϕ(kk−1) = 1), we thus have ϕ(k−1g) = ϕ(k−1)
ϕ(g) = 1. Therefore, k−1g ∈ H, and so kH = gH. Therefore, Φ is injective.
It is clearly surjective, so Φ is an isomorphism. �

There is a second isomorphism theorem, but it is not as useful, and we
will not mention it here.

Exercises

Exercise 2.3.1. Show that if H is a subgroup of G, then NG(H) is a sub-
group of G and H is a normal subgroup of NG(H).

Exercise 2.3.2. Show that S(3) has both normal subgroups and subgroups
that aren’t normal by showing that the subgroup H1 = {e, σ1σ2, σ2σ1} is
normal, while the subgroup H2 = {e, σ1} is not normal.

Exercise 2.3.3. The center of a group G is defined as Z(G) = {g ∈ G | gh =
hg ∀ h ∈ G}. Show that Z(G) is a normal subgroup.

Exercise 2.3.4. Show that the center of S(3) is the trivial subgroup.

Exercise 2.3.5. Show that S(3) contains a proper nontrivial normal sub-
group H.
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Exercise 2.3.6. Is U12 cyclic? What about U16?

Exercise 2.3.7. A primitive element of a cyclic group G is an element x ∈ G
such that G = 〈x〉. Let G be a cyclic group of order m > 1. The purpose of
this exercise is to study the number of primitive elements of G. First apply the
fundamental theorem of arithmetic (Theorem 2.27) to factor m = pa1

1 · · · pak

k ,
where p1, . . . , pk are the prime factors of m and ai ≥ 1 for all i.

(i) Show that the number of primitive elements of G is φ(m), where φ is
Euler’s φ-function.

(ii) Next, prove that for every prime p and integer a > 0,

φ(pa) = pa − pa−1 = pa(1 − 1/p).

(Just stare hard at 1, 2, . . . , pa.)

(iii) Now show that if m and n are relatively prime positive integers, then
φ(mn) = φ(m)φ(n). (This is elementary.)

(iv) Finally, conclude that the number of primitive elements of G is

φ(m) = m

k∏
i=1

(1 − 1/pi).

This is a well-known expression for the Euler function.

Exercise 2.3.8. Define a mapping ϕ : Z4 → Z10 by ϕ(x) = 5x. That is, for
every a ∈ Z, ϕ(a + 4Z) = (5a + 10Z).

(i) Show that ϕ is a well-defined homomorphism.

(ii) Find the kernel and image of ϕ.

Exercise 2.3.9. Prove that if G is a finite group such that G/Z(G) is cyclic,
then G is abelian. (Recall that Z(G) is the center of G.)
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2.4 Fields

We now come to the second fundamental topic in this introduction to abstract
algebra, the notion of a field. Roughly speaking, a field is a set F with two
binary operations, addition and multiplication. The first requirement is that
F be an abelian group under addition; the second is that if 0 denotes the
additive identity of F, then F

∗ = F − {0} is an abelian group under multipli-
cation. In addition, addition and multiplication are related by the distribu-
tive laws. The reader is undoubtedly already familiar with examples of fields.
For example, the rational numbers, Q, consisting of all quotients m/n with
m,n ∈ Z and n �= 0, form a field, as do the real numbers R. A third very
important field is the complex numbers C, which allow one to solve an equa-
tion like x2 + 1 = 0 by adjoining the imaginary numbers to R. The complex
numbers are an indispensable tool for physicists, chemists, and engineers as
well as mathematicians. We will also consider another class of fields called
Galois fields. Galois fields are finite: as we will show, the rings Zp, where p
is a prime, form a class of Galois fields called the prime fields. The simplest
prime field is Z2, in which 0 represents off, 1 represents on, and addition by 1
changes off to on and on to off. Galois fields are a tool of coding theory and
computer science.

2.4.1 The definition of a field

The definition of a field is long but not difficult, due to the fact that every
condition in the definition is a familiar arithmetic property of the real num-
bers.

Definition 2.12. A field is a set F that has two binary operations F+(a, b) =
a + b and F·(a, b) = ab. These operations are called addition and multiplica-
tion respectively. They are required to satisfy the following conditions:

(i) F is an abelian group under addition.

(ii) Let 0 ∈ F be the additive identity, and put

F
∗ = {x ∈ F | x �= 0}.

Then F
∗ is an abelian group under multiplication. In particular, F∗ contains

a multiplicative identity 1, and 0 �= 1.

(iii) The distributive law holds: a(b + c) = ab + ac for all a, b, c ∈ F.

The associativity, commutativity, and distributivity of addition and mul-
tiplication are called the arithmetic properties of F. One of the consequences
of these properties is that the identity
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a0 = 0 (2.2)

holds for all a ∈ F. To see this, use the distributive law to infer a0 =
a(0 + 0) = a0 + a0. Then a0 + (−a0) = (a0 + a0) + (−a0). Now applying asso-
ciativity of addition gives the identity, since

0 = a0 + (a0 + (−a0)) = a0 + 0 = a0.

In the above definition, we referred to the additive and multiplicative iden-
tities as well as to the additive and multiplicative inverses. The uniqueness
follows from the fact that identities and inverses in groups are unique.

From now on, the additive inverse of a ∈ F will be denoted by −a, and its
multiplicative inverse will be denoted by a−1, provided a �= 0. We next prove
a fundamental and useful property that all fields possess.

Proposition 2.21. Let F be a field, and suppose a, b ∈ F satisfy ab = 0.
Then either a = 0 or b = 0. Put another way, if neither a nor b is zero,
then ab �= 0.

Proof. Suppose ab = 0 but a �= 0. Then

0 = a−10 = a−1(ab) = (a−1a)b = 1b = b.

Therefore, b = 0. �

We will consider the rational numbers Q, the real numbers R, and the
complex numbers C in the next section. After that, we will construct the
prime fields Fp having p elements, where p is a prime. To conclude this section,
let us describe the simplest prime field F2 in more concrete terms than in the
introduction.

Example 2.19. Computers use two states O and I that interact. We will
call this setup O|I. We describe it as follows: let O|I = {0, 1}, with 0 denot-
ing the additive identity and 1 the multiplicative identity. To make O|I a
field, we have to completely define the two binary operations. Multiplica-
tion is forced on us by the definition of a field and (2.2). That is, 0 · 0 = 0,
0 · 1 = 0, and 1 · 1 = 1. (Here we are denoting multiplication ab by a · b for
clarity.) Furthermore, addition by 0 is also already determined. Thus it
remains to define 1 + 1. But if one puts 1 + 1 = 1, then necessarily 0 = 1,
so we are forced to set 1 + 1 = 0. With this stipulation, 1 is its own additive
inverse. Thus addition corresponds to the operation of changing the state
from 0 to 1 and 1 to 0. When p > 2, however, multiplication is nontrivial. We
leave it to the reader to show that in fact, O|I satisfies all the field axioms
(see Exercise 2.4.2). �

Finally, we make a useful though obvious definition.
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Definition 2.13. Let F be a field. A subset F
′ of F is said to be a subfield

of F if F′ is a field under the addition and multiplication of F.

2.4.2 Arbitrary sums and products

Just as for groups, one frequently has to express the sums and prod-
ucts of more than three elements in a field. For a, b, c, d ∈ F, we can put
a + b + c = a + (b + c) and then put a + b + c + d = a + (b + c + d). But is it
the case that a + b + c + d = ((a + b) + c) + d? The answer is yes. Moreover,
a + b + c + d = (a + b) + (c + d) too. For, if e = a + b, then (a + b) + (c +
d) = e + (c + d) = (e + c) + d = ((a + b) + c) + d. In fact, no matter how one
associates the terms a, b, c, d, their sum will always have the same value.

More generally, defining the sum of any n elements a1, . . . , an ∈ F induc-
tively by

a1 + a2 + · · · + an = (a1 + a2 + · · · + an−1) + an

as in Section 2.1.2 allows us to ignore parentheses. Moreover, if a′
1, . . . , a

′
n are

the same elements as a1, . . . , an, but taken in a different order, then

n∑
i=1

ai =
n∑

i=1

a′
i.

In other words, arbitrary finite sums of elements in a field are well defined
and may be computed by associating them in any manner or rearranging
them in any way. These claims can be proved via mathematical induction,
though their proofs are tedious (that is, no fun). Thus we will not attempt
them. The analogous results for products are also true and proved in exactly
the same way.

Exercises

Exercise 2.4.1. Show that in a field, the additive identity cannot have a
multiplicative inverse.

Exercise 2.4.2. Finish Example 2.19 by showing that if O|I denotes the set
{0, 1} with addition 0 + 0 = 0, 0 + 1 = 1 + 0 = 1, 1 + 1 = 0 and multiplica-
tion 0 · 0 = 0, 0 · 1 = 1 · 0 = 0, and 1 · 1 = 1, then O|I is a field.

Exercise 2.4.3. Let a1, . . . , an be elements of a field F. Let a′
1, . . . , a

′
n be

the same elements, but taken in a different order. Use induction to show that

n∑
i=1

ai =
n∑

i=1

a′
i
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and
n∏

i=1

ai =
n∏

i=1

a′
i.

Exercise 2.4.4. Consider the set Q of all pairs (a, b), where a, b ∈ Z and
b �= 0. Consider two pairs (a, b) and (c, d) to be the same if ad = bc. Now
define operations of addition and multiplication on Q as follows:

(a, b) + (c, d) = (ad + bc, bd) and (a, b)(c, d) = (ac, bd).

Show that Q is a field. Can you identify Q?

Exercise 2.4.5. Let F = {a + b
√

2 | a, b ∈ Q}.

(i) Show that F is a subfield of the real numbers R.

(ii) Find (1 − √
2)−1 and (3 − 4

√
2)−1.
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2.5 The Basic Number Fields Q, R, and C

We now describe the most familiar examples of fields: the rational numbers
Q, the real numbers R, and the complex numbers C. We will assume that the
real numbers exist and will not attempt to construct them.

2.5.1 The rational numbers Q

The set of rational numbers Q consists of all fractions a/b, where a, b ∈ Z

and b �= 0. By assumption, b/b = 1, provided b �= 0. Addition is defined by
the rule

a/b + c/d = (ad + bc)/bd,

and multiplication is defined by

(a/b)(c/d) = ac/bd.

In particular, if c �= 0, then ac/bc = a/b. Moreover, a/b = 0 if and only if
a = 0. One easily checks that −(a/b) = −a/b. The multiplicative inverse of
a/b �= 0 is b/a. That is,

(a/b)−1 = b/a,

provided a, b �= 0.
That the rationals satisfy all the field axioms follows from the arithmetic

properties of the integers. Of course, Z is not a field, since the only nonzero
integers with multiplicative inverses are ±1. In fact, one can show that every
field containing Z also contains a subfield indistinguishable from Q. In other
words, Q is the smallest field containing Z. The integers form a structure
known as a ring. In other words, a field is a ring in which every nonzero
element has a multiplicative inverse. We have already encountered examples
of rings: for example, the integers modulo a composite number (see Exam-
ple 2.15). The n × n matrices over a field defined in the next chapter will give
other examples of rings.

2.5.2 The real numbers R

The construction of the real numbers involves some technical mathematics
that would require a lengthy digression. Thus we will simply view R as the
set of all decimal expansions
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±a1a2 · · · ar.b1b2 · · · ,

where all ai and bj are integers between 0 and 9 and a1 �= 0 unless r=1. Note
that there can be infinitely many bj to the right of the decimal point but only
finitely many aj to the left. It is also necessary to identify certain decimal
expansions. For example, 1 = .999999 . . . . In these terms, Q is the set of real
numbers ±a1a2 · · · ar.b1b2 · · · such that the decimal part b1b2 · · · is either
finite (that is, all bi = 0 for i sufficiently large) or eventually repeats itself ad
infinitum. Examples are 1 = 1.000 . . . or 1/3 = .333 . . . .

The real numbers have the useful property of having an ordering; every
real number x is either positive, negative, or 0, and the product of two num-
bers with the same sign is positive. This makes it possible to solve linear
inequalities such as a1x1 + a2x2 + · · · + anxn > 0, although we will not need
to treat such ideas in this text. The reals also have the Archimedean prop-
erty: if a, b > 0, then there exists an x > 0 such that ax > b. In other words,
inequalities in R always have solutions.

2.5.3 The complex numbers C

The set of complex numbers C is a field containing R and the square roots of
negative real numbers. Put another way, if a is a positive real number, then
the equation x2 + a = 0 has two complex roots. It is therefore possible to
give a meaning to the square root of a negative number such as

√−a. These
numbers are said to be imaginary.

The definition of C starts with R
2, namely the set of all ordered pairs (a, b)

of real numbers a and b with the usual componentwise addition:

(a, b) + (c, d) = (a + c, b + d).

The interesting feature is the definition of multiplication:

(a, b)(c, d) = (ac − bd, ad + bc). (2.3)

Then we have the following proposition.

Proposition 2.22. The set R
2 with addition and multiplication defined as

above is a field. The zero element 0 is (0, 0) and the multiplicative identity 1
is (1, 0). The additive inverse of (a, b) is

−(a, b) = (−a,−b),

and the multiplicative inverse of (a, b) �= (0, 0) is



42 2 Groups and Fields: The Two Fundamental Notions of Algebra

(a, b)−1 =
1

a2 + b2
(a,−b).

The proof is a straightforward calculation and will be omitted. We will
now simplify the notation by identifying the pair (a, 0) with the real number
a. (Note: in fact, the mapping R → R

2 sending a → (a, 0) is an injective field
homomorphism.) Since (a, 0)(r, s) = (ar, as), we obtain after this identifica-
tion that

a(r, s) = (ar, as).

This operation is the usual scalar multiplication on R
2. Later will we will say

that C is a vector space over R.
Next, denote (0, 1) by i. Then (a, b) may be written

(a, b) = a(1, 0) + b(0, 1) = a + bi.

Addition and multiplication are then given by the rules

(a+ bi) + (c+ di) = (a+ c) + (b+ d)i and (a+ bi)(c+ di) = (ac− bd) + (ad+ bc)i.

In particular, i2 = −1, and if a + bi �= 0, then

(a + bi)−1 =
a − bi

a2 + b2
.

We now make the following definition.

Definition 2.14. We will call a + bi as defined above a complex number and
let C denote the set of all complex numbers a + bi with a and b arbitrary real
numbers.

Summarizing the above discussion, we have the following assertion.

Proposition 2.23. The set of complex numbers C = {a + bi | a, b ∈ R} with
the definitions of addition and multiplication given above is a field containing
R as a subfield in which every element a ∈ R different from zero has two
distinct square roots ±√

a.

The first component a of a + bi is called its real part, and the second
component b is called its imaginary part. The points of C with imaginary
part zero are called real points, and the points of the form bi with real part
zero are called imaginary points.
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2.5.4 The geometry of C

We now make some definitions for complex numbers that lead to some beau-
tiful connections with the geometry of R2. First of all, the complex conjugate
ζ of ζ = a + ib is defined by ζ = a − ib. It is straightforward to check the
following identities:

ω + ζ = ω + ζ (2.4)

and

ωζ = ω ζ. (2.5)

The real numbers are obviously the numbers ζ ∈ C for which ζ = ζ. Geomet-
rically speaking, complex conjugation is a mapping with domain and target
R

2 sending a point to its reflection through the real axis.
The length of the complex number ζ = a + ib is defined as the length of

the point (a, b) ∈ R
2. That is, |ζ| = (a2 + b2)1/2. One calls |ζ| the modulus of

ζ. Since ζζ = (a + bi)(a − bi) = a2 + b2,

|ζ| = (ζζ)1/2.

Applying this to the formula for an inverse, we get the lovely formula

ζ−1 =
ζ

|ζ|2 ,

if ζ �= 0. This gives a nice geometric fact about inversion: if |ζ| = 1, then
ζ−1 = ζ. In other words, the inverse of a complex number of modulus one is
its reflection through the real axis.

The complex numbers ζ = x + yi of unit length are the points of R2 on
the unit circle

S1 = {(x, y) | x2 + y2 = 1}.

Since every point of S1 can be expressed in the form (cos θ, sin θ) for a unique
angle θ such that 0 ≤ θ < 2π, we can parameterize the unit circle by intro-
ducing the complex exponential function

eiθ := cos θ + i sin θ. (2.6)

The following proposition uses this observation.
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Proposition 2.24. Every ζ ∈ C can be represented as ζ = |ζ|eiθ for some
θ ∈ R. Two values of θ parameterize the same point of C if and only if their
difference is a multiple of 2π.

The unique value of θ in [0, 2π) such that ζ = |ζ|eiθ is called the argument
of ζ. A key property of the complex exponential is the identity

ei(θ+μ) = eiθeiμ, (2.7)

which follows from the trigonometric formulas for the sine and cosine of the
sum of two angles. (We will give a simple geometric proof of this identity
using rotations in the plane.) The identity (2.7) can be interpreted group-
theoretically too.

Proposition 2.25. The complex exponential defines a homomorphism π
from the additive group R to the multiplicative group C

∗ of nonzero com-
plex numbers. The image π(R) is the subgroup S1 of C

∗ consisting of the
complex numbers of length one.

The identity (2.7) implies De Moivre’s identity: for every integer n > 0,

(cos θ + i sin θ)n = cos nθ + i sin nθ.

It also gives a geometric interpretation of complex multiplication: if ζ = |ζ|eiθ
and ω = |ω|eiμ, then

ωζ = (|ω|eiμ)(|ζ|eiθ) = (|ω||ζ|)ei(μ+θ). (2.8)

In other words, the product ωζ is obtained by multiplying the lengths of ω
and ζ and adding their arguments (modulo 2π).

Example 2.20 (The mth roots of unity). Suppose m is a positive integer
and put θ = 2π/m. Let

Cm = {1, eiθ, . . . , ei(m−1)θ}.

The elements of Cm are distinct solutions of the polynomial equation zm −
1 = 0. We call Cm the set of mth roots of unity. We leave it as an exercise to
show that Cm is a cyclic subgroup of the multiplicative subgroup C

∗ of C of
order m. Since zm − 1 = 0 has at most m solutions in C (see the discussion
in Section 2.5.5), Cm gives all mth roots of unity. The points of Cm are the
m equally spaced points on the unit circle S1 including 1. �

Here is a surprisingly nice consequence of Proposition 2.9 (cf. Lagrange’s
theorem).

Proposition 2.26. Suppose G is a finite subgroup of C∗ of order m. Then
G = Cm. Therefore, the only finite subgroups of C∗ are the cyclic groups Cm

of mth roots of unity.
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Proof. Since G is finite of order m, it follows that for all z ∈ G, zm = 1, by
Lagrange. In particular, G ⊂ Cm. It follows immediately that G = Cm. �

2.5.5 The Fundamental Theorem of Algebra

Suppose z denotes an arbitrary element of C and let n be a positive integer.
A function f : C → C of the form f(z) = α0z

n + α1z
n−1 + · · · + αn−1z + αn,

where the coefficients α0, α1, . . . , αn ∈ C, is called a complex polynomial. If
α0 �= 0, we say that f has degree n. The roots of f are the elements ζ ∈ C such
that f(ζ) = 0. As noted earlier, the polynomial z2 + 1 has real coefficients
but no real roots, However, ζ = ±i are a pair of roots in C. Consequently,
z2 + 1 = (z + i)(z − i). The fundamental theorem of algebra is the following
remarkable generalization of this example.

Theorem 2.27. Every complex polynomial

f(z) = zn + α1z
n−1 + · · · + αn−1z + αn

with n > 0 has a complex root. That is, there exists ζ ∈ C such that f(ζ) = 0.

The fundamental theorem of algebra poses a conundrum to algebraists: the
only known algebraic proof is long and complicated. The best proofs, in the
sense of explaining why in particular the theorem is true, come from complex
analysis and topology. The proof using complex analysis is extremely elemen-
tary and elegant, so it is invariably included in complex analysis courses.

It follows from division with remainders (see Proposition 2.36) that if f(z)
is a complex polynomial such that f(ζ) = 0, then there exists a complex
polynomial g(z) such that

f(z) = (z − ζ)g(z).

Applying the fundamental theorem of algebra to g(z) and so forth, it follows
that there are not necessarily distinct ζ1, . . . , ζn ∈ C such that

f(z) = (z − ζ1)(z − ζ2) · · · (z − ζn).

Thus every complex polynomial f(z) can be expressed as a product of linear
polynomials. A field F that has the property that every polynomial with
coefficients in F of positive degree has a root in F is said to be algebraically
closed. For example, C is algebraically closed, but R isn’t. A fundamental
result in algebra, which is well beyond the scope of this discussion, says that
every field is a subfield of an algebraically closed field.
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Exercises

Exercise 2.5.1. Express the following complex numbers in the form a + ib:

(i)
2 − 3i

1 + 2i
, and (ii)

(2 + i)(3 − 2i)
4 − 2i

.

Exercise 2.5.2. Find the inverse of

(2 + i)(3 − 2i)
4 − 2i

without explicitly computing the fraction.

Exercise 2.5.3. Express all solutions of the equation x3 + 8 = 0 in the form
reiθ and graph them as elements of C = R

2.

Exercise 2.5.4. Find α1, . . . , α4 such that

x4 − 1 = (x − α1)(x − α2)(x − α3)(x − α4).

Exercise 2.5.5. Find all (x1, x2, x3) ∈ C
3 satisfying the equations

ix1 + 2x2 + (1 − i)x3 = 0,
−x1 + ix2 − (2 + i)x3 = 0.

Exercise 2.5.6. If necessary, look up formulas for cos(θ + μ) and sin(θ + μ),
and use them to prove formula De Moivre’s identity. That is, show that
ei(θ+μ) = eiθeiμ.

Exercise 2.5.7. Suppose p(x) is a polynomial with real coefficients. Show
that all the roots of p(x) = 0 occur in conjugate pairs λ, λ ∈ C. Conclude
that a real polynomial of odd degree has a real root.

Exercise 2.5.8. An nth root of unity α is called primitive if for every nth
root of unity β, there is an integer r ≥ 0 such that β = αr. Prove that for
every n > 0, there exists a primitive nth root of unity.

Exercise 2.5.9. Let a, b, c, d be arbitrary integers. Show that there exist
integers m and n such that (a2 + b2)(c2 + d2) = m2 + n2.
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2.6 Galois fields

A field F which is finite is called a Galois field. We have already encountered
an example of a Galois field in Example 2.19, namely the two-element field
O|I, or F2 as it is usually called. In this section, we will construct a Galois
field with a prime number of elements for every prime.

2.6.1 The prime fields Fp

Let p denote an arbitrary prime. Our goal is to construct a field Fp, called
a prime field, having exactly p elements. We have already defined a field
with two elements, and since every field has to contain at least two elements,
(namely the additive and multiplicative identities), F2 is the smallest field.
Let us now define Fp. Putting Fp = Zp = Z/pZ gives us an additive abelian
group with p elements. It remains to define a multiplication on Fp such that
Fp − {0} is an abelian group. Given two cosets a = a + pZ and b = b + pZ,
define

ab = (a + pZ)(b + pZ) = ab + pZ.

Since
(a + mp)(b + np) = ab + p(an + bm + mnp),

this coset multiplication is well defined. It is immediate that the coset 1 + pZ
is a multiplicative identity. Associativity of multiplication and the distributive
law follow easily from the arithmetic of Z.

Now recall the Euler group Up ⊂ Z/pZ = Fp of units modulo p. We showed
that Up is an abelian group whose order is φ(p) = p − 1. This says that in
fact, Fp − {0} = Up. Therefore, Fp − {0} is an abelian group, and hence we
have proved the following theorem.

Theorem 2.28. If p is a prime, then Fp is a field.

There is another proof that doesn’t use Euler groups, which although
longer, is also instructive. First, one notes that a property of fields we already
proved holds for Fp. Claim. If p be a prime number and ab = 0 in Fp, then
either a = 0 or b = 0 (or both). For since ab = 0 in Fp is the same thing
as saying that p divides the product ab in Z, the claim follows from the fact
that if the prime number p divides ab, then either p divides a or p divides b.
This is immediate from the following theorem.

Theorem 2.29 (Fundamental theorem of arithmetic). Every integer m > 1
can be factored m = p1p2 · · · pk, where p1, p2, . . . , pk are not necessarily dis-
tinct primes. Moreover, the number of times each prime pi occurs in this
factorization is unique.
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To show that every nonzero element in Fp has an inverse, we will show
that multiplication by any a ∈ Fp − 0 induces an injective map

φa : Fp − 0 −→ Fp − 0

defined by φa(x) = ax. To see that φa is indeed injective, let φa(x) = φa(y),
that is, ax = ay. Then a(x − y) = 0, so x − y = 0, since a �= 0 (Proposi-
tion ??). Therefore, φa is indeed injective. Since Fp − 0 is finite, the pigeonhole
principle says that φa is a bijection. In particular, there exists an x ∈ Fp − 0
such that φa(x) = ax = 1. Hence x is the required inverse of a. This com-
pletes the second proof that Fp is a field. �

Here is an explicit example. As we did earlier, we will use a dot to denote
multiplication.

Example 2.21 Consider F3 = {0,1,2}. Addition is given by 1 + 1 = 2,
1 + 2 = 0, and 2 + 2 = 1, the latter sum because 2 + 2 = 4 in Z, and 4 is
in the coset 1 + 3Z. Finding products is similar. For example, 2 · 2 = 4 = 1.
Thus 2−1 = 2 in F3. A good way to picture addition and multiplication is to
construct tables. The addition table for F3 is

+ 0 1 2
0 0 0 0
1 1 2 0
2 2 0 1

.

Similarly, the multiplication table is

· 0 1 2
0 0 0 0
1 0 1 2
2 0 2 1

.

�

2.6.2 A four-element field

We will now give an example of a Galois field that is not an Fp by constructing
a field F with four elements. We will define addition and multiplication by
tables and leave it to the reader to verify that F is a field. Let 0, 1, α, and β
denote the elements of F, with 0 and 1 the usual identities. Ignoring addition
by 0, the addition table is defined as follows:
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+ 1 α β

1 0 β α
α β 0 1
β α 1 0

.

The multiplication table (omitting the obvious cases 0 and 1) is

· α β

α β 1
β 1 α

.

Proposition 2.30. The set F = {0, 1, α, β} having 0 and 1 as identities and
addition and multiplication defined as above is a field. Moreover, F2 is a
subfield of F.

Notice that since α2 = β and β2 = α, it follows that α3 = β3 = 1. This
isn’t surprising, since F

∗ has order three and hence must be cyclic. Since
α4 = α and β4 = β, all elements of F satisfy the equation x4 − x = 0, since 0
and 1 trivially do. Using the definition of a polynomial over an arbitrary field
given in Section 2.6.4, we can view x4 − x as a polynomial in the variable x
over the subfield F2 of F, where we have the identity x4 − x = x4 + x, since
1 = −1. Thus,

x4 − x = x(x + 1)(x2 + x + 1).

(Recall that 1 + 1 = 0, so 2x = 2x2 = 0.) It can be verified directly from the
tables that the elements α and β are the two roots of x2 + x + 1 = 0. Since
x4 − x has distinct roots (by the multiple root test in Section 2.6.4), we have
shown that all the elements of F are roots of a polynomial over a subfield of
F, namely x4 − x.

We will eventually show, using a theorem about finite-dimensional vector
spaces, that the number of elements in a Galois field F is always a power pn of
a prime p. This prime is called the characteristic of the field, the topic of the
next section. The integer n turns out to be interpreted as the dimension of
F as a vector space over Fp. It is a fundamental result in the theory of fields
that for every prime p and integer n > 0, there exists a Galois field with pn

elements, and two Galois fields F and F
′ with the same number of elements

are isomorphic.

2.6.3 The characteristic of a field

If F is a Galois field, then some multiple r1 of the identity 1 ∈ F has to be 0.
(Note: by r1, we mean 1 + · · · + 1 with r summands.) The reason for this is
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that since F is finite, the multiples r1 of 1 cannot all be distinct. Hence there
have to be two distinct positive integers m and n such that m1 = n1 in F. This
implies m1 − n1 = 0. But by associativity of addition, m1 − n1 = (m − n)1.
Assuming without loss of generality that m > n, it follows that there exists
a positive integer r such that r1 = 0 in F.

I claim that the least positive integer r such that r1 = 0 is a prime. For
if r can be expressed as a product r = ab, where a, b are positive integers,
then r1 = (ab)1 = (a1)(b1) = 0. Thus, by Proposition 2.21, a1 = 0 or b1 = 0.
But by the minimality of r, one of a and b is r, so r is a prime, say r = p.
The prime p is the characteristic of F. In general, one makes the following
definition:

Definition 2.15. Let F be an arbitrary field. If some nonzero multiple q1
of 1 equals 0, we say that F has positive characteristic. In that case, the
characteristic of F is defined to be the smallest positive integer q such that
q1 = 0. If all multiples q1 are nonzero, we say that F has characteristic 0.

Example 2.22. The characteristic of the field F4 defined above is two. The
characteristic of Fp is p. �

Summarizing the above discussion, we state the following proposition.

Proposition 2.31. If a field F has positive characteristic, then its charac-
teristic is a prime p, and pa = 0 for all a ∈ F.

Proof. We already proved that if the characteristic of F is positive, then it
has to be a prime. If p1 = 0, then by the distributive law,

pa = a + · · · + a = 1a + · · · + 1a = (1 + · · · + 1)a = (p1)a = 0a = 0

for all a ∈ F. �

Proposition 2.32. The characteristics of Q, R, and C are all 0. Moreover,
the characteristic of every subfield of a field of characteristic 0 is also 0.

The notion of the characteristic has a nice application.

Proposition 2.33. SupposeF is a field of characteristic p > 0. Then for all
a1, . . . , an ∈ F,

(a1 + · · · + an)p = ap
1 + · · · + ap

n.

This is an application of the binomial theorem. We will leave the proof as
an exercise. A consequence of the previous proposition is that ap = a for every
a ∈ Fp. Thus ap−1 = 1. This also gives a formula for a−1 for every a ∈ Fp,
namely, a−1 = ap−2.
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Example 2.23. The formula a−1 = ap−2 for the inverse of a nonzero ele-
ment a of Fp actually isn’t so easy to apply without a computer. For exam-
ple, to compute the inverse of 5 in F23, one needs to find 521, which is
476837158203125. After that, one has to reduce 476837158203125 modulo
23. The result is 14. Thus 5−1 = 14 in F23. But this can be seen easily with-
out having to do a long computation, since 5 · 14 = 70 = 69 + 1. �

The result ap−1 = 1 in Fp translates into a well-known result from elemen-
tary number theory known as Fermat’s little theorem.

Proposition 2.34. Let p be prime. Then for every integer a �≡ 0 mod p,
a(p−1) ≡ 1 mod p.

We leave the proof as an exercise. Notice that Fermat’s little theorem is a
special case of Euler’s theorem, since if p is prime, then φ(p) = p − 1. Here
is another interesting property of Fp.

Proposition 2.35. The product of all the nonzero elements of Fp is −1.

Proof. This follows by noting that {2,3, . . . ,p − 2} can be partitioned into
pairs {a,b} such that a−1 = b. We will leave the proof of this to the reader.
Therefore, 2 · 3 · · · (p − 2) = 1 in Fp. The result follows by multiplying by
−1 = p − 1. �

Proposition 2.35 stated in number-theoretic terms is one of the assertions
of Wilson’s theorem: (q − 1)! ≡ −1 mod q if and only if q is prime. Wilson’s
theorem gives a test for determining whether a number is prime, but the
problem is that implementing this test requires knowing (q − 1)!. It turns out
that Fermat’s little theorem gives a much easier test, known as the Fermat
primality test. In this test, one checks whether aq−1 ≡ 1 mod q for some
“random” values of a. If the congruence fails for any value of a, then q isn’t
prime, while if it holds for several values, then the probability that q is a
prime is very high. Knowing large primes is useful, for example, in employing
RSA encryption.

2.6.4 Appendix: polynomials over a field

The purpose of this appendix is to define the polynomials over a field F.
For each integer i > 0, let xi denote a symbol, and suppose that every pair
of these symbols xi and xj can be multiplied with the result xixj = xi+j

for all i, j > 0. We will denote x1 simply by x. We will put x0 = 1 ∈ F. The
symbol x is sometimes called an indeterminate. Note that xi = x · · · x (with
i factors). We assume that each symbol xi can be multiplied by an arbi-
trary element of F, so that 0xi = 0, 1xi = xi, and (axi)(bxj) = (ab)xi+j . Let
F[x] denote the set of all expressions f(x) = a0 + a1x + a2x

2 + · · · + anx
n,
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a0, a1, . . . , an ∈ F and n ≥ 0. Then f(x) is called a polynomial over F. We
agree that two polynomials f(x) = a0 + a1x + a2x

2 + · · · + anx
n and g(x) =

b0 + a1x + b2x
2 + · · · + bmxm are equal if ai = bi for every value of i. If

an �= 0, we say that f has degree n and write deg(f) = n. The value of f(x)
at r ∈ F is by definition f(r) = a0 + a1r + a2r

2 + · · · + anr
n. Thus, a poly-

nomial f(x) determines a function f : F → F. However, if F is a Galois field,
then there exist polynomials f(x) ∈ F[x] such that the function f : F → F is
identically zero, so polynomials should not be thought of as the same thing
as functions.

Example 2.24. For example, if F = F2 and f(x) = x2 + x, then f(1) =
f(0) = 0. Hence the function corresponding to f(x) is identically zero on
F2. However, in the field F4 containing F2 defined in Section 2.6.2, the poly-
nomial f(x) satisfies f(α) = f(β) = 1. (Recall that α and β satisfy x2 + x +
1 = 0. �

Addition and multiplication of polynomials are defined as follows. Addition
amounts to adding together the coefficients of each corresponding power xi

of x. For example,

(3x2 − 2x + 1) + (x4 − x3 − 3x2 + x) = x4 − x3 − x + 1.

Multiplication of two polynomials uses the above rules and the distributive
law. Thus,

(3x2 − 2x + 1)(x4 − x3 − 2x2 + x) = 3x6 − 5x5 − 7x4 + 6x3 − 4x2 + x.

When the field F has characteristic zero, for example F = Q, R, or C, there
is a more natural formulation of F[x] that avoids the problem encountered
in F2[x], where polynomials can define the zero function. In that case, let
x : F → F denote the identity function x(r) = r for all r ∈ F. If i > 0, then
xi denotes the function xi(r) = ri. Then F[x] may be defined as the set of all
functions f : F → F of the form

f(x) = a0 + a1x + a2x
2 + · · · + anx

n,

where a0, a1, . . . , an ∈ F. Addition and multiplication are defined pointwise
as above.

In the remainder of this section, we are going to consider two properties
of polynomials over an arbitrary field. The first is that F[x] admits division
with remainder.

Proposition 2.36 (Division with remainder for polynomials). Suppose
f(x) and g(x) are in F[x]. Then there exists a unique expression

f(x) = q(x)g(x) + r(x),
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where q(x), r(x) ∈ F[x] and deg(r) < deg(g). In particular, if a ∈ F is a root
of f , i.e., f(a) = 0, then f(x) = (x − a)g(x) for some g(x) ∈ F[x].

Proof. This can be proved by induction on the degree of f(x). We will omit
the details.

The second property is a test for when a polynomial has a multiple root.
We say that a is a multiple root of p(x) ∈ F[x] if there exists a polynomial
q(x) ∈ F[x] such that p(x) = q(x)(x − a)2. To state the second property, we
need to define the derivative of a polynomial. Suppose n > 0 and p(x) =
anx

n + an−1x
n−1 + · · · + a1x + a0. Then the derivative of p(x) is defined to

be the polynomial

p′(x) = nanx
n−1 + (n − 1)an−1x

n−2 + · · · + 2a2x + a1.

The derivative of a constant polynomial is defined to be zero. This definition
agrees with the classical formula for the derivative of a polynomial. The
derivative of a sum is the sum of the derivatives, and Leibniz’s formula for
the derivative of a product holds: (pq)′ = p′q + pq′.

Proposition 2.37. Let p(x) ∈ F[x]. Then p(x) = (x − a)2q(x) for some q(x)
∈ F[x] if and only if p(a) = p′(a) = 0.

Proof. Suppose p(x) = (x − a)2q(x). Then it is obvious from Leibniz that
p(a) = p′(a) = 0. Suppose, conversely, that p(a) = p′(a) = 0. Then p(x) =
(x − a)s(x), where s(x) ∈ F[x], so p′(x) = (x − a)′s(x) + (x − a)s′(x) = s(x) +
(x − a)s′(x). Hence, 0 = p′(a) = s(a). This means that s(x) = (x − a)t(x) for
some t(x) ∈ F[x], and thus p(x) = (x − a)2q(x), as claimed. �

One says that a ∈ F is a simple root of p(x) ∈ F[x] if and only if (x −
a) divides p(x) but (x − a)2 does not. A root that is not simple is called
a multiple root. The next result formulates Proposition 2.37 as a test for
whether a root of p(x) is simple.

Corollary 2.38 (The simple root test). Let p(x) ∈ F[x]. Then a is a simple
root if and only if p(a) = 0 but p′(a) �= 0, and a is a multiple root if and only
if p(a) = p′(a) = 0.

Exercises

Exercise 2.6.1. Write out the addition and multiplication tables for the
field F7. Also, indicate the location of the multiplicative inverse for each
nonzero element.

Exercise 2.6.2. Find both −(6 + 6) and (6 + 6)−1 in F7.

Exercise 2.6.3. Show that Q, R, and C all have characteristic zero.
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Exercise 2.6.4. Let F be a field and suppose that F′ ⊂ F is a subfield. Show
that F and F

′ have the same characteristic.

Exercise 2.6.5. Show that the characteristic of Fp is p.

Exercise 2.6.6. Let F and F
′ be fields. Show that every field homomorphism

ϕ : F → F
′ is injective.

Exercise 2.6.7. Suppose that the field F contains Fp as a subfield. Show
that the characteristic of F is p.

Exercise 2.6.8. Suppose that F is a field of characteristic p > 0. Show that
all multiples of 1 including 0 form a subfield of F with p elements. (This
subfield is in fact a copy of Fp.)

Exercise 2.6.9. Prove Proposition 2.33. That is, show that if F is a finite
field of characteristic p, then for all a1, . . . , an ∈ F,

(a1 + · · · + an)p = ap
1 + · · · + ap

n.

Exercise 2.6.10. Use Proposition 2.33 to show that ap = a in Fp. Use this
to deduce Fermat’s little theorem.

Exercise 2.6.11. In the definition of the field F4 in Section 2.6.2, can we
alter the definition of multiplication by putting α2 = β2 = 1 and still get a
field?

Exercise 2.6.12. Suppose F is a field of characteristic p. Show that if a, b ∈
F and ap = bp, then a = b.

Exercise 2.6.13. A field of characteristic p is said to be perfect if every
element is a pth power. Show that every Galois field is perfect. (Hint: use the
pigeonhole principle.)

Exercise 2.6.14. Use Fermat’s little theorem to find 9−1 in Fp for p = 11,
13, 23, and 29. Use these results to solve the congruence equation 9x ≡ 15
mod p for the above values of p.

Exercise 2.6.15. A primitive element of Fp is an element β such that

Fp = {0, 1, β, β2, . . . , βp−2}.

It can be shown that for every prime p, Fp contains a primitive element. Find
at least one primitive element β for Fp when p = 5, 7, and 11.

Exercise 2.6.16. Write out the addition and multiplication tables for Z6.
Is Z6 a field? If not, why not?
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Exercise 2.6.17. Let p be a prime. Let φp : Z → Fp be the quotient map-
ping a �→ a, where a = a + pZ. Show that for all a, b ∈ Z,

(1) φp(a + b) = φp(a) + φp(b), and

(2) φp(ab) = φp(a)φp(b).

Thus, φ is a homomorphism of rings. Use these two facts to deduce that
addition and multiplication in Fp are associative from the fact that they are
associative in Z.

Exercise 2.6.18. Using the definition of the derivative of a polynomial
f(x) ∈ F[x] in Section 2.6.4, show that the product rule for differentiation
holds. That is, if f(x), g(x) ∈ F[x], then (fg)′ = f ′g + fg′.

Exercise 2.6.19. Let F be a field of characteristic p. Show that for every
n > 0, xpn − x = 0 has only simple roots in F.



Chapter 3
Matrices

Matrix theory is deeply embedded in the foundations of algebra. The idea of
a matrix is very simple, and useful examples and ideas present themselves
immediately, as we shall soon see. So it is surprising that their structure
turns out to be subtle. Matrices also represent abstract objects called linear
mappings, which we will treat after vector spaces. The main results in the
theory of linear mappings, including the Cayley–Hamilton theorem, Jordan
decomposition, and Jordan canonical form, are strikingly beautiful.

More down to earth, matrices represent systems of linear equations in
several variables. Such a linear system has the form Ax = b, where A, x,
and b are all matrices, and Ax is the product of A and x. In this form, a
linear system is a special case of the basic algebraic equation ax = b. Matrix
algebra arises from addition and multiplication in a field, and it satisfies
some of the field axioms: for example, the associative and distributive laws.
However, matrices usually do not have multiplicative inverses. When they do
is a topic that will be taken up in the next chapter. The first goal of this
chapter is matrix algebra and the procedure known as row reduction, which
amounts to replacing a matrix A by a unique matrix in what is called reduced
row echelon form. The reduced row echelon form of a matrix is used to solve
linear systems. It also tells us the rank of the matrix and gives the inverse of
A when one exists. Prove the existence of an LPDU factorization, which is
how one understands how the matrix is constructed.

3.1 Introduction to matrices and matrix algebra

The purpose of this section is to introduce the notion of a matrix, give some
motivation, and make the basic definitions used in matrix algebra.

c© Springer Science+Business Media LLC 2017
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3.1.1 What is a matrix?

Matrices arise from linear systems. Let F be a field. A system of m linear
equations in n variables x1, . . . , xn with coefficients aij and constants bi, all
of which lie in F , is a family of equations of the form

a11x1 + a12x2 + · · · + a1nxn = b1,
a21x1 + a22x2 + · · · + a2nxn = b2,

...
am1x1 + am2x2 + · · · + amnxn = bm.

(3.1)

Concentrating on the mn coefficients aij , let us form the rectangular array

A =

⎛
⎜⎜⎜⎝

a11 a12 . . . a1n

a21 a23 . . . a2n

...
... · · · ...

am1 am2 . . . amn

⎞
⎟⎟⎟⎠ . (3.2)

This array is called a matrix.

Definition 3.1. Let F be a field and m and n positive integers. An m × n
matrix over F is a rectangular array of the form (3.2), where all the entries
aij are in F.

Notice that the elements in the ith row all have first subscript i, and those
in the jth column have second subscript j. The set of all m × n matrices over
F will be denoted by F

m×n. In particular, those with real entries are denoted
by R

m×n, and those with complex entries are denoted by C
m×n.

Now let

x =

⎛
⎜⎜⎜⎝

x1

x2

...
xn

⎞
⎟⎟⎟⎠ and b =

⎛
⎜⎜⎜⎝

b1
b2
...

bm

⎞
⎟⎟⎟⎠ .

Then the system (3.1) will turn out to be represented by the compact equation
Ax = b. Here Ax is the column matrix on the left-hand side of the equalities,
and b is the column matrix on the right-hand side. We should think of Ax
as a matrix product. The general definition of a matrix product will be given
below.
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3.1.2 Matrix addition

Our immediate goal is to define the algebraic operations for matrices: addi-
tion, multiplication, and scalar multiplication. We will begin with addition
and scalar multiplication.

Definition 3.2. Let A,B ∈ F
m×n. The matrix sum (or simply the sum) A +

B is defined as the matrix C ∈ F
m×n such that cij = aij + bij for all pairs of

indices (i, j). The scalar multiple of A by α ∈ F is the matrix αA of Fm×n

whose (i, j) entry is αaij .

Thus addition is a binary operation on F
m×n. It is clearly associative, since

addition is associative in F. The matrix O ∈ F
m×n all of whose entries are

zero is called the zero matrix. The zero matrix is the additive identity for
F

m×n. That is, A + O = A for all A ∈ F
m×n. The matrix −A = (−1)A is an

additive inverse of A, since A + (−A) = (−A) + A = O. Thus we have the
following result.

Proposition 3.1. F
m×n is an abelian group under matrix addition.

Example 3.1. Here are some examples with F = R:

A =

⎛
⎝

1 0 0 2
0 1 0 3
0 0 1 5

⎞
⎠ , and B =

⎛
⎝

1 2 3 0
0 0 3 1
1 2 3 0

⎞
⎠ .

Then

A + B =

⎛
⎝

2 2 3 2
0 1 3 4
1 2 4 5

⎞
⎠ .

Doubling A, that is multiplying A by the scalar 2, gives

2A =

⎛
⎝

2 0 0 4
0 2 0 6
0 0 2 10

⎞
⎠ .

�

A matrix in F
1×n is called a row vector. Similarly, a matrix in F

n×1 is
called a column vector. As long as the context is clear, we will often use F

n

to denote either column vectors F
n×1 or row vectors F

1×n. Vectors will be
written as boldface letters like x and their components by the same letter
in ordinary type. Thus, the ith component of x is xi. To conserve space, we
may write a column vector
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x =

⎛
⎜⎜⎜⎝

x1

x2

...
xn

⎞
⎟⎟⎟⎠ = (x1, x2, . . . , xn)T . (3.3)

The superscript T , which is called the transpose operator, changes rows into
columns. A full discussion of the transpose operator is given below in Section
3.1.6.

Several matrices A1, . . . , Am in F
m×n can be combined using addition and

scalar multiplication. The result is called a linear combination. That is, given
scalars a1, a2, . . . , am ∈ F, the matrix

a1A1 + a2A2 + · · · + amAm ∈ F
m×n

is the linear combination of A1, A2, . . . , Am with coefficients a1, a2, . . . , am.
The set of all linear combinations a1A1 + a2A2 + · · · + amAm is called the
span of A1, . . . , Am. The set of m × n matrices over F with the above addition
and scalar multiplication is an important example of a vector space. The
theory of vector spaces is, of course, one of the basic topics of this text.

3.1.3 Examples: matrices over F2

Matrices over the field F2 are themselves quite interesting. For example, they
are easy to enumerate: since F2 has only two elements, there are precisely
2mn m × n matrices. Addition of such matrices has some interesting features,
which the following example illustrates.

Example 3.2. Let

A =
(

1 0 1
0 1 1

)
and E =

(
1 1 1
1 1 1

)
.

Then

A + E =
(

0 1 0
1 0 0

)
.

Thus, the parity of every element of A is reversed by adding E. Adding A to
itself gives

A + A =
(

1 0 1
0 1 1

)
+

(
1 0 1
0 1 1

)
=

(
0 0 0
0 0 0

)
= O.

Thus a matrix over F2 is its own additive inverse. �
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Example 3.3. Here is how one might design a scanner to analyze black-
and-white photographs. A photo is a rectangular array consisting of many
black and white dots. By giving the white dots the value 0 and the black dots
the value 1, a photo is therefore transformed into a (very large) matrix over
F2. Now suppose one wants to compare two black-and-white photographs to
see whether they are in fact identical. Suppose they have each been encoded
as m × n matrices A and B. It turns out to be very inefficient for a computer
to scan the two matrices to see in how many positions they agree. However,
when A and B are added, the sum A + B has a 1 in every component where
A and B differ, and a 0 wherever they coincide. For example, the sum of two
identical photographs is the zero matrix, and the sum of a photograph and
its negative is the all-ones matrix. An obvious measure of how similar the
two matrices A and B are is the number of nonzero entries of A + B, i.e.,
Σi,j(aij + bij). This is an easily tabulated number, which is known as the
Hamming distance between A and B. �

Example 3.4. Random Key Cryptography. Suppose Rocky the flying
squirrel wants to send a message to his sidekick, Bullwinkle the moose, and
he wants to make sure that the notorious villains Boris and Natasha won’t
be able to learn what it says. Here is what the ever resourceful squirrel might
do. First he could assign the numbers 1 to a, 2 to b, and so forth up to 26
to z. He then computes the binary expansion of each integer between 1 and
26. Thus 1 = 1, 2 = 10, 3 = 11, 4 = 100, . . . , 26 = 11010. He now converts
his message into a sequence of five-digit strings (1 = 00001, etc.). The result
is an encoding of the message, which is referred to as the plaintext. To make
things more compact, he arranges the plaintext into an m × n matrix, call
it P . Now the deception begins. Rocky and Bullwinkle have already selected
an m × n matrix of five-digit strings of 0’s and 1’s, which we call Q. This
matrix is what cryptographers sometimes call a key. Rocky will send the
matrix P + Q to Bullwinkle, where the addition of strings is performed in
(F2)5×1. Bullwinkle will be able to recover P easily by adding Q. Indeed,
(P + Q) + Q = P + (Q + Q) = P + 2Q = P . This is good, since Bullwinkle,
being a moose, is somewhat mathematically challenged and finds subtraction
difficult. Even if Boris and Natasha manage to intercept the ciphertext P +
Q, they need to know the key Q to recover P . However, the key Q must
be sufficiently random so that neither Boris nor Natasha can guess it. The
squirrel’s encryption scheme is extremely secure if the key Q is a one-time
pad, that is, it is used only once. �

3.1.4 Matrix multiplication

Matrix addition and scalar multiplication are simple and natural opera-
tions. The product of two matrices, on the other hand, is a little more
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complicated. We already mentioned that multiplication can be used to rep-
resent the unwieldy linear system (3.1) as Ax = b. Let us look at this more
carefully. Suppose A is a 1 × n row matrix and B is an n × 1 column matrix.
The product AB is then defined as follows:

AB =
(
a1 · · · an

)
⎛
⎜⎝

b1
...
bn

⎞
⎟⎠ =

n∑
i=1

aibi. (3.4)

We will call this product the dot product of A and B. Note that it is very
important that the number of columns of A and the number of rows of B
agree. We next define the product of an m × n matrix A and an n × p matrix
B by generalizing the dot product.

Definition 3.3. Let A ∈ F
m×n and B ∈ F

n×p. Then the product AB of A
and B is defined as the matrix C ∈ F

m×p whose entry in the ith row and kth
column is the dot product of the ith row of A and the kth column of B. That
is,

cik =
n∑

j=1

aijbjk.

Thus

AB =
( n∑

j=1

aijbjk

)
.

One can therefore express the effect of multiplication as

F
m×n

F
n×p ⊂ F

m×p.

One can also formulate the product in terms of linear combinations. Namely,
if the columns of A are a1, . . . ,an, then, since the scalar in the ith row of
each column of B multiplies an element in the ith column of A, we see that
the rth column of AB is

b1ra1 + b2ra2 + · · · + bnran. (3.5)

Hence the rth column of AB is a linear combination of all n columns of A.
The entries in the rth column of B are the scalars. Similarly, one can express
AB as a linear combination of the rows of B. We will leave this as an exercise.

Example 3.5. Here are two examples in which F = Q:

(
1 3
2 4

)(
6 0

−2 7

)
=

(
1 · 6 + 3 · (−2) 1 · 0 + 3 · 7
2 · 6 + 4 · (−2) 2 · 0 + 4 · 7

)
=

(
0 21
4 28

)
.
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Note how the columns of the product are linear combinations. Computing
the product in the opposite order gives a different result:

(
6 0

−2 7

)(
1 3
2 4

)
=

(
6 · 1 + 0 · 2 6 · 3 + 0 · 4

−2 · 1 + 7 · 2 − 2 · 3 + 7 · 4

)
=

(
6 18
12 22

)
.

�

This example points out that matrix multiplication on F
n×n is in general

not commutative: if A,B ∈ F
n×n, then in general, AB �= BA. In fact, if you

randomly choose two 2 × 2 matrices over Q, it is a safe bet that they won’t
commute.

3.1.5 The Algebra of Matrix Multiplication

We have now defined the three basic algebraic operations on matrices. Let
us next see how they interact. Although matrix multiplication isn’t commu-
tative, matrix addition and multiplication behave as expected.

Proposition 3.2. Assuming that all the sums and products below are defined,
matrix addition and multiplication satisfy the following conditions.

(i) the associative laws. addition and multiplication are associative:

(
A + B

)
+ C = A +

(
B + C

)
and

(
AB

)
C = A

(
BC

)
;

(ii) the distributive laws. addition and multiplication are distributive:

A
(
B + C

)
= AB + AC and

(
A + B

)
C = AC + BC;

(iii) the scalar multiplication law. for every scalar r,

(
rA

)
B = A

(
rB

)
= r

(
AB

)
;

(iv) the commutative law for addition. addition is commutative:

A + B = B + A.

Verifying these properties is a routine exercise. We already commented
that addition is associative and commutative while showing that Fm×n is an
abelian group under addition. The reader should note that the validity of the
associative law for multiplication will be extremely useful. We will see this,
for example, when we consider matrix inverses.
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The n × n matrix In having ones everywhere on its diagonal and zeros
everywhere off the diagonal is called the identity matrix. One sometimes
writes In = (δij), where δij is the Kronecker delta, which is defined by the
rule δii = 1 while δij = 0 if i �= j. For example,

I2 =
(

1 0
0 1

)
and I3 =

⎛
⎝

1 0 0
0 1 0
0 0 1

⎞
⎠ .

A convenient way to define In is to write out its columns. Let ei denote the
column vector whose ith component is 1 and whose other components are 0.
Then

In = (e1 e2 · · · en).

The reason In is called the identity matrix is due to the following fact.

Proposition 3.3. Let A be an m × n matrix over F. Then ImA = A and
AIn = A. In particular, the ith column of A is Aei.

Proof. This follows immediately from the definition of matrix
multiplication. �

3.1.6 The transpose of a matrix

The transpose of an m × n matrix A is the n × m matrix AT whose ith row is
the ith column of A. That is, if A = (aij), then AT = (crs), where crs = asr.
The definition becomes clearer after working an example.

Example 3.6. If

A =

⎛
⎝

1 2
3 4
5 6

⎞
⎠ ,

then

AT =
(

1 3 5
2 4 6

)
.

�

For another example, note that ei = (0, . . . , 0, 1, 0, . . . , 0)T , where 1 is in
the ith component. Note that A and AT have the same entries on the diag-
onal. Also note that the transpose of AT is A:

(AT )T = A.
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Definition 3.4. A matrix A that is equal to its own transpose is called
symmetric.

An example of a 2 × 2 symmetric matrix is

(
1 3
3 5

)
.

Clearly, a symmetric matrix is square (but not uninteresting). For example,
the symmetric matrices over R are all turn out to be diagonalizable due to
a fundamental result called the principal axes theorem. But this will not be
explained for quite a while.

The transpose of a sum is as expected, but the transpose of a product has
a twist, as we note in the next proposition.

Proposition 3.4. For every m × n matrices A and B,

(A + B)T = AT + BT .

Furthermore, if A is m × n and B is n × p, then

(
AB

)T = BT AT .

Proof. The first identity is immediate. To prove the product identity, note
that the (i, j) entry of BT AT is the dot product of the ith row of BT and
the jth column of AT . This is the same thing as the dot product of the jth
row of A and the ith column of B, which is the (j, i) entry of AB and hence
the (i, j) entry of (AB)T . Thus (AB)T = BT AT . �

It is suggested that the reader try this proof on an example.

3.1.7 Matrices and linear mappings

One way to look at matrix multiplication is that it defines a mapping. Let
F

n = F
n×1 and F

m = F
m×1. Then for every A ∈ F

m×n, say A = (a1 · · · an),
we obtain a mapping

TA : Fn → F
m, where TA(x) = Ax = x1a1 + · · · + xnan.

Note that TA(ei) = ai for each index i, and TA is uniquely determined by
the TA(ei).

Proposition 3.5. For every A ∈ F
m×n, the mapping TA : Fn → F

m associ-
ated to A is in fact a homomorphism with domain F

n and target F
m. That

is, A(x + y) = Ax + Ay for every x,y ∈ F
n.
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Proof. This is simply an application of the distributive law for
multiplication. �

We will frequently use this proposition in geometric examples.

Example 3.7. (Rotations of R2). One such example is a rotation of R2 given
by the mapping

Rθ

(
x
y

)
=

(
x cos θ − y sin θ
x sin θ + y cos θ

)
.

Here, Rθ is the matrix mapping associated to the matrix

Rθ =
(

cos θ − sin θ
sin θ cos θ

)
. (3.6)

Recalling that C = R
2, multiplication by the complex exponential eiθ =

cos θ + i sin θ sends z = x + iy to

eiθz = (cos θ + i sin θ)(x + iy) = (x cos θ − y sin θ) + i(x sin θ + y cos θ).

Therefore, the matrix mapping given by Rθ is the same as multiplication by
the complex exponential eiθ. �

Now suppose A ∈ F
m×n and B ∈ F

n×p. Then TAB is the mapping with
domain F

p and target Fm defined by TAB(u) = (AB)u for every u ∈ F
p. Since

by associativity (AB)u = A(Bu), it follows that TA ◦ TB = TAB . Therefore,
we have the following.

Proposition 3.6. If A ∈ F
m×n and B ∈ F

n×p, then the matrix mapping
TAB : Fp → F

m satisfies
TAB = TA ◦ TB .

That is, TAB is the composition of the matrix mappings TB : Fp → F
n and

TA : Fn → F
m. Hence matrix multiplication corresponds to the composition of

matrix mappings.

Exercises

Exercises 3.1.1. As an experiment, construct three matrices A,B,C of
dimensions such that AB and BC are defined. Then compute AB and (AB)C.
Next compute BC and A(BC) and compare your results. If A and B are also
square, do AB and BA coincide?

Exercises 3.1.2. Prove the assertion (A + B)T = AT + BT in
Proposition 3.4 without writing down matrix entries.
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Exercises 3.1.3. Suppose A and B are symmetric n × n matrices. (You can
even assume n = 2.)

(i) Must AB be symmetric? That is, are the n × n symmetric matrices closed
under multiplication?

(ii) If the answer to (i) is no, find a condition that ensures that AB is
symmetric.

Exercises 3.1.4. Suppose B has a column of zeros. How does this affect a
product of the form AB? What if A has a row of zeros?

Exercises 3.1.5. State a rule for expressing the rows of AB as linear com-
binations of the rows of B. (Suggestion: use the transpose identity and the
result expressing the columns of AB).

Exercises 3.1.6. Verify Proposition 3.3 for all A in F
m×n.

Exercises 3.1.7. Let F = R. Find all 2 × 2 matrices A =
(

a b
c d

)
such that

AB = BA, where B =
(

1 2
3 4

)
.

Exercises 3.1.8. Assume here that F = F3. Find all 2 × 2 matrices A =(
a b
c d

)
such that AC = CA, where C =

(
1 2
1 2

)
. Is your result here any

different from the result you obtained in Exercise 3.1.7.

Exercises 3.1.9. Let F be a field. Prove that if S ∈ F
2×2 commutes with

every matrix A =
(

a b
c d

)
∈ F

2×2, then S = aI2 for some a ∈ F. Matrices of

the form aIn are called scalar matrices.

Exercises 3.1.10. Let p be a prime, and let A be the 2 × 2 matrix over Fp

such that aij = 1 for each i, j. Compute Am for every integer m ≥ 1. (Note
that Am stands for the mth power of A.)

Exercises 3.1.11. Let A be the n × n matrix over Q such that aij = 2 for
all i, j. Find a formula for Aj for every positive integer j.

Exercises 3.1.12. Give an example of a 2 × 2 matrix A such that every
entry of A is either 0 or 1 and A2 = I2 as a matrix over F2, but A2 �= I2 as
a matrix over Q.
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3.2 Reduced Row Echelon Form

The standard procedure for solving a linear system is to use a process called
Gaussian elimination to put the system in a standard form in which it is
ready to solve. This process involves using row operations to put the coef-
ficient matrix into a standard form called reduced row echelon form. It will
turn out that every matrix can be put into this standard form by a pre-
multiplication. We will later see that row operations preserve two important
quantities associated to A: the row space of A and its null space.

3.2.1 Reduced row echelon form and row
operations

Definition 3.5. A matrix A is said to be in row echelon form if

(i) the first nonzero entry in each row of A is to the right of the first nonzero
entry in the preceding row (and hence in all preceding rows), and

(ii) every entry above a first nonzero entry is zero.

The first nonzero entry in a row is called its pivot entry or corner entry.
A matrix A in row echelon form is said to be in reduced row echelon form,
or simply, to be reduced, if each corner entry is 1. Here are some examples of
reduced matrices:

⎛
⎝

1 0 0 2
0 1 0 3
0 0 1 5

⎞
⎠ ,

⎛
⎝

1 2 3 0 9
0 0 0 1 4
0 0 0 0 0

⎞
⎠ ,

(
0 1 3 0 9
0 0 0 1 0

)
.

The zero matrix O ∈ F
m×n and the identity matrix In are reduced also.

A row operation on a matrix A replaces one of the rows of A by a new
row. The three row operations we will now define are called the elementary
row operations.

Definition 3.6. Let A be a matrix over F with rows a1, . . . ,am. The ele-
mentary row operations over F on A are as follows:

(I) interchange the ith row ai and the jth row aj , where i �= j;

(II) replace the ith row ai with a nonzero scalar multiple rai, where r ∈ F;

(III) replace the ith row ai by ai + raj , where r ∈ F, r �= 0, and i �= j. That
is, replace ai by itself plus a nonzero multiple of some other row.

Row operations of type I are called row swaps. The type II operations are
called row dilations, and operations of type III are called transvections. The
next proposition gives the basic property of row operations.
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Proposition 3.7. Every matrix over a field F can be put into reduced
row echelon form by a (not unique) sequence of elementary row operations
over F.

Before giving a proof, let us work an example. Each arrow below indicates
a single row operation, and the notation over the arrows indicates the row
operation in an obvious way.

Example 3.8. Consider the counting matrix

C =

⎛
⎝

1 2 3
4 5 6
7 8 9

⎞
⎠

as a matrix over Q. We can row reduce C as follows:

C
R2−4R1−→

⎛
⎝

1 2 3
0 − 3 − 6
7 8 9

⎞
⎠ R3−7R1−→

⎛
⎝

1 2 3
0 − 3 − 6
0 − 6 − 12

⎞
⎠

R3−2R2−→
⎛
⎝

1 2 3
0 − 3 − 6
0 0 0

⎞
⎠ (−1/3)R2−→

⎛
⎝

1 2 3
0 1 2
0 0 0

⎞
⎠ R1−2R2−→

⎛
⎝

1 0 − 1
0 1 2
0 0 0

⎞
⎠ .

�
Let us now prove Proposition 3.7.

Proof. We will induct on the number of columns of A. Assume first that A
has just one column. If A is the zero matrix O, it is already in reduced row
echelon form, so suppose A �= O. If a11 �= 0, multiply the first row by a−1

11 to
produce a 1 in the (1, 1) position. (This is why we require row operations
over a field.) We can then use row operation s of type III to make all other
entries in the first column zero. If a11 = 0, but the first column has a nonzero
entry somewhere, say the ith row, then swap the first row with the ith row to
create a nonzero entry in the (1, 1) position. Next, proceed as before, dividing
the new first row by the inverse of its (1, 1) entry, getting a one in the (1, 1)
position. Then use row operations of type III to make all the other elements
in the first column 0. Thus we have put A into reduced row echelon form by
row operations.

Now suppose that every m × n matrix over F can be put into reduced row
echelon form by row operations, and let A be an m × (n + 1) matrix over F.
Let A′ be the m × n matrix consisting of the first n columns of A. By the
induction hypothesis, there exists a sequence of row operations that puts A′

in reduced row echelon form, say B′. After performing this sequence of row
operations on A, we obtain a matrix B whose the first n columns have been
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put into reduced row echelon form. Assume that the lowest corner entry in
B′ is in the kth row. If the last column of B has only zeros below the kth
row, then B is already in reduced row echelon form, completing the proof.
Otherwise, B has a nonzero entry below the kth row, and we can repeat the
steps used in the case of one column to get a corner entry in the (k + 1, n + 1)
of B and zeros below. Since these row operations affect only the rows below
the kth row, B′ is not changed. Thus, A can be put into reduced row echelon
form. This completes the induction step, so every matrix over F can be put
into reduced row echelon form by elementary row operations. �

Remark. One can refer to performing a sequence of row operations on A as
row surgery. For every matrix A, there are many different row surgeries lead-
ing to a matrix in reduced row echelon form. An interesting and important
point, often completely ignored, is that a matrix has only one reduced row
echelon form. That is, the reduced row echelon form of an arbitrary A ∈ F

m×n

is unique. We will use Ared to denote this matrix, even though we have not
yet proved its uniqueness. The proof, which is not obvious, will be given in
Proposition 3.12. This result will let us assert that the number of nonzero
rows in Ared is unique. The term commonly used for this number is the row
rank of A. The row rank is important, because it gives us information such
as when the solution of a linear system is unique.

First we will introduce elementary matrices in order to get an efficient
algorithm for row reducing a matrix.

3.2.2 Elementary matrices and row operations

We now introduce elementary matrices and explain their role in reduced row
echelon form.

Definition 3.7. An n × n matrix that is obtained by performing a single
row operation on In is called an elementary matrix.

Example 3.9. The elementary 2 × 2 matrices are illustrated as follows:

E1 =

(
0 1

1 0

)
, E2 =

(
r 0

0 1

)
or

(
1 0

0 r

)
, E3 =

(
1 s

0 1

)
or

(
1 0

s 1

)
.

Here, r and s are nonzero scalars. �

The following computations show that premultiplication by one of the
above 2 × 2 elementary matrices Ei performs the same row operation on

A =
(

a b
c d

)
that is performed on the identity I2 to get Ei:
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(
0 1
1 0

) (
a b
c d

)
=

(
c d
a b

)
(row swap),

(
r 0
0 1

) (
a b
c d

)
=

(
ra rb
c d

)
(row dilation),

(
1 s
0 1

) (
a b
c d

)
=

(
a + sc b + sd

c d

)
(row transvection).

One might call the next proposition the golden rule of matrix multiplication.

Proposition 3.8. Let A be of size m × n, and assume that E is an elemen-
tary m × m matrix. Then EA is the matrix obtained by performing the row
operation corresponding to E on A.

Proof. Recall that for every B ∈ F
m×m, the rows of BA are linear combina-

tions of the rows of A using the entries of B = (bij) as scalars. In fact, if ai

is the ith row of A, then the ith row of BA is

bi1a1 + bi2a2 + · · · + bimam.

Thus, if B is the elementary matrix obtained by multiplying the ith row of In

by r, then the ith row of BA becomes rai, and all other rows are unchanged.
Likewise, if B is obtained by interchanging the ith and jth rows of In, then
the ith row of BA is aj , since bik = δjk, and similarly, the jth row is ai. The
argument for the third type of row operation is analogous, so it is left as an
exercise. �

In fact, since EIn = E, the matrix E performing the desired row operation
is unique.

Thus row reduction can be expressed as follows: starting with A and replac-
ing it by A1 = E1A, A2 = E2(E1A), and so forth, we get the sequence

A → A1 = E1A → A2 = E2(E1A) → · · · → Ak = Ek(Ek−1(· · · (E1A) · · · )).

Assuming that the right-hand matrix Ak is Ared, we obtain by this process
a product of elementary matrices

B = EkEk−1 · · · E1

such that BA = Ared. Note: this assertion uses the associativity of matrix
multiplication. It should be emphasized that the way we choose the Ei isn’t
unique. Yet it will turn out that in certain cases, their product B is unique.
This seems to be a remarkable fact.
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Example 3.10. Let’s compute the matrix B produced by the sequence of
row operations in Example 3.8, which puts the counting matrix C in reduced
form. Examining the sequence of row operations, we see that B is the product

⎛
⎝
1 − 2 0

0 1 0

0 0 1

⎞
⎠
⎛
⎝
1 0 0

0 − 1/3 0

0 0 1

⎞
⎠
⎛
⎝
1 0 0

0 1 0

0 − 2 1

⎞
⎠
⎛
⎝

1 0 0

0 1 0

−7 0 1

⎞
⎠
⎛
⎝

1 0 0

−4 1 0

0 0 1

⎞
⎠ .

In computing the matrix B, the easy way is to start at the right and apply
the sequence of row operations working to the left. A convenient way of doing
this is to begin with the 3 × 6 matrix (A | I3) and carry out the sequence of
row operations; the final result will be (Ared | B). Thus if we start with

(C | I3) =

⎛
⎝

1 2 3 1 0 0
4 5 6 0 1 0
7 8 9 0 0 1

⎞
⎠ ,

we end with

(Cred | B) =

⎛
⎝

1 0 − 1 − 5/3 2/3 0
0 1 2 4/3 − 1/3 0
0 0 0 1 − 2 1

⎞
⎠ .

�
We may summarize this section by observing that elementary matrices

perform row operations, so Proposition 3.7 can be restated as follows.

Proposition 3.9. An arbitrary m × n matrix A over a field F can be put
into reduced row echelon form by performing a sequence of left multiplications
on A using m × m elementary matrices over F. In other words, there exist
elementary matrices E1, . . . , Ek ∈ F

m×m such that

Ared = EkEk−1 · · · E1A.

Proof. By Proposition 3.7, every matrix can be put into reduced form by a
sequence of row operations. But row operations are performed by left multi-
plication by elementary matrices. �

3.2.3 The row space and uniqueness of reduced
row echelon form

After doing several row reductions, the reader may wonder whether Ared

is unique. Could choosing a different sequence of row operations lead to a
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different reduced matrix? As we remarked above, the answer is no. We now
prove this. We begin by noticing that every elementary row operation replaces
a row of A by a linear combination of its other rows. This leads us to consider
a fundamental notion, namely the row space of A.

Definition 3.8. Suppose A ∈ F
m×n. The row space of A is defined as the

span of the rows of A.

The row space of A is denoted by row(A). Thus, row(A) is the set of all
linear combinations of the rows of A. The basic result about row spaces and
the key to understanding the role of row operations is the following:

Proposition 3.10. If A′ is obtained from A by applying an elementary row
operation to one of the rows of A, then A′ and A have the same row space.
That is, row(A′) = row(A).

Proof. Let A and A′ be of size m × n, and let a1, . . . ,am be the rows of A.
If the row operation is of type I, then A and A′ have the same row space,
because a type I operation just reorders the rows, hence does not change the
set of all linear combinations. Likewise, a type II row operation replaces some
ai by rai, where r is a nonzero scalar. Thus

c1a1 + · · · + ciai + · · · + cmam = c1a′
1 + · · · +

ci

r
a′

i + · · · + cma′
m.

Hence A and A′ also have the same row space. Finally, if A′ is obtained by
replacing ai by ai + raj , where j > i, then

c1a1 + · · · + ciai + · · · + cmam = c1a1 + · · · + ci(ai + raj)
+ · · · + (cj − rci)aj + · · · + cmam.

Again, it follows that A and A′ have the same row space. �

We now prove the key step.

Proposition 3.11. Suppose A and B are two m × n matrices over F in
reduced row echelon form. Then A = B if and only if their row spaces are
equal.

Proof. If A = B, then obviously their row spaces are equal. The proof in the
other direction isn’t hard, but it’s a little hard to write out. First, suppose
that A has k nonzero rows and B has � of them. Since we don’t know the
relationship between k and �, we may harmlessly suppose that k ≤ �. Let
a1, . . . ,ak denote the nonzero rows of A. We will assume that they are labeled
so that the first nonzero component of ai is to the right of that of ai+1. Hence
a1 is the last nonzero row of A. Assume that the nonzero rows b1, . . . ,b� of
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B are labeled in the same way. The first step is to show that a1 = b1. This is
done as follows. Suppose the corner entries in a1 and b1 aren’t in the same
component; say the corner entry of a1 is to the left of the corner entry of b1.
Then obviously a1 can’t be a linear combination of the bi. By symmetry, the
corner entries of a1 and b1 are in the same component. Since b1 is a linear
combination of the ai, the only possibility is b1 = r1a1, and in fact, r1 = 1,
due to the fact that the corner entries of a1 and b1 are both one. Now, the
matrices

A1 =
(
a2
a1

)
and B1 =

(
b2

b1

)

have the same second row and are, by assumption, in reduced row echelon
form. Suppose the corner entry in b2 is to the right of that of a2. Then b2

cannot be a linear combination of the ai, so once again a2 and b2 have to
have their corner entries in the same component. Hence, b2 = a2 + r1a1. But
since A1 is in reduced row echelon form, a2 + r1a1 has r1 in the component
corresponding to the corner entry of a1. But since B1 is also in reduced row
echelon form and b1 = a1, it follows that b2 has a zero in that component.
Consequently, r1 = 0. Thus, b2 = a2. One can now repeat this argument to
show that b3 = a3, b4 = a4, and so on, eventually arriving at the conclusion
bi = ai for 1 ≤ i ≤ k. Finally, we have to show that � = k. If k < �, then
bk+1 �= 0, and it lies in row(B) = row(A). Hence, bk+1 is a linear combination
of

∑
riai with some ri �= 0. But this is impossible, because the component of

bk+1 corresponding to the corner entry is to the left of that of ak due to the
fact that ak = bk. This shows that k = � and hence finishes the proof that
A = B. �

Finally, we answer the basic question.

Proposition 3.12. The reduced row echelon form of an arbitrary matrix
A ∈ F

m×n is unique.

Proof. If two different sequences of row operations yield two different reduced
row echelon forms B and C for A, then by the previous proposition, we obtain
a contradiction to row(A) = row(B) = row(C). Hence B = C. �

The fact that the reduced row echelon form of a matrix A is unique means
that the number of nonzero rows of Ared depends only on A. This leads to
the following important definition.

Definition 3.9. Suppose A ∈ F
m×n. Then the number of nonzero rows in

Ared is called the rank of A.



3.2 Reduced Row Echelon Form 75

When we study vector spaces, we will show that the rank of A is actually
the dimension of the row space of A. For square matrices, it turns out that
rank is a measure of how far the matrix is from being invertible.

Finally, note that Proposition 3.9 and the above discussion imply the fol-
lowing.

Proposition 3.13. A matrix A ∈ F
n×n has rank n if and only if there exist

elementary matrices E1, . . . , Ek ∈ F
n×n such that

Ek · · · E1A = In.

Proof. By definition, A has rank n if and only if Ared has n nonzero rows.
But since A ∈ F

n×n, Ared has n nonzero rows if and only if Ared = In. Thus,
A has rank n implies by Proposition 3.9 that Ek · · · E1A = In for suitable
elementary matrices E1, . . . , Ek. Conversely, if there exist elementary matri-
ces E1, . . . , Ek such that Ek · · · E1A = In, then Ared = In by the uniqueness
of the reduced form. �

Definition 3.10. When the rank of an n × n matrix A over a field F is n,
we will say that A is nonsingular. Otherwise, A is said to be singular.

Exercises

Exercises 3.2.1. Make a list of all the row reduced 2 × 3 matrices over F2.

Exercises 3.2.2. Let F = F3. Find the reduced row echelon form of the
following matrices:

(
2 1
1 2

)
,

⎛
⎝

0 1 2 1
1 2 0 1
1 0 0 0

⎞
⎠ ,

⎛
⎝

1 2 0
2 1 1
0 2 1

⎞
⎠ .

Exercises 3.2.3. True or False (give a brief reason to justify your answer).

(i) Two square matrices that can be row reduced to the same reduced row
echelon form are equal.

(ii) If a 3 × 3 matrix A has the property that each row contains two zeros and
a one, and each column contains two zeros and a one, then A is nonsingular.

Exercises 3.2.4. If an n × n matrix has the property that each row and
each column has exactly one nonzero entry, is it nonsingular?

Exercises 3.2.5. The field is F2. Consider the following matrices:

A1 =

⎛
⎝

1 1 0
1 0 1
1 1 1

⎞
⎠ , A2 =

⎛
⎜⎜⎝

1 0 1 0
0 1 1 0
1 1 0 0
1 0 0 1

⎞
⎟⎟⎠ .
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Find matrices B1 and B2 that are products of elementary matrices such that
BiAi is reduced for i = 1, 2.

Exercises 3.2.6. Prove that if E is an elementary n × n matrix and F is
the elementary matrix that performs the inverse (i.e., reverse) operation, then
FE = EF = In.

Exercises 3.2.7. Write down all the 3 × 3 elementary matrices E over F2,
and for each E, find the matrix F defined in the previous exercise such that
FE = EF = I3.

Exercises 3.2.8. In this exercise, we will introduce column operations.

(i) Define the notion of reduced column echelon form for an m × n matrix.

(ii) Next, define the three types of column operations.

(iii) Show how to perform column operations using elementary matrices.
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3.3 Linear Systems

So far, we have defined matrices, introduced matrix algebra, and studied
row operations and the reduced form of a matrix. Let us now go back and
consider a problem that motivated the introduction of matrices: how to find
the solution set of a system of linear equations.

3.3.1 The coefficient matrix of a linear system

Recall from (3.1) that a linear system of m equations in n variables with
coefficients and constants in a field F has the form

a11x1 + a12x2 + · · · + a1nxn = b1,
a21x1 + a22x2 + · · · + a2nxn = b2,

...
am1x1 + am2x2 + · · · + amnxn = bm.

(3.7)

These equations can be expressed compactly in an array called the coefficient
matrix, consisting of the coefficients and constants as follows:

(aij | b) =

⎛
⎜⎜⎜⎝

a11 a12 · · · a1n b1
a21 a22 · · · a2n b2
...

... · · · ...
...

am1 am2 · · · amn bm

⎞
⎟⎟⎟⎠ . (3.8)

The solution set of the system (3.7) is the set of all x = (x1, x2, . . . , xn)T ∈ F
n

that satisfy each equation.
The procedure for finding the solution set called Gaussian elimination

is to use row operations to bring (aij | b) into reduced form. Since row
operations can be performed by premultiplication using elementary matrices,
it is natural to use the matrix equation form of the system, namely Ax = b,
where A = (aij) is the coefficient matrix and b is the column of constants.
The key point is the following: for every elementary matrix E ∈ F

m×m, the
matrix equations Ax = b and EAx = Eb are equivalent in the sense that
they have exactly the same solution sets. For if Ax = b, then EAx = Eb.
Conversely, if EAx = Eb, then multiplying by the elementary matrix F such
that FE = In recovers the original system; that is,

Ax = (FE)Ax = F (EAx) = F (Eb) = (FE)b = b.

Thus we have the following statement.
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Proposition 3.14. Let A ∈ F
m×n and suppose B is a product of elementary

matrices such that BA = Ared. Then the linear system Ax = b is equivalent
to the reduced system Aredx = c, where c = Bb

3.3.2 Writing the solutions: the homogeneous case

We now describe how to express the solutions. For this, we need to distinguish
between two types of systems. A linear system of the form Ax = 0 is said to
be homogeneous, while a linear system Ax = b, where b �= 0, is said to be
inhomogeneous. The solution set of a homogeneous system Ax = 0 is called
the null space of A and denoted by N (A). The previous proposition shows
that N (A) = N (Ared). That is,

Ax = 0 if and only if Aredx = 0.

The coefficient matrix of a homogeneous system Ax = 0 is simply defined as
A. Thus, the coefficient matrix will be of size m × n instead of m × (n + 1).
Let us now consider a homogeneous example.

Example 3.11. The homogeneous system

x1 + x2 + 2x3 + 0x4 + 3x5 − x6 = 0,
x4 + 2x5 + 0x6 = 0,

with coefficients in Q has coefficient matrix

A =
(

1 1 2 0 3 − 1
0 0 0 1 2 0

)
.

Note that A is already reduced and has corners in the first and fourth
columns. Thus we can solve for the corresponding corner variables x1 and
x4 in terms of the noncorner variables x2, x3, x5, x6. This gives

x1 = −2x3 − 3x5 + x6,

x4 = −2x5.

Notice that x2 doesn’t appear in these equations, but it will appear in the
solution. The upshot is that the variables corresponding to A’s corner columns
are functions of the remaining variables, which we will call the free variables.
Since there are six variables, we form the vector

s = (−2x3 − 3x5 + x6, x2, x3,−2x5, x5, x6)T ∈ Q
6,
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where we have replaced x1 and x4 in x by their expressions in terms of
the free variables. Thus s contains only expressions in the free variables
x2, x3, x5, x6. We call s the general solution vector. We now define basic null
vectors f1, f2, f3, f4 such that

s = x2f1 + x3f2 + x5f3 + x6f4. (3.9)

The basic null vectors are found by inspection. To get f1, set x2 = 1 and
x3 = x5 = x6 = 0. Repeating this for the other fi, we see that

f1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0
1
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎠

, f2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

−2
0
1
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎠

, f3 =

⎛
⎜⎜⎜⎜⎜⎜⎝

−3
0
0

−2
1
0

⎞
⎟⎟⎟⎟⎟⎟⎠

, f4 =

⎛
⎜⎜⎜⎜⎜⎜⎝

1
0
0
0
0
1

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Then (3.9) shows that every solution of Ax = 0 (as a vector in Q
6) is a linear

combination of the basic null vectors fi with coefficients in Q. Moreover, the
coefficients x2, x3, x5, x6 are unique, since each of them occurs by itself in one
of the components of s. �

The method of the above example can be used to find basic null vectors
of any homogeneous linear system Ax = 0. In fact, since Ared is unique, the
basic solutions as defined are also unique. Note, however, that basic null
vectors exist only when the rank of A is less than n. The next result summa-
rizes how a linear system Ax = 0 is solved. The proof imitates the previous
example and will be omitted.

Proposition 3.15. Suppose A ∈ F
m×n has rank k, and assume � = n − k >

0. Then every x ∈ N (A) can be expressed in exactly one way as a linear
combination of basic null vectors f1, . . . , f� of A. If k = n, then Ax = 0 has
the unique solution x = 0 (hence there are no basic null vectors).

3.3.3 The inhomogeneous case

The solution in the inhomogeneous case is described in the next proposition.
We first note that an inhomogeneous linear system needn’t have any solutions
at all. The equation 0x = 1 is such an example. More generally, if A is the
m × n zero matrix, then Ax = 0 for every x ∈ F

n, so if b �= 0, then Ax = b
cannot have a solution. A system Ax = b with no solutions is said to be
inconsistent. To take a less obvious example of an inconsistent system, note
that the equation ax + by = c represents a line in R

2 (assuming that a, b, c
are real). Thus the system
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ax + by = c
dx + ey = f

represents the points where two lines in R
2 intersect. If the lines are distinct

parallel lines (e.g., a = d, b = e, c �= f), then they have empty intersection, so
the system is inconsistent. If the lines are distinct and nonparallel, they meet
in a unique point. There is another way in which a system can be inconsistent.
If it is overdetermined, that is, if there are more equations than variables, then
it may be inconsistent. For example, three lines in R

2 which are mutually
nonparallel will meet only if the third passes through the unique intersection
point of the first two. We now state the criterion for an inhomogeneous linear
system to be consistent.

Proposition 3.16. The inhomogeneous linear system Ax = b is consistent
if and only if the rank of its coefficient matrix (A | b) is the same as the rank
of A. In particular, if A is of size m × n and has rank m, then the system
Ax = b is always consistent.

Proof. If the ranks are different, then the rank of (A | b) is larger than
the rank of A. This implies that if BA = Ared, then the equivalent system
BAx = Aredx = Aredb contains an equation of the form 0x1 + · · · + 0xn =
c, where c �= 0. Such an equation is clearly inconsistent. Therefore, if the
inhomogeneous linear system is consistent, the ranks of A and (A | b) are
the same. We leave the argument for the converse to the reader. If A has rank
m, then so does (A | b), so Ax = b is consistent. �

Example 3.12. The system

3x + 3y = 1
x − y = 2
x + 2y = 0

.

has coefficient matrix ⎛
⎝

3 3 1
1 − 1 2
1 2 0

⎞
⎠ .

This matrix has rank three, so the system is inconsistent. �

Let us now summarize our discussion.

Proposition 3.17. Suppose that A ∈ F
m×n has rank k, and consider an

inhomogeneous linear system Ax = b. This system is consistent if and only
if the rank of (A | b) is the same as the rank of A. Assume so and let p0 ∈ F

n

be a particular solution. Then every solution can be written in the form
x = p0 + w, where w ∈ N (A). If k = n, then N (A) = {0}, and consequently
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p0 is the unique solution. If k < n, let � = n − k, and suppose f1, . . . , f� are
A’s basic null vectors. Thus, every x ∈ F

n of the form

x = p0 +
�∑

i=1

aifi (all ai ∈ F) (3.10)

is a solution, and every solution can be written in the form (3.10) for a unique
choice of the ai.

Proof. Suppose x satisfies Ax = b. Then

A(x − p0) = Ax − Ap0 = b − b = 0.

Thus, w = x − p0 ∈ N (A), so x = p0 + w, as claimed. If k = n, we know
from Proposition 3.15 that N (A) = {0}, so w = 0. Thus p0 is the unique
solution. Now suppose k < n. There exist fundamental solutions f1, . . . , f�
with � = n − k, and w can be uniquely written w =

∑�
i=1 aifi. This implies

the final assertion. �

Example 3.13. To illustrate this result, consider the inhomogeneous linear
system

x1 + x2 + 2x3 + 0x4 + 3x5 − x6 = 1,
x4 + 2x5 + 0x6 = −1.

Note that the coefficient matrix A is taken from Example 3.11, so solving as
above, we see that

x1 = 1 − 2x3 − 3x5 + x6,

x4 = −1 − 2x5.

Therefore, p0 = (1, 0, 0,−1, 0, 0)T is a particular solution of the inhomoge-
neous linear system. Hence, every solution has the form p0 + s, where s is
the general solution vector of the homogeneous linear system Ax = 0. �

Remark. Notice that if A ∈ F
m×n, then N (A) is an abelian group. In fact,

it is a subgroup of F
n. Proposition 3.17 says that the set of solutions of a

consistent linear system Ax = b is a coset p0 + N (A) of N (A). The coset
representative p0 is a particular solution.

Remark. Our final remark is that Ax = b is consistent if and only if b is a
linear combination of the columns of A. This follows from the identity (3.5).
We will also discuss this fact in more detail when the column space of a
matrix is introduced.



82 3 Matrices

3.3.4 A useful identity

Suppose A ∈ F
m×n. Since each corner of Ared occupies a unique row and a

unique column, the rank k of A satisfies both k ≤ m and k ≤ n. If k < n,
then there exists at least one free variable, so A will always have a basic null
vector. There is a simple but important relationship, already pointed out,
between the rank k and the number of basic null vectors, or equivalently, the
number of free variables:

rank(A) + # free variables = n. (3.11)

We will restate this identity several times, each time in a more general form.
In its most general form, the identity (3.11) is the rank–nullity theorem. For
example, if m < n, then there exists at least one free variable. In particular,
a system Ax = b cannot have a unique solution.

The identity (3.11) has the following useful consequence for n × n matrices.

Proposition 3.18. Let A ∈ F
n×n. Then A is nonsingular if and only if

N (A) = {0}.
Proof. Suppose A is nonsingular. By definition, A has rank n, so Ared = In.
This implies N (A) = N (Ared) = {0}. Conversely, if N (A) = {0}, then Ax =
0 implies x = 0. Hence there cannot be any free variables, so by the identity
(3.11), the rank of A is n. Thus A is nonsingular. �

Remark. In the next chapter, we will develop some techniques for bringing
a matrix into reduced row echelon form that are useful for solving linear
systems.

Exercises

Exercises 3.3.1. Show that the null space of a matrix over a field is an
abelian group.

Exercises 3.3.2. Let C denote the counting matrix of Example 3.8. Find

an equation in a, b, c that determines when the system C

⎛
⎝

x
y
z

⎞
⎠ =

⎛
⎝

a
b
c

⎞
⎠ is

consistent. (Hint: row reduce.)

Exercises 3.3.3. The field is F2. Consider the following matrices:

A1 =

⎛
⎝

1 1 0
1 0 1
0 1 1

⎞
⎠ , A2 =

⎛
⎜⎜⎝

1 0 1 0
0 1 1 0
1 1 0 0
1 0 0 1

⎞
⎟⎟⎠ .

Find basic null vectors for both A1 and A2.
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Exercises 3.3.4. Which of the following can happen and which cannot?
Provide explanations.

(i) A is of size 15 × 24 and has exactly seven basic null vectors;

(ii) A is of size 3 × 3, and Ax = b is consistent for all b.

(iii) A is of size 12 × 12, three of A’s columns are zero, and A has 10 basic
null vectors.



Chapter 4
Matrix Inverses, Matrix Groups
and the LPDU Decomposition

In this chapter we continue our introduction to matrix theory beginning
with the notion of a matrix inverse and the definition of a matrix group. For
now, the main example of a matrix group is the group GL(n,F) of invertible
n × n matrices over a field F and its subgroups. We will also show that every
matrix A ∈ F

n×n can be factored as a product LPDU , where each of L, P ,
D, and U is a matrix in an explicit subset of F

n×n. For example, P is a
partial permutation matrix, D is diagonal, and L and U are lower and upper
triangular respectively. The expression A = LPDU tells us a lot about A: for
example, D contains the pivots dii of A and also tells us the rank of A by
counting the number of nonzero pivots. In addition, A’s determinant (which
will be defined in the next chapter) is determined by PD as ±d11 · · · dnn.
When A is invertible, each of L, P , D, and U lies in a certain subgroup of
GL(n,F). For example, P lies in the group of n × n permutation matrices,
which is a matrix group isomorphic to S(n).

4.1 The Inverse of a Square Matrix

We now come to the interesting question of when an n × n matrix over a field
F has an inverse under matrix multiplication. Since every nonzero element of
a field has an inverse, the question for 1 × 1 matrices is already settled. The
main fact turns out to be that an n × n matrix over F is invertible if and
only if its rank is n.

4.1.1 The definition of the inverse

We begin with an essential definition:

c© Springer Science+Business Media LLC 2017
J.B. Carrell, Groups, Matrices, and Vector Spaces,
DOI 10.1007/978-0-387-79428-0 4

85
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Definition 4.1. Let F be a field and suppose A ∈ F
n×n. We say that A is

invertible if there exists B ∈ F
n×n such that AB = BA = In. We will say that

B is an inverse of A, and likewise, that A is an inverse of B.

Example 4.1. All 2 × 2 elementary matrices are invertible. Their inverses
are given as follows:

E1 =
(

0 1
1 0

)
⇒ E−1

1 =
(

0 1
1 0

)
,

E2 =
(

r 0
0 1

)
⇒ E−1

2 =
(

r−1 0
0 1

)
,

and

E3 =
(

1 s
0 1

)
⇒ E−1

3 =
(

1 −s
0 1

)
.

�

In fact, we already noted that if E ∈ F
n×n is an elementary matrix and F

is the elementary matrix that reverses the row operation that E effects, then
FE = EF = In. In other words, doing a row operation and then undoing it
produces the same result as first undoing it and then doing it, and the result
is that nothing changes. Thus every elementary matrix is invertible. Note
that the definition can apply only to square matrices, but if A is square, we
can consider both left and right inverses of A. A left inverse of A ∈ F

n×n is
a matrix B ∈ F

n×n such that BA = In, and a right inverse of A is a matrix
B ∈ F

n×n such that AB = In. It is useful to note (as was already noted for
groups) that when an inverse exists, it is unique. This is one of the nice
consequences of the associativity of matrix multiplication we have previously
mentioned.

Proposition 4.1. An invertible n × n matrix has a unique inverse.

Proof. Suppose A ∈ F
n×n has two inverses B and C. Then B = BIn =

B(AC) = (BA)C = InC = C. Thus B = C. �

4.1.2 Results on Inverses

Elementary matrices are the key to understanding when inverses exist and
how to find them. As we already noted above, if E ∈ F

n×n is elementary,
then there exists an elementary matrix F ∈ F

n×n such that FE = EF = In.
Thus elementary matrices are invertible. In fact, the inverse of an elementary
matrix has the same type. Our first result about inverses is that a nonsingular
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matrix (that is, an element of Fn×n of rank n) is invertible. Recall that by
Proposition 3.13, A ∈ F

n×n is nonsingular if and only if there exist elementary
matrices E1, . . . , Ek ∈ F

n×n such that Ek · · · E1A = In. In particular, if A is
nonsingular, we can assert that A has a left inverse.

Proposition 4.2. Let A in F
n×n. If A is nonsingular, then A is invertible.

In fact, let E1, . . . , Ek ∈ F
n×n be elementary matrices such that Ek · · · E1A =

In, and let F1, . . . , Fk ∈ F
n×n denote the elementary matrices such that

FiEi = In. Then A = F1 · · · Fk and A−1 = Ek · · · E1. Consequently, if A is
nonsingular, then A−1 is also nonsingular.

Proof. Let B = Ek · · · E1 and C = F1 · · · Fk. Then by associativity of multi-
plication,

CB = (F1 · · · Fk)(Ek · · · E1) = In,

since FiEi = In for each i. Now BA = In by assumption, so

A = InA = (CB)A = C(BA) = CIn = C.

Thus A = F1 · · · Fk, as claimed. Since CB = In and A = C, we have AB = In,
which proves that A is invertible. We leave it to the reader to show that if A
is nonsingular, then so is A−1. �

Therefore, nonsingular matrices are invertible. In fact, the converse is also
true, which will be important in our discussion of matrix groups.

Theorem 4.3. Let A ∈ F
n×n. Then A is nonsingular if and only if A is

invertible if and only if A is a product of elementary matrices.

Proof. By Proposition 4.2, a nonsingular matrix is invertible. To show that
an invertible matrix is nonsingular, let A be invertible, and suppose BA = In.
Now suppose Ax = 0. Then x = (BA)x = B(Ax) = B0 = 0, so by Proposi-
tion 3.18, it follows that A is nonsingular. If A is nonsingular, then by Propo-
sition 4.2, A is a product of elementary matrices. Conversely, a product of
elementary matrices is invertible, so the proof is finished. �

Notice that all that is required in the proof of the above theorem is that A
have a left inverse B. To expand on this observation, we will prove one last
result.

Proposition 4.4. Let A ∈ F
n×n. Then if A has either a left inverse B (that

is, BA = In) or a right inverse C (that is, AC = In), then A is invertible.

Proof. Suppose A has a left inverse B. Arguing as in the proof of Theorem
4.3, we conclude that Ax = 0 implies x = 0, so A is nonsingular. Therefore,
A is invertible. Now suppose A has a right inverse C. Then C has a left
inverse A, so C is invertible. Thus, A is invertible too. �

http://dx.doi.org/10.1007/978-0-387-79428-0_3
http://dx.doi.org/10.1007/978-0-387-79428-0_3
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Consequently, the invertible n × n matrices over F are exactly those for
which there is either a left or right inverse. This means that in an actual
calculation of A−1, it is necessary only to find a B such that either AB or
BA is In. One final result is the following.

Proposition 4.5. If A,B ∈ F
n×n are both invertible, then so is AB. More-

over, (AB)−1 = B−1A−1. In addition, AT is also invertible, and (AT )−1 =
(A−1)T .

Proof. Both A and B are products of elementary matrices, so it follows that
AB is too. Therefore AB is also invertible. We leave it to the reader to check
the formula for (AB)−1. The assertion about AT is left as an exercise. �

4.1.3 Computing inverses

We now consider the problem of actually inverting an n × n matrix A. One
method is the row reduction procedure used in Example 3.10. This starts
with the n × 2n matrix (A | In) and applies row reduction until the matrix
(In | B) is obtained. Then BA = In, so B = A−1 by Proposition 4.4. Oth-
erwise, A is singular and A−1 doesn’t exist. Alternatively, one can also find
B by multiplying out a sequence of elementary matrices that row reduces A.
This is actually not as bad as it sounds, since multiplying elementary matri-
ces is elementary. In the following example, we will assume that the field is
F2. Not surprisingly, this assumption makes the calculations a lot easier.

Example 4.2. Suppose the field is F2. Let us find the inverse of

A =

⎛
⎝1 1 0

1 1 1
0 1 1

⎞
⎠ ,

if one exists. Now,

(A | I3) =

⎛
⎝1 1 0 1 0 0

1 1 1 0 1 0
0 1 1 0 0 1

⎞
⎠ →

⎛
⎝1 1 0 1 0 0

0 0 1 1 1 0
0 1 1 0 0 1

⎞
⎠ →

⎛
⎝1 1 0 1 0 0

0 1 1 0 0 1
0 0 1 1 1 0

⎞
⎠ →

⎛
⎝1 1 0 1 0 0

0 1 0 1 1 1
0 0 1 1 1 0

⎞
⎠ →

⎛
⎝1 0 0 0 1 1

0 1 0 1 1 1
0 0 1 1 1 0

⎞
⎠ .

http://dx.doi.org/10.1007/978-0-387-79428-0_3
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Hence

A−1 =

⎛
⎝0 1 1

1 1 1
1 1 0

⎞
⎠ .

�

Example 4.3. For a slightly less simple example, let F = F2, but put

A =

⎛
⎜⎜⎝

1 0 0 1
1 1 0 0
0 1 1 1
1 1 1 1

⎞
⎟⎟⎠ .

Following the above procedure, we obtain that

A−1 =

⎛
⎜⎜⎝

0 0 1 1
0 1 1 0
1 1 1 1
1 0 1 1

⎞
⎟⎟⎠ .

Note that the correctness of this result should be checked by computing
directly that

I4 =

⎛
⎜⎜⎝

0 0 1 1
0 1 1 1
1 1 1 0
1 0 1 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

1 0 0 1
1 1 0 0
0 1 1 1
1 1 1 1

⎞
⎟⎟⎠ .

�

There is a slightly less obvious third technique for inverting a matrix. If
A is of size n × n and we form the matrix (A | x), where x represents a
variable column vector with components x1, x2, . . . , xn, then row reducing
will produce a result of the form (Ared | c), where the components of c
are certain linear combinations of the components of x. The coefficients in
these linear combinations turn out to be the entries of the matrix B such
that BA = Ared. Here is an example.

Example 4.4. Let the field be Q and

A =

⎛
⎝1 2 0

1 3 1
0 1 2

⎞
⎠ .
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Now form ⎛
⎝1 2 0 a

1 3 1 b
0 1 2 c

⎞
⎠

and row reduce. The result is
⎛
⎝1 0 0 5a − 4b + 2c

0 1 0 − 2a + 2b − c
0 0 1 a − b + c

⎞
⎠ .

Thus,

A−1 =

⎛
⎝ 5 − 4 2

−2 2 − 1
1 − 1 1

⎞
⎠ . �

Exercises

Exercise 4.1.1. Find the inverse of each of the following matrices over Q,
or show that the inverse does not exist:

(a)

⎛
⎝1 0 1

0 1 − 1
1 1 0

⎞
⎠; (b)

⎛
⎝1 0 − 2

0 1 1
1 1 0

⎞
⎠; (c)

⎛
⎜⎜⎝

1 0 1 0
0 1 0 − 1
1 0 − 1 0
0 1 0 1

⎞
⎟⎟⎠.

Exercise 4.1.2. If possible, invert

B =

⎛
⎜⎜⎝

1 2 − 1 − 1
−2 − 1 3 1
−1 4 3 − 1
0 3 1 − 1

⎞
⎟⎟⎠ .

Exercise 4.1.3. We saw that the 3 × 3 counting matrix is singular. Deter-
mine whether the 2 × 2 and 4 × 4 counting matrices are nonsingular.

Exercise 4.1.4. Consider the matrix of Exercise 4.1.2 as a matrix A over
F5. If possible, find A−1.

Exercise 4.1.5. The following matrices are over F2. Determine which have
inverses and find the inverses when they exist.

(a)

⎛
⎝1 0 1

0 1 1
1 1 0

⎞
⎠; (b)

⎛
⎜⎜⎝

1 0 0 1
1 1 0 0
0 1 1 1
1 1 1 1

⎞
⎟⎟⎠; (c)

⎛
⎜⎜⎝

1 0 0 1
1 1 0 0
0 1 0 1
1 1 1 1

⎞
⎟⎟⎠.



4.1 The Inverse of a Square Matrix 91

Exercise 4.1.6. If possible, invert the following 5 × 5 matrix A over F2:

A =

⎛
⎜⎜⎜⎜⎝

1 0 1 1 1
1 1 0 1 0
1 1 0 0 1
1 0 1 1 0
1 1 1 0 1

⎞
⎟⎟⎟⎟⎠ .

Exercise 4.1.7. Suppose A =
(
a b
c d

)
, and assume that Δ = ad − bc �= 0.

Show that A−1 = 1
Δ

(
d −b

−c a

)
. What does the condition Δ �= 0 mean in terms

of the rows of A?

Exercise 4.1.8. Verify that if A is invertible, then AT is also invertible.
Find a formula for (AT )−1 and verify it.

Exercise 4.1.9. Suppose A is invertible.

(i) Show that A−1 is also invertible.

(ii) Find a formula for the inverse of Am, where m is a positive integer.

(iii) True or false: A + AT is invertible. Include brief reasoning.

Exercise 4.1.10. True or false: If A is square and AAT is invertible, then
A is invertible. What if A isn’t square?

Exercise 4.1.11. True or false: Suppose A is of size n × n and A3 + 2A −
In = O. Then A invertible. Include brief reasoning.

Exercise 4.1.12. True or false: if an n × n matrix with integer entries has
an inverse, then the inverse also has integer entries. As usual, include brief
reasoning.

Exercise 4.1.13. Let C =
( 1 a b

0 1 c
0 0 1

)
. Find a general formula for C−1.

Exercise 4.1.14. Show that if A and B are of size n × n and have inverses,
then (AB)−1 = B−1A−1. What is (ABCD)−1 if all four matrices are invert-
ible?

Exercise 4.1.15. Suppose A is an invertible m × m matrix and B is an
m × n matrix. Solve the equation AX = B.

Exercise 4.1.16. Suppose A and B are both of size n × n and AB is invert-
ible. Show that both A and B are invertible.

Exercise 4.1.17. Let A and B be two n × n matrices over R. Suppose A3 =
B3 and A2B = B2A. Show that if A2 + B2 is invertible, then A = B. (Hint:
consider (A2 + B2)A.)
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Exercise 4.1.18. Let A and B be n × n matrices over F.

(i) Show that if the inverse of A2 is B, then the inverse of A is AB.

(ii) Suppose A, B, and A + B are all invertible. Find the inverse of A−1 +
B−1 in terms of A, B, and A + B.

Exercise 4.1.19. You are a cryptographer assigned to crack the clever
cipher constructed as follows. First, let the sequence 01 represent A, 02 repre-
sent B, and so forth up to 26, which represents Z. For clarity, a space between
words is indicated by inserting 00. A text can thus be unambiguously encoded
as a sequence. For example, 1908040002090700041507 is the encoding of the
phrase “the big dog.” Since this string of integers has length 22, we will
think of it as a vector in Q

22. Suppose a text has been encoded as a sequence
of length 14,212. Now, 14,212 = 44 × 323, so the sequence can be broken
into 323 consecutive intervals of length 44. Next, suppose each subinterval is
transposed and multiplied on the left by a single 44 × 44 matrix C. The new
sequence obtained by transposing again and laying the products end to end
will be the enciphered message, and it is your job to decipher it. Discuss the
following questions.

(i) How does one produce an invertible 44 × 44 matrix in an efficient way,
and how does one find its inverse?

(ii) How many of the subintervals will you need to decipher to break the
whole cipher by deducing the matrix C?
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4.2 Matrix Groups

The purpose of this section is to introduce the concept of a matrix group and
produce a number of examples. A matrix group is essentially a collection of
matrices that lie in some F

n×n that forms a group under matrix multiplica-
tion, where the identity is In. Thus the axioms defining a matrix group are
modest, but they are enough to ensure that matrix groups form an interest-
ing central part of algebra. In the final chapter, we will outline the theory
of the structure of matrix groups that are defined by some equations. These
groups are known as linear algebraic groups. The matrix group structure will
be useful in stating and proving some of the main results on matrices in later
chapters.

4.2.1 The definition of a matrix group

We begin with the main definition.

Definition 4.2. Let F be a field. A subset G of Fn×n is called a matrix group
if it satisfies the following three conditions:

(i) if A,B ∈ G, then AB ∈ G (that is, G is closed under multiplication);

(ii) In ∈ G; and

(iii) if A ∈ G, then A is invertible, and A−1 ∈ G.

Remark. Since matrix multiplication is associative, every matrix group G
is a group under matrix multiplication with identity the identity matrix, and
the inverse of every A ∈ G given by A−1.

The most basic example of a matrix group G ⊂ F
n×n is the general linear

group over F, which is denoted by GL(n,F). By definition,

GL(n,F) = {A ∈ F
n×n | A−1 exists}. (4.1)

Thus, GL(n,F) is the set of all invertible elements of Fn×n.

Proposition 4.6. The set GL(n,F) is a matrix group. Moreover, every
matrix group G ⊂ F

n×n is a subgroup of GL(n,F).

Proof. By Proposition 4.5, GL(n,F) is closed under multiplication. Moreover,
In ∈ GL(n,F). Finally, if A is invertible, so is A−1. Therefore, GL(n,F) is a
matrix group. �

A subgroup of a matrix group is called a matrix subgroup. For example,
{In} is a subgroup of every matrix group G ⊂ GL(n,F). One usually calls
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{In} the trivial subgroup. The other basic definitions that apply to groups
such as normal subgroups, cosets, order (in the finite group case) all apply
without change to matrix groups.

4.2.2 Examples of matrix groups

We now give some examples of matrix groups.

Example 4.5 (Rotations). The first example is the group Rot(2) consisting
of the 2 × 2 rotation matrices Rθ, 0 ≤ θ ≤ 2π. As we mentioned in Example
3.7, the mapping Rθ : R2 → R

2 defined by

Rθ

(
x
y

)
=

(
x cos θ − y sin θ
x sin θ + y cos θ

)

is the rotation of R2 through θ. Note that Rθ is the matrix mapping associated
to the matrix

Rθ =
(

cos θ − sin θ
sin θ cos θ

)
, (4.2)

which we will call a rotation matrix. Recall that in Example 3.7 we showed

that Rθ

(
x
y

)
is the same action on R

2 as multiplication by the complex

exponential eiθ is on C. That is,

Rθ

(
x
y

)
= eiθz,

where z = x + yi. Since ei(θ+ψ) = eiθeiψ, it follows that Rθ+ψ = RθRψ for all
θ, ψ. Consequently, Rot(2) is closed under multiplication. It is also closed
under taking inverses. For using the formula for the inverse of a 2 × 2 matrix
in Exercise 4.1.7, we have

(Rθ)−1 =
(

cos θ sin θ
− sin θ cos θ

)
=

(
cos(−θ) − sin(−θ)
sin(−θ) cos(−θ)

)
= R−θ.

Finally, note that I2 = R0. Hence, Rot(2) is a matrix group. In addition,
Rot(2) is abelian. For

RθRψ =
(

cos θ cos ψ − sin θ sinψ − cos θ sinψ − sin θ cos ψ
cos θ sin ψ + sin θ cos ψ cos θ cos ψ − sin θ sin ψ

)
= RψRθ,

http://dx.doi.org/10.1007/978-0-387-79428-0_3
http://dx.doi.org/10.1007/978-0-387-79428-0_3
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as can be seen by noticing that each term in the matrix stays the same after
flipping θ and ψ. This also follows from the observation that eiθeiψ = eiθeiθ,
since C∗ is an abelian group. This is worth noting, since among other reasons,
abelian matrix groups are rather rare. Another fact to notice is that there
is an explicit group isomorphism φ : S1 → Rot(2), which is defined by first
setting z = eiθ and then putting φ(z) = Rθ. We leave it as an exercise to show
that φ is, as claimed, a well-defined isomorphism. �

The next example of a matrix group plays a fundamental role in the Euclid-
ean geometry of Rn.

Definition 4.3 (The orthogonal group). Let Q ∈ R
n×n. We say that Q is

orthogonal if QTQ = In (i.e., Q−1 = QT ). The set of all n × n orthogonal
matrices is called the orthogonal group of degree n. The orthogonal group is
denoted by O(n,R).

Thus, Q ∈ R
n×n is orthogonal if and only if when Q = (q1 q2 · · · qn),

then qT
i qj = δij for all 1 ≤ i, j ≤ n.

Proposition 4.7. O(n,R) is a subgroup of GL(n,R).

Proof. We first show that if Q,R ∈ O(n,R), then QR ∈ O(n,R). We have to
check that (QR)T (QR) = In. But

(QR)T (QR) = (RTQT )(QR) = RT (QTQ)R = RT InR = In,

so O(n,R) is closed under multiplication. Clearly In ∈ O(n,R), so it remains
to verify that Q ∈ O(n,R) implies Q−1 ∈ O(n,R). But Q−1 = QT , so we
have to check that (QT )TQT = In. This amounts to showing that QQT = In,
which holds due to the fact that QTQ = In. This completes the
verification. �

The alert reader may have noticed that the definition of the orthogonal
group O(n,R) actually had nothing to do with R. That is, we could just as
easily defined O(n,F) in exactly the same way for any field F. In fact, the
matrix groups of the type O(n,F) form an important class known as the
orthogonal groups over F. One frequently concentrates on O(n,R) because
its properties are related to the geometry of n-dimensional Euclidean space.

In the following section, we will give an example of a matrix group closely
related to the symmetric group.

4.2.3 The group of permutation matrices

Recall that ei is the column vector such that In = (e1 · · · en). If σ ∈ S(n),
put Pσ = (eσ(1) · · · eσ(n)). Thus,
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Pσek = eσ(k).

Matrices of the form Pσ are called n × n permutation matrices. Let P (n)
denote the set of all n × n permutation matrices. Note that different permu-
tations in S(n) give rise to different permutation matrices. That is, if σ �= μ,
then Pσ �= Pμ. Thus there are exactly n! n × n permutation matrices.

Let us first show that row-swap matrices are the permutation matrices
corresponding to transpositions. Suppose S is the n × n row-swap matrix
that interchanges rows i and j, where i < j. Let τ ∈ S(n) be the transposition
interchanging i and j. Thus τ(i) = j, τ(j) = i, and τ(k) = k for k �= i, j. Then
Sei = ej = eτ(i) and Sej = ei = eτ(j). Also, for k �= i, j, Sek = ek. Therefore,
S = Pτ , as asserted. Now we want to study the relationship between the
permutation matrices and S(n). The key fact is contained in the following
proposition.

Proposition 4.8. Let σ, τ ∈ S(n). Then we have

PτPσ = Pτσ.

Therefore, P (n) is closed under multiplication. Moreover, In and (Pσ)−1 are
permutation matrices for all σ ∈ S(n). Consequently, P (n) is a matrix group.

Proof. For each index k, 1 ≤ k ≤ n, we have

PτPσek = Pτeσ(k) = eτ(σ(k)) = Pτσek.

Hence PτPσ = Pτσ, so P (n) is closed under multiplication. It also follows
from this formula that (Pσ)−1 = Pτ , where τ = σ−1, so every P ∈ P (n) has
its inverse in P (n). Since Pidn

= In, where idn is the identity, it follows that
P (n) is a matrix group. �

Now let ϕ : S(n) → P (n) be the mapping defined by ϕ(σ) = Pσ.

Proposition 4.9. ϕ is an isomorphism.

Proof. We already noted that ϕ is injective. Since S(n) and P (n) both have
order n!, it follows that ϕ is a bijection. Therefore, ϕ is an isomorphism. �

Every permutation matrix P can be put into reduced row echelon form.
But it is clear that type II row operations suffice for this, so P can be written
as a product of row swaps. This implies the following result.

Corollary 4.10. Every σ ∈ S(n) can be written as a product of transpo-
sitions. These transpositions may be found by putting Pσ into reduced row
echelon form using row swaps.
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Note, however, that there are in general many ways of writing a permuta-
tion matrix as a product of row swaps, and correspondingly, there are many
ways of writing a permutation as a product of transpositions. In fact, one
can always represent a permutation matrix as a product of row swaps that
interchange adjacent rows. These correspond to transpositions of the form
(i i + 1) and are called simple transpositions. The simple transpositions are
fundamental in the study of the combinatorial properties of S(n). The upshot
is the following.

Proposition 4.11. Every σ ∈ S(n) can be expressed as a product of simple
transpositions.

Permutation matrices have the following beautiful property.

Proposition 4.12. If P ∈ P (n), then P−1 = PT . In other words, every per-
mutation matrix is orthogonal.

We will leave the proof as an exercise. Thus, P (n) is a subgroup of O(n,R).
This gives an interesting example of an infinite group, namely O(n,R), con-
taining a finite subgroup, which generalizes the example {±1} ⊂ O(1,R).

Example 4.6. For instance, P (2) consists of two matrices, I2 and

S =
(

0 1
1 0

)
,

while P (3) consists of the following six 3 × 3 matrices;

I3,

⎛
⎝
1 0 0

0 0 1

0 1 0

⎞
⎠ ,

⎛
⎝
0 1 0

1 0 0

0 0 1

⎞
⎠ ,

⎛
⎝
0 1 0

0 0 1

1 0 0

⎞
⎠ ,

⎛
⎝
0 0 1

1 0 0

0 1 0

⎞
⎠ ,

⎛
⎝
0 0 1

0 1 0

1 0 0

⎞
⎠ .

The second, third, and sixth matrices are row swaps, and the others are
products of two row swaps. �

Exercises

Exercise 4.2.1. Find the center of GL(n,F) for an arbitrary field F.

Exercise 4.2.2. Find the center of O(n,F) for an arbitrary field F.

Exercise 4.2.3. Show that Rot(2) is a subgroup of O(2,R). Is O(2,R) =
Rot(2)? If not, find an element of O(2,R) that isn’t a rotation.

Exercise 4.2.4. Let G ⊂ GL(2,R) denote the set of all matrices
(

a b
−b a

)
,

where a2 + b2 �= 0. Is G an abelian subgroup of GL(2,R)?
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Exercise 4.2.5. Show that Q ∈ R
n×n is orthogonal if and only if its rows

q1, . . . ,qn satisfy the condition qiqT
j = δij . That is, qiqT

i = 1, while qiqT
j =

0 if i �= j.

Exercise 4.2.6. Show that if Q ∈ R
n×n is orthogonal, then so is QT . Con-

clude that a symmetric orthogonal matrix satisfies Q2 = In; hence Q is its
own inverse. Give an example of a 2 × 2 symmetric orthogonal matrix differ-
ent from I2.

Exercise 4.2.7. Without computing, try to guess the inverse of the matrix

A =

⎛
⎜⎜⎝

1 0 1 0
0 1 0 − 1
1 0 − 1 0
0 1 0 1

⎞
⎟⎟⎠ .

(Hint: consider the columns.)

Exercise 4.2.8. Let S1 =

⎛
⎝0 1 0

1 0 0
0 0 1

⎞
⎠ and S2 =

⎛
⎝1 0 0

0 0 1
0 1 0

⎞
⎠. Show that

every 3 × 3 permutation matrix is a product involving only S1 and S2.

Exercise 4.2.9. Let S1 and S2 be the permutation matrices defined in Exer-
cise 4.2.8. Show that (S1S2)3 = I3.

Exercise 4.2.10. Show that every permutation matrix P satisfies the iden-
tity P−1 = PT , and conclude that P (n) is a subgroup of O(n,R).

Exercise 4.2.11. Show that the following two matrices are permutation
matrices and find their inverses:

⎛
⎜⎜⎜⎜⎝

0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
0 1 0 0 0
1 0 0 0 0

⎞
⎟⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎜⎝

0 0 1 0 0
0 0 0 0 1
1 0 0 0 0
0 1 0 0 0
0 0 0 1 0

⎞
⎟⎟⎟⎟⎠ .

Exercise 4.2.12. A signed permutation matrix is a square matrix Q of the
form

Q = P (±e1 ± e2 · · · ± en),

where P ∈ P (n).

(i) Show that the set SP (n) of n × n signed permutation matrices is a sub-
group of O(n,R) of order 2nn!.
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(ii) Prove that P (n) is a normal subgroup of SP (n).

(iii) Describe the quotient group SP (n)/P (n).

Exercise 4.2.13. Prove that every finite group G of order n is isomorphic
to a subgroup of O(n,R).
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4.3 The LPDU Factorization

Recall that an invertible n × n matrix A can be expressed as a product of
elementary n × n matrices. In this section, we will prove a much more explicit
result: every n × n matrix A over a field F can be expressed in the form
A = LPDU , where each of the matrices L, P , D, and U is built up from a
single type of elementary matrix. This LPDU factorization is one of the most
basic tools in the theory of matrices. One nice application is a well-known
but nontrivial relationship between the ranks of A and AT for any matrix A,
which we prove below. The LPDU decomposition is widely used in applied
linear algebra for solving large systems of linear equations.

4.3.1 The basic ingredients: L, P , D, and U

The list of characters in the LPDU decomposition consists of matrices that
we have met before and matrices that we need to introduce. Let us begin
with L and U .

Definition 4.4. An n × n matrix L is called lower triangular if lij = 0 for
all j > i. That is, the nonzero entries of L are below or on the diagonal of
L. Similarly, an n × n matrix U is upper triangular if uij = 0 for i > j. A
matrix that is either lower or upper triangular is said to be unipotent if all
its diagonal entries are 1.

Clearly, the transpose of a lower triangular matrix is upper triangular.
The transpose of a unipotent matrix is also unipotent. In our discussion, the
matrices L and U will always be lower and upper triangular and both will be
unipotent.

Example 4.7. A lower triangular 3 × 3 unipotent matrix has the form

L =

⎛
⎝1 0 0

a 1 0
b c 1

⎞
⎠ .

The transpose U of L is, of course,

U =

⎛
⎝1 a b

0 1 c
0 0 1

⎞
⎠ ,

which is upper triangular. One can easily check that



4.3 The LPDU Factorization 101

L−1 =

⎛
⎝ 1 0 0

−a 1 0
ac − b − c 1

⎞
⎠ .

Thus L−1 is also lower triangular unipotent. �
Recall that type III row operations are also called transvections. When a

lower row is replaced by itself plus a multiple of some higher row, a transvec-
tion is said to be downward. Downward transvections are performed via
left multiplication by lower triangular unipotent matrices. Similarly, right-
ward transvections are performed by right multiplication by upper triangular
matrices. Here is a basic fact.

Proposition 4.13. Let Ln(F) and Un(F) denote respectively the set of all
lower triangular unipotent and upper triangular unipotent n × n matrices
over F. Then Ln(F) and Un(F) are matrix subgroups of GL(n,F) for all
n > 0.

Proof. It follows from the definition of matrix multiplication that the product
of two lower triangular matrices is also lower triangular. If A and B are lower
triangular unipotent, then the diagonal entries of AB are also all 1. Indeed,
if AB = (cij), then

cii =
n∑

k=1

aikbki = aiibii = 1,

since aij = bij = 0 if i < j. The identity In is also lower triangular unipotent,
so to show that Ln(F) is a subgroup of GL(n,F), it remains to show that the
inverse of an element A of Ln(F) is also in Ln(F). But this follows from the
explicit technique for inverting a matrix using row operations. Row swaps
are never needed, since A is already lower triangular. Row dilations are never
needed, since A is already unipotent. Thus, A−1 is obtained by a sequence of
downward transvections. But these correspond to taking products in Ln(F),
so A−1 ∈ Ln(F). The result for Un(F) is proved in an analogous way. In fact,
one can simply transpose the above proof. �

Continuing with the introduction of the basic ingredients, we now concen-
trate on P and D. We next describe P .

Definition 4.5. A partial permutation matrix is a matrix that is obtained
from a permutation matrix P by setting some of the rows of P equal to zero.

Let Πn denote the set of n × n partial permutation matrix matrices. To
be explicit, every element of Πn is either a permutation matrix or obtained
from a permutation matrix P by replacing some of the ones in P by zeros.
A matrix with a row of zeros is, of course, singular, so Πn is not a matrix
group. Nevertheless, it remains true that the product of two n × n partial
permutation matrices is also a partial permutation matrix.

Lastly, we describe D.
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Definition 4.6. A diagonal matrix is a square matrix D = (dij) all of whose
off-diagonal entries are zero; that is, dij = 0 for all i �= j.

Since a diagonal matrix D is invertible if and only if its diagonal entries
dii are all different from 0 and the product of two diagonal matrices is also
diagonal, we obtain the following result.

Proposition 4.14. The set Dn(F) of all n × n invertible diagonal matrices
over F is a matrix subgroup of GL(n,F).

4.3.2 The main result

We now derive the LPDU decomposition.

Theorem 4.15. Every n × n matrix A over a field F can be expressed in the
form A = LPDU , where L ∈ Ln(F), P ∈ Πn , D ∈ Dn(F), and U ∈ Un(F).
The partial permutation matrix P is always unique. If A is invertible, then
P is a full permutation matrix, and in that case, P and D are both unique.

This result can be expressed in the form of a product of sets, three of
which are matrix groups:

F
n×n = Ln(F) · Πn · Dn(F) · Un(F).

Thus every n × n matrix over F is the product of the four types of matrices
Ln(F), Πn , Dn(F), and Un(F). Specializing to invertible matrices, we have

GL(n,F) = Ln(F) · P (n) · Dn(F) · Un(F).

In particular, GL(n,F) is the product of four of its subgroups: Ln(F), P (n),
Dn(F), and Un(F). This is a fundamental result in the theory of matrix groups.

Remark. It is also possible to define an LPDU decomposition for nonsquare
matrices. If A ∈ F

m×n, where say m < n, then we can augment A by adding
n − m rows of zeros to make A an n × n matrix. Of course, in this situation,
the last n − m rows of P will also be zero.

The proof of the theorem is in the same spirit as the proof of the result
that every matrix can be put into reduced row echelon form by a sequence
of row operations, but it is somewhat more complicated, since both row and
column operations are used. The reader may wish to look first at the example
following the proof to get an idea of what is going on in an explicit case.

Proof of Theorem 4.15. We will first prove the existence of the LPDU decom-
position. Let A ∈ F

n×n be given. If A = O, put P = O and L = D = U = In.
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Thus suppose A �= O. If A’s first column is zero, go to the right until you
reach the first nonzero column, say it’s the jth. Let δj be the first nonzero
entry (from the top), and suppose δj occurs in the ith row. That is, δj = aij .
Perform a sequence of downward transvections to make the entries below δj
equal to zero. This transforms the jth column of A into

(0 · · · 0 δj 0 · · · 0)T . (4.3)

Thus, we can premultiply A by a lower triangular unipotent matrix L1 to
bring the jth column of A into the form (4.3). (Of course, this requires that
the matrix entries lie in a field.) The next step is to use δj to annihilate
all the entries in the ith row of A to the right of the jth column. Since
postmultiplying by elementary matrices performs column operations, this
amounts to multiplying L1A on the right by a sequence of unipotent upper
triangular elementary matrices. This produces an upper triangular unipotent
matrix U1 such that the first j − 1 columns of (L1A)U1 are zero, the jth has
the form (4.3), and the ith row is

(0 · · · 0 δj 0 · · · 0), (4.4)

where δj �= 0. We now have the first j columns and ith row of A in the desired
form, and from now on, they won’t change.

To continue, scan to the right until we find the first nonzero column in
L1AU1 to the right of the jth column, and suppose this column is the mth.
Let bkm be its first nonzero entry, and put δm = bkm. Of course, k �= i. Now
repeat the previous process by forming L2L1AU1U2 with suitable lower and
upper triangular unipotent matrices L2 and U2. Continuing the process, we
eventually obtain a lower triangular unipotent matrix L′ and an upper tri-
angular unipotent matrix U ′ such that each row and column of L′AU ′ has
at most one nonzero entry. Thus we may write L′AU ′ = PD for some partial
permutation matrix P , where D is a diagonal matrix. The matrix D is not
unique, since some of the columns of PD may be zero. But the entry of D
in the nonzero columns is, of course, the corresponding entry in PD. Since
we can take any entries we want in the other columns of D, we can assume
that D is nonsingular. Unraveling, we get A = LPDU , where L = (L′)−1 and
U = (U ′)−1. This proves the existence of the LPDU decomposition.

We must now show that P is unique. So suppose A = LPDU = L′P ′D′U ′

are two LPDU decompositions of A. We have to show P = P ′. But we can
write L−1L′P ′ = PDU(D′U ′)−1, so P = P ′ will follow from the next lemma.

Lemma 4.16. Suppose P and Q are n × n partial permutation matrices
such that PN = MQ, where M is lower triangular unipotent and N is non-
singular and upper triangular. Then P = Q.

Proof. We claim that P and Q have the same zero columns. For if the jth
column of Q is zero, then the jth column of MQ, and hence of PN , is also
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zero. If pij �= 0, then pir = 0 if r �= j. Thus the (i, j) entry of PN is pijnjj .
But njj �= 0, since N is nonsingular and upper triangular. This implies that
the jth column of PN has a nonzero entry, which is impossible. Thus the
jth column of P is also zero. But since QN−1 = M−1P , it follows from the
same argument that every zero column of P is also a zero column of Q. This
gives us the claim. Now suppose the jth columns of P and Q are nonzero.
Then prj = qsj = 1 for exactly one r and exactly one s. We have to show
that r = s. If r �= s, then since M does downward tranvections and the (r, j)
entry prjnjj of PN is nonzero, it follows that s ≤ r. (Otherwise, qkj = 0 if
k ≤ r, which implies prjnjj = 0.) But since QN−1 = M−1P , this argument
also shows that r ≤ s. Consequently, r = s, and therefore P = Q. �

The existence part of the proof of Theorem 4.15 in fact gives an algorithm
for finding the LPDU factorization. Let’s examine it in an example.

Example 4.8. To illustrate the proof, assume that the field is Q and put

A =

⎛
⎝ 0 2 − 2

0 4 − 5
−1 − 2 − 1

⎞
⎠ .

Since the first nonzero entry in the first column of A is a13 = −1, we can
start by subtracting the first column twice from the second and subtracting
it once from the third. The result is

AU1 =

⎛
⎝ 0 2 − 2

0 4 − 5
−1 0 0

⎞
⎠ ,

where

U1 =

⎛
⎝1 − 2 − 1

0 1 0
0 0 1

⎞
⎠ .

Next we subtract twice the first row of AU1 from the second, which gives

L1AU1 =

⎛
⎝ 0 2 − 2

0 0 − 1
−1 0 0

⎞
⎠ ,

where

L1 =

⎛
⎝ 1 0 0

−2 1 0
0 0 1

⎞
⎠ .
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Finally, we add the second column to the third, getting

L1AU1U2 =

⎛
⎝ 0 2 − 2

0 0 − 1
−1 0 0

⎞
⎠

⎛
⎝1 0 0

0 1 1
0 0 1

⎞
⎠ =

⎛
⎝ 0 2 0

0 0 − 1
−1 0 0

⎞
⎠

=

⎛
⎝0 1 0

0 0 1
1 0 0

⎞
⎠

⎛
⎝−1 0 0

0 2 0
0 0 − 1

⎞
⎠ = PD.

Now

U = U1U2 =

⎛
⎝1 − 2 − 3

0 1 1
0 0 1

⎞
⎠ .

After computing L = (L1)−1 and U = (U1U2)−1, we obtain the LPDU fac-
torization

A =

⎛
⎝1 0 0

2 1 0
0 0 1

⎞
⎠

⎛
⎝0 1 0

0 0 1
1 0 0

⎞
⎠

⎛
⎝−1 0 0

0 2 0
0 0 − 1

⎞
⎠

⎛
⎝1 2 1

0 1 − 1
0 0 1

⎞
⎠ .

�
Notice that if A = LPDU is nonsingular, then A−1 = U−1D−1P−1L−1.

In theory, it is simpler to invert each of L, P , D, and U and to multiply them
than to compute A−1 directly. Indeed, D−1 is easy to find, and P−1 = PT ,
so it boils down to computing L−1 and U−1. But the inverse of an upper or
lower triangular unipotent matrix can be expressed by an explicit formula,
although it is too complicated to write down here.

4.3.3 Matrices with an LDU decomposition

If A is invertible, we now know that in the expression A = LPDU , D and
P are unique. The diagonal entries of D also turn out to be important: they
are called the pivots of A. The purpose of this subsection is to determine
when A admits an LDU decomposition, that is, an LPDU decomposition in
which P is the identity matrix. This is answered by considering the matrices
Ak consisting of the k × k blocks in the upper left-hand corner of A. We first
observe that if A = LBU , where B ∈ F

n×n, then as long as L and U are lower
and upper triangular respectively, then Ak = LkBkUk. We leave this as an
exercise (see Exercise 4.3.15). We now determine when we can decompose A
as A = LDU .

Proposition 4.17. Let A ∈ F
n×n be invertible. Then A can be written in

the form LDU if and only if Ak is invertible for all k = 1, . . . , n.
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Proof. If A = LDU , then Ak = LkDkUk for each index k. Since Lk, Dk, and
Uk are invertible for each k, each Ak is invertible. Conversely, suppose each
Ak is invertible, and write A = LPDU . Then Ak = Lk(PD)kUk for each k,
so if Ak is invertible for all k, it follows, in particular, that (PD)k is invertible
for each k. However, since P is a permutation matrix and D is an invertible
diagonal matrix, the only way this can happen is if each Pk is equal to Ik. In
particular, P = Pn = In. �

We now prove an interesting result for matrices with an LDU decomposi-
tion and show that it doesn’t always hold if P �= In.

Proposition 4.18. If an invertible matrix A admits an LDU decomposition,
then L, D, and U are unique.

Proof. We already know that D is unique. Assume that A has two LDU
decompositions, say

A = L1DU1 = L2DU2.

Then
L−1

1 L2D = DU1U
−1
2 . (4.5)

But in (4.5), the left-hand side is lower triangular, and the right-hand side
is upper triangular. Thus, both sides are diagonal. Multiplying by D−1 on
the right immediately tells us that L−1

1 L2 is diagonal, since DU1U
−1
2 D−1 is

diagonal. But L−1
1 L2 is also unipotent; hence L−1

1 L2 = In. Therefore, L1 =
L2. Canceling L1D on both sides, we also see that U1 = U2. �

Thus, a natural question is whether L and U are unique for all LPDU
decompositions. We can answer this by considering the 2 × 2 case.

Example 4.9. Let A =
(
a b
c d

)
be invertible. That is, suppose ad − bc �= 0. If

a �= 0, then the LPDU decomposition of A is

A =
(

1 0
−c/a 1

)(
1 0
0 1

)(
a 0
0 (ad − bc)/a

) (
1 − b/a
0 1

)
.

This is, of course, an LDU decomposition. If a = 0, then bc �= 0, and A can
be expressed either as

LPD =
(

1 0
d/b 1

)(
0 1
1 0

)(
c 0
0 b

)

or as

PDU =
(

0 1
1 0

) (
c 0
0 b

) (
1 d/c
0 1

)
.

This tells us that if P �= I2, then L and U aren’t necessarily unique.

�
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4.3.4 The Symmetric LDU Decomposition

Suppose A is an invertible symmetric matrix that has an LDU decomposition.
Then it turns out that L and U are not only unique, but they are related. In
fact, U = LT . This makes finding the LDU decomposition very simple. The
reasoning for this goes as follows. If A = AT and A = LDU , then

LDU = (LDU)T = UTDTLT = UTDLT ,

since D = DT . Therefore, the uniqueness of L, D, and U implies that U = LT .
The upshot is that to factor A = LDU in the general symmetric case, all

one needs to do is perform downward row operations on A until A is upper
triangular. This is expressed by the equality L′A = B, where B is upper
triangular. Then B = DU , where D is the diagonal matrix such that dii = bii
for all indices i, and (since all the bii are nonzero) U = D−1B. Thus by
construction, U is upper triangular unipotent, and we have A = LDU , where
L = UT by the result proved in the previous paragraph.

Example 4.10. Consider the symmetric matrix

A =

⎛
⎝1 1 1

1 3 − 1
1 1 2

⎞
⎠ .

First bring A into upper triangular form, which is our DU . On doing so, we
find that A reduces to

DU =

⎛
⎝1 1 1

0 2 − 2
0 0 1

⎞
⎠ .

Hence

D =

⎛
⎝1 0 0

0 2 0
0 0 1

⎞
⎠ and U =

⎛
⎝1 1 1

0 1 − 1
0 0 1

⎞
⎠ .

Thus A = LDU , where U is as above, L = UT , and D = diag(1, 2, 1).

Summarizing, we state the following result.

Proposition 4.19. If A is an invertible n × n symmetric matrix admitting
an LDU decomposition, then A can be written in the form A = LDLT for a
unique lower triangular unipotent matrix L. This factorization exists if and
only if each symmetric submatrix Ak, k = 1, . . . , n, is invertible.

The interested reader may wish to consider what happens when an invert-
ible symmetric matrix A has zero pivots (see Exercise 4.3.16).
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4.3.5 The Ranks of A and AT

The LPDU decomposition turns out to tell us something a little surprising
about the rank of a matrix and the rank of its transpose. Recall that the
rank of A is the number of nonzero rows in Ared and is well defined, since the
reduced form of A is unique. We shall now apply the LPDU decomposition
to find another description of the rank.

Suppose A ∈ F
m×n. We may as well assume the A is square (i.e., m = n),

since otherwise, we may add either rows or columns of zeros to make A square
without having any effect on its rank. Thus assume that A ∈ F

n×n. First of
all, we make the following assertion.

Proposition 4.20. If we write A = LPDU , the rank of A is the number of
nonzero rows in the partial permutation matrix P . Put another way, the rank
of A is the number of ones in P .

Proof. In fact, the proof of Theorem 4.15 shows that when we put A in LPDU
form, the nonzero entries of PD are the pivots of A, and they become the
corner entries of Ared after row permutations. �

We will now prove a nice fact.

Theorem 4.21. For every matrix A over a field F, A and AT have the same
rank.

Proof. As usual, we may assume that A is n × n. Writing A = LPDU , we
see that AT = UTDPTLT . This is almost the LPDU decomposition of AT .
All we need to do is notice that there exists another nonsingular diagonal
matrix D′ such that DPT = PTD′. But P and PT obviously have the same
number of ones, so A and AT have the same rank. �

This result is indeed a little surprising, because without knowledge of
LPDU , there isn’t any obvious reason that A and AT are related in this way.
In fact, we needed to do quite a bit of work to obtain LPDU . In particular, we
first needed to prove the uniqueness of Ared to define rank, then we needed
to show the existence of the LPDU decomposition, and finally, we had to
establish the uniqueness of the partial permutation matrix P . Recall that
the rank of a matrix tells us the number k of basic null vectors of a linear
system Ax = 0. Namely, if A ∈ F

m×n, then k = n − rank(A).
The result on the rank of AT gives a simple proof of a well-known result

in the theory of matrices.

Corollary 4.22. Suppose A ∈ F
m×n and assume that M ∈ F

m×m and N ∈
F
n×n are both nonsingular. Then the rank of MAN equals the rank of A.
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Proof. First, notice that A and MA have the same rank. Indeed, since M is
nonsingular, it is a product of elementary matrices, so A and MA have the
same reduced forms. Thus A, MA, and ATMT have the same rank. Simi-
larly, ATMT and NTATMT have the same rank, since NT is nonsingular.
Therefore A and MAN also have the same rank. �

Exercises

Exercise 4.3.1. Find the LPDU decompositions and ranks of the following
matrices over Q:

⎛
⎝0 1 1

2 0 1
1 1 0

⎞
⎠ ,

⎛
⎝0 0 3

0 2 1
1 1 1

⎞
⎠ ,

⎛
⎝1 0 1

0 2 − 1
1 − 1 0

⎞
⎠ .

Exercise 4.3.2. Find the LPDU decompositions and ranks of the trans-
poses of the matrices in Exercise 4.3.1.

Exercise 4.3.3. Suppose A = LPDU . What can you say about the LPDU
decomposition of A−1 if it exists? What about (A−1)T ?

Exercise 4.3.4. Let

A =

⎛
⎝1 a b

0 1 c
0 0 1

⎞
⎠ .

Find a formula expressing A as a product of upper triangular transvections
(i.e., elementary matrices of type III).

Exercise 4.3.5. Find a general formula for the inverse of the general 4 × 4
upper triangular unipotent matrix

U =

⎛
⎜⎜⎝

1 a b c
0 1 d e
0 0 1 f
0 0 0 1

⎞
⎟⎟⎠ .

Exercise 4.3.6. Show directly that an invertible upper triangular matrix B
can be expressed as B = DU , where D is a diagonal matrix with nonzero
diagonal entries and U is an upper triangular matrix all of whose diagonal
entries are ones. Is this still true if B is singular?

Exercise 4.3.7. Find the LDU decomposition of the matrix

A =

⎛
⎝1 1 1

1 − 1 0
2 0 0

⎞
⎠ .
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Exercise 4.3.8. Let F = F3. Find the LPDU decomposition of

⎛
⎜⎜⎝

0 1 2 1
1 1 0 2
2 0 0 1
1 2 1 0

⎞
⎟⎟⎠ .

Exercise 4.3.9. Find a 3 × 3 matrix A such that the matrix L in the A =
LPDU decomposition isn’t unique.

Exercise 4.3.10. Assume that A ∈ R
n×n is symmetric and has an LDU

decomposition. Show that if all the diagonal entries of D are nonnegative,
then A can be written A = CCT , where C is lower triangular. This expression
is called the Cholesky decomposition of A.

Exercise 4.3.11. Find the number of 2 × 2 matrices over F2 having rank 2,
and do the same for 3 × 3 matrices of rank 3.

Exercise 4.3.12. Suppose p is prime. Find a formula for |GL(2,Fp)|. (We
will find a formula for |GL(n,Fp)| for every n in Chap. 6.)

Exercise 4.3.13. Find the rank of each of the following matrices:

⎛
⎝1 2 3

1 4 9
1 8 27

⎞
⎠ ,

⎛
⎝1 2 2

1 4 4
1 8 8

⎞
⎠ .

Can you see a general result?

Exercise 4.3.14. Write each of the matrices
⎛
⎜⎜⎝

1 1 2 1
1 − 1 0 2
2 0 0 1
1 2 1 − 1

⎞
⎟⎟⎠ and

⎛
⎜⎜⎝

0 0 0 1
0 0 2 2
0 2 4 4
1 2 4 − 3

⎞
⎟⎟⎠

in the form LPDU , where U = LT .

Exercise 4.3.15. This is an exercise in matrix multiplication. Let A ∈ F
n×n

be expressed as A = LBU , where L and U are lower and upper triangular
elements of F

n×n respectively and B ∈ F
n×n is arbitrary. Show that Ak =

LkBkUk for each k = 1, . . . , n. (Recall that Ak is the k × k matrix in the
upper left-hand corner of A.)

Exercise 4.3.16. Prove the following result.

http://dx.doi.org/10.1007/978-0-387-79428-0_6
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Proposition 4.23. Let A be a symmetric invertible matrix. Then there
exists an expression A = LPDU with L,P,D,U as usual such that :

(i) U = LT ,

(ii) P = PT = P−1, and

(iii) PD = DP .
Conversely, if L,P,D,U satisfy the above three conditions, then LPDU is
symmetric.

Exercise 4.3.17. Suppose p is prime. Find a formula for

|{A ∈ GL(n,Fp) | A = LDU}|.



Chapter 5
An Introduction to the Theory
of Determinants

In this chapter, we will introduce and study a remarkable function called
the determinant, which assigns to an n × n matrix A over a field F a scalar
det(A) ∈ F having two remarkable properties: det(A) �= 0 if and only if A
is invertible, and if B is also in F

n×n, then det(AB) = det(A) det(B). The
latter property is referred to as the product formula. From a group-theoretic
standpoint, the determinant is a group homomorphism det : GL(n,F) → F

∗.
In particular, det(In) = 1. A further remarkable property of the determinant
is that det(AT ) = det(A). This implies, for example, that if A is orthogonal,
that is, ATA = In, then det(A)2 = 1. Thus the determinant of an orthogo-
nal matrix A satisfies det(A) = ±1. As can be imagined, the definition of a
function of n2 variables having all the properties claimed above is nontrivial.
We will define det(A) via the classical formula attributed to Leibniz in 1683.
This is not intended to imply that the notion of the determinant of a matrix
preceded the notion of a matrix, since in fact, Leibniz’s definition was applied
to the coefficients of a linear system. If A ∈ F

n×n, the determinant of A is
defined to be

det(A) =
∑

π∈S(n)

sgn(π) aπ(1)1aπ(2)2 · · · aπ(n)n.

For example, det
(

a b
c d

)
= ad − bc. Note that since there is a term for every

element π of the symmetric group S(n), the determinant of A contains n!
terms. The symbol sgn(π), which is known as the signature of π, is either 1
or −1, depending on whether π is an even or odd permutation. (One defini-
tion is that π is even (respectively odd) if it can be expressed as a product
of an even number (respectively odd number) of transpositions. However, it
isn’t clear that permutations cannot be expressed both ways.) Thus, sgn(π)
must be defined precisely. In fact, we will prove that the signature is a homo-
morphism from the group S(n) to the multiplicative cyclic group {± 1} such
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that sgn(τ) = −1 if τ is a transposition. This justifies the ad hoc definition
we gave above.

Of course, properties such as the product formula were not proved until
the introduction of matrices. The determinant function has proved to be such
a rich topic of research that between 1890 and 1929, Thomas Muir published
a five-volume treatise on it entitled The History of the Determinant. We will
discuss Charles Dodgson’s fascinating formula generalizing the formula for a
2 × 2 determinant. Interest in Dodgson’s formula has recently been revived,
and it is now known as Dodgson condensation. The reader will undoubtedly
recall that Charles Dodgson wrote Alice in Wonderland under the pen name
Lewis Carroll.

Before diving into the signature and the proofs of the properties of the
determinant mentioned above, we will state the main theorem (Theorem 5.1)
on determinants, which lists its important properties. Then we will derive an
efficient method for computing a determinant. A reader who wants to know
only how to compute a determinant can skip the technical details of its defin-
ition. After those remarks, we will introduce the signature of a permutation,
and finally, we will prove the main theorem.

Some further basic properties of the determinant such as the Laplace
expansion and Cramer’s rule are derived in the appendix. The Laplace expan-
sion is frequently used to define the determinant by induction. This approach
has the drawback that one is required to show that the Laplace expansions
along any two rows or columns give the same result (which is true, but messy
to prove). The appendix also contains a proof of Cramer’s rule and a char-
acterization of matrices with integer entries whose inverses have only integer
entries.

5.1 An Introduction to the Determinant Function

This section is an exposition on the determinant function, stating its proper-
ties and describing how the determinant is calculated. It is intended for the
reader who needs to know only the basic facts about the determinant. For
such readers, we recommend also perusing Section 5.3.1 for further compu-
tational techniques.

5.1.1 The main theorem

We will assume that all matrices are defined over the same arbitrary field
F. The essential properties of the determinant function are captured in the
following theorem.
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Theorem 5.1. There exists a unique function det : Fn×n → F, called the
determinant, with the following properties.

(i) (The product formula) For all A, B ∈ F
n×n,

det(AB) = det(A) det(B). (5.1)

(ii) If A = (aij) is either upper or lower triangular, then

det(A) =
n∏

i=1

aii. (5.2)

(iii) If E is a row swap matrix, then

det(E) = −1. (5.3)

(iv) A is nonsingular if and only if det(A) �= 0.

One can deduce (iv) directly from (i), (ii), and (iii) (Exercise 5.1.2).

Example 5.1. Since A ∈ F
n×n is nonsingular if and only if det(A) �= 0 and

det(AB) = det(A) det(B), it follows that det defines a group homomorphism
det : GL(n,F) → F

∗. The kernel of this homomorphism, which is by definition
{A ∈ F

n×n | det(A) = 1}, is an important normal subgroup of the matrix
group GL(n,F) called the special linear group. The special linear group is
denoted by SL(n,F). For example,

SL(2,C) = {
(

a b
c d

)
∈ C

2×2 | ad − bc = 1}.

�

Parts (ii) and (iii) tell us the values of det(E) for all elementary matrices.
If E is obtained by multiplying the ith row of In by r, then det(E) = r, and
if E is obtained from In by adding a multiple of its jth row to its ith row,
then det(E) = 1. The method for computing det(A) is thus to row reduce A,
making use of the identity det(EA) = det(E) det(A).

5.1.2 The computation of a determinant

We will assume that the determinant function exists and has the properties
listed in Theorem 5.1. Let us now see how to compute it. The 1 × 1 case is
easy. If A = (a), then det(A) = a. In the 2 × 2 case, the formula is given by
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det
(

a b
c d

)
= ad − bc, (5.4)

which can be proved by applying Theorem 5.1 (see Exercise 5.1.3). Notice
that this formula says that if A is 2 × 2, then det(A) = 0 if and only if its
rows are proportional.

The most efficient general technique for computing det(A) is to use
row operations. Given A ∈ F

n×n, one can always find elementary matrices
E1, . . . , Ek such that Ek · · · E1A is an upper triangular matrix, say U .
Repeated application of Theorem 5.1 then gives

det(U) = det(E1) · · · det(Ek) det(A).

Since det(U) = u11u22 · · ·unn, where the uii are the diagonal entries of U ,

det(A) =
u11u22 · · · unn

det(E1) · · · det(Ek)
, (5.5)

which can be evaluated by applying Theorem 5.1.

Example 5.2. Let us compute det(A), where

A =

⎛

⎜⎜⎝

1 0 1 1
0 1 0 1
1 1 1 1
1 1 0 1

⎞

⎟⎟⎠ ,

taking the field of coefficients to be Q. We can make the following sequence
of row operations, all of type III except for the last, which is a row swap.

A →

⎛

⎜⎜⎝

1 0 1 1
0 1 0 1
0 1 0 0
1 1 0 1

⎞

⎟⎟⎠ →

⎛

⎜⎜⎝

1 0 1 1
0 1 0 1
0 1 0 0
0 1 −1 0

⎞

⎟⎟⎠ →

⎛

⎜⎜⎝

1 0 1 1
0 1 0 1
0 0 0 −1
0 1 −1 0

⎞

⎟⎟⎠ →

⎛

⎜⎜⎝

1 0 1 1
0 1 0 1
0 0 0 −1
0 0 −1 0

⎞

⎟⎟⎠ →

⎛

⎜⎜⎝

1 0 1 1
0 1 0 1
0 0 −1 0
0 0 0 −1

⎞

⎟⎟⎠ .

Thus (5.5) implies det(A) = −1.
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One curiosity is that if the field F has characteristic 2, then row swaps
have determinant 1. Let us rework the previous example with F = F2 with
this in mind.

Example 5.3. First add the first row to the third and fourth rows succes-
sively. Then we get

det(A) = det

⎛

⎜⎜⎝

1 0 1 1
0 1 0 1
0 1 0 0
0 1 1 0

⎞

⎟⎟⎠ .

Since the field is F2, row swaps also leave det(A) unchanged. Thus

det(A) = det

⎛

⎜⎜⎝

1 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0

⎞

⎟⎟⎠ .

Adding the second row to the third row and the fourth row successively, we
get

det(A) = det

⎛

⎜⎜⎝

1 0 1 1
0 1 0 0
0 0 0 1
0 0 1 0

⎞

⎟⎟⎠ .

Finally, switching the last two rows, we get

det(A) = det

⎛

⎜⎜⎝

1 0 1 1
0 1 0 0
0 0 1 0
0 0 0 1

⎞

⎟⎟⎠ = 1.

�
Exercises

Exercise 5.1.1. Assuming Theorem 5.1, show that if A ∈ F
n×n has two

equal rows and the characteristic of F is not two, then det(A) = 0.

Exercise 5.1.2. Show that (iv) of Theorem 5.1 is a consequence of (i), (ii),
and (iii).

Exercise 5.1.3. The purpose of this exercise is to prove the identity (5.4).
Define a function F : F2×2 → F by

F

(
a b
c d

)
= ad − bc.
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Show that F satisfies the conditions in Theorem 5.1, and conclude that
F (A) = det(A).

Exercise 5.1.4. Let A =
(

a b
c d

)
. Without appealing to Theorem 5.1, show

the following:

(i) det(A) = 0 if and only if the rows of A are proportional. Conclude that
A has rank 2 if and only if ad − bc �= 0.

(ii) A is invertible if and only if det(A) �= 0. In that case,

A−1 =
1

det(A)

(
d −b

−c a

)
.

Exercise 5.1.5. Use Theorem 5.1 to prove that if B and C are square matri-
ces over F, then

det
(

B ∗
O C

)
= det(B) det(C).

Exercise 5.1.6. Compute

det

⎛

⎜⎜⎝

1 1 −1 0
2 1 1 1
0 −1 2 0
1 1 −1 1

⎞

⎟⎟⎠

in two cases: first when the field is Q and second, when the field is F3.

Exercise 5.1.7. Express

A =

⎛

⎝
1 2 −1
2 1 1
0 −1 2

⎞

⎠

in the form A = LPDU , and use your result to compute det(A) in the fol-
lowing cases:

(a) F = Q;

(b) F = F2; and

(c) F = F3.

Exercise 5.1.8. Show that the image of det : Fn×n → F
∗ is, in fact, all of

F
∗.
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5.2 The Definition of the Determinant

Before formally defining the determinant function, we have to define the sig-
nature sgn(σ) of a permutation σ ∈ S(n). As already mentioned, the signature
is a homomorphism from S(n) to the multiplicative group {+1,−1}.

5.2.1 The signature of a permutation

Recall the isomorphism ϕ : S(n) → P (n) defined by ϕ(σ) = Pσ, where Pσ is
the permutation matrix whose ith column is eσ(i). The signature sgn(σ) of
the permutation σ ∈ S(n) will tell us whether one requires an even or odd
number of row swaps Si to write Pσ = S1 · · · Sk. Correspondingly, we will call
π even or odd.

Definition 5.1. Suppose σ ∈ S(n). If n > 1, define the signature sgn(σ) of
σ to be

sgn(σ) =
∏

i<j

σ(i) − σ(j)
i − j

. (5.6)

If n = 1, put sgn(σ) = 1.

Clearly, sgn(σ) is a nonzero rational number. There is at least one example
in which the value of sgn(σ) is clear.

Example 5.4. The identity permutation idn ∈ S(n) has signature
sgn(idn) = 1. �

As usual, we will denote idn by 1. We now establish the properties of sgn.
We first show that sgn(σ) ∈ {±1}.

Proposition 5.2. For every σ ∈ S(n), sgn(σ) = ±1.

Proof. The case n = 1 is clear, so suppose n > 1. Since σ is a bijection of
{1, 2, . . . , n} and

σ(i) − σ(j)
i − j

=
σ(j) − σ(j)

j − i
,

it follows that

(sgn(σ))2 =
∏

i�=j

σ(i) − σ(j)
i − j

.

Moreover, since
σ(σ−1(i)) − σ(σ−1(j)) = i − j,

each possible value of (i − j) occurs the same number of times in the numer-
ator and denominator. Hence sgn(σ)2 = 1, so the proof is done. �
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Let N(σ) = {(i, j) | i < j, σ(i) > σ(j)}, and put n(σ) = |N(σ)|. By the
definition of sgn(σ) and Proposition 5.2,

sgn(σ) = (−1)n(σ).

Here is an an example.

Example 5.5. Recall that σij ∈ S(n) denotes the transposition that switches
i and j while leaving all other k, 1 ≤ k ≤ n, unchanged. Let us compute
sgn(σ12). Now σ12 interchanges 1 and 2 and leaves every k between 3 and
n unchanged. Thus, (1, 2) is the only pair (i, j) such that i < j for which
σ12(i) > σ12(j). Hence n(σ12) = 1, so sgn(σ12) = −1. �

We now establish the main properties of the signature.

Proposition 5.3. The signature mapping sgn : S(n) → {±1} has the follow-
ing properties:

(i) sgn is a group homomorphism; that is, for all σ, τ ∈ S(n),

sgn(τσ) = sgn(τ)sgn(σ);

(ii) if σ is any transposition, then sgn(σ) = −1; and

(iii) for all σ ∈ S(n), sgn(σ−1) = sgn(σ).

Proof. To prove (i), it will suffice to show that n(τσ) = n(τ) + n(σ) for an
arbitrary pair τ , σ ∈ S(n). Suppose i < j and write

τ(σ(i)) − τ(σ(j))
i − j

=
τ(σ(i)) − τ(σ(j))

σ(i) − σ(j)
· σ(i) − σ(j)

i − j
.

The left-hand side is negative if and only if
τ(σ(i)) − τ(σ(j))

σ(i) − σ(j)
and

σ(i) − σ(j)
i − j

have different signs. Thus, (i, j) ∈ N(τσ) if and only if (i, j) ∈ N(σ) or
(σ(i), σ(j)) ∈ N(τ). Since there is no pair (i, j) ∈ N(τσ) such that (i, j) ∈
N(σ) and (σ(i), σ(j)) ∈ N(τ), it follows that n(τσ) = n(τ) + n(σ). This com-
pletes the proof of (i). For (ii), we can use the result of Example 5.5. Let
σab denote the transposition interchanging a �= b. As an exercise, the reader
should check that

σab = σ1bσ2aσ12σ2aσ1b. (5.7)

Hence, by (i) and the result that sgn(σ12) = −1 (by Example 5.5),

sgn(σab) = sgn(σ1b)sgn(σ2a)sgn(σ12)sgn(σ2a)sgn(σ1b) = sgn(σ12) = −1.
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This gives (ii). For (iii), just note that for every σ ∈ S(n), we have σ−1σ = 1,
and apply (i) and the fact that sgn(idn) = 1. �

A permutation σ is said to be even if sgn(σ) = 1 and odd otherwise. In
particular, all transpositions are odd. Let A(n) denote the kernel of sgn. Then
A(n) consists of the even permutations, and since the kernel of a homomor-
phism is a normal subgroup, we see that A(n) is normal in S(n). The subgroup
A(n) is called the alternating group. It is a well-known classical result that
if n > 4, then A(n) has no nontrivial normal subgroups.

5.2.2 The determinant via Leibniz’s Formula

We now have everything needed to give the Leibniz definition of det(A).

Definition 5.2. Let A ∈ F
n×n. Then the determinant of A, det(A), is the

scalar defined by the identity

det(A) :=
∑

π∈S(n)

sgn(π) aπ(1)1aπ(2)2 · · · aπ(n)n. (5.8)

The above sum contains n! terms, so one is hardly ever going to use the
definition to compute a determinant except when n is small. The cases n = 1,
2, and 3 can be worked out, but even n = 4 is too difficult to do by hand
without row operations. Fortunately, one seldom needs to actually compute
det(A).

Example 5.6. (1 × 1 and 2 × 2 determinants). If A = (a) is of size 1 × 1,
then since S(1) = {id1} and sgn(id1) = 1, it follows that det(A) = a. Now
suppose A = (aij) is 2 × 2. There are exactly two elements in S(2), namely
the identity id2 and the transposition σ12. Denoting id2 by σ and σ12 by τ ,
we have, by definition,

det
(

a11 a12

a21 a22

)
= sgn(σ)aσ(1)1aσ(2)2 + sgn(τ)aτ(1)1aτ(2)2

= a11a22 − a21a12.

The properties of Theorem 5.1 are easy to check in these two cases. �

Example 5.7. (3 × 3 determinants). For the 3 × 3 case, let us first list the
elements σ ∈ S(3) and their signatures. We will use the triple [σ(1), σ(2), σ(3)]
to represent each σ ∈ S(3). Then the signatures for S(3) are given in the
following table:

σ [1, 2, 3] [1, 3, 2] [2, 3, 1] [2, 1, 3] [3, 1, 2] [3, 2, 1]
sgn(σ) 1 −1 +1 −1 +1 −1 .
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Hence,

det(A) = a11a22a33 − a11a32a23 + a21a32a13

−a21a12a33 + a31a12a23 − a31a22a13.

Rewriting this as

det(A) = a11a22a33 + a21a32a13 + a31a12a23 +
−a11a32a23 − a21a12a33 − a31a22a13,

one sees that det(A) is the sum of the products of three entries, either two
or three of which are on a diagonal of A parallel to its main diagonal, less
the sum of the products of three entries, either two or three of which are on
a diagonal of A parallel to its antidiagonal, that is, the diagonal from the
northeast corner of A to its southwest corner. This is a standard expression
for a 3 × 3 determinant known as the rule of Sarrus. Warning: the rule of
Sarrus does not generalize to the 4 × 4 case. �

5.2.3 Consequences of the definition

Several parts of Theorem 5.1 follow directly from the definition. Let us first
prove part (ii).

Proposition 5.4. Suppose A is of size n × n and either upper or lower tri-
angular. Then

det(A) = a11a22 · · · ann.

Proof. We will suppose that A is upper triangular and leave the lower tri-
angular case as an exercise (not a very hard one at that). The point is that
in this case, the only nonzero term in (5.2) is a11a22 · · · ann, which corre-
sponds to the identity permutation. For if σ ∈ S(n) is different from idn,
then σ(i) > i for some i; hence aσ(i)i = 0, since A is upper triangular. Thus,
sgn(σ)aσ(1)1aσ(2)2 · · · aσ(n)n = 0. �

Suppose now that P ∈ F
n×n is a permutation matrix. In this case, det(P )

has a very pretty interpretation.

Proposition 5.5. Assume that P ∈ F
n×n is a permutation matrix, say P =

Pμ. Then det(P ) = sgn(μ).

Proof. Recall that Pμ =
(
eμ(1) eμ(2) · · · eμ(n)

)
. Writing P = (pij), we have

pμ(i)i = 1 for all i, while all other prs are equal to 0. Therefore, the only
nonzero term in the expression for det(P ) is
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sgn(μ)pμ(1)1pμ(2)2 · · · pμ(n)n = sgn(μ).

�

The following result about the determinant of the transpose is going to be
used in several places in the rest of this section.

Proposition 5.6. For every A ∈ F
n×n,

det(AT ) = det(A).

Proof. Since AT = (bij), where bij = aji, formula (5.2) implies

det(AT ) :=
∑

σ∈S(n)

sgn(σ) a1σ(1)a2σ(2) · · · anσ(n). (5.9)

Now if σ(i) = j, then σ−1(j) = i, so aiσ(i) = aσ−1(j)j . Thus,

sgn(σ) a1σ(1)a2σ(2) · · · anσ(n) = sgn(σ) aσ−1(1)1aσ−1(2)2 · · · aσ−1(n)n

= sgn(σ−1) aσ−1(1)1aσ−1(2)2 · · · aσ−1(n)n,

since by Proposition 5.3, sgn(σ−1) = sgn(σ). But the correspondence σ →
σ−1 is a bijection of S(n), so we can conclude that

∑

σ∈S(n)

sgn(σ) a1σ(1)a2σ(2) · · · anσ(n) =
∑

τ∈S(n)

sgn(τ) aτ(1)1)aτ(2)2 · · · aτ(n)n.

Thus det(AT ) = det(A). �

5.2.4 The effect of row operations on the
determinant

In order to prove the product formula det(AB) = det(A) det(B) for all
A,B ∈ F

n×n, we will demonstrate how a row operation changes the determi-
nant. In fact, we will show that for every elementary matrix E, det(EA) =
det(E) det(A). Since det(A) = det(AT ), it follows that the product formula
holds for AB if either A or B is a product of elementary matrices. First we
prove the following result.

Proposition 5.7. Suppose that E ∈ F
n×n is the elementary matrix obtained

from In by multiplying the ith row of In by r ∈ F. Then for every A ∈ F
n×n,

det(EA) = r det(A) = det(E) det(A).
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Proof. Certainly det(E) = r, while det(EA) = r det(A), since every term in
the expansion of det(A) is multiplied by r. �

We next prove a result for swap matrices.

Proposition 5.8. Suppose A ∈ F
n×n and S ∈ F

n×n is a row swap matrix.
Then

det(SA) = − det(A) = det(S) det(A).

Proof. Suppose S is a row swap matrix. Put SA = B = (bij) and let τ
denote the transposition such that S = Pτ . Then bij = aτ(i)j . We will com-
pute det(B) using the result that det(B) = det(BT ). First of all, for every
σ ∈ S(n),

b1σ(1)b2σ(2) · · · bnσ(n) = aτ(1)σ(1)aτ(2)σ(2) · · · aτ(n)σ(n)

= aτ(1)μτ(1)aτ(2)μτ(2) · · · aτ(n)μτ(n)

= a1μ(1)a2μ(2) · · · anμ(n),

where μ = στ . Thus,

det(B) =
∑

σ∈S(n)

sgn(σ)b1σ(1)b2σ(2) · · · bnσ(n)

=
∑

σ∈S(n)

sgn(σ)a1μ(1)a2μ(2) · · · anμ(n)

= −
∑

μ∈S(n)

sgn(μ)a1μ(1)a2μ(2) · · · anμ(n)

= −det(A).

The third equality uses two facts; first, if μ = στ , then sgn(μ) = −sgn(σ),
and second, if σ varies through all of S(n), then so does μ = στ . Thus,
det(SA) = − det(A). To finish the proof, we need to show that det(S) = −1.
But det(S) = det(SIn) = −det(In) = −1, since det(In) = 1. Alternatively,
since S = Pτ , it follows that det(S) = sgn(τ) = −1 by Proposition 5.5. �

The next step is to show that det(EA) = det(A) if E is a transvection, that
is, an elementary matrix of type III. Suppose A ∈ F

n×n and let a1, . . . ,an
denote its rows. Let E be of type III, say E is obtained from In by replacing
the ith row of In by itself plus r times the jth row. Then the ith row of EA
is ai + raj , and the other rows are unchanged. Hence by (5.9), each term in
the expansion of det(EA) has the form

sgn(σ)a1σ(1) . . . a(i−1)σ(i−1)(aiσ(i) + rajσ(i))ai+1σ(i+1 . . . anσ(n).

Thus, det(EA) is of the form det(A) + r det(C), where C ∈ F
n×n has the

property that its ith and jth rows both coincide with aj . If we apply the
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fact that det(SB) = −det(B) whenever S is a row swap matrix, then we see
that if S swaps the ith and jth rows, we get C = SC, so det(C) = det(SC) =
−det(C). Thus 2 det(C) = 0. It follows that det(C) = 0 as long as the char-
acteristic of the field F is different from two. The formula det(C) = 0 when F

has characteristic two and two rows of C coincide requires a special argument,
which is given in the appendix to this chapter. �

The following proposition summarizes what was proved in this section
modulo showing that det(C) = 0 in characteristic two if C has two equal
rows.

Proposition 5.9. If E ∈ F
n×n is any elementary matrix, then det(EA) =

det(E) det(A) for all A ∈ F
n×n. Moreover, det(E) = r if E multiplies the ith

row of In by r, det(E) = −1 if E is a row swap, and det(E) = 1 if E is a
transvection.

5.2.5 The proof of the main theorem

We are now ready to complete the proof of the main theorem. Parts (ii) and
(iii) of the main theorem have already been verified. Let A ∈ F

n×n, and let
us first show that det(A) �= 0 if and only if A is nonsingular. There exist
elementary matrices E1, . . . , Ek such that Ek · · · E1A = Ared, so

det(A) =
det(Ared)∏
i det(Ei)

.

Hence det(A) �= 0 if and only if det(Ared) �= 0. But since Ared is upper trian-
gular, det(Ared) �= 0 if and only if Ared = In if and only if A is nonsingular.
It remains to prove the product formula. If A and B are both nonsingular,
then the validity of the product formula is clear, for both A and B and hence
AB are products of elementary matrices. On the other hand, if either A or
B is singular, I claim that AB is singular. If not, then (AB)−1A is a left
inverse of B, so B is nonsingular. Similarly, B(AB)−1 is a right inverse of
A, so A is also nonsingular. Hence, if det(A) det(B) = 0, then det(AB) = 0.
This finishes the proof of the product formula. �

5.2.6 Determinants and LPDU

Recall from Chap. 4 that every A ∈ F
n×n can be written A = LPDU , where

L and U are respectively lower and upper triangular unipotent matrices, P is
a unique partial permutation matrix, and D is an invertible diagonal matrix.

http://dx.doi.org/10.1007/978-0-387-79428-0_4
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Clearly, det(A) = 0 unless P is a full permutation matrix. Furthermore, we
have the following proposition.

Proposition 5.10. If A = LPDU is nonsingular, then

det(A) = det(P ) det(D) = ±det(D).

Thus, up to sign, the determinant of an invertible matrix is the product of its
pivots. If A = LDU , then det(A) = det(D).

Proof. Just use the product rule and the fact that det(L) = det(U) = 1, since
L and U are triangular and have ones on their diagonals. �

Recall from Proposition 4.17 that an invertible A ∈ F
n×n has an LDU

decomposition if and only if each Ak is also invertible, where Ak is the k × k
submatrix in the upper left-hand corner of A, and that the pivots of A are the
diagonal entries of D. Let d1, . . . , dn be these pivots. Then Ak = LkDkUk, so

det(Ak) = det(Dk) = d1 · · · dk.

This gives us the following result.

Proposition 5.11. If A ∈ F
n×n satisfies the condition that each Ak, 1 ≤

k ≤ n, is invertible, then A has an LDU decomposition, and the kth pivot of
A in its LDU decomposition is

dk =
det(Ak)

det(Ak−1)
. (5.10)

5.2.7 A beautiful formula: Lewis Carroll’s identity

The theory of determinants is a remarkably rich topic, and we have barely
scratched its surface. Many of the foremost mathematicians of the nine-
teenth century, among them Gauss, Laplace, Lagrange, Cayley, Sylvester,
and Jacobi, discovered some of its important properties and applications. An
example is the Jacobian of a mapping and the change of variables formula. In
this section, we will consider a determinantal curiosity from the nineteenth
century that has recently been found to have connections to contemporary

mathematics. The formula det
(

a b
c d

)
= ad − bc turns out to have a gener-

alization to n × n matrices that was discovered by Charles Dodgson, a profes-
sor of mathematics at Oxford who, as is well known, wrote Alice’s Adventures
in Wonderland and Through the Looking Glass under the pseudonym Lewis
Carroll. Dodgson found an identity involving the determinant of an n × n
matrix A that is analogous to the formula in the 2 × 2 case. Let AC be the

http://dx.doi.org/10.1007/978-0-387-79428-0_4
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(n − 2) × (n − 2) submatrix of A obtained by deleting the first and last rows
and the first and last columns. If n = 2, put det(AC) = 1. Also, let ANW

denote the (n − 1) × (n − 1) submatrix in the upper left-hand corner of A,
and define ANE , ASW , and ASE to be the (n − 1) × (n − 1) submatrices in
the other three corners of A. Dodgson’s formula asserts that

det(AC) det(A) = det(ANW ) det(ASE) − det(ANE) det(ASW ) (5.11)

(see C.L. Dodgson, Proc. Royal Soc. London 17, 555–560 (1860)). If det(AC) �=
0, this substantially cuts down on the difficulty of finding det(A). Of course,
if det(AC) = 0, then the identity says nothing about det(A), although it does
say something about the four determinants at the corners. This formula is
referred to as Dodgson condensation. Dodgson himself supplied the term con-
densation. In the 1980s, it was noticed that Dodgson condensation is related
to the problem of counting alternating sign matrices (ASMs). Eventually,
the problem of enumerating the ASMs was given an elegant solution using
statistical mechanics.
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Exercises

Exercise 5.2.1. Two matrices A,B ∈ F
n×n are said to be similar if A =

CBC−1 for some C ∈ GL(n,F). Show that similar matrices have the same
determinant.

Exercise 5.2.2. Suppose P is an n × n matrix over C such that PP = P .
What is det(P )? What is det(Q) if Q4 = Q−1?

Exercise 5.2.3. Which of the following statements are true. Give your rea-
soning or supply a counter example.

(i) The determinant of a real symmetric matrix is always nonnegative.

(ii) If A is a 2 × 3 real matrix, then det(AAT )Gal(E/Q)0.

(iii) If A is a square real matrix, then det(AAT )Gal(E/Q)0.

Exercise 5.2.4. An n × n matrix A over R is called skew-symmetric if
AT = −A. Show that if A is a skew-symmetric n × n matrix and n is odd,
then A cannot be invertible.

Exercise 5.2.5. Let H ∈ R
n×n be a Hadamard matrix. That is, suppose

HHT = nIn. Find det(H).

Exercise 5.2.6. Recall that SL(n,F) denotes the set of all A ∈ F
n×n such

that det(A) = 1. Prove that SL(n,F) is a matrix group and a proper normal
subgroup of GL(n,F) if the characteristic of F is different from 2.

Exercise 5.2.7. Find the 3 × 3 permutation matrices that lie in SL(3,R).

Exercise 5.2.8. Let SO(n,R) denote the set of all n × n orthogonal matri-
ces Q such that det(Q) = 1. Show that SO(n,R) is a matrix group and a
proper normal subgroup of O(n,R).

Exercise 5.2.9. If A ∈ C
m×n, define AH = A

T
, where A is the matrix

obtained by conjugating each entry of A. An n × n matrix U over C is called
unitary if U−1 = UH . What are the possible values of the determinant of
det(U) of a unitary matrix U?

Exercise 5.2.10. An n × n matrix K over C is called Hermitian if K =
KH . (See the previous exercise for the definition of KH .) Show that if K is
Hermitian, then det(K) is a real number.

Exercise 5.2.11. Determine whether

A =

⎛

⎜⎜⎝

1 0 2 1
0 1 0 1
1 1 1 1
1 1 0 1

⎞

⎟⎟⎠

has an LDU decomposition over both Q and F3. If it does in either case, find
its pivots.
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Exercise 5.2.12. Suppose A is a square matrix over F such that each row
sums to zero. Find det(A).

Exercise 5.2.13. Show that the condition in Proposition 7.27 that F (A) =
0 if two rows of A are equal is equivalent to the condition that F (SA) =
−F (A) if S is a row swap matrix.

Exercise 5.2.14. Find all values x ∈ R for which det(A(x)) = 0 when

A(x) =

⎛

⎝
1 x 2
x 1 x
2 3 1

⎞

⎠ .

Exercise 5.2.15. Repeat the previous exercise for the matrix

B(x) =

⎛

⎜⎜⎝

1 x 1 x
1 0 x 1
0 x 1 1
1 0 1 0

⎞

⎟⎟⎠ .

Exercise 5.2.16. Why does condition (ii) in Theorem 7.27 imply that the
determinant changes sign under a row swap?

Exercise 5.2.17. Recall that SL(n,F) = {A ∈ F
n×n such that det(A) = 1}.

Let SL(n,Z) denote Zn×n ∩ SL(n,Q). Show that SL(n,Z) is a matrix group.

Exercise 5.2.18. Show that if P ∈ Z
n×n is a row swap, then GL(n,Z) =

SL(n,Z) ∪ PSL(n,Z).

http://dx.doi.org/10.1007/978-0-387-79428-0_7
http://dx.doi.org/10.1007/978-0-387-79428-0_7


130 5 An Introduction to the Theory of Determinants

5.3 Appendix: Further Results on Determinants

The purpose of this appendix is to briefly introduce the Laplace expansion
of a determinant and explain Cramer’s rule.

5.3.1 The Laplace expansion

In this section, we will obtain some further properties of the determinant,
beginning with the Laplace expansion, which is the classical way of calculating
an n × n determinant as a sum of (n − 1) × (n − 1) determinants. After the
Laplace expansion, we will state Cramer’s rule, which gives a closed form
for inverting a nonsingular matrix. The Laplace expansion also allows one to
show by induction that the determinant of a matrix with two equal rows is
zero.

Suppose A is of size n × n, and let Aij denote the (n − 1) × (n − 1) sub-
matrix obtained from A by deleting its ith row and jth column.

Theorem 5.12. For every A ∈ F
n×n, we have

det(A) =
n∑

i=1

(−1)i+jaij det(Aij). (5.12)

This is the Laplace expansion along the jth column. The corresponding
Laplace expansion along the ith row is

det(A) =
n∑

j=1

(−1)i+jaij det(Aij). (5.13)

Proof. Since det(A) = det(AT ), it suffices to prove (5.12). For simplicity, we
will assume j = 1, the other cases being similar. Now,

det(A) =
∑

σ∈S(n)

sgn(σ) aσ(1)1aσ(2)2 · · · aσ(n)n

= a11

∑

σ(1)=1

sgn(σ)aσ(2)2 · · · aσ(n)n +

a21

∑

σ(1)=2

sgn(σ)aσ(2)2 · · · aσ(n)n +

+ · · · + an1

∑

σ(1)=n

sgn(σ)aσ(2)2 · · · aσ(n)n.
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Suppose σ(1) = r. Let us evaluate

ar1

∑

σ(1)=r

sgn(σ)aσ(2)2 · · · aσ(n)n.

Let P ′
σ denote the element of F(n−1)×(n−1) obtained from Pσ by deleting the

first column and the rth row. Then P ′
σ ∈ P (n − 1), so P ′

σ = Pσ′ for a unique
σ′ ∈ S(n − 1). Note that det(Pσ) = (−1)(r−1) det(P ′

σ), since if bringing P ′
σ to

In−1 by row swaps uses t steps, one needs t + σ(1) − 1 row swaps to bring
Pσ to the identity. Thus,

∑

σ(1)=r

sgn(σ)aσ(2)2 · · · aσ(n)n =
∑

σ(1)=r

(−1)r−1sgn(σ′)aσ(2)2 · · · aσ(n)n

= (−1)r+1 det(Ar1).

Substituting this into the above calculation for r = 1, . . . , n gives the
result. �

Example 5.8. If A is of size 3 × 3, expanding det(A) along the first column
gives

det(A) = a11(a22a33 − a32a23) − a21(a12a23 − a13a32) + a31(a12a23 − a13a22).

This is the well-known formula for the triple product a1 · (a2 × a3) of the
rows of A.

Example 5.9. The Laplace expansion is useful for evaluating det(A) when
A has entries that are functions. In fact, this situation will arise when we
consider the characteristic polynomial of a square matrix A. Consider the
matrix

Cx =

⎛

⎝
1 − x 2 0

2 1 − x −1
0 −1 2 − x

⎞

⎠ .

Suppose we want to find all values of x ∈ C such that Cx has rank less that
3, i.e., Cx is singular. The obvious way to proceed is to solve the equation
det(Cx) = 0 for x. Clearly, row operations aren’t going to be of much help in
finding det(Cx), so we will use Laplace, as in the previous example. Expanding
along the first column gives

det(Cx) = (1 − x)
(
(1 − x)(2 − x) − (−1)(−1)

) − 2
(
2(2 − x) − 0(−1)

)

= −x3 + 4x − 7.

Hence Cx is singular at the three complex roots of x3 − 4x + 7 = 0.
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We can now finish the proof that det(C) = 0 when two rows of C are
identical. This will complete the proof of Theorem 5.1.

Proposition 5.13. Suppose C ∈ F
n×n has two equal rows. Then

det(C) = 0.

Proof. Suppose the ith and jth rows of C are equal and S is the matrix
that swaps these rows. Then SC = C, so det(SC) = det(C), while det(SC) =
−det(C), since det(S) = −1. Hence 2 det(C) = 0. Thus, as long as the char-
acteristic of F is different from 2, det(C) = 0. The hard case is that in which
the characteristic of F is 2. In this case, the signatures do not contribute to
the determinant, since 1 = −1 in F, so

det(C) =
∑

π∈S(n)

cπ(1)1cπ(2)2 · · · cπ(n)n. (5.14)

Let us now assume that the characteristic of F is two. By the usual for-
mula, det(A) = ad − bc for A ∈ F

2×2, it follows that if a = c and b = d, then
det(A) = ad − ad = 0. Hence we may assume as our induction hypothesis
that proposition holds for n ≥ 2. Let A ∈ F

(n+1)×(n+1) have two equal rows,
say the first two rows. Using the Laplace expansion for det(A) along the
first column, we get that a11 det(A11) = a21 det(A21), and the other terms
are zero, since the induction hypothesis implies det(B) = 0 if B ∈ F

n×n has
two equal rows. Consequently, det(A) = 2a11 det(A11) = 0. This finishes the
induction step, so the proposition is proved. �

Remark. As mentioned above, algebra texts often define the determinant
inductively via the Laplace expansion. This avoids the problem of introducing
the signature of a permutation. Leibniz was aware of the Laplace expansion,
for example, well before the time of Laplace (1749–1827). The drawback of
this approach is that in order for it to be of use, one needs to know that all
possible row and column expansions have the same value. The only way to
show that fact is to appeal to a formula such as the Leibniz formula, which
avoids using rows and columns. The Laplace expansion is useful as a compu-
tational tool for matrices with few nonzero entries or when row operations are
impractical, such as for a characteristic polynomial. But it would be useless
to attempt to use Laplace for calculating even a 5 × 5 determinant, which
could be done easily with row operations.

5.3.2 Cramer’s Rule

Cramer’s rule is a closed formula for the inverse of a square matrix with
nonzero determinant. Recall that if A is of size 2 × 2, then
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A−1 =
1

det(A)

(
a22 −a12

−a21 a11

)
.

Inspecting this formula may suggest the correct formula for A−1 in the general
case.

Definition 5.3. Suppose A ∈ F
n×n, and let Aij denote the (n − 1) ×

(n − 1) submatrix of A obtained by deleting A’s ith row and jth column.
Then the matrix

Adj(A) =
(
(−1)i+j det(Aji)

)
(5.15)

is called the adjoint of A.

Proposition 5.14. Suppose A ∈ F
n×n. Then Adj(A)A = det(A)In. Thus if

det(A) �= 0, then

A−1 =
1

det(A)
Adj(A).

Proof. The essential ideas are all contained in the 3 × 3 case, so for simplicity,
we will let n = 3. By definition,

Adj(A) =

⎛

⎝
det(A11) −det(A21) det(A31)

−det(A12) det(A22) −det(A23)
det(A13) −det(A23) det(A33)

⎞

⎠ .

Put

C =

⎛

⎝
det(A11) −det(A21) det(A31)

−det(A12) det(A22) −det(A23)
det(A13) −det(A23) det(A33)

⎞

⎠

⎛

⎝
a11 a12 a13

a21 a22 a23

a31 a32 a33

⎞

⎠ .

We have to show that C = det(A)In. But it follows immediately from Theo-
rem 5.12 that each diagonal entry of C is det(A). On the other hand, consider
one of C’s off-diagonal entries, say c21. Expanding the above product gives

c21 = −a11 det(A12) + a21 det(A22) − a31 det(A32).

But this is exactly the Laplace expansion along the first column for the
determinant of the matrix

−
⎛

⎝
a11 a11 a13

a21 a21 a23

a31 a31 a33

⎞

⎠ .

The determinant of this matrix is 0, since it has equal columns, so c21 = 0.
Similarly, all cij with i �= j vanish, so C = det(A)I3. �



134 5 An Introduction to the Theory of Determinants

5.3.3 The inverse of a matrix over Z

In most of our examples of inverting a matrix A, the entries of A are integers.
But experience tells us that usually, at some time during the row operations,
denominators appear. In fact, Cramer’s rule, Proposition 5.14, tells us that
when det(A) = ±1, then A−1 also has integral entries. The question whether
this is the whole story will now be answered.

Proposition 5.15. Suppose A is an invertible matrix with integral entries.
Then A−1 has integral entries if and only if det(A) = ±1.

Proof. The if statement follows from Cramer’s rule. Conversely, suppose A−1

is integral. Then det(A) and det(A−1) both are integers. But

det(AA−1) = det(A) det(A−1) = det(In) = 1,

so the only possibility is that det(A) = det(A−1) = ±1. �

A somewhat deeper fact is the following result.

Proposition 5.16. An n × n matrix over Z is invertible over Z if and only
if it can be expressed as a product of elementary matrices all of which are
defined over Z.

We will skip the proof. Of course, row swap matrices are always integral.
The restriction of sticking to elementary matrices over Z means that one can
multiply a row only by ±1 and replace it by itself plus an integral multiple
of another row. Let GL(n,Z) = {A ∈ Z

n×n | det(A) = ±1} and SL(n,Z) =
GL(n,Z) ∩ SL(n,R). The latter groups, especially SL(2,Z), are examples of
modular groups and are very important in number theory, topology, and
complex analysis, to name a few areas where they are used.

Proposition 5.17. GL(n,Z) and SL(n,Z) are matrix groups.



Chapter 6
Vector Spaces

A vector space is a set V whose elements, called vectors, can be added and
subtracted: in fact, a vector space is an abelian group under addition. A
vector space also has an operation called scalar multiplication whereby the
elements of a field F act on vectors. When we speak of a vector space, we also
mention the scalars by saying that V is a vector space over F. For example,
F

n, Fm×n are two examples of vector spaces over F, and the row space and
null space of a matrix over F are two more examples. Another example is the
set C([a, b]) of all continuous real-valued functions on a closed interval [a, b],
which is a vector space over R. Here, one needs the theorem that the sum of
two continuous real-valued functions on [a, b] is continuous in order to speak
of (vector) addition in this vector space.

One of the most important concepts associated with a vector space is its
dimension. The definition of dimension requires quite a bit of preliminary
groundwork. One must first introduce linear independence and the notion of
a basis and then prove the fundamental result about bases: if a vector space
has a finite basis, then every two bases B and B′ have the same number
of elements; that is, |B| = |B′|. We then call |B| the dimension of V . This
definition turns out to coincide with one’s intuitive notion that a line is one-
dimensional, a plane is two-dimensional, space is three-dimensional, and after
that, you have to deal with objects such as spacetime, which you cannot
actually picture. After covering the basic topics, we will investigate some
special topics such as direct sums of subspaces, the Grassmann intersection
formula, and quotient vector spaces. The reader is also advised to look at the
appendix, which is an exposition of linear coding theory. This is an interesting
contemporary topic involving vector spaces over finite fields.
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6.1 The Definition of a Vector Space and Examples

The purpose of this section is to introduce the definition of an abstract vector
space and to recall a few old examples as well as to add a few new ones. In
this section, it will be useful (but not absolutely necessary) to have studied
the material in Chap. 2 on groups and fields.

6.1.1 The vector space axioms

Put as succinctly as possible, a vector space over a field F consists of an
abelian group V under addition whose elements are called vectors. Vectors
admit a multiplication by the elements of F, the field of scalars. Addition
and scalar multiplication interact in a way that we will state precisely below.
The definition below of a vector space is given in full detail so that it is not
necessary to know the definition of an abelian group.

Definition 6.1. Let F be a field and suppose V is a set with a binary oper-
ation + called addition assigning to any two elements a and b of V a unique
sum a + b ∈ V . Suppose also that there is a second operation, called scalar
multiplication, assigning to every r ∈ F and a ∈ V a unique scalar multiple
ra ∈ V . Addition and scalar multiplication have the following properties.

(1) Addition is commutative: a + b = b + a for all a,b ∈ V .

(2) Addition is also associative: (a+b)+c = a+(b+c) for all a,b, c ∈ V .

(3) V contains an additive identity 0: that is, 0 + a = a for all a ∈ V .

(4) For every element v of V , there is an element −v such that

v + (−v) = 0.

Thus −v is an additive inverse of v.

(5) For all a ∈ V , 1a = a, where 1 is the multiplicative identity of F.

(6) Scalar multiplication is associative: if r, s ∈ F and a ∈ V , then

(rs)a = r(sa).

(7) Scalar multiplication is distributive: if r, s ∈ F and a,b ∈ V , then

r(a + b) = ra + rb and (r + s)a = ra + sa.

http://dx.doi.org/10.1007/978-0-387-79428-0_2
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Then V is called a vector space over F.

The first four axioms say that a vector space is an abelian group V under
addition with identity 0. The properties that scalar multiplication must sat-
isfy along with addition are specified by properties (5), (6) and (7). As proved
in the group setting, the additive identity 0 and additive inverses are unique.
To remind the reader, we will repeat the proofs (word for word) for vector
spaces.

Proposition 6.1. In a vector space, there can be only one zero vector. Fur-
thermore, the additive inverse of a vector is always unique.

Proof. Let 0 and 0′ both be additive identities. Then

0 = 0 + 0′ = 0′,

by the definition of an additive identity. Hence the zero vector is unique. Now
suppose −v and −v′ are both additive inverses of v ∈ V . Then

−v = −v + 0 = −v + (v − v′) = (−v + v) + (−v′) = 0 + (−v′) = −v′.

Hence, additive inverses are also unique. �

Proposition 6.2. In a vector space V , 0v = 0 for all v ∈ V , and r0 = 0
for every scalar r. Moreover, −v = (−1)v.

Proof. Let v be arbitrary. Now, by properties (4) and (7) of the definition,

v = 1v = (1 + 0)v = 1v + 0v = v + 0v.

Adding −v to both sides and using associativity gives 0v = 0. For the second
assertion, note that

0 = 0v = (1 + (−1))v = 1v + (−1)v = v + (−1)v.

Hence, (−1)v is an additive inverse of v, so (−1)v = −v for all v ∈ V . �

If v1, . . . ,vk ∈ V , then one can define the sum

v1 + · · · + vk =
k∑

i=1

vi

inductively as (v1 + · · ·+vk−1)+vk. Just as for sums in a field, the terms in
this sum can be associated in any convenient way. Similarly, the summands
vi can be taken in any order without changing the sum, since addition is
commutative. Recall that an expression

∑k
i=1 rivi, where r1, . . . , rk ∈ F, is

called a linear combination of v1, . . . ,vk ∈ V .
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6.1.2 Examples

Example 6.1. As mentioned above, the basic example of a vector space
over the field F is the set F

n of all column n-tuples of elements of F, where
addition and scalar multiplication are carried out componentwise:

a + b =

⎛

⎜⎜⎜⎝

a1

a2

...
an

⎞

⎟⎟⎟⎠ +

⎛

⎜⎜⎜⎝

b1
b2
...
bn

⎞

⎟⎟⎟⎠ =

⎛

⎜⎜⎜⎝

a1 + b1
a2 + b2

...
an + bn

⎞

⎟⎟⎟⎠

and

ra = r

⎛

⎜⎜⎜⎝

a1

a2

...
an

⎞

⎟⎟⎟⎠ =

⎛

⎜⎜⎜⎝

ra1

ra2

...
ran

⎞

⎟⎟⎟⎠ .

The elements of Fn are called column vectors. �

Example 6.2. Let Fm×n denote the m × n matrices over F. In the previous
example, we considered F

n, which is the same as Fn×1. The elements of F1×n

are called row vectors. We have already defined matrix addition and scalar
multiplication for m×n in an analogous way in Chap. 3, so we refer the reader
there. These operations make Fm×n a vector space over F. One can express the
elements of Fmn as matrices, so as a vector space, Fm×n is indistinguishable
from F

mn. �

Example 6.3. (See Example 3.2.) When F = F2, the elements of F
n are

binary strings, which are called n-bit strings. Binary strings are usually writ-
ten as rows instead of columns, and the commas between components are
omitted. For example, there are 23 3-bit strings, 000, 100, 010, 001, 110, 101,
011, and 111. Binary strings are the fundamental objects of coding theory,
but one can just as well consider p-ary strings of length n, namely elements
of the vector space (Fp)n written as row vectors as in the binary case. A
common notation for (Fp)n is V (n, p). Thus V (n, p) consists of the pn strings
a1a2 . . . an where each ai ∈ Fp. �

Example 6.4. Let S be any set and define F
S to be the set of all F-valued

functions whose domain is S. We define addition and scalar multiplication
pointwise as follows. If μ, φ ∈ F

S , then μ+φ ∈ F
S is defined by the condition

(μ + φ)(s) = μ(s) + φ(s)

for all s ∈ S. Also, if a ∈ F, then aμ is defined by

http://dx.doi.org/10.1007/978-0-387-79428-0_3
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(aμ)(s) = aμ(s)

for all s ∈ S. These operations make F
S a vector space over F. Notice that

F
n is nothing but FS , where S = {1, 2, . . . , n}. Indeed, specifying the n-tuple

a = (a1, a2, . . . , an)T ∈ F
n is the same as defining the function fa : S → F by

fa(i) = ai. �

Example 6.5. The set Pn of all polynomial functions with domain R and
degree at most n consists of all functions p : R → R such that for every r ∈ R,

p(r) = anr
n + an−1r

n−1 + · · · + a1r + a0,

where the coefficients a0, a1, . . . , an are fixed elements of R. If we let x : R → R

be the identity function defined by x(r) = r for all r ∈ R, then the above
polynomial can be written p(x) = anx

n + an−1x
n−1 + · · · + a1x + a0. Then

Pn is a real vector space. �

Example 6.6. (Polynomials over F) For an arbitrary field F, let x denote a
quantity that admits multiplication by itself so that xixj = xi+j and scalar
multiples axk for all a ∈ F and all integers i, j, k ≥ 0. Let F[x] denote the set
of all polynomial expressions

f(x) = anx
n + an−1x

n−1 + · · · + a1x + a0,

where the coefficients a0, a1, . . . , an ∈ F, and n is an arbitrary nonnegative
integer. The polynomials of degree at most n can be identified with F

n+1,
so there is a well defined addition and scalar multiplication on F[x] so that
polynomials are added by adding the coefficients of xi for all i. �

Example 6.7. The set C[a, b] of all continuous real-valued functions on [a, b]
with the usual pointwise addition and scalar multiplication of Example 6.4 is
a slightly more exotic example of a vector space. To see that C[a, b] is closed
under addition and scalar multiplication requires knowing a basic theorem
from calculus: the sum of two continuous functions is continuous, and any
scalar multiple of a continuous function is continuous. Hence f + g and rf
belong to C[a, b] for all f and g in C[a, b] and real scalars r. �

Example 6.8. Consider the differential equation

y′′ + ay′ + by = 0, (6.1)

where a and b are real constants. This is an example of a homogeneous linear
second-order differential equation with constant coefficients. The set of twice
differentiable functions on R that satisfy (6.1) is a real vector space. �
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Exercises

Exercise 6.1.1. Suppose V is a vector space over the field F. Show that if
v is a nonzero element of V and a is a scalar such that av = 0, then a = 0.
Conclude that if av = bv, where a, b ∈ F, then a = b.

Exercise 6.1.2. Suppose V is a vector space over the field F, and a ∈ F

is nonzero. Let μa : V → V be defined by μa(v) = av. Show that μa is a
bijection.

Exercise 6.1.3. Consider the set S of all A ∈ F
n×n for which A = AT . True

or false: S is a vector space.

Exercise 6.1.4. Let A ∈ F
m×n.

(i) Show that N (A) = {v ∈ F
n | Av = 0} is a vector space.

(ii) Suppose b ∈ F
n. When is the solution set {x | Ax = b} a vector space?

Exercise 6.1.5. Is the unit circle x2 + y2 = 1 in R
2 a vector space?

Exercise 6.1.6. When is a line ax + by = c in R
2 a vector space?
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6.2 Subspaces and Spanning Sets

The purpose of this section is to introduce, study, and give examples of sub-
spaces and spanning sets. Throughout this section, let V be a vector space
over an arbitrary field F.

Definition 6.2. A nonempty subset W of V is called a linear subspace of
V , or simply a subspace, provided the following two conditions hold for all
a,b ∈ W :

(i) a + b ∈ W , and
(ii) ra ∈ W whenever r ∈ F.

In particular, every subspace of a vector space contains the zero vector
0. In fact, {0} is itself a subspace, called the trivial subspace. The following
proposition is an immediate consequence of this definition.

Proposition 6.3. A subspace W of V is also a vector space over F under
the addition and scalar multiplication induced from V .

We leave the proof to the reader.

Example 6.9. Suppose A ∈ F
m×n. Then the solution set N (A) of the homo-

geneous equation Ax = 0 is a subspace of Fn. For if Axi = 0 for i = 1, 2,
then

A(x1 + x2) = Ax1 + Ax2 = 0 + 0 = 0,

while
A(rx) = rAx = r0 = 0.

Therefore, N (A) is indeed a subspace. �

Example 6.10. The subspaces of R
2 are easily described. They are {0},

every line through 0, and R
2 itself. We will consider the subspaces of R

3

below. This example shows that subspaces when viewed as geometric objects
need to be linear; that is, they need to be lines, planes, etc., through the zero
vector 0. �

Example 6.11. Let F be a field and suppose F
′ is a subfield of F. Then F

is a vector space over F
′, vectors being the elements of F and scalars being

the elements of F
′. Note that elements of F

′ are also vectors, but that is
irrelevant. In particular, a field is a vector space over itself. For example,
R is a vector space over Q, and C is a vector space over R and also a vec-
tor space over Q. Note that C as a vector space over R is very different
from C as a vector space over Q. It will turn out that the dimension of
C as a vector space over R is two, while its dimension as a vector space
over Q is not finite (although we have yet to define what the dimension
of a vector space is). �
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6.2.1 Spanning sets

We will now consider the most basic method for constructing subspaces.

Definition 6.3. Let v1, . . . ,vk be arbitrary elements of V . The span of
v1, . . . ,vk is by definition the subset of V consisting of all linear combinations

k∑

i=1

aivi,

where a1, . . . , ak are arbitrary elements of F. The span of v1, . . . ,vk is denoted
by span{v1, . . . ,vk}.

Proposition 6.4. For all v1, . . . ,vk in V , span{v1, . . . ,vk} is a subspace
of V .

This follows readily from the definitions, so we will skip the details. How-
ever, the reader might benefit from writing them all out.

Example 6.12 (lines and planes). The subspace spanned by a single nonzero
vector v is called the line spanned by v. Thus, the line spanned by v consists
of all scalar multiples av with a ∈ F, so we will frequently denote it by
Fv instead of span{v}. A pair of vectors in V are said to be noncollinear
if neither lies on the line spanned by the other; in other words, their span
isn’t a line. A subspace spanned by two noncollinear vectors u,v is called
a plane. Thus a plane always has the form span{u,v}, but span{u,v} isn’t
necessarily a plane. It may be a line or even {0}. �

Example 6.13. Let F = Fp. If v ∈ F
n, one can ask how many elements Fv

has. If v = 0, the answer is clearly one. Otherwise, recall from Exercise 6.1.1
that if a, b ∈ F and a �= b, then av �= bv. Consequently, the multiples of v are
all distinct, and therefore |Fv| = |F| = p. If a and b are noncollinear elements
of Fp, then the plane they span has p2 elements. More generally, we can ask
how many elements an arbitrary subspace of Fn has. �

Example 6.14. We saw in Example 6.9 that the null space N (A) of a matrix
A ∈ F

m×n is a subspace of F
n. Recall from Example 3.11 that N (A) is

spanned by the basic null vectors f1, . . . , fk obtained from the reduced row
echelon form Ared of A. Recall also that k = n − rank(A), where rank(A)
is the number of nonzero rows in Ared. Now suppose F = Fp. Since every
v ∈ N (A) has an expansion v = a1f1 + · · · + akfk with all ai ∈ F, it follows
that |N (A)| ≤ pk. �

http://dx.doi.org/10.1007/978-0-387-79428-0_3
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The next two examples illustrate the other two subspaces associated with
a matrix.

Example 6.15. Recall from Section 3.2.3 that if A ∈ F
m×n, then row(A) is

defined as the set of all linear combinations of the rows of A. Hence row(A)
is a subspace of F

n = F
1×n. Recall that if B is obtained from A by row

operations, then row(A) = row(B). One of our main results on matrix theory
is that two matrices in reduced row echelon form are equal if and only if
they have the same row space. Because of this fact, we called the number of
nonzero rows in A’s reduced row echelon form the rank of A. �

Example 6.16. A matrix A ∈ F
m×n also has a column space col(A): namely,

the set of all linear combinations of the columns of A. The column space is a
subspace of Fm = F

m×1. The column space has an important interpretation
in terms of linear systems. If A has columns a1, . . . ,an, then by definition, b ∈
col(A) if and only if there are scalars c1, . . . , cn such that b = c1a1+· · ·+cnan.
Thus the column space of A consists of all b ∈ F

m for which the linear system
Ax = b has a solution. �

Example 6.17. Assume that a and b are vectors in F
3. The cross product

a × b is defined to be

a × b = (a2b3 − a3b2,−(a1b3 − a3b1), a1b2 − a2b1)T . (6.2)

By direct calculation, aT (a×b) = bT (a×b) = 0. Furthermore, if a and b are
noncollinear, it can be seen that a × b �= 0. We thus obtain a homogeneous
equation satisfied by all vectors in span{a,b}: if a×b = (r, s, t)T , then such
an equation is rx + sy + tz = 0. In the case F = R, this is interpreted as
meaning that a × b is orthogonal to the plane spanned by a and b. �

Exercises

Exercise 6.2.1. Which of the following subsets of R2 are not subspaces?

(i) The line x = y;

(ii) The unit circle;

(iii) The line 2x + y = 1;

(iv) The first octant x, y ≥ 0.

Exercise 6.2.2. Prove that all lines through the origin and planes through
the origin in R

3 are subspaces.

Exercise 6.2.3. Let p be a prime. Show that a subset of V (n, p) that is
closed under addition is a subspace.

Exercise 6.2.4. Assume n > 1. Find a subspace of V (n, p) that contains p
points. Next find a subspace that contains p2 points.

http://dx.doi.org/10.1007/978-0-387-79428-0_3
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Exercise 6.2.5. Show that the plane x + y + z = 0 in V (3, 2) has four
elements. Find a spanning set for this plane.

Exercise 6.2.6. Find an equation for the plane in V (3, 2) through the origin
containing both (1, 1, 1) and (0, 1, 1).

Exercise 6.2.7. Find a spanning set in V (4, 2) for the solution space of the
equation w+x+y +z = 0. How many solutions in V (4, 2) does this equation
have?

Exercise 6.2.8. Find a spanning set for the plane 3ix − y + (2 − i)z = 0
in C

3.

Exercise 6.2.9. Find an equation for the plane in R
3 through the origin

containing both (1, 2,−1)T and (3, 0, 1)T .

Exercise 6.2.10. Describe all subspaces of C3. What about C
4?

Exercise 6.2.11. Find the number of subspaces of the vector space V (n, p)
in the following cases:

(i) n = p = 2;

(ii) n = 2, p = 3; and

(iii) n = 3, p = 2.

Exercise 6.2.12. Let F be an arbitrary field. Show that if a,b ∈ F
3, then

a × b �= 0 if and only if a and b are not collinear.
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6.3 Linear Independence and Bases

As usual, let V denote a vector space over an arbitrary field F. In order to
understand the structure of V , especially its dimension, we need to intro-
duce two new ideas: linear independence and bases. Linear independence is
about uniquely representing the elements of V as linear combinations, and the
notion of a basis concerns both linear independence and spanning the whole
of V . As we mentioned in the introduction, the notion of the dimension of V
depends on the existence of a basis.

6.3.1 The definition of linear independence

To put it informally, a nonempty set of vectors is linearly independent if no
one of them is a linear combination of the others. For example, two vectors
are linearly independent if they aren’t collinear, and three vectors are linearly
independent if they don’t all lie in a plane through the origin. That is, they
aren’t coplanar. In general, two, three, or any finite number of vectors fail to
be linearly independent when they are subject to a linear constraint. Let us
now state this formally.

Definition 6.4. Let v1, . . . ,vk be in V . Then we say that v1, . . . ,vk are
linearly independent (or simply independent) if the equation

a1v1 + a2v2 + · · · + akvk = 0, (6.3)

with a1, a2, . . . , ak ∈ F, is satisfied only when a1 = a2 = · · · = ak = 0. If
(6.3) has a nontrivial solution (i.e., some ai �= 0), we say that v1, . . . ,vk are
linearly dependent (or simply dependent).

We will also say that a nonempty finite subset S of V is independent or
dependent if the vectors that are its elements are respectively independent or
dependent. Notice that if two of the vi coincide or if one of them is zero, then
v1, . . . ,vk are dependent. Notice also that we are defining linear independence
only for a finite number of vectors. The reader might want to contemplate
how to do this for infinite sets. Another way to think about independence is
pointed out by the following proposition.

Proposition 6.5. A set of vectors is linearly dependent if and only if one
of them can be expressed as a linear combination of the others.

Proof. Let v1, . . . ,vk be the vectors, and suppose one of the vectors, say v1,
is a linear combination of the others. Then

v1 = a2v2 + · · · + akvk.
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Thus
v1 − a2v2 − · · · − akvk = 0,

so (6.3) has a nontrivial solution with a1 = 1. Therefore, v1, . . . ,vk are depen-
dent. Conversely, suppose v1, . . . ,vk are dependent. This means that there
is a nontrivial solution a1, a2, . . . , ak of (6.3). We can assume (by reindexing
the vectors) that a1 �= 0. Thus

v1 = b2v2 + · · · + bkvk,

where bi = −ai/a1, for i ≥ 2, so the proof is done. �

Note how the fact that F is a field was used in the above proof. The next
proposition gives one of the important properties of linearly independent sets.

Proposition 6.6. Assume that v1, . . . ,vk ∈ V are linearly independent, and
suppose v is in their span. Then v =

∑k
i=1 aivi for exactly one linear com-

bination of v1, . . . ,vk.

Proof. By assumption, there exists an expression

v = r1v1 + r2v2 + · · · + rkvk,

where r1, . . . , rk ∈ F. Suppose there is another expression, say

v = s1v1 + s2v2 + · · · + skvk,

where the si are also elements of F. By subtracting the second expression
from the first and collecting terms, we get that

0 = v − v = (r1 − s1)v1 + (r2 − s2)v2 + · · · + (rk − sk)vk.

Since the vi are independent, every coefficient ri − si is equal to 0. �

When V = F
m, checking linear independence involves solving a homoge-

neous linear system. Viewing vectors in F
m as column vectors, consider the

m × n matrix
A = (a1 · · · an).

By the theory of linear systems, we have the following result.

Proposition 6.7. The vectors a1, . . . ,an in F
m are linearly independent

exactly when the system Ax = 0 has only the trivial solution, that is, when
N (A) = {0}. In particular, the columns a1, . . . ,an of A are independent if
and only if rank(A) = n, so more than m vectors in F

m are linearly depen-
dent.
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Proof. The first statement follows from the definitions. The second follows
from the identity rank(A) + # free variables = n. Since rank(A) ≤ m, there
exist free variables whenever n > m, so N (A) �= {0}. Thus a1, . . . ,an are
dependent when n > m. �

6.3.2 The definition of a basis

We will now explain the second main ingredient in the notion of dimension.
A basis combines the notions of independence and spanning. From now on,
we will restrict our attention to vector spaces that have a finite spanning set.
Thus we make the following definition.

Definition 6.5. A vector space V is said to be finite-dimensional if V has
a finite spanning set.

Note that the trivial vector space is finite-dimensional, since it is spanned
by 0. Vector spaces such as the space of all continuous functions on [a, b] are
therefore excluded from our considerations. Here, finally, is the definition of
a basis.

Definition 6.6. A collection of vectors in V that is linearly independent
and spans V is called a basis of V .

One of the main results we will prove is that every finite-dimensional vector
space has a basis. In fact, every vector space has a basis, but the proof that a
spanning set exists in the infinite-dimensional case is beyond our scope. For
the remainder of this section, we will consider examples of bases.

Example 6.18 (The standard basis of Fn). Recall that ei denotes the ith
column of In. Then {e1, . . . , en} is called the standard basis of Fn. Since

⎛

⎜⎝
a1

...
an

⎞

⎟⎠ = a1e1 + · · · + anen

and In has rank n, it follows that e1, . . . , en indeed give a basis of Fn. �

Example 6.19 (Lines and planes). A nonzero vector in R
n spans a line

through 0, and clearly a single nonzero vector is linearly independent. Hence
a line through 0 has a basis consisting of a single element. (The choice of basis
is not unique unless F = F2.) A plane P containing the origin is spanned by
any pair of noncollinear vectors in P , and two noncollinear vectors in P are
linearly independent. Thus P has a basis consisting of two vectors. (The
choice of basis is again not unique unless F = F2.) �
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It should be noted that the trivial vector space {0} does not have a basis,
since in order to contain a linearly independent subset it has to contain a
nonzero vector. The next result gives an elementary but useful property of
bases.

Proposition 6.8. The vectors v1, . . . ,vn in V form a basis of V if and only
if every vector v in V admits a unique expression

v = a1v1 + a2v2 + · · · + anvn,

where a1, a2, . . . , an are elements of F.

Proof. We leave this as an exercise. �

Remark. Proposition 6.8 shows that a basis B of V sets up a one-to-one
correspondence, or bijection, ΦB : V → F

n by ΦB(v) = (a1, a2, . . . , an)T .
The mapping ΦB also preserves linear combinations; that is, ΦB(av+ bw) =
aΦB(v) + bΦB(w) for all a, b ∈ F and v,w ∈ V . In particular, ΦB is an
isomorphism in the sense of abelian groups between V and F

n. The n-tuple
(a1, a2, . . . , an)T assigns coordinates to v with respect to the basis B. We will
discuss coordinates in detail in the next chapter.

Proposition 6.9. Let A ∈ F
m×n. If A has rank m, its rows are a basis of

row(A). If A has rank n, its columns are a basis of col(A).

Proof. We leave the proof to the reader. �

If the rank of A is less than n, Proposition 6.7 tells us that its columns
are dependent. However, the columns still span col(A), so it is natural to ask
whether there is a basis of col(A) consisting of some of A’s columns. This is
the problem of finding a basis of V contained in a spanning set. The solution
is treated below.

Example 6.20 (Basis of the null space). Let A be an m × n matrix over F.
The basic null vectors span the null space N (A). They are also independent,
as can be seen by writing out the equation for independence and looking
at the corner components. Thus the basic null vectors determine a basis of
N (A). �

Exercises

Exercise 6.3.1. Determine whether (0, 2, 1, 0)T , (1, 0, 0, 1)T , and (1, 0, 1, 1)T

are linearly independent as vectors in R
4. If so, do they form a basis of R4?

Exercise 6.3.2. Are (0, 0, 1, 0)T , (1, 0, 0, 1)T , and (1, 0, 1, 1)T independent
in V (4, 2) = (F2)4?
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Exercise 6.3.3. Show that every nonempty subset of a linearly independent
set is linearly independent.

Exercise 6.3.4. We say that u1,u2, . . . ,uk ∈ R
n are mutually orthogonal

unit vectors if uT
i uj = 0 whenever i �= j and uT

i ui = 1 for all i. Show that
if u1,u2, . . . ,uk are mutually orthogonal unit vectors, then they are linearly
independent.

Exercise 6.3.5. Show that m linearly independent vectors in F
m are a basis.

Exercise 6.3.6. Prove the assertion made in Example 6.20 that the basic
null vectors are a basis of N (A).

Exercise 6.3.7. Use the theory of linear systems to show the following:

(i) More than m vectors in F
m are dependent.

(ii) Fewer than m vectors in F
m cannot span F

m.

Exercise 6.3.8. Let u, v, and w be a basis of R3.

(i) Determine whether 3u + 2v + w, u + v + 0w, and −u + 2v − 3w are
independent.

(ii) Do the vectors in part (i) span R
3? Supply reasoning.

(iii) Find a general necessary and sufficient condition for the vectors a1u +
a2v + a3w, b1u+ b2v + b3w, and c1u+ c2v + c3w to be independent, where
the ai, bj , ck are arbitrary scalars.

Exercise 6.3.9. Suppose V is a vector space that contains an infinite subset
S such that every finite nonempty subset of S is linearly independent. Show
that V cannot be a finite-dimensional vector space.

Exercise 6.3.10. Recall that R[x] denotes the space of all polynomials with
coefficients in R. For each positive integer m, let R[x]m ⊂ R[x] denote the
subset of all polynomials of degree at most m.

(i) Show that R[x]m is a subspace of R[x].

(ii) Show that the powers 1, x, . . . , xm are linearly independent for all positive
integers m. (Hint: use induction.)

(iii) Find a basis for each R[x]m.

(iv) Show that R[x] is not finite-dimensional.

(v) Exhibit (without proof) a basis for R[x].

Exercise 6.3.11. Suggest a definition for the notion of a basis of a vector
space that isn’t finite-dimensional.
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Exercise 6.3.12. True or false: v1, . . . ,vr ∈ V (n, 2) are linearly indepen-
dent if and only if v1 + · · · + vr �= 0.

Exercise 6.3.13. Suppose B = {v1, . . . ,vn} is a basis of V . Consider the
mapping ΦB : V → F

n defined by ΦB(v) = (a1, a2, . . . , an)T if v = a1v1 +
· · · + anvn. Show that ΦB is a bijection that preserves linear combinations;
that is, ΦB(av + bw) = aΦB(v) + bΦB(w) for all a, b ∈ F and v,w ∈ V .
Conclude that ΦB is an isomorphism in the sense of abelian groups between
V and F

n.
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6.4 Bases and Dimension

Much of the groundwork for the definition of the dimension of a finite-
dimensional vector space has now been laid, and the ever alert reader has
undoubtedly guessed that the dimension is the number of vectors in a basis.
However, there is still the question whether a basis exists and whether all
bases have the same number of elements. It turns out that answering this
question is nontrivial.

6.4.1 The definition of dimension

Throughout this section, V denotes a finite-dimensional vector space over a
field F. Here is one of the most important definitions in the theory of vector
spaces.

Definition 6.7. Suppose V �= {0}. Then the dimension of V is defined to be
the number of elements in a basis of V . The dimension of V will be denoted
by dimV or by dimF V in case there is a chance of confusion about which
field is being considered. When V = {0}, we will define the dimension of V
to be 0.

As already mentioned, this definition is based on two assertions: every
nontrivial finite-dimensional vector space V has a basis, and any two bases
have the same number of elements. These claims, being far from obvious, need
to be proved. They comprise the dimension theorem, which will be stated and
proved below.

As we already noted above (also see Exercise 6.3.7), Fn can’t contain more
than n independent vectors, and fewer than n vectors can’t span. This implies
that every basis of Fn has n elements. We also know that there is a basis with
n vectors, namely the standard basis. This implies the following.

Proposition 6.10. For every field F, Fn has a basis, and every basis has n
elements. Thus, dimF

n = n.

An intuitive interpretation of dimV is either the maximal number of inde-
pendent vectors in V or the minimal number of spanning vectors, provided
these are the same. This definition certainly gives the correct result for Fn as
just noted.

There is a subtlety in the definition of dimension that is worth pointing
out. Namely, V can often be viewed as a vector space over different fields,
so the field has to be specified when talking about V ’s dimension. In fact,
suppose V is a finite-dimensional vector space over F. When F

′ is a subfield
of F, then V is automatically also a vector space over F′. In this case, dimF V
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and dimF′ V will be different if F �= F
′. For example, let F = C and V = C

n.
By the previous proposition, dimC V = n. But R is a subfield of C, and in
fact Cn is still a finite-dimensional vector space over R. Indeed, since C = R

2,
C

n = R
2n. Thus, dimR C

n = 2n. In general, if V is a finite-dimensional vector
space over C with dimC V = n, then dimR V = 2n.

6.4.2 Some examples

Before proving the dimension theorem, let’s consider some examples.

Example 6.21 (Lines and Planes). Let V = F
n. If v �= 0, then a line Fv in V

has a basis consisting of v and hence has dimension one. If P = span{a1,a2},
where a1 and a2 are noncollinear, then dimV = 2. �

Example 6.22 (Dimension of a Hyperplane). Again, let V = F
n. Then we

saw that dimV = n. The dimension of the hyperplane a1x1 + · · · + anxn = 0
in V is n − 1, provided some ai in nonzero, since the n − 1 basic null vectors
form a basis of the hyperplane (see Example 6.20). �

Example 6.23 (Dimension of F
m×n). As noted earlier, the vector space

F
m×n of m × n matrices over F is indistinguishable from F

mn, so we would
expect that dimF

m×n = mn. Now, the matrix analogue of the standard basis
of Fn is the set of m × n matrices Eij that have a 1 in the ith row and jth
column and a zero everywhere else. We leave the proof that they form a basis
as an exercise. Therefore, dimF

m×n = mn, as expected. �

Example 6.24. By Exercise 6.3.10, we see that if dimR[x]m denotes the
space of real polynomials of degree at most m. then dimR[x]m = m + 1 for
all m ≥ 0, a basis being 1, x, . . . , xm. �

Example 6.25. Let a1, . . . , am be real constants. Then the solution space
of the homogeneous linear differential equation

y(m) + a1y
(m−1) + · · · + am−1y

′ + amy = 0

is a vector space over R. It turns out, by a theorem on differential equations,
that the dimension of this space is m. For example, when m = 4 and ai = 0
for 1 ≤ i ≤ 4, then the solution space is the vector space R[x]3 of the previous
example. The solution space W of the equation y′′+y = 0 consists of all linear
combinations of the functions sinx and cos x. We leave it as an exercise to
show that sinx and cos x are linearly independent, so dimW = 2. �

Example 6.26 (Symmetric n × n matrices). Let F
n×n
s denote the set of

symmetric n × n matrices over F. Now, Fn×n
s is certainly a subspace of Fn×n

(exercise). The basis {Eij | 1 ≤ i, j ≤ n} of Fn×n doesn’t contain a basis of
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F
n×n
s , however, since Eij isn’t symmetric if i �= j. To repair this problem, we

put Sij = Eij + Eji when i �= j. Then Sij ∈ F
n×n
s , and I claim that the Sij

(1 ≤ i < j ≤ n) together with the Eii (1 ≤ i ≤ n) are a basis of Fn×n
s . They

certainly span F
n×n
s , since if A = (aij) is symmetric, then

A =
∑

i<j

aij(Eij + Eji) +
∑

i

aiiEii.

We leave it as an exercise to verify that this spanning set is also independent.
In particular, counting the number of basis vectors, we see that

dimF
n×n
s = (n − 1) + (n − 2) + · · · + 2 + 1 + n = n(n + 1)/2,

by the well-known formula for the sum of the first n positive integers. �

Example 6.27 (Skew-symmetric matrices). A square matrix A ∈ F
n×n is

called skew-symmetric if AT = −A. The set F
n×n
ss of skew-symmetric n × n

matrices over F is another interesting subspace of Fn×n. If the characteristic
of the field F is two, then skew-symmetric and symmetric matrices are the
same thing, so for the rest of this example suppose char(F) �= 2. For example,
if (

a b
c d

)T

= −
(

a b
c d

)
,

then a = −a, d = −d, b = −c, and c = −b. Thus a 2 × 2 skew-symmetric
matrix has the form (

0 b
−b 0

)
,

so E12 − E21 is a basis. We leave it as an exercise to show that dimF
n×n
ss =

n(n − 1)/2 for all n. �

6.4.3 The Dimension Theorem

We will now prove the dimension theorem. This settles the question whether
a basis exists and the definition of dimension makes sense.

Theorem 6.11 (The dimension theorem). Let V denote a finite-dimensional
vector space with at least one nonzero element. Then V has a basis. In fact,
every spanning set for V contains a basis, and every linearly independent
subset of V is contained in a basis. Moreover, any two bases of V have the
same number of elements.
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Proof. We’ll begin by showing that every finite spanning set contains a basis.
Let w1, . . . ,wk span V , and consider the set of all subsets of {w1, . . . ,wk}
that also span V . Let {v1, . . . ,vr} be any such subset where r is minimal.
There is no problem showing that such a subset exists, since {w1, . . . ,wk}
has only finitely many subsets. We now show that v1, . . . ,vr are independent.
So suppose

a1v1 + · · · + arvr = 0,

but ai �= 0. Then

vi =
−1
ai

∑

j �=i

ajvj ,

so if vi is deleted from {v1, . . . ,vr}, we still have a spanning set, contradicting
the minimality of r. Thus v1, . . . ,vr are independent, so every spanning set
contains a basis. In particular, since V has a finite spanning set, it has a
basis.

We next show that every linearly independent set in V can be extended to
a basis. Let w1, . . . ,wm be independent, and put W = span{w1, . . . ,wm}.
I claim that if v /∈ W , then w1, . . . ,wm,v are independent. To see this,
suppose

a1w1 + · · · + amwm + bv = 0.

If b �= 0, it follows (as in the last argument) that v ∈ W , contrary to the
choice of v. Thus b = 0. But then each ak is equal to zero as well, since the
wi are independent. Now suppose W �= V . We will use the basis v1, . . . ,vr

of V obtained above to obtain a basis containing w1, . . . ,wm. If each vi is
in W , then W = V , contrary to assumption. So let i be the first index such
that vi /∈ W. By the previous paragraph, w1, . . . ,wm,vi are independent.
Hence they form a basis for W1 = span{w1, . . . ,wm,vi}. Repeating this
construction with W1 replacing W and so on, we eventually obtain a subspace
Wk that contains all vj . Thus Wk = V , so the basis of Wk just constructed is a
basis of V containing w1, . . . ,wm. This proves that every linearly independent
set is contained in a basis.

It remains to show that any two bases of V have the same number of
elements. Suppose u1, . . . ,um and v1, . . . ,vn are two bases of V . If m �= n,
we may assume without loss of generality that m ≤ n. By definition, we can
certainly write

v1 = r1u1 + r2u2 · · · + rmum. (6.4)

Since v1 �= 0, some ri is nonzero, so we may suppose, by renumbering the
indices of the uj if necessary, that r1 �= 0. I claim that v1,u2, . . . ,um is also
a basis of V . To see this, we must show that v1,u2, . . . ,um are independent
and span. Suppose that
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x1v1 + x2u2 · · · + xmum = 0.

If x1 �= 0, then
v1 = y2u2 + · · · + yjum,

where yi = −xi/x1. Since r1 �= 0, we get two distinct ways of expanding
v1 in terms of the first basis, which contradicts the uniqueness statement in
Proposition 6.8. Hence x1 = 0. It follows immediately that all xi are equal to
zero (why?), so v1,u2, . . . ,um are independent. The fact that v1,u2, . . . ,um

span V follows from (6.4), since r1 �= 0. Hence we have produced a new basis
of V in which v1 replaces u1. Now write

v2 = x1v1 + x2u2 + · · · + um.

Since v1, . . . ,vm are independent, there exists j ≥ 2 such that xj �= 0. Thus,
after reindexing again, we can assume that x2 �= 0. Repeating the above
argument, we see that u2 can be replaced by v2, giving another new basis
v1,v2,u3 . . . ,um of V . Continuing this process, we will eventually replace all
the ui, which implies that v1, . . . ,vm must be a basis of V . But if m < n,
it then follows that vn is a linear combination of v1, . . . ,vm, contradicting
the linear independence of v1, . . . ,vn. Thus m = n, and the proof of the
dimension theorem is finished. �

The dimension theorem has several useful consequences.

Corollary 6.12. If W is a subspace of a finite-dimensional vector space V ,
then W is finite-dimensional, and dim W ≤ dim V with equality exactly when
W = V . In particular, every subset of V containing more that dim V elements
is dependent.

Proof. This is an exercise. �

Corollary 6.13. If dim V = m, then every set of m linearly independent
vectors in V forms a basis. Similarly, every set of m vectors that span V is
also a basis.

Proof. This is also an exercise. �

Concentrating on linear systems, we may consider the following example.

Example 6.28 (Linear systems). By Example 6.20, we know that dimN (A)
is the number of free variables in the system Ax = 0. Thus the fundamental
identity (3.11) for an m × n homogeneous linear system Ax = 0 can now be
expressed in terms of dimension as follows:

http://dx.doi.org/10.1007/978-0-387-79428-0_3
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dim N (A) + rank(A) = n. (6.5)

However, we can say even more. The rows of Ared are certainly linearly
independent (why?), so they form a basis of row(A), the span of the rows of
A. Thus, rank(A) = dim row(A), so for every A ∈ F

m×n, we also have

dim N (A) + dim row(A) = n. (6.6)

This seems to be a more elegant statement than that of (3.11). There is yet
another improvement from knowing rank(A) = rank(AT ). Since rank(A) =
dim row(A), we have dim row(A) = dim row(AT ) = dim col(A). Thus,

dim N (A) + dim col(A) = n. (6.7)

Since col(A) = {b ∈ F
m | Ax = b ∃ x ∈ F

n}, dimN (A) and dim col(A)
refer to the linear system Ax = b. (Recall that understanding this equation
is one of our main motivations.) The identity (6.7) is sometimes called the
rank–nullity identity. �

6.4.4 Finding a basis of the column space

Suppose {a1, . . . ,an} is a spanning set for a subspace W of F
m. We know

that some subset of this set is a basis. Is there is an efficient procedure for
extracting a basis of W? If we view the ai as column vectors and form the
m × n matrix A =

(
a1 a2 · · · an

)
, then W = col(A). Thus we know the

dimension of W : dim W = rank(A). Hence by Corollary 6.13, it suffices to
find rank(A) independent columns. Somewhat surprisingly, one can proceed
by finding Ared. This follows from the next proposition.

Proposition 6.14 The columns of a matrix A ∈ F
m×n that correspond to a

corner entry in Ared are a basis of col(A).

Proof We can assume that A has rank m. As shown above, it suffices to
show that the columns of A that correspond to a corner entry in Ared are
independent. Since Ared = BA with B invertible, it follows that Ax = 0 if
and only if Aredx = 0. In particular, every expression of linear dependence
among a subset of the columns of A is also an expression of linear dependence
among those columns of Ared. For example, if the fifth column of A is the
sum of the first four columns of A, this also holds for the columns of Ared.
of Ared containing a corner entry are standard basis vectors of F

m, hence

http://dx.doi.org/10.1007/978-0-387-79428-0_3
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are certainly independent. Therefore, these columns of A are also linearly
independent. Since dim col(A) = rank(A), Corollary 6.13 says that these
columns of A are a basis of W . �

Example 6.29 For example, suppose

A =

⎛

⎝
1 2 2
4 5 8
7 8 14

⎞

⎠ .

Then

Ared =

⎛

⎝
1 0 1
0 1 0
0 0 0

⎞

⎠ .

Proposition 6.14 implies that the first two columns are a basis of col(A).
Notice that the first and third columns are dependent in both A and Ared,
as the proof shows must happen. Proposition 6.14 says that the first two
columns are a basis of the column space, but it makes no assertion about the
second and third columns, which in fact are also a basis. �

6.4.5 A Galois field application

Let p be a prime and consider a vector space V over the prime field Fp. Then
the dimension of V determines the number of elements of V as follows.

Proposition 6.15 If V is finite-dimensional, then the number of elements
of V is exactly pdimV .

Proof Let k = dim V and choose a basis w1, . . . ,wk of V . By Proposition
6.8, every v ∈ W has a unique expression

v = a1w1 + a2w2 + · · · + akwk,

where a1, a2, . . . , ak ∈ Fp. Now it is simply a matter of counting such expres-
sions. In fact, since Fp has p elements, there are p choices for each ai, and
since uniqueness says that different choices of the ai give different elements of
V , it follows that there are exactly p·p · · · p = pk distinct linear combinations.
Thus V contains exactly pk elements. �

For example, a line in (Fp)n has p elements, a plane has p2, and so forth.
We can apply the last result to deduce a beautiful fundamental fact about
Galois fields. Let F be a Galois field. Then the characteristic of F is a prime,
say p. By Exercise 2.6.8, the multiples of 1 together with 0 form a subfield

http://dx.doi.org/10.1007/978-0-387-79428-0_2
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with p elements. This subfield is indistinguishable from Fp, but we will denote
it by F

′. It follows from the field axioms that F is a vector space over F
′ (see

Example 6.11). Moreover, since F itself is finite, it follows by definition that
F is finite-dimensional (over F′), since every a ∈ F has the expression a = 1a,
so F spans itself over F

′, since 1 ∈ F
′. Applying Proposition 6.15, we get the

following result.

Proposition 6.16 Let F be a finite field of characteristic p. Then |F| = pn,
where n is the vector space dimension of F over the subfield F

′ of F consisting
of all multiples of 1: that is, n = dimF′ F.

Recall that in Section 2.6.2, we considered a field F = {0, 1, α, β}, where
α + β = 1. Thus, for example, {1, α} is a basis, and F has 4 = 22 elements,
in agreement with the above result. It can be shown that for every prime p
and every n > 0, there is a unique Galois field of order pn. Combining the
previous two results, we get the following corollary.

Corollary 6.17 Let F be a Galois field of characteristic p, and let q = pn

denote |F|. Then if V is a finite-dimensional vector space over F, we have

|V | = qdimFV = pn dimF V .

Here is another corollary.

Corollary 6.18 Let F be a Galois field with q = pm elements. Then the
general linear group GL(n,F) has order

|GL(n,F)| = (qn − 1)(qn − q)(qn − q2) · · · (qn − qn−1). (6.8)

Proof The elements of GL(n,F) may be described as the elements A of Fn×n

whose columns form a basis of Fn. Consequently, the first i columns of A have
to form a basis of an i-dimensional subspace of F

n. Thus, there are qn − 1
choices for A’s first column, qn − q choices for its second column, since the
only restriction on the second column is that it not lie on the line spanned
by the first column, and in general, there are qn − qi−1 choices for the ith
column, since the span of the first i − 1 columns has qi−1 elements. �

Exercises

Exercise 6.4.1 Find a basis for the subspace of R4 spanned by

(1, 0,−2, 1)T , (2,−1, 2, 1)T , (1, 1, 1, 1)T , (0, 1, 0, 1)T , (0, 1, 1, 0)T

that contains the first and fifth vectors.

http://dx.doi.org/10.1007/978-0-387-79428-0_2
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Exercise 6.4.2 Consider the matrix A =

⎛

⎝
1 2 0 1 2
2 0 1 −1 2
1 1 −1 1 0

⎞

⎠ as an

element of R3×5.

(i) Show that the basic null vectors of Ax = 0 are a basis of N (A).

(ii) Find a basis of col(A).

(iii) Repeat (i) and (ii) when A is considered as a matrix over F3.

Exercise 6.4.3 Prove that cos x and sinx are linearly independent on the
open interval (0, 2π).

Exercise 6.4.4 Let W be a subspace of V , and let w1, . . . ,wk ∈ W. Show
that if w1, . . . ,wk are independent, then w1,w2, . . . ,wk,v are also indepen-
dent for every v ∈ V such that v /∈ W .

Exercise 6.4.5 Prove Corollary 6.12. That is, suppose V is a finite-dimensional
vector space over a field F, and let W be a subspace of V . Show the following:

(i) W is finite-dimensional.

(ii) In fact, dim W ≤ dim V .

(iii) If dim W = dim V , then W = V .

Exercise 6.4.6 Prove Corollary 6.13. That is, show that if dimV = m, then
every set of m linearly independent vectors in V forms a basis, and similarly,
every set of m vectors that span V is also a basis.

Exercise 6.4.7 True or false: For every A ∈ F
n×n, rank(A) ≥ rank(A2).

Prove your answer.

Exercise 6.4.8 Consider the subspace W of V (4, 2) = (F2)4 spanned by
1011, 0110, and 1001.

(i) Find a basis of W and compute |W |.
(ii) Extend your basis to a basis of (F2)4.

Exercise 6.4.9 Construct at least two proofs of the statement that for every
matrix A, dim col(A) = dim row(A).

Exercise 6.4.10 Let A and B be n × n matrices.

(i) Show that N (A) ⊂ N (BA). When is N (BA) = N (A)?

(ii) Show that col(A) ⊃ col(AB). When is col(AB) = col(A)?

(iii) Show that AB = O if and only if col(B) ⊂ N (A).
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Exercise 6.4.11 Consider the set F
n×n
s of symmetric n × n matrices

over F.

(i) Show that F
n×n
s is a subspace of Fn×n.

(ii) Show that the set of matrices Sij with i < j defined in Example 6.26
together with the Eii make up a basis of Fn×n

s .

Exercise 6.4.12 Let F
n×n
ss be the n × n skew-symmetric matrices over F.

(i) Show that F
n×n
ss is a subspace of Fn×n.

(ii) Find a basis of Fn×n
ss and compute its dimension.

(iii) Find a basis of F
n×n that uses only symmetric and skew-symmetric

matrices.

Exercise 6.4.13 Let F be a field, and suppose V and W are subspaces
of Fn.

(i) Show that V ∩ W is a subspace of Fn.

(ii) Let V + W = {u ∈ F
n | u = v + w, where v ∈ V,w ∈ W}. Show that

V + W is a subspace of Fn.

(iii) Show that dim(V + W ) ≤ dim V + dim W .

Exercise 6.4.14 Let W and Y be subspaces of a vector space V of dimen-
sion n. What are the minimum and maximum dimensions that W ∩ X can
have? Discuss the case that W is a hyperplane (i.e., dimW = n − 1) and X
is a plane (i.e., dimX = 2).

Exercise 6.4.15 Suppose X is a finite set, say |X| = n, and let F = Fp. Let
V = F

X . That is, V is the set of all maps with domain X and target F. Show
that V is an F-vector space, find a basis, and compute dim V .

Exercise 6.4.16 Show that the set of n × n upper triangular matrices over
F is a subspace of Fn×n. Find a basis and its dimension.

Exercise 6.4.17 Let F be a Galois field of characteristic p, and let F
′ be

the subfield of F consisting of all multiples of 1. If V is a finite-dimensional
vector space over F, show that dimF′ V = dimF′ FdimF V . Conclude that

|V | = pdimF′ F dimF V .

Exercise 6.4.18 Let |F| = q, where q = pn, p a prime. Show that every
element of F is a root of the polynomial xq − x ∈ Fp[x].

Exercise 6.4.19 Let V = R as a vector space over Q. Is dim V finite or
infinite? Discuss.
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Exercise 6.4.20 Let V be a vector space over Fp of dimension n. A linearly
independent subset of V with m elements is called an m-frame in V . Show
that the number of m-frames in V is exactly

(pn − 1)(pn − p) · · · (pn − pm−2)(pn − pm−1).

(Use Proposition 6.15 and part of the proof of the dimension theorem.)

Exercise 6.4.21 Use Exercise 6.4.20 to show that the number of subspaces
of dimension m in an n-dimensional vector space V over Fp is

(pn − 1)(pn − p) · · · (pn − pm−2)(pn − pm−1)
(pm − 1)(pm − p) · · · (pn − pm−2)(pm − pm−1)

.

(The set of m-dimensional subspaces of a finite-dimensional vector space is
an important object, called a Grassmann variety.)

Exercise 6.4.22 Let V be a vector space. A complete flag in V is a sequence
of subspaces

V1 ⊂ V2 ⊂ · · · ⊂ Vn−1 ⊂ V

such that dimVi = i. The set Flag(V ) of all complete flags in V is called the
flag variety of V .

(i) Let B ⊂ GL(n,F) denote the set of all invertible upper triangular elements
of Fn×n. Show that there exists a bijection

Φ : GL(n,F)/B → Flag(Fn).

(ii) Suppose F is Galois. Find a formula for the number of flags in F
n. That

is, find |Flag(Fn)|.
Exercise 6.4.23 (This is more challenging.) Consider a square array of
lights numbered 1 to 9 inclusively: that is,

1 2 3
4 5 6
7 8 9

Turning a light on or off also changes all the on–off states of the lights directly
above and below and to the left and right. For instance, if the center light
(light number 5) is turned on, then lights 2, 4, 5, 6, and 8 also change their
state.

(i) If all the lights are off, can they all be turned on?

(ii) How can you turn on just light number 1?

(iii) Is it possible to turn all the lights off from every starting configuration?
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6.5 The Grassmann Intersection Formula

The intersection of a pair of nonparallel planes P1 and P2 in R
3 through

the origin is a line through the origin. This may seem obvious, but what
would the answer be if instead of being planes in R

3, P1 and P2 were three-
dimensional subspaces of R4? The purpose of this section is to answer this
question; that is, if W and Y are arbitrary subspaces of a finite-dimensional
vector space V , what is dim(W ∩Y )? The answer is given by the Grassmann
intersection formula, which gives dim(W ∩ Y ) in terms of the dimensions of
W , Y , and a subspace W +Y known as the sum of W and Y . After that, we
will introduce direct sums of subspaces and will derive conditions for sums
of subspaces to be direct. These results on direct sums will be used when we
study eigentheory in Chap. 8.

6.5.1 Intersections and sums of subspaces

Let V be a vector space over a field F with subspaces W and Y . The simplest
way of building a new subspace is by taking the intersection W ∩ Y .

Proposition 6.19 The intersection W ∩ Y of the subspaces W and Y of
V is also a subspace of V . More generally, the intersection of an arbitrary
collection of subspaces of V is also a subspace.

Proof This is an exercise. �

Proposition 6.19 is a generalization of the fact that the solution space of
a homogeneous linear system is a subspace of F

n. The solution space of a
single homogeneous linear equation is a hyperplane in F

n, and so the solution
space of a homogeneous linear system is the intersection of a finite number
of hyperplanes in F

n.
Another simple way of forming a new subspace is to take the subspace

spanned by W and Y . This is defined as follows.

Definition 6.8 The subspace spanned by W and Y or alternatively, the sum
of W and Y , is defined to be the set of sums

W + Y = {w + y | w ∈ W,y ∈ Y }.

More generally, we can form the sum V1 + · · · + Vk of an arbitrary (finite)
number of subspaces V1, V2, . . . , Vk of V . The sum V1+ · · ·+Vk is also written
as

∑k
i=1 Vi, or more simply

∑
Vi.

Proposition 6.20 The sum
∑k

i=1 Vi of the subspaces V1, V2, . . . , Vk of V is
also a subspace of V . It is, in fact, the smallest subspace of V containing
every Vi.

http://dx.doi.org/10.1007/978-0-387-79428-0_8
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Proof We leave the proof as another exercise. �

6.5.2 Proof of the Grassmann intersection
formula

We now return to the question of what one can say about the dimension of
the intersection of two subspaces. For example, what is the dimension of the
intersection of two three-dimensional subspaces of R4? The answer is given
by the Grassmann intersection formula, which relates the dimensions of W ,
Y , W + Y , and W ∩ Y . Before looking at the formula, the reader can try to
guess the answer.

Theorem 6.21 If W and Y are finite-dimensional subspaces of a vector
space V , then W + Y is finite-dimensional, and

dim(W + Y ) = dim W + dim Y − dim(W ∩ Y ). (6.9)

Proof Since W ∩ Y is a subspace of W , it is finite-dimensional. Hence, we
know that W ∩ Y has a basis, say x1, . . . ,xk. The dimension theorem allows
us to extend this basis to a basis of W , say

x1, . . . ,xk,wk+1, . . . ,wk+r.

Likewise, since Y is also finite-dimensional, we can extend the basis of W ∩Y
to a basis of Y , say

x1, . . . ,xk,yk+1, . . . ,yk+s.

I claim that

B = {x1, . . . ,xk,wk+1, . . . ,wk+r,yk+1, . . . ,yk+s}

is a basis of W + Y . It is not hard to see that B is a spanning set, so W + Y
is finite-dimensional even though V is an arbitrary vector space. To see that
B is independent, suppose

k∑

i=1

αixi +
k+r∑

j=k+1

βjwj +
k+s∑

m=k+1

γmym = 0. (6.10)

Thus, ∑
γmym = −(∑

αixi +
∑

βjwj

)
.

Since the left-hand term is in Y and the one on the right is in W , we have
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∑
γmym ∈ Y ∩ W.

Thus ∑
γmym =

∑
δixi

for some δi ∈ F. Hence

∑
δixi +

∑
(−γm)ym = 0.

Therefore, all the δi and γm are zero. In particular, (6.10) becomes the expres-
sion ∑

αixi +
∑

βjwj = 0.

But this implies that all the αi and βj are 0 also. Consequently, B is inde-
pendent. Since B spans W + Y , it forms a basis of W + Y , so dim(W + Y ) =
k + r + s. It remains to count dimensions. We have

dim(W + Y ) = k + r + s = (k + r) + (k + s) − k,

and hence dim(W + Y ) = dim W + dim Y − dim(W ∩ Y ). �

Notice that the Grassmann intersection formula doesn’t mention dimV ,
which is why we don’t need to require that V be finite-dimensional. However,
if it is, then dim(W + Y ) ≤ dim V , so we get a nice corollary.

Corollary 6.22 If W and Y are subspaces of a finite-dimensional vector
space V , then

dim(W ∩ Y ) ≥ dim W + dim Y − dim V. (6.11)

In particular, if dim W + dimY > dim V , then dim(Y ∩ W ) > 0.

Now let us see what can be said about two three-dimensional subspaces
W and Y of a five-dimensional space V . Since the sum of the dimensions of
W and Y is 6, they meet in at least a line, although the intersection can also
have dimension two or three. If dimV decreases, then intuitively, dim(Y ∩W )
should increase, since there is less room to maneuver. This is exactly what
the inequality tells us. If dimV = 4, then dim(W ∩ Y ) ≥ 3 + 3 − 4 = 2, so
W and Y contain a common plane. However, once dim V is at least 6, the
inequality no longer tells us anything.

Example 6.30 (Intersection of hyperplanes). Let H1 and H2 be distinct
hyperplanes in F

n. Then

dim(H1 ∩ H2) ≥ (n − 1) + (n − 1) − n = n − 2.
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But since the hyperplanes are distinct, dim(H1 ∩ H2) < n − 1, so dim(H1 ∩
H2) = n − 2 exactly. �

Here is a nice example.

Example 6.31. Recall that F
n×n
s and F

n×n
ss denote, respectively, the spaces

of of n × n symmetric and n × n skew-symmetric matrices (see Example
6.26). Let’s assume now that the characteristic of F is not equal to 2. Then
an arbitrary A ∈ F

n×n can be expressed as the sum of a symmetric matrix
and a skew-symmetric matrix. Namely,

A =
1
2
(A + AT ) +

1
2
(A − AT ). (6.12)

Thus Fn×n = F
n×n
s +F

n×n
ss . Moreover, since char(F) �= 2, the only matrix that

is both symmetric and skew-symmetric is the zero matrix. That is, Fn×n
s ∩

F
n×n
ss = {0}. Hence by the Grassmann intersection formula,

dimF
n×n = dim(Fn×n

s ) + dim(Fn×n
ss ).

Note that we already knew this result from Section 6.4.2, where we showed
that dim(Fn×n

s ) = n(n + 1)/2 and dim(Fn×n
ss ) = n(n − 1)/2. �

As we will see in the next section, this example shows that F
n×n is the

direct sum of Fn×n
s and F

n×n
ss . This is a stronger assertion than simply saying

that F
n×n = F

n×n
s + F

n×n
ss , which is a consequence of (6.12). In particular, it

implies that every square matrix can be uniquely expressed via (6.12) as the
sum of a symmetric matrix and a skew-symmetric matrix, except when the
characteristic is two.

6.5.3 Direct sums of subspaces

By the Grassmann intersection formula, two subspaces W and Y of V such
that dim(W ∩ Y ) = 0 have the property that dim(W + Y ) = dim W +
dim Y , and conversely. An explicit example of this was considered above.
This observation is related to the following definition.

Definition 6.9. We say that V is the direct sum of two subspaces W and
Y if V = W +Y and for every v ∈ V , the expression v = w+y with w ∈ W
and y ∈ Y is unique. If V is the direct sum of W and Y , we write V = W ⊕Y .
More generally, we say that V is the direct sum of the subspaces V1, . . . , Vk

if V =
∑

Vi and for every v ∈ V , the expression v =
∑

vi, where each
vi ∈ Vi, is unique. (Equivalently, if 0 =

∑
vi, where each vi ∈ Vi, then each

vi = 0.) In this case, we write V =
⊕k

i=1 Vi.
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Proposition 6.23. Suppose V is a finite-dimensional vector space with sub-
spaces W and Y . Then the following conditions are all equivalent to the asser-
tion that V = W ⊕ Y :

(i) V = W + Y and W ∩ Y = {0}.
(ii) V = W + Y and dim V = dimW + dim Y .

(iii) dim V = dim W + dim Y and W ∩ Y = {0}.
Proof. That conditions (i), (ii), and (iii) are equivalent follows from the
Grassmann intersection formula. Thus it suffices to show that (i) is equivalent
to V = W ⊕ Y . Assume (i), and suppose v = w + y = w′ + y′. Then
w − w′ = y′ − y is an element of W ∩ Y = {0}. Thus w = w′ and y′ = y.
Hence V = W ⊕ Y . On the other hand, if V = W ⊕ Y and W ∩ Y �= {0},
then every nonzero v ∈ W ∩ Y has two expressions v = v + 0 = 0 + v. This
violates the definition of a direct sum, so W ∩ Y = {0}. �

Corollary 6.24. Suppose dim V = dim(W +Y ) and dim(W ∩Y ) = 0. Then
V = W ⊕ Y .

Proof. If dim V = dim(W + Y ), then W + Y = V . Therefore, the result
follows from Proposition 6.23. �

Referring back to Example 6.31, we get the following assertion.

Proposition 6.25. Assume char(F) �= 2. Then F
n×n = F

n×n
s ⊕ F

n×n
ss . Thus,

every square matrix over F can be uniquely expressed as in (6.12) as the sum
of a symmetric matrix and a skew-symmetric matrix, both over F.

We will need the following extended version of Proposition 6.23.

Proposition 6.26. Suppose V is finite-dimensional and V1, . . . , Vk are sub-
spaces of V such that V =

∑k
i=1 Vi. Then V =

⊕k
i=1 Vi if and only if

dim V =
∑k

i=1 dim Vi.

Proof. Suppose V =
∑k

i=1 Vi, and dim V =
∑k

i=1 dim Vi. Choose a basis of
each Vi and consider the union B of these bases. Then B clearly spans V ,
since the part in Vi spans Vi. Hence we get a spanning set in V with dimV
elements. It follows that B is a basis of V . Now suppose the sum isn’t direct.
Then there exists an element v with two different decompositions

v =
k∑

i=1

xi =
k∑

i=1

yi,

where the xi and yi are in Vi for each i. Thus xj �= yj for some index j.
Hence v has to have two different expansions in terms of B. This contradicts
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the uniqueness of the expansion in a basis; hence the sum must be direct.
Conversely, suppose V =

⊕k
i=1 Vi. Forming B as in the previous case, it

follows that B is independent, since the sum is direct. Thus B is a basis, and
therefore, dim V = |B| =

∑k
i=1 dim Vi.

�

6.5.4 External direct sums

Let V and W be arbitrary vector spaces over the same field F. Then we can
form a new vector space V × W containing both V and W as subspaces.
Recall from Chap. 1 that V ×W denotes the Cartesian product of V and W ,
namely the set of all ordered pairs (v,w), where v ∈ V and w ∈ W .

Definition 6.10. The external direct sum of V and W is the Cartesian prod-
uct V × W with addition defined componentwise by

(v1,w1) + (v2,w2) = (v1 + v2,w1 + w2),

and scalar multiplication defined similarly by

r(v,w) = (rv, rw).

The alert reader will have noted that Fk ×F
m = F

k+m. Thus the external
direct sum is a generalization of the construction of Fn. This operation can
also be extended (inductively) to any finite number of vector spaces over F.
In fact, Fn is just the n-fold external direct sum of F.

We leave it to the reader to show that V and W can both be considered
subspaces of V × W .

Proposition 6.27. If V and W are finite-dimensional vector spaces over F,
then so is their external direct sum, and dim(V × W ) = dimV + dim W .

Proof. We leave this as an exercise. �

Exercises

Exercise 6.5.1. Suppose W and Y are two subspaces of a finite-dimensional
vector space V such that W ∩ Y = {0}. Show that dimW + dim Y ≤ dim V .

Exercise 6.5.2. Prove Proposition 6.27.

Exercise 6.5.3. If two 22-dimensional subspaces of R
n always meet in at

least a line, what can you say about n?

http://dx.doi.org/10.1007/978-0-387-79428-0_1


168 6 Vector Spaces

Exercise 6.5.4. Do two subspaces of R
26 of dimensions 5 and 17 have to

meet in more than 0? What about a subspace of dimension 22 and a subspace
of dimension 13?

Exercise 6.5.5. Suppose W and Y are two subspaces of (Fp)n. Find expres-
sions for |W ∩ Y | and |W + Y |.
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6.6 Inner Product Spaces

In this section, we will study the notion of an inner product on a real vector
space. We will also study the notion of a Hermitian inner product on a com-
plex vector space, though not in as much detail. An inner product on a real
vector space V allows one to measure distances and angles between vectors.
Similarly, a Hermitian inner product permits one to do the same for vec-
tors in a complex vector space. The main result of this section is that every
finite-dimensional inner product space has a special type of basis known as
an orthonormal basis. This is a basis having the properties of the standard
basis of Rn.

6.6.1 The definition of an inner product

We will first treat the real case.

Definition 6.11. Let V be a real vector space. An inner product on V is a
rule that associates to every a,b ∈ V a unique scalar (a,b) ∈ R having the
following properties for all a,b, c ∈ V and r ∈ R:

(i) (a,b) = (b,a),

(ii) (a + b, c) = (a, c) + (b, c),

(iii) (ra,b) = (a, rb) = r(a,b), and

(iv) if a �= 0, then (a,a) > 0.

The property in condition (iv) is called positive definiteness. A real vector
space V with an inner product is called an inner product space. Clearly,
(0,0) = 0, so (a,a) ≥ 0 for all a ∈ V . Thus the following definition makes
sense.

Definition 6.12. Let V be an inner product space as in the previous defi-
nition. Then the length of a ∈ V is defined by

|a| =
√

(a,a), (6.13)

and the distance between a and b in V is defined by

d(a,b) = |a − b|. (6.14)

The basic example of an inner product space is R
n with the Euclidean

inner product defined in the next example.
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Example 6.32 (Euclidean n-space). The dot product on R
n defined in

Section 3.1.6 by

a · b = aTb =
n∑

i=1

aibi (6.15)

defines an inner product by setting (a,b) = a ·b. The dot product is referred
to as the Euclidean inner product on R

n. �

The next example gives an important inner product on R
n×n. First, we

have to define the trace of an n × n matrix. If A ∈ F
n×n, define the trace of

A to be Tr(A) =
∑n

i=1 aii.

Example 6.33. Let V = R
n×n. For A,B ∈ V , put

(A,B) = Tr(ABT).

This defines an inner product on R
n×n known as the Killing form. The veri-

fication of the axioms for an inner product is left as an exercise. Notice, for
example, that if A and B are diagonal matrices, say A = diag(a1, . . . , an) and
B = diag(b1, . . . , bn), then

(A,B) = Tr(ABT ) = Tr(diag(a1b1, . . . , anbn)) =
n∑

i=1

aibi.

Thus the Killing form coincides with the Euclidean inner product on diagonal
matrices. �

6.6.2 Orthogonality

As we just saw, an inner product on a real vector space V has natural length
and distance functions. We will now see that it allows one to imitate other
Euclidean properties of Rn, namely the notion of angles. The starting point
is orthogonality.

Definition 6.13. We say that a pair of vectors a, and b in an inner product
space V are orthogonal if

(a,b) = 0. (6.16)

Here are a couple of simple properties.

Proposition 6.28. In an inner product space V , the zero vector is orthog-
onal to every vector. In fact, 0 is the only vector orthogonal to itself. Two
vectors a,b ∈ R

n are orthogonal if and only if
∑n

i=1 aibi = 0.

http://dx.doi.org/10.1007/978-0-387-79428-0_3
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Proof. Left to the reader. �

Orthogonality is a generalization of the notion of perpendicularity in R
2.

Two vectors a = (a1, a2)T and b = (b1, b2)T in R
2 are perpendicular exactly

when the triangle with sides a and b is a right triangle. This is the case
exactly when |a+b|2 = |a|2 + |b|2, by the Pythagorean theorem. The reader
should check that this identity holds if and only if a1b1 + a2b2 = 0, that is, if
a · b = 0. On an inner product space V , orthogonality can be characterized
in a similar manner.

Proposition 6.29. Two vectors a and b in an inner product space V are
orthogonal if and only if |a + b|2 = |a|2 + |b|2.
Proof. Since |a + b|2 = (a + b,a + b), one gets that

|a + b|2 = (a,a) + 2(a,b) + (b,b) = |a|2 + 2(a,b) + |b|2.

Hence (a,b) = 0 if and only if |a + b|2 = |a|2 + |b|2. �

We now discuss orthogonal decomposition. If a,b ∈ V and b �= 0, we claim
that there exists a unique λ ∈ R such that a = λb+ c and (b, c) = 0. To see
this, write c = a−λb. Using the properties of the inner product, we see that
(b, c) = 0 if and only if λ = (a,b)/(b,b). By the previous proposition, this
value of λ gives |a|2 = λ2|b|2 + |c|2. Hence we get the following result.

Proposition 6.30. Let a and b be elements of an inner product space V ,
and suppose b �= 0. Then a can be uniquely decomposed as a linear combina-
tion of two orthogonal vectors b and c as

a = λb + c, (6.17)

where λ = (a,b)/(b,b) and c = a − λb.

In particular, since |c|2 ≥ 0, it follows that

|a|2 ≥ ((a,b)/(b,b))2|b|2.

Taking square roots gives a famous inequality.

Proposition 6.31 (Cauchy–Schwarz inequality). For every a,b ∈ V ,

|(a,b)| ≤ |a||b|, (6.18)

with equality if and only if a is a multiple of b.
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Proof. The inequality surely holds when b = 0. Thus suppose b �= 0. Then
(6.18) follows from the inequality before the proposition, and equality holds
if and only if c = 0, or equivalently, if and only if a is a multiple of b. �

The Cauchy–Schwarz inequality for R
n says that

|
n∑

i=1

aibi| ≤
( n∑

i=1

a2
i

)1/2( n∑

i=1

b2i

)1/2

.

The vector

Pb(a) =
(
(a,b)/(b,b)

)
b

is called the orthogonal projection of a on b. Our final definition is the
angle between two nonzero vectors. By the Cauchy–Schwarz inequality,
−1 ≤ (a,b)

|a||b| ≤ 1. Hence there exists a unique θ ∈ [0, π] such that

cos θ =
(a,b)
|a||b| . (6.19)

Definition 6.14. The angle between two nonzero vectors a and b in an
inner product space V is defined to be the unique angle θ ∈ [0, π] such that
(6.19) holds.

In particular, (a,b) = 0 if and only if the angle between a and b is π/2.
In physics books, the identity

a · b = |a||b| cos θ

is sometimes taken as a definition of the dot product. But this definition is
not as easy to work with as the usual one.

Inner products can exist on infinite-dimensional vector spaces. This gives
a method for extending properties of Rn to the infinite-dimensional setting.
A particularly important example is the following.

Example 6.34. (An inner product on C[a, b]) Let C[a, b] be the space of all
continuous real-valued functions on the closed interval [a, b] in R. The inner
product of f, g ∈ C[a, b] is defined by

(f, g) =
∫ b

a

f(t)g(t)dt.

The first three axioms for the inner product on C[a, b] are verified by applying
standard facts about integration proved (or at least stated) in calculus. The
positive definiteness property requires that we verify that (f, f) > 0 if f �= 0.
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This involves a little bit of knowledge of how the Riemann integral is defined,
and so we will skip the details. �

6.6.3 Hermitian inner products

When we take up the principal axis theorem for Hermitian matrices in
Chap. 9, we will need the notion of a Hermitian inner product space. Her-
mitian inner products are also very important in physics. We will first intro-
duce the standard Hermitian inner product on C

n, and then proceed to the
general definition.

Example 6.35 (Hermitian n-space). The Hermitian inner product of a pair
of vectors w, z ∈ C

n is defined to be the complex scalar

w • z = wT z =
(
w1 w2 · · · wn

)

⎛

⎜⎜⎜⎝

z1
z2
...
zn

⎞

⎟⎟⎟⎠ =
n∑

i=1

wizi. (6.20)

Let us put wH = wT ; wH is called the Hermitian transpose of w. Thus,

w • z = wHz.

Although w • z is not necessarily real, w • w is real, and in fact, w • w ≥ 0
for all w. Thus we may define the Hermitian length function by

|w| = (w • w)1/2 = (wHw)1/2 =
( n∑

i=1

|wi|2
)1/2

.

�
We now make a general definition.

Definition 6.15. Let V be a complex vector space. A Hermitian inner prod-
uct on V is a rule assigning a scalar (w, z) ∈ C to every pair of vectors
w, z ∈ V such that

(i) (w + w′, z) = (w, z) + (w′, z) and (w, z + z′) = (w, z) + (w, z′),

(ii) (z,w) = (w, z),

(iii) (αw, z) = α(w, z) and (w, αz) = α(w, z), and finally,

(iv) if w �= 0, (w,w) > 0.

A complex vector space endowed with a Hermitian inner product is called
a Hermitian inner product space.

http://dx.doi.org/10.1007/978-0-387-79428-0_9
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6.6.4 Orthonormal bases

In this section we will show that every finite-dimensional inner product space
admits a type of basis called an orthonormal basis, which is analogous to the
standard basis e1, . . . , en of Euclidean n-space R

n. Let V denote a real inner
product space.

Definition 6.16. A set U of unit vectors in V is called orthonormal if every
pair of distinct elements of U are orthogonal to each other.

Example 6.36. The standard basis e1, . . . , en determines an orthonormal
set in Euclidean n-space R

n. �

Proposition 6.32. Every orthonormal subset U of V is linearly indepen-
dent. (That is, every finite subset of U is independent.) In particular, if V is
finite-dimensional, then every orthonormal set in V having dim V elements
is a basis of V .

Proof. Suppose u1, . . . ,um are orthonormal, and assume that

m∑

i=1

aiui = 0.

Then for every index j,

( m∑

i=1

aiui,uj

)
= (0,uj) = 0.

Since (ui,uj) equals 0 if i �= j and equals 1 if i = j, the left-hand side is

m∑

i=1

ai(ui,uj) = aj ,

so aj = 0 for all j. Therefore, u1, . . . ,um are independent. Hence if |U| =
dim V, then U is a basis of V . �

Definition 6.17. An orthonormal basis of V is a basis that is an orthonor-
mal set.

Proposition 6.33. A collection of vectors u1,u2, . . . ,un in R
n is an ortho-

normal basis of Rn if and only if the matrix U = (u1 u2 . . .un) is orthogonal.
Thus the set of U ∈ F

n×n whose columns are an orthonormal basis of Rn is
exactly the orthogonal group O(n,R).
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Proof. Recall that U is orthogonal if and only if UTU = In. But UTU =
(uT

i uj) = (ui · uj) = In if and only if u1,u2, . . . ,un are orthonormal. �

For example, the standard basis vectors e1, . . . , en in R
n are the columns

of In. Here are some more examples.

Example 6.37. The vectors

u1 =
1√
3
(1, 1, 1)T , u2 =

1√
6
(1,−2, 1)T , u3 =

1√
2
(1, 0,−1)T

form an orthonormal basis of R3. Moreover, u1 and u2 constitute an ortho-
normal basis of the plane x − z = 0. �

Example 6.38. The matrix

Q =
1
2

⎛

⎜⎜⎝

1 1 1 1
−1 1 −1 1
1 −1 −1 1
1 1 −1 −1

⎞

⎟⎟⎠

is orthogonal. Hence its columns form an orthonormal basis of R4. Since QT

is also orthogonal, the rows of B form another orthonormal basis of R4. �

6.6.5 The existence of orthonormal bases

We now show that every finite-dimensional inner product space has an ortho-
normal basis. In fact, we show a little more.

Proposition 6.34. Let V be an inner product space. Then every nontrivial
finite-dimensional subspace W of V admits an orthonormal basis.

Proof. We prove this by induction on dimW . Note that every subspace of V
is also an inner product space via restricting the inner product on V to W .
If dim W = 1, the result is true, since a unit vector in W is an orthonormal
basis. Thus suppose dim W = m > 1 and that the result is true for every
subspace of W of dimension at most m − 1. Let u be a unit vector in W
and let H = {x ∈ W | (x,u) = 0}. Then H is a subspace of W . Since
|u| = 1, u /∈ H. It follows from Corollary 6.12 that dimH < m. Thus, by the
induction hypothesis, H admits an orthonormal basis, say U . Now I claim
that U and u combine to give an orthonormal basis of W . Clearly, U and u
form an orthonormal set, so it suffices to check that they span W . Let x be
an arbitrary element of W , and let y = x − (x,u)u. Then

(y,u) = (x,u) − (x,u)(u,u) = 0,
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since (u,u) = 1. Thus y ∈ H, so y is a linear combination of the elements of
U . Since x = y + (x,u)u, x is in the span of u and U . Therefore W has an
orthonormal basis, so the result is proven. �

The above proof gives us the following

Corollary 6.35. If u is a unit vector in a finite-dimensional inner product
space V , then

H = {x ∈ V | (x,u) = 0}

is a hyperplane in V . That is, dim H = dim V − 1.

Here is an example not involving R
n.

Example 6.39. Let V denote the set of functions f(x) = ax2 + bx + c on
[−1, 1], where a, b, c are arbitrary real numbers. For f, g ∈ V , let (f, g) =∫ 1

−1
f(x)g(x)dx. In other words, V is a three-dimensional subspace of the

inner product space C[−1, 1]. The functions 1, x, and x2 are a basis of V ,
but unfortunately they aren’t orthonormal. For although x is orthogonal to 1
and x2, 1 and x2 aren’t orthogonal to each other:

∫ 1

−1
1x2dx = 2/3. To correct

this, we replace x2 with x2 − r, where r is chosen such that (1, x2 − r) = 0.
Since (1, 1) = 2, it is easy to see that we should let r = 1/3. Thus 1, x, x2 −
1/3 are orthogonal on [−1, 1]. We therefore obtain the orthonormal basis by
normalizing. The result is u1 = 1/

√
2, u2 =

√
3/2 x, and u3 = c(x2 − 1/3)

where c =
( ∫ 1

−1
(x2 − 1/3)2dx

)−1/2
. �

6.6.6 Fourier coefficients

We are now going to see one of the reasons that an orthonormal basis is
very useful. If v1,v2, . . . ,vn is a basis of a vector space V , how does one
express an arbitrary element v of V as a linear combination of these basis
vectors? If V = F

n, then this involves solving the linear system Ax = v, where
A =

(
v1 v2 · · · vn

)
. That is, x = A−1v. But if V is arbitrary, we don’t yet

have a general method. On the other hand, if V has an orthonormal basis,
there is a simple elegant solution.

Proposition 6.36. Let u1,u2, . . . ,un be an orthonormal basis of V . Then
if w ∈ V , we have

w =
n∑

1=i

(w,ui)ui. (6.21)

Proof. Let w =
∑n

1=i xiui. Then (w,uj) =
∑n

1=i xi(ui,uj) = xj , since the
ui are orthonormal. �
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The coefficients (w,ui) in (6.21) are called the Fourier coefficients of w
with respect to the orthonormal basis u1, . . . ,un. We may also refer to (6.21)
as the Fourier expansion of w in terms of the given orthonormal basis.

If V = R
n, then (6.21) can be expressed in matrix form In = QQT ; that

is,

In =
n∑

1=i

uiuT
i . (6.22)

Example 6.40. In terms of the orthonormal basis of Example 6.38, one
gets, for example, that

⎛

⎜⎜⎝

1
0
0
0

⎞

⎟⎟⎠ =
1
4

⎛

⎜⎜⎝

1
1
1
1

⎞

⎟⎟⎠ − 1
4

⎛

⎜⎜⎝

−1
1

−1
1

⎞

⎟⎟⎠ +
1
4

⎛

⎜⎜⎝

1
−1
−1
1

⎞

⎟⎟⎠ +
1
4

⎛

⎜⎜⎝

1
1

−1
−1

⎞

⎟⎟⎠ .

�

6.6.7 The orthogonal complement of a subspace

Let U be a subset of an inner product space V .

Definition 6.18. The orthogonal complement of U is defined to be the set
U⊥ consisting of all vectors v ∈ V orthogonal to every vector in U .

Thus,
U⊥ = {v ∈ V | (v,u) = 0 ∀ u ∈ U}. (6.23)

Proposition 6.37. For every subset U of an inner product space V , U⊥ is
a subspace of V . Moreover, if W = span U , then W ∩ U⊥ = {0}.
Proof. This is an exercise.

It may be instructive to visualize W⊥ in matrix terms. Let A ∈ R
m×n,

and let U denote its columns. Then W = span U = col(A), the column space
of A, and W⊥ = N (AT ). By (6.6), dimN (AT ) + dim row(AT ) = m. But
row(AT ) and W = col(A) certainly have the same dimension, so we get the
identity

dimW + dimW⊥ = m. (6.24)

Thus, the column space of a matrix and the null space of its transpose are
each the orthogonal complement of the other. We now prove a more general
version of this.
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Proposition 6.38. Let W be a subspace of a finite-dimensional inner prod-
uct space V and W⊥ its orthogonal complement. Then V = W ⊕ W⊥. Thus,
dim V = dim W + dim W⊥. In particular, every v ∈ V can be orthogonally
decomposed in exactly one way as v = w + y, where w ∈ W and y ∈ W⊥.

Proof. By Proposition 6.34, we may choose an orthonormal basis of W , say
u1, . . . ,uk. Let v ∈ V and put

y = v −
k∑

i=1

(v,ui)ui. (6.25)

Since the ui are orthonormal, we have (y,ui) = 0 for all i. Thus, by definition,
y ∈ W⊥. But this says that if w =

∑k
i=1(v,ui)ui, then v = w+y. Therefore,

V = W + W⊥. Since W ∩ W⊥ = {0}, we get V = W ⊕ W⊥ by Proposition
6.23. Hence, dim W + dim W⊥ = dim V . �
Definition 6.19. Let v = w+y be the above decomposition of v ∈ V with
w ∈ W . Then w is called the component of v in W .

Thus if u1, . . . ,uk is an orthonormal basis of W , the component of an
arbitrary vector v ∈ V is

w =
k∑

i=1

(v,ui)ui. (6.26)

In particular, if W is a line, say W = Rw, then the component of an arbitrary
v in V can be easily worked out, since

u =
w

(w,w)1/2

is an orthonormal basis for W . In particular,

v = (v,u)u +
(
v − (v,u)u

)
.

6.6.8 Hermitian inner product spaces

The results about orthonormal bases in the case of an inner product space
all have analogues for the Hermitian inner product spaces that were intro-
duced in Section 6.6.3. Recall that the main example of a Hermitian inner
product space is Cn with the Hermitian inner product (w, z) = wHz. A basis
w1, . . . ,wn of a Hermitian inner product space V is said to be a Hermitian
orthonormal basis, provided each |wi| is equal to 1 and (wi,wj) = 0 if i �= j.
By imitating the proof of Proposition 6.34, one can prove the following result.
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Proposition 6.39. Every finite-dimensional Hermitian inner product space
has a Hermitian orthonormal basis. Moreover, the identity (6.21) holds for
every Hermitian orthonormal basis.

Orthogonal complements are defined in the Hermitian case in exactly the
same way as in the real case, and the Hermitian version of Proposition 6.38
goes through without any change. Hermitian orthonormal bases of C

n are
related to unitary matrices in the same way that orthonormal bases of R

n

are related to orthogonal matrices. Recall that if U ∈ C
n×n, then UH = (U)T .

Definition 6.20. A matrix U ∈ C
n×n is said to be unitary if UHU = In.

The set of all n × n unitary matrices is denoted by U(n).

Thus, unitary matrices are to the Hermitian inner product on C
n as orthog-

onal matrices are to the Euclidean inner product on R
n.

Proposition 6.40. U(n) is a matrix group that is a subgroup of GL(n,C).

Proof. Exercise. �

Thus U(n) is called the unitary group.

Exercises

Exercise 6.6.1. A nice application of Cauchy–Schwarz is the following fact:
if a and b are unit vectors in R

n such that a · b = 1, then a = b. Prove this.

Exercise 6.6.2. Prove the law of cosines: if a triangle has sides with lengths
a, b, c, and θ is the angle opposite the side of length c, then c2 = a2 + b2 −
2ab cos θ. (Hint: Consider c = b − a.)

Exercise 6.6.3. Show that the Killing form (A,B) = Tr(ABT ) introduced
in Example 6.33 is an inner product on the space R

2×2 of real 2 × 2 matrices
and find an orthonormal basis.

Exercise 6.6.4. Show that the orthogonal complement with respect to the
Killing form of the space of 2×2 symmetric real matrices is the space of 2×2
skew symmetric real matrices. Conclude R

2×2 = R
2×2
s ⊕ R

2×2
ss .

Exercise 6.6.5. The proof that the Killing form on R
n×n is an inner product

requires showing that (A,B) = (B,A). Show this by proving the following
statements.

(i) For all A,B ∈ R
n×n, Tr(AB) = Tr(BA);

(ii) For all A,B ∈ R
n×n, Tr(ABT ) = Tr(BAT )

Exercise 6.6.6. Orthogonally decompose the vector (1, 2, 2)T in R
3 as p+q,

where p is required to be a multiple of (3, 1, 2)T and q is orthogonal to p.
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Exercise 6.6.7. In this exercise, we consider the inner product space V =
C[−1, 1] of continuous real-valued functions on [−1, 1] with inner product
defined by (f, g) =

∫ 1

−1
f(t)g(t)dt.

(i) Show that the functions 1 and x are orthogonal. In fact, show that xk and
xm are orthogonal if k is even and m is odd.

(ii) Find the projection of x2 on the constant function 1.

(iii) Use this to obtain the orthogonal decomposition of x2 on [−1, 1] in which
one of the components has the form r1.

Exercise 6.6.8. Consider the real vector space V = C[0, 2π] with the inner
product defined by (f, g) =

∫ 2π

0
f(t)g(t)dt.

(i) Find the length of sin2 x in V .

(ii) Compute the inner product (cosx, sin2 x).

(iii) Find the projection of sin2 x on each of the functions 1, cos x, and sinx
in V .

(iv) Are 1, cos x, and sinx mutually orthogonal as elements of V ?

(v) Compute the orthogonal projection of sin2 x onto the subspace W of V
spanned by 1, cos x, and sinx.

Exercise 6.6.9. Assume f ∈ C[a, b]. The average value of f over [a, b] is
defined to be

1
b − a

∫ b

a

f(t)dt.

Show that the average value of f over [a, b] is the projection of f on 1. Does
this suggest an interpretation of the average value?

Exercise 6.6.10. Let f, g ∈ C[a, b]. Give a formula for the scalar t that
minimizes

||f − tg||2 =
∫ b

a

(f(x) − tg(x))2dx.

Exercise 6.6.11. Show that the Hermitian inner product on C
n satisfies all

the conditions listed in Definition 6.15.

Exercise 6.6.12. Consider the plane P in R
3 given by the equation x−y +

2z = 0.

(i) Find an orthonormal basis of P .

(ii) Find the expansion of (1, 1, 0)T in terms of this orthonormal basis.
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Exercise 6.6.13. Find the expansion of (2, 0, 0)T in terms of the orthonor-
mal basis of Example 6.37.

Exercise 6.6.14. The Gram–Schmidt method gives an algorithm for pro-
ducing an orthonormal basis of an inner product space starting from a general
basis. Here is how it works for R

3. Let v1,v2,v3 be a basis. First put

u1 =
v1

|v1| .

Next, put

v′
2 = v2 − (v2 · u1)u1 and u2 =

v′
2

|v′
2|

.

Finally, put

v′
3 = v3 − (v3 · u1)u1 − (v3 · u2)u2 and u3 =

v′
3

|v′
3|

.

Verify that u1,u2,u3 form an orthonormal basis of R3 having the property
that span{u1} = span{v1} and span{u1,u2} = span{v1,v2}. Why are v′

2

and v′
3 both nonzero?

Exercise 6.6.15. Generalize the Gram–Schmidt method from R
3 to R

4.

Exercise 6.6.16. Let W denote the hyperplane w + x − y + z = 0 in R
4.

(i) Find the component of (1, 1, 1, 1)T in W .

(ii) Find an orthonormal basis of W .

(iii) Find an orthonormal basis of R
4 containing the orthonormal basis of

part (ii).

(iv) Expand (1, 1, 1, 1)T in terms of the basis in part (iii).

Exercise 6.6.17. Show that if W is a subspace of a finite-dimensional inner
product space V , then (W⊥)⊥ = W .

Exercise 6.6.18. Recall that the group P (n) of n×n permutation matrices
is a subgroup of O(n,R). Show that the set of all left cosets O(n,R)/P (n) is
in one-to-one correspondence with the set of all orthonormal bases of Rn.

Exercise 6.6.19. Let V be an inner product space. Show that the distance
function d(a,b) = |a − b| on V × V Defines a metric on V in the sense that
for all a,b, c ∈ V , we have the following properties:

(i) d(a,b) ≥ 0 and d(a,b) = 0 if and only if a = b.

(ii) d(a,b) = d(b,a), and

(iii) d(a, c) ≤ d(a,b) + d(b, c).
Another quite different example of a metric is given in the Appendix.
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Exercise 6.6.20. Let V be a finite-dimensional inner product space and
W a subspace. The distance d(v,W ) from an arbitrary vector v ∈ V to
the subspace W is defined to be the minimum distance d(v,w) as w ranges
over W .

(i) If v ∈ W , show that the distance from v to W is 0.

(ii) Suppose v = w + y is the orthogonal decomposition of v with w ∈ W
and y ∈ W ⊥. Show that d(v,w) ≤ d(v,w′) for all w′ ∈ W and conclude
that d(v,W ) = |y|. (This fact is called the principle of least squares.)

Exercise 6.6.21. Find the distance from (1, 1, 1, 1)T to the subspace of R4

spanned by (2, 0,−1, 1)T and (0, 0, 1, 1)T .

Exercise 6.6.22. If K is a subspace of Cn with the Hermitian inner product,
show that dim K + dim K⊥ = n, where K⊥ is the orthogonal complement of
K with respect to the Hermitian inner product.

Exercise 6.6.23. Find a Hermitian orthonormal basis of the subspace of C3

spanned by (1, i, 0)T and (2,−i, 1)T , and then extend this basis to a Hermitian
orthonormal basis of C3.

Exercise 6.6.24. Prove Proposition 6.40. That is, show that U(n) is a
matrix group.

Exercise 6.6.25. The complex analogue of the Killing form on C
n×n is

(J,K) = Tr(JKH). Show that (J,K) defines a Hermitian inner product on
C

2×2.
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6.7 Vector Space Quotients

In the penultimate section of this chapter, we will construct the quotient
vector space V/W of a vector space V by a subspace W . Since V is an
abelian group and every subspace is a normal subgroup, this construction is
an application of the construction of the quotient group G/H of a group G
by a normal subgroup H (see Proposition 2.17). Thus, the space of cosets
V/W is also an abelian group, and the natural map π : V → V/W is a group
homomorphism.

Since we are not formally using results from group theory in this chapter,
we will instead construct V/W from scratch. We will then show that if
V is finite-dimensional, then V/W is a finite-dimensional vector space and
dim(V/W ) = dim V − dim W . Unfortunately, the vector space V/W doesn’t
admit a useful geometric interpretation; one must think of V/W as an
abstract vector space.

6.7.1 Cosets of a subspace

Let V be a vector space over F and let W be a subspace. The cosets of W
were introduced in Section 2.2 in the setting of groups. Redefining them from
scratch in the vector space setting goes as follows.

Definition 6.21. A coset of W is a subset of V of the form

v + W = {v + w | w ∈ W}, (6.27)

where v ∈ V .

The cosets of W are the equivalence classes of an equivalence relation EW

on V . Namely, if u,v ∈ V , let us write uEWv if v − u ∈ W . If uEWv, we
will say that u and v are equivalent modulo W .

Proposition 6.41. Let W be a subspace of a vector space V . Then EW is
an equivalence relation on V , and the equivalence classes of this equivalence
relation are exactly the cosets of W .

Proof. Clearly vEWv, since v − v = 0 ∈ W . If uEWv, then vEWu, since
W is closed under scalar multiplication, and (u− v) = (−1)(v − u). Finally,
if uEWv and vEWw, then uEWw, since w − u = (w − v) + (v − u), and
W is closed under addition. Hence EW is an equivalence relation on V . Let
C denote the equivalence class of v and consider v + W . If y ∈ C, then
y−v = w ∈ W . Hence y = v+w, so y ∈ v+W . Therefore, C ⊂ v+W . On
the other hand, suppose y ∈ v + W . Then y = v + w for some w ∈ W . But
then y − v ∈ W , so yEWv. Therefore, v + W ⊂ C. Hence the equivalence
classes are exactly the cosets of W . �

http://dx.doi.org/10.1007/978-0-387-79428-0_2
http://dx.doi.org/10.1007/978-0-387-79428-0_2
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Example 6.41. For example, suppose V = R
3 and W is a plane through

0. Then the coset v + W is simply the plane through v parallel to W . The
cosets are all the planes in R

3 parallel to W . �

6.7.2 The quotient V/W and the dimension
formula

We will refer to the set of cosets V/W as the quotient space of V modulo W .
Two cosets (v + W ) and (y + W ) may be added by putting

(v + W ) + (y + W ) = (v + y) + W. (6.28)

To make V/W into a vector space over F, we also have to define scalar
multiplication, which we do in a natural way: for a ∈ F and v ∈ V , put

a(v + W ) = av + W. (6.29)

The proof that addition is a well-defined binary operation uses the same
reasoning as for the quotient group. We need to show that the rule (6.28) is
independent of the way we write a coset. That is, suppose v + W = v′ + W
and y+W = y′+W . Then we have to show that (v+y)+W = (v′+y′)+W .
But this is so if and only if

(v + y) − (v′ + y′) ∈ W,

which indeed holds, since

(v + y) − (v′ + y′) = (v − v′) + (y − y′) ∈ W,

due to the fact that W is a subspace and both v − v′ and y − y′ are in
W . Therefore, addition on V/W is well defined. The proof for scalar multi-
plication is analogous. The zero element is 0 + W , and the additive inverse
−(v+W ) of v+W is −v+W . Properties such as associativity and commu-
tativity of addition follow from corresponding properties in V ; we will omit
all the details. Hence V/W is an F-vector space, which is the first assertion of
the following proposition. The second assertion gives a formula for dim V/W
in the finite-dimensional setting.

Proposition 6.42. Let V be a vector space over a field F and suppose W is
a subspace of V . Then the set V/W of cosets of W in V with addition and
scalar multiplication defined as in (6.28) and (6.29) is a vector space over F.
If V is finite-dimensional, then
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dim V/W = dim V − dim W. (6.30)

Proof. To check the dimension formula (6.30), let w1, . . . ,wk be a basis of
W , and extend this to a basis

w1, . . . ,wk,v1, . . . ,vn−k

of V . Then I claim that the cosets v1+W, . . . ,vn−k+W give a basis of V/W .
To see that they are independent, put vi + W = αi if 1 ≤ i ≤ n − k, and
suppose there exist a1, . . . , an−k ∈ F such that

∑n−k
i=1 aiαi = 0 + W . This

means that
∑n−k

i=1 aivi ∈ W . Hence there exist b1, . . . , bk ∈ F such that

n−k∑

i=1

aivi =
k∑

j=1

bjwj .

But the fact that the vi and wj constitute a basis of V implies that all ai

and bj are zero. Therefore, α1, . . . , αn−k are linearly independent. We leave
the fact that they span V/W as an exercise. �

Here is an example that shows how V/W can interpreted.

Example 6.42. Suppose A ∈ F
m×n, and recall that N (A) ⊂ F

n is the null
space of A. By Proposition 3.17, the elements of the quotient space F

n/N (A)
are the solution sets of the linear systems Ax = b, where b varies through
F
m. The zero element N (A) corresponds to the homogeneous linear system

Ax = 0, while the element p0 + N (A) corresponds to the inhomogeneous
linear system Ax = b, where A(p0) = b. Suppose p0,q0 ∈ F

n, and suppose
A(p0) = b and A(q0) = c. By definition, (p0 + N (A)) + (q0 + N (A)) =
(p0 + q0) + N (A). But A(p0 + q0) = b+ c, so here the addition of cosets of
N (A) corresponds to the addition of linear systems. �

Exercises

Exercise 6.7.1. Prove that the cosets α1, . . . , αn−k defined in the proof of
Proposition 6.42 span V/W .

Exercise 6.7.2. Let W be the subspace of V = (F2)4 spanned by 1001,
1101, and 0110. Write down all elements of W , and find a complete set of
coset representatives for V/W . That is, find an element in each coset.

Exercise 6.7.3. Let A and B be arbitrary subsets of a vector space V over
F. Define their Minkowski sum to be

A + B = {x + y | x ∈ A, y ∈ B}.

Show that if A and B are cosets of a subspace W of V , then so is A + B.

http://dx.doi.org/10.1007/978-0-387-79428-0_3
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Exercise 6.7.4. Let V and W be any two subspaces of Fn.

(i) Find a formula for dim(V + W )/W .

(ii) Are the dimensions of (V + W )/W and V/(V ∩ W ) the same?

Exercise 6.7.5. Find a basis of the quotient R
4/W , where W is the sub-

space of R4 spanned by (1, 2, 0, 1) and (0, 1, 1, 0).

Exercise 6.7.6. Let V be a vector space over Fp of dimension n, and let W
be a subspace of dimension k.

(i) Show that every coset of W has pk elements. (Find a bijection from W to
x + W .)

(ii) Show that the number of cosets of W is p(n−k).
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6.8 Appendix: Linear Coding Theory

In 1948, a mathematician and electrical engineer named Claude Shannon
published a fundamental paper entitled “A Mathematical Theory of Commu-
nication.” This was followed in 1950 by a groundbreaking paper by Richard
Hamming on error-detecting codes. These papers laid the foundations for cod-
ing theory and the theory of error-detecting codes, both of which have been
crucial components of the electronic revolution brought about by computers
and the Internet. The purpose of this appendix is to give a brief introduc-
tion to linear coding theory and to explain how error detection operates. The
ideas we will introduce here depend on concepts from the theory of finite-
dimensional vector spaces over a Galois field. In the final section, we will play
the hat game.

6.8.1 The notion of a code

In mathematics, a code is just a subset of a vector space over a Galois field.
Let p be a prime, and recall that V (n, p) denotes the vector space (Fp)n

over the field Fp. Subsets of V (n, p) are called p-ary codes of length n. The
elements of a code C are called its codewords, and the number of codewords
is denoted by |C|.

A p-ary linear code of length n is a code C ⊂ V (n, p) that is also a subspace.
By definition, all linear codes are finite-dimensional. For example, a code C ⊂
V (n, 2) consists of binary strings, i.e., strings of 0’s and 1’s, of length n. Such
a code C is linear if and only if the sum of two codewords is again a codeword.
Having the structure of a vector space gives a linear code some advantages
over nonlinear codes, one of them being that a linear code is completely
determined once any set of codewords that spans it is given. A basis of a
linear code is called a set of basic codewords. Recall from the dimension
theorem that two bases of a finite-dimensional vector space always have the
same number of elements, namely the dimension of C. If C ⊂ V (n, p), then
dim C determines the number of codewords by the formula |C| = pdimC .

Example 6.43. The equation x1 +x2 +x3 +x4 = 0 over F2 defines a linear
code C = N (M), where M =

(
1 1 1 1

)
. Since dim(C) = 3, there are 8 = 23

codewords. Rewriting the defining equation as x1+x2+x3 = x4 shows that x4

can be viewed as a check digit, since it is uniquely determined by x1, x2, x3,
which can be arbitrarily given. Here, the codewords are the 4-bit strings
with an even number of 1’s. A set of basic codewords is {1001, 0101, 0011},
although there are also other choices. (How many?) �
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6.8.2 Generating matrices

A generating matrix for a linear code C is a matrix of the form M = (Im | A)
whose row space is C. Notice that a generating matrix is in reduced row
echelon form. We know from Proposition 3.12 that the reduced row echelon
form of a matrix is unique, so the generating matrix for a linear code is
unique.

Example 6.44. Let p = 2. If

M =

⎛

⎝
1 0 0 1 1 1
0 1 0 1 0 1
0 0 1 0 1 1

⎞

⎠ ,

then C = row(M) has 8 elements. Besides the rows of M and the null word,
the elements of C are

110010, 101100, 011110, 111001.

�

Codes defined by an m×n generating matrix have the following property:
every element of C = row(M) can be expressed as a matrix product of
the form (x1 . . . xm)M . (To see this, transpose the fact that the column
space of MT consists of all vectors of the form MT (x1 . . . xm)T .) Thus, to
every x = (x1 . . . xm) ∈ F

m, there corresponds a unique codeword c(x) =
(x1 . . . xm)M ∈ C. For a generating matrix M as above,

c(x) = x1 . . . xm

m∑

i=1

ai1xi · · ·
m∑

i=1

ai(n−m)xi ∈ F
n.

Since x1, . . . , xm ∈ F are arbitrary, the first m entries x1 . . . xm are called the
message digits, and the last n − m digits are called the check digits.

6.8.3 Hamming distance

Hamming distance is a natural distance function on V (n, p) meant to solve the
following problem. If c is a codeword for a code C ⊂ V (n, p), and another
string c′ that differs from c only by a transposition is received during a
transmission, can one determine whether c′ is the result of an error in sending
or receiving c? Before making the definition, let us first define the weight ω(v)
of an arbitrary v ∈ V (n, p).

http://dx.doi.org/10.1007/978-0-387-79428-0_3
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Definition 6.22. Suppose v = v1 . . . vn ∈ V (n, p). Define the weight ω(v)
of v to be the number of nonzero components of v. That is,

ω(v) = |{i | vi �= 0}|.

The Hamming distance d(u,v) between any pair u,v ∈ V (n, p) is defined as

d(u,v) = ω(u − v).

For example, ω(1010111) = 5. The only vector of weight zero is the zero
vector. Therefore, ω(u − v) = 0 exactly when u = v. The reason d(u,v) is
called the distance is due to the following result.

Proposition 6.43. Suppose u,v,w ∈ V (n, p). Then:

(i) d(u,v) ≥ 0, and d(u,v) = 0 if and only if u �= v;

(ii) d(u,v) = d(v,u); and

(iii) d(u,w) ≤ d(u,v) + d(v,w).

Property (iii) is called the triangle inequality. It says that the length of
one side of a triangle cannot exceed the sum of the lengths of the other two
sides. In general, if S is any set, then a function d : S × S → R satisfying (i),
(ii), and (iii) is called a metric on S, and d(s, t) is defined to be the distance
between s, t ∈ S. The notion of a metric is a natural generalization of the
metric on a finite-dimensional inner product space. See Exercise 6.6.19 for
this.

Proof. Properties (i) and (ii) are clear, but the triangle inequality requires
proof. For the triangle inequality, first consider the case that u and v differ
in every component. Thus d(u,v) = n. Let w be any vector in V (n, p), and
suppose d(u,w) = k. Then u and w agree in n − k components, which tells
us that v and w cannot agree in those n−k components, so d(v,w) ≥ n−k.
Thus

d(u,v) = n = k + (n − k) ≤ d(u,w) + d(v,w).

In the general case, let u,v,w be given, and let u′,v′ and w′ denote the
strings obtained by dropping the components where u and v agree. Thus we
are in the previous case, so

d(u,v) = d(u′,v′) ≤ d(u′,w′) + d(u,w′).

But d(u′,w′) ≤ d(u,w) and d(v′,w′) ≤ d(v,w), since dropping components
decreases the Hamming distance. Therefore,
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d(u,v) ≤ d(u,w) + d(v,w),

and the triangle inequality is established. �

For each C ⊂ V (n, p), let d(C) denote the minimum value of d(u,v) as
u,v vary over C. As we will see below, one wants to maximize d(C) for a
given value of |C|. When C ⊂ V (n, p) is linear, then d(C) is the minimum of
the weights of all the nonzero codewords. That is,

d(C) = min{ω(c) | c ∈ C, c �= 0}.

(The proof is an exercise.) This demonstrates one of the nice properties of
linear codes: the minimum distance d(C) requires only |C| computations,
which is considerably fewer than the number needed for an arbitrary code.

6.8.4 Error-correcting codes

In the terminology of coding theory, a code C ⊂ V (n, p) such that |C| = M
and d(C) = d is known as a p-ary (n,M, d)-code. As mentioned above, the
game is to make the minimal distance d(C) as large as possible for a given
M . The reason for this is the next result.

Proposition 6.44. An (n,M, d)-code C detects up to d − 1 errors and cor-
rects up to e = (d − 1)/2 errors. That is, if c ∈ C and d(v, c) ≤ d − 1, then
either v = c or v /∈ C. Moreover, if v is not a codeword, then there exists at
most one codeword c such that d(v, c) ≤ e.

Thus, if v /∈ C, but d(v, c) ≤ e, then we say that c is c error-correcting
for v. The conclusion about error-correction implies that if all but e digits of a
codeword c are known, then every digit of c is known. Note that if d(C) ≥ 3,
then two codewords cannot differ by a transposition.

Example 6.45. Suppose C is a 6-bit code with d = 3. Then e = 1. If
c = 100110 is a codeword, then v = 010110, which differs from c by a
transposition, cannot be a codeword. Also, w = 000110 can’t be in C, since
d(c,w) = 1, but c is the unique codeword within Hamming distance 1 ofw. If
x = 000010, then d(c,x) = 2, so there could be other codewords c′ such that
d(c′,x) = 2. Note, however, that the triangle inequality says that d(c, c′) ≤
d(c,x) + d(x, c′) = 4, so if d(C) = 5, then in fact, c = c′. �

Let us now prove the proposition.

Proof. We will leave the first assertion as an exercise. So assume d(v, c) ≤
(d− 1)/2, and suppose for some c′ ∈ C that we have d(v, c′) ≤ d(v, c). Then
d(v, c′) ≤ (d − 1)/2 too. By the triangle inequality,
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d(c, c′) ≤ d(c,v) + d(v, c′) ≤ (d − 1)/2 + (d − 1)/2 = d − 1,

so indeed c = c′. �

Example 6.46. For the binary 4-bit code of Example 6.43 given by x1 +
x2 + x3 + x3 + x4 = 0, one can check that d(C) = 2. Thus C detects a single
error, but e = 1/2, so there is no error correction. However, some additional
information, such as the component where an error occurs, may allow error
correction. Here, the linear equation defining the code enables that to be
possible.

Designing codes that maximize d(C) given |C| is a basic problem in coding
theory. The next example is a binary (n,M, d) = (8, 16, 4) linear code C that
maximizes d(C) for M = 16. This code is sometimes denoted by C8 and
called the extended Hamming code.

Example 6.47. Let

A =

⎛

⎜⎜⎝

1 0 0 0 1 1 1 0
0 1 0 0 1 1 0 1
0 0 1 0 1 0 1 1
0 0 0 1 0 1 1 1

⎞

⎟⎟⎠ .

Then C8 is defined to be row(A). Since every row of A has weight 4, the
minimum distance d(C8) is at most 4. But every sum of the rows of A can be
seen to have weight at most 4, so d(C8) = 4. Since A is a generating matrix,
M = |C8| = 24 = 16. �

We will now show that d(C8) is maximal for M = 16 and n = 8.

Proposition 6.45. The code C8 with 16 codewords maximizes |C| among
all 8-bit binary linear codes with d(C) ≥ 4.

Proof. Since dimC8 = 4, we have to show that there are no 8-bit binary
linear codes C with d(C) ≥ 4 and dimC ≥ 5, hence 32 codewords. This
turns out to be a routine argument involving row reduction. Suppose C is
such a code. By taking a spanning set for C as the rows of a k × 8 matrix
A, we can use row operations to put A into reduced row echelon form Ared

without affecting C. Note that k ≥ 5. By reordering the columns, we can
suppose that Ared is a generating matrix (Ir | M), where r ≥ 5. Hence M
has at most three columns. But the requirement d(C) ≥ 4 implies that all
entries of M are 1. This shows that there must exist codewords of weight
two, a contradiction. Thus dimC < 5, so |C| = 16 is the maximum. �
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6.8.5 Cosets and perfect codes

A code C ⊂ V (n, p) with minimum distance d(C) = d ≥ 3 and e = (d−1)/2 ≥
1 is called perfect if every x ∈ V (n, p) is within e of some codeword c. Since
Proposition 6.44 says that every x ∈ V (n, p) is within distance e of at most
one codeword, every element in V (n, p) is within e of exactly one codeword.
It is convenient to state this condition in a geometric way by bringing in the
notion of a ball. Assume r > 0. The ball of radius r centered at v ∈ V (n, p)
is defined to be

Br(v) = {w ∈ V (n, p) | d(w,v) ≤ r}. (6.31)

Thus, a code C ⊂ V (n, p) with d(C) ≥ 3 and e ≥ 1 is perfect if and only if
V (n, p) is the disjoint union of the balls Be(c) as c varies over C. That is,

V (n, p) =
⋃

c∈C

Be(c) (disjoint union). (6.32)

Example 6.48. Consider the binary linear code C = {000, 111}. Note that
d = 3, so e = 1. Now

V (3, 2) = {000, 100, 010, 001, 110, 101, 011, 111}.

The first four elements are within 1 of 000, and the last four are within 1 of
111. Therefore, C is perfect. �

What makes perfect codes so nice is that there is a simple numerical crite-
rion for deciding whether C is perfect. First note that for every v ∈ V (n, p),
we have |Be(v)| = |Be(0)|. Hence we have the following.

Proposition 6.46. A code C ⊂ V (n, p) is perfect if and only if

|C||Be(0)| = pn.

Thus, if C is linear of dimension k, then C is perfect if and only if |Be(0)| =
pn−k.

One can check this criterion in the previous example, since

Be(0) = {000, 100, 010, 001},

while |C| = 2. Notice that a necessary condition for a binary code C of
length n with e = 1 to be perfect is that n + 1 = 2m for some m, since
B1(0) = {0, e1, . . . , en}. Thus perfect codes with e = 1 must have length 3,
7, 15, and so on. Here is an example with n = 7.
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Example 6.49. The linear code C7 ⊂ V (7, 2) with generating matrix

A =

⎛

⎜⎜⎝

1 0 0 0 1 1 1
0 1 0 0 1 1 0
0 0 1 0 1 0 1
0 0 0 1 0 1 1

⎞

⎟⎟⎠

is perfect. Indeed, enumerating the 16 elements of C7, one sees that d(C7) = 3,
so e = 1. Clearly, |Be(0)| = 23, while |C7| = 24. Thus the criterion for
perfection, |C7||Be(0)| = 27, holds. �

There is also a connection between cosets and perfect linear codes. Recall
that a linear code C ⊂ V (n, p) of dimension k has exactly pn−k cosets. Thus,
C is perfect exactly when the number of cosets of C is |Be(0)|. Furthermore,
we have the following proposition.

Proposition 6.47. A linear code C ⊂ V (n, p) is perfect if and only if every
coset x + C of C meets Be(0).

Proof. Assume dim(C) = k and suppose that every coset x+C meets Be(0).
We claim that x + C cannot contain more than one element of Be(0). For if
x + c and x + c′ lie in Be(0), then

d(x + c,x + c′) = d(c, c′) ≤ d(c,0) + d(0, c′) ≤ 2e = d − 1,

so c = c′, since d(C) = d. Thus, pn−k ≤ |Be(0)|. But since V (n, p) is the union
of the cosets of C, every element of Be(0) lies in a coset. Thus |Be(0)| = pn−k,
so C is perfect. On the other hand, suppose C is perfect and consider a coset
x+C. By definition, x+C meets some ball Be(c), where c ∈ C. Hence there
exists c′ ∈ C such that d(x+ c′, c) ≤ e. But d(x+ c′, c) = d(x+ (c′ − c),0),
so x + C meets Be(0), since C is linear. �

6.8.6 The hat problem

The solution of the hat problem is an example of a surprising application
of mathematics, in this case coding theory. Consider the following problem:
Three people are each wearing either a white hat or a black hat. Each player
can see the other two hats but not their own. Although the players are not
allowed to communicate with each other, they are allowed to discuss before
getting hats what strategy they would use. Each person has a buzzer with
three buttons marked B, W, and A (for black, white, or abstain). At the
same time, each person presses B, W, or A according to whether they want
to guess their hat color or abstain from guessing. If at least one player guesses
their color correctly, and nobody guesses incorrectly, they win a huge prize.
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A pretty good strategy would be to agree that two players abstain and
the third makes a random guess. The probability of winning is 0.5. But this
strategy doesn’t make any use of fact that each player can see the other
two hats. Instead, consider the following strategy. Suppose the players agree
that they will play under the assumption that the array is not either BBB
or WWW. Why does this help? First of all, there are eight possible arrays,
so if the players can find an algorithm to guarantee that they avoid the
set F = {BBB,WWW} and do not make a mistake, then they will have a
probability of 6/8 = 0.75 of winning. Now let’s analyze what happens if the
hat array is BWB, for example. The first player sees WB, and knows that
both BWB and WWB lie outside F but can’t take the chance of an incorrect
guess. So the first player must hit A. The same is true of the third player.
The second player is the key. That player sees BB, so is forced to press W or
otherwise land in F . If the array is outside of F , this strategy is guaranteed
to produce a victory. The question is why, and the answer is that the 3-bit
code C2 = {000, 111} in V (3, 2) is a perfect code with e = 1.

Let us now see whether this strategy can be extended to seven players
using the perfect linear code C7 in the previous example. The players agree
in the strategy session to proceed as if the hat array is not in C7. Since
|C7| = 24, the probability that the hat array is in C7 is 24/27 = 1/8, so
the probability of this being a winning assumption is 7/8. They all need
to memorize the 16 codewords of C7. Suppose their assumption is correct.
Then in order to win, they proceed as follows. Since the hat array x1 . . . x7

differs in exactly one place from a codeword c1 . . . c7, let us suppose that the
discrepancy occurs at x1. Then player #1 sees c2 . . . c7 and must make the
choice c1 +1. Player #2 sees x1c3 . . . c7. But since d(C7) = 3, she knows that
whatever x2 is, x1x2c3 . . . c7 /∈ C. Therefore, in order to not make a mistake,
she must abstain, as do the other five players. Assuming that the hat array
x1 . . . x7 is not in C7, they have won the game. The odds that they win the
million bucks are a pretty good 7/8.

Can you devise a strategy for how to proceed if there are four, five, or six
players? Since there are no perfect codes in V (n, 2) for n = 4, 5, 6, it isn’t clear
how to proceed. More information about this problem and related questions
can be found in the article “The Hat Problem and Hamming Codes,” by M.
Bernstein, in Focus Magazine, November 2001.

Exercises

Exercise 6.8.1. List all binary linear codes C of length 3 with four code-
words.

Exercise 6.8.2. Find a formula for the number of linear codes C ⊂ V (n, p)
of dimension k. (Suggestion: count the number of linearly independent subsets
of V (n, p) having k elements.)
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Exercise 6.8.3. The international standard book number (ISBN) is a linear
code C ⊂ V (10, 11) that consists of all solutions a1a2 · · · a9a10 of the equation

a1 + 2a2 + 3a3 + · · · + 10a10 = 0.

The digits are hyphenated to indicate the book’s language and publisher. So,
for example, the ISBN of Fermat’s Enigma, by Simon Singh, published by
Penguin Books (14) in 1997, is 1-14-026869-3. The actual ISBNs in use satisfy
the condition 0 ≤ ai ≤ 9 for all i ≤ 9, while a10 is also allowed to take the
value 10, which is denoted by the Roman numeral X.

(i) How many ISBNs are in use?

(ii) Determine all x such that 0-13-832x4-4 is an ISBN.

(iii) Determine all x and y such that both 1-2-3832xy4-4 and 3-33-x2y377-6
are ISBNs.

Exercise 6.8.4. Show that if C is a linear code, then

d(C) = min{ω(x) | x ∈ C, x �= 0}.

Use the result to find d(C) for the code C used to define ISBNs. Is this code
error-correcting?

Exercise 6.8.5. Taking F = F11, compute the generating matrix for the
ISBN code.

Exercise 6.8.6. Consider the binary code C ⊂ V (6, 2) that consists of
000000 and the following nonzero codewords:

100111, 010101, 001011, 110010, 101100, 011110, 111001.

(i) Determine whether C is linear.

(ii) Compute d(C).

(iii) How many elements of C are nearest to 011111?

(iv) Determine whether 111111 is a codeword. If not, is there a codeword
nearest 111111?

Exercise 6.8.7. Prove the first part of Proposition 6.44.

Exercise 6.8.8. Consider the binary code C7 defined as the row space of
the matrix

A =

⎛

⎜⎜⎝

1 0 0 0 1 1 1
0 1 0 0 1 1 0
0 0 1 0 1 0 1
0 0 0 1 0 1 1

⎞

⎟⎟⎠ .
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in V (7, 2).

(i) Compute d(C) and e.

(ii) Find the unique element of C that is nearest to 1010010. Do the same
for 1110001.

Exercise 6.8.9. Let r be a positive integer and let x ∈ V (n, 2). Consider
the ball Br(x) of radius r about x, i.e., Br(x) = {y ∈ V (n, 2) | d(x,y) ≤ r}.
Show that

|Br(x)| =
r∑

i=0

(
n

i

)
.

Exercise 6.8.10. Generalize Exercise 6.8.9 from V (n, 2) to V (n, p).

Exercise 6.8.11. * Show that if C ⊂ V (n, 2) is a linear code such that
dim(C) = k and C is e-error-correcting, then

e∑

i=0

(
n
i

)
≤ 2(n−k).

Conclude that if e = 1, then 1 + n ≤ 2n−k.

Exercise 6.8.12. Suppose C ⊂ V (n, 2) is a linear code with dim C = k and
d ≥ 3. Prove that C is perfect if and only if

e∑

i=0

(
n
i

)
= 2(n−k). (6.33)

In particular, if e = 1, then C is perfect if and only if

(1 + n)2k = 2n. (6.34)

Exercise 6.8.13. Consider the code C = {00000, 11111} ⊂ V (5, 2).

(i) Determine e.

(ii) Show that C is perfect.

Exercise 6.8.14. Show that every binary [2k−1, 2k−1−k]-code with d = 3
is perfect. Notice that C7 is of this type.

Exercise 6.8.15. Can there exist a perfect code with n = 5 and e = 2?

Exercise 6.8.16. Suppose n ≡ 2 mod(4). Show that there cannot be a
perfect binary [n, k]-code with e = 2.

(iii) Does C present any possibilities for a five-player hat game?

Exercise 6.8.17. Show that every binary [23, 12]-code with d = 7 is perfect.



Chapter 7
Linear Mappings

The purpose of this chapter is to introduce linear mappings. Let V and W
be vector spaces over a field F. A linear mapping is a mapping T : V → W
with domain V and target W that preserves linear combinations. The basic
situation we will consider is that both V and W are finite-dimensional. Here
we already know quite a bit, since an m × n matrix A over F defines a linear
mapping TA : F

n → F
m by putting TA(x) = Ax (see Section 3.1.7). The

basic rules of matrix algebra tell us that TA preserves linear combinations.
Thus, linear mappings are a generalization of matrix theory, and many ideas
from matrix theory, such as the rank of a matrix A, its null space N (A),
and the column space col(A), have natural interpretations in terms of linear
mappings, as we shall see.

7.1 Definitions and Examples

In this section, we will define linear mappings and introduce several terms
that we will use to explain the basic theory of linear mappings. We will also
give several examples to illustrate some of the interesting types of linear
mappings.

7.1.1 Mappings

Recall from Chap. 1 that if X and Y are sets, then a mapping F : X → Y is
a rule that assigns to each element of the domain X a unique element F (x)
in the target Y . The image of F is the subset of the target F (X) = {y ∈ Y |
y = F (x) ∃ x ∈ X}. A mapping F : Fn → F

m is completely determined by

c© Springer Science+Business Media LLC 2017
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its component functions f1, f2, . . . , fm, which are obtained by writing

F (x) =
m∑

i=1

fi(x)ei =

⎛

⎜⎝
f1(x)

...
fm(x)

⎞

⎟⎠ ,

where e1, . . . , em is the standard basis of Fm. If V and W are arbitrary vector
spaces over a field F and W is finite-dimensional, we can also define compo-
nent functions h1, . . . , hm of F with respect to an arbitrary basis w1, . . . ,wm

of W in the same way by writing

F (v) =
m∑

i=1

hi(v)wi.

The component functions with respect to a basis are uniquely determined
by F .

7.1.2 The definition of a linear mapping

In linear algebra, the most important mappings are those that preserve linear
combinations. These are called linear mappings.

Definition 7.1. Suppose V and W are vector spaces over a field F. Then a
mapping T : V → W is said to be linear if

(i) for all x,y ∈ V , T (x + y) = T (x) + T (y), and

(ii) for all r ∈ F and all x ∈ V , T (rx) = rT (x).

If W = F, then T is called a linear function.

By definition, a linear mapping T preserves linear combinations: for all
r, s ∈ F and all x,y ∈ V

T (rx + sy) = rT (x) + sT (y).

Thus a linear mapping also preserves linear combinations of an arbitrary num-
ber of vectors. Conversely, every mapping that preserves linear combinations
is a linear mapping.

7.1.3 Examples

We now present some basic examples of linear mappings. The reader should
note that some of the examples don’t require a particular basis or choice of
coordinates in their definition.
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Example 7.1 (Identity mapping). The mapping

IV : V → V

defined by IV (x) = x is called the identity mapping. This mapping is clearly
linear. If V = F

n, then IV = TIn
. �

Example 7.2. If a ∈ R
n, the dot product with a defines a linear function

Sa : Rn → R by Sa(x) = a · x = aTx. It turns out that every linear function
S : Rn → R has the form Sa for some a ∈ R

n. For example, let aT = (1 2 0 1).
Then the linear function Sa : R4 → R has the explicit form

Sa(x) = (1 2 0 1)

⎛

⎜⎜⎝

x1

x2

x3

x4

⎞

⎟⎟⎠ = x1 + 2x2 + x4.

We will consider the analogue of this function for an arbitrary inner product
space in the next example. �

Example 7.3. More generally, suppose V is an inner product space of
dimension m. Then for every linear mapping T : V → R, there exists a
unique w ∈ V such that T (v) = (v,w). In fact, if u1, . . . ,um constitute an
orthonormal basis of V , then I claim that

w =
m∑

i=1

T (ui)ui.

The reader should check that T (v) = (v,w) does in fact hold for all v ∈ V
and that this choice of w is unique. �

Example 7.4 (Diagonal mappings). Let T : R2 → R
2 be the mapping

T

(
x1

x2

)
=

(
μ1x1

μ2x2

)
, (7.1)

where μ1 and μ2 are real scalars. We leave it as an exercise to show that T
is linear. In (7.1), T (e1) = μ1e1 and T (e2) = μ2e2. If both μ1 and μ2 are
nonzero, the image under T of a rectangle with sides parallel to e1 and e2 is
a parallel rectangle whose sides have been dilated by μ1 and μ2 and whose
area has been changed by the factor |μ1μ2|. If μ1μ2 �= 0, then T maps a circle
about the origin to an ellipse about the origin. For example, the image of the
unit circle x2 + y2 = 1 is the ellipse

(
w1

μ1
)2 + (

w2

μ2
)2 = 1,
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as can be seen by putting w1 = μ1x1 and w2 = μ2x2.
�

In general, a linear mapping T : V → V is called semisimple if there exist
a basis v1, . . . ,vn of V and scalars μ1, . . . , μn in F such that T (vi) = μivi

for all i. Note that we are not requiring that any or all μi be nonzero; but
if all μi = 0, then T is the zero linear mapping. The basis v1, . . . ,vn of V
for which T (vi) = μivi is called an eigenbasis, and the scalars μ1, . . . , μn are
called the eigenvalues of T . The existence of an eigenbasis for T says a great
deal about how T acts. The question of when a linear mapping T admits an
eigenbasis is very basic. It will be solved when we study the classification of
linear mappings. The solution is nontrivial, and not all linear mappings are
semisimple.

Example 7.5. Recall from Example 6.17 that the cross product of two vec-
tors a,b ∈ R

3 is defined as

a × b = (a2b3 − a3b2,−(a1b3 − a3b1), a1b2 − a2b1)T . (7.2)

The cross product defines a linear mapping Ca : R3 → R
3 by

Ca(v) = a × v.

Notice that Ca(a) = 0. A basic property of Ca is that Ca(x) is orthogonal
to both a and x. It follows that Ca cannot be semisimple unless a = 0 (see
Example 7.4). �

7.1.4 Matrix linear mappings

Recall from Section 3.1.7 that if A ∈ F
m×n, then the mapping TA : Fn → F

m

defined by TA(x) = Ax is called a matrix linear mapping. Every matrix
linear mapping is certainly linear. We now show that every linear mapping
T : Fn → F

m is a matrix linear mapping.

Proposition 7.1. Every linear mapping T : Fn → F
m is of the form TA for

a unique A ∈ F
m×n. In fact,

A =
(
T (e1) T (e2) · · · T (en)

)
.

Conversely, if A ∈ F
m×n, then TA is a linear mapping with domain F

n and
target Fm.

Proof. Since x =
∑n

i=1 xiei,

T (x) = T
( n∑

i=1

xiei
)

=
n∑

i=1

xiT (ei) =
(
T (e1) T (e2) · · · T (en)

)
x.

http://dx.doi.org/10.1007/978-0-387-79428-0_6
http://dx.doi.org/10.1007/978-0-387-79428-0_3
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Thus, T = TA, where A =
(
T (e1) T (e2) · · · T (en)

)
. Furthermore, A is

uniquely determined by T , since if two linear mappings S, T : Fn → F
m have

the property that S(ei) = T (ei) for i = 1, . . . , n, then S(x) = T (x) for all
x ∈ F

n. The claim that every TA is linear has already been shown. ��
In particular, a linear function T : Fn → F is given by a 1×n matrix. Thus,

there exists a unique a ∈ F
n such that T (x) = aTx. Hence there exist unique

scalars a1, a2, . . . , an ∈ F such that T (x) =
∑n

i=1 aixi. When F = R, we may
express this fact in terms of the dot product as T (x) = a · x in Example 7.2.

Example 7.6. For example, the matrix of the identity mapping IFn on F
n

is the identity matrix In. That is, IFn = TIn
. We will sometimes use In to

denote IFn , provided no confusion is possible. �

Recall from Section 3.1.7 that if S : F
p → F

n and T : F
n → F

m are
linear mappings with matrices S = TA and T = TB respectively, then the
composition T ◦S : Rp → R

m is the matrix linear mapping associated to BA.
That is,

TB ◦ TA = TBA.

Writing MT for the matrix of T etc., we therefore have the identity

MT◦S = MTMS .

We will not repeat the proof, but it is short. Somewhat surprisingly, the key
fact is that matrix multiplication is associative.

7.1.5 An Application: rotations of the plane

The relationship between composition and matrix multiplication can be
applied to the group Rot(2) of rotations of R2 to give an extremely pretty
and simple proof of the sum formulas for the trigonometric functions sine
and cosine. Recall that Rθ : R2 → R

2 is the rotation of R2 about the origin
through θ. Computing the images of R(e1) and R(e2), we have

Rθ(e1) = cos θe1 + sin θe2

and
Rθ(e2) = − sin θe1 + cos θe2.

I claim that rotations are linear. This can be seen as follows. Suppose x and
y are any two noncollinear vectors in R

2, and let P be the parallelogram
they span. Then Rθ rotates the whole parallelogram P about 0 to a new

http://dx.doi.org/10.1007/978-0-387-79428-0_3
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parallelogram Rθ(P ) with edges Rθ(x) and Rθ(y) at 0. Since the diagonal
x + y of P is rotated to the diagonal of Rθ(P ), it follows that

Rθ(x + y) = Rθ(x) + Rθ(y).

Similarly, for every scalar r,

Rθ(rx) = rRθ(x).

Therefore, Rθ is linear, as claimed. The matrix Rθ of Rθ, calculated via the
above formula, is Rθ = (Rθ(e1) Rθ(e2)). Hence

Rθ =
(

cos θ − sin θ
sin θ cos θ

)
. (7.3)

(This verifies the formula of Example 4.5.) Thus

Rθ

(
x
y

)
=

(
cos θ − sin θ
sin θ cos θ

)(
x
y

)
=

(
x cos θ − y sin θ
x sin θ + y cos θ

)
.

Let us now apply this result to trigonometry. If one first applies a rotation
Rψ and follows that by the rotation Rθ, the outcome is the rotation Rθ+ψ.
Hence,

Rθ+ψ = Rθ ◦ Rψ = Rψ ◦ Rθ.

Therefore, since composition of linear mappings corresponds to multiplication
of their matrices, Rθ+ψ = RθRψ = RψRθ. In particular,

(
cos(θ + ψ) − sin(θ + ψ)
sin(θ + ψ) cos(θ + ψ)

)
=

(
cos θ − sin θ
sin θ cos θ

)(
cos ψ − sin ψ
sin ψ cos ψ

)
.

Expanding the product and comparing both sides gives us the trigonometric
formulas for the sine and cosine of θ + ψ:

cos(θ + ψ) = cos θ cos ψ − sin θ sin ψ

and
sin(θ + ψ) = sin θ cos ψ + cos θ sin ψ.

Exercises

Exercise 7.1.1. Let X and Y be sets and φ : X → Y a mapping. Recall
from Chap. 1 that φ is injective if and only if for x ∈ X, φ(x) = φ(x′) implies
x = x′, φ is surjective if and only if φ(X) = Y , and φ is a bijection if and
only if it is both injective and surjective. Show the following:

http://dx.doi.org/10.1007/978-0-387-79428-0_4
http://dx.doi.org/10.1007/978-0-387-79428-0_1
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(i) φ is injective if and only if there exists a mapping ψ : F (X) → X such
that ψ ◦ φ is the identity mapping IX : X → X.

(ii) φ is surjective if and only if there exists a mapping ψ : Y → X such that
φ ◦ ψ is the identity mapping IY , and

(iii) φ is a bijection if and only if there exists a mapping ψ : Y → X such
that ψ ◦ φ = IX and φ ◦ ψ = IY .

Exercise 7.1.2. Show that every linear function T : R → R has the form
T (x) = ax for some a ∈ R.

Exercise 7.1.3. Determine whether any of the following functions f : R2 →
R are linear:

(i) f(x, y) = xy,

(ii) f(x, y) = x − y,

(iii) f(x, y) = ex+y.

Exercise 7.1.4. Suppose T : Fn → F
m is an arbitrary mapping and write

T (v) = (f1(v), f2(v), . . . , fm(v))T .

Show that T is linear if and only if each component function fi is a linear
function.

Exercise 7.1.5. Find the matrix of the following linear mappings:

(i) S(x1, x2, x3) = (2x1 − 3x3, x1 + x2 − x3, x1, x2 − x3)T .

(ii) T (x1, x2, x3, x4) = (x1 − x2 + x3 + x4, x2 + 2x3 − 3x4)T .

(iii) T ◦ S.

Exercise 7.1.6. Let V be a vector space over F, and let W be a subspace
of V . Let π : V → V/W be the quotient map defined by π(v) = v+W. Show
that π is linear.

Exercise 7.1.7. Let S : U → V and T : V → W be linear mappings. Show
that T ◦ S is also linear.

Exercise 7.1.8. Suppose A is a real m×n matrix. Show that when we view
both row(A) and N (A) as subspaces of Rn,

row(A) ∩ N (A) = {0}.

Is this true for matrices over other fields, for example Fp or C?
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Exercise 7.1.9. Let V = C, and consider the mapping S : V → V defined
by S(z) = αz, where α ∈ C.

(i) Describe S as a mapping S : R2 → R
2.

(ii) Is S linear over R? If so, find its matrix in R
2×2.

Exercise 7.1.10. Show that every mapping S : C → C that is linear over
C has the form S(z) = αz for a unique A ∈ C.

Exercise 7.1.11. Let TA : R2 → R
2 be the matrix linear mapping associ-

ated to the matrix A =
(

a b
c d

)
. The purpose of this exercise is to determine

when T is linear over C. That is, since by definition, C = R
2 (with complex

multiplication), we may ask when TA(αβ) = αTA(β) for all α, β ∈ C. Show
that a necessary and sufficient condition for TA to be C-linear is that a = d
and b = −c.

Exercise 7.1.12. Show that every rotation Rθ defines a C-linear map Rθ :
C → C. Relate this map to the complex exponential eiθ.

Exercise 7.1.13. Let C∞(R) be the space of infinitely differentiable func-
tions on the real line R. A function f ∈ C∞(R) is said to be even if
f(−x) = f(x) for all x ∈ R and odd if f(−x) = −f(x) for all x ∈ R. Let
C∞(R)ev and C∞(R)odd denote the set of even and odd functions in C∞(R)
respectively.

(i) Show that C∞(R)ev and C∞(R)odd are subspaces of C∞(R).

(ii) Show that the mapping D : C∞(R) → C∞(R) defined by D(f) = f ′

sends C∞(R)ev to C∞(R)odd.

Exercise 7.1.14. Let F be a Galois field, and let p be the characteristic of
F. Let T : F → F be the mapping defined by T (x) = xp. Recall that the set
of multiples m1 of 1 in F, where m = 0, 1, . . . , p − 1, forms a subfield F

′ = Fp

of F and that F is a vector space over F′. Show that T is a linear mapping of
F with respect to this vector space structure. The linear mapping T is called
the Frobenius map.

Exercise 7.1.15. As in Exercise 7.1.14, let F be a Galois field of character-
istic p, and let V = F

n×n. Show that the mapping F : V → V defined by
F (A) = Ap is a linear mapping.
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7.2 Theorems on Linear Mappings

In this section, we will define some more terms and prove several results
about linear mappings, including a result that will generalize the rank–nullity
identity dim N (A) + dim col(A) = n derived in Example 6.28.

7.2.1 The kernel and image of a linear mapping

The kernel and image are two natural subspaces associated with a linear
mapping. Let T : V → W be linear. The image of T has been defined in
Chap. 1. It will be denoted by im(T ). The other natural subspace associated
with T is its kernel. First note that every linear mapping T maps 0 to 0,
since

T (0) = T (00) = 0T (0) = 0.

Definition 7.2. The kernel of T is defined to be the set

ker(T ) = {v ∈ V | T (v) = 0}.

Since a linear mapping is a group homomorphism, the notion of the kernel
of a linear mapping is a special case of the notion of the kernel of a homo-
morphism. Suppose V = F

n, W = F
m, and T = TA, i.e., T (x) = Ax. Then

ker(TA) and im(TA) are related to linear systems. In fact, ker(TA) = N (A),
while im(TA) is the set of vectors b ∈ F

m for which Ax = b has a solution.
Thus, im(TA) = col(A), so both ker(TA) and im(TA) are subspaces. This is
more generally true for arbitrary linear mappings.

Proposition 7.2. The kernel and image of a linear mapping T : V → W
are subspaces of V and W respectively.

Proof. We leave this as an exercise. ��
The following result gives a very useful characterization of injective (equiv-

alently, one-to-one) linear mappings. The proof is almost word for word the
proof given in Chap. 2 for the group-theoretic analogue.

Proposition 7.3. A linear mapping T is injective if and only if ker(T ) =
{0}.
Proof. Suppose ker(T ) = {0} and T (x) = T (y). Then T (x − y) = 0, so
x − y ∈ ker(T ). But this says that x − y = 0, so T is injective. Conversely,
if T is injective and x ∈ ker(T ), then T (x) = 0 = T (0), so x = 0. Thus
ker(T ) = {0}. ��

http://dx.doi.org/10.1007/978-0-387-79428-0_6
http://dx.doi.org/10.1007/978-0-387-79428-0_1
http://dx.doi.org/10.1007/978-0-387-79428-0_2
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7.2.2 The Rank–Nullity Theorem

Let A ∈ F
m×n and recall the rank–nullity identity dimN (A)+dim col(A) = n

(see (6.7)). The general rank–nullity theorem generalizes this identity to a
linear mapping T : V → W , where V is finite-dimensional.

Theorem 7.4 (Rank–Nullity Theorem). Let V and W be vector spaces over
F, and suppose dim V is finite. Then for every linear mapping T : V → W ,

dim ker(T ) + dim im(T ) = dim V. (7.4)

Proof. If ker(T ) = V , then im(T ) = {0}, so there is nothing to prove. On the
other hand, if dim ker(T ) = 0, then T is injective. Thus if v1,v2, . . . ,vn is a
basis of V , it follows that T (v1), . . . , T (vn) is a basis of im(T ). To verify this,
it suffices to show that the T (vi) are independent. But if

∑
aiT (vi) = 0,

then T (
∑

aivi) = 0, so
∑

aivi = 0, since T is injective. Hence all ai are
equal to zero, since v1,v2, . . . ,vn are independent. Thus, dim im(T ) = dim V .
Now suppose dim ker(T ) = k > 0. By the dimension theorem (Theorem
6.11), we may choose a basis v1,v2, . . .vk of ker(T ) and extend it to a basis
v1,v2, . . . ,vn of V . Let wi = T (vi). I claim that wk+1, . . . ,wn are a basis
of im(T ). To see that they span, let w ∈ im(T ), say w = T (v). Write v =∑

aivi. Then

w = T (v) =
n∑

i=1

aiT (vi) =
n∑

i=k+1

aiwi.

The proof that wk+1, . . . ,wn are independent is identical to the proof in the
case dim ker(T ) = 0, so we will leave it to the reader. Hence dim im(T ) =
n − k, which proves the result. ��

7.2.3 An existence theorem

The rank–nullity theorem tells us something about the behavior of a given
linear mapping, but we do not yet know how to construct linear mappings.
The following existence result will show that there is considerable flexibility
in defining a linear mapping T : V → W , provided we have a basis of V (for
example, if V is finite-dimensional). We will show that the values of T on a
basis of V can be arbitrarily described.

Proposition 7.5. Let V and W be vector spaces over F, and let v1, . . . ,vn

be a basis of V . Suppose w1, . . . ,wn are arbitrary vectors in W . Then there
exists a unique linear mapping T : V → W such that T (vi) = wi for each i.
In other words, a linear mapping is uniquely determined by giving its values
on a basis.

http://dx.doi.org/10.1007/978-0-387-79428-0_6
http://dx.doi.org/10.1007/978-0-387-79428-0_6
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Proof. The proof is surprisingly simple. Since every x ∈ V has a unique
expression

x =
n∑

i=1

rivi,

we obtain a mapping T : V → W by setting

T (x) =
n∑

i=1

riwi.

In fact, T is linear. Indeed, if y ∈ V , say

y =
n∑

i=1

sivi,

then x + y =
∑

(ri + si)vi, so

T (x + y) =
n∑

i=1

(ri + si)wi =
n∑

i=1

riwi +
n∑

i=1

siwi = T (x) + T (y).

Similarly, T (rv) = rT (v). Moreover, T is unique, since every linear mapping
is determined on a basis. ��

If V = F
n and W = F

m, there is an even simpler proof by appealing to
matrix theory. Let B = (v1 v2 . . .vn) and C = (w1 w2 . . .wn). Then the
matrix A of T satisfies AB = C. But B is invertible, since v1, . . . ,vn is a
basis of Fn, so A = CB−1.

7.2.4 Vector space isomorphisms

We will now answer the following question. When are two vector spaces indis-
tinguishable as far as their algebraic properties are concerned? The answer
is given by the notion of isomorphism.

Definition 7.3. We will say that two vector spaces V and W over the same
field F are isomorphic if there exists a bijective linear mapping T : V → W .
Such a linear mapping T is called an isomorphism.

In other words, an isomorphism is a linear mapping that is both injective
and surjective. A vector space isomorphism is also a group isomorphism. The
point of the definition is that although two vector spaces V and W may look
quite different, isomorphic vector spaces are indistinguishable if one consid-
ers only their internal algebraic properties (addition, scalar multiplication,
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etc.). For example, one space V may be the solution space of a homogeneous
linear differential equation with real coefficients, and the other, W , may be
a far less exotic vector space such as R

n. The question is, when are V and
W isomorphic? The quite simple answer, provided by the next result, is an
application of the dimension theorem and the fact that linear mappings are
determined by assigning arbitrary values to a basis.

Proposition 7.6. Two finite-dimensional vector spaces V and W over the
same field are isomorphic if and only if they have the same dimension.

Proof. Suppose dim V = dimW . To construct an isomorphism T : V → W ,
choose bases v1, . . . ,vn of V and w1, . . . ,wn of W , and let T : V → W be the
unique linear mapping (guaranteed by Proposition 7.5) such that T (vi) = wi

if 1 ≤ i ≤ n. Since im(T ) is a subspace of W containing a basis of W , it follows
that T is surjective. By the rank–nullity theorem, dim ker(T ) = 0; hence T
is injective by Proposition 7.3. The converse follows from the rank–nullity
theorem (Theorem 7.4) by similar reasoning. ��

The set of isomorphisms T : V → V in fact forms a group, called the
general linear group of V , which is denoted by GL(V ). If V = F

n, then in
fact, GL(V ) = GL(n,F).

Exercises

Exercise 7.2.1. Let the field be F2 and consider the matrix

A =

⎛

⎜⎜⎜⎜⎝

1 1 1 1 1
0 1 0 1 0
1 0 1 0 1
1 0 0 1 1
1 0 1 1 0

⎞

⎟⎟⎟⎟⎠
.

(i) Find a basis of im(A).

(ii) How many elements are in im(A)?

(iii) Is (01111)T in im(A)?

(iv) Without any further computation, find a basis of im(AT ).

Exercise 7.2.2. Let A be a real 3 × 3 matrix such that the first row of A is
a linear combination of A’s second and third rows.

(i) Show that N (A) is either a line through the origin or a plane containing
the origin.

(ii) Show that if the second and third rows of A span a plane P , then N (A)
is the line through the origin orthogonal to P .
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Exercise 7.2.3. Prove Proposition 7.2 using only the basic definition of a
linear mapping. That is, show that the kernel and image of a linear mapping
T are subspaces of the domain and target of T respectively.

Exercise 7.2.4. Consider the mapping Ca : R3 → R
3 defined by

Ca(v) = a × v,

where a × v is the cross product of a and v.

(i) Show that Ca is linear and find its matrix.

(ii) Describe the kernel and image of Ca.

Exercise 7.2.5. Suppose a ∈ R
3. Find the kernel of the linear mapping

Ca + I3.

Exercise 7.2.6. Suppose T : R2 → R
2 is a linear mapping that sends pair

of noncollinear vectors to noncollinear vectors. Suppose x and y in R
2 are

noncollinear. Show that T sends every parallelogram with sides parallel to x
and y to another parallelogram with sides parallel to T (x) and T (y).

Exercise 7.2.7. Find the kernel and image of the linear mapping Sa : Rn →
R defined by Sa(x) = a · x.

Exercise 7.2.8. Determine ker(Ca) ∩ im(Ca) for the cross product linear
mapping Ca : R3 → R

3 for every nonzero a.

Exercise 7.2.9. Suppose V is a finite-dimensional vector space and T : V →
V is a linear mapping such that T ◦ T = O. Show that im(T ) ⊂ ker(T ). Is
the converse true?

Exercise 7.2.10. Suppose V is a finite-dimensional vector space and T :
V → V is a linear mapping such that im(T ) ⊂ ker(T ). Show that dimV is
an even integer.

Exercise 7.2.11. Suppose A is a symmetric real n × n matrix.

(i) Show that col(A) ∩ N (A) = {0}.

(ii) Conclude that R
n = N (A) ⊕ col(A).

(iii) Suppose A2 = O. Show that A = O.

Exercise 7.2.12. Find a nonzero 2 × 2 symmetric matrix A over C such
that A2 = O.

Exercise 7.2.13. Show that if V is a finite-dimensional vector space and T
is a linear mapping with domain V , then dimT (V ) ≤ dim V .
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Exercise 7.2.14. Suppose A is a square matrix over an arbitrary field. Show
that if Ak = O for some positive integer k, then dimN (A) > 0.

Exercise 7.2.15. Recall that if x,y ∈ R
n, then x·y = xTy. Use this to prove

that for every A ∈ R
n×n, ATA and A have the same null space. Conclude

that ATA and A have the same rank.

Exercise 7.2.16. This exercise deals with the inverse of a linear mapping
T . Let V be a vector space over F, and let T : V → V be a linear mapping
such that ker(T ) = 0 and im(T ) = V . That is, T is an isomorphism. Prove
the following statements.

(i) There exists a linear mapping S : V → V with the property that S(y) = x
if and only if T (x) = y. Note: S is called the inverse of T .

(ii) Show that S is an isomorphism, and S ◦ T = T ◦ S = IV .

(iii) If V = F
n, A is the matrix of T , and B is the matrix of S, then

BA = AB = In.

Exercise 7.2.17. Let S : Rn → R
m and T : Rm → R

p be two linear map-
pings both of which are injective. Show that the composition T ◦ S is also
injective. Conclude that if A is of size m × n and has N (A) = {0}, and B is
of size n × p and has N (B) = {0}, then N (BA) = {0} too.

Exercise 7.2.18. Suppose V and W are vector spaces of the same dimension
over a field F, and let T : V → W be a linear mapping. Show that if T is
either injective or surjective, then T is an isomorphism.

Exercise 7.2.19. Let W be a subspace of a finite-dimensional vector space
V . Show there exists a linear mapping T : V → V such that ker(T ) = W .

Exercise 7.2.20. Suppose T : V → W is linear. Show that there exists a
unique linear mapping T : V/ ker(T ) → W such that T (v + ker(T )) = T (v).

Exercise 7.2.21. Let U , V , and W be finite-dimensional vector spaces over
the same field F, and let S : U → V and T : V → W be linear. Show that:

(i) TS is injective if and only if S is injective and im(S) ∩ ker(T ) = {0}.

(ii) TS is surjective if and only if T is surjective and V = im(S) + ker(T ).

(iii) Conclude that TS is an isomorphism if and only if S is injective, T is
surjective, and dim U = dim W .



7.3 Isometries and Orthogonal Mappings 211

7.3 Isometries and Orthogonal Mappings

Throughout this section, V will denote a real finite-dimensional inner prod-
uct space. Recall that the inner product on V defines a distance function
d(a,b) = |a − b|. Linear mappings T : V → V that preserve distances are
called isometries. (Actually, as we will see below, a distance-preserving map
is automatically linear, so the definition can be simplified.) The isometries of
V form an important group, called O(V ). When V = R

n, O(V ) is the matrix
group O(n,R) of all orthogonal n × n matrices over R. We will first consider
isometries in general and then specialize to rotations and reflections. Finally,
we will consider the isometries of R2. Here we prove the O(2,R)-dichotomy:
every isometry of R2 is either a rotation or a reflection. We will also show
that the dihedral group D(m) can be realized as the group of all isometries
of a regular m-gon in R

2. This will give another proof that the order of D(m)
is 2m.

7.3.1 Isometries and orthogonal linear mappings

A mapping S : V → V is said to be orthogonal if

(S(x), S(y)) = (x,y) (7.5)

for all x,y ∈ V . The term orthogonal comes from the fact that an orthogonal
mapping preserves the orthogonal relationship between orthogonal pairs of
vectors. Since orthogonal mappings preserve inner products, they preserve
lengths of vectors, distances between vectors, and angles between vectors,
since the angle θ between v and w is found by the identity

v · w = |v||w| cos θ.

It turns out that all orthogonal mappings are linear.

Proposition 7.7. Let S : V → V be orthogonal. Then S is linear. In fact,
the orthogonal mappings are exactly the isometries. In particular, all distance-
preserving mappings on V are linear. Conversely, every isometry is orthogo-
nal.

Proof. To show that S is linear, we first show that for all a,b ∈ V , |S(a +
b) − S(a) − S(b)|2 = 0. But

|S(a+b)−S(a)−S(b)|2 = (S(a+b)−S(a)−S(b), S(a+b)−S(a)−S(b))

= (S(a + b), S(a + b)) + (S(a), S(a)) + (S(b), S(b)) − 2(S(a + b), S(a))
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−2(S(a + b), S(b)) + 2(S(a), S(b)).

Using the fact that S is orthogonal, it follows that

|S(a + b) − S(a) − S(b)|2 = (a + b,a + b) + (a,a) + (b,b)

−2(a + b,a) − 2(a + b,b) + 2(a,b).

Expanding further, one sees that the right-hand side is zero. Thus, S(a+b) =
S(a)+S(b). The proof that S(ra) = rS(a) for all r ∈ F is similar. Therefore,
every orthogonal mapping is linear. To see that S is an isometry, note that

|S(b) − S(a)|2 = |S(b − a)|2
= (S(a − b), S(a − b))
= (b − a,b − a)
= |b − a|2.

This completes the proof that orthogonal mappings are isometries. We will
leave the rest of the proof as an exercise. ��

More generally, every mapping F : V → V that preserves distances turns
out to be orthogonal, and hence is an isometry (see Exercise 7.3.3).

7.3.2 Orthogonal linear mappings on R
n

We are now going to show that the matrix of an isometry is orthogonal, and
conversely, that every orthogonal matrix defines an isometry.

Proposition 7.8. Every isometry T : Rn → R
n is the matrix linear map-

ping associated with a unique orthogonal matrix. Conversely, every orthogonal
matrix defines a unique isometry.

Proof. Suppose T : Rn → R
n is an isometry. Since T is linear, T = TQ for a

unique Q ∈ R
n×n. But T is orthogonal, so TQ(x) · TQ(y)=Qx · Qy=x · y for

all x,y∈Rn. Thus

(Qx)T (Qy) = (xTQT )(Qy) = xT (QTQ)y = xTy (7.6)

for all x,y ∈ R
n. Setting Qei = qi, (7.6) implies qT

i qj = eTi ej . Hence
QTQ = In, so Q is orthogonal. We leave the converse to the reader. ��

Recall that the set of orthogonal n × n matrices is the orthogonal group
O(n,R), so O(n,R) is also the group of isometries of Rn.
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7.3.3 Projections

Let a ∈ R
2 be nonzero, and consider the line Ra spanned by a. In Section

6.6.2, we called the mapping

Pa(x) =
(a · x
a · a

)
a

the projection onto Ra. We leave it as an exercise to show that the projection
Pa is linear. Note that if u is the unit vector determined by a, then since
a · a = |a|2, it follows that

Pu(x) = Pa(x) = (uTx)u.

Thus,

Pu

(
x1

x2

)
= (u1x1 + u2x2)

(
u1

u2

)
,

so

Pu

(
x1

x2

)
=

(
u2
1 u1u2

u1u2 u2
2

) (
x1

x2

)
.

Hence the matrix of Pu is
(

u2
1 u1u2

u1u2 u2
2

)
. (7.7)

Note that a projection matrix is symmetric. The image of the projection Pu

is the line Ru, while its kernel is the line orthogonal to Ru. A reflection Pu

has the property that Pu ◦ Pu = Pu, since

Pu ◦ Pu(v) = Pu((v · u)u)) = (v · u)Pu(u) = (v · u)u = Pu(v).

We will next apply projections to find a general formula for the reflection R
n

through a hyperplane.

7.3.4 Reflections

We will first find an expression for a plane reflection and use that to suggest
how to define a reflection of Rn through a hyperplane. Let � be a line through
the origin of R2. We want to consider how to reflect R2 through �. The sought-
after mapping H : R2 → R

2 fixes every vector on � and sends every vector v
orthogonal to � to −v. (If a reflection is linear, this is enough information to
determine H.) Suppose v ∈ R

2 is on neither � nor �⊥. Then v and its reflection
H(v) form an isosceles triangle with equal sides v and H(v), which H swaps.

http://dx.doi.org/10.1007/978-0-387-79428-0_6
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Choosing a unit vector u on �⊥, let us write

v = Pu(v) + c,

where c ∈ �. This is the orthogonal decomposition of v with respect to � and
�⊥. Hence the component on � is c = v − Pu(v). By Euclidean geometry,
H(v) = −Pu(v) + c. Replacing c by v − Pu(v), we get the formula

H(v) = −Pu(v) + (v − Pu(v)) = v − 2Pu(v).

Therefore,

H(v) = v − 2Pu(v) = v − 2(u · v)u = v − 2(uTv)u. (7.8)

This expression immediately establishes the following result.

Proposition 7.9. The reflection H of R2 through a line � passing through
0 is a linear mapping.

Example 7.7. Let us find the reflection H through the line � given by x =
−y. Now u = ( 1√

2
, 1√

2
)T is a unit vector on �⊥. Thus,

H

(
a
b

)
=

(
a
b

)
− 2(

(
a
b

)
·
(

1√
2
1√
2

)
)

(
1√
2
1√
2

)

=
(

a − (a + b)
b − (a + b)

)

=
(−b

−a

)
.

Thus the matrix of H is (
0 −1

−1 0

)
. �

Now let Q denote the matrix of the reflection through the line orthogonal
to a unit vector u ∈ R

2. Applying (7.7) and (7.8), one sees that

Q =
(

1 − 2u2
1 −2u1u2

−2u1u2 1 − 2u2
2

)
=

(
u2
2 − u2

1 −2u1u2

−2u1u2 u2
1 − u2

2

)
. (7.9)

Thus, every 2 × 2 reflection matrix has the form

Q =
(

a b
b −a

)
, (7.10)
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where a2 + b2 = 1. Conversely, as we will show below, a matrix of the form

Q =
(

a b
b −a

)
, where a2 + b2 = 1, is a reflection. Hence, the symmetric

2 × 2 orthogonal matrices are exactly the matrices of reflections.
Let us now ask what the linear mapping H defined by (7.8) does in the

case of Rn. The equation v ·u = 0 defines an (n−1)-dimensional subspace W
of Rn, namely the hyperplane through the origin orthogonal to u. If v ∈ W ,
then H(v) = v. On the other hand, if v = ru, then H(v) = rH(u) =
r(u− 2u) = −ru = −v. In particular, H leaves the hyperplane W pointwise
fixed and reverses vectors on the line W⊥ orthogonal to this hyperplane.

Definition 7.4. Let u ∈ R
n be a unit vector, and let W be the hyperplane

in R
n orthogonal to the line Ru. Then the linear mapping H : R

n → R
n

defined by
H(v) = v − 2(v · u)u = v − 2(uTv)u (7.11)

is called the reflection of Rn through W .

Since reflecting v ∈ R
n twice through a hyperplane W returns v to itself, a

reflection H has the property that H ◦H = IRn . This can be checked directly
by matrix multiplication. Let P denote the matrix of the projection Pu. Then
the matrix Q of H is Q = In − 2P . Thus,

Q2 = (In2 − 2P )(In − 2P ) = In − 4P + 4P 2 = In,

since P 2 = P .
Since Q is symmetric and Q2 = In, Q is by definition orthogonal. Thus we

get the following.

Proposition 7.10. The matrix of a reflection is orthogonal. Hence, reflec-
tions are orthogonal linear mappings.

7.3.5 Projections on a general subspace

As a final example of a linear mapping, let us work out the projection of finite-
dimensional inner product space V onto an arbitrary subspace W . As we saw
in Proposition 6.38, every x ∈ V admits a unique orthogonal decomposition

x = w + y,

where w ∈ W and y ∈ W⊥. The projection of V onto W is the mapping
PW : V → V defined by PW (x) = w. The following proposition justifies
calling PW a projection.

http://dx.doi.org/10.1007/978-0-387-79428-0_6
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Proposition 7.11. The mapping PW : V → V has the following properties:

(i) PW is linear,

(ii) PW (w) = w if w ∈ W ,

(iii) PW (W⊥) = {0}, and finally,

(iv) PW + PW⊥ = I.

Proof. Since W is a finite-dimensional inner product space, we have shown
that it has an orthonormal basis, say u1, . . . ,uk. Assume that w ∈ W . By
Proposition 6.36,

w =
k∑

i=1

(w,ui)ui

=
k∑

i=1

(x − y,ui)ui

=
k∑

i=1

(x,ui)ui −
k∑

i=1

(y,ui)ui

=
k∑

i=1

(x,ui)ui.

The last identity holds, since y ∈ W⊥ and all the ui are in in W . Hence,

PW (x) =
k∑

i=1

(x,ui)ui.

This shows that PW is linear and PW (w) = w if w ∈ W . Thus, (i) and (ii)
hold. Statement (iii) follows from the fact that (y,ui) = 0 for all y ∈ W⊥,
and (iv) is a consequence of the decomposition x = w+y, since PW⊥(x) = y.

��
When V = R

n, Exercise 7.3.9 below gives an interesting alternative expres-
sion for PW that doesn’t require knowing an orthonormal basis of W .

7.3.6 Dimension two and the O(2,R)-dichotomy

The orthogonal group O(2,R) of all isometries of R
2 contains the group

Rot(2) of all rotations of R2 as a normal subgroup. Recall that every rotation

matrix has the form Rθ =
(

cos θ − sin θ
sin θ cos θ

)
. We are now going to show that

O(2,R) has surprising decomposition.

http://dx.doi.org/10.1007/978-0-387-79428-0_6
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Theorem 7.12 (The O(2,R)-dichotomy). Every 2 × 2 orthogonal matrix is

either a rotation matrix
(

a −b
b a

)
or a reflection matrix

(
a b
b −a

)
. Here

a2 + b2 = 1, so a = cos θ and b = sin θ for some θ. Consequently, every
isometry of R2 is either a rotation or a reflection.

Proof. We will first use the coset decomposition of O(2,R). Note that by the
product formula, det : O(2,R) → R

∗ is a homomorphism. We have shown
that det(Q) = ±1 for all Q ∈ O(2,R), since QTQ = I2. But by Exercise
2.2.5, the value of a homomorphism on a coset of its kernel is constant and
takes different values on different cosets. Let Q ∈ O(2,R). Since the columns
of Q are orthogonal unit vectors, we have

Q =
(

a c
b d

)
,

where a2 + b2 = 1, c2 + d2 = 1 and ac + bd = 0. After some simplification,
it follows that there are exactly two possibilities for Q:

Q1 =
(

a −b
b a

)
and Q2 =

(
a b
b −a

)
, where a2 + b2 = 1.

Now, det(Q1) = a2 + b2 = 1, while det(Q2) = −a2 − b2 = −1. Thus Q1

constitutes the kernel of det, so it follows that the kernel is Rot(2). Now
every element of the form Q2 can be written

Q2 =
(

1 0
0 −1

)(
a −b
b a

)
=

(
a c
c −a

)
,

where c = −b. Thus we have to show that Q2 is a reflection. We have

(
a c
c −a

)( −c
a + 1

)
= −

( −c
a + 1

)

and (
a c
c −a

)(
a + 1

c

)
=

(
a + 1

c

)
.

Put v =
( −c

a + 1

)
and w =

(
a + 1

c

)
, and note that v and w are orthogonal.

Hence if v (and equivalently w) is nonzero, there exists an orthonormal basis
u1 = v/|v| and u2 = w/|w| of R2 such that Q2u1 = −u1 and Q2u2 = u2. If
v = w = 0, then a = −1 and c = 0. But in this case,

Q2 =
(−1 0

0 1

)
.

http://dx.doi.org/10.1007/978-0-387-79428-0_2
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In either case, Q2 is the matrix of a reflection. This shows that every element
of O(2,R) is either a rotation or a reflection. ��

The O(2,R)-dichotomy rests on the fact that the kernel of the determinant
homomorphism on O(2,R) has two cosets: the identity coset Rot(2) and its
complement, which is the coset consisting of reflection matrices. In general,
the determinant determines a surjective homomorphism of O(n,R) → {±1}
with kernel the group O(n,R) ∩ SL(n,R). We will denote this group by
SO(n,R). In particular, Rot(2) = SO(2,R). (Also see Exercise 5.2.13.) Since
SO(n,R) is a normal subgroup of O(n,R), we may apply the first isomor-
phism theorem (Theorem 2.20) to deduce that O(n,R)/SO(n,R) ∼= {±1}.
Thus, SO(n,R) also has exactly two left cosets, and therefore

O(n,R) = SO(n,R) ∪ QSO(n,R), (7.12)

where Q is any element of O(n,R) such that det(Q) = −1. However, it is not
as easy to describe this coset as in the case n = 2.

Since the product of a rotation matrix R and a reflection matrix Q is a
reflection matrix, one can ask how to determine the reflections RQ and QR.
Similarly, if Q1 and Q2 are reflections, how does one describe the rotation
Q1Q2? These questions are taken up in the exercises. There is another nice
fact.

Proposition 7.13. Every finite subgroup of SO(2,R) is cyclic.

Proof. In fact, SO(2,R) is isomorphic to the circle group S1 in C
∗ via the

isomorphism ϕ(Rθ) = eiθ (see Section 4.2.2). The fact that ϕ is an isomor-

phism is due to the formula Rθ

(
x
y

)
= eiθz, where z = x+ iy. But we showed

that every finite subgroup of C
∗ is cyclic in Proposition 2.26, so the same

holds for SO(2,R). ��

7.3.7 The dihedral group as a subgroup of O(2,R)

Recall that the dihedral group D(m) (m ≥ 1) was originally defined by giving
generators a and b satisfying the relations am = b2 = 1 and ab = ba−1. In this
section we will show that D(m) can be realized geometrically as a subgroup
of O(2,R). Consider the rotation matrix a = R2π/m and the reflection matrix

b =
(

1 0
0 −1

)
. Then am = b2 = I2. Moreover, it can be checked directly

that aba = b, so ab = ba−1. Thus the subgroup D(m) of O(2,R) generated
by a and b is a copy of D(m).

Now suppose m > 1, and let {m} denote an m-sided regular polygon in R
2

centered at the origin having a vertex at
(

1
0

)
. For example, the vertices of

http://dx.doi.org/10.1007/978-0-387-79428-0_5
http://dx.doi.org/10.1007/978-0-387-79428-0_2
http://dx.doi.org/10.1007/978-0-387-79428-0_4
http://dx.doi.org/10.1007/978-0-387-79428-0_2
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{m} can be placed at the mth roots of unity e2πi/m. Then {m} is symmetric

about the x-axis. If m = 1, we will assume {m} = {
(

1
0

)
}. Let O({m}) ⊂

O(2,R) be the set of all orthogonal matrices that send {m} onto itself.

Proposition 7.14. Assume m ≥ 1. Then O({m}) = D(m).

Proof. We will leave it to the reader to verify that O({m}) is a subgroup
of O(2,R). By construction, it follows that {m} is sent onto itself by both
a and b. Thus D(m) ⊂ O({m}). Since |D(m)| = 2m, it suffices to show
that |O({m})| = 2m also. Since the vertices of {m} are equidistant from
the origin and elements of O({m}) preserve lengths, it follows that O({m})
has to permute the vertices of {m}. But an element of O({m}) is a linear
mapping on R

2, so it is determined by its values on two noncollinear vectors.
Thus, O({m}) has to be finite. Let O+ = O({m}) ∩ SO(2,R). Being a finite
subgroup of SO(2,R), we know that O+ is cyclic. This implies that |O+| = m,
since because {m} has m vertices, no element of O+ can have order greater
than m. But a ∈ O+, so O+ is the cyclic group generated by a. Since b ∈
O({m}), it follows that det : O({m}) → {±1} is surjective, so as above,

O({m}) = O+ ∪ b O+.

Therefore, |O({m})| = 2m, as claimed. ��

7.3.8 The finite subgroups of O(2,R)

We now classify the finite subgroups of O(2,R). It turns out that there are no
major surprises. Every finite subgroup of O(2,R) is either cyclic or dihedral.

Theorem 7.15. The only finite subgroups of O(2,R) are:

(i) the groups {I2, b}, where b is a reflection;

(ii) the cyclic groups Cm consisting of rotations Rθ, where θ = 2kπ/m with
0 ≤ k ≤ m − 1; and

(iii) the dihedral groups D(m) of symmetries of {m}, where m > 1.

Proof. We have already shown that every finite subgroup of SO(2,R) is cyclic.
Suppose G is a subgroup of O(2,R) that is not contained in SO(2,R). Then
by the O(2,R)-dichotomy, G contains a reflection b. If G �= {1, b}, then G
also contains a rotation different from I2. So let G+ = G ∩ SO(2,R). Then
det : G → {±1} is surjective, so as above, G = G+ ∪ bG+. Thus, G = D(m),
where m = |G+|. ��
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This theorem (or rather its content) is attributed to Leonardo da Vinci.
He was the first to explicitly list the symmetries of a regular polyhedron
{m}. Leonardo’s interest in symmetries involved architecture, in particular
questions such as whether one can add structures at the corners of a building
without destroying the rotational or reflective symmetry. Many interesting
facts about symmetries can be found on the Internet as well as in a pair of
classic books: Symmetry, by H. Weyl, and Geometry, by H.S.M. Coxeter. In
the penultimate chapter, we will discuss the symmetry groups of the Platonic
solids and classify all the finite subgroups of SO(3,R). The classification is a
considerably more difficult proof.

Exercises

Exercise 7.3.1. Suppose a ∈ R
n is nonzero.

(i) Show that the projection

Pa(x) =
(a · x
a · a

)
a

onto the line Ra is linear.

(ii) Using the formula for Pa, verify that Pa fixes every vector on Ra and
sends every vector orthogonal to a to 0.

(iii) Verify that Pa ◦ Pa = Pa.

Exercise 7.3.2. Let u and v be an orthonormal basis of R2. Show directly
that the following formulas hold for all x ∈ R

2:

(i) Pu(x) + Pv(x) = x, and

(ii) Pu(Pv(x)) = Pv(Pu(x)) = 0.

Exercise 7.3.3. Let V be an inner product space, and suppose S : V → V
preserves distances. Show that S is orthogonal, and conclude that S : V → V
preserves distances if and only if S is an isometry.

Exercise 7.3.4. Find the matrix of each of the following linear mappings:

(i) the rotation R−π/4 of R2 through −π/4,

(ii) the reflection H of R2 through the line x = y,

(iii) the matrices of H ◦ R−π/4 and R−π/4 ◦ H, where H is the reflection of
part (ii),

(iv) the matrix of the rotation H ◦ R−π/4 ◦ H of R2.
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Exercise 7.3.5. Let H be the reflection of R2 through the line � through
the origin, and let H ′ be the reflection through �⊥. Describe the following
linear mappings:

(i) HRθ and H ′RθH,

(ii) HRθH, and

(iii) RθHR−θ.

Exercise 7.3.6. Let V = C and consider the mapping T : V → V defined
by T (z) = z. Describe T as a linear mapping with domain and target R

2,
and find its matrix. Also, give a geometric interpretation of T .

Exercise 7.3.7. Show directly that a reflection H of R
n is orthogonal by

checking that for all x and y in R
n,

H(x) · H(y) = x · y.

Exercise 7.3.8. Find the reflection of R3 through the plane P if:

(i) P is the plane x + y + z = 0;

(ii) P is the plane ax + by + cz = 0.

Exercise 7.3.9. This exercise gives a formula for the projection on a sub-
space W of Rm that does not require having an orthonormal basis of W . Let
A ∈ R

m×n be a matrix whose columns are a basis of W .

(i) Let x ∈ R
n. Under what condition is Ax the projection of x on W?

(ii) Prove that ATA is invertible. (Hint: consider xTATAx.)

(iii) Prove that A(ATA)−1ATx ∈ W if x ∈ R
m, and A(ATA)−1ATx = x if

x ∈ W .

(iv) Next show that for every v ∈ R
m,

v − A(ATA)−1ATv

is orthogonal to W . Hint: show that AT (v − A(ATA)−1ATv) = 0.

(v) Conclude that A(ATA)−1ATx is the projection of x ∈ R
m onto W . Thus,

PW has matrix A(ATA)−1AT .

Exercise 7.3.10. Let Q =
(

a b
b −a

)
, where a2 + b2 = 1. Show that

Q is a reflection by demonstrating that Q can be written in the form(
1 − 2u2

1 −2u1u2

−2u1u2 1 − 2u2
2

)
, where u2

1 + u2
2 = 1, and verifying that Q is the reflec-

tion through the line R

(−u2

u1

)
.
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7.4 Coordinates with Respect to a Basis
and Matrices of Linear Mappings

We now come to a technical question. Suppose V and W are finite-dimensional
vector spaces over the same field F of dimensions n and m respectively, and
let T : V → W be a linear mapping. How can we represent T? For example,
if V and W are F

n and F
m respectively, then T is a matrix linear map-

ping, hence is determined by a unique element A ∈ F
m×n. The assignment

T → A = MT ∈ F
m×n depends on the fact that there are natural coordinates

on F
n and F

m. Recall that for a general vector space, coordinates depend on
choosing a basis. So, in order to represent a linear mapping T : V → W as
a matrix, we must first choose bases for both V and W . The first job in this
section is to show how to define the matrix of an arbitrary linear mapping
T with respect to a choice of bases for V and W , and the second job is to
investigate how a different choice of these bases affects the matrix of T . The
result is called the change of basis formula.

7.4.1 Coordinates with respect to a basis

As usual, let V be a finite-dimensional vector space over F, and let B =
{v1,v2, . . . ,vn} be a basis of V . Recall that every v ∈ V has a unique
expression

v = r1v1 + r2v2 + · · · + rnvn.

The scalars r1, . . . , rn are called the coordinates of v with respect to B. We
will write v = (r1, r2, . . . , rn)B. Notice that the notion of coordinates assumes
that the basis B is ordered. The term coordinate deserves some explanation.
A coordinate is actually a function on V with target F. A basis B as above
determines n coordinate functions x1, . . . , xn, which are defined by putting
xi(v) = ri when v has the (above) expansion in the basis B. The coordinates
of v are the values of the coordinate functions on v. Note that the coordinate
functions are linear: xi(av + bw) = axi(v) + bxi(w).

Finding the coordinates of a vector in F
n with respect to a basis is a

familiar problem in matrix inversion. Here is a preliminary example.

Example 7.8. Let us choose two different bases of R2, say

B = {
(

1
2

)
,

(
0
1

)
} and B′ = {

(
1
1

)
,

(
1

−1

)
}.

Expanding e1 in terms of these two bases gives two different sets of coordi-
nates. By inspection,
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e1 =
(

1
0

)
= 1

(
1
2

)
− 2

(
0
1

)

and

e1 =
(

1
0

)
=

1
2

(
1
1

)
+

1
2

(
1

−1

)
.

Thus, e1 = (1,−2)B, while e1 = (12 , 1
2 )B′ . �

7.4.2 The change of basis matrix

The first question is how the coordinates of v with respect to B and B′ are
related. This is answered by setting up a linear system as follows: expanding
the basis B′ in terms of the basis B gives

(
1
1

)
= a

(
1
2

)
+ b

(
0
1

)
and

(
1

−1

)
= c

(
1
2

)
+ d

(
0
1

)
.

Expressed in matrix form, these equations become

(
1 1
1 −1

)
=

(
1 0
2 1

)(
a c
b d

)
.

Thus, (
a c
b d

)
=

(
1 0
2 1

)−1 (
1 1
1 −1

)
=

(
1 1

−1 −3

)
.

Now suppose v has coordinates (r, s)B and (x, y)B′ with respect to B and B′.
Then

v =
(

1 0
2 1

)(
r
s

)
=

(
1 1
1 −1

)(
x
y

)
.

Therefore, (
r
s

)
=

(
1 1

−1 −3

) (
x
y

)
.

We can imitate this in the general case. Let

B = {v1,v2, . . . ,vn}

and
B′ = {v′

1,v
′
2, . . . ,v

′
n}
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be two bases of V . Define the change of basis matrix MB
B′ ∈ F

n×n to be the
matrix (aij) with entries determined by

v′
j =

n∑

i=1

aijvi.

For example, suppose n = 2. Then

v′
1 = a11v1 + a21v2,

v′
2 = a12v1 + a22v2.

In matrix form as above, this looks like

(v′
1 v′

2) = (v1 v2)
(

a11 a12

a21 a22

)
= (v1 v2)MB

B′ ,

where

MB
B′ =

(
a11 a12

a21 a22

)
.

Notice that (v1 v2) is a generalized matrix in the sense that it is a 1 × 2
matrix with vector entries. A nice general property of this notation is that
whenever v1, . . . ,vn is a basis of V and (v1 · · ·vn)A = (v1 · · ·vn)B, then
A = B.

Returning to the general case, let B and B′ be the two bases of V defined
above. Then,

(v′
1 v′

2 · · · v′
n) = (v1 v2 · · · vn)MB

B′ . (7.13)

Example 7.9. For B and B′ as in Example 7.8, we have

MB
B′ =

(
1 1

−1 −3

)
. �

Proposition 7.16. Let B and B′ be bases of V . Then

MB′
B = (MB

B′)−1.

Also
MB

B = In.

Proof. First of all, the identity MB
B = In is clear. For the rest of the proof,

let us assume n = 2 for simplicity. Now,
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(v1 v2) = (v′
1 v′

2)MB′
B = (v1 v2)MB

B′MB′
B .

Thus,
MB

B′MB′
B = MB

B = I2.

Hence, (MB
B′)−1 = MB′

B . ��
Now let’s see what happens when a third basis B′′ = {v′′

1 , . . . ,v′′
n} is thrown

in. Iterating the expression in (7.13) gives

(v′′
1 · · · v′′

n) = (v′
1 · · · v′

n)MB′
B′′ = (v1 · · · vn)MB

B′MB′
B′′ .

This gives the following result.

Proposition 7.17. Let B, B′, and B′′ be bases of V . Then

MB
B′′ = MB

B′MB′
B′′ .

7.4.3 The matrix of a linear mapping

Now suppose T : V → W is a linear mapping. The purpose of this section is
to associate a matrix to T with respect to a pair of chosen bases of V and
W . Let these bases be

B = {v1,v2, . . . ,vn}

for V and
B′ = {w1,w2, . . . ,wm}

for W . Then one can write

T (vj) =
m∑

i=1

cijwi. (7.14)

Note: the ith component of T (vj) with respect to B′ is denoted by cij . This
is exactly analogous to how we defined the change of basis matrix. Now we
can define the matrix MB

B′(T ) of T with respect to the bases B and B′.

Definition 7.5. The matrix of T with respect to the bases B and B′ is
defined to be the m × n matrix (cij). In other words, MB

B′(T ) = (cij).

Let us put T (v1 v2 · · ·vn) = (T (v1) T (v2) · · · T (vn)). Expressing (7.14) in
matrix form gives

T (v1 v2 · · ·vn) = (T (v1) T (v2) · · · T (vn)) = (w1 w2 · · ·wm)MB
B′(T ).

(7.15)
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This notation is set up so that if V = F
n, W = F

m, and T = TA, where
A ∈ F

m×n, then MB
B′(T ) = A when B and B′ are the standard bases, since

TA(ej) is the jth column of A. For (7.15) says that

A = TAIn = ImMB
B′(TA) = MB

B′(TA).

We remark that
MB

B′(IV ) = MB
B′ ,

where IV : V → V is the identity mapping.

7.4.4 The Case V = W

Now suppose V = W . In this case, we want to express the matrix of T in a
single basis and then find its expression in another basis. So let B and B′ be
bases of V . As above, for simplicity, we assume n = 2 and put B = {v1,v2}
and B′ = {v′

1,v
′
2}. Hence (v′

1 v′
2) = (v1 v2)MB

B′ . Since T is linear, we may
write

(T (v′
1) T (v′

2)) = (T (v1) T (v2))MB
B′

= (v1 v2)MB
B(T )MB

B′

= (v′
1 v′

2)MB′
B MB

B(T )MB
B′ .

Hence,
MB′

B′(T ) = MB′
B MB

B(T )MB
B′ .

We have therefore proved the following proposition.

Proposition 7.18. Let T : V → V be linear and let B and B′ be bases of
V . Then

MB′
B′(T ) = MB′

B MB
B(T )MB

B′ . (7.16)

Thus, if P = MB′
B , we have

MB′
B′(T ) = PMB

B(T )P−1. (7.17)

Example 7.10. Consider the linear mapping T : R2 → R
2 whose matrix

with respect to the standard basis is

A =
(

1 0
−4 3

)
.

Let’s find the matrix B of T with respect to the basis (1, 1)T and (1,−1)T .
Calling this basis B′ and the standard basis B, we have
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MB
B′ =

(
1 1
1 −1

)
.

To compute B, we have to use the matrix equation

(
1 0

−4 3

)(
1 1
1 −1

)
=

(
1 1
1 −1

)
B,

so

B =
(

1 1
1 −1

)−1 (
1 0

−4 3

) (
1 1
1 −1

)
.

Computing the product gives

B =
(

0 −3
1 4

)
. �

Example 7.11. Consider the reflection H of R2 through a line � (containing
0). Let v1 be a nonzero element of � and v2 a nonzero element of the line �⊥.
Then H(v1) = v1 and H(v2) = −v2. Since H is an isometry, it is natural
to switch to an orthonormal basis. So let B = {u1,u2} be the orthonormal

basis of R2 where ui =
1

|vi|vi for i = 1, 2. Then

MB
B(H) =

(
1 0
0 −1

)
.

Now suppose that u1 =
1√
2
(1, 1)T and u2 =

1√
2
(1,−1)T . Then the matrix

(u1 u2) is orthogonal. Let us use this to find the matrix A of H with respect
to to the standard basis B′ = {e1, e2} of R2. Since

MB′
B′(H) = MB′

B MB
B(H)MB

B′ ,

and since B is an orthonormal basis, it follows that MB
B′ = (u1 u2)T . Thus,

by (7.16),
A = MB′

B MB
B(H)MB′

B =

1
2

(
1 1
1 −1

) (
1 0
0 −1

) (
1 1
1 −1

)
=

(
0 1
1 0

)
.

This checks, since by definition, H sends e1 to e2 and sends e2 to e1. �
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7.4.5 Similar matrices

The relationship between the matrices of a linear mapping in different bases
suggests that we recall a term introduced in Exercise 5.2.6.

Definition 7.6. Let A and B be n×n matrices over F. Then we say that A
is similar to B if there exists an invertible P ∈ F

n×n such that B = PAP−1.

It is not hard to see that similarity is an equivalence relation on F
n×n

(exercise: check this). An equivalence class for this equivalence relation is
called a conjugacy class of Fn×n. The meaning of a conjugacy class is given
in the next proposition.

Proposition 7.19. Let V be a finite-dimensional vector space over F such
that dim V = n. Then the matrices that represent a given linear mapping
T : V → V form a conjugacy class of Fn×n.

Recall that a linear mapping T : V → V is semisimple if there exists a basis
B = {v1, . . . ,vn} of V for which T (vi) = μivi for some scalars μ1, . . . , μn in
F. Thus a linear mapping T is semisimple if and only if the conjugacy class
of its matrix with respect to some basis of V contains a diagonal matrix. The
semisimple linear mappings T : V → V are classified in the next chapter.
Conjugacy classes are also important in group theory. We will say more about
this in Chap. 11.

7.4.6 The matrix of a composition T ◦ S

Suppose S, T : V → V are linear mappings. Recall that we saw in Proposi-
tion 3.6 that when V = F

n, then MT◦S = MTMS . We will now prove that
this fact also holds in general.

Proposition 7.20. Assume that V is a finite-dimensional vector space with
basis B. Then

MB
B(T ◦ S) = MB

B(T )MB
B(S).

Proof. We leave this to the reader.

7.4.7 The determinant of a linear mapping

The product identity det(AB) = det(A) det(B) and the fact that det(A−1) =
det(A)−1 imply that two similar matrices always have the same determinant,
since

http://dx.doi.org/10.1007/978-0-387-79428-0_5
http://dx.doi.org/10.1007/978-0-387-79428-0_11
http://dx.doi.org/10.1007/978-0-387-79428-0_3
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det(PAP−1) = det(P ) det(A) det(P−1) = det(A).

Using this, one can define the determinant of a linear mapping T : V → V ,
provided V is finite-dimensional. The definition goes as follows.

Definition 7.7. Let V be a finite-dimensional vector space and suppose
T : V → V is linear. Then the determinant det(T ) of T is defined to be
det(A), where A ∈ F

n×n is any matrix representing T with respect to some
basis of V .

In order to show that det(T ) is well defined, we need to show that det(T )
is independent of the choice of basis of V . But by Proposition 7.18, if A and B
are matrices of T with respect to different bases, then A and B are similar,
i.e., B = PAP−1 for some invertible P ∈ F

n×n. Hence, det(B) = det(A).
Thus, det(T ) is indeed well defined.

Example 7.12. Suppose T : V → V is semisimple. Then there exists a basis
for which the matrix of T is a diagonal matrix D = diag (μ1 · · · μn). Thus
det(T ) = μ1 . . . μn, since the determinant of a diagonal matrix is the product
of the diagonal entries. �

Example 7.13. Let V be a finite-dimensional inner product space, and let
T : V → V be an isometry. Since the determinant of an orthogonal matrix is
±1 (since QTQ = In), it follows that det(T ) = ±1 also. �

Proposition 7.21. If S, T : V → V are linear mappings on a finite-
dimensional vector space V , then det(T ◦ S) = det(T ) det(S).

Proof. Apply Proposition 7.20 and the product formula. ��
For example, we have the following.

Proposition 7.22. Suppose T : V → V is a linear mapping such that
det(T ) �= 0. Then there exists a linear mapping S : V → V such that
T ◦ S = S ◦ T = IV . In particular, T is a bijection.

Proof. Choose a basis B of V and let A be the matrix of T with respect
to B. Since det(T ) �= 0, det(A) �= 0 too, so A has an inverse A−1. Now let
S : V → V be the linear mapping whose matrix with respect to B is A−1.
Then by Proposition 7.20,

MB
B(T ◦ S) = MB

B(T )MB
B(S) = AA−1 = In.

Therefore, T ◦ S = IV . Similarly, S ◦ T = IV too. The assertion that T is a
bijection follows immediately from Proposition 1.1 or Exercise 7.1.1. ��

http://dx.doi.org/10.1007/978-0-387-79428-0_1
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Exercises

Exercise 7.4.1. Find the coordinates of the standard basis e1, e2, e3 of R3

in terms of the basis (1, 1, 1)T , (1, 0, 1)T , (0, 1, 1)T , and find the matrix of the
linear mapping T ((x1, x2, x3)T ) = (4x1 + x2 − x3, x1 + 3x3, x2 + 2x3)T with
respect to this basis.

Exercise 7.4.2. Consider the basis (1, 1, 1)T , (1, 0, 1)T , and (0, 1, 1)T of R3.
Find the matrix of the linear mapping T : R

3 → R
3 defined by T (x) =

(1, 1, 1)T × x with respect to this basis.

Exercise 7.4.3. Let H : R2 → R
2 be the reflection through the line 2x = y.

Find a basis of R2 such that the matrix of H is diagonal.

Exercise 7.4.4. Show that every projection Pa : R2 → R
2 is semisimple by

explicitly finding a basis for which the matrix of Pa is diagonal. Also, find
this diagonal matrix.

Exercise 7.4.5. Let Rθ be the usual rotation of R2. Does there exist a basis
of R2 for which the matrix of Rθ is diagonal?

Exercise 7.4.6. Show that matrix similarity is an equivalence relation on
F

n×n.

Exercise 7.4.7. Find the matrix MB
B(Ca) of the cross product Ca = a × x

in the following cases:

(i) a = e1 and B is the standard basis;

(ii) a = e1 and B is the basis {e1, e2 + e3, e2 − e3}.

Exercise 7.4.8. Let V = (F2)2×2, and let T : V → V be defined by T (B) =

AB − BA, where A =
(

0 1
1 0

)
as an element of V .

(i) Show that T is a linear mapping.

(ii) Find the matrix of T with respect to a suitable basis (of your choice)
of V .

(iii) Find det(T ).

Exercise 7.4.9. Let V be a finite-dimensional vector space, and suppose
T : V → V is a linear mapping. Find the relationship between between
N (MB

B(T )
)

and N (MB′
B′(T )

)
, where B and B′ are any two bases of V .

Exercise 7.4.10. Let T : V → V be a linear mapping, where V has finite
dimension. Show that the kernel of T is nontrivial if and only if det(T ) = 0.
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Exercise 7.4.11. Suppose the characteristic of F is different from 2, and let
V = F

n×n. Let T : V → V be the linear mapping given by T (A) = AT . Find
a basis of V for which the matrix of T is diagonal. (Hint: recall that A is the
sum of a symmetric matrix and a skew-symmetric matrix.)

Exercise 7.4.12. Let V = F4 = {0, 1, α, β} be the four-element Galois field
considered as a vector space over the prime field F2 (see Section 2.6.2).

(i) Show that 1 and α form a basis of V .

(ii) Show that the Frobenius map F : V → V given by F (x) = x2 is a linear
mapping.

(iii) Find the matrix of F with respect to the basis of (i).

(iv) Is F semi-simple?

http://dx.doi.org/10.1007/978-0-387-79428-0_2
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7.5 Further Results on Mappings

As usual, all vector spaces will be over the field F. If V and W are vector
spaces, the space L(V,W ) denotes the space of all linear mappings T : V →
W . If V = F

n and W = F
m, then L(V,W ) = F

m×n. The purpose of this
section is to study L(V,W ) for various choices of V and W .

7.5.1 The space L(V,W )

Mappings F : V → W can be added using pointwise addition and can be
multiplied by scalars in a similar way. That is, if F,G : V → W are two
mappings, their sum F + G is the mapping formed by setting

(F + G)(v) = F (v) + G(v).

Scalar multiplication is defined by putting

(aF )(v) = aF (v)

for any scalar a. Hence, one can form linear combinations of mappings. It
isn’t hard to see that the set of all mappings with domain V and target W is
a vector space over F. Now let L(V,W ) denote the set of all linear mappings
with domain V and target W . Then L(V,W ) is a vector space over F under
the pointwise addition and scalar multiplication defined above. The following
result gives the dimension of L(V,W ) in the finite-dimensional case.

Proposition 7.23. Suppose V and W are finite-dimensional vector spaces,
say dim V = n and dim W = m. Then dim L(V,W ) = mn.

Proof. Choose bases B of V and B′ of W . Then T has matrix MT = MB
B′(T ),

and putting φ(T ) = MT defines a linear mapping Φ : L(V,W ) → F
m×n.

In fact, Φ is a bijection, and therefore Φ is an isomorphism. This implies
dim L(V,W ) = dimF

m×n = mn, since an isomorphism preserves dimension.
��

7.5.2 The dual space

The space V ∗ = L(V,F) of linear maps (or linear functions) from V to F is
called the dual space of V . If V is a finite-dimensional vector space, then the
previous result says that dim V ∗ = dim V. It turns out that even though V
and V ∗ have the same dimension, there usually is no natural isomorphism
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between them unless there is some additional structure. For example, if V is
a finite-dimensional inner product space, then there is a natural isomorphism
(see below). Given a basis of V , however, there is a natural basis of V ∗ known
as the dual basis, which we now describe. If v1, . . . ,vn is a basis of V , then
the dual basis v∗

1, . . . ,v
∗
n of V ∗ is defined by specifying how each v∗

i acts on
the basis v1, . . . ,vn. Since a linear mapping is uniquely defined by giving its
values on a basis, this suffices to define a unique element of V ∗. Thus put

v∗
i (vj) =

{
1 if i = j,
0 if i �= j.

(7.18)

More succinctly, v∗
i (vj) = δij . To justify the term dual basis, we prove the

following proposition.

Proposition 7.24. If v1, . . . ,vn is a basis of V , then v∗
1, . . . ,v

∗
n is a basis

of V ∗.

Proof. Since V and V ∗ have the same dimension, it suffices to show that the
dual basis vectors are independent. Suppose

∑n
i=1 aiv∗

i = 0. By (7.18),

( n∑

i=1

aiv∗
i

)
(vj) =

n∑

i=1

aiv∗
i (vj) = aj .

Hence each aj is equal to zero, so v∗
1, . . . ,v

∗
n are indeed independent. ��

Example 7.14. In fact, the dual basis for V = F
n is already quite familiar.

Recall that the ith component function xi : Fn → F is defined by

xi(a1, · · · , an) = ai

for i = 1, . . . , n. Then each xi is in V ∗. In fact, x1, . . . , xn is the basis of V ∗

dual to the standard basis e1, . . . , en. �
Example 7.15. Here is an infinite-dimensional example. Let V = F[x].
Then the evaluation at an element r ∈ F is the map er : V → F defined
by er(f) = f(r). Then er ∈ V ∗ for every r ∈ F. The kernel of er consists of
all f ∈ F[x] such that f(r) = 0.

Let us now consider the case mentioned above in which V is a finite-
dimensional inner product space.

Proposition 7.25. Let V be a finite-dimensional inner product space over
R. If v ∈ V , let ϕv : V → R be the element of V ∗ defined by

ϕv(x) = (v,x),

where ( , ) is the inner product on V . Then the mapping Φ : V → V ∗ defined
by Φ(v) = ϕv is an isomorphism.
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Proof. It is clear, by the properties of an inner product, that ϕv ∈ V ∗. Since
dim V = dim V ∗, we have only to show that Φ is injective. But if Φ(v) = 0,
then (v,x) = 0 for all x ∈ V . In particular, (v,v) = 0, so v = 0 by the
definition of an inner product, and hence by Proposition 7.3, Φ is injective.

��
In a similar vein, a Hermitian inner product on a finite-dimensional vector

space V over the complex numbers enables one to define an isomorphism from
V to V ∗, although the definition is slightly different, since (αx,v) = α(x,v)
for a Hermitian inner product (see Example 6.35).

It turns out that there is always a natural isomorphism between V and
V ∗∗. This is an interesting exercise.

7.5.3 Multilinear maps

Let V and W be vector spaces over F. A mapping

T : V × V × · · · × V → W (k factors)

is called k-multilinear if for all i = 1, . . . , k, the mapping Si : V → W defined
by

Si(x) = T (v1, . . . ,vi−1,x,vi+1, . . . ,vk)

is a linear mapping for every v1, . . . ,vi−1,vi+1, . . . ,vk ∈ V .

Example 7.16. Let V = F and define T (r1, r2, . . . , rk) = r1r2 · · · rk. Then
T is k-multilinear on V . �

More interestingly, let V = F
n, where elements of F

n are viewed as
columns. Define D : Fn×n = F

n × · · · × F
n → F by

D(v1,v2, . . . ,vn) = det(v1v2 . . .vn).

Proposition 7.26. The mapping D is n-multilinear.

Proof. Fix a1, . . . ,an ∈ F
n, and put Sj(x) = D(a1, . . . ,aj−1,x,aj+1, . . . ,an).

We must show that Sj(x + y) = Sj(x) + Sj(y), and Sj(rx) = rSj(x) for all
x,y ∈ F

n and r ∈ F. Let aj = (a1ja2j . . . anj)T . By (5.9),

D(a1, . . . ,an) =
∑

σ∈S(n)

sgn(σ) a1σ(1)a2σ(2) · · · anσ(n).

Put x = (x1j , x2j , . . . , xnj)T and y = (y1j , y2j , . . . , ynj)T . For each σ ∈ S(n),
there exists exactly one index i such that σ(i) = j. Thus, each term in the
expansion of Sj(x + y) has the form

http://dx.doi.org/10.1007/978-0-387-79428-0_6
http://dx.doi.org/10.1007/978-0-387-79428-0_5
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sgn(σ) a1σ(1) · · · (xiσ(i) + yiσ(i)) · · · anσ(n).

This shows that Sj(x + y) = Sj(x) + Sj(y). Similarly, Sj(rx) = rSj(x).
Therefore, D is n-multilinear. ��

Example 7.17. Let us try an example. Suppose A =
(

1 3
2 1

)
. Then,

det(A) = det
(

1 0
2 1

)
+ det

(
1 3
2 0

)
= 1 − 6 = −5. �

7.5.4 A characterization of the determinant

The determinant function on F
n×n is multilinear, has the value 1 on In, and

det(A) = 0 if two columns of A are equal. In the next result, we will prove
that the only function D : F

n×n → F having these three properties is the
determinant.

Proposition 7.27. Suppose D : Fn×n → F is a function satisfying the fol-
lowing properties:

(i) D is n-multilinear with respect to columns,

(ii) D(A) = 0 if two columns of A coincide; and

(iii) D(In) = 1.

Then D(A) = det(A) for all A ∈ F
n×n.

Proof. I claim that for every elementary matrix E, D(E) = det(E). First,
if E is the elementary matrix obtained by dilating the ith column of In by
r ∈ F, then by (i) and (iii), D(E) = rD(In) = r = det(E). Suppose E is
the elementary matrix obtained by swapping the ith and jth columns of In,
where i < j. Form the matrix F ∈ F

n×n whose ith and jth columns are both
ei + ej and whose kth column, for each k �= i, j, is ek. (Note: in the 2 × 2
case, F is the all ones matrix.) By (ii), D(F ) = 0. Expanding D(F ) using (i)
and applying (ii) twice, we get

D(e1, . . . , ej , . . . , ei, . . . , en) + D(e1, . . . , ei, . . . , ej , . . . , en) = 0.

The first term is D(E), while the second term is D(In) = 1, so D(E) = −1 =
det(E). Finally, if E is the transvection that adds a multiple of the ith column
of In to its jth column, then D(E) = 1 = det(E) by (i), (ii), and (iii).
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The next step is to show that for every elementary matrix E and A ∈
F

n×n, D(AE) = D(E)D(A). (Recall that column operations are done via
right multiplication.) This follows from the previous proposition if E is a
row dilation. If E is a column swap, an argument similar to showing that
D(E) = −1 shows that D(AE) + D(A) = 0. Therefore, D(AE) = −D(A) =
D(E)D(A). Likewise, D(AE) = D(A) = D(E)D(A) when E is a transvection.
This completes the second step.

Now suppose A ∈ F
n×n has rank n. Then there exist elementary matrices

E1, . . . , Ek such that A = E1 · · · Ek. Applying D(AE) = D(E)D(A) and
using the product formula (Theorem 5.1) for the determinant, one gets

D(A) = D(E1) · · · D(Ek) = det(E1) · · · det(Ek) = det(A).

On the other hand, if A has rank less than n, then the column reduced form
of A has a column of zeros, so for suitable elementary matrices E1, . . . , Ek,
AE1 · · · Ek has a column of zeros. Thus, D(A) = 0 = det(A). This completes
the proof that D(A) = det(A) for all A ∈ F

n×n. ��
Notice that what the proposition shows is that two functions D1 and D2

on F
n×n satisfying (i)–(iii) have to coincide. But it cannot actually be used

as a definition of the determinant.

Exercises

Exercise 7.5.1. Let V be a finite-dimensional inner product space. Show
how to define an inner product on V ∗ in two ways:

(i) using a basis and the dual basis;

(ii) without appealing to a basis.

Exercise* 7.5.1. Let V be any finite-dimensional vector space. Define the
double dual V ∗∗ of V to be (V ∗)∗. That is, V ∗∗ is the dual of the dual space
of V . Show that the map Δ : V → V ∗∗ defined by the condition

Δ(v)(ϕ) = ϕ(v) (7.19)

for all v ∈ V and ϕ ∈ V ∗ is an isomorphism. Thus Δ is a natural isomorphism
from V onto V ∗∗.

Exercise* 7.5.2. Let V and W be a pair of finite-dimensional vector spaces
over F and let T : V → W be linear. Define the adjoint map T ∗ : W ∗ → V ∗

by
T ∗(ω)(v) = ω(T (v))

for all ω ∈ W ∗ and v ∈ V .

http://dx.doi.org/10.1007/978-0-387-79428-0_5
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(i) Show that T ∗ is a well-defined linear map.

(ii) Suppose v1, . . .vn is a basis of V , and w1, . . . ,wm is a basis of W , and
let the matrix of T with respect to these bases be A. Find the matrix of T ∗

with respect to the dual bases of W ∗ and V ∗.

(iii) Show that if T is injective, then T ∗ is surjective. Also show the reverse:
if T is surjective, then T ∗ is injective.

(iv) Show that dim im(T ) = dim im(T ∗).

(v) Show that if V is a subspace of W , then there exists a natural surjective
linear map S : W ∗ → V ∗.



Chapter 8
Eigentheory

Suppose V is a finite-dimensional vector space over F and T : V → V is a
linear mapping. An eigenpair for T consists of a pair (λ,v), where λ ∈ F

and v ∈ V is a nonzero vector such that T (v) = λv. The scalar λ is called
an eigenvalue of T , and v is called an eigenvector of T corresponding to λ.
We will say that the linear mapping T is semisimple if there exist eigen-
pairs (λ1,v1), . . . , (λn,vn) for T such that v1, . . . ,vn form a basis of V . A
basis consisting of eigenvectors is known as an eigenbasis, and the problem of
finding an eigenbasis (or whether one exists) is an important step in under-
standing the structure of a linear mapping. The aim of this chapter is to
develop the theory of eigenpairs and eigenbases and to eventually obtain a
characterization the semisimple linear mappings. We will also introduce sev-
eral geometric notions, such as the definition of a dynamical system, and we
will give a number of group-theoretic applications of eigentheory. One of the
nicest applications is the proof of another classical theorem of Euler, which
in modern terms says that SO(3,R) consists of all rotations of R

3 about
the origin. We will also discuss the symmetries of the Platonic solids, and
finally, we will prove the celebrated Cayley–Hamilton theorem, which will be
applied later in the proofs of Jordan canonical form and the Jordan–Chevalley
decomposition theorem.

8.1 The Eigenvalue Problem and the Characteristic
Polynomial

The purpose of this section is to introduce the basic terms and concepts con-
nected with eigentheory: eigenvalues, eigenvectors, eigenpairs, eigenspaces,
the characteristic polynomial, and the characteristic equation. As above, V

c© Springer Science+Business Media LLC 2017
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is a finite-dimensional vector space over F, and T : V → V is a linear map-
ping. When V = F

n, then T = TA, where A ∈ F
n×n is the matrix of T with

respect to the standard basis.

8.1.1 First considerations: the eigenvalue problem
for matrices

The problem of finding eigenpairs for a linear mapping T will be attacked
via matrix theory by solving it for the matrix A of T with respect to a
basis of V and then showing how an eigenpair for A determines an eigenpair
for T . Suppose dimV = n, so that A ∈ F

n×n. On the level of matrix theory,
the eigenvalue problem is to find the values of λ ∈ F such that the linear
system Ax = λx has a nontrivial solution. The variables are λ and x, so this
is a nonlinear problem because of the λx term. The way to circumvent this
difficulty is by breaking the problem down into two separate problems. The
first is to determine all λ ∈ F such that N (A − λIn) �= {0}. Since the null
space of a square matrix is nonzero if and only if its determinant is zero, the
problem is to determine all λ ∈ F such that

det(A − λIn) = 0. (8.1)

One calls (8.1) the characteristic equation of A. The eigenvalues of A are the
solutions λ in F of the characteristic equation. The second problem, which
is straightforward, is to find the null space N (A − λIn) corresponding to an
eigenvalue. The null space N (A − λIn) is called the eigenspace of A corre-
sponding to λ and denoted by Eλ(A). For every nonzero v ∈ N (A − λIn),
(λ,v) is an eigenpair.

Remark. The properties of the determinant imply that det(A − λIn) is a
polynomial in λ of degree n. Hence finding eigenvalues of A requires finding
the roots of a polynomial. If n > 2, there is no easy way to do this, but there
are a few remarks we can and will make later. The roots of polynomials of
degree at most four can be found with great difficulty by radicals, but there
is no general formula for roots of a polynomial of degree five or more. This is
a famous result in Galois theory involving the Galois group of the equation.
There are analytic techniques for approximating roots. On the other hand,
the fundamental theorem of algebra guarantees that every A ∈ C

n×n has n
complex eigenvalues. This does not mean, however, that square matrices over
C always admit an eigenbasis, as we will see.

Let us now consider an example.
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Example 8.1. Consider the real matrix

A =
(

1 2
2 1

)
.

The real eigenvalues of A are the real numbers λ such that

A − λI2 =
(

1 − λ 2
2 1 − λ

)

has rank 0 or 1. The characteristic equation of A is

det(A − λI2) = (1 − λ)2 − 2 · 2 = λ2 − 2λ − 3 = (λ − 3)(λ + 1) = 0,

so λ = 3, − 1 are the eigenvalues. Therefore, we seek N (A − 3I2) and N (A +
I2). Clearly,

N (A − 3I2) = N (
(

−2 2
2 −2

)
) = R

(
1
1

)
,

while

N (A + I2) = N (
(

2 2
2 2

)
) = R

(
1

−1

)
.

Thus, (3,

(
1
1

)
) and (−1,

(
1

−1

)
) are eigenpairs for A. Note that they deter-

mine an eigenbasis. �

8.1.2 The characteristic polynomial

Let A ∈ F
n×n. Instead of dealing with the characteristic equation of A, it is

more useful to consider det(A − λIn) as a function of λ. Let x be a variable
and put pA(x) = det(A − xIn). Then pA(x) ∈ F[x]. In calculating pA(x), one
must expand a determinant containing a variable, so it turns out that row
operations are not very helpful. This will turn out not to be a problem,
because we will soon give a beautiful closed formula for det(A − xIn). Let us
now note some basic facts about pA(x).

Proposition 8.1. If A ∈ F
n×n, then pA(x) = det(A − xIn) is a polynomial

in x over F. Its leading term is (−1)nxn, so the degree of pA(x) is n, and its
constant term is det(A). The eigenvalues of A are the roots of pA(x) = 0 in
F. In particular, an n × n matrix cannot have more than n eigenvalues.

Proof. That pA(x) is a polynomial is a consequence of the definition of the
determinant. The constant term is pA(0) = det(A). The leading term comes
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from the term
(a11 − x) · · · (ann − x)

in the Leibniz expansion, which is clearly (−1)nxn. The last claim follows
from the fact that a polynomial over F of degree n cannot have more than n
roots in F. �

One calls pA(x) the characteristic polynomial of A. The characteristic poly-
nomial needn’t have any roots in F. However, one of the basic results in the
theory of fields is that given f(x) ∈ F[x], there exists a field F

′ containing
F such that f(x) factors into linear terms in F

′[x]. That is, F′ contains all
roots of f(x) = 0. We will give a proof of this result in the appendix (see
Section 8.7) at the end of this chapter. Although the fundamental theorem of
algebra (Theorem 2.27) guarantees that the characteristic polynomial of an
n × n matrix over R has n complex roots, none of these roots need be real,
as the next example points out.

Example 8.2. The characteristic polynomial of the matrix

J =
(

0 −1
1 0

)

is x2 + 1 = 0. Hence J is a real matrix that has no real eigenvalues. In fact,
there cannot be real eigenvalues, since J is the rotation of R2 through π/2:
no nonzero vector is rotated into a multiple of itself. On the other hand, if J
is treated as a 2 × 2 complex matrix with eigenvalues ±i, solving for corre-
sponding eigenvectors gives eigenpairs (i, (−1, i)T ) and (−i, (1, i)T ). Thus J
has two C-eigenvalues and two independent eigenvectors in C

2. In particular,
J has an eigenbasis for C

2. Thus,

(
0 −1
1 0

)(
1 1
−i i

)
=

(
1 1
−i i

)(
i 0
0 −i

)
,

so J = MDM−1, where M =
(

1 1
−i i

)
. �

The following example illustrates another possibility.

Example 8.3. Let K =
(

0 −i
i 0

)
. The characteristic polynomial of K is

x2 − 1, so the eigenvalues of K are ±1. Thus K is a complex matrix with
real eigenvalues. Notice that K = iJ , which explains why its eigenvalues are
i times those of J . �

The next Proposition gives an important property of the characteristic
polynomial.

http://dx.doi.org/10.1007/978-0-387-79428-0_2
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Proposition 8.2. Similar matrices have the same characteristic polynomial.

Proof. Suppose A and B are similar, say B = MAM−1. Then

det(B − xIn) = det(MAM−1 − xIn)
= det(M(A − xIn)M−1)
= det(M) det(A − xIn) det(M−1).

Since det(M−1) = det(M)−1, the proof is done. �

On the other hand, two matrices with the same characteristic polynomial
are not necessarily similar. Because of this proposition, we can extend the
definition of the characteristic polynomial of a matrix to the characteristic
polynomial of an arbitrary linear mapping T : V → V , provided V is finite-
dimensional.

Definition 8.1. If V is a finite-dimensional vector space and T : V → V is
linear, then we define the characteristic polynomial of T to be the polynomial
pT (x) defined as pA(x) for each matrix A of T .

The eigenvalues of T are roots of its characteristic polynomial. The con-
nection between the eigentheory for linear mappings and matrices will be
made explicit in Proposition 8.4.

8.1.3 The characteristic polynomial of a 2 × 2
matrix

If A is of size 2 × 2, say

A =
(

a b
c d

)
,

then the characteristic polynomial pA(x) of A is easy to find:

pA(x) = (a − x)(d − x) − bc = x2 − (a + d)x + (ad − bc).

As already noted, the constant term is det(A). The coefficient a + d of x, that
is, the sum of the diagonal entries, is the trace of A, that is, Tr(A). Hence,

pA(x) = x2 − Tr(A)x + det(A). (8.2)

The quadratic formula gives an elegant formula for the eigenvalues λ:

λ =
1
2
(
Tr(A) ±

√
Tr(A)2 − 4 det(A)

)
. (8.3)
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Hence if A ∈ R
2×2, it has real eigenvalues if and only if

Δ(A) := Tr(A)2 − 4 det(A) = (a − d)2 + 4bc ≥ 0.

In particular, if bc ≥ 0, then A has real eigenvalues. If Δ(A) > 0, the roots are
real and unequal, and if Δ(A) = 0, they are real and identical. If Δ(A) < 0,
the roots are complex and unequal. In this case, the roots are conjugate
complex numbers, since pA(x) has real coefficients.

Example 8.4. For example, if A ∈ R
2×2 is symmetric, then since b = c, A

has two real eigenvalues. If A is skew-symmetric (that is, AT = −A) and
A �= O, then pA(x) has two unequal complex roots. �

If pA(x) = 0 has roots λ1, λ2, then pA(x) factors as

pA(x) = (x − λ1)(x − λ2) = x2 − (λ1 + λ2)x + λ1λ2,

so a comparison of the coefficients gives the following:
(i) the trace of A is the sum of the eigenvalues of A:

Tr(A) = a + d = λ1 + λ2,

and
(ii) the determinant of A is the product of the eigenvalues of A:

det(A) = ad − bc = λ1λ2.

Thus the characteristic polynomial of a 2 × 2 matrix can be calculated with-
out pencil and paper. Our next task is to give a general formula extending
the 2 × 2 case.

8.1.4 A general formula for the characteristic
polynomial

As mentioned above, row operations are essentially of no use if one wants
to find a characteristic polynomial by hand. The Laplace expansion is, in
general, the only tool that obviates the need to resort to Leibniz’s definition.
It turns out, however, that there is a beautiful formula for the character-
istic polynomial that reduces the computation to computing the principal
minors of A.

Let A ∈ F
n×n. Since pA(x) is a polynomial in x of degree n with leading

coefficient (−1)nxn and constant term det(A), one can write

pA(x) = (−1)nxn + (−1)n−1σ1(A)xn−1 + (−1)n−2σ2(A)xn−2+
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+ · · · + (−1)σn−1(A)x + det(A), (8.4)

where the σi(A), 1 ≤ i ≤ n − 1, are scalars given by the next result.

Theorem 8.3. The coefficients σi(A) for 1 ≤ i ≤ n are given by

σi(A) :=
∑ (

all principal i × i minors of A
)
, (8.5)

where the principal i × i minors of A are defined to be the determinants of
the i × i submatrices of A obtained by deleting n − i rows of A and then the
same n − i columns.

We will omit the proof, since it would require us to take a lengthy detour
through exterior algebra. Note that by definition, the principal 1 × 1 minors
are just the diagonal entries of A. Hence

σ1(A) = a11 + a22 + · · · + ann,

so
σ1(A) = Tr(A).

Of course, σn(A) = det(A). In general, the number of j × j minors of A is
the binomial coefficient

( n
n−j

)
= n!

j!(n−j)! . Thus, the characteristic polynomial
of a 4 × 4 matrix will involve four 1 × 1 principal minors, six 2 × 2 princi-
pal minors, four 3 × 3 principal minors, and a single 4 × 4 principal minor,
the determinant. In all, there are 2n terms involved, since by the Binomial

theorem, (1 + 1)n =
∑n

j=0

(
n
j

)
.

Now suppose λ1, . . . , λn are the roots of pA(x) = 0. Then

pA(x) = (−1)n
(
(x − λ1)(x − λ2) · · · (x − λn)

)
= (−1)nxn + (−1)n−1(λ1 + λ2 + · · · + λn)xn−1 + · · · + λ1λ2 · · · λn.

This generalizes the result of the 2 × 2 case. For example,

σ1(A) = σ1(λ1, . . . , λn) = λ1 + λ2 + · · · + λn,

while
σn(A) = σn(λ1, . . . , λn) = λ1λ2 · · · λn.

Thus the trace of a matrix A is the sum of the roots of its characteristic poly-
nomial, and its determinant is the product of its roots. The other functions
σi(λ1, . . . , λn) = σi(A) can be expressed in a similar manner. For example,



246 8 Eigentheory

σ2(A) = σ2(λ1, . . . , λn) =
∑
i<j

λiλj .

The functions σi(λ1, . . . , λn) are called the elementary symmetric functions
(symmetric because they remain unchanged after an arbitrary permutation
of λ1, . . . , λn). It turns out that all the coefficients σi(A) of pA(x) can be
expressed in terms of the traces of powers of A. (This is a fact about sym-
metric functions due to Newton.) Consequently, there exist formulas for the
characteristic polynomial that avoid determinants altogether. For example,
if A is of size 3 × 3, then

σ2(A) =
1
2
(Tr(A)2 − Tr(A2)),

while
det(A) = Tr(A)3 + 2Tr(A3) − 3Tr(A)Tr(A2).

Consequently,

pA(x) = −x3 + Tr(A)x2 − 1
2
(Tr(A)2 − Tr(A2))x

+Tr(A)3 + 2Tr(A3) − 3Tr(A)Tr(A2).

One can find σi(A) for all i from the determinantal formula

σi(A) =
1
i!

det

⎛
⎜⎜⎜⎜⎜⎝

Tr(A) i − 1 0 · · ·
Tr(A2) Tr(A) i − 2 · · ·

...
...

...
Tr(Ai−1) Tr(Ai−2) · · · 1
Tr(Ai) Tr(Ai−1) · · · Tr(A)

⎞
⎟⎟⎟⎟⎟⎠

.

Exercises

Exercise 8.1.1. Prove the following: Suppose A is a square matrix over F

and (λ,v) is an eigenpair for A. Then for every scalar r ∈ F, (rλ,v) is an
eigenpair for rA. Moreover, for every positive integer k, (λk,v) is an eigenpair
for Ak. Finally, A has an eigenpair of the form (0,v) if and only if N (A) is
nontrivial.

Exercise 8.1.2. This exercise describes the rational root test, which is used
for finding rational roots of polynomials with integer coefficients. The rational
root test says that the only rational roots of a polynomial

p(x) = anx
n + an−1x

n−1 + · · · + a1x + a0
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with integer coefficients can be expressed as p/q, where (p, q) = 1, q divides
an, and p divides a0.

(i) Give a proof of the rational root test.

(ii) Conclude that if A is a square matrix with integer entries, then the only
possible rational eigenvalues are the integers that divide det(A).

(iii) Using the rational root test, find all integral eigenvalues of the matrix

A =

⎛
⎝3 −2 −2

3 −1 −3
1 −2 0

⎞
⎠ .

Exercise 8.1.3. Find the characteristic polynomial, eigenvalues, and if pos-
sible, a real eigenbasis for:

(i) the X-files matrix

X =

⎛
⎝1 0 1

0 1 0
1 0 1

⎞
⎠ ,

(ii) the checkerboard matrix

C =

⎛
⎝0 1 0

1 0 1
0 1 0

⎞
⎠ ,

(iii) the 4 × 4 X-files matrix

⎛
⎜⎜⎝

1 0 0 1
0 1 1 0
0 1 1 0
1 0 0 1

⎞
⎟⎟⎠ ,

(iv) the 4 × 4 checkerboard matrix

⎛
⎜⎜⎝

1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1

⎞
⎟⎟⎠ .

Exercise 8.1.4. Find the characteristic polynomial and eigenvalues of

⎛
⎜⎜⎝

−3 0 −4 −4
0 2 1 1
4 0 5 4

−4 0 −4 −3

⎞
⎟⎟⎠
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in two ways, one using the Laplace expansion and the other using principal
minors.

Exercise 8.1.5. The following matrix A was on a blackboard in the movie
Good Will Hunting :

A =

⎛
⎜⎜⎝

0 1 0 1
1 0 2 1
0 2 0 0
1 1 0 0

⎞
⎟⎟⎠ .

Find the characteristic polynomial of A and show that there are four real
eigenvalues.

Exercise 8.1.6. Using the determinantal formula for σi(A), find a formula
for pA(x) when A is of size 4 × 4.

Exercise 8.1.7. Find the characteristic polynomial of a 4 × 4 matrix A if
you know that three eigenvalues of A are ±1 and 2 and that det(A) = 6.

Exercise 8.1.8. Suppose A ∈ F
n×n has the property that A = A−1. Show

that if λ is an eigenvalue of A, then so is λ−1. Use this to find the characteristic
polynomial of A−1 in terms of the characteristic polynomial of A.

Exercise 8.1.9. Show that two similar matrices have the same trace and
determinant.

Exercise 8.1.10. True or false: Two matrices with the same characteristic
polynomial are similar. If false, supply a 2 × 2 counter example.

Exercise 8.1.11. If A is a square matrix, determine whether A and AT have
the same characteristic polynomial, hence the same eigenvalues.

Exercise 8.1.12. Show that 0 is an eigenvalue of A if and only if A is
singular.

Exercise 8.1.13. True or false: If λ is an eigenvalue of A and μ is an eigen-
value of B, then λ + μ is an eigenvalue of A + B. If false, supply a 2 × 2
counter example.

Exercise 8.1.14. Suppose A and B are similar and v is an eigenvector of A.
Find an eigenvector of B.

Exercise 8.1.15. Let A be a real 3 × 3 matrix such that A and −A are
similar. Show that:

(i) det(A) = Tr(A) = 0,

(ii) 0 is an eigenvalue of A, and

(ii) if some eigenvalue of A is nonzero, then A has an eigenbasis for C
3.
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Exercise 8.1.16. Let A be a matrix whose characteristic polynomial has
the form −x3 + 7x2 − bx + 8. Suppose that the eigenvalues of A are integers.

(i) Find the eigenvalues of A.

(ii) Find the value of b.

Exercise 8.1.17. Let A ∈ F
n×n. What is the characteristic polynomial of

A3 in terms of that of A?

Exercise 8.1.18. An n × n matrix such that Ak = O for some positive inte-
ger k is called nilpotent.

(i) Show all eigenvalues of a nilpotent matrix A are 0.

(ii) Conclude that the characteristic polynomial of A is (−1)nλn. In particu-
lar, the trace of a nilpotent matrix is 0.

(iii) Find a 3 × 3 matrix A such that A2 �= O but A3 = O. (Hint: look for an
upper triangular example.)

Exercise 8.1.19. Let the field be F2. Find the characteristic polynomials
of the following X-matrices. Is either X-matrix similar to a diagonal matrix
over F2?

X1 =

⎛
⎝1 0 1

0 1 0
1 0 1

⎞
⎠ , X2 =

⎛
⎜⎜⎜⎜⎝

1 0 0 0 1
0 1 0 1 0
0 0 1 0 0
0 1 0 1 0
1 0 0 0 1

⎞
⎟⎟⎟⎟⎠ .

Exercise 8.1.20. Show that the complex eigenvalues of a real n × n matrix
occur in conjugate pairs λ and λ. (Note: the proof of this that we gave for
n = 2 does not extend. First show that if p(x) is a polynomial with real
coefficients, then p(z) = p(z) for every z ∈ C.)

Exercise 8.1.21. Conclude from the previous exercise that a real n × n
matrix, where n is odd, has at least one real eigenvalue. In particular, every
3 × 3 real matrix has a real eigenvalue.

Exercise 8.1.22. Show that the only possible real eigenvalues of an n × n
real orthogonal matrix are ±1.

Exercise 8.1.23. Find eigenpairs for the two complex eigenvalues of the
rotation matrix Rθ if θ �= 0, π.

Exercise 8.1.24. Let F be a field.

(i) Show that F is a one-dimensional vector space over itself.

(ii) Show that every linear mapping T : F → F is semisimple. That is, show
that there exists λ ∈ F such that T (v) = λv for all v ∈ F.
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Exercise 8.1.25. Let

J =
(

cos θ − sin θ
sin θ cos θ

)
.

Show that J determines a linear mapping T : C → C for every θ and find the
unique complex eigenvalue of T .

Exercise 8.1.26. Suppose A,B ∈ F
n×n and assume that A is invertible.

Show that B, AB, and BA all have the same characteristic polynomial.

Exercise 8.1.27. Find formulas for the elementary symmetric functions

σi(λ1, λ2, λ3, λ4)

(i = 1, 2, 3, 4) by expanding (x − λ1)(x − λ2)(x − λ3)(x − λ4). Deduce an
expression for all σi(A) for an arbitrary 4 × 4 matrix A.

Exercise 8.1.28. * Assume that a, b, c are real and consider the matrix

A =

⎛
⎝a b c

b c a
c a b

⎞
⎠ .

(i) Find the characteristic polynomial of A.

(ii) Show that Tr(A) is an eigenvalue of A.

(iii) Use (ii) to show that det(A) ≤ 0 and conclude that (a3 + b3 + c3) ≥
3abc.
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8.2 Basic Results on Eigentheory

We now return to the general problem of understanding the eigentheory of a
linear mapping T : V → V . We have already shown how to obtain eigenpairs
for a matrix, but it remains to show, first, how an eigenpair for a matrix
determines an eigenpair for the linear mapping that the matrix represents,
and second, how an eigenbasis for a matrix determines an eigenbasis for this
linear mapping. We will also mention a sufficient condition for the existence of
an eigenbasis that will be generalized in the next section. Finally, we will give
a couple of nice applications of eigentheory. In particular, we will introduce
the notion of a dynamical system and use it to study the Fibonacci sequence.

8.2.1 Eigenpairs for linear mappings

Throughout this section, V will denote a finite-dimensional vector space over
a field F, and T : V → V will be a linear mapping. Our first objective is to
explain the correspondence between eigenpairs for matrices and eigenpairs
for linear mappings. Suppose dimV = n.

Claim. Assume that A = MB
B(T ) is the matrix of T with respect to a

basis B = {v1, . . . ,vn} of V . Let (μ,x) be an eigenpair for A, where x =
(x1, . . . , xn)T ∈ F

n. If

v =
n∑

i=1

xivi = (v1 v2 · · ·vn)x,

then (λ,v) is an eigenpair for T .

Proof. Recall that by (7.15), A is determined from

(T (v1) T (v2) · · · T (vn)) = (v1 v2 · · ·vn)A.

Since Ax = μx,

T (v) = (T (v1) T (v2) · · · T (vn))x
= (v1 v2 · · ·vn)Ax

= μ(v1 v2 · · ·vn)x
= μv.

Thus (μ,v) is indeed an eigenpair for T . Summarizing, we have the following
result.

http://dx.doi.org/10.1007/978-0-387-79428-0_7
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Proposition 8.4. Let T : V → V be linear, and let A = MB
B(T ) be the

matrix of T with respect to a basis B of V . Then every eigenpair (μ,x) for A
gives an eigenpair (μ,v) for T, where v is the element of V whose coordinates
with respect to B are the components of x. Conversely, an eigenpair (μ,v)
for T gives a corresponding eigenpair (μ,x) for A in the same manner.

8.2.2 Diagonalizable matrices

Recall from Example 8.1 that the matrix
(

1 2
2 1

)
has eigenvalues 3 and

−1 and corresponding eigenspaces R

(
1
1

)
and R

(
1

−1

)
. When this data is

encoded in a matrix equation, we see that

(
1 2
2 1

)(
1 1
1 −1

)
=

(
3 −1
3 1

)
=

(
1 1
1 −1

)(
3 0
0 −1

)
.

This expression has the form AP = PD, where the columns of P are linearly
independent eigenvectors and the entries of D are the corresponding eigen-
values. Since P is invertible, we get the factorization A = PDP −1, where
D is diagonal. Thus, A is similar to a diagonal matrix over F. Let us now
introduce the following term.

Definition 8.2. A matrix A ∈ F
n×n is said to be diagonalizable over F if A

can be written A = PDP−1, where D,P ∈ F
n×n and D is diagonal. In other

words, A is diagonalizable over F if it is similar over F to a diagonal matrix
D ∈ F

n×n.

We now describe what it means to say that a matrix is diagonalizable.
Assume A ∈ F

n×n.

Proposition 8.5. Suppose w1, . . . ,wn is an eigenbasis of F
n for A with

corresponding eigenvalues λ1, . . . , λn in F. Then A is diagonalizable over F.
In fact, A = PDP−1, where P = (w1 · · · wn) and D = diag(λ1, . . . , λn).
Conversely, if A = PDP−1, where P and D are in F

n×n, P is invertible, and
D is diagonal, then the columns of P are an eigenbasis of Fn for A, and the
diagonal entries of D are the corresponding eigenvalues. That is, if the ith
column of P is wi, then (λi,wi) is an eigenpair for A.

Proof. Let w1, . . . ,wn be an eigenbasis, and put P = (w1 · · · wn). Then

AP = (Aw1 · · · Awn) = (λ1w1 · · · λnwn) = (w1 · · · wn)D, (8.6)

where D = diag(λ1, . . . , λn). Thus AP = PD, so A is diagonalizable over
F. The converse is proved in a similar manner. �
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Recall, a linear mapping having an eigenbasis is called semisimple. Finding
an eigenbasis for a linear mapping reduces to the problem of diagonalizing
its matrix.

Proposition 8.6. Suppose dim V = n, B = {v1, . . . ,vn} is a basis of V
and A = MB

B(T ) is the matrix of T with respect to B. Then T is semisimple
if and only if A is diagonalizable over F, say A = PDP−1, and an eigenbasis
w1, . . . , wn for T is given by

(w1 w2 · · ·wn) = (v1 v2 · · ·vn)P. (8.7)

Proof. The proof is similar to the last, but we will give it anyway. Assume the
notation already in use above, and suppose A = PDP−1, where P,D ∈ F

n×n

and D is diagonal. Then

(T (v1) T (v2) · · · T (vn)) = (v1 v2 · · ·vn)PDP−1,

so
(T (v1) T (v2) · · · T (vn))P = (v1 v2 · · ·vn)PD.

Thus if w1, . . . ,wn are defined by

(w1 w2 · · ·wn) = (v1 v2 · · ·vn)P,

then since P is nonsingular, w1, . . . ,wn form a basis of V such that

T (w1 w2 · · ·wn) = T (v1 v2 · · ·vn)P
= (T (v1) T (v2) · · · T (vn))P
= (v1 v2 · · ·vn)(PDP−1)P
= (v1 v2 · · ·vn)PD

= (w1 w2 · · ·wn)D.

Consequently, since D is diagonal, w1, . . . ,wn form a basis of V such that
T (wi) = λiwi for each i. Hence T is semisimple. The converse is proved by
reversing the argument. �

Consequently, we have the following corollary.

Corollary 8.7. A linear mapping T : V → V is semisimple if and only if
its matrix with respect to some basis of V is diagonal, and consequently its
matrix with respect to any basis of V is diagonalizable.
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8.2.3 A criterion for diagonalizability

The following proposition states a well-known criterion for diagonalizability.
Since we will prove a stronger result later, the proof will be omitted. We will
also give what amounts to a one-line proof in Example 8.10.

Proposition 8.8. An n × n matrix A over F with n distinct eigenvalues in
F is diagonalizable. More generally, if V is a finite-dimensional vector space
over F and T : V → V is a linear mapping with dim V distinct eigenvalues
in F, then T is semisimple.

The criterion for A ∈ F
n×n to have distinct eigenvalues, given that its

eigenvalues lie in F, is that its characteristic polynomial have simple roots.
The multiple root test (Corollary 2.38) applied to pA(x) therefore gives the
following.

Proposition 8.9. A square matrix A over F has no repeated eigenvalues in
F if pA(x) and its derivative (pA)′(x) have no common roots in F.

Example 8.5. The counting matrix

C =

⎛
⎝1 2 3

4 5 6
7 8 9

⎞
⎠

has characteristic polynomial pC(x) = −x3 + 15x2 − 18x; hence C has three
distinct real eigenvalues. It follows that C is diagonalizable. �

Example 8.6. The matrix

A =

⎛
⎜⎜⎝

0 1 0 1
1 0 2 1
0 2 0 0
1 1 0 0

⎞
⎟⎟⎠ ,

which is seen on a blackboard in the movie Good Will Hunting, has charac-
teristic polynomial

pA(x) = x4 − 7x2 − 2x + 4.

Now, −1 is a root, and hence

pA(x) = (x + 1)(x3 − x2 − 6x + 4).

Since −1 is not a root of q(x) = x3 − x2 − 6x + 4 = 0, it follows that pA(x)
has four distinct roots as long as q(x) has three distinct roots. But q′(x) =
3x2 − 2x − 6 has roots

http://dx.doi.org/10.1007/978-0-387-79428-0_2
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r =
2 ±

√
76

6
,

and

q(
2 +

√
76

6
) < 0, while q(

2 −
√

76
6

) > 0.

Thus q and q′ have no roots in common, so q has three distinct roots. More-
over, it follows from the two inequalities above that q has three real roots.
(Reason: the coefficient of x3 is positive.) Thus A has four distinct real eigen-
values; hence A is diagonalizable. �

Note that the Good Will Hunting matrix A is real and symmetric. As
we will see later, the principal axis theorem therefore guarantees that A is
diagonalizable.

8.2.4 The powers of a diagonalizable matrix

In this section, we will consider the powers of a square matrix A. Let us begin
with the following observation. Suppose A ∈ F

n×n has an eigenpair (λ,v) and
let k be a positive integer. Since Akv = Ak−1(Av) = Ak−1(λv) = λAk−1v, it
follows by iteration that

Akv = λkv.

Now suppose A can be diagonalized as A = PDP−1. Then for every positive
integer k,

Ak = (PDP−1)(PDP−1) · · · (PDP−1) = PDkP−1.

If D = diag(λ1, λ2, . . . , λn), then Dk = diag
(
(λ1)k, (λ2)k, . . . , (λn)k

)
. Let P =

(v1 v2 · · · vn). Setting v =
∑

aivi, we have

Akv =
∑

aiA
kvi =

∑
ai(λi)kvi. (8.8)

If A ∈ R
n×n and all its eigenvalues are real, one can say more:

(i) If A has only nonnegative eigenvalues, then A has a kth root for every
positive integer k. In fact, A

1
k = PD

1
k P−1.

(ii) If none of the eigenvalues of A are 0, then the negative powers of A are
found from the formula A−k = (A−1)k = PD−kP−1.

(iii) If all the eigenvalues λ of A satisfy |λ| < 1, then limm→∞ Am = O.
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More generally, if A ∈ C
n×n, there are corresponding statements. The

reader should attempt to formulate them. For nondiagonalizable matrices,
kth roots need not exist.

8.2.5 The Fibonacci sequence as a dynamical
system

The Fibonacci numbers ak are defined by the Fibonacci sequence (ak)
as follows. Starting with arbitrary integers a0 and a1, put a2 = a0 + a1,
a3 = a2 + a1, and in general, put ak = ak−1 + ak−2 if k ≥ 2. The Fibonacci
sequence can also be defined by the matrix identity

(
ak+1

ak

)
=

(
1 1
1 0

)(
ak

ak−1

)
,

provided k ≥ 1. Hence putting

F =
(

1 1
1 0

)
,

we obtain that
(

ak+1

ak

)
= F

(
ak

ak−1

)
= F 2

(
ak−1

ak−2

)
= · · · = F k

(
a1

a0

)
.

Thus putting

vk =
(

ak+1

ak

)
,

for k = 0, 1, 2, . . . , we can therefore express the Fibonacci sequence in the
form

vk = F kv0. (8.9)

Such a sequence is called the dynamical system defined by F . To analyze the
Fibonacci sequence, we will diagonalize F . The characteristic equation of F
is x2 − x − 1 = 0, so the eigenvalues are

φ =
1 +

√
5

2
, μ =

1 −
√

5
2

.

One checks that N (F − φI2) = R(φ, 1)T and N (F − μI2) = R(μ, 1)T . There-
fore, as in the previous example, F is diagonalized by
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F =
(

φ μ
1 1

) (
φ 0
0 μ

)(
φ μ
1 1

)−1

.

Hence, by (8.9),

(
am+1

am

)
= Fm

(
a1

a0

)
=

(
φ μ
1 1

) (
φm 0
0 μm

)(
φ μ
1 1

)−1 (
a1

a0

)
.

Since
(

φ μ
1 1

)−1

=
1

φ − μ

(
1 −μ

−1 φ

)
, we get

(
am+1

am

)
=

1
φ − μ

(
φm+1 − μm+1 −μφm+1 + μm+1φ

φm − μm μφm + μmφ

) (
a1

a0

)
.

For example, if a0 = 0 and a1 = 1, we see that

am =
φm − μm

φ − μ
=

1√
5 · 2m

((1 +
√

5)m − (1 −
√

5)m). (8.10)

Notice that

lim
m→∞

am+1

am
= lim

m→∞
φm+1 − μm+1

φm − μm
= φ,

since limm→∞(μ/φ)m = 0. Therefore, for large m, the ratio am+1/am is
approximately φ. A little further computation gives the precise formulas

a2m =
[
φ2m

√
5

]
and a2m+1 =

[
φ2m+1

√
5

]
+ 1,

where [r] denotes the integer part of the real number r.

The eigenvalue φ =
1 +

√
5

2
is the so-called golden ratio. It comes up in

many unexpected and interesting ways. For more information, one can consult
The Story of φ, the World’s Most Astonishing Number, by Mario Livo.

Exercises

Exercise 8.2.1. Diagonalize the following matrices when possible:

A =
(

1 −1
−1 1

)
, B =

⎛
⎝1 0 1

0 1 0
1 0 1

⎞
⎠ , C =

⎛
⎜⎜⎝

−3 0 −4 −4
0 2 1 1
4 0 5 4

−4 0 −4 −3

⎞
⎟⎟⎠ .
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Exercise 8.2.2. A 4 × 4 matrix over R has eigenvalues ±1, trace 3, and
determinant 0. Can A be diagonalized over R? What about over Q?

Exercise 8.2.3. Determine which of the following matrices are diagonaliz-
able over the reals:
⎛
⎝

1 0 −1

−1 1 1

2 −1 −2

⎞
⎠ ,

⎛
⎝
0 1 1

1 0 1

1 −1 1

⎞
⎠ ,

⎛
⎝
2 −1 1

1 0 1

1 −1 −2

⎞
⎠ ,

⎛
⎝
0 1 0

1 0 −1

0 1 0

⎞
⎠ .

Exercise 8.2.4. Find all possible square roots, if any exist, of the following
matrices: (

2 1
1 2

)
,

(
1 2
2 1

)
,

(
1 −1
1 −1

)
.

Exercise 8.2.5. Do the same as in Problem 8.2.4 for the 4 × 4 all 1’s matrix.

Exercise 8.2.6. Compute the nth power of each matrix of Exercise 8.2.4
and also that of the 3 × 3 all 1’s matrix.

Exercise 8.2.7. Let F denote the Fibonacci matrix. Find F 4 in two ways,
once directly and once using eigentheory.

Exercise 8.2.8. Assuming a0 = 0 and a1 = 1, find the thirteenth and
fifteenth Fibonacci numbers using eigentheory.

Exercise 8.2.9. Show directly that

φm − μm

φ − μ
=

1√
5 · 2m

((1 +
√

5)m − (1 −
√

5)m)

is an integer, thus explaining the strange expression in Section 5.1.

Exercise 8.2.10. Let A =
(

1 2
2 1

)
. Find A10.

Exercise 8.2.11. Give an example of a 2 × 2 matrix A over C that does not
have a square root.

Exercise 8.2.12. If possible, find a square root for A =
(

1 1
0 1

)
.

Exercise 8.2.13. Suppose G is a finite subgroup of GL(n,C) of order m.
Show that if g ∈ G, then every eigenvalue of g is an mth root of unity.

http://dx.doi.org/10.1007/978-0-387-79428-0_5
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8.3 Two Characterizations of Diagonalizability

In this section, we first prove the strong form of the diagonalizability crite-
rion stated in Proposition 8.10. Then we give two characterizations of the
diagonalizable matrices (equivalently semisimple linear mappings). The first
involves the eigenspace decomposition. The second is more interesting, since
it gives a precise criterion for A ∈ F

n×n to be diagonalizable in terms of
whether A satisfies a certain polynomial equation. This brings in the notion
of the minimal polynomial of a matrix.

8.3.1 Diagonalization via eigenspace
decomposition

In the previous section, we stated the result that every A ∈ F
n×n with n

distinct eigenvalues in F is diagonalizable. We will now extend this result by
dropping the assumption that the eigenvalues are distinct. Suppose λ ∈ F is
an eigenvalue of A and (x − λ)k divides pA(x) for some k > 1. Then we say
that λ is a repeated eigenvalue of A. We define the algebraic multiplicity of
λ as the largest value of k such that (x − λ)k divides pA(x). The geometric
multiplicity of λ is defined to be dim Eλ(A). It turns out that the algebraic
multiplicity of an eigenvalue is always greater than or equal to its geometric
multiplicity. (The proof of this will have to wait until Chap. 10.)

Proposition 8.10. Suppose λ1, . . . , λm ∈ F are distinct eigenvalues of A ∈
F

n×n, and choose a set of linearly independent eigenvectors in the eigenspace
Eλi

(A) for each λi, 1 ≤ i ≤ m. Then the union of these linearly independent
sets is linearly independent.

Proof. First, notice that if i �= j, then Eλi
(A) ∩ Eλj

(A) = {0}. For each i,
let Si denote a linearly independent subset of Eλi

(A), and put S =
⋃m

i=1 Si.
Write S = {u1, . . . ,us} in some way, and suppose

∑
arur = 0, (8.11)

where all ar ∈ F. Let Mi, i = 1, . . . , m, denote the set of indices j such that
uj ∈ Si, and put vi =

∑
j∈Mi

ajuj . Thus, vi ∈ Eλi
(A), and by assumption,

m∑
i=1

vi = 0.

We will now show that all vi are equal to 0. Suppose some vi is not equal to
0. Without loss of generality, we suppose i = 1, so v1 = −

∑
i>1 vi �= 0. Now

http://dx.doi.org/10.1007/978-0-387-79428-0_10
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let W denote the span of Y = {v2, . . . ,vm}. By the dimension theorem, we
may select w1, . . . ,w� ∈ Y that form a basis of W . Of course, each wi is an
eigenvector of A. Let μi denote the corresponding eigenvalue, and note that
λ1 �= μi for all i. Write v1 =

∑
i biwi. By applying A to v1, we get λ1v1 =∑

i biμiwi. By multiplying v1 by λ1, we also obtain that λ1v1 =
∑

i λ1biwi.
Subtracting the two expressions for λ1v1 gives

∑
i

(λ1 − μi)biwi = 0.

But the wi are independent, so (λ1 − μi)bi = 0 for all i. Since λ1 − μi �= 0
for all i, it follows that all bi are zero. Hence v1 = 0, a contradiction. It
follows that all vi equal 0, so

∑
j∈Mi

ajuj = 0 for all i. Consequently, all ar

are equal to zero in the original expression (8.11). Therefore, S is linearly
independent. �

We now state the first characterization of the diagonal matrices. Let A ∈
F

n×n.

Theorem 8.11. Let λ1, . . . , λm denote the distinct eigenvalues of A in F.
Then A is diagonalizable over F if and only if

m∑
i=1

dimEλi
(A) = n. (8.12)

In that case, if Bi is a basis of Eλi
(A), then

B =
⋃

1≤i≤m

Bi

is an eigenbasis of Fn, and we have the direct sum decomposition

F
n = Eλ1(A) ⊕ · · · ⊕ Eλm

(A). (8.13)

Proof. Suppose (8.12) holds. Then Proposition 8.10 and the dimension the-
orem imply that A admits an eigenbasis. Therefore, A is diagonalizable. The
converse statement is immediate. The rest of the proof amounts to applying
results on direct sums, especially Proposition 6.26. �

The following example with repeated eigenvalues is rather fun to analyze.

Example 8.7. Let B denote the 4 × 4 all-ones matrix

B =

⎛
⎜⎜⎝

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

⎞
⎟⎟⎠ .

http://dx.doi.org/10.1007/978-0-387-79428-0_6
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Now 0 is an eigenvalue of B. In fact, B has rank 1, so dimN (B) = 3. Thus
the eigenspace E0(B) of 0 has dimension 3. Every eigenvector for the eigen-
value 0 satisfies the equation x1 + x2 + x3 + x4 = 0. The basic null vectors
for this equation are f1 = (−1, 1, 0, 0)T , f2 = (−1, 0, 1, 0)T , f3 = (−1, 0, 0, 1)T ,
and they give a basis of N (B). By Proposition 8.10, there is at most one other
eigenvalue. The other eigenvalue can be found by inspection by noticing that
every row of B adds up to 4. Thus, f4 = (1, 1, 1, 1)T is an eigenvector for
λ = 4. By Proposition 8.10, we now have four linearly independent eigenvec-
tors, hence an eigenbasis. Therefore, B is diagonalizable; in fact, B is similar
to D = diag(0, 0, 0, 4). �

In the above example, the eigenvalues of B were found by being a little
clever and using some special properties of B. A more methodical way to find
the eigenvalues would have been to compute the characteristic polynomial of
B using principal minors. In fact, all principal minors of B are zero except
for the 1 × 1 principal minors, namely the diagonal elements. Hence, pB(x) =
x4 − Tr(A)x3 = x4 − 4x3 = x3(x − 4). Recall also that if all eigenvalues but
one are known, the final eigenvalue can be found immediately from the trace.

The following result classifying the semisimple linear mappings follows
immediately from Theorem 8.11. Let V be a finite-dimensional vector space
over F.

Corollary 8.12. A linear mapping T : V → V is semisimple if and only if∑m
i dim Eλi

(T ) = dim V , where λ1, . . . , λm denote the distinct eigenvalues
of T .

8.3.2 A test for diagonalizability

Is there a simple way of determining when a linear mapping is semisimple or
when a matrix is diagonalizable? It turns out the answer is yes, as long as all
its eigenvalues are known. Here, the algebraic and geometric multiplicities do
not play a role. Let T : V → V be a linear mapping whose distinct eigenvalues
(in F) are λ1, . . . , λm.

Claim: if T is semisimple, then

(T − λ1IV )(T − λ2IV ) · · · (T − λmIV ) = O. (8.14)

Proof. Indeed, if T is semisimple, then

V = Eλ1(T ) ⊕ Eλ2(T ) · · · ⊕ Eλm
(T ).

Thus, to prove (8.14), it suffices to show that
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(T − λ1IV )(T − λ2IV ) · · · (T − λmIV )vi = 0,

provided vi ∈ Eλi
(T ) for some i. But this is clear, since

(T − λiIV )(T − λjIV ) = (T − λjIV )(T − λiIV )

for all i and j. Thus, the left-hand side of (8.14) can be factored into the form
C(T − λiIV ), and since C(T − λiIV )vi = C0 = 0, (8.14) follows. �

There is another way to prove (8.14). To do so, we need to evaluate a poly-
nomial f(x) = anx

n + an−1x
n−1 + · · · + a1x + a0 in F[x] on a matrix in F

n×n.
The value of f at A is defined to be f(A) = anA

n + an−1A
n−1 + · · · + a1A +

a0In. Thus, f(A) ∈ F
n×n. Similarly, if and T : V → V is a linear mapping,

then by definition,

f(T ) = anT
n + an−1T

n−1 + · · · + a1T + a0IV ,

where T i means T composed with itself i times. Thus, f(T ) is also a linear
mapping with domain and target V . Note that if A = PDP−1, where A ∈
F

n×n, then f(A) = f(PDP−1) = Pf(A)P−1. Thus, if A = Pdiag(λ1, λ2 . . . ,
λn)P−1 and g(x) = (x − λ1)(x − λ2) · · · (x − λm), then

g(A) = g(PDP−1) = Pg(D)P−1 = Pdiag(g(λ1), g(λ2), . . . , g(λm))P−1.

But diag(g(λ1), g(λ2), . . . , g(λm)) = O, so g(A) = O also. �
The useful fact is that the converse is also true. We state and prove that

next.

Theorem 8.13. Suppose the distinct eigenvalues of a linear mapping T :
V → V are λ1, . . . , λm. Then T is semisimple if and only if

(T − λ1IV )(T − λ2IV ) · · · (T − λmIV ) = O. (8.15)

Proof. The “only if” implication was just proved. The “if” assertion, which
is harder to prove, is based on the following lemma.

Lemma 8.14. Suppose T1, T2, . . . , TN : V → V are linear mappings that sat-
isfy the following properties:

(i) T1 ◦ T2 ◦ · · · ◦ TN = O,

(ii) Ti ◦ Tj = Tj ◦ Ti for all indices i, j,

(iii) for each i = 1, . . . , N − 1, ker(Ti) ∩ ker(Ti+1 ◦ · · · ◦ TN ) = {0}.
Then V = ker(T1) ⊕ ker(T2) ⊕ · · · ⊕ ker(TN ).
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Proof. The proof is based on the following principle. If P,Q : V → V are
linear mappings such that P ◦ Q = O and ker(P ) ∩ ker(Q) = {0}, then V =
ker(P ) ⊕ ker(Q). This is proved by first noting that by the rank–nullity the-
orem, dim V = dim ker(Q) + dim im(Q). Since P ◦ Q = O, we have im(Q) ⊂
ker(P ). Thus dim V ≤ dim ker(Q) + dim ker(P ). Now apply the Grassmann
intersection formula, which says that

dim(ker(P ) + ker(Q)) = dim ker(P ) + dim ker(Q) − dim(ker(P ) ∩ ker(Q)).

Since dim(ker(P ) ∩ ker(Q)) = 0, the previous inequality says that dim(ker
(P ) + ker(Q)) ≥ dim V . But ker(P ) + ker(Q) is a subspace of V , so V =
ker(P ) + ker(Q). Since ker(P ) ∩ ker(Q) = {0}, it follows from Proposition
6.26 that V = ker(P ) ⊕ ker(Q). Letting P = T1 and Q = T2 ◦ · · · ◦ TN , we
have shown that V = ker(T1) ⊕ ker(T2 ◦ · · · ◦ TN ). Now repeat the argument,
replacing V by ker(T2 ◦ · · · ◦ TN ), P by T2, and Q by T3 ◦ · · · ◦ TN . This is
allowed, since by (ii), both T2 and T3 ◦ · · · ◦ TN map ker(T2 ◦ · · · ◦ TN ) into
itself. Thus, ker(T2 ◦ · · · ◦ TN ) = ker(T2) ⊕ ker(T3 ◦ · · · ◦ TN ). Hence

V = ker(T1) ⊕
(
ker(T2) ⊕ ker(T3 ◦ · · · ◦ TN )

)
.

It follows that V = ker(T1) ⊕ ker(T2) ⊕ ker(T3 ◦ · · · ◦ TN ). The hypotheses
allow us to iterate this argument until the conclusion is reached. �

Clearly, (T − λiIV )(T − λjIV ) = (T − λjIV )(T − λiIV ), so to finish the
proof of Theorem 8.13, we just have to check that

ker(T − λiIV ) ∩ ker
(
(T − λi+1IV ) · · · (T − λmIV )

)
= {0}

for i = 1, . . . , m − 1. But if x ∈ ker(T − λiIV ) and x �= 0, then

(T − λi+1IV ) · · · (T − λmIV )x = (λi − λi+1) · · · (λi − λm)x �= 0,

since λi �= λj if i �= j. Thus, by the lemma,

V = Eλ1(T ) ⊕ · · · ⊕ Eλm
(T ),

which that proves T is semisimple. �
For matrices, we obtain the following corollary.

Corollary 8.15. Suppose A ∈ F
n×n, and let λ1, . . . , λm be the distinct eigen-

values of A in F. Then A is diagonalizable over F if and only if

(A − λ1In)(A − λ2In) · · · (A − λmIn) = O.

http://dx.doi.org/10.1007/978-0-387-79428-0_6
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Remark. Of course, it is possible that there exist distinct λi, 1 ≤ i ≤ m,
such that (A − λ1In)(A − λ2In) · · · (A − λmIn) = O, where all the λi lie in
a field F

′ containing F. Some may lie in F, of course. This simply means
that A isn’t diagonalizable over F, but it is over F

′. An example of this is
a 2 × 2 rotation matrix that is diagonalizable over C but not over R. This
illustrates an advantage that matrices have over linear mappings. A matrix
over F may not be diagonalizable over F, but it can be diagonalizable over a
field containing F. On the other hand, this concept does not make sense for
a linear mapping with domain a vector space over F, since we do not know
how to enlarge the field over which V is defined. In fact, it is possible to do
this, but it requires using tensor products.

Let us test the all-ones matrix with the second criterion.

Example 8.8. The 4 × 4 all-ones matrix B has eigenvalues 0 and 4. There-
fore, to test it for diagonalizabilty (over R), we have to show that B(B −
4I4) = O. Calculating the product, we see that

B(B − 4I4) =

⎛
⎜⎜⎝

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

−3 1 1 1
1 −3 1 1
1 1 −3 1
1 1 1 −3

⎞
⎟⎟⎠ = O;

hence B is diagonalizable. �

This test works well on upper and lower triangular matrices, since the
eigenvalues are on the diagonal.

Example 8.9. Is the upper triangular matrix

A =

⎛
⎝1 2 1

0 1 1
0 0 2

⎞
⎠

diagonalizable? Since the eigenvalues are 1 and 2, we have to show that
(A − I3)(A − 2I3) = O. Now,

(A − I3)(A − 2I3) =

⎛
⎝0 2 1

0 0 1
0 0 1

⎞
⎠

⎛
⎝−1 2 1

0 −1 1
0 0 0

⎞
⎠ .

The product is clearly nonzero, so A isn’t diagonalizable. �

This example shows that nondiagonalizable matrices exist. It also illus-
trates the general fact that the algebraic multiplicity of an eigenvalue is an
upper bound on the dimension of its corresponding eigenspace, that is, the
geometric multiplicity. Let us now reconsider a result we proved earlier.
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Example 8.10 (Simple eigenvalues). Recall from Proposition 8.10 that
when A ∈ F

n×n has n distinct eigenvalues in F, then A is diagonalizable
over F. The Cayley–Hamilton theorem, which we will take up and prove in
the next section, enables us to give an extremely short proof of this fact. Let
λ1, . . . , λn ∈ F be the eigenvalues of A, which are assumed to all be different.
Then

pA(A) = (A − λ1In)(A − λ2In) · · · (A − λnIn). (8.16)

But the Cayley–Hamilton theorem says that pA(A) = O, so A is indeed diag-
onalizable by the diagonalizabilty test of Theorem 8.13. �

Exercises

Exercise 8.3.1. Show from first principles that if λ and μ are distinct eigen-
values of A, then Eλ(A) ∩ Eμ(A) = {0}.

Exercise 8.3.2. Diagonalize the following matrices if possible:

A =
(

1 −1
−1 1

)
, B =

⎛
⎝1 0 1

0 1 0
1 0 1

⎞
⎠ , C =

⎛
⎜⎜⎝

−3 0 −4 −4
0 2 1 1
4 0 5 4

−4 0 −4 −3

⎞
⎟⎟⎠ .

Exercise 8.3.3. Consider the real 2 × 2 matrix

A =
(

0 1
0 0

)
.

Determine whether A is diagonalizable.

Exercise 8.3.4. Determine which of the following matrices are diagonaliz-
able over the reals:
⎛
⎝ 1 0 −1

−1 1 1
2 −1 −2

⎞
⎠ ,

⎛
⎝0 1 1

1 0 1
1 −1 1

⎞
⎠ ,

⎛
⎝2 −1 1

1 0 1
1 −1 −2

⎞
⎠ ,

⎛
⎝0 1 0

1 0 −1
0 1 0

⎞
⎠ .

Exercise 8.3.5. Does

C =

⎛
⎝ 1 0 −1

−1 1 1
2 −1 −2

⎞
⎠

have distinct eigenvalues? Is it diagonalizable?

Exercise 8.3.6. Let A =
(

a b
c d

)
, where a, b, c, d are all positive real num-

bers. Show that A is diagonalizable.
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Exercise 8.3.7. Suppose A is the matrix in Exercise 8.3.6. Show that A has
an eigenvector in the first quadrant and another in the third quadrant.

Exercise 8.3.8. Show that if A ∈ R
n×n admits an eigenbasis for R

n, it also
admits an eigenbasis for C

n.

Exercise 8.3.9. Let a ∈ R
3, and let Ca : R3 → R

3 be the cross product
map Ca(v) = a × v. Find the characteristic polynomial of Ca and determine
whether Ca is semisimple.

Exercise 8.3.10. Let V = F
n×n and let T : V → V be the linear map defined

by sending A ∈ V to AT . That is, T(A) = AT .

(i) Show that the only eigenvalues of T are ±1.

(ii) Prove that if the characteristic of F is different from two, then T semi-
simple.

Exercise 8.3.11. Find an example of a nondiagonalizable 3 × 3 matrix A
with real entries that is neither upper nor lower triangular such that every
eigenvalue of A is 0.

Exercise 8.3.12. Let A be a 3 × 3 matrix with eigenvalues 0, 0, 1. Show
that A3 = A2.

Exercise 8.3.13. Let A be a 2 × 2 matrix such that A2 + 3A + 2I2 = O.
Show that −1,−2 are eigenvalues of A.

Exercise 8.3.14. Suppose A is a 2 × 2 matrix such that A2 + A − 3I2 = O.
Show that A is diagonalizable.

Exercise 8.3.15. Let U be an upper triangular matrix over F with distinct
entries on its diagonal. Show that U is diagonalizable.

Exercise 8.3.16. Suppose that a 3 × 3 matrix A over R satisfies the equa-
tion A3 + A2 − A + 2I3 = O.

(i) Find the eigenvalues of A.

(ii) Is A diagonalizable? Explain.

Exercise 8.3.17. We say that two n × n matrices A and B are simultane-
ously diagonalizable if they are diagonalized by the same matrix M , that is,
if they share a common eigenbasis. Show that two simultaneously diagonal-
izable matrices A and B commute; that is, AB = BA.

Exercise 8.3.18. This is the converse to Exercise 8.3.17. Suppose A,B ∈
F

n×n commute.

(i) Show that for every eigenvalue λ of A, B(Eλ(A)) ⊂ Eλ(A).

(ii) Conclude that if S is the subset of F
n×n consisting of diagonalizable

matrices such that AB = BA for all A,B ∈ S, then the elements of S are
simultaneously diagonalizable.
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Exercise 8.3.19. Let U be an arbitrary upper triangular matrix over F pos-
sibly having repeated diagonal entries. Show by example that U may not be
diagonalizable, and give a condition to guarantee that it will be diagonalizable
without any diagonal entries being changed.

Exercise 8.3.20. Let V be a finite dimensional vector space over Fp, p a
prime, and let μ be the mapping with domain and target L(V, V ) defined by
μ(T ) = T p. Show that μ is linear and find its characteristic polynomial when
V = (Fp)2. Is μ diagonalizable?
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8.4 The Cayley–Hamilton Theorem

The Cayley–Hamilton theorem gives an interesting and fundamental rela-
tionship between a matrix and its characteristic polynomial, which is related
to our considerations about diagonalizabilty in the previous section. It is, in
fact, one of the most famous and useful results in matrix theory.

8.4.1 Statement of the theorem

The version of the Cayley–Hamilton theorem we will prove below is stated
as follows.

Theorem 8.16 (Cayley–Hamilton theorem). Let F be a field and suppose
A ∈ F

n×n. Then A satisfies its characteristic polynomial, that is, pA(A) = O.
Consequently, if V is a finite-dimensional vector space over F and T : V → V
is linear, then pT (T ) = OV , where OV is the zero mapping on V .

The proof we give below in Section 8.4.4 was noticed by Jochen Kuttler
and myself. It is more straightforward than the usual proof based on Cramer’s
rule. We first prove that PA(A) = O inductively just using matrix theory and
the assumption that F contains all the eigenvalues of A. The second step in
the proof, which doesn’t involve matrix theory, is to show that there exists
a field F

′ containing F such that all the roots of pA(x) = 0 lie in F. We say
F

′ is a splitting field for pA. Thus, pA(A) = O holds in F
′n×n, and hence

pA(A) = O in F
n×n too. And since it holds for A, it also holds for T .

8.4.2 The real and complex cases

If A is a real n × n matrix, its eigenvalues all lie in C, and if A is diagonalizable
over C, say A = MDM−1, then

pA(A) = pA(MDM−1) = MpA(D)M−1 = Mdiag(pA(λ1), pA(λ2), . . . , pA(λn))M
−1 = O,

by the argument in Section 8.3.2. With some ingenuity, one can fashion a
proof for arbitrary complex matrices (in particular, real matrices) by showing
that every square matrix over C is the limit of a sequence of diagonalizable
matrices.

Here is an important 2 × 2 example.

Example 8.11. For example, the characteristic polynomial of the matrix
J =

(
0 −1
1 0

)
is x2 + 1. Cayley–Hamilton asserts that J2 + I2 = O, which is

easy to check directly. Notice that the eigenvalues of J are ±i, so J is diago-
nalizable over C, though not over R. �
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8.4.3 Nilpotent matrices

A square matrix A is said to be nilpotent if Am = O for some integer m > 0.
For example,

A =
(

1 −1
1 −1

)

is nilpotent, since A2 = O. It follows directly from the definition of an eigen-
value that a nilpotent matrix cannot have a nonzero eigenvalue. (Convince
yourself of this.) Thus if an n × n matrix A is nilpotent, its characteristic
polynomial pA(x) is equal to (−1)nxn.

Proposition 8.17. If an n × n matrix A is nilpotent, then An = O.

Proof. Just apply Cayley–Hamilton. �

More generally, we also have the following definition.

Definition 8.3. A linear mapping T : V → V is said to be nilpotent if its
only eigenvalue is 0.

So the previous proposition implies the following result.

Proposition 8.18. If T : V → V is nilpotent, then (T )dimV = O.

8.4.4 A proof of the Cayley–Hamilton theorem

We will first show that pA(A) = O for every A ∈ F
n×n, provided all the eigen-

values of A lie in F. We will induct on n, the case n = 1 being trivial, since if
A = (a), then pA(x) = a − x and thus pA(A) = pA(a) = 0. Assume the result
for n − 1, where n > 1. Let (λ1,v1) be an eigenpair for A, and extend v1 to
a basis B of Fn. Then A is similar to B = MB

B(TA), so pA(x) = pB(x), and
hence it suffices to show that pB(B) = O. Now

B =

⎛
⎜⎜⎜⎝

λ1 ∗ · · · ∗
0
... B1

0

⎞
⎟⎟⎟⎠ ,

where B1 ∈ F
(n−1)×(n−1). It follows from this block decomposition that

det(B − xIn) = (λ1 − x) det(B1 − xIn−1). Since pA(x) = pB(x) and the
eigenvaluesλ1, λ2, . . . , λn of A all lie in F, it follows that the eigenvalues of
B are in F, so the eigenvalues λ2, . . . , λn of B1 are also in F. These all being
elements of F, we may apply the induction hypothesis to B1. First, notice
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the following fact about block matrix multiplication: if C1 and C2 are of size
(n − 1) × (n − 1), then

⎛
⎜⎜⎜⎝

c1 ∗ · · · ∗
0
... C1

0

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

c2 ∗ · · · ∗
0
... C2

0

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

c1c2 ∗ · · · ∗
0
... C1C2

0

⎞
⎟⎟⎟⎠ .

Now calculate pB(B). By the previous comment,

pB(B) = (−1)n(B − λ1In)(B − λ2In) · · · (B − λnIn)

= (−1)n

⎛
⎜⎜⎜⎝

0 ∗ · · · ∗
0
... B1 − λ1In−1

0

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

∗ ∗ · · · ∗
0
... C
0

⎞
⎟⎟⎟⎠ ,

where
C = (B1 − λ2In−1) · · · (B1 − λnIn−1).

But clearly C = pB1(B1), so by the induction hypothesis, it follows that
C = O. Thus

pB(B) = (−1)n

⎛
⎜⎜⎜⎝

0 ∗ · · · ∗
0
... B1 − λ1In−1

0

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

∗ ∗ · · · ∗
0
... O
0

⎞
⎟⎟⎟⎠ .

Carrying out the multiplication, one sees immediately that pB(B) = O. �
The assumption that all the roots of the characteristic polynomial of A lie

in F is actually unnecessary, due to the next result.

Lemma 8.19. Let F be a field. Then for every polynomial f(x) ∈ F[x], there
exists a field F

′ containing F and all the roots of f(x) = 0.

We will give a proof of this fact in Section 8.7. Thus the eigenvalues of A
lie in an extension F

′ of F, so pA(A) = O. All that remains to be proved is
that a linear mapping also satisfies its characteristic polynomial. Let V be a
finite-dimensional vector space over F and T : V → V a linear mapping. Then
for every matrix A of T with respect to a basis of V , we have pA(A) = O.
But as noted already, the matrix of pT (T ) with respect to this basis is pA(A).
Since pA(A) = O, it follows that pT (T ) is zero also. �
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8.4.5 The minimal polynomial of a linear mapping

Let V be as usual and T : V → V a linear mapping. By the Cayley–Hamilton
theorem, pT (T ) = OV , and therefore there exists a polynomial f(x) ∈ F[x] of
least degree and leading coefficient one such that f(T ) = OV . This follows
by division with remainder. For if f1 and f2 satisfy the minimal polynomial
criterion, then f1 and f2 must have the same degree k. Then g = f1 − f2 is
a polynomial of degree at most k − 1 such that g(T ) = O. Thus g = 0. The
minimal polynomial of T will be denoted by μT . The minimal polynomial
μA of a matrix A ∈ F

n×n is defined in exactly the same way, and if A is the
matrix of T , then μA = μT .

Proposition 8.20. Suppose T : V → V is a linear mapping whose eigenval-
ues lie in F, and let λ1, . . . , λm denote T ’s distinct eigenvalues in F. Then the
minimal polynomial μT (x) of T divides the characteristic polynomial pT (x),
and q(x) = (x − λ1) · · · (x − λm) divides μT (x).

Proof. Since the degree of μT (x) is at most n, division with remainder in F[x]
allows us to write pT (x) = h(x)μT (x) + r(x), where either r = 0 or deg r <
deg μT . But pT (T ) = p(T ) = O, r(T ) = O also. By the definition of μT , it
follows that r = 0; hence polynomial p(x) divides pT (x). To conclude that
q(x) divides μT (x), use division with remainder again. Let (λj ,v) be an
eigenpair for T , and write μT (x) = f(x)(x − λj) + r. Since μT (T )v = (T −
λj)v = 0, it follows that rIn = 0, so r = 0. Thus q divides μT . �

The following corollary restates the diagonalization criterion of Theorem
8.13. As above, let q(x) = (x − λ1) · · · (x − λm), where λ1, . . . , λm denote T ’s
distinct eigenvalues.

Corollary 8.21. The linear mapping T : V → V is semisimple if and only
if its minimal polynomial is q(x).

Proof. If T is semisimple, then all of its eigenvalues lie in F, and by Theorem
8.13, q(T ) = O. Therefore, q(x) is the minimal polynomial of T . Conversely,
if q(x) is T ’s minimal polynomial, then the criterion of Theorem 8.13 implies
that T is semisimple. �

Exercises

Exercise 8.4.1. Verify the Cayley–Hamilton theorem directly for

A =

⎛
⎝1 0 1

0 1 0
1 0 1

⎞
⎠ .
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Exercise 8.4.2. Give a direct proof for the 2 × 2 case. That is, show that

A =
(

a b
c d

)
= A2 − Tr(A)A + det(A)I2 = O.

Apparently, this was Cayley’s contribution to the theorem.

Exercise 8.4.3. The following false proof of the Cayley–Hamilton theorem
is well known and very persistent. In fact, it actually appears in an alge-
bra book. Since setting x = A in pA(x) = det(A − xIn) gives det(A − AIn) =
det(A − A) = 0, it follows that pA(A) = O. What is incorrect about this
“proof”?

Exercise 8.4.4. Show that a 2 × 2 matrix A is nilpotent if and only if
Tr(A) = det(A) = 0. Use this to find a 2 × 2 nilpotent matrix with all entries
different from 0.

Exercise 8.4.5. Use the Cayley–Hamilton theorem to deduce that A ∈
F

n×n is nilpotent if and only if all eigenvalues of A are 0.

Exercise 8.4.6. Show that a nonzero nilpotent matrix is not diagonalizable.

Exercise 8.4.7. Without using the Cayley–Hamilton theorem, show that if
an n × n matrix A is nilpotent, then in fact An = O. (Hint: use induction
on n. Choose a basis of N (A) and extend to a basis of Fn. Then apply the
induction to col(A).)

Exercise 8.4.8. * Prove that every A ∈ C
n×n is the limit of a sequence of

diagonalizable matrices, and thus deduce the Cayley–Hamilton theorem over
C in another way.

Exercise 8.4.9. Test the following matrices to determine which are diago-
nalizable.

(i)
(

0 1
1 0

)
and

(
1 1
0 0

)
(F = F2).

(ii)

⎛
⎝2 −1 1

0 1 1
0 0 2

⎞
⎠ (F = Q).

(iii)

⎛
⎝1 −1 2

0 2 0
0 0 2

⎞
⎠ (F = Q).

(iv)

⎛
⎜⎜⎝

5 4 2 1
0 1 −1 −1

−1 −1 3 0
1 1 −1 2

⎞
⎟⎟⎠ (F = Q). Note that the characteristic

polynomial is x4 − 11x3 + 42x2 − 64x + 32 = (x − 1)(x − 2)(x − 4)2.
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(v)

⎛
⎜⎜⎝

2 1 2 1
0 1 2 2
2 2 0 0
1 1 2 2

⎞
⎟⎟⎠ (F = F3).

Exercise 8.4.10. Find the minimal polynomials of the matrices in parts
(i)–(iii) of Exercise 8.4.9.

Exercise 8.4.11. Show that the characteristic polynomial of an n × n
matrix divides a power of its minimal polynomial.

Exercise 8.4.12. This exercise shows the minimal polynomial exists with-
out appealing to Cayley–Hamilton. Show that if V is a finite dimensional
vector space and T : V → V is linear, then the powers T 0, T, T 2, . . . T k are
linearly dependent for some k > 0. Conclude that the minimal polynomial of
T exists.
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8.5 Self Adjoint Mappings and the Principal Axis
Theorem

We now return to inner product spaces (both real and Hermitian) to treat one
of the most famous results in linear algebra: every matrix that is symmetric
over R or Hermitian over C is diagonalizable. Moreover, it has an ortho-
normal eigenbasis. This result is known as the principal axis theorem. It is
also commonly referred to as the spectral theorem. Our goal is to present
a geometric proof that explains some of the intuition underlying the ideas
behind symmetric and Hermitian matrices. We will first treat self-adjoint
linear mappings. These are the linear mappings whose matrices with respect
to an orthonormal basis are symmetric in the real case and Hermitian in the
complex case.

8.5.1 The notion of self-adjointness

Let V be either a real or Hermitian finite-dimensional inner product space.
The inner product of x and y in V will be denoted by (x,y). Consider a
linear mapping T : V → V such that

(T (x),y) = (x, T (y))

for all x,y ∈ V . In the case that V is a real vector space, we will say that
T is a self-adjoint linear mapping, and in the complex case, we will say that
T is a Hermitian self-adjoint linear mapping. The connection between self-
adjointness and matrix theory comes from the following result.

Proposition 8.22. Let V be a finite-dimensional Hermitian inner product
space (respectively inner product space) over C (respectively R). Then a linear
mapping T : V → V is self-adjoint if and only if its matrix with respect to an
arbitary Hermitian orthonormal basis (respectively orthonormal basis) of V
is Hermitian (respectively symmetric).

The proof is an exercise. A matrix K ∈ C
n×n is said to be Hermitian if

KH = K. We remind the reader that AH = (A)T . Consequently, we get the
following corollary.

Corollary 8.23. A linear mapping T : Rn → R
n is self-adjoint if and only

if T = TA, where A is symmetric. Similarly, a linear mapping T : Cn → C
n

is Hermitian self-adjoint if and only if T = TK , where K is Hermitian.

Proof. Let us give a proof in the real case. If T is self-adjoint, then T (ei) ·
ej = ei · T (ej). This implies that aij = aji. Thus A = AT . The converse is
similar. �
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It is more natural to consider the Hermitian case first. The reason for this
will be clear later. The geometric consequences of the condition that a linear
mapping is Hermitian self-adjoint are summed up in the following.

Proposition 8.24. Suppose T : V → V is a Hermitian self-adjoint linear
mapping. Then:

(i) all eigenvalues of T are real;

(ii) eigenvectors of T corresponding to distinct eigenvalues are orthogonal;

(iii) if W is a subspace of V such that T (W ) ⊂ W , then T (W⊥) ⊂ W⊥;

(iv) im(T ) = ker(T )⊥; and

(v) consequently, V = ker(T ) ⊕ im(T ).

Proof. We will first show that T has only real eigenvalues. Since C is alge-
braically closed, T has dim V complex eigenvalues. Let λ be any eigen-
value and suppose (λ,w) is a corresponding eigenpair. Since (T (w),w) =
(w, T (w)), we see that (λw,w) = (w, λw). This implies λ|w|2 = λ|w|2. Since
|w| �= 0, we have λ = λ, so all eigenvalues of T are real. For (ii), assume that λ
and μ are distinct eigenvalues of T with corresponding eigenvectors v and w.
Then (T (v),w) = (v, T (w)), so (λv,w) = (v, μw). Hence, (λ − μ)(v,w) =
0. (Recall that by (i), λ, μ ∈ R.) Since λ �= μ, we get (ii). For (iii), let x ∈ W
and y ∈ W⊥. Since T (x) ∈ W , (T (x),y) = 0. But (x, T (y)) = (T (x),y), so
(x, T (y)) = 0. Since x is arbitrary, it follows that T (y) ∈ W⊥; hence (iii)
follows. For (iv), first note that im(T ) ⊂ ker(T )⊥. Indeed, if y = T (x) and
w ∈ ker(T ), then

(w,y) = (w, T (x)) = (T (w),x) = 0.

By Proposition 6.38, dim V = dim ker(T ) + dim ker(T )⊥, and by the rank–
nullity theorem (Theorem 7.4), dim V = dim ker(T ) + dim im(T ). Hence,
dim im(T ) = dim ker(T )⊥, so im(T ) = ker(T )⊥. Part (v) follows from (iv),
since V = W ⊕ W⊥ for every subspace W of V . �

8.5.2 Principal Axis Theorem for self-adjoint
linear mappings

We will now prove the principal axis theorem, starting with the Hermitian
version.

Theorem 8.25. (The Hermitian Principal Axis Theorem) Suppose V is a
finite-dimensional Hermitian vector space, and let T : V → V be Hermitian
self-adjoint. Then there exists a Hermitian orthonormal basis of V consisting
of eigenvectors of T .

http://dx.doi.org/10.1007/978-0-387-79428-0_6
http://dx.doi.org/10.1007/978-0-387-79428-0_7


276 8 Eigentheory

Proof. We will induct on dimV . The result is certainly true if dimV = 1.
Suppose it holds when dimV ≤ n − 1, and let dimV = n. Let λ ∈ R be any
eigenvalue of T , and let us replace T by S = T − λIV . If V = ker(S), there is
nothing to prove, since every Hermitian orthonormal basis of V is an eigen-
basis. Thus we may assume that V �= ker(S). Note that S is also self-adjoint,
and ker(S) and im(S) are both stable under T , since S and T commute.
Moreover, by the previous proposition, V decomposes into the orthogonal
direct sum V = ker(S) ⊕ im(S). Since 0 < dim ker(S) ≤ n − 1 and likewise,
0 < dim im(S) ≤ n − 1, it follows by induction that ker(S) and im(S) each
admits a Hermitian orthonormal eigenbasis for T . This finishes the proof. �

Corollary 8.26. If K ∈ C
n×n is Hermitian, then there exists an eigenbasis

w1,w2, . . . ,wn for K that is Hermitian orthonormal. Hence, there exists a
unitary matrix U ∈ C

n×n such that KU = UD, where D is real diagonal.
Thus, K = UDU−1 = UDUH .

Proof. Put U = (w1 w2 . . . wn). �

Similarly, we have the real principal axis theorem.

Theorem 8.27. (The real Principal Axis Theorem) Suppose V is a finite-
dimensional inner product space, and let T : V → V be self-adjoint. Then
there exists an orthonormal basis of V consisting of eigenvectors of T .

Proof. The proof is identical to that of the Hermitian principal axis theorem
once we prove that T has only real eigenvalues. For this, we appeal to the
matrix A of T with respect to an orthonormal basis of V . This matrix is
symmetric, hence also Hermitian. Therefore, A has only real eigenvalues.
But the eigenvalues of A are also the eigenvalues of T , so we have the desired
result. �

Corollary 8.28. If A ∈ R
n×n is symmetric, then there exists an orthonor-

mal eigenbasis u1,u2, . . . ,un for A. Consequently, there exists an orthogonal
matrix Q such that A = QDQ−1 = ADQT , where D is real diagonal.

Proof. Take Q = (u1 u2 . . . un). �

Remark. Symmetric and Hermitian matrices satisfy the condition that
AAH = AHA. Thus they are normal matrices, and hence automatically admit
a Hermitian orthonormal basis, by the normal matrix theorem, which we will
prove in Chap. 9. The proof is conceptually much simpler, but it doesn’t
shed any light on the geometry. There are infinite-dimensional versions of the
spectral theorem for bounded self-adjoint operators on Hilbert space that the
reader can read about in a book on functional analysis. The finite-dimensional
spectral theorem is due to Cauchy.

http://dx.doi.org/10.1007/978-0-387-79428-0_9
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8.5.3 Examples of self-adjoint linear mappings

Let us now consider some examples.

Example 8.12 (Projections). Let W be a subspace of R
n. Recall from

Section 7.3.5 that the projection PW : Rn → R
n is defined by choosing an

orthonormal basis u1, . . . ,um of W and putting

PW (x) =
m∑

i=1

(x · ui)ui.

Certainly PW is linear. To see that it is self-adjoint, extend the orthonormal
basis of W to an orthonormal basis u1, . . . ,un of R

n. If 1 ≤ i, j ≤ m, then
PW (ui) · uj = ui · PW (uj) = ui · uj . On the other hand, if one of the indices
i, j exceeds m, then PW (ui) · uj = 0 and ui · PW (uj) = 0. Thus, PW is self-
adjoint. �

Example 8.13 (Reflections). Let H be a hyperplane in R
n, say H = (Ru)⊥,

where u is a unit vector. Recall that the reflection of Rn through H is the
linear mapping Q(v) = v − 2(v,u)u. Then Q = In − 2PW , where W = Ru.
Since the sum of two self-adjoint maps is evidently self-adjoint, all reflections
are also self-adjoint. �

Example 8.14. Recall that in Example 6.33 we introduced the inner prod-
uct on R

n×n given by the Killing form

(A,B) = Tr(ABT ),

where Tr(A) is the trace of A. In this example, we show that the linear
mapping T : Rn×n → R

n×n defined by T (A) = AT is self-adjoint with respect
to the Killing form. In other words, (AT , B) = (A,BT ) for all A,B. To see
this, note that

(AT , B) = Tr(AT BT ) = Tr((BA)T ) = Tr(BA),

while
(A,BT ) = Tr(A(BT )T ) = Tr(AB).

But Tr(AB) = Tr(BA) for all A,B ∈ R
n×n, so T is self-adjoint. �

In fact, the identity Tr(AB) = Tr(BA) holds for all A,B ∈ F
n×n, where F

is any field.

Example 8.15. Here is another way to show that T (A) = AT is self-adjoint
on R

n×n. We will show that T admits an orthonormal eigenbasis. Notice that
since T 2 = IW , where W = R

n×n, its only eigenvalues are ±1. An eigenbasis

http://dx.doi.org/10.1007/978-0-387-79428-0_7
http://dx.doi.org/10.1007/978-0-387-79428-0_6
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consists of the symmetric matrices Eii and (Eij + Eji)/
√

2, where i �= j with
eigenvalue λ = 1, and the skew-symmetric matrices (Eij − Eji)/

√
2 for i �= j

with eigenvalue λ = −1. We claim that this eigenbasis is orthonormal (the
verification is an exercise), so T is self-adjoint. A consequence of this ortho-
normal basis is that every real matrix can be orthogonally decomposed as
the sum of a symmetric matrix and a skew-symmetric matrix. (Recall that
we already proved in Chap. 6 that every square matrix over an arbitrary field
of characteristic different from two can be uniquely expressed as the sum of
a symmetric matrix and a skew-symmetric matrix.) �

The next example is an opportunity to diagonalize a 4 × 4 symmetric
matrix (one that was already diagonalized in Chap. 8) without any calcula-
tions.

Example 8.16. Let B be the 4 × 4 all-ones matrix. The rank of B is clearly
one, so 0 is an eigenvalue and N (B) = E0 has dimension three. In fact,
E0 = (R(1, 1, 1, 1)T )⊥. Thus, (1, 1, 1, 1)T is also an eigenvector. In fact, all
the rows sum to 4, so the eigenvalue for (1, 1, 1, 1)T is 4. Consequently, B
is orthogonally similar to D = diag(4, 0, 0, 0). To produce Q such that B =
QDQT , we need to find an orthonormal basis of E0. One can simply look for
orthogonal vectors orthogonal to (1, 1, 1, 1)T . In fact, v1 = 1/2(1, 1,−1,−1)T ,
v2 = 1/2(1,−1, 1,−1)T , and v3 = 1/2(1,−1,−1, 1)T will give such an ortho-
normal basis after they are normalized. We can thus write

B =
1
2

⎛
⎜⎜⎝

1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

4 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

⎞
⎟⎟⎠ 1

2
.

Notice that the orthogonal matrix Q used here is symmetric, so
Q−1 = Q. �

8.5.4 A projection formula for symmetric
matrices

One of the nice applications of the principal axis theorem is that it enables
one to express any symmetric matrix as a linear combination of orthogonal
projections. Suppose A ∈ R

n×n is symmetric, and let (λ1,u1), . . . , (λn,un) be
eigenpairs for A that give an orthonormal eigenbasis of Rn. Then if x ∈ R

n,
the projection formula (6.21) gives

x = (uT
1 x)u1 + · · · + (uT

n x)un.

Hence

http://dx.doi.org/10.1007/978-0-387-79428-0_6
http://dx.doi.org/10.1007/978-0-387-79428-0_8
http://dx.doi.org/10.1007/978-0-387-79428-0_6
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Ax = λ1(uT
1 x)u1 + · · · + λn(uT

n x)un.

Thus
A = λ1u1uT

1 + · · · + λnunuT
n . (8.17)

Since uiuT
i is the matrix of the projection of Rn onto the line Rui, the identity

(8.17) indeed expresses A as a linear combination of orthogonal projections.
This formula holds in the Hermitian case as well, provided one uses the
Hermitian inner product.

The projection formula (8.17) can be put in a more elegant form. If
μ1, . . . , μk are the distinct eigenvalues of A and E1, . . . , Ek are the corre-
sponding eigenspaces, then

A = μ1PE1 + μ2PE2 + · · · + μkPEk
. (8.18)

For example, in the case of the all-ones matrix of Example 8.16,

A = 0PE0 + 4PE4 = 4PE4 .

Exercises

Exercise 8.5.1. Let Ca : R3 → R
3 be the cross product map Ca(v) = c × v.

True or false: Ca is self-adjoint.

Exercise 8.5.2. Prove Proposition 8.22.

Exercise 8.5.3. Are rotations of R3 self-adjoint?

Exercise 8.5.4. Orthogonally diagonalize the following matrices:

⎛
⎝1 0 1

0 1 0
1 0 1

⎞
⎠ ,

⎛
⎝1 1 3

1 3 1
3 1 1

⎞
⎠ ,

⎛
⎜⎜⎝

1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1

⎞
⎟⎟⎠ .

(Try to diagonalize the first and third matrices without pencil and paper.
You can also find an eigenvalue of the second by inspection.)

Exercise 8.5.5. Let A =
(

a b
b c

)
∈ R

2×2.

(i) Show directly that both roots of the characteristic polynomial of A are
real.

(ii) Prove that A is orthogonally diagonalizable without appealing to the
principal axis theorem.
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Exercise 8.5.6. Suppose B is a real symmetric 3 × 3 matrix such that
(1, 0, 1)T ∈ N (B − I3), and (1, 1, − 1)T ∈ N (B − 2I3). If det(B) = 12,
find B.

Exercise 8.5.7. Answer each question true or false. If true, give a brief
reason. If false, give a counter example.

(i) The sum and product of two symmetric matrices are symmetric.

(ii) If two symmetric matrices A and B have the same eigenvalues, counting
multiplicities, then A and B are orthogonally similar (A = QBQ−1, where Q
is orthogonal).

Exercise 8.5.8. Suppose A is a 3 × 3 symmetric matrix such that the trace

of A is 4, the determinant of A is 0, and v1 =

⎛
⎝1

0
1

⎞
⎠ and v2 =

⎛
⎝1

1
1

⎞
⎠ are

eigenvectors of A that lie in the image of TA.

(i) Find the eigenvalues of A.

(ii) Find the eigenvalues corresponding to v1 and v2.

(iii) Finally, find A itself.

Exercise 8.5.9. Suppose A and B in R
n×n are both symmetric and have a

common eigenbasis. Show that AB is symmetric.

Exercise 8.5.10. Suppose A, B, and AB are symmetric. Show that A and
B are simultaneously diagonalizable. Is BA symmetric?

Exercise 8.5.11. Let W be a subspace of Rn. Simultaneously orthogonally
diagonalize PW and PW ⊥ .

Exercise 8.5.12. • Suppose A ∈ R
3×3 is symmetric and the trace of A is

an eigenvalue. Show that if A is invertible, then det(A)Tr(A) < 0.

Exercise 8.5.13. • Assume that a, b, c are all real. Let

A =

⎛
⎝a b c

b c a
c a b

⎞
⎠ .

(i) Show that if Tr(A) = 0, then det(A) = 0 too.

(ii) Diagonalize A if det(A) = 0 but Tr(A) �= 0.

Exercise 8.5.14. Using Exercise 8.5.12 and the matrix A in Exercise 8.5.13,
show that if a + b + c > 0, then

a3 + b3 + c3 − 3abc > 0.
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Exercise 8.5.15. • Diagonalize

A =

⎛
⎜⎜⎝

aa ab ac ad
ba bb bc bd
ca cb cc cd
da db dc dd

⎞
⎟⎟⎠ ,

where a, b, c, d are arbitrary real numbers. (Note: it may help to factor A.)

Exercise 8.5.16. Prove that a real symmetric matrix A whose only eigen-
values are ±1 is orthogonal.

Exercise 8.5.17. Suppose A ∈ R
n is symmetric. Show that if Ak = O for

some positive integer k, then A = O.

Exercise 8.5.18. Give a direct proof of the principal axis theorem in the
2 × 2 Hermitian case.

Exercise 8.5.19. Show that two real symmetric matrices A and B having
the same characteristic polynomial are orthogonally similar. In other words,
A = QBQ−1 for some orthogonal matrix Q.

Exercise 8.5.20. • Let A ∈ R
n be symmetric, and let λm and λM be its

minimum and maximum eigenvalues respectively.

(i) Use formula (8.17) to show that for every x ∈ R
n, we have

λmxTx ≤ xT Ax ≤ λMxTx.

(ii) Use this inequality to find the maximum and minimum values of |Ax| on
the ball |x| ≤ 1 in R

n.

(iii) Show that the maximum and minimum values of xT Ax for |x| = 1 are
eigenvalues of A.

Exercise 8.5.21. Show that if Q ∈ R
n is orthogonal and symmetric, then

Q2 = In. Moreover, if 1 is not an eigenvalue of Q, then Q = −In.

Exercise 8.5.22. Find the eigenvalues of K =
(

2 3 + 4i
3 − 4i −2

)
and diag-

onalize K.

Exercise 8.5.23. Unitarily diagonalize the rotation Rθ =
(

cos θ − sin θ
sin θ cos θ

)
.

Exercise 8.5.24. Using only the definition, show that the trace and deter-
minant of a Hermitian matrix are real.

Exercise 8.5.25. Describe the relationship between U(1,C) and SO(2,R).
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Exercise 8.5.26. Let SU(2,C) ⊂ U(2,C) denote the set of 2 × 2 unitary
matrices of determinant one.

(i) Show that SU(2,C) is a matrix group.

(ii) Describe the eigenvalues of the elements of SU(2,C).

Exercise 8.5.27. Consider a 2 × 2 unitary matrix U such that one of U ’s
columns is in R

2. Is U orthogonal?

Exercise 8.5.28. Suppose W is a complex subspace of Cn. Show that the
projection PW is Hermitian.

Exercise 8.5.29. Show how to alter the Killing form to define a Hermitian
inner product on C

n×n.

Exercise 8.5.30. Verify that the basis in Example 8.15 is indeed an
orthonormal basis of Rn×n.

Exercise 8.5.31. Find a one-to-one correspondence between the set of all
isometries Φ : R2 → R

2 and O(2,R).

Exercise 8.5.32. Give a proof of the real principal axis theorem for a self-
adjoint T : V → V by reducing it to the case of a symmetric n × n matrix by
choosing an isometry Φ : V → R

n (n = dim V ).

Exercise 8.5.33. Let V be a finite-dimensional inner product space, and
suppose T : V → V is linear. Define the adjoint of T to be the map T ∗ : V →
V determined by the condition that

(T ∗(x),y) = (x, T (y))

for all x,y ∈ V .

(i) Show that the adjoint T ∗ is a well-defined linear mapping.

(ii) If V = R
n, find the matrix of T ∗.
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8.6 The Group of Rotations of R3 and the Platonic
Solids

The purpose of this section is give an application of eigentheory to group
theory. We will show that the set of rotations of R

3 is the matrix group
SO(3,R) of 3 × 3 orthogonal matrices of determinant one. After that, we
will describe the Platonic solids and study their rotations.

8.6.1 Rotations of R
3

The classical definition of a rotation of R3 originated with Euler. A mapping
ρ : R3 → R

3 that fixes every point on a line through the origin, called the
axis of ρ, and rotates every plane orthogonal to the axis through the same
fixed angle θ is called a rotation of R3. We will let Rot(R3) denote the set of
all rotations of R3. Notice that it is not at all clear that Rot(R3) is a group.
It must be shown that the composition of two rotations with different axes
is also a rotation.

Our first objective is to show that rotations are linear. We will then show
that the matrix of a rotation is orthogonal and has determinant one. Thus,
Rot(R3) ⊂ SO(3,R). It is clear from the definition that a rotation preserves
lengths and angles. Since the inner product on R

3 has the property that

x · y = |x||y| cos α

for all nonzero x,y ∈ R
3, α being the angle between x and y, it follows that

every transformation of R3 preserving both lengths and angles also preserves
dot products. Thus if ρ ∈ Rot(R3), then

ρ(x) · ρ(y) = x · y. (8.19)

Therefore every rotation is orthogonal. Hence, by Proposition 7.7, we have
at once the following result.

Proposition 8.29. Every rotation ρ of R3 is an orthogonal linear mapping.
Consequently, the matrix of ρ with respect to the standard orthonormal basis
of R3 is orthogonal.

We will henceforth identify a rotation with its matrix with respect to the
standard orthonormal basis, so that Rot(R3) ⊂ O(3,R). We will now classify
the elements of O(3,R) that are rotations.

Claim: every rotation ρ of R3 has determinant one. Indeed, a rotation ρ fixes a
line L through the origin pointwise, so ρ has eigenvalue 1. Moreover, the plane

http://dx.doi.org/10.1007/978-0-387-79428-0_7
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orthogonal to L is rotated through an angle θ, so there exists an orthonormal
basis of R3 for which the matrix of ρ has the form

⎛
⎝1 0 0

0 cos θ − sin θ
0 sin θ cos θ

⎞
⎠ .

Hence det(ρ) = 1, which gives the claim. Therefore, Rot(R3) ⊂ SO(3,R). We
will now prove a theorem.

Theorem 8.30. Rot(R3) = SO(3,R).

Proof. It remains to show that SO(3,R) ⊂ Rot(R3), i.e., that every element
of SO(3,R) is a rotation. Note that by our definition, the identity mapping I3
is a rotation. Namely, I3 is the rotation that fixes every line L through 0 and
rotates every plane parallel to L⊥ through zero degrees. Let σ ∈ SO(3,R).
I claim that 1 is an eigenvalue of σ, and moreover, if σ �= I3, the eigenspace
E1 of 1 is a line. To see this, we have to characterize σ’s eigenvalues. Since
complex eigenvalues occur in conjugate pairs, every 3 × 3 real matrix has
a real eigenvalue; and since the real eigenvalues of an orthogonal matrix
are either 1 or −1, the eigenvalues of σ are given by one of the following
possibilities (recall that det(σ) = 1):

(i) 1 of multiplicity three,

(ii) 1,−1, where −1 has multiplicity two, and

(iii) 1, λ, λ, where |λ| = 1 and λ �= λ (since the complex roots of the
characteristic polynomial of a real matrix occur in conjugate pairs).

In every case, 1 is an eigenvalue of σ, so dim E1(σ) ≥ 1. Suppose σ �= I3 but
dim E1(σ) > 1. Then dim E1(σ) = 3 is impossible, so dimE1(σ) = 2. Thus σ
fixes the plane E1(σ) pointwise. Since σ preserves angles, it also has to send
the line L = E1(σ)⊥ to itself. Thus L is an eigenspace. Since σ �= I3, the only
possible eigenvalue for σ on L is −1. In this case, R3 has a basis, so that the
matrix of σ is ⎛

⎝1 0 0
0 1 0
0 0 −1

⎞
⎠ ,

contradicting the fact that det(σ) = 1. Thus, if σ �= I3, dim E1 = 1. Therefore,
σ fixes every point on a unique line L through the origin and maps the plane
L⊥ orthogonal to L into itself. For if u ∈ L and u · v = 0, then

u · v = σ(u) · σ(v) = u · σ(v) = 0.

Thus if v ∈ L⊥, then we must have σ(v) ∈ L⊥ as well. It remains to show
that σ rotates L⊥. Let u1,u2,u3 be an orthonormal basis in R

3 such that
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u1,u2 ∈ L⊥ and u3 ∈ L, i.e., σ(u3) = u3. Since σu1 and σu2 are orthogonal
unit vectors on L⊥, we can choose an angle θ such that

σu1 = cos θu1 + sin θu2

and
σu2 = ±(sin θu1 − cos θu2).

In matrix terms, this says that if Q = (u1 u2 u3), then

σQ = Q

⎛
⎝cos θ ± sin θ 0

sin θ ±(− cos θ) 0
0 0 1

⎞
⎠ .

Since det(σ) = 1 and det(Q) �= 0, it follows that

det

⎛
⎝cos θ ± sin θ 0

sin θ ±(− cos θ) 0
0 0 1

⎞
⎠ = 1.

The only possibility is that

σQ = Q

⎛
⎝cos θ − sin θ 0

sin θ cos θ 0
0 0 1

⎞
⎠ . (8.20)

Thus σ rotates the plane L⊥ through θ, so it follows that σ ∈ Rot(R3). This
proves that SO(3,R) = Rot(R3). �

The fact that Rot(R3) = SO(3,R) gives an interesting corollary.

Corollary 8.31. Rot(R3) is a matrix group. Hence, the composition of two
rotations of R3 is another rotation.

Remark. The fact that the composition of two rotations is a rotation is
certainly not obvious from the definition of a rotation. This result is due to
Euler. (Thus it may be said that Euler proved that Rot(R3) is a group before
groups were defined. This is the second brush with groups associated with
Euler, the first being the group Um of multiplicative units in Zm.) The axis of
the product of two rotations was found using what are called the Euler angles
of the rotation. The most efficient way of finding the axis of the product of
two rotations is to represent each rotation as a unit quaternion, say q1 and
q2. Then the axis is read off from the quaternionic product q = q1q2. The
reader is referred to any article on unit quaternions for further details.

Notice that the orthogonal matrix Q defined above may be chosen to be
an element of SO(3,R). Therefore, the above argument gives another result.
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Proposition 8.32. Given σ∈SO(3,R), there exists an element Q∈SO(3,R)
such that

σ = Q

⎛
⎝cos θ − sin θ 0

sin θ cos θ 0
0 0 1

⎞
⎠ Q−1.

8.6.2 The Platonic solids

In order to apply our result about SO(3,R), we will first define the Pla-
tonic solids and then determine their rotation groups. A half-space H in
R

3 consists of all points lying on or on one side of a plane P in R
3. If P

has the equation ax + by + cz = d, then there are two half-spaces, P+ and
P−, which are defined respectively by the inequalities ax + by + cz ≥ d and
ax + by + cz ≤ d. A set R in R

3 is called bounded if there exists M > 0 such
that |r| < M for all r ∈ R. It is convex if for every two points x,y in R, the
straight line segment between x and y is also in R. The intersection of a
collection of half-spaces in R

3 is always convex.

Definition 8.4. A convex polyhedron P in R
3 is by definition a bounded

region in R
3 that is the intersection of a finite number of half-spaces in R

3.

It turns out that we can require that the half-spaces H1, . . . , Hk that define
P have the property that each Fi = P ∩ Hi is a polygon in R

3. These polygons
are the faces of P. Two distinct faces Fi and Fj are either disjoint, meet in
a common vertex, or meet along an edge common to both. The vertices and
edges of all the Fi constitute the sets vertices and edges of P. The boundary of
P is the union of all its faces Fi. For example, a cube is a convex polyhedron
whose boundary is made up of 6 faces, 12 edges, and 8 vertices. Notice that
the faces of a cube are squares of side 1. Hence they are regular polygons of
type {4} in the notation of Section 7.3.7. To give an idea of the startlingly
original ideas of Euler, yet another of his famous (and surprising) theorems
states that for every convex polyhedron in R

3 with V vertices, E edges,
and F faces, F − E + V = 2. This number, which can be also be defined for
the boundaries of arbitrary piecewise linear solids in R

3, is called the Euler
characteristic. For example, for the surface of a piecewise linear doughnut in
R

3, F − E + V = 0.
A convex polyhedron P with the property that all faces of P are congruent

regular polygons and every vertex is on the same number of faces is called a
Platonic solid. Up to position in R

3 and volume, there are exactly five Platonic
solids: the tetrahedron, the cube, the octahedron, the dodecahedron, and the
icosahedron (or soccer ball). The Platonic solids were known to the classical
Greek mathematician-philosophers. Plato famously attempted to associate
four of them with the classical elements (earth, air, fire, and water), and
later Kepler attempted to improve on Plato by associating them with the

http://dx.doi.org/10.1007/978-0-387-79428-0_7
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known planets. Euclid proved in the Elements that the Platonic solids fall
into the five classes of convex polyhedra mentioned just above.

Not surprisingly, all convex polyhedra are determined by their vertices.
Hence the Platonic solids can be described by giving coordinates for their
vertices. All Platonic solids have Euler characteristic 2. The most famil-
iar one is the cube C, which has 8 vertices (±1,±1,±1), 12 edges, and
6 faces. (Note that F − E + V = 2.) A tetrahedron has four vertices and
four faces, which are equilateral triangles. Since F + V = 2 + E, it has six
edges. A convenient tetrahedron that we will call T has cubical vertices
(1, 1, 1), (1,−1,−1), (−1, 1,−1), (−1,−1, 1). The octahedron O has 6 ver-
tices, which we will take to be the midpoints of the faces of C, namely
(±1, 0, 0), (0,±1, 0), (0, 0,±1). It has 8 triangular faces, hence 12 edges. The
icosahedron I has 12 vertices (0,±1,±φ), (±1,±φ, 0), (±φ, 0,±1), 20 faces,
and 30 edges. Finally, the dodecahedron D has 20 vertices: 8 of which are
vertices of C, (0,±φ−1,±φ), (±φ, 0,±φ−1), (±φ, 0,±φ−1). Here, φ = 1+

√
5

2 is
the golden mean, which was encountered when we considered the Fibonacci
sequence. Notice that all five convex polyhedra listed above have the property
that their vertices are equidistant from the origin. Such a convex polyhedron
is said to be central.

8.6.3 The rotation group of a Platonic solid

The set Rot(P) consisting of rotations of R3 that preserve a convex polyhe-
dron P is called the rotation group of P.

Proposition 8.33. Suppose P is a convex polyhedron whose vertices span
R

3. Then Rot(P) is a finite subgroup of SO(3,R).

Proof. A convex polyhedron P is uniquely determined by its vertices, and
every linear mapping of R3 sends each convex polyhedron P to another convex
polyhedron. Thus if a linear mapping sends P into itself, it has to preserve
the faces, edges and vertices of P. Since a rotation of R3 is linear and since
the vertices of P span R

3, two rotations that coincide on the vertices are
the same. Since the vertex set is finite, it follows that Rot(P) has to be
finite too. �

The finite subgroups of SO(3,R) are called the polyhedral groups. Thus,
Rot(P) is always a polyhedral group. Conversely, every polyhedral group is
the rotation group of a convex polyhedron. We will eventually classify all the
polyhedral groups. When P is a central Platonic solid, there is a beautiful
formula for the order |Rot(P)|:

Proposition 8.34. Suppose P is a central Platonic solid with f faces such
that each face has e edges. Then |Rot(P)| = ef .
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The proof will be given in Proposition 11.7 as an application of the orbit
stabilizer theorem. Thus the rotation group of a central cube C or octahedron
O has order 24. As we will prove next, both of these groups are isomorphic to
the symmetric group S(4). A central regular tetrahedron has four triangular
faces, so its rotation group has order 12. A central regular dodecahedron D
and icosahedron I both have rotation groups of order 60. In fact, Rot(I) =
Rot(D) ∼= A(5).

8.6.4 The cube and the octahedron

Since the rotation group of a central cube C has order 24, one might suspect
that it is isomorphic to S(4). We will verify this, but first let us give an
explicit description of Rot(C). For convenience, suppose the six vertices of
C are (±1,±1,±1). Since all rotations of C send faces to faces, they also
permute the six midpoints of the faces. The midpoints being ±e1,±e2, and
±e3, the orthogonal matrices that permute these vectors have the form

σ = (±eπ(1) ± eπ(2) ± eπ(3)),

where π ∈ S(3). The matrices of this form are called signed permutation
matrices. They form the subgroup SP (3) of O(3,R). Note that |SP (3)| = 48.
Observe that if σ ∈ SP (3), then

detσ = det (±eπ(1) ± eπ(2) ± eπ(3)) = (−1)rsgn(π),

where r is the number of −1’s. This implies that |SP (3) ∩ SO(3,R)| = 24.
It is evident that Rot(C) = SP (3) ∩ SO(3,R), so we get another proof that
|Rot(C)| = 24. For simplicity, let G denote Rot(C). To see that G ∼= S(4), let
D1,D2,D3,D4 denote the four diagonals of C. Since G leaves C invariant, it
follows that each element of G permutes the four diagonals. Thus if σ ∈ G,
then σ(Di) = Dπ(i) for a unique π ∈ S(4). We will show that the mapping
ϕ : G → S(4) given by ϕ(σ) = π is an isomorphism. The proof that ϕ is a
homomorphism is left to the reader. To show that ϕ is a bijection, it suf-
fices, by the pigeonhole principle, to show that ϕ is injective, since G and
S(4) have the same order. Consider the four vectors d1 = e1 + e2 + e3, d2 =
−e1 + e2 + e3, d3 = e1 − e2 + e3, and d4 = −e1 − e2 + e3, which lie on the
four diagonals of C and point upward. Let Di be the diagonal determined
by di. Then for each i, σ(di) = εidπ(i), where each εi is either 1 or −1
depending on whether σ(di) points up or down. Since {d1,d2,d3} and
{ε1dπ(1), ε2dπ(2), ε3dπ(3)} are both bases of R3 for every choice of signs and
each σ ∈ Rot(C) is a linear mapping, it follows that σ is uniquely determined
by the matrix identity

http://dx.doi.org/10.1007/978-0-387-79428-0_11
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σ
(
d1 d2 d3

)
=

(
σ(d1) σ(d2) σ(d3)

)
=

(
ε1dπ(1) ε2dπ(2) ε3dπ(3)

)
.

Now assume ϕ(σ) = (1). Then

σ
(
d1 d2 d3

)
=

(
ε1d1 ε2d2 ε3d3

)
=

(
d1 d2 d3

)
diag(ε1, ε2, ε3).

Hence, σ = DED−1, where D =
(
d1 d2 d3

)
and E = diag(ε1, ε2, ε3). In order

to be in G, σ must be orthogonal, with detσ = 1. In particular, σ−1 = σT

and det E = 1. Since E−1 = E , it follows that σ = σ−1; hence to be orthog-
onal, σ must be symmetric. This implies that DED−1 = (DT )−1EDT , or
equivalently, DT DE = EDT D. By direct calculation,

DT D =

⎛
⎝3 1 1

1 3 −1
1 −1 3

⎞
⎠ ,

so the only way DT DE = EDT D can occur with E = diag(±1,±1,±1) and
det E = 1 is if E = I3, for at least one entry of E , say εi, must be 1. If the
other diagonal entries are −1, then EDT D �= DT DE . For example, when ε1 =

ε3 = −1 and ε2 = 1, then the first column of DT DE is

⎛
⎝−3

−1
−1

⎞
⎠, while that of

EDT D is

⎛
⎝−3

1
−1

⎞
⎠ . We conclude that σ = I3, and consequently, ϕ is injective.

This proves that ϕ is an isomorphism, so Rot(C) ∼= S(4). �
The octahedron O can be viewed as the unique convex polyhedron whose

vertices are the midpoints of the faces of the cube C, and every rotation of C
is thus a rotation of the octahedron and conversely. Thus Rot(C) = Rot(O).

Perhaps a more enlightening way to realize Rot(C) is to describe the rota-
tions directly by finding the axes about which C can be rotated. For example,
every coordinate axis Rei is such a line; C can be rotated by π/2, π, and
3π/2 about each coordinate axis. This gives a total of nine distinct rotations.
One can also rotate C through π around the lines x = y and x = −y in the
xy-plane. Repeating this for the other two coordinate planes gives six more
rotations, so we have now accounted for 15 rotations, 16 including the iden-
tity. There are four more lines of symmetry about which one might be able to
rotate C, namely the four diagonals joining opposite vertices. It seems to be
a little harder to visualize whether there any rotations through these lines,
so let us take a slightly different approach. Recall that the alternating group
A(3) can be realized as the 3 × 3 permutation matrices of determinant 1. One
element σ ∈ A(3) is the rotation
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σ =

⎛
⎝0 0 1

1 0 0
0 1 0

⎞
⎠

sending e1 → e2 → e3 → e1. Clearly,

⎛
⎝1

1
1

⎞
⎠ is an eigenvector, so ϕ is in fact

a rotation about the line R

⎛
⎝1

1
1

⎞
⎠ . Since σ clearly has order 3, it is the rota-

tion through 2π/3. In this way, we account for another eight elements of
Rot(C), since there are four diagonals, so we now have constructed all 24
rotations of C.

8.6.5 Symmetry groups

The geometric side of group theory is symmetry. To understand this aspect,
suppose S is a subset of Rn. A symmetry of S is defined to be an orthogonal
linear mapping ϕ : Rn → R

n such that ϕ(S) = S. The set of all symmetries
of S will be denoted by O(S). Recall that an orthogonal linear mapping is
a linear map ϕ that preserves the inner product on R

n. Since ϕ must also
preserve lengths, distances, and angles, it preserves the geometry of S. We
know that an orthogonal linear mapping ϕ : Rn → R

n is an orthogonal n × n
matrix, so the set of symmetries of S is thus

O(S) = {ϕ ∈ O(n,R) | ϕ(S) = S}.

In particular, O(Rn) = O(n,R). The first thing to note is the following.

Proposition 8.35. For every S ⊂ R
n, the set of symmetries O(S) is a sub-

group of O(n,R).

Proof. If ϕ and ψ are elements of O(S), then ψϕ and ϕ−1 are also symmetries
of S. Hence ψϕ−1 ∈ O(S), so O(S) is indeed a subgroup. �

Of course, it is possible, in fact likely, that the only element of O(S) is In.
For example, let n = 2 and let S = {(1, 0), (2, 0), (3, 0)}. On the other hand,
if S is the unit circle x2 + y2 = 1 in R

2, then O(S) = O(2,R). When S is
a convex polyhedron in R

3 (or even in R
n), then O(S) has to permute the

vertices of S. But since elements of O(S) preserve lengths, O(S) can move a
vertex only into another vertex having the same distance from the origin. But
if S is contained in R

n and has n linearly independent vertices of different
lengths, then O(S) is the trivial group.
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Example 8.17. Let us consider the n-cube C(n) in R
n defined by

C(n) = {(x1, x2, . . . , xn) | −1 ≤ xi ≤ 1 for all i = 1, 2, . . . , n}.

The matrix group SP (n) consisting of all n × n matrices of the form

(±eπ(1) ± eπ(2) · · · ± eπ(n)),

where π ∈ S(n), permutes the vectors ±e1,±e2, . . . ,±en and hence sends
C(n) to C(n). In fact, SP (n) = O(C(n)). �

Rotations in R
n for n > 3 are harder to define. We know that every rotation

of R
3 is given by an element of SO(3,R). It can be shown by a similar

analysis that every element of SO(4,R) is given by a matrix that is a rotation
in two orthogonal planes in R

4. In general, elements of O(n,R) satisfy the
normal matrix criterion AT A = AAT . This implies, by the normal matrix
theorem (see Theorem 9.2), that A is unitarily diagonalizable. That is, for
every A ∈ O(n,R), there is a Hermitian orthonormal basis of Cn consisting
of eigenvectors of A. Then, associated to every pair of eigenvalues λ, λ of A,
there exists a two-plane V in R

n such that A is a rotation of V through eiλ.
(Recall that since A is orthogonal, its eigenvalues satisfy |λ| = 1.)

Remark. The study of symmetry via group theory has been successful in
several disciplines, e.g., chemistry, physics, and materials science. The symme-
tries of a class of pure carbon molecules called fullerenes offer a prime exam-
ple. The most widely known of the fullerenes is a carbon molecule denoted
by C60 (not to be confused with the cyclic group of order 60), named buck-
minsterfullerene (or buckyball for short) after Buckminster Fuller for its sim-
ilarity to his famous geodesic domes, which is one of the most rigid molecules
ever discovered. Buckminsterfullerene is a truncated icosahedron. To obtain
a picture of the buckyball, we have to consider the truncated icosahedron,
which is the solid obtained by cutting off each vertex of the icosahedron by a
plane orthogonal to the line through the vertex and the center of the icosa-
hedron at the same distance from the center for each vertex. To get a model
for the truncated icosahedron, just take a close look at a soccer ball. Since
every vertex of the icosahedron lies on five faces, the vertices are replaced
by 12 regular pentagons. Hence, the truncated icosahedron has 60 vertices.
It also has 32 faces. The symmetry group of the vertices of the truncated
icosahedron is the same as for the icosahedron.

Exercises

Exercise 8.6.1. Prove the following: Suppose G is a subgroup of O(3,R)
and let

G+ = G ∩ SO(3,R).

http://dx.doi.org/10.1007/978-0-387-79428-0_9
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Then either G+ = G or G has exactly two cosets, and |G| = 2|G+|.

Exercise 8.6.2. Let P be a central Platonic solid. Let O(P) be the set of
all orthogonal matrices preserving P.

(i) Verify that O(P) is a subgroup of O(3,R).

(ii) Show that |O(P)| = 2|Rot(P)|.

Exercise 8.6.3. Consider the cube C with vertices at (±1,±1,±1). For the
rotations of C through the diagonal along (1, 1, 1), where do the vertices go?
Even though this was worked out in the text, try to do it anyway without
looking back.

Exercise 8.6.4. Let H denote the reflection through the xy-plane in R
3.

Show how to express the reflection through the yz-plane in the form Hσ,
where σ is a rotation.

Exercise 8.6.5. The symmetry group of the central 3-cube C of the previous
exercise permutes the diagonals of C, but it has order 48, which is twice the
order of S(4). Describe all the nonrotational symmetries.

Exercise 8.6.6. Show that

SP (n) = {σ ∈ O(n,R) | σ = (±eπ(1) ± eπ(2) · · · ± eπ(n)), π ∈ S(n)}

is a subgroup of O(n,R) of order 2nn!. Elements of SP (n) are called signed
permutation matrices.

Exercise 8.6.7. Consider the n-cube C(n) with its 2n vertices at the points
(±1,±1, . . . ,±1). Show that the symmetry group of the set of vertices of
C(n) is the group SP (n). Does this imply that the symmetry group of C(n)
is SP (n)?

Exercise 8.6.8. The 4-cube C(4) has eight diagonals. They are represented
by the semidiagonals ±e1 + ±e2 + ±e3 + e4. Show that the symmetry group
of C(4) does not act transitively on the diagonals. Find a pair of diagonals
D1 and D2 such that no σ ∈ Sym(C(4)) satisfies σ(D1) = D2.

Exercise 8.6.9. Let T be the central regular tetrahedron in R
3 described

above. Show that the group O(T ) is isomorphic to S(4) and that Rot(T ) is
isomorphic to A(4).

Exercise 8.6.10. Construct a convex polyhedron P by taking two copies of
a tetrahedron, say T1 and T2, and gluing them together along two faces. The
result is a convex polyhedron with six faces, nine edges, and five vertices.
Assuming that P is central, compute the order of O(P ).
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Exercise 8.6.11. For a subset S of R3, let Rot(S) denote the group of all
σ ∈ SO(3,R) such that σ(S) = S. Find Rot(S) in the following cases:

(a) S is the half-ball {x2 + y2 + z2 ≤ 1, z ≥ 0},

(b) S is the solid rectangle {−1 ≤ x ≤ 1,−2 ≤ y ≤ 2,−1 ≤ z ≤ 1}.

Exercise 8.6.12. Suppose H is a reflection of R
2. Show that there is a

rotation ρ of R
3 such that ρ(x) = H(x) for all x ∈ R

2. (Hint: consider the
line through which H reflects R

2.)

Exercise 8.6.13. Let G be a subgroup of O(n,R). True or false: if G is not
contained in SO(n,R), then G is normal in O(n,R).

Exercise 8.6.14. Describe how the alternating group A(4) acts on the cube
in R

3 with vertices (±1,±1,±1).
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8.7 An Appendix on Field Extensions

The purpose of this Appendix is to prove that given a field F and a polynomial
f ∈ F[x], there exists a field F

′ containing both F and all the roots of f(x) = 0.
The field F

′ is called a splitting field for the polynomial f .
To begin, we will construct a field F

′ containing F and at least one root
of f . Let x be a variable, and put V = F[x]. Then V is a vector space over F

with an infinite basis 1, x, x2, . . . . Given a nonconstant polynomial f ∈ V ,
let W be the subspace of V consisting of all polynomials of the form h = gf ,
for some g ∈ F[x]. We leave it to the reader to check that W is indeed a
subspace of V . Now form the quotient vector space V/W . Recall that the
elements of V/W are cosets g + W , where g ∈ V , and that coset addition is
given by (g + W ) + (h + W ) = (g + h) + W . Scalar multiplication by a ∈ F

is given in an analogous way: a(g + W ) = ag + W . Recall also that two cosets
g + W and h + W are the same if and only if h − g ∈ W . That is, h − g = qf
for some q ∈ F[x]. Since both V and W are infinite-dimensional, the following
result may at first glance be surprising.

Proposition 8.36. The quotient vector space V/W is a finite-dimensional
vector space over F. In fact, dim V/W = deg(f).

Proof. To prove that dimV/W= deg(f), we exhibit a basis. Let k=deg(f)−1.
Given g ∈ F[x], put g = g + W . For convenience, let us set α = x and αi = xi

for each nonnegative integer i. We claim that 1, α, α2, . . . , αk is a basis of
V/W . We first show independence. Suppose there exist a0, a1, . . . , ak ∈ F such
that

k∑
i=0

axα
i = 0.

By definition, this means that

h(x) =
k∑

i=0

aix
i ∈ W.

Thus h = gf for some g ∈ F[x]. This is impossible unless g = 0, so all ai are
equal to zero. To show that 1, α, . . . , αk span, let g ∈ F[x] and apply division
with remainder to write g = qf + r, where q, r ∈ F[x] and deg(r) < deg(f).
Then g = r. But r is in the span of 1, α, . . . , αk, so we have found a basis of
V/W . Thus dim V/W = deg(f), which finishes the proof. �

An element f ∈ F[x] is said to be irreducible if there is no factorization
f = gh in which both g and h lie in F[x] and both g and h have positive
degree. The next theorem gives an important and fundamental result in field
theory.
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Theorem 8.37. If f ∈ F[x] is irreducible, then V/W can be given the struc-
ture of a field F

′ such that F is a subfield of F′. Moreover, α = x + W is a
root of f in F

′.

Proof. We must first define multiplication on V/W . Let g, h ∈ F[x], and put
gh = gh. To prove that this definition makes sense, it is necessary to show that
if g1 = g2 and h1 = h2, then g1h1 = g2h2. This is analogous to the proof that
Zm admits an associative and commutative multiplication given in Chap. 2,
so we will omit the details. Note that 0 is the additive identity, and 1 is the
multiplicative identity. It remains to prove that if g �= 0, then g−1 exists. That
is, there exists h ∈ F[x] such that hg = 1. Since f is irreducible and g �= 0, f
by definition doesn’t divide g. Therefore, f and g have no common factor of
positive degree. This means there exist polynomials a, b ∈ F[x] such that af +
bg = 1, by the algorithm for computing the greatest common divisor of two
polynomials. Consequently, in F

′, bg = 1. Hence V/W with this multiplication
is a field. We now have F

′. Note that F is contained in F
′ as the subfield

{r | r ∈ F ⊂ F[x]}. Finally, we must show that f(α) = 0. Let f(x) =
∑

cix
i.

Now,
f(α) =

∑
ciα

i =
∑

cixi = f = 0,

so α is indeed a root. Therefore, the proof is finished. �

Example 8.18. Let F = Q and notice that x2 + x − 1 is irreducible in Q[x].
Its roots φ and μ were considered in Section 8.2.5. In particular, φ = 1+

√
5

2 .
The field Q

′ has dimension two over Q. A vector space basis of Q′ over Q is
1,

√
5. �

Finally, we need to modify the above construction to get a splitting field
F

′ for f . Notice that f ∈ F[x] ⊂ F
′[x], but f is no longer irreducible in F

′[x],
since it has the root α = x in F

′. Choose a new variable, say z, and consider
F

′[z]. Dividing f(z) by (z − α) gives f(z) = g(z)(z − α), for some g ∈ F
′[z].

Now deg(g) = deg(f) − 1, so if deg(f) = 2, then Proposition 8.36 implies that
F

′ necessarily contains all roots of f , as in the above example. If deg(f) > 2,
we check whether g is irreducible in F

′[z]. If so, we repeat the construction
with g to obtain a field extension of F′ (and hence F) containing a root β of g
different from α. Of course, β is also root of f . If g isn’t irreducible, factor it
until another irreducible factor is found and then perform another extension.
By continuing in this manner, one eventually obtains a field extension of F
containing all roots of the original polynomial f . In fact, this process will
stop after at most deg(f) steps, since a polynomial of degree m has at most
m distinct roots. �

http://dx.doi.org/10.1007/978-0-387-79428-0_2


Chapter 9
Unitary Diagonalization
and Quadratic Forms

As we saw in Chap. 8, when V is a finite-dimensional vector space over F, then
a linear mapping T : V → V is semisimple if and only if its eigenvalues lie in F

and its minimal polynomial has only simple roots. It would be useful to have
a result that would allow one to predict that T is semisimple on the basis of a
criterion that is simpler than finding the minimal polynomial, which, after all,
requires knowing the roots of the characteristic polynomial. In fact, we also
proved that when F = C or R, every self-adjoint operator is semisimple and
even admits a Hermitian orthonormal basis. The matrices associated to self-
adjoint operators, that is, Hermitian and symmetric matrices respectively,
happen to be in a larger class of matrices said to be normal consisting of
all A ∈ C

n×n such that AAH = AHA. The normal matrix theorem asserts
that the normal matrices are exactly those A ∈ C

n×n that can be unitarily
diagonalized, or equivalently, admit a Hermitian orthonormal basis. The first
goal in this chapter is to prove this theorem. The second goal is to consider the
topic of quadratic forms to which our diagonalization results may be applied.
For example, we will classify the positive definite real quadratic forms or
equivalently, the positive definite symmetric matrices. We will also introduce
an equivalence relation on the set of all real quadratic forms called congruence
and classify the equivalence classes. This result is known as Sylvester’s law
of inertia.

9.1 Schur Triangularization and the Normal Matrix
Theorem

The key to understanding which matrices can be unitarily diagonalized is the
Schur triangularization theorem, which says that an arbitrary n × n matrix
over C is similar via a unitary matrix to an upper triangular matrix. Put

c© Springer Science+Business Media LLC 2017
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DOI 10.1007/978-0-387-79428-0 9

297

http://dx.doi.org/10.1007/978-0-387-79428-0_8


298 9 Unitary Diagonalization and Quadratic Forms

another way, if V is a finite-dimensional vector space over C with a Hermitian
inner product, then every linear mapping T : V → V can be represented in
a Hermitian orthonormal basis by an upper triangular matrix. One of the
interesting aspects of the proof of the Schur triangularization theorem is that
it uses the fact that the unitary group U(n) is closed under multiplication.

9.1.1 Upper triangularization via the unitary
group

We will now prove the Schur triangularization theorem.

Theorem 9.1 (Schur triangularization theorem). Suppose A ∈ C
n×n. Then

there exist a unitary matrix U and an upper triangular matrix T ∈ C
n×n such

that A = UTUH . Thus, every square matrix over C is unitarily similar to an
upper triangular matrix over C. If A is real and all its eigenvalues are also
real, then A is similar to an upper triangular matrix over R via an orthogonal
matrix.

Proof. We will induct on n. Since the result is trivial if n = 1, suppose n > 1
and that the proposition is true for all k × k matrices over C whenever k <
n. Since A’s eigenvalues lie in C, A has an eigenpair (λ1,u1) with λ1 ∈ C

and u1 ∈ C
n. Let W be the subspace (Cu1)⊥. By the Hermitian version of

Proposition 6.38, dimW = n − 1. Hence by the above discussion, there exists
a Hermitian orthonormal basis {u2, . . . ,un} of W . Adjoining u1 gives the
Hermitian orthonormal basis u1,u2, . . . ,un of Cn. Thus U1 = (u1 u2 . . .un)
is unitary, and since (λ1,u1) is an eigenpair for A, we have

AU1 = (Au1 Au2 · · · Aun) = (λ1u1 Au2 · · · Aun).

Hence

UH
1 AU1 =

⎛
⎜⎜⎜⎝

uH
1

uH
2
...

uH
n

⎞
⎟⎟⎟⎠ (λ1u1 Au2 · · · Aun) =

⎛
⎜⎜⎜⎝

λ1uH
1 u1 ∗ · · · ∗

λ1uH
2 u1 ∗ · · · ∗
...

...
...

λ1uH
n u1 ∗ · · · ∗

⎞
⎟⎟⎟⎠ .

Therefore,

UH
1 AU1 =

⎛
⎜⎜⎜⎝

λ1 ∗ · · · ∗
0 ∗ · · · ∗
...

...
...

0 ∗ · · · ∗

⎞
⎟⎟⎟⎠ . (9.1)

http://dx.doi.org/10.1007/978-0-387-79428-0_6
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Now apply the induction hypothesis to the (n − 1) × (n − 1) matrix B in the
lower right-hand corner of UH

1 AU1 to get an (n − 1) × (n − 1) unitary matrix
U ′ such that (U ′)HBU ′ is upper triangular. The matrix

U2 =

⎛
⎜⎜⎜⎝

1 0 · · · 0
0
... U ′

0

⎞
⎟⎟⎟⎠

is clearly unitary, and

UH
2 (UH

1 AU1)U2 =

⎛
⎜⎜⎜⎝

1 0 · · · 0
0
... (U ′)H

0

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

λ1 ∗ · · · ∗
0
... B
0

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

1 0 · · · 0
0
... U ′

0

⎞
⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎝

λ1 ∗ · · · ∗
0
... (U ′)HBU ′

0

⎞
⎟⎟⎟⎠ ,

so UH
2 (UH

1 AU1)U2 is upper triangular. We are therefore done, since U = U1U2

is unitary due to the fact that U(n) is a matrix group (see Proposition 6.40).
If A and its eigenvalues are all real, then there exists a real eigenpair (λ1,u1);
hence U1 can be chosen to be orthogonal. The rest of the argument is the
same with orthogonal matrices replacing unitary matrices. ��

9.1.2 The normal matrix theorem

We now determine when the upper triangular matrix T in Proposition 9.1
is actually diagonal. In other words, we classify those A ∈ C

n×n such that
A = UDUH for some unitary matrix U , where D = diag(λ1, . . . , λn). To do
so, we make the following definition.

Definition 9.1. A matrix N ∈ C
n×n is said to be normal if

NNH = NHN. (9.2)

After proving the normal matrix theorem, which is next, we will give a
number of interesting examples of normal matrices. They fall into classes
depending on what conditions their eigenvalues satisfy.

http://dx.doi.org/10.1007/978-0-387-79428-0_6
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Theorem 9.2 (The normal matrix theorem). A matrix A ∈ C
n×n is unitar-

ily diagonalizable if and only if A is normal.

Proof. The “only if” part is straightforward and left as an exercise. Suppose
A is normal. Write A = UTUH , where U is unitary and T is upper triangular.
Since AHA = AAH and U is unitary, it follows that TTH = THT . Hence it
suffices to show that an upper triangular normal matrix is diagonal. The key
is to compare the diagonal entries of THT and TTH . The point is that for
every n × n complex matrix B, the kth diagonal entry of BHB is the square
of the length of the kth column of B, while the kth diagonal entry of BBH is
the square of the length of the kth row. But in an upper triangular matrix B,
if the square of the length of the kth row equals the square of the length of
the kth column for all k, then B is diagonal (the proof is left to the reader).
Thus an upper triangular normal matrix is in fact diagonal. Therefore, A is
indeed unitarily diagonalizable. ��
Corollary 9.3. If A ∈ C

n×n is normal, then two eigenvectors of A with dis-
tinct eigenvalues are Hermitian orthogonal.

Proof. We leave this as an exercise. ��

9.1.3 The Principal axis theorem: the short proof

Recall that a matrix A ∈ C
n×n is Hermitian if and only if AH = A. A real

Hermitian matrix is, of course, symmetric. It is clear that every Hermitian
matrix is normal. Furthermore, using the normal matrix theorem, we may
easily prove the following result.

Proposition 9.4. The eigenvalues of a Hermitian matrix are real. In fact,
the Hermitian matrices are exactly the normal matrices having real eigenval-
ues.

Proof. Let A be Hermitian, and write A = UDUH . Then A = AH if and only
if UHAU = UHAHU if and only if D = DH if and only if D is real. ��

Of course, the fact that Hermitian matrices have real eigenvalues was
proved from first principles in Chap. 8. The normal matrix theorem immedi-
ately implies the following.

Theorem 9.5 (Principal axis theorem). A complex matrix A is Hermitian
if and only if A can be unitarily diagonalized as A = UDUH , where D is a
real diagonal matrix. Similarly, a real matrix A is symmetric if and only if
A can be orthogonally diagonalized A = QDQT , where D is also real.

http://dx.doi.org/10.1007/978-0-387-79428-0_8
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Proof. The Hermitian case is immediate, but if A is real symmetric, one
needs to argue a little more to show that U can be taken to be orthogonal.
By the Schur triangulation theorem, A = QTQT , where Q is orthogonal and
T is real and upper triangular. But since A is symmetric, it follows that T
is symmetric, and since T is also upper triangular, it has to be diagonal.
Therefore, A = QDQT , as desired. ��

This proof is surprisingly brief, but it does not lead to any of the insights
of the first version of the principal axis theorem.

9.1.4 Other examples of normal matrices

To obtain other classes of normal matrices, one can impose other conditions
on D in the expression A = UDUH . Here is another example obtained in this
way.

Example 9.1 (Skew-Hermitian matrices). A matrix J is said to be skew-
Hermitian if JH = −J . It is easy to see that J is skew-Hermitian if and only if
iJ is Hermitian. Since Hermitian matrices are normal, so are skew-Hermitian
matrices. Also, the nonzero eigenvalues of a skew-Hermitian matrix are pure
imaginary: they have the form iλ for a nonzero λ ∈ R that is an eigenvalue
of iJ . A real skew-Hermitian matrix S is skew-symmetric, i.e., ST = −S. For
example,

J =
(

0 1
−1 0

)
and S =

⎛
⎝

0 1 2
−1 0 2
−2 −2 0

⎞
⎠

are both skew-symmetric. The diagonal entries of a skew-symmetric matrix
are zero, so the trace of a skew-symmetric is also zero. The determinant of a
skew-symmetric matrix of odd order is also 0 (see Exercise 9.1.3 below), so
a skew-symmetric matrix of odd order has 0 as an eigenvalue. The matrix J
above shows that the determinant of a skew-symmetric matrix of even order
can be nonzero. Note that the characteristic polynomial of S is −λ3 − 9λ, so
the eigenvalues of S are 0,±3i, confirming the observation that all nonzero
eigenvalues of a skew-Hermitian matrix are purely imaginary. Moreover, the
nonzero eigenvalues of S occur in conjugate pairs, since S is real. �

The normal matrix theorem gives the following structure theorem, which
describes the nonsingular skew-symmetric matrices.

Proposition 9.6. Assume that n is even, say n = 2m, and A ∈ R
n×n is an

invertible skew-symmetric matrix. Then there exists an orthonormal basis
x1, y1,x2,y2, . . . ,xm, ym of R

n such that A sends each real two-plane
Rxk + Ryk onto itself, and the matrix of A on this two-plane has the form
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Jλk
=

(
0 λk

−λk 0

)
,

where λk is a nonzero real number such that iλk is an eigenvalue of A. (This
basis is not necessarily unique, however.) Thus there exists an orthogonal
matrix Q such that A = Q diag(Jλ1 , . . . , Jλm

) QT . In particular, a nonsin-
gular real skew-symmetric matrix is similar via the matrix group O(n,R) to
a matrix that is the direct sum of nonzero two-dimensional skew-symmetric
blocks Jλk

.

Proof. Since A is real, its eigenvalues occur in conjugate pairs. Moreover,
since A is skew-symmetric, iA is Hermitian, so iA has only real eigenval-
ues. Thus the eigenvalues of A can be sorted into pairs ± iλk, where λk is
a nonzero real number, since det(A) �= 0 and k varies from 1 to m. Note,
however, that we are not claiming that the λk are all distinct. We may
choose a Hermitian orthonormal basis of Cn consisting of eigenvectors of A,
and since eigenvectors for different eigenvalues are Hermitian orthogonal by
Corollary 9.3, we may choose a Hermitian orthonormal basis of Cn consist-
ing of pairs {uk,uk}, where Auk = iλkuk. We now observe that this means
that xk = (uk + uk)/

√
2 and yk = i(uk − uk)/

√
2 also are a basis over C of

span{uk,uk}. Moreover, xk and yk have the additional property that both
lie in R

n and are Euclidean orthogonal: (xk)Tyk = 0. Furthermore, A leaves
the real two-plane Pk = Rxk + Ryk that they span invariant, and the matrix
of A with respect to this basis of Pk is Jλk

. Finally, note that the planes Pi

and Pj are also orthogonal if i �= j. Hence the matrix Q = (x1 y1 · · · xm ym)
is orthogonal and A = Q diag(Jλ1 , . . . , Jλm

) QT . ��
One can extend the above result to odd skew-symmetric matrices. We will

leave this to the reader.
Another natural condition one can put on the eigenvalues of a normal

matrix is that they all have modulus one. This is investigated in the following
example.

Example 9.2. Let K = UDUH , where every diagonal entry of D is a unit
complex number. Then D is unitary, hence so is K. Conversely, every uni-
tary matrix is normal (see Exercise 9.1.10). Thus the unitary matrices are
exactly the normal matrices such that every eigenvalue has modulus one. For
example, the skew-symmetric matrix

J =
(

0 −1
1 0

)

is clearly orthogonal, hence unitary. The matrix J has eigenvalues ±i, and
we can easily compute that Ei = C(1,−i)T and E−i = C(1, i)T . Thus

J = U1DUH
1 =

1√
2

(
1 1
i −i

) (−i 0
0 i

)
1√
2

(
1 −i
1 i

)
.
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The basis constructed in the above proposition is u1 =
1√
2

(
1
i

)
and u′

1 =

1√
2

(
1
−i

)
. The way U acts as a complex linear mapping of C2 can be inter-

preted geometrically as follows: U rotates vectors on the complex line C(1, i)T

spanned by (1, i)T (thought of as a real two-plane) through π
2 and rotates vec-

tors on the orthogonal axis by − π
2 . Of course, as a mapping on R

2, U is simply
the rotation Rπ/2. �

Exercises

Exercise 9.1.1. Show that A ∈ C
n×n is unitarily diagonalizable if and only

if AH is.

Exercise 9.1.2. True or false (discuss your reasoning):

(i) A complex symmetric matrix is normal.
(ii) The real part of a Hermitian matrix is symmetric and the imaginary

part is skew-symmetric.
(iii) The real part of a normal matrix is normal.
(iv) If a normal matrix N has real eigenvalues, then N is Hermitian.

Exercise 9.1.3. Unitarily diagonalize the skew-symmetric matrices

J =
(

0 1
−1 0

)
and S =

⎛
⎝

0 1 2
−1 0 2
−2 −2 0

⎞
⎠ .

Exercise 9.1.4. Let

A =

⎛
⎜⎜⎝

0 −1 0 −2
1 0 0 0
0 0 0 1
2 0 −1 0

⎞
⎟⎟⎠ .

Express A as Qdiag(Jλ, Jμ)QT as in Proposition 9.6.

Exercise 9.1.5. Formulate a result similar to Proposition 9.6 for skew-
symmetric matrices A ∈ R

n×n, where n is odd, that have the property that
dim N (A) = 1.

Exercise 9.1.6. Let S be a skew-Hermitian n × n matrix. Show the follow-
ing:

(i) If n is odd, then det(S) is pure imaginary (but possibly zero), and if n
is even, then det(S) is real.

(ii) If S is skew-symmetric, then det(S) = 0 if n is odd, and det(S) ≥ 0 if n
is even.
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Exercise 9.1.7. Show from the definition of the determinant that the deter-
minant of a Hermitian matrix is real.

Exercise 9.1.8. Prove Corollary 9.3. That is, show that two eigenvectors
for different eigenvalues of a normal matrix are Hermitian orthogonal.

Exercise 9.1.9. If possible, find an example of a 3 × 3 real matrix N such
that N is normal, but N is neither symmetric nor skew-symmetric.

Exercise 9.1.10. Let U ∈ U(n). Show the following.

(i) Every eigenvalue of U also has modulus 1.

(ii) det(U) has modulus 1.

(iii) |Tr(U)| ≤ n.

Exercise 9.1.11. Suppose Q is an n × n orthogonal matrix with no real
eigenvalues. True or false: n is even and det(Q) = 1.

Exercise 9.1.12. Suppose all eigenvalues of a unitary matrix Q are 1. True
or false: Q = In.

Exercise 9.1.13. Let N (n) denote the set of normal n × n complex matri-
ces. Prove that N (n) is not a subspace of Cn×n.

Exercise 9.1.14. Suppose A and B are commuting normal matrices. Prove
the following:

(i) A + B and AB are also normal, and

(ii) A and B are simultaneously diagonalizable.

Exercise 9.1.15. Suppose, as in Exercise 9.1.14, that A and B are commut-
ing normal matrices. What are the possible eigenvalues of A + B?

Exercise 9.1.16. Formulate the notion of a normal operator on a Hermitian
inner product space from the definition of a normal matrix.

Exercise 9.1.17. True or false (discuss your reasoning):

(i) If A is normal and U is unitary, then UAUH is normal.

(ii) If A is normal and invertible, then A−1 is normal.

(iii) If A ∈ R
n×n, then AAT and ATA have the same eigenvalues.

(iv) If A is normal and k is a positive integer, then Ak is normal.
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9.2 Quadratic Forms

A quadratic form over a field F is a function q : Fn → F of the form q(r1, . . . ,
rn) =

∑
i,j aijrirj , where all the aij are in F. Quadratic forms are used in

many areas. For example, Lagrange’s four squares theorem says that every
positive integer n is the sum of the squares of four integers. That is, there
exist a, b, c, d ∈ Z such that n = a2 + b2 + c2 + d2. Every real quadratic form
can be expressed via a real symmetric matrix; hence every real quadratic form
can be written as a sum of squares. In this section, we will develop some of the
basic properties of quadratic forms over F such as diagonalization. We will
also consider an interesting equivalence relation on the symmetric matrices
over F called congruence, and we will prove Sylvester’s law of inertia, which
classifies the equivalence classes of congruent symmetric matrices over the
reals R. A consequence of this is the classification of positive definite matri-
ces. We will also treat the corresponding equivalence relation for Hermitian
matrices and Hermitian quadratic forms.

9.2.1 Quadratic forms and congruence

Throughout this section, we will assume that the field F has characteristic
different from two. A quadratic form on F

n is a function q : Fn → F such that

q(r1, . . . , rn) =
n∑

i,j=1

aijrirj ,

where all aij are in F. Since the characteristic of F is not two, one can suppose
that the coefficients aij of q are symmetric by replacing aij by bij = 1

2 (aij +
aji). This leaves q unchanged, but by making its coefficients symmetric, we
can associate a unique symmetric matrix to q in order to bring in our previous
results on symmetric matrices. Indeed, q is expressed in terms of B by the
identity

q(r1, . . . , rn) = rTBr where r =

⎛
⎜⎝

r1
...
rn

⎞
⎟⎠ .

Conversely, a symmetric matrix A ∈ F
n×n defines the quadratic form

qA(r1, . . . , rn) = rTAr.

Under a change of coordinates on F
n of the form r = Cs, where C ∈ F

n×n

is invertible, the quadratic form qA is transformed into a new quadratic form
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as follows:
qA(r1, . . . , rn) = qA((Cs)T ) = sTCTACs.

Thus, the quadratic form qB(s1, s2, . . . , sn) associated to B = CTAC satisfies

qB(s1, s2, . . . , sn) = qA(r1, . . . , rn).

In other words, qB(sT ) and qA(rT ) are the same quadratic form expressed in
different coordinate systems. This motivates the next definition.

Definition 9.2. Two symmetric n × n matrices A and B over F are said to
be congruent if there exists a nonsingular C ∈ F

n×n such that A = CTBC.
Quadratic forms associated to congruent matrices are said to be equivalent.

Proposition 9.7. Congruence is an equivalence relation on the symmetric
matrices in F

n×n. Moreover, equivalence of quadratic forms is also an equiv-
alence relation on quadratic forms.

Proof. It suffices to show that equivalence is an equivalence relation. First,
A = (In)TAIn, which shows that A is equivalent to itself. If A = CTBCT ,
where C is nonsingular, then B = (C−1)TAC−1. Thus equivalence is sym-
metric. We leave the proof that equivalence is transitive as an exercise. ��

9.2.2 Diagonalization of quadratic forms

The basic fact about quadratic forms is that every quadratic form q over a
field F of characteristic different from two is equivalent to a quadratic form
q′ that is a sum of squares. That is,

q′(s1, . . . , sn) =
n∑

i=1

ais
2
i ,

where the ai lie in F. Equivalently, every symmetric matrix is congruent to
a diagonal matrix. We will omit the proof, but note that we have already
treated a special case. For example, by Proposition 4.19, a symmetric n × n
matrix A over F such that each k × k submatrix Ak in the upper left-hand
corner of A is invertible admits an LDLT decomposition, where L is lower
triangular unipotent. In that case, the kth diagonal entry of D is the kth
pivot of A, namely, dk = det Ak/det Ak−1, where by definition, detA0 = 1.

Example 9.3. Suppose F = Q, and let A ∈ F
2×2 be symmetric. Put

A =
(

a b
b c

)
,

http://dx.doi.org/10.1007/978-0-387-79428-0_4
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where a �= 0. Then we have

(
1 0

−b/a 1

)(
a b
b c

)(
1 −b/a
0 1

)
=

(
a 0
0 c − b2/a

)
,

so A is congruent to a diagonal matrix (even if A is singular). �

9.2.3 Diagonalization in the real case

The principal axis theorem says that a real quadratic form qA(r1, . . . , rn) =∑n
i,j=1 aijrirj , where the matrix A = (aij) is symmetric, can be diagonalized

using orthogonal axes. To be specific, there exists an orthogonal matrix Q
such that A = QDQT . The columns of Q are the principal axes, and set-
ting s = QT r, the components of s are the coordinates with respect to the
principal axes. Thus,

qA(r1, . . . , rn) = qD(s1, . . . , sn) =
∑

λis
2
i .

Proposition 9.8. Every real quadratic form q(r1, . . . , rn) can be orthogo-
nally diagonalized as

q(r1, . . . , rn) =
n∑

i=1

λis
2
i ,

where r = Qs and Q is the orthogonal matrix of principal axes.

Example 9.4. Consider the quadratic form q(x, y) = x2 + 4xy + y2. Its asso-
ciated symmetric matrix is

A =
(

1 2
2 1

)
.

The eigenvalues of A are 3 and −1. (Reason: both rows sum to 3, and the trace

of A is 2.) Noting that
(

1
1

)
and

(
1

−1

)
are corresponding eigenvectors, we

get A = QDQT , where Q =
1√
2

(
1 1
1 −1

)
and D = diag(3,−1). Putting

(
u
v

)
= QT

(
x
y

)
gives new coordinates (u, v) such that q(x, y) is the differ-

ence of squares q(x, y) = 3u2 − v2. Thus the equation q(x, y) = 1 represents

a hyperbola with axes
1√
2

(
1
1

)
and

1√
2

(
1

−1

)
. �



308 9 Unitary Diagonalization and Quadratic Forms

Remark. If q is a quadratic form on R
n and c ∈ R is a constant, the level

set Vc = {(r1, . . . , rn) | q(r1, . . . , rn) = c} is called a quadratic variety. It is an
example of a real algebraic variety. When n = 2, a quadratic variety is called
a conic section. If q has matrix A and both eigenvalues of A are positive,
then Vc is an ellipse or a circle when c > 0. (It is a circle if A has equal
eigenvalues.) If both eigenvalues are positive and c < 0, then Vc is actually a
subset of C2 that does not meet R

2. If A’s eigenvalues have different signs,
then Vc is a hyperbola in R

2. In R
3, the quadratic varieties are surfaces whose

type is classified by the number of positive and negative eigenvalues of the
associated symmetric matrix.

9.2.4 Hermitian forms

When A ∈ C
n×n is Hermitian, a quadratic function uA : Cn → C of the form

uA(z1, . . . , zn) =
n∑

i,j=1

aijzizj = zHAz, where z =

⎛
⎜⎝

z1
...
zn

⎞
⎟⎠

is called a Hermitian form. Every Hermitian form can be unitarily diagonal-
ized. All Hermitian forms are real-valued, since

(zHAz)H = zHAHzHH = zHAz.

Similarly, a skew-Hermitian form takes only pure imaginary values. By an
argument similar to that in Proposition 9.9, we get the following.

Proposition 9.9. Let A ∈ C
n×n be normal, so A = UDUH , where U is uni-

tary and D = diag(λ1, . . . , λn). Let w1, . . . , wn be the coordinates on C
n com-

ing from a Hermitian orthonormal eigenbasis of Cn consisting of the columns
of U . Then

uA(z1, . . . , zn) =
n∑

i=1

λiwiwi =
n∑

i=1

λi|wi|2.

9.2.5 Positive definite matrices

Given a real quadratic form q (or more generally, a Hermitian quadratic form
h), when does q (or h) have a strict maximum or minimum at the origin?
This corresponds to all the eigenvalues of its matrix being either positive or
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negative. A minimum is attained if all are positive, and a maximum occurs
if they are all negative. Thus one makes the following definition.

Definition 9.3. A real symmetric n × n matrix A is called positive definite
if

xTAx > 0 for all nonzero x ∈ R
n.

An n × n Hermitian matrix A is positive definite if and only if

zHAz > 0 for all nonzero z ∈ C
n.

The following result describes the positive definite matrices in several
equivalent ways.

Proposition 9.10. For a real symmetric (respectively complex Hermitian)
matrix A, the following conditions are equivalent:

(i ) all eigenvalues of A are positive;

(ii) A is positive definite;

(iii) the upper left k × k submatrix Ak has det(Ak) > 0 for all k; and

(iv) A has an LDLT decomposition in which D has positive diagonal entries.

Proof. For simplicity, we will give the proof for only the real symmetric
case. The changes necessary to prove the Hermitian case are routine after
replacing xTAx by zHAz. We will show that each statement implies the fol-
lowing one and (iv) implies (i). Assume that A ∈ R

n×n is symmetric, and
(i) holds. Applying the principal axis theorem, we have A = QTDQ, where
Q = (q1 · · ·qn) is orthogonal and D = diag(λ1, . . . , λn) with all λi > 0. Thus,
if x =

∑n
i=1 xiqi, then xTAx =

∑n
i=1 λix

2
i , which is positive unless x = 0.

Thus (i) implies (ii). Now suppose A is positive definite, and recall that if
k ≤ n, then R

k ⊂ R
n as R

k = {x ∈ R
n | xi = 0 for all i > k}. Being sym-

metric, it follows that Ak is positive definite on R
k for all k. Consequently, all

eigenvalues of Ak are positive, so det(Ak) > 0 for all k. We conclude that (ii)
implies (iii). Moreover, by Proposition 4.17, (iii) immediately implies (iv).
The last implication, (iv) implies (i), follows from the law of inertia, which
will be proved below. ��

We say that a symmetric matrix A ∈ R
n×n is negative definite if −A is pos-

itive definite, with a similar definition for the Hermitian case. Thus a negative
definite matrix has only negative eigenvalues and has an LDLT decompo-
sition with negative pivots. Note that this means that (−1)k det(Ak) > 0.
Finally, a symmetric matrix that has both positive and negative eigenvalues
is called indefinite.

http://dx.doi.org/10.1007/978-0-387-79428-0_4
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Example 9.5. Consider the matrix

A =

⎛
⎜⎜⎝

1 1 0 1
1 2 −1 0
0 −1 2 0
1 0 0 2

⎞
⎟⎟⎠ .

By row operations using lower triangular elementary matrices of the third
kind, we get

L∗A =

⎛
⎜⎜⎝

1 1 0 1
0 1 −1 −1
0 0 1 −1
0 0 0 −1

⎞
⎟⎟⎠ .

Hence A has an LDU decomposition, but three pivots are positive and one
is negative. Therefore, A cannot be positive definite or negative definite.

9.2.6 The positive semidefinite case

A quadratic form q on R
n is said to have a relative minimum at 0 if q(x) ≥ 0

for all x ∈ R
n and q(x) = 0 for some nonzero x. The meaning of a rela-

tive maximum is similar, and the same definitions apply to Hermitian forms
on C

n. Here, k satisfies 0 < k ≤ n. A real symmetric (respectively complex
Hermitian) n × n matrix A is said to be positive semidefinite if xTAx ≥ 0
(respectively zHAz ≥ 0) for all x ∈ R

n (respectively z ∈ C
n). A positive

semidefinite matrix can have a nontrivial null space, but it can’t have any
negative eigenvalues, since if (λ,v) is an eigenpair for A with λ < 0, then
vTAv = λvTv = λ|v|2 < 0.

Proposition 9.11. Let A be positive semidefinite. Then all eigenvalues of
A are nonnegative.

This is immediate from the previous observation. Here is the main result
about positive semidefinite matrices.

Proposition 9.12. A real symmetric (respectively complex Hermitian) matrix
A is positive semidefinite if and only if it admits an LDLT (respectively
LDLH) decomposition in which D has only nonnegative entries.

Proof. Suppose that A is real symmetric. (The proof in the Hermitian case
is, as usual, similar.) Since it may happen that det(Ak) = 0 for some k, we
have to give a direct proof that A has an LDLT decomposition. But we know
that A has an LPDU decomposition of the form A = LPDLT , where L is
lower triangular unipotent, P is a (unique) partial permutation matrix, D
is diagonal, and PD is symmetric. It suffices to show that if PD is positive
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semidefinite, then PD is a diagonal matrix with nonnegative entries. Suppose
A is of size n × n and P �= In nor is P obtained by setting some rows of In

equal to 0. To simplify the notation, suppose the first row of P is nonzero.
Let’s assume that the ith column is de1, where i > 1 and d �= 0. Since PD is
symmetric, its first column is dei. Thus PD interchanges e1 and ei. Putting
y = y1e1 + yiei, we get

yTPDy = (y1e1 + yiei)T (dy1ei + dyie1) = 2dy1yi.

Hence, if PD is positive semidefinite, then dy1yi ≥ 0 for all y1, yi ∈ R. Since
i > 1, this is clearly impossible, so if the first row of PD is nonzero, it has
d in the (1, 1) entry. The argument is the same for all other rows, so PD is
diagonal. Moreover, the entries of D must be nonnegative, so every positive
semidefinite real symmetric matrix can be written LDLT . The converse is
left as an exercise. ��
Example 9.6. Suppose A ∈ R

m×n. Then ATA is symmetric, so we can ask
whether ATA is positive or positive semidefinite. In fact, for every x ∈ R

n,
xTATAx = (Ax)TAx = |Ax|2, so xTATAx ≥ 0. Hence ATA is positive semi-
definite. In particular, all eigenvalues of ATA are nonnegative. If N (A) = {0},
then |Ax| > 0, provided x �= 0, so ATA is positive definite. The same is true
for AAT . �

Exercises

Exercise 9.2.1. Let A ∈ R
2×2 be symmetric.

(i) Show that if det(A) > 0, then A is either positive definite or negative
definite.

(ii) Also show that if Tr(A) = 0, then A is indefinite.

Exercise 9.2.2. Suppose A is a symmetric matrix such that det(A) �= 0 and
A has both positive and negative diagonal entries. Explain why A has to be
indefinite.

Exercise 9.2.3. Show that if A is a positive definite 3 × 3 matrix, then the
coefficients of its characteristic polynomial alternate in sign. Also show that
if A is negative definite, the coefficients are all negative.

Exercise 9.2.4. Give an example of a 3 × 3 symmetric matrix A such that
the coefficients of the characteristic polynomial of A are all negative, but A
is not negative definite. (Could your answer be a diagonal matrix?)

Exercise 9.2.5. Let A ∈ R
n×n be positive definite and suppose S ∈ R

n×n is
nonsingular.

(i) When is SAS−1 positive definite?
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(ii) Is Am positive definite for all integers m? (Note: A0 = In.)

Exercise 9.2.6. Describe the quadratic surface (x y z)A(x y z)T = 1 for
the following choices of A:

⎛
⎝

1 2 −1
2 0 3
3 −1 2

⎞
⎠ and

⎛
⎝

2 4 2
2 2 1
2 1 5

⎞
⎠ .

Exercise 9.2.7. Decide whether g(x, y, z) = x2 + 6xy + 2xz + 3y2 − xz + z2

has a maximum, minimum, or neither at (0, 0, 0).

Exercise 9.2.8. Let A ∈ R
n×n, and suppose Ai = 0 for some i < n. Does

this mean that A has a zero eigenvalue?

Exercise 9.2.9. Let A ∈ R
m×n have the property that N (A) �= {0}. Is ATA

positive semidefinite? Can it be positive definite?

Exercise 9.2.10. For the following pairs A,B of symmetric matrices, deter-
mine whether A and B are congruent.

(i) A and B have the same characteristic polynomial.

(ii) det(A) < 0, det(B) > 0.

(iii) A =
(

1 2
2 1

)
and B =

(
1 2
2 −1

)
.

(iv) A and B are similar.

(v) A and B are positive definite.

(vi) AB = BA.

Exercise 9.2.11. Show that if a symmetric (respectively Hermitian) matrix
A is semipositive definite, then A has a symmetric (respectively Hermitian)
kth root M for all k > 0. (That is, Ak = M .) Moreover, if A is positive
definite, so is M .

Exercise 9.2.12. Show that the product AB of a positive definite matrix
A and a symmetric matrix B has real eigenvalues, even though AB is not
necessarily symmetric. (Hint: show that AB is similar to a symmetric matrix.
Exercise 9.2.11 may help.)
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9.3 Sylvester’s Law of Inertia and Polar
Decomposition

In the final section of this chapter, we will prove two interesting results about
congruence classes of Hermitian matrices. The first is a famous result of
Sylvester that classifies the congruence class of a Hermitian matrix in terms
of its signature. The signature of a Hermitian matrix is a triple that tabulates
the number of eigenvalues that are positive, negative, or zero. The law of
inertia says that two Hermitian matrices are congruent if and only if their
signatures coincide. This result tells us, for example, that the signs of the
pivots of a real symmetric matrix determine its signature. The second result
says that every element of GL(n,C) has a unique factorization as KU , where
K is positive definite Hermitian and U is unitary. This gives the structure
of the congruence class with signature (n, 0, 0). Namely, the class consisting
of positive definite Hermitian matrices is in one-to-one correspondence with
the coset space GL(n,C)/U(n). Similarly, the congruence class of positive
definite real symmetric matrices is in one-to-one correspondence with the
coset space GL(n,R)/O(n,R).

9.3.1 The law of inertia

Let A ∈ C
n×n be Hermitian, and let n+(A), n−(A), and n0(A) denote, respec-

tively, the number of positive, negative, and zero eigenvalues of A. For exam-
ple, n0(A) = dimN (A). We will call the triple (n+(A), n−(A), n0(A)) the
signature of A. Sylvester’s law of inertia, to be proved next, gives an elegant
answer to the question of determining the signature of A. Since by Corollary
4.22, congruent matrices have the same rank, it follows from the rank–nullity
theorem that if A and B are congruent, then n0(A) = n0(B). For simplicity,
we will state and prove the law of inertia in the real symmetric case only.
The Hermitian version may be formulated without any surprises and proved
in essentially the same way.

Theorem 9.13 (Sylvester’s law of inertia). Let A and B be congruent real
symmetric matrices. Then A and B have the same signature. That is,

n+(A) = n+(B), n0(A) = n0(B) and n−(A) = n−(B).

Conversely, two real symmetric matrices having the same signature are con-
gruent. In particular, if a real symmetric matrix A has a symmetric LDU
decomposition A = LDLT , then the signs of its eigenvalues are the same as
the signs on the diagonal of D (which are the pivots of A).

http://dx.doi.org/10.1007/978-0-387-79428-0_4
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Proof. First choose orthogonal matrices P and Q such that A = PDPT and
B = QEQT , where D and E are diagonal. Notice that without affecting
these expressions, we may assume that the positive diagonal entries of D
are d1, . . . , ds and that those of E are e1, . . . , et. This follows from the fact
that for every permutation matrix P , PDPT = PDP−1 and D have the same
diagonal up to the permutation corresponding to P . Notice that A and D, as
well as B and E, have the same eigenvalues, hence the same signature. Thus,
to show that if A and B are congruent, then they have the same signature, it
will suffice to show that D and E have the same signature. Write B = CACT ,
where C ∈ R

n×n is invertible. Thus

B = CACT = CPDPTCT = QEQT .

Hence E = MDMT , where M = QTCP . To show that D and E have the
same signature, it suffices to show that n+(D) = n+(E), since D and E, being
congruent, have n0(D) = n0(E), as remarked above. Let us assume n+(D) =
s < n+(E) = t, and let fi(x) ∈ (Rn)∗ denote the ith component function of
MTx. Since xTEx = xTMDMTx, when xT = (x1, . . . , xt, 0, . . . , 0), we have

t∑
i=1

eix
2
i =

n∑
j=1

djfj(x1, . . . , xt, 0, . . . , 0)2. (9.3)

Since t > s, there exist a1, . . . , at ∈ R not all zero such that

fj(a1, . . . , at, 0, . . . , 0) = 0 for j = 1, . . . , s.

Indeed, fewer than t homogeneous equations in t variables have a nontrivial
solution. Thus,

0 <
t∑

i=1

eia
2
i =

n∑
j=s+1

djfj(a1, . . . , at, 0, . . . , 0)2 ≤ 0,

since dj ≤ 0 if j > s. This is a contradiction, so we must have n+(D) =
n+(E). This shows that D and E have the same signature, and hence so
do A and B. We will leave the proof of the converse as an exercise. ��
Example 9.7. Let

A =

⎛
⎝

1 1 2
1 1 3
2 3 2

⎞
⎠ .

Then the quadratic form associated to A is

Q(x, y, z) = x2 + 2xy + 4xz + 2y2 + 6yz + 2z2.
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A routine calculation gives

LA = DU =

⎛
⎝

1 1 2
0 1 1
0 0 −3

⎞
⎠ =

⎛
⎝

1 0 0
0 1 0
0 0 −3

⎞
⎠

⎛
⎝

1 1 2
0 1 1
0 0 1

⎞
⎠ .

Since A is nonsingular and symmetric, the expression LA = DU implies that
A = UTDU . Hence A is congruent to diag(1, 1,−3), so its signature is (2, 1, 0).
The quadratic surface

x2 + 2xy + 4xz + 2y2 + 6yz + 2z2 = 1

is a hyperboloid of one sheet. �

Remark. The law of inertia also holds in the Hermitian case. In fact, the
proof is essentially the same, so we will leave the details to the reader.

9.3.2 The polar decomposition of a complex linear
mapping

Recall that every nonzero complex number has a unique polar representa-
tion z = |z|eiθ with 0 ≤ θ < 2π. The purpose of this section is to generalize
this fact to linear mappings. Recall that eiθ is an element of the group of
unit complex numbers. By definition, this group is U(1) = {z ∈ C | zzH = 1}.
The polar representation says that group-theoretically, C

∗ = GL(1,C) =
(R>0)U(1). This representation generalizes to the n × n case when we replace
U(1) by the n × n unitary group and R>0 by the set of positive definite n × n
Hermitian matrices (which is not a group).

Proposition 9.14. Every A ∈ GL(n,C) can be uniquely expressed in either
of two ways as A = KU = UK ′, where U ∈ U(n), K is the unique Hermitian
positive definite matrix such that K2 = AAH , and K ′ = UHKU .

Proof. Let H = AAH . Then H is Hermitian. Since A is nonsingular, H is pos-
itive definite. (Proof: let (λ,x) be an eigenpair for H. Since A is nonsingular,
AHx �= 0. Thus,

0 < |AHx|2 = (AHx)HAHx = xH(AAH)x = xH(λx) = λ|x|2,

so λ > 0.) By the result of Exercise 9.2.11, we can write H = K2, where K
is also positive definite Hermitian. Now put U = K−1A. Then A = KU , so
it suffices to show that U is unitary. But
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UUH = K−1A(AH(K−1)H) = K−1H(K−1)H = K−1K2K−1 = In,

so U is indeed unitary. The U ′K ′ factorization follows because

KU = (UUH)KU = U(UHKU) = UK ′,

and K ′ = UHKU is also positive definite Hermitian by the law of inertia.
Finally, to prove uniqueness, notice that if K is Hermitian positive definite
and A = KU , then necessarily K2 = AAH , since K = AUH , so KH = UAH ,
and hence K2 = KKH = (AUH)(UAH) = AAH . But the square root of a
positive definite matrix is unique (verify this), so the polar representation
must be unique. ��

The real version of the polar representation takes an expected similar form.
The proof is identical to the complex case.

Proposition 9.15. Every A ∈ GL(n,R) can be uniquely expressed in either
of two ways as A = SQ = QS′, where Q ∈ O(n,R), S is the unique positive
definite real matrix such that S2 = AAT , and S′ = QTSQ.

Polar decomposition gives rise to a nice interpretation of the coset spaces
GL(n,C)/U(n) and GL(n,R)/O(n,R). Let PD(n,C) (respectively PD(n,R))
denote the n × n positive definite Hermitian (respectively positive defi-
nite real symmetric) matrices. Neither PD(n,C) nor PD(n,R) is a group,
because neither is closed under multiplication. However, PD(n,C) and
PD(n,R) are both closed under inverses. The upshot of polar decompo-
sition is that the quotient maps π : GL(n,C) → GL(n,C)/U(n) and π :
GL(n,R) → GL(n,R)/O(n,R) have the property that π(PD(n,C)) = GL(n,
C)/U(n) and π(PD(n,R)) = GL(n,R)/O(n,R). This gives a surjective map-
ping π : PD(n,C) → GL(n,C)/U(n) with a corresponding map in the real
case defined in exactly the same way. I claim that π is injective in each case.
Here is the proof in the real case. (The complex case is essentially the same.)
Suppose R, T ∈ PD(n,R) and π(R) = π(T ). That is, RO(n,R) = TO(n,R).
By the criterion for equality of left cosets, it follows that R−1T ∈ O(n,R).
Since R−1 is also positive definite, Exercise 9.2.12 implies that R−1T has real
eigenvalues. But if R−1T ∈ O(n,R), this implies that the eigenvalues of R−1T
are either 1 or −1. But −1 is impossible, for if −1 is an eigenvalue, there exists
a nonzero x ∈ R

n such that R−1T (x) = −x. Thus T (x) = R(−x) = −R(x),
so

xTT (x) = −xTR(x).
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Since R and T are both positive definite, this is impossible. Hence 1 is the
only eigenvalue of R−1T . But since R−1T ∈ O(n,R), R−1T is also normal,
hence is unitarily diagonalizable by the normal matrix theorem (Theorem
9.2). Hence R−1T = In, so R = T . Therefore, we have proved the following
result.

Proposition 9.16. The mappings π : PD(n,C) → GL(n,C)/U(n) and π :
PD(n,R) → GL(n,R)/O(n,R) are bijective.



Chapter 10
The Structure Theory of Linear
Mappings

Throughout this chapter, V will be a finite-dimensional vector space over F.
Our goal is to prove two theorems that describe the structure of an arbi-
trary linear mapping T : V → V having the property that all the roots of
its characteristic polynomial lie in F. To describe this situation, let us say
that F contains the eigenvalues of T . A linear mapping T : V → V is also
called an endomorphism of V , and in this chapter, we will usually use that
term. The structure theory for the endomorphisms of V is one of the nicest
chapters in the theory of finite-dimensional vector spaces. The first result we
will prove, known as the Jordan–Chevalley decomposition, asserts that every
endomorphism T as above can be uniquely expressed as the sum T = S + N
of a semisimple endomorphism S and nilpotent endomorphism N such that
TS = ST and SN = NS (hence TN = NT ). The endomorphisms S and N
are called, respectively, the semisimple part of T and the nilpotent part of T ,
and the expression T = S + N is known as the Jordan–Chevalley decomposi-
tion of T .

The second structure theorem, known as the Jordan canonical form, is a
refinement of the Jordan–Chevalley decomposition. It says that there exists
a basis of V such that the matrix of T is a direct sum of Jordan blocks.
A Jordan block is a matrix of the form J = μIn + N, where N is an upper
triangular n × n matrix with ones on the superdiagonal and zeros everywhere
else. In particular, N is nilpotent. Notice that μ is the unique eigenvalue of
J . A matrix J in this form is said to be in Jordan canonical form.

These structure theorems require that all the eigenvalues of the endomor-
phism T lie in F. If F is algebraically closed, for example if F = C, then they
apply to all endomorphisms. We can satisfy this eigenvalue assumption by
letting V = F

n, since then we are dealing with n × n matrices over F, and
by the appendix to Chap. 8, there exists an extension field F

′ of F containing
every eigenvalue of A. Thus A can be decomposed as A = S′ + N ′, where S′
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and N ′ are matrices over F′ that have the same roles as S and N ; that is, S′

is semisimple, N ′ is nilpotent, S′N ′ = N ′S′, and AS′ = S′A.

10.1 The Jordan–Chevalley Theorem

From now on, assume that V is a vector space over F such that dim V = n,
and suppose T : V → V is an arbitrary linear mapping whose characteristic
polynomial is pT (x) = (x − λ1)μ1 · · · (x − λm)μm , where λ1, . . . , λm are the
distinct eigenvalues of T and all λi lie in F. By the Cayley–Hamilton theorem,

pT (T ) = (T − λ1IV )μ1 · · · (T − λmIV )μm = O. (10.1)

By Theorem 8.13, a necessary and sufficient condition that T be semisimple is
that (T − λ1IV ) · · · (T − λmIV ) = O. The Jordan–Chevalley theorem, which
we will presently prove, will answer the question of how far T varies from
being semisimple.

10.1.1 The statement of the theorem

To state the theorem, we need to define the invariant subspaces of T .

Definition 10.1. The subspaces Ci = ker(T − λiIV )μi ⊂ V are called the
invariant subspaces of T . If A is the matrix of T with respect to a basis of V ,
then the subspaces Ci = N ((A − λiIn)μi) are the invariant subspaces for A.

Note that T (Ci) ⊂ Ci, so each Ci is invariant under T and similarly for A.
The invariant subspaces are also called the cyclic subspaces of T or A.

Lemma 10.1. Let Ti = (T − λiIV )μi so that Ci = ker(Ti). Then

V = C1 ⊕ C2 ⊕ · · · ⊕ Cm.

Proof. We will apply Lemma 8.14. Thus we have to check that Ti ◦ Tj = Tj ◦
Ti for all i and j, T1 ◦ · · · ◦ Tm = O, and ker(Ti) ∩ ker(Ti+1 ◦ · · · ◦ Tm) = {0}
for all i. In fact, the first statement is clear, and the second is the Cayley–
Hamilton theorem. Thus, we need to check only that ker(Ti) ∩ ker(Ti+1 ◦ · · · ◦
Tm) = {0} for all i. Note first that Eλi

(T ) ∩ ker(Ti+1 ◦ · · · ◦ Tm) = {0}. For
if v ∈ Eλi

(T ), then

Ti+1 ◦ · · · ◦ Tm(v) = (λi − λi+1)μi+1 · · · (λi − λm)μmv.

http://dx.doi.org/10.1007/978-0-387-79428-0_8
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Thus if v ∈ Eλi
(T ) ∩ ker(Ti+1 ◦ · · · ◦ Tm), then v = 0. Now suppose μi > 1

and take v ∈ ker(Ti) ∩ ker(Ti+1 ◦ · · · ◦ Tm) such that v �= 0. Let a ≤ μi be
the least positive integer such that (T − λiIV )av = 0. By the previous case,
we may assume a > 1, so let w = (T − λiIV )a−1v. Then by definition, w ∈
Eλi

(T ) and w �= 0. But w ∈ ker(Ti+1 ◦ · · · ◦ Tm) also, which implies w = 0,
contradicting the choice of w. Hence v = 0, so the lemma is proved. �

Let us now state the theorem.

Theorem 10.2 (Jordan–Chevalley decomposition theorem). Let T : V → V
be an endomorphism all of whose eigenvalues lie in F and whose characteristic
polynomial is given by (10.1), where λ1, . . . , λm are the distinct eigenvalues
of T . Suppose C1, C2, . . . , Cm are the invariant subspaces of T . Then

V = C1 ⊕ C2 ⊕ · · · ⊕ Cm. (10.2)

Let S : V → V be the unique endomorphism such that S(v) = λiv if v ∈ Ci.
Then:

(i) S is semisimple, and the linear mapping N = T − S is nilpotent;

(ii) S and N commute, and both commute with T : SN = NS, NT = TN ,
and ST = TS;

(iii) the decomposition T = S + N of T into the sum of a semisimple linear
mapping and a nilpotent linear mapping that commute is unique; and finally,

(iv) dim Ci = μi for all i.

The proof is given in the next section. The reader who wishes to see an
example in which the decomposition is explicitly computed can go directly
to Example 10.1.

Definition 10.2. The decomposition T = S + N is called the Jordan–
Chevalley decomposition of T . The mapping S is called the semisimple part
of T , and N is called its nilpotent part.

Corollary 10.3. An n × n matrix A over F whose eigenvalues all lie in F

can be expressed in exactly one way as a sum A = L + M of two commuting
matrices L and M over F such that L is diagonalizable and M is nilpotent.

Proof. First, let TA = TL + TM be the Jordan–Chevalley decomposition of
TA. This gives the decomposition A = L + M , as asserted. �

The Jordan–Chevalley decomposition enables us finally to clear up an
intriguing question: is the algebraic multiplicity of an eigenvalue always an
upper bound for its geometric multiplicity?
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Corollary 10.4. Let λ be an eigenvalue of an endomorphism T : V → V
having algebraic multiplicity μ. Then dim Eλ(T ) ≤ μ.

Proof. Let λi be an eigenvalue. By part (iv) of the Jordan–Chevalley theorem,
the algebraic multiplicity of λi, namely μi, is the dimension of the invariant
subspace Ci. But Eλi

(T ) ⊂ Ci, so the geometric multiplicity of λi, namely
dim Eλi

(T ), is at most μi. �

10.1.2 The multiplicative Jordan–Chevalley
decomposition

There is also a multiplicative version of the Jordan–Chevalley decomposition
for nonsingular matrices. Let us first mention that the notion of a unipotent
matrix used in the LPDU decomposition is a special case of what is generally
known as a unipotent matrix: a matrix A ∈ F

n×n is called unipotent if A − In

is nilpotent.

Proposition 10.5. Suppose A ∈ GL(n,F) and all the eigenvalues of A lie in
F. Then one can write A uniquely in the form A = AsAu, where As is semi-
simple, Au is unipotent, and AsAu = AuAs. Moreover, this decomposition is
unique.

Proof. Let A = S + N be the Jordan–Chevalley decomposition of A. Since
the eigenvalues of A and S are the same, it follows that S is nonsingular.
Put As = S, so that As is semisimple. Next put Au = In + S−1N . Since S
and N commute, S−1N is nilpotent; hence Au is unipotent. This shows that
A = AsAu and AsAu = AuAs. To prove uniqueness, note that A = As(In +
N) = As + AsN . Since As and N commute, A = As + AsN is the Jordan–
Chevalley decomposition of A. Hence, As and Au are unique. �

This product decomposition applies to all A ∈ GL(n,C), for example, or
to every GL(n,F) with F algebraically closed. The matrices As and Au are
known as the semisimple and unipotent parts of A. The multiplicative version
of the Jordan–Chevalley decomposition implies an interesting fact about finite
subgroups of GL(n,C), or indeed GL(n,F) if F is algebraically closed of
characteristic zero.

Proposition 10.6. Let F be algebraically closed of characteristic zero. Then
every finite subgroup G < GL(n,F) consists of diagonalizable matrices.

Proof. Assume A ∈ G, and write its Jordan–Chevalley decomposition as A =
AsAu. Since G is finite, A has finite order, say m. Then Am = (AsAu)m =
(As)m(Au)m = In. Now (As)m is semisimple, and (Au)m is unipotent, so
by the uniqueness of the multiplicative Jordan–Chevalley decomposition,
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(As)m = (Au)m = In. To finish the proof, we have to show that (Au)m = In

implies Au = In. Write Au = In + N , where N is nilpotent. Then

(Au)m = In + mN +
(

m

2

)
N2 + · · · + Nm.

Hence, mN(In +
(
m
2

)
N + · · · + Nm−1) = O. Since In +

(
m
2

)
N + · · · + Nm−1

is unipotent, it is invertible, so N = O. Therefore Au = In, so A = As. �

In fact, the above proof shows that there is a stronger conclusion.

Proposition 10.7. Suppose F is algebraically closed of characteristic p and
the order of G < GL(n,F) is prime to p. Then every element of G is diago-
nalizable.

Proof. By Lagrange’s theorem, the order m of every A ∈ G is prime to p,
since |G| is. Therefore, by the above argument, mN = O, so N = O. Hence
Au = In, so A = As. �

If F has characteristic p, then there exist finite subgroups of GL(n,F)
of order p all of whose elements are unipotent. For example, a transvection
matrix In + Eij , where i �= j, generates a subgroup of GL(n,F) of order p
isomorphic to the additive group of Fp.

Remark. When F = C, the proof of Proposition 10.6 can also be done using
the standard Hermitian inner product on C

n. If one averages the inner prod-
ucts (Av, Aw) over all A ∈ G, then one obtains a Hermitian inner product
on C

n for which the matrices A ∈ G are normal. Thus, every element of G is
unitarily diagonalizable, by the normal matrix theorem.

10.1.3 The proof of the Jordan–Chevalley theorem

As proved in Lemma 10.1,

V = C1 ⊕ · · · ⊕ Cm.

Thus each v ∈ V has a unique expression v =
∑m

i=1 ci with ci ∈ Ci. Applying
Proposition 7.5, there exists a unique linear mapping S : V → V defined by
setting

S(v) =
m∑

i=1

λici. (10.3)

http://dx.doi.org/10.1007/978-0-387-79428-0_7
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Moreover, by definition, S is semisimple. Now put N = T − S. We claim that
N is nilpotent. For this, it suffices to show that there exists an integer r > 0
such that Nr = O on V . By definition, if v ∈ Ci, then

Nμi(v) = (T − S)μi(v) = (T − λiIV )μi(v) = 0.

But V is the sum of the Ci, so Nr = O on V if r > μi for all i. This shows
that N is nilpotent and completes the verification of part (i). We will leave
part (ii), that T , S, and N all commute with each other, to the reader.
We next prove part (iii): the decomposition T = S + N satisfying (i) and
(ii) is unique. Let T = S′ + N ′ be another decomposition of T , where S′ is
semisimple, N ′ is nilpotent, and S′N ′ = N ′S′. Since S′ is semisimple, we can
write V = W1 ⊕ · · · ⊕ Wk, where the Wi are the eigenspaces for S′, and since
TS′ = S′T , it follows that T (Wi) ⊂ Wi for each i. Thus, N ′(Wi) ⊂ Wi also.
But since N ′ is nilpotent, ker(N ′) ∩ Wi �= {0}. Thus, there exists v ∈ Wi

such that (T − S′)v = 0. This means that T (v) = S′(v) = νiv, where νi is
the eigenvalue of S on Wi. Thus, every eigenvalue of S′ is an eigenvalue of T .
Now it follows from the argument in Lemma 10.1 that Cj = ker(T − λjIn)μj+k

for all k ≥ 0. Thus if νi = μj , then Wi ⊂ Cj . But this implies Wi = Cj , since∑
dim Wj =

∑
dim Ci = dimV . Hence S′ = S and N ′ = N .

It remains to prove (iv), that is, that μi = dim Ci for all i. Note that the
matrix A of T has the block form

A =

⎛
⎜⎜⎜⎝

A1 O · · · O
O A2 · · · O
...

...
. . .

...
O · · · O Am

⎞
⎟⎟⎟⎠ ,

where Ai is the matrix of T on Ci. It follows from the product rule for
determinants that

pA(x) = pA1(x) · · · pAm
(x) = (x − λ1)�1 · · · (x − λm)�m , (10.4)

since the only eigenvalue of Ai is λi. Therefore, dimCi = �i = μi. This
proves (iv). �

10.1.4 An example

The following example shows that even the 3 × 3 case can be a little compli-
cated.
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Example 10.1. Let V = C
3, and consider the endomorphism TA, where

A =

⎛
⎝1 2 1

0 1 1
0 0 2

⎞
⎠ .

The characteristic polynomial of A is −(x − 1)2(x − 2), so the distinct eigen-
values are 2 and 1, which is repeated. Note that (A − I3)(A − 2I3) �= O, so
A is not semisimple. The matrices (A − I3)2 and A − 2I3 row reduce respec-
tively to ⎛

⎝0 0 1
0 0 0
0 0 0

⎞
⎠ and

⎛
⎝1 0 −3

0 1 −1
0 0 0

⎞
⎠ .

Thus C1 = span{e1, e2}, and C2 = C

⎛
⎝3

1
1

⎞
⎠ . Hence the semisimple part of A

is the matrix S determined by

S

⎛
⎝1

0
0

⎞
⎠ =

⎛
⎝1

0
0

⎞
⎠ , S

⎛
⎝0

1
0

⎞
⎠ =

⎛
⎝0

1
0

⎞
⎠ , S

⎛
⎝3

1
1

⎞
⎠ = 2

⎛
⎝3

1
1

⎞
⎠ .

As usual, S is found by SP = PD. Therefore,

S =

⎛
⎝1 0 3

0 1 1
0 0 2

⎞
⎠ ,

and we get N by subtraction:

N =

⎛
⎝0 2 −2

0 0 0
0 0 0

⎞
⎠ .

(As a check, make sure that SN = NS.) Thus A = S + N is the Jordan–
Chevalley decomposition. �

Notice that if P is the matrix that diagonalizes S, i.e.,

P =

⎛
⎝1 0 3

0 1 1
0 0 1

⎞
⎠ ,

then a change of basis using P puts the matrix of TA into block diagonal
form. Namely,
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P−1AP =

⎛
⎝1 2 0

0 1 0
0 0 2

⎞
⎠ .

By choosing P more carefully, we can guarantee that P−1TP is in Jordan
canonical form. For this, see Example 10.4.

10.1.5 The Lie bracket

Given two endomorphisms S, T : V → V , their Lie bracket [S, T ] is defined
by [S, T ] = S ◦ T − T ◦ S. Thus [S, T ] is an endomorphism of V that mea-
sures how much S and T fail to commute. Now let g�(V ) denote the vector
space of all endomorphisms of V . Recall from Section 7.5.1 that g�(V ) has
dimension (dimV )2. By fixing S, one obtains an endomorphism of g�(V ),
called the adjoint of S, which is denoted by ad(S) and defined by the rule
ad(S)(T ) = [S, T ]. For example, if V = F

n, then g�(V ) = F
n×n, and we know

that a basis of g�(V ) is given by the matrices Eij . Then if i �= j, we have
ad(Eij)(Eji) = Eii − Ejj . We leave it as an exercise to compute ad(Eij)(Ers)
for all r, s (see Exercise 10.1.6) below). Now suppose F is algebraically closed.
Then a basic theorem about the adjoint mapping says that if we denote
the semisimple and nilpotent parts of S by Sss and Snilp, then the Jordan–
Chevalley decomposition of ad(S) is ad(S) = ad(Sss) + ad(Snilp). In other
words, ad(S)ss = ad(Sss) and ad(S)nilp = ad(Snilp). We ask the reader to
verify this when g�(V ) = F

2×2 in the exercises below.

Exercises

Exercise 10.1.1. Show that invariant subspaces of a linear mapping T are
actually invariant under T . That is, T (Ci) ⊂ Ci for each i.

Exercise 10.1.2. Discuss the Jordan–Chevalley decomposition of the fol-
lowing types of endomorphisms or matrices:

(i) rotations of R2 (i.e., elements of SO(2,R)),

(ii) rotations of R3,

(iii) the cross product mapping Ca(x) = a × x on R
3, and

(iv) 2 × 2 complex matrices of determinant and trace zero.

Exercise 10.1.3. Let A ∈ F
n×n. Show how to express the semisimple and

nilpotent parts of A2 and A3 in terms of those of A.

http://dx.doi.org/10.1007/978-0-387-79428-0_7
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Exercise 10.1.4. Describe all real 2 × 2 matrices that are both symmetric
and nilpotent.

Exercise 10.1.5. Find the Jordan–Chevalley decomposition of the matrices
in parts (i)–(iii) of Exercise 8.5.9.

Exercise 10.1.6. Consider the standard basis Eij , 1 ≤ i, j ≤ 2, of F2×2.

(i) Compute the matrices of ad(E11) and ad(E12) with respect to the standard
basis.

(ii) Calculate the Jordan–Chevalley decomposition of each of ad(E11) and
ad(E12).

Exercise 10.1.7. Show that an n × n matrix A is unipotent if and only if
its characteristic polynomial is (1 − x)n.

Exercise 10.1.8. Prove that the Lie bracket on g�(V ) satisfies the Jacobi
identity

[R, [S, T ]] + [T, [R,S]] + [S, [T, R]] = 0.

Exercise 10.1.9. Show that the Jacobi identity on g�(V ) can be restated
as the identity

ad([S.T ]) = [ad(S), ad(T )].

This says that if g�(V ) is made into a ring where the multiplication is R ◦ S =
[R,S], then ad is a ring homomorphism.

Exercise 10.1.10. Let T : C9 → C
9 be an endomorphism with characteris-

tic polynomial

(t + 1)2(t − 1)3(t2 + 1)2 = (t + 1)(t − 1)3(t − i)2(t + i)2,

and suppose the minimal polynomial of T is (t + 1)(t − 1)2(t2 + 1)2. What is
the rank of the nilpotent part of T on each invariant subspace of T?

http://dx.doi.org/10.1007/978-0-387-79428-0_8
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10.2 The Jordan Canonical Form

The Jordan canonical form is one of the central results in linear algebra. It
asserts that if all the eigenvalues of A ∈ F

n×n lie in F, then A is similar to a
matrix over F that is the direct sum of Jordan blocks. In particular, for an
endomorphism T : V → V having all its eigenvalues in F, there exists a basis
of V that is an eigenbasis for the semisimple part of T and simultaneously a
string basis, as defined below, for the nilpotent part.

10.2.1 Jordan blocks and string bases

A Jordan block is an n × n matrix J over F of the form

J = λIn + N,

where λ ∈ F and N = (nij), where

nij =
{

1 if j = i+1,
0 otherwise.

In other words, N is an upper triangular matrix with ones on its superdiag-
onal and zeros elsewhere. The matrix N is called a nilpotent Jordan block.
Notice that if n = 1, then J = (λ). An n × n matrix A is said to be in Jordan
canonical form if it has the form

A =

⎛
⎜⎜⎜⎝

J1 O · · · O
O J2 · · · O
...

...
. . .

...
O · · · O Jm

⎞
⎟⎟⎟⎠ , (10.5)

where J1, . . . , Jm are Jordan blocks.

Example 10.2. There are four 3 × 3 matrices in Jordan canonical form hav-
ing eigenvalue λ:

J1 =

⎛
⎝

λ 1 0
0 λ 1
0 0 λ

⎞
⎠ , J2 =

⎛
⎝

λ 1 0
0 λ 0
0 0 λ

⎞
⎠ , J3 =

⎛
⎝

λ 0 0
0 λ 1
0 0 λ

⎞
⎠ and J4 = λI3.
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The first matrix, J1, is itself a Jordan block; J2 and J3 have two Jordan
blocks; and J4 has three Jordan blocks. The reader can check that J2 and J3

are similar. �

Example 10.3. The 5 × 5 nilpotent matrix

N =

⎛
⎜⎜⎜⎜⎝

0 1 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 1
0 0 0 0 0

⎞
⎟⎟⎟⎟⎠

is a sum of two nilpotent Jordan blocks, one of size 3 × 3 and the other of
size 2 × 2. As a linear mapping, N sends

e3 → e2 → e1 → 0 and e5 → e4 → 0. (10.6)

�

Definition 10.3. Suppose N : V → V is a linear mapping. A basis of V that
can be partitioned into disjoint subsets {w1, . . . ,w�} such that N(w1) = 0
and N(wi) = wi−1 for i = 2, . . . , � is called an N -string basis. The subsets
{w1, . . . ,w�} will be called N -strings.

In Example 10.6, the sequences in (10.6) give the N -strings, and
{e1, e2, e3, e4, e5} is the N -string basis. Note that if N = O, then the N -
strings consisting of the singletons {ei} form a string basis. But in fact,
every basis determines a string basis for the zero matrix.

Put schematically, N acts on the N -strings as follows:

w� → w�−1 → · · · → w1 → 0.

The matrix of N with respect to the above N -string is the nilpotent Jordan
block of size (� + 1) × (� + 1), and the matrix of N with respect to a string
basis is a direct sum of nilpotent Jordan blocks.

10.2.2 Jordan canonical form

Here is the main result.

Theorem 10.8 (The Jordan canonical form). Let V be a finite-dimensional
vector space over F, and suppose T : V → V is an endomorphism whose
eigenvalues all lie in F. Then there exists an eigenbasis for the semisimple
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part of T that is also a string basis for the nilpotent part of T . Thus, there
exists a basis of V for which the matrix A of T has the form

A =

⎛
⎜⎜⎜⎝

J1 O · · · O
O J2 · · · O
...

...
. . .

...
O · · · O Jm

⎞
⎟⎟⎟⎠ , (10.7)

where each Ji is a Jordan block. Note: the Jordan blocks do not necessarily
have different eigenvalues.

Let us review the situation. By the Jordan–Chevalley decomposition the-
orem, V is the direct sum of the invariant subspaces C1, . . . , Cm of T . Hence,
choosing a basis of each Ci and taking the union of these bases gives a
basis of V for which the semisimple part S of T is the diagonal matrix
diag(λ1Iμ1 , . . . , λmIμm

), where μi = dimCi. Thus, if we show that each Ci

has a string basis for the nilpotent part N of T , then we obtain a basis of V
for which the matrix of T is in Jordan canonical form. This will be done in
the next section.

10.2.3 String bases and nilpotent endomorphisms

We will now prove that a nilpotent endomorphism N : V → V of an arbitrary
finite-dimensional vector space has a string basis. We begin by noticing that
string bases have the following property.

Proposition 10.9. In a string basis of V to N , the number of strings is
dim ker(N).

Proof. Let the strings be v(i)
ki

→ · · · → v(i)
1 → 0 for i = 1, . . . , �. Certainly the

terminal vectors v(i)
1 , 1 ≤ i ≤ �, span ker(N). Let w ∈ ker(N), and use the

string basis to write w =
∑

i,j aijv
(i)
j . Then N(w) = 0, so

∑
i,j aijv

(i)
j−1 =

0, where v(i)
j−1 = 0 if j = 1. Thus, ai,j = 0 if j > 1. Consequently, w =∑

i ai1v
(i)
1 . This proves that the v(i)

1 , 1 ≤ i ≤ �, span ker(N). Since the v(i)
1

are linearly independent, dim ker(N) = �. �

We now prove the main result.

Proposition 10.10. Suppose N : V → V is a nilpotent linear mapping.
Then V admits a string basis for N .
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Proof. We will induct on dim V . The case dim V = 1 is obvious, so assume
that the proposition is true if dimV < r, and suppose dim V = r. We may
as well assume N �= O, so N(V ) �= {0}. Let W = ker(N) and U = im(N).
By the rank–nullity theorem (cf. Theorem7.4) we have dim U + dim W =
dim V . Since N is nilpotent, dim W > 0, so dimU < dim V . By definition,
N(U) ⊂ U , so N is a nilpotent linear mapping on U . Hence, dim(U ∩ W ) >
0. Now apply the induction hypothesis to U to get a basis of N -strings.
By Proposition 10.9, there are exactly dim(U ∩ W ) N -strings in every string
basis of U . Let

v(i)
ki

→ · · · → v(i)
2 → v(i)

1

(i = 1, . . . , � = dim(U ∩ W )) be these strings. Since v(i)
ki

∈ im(N), there exists

v(i)
ki+1 ∈ V such that N(v(i)

ki+1) = v(i)
ki

. Thus we can form a new N -string

v(i)
ki+1 → v(i)

ki
→ · · · → v(i)

2 → v(i)
1 (10.8)

in V . Now adjoin to the strings in (10.8) additional wj ∈ W so that the v(i)
1

and the wk form a basis of W . The number of wk is exactly dim W − dim(U ∩
W ). Now count the number of vectors. We have dimU vectors from the strings
(10.8), and there are dim(U ∩ W ) of these strings, each contributing a basis
vector of W . Hence because of how the string basis of U was obtained, we
have a total of

dim U + dim(U ∩ W ) + (dim W − dim(U ∩ W )) = dimU + dim W

vectors. But as noted above, dim U + dim W = dim V , so it suffices to show
that these vectors are independent. Thus suppose

∑
i,j

aijv
(i)
j +

∑
bkwk = 0. (10.9)

Applying N to (10.9) gives an expression

∑
i,j

aijv
(i)
j−1 = 0,

where for each i, 1 < j ≤ ki + 1. But then all these aij are equal to zero.
Hence the original expression (10.9) becomes

∑
ai1v

(i)
1 +

∑
bkwk = 0.

Thus the remaining coefficients are also zero, since the v(i)
1 and the wk form

a basis of W . Hence, we have constructed an N -string basis of V . �

http://dx.doi.org/10.1007/978-0-387-79428-0_7


332 10 The Structure Theory of Linear Mappings

There is another way to prove the existence of a string basis that the reader
is invited to consider in the exercises. Since N(ker(N)) ⊂ ker(N), it follows
that N induces a linear mapping N : V/ ker(N) → V/ ker(N). One sees that
N is also nilpotent, so one can again use induction.

Remark. Each Jordan block of a matrix A corresponds to a subspace of
one of A’s invariant subspaces, and the sum of the sizes of all the Jordan
blocks for a fixed eigenvalue μ of A is the dimension of the invariant subspace
corresponding to μ.

Corollary 10.11. Every A ∈ F
n×n whose characteristic polynomial decom-

poses into linear factors over F is similar over F to a matrix in Jordan canon-
ical form (10.7). In particular, every square matrix over C is similar over C

to a matrix in Jordan canonical form.

Example 10.4. Let us find the Jordan canonical form of

A =

⎛
⎝1 2 1

0 1 1
0 0 2

⎞
⎠ .

Recall from Example 10.1 that if

P =

⎛
⎝1 0 3

0 1 1
0 0 1

⎞
⎠ ,

then A is similar using P to a matrix in block diagonal form. Namely,

A = P

⎛
⎝1 2 0

0 1 0
0 0 2

⎞
⎠ P −1.

Thus, we want to find a 2 × 2 matrix R such that

R

(
1 2
0 1

)
R−1 =

(
1 1
0 1

)
.

Let R = diag(1/2, 2). Conjugation by R multiplies the first row by 1/2 then
multiplies the first column by 2. Thus, increasing R to a 3 × 3 matrix in an
obvious way, we put
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Q = PR′ =

⎛
⎝1 0 3

0 1 1
0 0 1

⎞
⎠

⎛
⎝2 0 0

0 1 0
0 0 1

⎞
⎠ =

⎛
⎝2 0 3

0 1 1
0 0 1

⎞
⎠ .

Then

A = Q

⎛
⎝1 1 0

0 1 0
0 0 2

⎞
⎠ Q−1,

giving the Jordan canonical form of A.

10.2.4 Jordan canonical form and the minimal
polynomial

Let T : V → V be a linear mapping, and suppose μT (x) ∈ F[x] denotes the
minimal polynomial of T . Let λ1, . . . , λm be the distinct eigenvalues of T . As
usual, we assume λ1, . . . , λm ∈ F. Let C1, · · · , Cm be the invariant subspaces
of V , and let μi = dim Ci. Now

μT (x) = (x − λ1)a1 · · · (x − λm)am ,

where each ai is greater than zero. If we choose a basis of each Ci and consider
the Jordan–Chevalley decomposition T = S + N , where S is the semisimple
part and N is the nilpotent part of T , then μT (T ) = O means that each Nai

i

equals O on Ci. But this means that no nilpotent Jordan block of Ni can be
larger than ai × ai.

Here is an example.

Example 10.5. Let T : C9 → C
9 be an endomorphism with characteristic

polynomial

(t + 1)2(t − 1)3(t2 + 1)2 = (t + 1)(t − 1)3(t − i)2(t + i)2,

and suppose its minimal polynomial is (t + 1)(t − 1)2(t2 + 1)2. Let us try to
find the Jordan canonical form of T . Let C1, C2, C3, and C4 be the invariant
subspaces for the eigenvalues −1, 1, i, −i respectively of T . Then dimC1 =
2, dim C2 = 3, dim C3 = 2, and dimC4 = 2. By the above comments, the
nilpotent part N of T is zero on C1, so T has two 1 × 1 Jordan blocks with
eigenvalue −1 on C1. Now, T has a 3 × 3 Jordan block with eigenvalue 1 on
C2. Finally, T has a 2 × 2 Jordan block for i on C3 and a 2 × 2 Jordan block
for −i on C4. �
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10.2.5 The conjugacy class of a nilpotent matrix

Since the eigenvalues of a nilpotent matrix are zero, the Jordan canonical
form is similar to a matrix of the form

N =

⎛
⎜⎜⎜⎝

Jn1 O · · · O
O Jn2 · · · O
...

...
. . .

...
O · · · O Jns

⎞
⎟⎟⎟⎠ , (10.10)

where Jni
is the ni × ni nilpotent Jordan block and n1, . . . , ns are the lengths

of the strings in an N -string basis of V . By conjugating N with a permu-
tation matrix, we may also assume that the blocks are arranged so that
n1 ≥ n2 ≥ · · · ≥ ns. Such a sequence n1 ≥ n2 ≥ · · · ≥ ns of positive integers
such that n1 + n2 + · · · + ns = n is called a partition of n. Thus every nilpo-
tent n × n matrix over F determines a unique partition of n. But Theo-
rem 10.8 says that if two nilpotent n × n matrices over F determine the same
partition of n, then they are conjugate or similar by an element of GL(n,F).
Thus the conjugacy classes of nilpotent n × n matrices over F are in one-to-
one correspondence with the partitions of n. The partition function π(n) is
the function that counts the number of partitions of n. It starts out slowly
and grows rapidly with n. For example, π(1) = 1, π(2) = 2, π(3) = 3, and
π(4) = 5, while π(100) = 190, 569, 292. This unexpected connection between
partitions, which lie in the domain of number theory, and the conjugacy
classes of nilpotent matrices, which lie in the domain of matrix theory, has
led to some interesting questions.

Exercises

Exercise 10.2.1. Suppose V is a finite-dimensional vector space and T :
V → V is an endomorphism. Show that if ker(T ) = ker(T 2), then ker(Tm) =
ker(T ) for all m > 0. What does this say about the minimal polynomial of T?

Exercise 10.2.2. Suppose T : V → V is an endomorphism, and suppose
there exists a T -string basis of V . Show that T is nilpotent.

Exercise 10.2.3. Find the Jordan canonical form of the matrices in parts
(i)–(iii) of Exercise 8.5.9.

Exercise 10.2.4. Let A be the 4 × 4 all-ones matrix over F2. Find the Jor-
dan canonical form of A and resolve the paradox.

Exercise 10.2.5. Let a ∈ R
3. Find the Jordan canonical form over C of the

cross product Ca : R3 → R
3.

Exercise 10.2.6. Compute π(5) and write down all π(5) 5 × 5 nilpotent
matrices in Jordan canonical form with decreasing blocks along the diagonal.

http://dx.doi.org/10.1007/978-0-387-79428-0_8
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Exercise 10.2.7. Show that the nilpotent matrix N in (10.10) is similar via
a permutation matrix to a nilpotent matrix N ′ in Jordan canonical form such
that the block sizes form a decreasing sequence.

Exercise 10.2.8. True or false. State your reasoning.

(i) Two matrices over F with the same characteristic polynomial must be
similar.

(ii) Two matrices with the same minimal polynomial must be similar.

Exercise 10.2.9. Show without appealing to Jordan canonical form that if
A ∈ F

n×n and all the roots of pA(x) lie in F, then A is similar over F to an
upper triangular matrix. (Hint: Assume first that A is nilpotent. Let k be
the least positive integer for which Ak = O. Then

N (A) ⊂ N (A2) ⊂ · · · ⊂ N (Ak) = F
n.

Now construct a basis B of F
n such that B = MB

B(A) is upper triangular.
Then show that B can’t have any nonzero entries on its diagonal. Finally,
consider the Jordan–Chevalley decomposition of A.)

Exercise 10.2.10. Let N : V → V be a nilpotent linear mapping, where V
is a finite-dimensional vector space.

(i) Show that N(ker(N)) ⊂ ker(N), and conclude that N induces a nilpotent
linear mapping N : V/ ker(N) → V/ ker(N).

(ii) Show by induction that V admits an N -string basis subordinate to N
using induction on dimV with part (i).

Exercise 10.2.11. This exercise requires the use of limits. Let A ∈ C
n×n.

Show that A is nilpotent if and only if there exists a homomorphism ϕ : C∗ →
GL(n,C) such that limt→0 ϕ(t)Aϕ(t)−1 = O. This fact is a special case of the
Hilbert–Mumford criterion.



Chapter 11
Theorems on Group Theory

Our treatment of matrix theory and the theory of finite-dimensional vector
spaces and their linear mappings is finished, and we now return to the theory
of groups. The most important results in group theory are of two types: deep
results about finite groups, and results about linear algebraic groups. Linear
algebraic groups are matrix subgroups of some GL(n,F) that are solutions
of polynomial equations. We give an introduction to this subject in the last
chapter. One of the deepest results in finite group theory is the theorem
that all finite groups of odd order are solvable. Another result, which is truly
remarkable, is that all the finite simple groups have now been described. This
was accomplished by a joint effort of many mathematicians who filled in the
details of an ambitious program that eventually consumed more than 10,000
pages in mathematics research journals. The final step in this project was the
discovery of a so-called sporadic simple group known as the monster, whose
order is

80801742479451287588645990461710757005754368 × 109,

a number that is said to exceed the number of elementary particles in the
universe. But the discovery of this monstrous group did not close the subject.
In fact, it opened up several fascinating questions in areas such as number
theory that are usually not related to group theory. Moreover, there are even
conjectures that the monster has deep yet to be discovered connections to
physics. Linear algebraic groups, which we will briefly introduce in the last
chapter, are closely related to two of the major areas of pure mathematics,
algebraic geometry and representation theory. It is harder to state results in
this area succinctly, but we will make an attempt in the next chapter. In the
last fifty years, there has been a massive amount of important research in
these three areas.

c© Springer Science+Business Media LLC 2017
J.B. Carrell, Groups, Matrices, and Vector Spaces,
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Our starting point is the theory of group actions and orbits, which is
the collection of ideas necessary for the orbit stabilizer theorem. The main
consequence of the theory of orbits is Cauchy’s theorem and a collection
of theorems known as the Sylow theorems, originally proved in 1872 by a
Norwegian high-school teacher, Ludwig Sylow, which still form one of the
most basic sets of tools in the theory of finite groups. If G has order mpn,
where p is prime, n ≥ 1, and m is prime to p, then a subgroup H of order pn

is called a Sylow p-subgroup. The Sylow theorems describe several properties
of the Sylow subgroups of a finite group G. For example, according to the
first Sylow theorem, G has a Sylow p-subgroup for every prime p dividing the
order of G, and by the second Sylow theorem, any two Sylow p-subgroups
of G are conjugate. The finite abelian groups are completely classified by
the Sylow theorems. The orbit method will also be used to show that the
only finite subgroups of SO(3,R) are the dihedral groups, cyclic rotation
groups, and the symmetry groups of the Platonic solids. This extends our
classification of the finite subgroups of SO(2).

11.1 Group Actions and the Orbit Stabilizer
Theorem

We will now lay the foundation for a number of results on the structure of
finite groups. The basic notion is the idea of a group action, which leads
directly to a simple yet extremely powerful observation known as the orbit
stabilizer theorem, which is the basis for several counting arguments employed
below. Following the usual practice in group theory, from now on we will write
H < G (or equivalently, G > H) whenever H is a proper subgroup of G and
write H ≤ G if H is a subgroup that may coincide with G.

11.1.1 Group actions and G-sets

Let X be a set (finite or infinite), and recall that Sym(X) denotes the group
of all bijections of X.

Definition 11.1. A group G is said to act on X if there exists a homomor-
phism ϕ : G → Sym(X). If such a homomorphism ϕ exists, then g ∈ G acts
on X by sending each element x ∈ X to the element g · x defined by

g · x = ϕ(g)(x).

A mapping ϕ : G → Sym(X) is a homomorphism if and only if for every
g, h ∈ G and x ∈ X, we have

(gh) · x = g · (h · x). (11.1)
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The corresponding mapping G × X → X sending (g, x) → g · x will be
called an action of G on X, and we will say that X is a G-set. Note that if
G acts on X, then the identity of G acts as the identity bijection on X; that
is, 1 · x = x for all x ∈ X. In general, there may be other elements of G that
act as the identity on X, namely the elements of ker(ϕ).

Definition 11.2. Let X be a G-set, and suppose x ∈ X. The set

G · x = {y ∈ X | y = g · x ∃ g ∈ G}

is called the G-orbit of x. The stabilizer Gx of x is defined by

Gx = {g ∈ G | g · x = x}.

For each x ∈ X, the mapping G → X defined by g → g · x of G onto G · x is
called the orbit map associated to x. Finally, the action of G on X is said to
be transitive if given any pair of elements x, y ∈ X, there exists g ∈ G such
that g · x = y.

For example, every orbit G · x is also a G-set and G acts transitively (in
the obvious way) on G ·x. In particular, the orbit map g → g ·x of G to G ·x is
surjective. The symmetric group S(n) acts transitively on Xn = {1, 2, . . . , n}.
Another transitive action is given in the following example.

Example 11.1. A group G acts on itself by left multiplication as follows:
if g ∈ G, let Lg : G → G be the map given by Lg(h) = gh. This map
is called left translation by g. Left translation is a bijection of G, and the
mapping ϕ : G → Sym(G) defined by ϕ(g) = Lg is a homomorphism, by
associativity. Recall that left translation was already used in the proof of
Cayley’s theorem (Theorem 2.7). In the proof of Proposition 2.5 it was shown
that left translation by g is a bijection of G. �

Proposition 11.1. Let X be a G-set, and suppose x ∈ X. Then the stabi-
lizer Gx is a subgroup of G. Moreover, the stabilizer of g ·x is gGxg

−1. Conse-
quently, if Gx is finite and x and y lie in the same G-orbit, then |Gx| = |Gy|.

The proof is left to the reader. We next show that a group action on X
defines an equivalence relation on X whose equivalence classes are exactly
the orbits of G.

Definition 11.3. Let X be a G-set, and let x, y ∈ X. Then we say that x
is congruent to y modulo G if x ∈ G · y.

Proposition 11.2. Let X be a G-set. Then congruence modulo G is an
equivalence relation on X whose equivalence classes are the G-orbits. There-
fore, the G-orbits give a decomposition of X into disjoint subsets.

http://dx.doi.org/10.1007/978-0-387-79428-0_2
http://dx.doi.org/10.1007/978-0-387-79428-0_2
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Proof. Since 1 · x = x, x ∈ G · x, so every element of X is congruent to itself.
If x is congruent to y, then x ∈ G · y. Thus x = g · y, so y = g−1 · x. Hence
y is congruent to x. Finally, if x is congruent to y, and y is congruent to z,
then x = g · y and y = h · z, so x = g · (h · z) = (gh) · z. Hence x ∈ G · z, so
x is congruent to z. It follows that congruence modulo G is an equivalence
relation. �

Corollary 11.3 (The orbit identity). Suppose a group G acts on a finite set
X. Then G has finitely many orbits, say O1, . . . ,Or, and |X| = |O1| + · · · +
|Or|.

Example 11.2 (Left and right cosets). Suppose H is a subgroup of G. Then
H acts on G on the left by h · a = ha (h ∈ H, a ∈ G). The orbits of this
action are the right cosets Ha of H. Similarly, H acts on G on the right by
h · a = ah−1. The orbits of the right action are the left cosets aH of H. �

Example 11.3 (Double cosets). Let H and K be subgroups of G. Then the
product group H × K acts on G by (h, k) · a = hak−1. The orbits of this
action have the form HaK. An orbit of the H × K-action on G is called a
double coset of the pair (H,K), or sometimes an (H,K)-double coset. Thus
such double cosets are either disjoint or equal. �

Recall that in a finite group G, all cosets aH of a subgroup H have exactly
|H| elements. This isn’t true for double cosets, however. For example, the
number of elements in HaH is |H| if a ∈ H, while |HaH| > |H| if a /∈ H.
The reader may wish to find a formula for |HaH|. (See Exercise 11.1.16.)

Example 11.4. We have already seen that GL(n,F) has a decomposition

GL(n,F) = L(n,F) · P (n) · D(n,F) · U(n,F), (11.2)

where L(n,F) and U(n,F) are respectively the lower triangular and upper
triangular unipotent n × n matrices over F. Let T (n,F) = D(n,F) · U(n,F).
Then T (n,F) is the subgroup of GL(n,F) consisting of all invertible upper
triangular n × n matrices over F. Thus,

GL(n,F) = L(n,C) · P (n) · T (n,F)

is a double coset decomposition of GL(n,F) consisting of the double cosets
L(n,F)σT (n,F), where σ varies over the group P (n) of n × n permutation
matrices. This particular decomposition is called the Birkhoff decomposition.
There is a similar decomposition

GL(n,F) = T (n,F) · P (n) · T (n,F),

called the Bruhat decomposition. We will discuss the Bruhat decomposition
in the final chapter. �
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11.1.2 The orbit stabilizer theorem

We now come to the orbit stabilizer theorem, which gives a powerful method
for counting the number of elements in an orbit of a finite group.

Theorem 11.4 (The orbit stabilizer theorem). Let G be a finite group and
let X be a G-set. Then for every x ∈ X, the mapping g → g · x induces a
bijection πx : G/Gx → G · x from the coset space G/Gx to the orbit G · x.
Hence

|G · x| =
|G|
|Gx|

.

In particular, |G · x| divides |G|.

Proof. The proof is similar to the proof of Lagrange’s Theorem. Fix x ∈ X
and let H denote the stabilizer Gx. For each a ∈ G and h ∈ H,

(ah) · x = a · (h · x) = a · x.

Hence, we can define a map πx : G/H → G · x by setting πx(aH) = a · x
for every aH ∈ G/H. This map is certainly surjective, since the orbit map
G → G · x is surjective. To finish the proof, we need to show that πx is
injective. Suppose πx(aH) = πx(bH). Then a ·x = b ·x, so a−1b ·x = x. Thus

a−1b ∈ H, and therefore aH = bH. Hence πx is injective. Since |G/H| =
|G|
|H|

by Lagrange, the proof is complete. �

11.1.3 Cauchy’s theorem

Lagrange’s theorem, which says that the order of a subgroup of a finite group
G divides the order of G, does not have a converse. For example, the alter-
nating group A(4) has order 12, but it has no subgroup of order 6. Our first
application of the orbit stabilizer theorem is Cauchy’s theorem, which guar-
antees, however, that a group whose order is divisible by a prime p has an
element of order p. Cauchy’s proof of this theorem, which appeared in 1845,
was unsatisfactory, being very long, hard to understand, and, as was noticed
around 1980, logically incorrect, although the flaw was fixable. The theorem
itself is historically important as a precursor of the Sylow theorems. As we
will now see, it also is an example of a nontrivial result whose proof is made
both elegant and brief by a clever application of the orbit stabilizer theorem.

Proposition 11.5 (Cauchy’s theorem). A finite group G whose order is
divisible by a prime p has an element of order p.
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Proof. Define

Σ = {(a1, a2, . . . , ap) | all ai ∈ G and a1a2 · · · ap = 1}.

Since (a1, a2, . . . , ap) ∈ Σ if and only if ap = (a1a2 · · · ap−1)−1, it follows that
|Σ| = |G|p−1. Thus p divides |Σ|. Note that the cyclic group Cp =< ζ > of
order p acts on Gp = G × G × · · · × G by rightward cyclic shifts. That is, for
each r = 1, . . . , p,

ζr · (g1, g2, . . . , gp) = (gp−r+1, . . . , gp, g1, . . . , gp−r).

This action is well defined on Σ, since if a1a2 · · · ap = 1, then (ajaj+1 · · · ap)
(a1 · · · aj−1) = 1 also, due to the fact that in every group, if xy = 1, then
yx = 1 too. Since |Cp| = p, the stabilizer of an arbitrary element of Σ has
order one or p. Thus, the orbit stabilizer theorem implies that every orbit
of Cp has either one or p elements. Since Σ is the disjoint union of orbits,
it follows that the number of elements of Σ whose orbits consist of a single
element is divisible by p. But the orbit of σ = (1, 1, . . . , 1) has one element,
so there are at least p− 1 more elements τ ∈ Σ such that Cp · τ = {τ}. Every
such τ has the form (t, t, . . . , t), where t �= 1, so it follows that tp = 1. �

From Cauchy’s theorem one immediately concludes the following.

Corollary 11.6. If G is finite and the order of every element of G is divisible
by p, then the order of G is pn for some n.

In the second application of the orbit stabilizer theorem, we will prove
the formula for the order of the rotation group of a Platonic solid stated in
Section 8.7.

Proposition 11.7. If P is a Platonic solid with f faces and if each face has
e edges, then |Rot(P)| = ef .

Proof. Let X denote the set consisting of the f faces of P. Now, Rot(P) acts
on X, and it can be shown that for every two faces, there is an element of
Rot(P) that takes one face into the other. To see this, one has only to verify
that every two adjacent faces can rotated one into the other in Rot(P), which
can be seen by inspection. The orbit stabilizer theorem says that |Rot(P)| =
f |H|, where H is the subgroup of Rot(P) consisting of all rotations that fix a
face. But the faces are regular polygons with e edges, so H has order at most
e. In fact, the order of H is exactly e. This is evident for the cube, tetrahedron,
and octahedron. It also holds for the dodecahedron and icosahedron, but we
will skip the details. Therefore, |Rot(S)| = ef . �

http://dx.doi.org/10.1007/978-0-387-79428-0_8
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11.1.4 Conjugacy classes

The action of G on itself defined by g · a = gag−1 is called the conjugation
action. We have already seen this action in a number of contexts, for example
in the question of when an invertible matrix is diagonalizable. Recall that
an orbit of this action is called a conjugacy class. Conjugation defines an
action, since the mapping ϕ : G → Sym(G) defined by ϕ(g)(a) = gag−1 is a
homomorphism. Recall that ϕ(g) is in fact the inner automorphism σg. We
will denote the conjugacy class of a ∈ G by Ga.

Definition 11.4. If a ∈ G, the centralizer ZG(a) of a is defined to be

ZG(a) = {g ∈ G | gag−1 = a}.

In other words, the centralizer of a consists of all g ∈ G commuting with
a. Note that the cyclic group < a > generated by a satisfies < a >≤ ZG(a).
Clearly, ZG(a) is the stabilizer Ga of a ∈ G for the conjugation action, so
ZG(a) is a subgroup of G. If a ∈ Z(G), the center of G, then ZG(a) = G.
The orbit stabilizer theorem applied to the conjugation action of G on itself
has the following consequence.

Proposition 11.8. Let G be finite. Then for every a ∈ G, the number of ele-
ments of the G-conjugacy class Ga is |G|/|ZG(a)|. Consequently, |Ga| divides
|G|.

To test the power of our results so far, let us consider what what can be
said about groups of order 15.

Example 11.5 (Groups of order 15). By Cauchy’s theorem, G contains ele-
ments a and b of orders 3 and 5 respectively. A natural question is whether
the center of G is trivial. If not, then |Z(G)| =3, 5, or 15. Any one of these
possibilities implies that G/Z(G) is cyclic, so G is abelian by the result in
Exercise 11.1.7. But if G is abelian, then ab has order 15, so G = C15. So sup-
pose Z(G) = (1). Since G is the union of the distinct conjugacy classes and
the order of a conjugacy class divides |G|, we have |G| = 15 = 1 + 3m + 5n,
where m is the number of conjugacy classes of order 3, n the number of order
5, and 1 is the order of the conjugacy class of the identity. The only solution
to this equation in nonnegative integers is m = 3 and n = 1. Thus, three con-
jugacy classes have order 3, and one has order 5. Consider a conjugacy class
Gx such that |Gx| = 3. By the orbit stabilizer theorem, |ZG(x)| = 5. Since
x ∈ ZG(x), it follows that x has order 5, so all elements of Gx have order 5,
since the elements in a conjugacy class all have the same order. This gives
nine elements of order 5. But by Proposition 2.13, the number of elements
of order p in G is divisible by p − 1. Since 4 does not divide 9, we obtain
a contradiction. Thus, |Z(G)| > 1, so by the remarks above, G is the cyclic
group C15. �

http://dx.doi.org/10.1007/978-0-387-79428-0_2


344 11 Theorems on Group Theory

To summarize, we have

Proposition 11.9. If G has order 15, then G is cyclic.

11.1.5 Remarks on the center

Recall from Section 2.1 that the center of a group G is defined to be the
subgroup

Z(G) =
⋂

g∈G

ZG(g) = {g ∈ G | ag = ga ∀a ∈ G}.

The center of G is a normal subgroup. Note that if G is finite, then the order
of its center is the number of elements of G whose conjugacy class consists
of a single element. We now consider a nontrivial example.

Proposition 11.10 (The center of GL(n,F)). The center of GL(n,F) con-
sists of the subgroup of scalar matrices {cIn | c ∈ F

∗}.

Proof. Let C belong to the center of GL(n,F). We will first show that C is
diagonal. If the characteristic of F is greater then two, then any matrix C
commuting with all elementary matrices of type I is diagonal. If the char-
acteristic is two, then row operations of type three must also be used to
see that C is diagonal. But a nonsingular diagonal matrix that commutes
with any row swap matrix has the form C = cIn for some c ∈ F

∗, so
we are done. �

Let Z denote the center of GL(n,F). The quotient group GL(n,F)/Z is
denoted by PGL(n,F) and is referred to as the projective general linear group.
By a similar argument, the center of SL(n,F) consists of all cIn such that
cn = 1. For example, if F = C, then Z is the group of nth roots of unity.

11.1.6 A fixed-point theorem for p-groups

We have already shown that G is a p-group if and only if every subgroup of
G is also a p-group. We will now prove a well known result about p-groups
which is a consequence of a fixed-point formula that we will also use in the
proof of the Sylow theorems.

Suppose G is a group acting on a set X. We say that x ∈ X is a G-fixed
point if Gx = G, that is, the stabilizer Gx of x is all of G. Let XG denote the
set of G-fixed points in X. The fixed-point formula goes as follows.

http://dx.doi.org/10.1007/978-0-387-79428-0_2
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Proposition 11.11. Suppose G is a p-group acting on a finite set X such
that p divides |X|. Then |XG| is also divisible by p.

Proof. Let O1, . . . ,Or be the orbits of G. Since |Oi| = |G|/|Gx| for every
x ∈ Oi, it follows that either |Oi| = 1 or |Oi| is divisible by p. By the orbit
identity, |X| =

∑
|Oi|, and the fact that p divides |X|, it follows that the

number of orbits such that |Oi| = 1 is also divisible by p. This is |XG|, which
gives the result. �

Now G acts on itself by conjugation, and the set of fixed points for this
action is the center Z(G) of G. Thus we have the following corollary.

Corollary 11.12. The center of a p-group G is nontrivial.

Proof. Since the fixed-point set of the conjugation action is Z(G) and 1 ∈
Z(G), it follows that |Z(G)| = mp for some m ≥ 1. �

Here is another corollary.

Proposition 11.13. If |G| = p2, then G is abelian.

The proof is left to the reader. �

11.1.7 Conjugacy classes in the symmetric group

We will now derive a well-known result describing the conjugacy classes in
S(n). To this end, we need to introduce cycles and disjoint cycle notation.

Definition 11.5. An element σ of S(n) is called a k-cycle if the following
two conditions hold:

(i) There exists an integer i in [1, n] such that i, σ(i), σ2(i), . . . , σk−1(i) are
all distinct and σk(i) = i.

(ii) σ(j) = j for all j in [1, n] distinct from σm(i) for all m = 1, . . . , k.

The k-cycle σ as defined above will be denoted by (i σ(i) σ2(i) · · · σk−1(i)).
There are other possible representations of this k-cycle, as the following exam-
ple illustrates.

Example 11.6. For example, a transposition (ij) is a 2-cycle. The permu-
tation σ = [2, 3, 4, 1] in S(4) that sends 1 to 2, 2 to 3, 3 to 4, and 4 to 1 is
the 4-cycle (1234). It can also be represented as (2341), (3412), or (4123). In
other words, a representation of a k-cycle in S(n) is not unique. �
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The ambiguity in cycle notation pointed out in the above example can be
avoided by letting the leading entry of a cycle (a1a2 . . . ak) be the least integer
among the ai. The identity is represented by the cycle (1). Cycles are mul-
tiplied, like transpositions, by composing their permutations. For example,
(123)(13) = [1, 3, 2, 4] = (23). Two cycles that don’t share a common letter
such as (13) and (24) are said to be disjoint. Disjoint cycles have the property
that they commute, since they act on disjoint sets of letters. Hence the prod-
uct of two or more disjoint cycles can be written in any order. For example,
in S(6), we have (13)(24)(56) = (56)(24)(13). Nondisjoint cycles, however, do
not in general commute: for example, nondisjoint transpositions never com-
mute, since (ab)(bc) = (abc), while (bc)(ab) = (acb). Two more examples are
(123)(13) = (23) (as above), while (13)(123) = (12); also (123)(34) = (1234),
while (34)(123) = (1243). The important point is that every element of S(n)
can expressed as a product of disjoint cycles, as we now prove.

Proposition 11.14. Every element σ of S(n) different from (1) can be writ-
ten as a product of one or more disjoint cycles of length greater than one.
The disjoint cycles are unique up to their order.

Proof. Given σ, we can construct a cycle decomposition as follows. Let i
be the first integer in [1, n] such that σ(i) �= i. Now consider the sequence
i, σ(i), σ2(i), . . . . Since all σj(i) ∈ [1, n], there has to be a least k > 1 such
that σk(i) ∈ {i, σ(i), . . . , σk−1(i)}. I claim that σk(i) = i. For if σk(i) = σ�(i),
where � satisfies 1 ≤ � < k, then σ(σk−1(i)) = σ(σ�−1(i)). Thus σk−1(i) =
σ�−1(i), since σ is a bijection. Since � < k, this contradicts the definition of
k. Hence σk(i) = i. It follows that (iσ(i) · · · σk−1(i)) is a k-cycle. Now repeat
this construction starting with the least j ∈ [1, n] such that j > i and j does
not occur in the cycle we have just constructed. Proceeding in this way, we
eventually construct a family of disjoint cycles whose product is σ such that
each j ∈ [1, n] such that σ(j) �= j belongs to exactly one cycle (and no j such
that σ(j) = j appears in any cycle). For the uniqueness, suppose σ has two
disjoint cycle representations, say σ = c1 · · · ck = c′

1 . . . c′
�. Assuming that i is

the least integer such that σ(i) �= i, it follows that i occurs in some cj and
some c′

m. We can assume that j = m = 1, so by construction, c1 = c′
1. By

repeating the argument, we may conclude that each ci is a c′
j for a unique j

and conversely, so the disjoint cycle representations of σ coincide up to order
of the factors. �

Example 11.7. Let’s express the element σ = [2, 3, 1, 5, 4] ∈ S(5) as a prod-
uct of disjoint cycles. Now, σ(1) = 2, σ(2) = 3, σ(3) = 1. Thus, (123) will be
a cycle. The other will be (45), so σ = (123)(45). Similarly, τ = [5, 3, 2, 1, 4]
will have (154) and (23) as its disjoint cycles, so τ = (154)(23) �

We can now describe the conjugacy classes in S(n).
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Proposition 11.15. Two elements of S(n) are conjugate if and only if their
disjoint cycle representations have the same number of cycles of each length.

Proof. Suppose σ is a k-cycle, say σ = (i σ(i) · · · σk−1(i)). Then ψ = τστ−1

is also a k-cycle. To see this, let τ−1(j) = i. Since ψk = (τστ−1)k = τσkτ−1,
it follows that ψk(j) = τσk(i) = τ(i) = j. If m < k, then ψm(j) �= j, so
(j ψ(j) · · · ψk−1(j)) is a k-cycle. But if ψ contains another cycle, then revers-
ing this argument shows that σ also contains another cycle, which cannot
happen by assumption. Thus ψ is a k-cycle. It follows that two elements in
the same conjugacy class have the same cycle structure. For if σ = c1 · · · ck,
where the ci are mutually disjoint cycles, then

τστ−1 = (τc1τ
−1)(τc2τ

−1) · · · (τckτ−1),

and the cycles (τciτ
−1) are also mutually disjoint. Conversely, if two per-

mutations ψ and σ have the same disjoint cycle structure, then they are
conjugate. To see this, let ψ = c1 · · · cs and σ = d1 · · · ds be disjoint cycle
representations of ψ and σ, where cr and dr have the same length for each r.
Write cr = (i ψ(i) · · · ψm(i)) and dr = (j σ(j) · · · σm(j)), and let τr ∈ S(n)
be the product of the transpositions (σk(i) ψk(j)) for k = 0, . . . ,m−1. These
transpositions commute pairwise, so the order in the product is irrelevant.
We leave it to the reader to check that τrcrτ

−1
r = dr, while τjcrτ

−1
j = cr for

j �= r. Consequently, if τ = τ1 · · · τs, then τψτ−1 = σ. Therefore, ψ and σ are
conjugate. �

For example, (12)(34) and (13)(24) must be conjugate, since they are prod-
ucts of two disjoint 2-cycles. Clearly (23)(12)(34)(23) = (13)(24).

Remark. Therefore, each conjugacy class of S(n) corresponds to a unique
partition n = a1 + a2 + · · · + am, where a1 ≥ a2 ≥ · · · ≥ am > 0, and
conversely, every such partition of n determines a unique conjugacy class.
Recall also that by Jordan canonical form, the conjugacy classes of nilpotent
n×n matrices over C are also in one-to-one correspondence with the partitions
of n. It follows that conjugacy classes of nilpotent matrices over C are in one-
to-one correspondence with the conjugacy classes of P (n), the group of n×n
permutation matrices.

Exercises

Exercise 11.1.1. Let G be an arbitrary group. The conjugation action is
the action of G on itself defined by g · h = ghg−1. Show that the conjugation
action is indeed a group action.

Exercise 11.1.2. Show that if X is a G-set and y = g·x, then Gy = gGxg
−1.
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Exercise 11.1.3. Does g · a = ag define an action of a group G on itself? If
not, adjust the definition so as to get an action.

Exercise 11.1.4. Prove Proposition 11.1.

Exercise 11.1.5. Show that a subgroup H of a group G is normal in G if
and only if H is a union of G-conjugacy classes.

Exercise 11.1.6. Show directly that ZG(a) is a subgroup of G.

Exercise 11.1.7. • Show that if G/Z(G) is cyclic, then G is abelian (and
hence G = Z(G)).

Exercise 11.1.8. Let G = S(3). Write out all three G-conjugacy classes.
Also, find all six centralizers.

Exercise 11.1.9. Recall the signature homomorphism sgn : S(n) → {±1}.
Show that if σ ∈ S(n) is a k-cycle, then sgn(σ) = (−1)k−1.

Exercise 11.1.10. Write out the conjugacy classes for the dihedral groups
D(3) and D(4). (Think geometrically.)

Exercise 11.1.11. Describe the centers of the dihedral groups D(n) for n =
3 and 4.

Exercise 11.1.12. Let p and q be distinct primes. Show that a group of
order pq is abelian and hence cyclic if and only if its center is nontrivial.
Show by example that there exist groups of order pq whose center is trivial.

Exercise 11.1.13. Generalize the fact that all groups of order 15 are cyclic
by showing that if p and p + 2 are both prime, then every group of order
p(p + 2) is cyclic.

Exercise 11.1.14. Show that if |G| = 65, then G is cyclic.

Exercise 11.1.15. Suppose |G| = 30. Show that there are two elements of
order 3 and four of order 5. How many elements of order 2 are there?

Exercise 11.1.16. • Let G be a finite group and H a subgroup. Find a
formula for the order of the double coset |HaH| if a /∈ H.

Exercise 11.1.17. Let σ = (1632457) ∈ S(7).
(i) Find the disjoint cycle representation of σ.
(ii) What is the partition of 7 corresponding to σ?
(iii) Determine the sign sgn(σ) of σ.
(iv) Finally, express σ as the product of simple transpositions.
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11.2 The Finite Subgroups of SO(3,R)

Before continuing our treatment of group theory, we will pause to give a
geometric application of the orbit method. Our plan is to determine the
orders of the polyhedral groups, that is, the finite subgroups of SO(3,R),
and give a partial classification of these groups that will extend the result
that every finite subgroup of O(2,R) is either a cyclic group Cm consisting
of m rotations or a dihedral group D(m) consisting of m rotations and m
reflections. In both cases, Cm and D(m) act on the m-sided regular polygon
{m} centered at the origin in R

2. The complete classification of the polyhedral
groups is a natural extension to the Platonic solids of the two-dimensional
classification, but the proof is much more complicated, and we will skip some
of the details. It turns out that the list of finite subgroups of SO(3,R) is brief
and easy to state. Here is the result.

Theorem 11.16. Every polyhedral group is isomorphic to one of Cm, D(m),
A(4), S(4), A(5), and each of these groups is the rotation group of a convex
polyhedron in R

3.

Polyhedral groups of orders 12, 24, and 60 have already been discussed in
Section 8.7.2. They occur as the rotation groups of the Platonic solids (see
Section 8.7).

11.2.1 The order of a finite subgroup of SO(3,R)

Let G be polyhedral. Our plan is to apply the orbit stabilizer theorem to
count the number of elements in G in terms of the set of what are known
as its poles. We first introduce some notation. Let G× = G \ {I3}, and let
S2 = {(x, y, z) ∈ R

3 | x2 + y2 + z2 = 1} be the unit sphere in R
3. A point

p of S2 is called a pole of G if the stabilizer Gp satisfies Gp �= {I3}. Hence
each pole is on the axis of rotation of some σ ∈ G×. Since G consists of linear
mappings, Gp = G−p for every p ∈ S2. Let P denote the set of all poles of G,
and note that P = −P. Hence we can write P = P+∪P−, where P− = −P+,
and the union is disjoint. Since each σ ∈ G× fixes a unique doubleton, and
if p,q ∈ S2 satisfy q �= ±p, then Gq ∩ Gp is empty, and it follows that G×

can be expressed as a disjoint union

G× =
⋃

p∈P+

(Gp)×.

This leads to the observation that

|G×| =
∑

p∈P+

|(Gp)×|.

http://dx.doi.org/10.1007/978-0-387-79428-0_8
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Consequently,
|G| − 1 =

∑

p∈P+

(|Gp| − 1).

It is now convenient to reformulate this identity. First of all,

|G| − 1 =
1
2

∑

p∈P
(|Gp| − 1). (11.3)

We leave it to the reader to check that P is stable under G. Let us call the
G-orbit G · p of p ∈ P a polar orbit. Since G is finite, we can choose distinct
polar orbits G · p1, G · p2, . . . , G · pk such that

P = G · p1 ∪ G · p2 ∪ · · · ∪ G · pk.

We showed that |Gp| = |Gq| if p and q are in the same orbit. Moreover,
|G| = |G · p||Gp|. Thus,

2(|G| − 1) =
∑

p∈P
(|Gp| − 1)

=
k∑

i=1

( ∑

p∈G·pi

(|Gp| − 1)
)

=
k∑

i=1

|G · pi|(|Gpi
| − 1)

=
k∑

i=1

(|G| − |G · pi|)

= |G|
k∑

i=1

(1 − 1
|Gpi

| ).

Therefore, we have proved the following proposition.

Proposition 11.17. Suppose G is a polyhedral group having polar orbits
G · p1, G · p2, . . . , G · pk. Then

2(1 − 1
|G| ) =

k∑

i=1

(1 − 1
|Gpi

| ). (11.4)

The upshot of this elegant identity is that |G| depends only on the orders
|Gpi

| of the stabilizers of its poles.
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11.2.2 The order of a stabilizer Gp

Let us now apply (11.4) to investigate the possible values of |G|. First of all,
if p is a pole, then |Gp| ≥ 2, so

1
2

≤ 1 − 1
|Gp| ≤ 1.

But
2(1 − 1

|G| ) < 2,

and hence there cannot be more than three poles. Thus, k = 1, 2, or 3. So
we need to consider these three cases.

(1) Suppose k = 1. Then G acts transitively on the poles. Let G ·p be the
unique orbit. Thus |G| = |G · p||Gp|, so using the formula for |G| gives

2(|G · p||Gp| − 1) = |G · p|(|Gp| − 1).

Simplifying gives |G ·p|(|Gp|+1) = 2. This is impossible, since |Gp|+1 ≥ 3,
so G cannot act transitively on the poles.

(2) Next, let k = 2 and let G · p and G · q be the two orbits. Then

2(1 − 1
|G| ) = 2 − 1

|Gp| − 1
|Gq| .

Canceling and cross multiplying by −|G| gives us that

2 =
|G|
|Gp| +

|G|
|Gq| = m + n,

where m and n are positive integers by Lagrange. Thus m = n = 1 and
G = Gp = Gq. In other words, every element of G fixes both p and q. Since
every rotation has an axis, this means that G has just one axis, and q = −p.
Thus G consists of rotations about the line � = Rp. In other words, G is
determined by a finite subgroup of rotations of the plane orthogonal to �. In
this case, G is cyclic.

(3) Now suppose G has three polar orbits G ·p, G · q, and G · r. Then the
order formula gives

2(1 − 1
|G| ) = 3 − 1

|Gp| − 1
|Gq| − 1

|Gr|
.
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Consequently,

1 +
2

|G| =
1

|Gp| +
1

|Gq| +
1

|Gr|
> 1.

This implies that the triple (|Gp|−1, |Gq|−1, |Gr|−1) has to be one of the
following:

(
1
2
,
1
2
,

1
m

), (
1
2
,
1
3
,
1
3
), (

1
2
,
1
3
,
1
4
), (

1
2
,
1
3
,
1
5
).

The order formula (11.4) says that |G| is respectively 2m, 12, 24, or 60.
Let us analyze each case. Assume first that (|Gp|−1, |Gq|−1, |Gr|−1)

= (
1
2
,
1
2
,

1
m

). If m = 1, then |G| = 2, so there can only be two poles.
Hence, this case cannot occur. Suppose m = 2. Then G has order four.
Thus G is abelian, and since G has three polar orbits, it cannot be cyclic.
Hence every element σ of G except 1 has order two. Suppose σ �= 1.
Then σ is a rotation through π about its axis. Thus, σ is diagonalizable
with orthonormal eigenvectors, say u,v,w and corresponding eigenvalues
1, −1, −1. It follows that every element of G is diagonalizable, and since
G is abelian, all elements of G are simultaneously diagonalizable. Hence
the only possibility is that G is conjugate in SO(3,R) to the subgroup
H = {I3,diag(1,−1,−1),diag(−1, 1,−1),diag(−1,−1, 1)}. Here, the polar
orbits for G are {±u}, {±v}, and {±w}. Notice that if α, β, γ denote the
three rotations in H, then α2 = β2 = γ2 and αβ = γ. Thus H is isomorphic
to the dihedral group D(2).

Now suppose m > 2. Since |G| = 2m, |G·p| = |G·q| = m, while |G·r| = 2.
But G · (−r) = −G ·r, so |G · (−r)| = 2 also. Since m > 2, the only possibility
is that G · r = G · (−r) = {± r}, so σ(r) = ± r for every σ ∈ G. Now let
P denote the subspace (Rr)⊥ of R3 orthogonal to Rr. Then for every σ ∈ G
and p ∈ P , we have

0 = r · p = σ(r) · σ(p) = ± r · σ(p).

Thus the whole group G acts on P . Now choose an orthonormal basis u1,u2

of P , and define a linear mapping ϕ : P → R
2 by requiring ϕ(ui) = ei for

i = 1, 2. Then ϕ is a isometry; that is, ϕ(x · y) = x · y for all x,y ∈ P .
Next, put τ(σ) = ϕσϕ−1 for all σ ∈ G. Then τ(σ) ∈ O(2,R). To see this, put
μ = τ(σ). Then, as the reader should verify, μ(a)·μ(b) = a·b for all a,b ∈ R

2,
so μ is an orthogonal linear mapping by Proposition 7.7. Consequently, we
have defined a mapping τ : G → O(2,R). The reader can check that τ is a
homomorphism, so the image τ(G) is a finite subgroup of O(2,R). By the
definition of τ , it follows that the eigenvalues of σ on P are the eigenvalues
of τ(σ) on R

2. Thus τ(G) contains both rotations and reflections, so τ(G) is
a dihedral subgroup of O(2,R) consisting of all orthogonal linear mappings
fixing a regular polygon {m} in R

2. But observe that in fact, τ is injective.
For if τ(σ) = I2, then the eigenvalues of σ on P are both 1. But this means

http://dx.doi.org/10.1007/978-0-387-79428-0_7
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that σ(r) = r too; for otherwise, σ(r) = −r, so det(σ) = −1, contradicting
the assumption that σ ∈ SO(3,R). Hence, if τ(σ) = I2, then σ = I3, and
consequently τ is injective, since its kernel is trivial. We conclude that G is
isomorphic to the dihedral group D(m) of order 2m.

Next assume that G has the triple (
1
2
,
1
3
,
1
3
). Then the order of G is 12. If

one studies a list of all groups of order 12, it turns out that the only possibility
is that G is the rotation group of a central regular tetrahedron. The poles are
the four vertices v, the four midpoints e of the edges, and the four centers
c of the faces, and G acts transitively on each class of pole. Thus the polar
orbits have |G · v| = 4, |G · e| = 6, and |G · c| = 4|, which verifies that the
orders of the stabilizers are 3, 2, 3.

For (
1
2
,
1
3
,
1
4
), the order of G is 24. We have already shown that the rotation

group of a central cube is isomorphic to S(4). As in the previous case, the
poles consist of the eight vertices v, the four midpoints e of the twelve edges,
and the centers c of the six faces, and G acts transitively on the set of poles of
each type. It can be shown that this realization of S(4) is the only polyhedral
group of order 24, but the proof is complicated.

The final case (
1
2
,
1
3
,
1
5
) gives a group G of order 60. Recall from Remark

8.7.5 that an icosahedron is a regular solid with 12 vertices, 30 edges, and 20
triangular faces. Thus, the rotation group of a central icosahedron has order
60, which proves the existence of a polyhedral group of order 60. One may
take the vertices of I to be the points

(±1,±φ, 0), (0,±1,±φ), (±φ, 0,±1),

where φ = (1+
√
5)

2 is the golden ratio encountered in Chap. 8. At each of the
vertices, there are five adjoining triangular faces. Therefore, for each vertex
v, |Gv| = 5. The centers of the faces m are also poles, and clearly |Gm| = 3.
The other poles consist of the midpoints e of the edges with |Ge| = 2.

There is an amusing way of showing that G is isomorphic to A(5). It
turns out that one can color the 20 faces of I with five colors so that no two
adjoining faces have the same color and each color is used four times. If the
colors are labeled 1,2,3,4,5, then G, which permutes I’s 20 faces, becomes
the set of all permutations of {1, 2, 3, 4, 5} with signature +1. In other words,
G ∼= A(5).

http://dx.doi.org/10.1007/978-0-387-79428-0_8
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11.3 The Sylow Theorems

Given a finite group G, what can one say about its subgroups? Both
Lagrange’s theorem and Cauchy’s theorem make assertions about the sub-
groups of G in terms of the order of G, which is the most basic invariant of
a finite group. The Sylow theorems, which were discovered by Sylow in 1872
during his research on algebraic equations, give much more precise informa-
tion. Suppose |G| = pnm, where p is a prime that is prime to m and n ≥ 1.
A subgroup of G of order pn is called a Sylow p-subgroup. Sylow’s theorems
assert the following: if 1 ≤ k ≤ n, there exists a subgroup H of order pk,
and every such H is contained in a Sylow p-subgroup; all Sylow p-subgroups
for a given prime p are conjugate in G; and finally, the number of Sylow
p-subgroups of G is congruent to one modulo p and divides |G|. The proofs
given below are elegant and brief, and above all, they explain why the the-
orems are true. The tools used are Cauchy’s theorem, the orbit stabilizer
theorem, and the fixed-point result for p-groups in Proposition 11.11.

11.3.1 The first Sylow theorem

As above, let G be a finite group and p a prime p dividing |G|, say |G| = pnm,
where (p,m) = 1. We now prove the first Sylow theorem, which ensures that
Sylow p-subgroups always exist and a bit more.

Theorem 11.18. For each k such that 1 ≤ k ≤ n, G contains a subgroup of
order pk, and every subgroup of order pk is contained in a Sylow p-subgroup
of G.

Proof. Suppose H is a subgroup of G of order pk, where 1 ≤ k < n. We will
show that H is contained in a subgroup K of G of order pk+1. Iterating this
argument will yield a subgroup of G of order pn that contains H, giving the
required Sylow p-subgroup. The existence of a subgroup of order pk, for each
k ≤ n, then follows by applying this result to the subgroup generated by an
element of order p, whose existence is guaranteed by Cauchy’s theorem. Now,
H acts on X = G/H by left translation. Moreover, H is a p-group, and |X|
is divisible by p. Therefore, Proposition 11.11 tells us that either the fixed-
point set XH is empty or |XH | = jp for some j > 0. But 1H ∈ XH , so the
latter holds. Note that gH ∈ (G/H)H if and only if gH ∈ NG(H)/H, since
HgH = gH if and only if gHg−1 = H. Thus, NG(H)/H is a group whose
order is divisible by p. By Cauchy’s theorem, NG(H)/H contains a subgroup
K of order p. Consider the inverse image H ′ = π−1(K) of the quotient
map π : NG(H) → NG(H)/H. Then H ′ is a subgroup of NG(H) containing
H, which π maps to K. Thus, by the isomorphism theorem, Theorem 2.20,
H ′/H ∼= K, so [H ′ : H] = |K| = p. But Lagrange’s theorem implies that
|H ′| = pk+1, so the proof is complete. �

http://dx.doi.org/10.1007/978-0-387-79428-0_2
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11.3.2 The second Sylow theorem

The second Sylow theorem asserts that for a given prime p, every pair of
Sylow p-subgroups of G are conjugate. This says that a finite group G is
rigid in the sense that all subgroups of G of certain orders are isomorphic by
an inner automorphism of G.

Theorem 11.19. Every pair of Sylow p-subgroups of a finite group G are
conjugate, and if p divides |G|, then the number of Sylow p-subgroups of G
also divides |G|.

Proof. Let H and K be Sylow p-subgroups of G, and let H act on G/K. It
suffices to show that the fixed-point set (G/K)H is nonempty, say HgK =
gK. For if HgK = gK, it follows that gKg−1 = H. Suppose (G/K)H is
empty. Then the orbit stabilizer theorem implies that for every H-orbit O,
|O| is a multiple of p, since H is a p-group. This implies that p divides |G/K|,
which contradicts the assumption that |K| = pn. Consequently, every two
Sylow p-subgroups are conjugate. Thus G acts transitively via conjugation
on the set of its Sylow p-subgroups, so by another application of the orbit
stabilizer theorem, the number of Sylow p-subgroups of G divides |G|. �

The fact that Sylow p-subgroups are conjugate gives the following result.

Corollary 11.20. If G is a finite abelian group, then G contains a unique
Sylow p-subgroup for every prime p dividing |G|.

11.3.3 The third Sylow theorem

The third Sylow theorem is analogous to the result that in a finite group, the
number of elements of order p is divisible by p − 1.

Theorem 11.21. If G is a finite group and p is a prime dividing |G|, then
the number of Sylow p-subgroups of G is congruent to 1 modulo p and divides
|G|.

Proof. Assume that the prime p divides |G|, and let Sp denote the set of Sylow
p-subgroups of G. Fix S ∈ Sp, and let NS denote the normalizer NG(S).
I claim that the only Sylow p-subgroup of NS is S. For if R ∈ Sp satisfies
R < NS , then there exists g ∈ NS such that gSg−1 = R. But since gSg−1 = S
by the definition, it follows that R = S. Thus, if R,S ∈ Sp and R �= S, then
|NR ∩ NS | cannot be divisible by |S|. Now let NS act on Sp. Certainly,
S is a fixed point; i.e. NS · S = S. On the other hand, if R �= S, then
|NS · R| is divisible by p. Indeed, by the orbit stabilizer theorem, |NS · R| =
|NS |/|NR ∩ NS |, so this follows from the fact that the denominator is not
divisible by |S|. Therefore, the orbit identity implies that |Sp| = 1 + mp. �
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11.3.4 Groups of order 12, 15, and 24

We will now look at some examples.

Example 11.8. First consider groups of order 12. In such a group, the
number of Sylow 2-subgroups is either 1 or 3, and the number of Sylow
3-subgroups is either 1 or 4. The direct products C3 ×C4 = C12 and C3 ×U8,
where U8 is the group of units modulo 8, are both abelian groups of order
12; hence each has exactly one Sylow subgroup of order 3 and one of order
4. Note: the direct product of G and H is the group G × H consisting of all
the pairs (g, h) with g ∈ G and H ∈ H with the almost obvious group struc-
ture. The general definition is given in Definition 11.6 below. The alternating
group A(4) has four cyclic subgroups of order 3 generated respectively by
(123), (134), (124), and (234). Thus there are eight elements of order 3. This
leaves exactly three elements of order 2 or 4. Thus the Sylow 2-subgroup,
which has order 4, has to be normal. This group turns out to be the well-
known Klein 4-group

V4 = {(1), (12)(34), (14)(23), (13)(24)},

consisting of all elements of S(4) that are the product of two disjoint trans-
positions. In fact, V4 is normal in S(4). The dihedral group D(6) has six
rotations, which form a cyclic normal subgroup. The two rotations of order 3
determine a normal subgroup, which is therefore the unique Sylow 3-subgroup
of D(6). By the O(2,R) dichotomy, the remaining six elements are reflections.
Since reflections about orthogonal lines commute, and since a six-sided regu-
lar polygon P in R

2 has three pairs of orthogonal lines through which P may
be reflected, there are three Sylow 2-subgroups. Thus D(6) has one Sylow
3-subgroup and three Sylow 2-subgroups. �

Example 11.9. Returning to the group of order 15, we see that the number
of Sylow 3-subgroups has the form 1+3m and divides 15. The only possibility
is that there is exactly one Sylow 3-subgroup. Similarly, the number of Sylow
5-subgroups has the form 1 + 5m and divides 15. Hence there is exactly one
Sylow 5-subgroup. The order of an element has to divide 15, so the possible
orders are 3, 5, and 15. Since we just showed that there are two elements of
order 3 and four elements of order 5, there has to be an element of order 15
(in fact, eight of them). Thus we see once again that a group of order 15 is
cyclic. �

Example 11.10. The symmetric group S(4) and the matrix group SL(2,F3)
both have order 24. Are they isomorphic? A necessary condition for two finite
groups to be isomorphic is that they have the same Sylow subgroups. By the
third Sylow theorem, the number of Sylow 3-subgroups in a group of order
24 is one or four, and the number of Sylow 2-subgroups is one or three. We
will now show that S(4) has three Sylow 2-subgroups. Recall that S(4) is
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isomorphic to the group of all rotations of the unit cube C in R
3 centered at

the origin. Let S1 denote the intersection of the cube with the xy-plane, and
label the vertices of S as 1, 2, 3, 4 in a clockwise manner, with 1 denoting
the vertex in the first octant. The subgroup

H1 = {(1), (1234), (1432), (13)(24), (12)(34), (14)(23), (13), (24)}

is a copy of D(4). The first four elements are rotations of S1, which rotate
C about the z-axis. The other four elements are reflections of S1, which are
rotations of the cube through π/2. The other two Sylow 2-subgroups are
copies of D(4), which act the same way on the squares S2 and S3 obtained
by intersecting the cube with the other two coordinate hyperplanes. It turns
out that SL(2,F3) has only one Sylow subgroup H of order 8, so H is normal.
The details are tedious, so we will omit them. For example, the elements of
order 4 are (

1 1
1 2

)
,

(
2 1
1 1

)
,

(
1 2
2 2

)
,

(
2 2
1 2

)
.

Thus, S(4) and SL(2,F3) have different Sylow 2-subgroups, so they cannot
be isomorphic. �

Exercises

Exercise 11.3.1. Show that A(4) does not have a subgroup of order 6; hence
the converse of Lagrange’s theorem is false.

Exercise 11.3.2. Determine the Sylow subgroups for the dihedral group
D(6).

Exercise 11.3.3. Let p and q be distinct primes, and let G be a group of
order pq. Show that the following statements are equivalent:

(i) G is abelian.

(ii) The center Z(G) is nontrivial.

(iii) G is cyclic.

Give an example of a group of order pq that is not cyclic.

Exercise 11.3.4. True or false with reasoning: every group of order 10 is
abelian.

Exercise 11.3.5. Show that if p and p+2 are both prime, then every group
of order p(p + 2) is cyclic.

Exercise 11.3.6. Let p be a prime. Show that U(n,Fp) and L(n,Fp) are
Sylow p-subgroups of both GL(n,Fp) and SL(n,Fp). How is U(n,Fp) conju-
gated onto L(n,Fp)?
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Exercise 11.3.7. Suppose p = 5 and n = 3.

(i) How many Sylow p-subgroups does GL(n,Fp) have?

(ii) Answer part (i) for SL(n,Fp).

Exercise 11.3.8. Find the orders of all the Sylow p-subgroups of GL(n,Fp)
for primes p ≤ 7.

Exercise 11.3.9. Consider the group Un of units modulo n for n = 50.

(i) Discuss the Sylow subgroups of Un.

(ii) Determine whether Un is cyclic. (Suggestion: consider part (i).)

Exercise 11.3.10. The order of Un is 100 if n = 202. Is either of the Sylow
subgroups cyclic?

Exercise 11.3.11. • Let G be a finite group. Show that if |G| = mp, where
p is prime and p > m, then there is only one Sylow p-subgroup H, and H is
normal in G.

Exercise 11.3.12. • Show that a group of order pq, p and q distinct primes,
is cyclic whenever p does not divide q − 1 and q does not divide p − 1.
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11.4 The Structure of Finite Abelian Groups

So far, we have encountered a few examples of finite abelian groups: the cyclic
groups Cm, the multiplicative group F

∗ of a Galois field F, the center Z(G)
of an arbitrary finite group G, and the subgroups of all these groups. More
interestingly, as we saw in Section 2.1, the group of multiplicative units (i.e.,
invertible elements) in Z/nZ is an abelian group Un of order φ(n), where φ is
Euler’s phi-function. We will now describe the structure of all finite abelian
groups. The Sylow theorems imply a finite abelian group is the direct product
of its Sylow subgroups. After that, the job is to describe the abelian p-groups.

11.4.1 Direct products

The direct product of a finite number of groups is a generalization of the
direct sum of a finite number of vector spaces. And as for vector spaces, direct
products in the group setting come in two flavors, internal and external. The
simpler case is the external direct product, so we will introduce it first.

Definition 11.6. Let G1 and G2 be arbitrary groups. Their external direct
product is the usual Cartesian product G1 × G2 with the group operation

(g1, h1)(g2, h2) = (g1g2, h1h2).

It is easy to check that the external direct product G1×G2 is a group with
identity (1, 1), where 1 denotes both the identity of G1 and that of G2. The
notion of external direct product can be extended without difficulty from two
groups to any finite number of groups. We will leave the details to the reader.
Note that if V1 and V2 are vector spaces over different fields, then V1 × V2 is
an abelian group but not a vector space. If V1 and V2 have the same scalar
field F, then the external direct sum of vector spaces applies, and V1 × V2 is
a vector space over F.

Proposition 11.22. Suppose G = G1 ×G2 ×· · ·×Gm is the external direct
product of the groups G1, G2, . . . , Gm. Then:

(i) G is abelian if each Gi is, and

(ii) for every σ ∈ S(m), G ∼= Gσ(1) × Gσ(2) × · · · × Gσ(m).

Proof. We leave the proof to the reader. �

We will now consider the internal direct product, which for groups is a
generalization of the internal direct sum of subspaces (keeping in mind that
subspaces of a vector space are normal subgroups). Let A1, A2, . . . , Ak be
subsets of the group G. Define A1A2 · · ·Ak to be the totality of products

http://dx.doi.org/10.1007/978-0-387-79428-0_2
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a1a2 · · · ak, where each ai is in Ai. Also, define < A1, A2, . . . , Ak > to be the
smallest subgroup of G containing each Ai. Suppose each Ai is normalized
by G; that is, gAig

−1 = Ai for all g ∈ G. Then AiAj = AjAi for all i, j. For
if we choose any ai ∈ Ai for each i, it follows that aiaj = aj(a−1

j aiaj), so
AiAj ⊂ AjAi. Hence by symmetry, AiAj = AjAi. Consequently, the product
A1A2 · · · Ak is independent of how the sets Ai are ordered.

We now need the following lemma.

Lemma 11.23. If H1,H2, . . . ,Hk are normal subgroups of G, then the prod-
uct H1H2 · · · Hk is a normal subgroup of G, and

< H1,H2, . . . , Hk >= H1H2 · · · Hk.

Proof. We will use induction to prove that H1H2 · · · Hk is a subgroup of
G, which will show that < H1,H2, . . . , Hk >= H1H2 · · · Hk, since H1H2 · · ·
Hk ⊂< H1,H2, . . . , Hk >. Notice that if H1H2 · · · Hk is a subgroup, then it
has to be normal, since for all g ∈ G,

g(H1H2 · · · Hk)g−1 = (gH1g
−1)(gH2g

−1) · · · (gHkg−1),

and every Hi is a normal subgroup. The lemma holds for k = 1, so assume
k > 1 and that it holds for k − 1. Thus H = H1H2 · · ·Hk−1 is a subgroup of
G. We need to show that HHk is a subgroup, so we must show that if a, b ∈ H
and g, h ∈ Hk, then (ag)(bh)−1 ∈ HHk. Now, (ag)(bh)−1 = a(gh−1)b−1 ∈
HHkH = HHk, since HHk = HkH by the remark preceding the lemma.
Hence H1H2 · · · Hk is a subgroup, so the proof is complete. �

We now come to the internal direct product of an arbitrary number of
normal subgroups.

Definition 11.7. Let G be a group and let H1,H2, . . . , Hk be normal sub-
groups of G. We say that G is the internal direct product of H1,H2, . . . , Hk

if
G =< H1,H2, . . . , Hk >,

and for each i with 1 ≤ i < k,

< H1,H2, . . . , Hi > ∩Hi+1 = (1).

If G is the internal direct product of H1, . . . , Hk, we will write G =
((H1, . . . , Hk)).

Proposition 11.24. Let G = ((H1,H2, . . . , Hk)). Then for each g ∈ G,
there exists exactly one expression g = h1h2 · · · hm, where hi ∈ Hi for each
i. In particular, if G is finite, then
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|G| =
m∏

i=1

|Hi|. (11.5)

Proof. An expression g = h1h2 · · · hm exists by Lemma 11.23. Assume
g = h1 · · · hm = k1 · · · km with hi, ki ∈ Hi for all i. Then hmk−1

m ∈<
H1, . . . ,Hm−1 >. Therefore, hmk−1

m = 1, so h1 · · · hm−1 = k1 · · · km−1. Con-
tinuing in this manner, it follows that hi = ki for each i. This shows that the
above expression for g is unique.

�

Proposition 11.25. Suppose G = ((H1,H2, . . . , Hk)). Then G ∼= H1×H2×
· · · × Hk.

Proof. Define a map ϕ : H1 × · · · × Hk → G by ϕ(h1, . . . , hk) = h1 · · · hk. By
Proposition 11.24, ϕ is a bijection. Since Hi and Hj commute elementwise
for all i and j, it also follows that ϕ is also a homomorphism, so ϕ is an
isomorphism. �

Example 11.11. Let’s reconsider U8 (see Example 2.18). For simplicity, we
denote the coset m + 8Z by m. Thus U8 = {1, 3, 5, 7}. Since U8 is abelian,
every subgroup is normal. Using coset multiplication, we have 3 · 5 = 15 = 7.
Hence if H1 = {1, 3} and H2 = {1, 5}, then U8 = ((H1,H2)) ∼= H1 × H2. �

Example 11.12. Let’s next consider U15 = {1, 2, 4, 7, 8, 11, 13, 14}. Since
|U15| = 8, the possible orders of its elements are 1, 2, 4, and 8. It is easy
to check that 2, 7, 8, and 13 have order 4, and 4, 11, and 14 have order 2.
Moreover, 22 = 72 = 82 = 132 = 4. Thus < a > ∩ < 11 >=< a > ∩ < 14 >=
(1) for a = 2, 7, 8, 13. Hence if H =< a >, K =< 11 >, and L =< 14 >, we
have

U15 = ((H,K)) ∼= H × K ∼= ((H,L)) ∼= H × L = C4 × C2.

�

11.4.2 The structure theorem for finite abelian
groups

Suppose G is a finite abelian group of order pn1
1 · · · pnm

m , where p1, p2, . . . , pm

are the distinct prime factors of |G|, and let Gi denote the unique Sylow
pi-subgroup G. The first of two results about the structure of G is stated as
follows.

Proposition 11.26. Let G be as above. Then G is the direct product (both
internal and external) of its Sylow subgroups G1, . . . , Gm.

http://dx.doi.org/10.1007/978-0-387-79428-0_2
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Proof. Since G is abelian, its Sylow subgroups are normal and commute
elementwise. Let us induct on m. Assume that the product G1 · · · Gi is
direct for each i < m. By Proposition 11.24, |G1 · · · Gi| = pn1

1 · · · pni
i . Thus

G1 · · · Gm−1 ∩ Gm = (1), since every element of Gm has order pk
m for

some k, and pm does not divide |G1 · · · Gm−1|. Therefore, the product
G1 · · · Gm is direct, and consequently, G = ((G1, . . . , Gm)). It follows that
G ∼= G1 × · · · × Gm. �

It remains to give a complete description of the abelian p-groups in more
detail. This turns out to be surprisingly complicated, so we will simply outline
the proof. Here is the main result:

Theorem 11.27. A finite abelian group of order pn, p a prime, is isomor-
phic to a product of cyclic p-groups. In particular, every finite abelian group
G is the external direct sum of cyclic groups of prime power order.

Proof. The proof is by induction on n. Choose an element y ∈ G of maximal
order, and let H =< y >. By induction, G/H is a product of cyclic groups,
say G/H =< a1H > × · · · × < akH >. Now G/H is also a p-group, so for
each i, apri

i = ysi for some ri, si > 0. We assert that pri divides si. Put
ji = si/pri and ui = aiy

−ji . Then it turns out that G =< u1 > × · · · × <
uk > ×H, which gives the induction step and finishes the proof (modulo
omitted details). �

Example 11.13. According to the theorem, if G is abelian of order 16, then
the possibilities for G are

C2 × C2 × C2 × C2, C4 × C2 × C2, C4 × C4, C8 × C2, C16.

11.4.3 The Chinese Remainder Theorem

Applying the above results gives the following corollary.

Corollary 11.28. Suppose G is a finite cyclic group. Then its Sylow sub-
groups G1, . . . , Gm are cyclic of prime power order, and G = G1 × · · · × Gm.

Proof. Since G is cyclic, division with remainder tells us that every subgroup
of G is also cyclic. Hence the Sylow subgroups of G are cyclic, so the result
follows from Proposition 11.26. �

In particular, let n = pn1
1 · · · pnm

m , as usual. Since the additive group Z/nZ
is cyclic, its Sylow subgroups are (Z/pn1

1 Z), . . . , (Z/pnm
m Z). Therefore,

Z/nZ ∼= (Z/pn1
1 Z) × · · · × (Z/pnm

m Z).
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�
As a corollary, one gets the Chinese remainder theorem: given congruence

equations
x ≡ a1 mod(pn1

1 ), . . . , x ≡ am mod(pnm
m ),

there exists a unique class w +nZ in Z/nZ such that setting x = w solves all
the above congruences.

Exercises

Exercise 11.4.1. Find at least three values of n such that Un is cyclic. Is
there a general rule?

Exercise 11.4.2. • Show that in every cyclic group, the number of elements
of order m is divisible by φ(m). Give an example of a finite abelian group in
which the number of elements of order m is not divisible by φ(m).

Exercise 11.4.3. Suppose each Gi is cyclic. When is G = G1×G2×· · ·×Gm

cyclic?

Exercise 11.4.4. Suppose G can be expressed as a direct product HK.
Show that

(i) K ∼= G/H, and

(ii) G ∼= H × G/H.

Exercise 11.4.5. Find all the ways of decomposing U21 as a product of
cyclic subgroups.

Exercise 11.4.6. Let F be a Galois field. It is a theorem that the multi-
plicative group F

∗ of F is always cyclic. Prove directly that F∗ is cyclic in the
following cases:

(i) |F| = 16,

(ii) |F| = 32, and

(ii) |F| = 25.

Exercise 11.4.7. Let G be a group, H a subgroup, and N a normal sub-
group of G. Then G is said to be the semidirect product of H and N if at
least one of the following statements holds.

(i) G = NH and N ∩ H = 1.

(ii) Every element of G can be written in a unique way as a product nh,
where n ∈ N and h ∈ H.

(iii) The natural inclusion homomorphism H → G composed with the natural
projection G → G/N induces an isomorphism H ∼= G/N .

(iv) There exists a homomorphism G → H that is the identity on H whose
kernel is N .

Show that the all four statements are equivalent.
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11.5 Solvable Groups and Simple Groups

One of the most celebrated results in classical algebra is the unsolvability of
the quintic. Roughly, this means that there exist polynomials f(x) of degree
five with rational coefficients whose roots cannot be expressed in terms of
radicals involving those coefficients. More precisely, there is no formula that
expresses the roots of an arbitrary fifth-degree polynomial f(x) = x5+a1x

4+
a2x

3 + a3x
2 + a4x + a5 starting from an algebraic combination α of the

coefficients ai of f , takes an mth root α1/m for some m, then repeats the
process on the coefficients of α1/m and so on until a closed formula that gives
all the roots of f(x) is obtained. Unsolvable quintics can be quite ordinary:
2x5+10x+5 is an example. The definitive criterion for solvability by radicals
first appeared in Galois’s posthumous 1846 paper: a polynomial is solvable
by radicals if and only if its Galois group is solvable. (For a definition of
the Galois group of a polynomial, see Section 11.5.5.) The Galois group of
2x5+10x+5 turns out to be S(5), which, as we will see below, is not a solvable
group. The simple groups lie at the opposite end of the group spectrum from
the solvable groups, and in fact, they serve as the main source of examples
of unsolvable groups. Recall that a nontrivial group G is said to be simple
if its only normal subgroups are G itself and the trivial subgroup (1). A
famous classical result is that the alternating groups A(n) for n > 4 are
simple. It follows that the symmetric groups S(n) for n > 4 are not solvable.
Simple groups play a role in the structure theory because of composition
series and the Jordan–Hölder theorem, which we will state without proof
below. As mentioned in the introduction to this chapter, the finite simple
groups have now been classified, the final step not having come until 1982
with the construction of the Monster.

11.5.1 The definition of a solvable group

The process described above for solving by radicals hints at what the defini-
tion of a solvable group might be. To define solvability, we must first introduce
the notion of a subnormal series in a group.

Definition 11.8. A subnormal series for a group G is a finite sequence of
subgroups

G = H1 > H2 > · · · > Hr−1 > Hr = (1) (11.6)

of G such that Hi+1 is normal in Hi for i = 1, . . . , r − 1. The quotient groups
Hi/Hi+1 are called the factors of the subnormal series (11.6).

For example, if H �= (1) is a proper normal subgroup of G, then G > H >
(1) is an example of a subnormal series. A simple group G has no nontrivial
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normal subgroups, so G > (1) is the only subnormal series for G. A subnormal
series (11.6) is called a composition series if each factor is a simple group. If
H is normal in G, then G/H is simple if and only if there exists no normal
subgroup N of G such that H < N < G. (The proof of this assertion is an
exercise.) Thus a composition series is a subnormal series of maximal length.
It follows that every finite group has a composition series.

Now we can define what a solvable group is.

Definition 11.9. A group G is called solvable if it has a subnormal series
(11.6) such that each factor Hi/Hi+1 is abelian.

Of course, abelian groups are solvable. The next result points out an impor-
tant class of solvable groups.

Proposition 11.29. Every p-group is solvable.

Proof. Suppose |G| = pn. If n = 1, then surely G is solvable, so let us argue
by induction on n. Assume that all p-groups of order pn−1 are solvable. By the
first Sylow theorem, G has a subgroup H of order pn−1, and by assumption,
H is solvable. To show that G is solvable, it suffices to show that H is normal
in G, since in that case, G/H has order p and hence is abelian. Let H act on
G/H by left multiplication. The orbit stabilizer theorem then says that for
every orbit O, either |O| = 1 or |O| = p. But the latter case cannot occur,
since the orbit of the coset H is itself. It follows that every orbit is a single
point. Thus HgH = gH for all g ∈ G. This implies that H is normal in G. �

A famous result in finite group theory known as Burnside’s theorem (1904)
states that a finite group whose order is divisible by at most two primes is
solvable. Burnside’s proof used techniques from outside group theory, so it
remained an open problem to find a purely group-theoretic proof. Such a
proof was not discovered until 1970. In 1963, Walter Feit and John Thompson
published a 255-page paper proving that every finite group of odd order is
solvable, hence ensuring that there are nonabelian solvable groups that are
not p-groups. Note that the Feit–Thompson theorem implies Burnside’s result
for two odd primes.

The symmetric groups S(3) and S(4) are both solvable. (For example,
apply Burnside’s theorem.) We will leave this claim as an exercise for S(3)
and give a proof for S(4) in the next example. It turns out, however, that
S(n) is not solvable for n > 4.

Example 11.14 (S(4) is solvable). We need to display a subnormal series
for S(4) whose derived factors are abelian. The alternating group A(4) (see
Section 5.2) is normal in S(4) and S(4)/A(4) ∼= C2, so it is abelian. Thus,
S(4) > A(4) is a first step. As we have seen, the Klein 4-group V4 (see
Example 11.8) is a normal subgroup of A(4) of order 4. Since the order
of A(4) is 12, A(4)/V4 has order three, and hence it is also abelian. But
V4 is abelian, since it has order p2. It follows that S(4) > A(4) > V4 >
(1) is a subnormal series for S(4) whose factors are abelian. Hence S(4) is
solvable. �

http://dx.doi.org/10.1007/978-0-387-79428-0_5
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11.5.2 The commutator subgroup

In this section, we will find an explicit test for solvability. To do so, we need
to introduce the commutator subgroup of a group and its derived series. The
commutator subgroup of G is the smallest subgroup of G that contains all
products of the form ghg−1h−1, where g, h ∈ G. This subgroup is denoted
by [G,G].

Proposition 11.30. The commutator subgroup [G,G] of G is normal in
G, and G/[G,G] is abelian. In particular, if G is simple, then G = [G,G].
Moreover, if N is a normal subgroup of G such that G/N is abelian, then N
contains [G,G].

Proof. We will leave the proof as an exercise. �

The commutator groups for S(n) provide a nice example. Recall that
A(n) = ker(sgn), where sgn : S(n) → {±1} is the signature homomorphism
defined by the expression

sgn(σ) =
∏

i<j

σ(i) − σ(j)
i − j

.

It follows from the fact that sgn is a homomorphism that [S(n), S(n)] ≤ A(n).

Proposition 11.31. The commutator subgroup of S(n) is A(n) for all n.

Proof. We just showed that [S(n), S(n)] ≤ A(n). Notice that all 3-cycles in
S(n) are commutators, since

(abc) = (acb)(ab)(abc)(ab).

To show that A(n) = [S(n), S(n)], it thus suffices to show that A(n) is gener-
ated by 3-cycles. To see this, recall that S(n) is generated by transpositions;
hence elements of A(n) are products of an even number of transpositions.
These products can be either disjoint, such as (ab)(cd), or nondisjoint, such
as (ab)(bc). Thus the claim follows from the two identities

(ab)(cd) = (acb)(acd), and (ab)(bc) = (abc).

�

The commutator subgroup of G has its own commutator subgroup. To
avoid making the notation too clumsy, let G(1) denote [G,G], and for each
i > 1 define G(i) = [G(i−1), G(i−1)]. The derived series of G is the sequence

G ≥ G(1) ≥ G(2) ≥ · · · ≥ G(i) ≥ · · · . (11.7)
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Proposition 11.32. A group G is solvable if and only if its derived series
has the property that G(k) is the identity subgroup for some k.

Proof. The if assertion follows immediately from Proposition 11.30 and the
definition of a solvable group. The only if assertion follows from the second
assertion of Proposition 11.30, since if H/N is abelian, then N contains
[H,H]. For if G = N1 > N2 > · · · > Nk−1 > Nk = 1 is a subnormal series
such that Ni/Ni+1 is abelian for all i, then G(i) < Ni+1. Thus G(k−1) = 1. �

Corollary 11.33. Subgroups and quotients of a solvable group are solvable.

Proof. Let G be solvable. If H is a subgroup of G, then its derived series
satisfies H(i) < G(i), so the derived series of H has to terminate at the
identity, since the derived series of G does. Likewise, if N is normal in G,
then the derived series of G/N is the image of the derived series of G, so it
likewise terminates. �

We now give a nontrivial example of a solvable matrix group.

Proposition 11.34. The upper triangular subgroup T (n,F) < GL(n,F) is
solvable.

Proof. First notice that every element T ∈ T (n,F) can be factored as T =
DU = V D, where D ∈ D(n,F) and both U and V are in U(n,F). Moreover,
D(n,F) < NGL(n,F)(U(n,F)). This implies that the commutator of T (n,F) is
contained in U(n,F), for if A = DU and B = EV are in T (n,F), then there
exist W,Y ∈ U(n,F) such that UE = EW and D−1V −1 = Y D−1. Thus,

[A,B] = ABA−1B−1

= (DU)(EV )(U−1D−1)(V −1E−1)
= (DE)(WV U−1Y )(D−1E−1).

Hence [A,B] ∈ U(n,F). Thus it suffices to show that U(n,F) is solvable. For
each k with 1 ≤ k < n, let Uk = {U ∈ U(n,F) | uij = 0 if 0 < j − i ≤ k}. In
other words, Uk consists of all U ∈ U(n,F) that have zero on the first through
kth superdiagonals. We leave it to the reader to check that [Uk, Uk] < Uk+1.
But [Un, Un] = {In}, so it follows from Proposition 11.32 that T (n,F) is
solvable. �

11.5.3 An example: A(5) is simple

In this section, we will prove that the alternating group A(5) is simple. The
proof uses the following characterization of a normal subgroup, whose proof
is left to the reader.
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Proposition 11.35. A subgroup H of a group G is normal in G if and only
if H is a union of G-conjugacy classes.

Proposition 11.36. A(5) is simple.

Proof. It suffices to show that no subgroup of A(5) is a union of A(5)-
conjugacy classes. To prove this, we have to describe these conjugacy classes.
Since A(5) is normal in S(5), A(5) is the union of S(5)-conjugacy classes.
Note that the S(5)-conjugacy classes in A(5) are unions of A(5)-conjugacy
classes. By Proposition 11.15, the conjugacy classes in S(5) are represented
by

(1), (12), (123), (1234), (12345), (12)(34), and (123)(45).

Since the signature of a k-cycle is 1 if k is odd and −1 is k is even, it follows
that A(5) is the union of the S(5)-conjugacy classes of the elements

(1), (123), (12345), and (12)(34). (11.8)

Let us first compute the orders of the A(5)-conjugacy classes of these ele-
ments. By Proposition 11.8, we need to compute their centralizers in A(5).
But ZA(5)(1) = A(5), ZA(5)(123) = 〈(123)〉, ZA(5)(12345) = 〈(12345)〉, and
ZA(5)((12)(34)) = {1, (12), (34), (12)(34)}. Since |A(5)| = 60, Proposition
11.8 implies that the conjugacy classes in A(5) of the elements in (11.8) have
respectively 1, 20, 12, and 15 elements. Since these classes give a total of 48
elements, we have to account for another 12 elements. The reader can check
that (12)(12345)(12) = (13452) is not conjugate in A(5) to (12345). Thus its
A(5)-conjugacy class accounts for the remaining 12 elements. Therefore, the
order of a normal subgroup of A(5) must be a sum of 1 and some subset of
12, 12, 15, and 20. Hence the order of a nontrivial normal subgroup of A(5)
can be only one of 13, 16, 21, 25, 28, 33, 36, 40, 45, and 48. But none of these
numbers divides 60, so A(5) must be simple. �

In fact, A(n) is simple for all n ≥ 5. The standard proof of this is to show
that every normal subgroup of A(n) for n ≥ 5 contains a 3-cycle. But the
only normal subgroup of A(n) that contains a 3-cycle is all of A(n), so A(n)
is simple. A complete proof can be found in Abstract Algebra, by Dummit
and Foote (pp. 128–130). The alternating groups also appear in another class
of finite simple groups. To describe this class, we first consider the matrix
groups SL(2,Fp). Since the center Z(G) of a group G is always a normal
subgroup, the question is whether G/Z(G) is simple. Now, Z(SL(2,Fp)) =
{cI2 | c2 = 1} is nontrivial for p > 2. The quotient group PSL(2, p) =
SL(2,Fp)/Z(SL(2,Fp)) is called the projective linear group of degree two.
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Let us next compute |PSL(2, p)|. Since SL(2,Fp) is the kernel of the homo-
morphism det : GL(2,Fp) → (Fp)∗, and det is surjective, |SL(2,Fp)| =
|GL(2,Fp)|/(p − 1). But from a computation from Chap. 6, |GL(2,Fp)| =
(p2 − 1)(p2 − p) (since (p2 − 1)(p2 − p) is the number of pairs of linearly
independent vectors in (F2)2). Thus if p > 2, then

|PSL(2, p)| =
|SL(2,Fp)|

2
=

(p2 − 1)(p2 − p)
2(p − 1)

=
p(p2 − 1)

2
.

It follows that |PSL(2, 2)| = 6, while |PSL(2, 3)| = 12 and |PSL(2, 5)| = 60.
In fact, using fractional linear transformations and projective geometry, one
can write down explicit isomorphisms PSL(2, 2) ∼= S(3), PSL(2, 3) ∼= A(4),
and PSL(2, 5) ∼= A(5). The general result is that if p > 3, then PSL(2, p) is
simple. The proof takes several pages to write down, and we will skip it.

11.5.4 Simple groups and the Jordan–Hölder
theorem

The Jordan–Hölder theorem is stated as follows:

Theorem 11.37. Any two composition series for a group G have the same
number of composition factors, and their composition factors are isomorphic
up to order.

The proof is somewhat long and complicated, and we will omit it. As we
noted earlier, a finite group always admits at least one composition series,
while infinite groups need not admit any. The integers, for example, do not
have a composition series.

Example 11.15. For example, the cyclic group C12 gives a nice illustration
of the Jordan–Hölder Theorem. The group C12 has three composition series:

C12 > C6 > C3 > (1), C12 > C6 > C2 > (1), and C12 > C4 > C2 > (1).

The corresponding composition factors taken in order are

{C2, C2, C3}, {C2, C3, C2}, and {C3, C2, C2}.

Two groups with isomorphic composition factors need not be isomorphic,
however, as the following example shows. �

http://dx.doi.org/10.1007/978-0-387-79428-0_6
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Example 11.16. Let G be a cyclic group of order eight, and let H <
GL(3,F2) be the group of upper triangular unipotent matrices. Then G and
H have order eight, but G and H are not isomorphic, since G is abelian and
H isn’t. Now a composition series for G is G = C8 > C4 > C2 > (1) with
composition factors C2, C2, C2. To get a composition series for H, put

H1 =

{ ⎛

⎝
1 0 c
0 1 b
0 0 1

⎞

⎠
}

, and H2 =

{⎛

⎝
1 0 c
0 1 0
0 0 1

⎞

⎠
}

.

Then the composition factors for the series H > H1 > H2 > {I3} are also
C2, C2, C2. Note that the composition factors for G are multiplicative groups,
while those for H are additive groups. Nevertheless, the composition factors
are isomorphic. �

Remark. The previous example shows that a group isn’t determined by its
composition series. However, it does suggest the question of how groups can
be recovered from their composition series. This is known as the extension
problem.

For the final result of this section, we classify the simple solvable finite
groups.

Proposition 11.38. The only finite groups that are both simple and solvable
are the cyclic groups of prime order.

Proof. Suppose G is simple and solvable. Since G has no nontrivial normal
subgroups, its only subnormal series is G > (1), which forces G to be abelian,
since it is assumed to be solvable. But the only simple abelian groups are the
cyclic groups of prime order. �

11.5.5 A few brief remarks on Galois theory

To conclude our introduction to solvable groups, it seems necessary to give a
brief overview of Galois theory and the notion of the Galois group of a field
extension, which is at the heart of Galois theory. Let F be a subfield of a field
E. Put another way, E is an extension field of F. As we noted in Chap. 6,
E is a vector space over F; when the vector space dimension of E over F is
finite, it is customary to denote it by [E : F]. In that case, one calls E a finite
extension of F. For example, C is a finite extension of R with [C : R] = 2.

In the appendix to Chap. 8, we considered a method for extending a field
F to a field containing all the roots of a polynomial f(x) ∈ F[x]. We will not
need to refer to that technique here, but the reader may wish to review it. Let
us consider an example. Assume F = Q and suppose f(x) = x4 − 3. Letting

http://dx.doi.org/10.1007/978-0-387-79428-0_6
http://dx.doi.org/10.1007/978-0-387-79428-0_8


11.5 Solvable Groups and Simple Groups 371

α denote the positive real root 4
√

3, it follows that the four roots of f(x) = 0
are ± α,± iα. Now let E = Q(α, i) denote the smallest field containing Q, α,
and i. Then E contains all four roots of f(x) = 0 as well as α2, α3, i, iα2, iα3.
It turns out that 1, α, α2, α3, i, iα, iα2, iα3 are linearly independent over Q,
and the set of all linear combinations

a1 + a2α + a3α
2 + a4α

3 + a5i + a6iα + a7iα
2 + a8iα

3,

where a1, . . . , a8 ∈ Q, forms a field that is a subfield of C. We leave the
verification of this assertion to the reader. This field must evidently be E,
so [E : Q] = 8. Thus the smallest field containing Q and all the roots of
x4 − 3 = 0 has dimension eight over Q.

We now make the key definition.

Definition 11.10. Let E be an extension field of F that is the smallest field
containing all roots of a polynomial f(x) ∈ F[x] without repeated roots. Then
the Galois group Gal(E/F) of E relative to F is the set of all field isomorphisms
φ : E → E such that φ(a) = a for all a ∈ F.

By definition, Gal(E/F) is a group under composition. Since φ(a) = a for
all a ∈ F, it follows that each φ ∈ Gal(E/F) is also an endomorphism of the
vector space E over F. Note that for every g(x) ∈ F[x] and β ∈ E such that
g(β) = 0, the definition of Gal(E/F) implies φ(g(β)) = g(φ(β)) = 0 for all
φ ∈ Gal(E/F). In other words, elements of Gal(E/F) have to permute the
roots in E of arbitrary polynomials in F[x].

Let us return to the polynomial f(x) = x4 − 3. Now, every φ ∈ Gal(E/Q)
permutes the roots ±α,±iα2 of f(x). Furthermore, if two elements φ, ψ ∈
Gal(E/Q) satisfy φ(μ) = ψ(μ) for each root μ, then φ = ψ. Since f(x) = 0
has four roots in E, Gal(E/Q) < S(4). Let us now determine Gal(E/Q). The
polynomial f has four distinct roots in E that are not in Q. Notice that since
±i satisfy x2+1 = 0, the above remark implies that every φ ∈ Gal(E/Q) must
have φ(i) = ±i. However, φ can send α to any other root. Thus Gal(E/Q) has
an element of order four and an element of order two, and it can be shown
by a tedious calculation that they generate Gal(E/Q). To identify Gal(E/Q),
let ϕ ∈ Gal(E/Q) satisfy ϕ(α) = α and ϕ(iα) = −iα. Then ϕ(i) = −i. Next
define τ ∈ Gal(E/Q) by τ(α) = −iα and τ(i) = i. Then ϕ2 = τ4 = 1 and
ϕτϕ = τ−1 in Gal(E/Q). We claim (again omitting the details) that ϕ and τ
also generate Gal(E/Q). Therefore, Gal(E/Q) is isomorphic to the dihedral
group D(4), of order eight.

In general, we have the following assertion.

Proposition 11.39. If f(x) ∈ F[x] is a polynomial with only simple roots
and E is the smallest extension field of F containing all the roots of f(x),
then |Gal(E/F)| ≤ n!, where n = [E : F].
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The fundamental theorem of Galois theory stated below explains the cor-
respondence between the subfields of E containing F and the subgroups of
Gal(E/F).

Theorem 11.40. Let E be an extension field of the field F that is obtained
by adjoining all the roots of an irreducible polynomial f(x) over F with sim-
ple roots. Then there is a one-to-one correspondence between subgroups of
Gal(E/F) and fields K such that F ⊂ K ⊂ E in which a subgroup H corre-
sponds to the subfield K = E

H of elements of E fixed by all elements of H, and
a subfield K such that F ⊂ K ⊂ E corresponds to Gal(E/K). Furthermore, if
H is a normal subgroup, then Gal(K/F) ∼= Gal(E/F)/Gal(E/K), where K is
the fixed subfield E

H .

Returning to Q(α, i), let us determine what the theorem says. The group
Gal(E/Q(i)) is the subgroup of Gal(E/Q) containing all elements of Gal(E/Q)
fixing i. The element τ fixes i and generates a cyclic group < τ > of order four.
Therefore, Gal(E/Q(i)) is evidently < τ >. Notice that < τ > is a normal
subgroup of Gal(E/Q). Note also that Gal(Q(i)/Q) ∼= C2. The conclusion
from this is that |Gal(E/Q)| = 8, which bypasses the tedious calculations
mentioned above and shows that geq ∼= D(4).

Exercises

Exercise 11.5.1. Show directly that S(3) is solvable.

Exercise 11.5.2. True or false: a nonabelian simple group is its own com-
mutator.

Exercise 11.5.3. True or false: all dihedral groups are solvable.

Exercise 11.5.4. Show, without using the Sylow theorems, that the Klein
4-group is normal in A(4). (Suggestion: make a list of the conjugacy classes
of A(4) and show that V4 is a union of conjugacy classes.)

Exercise 11.5.5. Show that if H is normal in G, then G/H is simple if and
only if there does not exist a normal subgroup N of G such that H < N < G.

Exercise 11.5.6. Show that a solvable group has an abelian normal sub-
group.

Exercise 11.5.7. Prove that a finite group G is solvable if and only if G
has a subnormal series whose factors are cyclic.

Exercise 11.5.8. Suppose a finite group G contains a subgroup H that is
not solvable. Can G itself be solvable? If so, give an example.
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Exercise 11.5.9. Suppose G = H0 > H1 > · · · > Hk is a subnormal series.
Show that if G is finite, then |G| = h1 · · · hk, where hi = |Hi−1/Hi| is the
order of the ith factor.

Exercise 11.5.10. Show that the elementary matrix matrix E =
(

1 λ
0 1

)

over a field F �= F2 is a commutator in GL(2,F). Use this to show that
GL(2,F) is its own commutator.

Exercise 11.5.11. Explain why Z does not have a composition series.

Exercise 11.5.12. Show that every finite group has a composition series.

Exercise 11.5.13. Does S(5) possess two distinct composition series?
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11.6 Appendix: S(n), Cryptography,
and the Enigma

One of the most interesting chapters in the history of World War 2 is how
the British cryptographers at Bletchley Park were able to solve the German
cipher machine known as the Enigma enabling the Allied military to read
virtually all the top secret military transmissions of the German military.
However, until just before the beginning of World War 2, the British had no
idea what sort of cipher the German military was using and were shocked
to learn that the mathematicians of the Polish cipher bureau had been able
to decipher the Enigma since 1932. Just before Germany invaded Poland in
1939, the Poles were able to give the British an actual German Enigma they
had reverse engineered along with their knowledge of how to operate it.

The main tool the Polish cryptographers used was group theory. Their
accomplishment still stands as both the first and undoubtedly most important
use of abstract algebra in cryptography or any other endeavor outside of pure
mathematics. Since we are primarily interested in the role of group theory,
we will not mention many of the fascinating aspects of this story, such as,
for example, how Enigma led to the development of the computer. There is
an article by the principal character, Marian Rejewski, in the Annals of the
History of Computing, Vol. 3, Number 3, July, 1981, which gives a fascinating
first-hand account. There are now many books and articles on the Enigma.
Enigma, by W. Kozachuk (published in 1984), is an excellent, though not
easy to find, account. It is the only book that contains appendices written
by Rejewski himself explaining his breakthroughs. Kozachuk was himself a
Polish army officer and a military historian. Another excellent account is
given in Intercept, by Jozef Garlinski. Both books are fascinating.

11.6.1 Substitution ciphers via S(26)

A cipher is an algorithm for disguising a message so that only the sender
and the intended recipient for can read it. Cryptology, the mathematical
discipline of ciphers, consists of two areas, cryptography and cryptanalysis.
A cryptographer makes ciphers and a cryptanalyst tries to break them. A
substitution cipher is created by permuting the alphabet using an element
of S(26). A substitution cipher is one of the oldest ciphers in existence. Let
us consider an example. The following ciphertext can be deciphered in a few
minutes by analyzing the frequencies of the letters in the message. Guessing
the letters used in the one- and two-letter words is useful.

F KVZSDVS XNZVN
NSKZOFOSK OL ULWESO

ZOK ULHDRSWK ZK CLKO
FCUWSR DLWON XNZOSNSFR
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Let us make a few observations. The frequencies of letters in the ciphertext
should roughly correspond to the frequencies of letters in plaintext, that is,
the message in English that has been enciphered. Notice, for example, that
there are eight S’s, so there is a strong probability that S represents E or
I. There are six Z’s, so Z is another candidate for E or I. But there are no
commonly used two-letter words that begin with E, and several that begin
with I, so Z very likely represents I. Since I has now been used, and the only
two one-letter words are A and I, we may infer that F represents A. This
is a start, but there is still work to do. One of the obvious ways of making
this cipher stronger would be to remove the spaces between words, since that
would conceal the one and two letter words.

11.6.2 The Enigma

A more sophisticated substitution cipher than the simple substitution
described above could employ several substitutions. For example, one might
encipher the first letter by a permutation σ1, the second by another permu-
tation σ2, the third by σ3, and so on. Since there are 26! possible substi-
tutions, if the sequence of permutations was sufficiently random and didn’t
repeat often, the cipher would be very hard to break, and statistics would
be of little help. This sort of variation of the substitution cipher has long
been incorporated in commercial cipher machines. The most famous of these
machines is the Enigma, which was manufactured in Germany and adapted
by the German military in 1929 for its military transmissions. In 1928, the
Polish Cipher Bureau was tipped off that the German military was interested
in the Enigma when an Enigma machine was inadvertently shipped to Poland
marked as radio parts. The cipher bureau learned of the misplaced package
through customs because of the anxiety of the German officials who had
mistakenly sent the wrong package, which they demanded to have returned
immediately. The mistake was discovered on a Saturday, so Polish customs
had time to allow the cipher bureau experts to inspect the contents of the
package, which they realized was an Enigma cipher machine. It was carefully
repackaged and returned, and apparently the Germans never suspected that
the Poles had learned about their error.

Around then, the Poles noticed that the German military began to use
an entirely new system of encipherment. They correctly surmised the source,
and the cipher bureau purchased a commercial Enigma for further study. The
chief of the cipher bureau made the astute observation that traditional cryp-
tological methods (linguistics and statistics) would not be of any use against
such a machine, and he organized a course in the mathematics department
at the University of Poznan to train cryptologists, hoping that he would find
some brilliant students. There were indeed three outstanding students, who
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were recruited, and by 1932, they had actually succeeded in recreating a Ger-
man military Enigma, the so-called the Enigma double. This breakthrough
was based on a brilliant observation about permutation groups by Marian
Rejewski.

To explain the role group theory played in helping Rejewski and his col-
leagues duplicate the Enigma, we need to describe how it worked. It somewhat
resembled a portable typewriter. It had a keyboard with a key for each let-
ter but no space bar, no shift, and no keys for punctuation. Mounted above
and behind the keyboard where the keys would strike the paper was a lamp
board displaying 26 lights labeled a through z. Pressing a key had the affect
of causing one of the lamps to light up. An Enigma required an operator,
who typed in the plaintext, and an assistant, who recorded the ciphertext as
the lamps were lit up in sequence. If, say, a was pressed five times in suc-
cession, a sequence of five lamps lit up. For example, pressing aaaaa might
produce bsfgt. The sequence would eventually reappear, but not for a long
time, in fact, not until a had been pressed (26)3 times. Curiously, due to the
way the keyboard was wired to the lamp board, if a was pressed, the lamp
corresponding to a could not light up. Eventually, the British cryptographers
figured out how to exploit this feature to their great benefit. Once a message
was enciphered, it was sent in Morse code. A recieved enciphered message
was deciphered in exactly the same way. After it was decoded from the Morse
code to reveal the ciphertext, the operator typed the ciphertext on the key-
board, and the assistant read off the plaintext as the lamps lit up one after
another.

Now let us turn to how the machine functioned, which will explain why
enciphering and deciphering were the same process. The original version of
the Enigma contained three adjacent rotors on a horizontal axle. Each of the
rotors had 26 terminals equally spaced around both its left-hand and right-
hand circumferences. The terminals around each circumference represented
the alphabet arranged in the usual order, and each terminal on the left cir-
cumference of a rotor was wired internally to a single terminal on the right.
When a key was pressed, a current passed through the left rotor from the
left-hand terminal to one on the right, then through the middle rotor, and
finally through the right-hand rotor, thereby undergoing three permutations
σL, σM , σR in that order. The current then passed through a fixed disk at
the end of the axle with 26 terminals around its inner circumference, each
wired to another terminal. This disk was called the reflector. The current then
returned through the right-hand rotor, middle rotor, and left-hand rotor to
the key that had caused its lamp to illuminate.

Let ρ denote the permutation of the reflector. Suppose the a key is struck.
Then the lamp that is illuminated by striking a is

σ−1
L σ−1

M σ−1
R ρσRσMσL(a).
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Suppose this is w. Notice that ρ has the property that ρ = ρ−1. In a
group, such an element is called an idempotent. The permutation σ−1

L σ−1
M σ−1

R

ρσRσMσL, being conjugate to the idempotent ρ, is also idempotent. Thus if
pressing a lights up w, then pressing w lights up a. This was a most conve-
nient feature of Enigma and explains why encipherment and decipherment
were performed in the same way.

What complicated the encipherment is that each rotor could be indepen-
dently rotated through all 26 positions. Every time a key was pressed, the first
rotor moved forward one terminal. This shift corresponded to the cyclic per-
mutation π = (abc . . . xyz), of order 26. Hence the second letter of plaintext
would be enciphered by

π−1σ−1
L πσ−1

M σ−1
R ρσRσMπ−1σLπ.

Notice that we have inserted π−1σLπ for σL, since the middle and right rotors
were stationary. Without conjugating by π, all three rotors would advance
1/26 revolution together. As soon as the first 26 letters had been enciphered
and the left-hand rotor had made a complete revolution, the middle rotor
advanced 1/26th of a revolution. The 27th letter was thus enciphered by

σ−1
L π−1σ−1

M πσ−1
R ρσRπ−1σMπσL

since π26 = (1). As soon as 262 = 626 letters were enciphered, the right-
hand rotor moved forward 1/26th of a revolution, and so on. The rotors thus
kept cycling through different permutations until 263 = 17576 keys had been
pressed, after which the cycle repeated.

11.6.3 Rejewski’s theorem on idempotents
in S(n)

We will now pause to analyze some properties of idempotents in S(n). To
take a quick example, note that (ab)(cd)(ef) is an idempotent, but (ab)(bd)
is not. Since an idempotent ρ has the property that ρ2 = 1, it follows that
ρ’s disjoint cycles must be transpositions, since a k-cycle has order k. The
reflector ρ on the Enigma was the product of 13 disjoint transpositions, since
every terminal had to be paired with a different terminal, since pairing a
terminal with itself would mean that sometimes pressing a key would fail to
illuminate a lamp, since a key could not light up its own lamp. Thus, by the
binomial theorem, the total number of possible Enigma reflectors is

26!
213

= 49229914688306352 × 106.
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Although it was certainly not obvious at the time, it turned out that the key
to unlocking how the Enigma rotors were wired is what happens when two
idempotents are multiplied. This question was answered by Marian Rejewski
in 1932 in the following theorem, which has also been referred to as “the
theorem that won World War Two.”

Theorem 11.41 (Rejewski’s theorem). Let σ and τ be idempotents in S(n)
with the same fixed points in {1, . . . , n}. Then the number of disjoint cycles
in στ of each length is even (including the possibility of length 0). Thus
if στ has a disjoint cycle of length k > 0, then it has an even number of
them. Conversely, an element of S(n) that has the property that there is an
even number of disjoint cycles of each possible length in its disjoint cycle
representation is a product of two idempotents (though possibly in several
ways).

Considering an example will give a good idea why the first assertion is
true, but its converse is harder to justify.

Example 11.17. The permutations

σ = (a e)(b f)(c g)(h d) and τ = (b e)(f c)(h g)(a d)

are idempotents in S(8) with the same fixed letters, namely i through z.
To see how to construct the disjoint cycles in στ , consider the following
arrangement:

a h c b a
d g f e

.

Note that τ acts by reading diagonally down from left to right, while σ acts
by reading diagonally up from left to right. Thus the disjoint cycle decom-
position of στ is revealed by reading the top row from left to right to get
one cycle, and the bottom row from right to left to get the other. Thus
στ = (a h c b)(e f g d). Similarly, τσ = (a b c h)(d g f e). The cycles of each
length occur in pairs. In each case, there are only two cycles, and both are
of length four. This construction works for the product of any two idempo-
tents with the same fixed letters. The converse statement is harder but more
important. It is this fact that led to Rejewski’s breakthrough. �
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11.7 Breaking the Enigma

As we noted above, for two Enigmas with the same initial rotor settings, enci-
phering and deciphering were the same operation. The operator who received
a message had only to type in the ciphertext as the assistant read off the plain-
text on the lamp board. To ensure that the starting positions were always
the same, a daily key schedule was compiled in a codebook issued to all the
Enigma operators. If on September 5, 1940, the daily key was xsf , then on
that day all Enigmas would begin sending and deciphering with the left rotor
set at x, the middle at s, and the right at f . To increase security, each oper-
ator also selected another three-letter key, a so-called telegram key, e.g., arf .
Then before enciphering took place, the operator, with the Enigma set to the
daily key xsf , enciphered the telegram key arf . As an error-detecting device,
the operator actually typed arfarf , producing a six-letter string, let us say
wkuygh. This six-letter string was then sent by Morse code as the first six let-
ters of the enciphered message. After sending his doubly enciphered telegram
key, the operator set his rotors to arf and proceeded to encipher the plain-
text. The operator on the receiving end, with his Enigma set to the daily
key xsf , typed in wkuygh. The deciphered string arfarf told him to reset
his rotors to arf before typing in the ciphertext. Of course, if something
like arfark was received, this signaled a transmission error, and the message
wasn’t deciphered until the doubly enciphered telegram key was resent. The
double enciphering of the telegram key was necessary. Radio transmissions
could be disrupted by static, and there was always the possibility of human
error under the difficulties experienced in wartime. But it turned out to be
the weak link. To see why, see whether you can detect a pattern in the first
six-letter groups from fifteen messages all intercepted on September 5. Note
that all groupings are double encipherings of different telegram keys.

wkuygh wctyuo qvtnno kophau evprmu
qmlnxz wvqymk dgybhj bxcdla mijwce
dbobth yoeiaw ntplbu yugicf lhmqzp

The interesting feature of these six-letter groups is that whenever two have
the same first letter, they have the same fourth letter, and conversely. This
also holds for the second and fifth letters and the third and sixth letters. A
good cryptographer would notice this feature immediately, but an untrained
eye (such as the author’s) might not see it for quite a while, or ever. This
clearly suggested a double encryption hypothesis. Working on this assump-
tion, Rejewski had the wonderful insight to string together the first and fourth
letters of all the first six-letter groups for all the intercepted messages on a
particular day, since they were all enciphered with the same daily key: xsf
in the case of September 5. Here is what the above fifteen intercepts give:
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dbd . . . mwyi . . . qnlq . . . odb . . . fv . . . er . . . kh . . . .

However, working with 60–80 daily intercepts, he was sometimes able to
string together the whole alphabet, getting an element π ∈ S(26). Let us see
what the construction of π tells us. Looking at the first grouping, we know
that the operator typed arfarf , which produced wkuygh. So typing a on
the keyboard produced w on the lamp board via an idempotent σ1. Now
let σ2 be the idempotent that sends a to y. Then since π(w) = y, we have
πσ1(a) = σ2(a). But since all the Enigmas were set up on September 5 with
the same daily key xsf , the pairings σ1 and σ2 would be the same for all
Enigmas. Hence πσ1 = σ2. Consequently, π = σ2σ1 in S(26)! Thus we see
the surprising way in which the product of two idempotents figured. It would
be possible, though not easy, to find the disjoint cycle representation of π,
and from this, one might be able to deduce σ1 and σ2. Recall that neither
σ1 nor σ2 could have any fixed letters. Let us call such idempotents pairings.
Thus, it might be possible to find the pairings σ1 and σ2 from π. Repeating
this process for the second and fifth and the third and sixth letters gave two
more elements of S(26) that were also products of two pairings. There was
an unavoidable problem, however: a factorization into pairings is not unique.
Let us take a couple of simple examples to illustrate how the pairings might
be found.

Example 11.18. Let us shorten the alphabet to a through h, and let π =
(ahc)(dgb). We want to write this as στ , where σ and τ are pairings. We
can clearly see that e → e and f → f . Imitating the procedure illustrated
after Rejewski’s theorem, consider the three possibilities taking the cyclic
permutations of b, d, g into account:

a h c a
b g d

,

a h c a
g d b

,

and
a h c a

d b g
.

Thus there are three possible solutions:

σ = (a b)(h g)(c d)(e f), τ = (a d)(c g)(b h)(e f),

σ = (a g)(d h)(b c)(e f), τ = (a b)(c d)(g h)(e f),

σ = (a d)(b h)(c g)(e f), τ = (a g)(c d)(d h)(e f).
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Notice that we included (e f) in each solution in order to ensure that σ and
τ are pairings, not just idempotents. The transposition (e f) disappears in
the product.

Example 11.19. Consider the permutation

π = (d e p z v l y q)(a r o n j f m x)(b g k tu)(w s c i h).

Thus we consider pairs of arrays such as

d e p z v l y q d
x m f j n o r a

and
b g k t u b

h i c s w
.

One possible solution is therefore

σ = (d x)(e m)(f p)(j z)(n v)(l o)(r y)(a q)(b h)(g i)(k c)(s t)(u w)

and

τ = (a d)(q r)(o y)(ln )(j v)(f z)(m p)(e x)(b w)(u s)(t c)(k i)(g h).

Since we obtain all solutions by cyclicly permuting the second rows of the
two arrays, there are 128 solutions in all.

Rejewski’s solution helped reveal the some of the pairings. If he had known
the daily keys, then he would have gotten some real insight into the wiring of
the rotors. But it wasn’t always necessary to know the daily keys, because the
Enigma operators often chose easy to guess keys such as aaa or abc, or they
might always choose the same key. But what turned out to be a huge break
for the Poles was that French intelligence uncovered a disgruntled German
code clerk who sold them the daily keys for a two-month period in 1932.
They were given to the Poles, who used this windfall along with Rejewski’s
factorizations. Using several other clever and imaginative devices, the three
Polish cryptographers were able to decipher their first Enigma message at the
end of 1932. By 1934, they had completely solved the puzzle of the wiring
of the rotors and were able to build an exact replica of the Enigma (an
Enigma double). What made this even more amazing was that Poland was
economically depressed, having become an independent country only at the
end of the First World War, and the financial outlay for this project was
a serious strain on its national treasury. Yet because of the wisdom of the
head of its cipher bureau and the ingenuity of its cryptographers, the Poles
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were years ahead of the British and French, who despite their great economic
advantage, had been unable to unravel the Enigma’s mystery.

Rejewski had even constructed a primitive computer, which he called a
bomb, to test for the daily keys. Fortunately, a couple of months before Ger-
many’s shocking invasion of Poland in September 1939, two of the duplicate
Enigmas were handed over to the French, who gave one to the British. With
this windfall, the British cryptographers at Bletchley Park were immediately
able to decipher a certain amount of the intercepted radio traffic, somewhere
on the order of 150 intercepts per day. But after the war started, the Ger-
mans upgraded their system, so the cryptanalysts were stymied until they
figured out what modifications the Germans had made. In 1943, the British,
under the leadership of Alan Turing, built the first true electronic computer
to test for the daily keys. They also called it the bomb, apparently in honor
of the Polish original. With the bomb, the Bletchley Park cryptanalysts were
eventually able to read virtually all of the top secret communications of the
German High Command, often before the officers for whom the communiqués
were intended.

The breaking of the Enigma surely shortened the war. In fact, after learn-
ing in the 1970s the extent to which the British had penetrated the Enigma
ciphers, the head of German Enigma security, a mathematical logician, stated
that it was a good thing, since it must have shortened the war. He was happy
to learn that a fellow logician, Alan Turing, had played such an important
role. A well-known German mathematician, who was responsible for the secu-
rity of the Enigmas for a branch of the German military, was quoted in an
obituary as saying that it was a job he hadn’t been very good at.

Acknowledgments The above account of how the Enigma was broken was originally
explained to me by my colleague Professor Hugh Thurston, who was a British cryptanalyst
at Bletchley Park during the war. He characterized the code-breaking activity at Bletchley
Park as “one of the few just war efforts human history can boast of.”



Chapter 12
Linear Algebraic Groups: an
Introduction

The purpose of this chapter is to give a brief informal introduction, with very
few proofs, to the subject of linear algebraic groups, a far-reaching general-
ization of matrix theory and linear algebra. A very readable treatment with
much more information is contained in the book Linear Algebraic Groups
and Finite Groups of Lie Type, by Gunter Malle and Donna Testerman. A
linear algebraic group is a matrix group G contained in a general linear group
GL(n,F), for some field F and positive integer n, whose elements are precisely
the roots, or zeros, of a finite set of polynomial equations in n2 variables.
Linear algebraic groups have proved to be indispensable in many areas of
mathematics, e.g., number theory, invariant theory, algebraic geometry, and
algebraic combinatorics, to name some. The results we will describe concern,
for the most part, the case F = C, but results that are valid for C are usually
true whenever F is algebraically closed and of characteristic zero. There is also
a great deal of interest in linear algebraic groups over a field of characteristic
p > 0, since many such groups give examples of finite simple groups.

12.1 Linear Algebraic Groups

In order to define what a linear algebraic group is, we must first make some
remarks about polynomials on F

n×n. Let V be a finite-dimensional vector
space over F with basis v1, . . . ,vn, and let x1, . . . , xn be the dual basis of V ∗.
Thus xi : V → F is the linear function defined by xi(vj) = δij , where δij is the
Kronecker delta function. A monomial in x1, . . . , xn is a function of the form
xa1
i1

xa2
i2

· · · xak
ik

: V → F, where a1, . . . , ak are positive integers, 1 ≤ ij ≤ n for
all indices and i1 < i2 < · · · < ik. A polynomial function in x1, . . . , xn over F
is a linear combination over F of a finite set of monomials. Thus a typical
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polynomial has the form

f(x1, . . . , xn) =
∑

ci1i2...ikxa1
i1

xa2
i2

· · · xak
ik

,

where the coefficients ci1i2...ik are in F, and only finitely many are nonzero. Let
F[x1, . . . , xn] denote the set of all such polynomials. If V = F

n×n with basis
Eij , 1 ≤ i, j ≤ n, then the dual basis is denoted by xij , where 1 ≤ i, j ≤ n. A
basic example of a polynomial in F[xij ] is given by the determinant

det(xij) =
∑

π∈S(n)

sgn(π) xπ(1)1xπ(2)2 · · · xπ(n)n.

We now define what it means for a matrix group to be closed.

Definition 12.1. A subgroup G of GL(n,F) is said to be closed if G consists
of the common zeros of a finite set of polynomials f1, . . . , fk ∈ F[xij ]. A closed
subgroup G of GL(n,F) is called a linear algebraic group.

The group GL(n,F) is by default a linear algebraic group, since GL(n,F)
is the set of common zeros of the empty set of polynomials on F

n×n. The spe-
cial linear group SL(n,F) is a closed subgroup of GL(n,F), since SL(n,F)
is defined by the setting det(xij) − 1 = 0. That is, SL(n,F) consists of the
matrices A such that det(A) − 1 = 0. The groups P (n), U(n,F), L(n,F), and
D(n,F) involved in the LPDU are also closed subgroups of GL(n,F), as is
T (n,F). For example, T (n,F), the subgroup consisting of all upper triangu-
lar elements of GL(n,F), is the set of zeros of the polynomials xij , where
i > j. The elements of the group P (n) of n × n permutation matrices satisfy
the equations xij(xij − 1) = 0 for all i, j, since every entry of a permutation
matrix is zero or one. But these equations don’t capture the fact that the
columns of P are orthogonal; for that, we use the identity PTP = In. Thus,
P ∈ P (n) if and only if P satisfies the set of polynomial equations

∑

k

xkixkj = δij and xij(xij − 1) = 0 (i, j, k = 1, . . . , n).

Hence P (n) is a linear algebraic group; in fact, this example shows that linear
algebraic groups can be finite. (The reader may wish to show that in fact,
every finite subgroup of GL(n,F) is closed.)

From the definition of a linear algebraic group, it is clear that the inter-
section of two linear algebraic groups is a linear algebraic group, and the
product of two linear algebraic groups is also a linear algebraic group. In
order to understand the importance of the condition that the elements of a
linear algebraic group are cut out by polynomial equations, one must intro-
duce some basic concepts from algebraic geometry, in particular, the notion
of an affine variety. What is very useful is that the important subgroups of a
linear algebraic group themselves also turn out to be linear algebraic groups.
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We know make a general definition that applies to arbitrary groups. The
reason for the terminology should become clear later.

Definition 12.2. A group G, not necessarily a linear algebraic group, is said
to be connected if G has no normal subgroup of finite index greater than one.

By definition, a finite group different from {1} cannot be connected. To
see another example of a nonconnected group, consider O(n,F) for which
the characteristic of F is different from two. In that case, P (n) is naturally
embedded as a subgroup of O(n,F). Thus, the determinant homomorphism
det : O(n,F) → {±1} is surjective. Consequently, by the first isomorphism
theorem, its kernel is a proper normal subgroup of index two. If the charac-
teristic of F is zero, then GL(n,F), SL(n,F), and SO(n,F) are all connected.

Exercise 12.1.1. Show that if F is a Galois field, then GL(n,F) is not con-
nected.

12.1.1 Reductive and semisimple groups

We will now get a bit technical for a while in order to focus on two of the
most important classes of linear algebraic groups: reductive and semisim-
ple groups. We will concentrate on linear algebraic groups G < GL(n,C).
Each such G has a unique maximal, closed, normal, and connected solvable
subgroup Rad(G), called the radical of G. For example, if G = GL(n,C),
then Rad(G) = C

∗In. (Note: C∗In is closed, since it is the set of all zeros in
GL(n,C) of the polynomials xij and xii − xjj , where i �= j). If G = T (n,C)
or D(n,C), then Rad(G) = G, since G is solvable. We now state the first
main definition.

Definition 12.3. Let G < GL(n,C) denote a connected linear algebraic
group. Then G is called reductive if the only unipotent element of Rad(G)
is the identity. It is called semisimple if the only closed, normal, connected
abelian subgroup of G is the identity. It is called simple if G is nonabelian
and G has no nontrivial closed normal subgroup. Finally, G is almost simple
if every closed normal subgroup of G is finite.

It is not hard to see that a semisimple linear algebraic group is reduc-
tive, but the converse isn’t true. For example, by the above remarks, the
general linear group GL(n,C) is reductive. However, GL(n,C) is not semi-
simple, since its radical C∗In is a nontrivial closed normal connected abelian
subgroup. Another example of a reductive group that is not semisimple is
D(n,C). The special linear group SL(n,C) is semisimple. This is hard to
prove from first principles, so we will omit the proof. Note that SL(n,C)
contains a normal abelian subgroup, namely its center Z = {ζIn | ζn = 1}.
But Z is not connected, since {In} is a normal subgroup of finite index.
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12.1.2 The classical groups

A list of all semisimple linear algebraic groups over C has been known since
the early part of the twentieth century. There are four infinite families known
as the classical groups, and five exceptional groups, which we will not describe
here. When C is replaced by a Galois field, all the classical and exceptional
groups become what are called groups of Lie type. With the exception of 26
so-called sporadic groups, all the finite simple groups are of this type. We have
already encountered three of the families of classical groups: SL(n,C) (the
special linear groups), SO(2n,C) (the even orthogonal groups), and SO(2n +
1,C) (the odd orthogonal groups). It may seem artificial to distinguish the
even and odd special orthogonal groups, but the mechanism used to classify
the semisimple groups forces us to put these groups into different categories.
The fourth family consists of the symplectic groups Sp(2n,C). By definition,

Sp(2n,C) = {A ∈ GL(2n,C) | AΩAT = Ω},

where

Ω =
(

O In

−In O

)
.

If A ∈ Sp(2n,C), then A−1 = ΩATΩ−1, and since Ω2 = −I2n, we get A−1 =
−ΩATΩ. Also, by definition, det(AAT ) = 1, so det(A) = ±1. In fact, it can
be shown that det(A) = 1, so Sp(2n,C) < SL(n,C). This follows by showing
that Sp(2n,C) is connected, since the kernel of det is a normal subgroup. The
symplectic groups are used in symplectic geometry, physics, and the theory
of alternating quadratic forms.

12.1.3 Algebraic tori

A linear algebraic group T < GL(n,C) is called an algebraic torus, or simply
a torus, if T is connected and abelian and every element of T is semisimple.
Algebraic tori are basic examples of reductive groups. This follows from the
multiplicative Jordan–Chevalley decomposition, since the only unipotent ele-
ment of a torus is the identity. If T is a subgroup of a linear algebraic group
G < GL(n,C), we call T a subtorus of G if T is an algebraic torus in GL(n,C).
A subtorus T of G that is not a proper subgroup of any other subtorus in G
is called a maximal torus in G. For example, D(n,C) is a maximal torus in
GL(n,C). More generally, we have the following.

Proposition 12.1. Every maximal torus T < GL(n,C) is conjugate to
D(n,C).
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Exercise 12.1.2. Show that T =
{(

a b
−b a

)
| a, b ∈ C, a2 + b2 �= 0

}
and

D(2,C) are both maximal tori in GL(2,C), and prove that they are conjugate
in GL(2,C).

Exercise 12.1.3. Let T be the algebraic torus defined in the previous exer-
cise. Show that D(2,R) and T ∩ GL(2,R) are not conjugate in GL(2,R).

We next state an important fact.

Theorem 12.2. Every reductive linear algebraic group G contains a maxi-
mal torus, and any two maximal tori in G are conjugate by an element of G.
Moreover, if T < G is an algebraic torus, then T is contained in a maximal
torus.

Let us now describe some maximal tori for classical groups.

Case 1: SL(n,C). This is the easiest case to describe. In fact, the subgroup
of all diagonal matrices in SL(n,C), that is, SL(n,C) ∩ D(n,C), is a maximal
torus.

Case 2: SO(2n,C). Starting with the maximal torus T = {diag(t, t−1) | t ∈
C

∗} in SL(2,C), one can conjugate T into SO(2,C), since

R = Pdiag(t, t−1)P−1 =
(

a b
−b a

)
,

where a = (t2 + 1)/t, b = (−it2 + 1)/t, and P =
1√
2

(
1 i
i 1

)
. We will call R

a rotation matrix. It turns out that the set of all matrices of the form

R =

⎛

⎜⎜⎜⎝

R1 O · · · O
O R2 · · · O
...

...
. . .

...
O O · · · Rn

⎞

⎟⎟⎟⎠ ,

where R1, . . . , Rn are arbitrary rotation matrices, is a maximal torus in
SO(2n,C).

Case 3: SO(2n + 1,C). To obtain a maximal torus in SO(2n + 1,C), con-
sider the natural inclusion homomorphism i : SO(2n,C) → SO(2n + 1,C)
defined by

R →
(

R 0
0 1

)
.

Then the image of R is a maximal torus in SO(2n + 1,C).

Case 4: Sp(2n,C). Finally, the set of all T = diag(x1, . . . , xn, x
−1
1 , . . . , x−1

n ),
where each xi is in C

∗, is a maximal torus for Sp(2n,C).
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A maximal torus T in a linear algebraic group G defines a group action
of T on G by conjugation, namely (t, g) → t · g = tgt−1. This action gives
rise to the so-called roots and weights of the pair (G,T ), which completely
determine G up to isomorphism (in the sense of linear algebraic groups) when
G is semisimple. Space does not permit us to elaborate on this theme, since
it requires introducing the Lie algebra of G. Instead, we will concentrate on
another group that we have already seen in a special case. This is the Weyl
group of (G,T ). We will then discuss the role of the Weyl group in the theory
of linear algebraic groups.

12.1.4 The Weyl group

The Weyl group of a pair (G,T ) consisting of a linear algebraic group G
and a maximal torus T < G is the group W (G,T ) = NG(T )/T . We will see
below that if G = GL(n,C) and T = D(n,C), then W (G,T ) is isomorphic to
the group P (n) of n × n permutation matrices. Recall that P (n) is a basic
component of the LPDU decomposition in GL(n,C). The matrices P and D
are always unique, though L and U need not be. We will give some examples
of Weyl groups and then explain how they play a role similar to that of P (n)
for GL(n,C) for arbitrary reductive linear algebraic groups. Let us begin with
a fundamental result.

Theorem 12.3. If G is reductive, then the normalizer NG(T ) is also a linear
algebraic group, and the Weyl group W (G,T ) is finite.

For simplicity, we will denote W (G,T ) by W as long as it is clear what G
and T are. Since any two maximal tori in G are conjugate, the Weyl group
of (G,T ) is independent of the choice of T up to an isomorphism induced by
an inner automorphism of G. The following result computes W when G is
either GL(n,C) or SL(n,C).

Proposition 12.4. If G = GL(n,C) or SL(n,C), then W ∼= S(n).

Proof. Suppose first that G = GL(n,C) and T = D(n,C). We will show
that NG(T ) is the semidirect product P (n)T . Note that if P ∈ P (n) and
D = diag(d1, . . . , dn), then PDP−1 = diag(dσ(1), . . . , dσ(n)), where σ ∈ S(n)
is the unique permutation such that P = Pσ. To see this, it suffices to check
that PDP−1 = diag(dσ(1), . . . , dσ(n)) whenever σ = (i i + 1) is a simple trans-
position. Since (i i + 1) is conjugate to (12), it suffices to let σ = (12) and
assume that D is of size 2 × 2. Hence we get the result, since

PDP−1 =
(

0 1
1 0

)(
a 0
0 b

) (
0 1
1 0

)
=

(
b 0
0 a

)
.
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Since P (n) ∩ T = (1), the subgroup H generated by P (n) and T is the semi-
direct product of P (n) and T , and H ≤ NG(T ). Moreover, transvections,
or elementary matrices of type III, do not normalize T . For example, in the
2 × 2 case,

(
1 0
u 1

) (
a 0
0 b

) (
1 0

−u 1

)
=

(
a 0

u(a − b) b

)
.

It follows that NG(T ) = H = P (n)T , as claimed. It follows from Exercise
11.4.7 that W ∼= P (n) via the natural homomorphism P (n) → W defined by
P → PT . Hence W ∼= S(n) also. When G = SL(n,C), the above argument
doesn’t work, because if P = Pσ and sgn(σ) = −1, then P /∈ SL(n,C), since
det(Pσ) = sgn(σ). This is fixed by replacing a Pσ with sgn(σ) = −1 by the
matrix RPσ, where R = diag(−1, 1, . . . , 1). It is clear that conjugation by
RPσ has the same effect as conjugation by Pσ, so W ∼= S(n) in the SL(n,C)
case also. �

We will skip the details for the computation of the Weyl groups of the
remaining classical groups. The complete result is contained in the following
theorem.

Theorem 12.5. The Weyl groups of the classical groups are as follows:

(i) for G = GL(n,C) or SL(n,C), W ∼= S(n);

(ii) for G = SO(2n + 1,C) or SP (2n,C), W ∼= SP (n), where SP (n) denotes
the group of signed permutation matrices; and

(iii) for G = SO(2n,C), W ∼= SP (n)+, the subgroup of SP (n) consisting of
all signed permutation matrices having an even number of minus signs.

The group SP (n) consists of all elements of O(n,C) having integer entries.
In other words, every element of SP (n) is obtained from a permutation matrix
P by allowing ± 1 wherever a 1 occurs in P . Thus the order of SP (n) is 2nn!.
Since det(Pσ) = sgn(σ) for the permutation matrix Pσ associated to σ ∈ S(n),
it follows that SP (n)+ = SP (n) ∩ SL(n,C). Thus |SP (n)+| = 2n−1n!.

Each of the Weyl groups above is generated by reflections of Rn. We will
give a minimal set of reflections that generate in each case. Such reflections
are called simple.

Case 1: W = P (n). For each i = 1, . . . , n − 1, let Hi denote the reflection
through the hyperplane orthogonal to ei − ei+1. The matrix of Hi with
respect to the standard basis is the row swap matrix Pi obtained from In by
swapping the ith and (i + 1)st rows. Then P1, . . . , Pn−1 are the simple reflec-
tions generating W . Note that Pi is the permutation matrix corresponding
to the simple transposition (i i + 1).

Case 2: W = SP (n). Here the simple reflections are P1, . . . , Pn−1 together
with the reflection Pn = diag(1, . . . , 1,−1), which reflects R

n through the
hyperplane xn = 0.

http://dx.doi.org/10.1007/978-0-387-79428-0_11
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Case 3: W = SP (n)+. In the final case, the simple reflections consist of
P1, . . . , Pn−1 together with the reflection Hn through the hyperplane orthog-
onal to en−1 + en. The matrix of Hn is −Pn−1. Thus the simple reflections
are P1, . . . , Pn−2,±Pn−1.

The simple reflections listed above arise from the root systems of types
A,B,C,D in the theory of reflection groups (that is, groups generated by
reflections). The simple reflections allow one to define the notion of the length
of an element w of W as the minimal k such that there exists an expression
w = Pi1 · · · Pik with each Pj a simple reflection. The length of w is denoted by
�(w). We will mention below an interesting role that the length function plays.
An excellent source for information and further study on reflection groups,
including their root systems, is Reflection Groups and Coxeter Groups (Cam-
bridge Studies in Advanced Mathematics), by James E. Humphreys.

12.1.5 Borel subgroups

If G is a connected linear algebraic group, a closed, connected subgroup B of
G that is solvable and not properly contained in any other closed, connected
solvable subgroup of G is called a Borel subgroup of G. Borel subgroups play
a very important role in the structure theory of linear algebraic groups, as
we will presently see. We have already seen that the upper triangular sub-
groups T (n,C) and T (n,C) ∩ SL(n,C) of GL(n,C) and SL(n,C) are solv-
able. It turns out that they are Borel subgroups of GL(n,C) and SL(n,C)
respectively. This is easy to see for n = 2. The commutator ABA−1B−1 of
A,B ∈ GL(2,C) is in general not in T (2,C). In fact, let G be a closed sub-
group of GL(2,C) properly containing T (2,C). Then there exists A ∈ G
such that the entry a21 is nonzero. Then one can find B ∈ T (2,C) such
that C = ABA−1B−1 has a nonvanishing (2, 1) entry. For example, assuming
ad − bc = 1 to avoid denominators, then

(
a b
c d

)(
1 1
0 1

)(
d −b

−c a

)(
1 −1
0 1

)
=

(
1 − ac a2 + ac − 1
−c2 1 + ac + c2

)
.

It follows that every commutator subgroup G(i) is nontrivial, so G cannot
be solvable. Hence, T (2,C) is a Borel subgroup of GL(2,C). The reader can
then extend this reasoning to conclude that T (n,C) is a Borel subgroup of
GL(n,C). Similarly, T (n,C) ∩ SL(n,C) is a Borel subgroup of SL(n,C).

The existence of a Borel subgroup B in a linear algebraic group G follows
from the fact that an algebraic torus is a connected solvable (in fact, abelian)
linear algebraic group. Now, if H is any closed connected solvable linear
algebraic group such that T ≤ H ≤ G, then either H is maximal or there
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exists a closed connected solvable linear algebraic group H ′ of G such that
H < H ′. We need to know that iterating this remark will produce a maximal
closed connected solvable linear algebraic group B ≤ G such that T ≤ B. In
fact, if G < GL(n,C), then there cannot be a strictly increasing sequence of
linear algebraic groups

H1 < H2 < · · · < Hk < Hk+1 < · · · < G.

The tool needed to guarantee this is a fundamental theorem in abstract alge-
bra known as the Hilbert basis theorem, which is a result about ideals in
F[x1, . . . , xm]. The existence of a Borel subgroup B such that T ≤ B thus
follows. It can also be shown that every Borel subgroup in a linear algebraic
group G < GL(n,C) can be obtained as G ∩ B for some Borel B in GL(n,C).

Remark. The Borel subgroups of the orthogonal groups and the symplectic
groups are harder to describe, but a nice description is given in the above-
mentioned book by Malle and Testerman on page 38.

12.1.6 The conjugacy of Borel subgroups

Every subgroup H < GL(n,C) conjugate to a linear algebraic group G <
GL(n,C) is also a linear algebraic group. For if H = gGg−1, and p(X)
is a polynomial on C

n×n such that p(X) = 0 if X ∈ G, then the function
q(X) = p(g−1Xg) is also a polynomial on C

n×n such that q(Y ) = 0 if Y ∈ H,
since q(Y ) = p(g−1Y g) = p(g−1gXg−1g) = p(X) = 0. It follows that every
subgroup of G that is conjugate to a Borel subgroup is itself a Borel subgroup.
Thus the lower triangular matrices also give Borel subgroups in GL(n,C),
and those in SL(n,C) give a Borel subgroup in SL(n,C). Moreover, there
are also Borel subgroups that are quite hard to describe.

The Borel subgroups of a reductive linear algebraic group G have two
fundamental and deep properties: any two Borel subgroups of G are conjugate
by an element of G, and the normalizer of every Borel subgroup of B < G
is B itself (cf. Malle and Testerman). These two facts give rise to a nice
parameterization of the set of Borel subgroups of G.

Proposition 12.6. Let BG denote the set of all Borel subgroups of G, and
let B denote a fixed Borel subgroup. Then the mapping gB → gBg−1 defines
a bijection between the space of left cosets G/B and BG.

Recall that we showed that every maximal torus T in G is contained in a
Borel subgroup B of G. We just remarked that NG(B) = B for every Borel
subgroup, and in fact, NG(T ) ∩ B = T . Since T < B, it makes sense to define
wBw−1 by nwBn−1

w for every representative nw of w in the Weyl group W
of (G,T ). The interesting point is that wBw−1 is also a Borel subgroup of G
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containing T . Moreover, if w1, w2 ∈ W , then w1Bw−1
1 = w2Bw−1

2 if and only
if w1 = w2.

Theorem 12.7. The correspondence sending w ∈ W to wBw−1 is a bijec-
tion from the Weyl group of (G,T ) onto the set of Borel subgroups of G
containing T . In particular, the number of Borel subgroups of G containing
T is |W |.

12.1.7 The flag variety of a linear algebraic group

If B is a Borel subgroup of G, then the coset space G/B turns out to have
the structure of an algebraic variety, which is the fundamental concept in
the field of algebraic geometry. This allows one to use results from algebraic
geometry to study the abstract set BG of all Borel subgroups in G. When
G = GL(n,C), we can explicitly describe G/B in terms from linear algebra.
Let us suppose B = T (n,C) and fix A ∈ GL(n,C). Let U be an arbitrary
element of B. Since multiplication on the right by each U performs rightward
column operations, the spans of the first k columns of A and AU are the same
for all k. Let Vk denote this subspace. Since A is invertible, dim Vk = k for
all k. Thus the coset AB uniquely determines a strictly increasing sequence
of subspaces of Cn, namely

V1 ⊂ V2 ⊂ · · · ⊂ Vn−1 ⊂ C
n. (12.1)

Conversely, every such sequence uniquely determines a coset of G/B. This
gives us a bijection from G/B onto the set of all sequences of the form (12.1).
These sequences are called complete flags in C

n. The set of complete flags in
C

n is often denoted by Flag(Cn). It has many applications in geometry and
related areas. If G is an arbitrary reductive group and B a Borel subgroup,
then the coset space G/B is known as the flag variety of G.

Now let T be a maximal torus in a reductive group G and let B be a Borel
subgroup of G such that T < B. Consider the action of T on the flag variety
G/B by left translation given explicitly by (t, gB) → tgB. As we have already
seen in the proofs of the Sylow theorems, it is often very useful to know the
fixed-point set of a group action.

Proposition 12.8. The fixed-point set (G/B)T of the left multiplication
action of T on G/B is precisely the set of cosets wB as w varies through
the Weyl group. In particular, T has exactly |W | fixed points on G/B.

Proof. Suppose TgB = gB. Then g−1Tg < B, so T < gBg−1. Thus gBg−1 is a
Borel subgroup of G containing T . Therefore, by Cartan’s theorem, gBg−1 =
wBw−1 for some w ∈ W . Consequently, gB = wB by Proposition 12.6. �
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The fact that the number of fixed points of T on G/B is |W | translates
into a statement about the topology of the flag variety G/B of G, namely,
the Euler characteristic of G/B is |W |, the order of the Weyl group. This is a
famous theorem of André Weil that was discovered around 1930. The Euler
characteristic is a topological invariant of a space that generalizes the number
F − E + V , which measures the number of holes in a two-dimensional surface
without boundary.

Example 12.1. It is interesting to compute (G/B)T when G = GL(n,C) in
two ways. First, let us view GL(n,C)/B as the complete flags in C

n. Note
that if T = T (n,C), then every flag of the form

Cei1 ⊂ spanC{ei1 , ei2} ⊂ · · · ⊂ spanC{ei1 , ei2 , . . . , ein−1} ⊂ C
n

is fixed by T . Here i1, i2, . . . , in−1 are n − 1 distinct integers in [1, n]. Since
there are exactly n! such flags, and |S(n)| = n!, these flags comprise the
T -fixed points. Now let us compute (G/B)T another way, this time using
the LPDU decomposition. The points (or cosets) PB, where P ∈ P (n), are
fixed under T , because TPB = PTB, since the normalizer in GL(n,C) of T
is P (n). Thus, P−1TP = T , so TP = PT , whence TPB = PB. Hence, the
points PB as P ranges over P (n) are fixed under T . But in the LPDU
decomposition of an element of GL(n,C), we know that P and D are unique.
Thus if P,P ′ ∈ P (n), then PB = P ′B if and only if P = P ′. Therefore, since
|P (n)| = n!, we have found (GL(n,C)/B)T in two (equivalent) ways. �

12.1.8 The Bruhat decomposition of GL(n, F)

We are now going to discuss how the LPDU decomposition generalizes to
an arbitrary reductive linear algebraic group G < GL(n,F), where F is an
arbitrary field. We will begin by finding a slightly different version of LPDU
for G = GL(n,F). According to LPDU , we can decompose GL(n,F) as the
product of four subgroups, namely

GL(n,F) = L(n,F)P (n)D(n,F)U(n,F).

Of course, D(n,F)U(n,F) is the upper triangular Borel subgroup T (n,F).
Another Borel subgroup of GL(n,F) is, in fact, the set T (n,F)− of all lower
triangular elements of GL(n,F). Since T (n,F) and T (n,F)− are Borel sub-
groups containing the maximal torus D(n,F), they are conjugate by an ele-
ment of the Weyl group P (n). In fact, this element is

P0 = (en en−1 · · · e2 e1).
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Put another way, if P0 is the permutation matrix with ones on the antidiago-
nal, then L(n,F) = P0T (n,F)P−1

0 . Now GL(n,F) = P0GL(n,F) and P−1
0 =

P0. Thus,

GL(n,F) = P0GL(n,F) = P0L(n,F)P0P0P (n)T (n,F) = T (n,F)P (n)T (n,F).

Recall that Pσ = (eσ(1) · · · eσ(n)). Hence

GL(n,C) =
⋃

σ∈S(n)

T (n,F)PσT (n,F). (12.2)

This is a double coset decomposition of GL(n,C) in which the coset rep-
resentatives come from the subgroup P (n), which is isomorphic to S(n).
The double coset decomposition (12.2) is called the Bruhat decomposition of
GL(n,F). Applied to the flag variety of GL(n,F), the Bruhat decomposition
implies

Flag(Fn) =
⋃

σ∈S(n)

T (n,F) · PσT (n,F).

Put another way, Flag(Fn) is the union of the T (n,F) orbits of the cosets
PσT (n,F) ∈ Flag(Fn). These points are also the fixed points of the action
of D(n,F) on Flag(Fn). The double cosets T (n,F)PσT (n,F) in GL(n,F) are
called Bruhat cells. The T (n,F)-orbits of the cosets PσT (n,F) in Flag(Fn) are
called Schubert cells. There are exactly n! Bruhat cells and the same number
of Schubert cells.

Let us now suppose F = C. Then the Bruhat cells have an interesting
connection with the length function on the Weyl group P (n). Suppose first
that w = Pσ, and let the length be given by �(w) = r. This means that
w has a minimal expression as w = s1s2 · · · sr, where each si is one of
the reflections P1, . . . , Pn−1 through the hyperplanes in R

n orthogonal to
e1 − e2, . . . , en−1 − en respectively. The length �(w) is also the minimal num-
ber of simple transpositions (i i + 1) needed for an expression of σ as a
product of transpositions. (Note: if w = 1, then we agree that �(w) = 0.)
It is a nice exercise to prove that if w = P0, then �(w) = n(n − 1)/2. Now
the Borel T (n,C) is defined by setting the coordinate functions xij = 0
for i > j in GL(n,C). Intuitively, therefore, the dimension of T (n,C) is
n(n + 1)/2. In fact, we can parameterize T (n,C) using n free variables a1j ,
n − 1 free variables a2j , and so on. Thus, the dimension of T (n,C) should
be n + (n − 1) + (n − 2) + · · · + 2 + 1 = n(n + 1)/2. Now, the dimension of
T (n,C)P0T (n,C) is the same as the dimension of P−1

0 T (n,C)P0T (n,C) =
L(n,C)T (n,C). But recall that L(n,C)T (n,C) consists of all A ∈ GL(n,C)
with LPDU decomposition having P = In. In fact, we showed that
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L(n,C)T (n,C) = {A ∈ GL(n,C) | det(Ai) �= 0, i = 1, . . . , n},

where Ai is the i × i matrix in the upper left-hand corner of A. Further-
more, if A ∈ L(n,C)T (n,C), then in the factorization A = LDU , L, D,
and U are all unique. Now L(n,C) is described by n(n − 1)/2 independent
variables aij , where i > j, D(n,C) is described by n independent variables
aii, and U(n,C) by another n(n − 1)/2 independent variables aij , where
j > i. Thus L(n,C)T (n,C) is described by n(n − 1)/2 + n(n − 1)/2 + n =
n(n − 1) + n = n2 independent variables. Similarly, if P = In, which corre-
sponds to P = Pw with w = 1, then dim T (n,C)PT (n,C) = dim T (n,C).
The general formula for the dimension of a Bruhat cell is as follows.

Proposition 12.9. If w = Pσ, then the Bruhat cell T (n,C)wT (n,C) has
dimension �(w) + dim T (n,C) = �(w) + n(n + 1)/2. The dimension of the
corresponding Schubert cell is �(w).

The very interesting proof is beyond the scope of this introduction. The
reader may well want to verify it in some special cases. For example, when
n = 3 and σ is the transposition (12), then BPσB′ has the form

BPσB′ =

⎛

⎝
a b ∗
0 c ∗
0 0 d

⎞

⎠

⎛

⎝
0 1 0
1 0 0
0 0 1

⎞

⎠

⎛

⎝
r s ∗
0 t ∗
0 0 u

⎞

⎠ =

⎛

⎝
br at + bs ∗
cr cs ∗
0 0 du

⎞

⎠ ,

(12.3)
where the asterisks stand for some entries in C. The (3, 1) and (3, 2) entries
of this matrix are zero, but the other entries are (essentially) not restricted
except for the condition that the determinant of BPσB′ is nonzero. This
(admittedly not rigorous) argument gives that the dimension of BPσB′ is 7,
which has the form �(12) + dim B.

12.1.9 The Bruhat decomposition of a reductive
group

We now have the necessary ingredients to generalize the Bruhat decomposi-
tion to an arbitrary reductive linear algebraic group G, namely a maximal
torus T , the Weyl group W = NG(T )/T , and a Borel subgroup B of G con-
taining T . Recall that W is a finite group. It will play the role that P (n)
plays when G = GL(n,C). However, W isn’t in general a subgroup of G. But
if T ⊂ B, we can still multiply the identity coset B by a coset of T . So let
w = nwT , where nw ∈ NG(T ), and define wB to be the coset nwB. This is
well defined, since two representatives of w differ by an element of T . Thus,
the Bruhat cell BwB in G is well defined: it is the union of the cosets bnwB,
where b varies through B. The double coset BwB is called a Bruhat cell in G.
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In the flag variety G/B, the B-orbit B · wB of the coset wB is called a Schubert
cell. The LPDU decomposition of GL(n,C) generalizes as follows.

Theorem 12.10. Let G be a reductive linear algebraic group over C, B a
Borel subgroup of G, and T a maximal torus in G such that T < B. Then G
is the union of the Bruhat cells BwB as w varies through W , so G = BWB.
Moreover, NG(T ) ∩ B = T ; hence if w �= w′ in W , then wB �= w′B. Thus, the
number of distinct Bruhat cells in G is the order of W . Finally, the dimension
of the Bruhat cell BwB is �(w) + dim B.

12.1.10 Parabolic subgroups

A closed subgroup P of a linear algebraic group G is called parabolic if P
contains a Borel subgroup. We will classify the parabolic subgroups of G
after we give an example.

Example 12.2. Consider the standard case G = GL(n,C), B = T (n,C),
and T = D(n,C). As we have seen, W = S(n) ∼= P (n). Now suppose j + k =
n. Let P (j, k) < P (n) denote the subgroup consisting of permutation matri-
ces with block decomposition

P =
(

P1 O
O P2

)
,

where P1 ∈ P (j) and P2 ∈ P (k). But P = Pτ for a unique τ ∈ S(n). Since
P1 = Pμ and P2 = Pν for unique μ ∈ S(j) and ν ∈ S(k), we can define
an injective homomorphism ϕ : S(j) × S(k) → S(n) by ϕ(μ × ν) = τ . Let
S(j, k) < S(n) denote the image of ϕ. Then S(j, k) ∼= P (j, k). Then BP (j, k)B
is the set of all matrices of the form

(
A ∗
O B

)
,

where A ∈ GL(j,C) and B ∈ GL(k,C). Hence, BP (j, k)B is a closed sub-
group of GL(n,C).

More generally, let P(j1, . . . , jk) denote all matrices of the form
⎛

⎜⎜⎜⎝

A1 ∗ · · · ∗
O A2 · · · ∗
...

...
. . .

...
O O · · · Ak

⎞

⎟⎟⎟⎠ ,

where Ai ∈ GL(ji,C) and j1 + · · · + jk = n. Then the P(j1, . . . , jk) are the
parabolic subgroups of GL(n,C) containing T (n,C). �
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Now suppose G is reductive and fix a maximal torus T and a Borel sub-
group B such that T < B < G. Let P be a parabolic subgroup in G containing
B, and define the Weyl group WP to be NP(T )/T . Then we have the following
theorem.

Theorem 12.11. The parabolic subgroup P is a union of certain Bruhat
cells. In particular, P = BWPB. Moreover, the number of Bruhat cells in P
is |WP |.

Not every subgroup Z < W gives a parabolic subgroup in this manner. For
example, let σ = (i j) be a transposition that is not simple; that is, |i − j| > 1.
Then if Z = {In, Pσ}, BZB is not a subgroup of GL(n,C). A natural question
then is which subgroups of Weyl groups have the form WP for some parabolic
P. In fact, these subgroups can be described in a simple way. An element
P �= 1 of W is called simple if BPB ∪ B is a subgroup of G. Note that if P
is simple, then P 2 = 1. (We leave the proof to the reader.) Hence the simple
elements have order two. Let S ⊂ W denote the set of all simple elements.
In the standard case, the simple elements are the reflections Pσ, where σ
is a simple transposition. The next result is a complete description of the
parabolic subgroups of the reductive group G.

Theorem 12.12. A subgroup Z < W has the property that BZB is a par-
abolic subgroup of G such that B < BZB if and only if there exists a subset
J of S such that Z =< σ | σ ∈ J >. Moreover, every parabolic subgroup of G
is conjugate in G to a parabolic P containing B.

Corollary 12.13. The set of simple reflections in W generates W .

Proof. Let Z be the subgroup of W such that G = BZB. Since G = BWB,
it follows that W = Z. �

Corollary 12.14. Every parabolic subgroup of GL(n,C) containing T (n,C)
has the form P(j1, . . . , jk) for some choice of the ji.
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12.2 Linearly reductive groups

Let us now treat a new idea. Suppose G < GL(n,F) is a linear algebraic
group. How does one describe the G-sets in V = F

n? This is one of the ques-
tions treated in an area known as representation theory. The main question is
what one can say if we restrict the notion of G-sets to G-invariant subspaces.
A subspace W of V that is also a G-set is called a G-invariant subspace.
Two of the basic questions are which G-invariant subspaces have comple-
mentary G-invariant subspaces and which G-invariant subspaces do not have
any nontrivial proper G-invariant subspaces.

12.2.1 Invariant subspaces

Suppose G < GL(n,F) is a linear algebraic group, and let V denote F
n. A

G-invariant subspace W of V is called G-irreducible if there is no nontrivial
G-invariant subspace U of W . We say that G is linearly reductive or completely
reducible if whenever W is a nontrivial G-invariant subspace of V , there
exists a G-invariant subspace U of V such that V = U ⊕ W . If V has no
proper G-invariant subspace except {0}, then we say that G acts irreducibly
on V . For example, GL(n,F) acts irreducibly on F

n.
Here are two basic examples. First of all, we have the following result.

Proposition 12.15. If T < GL(n,F) is an algebraic torus, then T is lin-
early reductive.

Proof. (sketch) By definition, every element of T is semisimple, and since T
is abelian, it follows that all elements of T are simultaneously diagonalizable.
Thus, T is conjugate to a subgroup of D(n,F). It follows from this that T is
linearly reductive. �

The second basic example is the group P (n) of n × n permutation matri-
ces acting on R

n. Observe that the line � = R(e1 + e2 + · · · + en) is stable
under P (n), so the hyperplane H orthogonal to � is also. This hyperplane
has equation x1 + x2 + · · · + xn = 0 and is clearly invariant under P (n).

Proposition 12.16. The only nontrivial P (n)-invariant subspaces of Rn are
H and �. In particular, the action of P (n) on H is irreducible.

Exercise 12.2.1. Prove this proposition.

12.2.2 Maschke’s theorem

Maschke’s theorem says the following.
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Theorem 12.17. A finite group G < GL(n,F) is linearly reductive if either
F is of characteristic zero or |G| is prime to the characteristic of F.

Proof. Let V = F
n and suppose W is a G-invariant subspace of V . Let T :

V → W be any linear mapping such that T (w) = w if w ∈ W . We now alter
T using an averaging trick. In order to do this, we will use the fact that |G|
is invertible in F. This is guaranteed, since the characteristic of F either is
zero or is prime to |G|. Let ϕ : V → W be defined by

ϕ(v) =
1

|G|
∑

g∈G

g ◦ T (g−1(v)). (12.4)

Then ϕ(w) = w if w ∈ W , and for every h ∈ G and v ∈ V , ϕ(h(v)) =
h(ϕ(v)). (The proof of this is left for the reader.) Now, kerϕ ∩ W = {0},
so by the rank–nullity theorem, V = W ⊕ ker ϕ. But ker ϕ is G-invariant,
since if v ∈ ker ϕ, then ϕ(g(v)) = g(ϕ(v)) = g0 = 0. �

12.2.3 Reductive groups

When G < GL(n,F) is linearly reductive, it follows that V = F
n admits a

direct sum decomposition

V = W1 ⊕ W2 ⊕ · · · ⊕ Wk,

where each Wi is a G-irreducible subspace. We just saw that if the char-
acteristic of F is zero, then every finite subgroup G < GL(n,F) is linearly
reductive. Reductive groups are fundamental partly because of the following
classical result.

Theorem 12.18. If F is algebraically closed of characteristic zero, then
every reductive subgroup G < GL(n,F) is linearly reductive.

The mapping ϕ used in the proof of Maschke’s theorem is known as
a Reynolds operator. When G is not finite but F = C, the proof uses a
Reynold’s-type operator defined by the Haar integral over G. It was an open
question until the 1980s whether reductive subgroups of GL(n,F), F alge-
braically closed of positive characteristic, are linearly reductive. The answer
is yes if the notion of linearly reductive is replaced by a slightly weaker notion.
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12.2.4 Invariant theory

Suppose G < GL(n,F), where F has characteristic zero. A polynomial
f ∈ F[x1, . . . , xn] is said to be G-invariant if f is constant on every G-
orbit. In other words, for all (a1, . . . , an) ∈ F

n, we have f(g(a1, . . . , an)) =
f(a1, . . . , an) for all g ∈ G. For example, if G acts on F

n×n by conjugation,
then the determinant det ∈ F[xij ], 1 ≤ i, j ≤ n, is GL(n,F)-invariant. We
remark that G-invariants need to be defined differently when F has positive
characteristic.

In the nineteenth century, mathematicians who worked in the field of
invariant theory concentrated on the problem of constructing invariants, espe-
cially fundamental invariants, namely G-invariant polynomials f1, . . . , fk such
that every G-invariant f can be written uniquely as

f =
∑

cα1,...,αk
fα1
1 · · · fαk

k , (12.5)

where all cα1,...,αk
are in F. David Hilbert, one of the greatest mathematicians

of the nineteenth and twentieth centuries, was the first to realize that a new
approach had to be taken in order to further the field, and he proved in 1888
that such invariants must exist in a certain general setting without explicitly
constructing them. This approach was initially condemned, but eventually
it was redeemed by his famous 1893 paper that established bounds on the
degrees of the (unknown) generators. Hilbert’s paper not only revolutionized
invariant theory, it established a new field called commutative algebra, which
is still a very active area.

An important example illustrating invariant theory is the fundamental
theorem on symmetric polynomials. A polynomial f ∈ F[x1, . . . , xn] is said
to be symmetric if

f(x1, . . . , xn) = f(xσ(1), . . . , xσ(n))

for all σ ∈ S(n). Since S(n) and P (n) are isomorphic via the isomorphism
σ → Pσ, symmetric polynomials are exactly the P (n)-invariant polynomials
for the natural action of P (n) on F

n. Recall the elementary symmetric func-
tions σ1, σ2, . . . , σn, which were defined when we discussed the characteristic
polynomial. Namely,

σ1 = x1 + · · · + xn, σ2 =
∑

i<j

xixj , . . . , σn = x1 · · · xn.

The fundamental theorem on symmetric polynomials is the following.

Theorem 12.19. Let F be a field of characteristic zero. Then every sym-
metric polynomial f ∈ F[x1, . . . , xn] can be expressed in exactly one way in
the form f = g(σ1, σ2, . . . , σn) for some g ∈ F [x1, . . . , xn].
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This basic fact has a beautiful generalization known as the Chevalley–
Shephard–Todd theorem. I will state a special case originally proved by
Chevalley in 1955. By a reflection of F

n, we mean an element of GL(n,F)
having order two that fixes pointwise a hyperplane in F

n.

Theorem 12.20. Assume that the field F has characteristic zero, and let
G < GL(n,F) be a finite group generated by reflections. Then there exist G-
invariants τ1, . . . , τn ∈ F[x1, . . . , xn] such that every G-invariant f ∈ F[x1, . . . ,
xn] can be expressed uniquely as f = g(τ1, . . . , τn) for some g ∈ F[x1, . . . , xm].

Recall that Weyl groups are examples of finite groups generated by reflec-
tions. A very simple case of Chevalley’s theorem is illustrated by the following
example.

Example 12.3. Consider the group SP (n) of n × n signed permutation
matrices. Recall that a signed permutation matrix is an orthogonal matrix
whose only entries are 0 and ±1. The fundamental invariants of SP (n) are
easy to guess: they are τ1 = x2

1 + · · · + x2
n, τ2 =

∑
i<j x2

ix
2
j , and in general,

τk(x1, . . . , xn) = σk(x2
1, . . . , x

2
n) for all k = 1, . . . , n. �

Finally, let us mention a result that connects invariant theory and reduc-
tive groups.

Theorem 12.21. Suppose F is algebraically closed and G < GL(n,F) is
reductive. Assume that v �= 0 is a vector in F

n such that g(v) = v for all
g ∈ G. Then there exists a G-invariant f ∈ F[x1, . . . , xn] such that f(v) �= 0
but f(0) = 0.

This implies, for example, that there exist invariant polynomials f1, . . . , fk
such that every G-invariant f can be represented as in (12.5). Invariant theory
for reductive groups is now called geometric invariant theory, or GIT for short.
GIT was founded in a famous 1965 paper by David Mumford in which he
conjectured the above theorem.
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